xref: /openbmc/linux/fs/ext4/inode.c (revision 752beb5e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *	(jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
43 
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "truncate.h"
48 
49 #include <trace/events/ext4.h>
50 
51 #define MPAGE_DA_EXTENT_TAIL 0x01
52 
53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54 			      struct ext4_inode_info *ei)
55 {
56 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
57 	__u32 csum;
58 	__u16 dummy_csum = 0;
59 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
60 	unsigned int csum_size = sizeof(dummy_csum);
61 
62 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
63 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
64 	offset += csum_size;
65 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
66 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
67 
68 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
69 		offset = offsetof(struct ext4_inode, i_checksum_hi);
70 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
71 				   EXT4_GOOD_OLD_INODE_SIZE,
72 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
73 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
74 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
75 					   csum_size);
76 			offset += csum_size;
77 		}
78 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
79 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
80 	}
81 
82 	return csum;
83 }
84 
85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
86 				  struct ext4_inode_info *ei)
87 {
88 	__u32 provided, calculated;
89 
90 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
91 	    cpu_to_le32(EXT4_OS_LINUX) ||
92 	    !ext4_has_metadata_csum(inode->i_sb))
93 		return 1;
94 
95 	provided = le16_to_cpu(raw->i_checksum_lo);
96 	calculated = ext4_inode_csum(inode, raw, ei);
97 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
98 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
99 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
100 	else
101 		calculated &= 0xFFFF;
102 
103 	return provided == calculated;
104 }
105 
106 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
107 				struct ext4_inode_info *ei)
108 {
109 	__u32 csum;
110 
111 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
112 	    cpu_to_le32(EXT4_OS_LINUX) ||
113 	    !ext4_has_metadata_csum(inode->i_sb))
114 		return;
115 
116 	csum = ext4_inode_csum(inode, raw, ei);
117 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
118 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
119 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
120 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
121 }
122 
123 static inline int ext4_begin_ordered_truncate(struct inode *inode,
124 					      loff_t new_size)
125 {
126 	trace_ext4_begin_ordered_truncate(inode, new_size);
127 	/*
128 	 * If jinode is zero, then we never opened the file for
129 	 * writing, so there's no need to call
130 	 * jbd2_journal_begin_ordered_truncate() since there's no
131 	 * outstanding writes we need to flush.
132 	 */
133 	if (!EXT4_I(inode)->jinode)
134 		return 0;
135 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
136 						   EXT4_I(inode)->jinode,
137 						   new_size);
138 }
139 
140 static void ext4_invalidatepage(struct page *page, unsigned int offset,
141 				unsigned int length);
142 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
143 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
144 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
145 				  int pextents);
146 
147 /*
148  * Test whether an inode is a fast symlink.
149  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
150  */
151 int ext4_inode_is_fast_symlink(struct inode *inode)
152 {
153 	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
154 		int ea_blocks = EXT4_I(inode)->i_file_acl ?
155 				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
156 
157 		if (ext4_has_inline_data(inode))
158 			return 0;
159 
160 		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
161 	}
162 	return S_ISLNK(inode->i_mode) && inode->i_size &&
163 	       (inode->i_size < EXT4_N_BLOCKS * 4);
164 }
165 
166 /*
167  * Restart the transaction associated with *handle.  This does a commit,
168  * so before we call here everything must be consistently dirtied against
169  * this transaction.
170  */
171 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
172 				 int nblocks)
173 {
174 	int ret;
175 
176 	/*
177 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
178 	 * moment, get_block can be called only for blocks inside i_size since
179 	 * page cache has been already dropped and writes are blocked by
180 	 * i_mutex. So we can safely drop the i_data_sem here.
181 	 */
182 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
183 	jbd_debug(2, "restarting handle %p\n", handle);
184 	up_write(&EXT4_I(inode)->i_data_sem);
185 	ret = ext4_journal_restart(handle, nblocks);
186 	down_write(&EXT4_I(inode)->i_data_sem);
187 	ext4_discard_preallocations(inode);
188 
189 	return ret;
190 }
191 
192 /*
193  * Called at the last iput() if i_nlink is zero.
194  */
195 void ext4_evict_inode(struct inode *inode)
196 {
197 	handle_t *handle;
198 	int err;
199 	int extra_credits = 3;
200 	struct ext4_xattr_inode_array *ea_inode_array = NULL;
201 
202 	trace_ext4_evict_inode(inode);
203 
204 	if (inode->i_nlink) {
205 		/*
206 		 * When journalling data dirty buffers are tracked only in the
207 		 * journal. So although mm thinks everything is clean and
208 		 * ready for reaping the inode might still have some pages to
209 		 * write in the running transaction or waiting to be
210 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
211 		 * (via truncate_inode_pages()) to discard these buffers can
212 		 * cause data loss. Also even if we did not discard these
213 		 * buffers, we would have no way to find them after the inode
214 		 * is reaped and thus user could see stale data if he tries to
215 		 * read them before the transaction is checkpointed. So be
216 		 * careful and force everything to disk here... We use
217 		 * ei->i_datasync_tid to store the newest transaction
218 		 * containing inode's data.
219 		 *
220 		 * Note that directories do not have this problem because they
221 		 * don't use page cache.
222 		 */
223 		if (inode->i_ino != EXT4_JOURNAL_INO &&
224 		    ext4_should_journal_data(inode) &&
225 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
226 		    inode->i_data.nrpages) {
227 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
228 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
229 
230 			jbd2_complete_transaction(journal, commit_tid);
231 			filemap_write_and_wait(&inode->i_data);
232 		}
233 		truncate_inode_pages_final(&inode->i_data);
234 
235 		goto no_delete;
236 	}
237 
238 	if (is_bad_inode(inode))
239 		goto no_delete;
240 	dquot_initialize(inode);
241 
242 	if (ext4_should_order_data(inode))
243 		ext4_begin_ordered_truncate(inode, 0);
244 	truncate_inode_pages_final(&inode->i_data);
245 
246 	/*
247 	 * Protect us against freezing - iput() caller didn't have to have any
248 	 * protection against it
249 	 */
250 	sb_start_intwrite(inode->i_sb);
251 
252 	if (!IS_NOQUOTA(inode))
253 		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
254 
255 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
256 				 ext4_blocks_for_truncate(inode)+extra_credits);
257 	if (IS_ERR(handle)) {
258 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
259 		/*
260 		 * If we're going to skip the normal cleanup, we still need to
261 		 * make sure that the in-core orphan linked list is properly
262 		 * cleaned up.
263 		 */
264 		ext4_orphan_del(NULL, inode);
265 		sb_end_intwrite(inode->i_sb);
266 		goto no_delete;
267 	}
268 
269 	if (IS_SYNC(inode))
270 		ext4_handle_sync(handle);
271 
272 	/*
273 	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
274 	 * special handling of symlinks here because i_size is used to
275 	 * determine whether ext4_inode_info->i_data contains symlink data or
276 	 * block mappings. Setting i_size to 0 will remove its fast symlink
277 	 * status. Erase i_data so that it becomes a valid empty block map.
278 	 */
279 	if (ext4_inode_is_fast_symlink(inode))
280 		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
281 	inode->i_size = 0;
282 	err = ext4_mark_inode_dirty(handle, inode);
283 	if (err) {
284 		ext4_warning(inode->i_sb,
285 			     "couldn't mark inode dirty (err %d)", err);
286 		goto stop_handle;
287 	}
288 	if (inode->i_blocks) {
289 		err = ext4_truncate(inode);
290 		if (err) {
291 			ext4_error(inode->i_sb,
292 				   "couldn't truncate inode %lu (err %d)",
293 				   inode->i_ino, err);
294 			goto stop_handle;
295 		}
296 	}
297 
298 	/* Remove xattr references. */
299 	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
300 				      extra_credits);
301 	if (err) {
302 		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
303 stop_handle:
304 		ext4_journal_stop(handle);
305 		ext4_orphan_del(NULL, inode);
306 		sb_end_intwrite(inode->i_sb);
307 		ext4_xattr_inode_array_free(ea_inode_array);
308 		goto no_delete;
309 	}
310 
311 	/*
312 	 * Kill off the orphan record which ext4_truncate created.
313 	 * AKPM: I think this can be inside the above `if'.
314 	 * Note that ext4_orphan_del() has to be able to cope with the
315 	 * deletion of a non-existent orphan - this is because we don't
316 	 * know if ext4_truncate() actually created an orphan record.
317 	 * (Well, we could do this if we need to, but heck - it works)
318 	 */
319 	ext4_orphan_del(handle, inode);
320 	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
321 
322 	/*
323 	 * One subtle ordering requirement: if anything has gone wrong
324 	 * (transaction abort, IO errors, whatever), then we can still
325 	 * do these next steps (the fs will already have been marked as
326 	 * having errors), but we can't free the inode if the mark_dirty
327 	 * fails.
328 	 */
329 	if (ext4_mark_inode_dirty(handle, inode))
330 		/* If that failed, just do the required in-core inode clear. */
331 		ext4_clear_inode(inode);
332 	else
333 		ext4_free_inode(handle, inode);
334 	ext4_journal_stop(handle);
335 	sb_end_intwrite(inode->i_sb);
336 	ext4_xattr_inode_array_free(ea_inode_array);
337 	return;
338 no_delete:
339 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
340 }
341 
342 #ifdef CONFIG_QUOTA
343 qsize_t *ext4_get_reserved_space(struct inode *inode)
344 {
345 	return &EXT4_I(inode)->i_reserved_quota;
346 }
347 #endif
348 
349 /*
350  * Called with i_data_sem down, which is important since we can call
351  * ext4_discard_preallocations() from here.
352  */
353 void ext4_da_update_reserve_space(struct inode *inode,
354 					int used, int quota_claim)
355 {
356 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
357 	struct ext4_inode_info *ei = EXT4_I(inode);
358 
359 	spin_lock(&ei->i_block_reservation_lock);
360 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
361 	if (unlikely(used > ei->i_reserved_data_blocks)) {
362 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
363 			 "with only %d reserved data blocks",
364 			 __func__, inode->i_ino, used,
365 			 ei->i_reserved_data_blocks);
366 		WARN_ON(1);
367 		used = ei->i_reserved_data_blocks;
368 	}
369 
370 	/* Update per-inode reservations */
371 	ei->i_reserved_data_blocks -= used;
372 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
373 
374 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
375 
376 	/* Update quota subsystem for data blocks */
377 	if (quota_claim)
378 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
379 	else {
380 		/*
381 		 * We did fallocate with an offset that is already delayed
382 		 * allocated. So on delayed allocated writeback we should
383 		 * not re-claim the quota for fallocated blocks.
384 		 */
385 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
386 	}
387 
388 	/*
389 	 * If we have done all the pending block allocations and if
390 	 * there aren't any writers on the inode, we can discard the
391 	 * inode's preallocations.
392 	 */
393 	if ((ei->i_reserved_data_blocks == 0) &&
394 	    !inode_is_open_for_write(inode))
395 		ext4_discard_preallocations(inode);
396 }
397 
398 static int __check_block_validity(struct inode *inode, const char *func,
399 				unsigned int line,
400 				struct ext4_map_blocks *map)
401 {
402 	if (ext4_has_feature_journal(inode->i_sb) &&
403 	    (inode->i_ino ==
404 	     le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
405 		return 0;
406 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
407 				   map->m_len)) {
408 		ext4_error_inode(inode, func, line, map->m_pblk,
409 				 "lblock %lu mapped to illegal pblock %llu "
410 				 "(length %d)", (unsigned long) map->m_lblk,
411 				 map->m_pblk, map->m_len);
412 		return -EFSCORRUPTED;
413 	}
414 	return 0;
415 }
416 
417 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
418 		       ext4_lblk_t len)
419 {
420 	int ret;
421 
422 	if (IS_ENCRYPTED(inode))
423 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
424 
425 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
426 	if (ret > 0)
427 		ret = 0;
428 
429 	return ret;
430 }
431 
432 #define check_block_validity(inode, map)	\
433 	__check_block_validity((inode), __func__, __LINE__, (map))
434 
435 #ifdef ES_AGGRESSIVE_TEST
436 static void ext4_map_blocks_es_recheck(handle_t *handle,
437 				       struct inode *inode,
438 				       struct ext4_map_blocks *es_map,
439 				       struct ext4_map_blocks *map,
440 				       int flags)
441 {
442 	int retval;
443 
444 	map->m_flags = 0;
445 	/*
446 	 * There is a race window that the result is not the same.
447 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
448 	 * is that we lookup a block mapping in extent status tree with
449 	 * out taking i_data_sem.  So at the time the unwritten extent
450 	 * could be converted.
451 	 */
452 	down_read(&EXT4_I(inode)->i_data_sem);
453 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
454 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
455 					     EXT4_GET_BLOCKS_KEEP_SIZE);
456 	} else {
457 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
458 					     EXT4_GET_BLOCKS_KEEP_SIZE);
459 	}
460 	up_read((&EXT4_I(inode)->i_data_sem));
461 
462 	/*
463 	 * We don't check m_len because extent will be collpased in status
464 	 * tree.  So the m_len might not equal.
465 	 */
466 	if (es_map->m_lblk != map->m_lblk ||
467 	    es_map->m_flags != map->m_flags ||
468 	    es_map->m_pblk != map->m_pblk) {
469 		printk("ES cache assertion failed for inode: %lu "
470 		       "es_cached ex [%d/%d/%llu/%x] != "
471 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
472 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
473 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
474 		       map->m_len, map->m_pblk, map->m_flags,
475 		       retval, flags);
476 	}
477 }
478 #endif /* ES_AGGRESSIVE_TEST */
479 
480 /*
481  * The ext4_map_blocks() function tries to look up the requested blocks,
482  * and returns if the blocks are already mapped.
483  *
484  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
485  * and store the allocated blocks in the result buffer head and mark it
486  * mapped.
487  *
488  * If file type is extents based, it will call ext4_ext_map_blocks(),
489  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
490  * based files
491  *
492  * On success, it returns the number of blocks being mapped or allocated.  if
493  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
494  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
495  *
496  * It returns 0 if plain look up failed (blocks have not been allocated), in
497  * that case, @map is returned as unmapped but we still do fill map->m_len to
498  * indicate the length of a hole starting at map->m_lblk.
499  *
500  * It returns the error in case of allocation failure.
501  */
502 int ext4_map_blocks(handle_t *handle, struct inode *inode,
503 		    struct ext4_map_blocks *map, int flags)
504 {
505 	struct extent_status es;
506 	int retval;
507 	int ret = 0;
508 #ifdef ES_AGGRESSIVE_TEST
509 	struct ext4_map_blocks orig_map;
510 
511 	memcpy(&orig_map, map, sizeof(*map));
512 #endif
513 
514 	map->m_flags = 0;
515 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
516 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
517 		  (unsigned long) map->m_lblk);
518 
519 	/*
520 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
521 	 */
522 	if (unlikely(map->m_len > INT_MAX))
523 		map->m_len = INT_MAX;
524 
525 	/* We can handle the block number less than EXT_MAX_BLOCKS */
526 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
527 		return -EFSCORRUPTED;
528 
529 	/* Lookup extent status tree firstly */
530 	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
531 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
532 			map->m_pblk = ext4_es_pblock(&es) +
533 					map->m_lblk - es.es_lblk;
534 			map->m_flags |= ext4_es_is_written(&es) ?
535 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
536 			retval = es.es_len - (map->m_lblk - es.es_lblk);
537 			if (retval > map->m_len)
538 				retval = map->m_len;
539 			map->m_len = retval;
540 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
541 			map->m_pblk = 0;
542 			retval = es.es_len - (map->m_lblk - es.es_lblk);
543 			if (retval > map->m_len)
544 				retval = map->m_len;
545 			map->m_len = retval;
546 			retval = 0;
547 		} else {
548 			BUG();
549 		}
550 #ifdef ES_AGGRESSIVE_TEST
551 		ext4_map_blocks_es_recheck(handle, inode, map,
552 					   &orig_map, flags);
553 #endif
554 		goto found;
555 	}
556 
557 	/*
558 	 * Try to see if we can get the block without requesting a new
559 	 * file system block.
560 	 */
561 	down_read(&EXT4_I(inode)->i_data_sem);
562 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
563 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
564 					     EXT4_GET_BLOCKS_KEEP_SIZE);
565 	} else {
566 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
567 					     EXT4_GET_BLOCKS_KEEP_SIZE);
568 	}
569 	if (retval > 0) {
570 		unsigned int status;
571 
572 		if (unlikely(retval != map->m_len)) {
573 			ext4_warning(inode->i_sb,
574 				     "ES len assertion failed for inode "
575 				     "%lu: retval %d != map->m_len %d",
576 				     inode->i_ino, retval, map->m_len);
577 			WARN_ON(1);
578 		}
579 
580 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
581 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
582 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
583 		    !(status & EXTENT_STATUS_WRITTEN) &&
584 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
585 				       map->m_lblk + map->m_len - 1))
586 			status |= EXTENT_STATUS_DELAYED;
587 		ret = ext4_es_insert_extent(inode, map->m_lblk,
588 					    map->m_len, map->m_pblk, status);
589 		if (ret < 0)
590 			retval = ret;
591 	}
592 	up_read((&EXT4_I(inode)->i_data_sem));
593 
594 found:
595 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
596 		ret = check_block_validity(inode, map);
597 		if (ret != 0)
598 			return ret;
599 	}
600 
601 	/* If it is only a block(s) look up */
602 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
603 		return retval;
604 
605 	/*
606 	 * Returns if the blocks have already allocated
607 	 *
608 	 * Note that if blocks have been preallocated
609 	 * ext4_ext_get_block() returns the create = 0
610 	 * with buffer head unmapped.
611 	 */
612 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
613 		/*
614 		 * If we need to convert extent to unwritten
615 		 * we continue and do the actual work in
616 		 * ext4_ext_map_blocks()
617 		 */
618 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
619 			return retval;
620 
621 	/*
622 	 * Here we clear m_flags because after allocating an new extent,
623 	 * it will be set again.
624 	 */
625 	map->m_flags &= ~EXT4_MAP_FLAGS;
626 
627 	/*
628 	 * New blocks allocate and/or writing to unwritten extent
629 	 * will possibly result in updating i_data, so we take
630 	 * the write lock of i_data_sem, and call get_block()
631 	 * with create == 1 flag.
632 	 */
633 	down_write(&EXT4_I(inode)->i_data_sem);
634 
635 	/*
636 	 * We need to check for EXT4 here because migrate
637 	 * could have changed the inode type in between
638 	 */
639 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
640 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
641 	} else {
642 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
643 
644 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
645 			/*
646 			 * We allocated new blocks which will result in
647 			 * i_data's format changing.  Force the migrate
648 			 * to fail by clearing migrate flags
649 			 */
650 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
651 		}
652 
653 		/*
654 		 * Update reserved blocks/metadata blocks after successful
655 		 * block allocation which had been deferred till now. We don't
656 		 * support fallocate for non extent files. So we can update
657 		 * reserve space here.
658 		 */
659 		if ((retval > 0) &&
660 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
661 			ext4_da_update_reserve_space(inode, retval, 1);
662 	}
663 
664 	if (retval > 0) {
665 		unsigned int status;
666 
667 		if (unlikely(retval != map->m_len)) {
668 			ext4_warning(inode->i_sb,
669 				     "ES len assertion failed for inode "
670 				     "%lu: retval %d != map->m_len %d",
671 				     inode->i_ino, retval, map->m_len);
672 			WARN_ON(1);
673 		}
674 
675 		/*
676 		 * We have to zeroout blocks before inserting them into extent
677 		 * status tree. Otherwise someone could look them up there and
678 		 * use them before they are really zeroed. We also have to
679 		 * unmap metadata before zeroing as otherwise writeback can
680 		 * overwrite zeros with stale data from block device.
681 		 */
682 		if (flags & EXT4_GET_BLOCKS_ZERO &&
683 		    map->m_flags & EXT4_MAP_MAPPED &&
684 		    map->m_flags & EXT4_MAP_NEW) {
685 			ret = ext4_issue_zeroout(inode, map->m_lblk,
686 						 map->m_pblk, map->m_len);
687 			if (ret) {
688 				retval = ret;
689 				goto out_sem;
690 			}
691 		}
692 
693 		/*
694 		 * If the extent has been zeroed out, we don't need to update
695 		 * extent status tree.
696 		 */
697 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
698 		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
699 			if (ext4_es_is_written(&es))
700 				goto out_sem;
701 		}
702 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
703 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
704 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
705 		    !(status & EXTENT_STATUS_WRITTEN) &&
706 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
707 				       map->m_lblk + map->m_len - 1))
708 			status |= EXTENT_STATUS_DELAYED;
709 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
710 					    map->m_pblk, status);
711 		if (ret < 0) {
712 			retval = ret;
713 			goto out_sem;
714 		}
715 	}
716 
717 out_sem:
718 	up_write((&EXT4_I(inode)->i_data_sem));
719 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
720 		ret = check_block_validity(inode, map);
721 		if (ret != 0)
722 			return ret;
723 
724 		/*
725 		 * Inodes with freshly allocated blocks where contents will be
726 		 * visible after transaction commit must be on transaction's
727 		 * ordered data list.
728 		 */
729 		if (map->m_flags & EXT4_MAP_NEW &&
730 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
731 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
732 		    !ext4_is_quota_file(inode) &&
733 		    ext4_should_order_data(inode)) {
734 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
735 				ret = ext4_jbd2_inode_add_wait(handle, inode);
736 			else
737 				ret = ext4_jbd2_inode_add_write(handle, inode);
738 			if (ret)
739 				return ret;
740 		}
741 	}
742 	return retval;
743 }
744 
745 /*
746  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
747  * we have to be careful as someone else may be manipulating b_state as well.
748  */
749 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
750 {
751 	unsigned long old_state;
752 	unsigned long new_state;
753 
754 	flags &= EXT4_MAP_FLAGS;
755 
756 	/* Dummy buffer_head? Set non-atomically. */
757 	if (!bh->b_page) {
758 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
759 		return;
760 	}
761 	/*
762 	 * Someone else may be modifying b_state. Be careful! This is ugly but
763 	 * once we get rid of using bh as a container for mapping information
764 	 * to pass to / from get_block functions, this can go away.
765 	 */
766 	do {
767 		old_state = READ_ONCE(bh->b_state);
768 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
769 	} while (unlikely(
770 		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
771 }
772 
773 static int _ext4_get_block(struct inode *inode, sector_t iblock,
774 			   struct buffer_head *bh, int flags)
775 {
776 	struct ext4_map_blocks map;
777 	int ret = 0;
778 
779 	if (ext4_has_inline_data(inode))
780 		return -ERANGE;
781 
782 	map.m_lblk = iblock;
783 	map.m_len = bh->b_size >> inode->i_blkbits;
784 
785 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
786 			      flags);
787 	if (ret > 0) {
788 		map_bh(bh, inode->i_sb, map.m_pblk);
789 		ext4_update_bh_state(bh, map.m_flags);
790 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
791 		ret = 0;
792 	} else if (ret == 0) {
793 		/* hole case, need to fill in bh->b_size */
794 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
795 	}
796 	return ret;
797 }
798 
799 int ext4_get_block(struct inode *inode, sector_t iblock,
800 		   struct buffer_head *bh, int create)
801 {
802 	return _ext4_get_block(inode, iblock, bh,
803 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
804 }
805 
806 /*
807  * Get block function used when preparing for buffered write if we require
808  * creating an unwritten extent if blocks haven't been allocated.  The extent
809  * will be converted to written after the IO is complete.
810  */
811 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
812 			     struct buffer_head *bh_result, int create)
813 {
814 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
815 		   inode->i_ino, create);
816 	return _ext4_get_block(inode, iblock, bh_result,
817 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
818 }
819 
820 /* Maximum number of blocks we map for direct IO at once. */
821 #define DIO_MAX_BLOCKS 4096
822 
823 /*
824  * Get blocks function for the cases that need to start a transaction -
825  * generally difference cases of direct IO and DAX IO. It also handles retries
826  * in case of ENOSPC.
827  */
828 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
829 				struct buffer_head *bh_result, int flags)
830 {
831 	int dio_credits;
832 	handle_t *handle;
833 	int retries = 0;
834 	int ret;
835 
836 	/* Trim mapping request to maximum we can map at once for DIO */
837 	if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
838 		bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
839 	dio_credits = ext4_chunk_trans_blocks(inode,
840 				      bh_result->b_size >> inode->i_blkbits);
841 retry:
842 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
843 	if (IS_ERR(handle))
844 		return PTR_ERR(handle);
845 
846 	ret = _ext4_get_block(inode, iblock, bh_result, flags);
847 	ext4_journal_stop(handle);
848 
849 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
850 		goto retry;
851 	return ret;
852 }
853 
854 /* Get block function for DIO reads and writes to inodes without extents */
855 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
856 		       struct buffer_head *bh, int create)
857 {
858 	/* We don't expect handle for direct IO */
859 	WARN_ON_ONCE(ext4_journal_current_handle());
860 
861 	if (!create)
862 		return _ext4_get_block(inode, iblock, bh, 0);
863 	return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
864 }
865 
866 /*
867  * Get block function for AIO DIO writes when we create unwritten extent if
868  * blocks are not allocated yet. The extent will be converted to written
869  * after IO is complete.
870  */
871 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
872 		sector_t iblock, struct buffer_head *bh_result,	int create)
873 {
874 	int ret;
875 
876 	/* We don't expect handle for direct IO */
877 	WARN_ON_ONCE(ext4_journal_current_handle());
878 
879 	ret = ext4_get_block_trans(inode, iblock, bh_result,
880 				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
881 
882 	/*
883 	 * When doing DIO using unwritten extents, we need io_end to convert
884 	 * unwritten extents to written on IO completion. We allocate io_end
885 	 * once we spot unwritten extent and store it in b_private. Generic
886 	 * DIO code keeps b_private set and furthermore passes the value to
887 	 * our completion callback in 'private' argument.
888 	 */
889 	if (!ret && buffer_unwritten(bh_result)) {
890 		if (!bh_result->b_private) {
891 			ext4_io_end_t *io_end;
892 
893 			io_end = ext4_init_io_end(inode, GFP_KERNEL);
894 			if (!io_end)
895 				return -ENOMEM;
896 			bh_result->b_private = io_end;
897 			ext4_set_io_unwritten_flag(inode, io_end);
898 		}
899 		set_buffer_defer_completion(bh_result);
900 	}
901 
902 	return ret;
903 }
904 
905 /*
906  * Get block function for non-AIO DIO writes when we create unwritten extent if
907  * blocks are not allocated yet. The extent will be converted to written
908  * after IO is complete by ext4_direct_IO_write().
909  */
910 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
911 		sector_t iblock, struct buffer_head *bh_result,	int create)
912 {
913 	int ret;
914 
915 	/* We don't expect handle for direct IO */
916 	WARN_ON_ONCE(ext4_journal_current_handle());
917 
918 	ret = ext4_get_block_trans(inode, iblock, bh_result,
919 				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
920 
921 	/*
922 	 * Mark inode as having pending DIO writes to unwritten extents.
923 	 * ext4_direct_IO_write() checks this flag and converts extents to
924 	 * written.
925 	 */
926 	if (!ret && buffer_unwritten(bh_result))
927 		ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
928 
929 	return ret;
930 }
931 
932 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
933 		   struct buffer_head *bh_result, int create)
934 {
935 	int ret;
936 
937 	ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
938 		   inode->i_ino, create);
939 	/* We don't expect handle for direct IO */
940 	WARN_ON_ONCE(ext4_journal_current_handle());
941 
942 	ret = _ext4_get_block(inode, iblock, bh_result, 0);
943 	/*
944 	 * Blocks should have been preallocated! ext4_file_write_iter() checks
945 	 * that.
946 	 */
947 	WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
948 
949 	return ret;
950 }
951 
952 
953 /*
954  * `handle' can be NULL if create is zero
955  */
956 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
957 				ext4_lblk_t block, int map_flags)
958 {
959 	struct ext4_map_blocks map;
960 	struct buffer_head *bh;
961 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
962 	int err;
963 
964 	J_ASSERT(handle != NULL || create == 0);
965 
966 	map.m_lblk = block;
967 	map.m_len = 1;
968 	err = ext4_map_blocks(handle, inode, &map, map_flags);
969 
970 	if (err == 0)
971 		return create ? ERR_PTR(-ENOSPC) : NULL;
972 	if (err < 0)
973 		return ERR_PTR(err);
974 
975 	bh = sb_getblk(inode->i_sb, map.m_pblk);
976 	if (unlikely(!bh))
977 		return ERR_PTR(-ENOMEM);
978 	if (map.m_flags & EXT4_MAP_NEW) {
979 		J_ASSERT(create != 0);
980 		J_ASSERT(handle != NULL);
981 
982 		/*
983 		 * Now that we do not always journal data, we should
984 		 * keep in mind whether this should always journal the
985 		 * new buffer as metadata.  For now, regular file
986 		 * writes use ext4_get_block instead, so it's not a
987 		 * problem.
988 		 */
989 		lock_buffer(bh);
990 		BUFFER_TRACE(bh, "call get_create_access");
991 		err = ext4_journal_get_create_access(handle, bh);
992 		if (unlikely(err)) {
993 			unlock_buffer(bh);
994 			goto errout;
995 		}
996 		if (!buffer_uptodate(bh)) {
997 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
998 			set_buffer_uptodate(bh);
999 		}
1000 		unlock_buffer(bh);
1001 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1002 		err = ext4_handle_dirty_metadata(handle, inode, bh);
1003 		if (unlikely(err))
1004 			goto errout;
1005 	} else
1006 		BUFFER_TRACE(bh, "not a new buffer");
1007 	return bh;
1008 errout:
1009 	brelse(bh);
1010 	return ERR_PTR(err);
1011 }
1012 
1013 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1014 			       ext4_lblk_t block, int map_flags)
1015 {
1016 	struct buffer_head *bh;
1017 
1018 	bh = ext4_getblk(handle, inode, block, map_flags);
1019 	if (IS_ERR(bh))
1020 		return bh;
1021 	if (!bh || buffer_uptodate(bh))
1022 		return bh;
1023 	ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1024 	wait_on_buffer(bh);
1025 	if (buffer_uptodate(bh))
1026 		return bh;
1027 	put_bh(bh);
1028 	return ERR_PTR(-EIO);
1029 }
1030 
1031 /* Read a contiguous batch of blocks. */
1032 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1033 		     bool wait, struct buffer_head **bhs)
1034 {
1035 	int i, err;
1036 
1037 	for (i = 0; i < bh_count; i++) {
1038 		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1039 		if (IS_ERR(bhs[i])) {
1040 			err = PTR_ERR(bhs[i]);
1041 			bh_count = i;
1042 			goto out_brelse;
1043 		}
1044 	}
1045 
1046 	for (i = 0; i < bh_count; i++)
1047 		/* Note that NULL bhs[i] is valid because of holes. */
1048 		if (bhs[i] && !buffer_uptodate(bhs[i]))
1049 			ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1050 				    &bhs[i]);
1051 
1052 	if (!wait)
1053 		return 0;
1054 
1055 	for (i = 0; i < bh_count; i++)
1056 		if (bhs[i])
1057 			wait_on_buffer(bhs[i]);
1058 
1059 	for (i = 0; i < bh_count; i++) {
1060 		if (bhs[i] && !buffer_uptodate(bhs[i])) {
1061 			err = -EIO;
1062 			goto out_brelse;
1063 		}
1064 	}
1065 	return 0;
1066 
1067 out_brelse:
1068 	for (i = 0; i < bh_count; i++) {
1069 		brelse(bhs[i]);
1070 		bhs[i] = NULL;
1071 	}
1072 	return err;
1073 }
1074 
1075 int ext4_walk_page_buffers(handle_t *handle,
1076 			   struct buffer_head *head,
1077 			   unsigned from,
1078 			   unsigned to,
1079 			   int *partial,
1080 			   int (*fn)(handle_t *handle,
1081 				     struct buffer_head *bh))
1082 {
1083 	struct buffer_head *bh;
1084 	unsigned block_start, block_end;
1085 	unsigned blocksize = head->b_size;
1086 	int err, ret = 0;
1087 	struct buffer_head *next;
1088 
1089 	for (bh = head, block_start = 0;
1090 	     ret == 0 && (bh != head || !block_start);
1091 	     block_start = block_end, bh = next) {
1092 		next = bh->b_this_page;
1093 		block_end = block_start + blocksize;
1094 		if (block_end <= from || block_start >= to) {
1095 			if (partial && !buffer_uptodate(bh))
1096 				*partial = 1;
1097 			continue;
1098 		}
1099 		err = (*fn)(handle, bh);
1100 		if (!ret)
1101 			ret = err;
1102 	}
1103 	return ret;
1104 }
1105 
1106 /*
1107  * To preserve ordering, it is essential that the hole instantiation and
1108  * the data write be encapsulated in a single transaction.  We cannot
1109  * close off a transaction and start a new one between the ext4_get_block()
1110  * and the commit_write().  So doing the jbd2_journal_start at the start of
1111  * prepare_write() is the right place.
1112  *
1113  * Also, this function can nest inside ext4_writepage().  In that case, we
1114  * *know* that ext4_writepage() has generated enough buffer credits to do the
1115  * whole page.  So we won't block on the journal in that case, which is good,
1116  * because the caller may be PF_MEMALLOC.
1117  *
1118  * By accident, ext4 can be reentered when a transaction is open via
1119  * quota file writes.  If we were to commit the transaction while thus
1120  * reentered, there can be a deadlock - we would be holding a quota
1121  * lock, and the commit would never complete if another thread had a
1122  * transaction open and was blocking on the quota lock - a ranking
1123  * violation.
1124  *
1125  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1126  * will _not_ run commit under these circumstances because handle->h_ref
1127  * is elevated.  We'll still have enough credits for the tiny quotafile
1128  * write.
1129  */
1130 int do_journal_get_write_access(handle_t *handle,
1131 				struct buffer_head *bh)
1132 {
1133 	int dirty = buffer_dirty(bh);
1134 	int ret;
1135 
1136 	if (!buffer_mapped(bh) || buffer_freed(bh))
1137 		return 0;
1138 	/*
1139 	 * __block_write_begin() could have dirtied some buffers. Clean
1140 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1141 	 * otherwise about fs integrity issues. Setting of the dirty bit
1142 	 * by __block_write_begin() isn't a real problem here as we clear
1143 	 * the bit before releasing a page lock and thus writeback cannot
1144 	 * ever write the buffer.
1145 	 */
1146 	if (dirty)
1147 		clear_buffer_dirty(bh);
1148 	BUFFER_TRACE(bh, "get write access");
1149 	ret = ext4_journal_get_write_access(handle, bh);
1150 	if (!ret && dirty)
1151 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1152 	return ret;
1153 }
1154 
1155 #ifdef CONFIG_FS_ENCRYPTION
1156 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1157 				  get_block_t *get_block)
1158 {
1159 	unsigned from = pos & (PAGE_SIZE - 1);
1160 	unsigned to = from + len;
1161 	struct inode *inode = page->mapping->host;
1162 	unsigned block_start, block_end;
1163 	sector_t block;
1164 	int err = 0;
1165 	unsigned blocksize = inode->i_sb->s_blocksize;
1166 	unsigned bbits;
1167 	struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1168 	bool decrypt = false;
1169 
1170 	BUG_ON(!PageLocked(page));
1171 	BUG_ON(from > PAGE_SIZE);
1172 	BUG_ON(to > PAGE_SIZE);
1173 	BUG_ON(from > to);
1174 
1175 	if (!page_has_buffers(page))
1176 		create_empty_buffers(page, blocksize, 0);
1177 	head = page_buffers(page);
1178 	bbits = ilog2(blocksize);
1179 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1180 
1181 	for (bh = head, block_start = 0; bh != head || !block_start;
1182 	    block++, block_start = block_end, bh = bh->b_this_page) {
1183 		block_end = block_start + blocksize;
1184 		if (block_end <= from || block_start >= to) {
1185 			if (PageUptodate(page)) {
1186 				if (!buffer_uptodate(bh))
1187 					set_buffer_uptodate(bh);
1188 			}
1189 			continue;
1190 		}
1191 		if (buffer_new(bh))
1192 			clear_buffer_new(bh);
1193 		if (!buffer_mapped(bh)) {
1194 			WARN_ON(bh->b_size != blocksize);
1195 			err = get_block(inode, block, bh, 1);
1196 			if (err)
1197 				break;
1198 			if (buffer_new(bh)) {
1199 				if (PageUptodate(page)) {
1200 					clear_buffer_new(bh);
1201 					set_buffer_uptodate(bh);
1202 					mark_buffer_dirty(bh);
1203 					continue;
1204 				}
1205 				if (block_end > to || block_start < from)
1206 					zero_user_segments(page, to, block_end,
1207 							   block_start, from);
1208 				continue;
1209 			}
1210 		}
1211 		if (PageUptodate(page)) {
1212 			if (!buffer_uptodate(bh))
1213 				set_buffer_uptodate(bh);
1214 			continue;
1215 		}
1216 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1217 		    !buffer_unwritten(bh) &&
1218 		    (block_start < from || block_end > to)) {
1219 			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1220 			*wait_bh++ = bh;
1221 			decrypt = IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
1222 		}
1223 	}
1224 	/*
1225 	 * If we issued read requests, let them complete.
1226 	 */
1227 	while (wait_bh > wait) {
1228 		wait_on_buffer(*--wait_bh);
1229 		if (!buffer_uptodate(*wait_bh))
1230 			err = -EIO;
1231 	}
1232 	if (unlikely(err))
1233 		page_zero_new_buffers(page, from, to);
1234 	else if (decrypt)
1235 		err = fscrypt_decrypt_page(page->mapping->host, page,
1236 				PAGE_SIZE, 0, page->index);
1237 	return err;
1238 }
1239 #endif
1240 
1241 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1242 			    loff_t pos, unsigned len, unsigned flags,
1243 			    struct page **pagep, void **fsdata)
1244 {
1245 	struct inode *inode = mapping->host;
1246 	int ret, needed_blocks;
1247 	handle_t *handle;
1248 	int retries = 0;
1249 	struct page *page;
1250 	pgoff_t index;
1251 	unsigned from, to;
1252 
1253 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1254 		return -EIO;
1255 
1256 	trace_ext4_write_begin(inode, pos, len, flags);
1257 	/*
1258 	 * Reserve one block more for addition to orphan list in case
1259 	 * we allocate blocks but write fails for some reason
1260 	 */
1261 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1262 	index = pos >> PAGE_SHIFT;
1263 	from = pos & (PAGE_SIZE - 1);
1264 	to = from + len;
1265 
1266 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1267 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1268 						    flags, pagep);
1269 		if (ret < 0)
1270 			return ret;
1271 		if (ret == 1)
1272 			return 0;
1273 	}
1274 
1275 	/*
1276 	 * grab_cache_page_write_begin() can take a long time if the
1277 	 * system is thrashing due to memory pressure, or if the page
1278 	 * is being written back.  So grab it first before we start
1279 	 * the transaction handle.  This also allows us to allocate
1280 	 * the page (if needed) without using GFP_NOFS.
1281 	 */
1282 retry_grab:
1283 	page = grab_cache_page_write_begin(mapping, index, flags);
1284 	if (!page)
1285 		return -ENOMEM;
1286 	unlock_page(page);
1287 
1288 retry_journal:
1289 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1290 	if (IS_ERR(handle)) {
1291 		put_page(page);
1292 		return PTR_ERR(handle);
1293 	}
1294 
1295 	lock_page(page);
1296 	if (page->mapping != mapping) {
1297 		/* The page got truncated from under us */
1298 		unlock_page(page);
1299 		put_page(page);
1300 		ext4_journal_stop(handle);
1301 		goto retry_grab;
1302 	}
1303 	/* In case writeback began while the page was unlocked */
1304 	wait_for_stable_page(page);
1305 
1306 #ifdef CONFIG_FS_ENCRYPTION
1307 	if (ext4_should_dioread_nolock(inode))
1308 		ret = ext4_block_write_begin(page, pos, len,
1309 					     ext4_get_block_unwritten);
1310 	else
1311 		ret = ext4_block_write_begin(page, pos, len,
1312 					     ext4_get_block);
1313 #else
1314 	if (ext4_should_dioread_nolock(inode))
1315 		ret = __block_write_begin(page, pos, len,
1316 					  ext4_get_block_unwritten);
1317 	else
1318 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1319 #endif
1320 	if (!ret && ext4_should_journal_data(inode)) {
1321 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1322 					     from, to, NULL,
1323 					     do_journal_get_write_access);
1324 	}
1325 
1326 	if (ret) {
1327 		unlock_page(page);
1328 		/*
1329 		 * __block_write_begin may have instantiated a few blocks
1330 		 * outside i_size.  Trim these off again. Don't need
1331 		 * i_size_read because we hold i_mutex.
1332 		 *
1333 		 * Add inode to orphan list in case we crash before
1334 		 * truncate finishes
1335 		 */
1336 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1337 			ext4_orphan_add(handle, inode);
1338 
1339 		ext4_journal_stop(handle);
1340 		if (pos + len > inode->i_size) {
1341 			ext4_truncate_failed_write(inode);
1342 			/*
1343 			 * If truncate failed early the inode might
1344 			 * still be on the orphan list; we need to
1345 			 * make sure the inode is removed from the
1346 			 * orphan list in that case.
1347 			 */
1348 			if (inode->i_nlink)
1349 				ext4_orphan_del(NULL, inode);
1350 		}
1351 
1352 		if (ret == -ENOSPC &&
1353 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1354 			goto retry_journal;
1355 		put_page(page);
1356 		return ret;
1357 	}
1358 	*pagep = page;
1359 	return ret;
1360 }
1361 
1362 /* For write_end() in data=journal mode */
1363 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1364 {
1365 	int ret;
1366 	if (!buffer_mapped(bh) || buffer_freed(bh))
1367 		return 0;
1368 	set_buffer_uptodate(bh);
1369 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1370 	clear_buffer_meta(bh);
1371 	clear_buffer_prio(bh);
1372 	return ret;
1373 }
1374 
1375 /*
1376  * We need to pick up the new inode size which generic_commit_write gave us
1377  * `file' can be NULL - eg, when called from page_symlink().
1378  *
1379  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1380  * buffers are managed internally.
1381  */
1382 static int ext4_write_end(struct file *file,
1383 			  struct address_space *mapping,
1384 			  loff_t pos, unsigned len, unsigned copied,
1385 			  struct page *page, void *fsdata)
1386 {
1387 	handle_t *handle = ext4_journal_current_handle();
1388 	struct inode *inode = mapping->host;
1389 	loff_t old_size = inode->i_size;
1390 	int ret = 0, ret2;
1391 	int i_size_changed = 0;
1392 	int inline_data = ext4_has_inline_data(inode);
1393 
1394 	trace_ext4_write_end(inode, pos, len, copied);
1395 	if (inline_data) {
1396 		ret = ext4_write_inline_data_end(inode, pos, len,
1397 						 copied, page);
1398 		if (ret < 0) {
1399 			unlock_page(page);
1400 			put_page(page);
1401 			goto errout;
1402 		}
1403 		copied = ret;
1404 	} else
1405 		copied = block_write_end(file, mapping, pos,
1406 					 len, copied, page, fsdata);
1407 	/*
1408 	 * it's important to update i_size while still holding page lock:
1409 	 * page writeout could otherwise come in and zero beyond i_size.
1410 	 */
1411 	i_size_changed = ext4_update_inode_size(inode, pos + copied);
1412 	unlock_page(page);
1413 	put_page(page);
1414 
1415 	if (old_size < pos)
1416 		pagecache_isize_extended(inode, old_size, pos);
1417 	/*
1418 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1419 	 * makes the holding time of page lock longer. Second, it forces lock
1420 	 * ordering of page lock and transaction start for journaling
1421 	 * filesystems.
1422 	 */
1423 	if (i_size_changed || inline_data)
1424 		ext4_mark_inode_dirty(handle, inode);
1425 
1426 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1427 		/* if we have allocated more blocks and copied
1428 		 * less. We will have blocks allocated outside
1429 		 * inode->i_size. So truncate them
1430 		 */
1431 		ext4_orphan_add(handle, inode);
1432 errout:
1433 	ret2 = ext4_journal_stop(handle);
1434 	if (!ret)
1435 		ret = ret2;
1436 
1437 	if (pos + len > inode->i_size) {
1438 		ext4_truncate_failed_write(inode);
1439 		/*
1440 		 * If truncate failed early the inode might still be
1441 		 * on the orphan list; we need to make sure the inode
1442 		 * is removed from the orphan list in that case.
1443 		 */
1444 		if (inode->i_nlink)
1445 			ext4_orphan_del(NULL, inode);
1446 	}
1447 
1448 	return ret ? ret : copied;
1449 }
1450 
1451 /*
1452  * This is a private version of page_zero_new_buffers() which doesn't
1453  * set the buffer to be dirty, since in data=journalled mode we need
1454  * to call ext4_handle_dirty_metadata() instead.
1455  */
1456 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1457 					    struct page *page,
1458 					    unsigned from, unsigned to)
1459 {
1460 	unsigned int block_start = 0, block_end;
1461 	struct buffer_head *head, *bh;
1462 
1463 	bh = head = page_buffers(page);
1464 	do {
1465 		block_end = block_start + bh->b_size;
1466 		if (buffer_new(bh)) {
1467 			if (block_end > from && block_start < to) {
1468 				if (!PageUptodate(page)) {
1469 					unsigned start, size;
1470 
1471 					start = max(from, block_start);
1472 					size = min(to, block_end) - start;
1473 
1474 					zero_user(page, start, size);
1475 					write_end_fn(handle, bh);
1476 				}
1477 				clear_buffer_new(bh);
1478 			}
1479 		}
1480 		block_start = block_end;
1481 		bh = bh->b_this_page;
1482 	} while (bh != head);
1483 }
1484 
1485 static int ext4_journalled_write_end(struct file *file,
1486 				     struct address_space *mapping,
1487 				     loff_t pos, unsigned len, unsigned copied,
1488 				     struct page *page, void *fsdata)
1489 {
1490 	handle_t *handle = ext4_journal_current_handle();
1491 	struct inode *inode = mapping->host;
1492 	loff_t old_size = inode->i_size;
1493 	int ret = 0, ret2;
1494 	int partial = 0;
1495 	unsigned from, to;
1496 	int size_changed = 0;
1497 	int inline_data = ext4_has_inline_data(inode);
1498 
1499 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1500 	from = pos & (PAGE_SIZE - 1);
1501 	to = from + len;
1502 
1503 	BUG_ON(!ext4_handle_valid(handle));
1504 
1505 	if (inline_data) {
1506 		ret = ext4_write_inline_data_end(inode, pos, len,
1507 						 copied, page);
1508 		if (ret < 0) {
1509 			unlock_page(page);
1510 			put_page(page);
1511 			goto errout;
1512 		}
1513 		copied = ret;
1514 	} else if (unlikely(copied < len) && !PageUptodate(page)) {
1515 		copied = 0;
1516 		ext4_journalled_zero_new_buffers(handle, page, from, to);
1517 	} else {
1518 		if (unlikely(copied < len))
1519 			ext4_journalled_zero_new_buffers(handle, page,
1520 							 from + copied, to);
1521 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1522 					     from + copied, &partial,
1523 					     write_end_fn);
1524 		if (!partial)
1525 			SetPageUptodate(page);
1526 	}
1527 	size_changed = ext4_update_inode_size(inode, pos + copied);
1528 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1529 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1530 	unlock_page(page);
1531 	put_page(page);
1532 
1533 	if (old_size < pos)
1534 		pagecache_isize_extended(inode, old_size, pos);
1535 
1536 	if (size_changed || inline_data) {
1537 		ret2 = ext4_mark_inode_dirty(handle, inode);
1538 		if (!ret)
1539 			ret = ret2;
1540 	}
1541 
1542 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1543 		/* if we have allocated more blocks and copied
1544 		 * less. We will have blocks allocated outside
1545 		 * inode->i_size. So truncate them
1546 		 */
1547 		ext4_orphan_add(handle, inode);
1548 
1549 errout:
1550 	ret2 = ext4_journal_stop(handle);
1551 	if (!ret)
1552 		ret = ret2;
1553 	if (pos + len > inode->i_size) {
1554 		ext4_truncate_failed_write(inode);
1555 		/*
1556 		 * If truncate failed early the inode might still be
1557 		 * on the orphan list; we need to make sure the inode
1558 		 * is removed from the orphan list in that case.
1559 		 */
1560 		if (inode->i_nlink)
1561 			ext4_orphan_del(NULL, inode);
1562 	}
1563 
1564 	return ret ? ret : copied;
1565 }
1566 
1567 /*
1568  * Reserve space for a single cluster
1569  */
1570 static int ext4_da_reserve_space(struct inode *inode)
1571 {
1572 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1573 	struct ext4_inode_info *ei = EXT4_I(inode);
1574 	int ret;
1575 
1576 	/*
1577 	 * We will charge metadata quota at writeout time; this saves
1578 	 * us from metadata over-estimation, though we may go over by
1579 	 * a small amount in the end.  Here we just reserve for data.
1580 	 */
1581 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1582 	if (ret)
1583 		return ret;
1584 
1585 	spin_lock(&ei->i_block_reservation_lock);
1586 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1587 		spin_unlock(&ei->i_block_reservation_lock);
1588 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1589 		return -ENOSPC;
1590 	}
1591 	ei->i_reserved_data_blocks++;
1592 	trace_ext4_da_reserve_space(inode);
1593 	spin_unlock(&ei->i_block_reservation_lock);
1594 
1595 	return 0;       /* success */
1596 }
1597 
1598 void ext4_da_release_space(struct inode *inode, int to_free)
1599 {
1600 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1601 	struct ext4_inode_info *ei = EXT4_I(inode);
1602 
1603 	if (!to_free)
1604 		return;		/* Nothing to release, exit */
1605 
1606 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1607 
1608 	trace_ext4_da_release_space(inode, to_free);
1609 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1610 		/*
1611 		 * if there aren't enough reserved blocks, then the
1612 		 * counter is messed up somewhere.  Since this
1613 		 * function is called from invalidate page, it's
1614 		 * harmless to return without any action.
1615 		 */
1616 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1617 			 "ino %lu, to_free %d with only %d reserved "
1618 			 "data blocks", inode->i_ino, to_free,
1619 			 ei->i_reserved_data_blocks);
1620 		WARN_ON(1);
1621 		to_free = ei->i_reserved_data_blocks;
1622 	}
1623 	ei->i_reserved_data_blocks -= to_free;
1624 
1625 	/* update fs dirty data blocks counter */
1626 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1627 
1628 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1629 
1630 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1631 }
1632 
1633 static void ext4_da_page_release_reservation(struct page *page,
1634 					     unsigned int offset,
1635 					     unsigned int length)
1636 {
1637 	int contiguous_blks = 0;
1638 	struct buffer_head *head, *bh;
1639 	unsigned int curr_off = 0;
1640 	struct inode *inode = page->mapping->host;
1641 	unsigned int stop = offset + length;
1642 	ext4_fsblk_t lblk;
1643 
1644 	BUG_ON(stop > PAGE_SIZE || stop < length);
1645 
1646 	head = page_buffers(page);
1647 	bh = head;
1648 	do {
1649 		unsigned int next_off = curr_off + bh->b_size;
1650 
1651 		if (next_off > stop)
1652 			break;
1653 
1654 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1655 			contiguous_blks++;
1656 			clear_buffer_delay(bh);
1657 		} else if (contiguous_blks) {
1658 			lblk = page->index <<
1659 			       (PAGE_SHIFT - inode->i_blkbits);
1660 			lblk += (curr_off >> inode->i_blkbits) -
1661 				contiguous_blks;
1662 			ext4_es_remove_blks(inode, lblk, contiguous_blks);
1663 			contiguous_blks = 0;
1664 		}
1665 		curr_off = next_off;
1666 	} while ((bh = bh->b_this_page) != head);
1667 
1668 	if (contiguous_blks) {
1669 		lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1670 		lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1671 		ext4_es_remove_blks(inode, lblk, contiguous_blks);
1672 	}
1673 
1674 }
1675 
1676 /*
1677  * Delayed allocation stuff
1678  */
1679 
1680 struct mpage_da_data {
1681 	struct inode *inode;
1682 	struct writeback_control *wbc;
1683 
1684 	pgoff_t first_page;	/* The first page to write */
1685 	pgoff_t next_page;	/* Current page to examine */
1686 	pgoff_t last_page;	/* Last page to examine */
1687 	/*
1688 	 * Extent to map - this can be after first_page because that can be
1689 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1690 	 * is delalloc or unwritten.
1691 	 */
1692 	struct ext4_map_blocks map;
1693 	struct ext4_io_submit io_submit;	/* IO submission data */
1694 	unsigned int do_map:1;
1695 };
1696 
1697 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1698 				       bool invalidate)
1699 {
1700 	int nr_pages, i;
1701 	pgoff_t index, end;
1702 	struct pagevec pvec;
1703 	struct inode *inode = mpd->inode;
1704 	struct address_space *mapping = inode->i_mapping;
1705 
1706 	/* This is necessary when next_page == 0. */
1707 	if (mpd->first_page >= mpd->next_page)
1708 		return;
1709 
1710 	index = mpd->first_page;
1711 	end   = mpd->next_page - 1;
1712 	if (invalidate) {
1713 		ext4_lblk_t start, last;
1714 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1715 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1716 		ext4_es_remove_extent(inode, start, last - start + 1);
1717 	}
1718 
1719 	pagevec_init(&pvec);
1720 	while (index <= end) {
1721 		nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1722 		if (nr_pages == 0)
1723 			break;
1724 		for (i = 0; i < nr_pages; i++) {
1725 			struct page *page = pvec.pages[i];
1726 
1727 			BUG_ON(!PageLocked(page));
1728 			BUG_ON(PageWriteback(page));
1729 			if (invalidate) {
1730 				if (page_mapped(page))
1731 					clear_page_dirty_for_io(page);
1732 				block_invalidatepage(page, 0, PAGE_SIZE);
1733 				ClearPageUptodate(page);
1734 			}
1735 			unlock_page(page);
1736 		}
1737 		pagevec_release(&pvec);
1738 	}
1739 }
1740 
1741 static void ext4_print_free_blocks(struct inode *inode)
1742 {
1743 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1744 	struct super_block *sb = inode->i_sb;
1745 	struct ext4_inode_info *ei = EXT4_I(inode);
1746 
1747 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1748 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1749 			ext4_count_free_clusters(sb)));
1750 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1751 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1752 	       (long long) EXT4_C2B(EXT4_SB(sb),
1753 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1754 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1755 	       (long long) EXT4_C2B(EXT4_SB(sb),
1756 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1757 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1758 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1759 		 ei->i_reserved_data_blocks);
1760 	return;
1761 }
1762 
1763 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1764 {
1765 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1766 }
1767 
1768 /*
1769  * ext4_insert_delayed_block - adds a delayed block to the extents status
1770  *                             tree, incrementing the reserved cluster/block
1771  *                             count or making a pending reservation
1772  *                             where needed
1773  *
1774  * @inode - file containing the newly added block
1775  * @lblk - logical block to be added
1776  *
1777  * Returns 0 on success, negative error code on failure.
1778  */
1779 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1780 {
1781 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1782 	int ret;
1783 	bool allocated = false;
1784 
1785 	/*
1786 	 * If the cluster containing lblk is shared with a delayed,
1787 	 * written, or unwritten extent in a bigalloc file system, it's
1788 	 * already been accounted for and does not need to be reserved.
1789 	 * A pending reservation must be made for the cluster if it's
1790 	 * shared with a written or unwritten extent and doesn't already
1791 	 * have one.  Written and unwritten extents can be purged from the
1792 	 * extents status tree if the system is under memory pressure, so
1793 	 * it's necessary to examine the extent tree if a search of the
1794 	 * extents status tree doesn't get a match.
1795 	 */
1796 	if (sbi->s_cluster_ratio == 1) {
1797 		ret = ext4_da_reserve_space(inode);
1798 		if (ret != 0)   /* ENOSPC */
1799 			goto errout;
1800 	} else {   /* bigalloc */
1801 		if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1802 			if (!ext4_es_scan_clu(inode,
1803 					      &ext4_es_is_mapped, lblk)) {
1804 				ret = ext4_clu_mapped(inode,
1805 						      EXT4_B2C(sbi, lblk));
1806 				if (ret < 0)
1807 					goto errout;
1808 				if (ret == 0) {
1809 					ret = ext4_da_reserve_space(inode);
1810 					if (ret != 0)   /* ENOSPC */
1811 						goto errout;
1812 				} else {
1813 					allocated = true;
1814 				}
1815 			} else {
1816 				allocated = true;
1817 			}
1818 		}
1819 	}
1820 
1821 	ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1822 
1823 errout:
1824 	return ret;
1825 }
1826 
1827 /*
1828  * This function is grabs code from the very beginning of
1829  * ext4_map_blocks, but assumes that the caller is from delayed write
1830  * time. This function looks up the requested blocks and sets the
1831  * buffer delay bit under the protection of i_data_sem.
1832  */
1833 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1834 			      struct ext4_map_blocks *map,
1835 			      struct buffer_head *bh)
1836 {
1837 	struct extent_status es;
1838 	int retval;
1839 	sector_t invalid_block = ~((sector_t) 0xffff);
1840 #ifdef ES_AGGRESSIVE_TEST
1841 	struct ext4_map_blocks orig_map;
1842 
1843 	memcpy(&orig_map, map, sizeof(*map));
1844 #endif
1845 
1846 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1847 		invalid_block = ~0;
1848 
1849 	map->m_flags = 0;
1850 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1851 		  "logical block %lu\n", inode->i_ino, map->m_len,
1852 		  (unsigned long) map->m_lblk);
1853 
1854 	/* Lookup extent status tree firstly */
1855 	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1856 		if (ext4_es_is_hole(&es)) {
1857 			retval = 0;
1858 			down_read(&EXT4_I(inode)->i_data_sem);
1859 			goto add_delayed;
1860 		}
1861 
1862 		/*
1863 		 * Delayed extent could be allocated by fallocate.
1864 		 * So we need to check it.
1865 		 */
1866 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1867 			map_bh(bh, inode->i_sb, invalid_block);
1868 			set_buffer_new(bh);
1869 			set_buffer_delay(bh);
1870 			return 0;
1871 		}
1872 
1873 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1874 		retval = es.es_len - (iblock - es.es_lblk);
1875 		if (retval > map->m_len)
1876 			retval = map->m_len;
1877 		map->m_len = retval;
1878 		if (ext4_es_is_written(&es))
1879 			map->m_flags |= EXT4_MAP_MAPPED;
1880 		else if (ext4_es_is_unwritten(&es))
1881 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1882 		else
1883 			BUG();
1884 
1885 #ifdef ES_AGGRESSIVE_TEST
1886 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1887 #endif
1888 		return retval;
1889 	}
1890 
1891 	/*
1892 	 * Try to see if we can get the block without requesting a new
1893 	 * file system block.
1894 	 */
1895 	down_read(&EXT4_I(inode)->i_data_sem);
1896 	if (ext4_has_inline_data(inode))
1897 		retval = 0;
1898 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1899 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1900 	else
1901 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1902 
1903 add_delayed:
1904 	if (retval == 0) {
1905 		int ret;
1906 
1907 		/*
1908 		 * XXX: __block_prepare_write() unmaps passed block,
1909 		 * is it OK?
1910 		 */
1911 
1912 		ret = ext4_insert_delayed_block(inode, map->m_lblk);
1913 		if (ret != 0) {
1914 			retval = ret;
1915 			goto out_unlock;
1916 		}
1917 
1918 		map_bh(bh, inode->i_sb, invalid_block);
1919 		set_buffer_new(bh);
1920 		set_buffer_delay(bh);
1921 	} else if (retval > 0) {
1922 		int ret;
1923 		unsigned int status;
1924 
1925 		if (unlikely(retval != map->m_len)) {
1926 			ext4_warning(inode->i_sb,
1927 				     "ES len assertion failed for inode "
1928 				     "%lu: retval %d != map->m_len %d",
1929 				     inode->i_ino, retval, map->m_len);
1930 			WARN_ON(1);
1931 		}
1932 
1933 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1934 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1935 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1936 					    map->m_pblk, status);
1937 		if (ret != 0)
1938 			retval = ret;
1939 	}
1940 
1941 out_unlock:
1942 	up_read((&EXT4_I(inode)->i_data_sem));
1943 
1944 	return retval;
1945 }
1946 
1947 /*
1948  * This is a special get_block_t callback which is used by
1949  * ext4_da_write_begin().  It will either return mapped block or
1950  * reserve space for a single block.
1951  *
1952  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1953  * We also have b_blocknr = -1 and b_bdev initialized properly
1954  *
1955  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1956  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1957  * initialized properly.
1958  */
1959 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1960 			   struct buffer_head *bh, int create)
1961 {
1962 	struct ext4_map_blocks map;
1963 	int ret = 0;
1964 
1965 	BUG_ON(create == 0);
1966 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1967 
1968 	map.m_lblk = iblock;
1969 	map.m_len = 1;
1970 
1971 	/*
1972 	 * first, we need to know whether the block is allocated already
1973 	 * preallocated blocks are unmapped but should treated
1974 	 * the same as allocated blocks.
1975 	 */
1976 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1977 	if (ret <= 0)
1978 		return ret;
1979 
1980 	map_bh(bh, inode->i_sb, map.m_pblk);
1981 	ext4_update_bh_state(bh, map.m_flags);
1982 
1983 	if (buffer_unwritten(bh)) {
1984 		/* A delayed write to unwritten bh should be marked
1985 		 * new and mapped.  Mapped ensures that we don't do
1986 		 * get_block multiple times when we write to the same
1987 		 * offset and new ensures that we do proper zero out
1988 		 * for partial write.
1989 		 */
1990 		set_buffer_new(bh);
1991 		set_buffer_mapped(bh);
1992 	}
1993 	return 0;
1994 }
1995 
1996 static int bget_one(handle_t *handle, struct buffer_head *bh)
1997 {
1998 	get_bh(bh);
1999 	return 0;
2000 }
2001 
2002 static int bput_one(handle_t *handle, struct buffer_head *bh)
2003 {
2004 	put_bh(bh);
2005 	return 0;
2006 }
2007 
2008 static int __ext4_journalled_writepage(struct page *page,
2009 				       unsigned int len)
2010 {
2011 	struct address_space *mapping = page->mapping;
2012 	struct inode *inode = mapping->host;
2013 	struct buffer_head *page_bufs = NULL;
2014 	handle_t *handle = NULL;
2015 	int ret = 0, err = 0;
2016 	int inline_data = ext4_has_inline_data(inode);
2017 	struct buffer_head *inode_bh = NULL;
2018 
2019 	ClearPageChecked(page);
2020 
2021 	if (inline_data) {
2022 		BUG_ON(page->index != 0);
2023 		BUG_ON(len > ext4_get_max_inline_size(inode));
2024 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2025 		if (inode_bh == NULL)
2026 			goto out;
2027 	} else {
2028 		page_bufs = page_buffers(page);
2029 		if (!page_bufs) {
2030 			BUG();
2031 			goto out;
2032 		}
2033 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
2034 				       NULL, bget_one);
2035 	}
2036 	/*
2037 	 * We need to release the page lock before we start the
2038 	 * journal, so grab a reference so the page won't disappear
2039 	 * out from under us.
2040 	 */
2041 	get_page(page);
2042 	unlock_page(page);
2043 
2044 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2045 				    ext4_writepage_trans_blocks(inode));
2046 	if (IS_ERR(handle)) {
2047 		ret = PTR_ERR(handle);
2048 		put_page(page);
2049 		goto out_no_pagelock;
2050 	}
2051 	BUG_ON(!ext4_handle_valid(handle));
2052 
2053 	lock_page(page);
2054 	put_page(page);
2055 	if (page->mapping != mapping) {
2056 		/* The page got truncated from under us */
2057 		ext4_journal_stop(handle);
2058 		ret = 0;
2059 		goto out;
2060 	}
2061 
2062 	if (inline_data) {
2063 		ret = ext4_mark_inode_dirty(handle, inode);
2064 	} else {
2065 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2066 					     do_journal_get_write_access);
2067 
2068 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2069 					     write_end_fn);
2070 	}
2071 	if (ret == 0)
2072 		ret = err;
2073 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2074 	err = ext4_journal_stop(handle);
2075 	if (!ret)
2076 		ret = err;
2077 
2078 	if (!ext4_has_inline_data(inode))
2079 		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2080 				       NULL, bput_one);
2081 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2082 out:
2083 	unlock_page(page);
2084 out_no_pagelock:
2085 	brelse(inode_bh);
2086 	return ret;
2087 }
2088 
2089 /*
2090  * Note that we don't need to start a transaction unless we're journaling data
2091  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2092  * need to file the inode to the transaction's list in ordered mode because if
2093  * we are writing back data added by write(), the inode is already there and if
2094  * we are writing back data modified via mmap(), no one guarantees in which
2095  * transaction the data will hit the disk. In case we are journaling data, we
2096  * cannot start transaction directly because transaction start ranks above page
2097  * lock so we have to do some magic.
2098  *
2099  * This function can get called via...
2100  *   - ext4_writepages after taking page lock (have journal handle)
2101  *   - journal_submit_inode_data_buffers (no journal handle)
2102  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2103  *   - grab_page_cache when doing write_begin (have journal handle)
2104  *
2105  * We don't do any block allocation in this function. If we have page with
2106  * multiple blocks we need to write those buffer_heads that are mapped. This
2107  * is important for mmaped based write. So if we do with blocksize 1K
2108  * truncate(f, 1024);
2109  * a = mmap(f, 0, 4096);
2110  * a[0] = 'a';
2111  * truncate(f, 4096);
2112  * we have in the page first buffer_head mapped via page_mkwrite call back
2113  * but other buffer_heads would be unmapped but dirty (dirty done via the
2114  * do_wp_page). So writepage should write the first block. If we modify
2115  * the mmap area beyond 1024 we will again get a page_fault and the
2116  * page_mkwrite callback will do the block allocation and mark the
2117  * buffer_heads mapped.
2118  *
2119  * We redirty the page if we have any buffer_heads that is either delay or
2120  * unwritten in the page.
2121  *
2122  * We can get recursively called as show below.
2123  *
2124  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2125  *		ext4_writepage()
2126  *
2127  * But since we don't do any block allocation we should not deadlock.
2128  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2129  */
2130 static int ext4_writepage(struct page *page,
2131 			  struct writeback_control *wbc)
2132 {
2133 	int ret = 0;
2134 	loff_t size;
2135 	unsigned int len;
2136 	struct buffer_head *page_bufs = NULL;
2137 	struct inode *inode = page->mapping->host;
2138 	struct ext4_io_submit io_submit;
2139 	bool keep_towrite = false;
2140 
2141 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2142 		ext4_invalidatepage(page, 0, PAGE_SIZE);
2143 		unlock_page(page);
2144 		return -EIO;
2145 	}
2146 
2147 	trace_ext4_writepage(page);
2148 	size = i_size_read(inode);
2149 	if (page->index == size >> PAGE_SHIFT)
2150 		len = size & ~PAGE_MASK;
2151 	else
2152 		len = PAGE_SIZE;
2153 
2154 	page_bufs = page_buffers(page);
2155 	/*
2156 	 * We cannot do block allocation or other extent handling in this
2157 	 * function. If there are buffers needing that, we have to redirty
2158 	 * the page. But we may reach here when we do a journal commit via
2159 	 * journal_submit_inode_data_buffers() and in that case we must write
2160 	 * allocated buffers to achieve data=ordered mode guarantees.
2161 	 *
2162 	 * Also, if there is only one buffer per page (the fs block
2163 	 * size == the page size), if one buffer needs block
2164 	 * allocation or needs to modify the extent tree to clear the
2165 	 * unwritten flag, we know that the page can't be written at
2166 	 * all, so we might as well refuse the write immediately.
2167 	 * Unfortunately if the block size != page size, we can't as
2168 	 * easily detect this case using ext4_walk_page_buffers(), but
2169 	 * for the extremely common case, this is an optimization that
2170 	 * skips a useless round trip through ext4_bio_write_page().
2171 	 */
2172 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2173 				   ext4_bh_delay_or_unwritten)) {
2174 		redirty_page_for_writepage(wbc, page);
2175 		if ((current->flags & PF_MEMALLOC) ||
2176 		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2177 			/*
2178 			 * For memory cleaning there's no point in writing only
2179 			 * some buffers. So just bail out. Warn if we came here
2180 			 * from direct reclaim.
2181 			 */
2182 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2183 							== PF_MEMALLOC);
2184 			unlock_page(page);
2185 			return 0;
2186 		}
2187 		keep_towrite = true;
2188 	}
2189 
2190 	if (PageChecked(page) && ext4_should_journal_data(inode))
2191 		/*
2192 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2193 		 * doesn't seem much point in redirtying the page here.
2194 		 */
2195 		return __ext4_journalled_writepage(page, len);
2196 
2197 	ext4_io_submit_init(&io_submit, wbc);
2198 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2199 	if (!io_submit.io_end) {
2200 		redirty_page_for_writepage(wbc, page);
2201 		unlock_page(page);
2202 		return -ENOMEM;
2203 	}
2204 	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2205 	ext4_io_submit(&io_submit);
2206 	/* Drop io_end reference we got from init */
2207 	ext4_put_io_end_defer(io_submit.io_end);
2208 	return ret;
2209 }
2210 
2211 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2212 {
2213 	int len;
2214 	loff_t size;
2215 	int err;
2216 
2217 	BUG_ON(page->index != mpd->first_page);
2218 	clear_page_dirty_for_io(page);
2219 	/*
2220 	 * We have to be very careful here!  Nothing protects writeback path
2221 	 * against i_size changes and the page can be writeably mapped into
2222 	 * page tables. So an application can be growing i_size and writing
2223 	 * data through mmap while writeback runs. clear_page_dirty_for_io()
2224 	 * write-protects our page in page tables and the page cannot get
2225 	 * written to again until we release page lock. So only after
2226 	 * clear_page_dirty_for_io() we are safe to sample i_size for
2227 	 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2228 	 * on the barrier provided by TestClearPageDirty in
2229 	 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2230 	 * after page tables are updated.
2231 	 */
2232 	size = i_size_read(mpd->inode);
2233 	if (page->index == size >> PAGE_SHIFT)
2234 		len = size & ~PAGE_MASK;
2235 	else
2236 		len = PAGE_SIZE;
2237 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2238 	if (!err)
2239 		mpd->wbc->nr_to_write--;
2240 	mpd->first_page++;
2241 
2242 	return err;
2243 }
2244 
2245 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2246 
2247 /*
2248  * mballoc gives us at most this number of blocks...
2249  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2250  * The rest of mballoc seems to handle chunks up to full group size.
2251  */
2252 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2253 
2254 /*
2255  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2256  *
2257  * @mpd - extent of blocks
2258  * @lblk - logical number of the block in the file
2259  * @bh - buffer head we want to add to the extent
2260  *
2261  * The function is used to collect contig. blocks in the same state. If the
2262  * buffer doesn't require mapping for writeback and we haven't started the
2263  * extent of buffers to map yet, the function returns 'true' immediately - the
2264  * caller can write the buffer right away. Otherwise the function returns true
2265  * if the block has been added to the extent, false if the block couldn't be
2266  * added.
2267  */
2268 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2269 				   struct buffer_head *bh)
2270 {
2271 	struct ext4_map_blocks *map = &mpd->map;
2272 
2273 	/* Buffer that doesn't need mapping for writeback? */
2274 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2275 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2276 		/* So far no extent to map => we write the buffer right away */
2277 		if (map->m_len == 0)
2278 			return true;
2279 		return false;
2280 	}
2281 
2282 	/* First block in the extent? */
2283 	if (map->m_len == 0) {
2284 		/* We cannot map unless handle is started... */
2285 		if (!mpd->do_map)
2286 			return false;
2287 		map->m_lblk = lblk;
2288 		map->m_len = 1;
2289 		map->m_flags = bh->b_state & BH_FLAGS;
2290 		return true;
2291 	}
2292 
2293 	/* Don't go larger than mballoc is willing to allocate */
2294 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2295 		return false;
2296 
2297 	/* Can we merge the block to our big extent? */
2298 	if (lblk == map->m_lblk + map->m_len &&
2299 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2300 		map->m_len++;
2301 		return true;
2302 	}
2303 	return false;
2304 }
2305 
2306 /*
2307  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2308  *
2309  * @mpd - extent of blocks for mapping
2310  * @head - the first buffer in the page
2311  * @bh - buffer we should start processing from
2312  * @lblk - logical number of the block in the file corresponding to @bh
2313  *
2314  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2315  * the page for IO if all buffers in this page were mapped and there's no
2316  * accumulated extent of buffers to map or add buffers in the page to the
2317  * extent of buffers to map. The function returns 1 if the caller can continue
2318  * by processing the next page, 0 if it should stop adding buffers to the
2319  * extent to map because we cannot extend it anymore. It can also return value
2320  * < 0 in case of error during IO submission.
2321  */
2322 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2323 				   struct buffer_head *head,
2324 				   struct buffer_head *bh,
2325 				   ext4_lblk_t lblk)
2326 {
2327 	struct inode *inode = mpd->inode;
2328 	int err;
2329 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2330 							>> inode->i_blkbits;
2331 
2332 	do {
2333 		BUG_ON(buffer_locked(bh));
2334 
2335 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2336 			/* Found extent to map? */
2337 			if (mpd->map.m_len)
2338 				return 0;
2339 			/* Buffer needs mapping and handle is not started? */
2340 			if (!mpd->do_map)
2341 				return 0;
2342 			/* Everything mapped so far and we hit EOF */
2343 			break;
2344 		}
2345 	} while (lblk++, (bh = bh->b_this_page) != head);
2346 	/* So far everything mapped? Submit the page for IO. */
2347 	if (mpd->map.m_len == 0) {
2348 		err = mpage_submit_page(mpd, head->b_page);
2349 		if (err < 0)
2350 			return err;
2351 	}
2352 	return lblk < blocks;
2353 }
2354 
2355 /*
2356  * mpage_map_buffers - update buffers corresponding to changed extent and
2357  *		       submit fully mapped pages for IO
2358  *
2359  * @mpd - description of extent to map, on return next extent to map
2360  *
2361  * Scan buffers corresponding to changed extent (we expect corresponding pages
2362  * to be already locked) and update buffer state according to new extent state.
2363  * We map delalloc buffers to their physical location, clear unwritten bits,
2364  * and mark buffers as uninit when we perform writes to unwritten extents
2365  * and do extent conversion after IO is finished. If the last page is not fully
2366  * mapped, we update @map to the next extent in the last page that needs
2367  * mapping. Otherwise we submit the page for IO.
2368  */
2369 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2370 {
2371 	struct pagevec pvec;
2372 	int nr_pages, i;
2373 	struct inode *inode = mpd->inode;
2374 	struct buffer_head *head, *bh;
2375 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2376 	pgoff_t start, end;
2377 	ext4_lblk_t lblk;
2378 	sector_t pblock;
2379 	int err;
2380 
2381 	start = mpd->map.m_lblk >> bpp_bits;
2382 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2383 	lblk = start << bpp_bits;
2384 	pblock = mpd->map.m_pblk;
2385 
2386 	pagevec_init(&pvec);
2387 	while (start <= end) {
2388 		nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2389 						&start, end);
2390 		if (nr_pages == 0)
2391 			break;
2392 		for (i = 0; i < nr_pages; i++) {
2393 			struct page *page = pvec.pages[i];
2394 
2395 			bh = head = page_buffers(page);
2396 			do {
2397 				if (lblk < mpd->map.m_lblk)
2398 					continue;
2399 				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2400 					/*
2401 					 * Buffer after end of mapped extent.
2402 					 * Find next buffer in the page to map.
2403 					 */
2404 					mpd->map.m_len = 0;
2405 					mpd->map.m_flags = 0;
2406 					/*
2407 					 * FIXME: If dioread_nolock supports
2408 					 * blocksize < pagesize, we need to make
2409 					 * sure we add size mapped so far to
2410 					 * io_end->size as the following call
2411 					 * can submit the page for IO.
2412 					 */
2413 					err = mpage_process_page_bufs(mpd, head,
2414 								      bh, lblk);
2415 					pagevec_release(&pvec);
2416 					if (err > 0)
2417 						err = 0;
2418 					return err;
2419 				}
2420 				if (buffer_delay(bh)) {
2421 					clear_buffer_delay(bh);
2422 					bh->b_blocknr = pblock++;
2423 				}
2424 				clear_buffer_unwritten(bh);
2425 			} while (lblk++, (bh = bh->b_this_page) != head);
2426 
2427 			/*
2428 			 * FIXME: This is going to break if dioread_nolock
2429 			 * supports blocksize < pagesize as we will try to
2430 			 * convert potentially unmapped parts of inode.
2431 			 */
2432 			mpd->io_submit.io_end->size += PAGE_SIZE;
2433 			/* Page fully mapped - let IO run! */
2434 			err = mpage_submit_page(mpd, page);
2435 			if (err < 0) {
2436 				pagevec_release(&pvec);
2437 				return err;
2438 			}
2439 		}
2440 		pagevec_release(&pvec);
2441 	}
2442 	/* Extent fully mapped and matches with page boundary. We are done. */
2443 	mpd->map.m_len = 0;
2444 	mpd->map.m_flags = 0;
2445 	return 0;
2446 }
2447 
2448 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2449 {
2450 	struct inode *inode = mpd->inode;
2451 	struct ext4_map_blocks *map = &mpd->map;
2452 	int get_blocks_flags;
2453 	int err, dioread_nolock;
2454 
2455 	trace_ext4_da_write_pages_extent(inode, map);
2456 	/*
2457 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2458 	 * to convert an unwritten extent to be initialized (in the case
2459 	 * where we have written into one or more preallocated blocks).  It is
2460 	 * possible that we're going to need more metadata blocks than
2461 	 * previously reserved. However we must not fail because we're in
2462 	 * writeback and there is nothing we can do about it so it might result
2463 	 * in data loss.  So use reserved blocks to allocate metadata if
2464 	 * possible.
2465 	 *
2466 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2467 	 * the blocks in question are delalloc blocks.  This indicates
2468 	 * that the blocks and quotas has already been checked when
2469 	 * the data was copied into the page cache.
2470 	 */
2471 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2472 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2473 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2474 	dioread_nolock = ext4_should_dioread_nolock(inode);
2475 	if (dioread_nolock)
2476 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2477 	if (map->m_flags & (1 << BH_Delay))
2478 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2479 
2480 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2481 	if (err < 0)
2482 		return err;
2483 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2484 		if (!mpd->io_submit.io_end->handle &&
2485 		    ext4_handle_valid(handle)) {
2486 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2487 			handle->h_rsv_handle = NULL;
2488 		}
2489 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2490 	}
2491 
2492 	BUG_ON(map->m_len == 0);
2493 	return 0;
2494 }
2495 
2496 /*
2497  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2498  *				 mpd->len and submit pages underlying it for IO
2499  *
2500  * @handle - handle for journal operations
2501  * @mpd - extent to map
2502  * @give_up_on_write - we set this to true iff there is a fatal error and there
2503  *                     is no hope of writing the data. The caller should discard
2504  *                     dirty pages to avoid infinite loops.
2505  *
2506  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2507  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2508  * them to initialized or split the described range from larger unwritten
2509  * extent. Note that we need not map all the described range since allocation
2510  * can return less blocks or the range is covered by more unwritten extents. We
2511  * cannot map more because we are limited by reserved transaction credits. On
2512  * the other hand we always make sure that the last touched page is fully
2513  * mapped so that it can be written out (and thus forward progress is
2514  * guaranteed). After mapping we submit all mapped pages for IO.
2515  */
2516 static int mpage_map_and_submit_extent(handle_t *handle,
2517 				       struct mpage_da_data *mpd,
2518 				       bool *give_up_on_write)
2519 {
2520 	struct inode *inode = mpd->inode;
2521 	struct ext4_map_blocks *map = &mpd->map;
2522 	int err;
2523 	loff_t disksize;
2524 	int progress = 0;
2525 
2526 	mpd->io_submit.io_end->offset =
2527 				((loff_t)map->m_lblk) << inode->i_blkbits;
2528 	do {
2529 		err = mpage_map_one_extent(handle, mpd);
2530 		if (err < 0) {
2531 			struct super_block *sb = inode->i_sb;
2532 
2533 			if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2534 			    EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2535 				goto invalidate_dirty_pages;
2536 			/*
2537 			 * Let the uper layers retry transient errors.
2538 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2539 			 * is non-zero, a commit should free up blocks.
2540 			 */
2541 			if ((err == -ENOMEM) ||
2542 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2543 				if (progress)
2544 					goto update_disksize;
2545 				return err;
2546 			}
2547 			ext4_msg(sb, KERN_CRIT,
2548 				 "Delayed block allocation failed for "
2549 				 "inode %lu at logical offset %llu with"
2550 				 " max blocks %u with error %d",
2551 				 inode->i_ino,
2552 				 (unsigned long long)map->m_lblk,
2553 				 (unsigned)map->m_len, -err);
2554 			ext4_msg(sb, KERN_CRIT,
2555 				 "This should not happen!! Data will "
2556 				 "be lost\n");
2557 			if (err == -ENOSPC)
2558 				ext4_print_free_blocks(inode);
2559 		invalidate_dirty_pages:
2560 			*give_up_on_write = true;
2561 			return err;
2562 		}
2563 		progress = 1;
2564 		/*
2565 		 * Update buffer state, submit mapped pages, and get us new
2566 		 * extent to map
2567 		 */
2568 		err = mpage_map_and_submit_buffers(mpd);
2569 		if (err < 0)
2570 			goto update_disksize;
2571 	} while (map->m_len);
2572 
2573 update_disksize:
2574 	/*
2575 	 * Update on-disk size after IO is submitted.  Races with
2576 	 * truncate are avoided by checking i_size under i_data_sem.
2577 	 */
2578 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2579 	if (disksize > EXT4_I(inode)->i_disksize) {
2580 		int err2;
2581 		loff_t i_size;
2582 
2583 		down_write(&EXT4_I(inode)->i_data_sem);
2584 		i_size = i_size_read(inode);
2585 		if (disksize > i_size)
2586 			disksize = i_size;
2587 		if (disksize > EXT4_I(inode)->i_disksize)
2588 			EXT4_I(inode)->i_disksize = disksize;
2589 		up_write(&EXT4_I(inode)->i_data_sem);
2590 		err2 = ext4_mark_inode_dirty(handle, inode);
2591 		if (err2)
2592 			ext4_error(inode->i_sb,
2593 				   "Failed to mark inode %lu dirty",
2594 				   inode->i_ino);
2595 		if (!err)
2596 			err = err2;
2597 	}
2598 	return err;
2599 }
2600 
2601 /*
2602  * Calculate the total number of credits to reserve for one writepages
2603  * iteration. This is called from ext4_writepages(). We map an extent of
2604  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2605  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2606  * bpp - 1 blocks in bpp different extents.
2607  */
2608 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2609 {
2610 	int bpp = ext4_journal_blocks_per_page(inode);
2611 
2612 	return ext4_meta_trans_blocks(inode,
2613 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2614 }
2615 
2616 /*
2617  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2618  * 				 and underlying extent to map
2619  *
2620  * @mpd - where to look for pages
2621  *
2622  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2623  * IO immediately. When we find a page which isn't mapped we start accumulating
2624  * extent of buffers underlying these pages that needs mapping (formed by
2625  * either delayed or unwritten buffers). We also lock the pages containing
2626  * these buffers. The extent found is returned in @mpd structure (starting at
2627  * mpd->lblk with length mpd->len blocks).
2628  *
2629  * Note that this function can attach bios to one io_end structure which are
2630  * neither logically nor physically contiguous. Although it may seem as an
2631  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2632  * case as we need to track IO to all buffers underlying a page in one io_end.
2633  */
2634 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2635 {
2636 	struct address_space *mapping = mpd->inode->i_mapping;
2637 	struct pagevec pvec;
2638 	unsigned int nr_pages;
2639 	long left = mpd->wbc->nr_to_write;
2640 	pgoff_t index = mpd->first_page;
2641 	pgoff_t end = mpd->last_page;
2642 	xa_mark_t tag;
2643 	int i, err = 0;
2644 	int blkbits = mpd->inode->i_blkbits;
2645 	ext4_lblk_t lblk;
2646 	struct buffer_head *head;
2647 
2648 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2649 		tag = PAGECACHE_TAG_TOWRITE;
2650 	else
2651 		tag = PAGECACHE_TAG_DIRTY;
2652 
2653 	pagevec_init(&pvec);
2654 	mpd->map.m_len = 0;
2655 	mpd->next_page = index;
2656 	while (index <= end) {
2657 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2658 				tag);
2659 		if (nr_pages == 0)
2660 			goto out;
2661 
2662 		for (i = 0; i < nr_pages; i++) {
2663 			struct page *page = pvec.pages[i];
2664 
2665 			/*
2666 			 * Accumulated enough dirty pages? This doesn't apply
2667 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2668 			 * keep going because someone may be concurrently
2669 			 * dirtying pages, and we might have synced a lot of
2670 			 * newly appeared dirty pages, but have not synced all
2671 			 * of the old dirty pages.
2672 			 */
2673 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2674 				goto out;
2675 
2676 			/* If we can't merge this page, we are done. */
2677 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2678 				goto out;
2679 
2680 			lock_page(page);
2681 			/*
2682 			 * If the page is no longer dirty, or its mapping no
2683 			 * longer corresponds to inode we are writing (which
2684 			 * means it has been truncated or invalidated), or the
2685 			 * page is already under writeback and we are not doing
2686 			 * a data integrity writeback, skip the page
2687 			 */
2688 			if (!PageDirty(page) ||
2689 			    (PageWriteback(page) &&
2690 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2691 			    unlikely(page->mapping != mapping)) {
2692 				unlock_page(page);
2693 				continue;
2694 			}
2695 
2696 			wait_on_page_writeback(page);
2697 			BUG_ON(PageWriteback(page));
2698 
2699 			if (mpd->map.m_len == 0)
2700 				mpd->first_page = page->index;
2701 			mpd->next_page = page->index + 1;
2702 			/* Add all dirty buffers to mpd */
2703 			lblk = ((ext4_lblk_t)page->index) <<
2704 				(PAGE_SHIFT - blkbits);
2705 			head = page_buffers(page);
2706 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2707 			if (err <= 0)
2708 				goto out;
2709 			err = 0;
2710 			left--;
2711 		}
2712 		pagevec_release(&pvec);
2713 		cond_resched();
2714 	}
2715 	return 0;
2716 out:
2717 	pagevec_release(&pvec);
2718 	return err;
2719 }
2720 
2721 static int ext4_writepages(struct address_space *mapping,
2722 			   struct writeback_control *wbc)
2723 {
2724 	pgoff_t	writeback_index = 0;
2725 	long nr_to_write = wbc->nr_to_write;
2726 	int range_whole = 0;
2727 	int cycled = 1;
2728 	handle_t *handle = NULL;
2729 	struct mpage_da_data mpd;
2730 	struct inode *inode = mapping->host;
2731 	int needed_blocks, rsv_blocks = 0, ret = 0;
2732 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2733 	bool done;
2734 	struct blk_plug plug;
2735 	bool give_up_on_write = false;
2736 
2737 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2738 		return -EIO;
2739 
2740 	percpu_down_read(&sbi->s_journal_flag_rwsem);
2741 	trace_ext4_writepages(inode, wbc);
2742 
2743 	/*
2744 	 * No pages to write? This is mainly a kludge to avoid starting
2745 	 * a transaction for special inodes like journal inode on last iput()
2746 	 * because that could violate lock ordering on umount
2747 	 */
2748 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2749 		goto out_writepages;
2750 
2751 	if (ext4_should_journal_data(inode)) {
2752 		ret = generic_writepages(mapping, wbc);
2753 		goto out_writepages;
2754 	}
2755 
2756 	/*
2757 	 * If the filesystem has aborted, it is read-only, so return
2758 	 * right away instead of dumping stack traces later on that
2759 	 * will obscure the real source of the problem.  We test
2760 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2761 	 * the latter could be true if the filesystem is mounted
2762 	 * read-only, and in that case, ext4_writepages should
2763 	 * *never* be called, so if that ever happens, we would want
2764 	 * the stack trace.
2765 	 */
2766 	if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2767 		     sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2768 		ret = -EROFS;
2769 		goto out_writepages;
2770 	}
2771 
2772 	if (ext4_should_dioread_nolock(inode)) {
2773 		/*
2774 		 * We may need to convert up to one extent per block in
2775 		 * the page and we may dirty the inode.
2776 		 */
2777 		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2778 						PAGE_SIZE >> inode->i_blkbits);
2779 	}
2780 
2781 	/*
2782 	 * If we have inline data and arrive here, it means that
2783 	 * we will soon create the block for the 1st page, so
2784 	 * we'd better clear the inline data here.
2785 	 */
2786 	if (ext4_has_inline_data(inode)) {
2787 		/* Just inode will be modified... */
2788 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2789 		if (IS_ERR(handle)) {
2790 			ret = PTR_ERR(handle);
2791 			goto out_writepages;
2792 		}
2793 		BUG_ON(ext4_test_inode_state(inode,
2794 				EXT4_STATE_MAY_INLINE_DATA));
2795 		ext4_destroy_inline_data(handle, inode);
2796 		ext4_journal_stop(handle);
2797 	}
2798 
2799 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2800 		range_whole = 1;
2801 
2802 	if (wbc->range_cyclic) {
2803 		writeback_index = mapping->writeback_index;
2804 		if (writeback_index)
2805 			cycled = 0;
2806 		mpd.first_page = writeback_index;
2807 		mpd.last_page = -1;
2808 	} else {
2809 		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2810 		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2811 	}
2812 
2813 	mpd.inode = inode;
2814 	mpd.wbc = wbc;
2815 	ext4_io_submit_init(&mpd.io_submit, wbc);
2816 retry:
2817 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2818 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2819 	done = false;
2820 	blk_start_plug(&plug);
2821 
2822 	/*
2823 	 * First writeback pages that don't need mapping - we can avoid
2824 	 * starting a transaction unnecessarily and also avoid being blocked
2825 	 * in the block layer on device congestion while having transaction
2826 	 * started.
2827 	 */
2828 	mpd.do_map = 0;
2829 	mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2830 	if (!mpd.io_submit.io_end) {
2831 		ret = -ENOMEM;
2832 		goto unplug;
2833 	}
2834 	ret = mpage_prepare_extent_to_map(&mpd);
2835 	/* Unlock pages we didn't use */
2836 	mpage_release_unused_pages(&mpd, false);
2837 	/* Submit prepared bio */
2838 	ext4_io_submit(&mpd.io_submit);
2839 	ext4_put_io_end_defer(mpd.io_submit.io_end);
2840 	mpd.io_submit.io_end = NULL;
2841 	if (ret < 0)
2842 		goto unplug;
2843 
2844 	while (!done && mpd.first_page <= mpd.last_page) {
2845 		/* For each extent of pages we use new io_end */
2846 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2847 		if (!mpd.io_submit.io_end) {
2848 			ret = -ENOMEM;
2849 			break;
2850 		}
2851 
2852 		/*
2853 		 * We have two constraints: We find one extent to map and we
2854 		 * must always write out whole page (makes a difference when
2855 		 * blocksize < pagesize) so that we don't block on IO when we
2856 		 * try to write out the rest of the page. Journalled mode is
2857 		 * not supported by delalloc.
2858 		 */
2859 		BUG_ON(ext4_should_journal_data(inode));
2860 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2861 
2862 		/* start a new transaction */
2863 		handle = ext4_journal_start_with_reserve(inode,
2864 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2865 		if (IS_ERR(handle)) {
2866 			ret = PTR_ERR(handle);
2867 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2868 			       "%ld pages, ino %lu; err %d", __func__,
2869 				wbc->nr_to_write, inode->i_ino, ret);
2870 			/* Release allocated io_end */
2871 			ext4_put_io_end(mpd.io_submit.io_end);
2872 			mpd.io_submit.io_end = NULL;
2873 			break;
2874 		}
2875 		mpd.do_map = 1;
2876 
2877 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2878 		ret = mpage_prepare_extent_to_map(&mpd);
2879 		if (!ret) {
2880 			if (mpd.map.m_len)
2881 				ret = mpage_map_and_submit_extent(handle, &mpd,
2882 					&give_up_on_write);
2883 			else {
2884 				/*
2885 				 * We scanned the whole range (or exhausted
2886 				 * nr_to_write), submitted what was mapped and
2887 				 * didn't find anything needing mapping. We are
2888 				 * done.
2889 				 */
2890 				done = true;
2891 			}
2892 		}
2893 		/*
2894 		 * Caution: If the handle is synchronous,
2895 		 * ext4_journal_stop() can wait for transaction commit
2896 		 * to finish which may depend on writeback of pages to
2897 		 * complete or on page lock to be released.  In that
2898 		 * case, we have to wait until after after we have
2899 		 * submitted all the IO, released page locks we hold,
2900 		 * and dropped io_end reference (for extent conversion
2901 		 * to be able to complete) before stopping the handle.
2902 		 */
2903 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2904 			ext4_journal_stop(handle);
2905 			handle = NULL;
2906 			mpd.do_map = 0;
2907 		}
2908 		/* Unlock pages we didn't use */
2909 		mpage_release_unused_pages(&mpd, give_up_on_write);
2910 		/* Submit prepared bio */
2911 		ext4_io_submit(&mpd.io_submit);
2912 
2913 		/*
2914 		 * Drop our io_end reference we got from init. We have
2915 		 * to be careful and use deferred io_end finishing if
2916 		 * we are still holding the transaction as we can
2917 		 * release the last reference to io_end which may end
2918 		 * up doing unwritten extent conversion.
2919 		 */
2920 		if (handle) {
2921 			ext4_put_io_end_defer(mpd.io_submit.io_end);
2922 			ext4_journal_stop(handle);
2923 		} else
2924 			ext4_put_io_end(mpd.io_submit.io_end);
2925 		mpd.io_submit.io_end = NULL;
2926 
2927 		if (ret == -ENOSPC && sbi->s_journal) {
2928 			/*
2929 			 * Commit the transaction which would
2930 			 * free blocks released in the transaction
2931 			 * and try again
2932 			 */
2933 			jbd2_journal_force_commit_nested(sbi->s_journal);
2934 			ret = 0;
2935 			continue;
2936 		}
2937 		/* Fatal error - ENOMEM, EIO... */
2938 		if (ret)
2939 			break;
2940 	}
2941 unplug:
2942 	blk_finish_plug(&plug);
2943 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2944 		cycled = 1;
2945 		mpd.last_page = writeback_index - 1;
2946 		mpd.first_page = 0;
2947 		goto retry;
2948 	}
2949 
2950 	/* Update index */
2951 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2952 		/*
2953 		 * Set the writeback_index so that range_cyclic
2954 		 * mode will write it back later
2955 		 */
2956 		mapping->writeback_index = mpd.first_page;
2957 
2958 out_writepages:
2959 	trace_ext4_writepages_result(inode, wbc, ret,
2960 				     nr_to_write - wbc->nr_to_write);
2961 	percpu_up_read(&sbi->s_journal_flag_rwsem);
2962 	return ret;
2963 }
2964 
2965 static int ext4_dax_writepages(struct address_space *mapping,
2966 			       struct writeback_control *wbc)
2967 {
2968 	int ret;
2969 	long nr_to_write = wbc->nr_to_write;
2970 	struct inode *inode = mapping->host;
2971 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2972 
2973 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2974 		return -EIO;
2975 
2976 	percpu_down_read(&sbi->s_journal_flag_rwsem);
2977 	trace_ext4_writepages(inode, wbc);
2978 
2979 	ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc);
2980 	trace_ext4_writepages_result(inode, wbc, ret,
2981 				     nr_to_write - wbc->nr_to_write);
2982 	percpu_up_read(&sbi->s_journal_flag_rwsem);
2983 	return ret;
2984 }
2985 
2986 static int ext4_nonda_switch(struct super_block *sb)
2987 {
2988 	s64 free_clusters, dirty_clusters;
2989 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2990 
2991 	/*
2992 	 * switch to non delalloc mode if we are running low
2993 	 * on free block. The free block accounting via percpu
2994 	 * counters can get slightly wrong with percpu_counter_batch getting
2995 	 * accumulated on each CPU without updating global counters
2996 	 * Delalloc need an accurate free block accounting. So switch
2997 	 * to non delalloc when we are near to error range.
2998 	 */
2999 	free_clusters =
3000 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
3001 	dirty_clusters =
3002 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
3003 	/*
3004 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
3005 	 */
3006 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
3007 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
3008 
3009 	if (2 * free_clusters < 3 * dirty_clusters ||
3010 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
3011 		/*
3012 		 * free block count is less than 150% of dirty blocks
3013 		 * or free blocks is less than watermark
3014 		 */
3015 		return 1;
3016 	}
3017 	return 0;
3018 }
3019 
3020 /* We always reserve for an inode update; the superblock could be there too */
3021 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
3022 {
3023 	if (likely(ext4_has_feature_large_file(inode->i_sb)))
3024 		return 1;
3025 
3026 	if (pos + len <= 0x7fffffffULL)
3027 		return 1;
3028 
3029 	/* We might need to update the superblock to set LARGE_FILE */
3030 	return 2;
3031 }
3032 
3033 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3034 			       loff_t pos, unsigned len, unsigned flags,
3035 			       struct page **pagep, void **fsdata)
3036 {
3037 	int ret, retries = 0;
3038 	struct page *page;
3039 	pgoff_t index;
3040 	struct inode *inode = mapping->host;
3041 	handle_t *handle;
3042 
3043 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3044 		return -EIO;
3045 
3046 	index = pos >> PAGE_SHIFT;
3047 
3048 	if (ext4_nonda_switch(inode->i_sb) ||
3049 	    S_ISLNK(inode->i_mode)) {
3050 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3051 		return ext4_write_begin(file, mapping, pos,
3052 					len, flags, pagep, fsdata);
3053 	}
3054 	*fsdata = (void *)0;
3055 	trace_ext4_da_write_begin(inode, pos, len, flags);
3056 
3057 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3058 		ret = ext4_da_write_inline_data_begin(mapping, inode,
3059 						      pos, len, flags,
3060 						      pagep, fsdata);
3061 		if (ret < 0)
3062 			return ret;
3063 		if (ret == 1)
3064 			return 0;
3065 	}
3066 
3067 	/*
3068 	 * grab_cache_page_write_begin() can take a long time if the
3069 	 * system is thrashing due to memory pressure, or if the page
3070 	 * is being written back.  So grab it first before we start
3071 	 * the transaction handle.  This also allows us to allocate
3072 	 * the page (if needed) without using GFP_NOFS.
3073 	 */
3074 retry_grab:
3075 	page = grab_cache_page_write_begin(mapping, index, flags);
3076 	if (!page)
3077 		return -ENOMEM;
3078 	unlock_page(page);
3079 
3080 	/*
3081 	 * With delayed allocation, we don't log the i_disksize update
3082 	 * if there is delayed block allocation. But we still need
3083 	 * to journalling the i_disksize update if writes to the end
3084 	 * of file which has an already mapped buffer.
3085 	 */
3086 retry_journal:
3087 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3088 				ext4_da_write_credits(inode, pos, len));
3089 	if (IS_ERR(handle)) {
3090 		put_page(page);
3091 		return PTR_ERR(handle);
3092 	}
3093 
3094 	lock_page(page);
3095 	if (page->mapping != mapping) {
3096 		/* The page got truncated from under us */
3097 		unlock_page(page);
3098 		put_page(page);
3099 		ext4_journal_stop(handle);
3100 		goto retry_grab;
3101 	}
3102 	/* In case writeback began while the page was unlocked */
3103 	wait_for_stable_page(page);
3104 
3105 #ifdef CONFIG_FS_ENCRYPTION
3106 	ret = ext4_block_write_begin(page, pos, len,
3107 				     ext4_da_get_block_prep);
3108 #else
3109 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3110 #endif
3111 	if (ret < 0) {
3112 		unlock_page(page);
3113 		ext4_journal_stop(handle);
3114 		/*
3115 		 * block_write_begin may have instantiated a few blocks
3116 		 * outside i_size.  Trim these off again. Don't need
3117 		 * i_size_read because we hold i_mutex.
3118 		 */
3119 		if (pos + len > inode->i_size)
3120 			ext4_truncate_failed_write(inode);
3121 
3122 		if (ret == -ENOSPC &&
3123 		    ext4_should_retry_alloc(inode->i_sb, &retries))
3124 			goto retry_journal;
3125 
3126 		put_page(page);
3127 		return ret;
3128 	}
3129 
3130 	*pagep = page;
3131 	return ret;
3132 }
3133 
3134 /*
3135  * Check if we should update i_disksize
3136  * when write to the end of file but not require block allocation
3137  */
3138 static int ext4_da_should_update_i_disksize(struct page *page,
3139 					    unsigned long offset)
3140 {
3141 	struct buffer_head *bh;
3142 	struct inode *inode = page->mapping->host;
3143 	unsigned int idx;
3144 	int i;
3145 
3146 	bh = page_buffers(page);
3147 	idx = offset >> inode->i_blkbits;
3148 
3149 	for (i = 0; i < idx; i++)
3150 		bh = bh->b_this_page;
3151 
3152 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3153 		return 0;
3154 	return 1;
3155 }
3156 
3157 static int ext4_da_write_end(struct file *file,
3158 			     struct address_space *mapping,
3159 			     loff_t pos, unsigned len, unsigned copied,
3160 			     struct page *page, void *fsdata)
3161 {
3162 	struct inode *inode = mapping->host;
3163 	int ret = 0, ret2;
3164 	handle_t *handle = ext4_journal_current_handle();
3165 	loff_t new_i_size;
3166 	unsigned long start, end;
3167 	int write_mode = (int)(unsigned long)fsdata;
3168 
3169 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3170 		return ext4_write_end(file, mapping, pos,
3171 				      len, copied, page, fsdata);
3172 
3173 	trace_ext4_da_write_end(inode, pos, len, copied);
3174 	start = pos & (PAGE_SIZE - 1);
3175 	end = start + copied - 1;
3176 
3177 	/*
3178 	 * generic_write_end() will run mark_inode_dirty() if i_size
3179 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
3180 	 * into that.
3181 	 */
3182 	new_i_size = pos + copied;
3183 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3184 		if (ext4_has_inline_data(inode) ||
3185 		    ext4_da_should_update_i_disksize(page, end)) {
3186 			ext4_update_i_disksize(inode, new_i_size);
3187 			/* We need to mark inode dirty even if
3188 			 * new_i_size is less that inode->i_size
3189 			 * bu greater than i_disksize.(hint delalloc)
3190 			 */
3191 			ext4_mark_inode_dirty(handle, inode);
3192 		}
3193 	}
3194 
3195 	if (write_mode != CONVERT_INLINE_DATA &&
3196 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3197 	    ext4_has_inline_data(inode))
3198 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3199 						     page);
3200 	else
3201 		ret2 = generic_write_end(file, mapping, pos, len, copied,
3202 							page, fsdata);
3203 
3204 	copied = ret2;
3205 	if (ret2 < 0)
3206 		ret = ret2;
3207 	ret2 = ext4_journal_stop(handle);
3208 	if (!ret)
3209 		ret = ret2;
3210 
3211 	return ret ? ret : copied;
3212 }
3213 
3214 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3215 				   unsigned int length)
3216 {
3217 	/*
3218 	 * Drop reserved blocks
3219 	 */
3220 	BUG_ON(!PageLocked(page));
3221 	if (!page_has_buffers(page))
3222 		goto out;
3223 
3224 	ext4_da_page_release_reservation(page, offset, length);
3225 
3226 out:
3227 	ext4_invalidatepage(page, offset, length);
3228 
3229 	return;
3230 }
3231 
3232 /*
3233  * Force all delayed allocation blocks to be allocated for a given inode.
3234  */
3235 int ext4_alloc_da_blocks(struct inode *inode)
3236 {
3237 	trace_ext4_alloc_da_blocks(inode);
3238 
3239 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3240 		return 0;
3241 
3242 	/*
3243 	 * We do something simple for now.  The filemap_flush() will
3244 	 * also start triggering a write of the data blocks, which is
3245 	 * not strictly speaking necessary (and for users of
3246 	 * laptop_mode, not even desirable).  However, to do otherwise
3247 	 * would require replicating code paths in:
3248 	 *
3249 	 * ext4_writepages() ->
3250 	 *    write_cache_pages() ---> (via passed in callback function)
3251 	 *        __mpage_da_writepage() -->
3252 	 *           mpage_add_bh_to_extent()
3253 	 *           mpage_da_map_blocks()
3254 	 *
3255 	 * The problem is that write_cache_pages(), located in
3256 	 * mm/page-writeback.c, marks pages clean in preparation for
3257 	 * doing I/O, which is not desirable if we're not planning on
3258 	 * doing I/O at all.
3259 	 *
3260 	 * We could call write_cache_pages(), and then redirty all of
3261 	 * the pages by calling redirty_page_for_writepage() but that
3262 	 * would be ugly in the extreme.  So instead we would need to
3263 	 * replicate parts of the code in the above functions,
3264 	 * simplifying them because we wouldn't actually intend to
3265 	 * write out the pages, but rather only collect contiguous
3266 	 * logical block extents, call the multi-block allocator, and
3267 	 * then update the buffer heads with the block allocations.
3268 	 *
3269 	 * For now, though, we'll cheat by calling filemap_flush(),
3270 	 * which will map the blocks, and start the I/O, but not
3271 	 * actually wait for the I/O to complete.
3272 	 */
3273 	return filemap_flush(inode->i_mapping);
3274 }
3275 
3276 /*
3277  * bmap() is special.  It gets used by applications such as lilo and by
3278  * the swapper to find the on-disk block of a specific piece of data.
3279  *
3280  * Naturally, this is dangerous if the block concerned is still in the
3281  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3282  * filesystem and enables swap, then they may get a nasty shock when the
3283  * data getting swapped to that swapfile suddenly gets overwritten by
3284  * the original zero's written out previously to the journal and
3285  * awaiting writeback in the kernel's buffer cache.
3286  *
3287  * So, if we see any bmap calls here on a modified, data-journaled file,
3288  * take extra steps to flush any blocks which might be in the cache.
3289  */
3290 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3291 {
3292 	struct inode *inode = mapping->host;
3293 	journal_t *journal;
3294 	int err;
3295 
3296 	/*
3297 	 * We can get here for an inline file via the FIBMAP ioctl
3298 	 */
3299 	if (ext4_has_inline_data(inode))
3300 		return 0;
3301 
3302 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3303 			test_opt(inode->i_sb, DELALLOC)) {
3304 		/*
3305 		 * With delalloc we want to sync the file
3306 		 * so that we can make sure we allocate
3307 		 * blocks for file
3308 		 */
3309 		filemap_write_and_wait(mapping);
3310 	}
3311 
3312 	if (EXT4_JOURNAL(inode) &&
3313 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3314 		/*
3315 		 * This is a REALLY heavyweight approach, but the use of
3316 		 * bmap on dirty files is expected to be extremely rare:
3317 		 * only if we run lilo or swapon on a freshly made file
3318 		 * do we expect this to happen.
3319 		 *
3320 		 * (bmap requires CAP_SYS_RAWIO so this does not
3321 		 * represent an unprivileged user DOS attack --- we'd be
3322 		 * in trouble if mortal users could trigger this path at
3323 		 * will.)
3324 		 *
3325 		 * NB. EXT4_STATE_JDATA is not set on files other than
3326 		 * regular files.  If somebody wants to bmap a directory
3327 		 * or symlink and gets confused because the buffer
3328 		 * hasn't yet been flushed to disk, they deserve
3329 		 * everything they get.
3330 		 */
3331 
3332 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3333 		journal = EXT4_JOURNAL(inode);
3334 		jbd2_journal_lock_updates(journal);
3335 		err = jbd2_journal_flush(journal);
3336 		jbd2_journal_unlock_updates(journal);
3337 
3338 		if (err)
3339 			return 0;
3340 	}
3341 
3342 	return generic_block_bmap(mapping, block, ext4_get_block);
3343 }
3344 
3345 static int ext4_readpage(struct file *file, struct page *page)
3346 {
3347 	int ret = -EAGAIN;
3348 	struct inode *inode = page->mapping->host;
3349 
3350 	trace_ext4_readpage(page);
3351 
3352 	if (ext4_has_inline_data(inode))
3353 		ret = ext4_readpage_inline(inode, page);
3354 
3355 	if (ret == -EAGAIN)
3356 		return ext4_mpage_readpages(page->mapping, NULL, page, 1,
3357 						false);
3358 
3359 	return ret;
3360 }
3361 
3362 static int
3363 ext4_readpages(struct file *file, struct address_space *mapping,
3364 		struct list_head *pages, unsigned nr_pages)
3365 {
3366 	struct inode *inode = mapping->host;
3367 
3368 	/* If the file has inline data, no need to do readpages. */
3369 	if (ext4_has_inline_data(inode))
3370 		return 0;
3371 
3372 	return ext4_mpage_readpages(mapping, pages, NULL, nr_pages, true);
3373 }
3374 
3375 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3376 				unsigned int length)
3377 {
3378 	trace_ext4_invalidatepage(page, offset, length);
3379 
3380 	/* No journalling happens on data buffers when this function is used */
3381 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3382 
3383 	block_invalidatepage(page, offset, length);
3384 }
3385 
3386 static int __ext4_journalled_invalidatepage(struct page *page,
3387 					    unsigned int offset,
3388 					    unsigned int length)
3389 {
3390 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3391 
3392 	trace_ext4_journalled_invalidatepage(page, offset, length);
3393 
3394 	/*
3395 	 * If it's a full truncate we just forget about the pending dirtying
3396 	 */
3397 	if (offset == 0 && length == PAGE_SIZE)
3398 		ClearPageChecked(page);
3399 
3400 	return jbd2_journal_invalidatepage(journal, page, offset, length);
3401 }
3402 
3403 /* Wrapper for aops... */
3404 static void ext4_journalled_invalidatepage(struct page *page,
3405 					   unsigned int offset,
3406 					   unsigned int length)
3407 {
3408 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3409 }
3410 
3411 static int ext4_releasepage(struct page *page, gfp_t wait)
3412 {
3413 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3414 
3415 	trace_ext4_releasepage(page);
3416 
3417 	/* Page has dirty journalled data -> cannot release */
3418 	if (PageChecked(page))
3419 		return 0;
3420 	if (journal)
3421 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3422 	else
3423 		return try_to_free_buffers(page);
3424 }
3425 
3426 static bool ext4_inode_datasync_dirty(struct inode *inode)
3427 {
3428 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3429 
3430 	if (journal)
3431 		return !jbd2_transaction_committed(journal,
3432 					EXT4_I(inode)->i_datasync_tid);
3433 	/* Any metadata buffers to write? */
3434 	if (!list_empty(&inode->i_mapping->private_list))
3435 		return true;
3436 	return inode->i_state & I_DIRTY_DATASYNC;
3437 }
3438 
3439 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3440 			    unsigned flags, struct iomap *iomap)
3441 {
3442 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3443 	unsigned int blkbits = inode->i_blkbits;
3444 	unsigned long first_block, last_block;
3445 	struct ext4_map_blocks map;
3446 	bool delalloc = false;
3447 	int ret;
3448 
3449 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3450 		return -EINVAL;
3451 	first_block = offset >> blkbits;
3452 	last_block = min_t(loff_t, (offset + length - 1) >> blkbits,
3453 			   EXT4_MAX_LOGICAL_BLOCK);
3454 
3455 	if (flags & IOMAP_REPORT) {
3456 		if (ext4_has_inline_data(inode)) {
3457 			ret = ext4_inline_data_iomap(inode, iomap);
3458 			if (ret != -EAGAIN) {
3459 				if (ret == 0 && offset >= iomap->length)
3460 					ret = -ENOENT;
3461 				return ret;
3462 			}
3463 		}
3464 	} else {
3465 		if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3466 			return -ERANGE;
3467 	}
3468 
3469 	map.m_lblk = first_block;
3470 	map.m_len = last_block - first_block + 1;
3471 
3472 	if (flags & IOMAP_REPORT) {
3473 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3474 		if (ret < 0)
3475 			return ret;
3476 
3477 		if (ret == 0) {
3478 			ext4_lblk_t end = map.m_lblk + map.m_len - 1;
3479 			struct extent_status es;
3480 
3481 			ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3482 						  map.m_lblk, end, &es);
3483 
3484 			if (!es.es_len || es.es_lblk > end) {
3485 				/* entire range is a hole */
3486 			} else if (es.es_lblk > map.m_lblk) {
3487 				/* range starts with a hole */
3488 				map.m_len = es.es_lblk - map.m_lblk;
3489 			} else {
3490 				ext4_lblk_t offs = 0;
3491 
3492 				if (es.es_lblk < map.m_lblk)
3493 					offs = map.m_lblk - es.es_lblk;
3494 				map.m_lblk = es.es_lblk + offs;
3495 				map.m_len = es.es_len - offs;
3496 				delalloc = true;
3497 			}
3498 		}
3499 	} else if (flags & IOMAP_WRITE) {
3500 		int dio_credits;
3501 		handle_t *handle;
3502 		int retries = 0;
3503 
3504 		/* Trim mapping request to maximum we can map at once for DIO */
3505 		if (map.m_len > DIO_MAX_BLOCKS)
3506 			map.m_len = DIO_MAX_BLOCKS;
3507 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3508 retry:
3509 		/*
3510 		 * Either we allocate blocks and then we don't get unwritten
3511 		 * extent so we have reserved enough credits, or the blocks
3512 		 * are already allocated and unwritten and in that case
3513 		 * extent conversion fits in the credits as well.
3514 		 */
3515 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3516 					    dio_credits);
3517 		if (IS_ERR(handle))
3518 			return PTR_ERR(handle);
3519 
3520 		ret = ext4_map_blocks(handle, inode, &map,
3521 				      EXT4_GET_BLOCKS_CREATE_ZERO);
3522 		if (ret < 0) {
3523 			ext4_journal_stop(handle);
3524 			if (ret == -ENOSPC &&
3525 			    ext4_should_retry_alloc(inode->i_sb, &retries))
3526 				goto retry;
3527 			return ret;
3528 		}
3529 
3530 		/*
3531 		 * If we added blocks beyond i_size, we need to make sure they
3532 		 * will get truncated if we crash before updating i_size in
3533 		 * ext4_iomap_end(). For faults we don't need to do that (and
3534 		 * even cannot because for orphan list operations inode_lock is
3535 		 * required) - if we happen to instantiate block beyond i_size,
3536 		 * it is because we race with truncate which has already added
3537 		 * the inode to the orphan list.
3538 		 */
3539 		if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3540 		    (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3541 			int err;
3542 
3543 			err = ext4_orphan_add(handle, inode);
3544 			if (err < 0) {
3545 				ext4_journal_stop(handle);
3546 				return err;
3547 			}
3548 		}
3549 		ext4_journal_stop(handle);
3550 	} else {
3551 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3552 		if (ret < 0)
3553 			return ret;
3554 	}
3555 
3556 	iomap->flags = 0;
3557 	if (ext4_inode_datasync_dirty(inode))
3558 		iomap->flags |= IOMAP_F_DIRTY;
3559 	iomap->bdev = inode->i_sb->s_bdev;
3560 	iomap->dax_dev = sbi->s_daxdev;
3561 	iomap->offset = (u64)first_block << blkbits;
3562 	iomap->length = (u64)map.m_len << blkbits;
3563 
3564 	if (ret == 0) {
3565 		iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE;
3566 		iomap->addr = IOMAP_NULL_ADDR;
3567 	} else {
3568 		if (map.m_flags & EXT4_MAP_MAPPED) {
3569 			iomap->type = IOMAP_MAPPED;
3570 		} else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3571 			iomap->type = IOMAP_UNWRITTEN;
3572 		} else {
3573 			WARN_ON_ONCE(1);
3574 			return -EIO;
3575 		}
3576 		iomap->addr = (u64)map.m_pblk << blkbits;
3577 	}
3578 
3579 	if (map.m_flags & EXT4_MAP_NEW)
3580 		iomap->flags |= IOMAP_F_NEW;
3581 
3582 	return 0;
3583 }
3584 
3585 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3586 			  ssize_t written, unsigned flags, struct iomap *iomap)
3587 {
3588 	int ret = 0;
3589 	handle_t *handle;
3590 	int blkbits = inode->i_blkbits;
3591 	bool truncate = false;
3592 
3593 	if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3594 		return 0;
3595 
3596 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3597 	if (IS_ERR(handle)) {
3598 		ret = PTR_ERR(handle);
3599 		goto orphan_del;
3600 	}
3601 	if (ext4_update_inode_size(inode, offset + written))
3602 		ext4_mark_inode_dirty(handle, inode);
3603 	/*
3604 	 * We may need to truncate allocated but not written blocks beyond EOF.
3605 	 */
3606 	if (iomap->offset + iomap->length >
3607 	    ALIGN(inode->i_size, 1 << blkbits)) {
3608 		ext4_lblk_t written_blk, end_blk;
3609 
3610 		written_blk = (offset + written) >> blkbits;
3611 		end_blk = (offset + length) >> blkbits;
3612 		if (written_blk < end_blk && ext4_can_truncate(inode))
3613 			truncate = true;
3614 	}
3615 	/*
3616 	 * Remove inode from orphan list if we were extending a inode and
3617 	 * everything went fine.
3618 	 */
3619 	if (!truncate && inode->i_nlink &&
3620 	    !list_empty(&EXT4_I(inode)->i_orphan))
3621 		ext4_orphan_del(handle, inode);
3622 	ext4_journal_stop(handle);
3623 	if (truncate) {
3624 		ext4_truncate_failed_write(inode);
3625 orphan_del:
3626 		/*
3627 		 * If truncate failed early the inode might still be on the
3628 		 * orphan list; we need to make sure the inode is removed from
3629 		 * the orphan list in that case.
3630 		 */
3631 		if (inode->i_nlink)
3632 			ext4_orphan_del(NULL, inode);
3633 	}
3634 	return ret;
3635 }
3636 
3637 const struct iomap_ops ext4_iomap_ops = {
3638 	.iomap_begin		= ext4_iomap_begin,
3639 	.iomap_end		= ext4_iomap_end,
3640 };
3641 
3642 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3643 			    ssize_t size, void *private)
3644 {
3645         ext4_io_end_t *io_end = private;
3646 
3647 	/* if not async direct IO just return */
3648 	if (!io_end)
3649 		return 0;
3650 
3651 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3652 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3653 		  io_end, io_end->inode->i_ino, iocb, offset, size);
3654 
3655 	/*
3656 	 * Error during AIO DIO. We cannot convert unwritten extents as the
3657 	 * data was not written. Just clear the unwritten flag and drop io_end.
3658 	 */
3659 	if (size <= 0) {
3660 		ext4_clear_io_unwritten_flag(io_end);
3661 		size = 0;
3662 	}
3663 	io_end->offset = offset;
3664 	io_end->size = size;
3665 	ext4_put_io_end(io_end);
3666 
3667 	return 0;
3668 }
3669 
3670 /*
3671  * Handling of direct IO writes.
3672  *
3673  * For ext4 extent files, ext4 will do direct-io write even to holes,
3674  * preallocated extents, and those write extend the file, no need to
3675  * fall back to buffered IO.
3676  *
3677  * For holes, we fallocate those blocks, mark them as unwritten
3678  * If those blocks were preallocated, we mark sure they are split, but
3679  * still keep the range to write as unwritten.
3680  *
3681  * The unwritten extents will be converted to written when DIO is completed.
3682  * For async direct IO, since the IO may still pending when return, we
3683  * set up an end_io call back function, which will do the conversion
3684  * when async direct IO completed.
3685  *
3686  * If the O_DIRECT write will extend the file then add this inode to the
3687  * orphan list.  So recovery will truncate it back to the original size
3688  * if the machine crashes during the write.
3689  *
3690  */
3691 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3692 {
3693 	struct file *file = iocb->ki_filp;
3694 	struct inode *inode = file->f_mapping->host;
3695 	struct ext4_inode_info *ei = EXT4_I(inode);
3696 	ssize_t ret;
3697 	loff_t offset = iocb->ki_pos;
3698 	size_t count = iov_iter_count(iter);
3699 	int overwrite = 0;
3700 	get_block_t *get_block_func = NULL;
3701 	int dio_flags = 0;
3702 	loff_t final_size = offset + count;
3703 	int orphan = 0;
3704 	handle_t *handle;
3705 
3706 	if (final_size > inode->i_size || final_size > ei->i_disksize) {
3707 		/* Credits for sb + inode write */
3708 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3709 		if (IS_ERR(handle)) {
3710 			ret = PTR_ERR(handle);
3711 			goto out;
3712 		}
3713 		ret = ext4_orphan_add(handle, inode);
3714 		if (ret) {
3715 			ext4_journal_stop(handle);
3716 			goto out;
3717 		}
3718 		orphan = 1;
3719 		ext4_update_i_disksize(inode, inode->i_size);
3720 		ext4_journal_stop(handle);
3721 	}
3722 
3723 	BUG_ON(iocb->private == NULL);
3724 
3725 	/*
3726 	 * Make all waiters for direct IO properly wait also for extent
3727 	 * conversion. This also disallows race between truncate() and
3728 	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3729 	 */
3730 	inode_dio_begin(inode);
3731 
3732 	/* If we do a overwrite dio, i_mutex locking can be released */
3733 	overwrite = *((int *)iocb->private);
3734 
3735 	if (overwrite)
3736 		inode_unlock(inode);
3737 
3738 	/*
3739 	 * For extent mapped files we could direct write to holes and fallocate.
3740 	 *
3741 	 * Allocated blocks to fill the hole are marked as unwritten to prevent
3742 	 * parallel buffered read to expose the stale data before DIO complete
3743 	 * the data IO.
3744 	 *
3745 	 * As to previously fallocated extents, ext4 get_block will just simply
3746 	 * mark the buffer mapped but still keep the extents unwritten.
3747 	 *
3748 	 * For non AIO case, we will convert those unwritten extents to written
3749 	 * after return back from blockdev_direct_IO. That way we save us from
3750 	 * allocating io_end structure and also the overhead of offloading
3751 	 * the extent convertion to a workqueue.
3752 	 *
3753 	 * For async DIO, the conversion needs to be deferred when the
3754 	 * IO is completed. The ext4 end_io callback function will be
3755 	 * called to take care of the conversion work.  Here for async
3756 	 * case, we allocate an io_end structure to hook to the iocb.
3757 	 */
3758 	iocb->private = NULL;
3759 	if (overwrite)
3760 		get_block_func = ext4_dio_get_block_overwrite;
3761 	else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3762 		   round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3763 		get_block_func = ext4_dio_get_block;
3764 		dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3765 	} else if (is_sync_kiocb(iocb)) {
3766 		get_block_func = ext4_dio_get_block_unwritten_sync;
3767 		dio_flags = DIO_LOCKING;
3768 	} else {
3769 		get_block_func = ext4_dio_get_block_unwritten_async;
3770 		dio_flags = DIO_LOCKING;
3771 	}
3772 	ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3773 				   get_block_func, ext4_end_io_dio, NULL,
3774 				   dio_flags);
3775 
3776 	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3777 						EXT4_STATE_DIO_UNWRITTEN)) {
3778 		int err;
3779 		/*
3780 		 * for non AIO case, since the IO is already
3781 		 * completed, we could do the conversion right here
3782 		 */
3783 		err = ext4_convert_unwritten_extents(NULL, inode,
3784 						     offset, ret);
3785 		if (err < 0)
3786 			ret = err;
3787 		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3788 	}
3789 
3790 	inode_dio_end(inode);
3791 	/* take i_mutex locking again if we do a ovewrite dio */
3792 	if (overwrite)
3793 		inode_lock(inode);
3794 
3795 	if (ret < 0 && final_size > inode->i_size)
3796 		ext4_truncate_failed_write(inode);
3797 
3798 	/* Handle extending of i_size after direct IO write */
3799 	if (orphan) {
3800 		int err;
3801 
3802 		/* Credits for sb + inode write */
3803 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3804 		if (IS_ERR(handle)) {
3805 			/*
3806 			 * We wrote the data but cannot extend
3807 			 * i_size. Bail out. In async io case, we do
3808 			 * not return error here because we have
3809 			 * already submmitted the corresponding
3810 			 * bio. Returning error here makes the caller
3811 			 * think that this IO is done and failed
3812 			 * resulting in race with bio's completion
3813 			 * handler.
3814 			 */
3815 			if (!ret)
3816 				ret = PTR_ERR(handle);
3817 			if (inode->i_nlink)
3818 				ext4_orphan_del(NULL, inode);
3819 
3820 			goto out;
3821 		}
3822 		if (inode->i_nlink)
3823 			ext4_orphan_del(handle, inode);
3824 		if (ret > 0) {
3825 			loff_t end = offset + ret;
3826 			if (end > inode->i_size || end > ei->i_disksize) {
3827 				ext4_update_i_disksize(inode, end);
3828 				if (end > inode->i_size)
3829 					i_size_write(inode, end);
3830 				/*
3831 				 * We're going to return a positive `ret'
3832 				 * here due to non-zero-length I/O, so there's
3833 				 * no way of reporting error returns from
3834 				 * ext4_mark_inode_dirty() to userspace.  So
3835 				 * ignore it.
3836 				 */
3837 				ext4_mark_inode_dirty(handle, inode);
3838 			}
3839 		}
3840 		err = ext4_journal_stop(handle);
3841 		if (ret == 0)
3842 			ret = err;
3843 	}
3844 out:
3845 	return ret;
3846 }
3847 
3848 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3849 {
3850 	struct address_space *mapping = iocb->ki_filp->f_mapping;
3851 	struct inode *inode = mapping->host;
3852 	size_t count = iov_iter_count(iter);
3853 	ssize_t ret;
3854 
3855 	/*
3856 	 * Shared inode_lock is enough for us - it protects against concurrent
3857 	 * writes & truncates and since we take care of writing back page cache,
3858 	 * we are protected against page writeback as well.
3859 	 */
3860 	inode_lock_shared(inode);
3861 	ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3862 					   iocb->ki_pos + count - 1);
3863 	if (ret)
3864 		goto out_unlock;
3865 	ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3866 				   iter, ext4_dio_get_block, NULL, NULL, 0);
3867 out_unlock:
3868 	inode_unlock_shared(inode);
3869 	return ret;
3870 }
3871 
3872 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3873 {
3874 	struct file *file = iocb->ki_filp;
3875 	struct inode *inode = file->f_mapping->host;
3876 	size_t count = iov_iter_count(iter);
3877 	loff_t offset = iocb->ki_pos;
3878 	ssize_t ret;
3879 
3880 #ifdef CONFIG_FS_ENCRYPTION
3881 	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
3882 		return 0;
3883 #endif
3884 
3885 	/*
3886 	 * If we are doing data journalling we don't support O_DIRECT
3887 	 */
3888 	if (ext4_should_journal_data(inode))
3889 		return 0;
3890 
3891 	/* Let buffer I/O handle the inline data case. */
3892 	if (ext4_has_inline_data(inode))
3893 		return 0;
3894 
3895 	trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3896 	if (iov_iter_rw(iter) == READ)
3897 		ret = ext4_direct_IO_read(iocb, iter);
3898 	else
3899 		ret = ext4_direct_IO_write(iocb, iter);
3900 	trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3901 	return ret;
3902 }
3903 
3904 /*
3905  * Pages can be marked dirty completely asynchronously from ext4's journalling
3906  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3907  * much here because ->set_page_dirty is called under VFS locks.  The page is
3908  * not necessarily locked.
3909  *
3910  * We cannot just dirty the page and leave attached buffers clean, because the
3911  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3912  * or jbddirty because all the journalling code will explode.
3913  *
3914  * So what we do is to mark the page "pending dirty" and next time writepage
3915  * is called, propagate that into the buffers appropriately.
3916  */
3917 static int ext4_journalled_set_page_dirty(struct page *page)
3918 {
3919 	SetPageChecked(page);
3920 	return __set_page_dirty_nobuffers(page);
3921 }
3922 
3923 static int ext4_set_page_dirty(struct page *page)
3924 {
3925 	WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3926 	WARN_ON_ONCE(!page_has_buffers(page));
3927 	return __set_page_dirty_buffers(page);
3928 }
3929 
3930 static const struct address_space_operations ext4_aops = {
3931 	.readpage		= ext4_readpage,
3932 	.readpages		= ext4_readpages,
3933 	.writepage		= ext4_writepage,
3934 	.writepages		= ext4_writepages,
3935 	.write_begin		= ext4_write_begin,
3936 	.write_end		= ext4_write_end,
3937 	.set_page_dirty		= ext4_set_page_dirty,
3938 	.bmap			= ext4_bmap,
3939 	.invalidatepage		= ext4_invalidatepage,
3940 	.releasepage		= ext4_releasepage,
3941 	.direct_IO		= ext4_direct_IO,
3942 	.migratepage		= buffer_migrate_page,
3943 	.is_partially_uptodate  = block_is_partially_uptodate,
3944 	.error_remove_page	= generic_error_remove_page,
3945 };
3946 
3947 static const struct address_space_operations ext4_journalled_aops = {
3948 	.readpage		= ext4_readpage,
3949 	.readpages		= ext4_readpages,
3950 	.writepage		= ext4_writepage,
3951 	.writepages		= ext4_writepages,
3952 	.write_begin		= ext4_write_begin,
3953 	.write_end		= ext4_journalled_write_end,
3954 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3955 	.bmap			= ext4_bmap,
3956 	.invalidatepage		= ext4_journalled_invalidatepage,
3957 	.releasepage		= ext4_releasepage,
3958 	.direct_IO		= ext4_direct_IO,
3959 	.is_partially_uptodate  = block_is_partially_uptodate,
3960 	.error_remove_page	= generic_error_remove_page,
3961 };
3962 
3963 static const struct address_space_operations ext4_da_aops = {
3964 	.readpage		= ext4_readpage,
3965 	.readpages		= ext4_readpages,
3966 	.writepage		= ext4_writepage,
3967 	.writepages		= ext4_writepages,
3968 	.write_begin		= ext4_da_write_begin,
3969 	.write_end		= ext4_da_write_end,
3970 	.set_page_dirty		= ext4_set_page_dirty,
3971 	.bmap			= ext4_bmap,
3972 	.invalidatepage		= ext4_da_invalidatepage,
3973 	.releasepage		= ext4_releasepage,
3974 	.direct_IO		= ext4_direct_IO,
3975 	.migratepage		= buffer_migrate_page,
3976 	.is_partially_uptodate  = block_is_partially_uptodate,
3977 	.error_remove_page	= generic_error_remove_page,
3978 };
3979 
3980 static const struct address_space_operations ext4_dax_aops = {
3981 	.writepages		= ext4_dax_writepages,
3982 	.direct_IO		= noop_direct_IO,
3983 	.set_page_dirty		= noop_set_page_dirty,
3984 	.bmap			= ext4_bmap,
3985 	.invalidatepage		= noop_invalidatepage,
3986 };
3987 
3988 void ext4_set_aops(struct inode *inode)
3989 {
3990 	switch (ext4_inode_journal_mode(inode)) {
3991 	case EXT4_INODE_ORDERED_DATA_MODE:
3992 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3993 		break;
3994 	case EXT4_INODE_JOURNAL_DATA_MODE:
3995 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3996 		return;
3997 	default:
3998 		BUG();
3999 	}
4000 	if (IS_DAX(inode))
4001 		inode->i_mapping->a_ops = &ext4_dax_aops;
4002 	else if (test_opt(inode->i_sb, DELALLOC))
4003 		inode->i_mapping->a_ops = &ext4_da_aops;
4004 	else
4005 		inode->i_mapping->a_ops = &ext4_aops;
4006 }
4007 
4008 static int __ext4_block_zero_page_range(handle_t *handle,
4009 		struct address_space *mapping, loff_t from, loff_t length)
4010 {
4011 	ext4_fsblk_t index = from >> PAGE_SHIFT;
4012 	unsigned offset = from & (PAGE_SIZE-1);
4013 	unsigned blocksize, pos;
4014 	ext4_lblk_t iblock;
4015 	struct inode *inode = mapping->host;
4016 	struct buffer_head *bh;
4017 	struct page *page;
4018 	int err = 0;
4019 
4020 	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
4021 				   mapping_gfp_constraint(mapping, ~__GFP_FS));
4022 	if (!page)
4023 		return -ENOMEM;
4024 
4025 	blocksize = inode->i_sb->s_blocksize;
4026 
4027 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
4028 
4029 	if (!page_has_buffers(page))
4030 		create_empty_buffers(page, blocksize, 0);
4031 
4032 	/* Find the buffer that contains "offset" */
4033 	bh = page_buffers(page);
4034 	pos = blocksize;
4035 	while (offset >= pos) {
4036 		bh = bh->b_this_page;
4037 		iblock++;
4038 		pos += blocksize;
4039 	}
4040 	if (buffer_freed(bh)) {
4041 		BUFFER_TRACE(bh, "freed: skip");
4042 		goto unlock;
4043 	}
4044 	if (!buffer_mapped(bh)) {
4045 		BUFFER_TRACE(bh, "unmapped");
4046 		ext4_get_block(inode, iblock, bh, 0);
4047 		/* unmapped? It's a hole - nothing to do */
4048 		if (!buffer_mapped(bh)) {
4049 			BUFFER_TRACE(bh, "still unmapped");
4050 			goto unlock;
4051 		}
4052 	}
4053 
4054 	/* Ok, it's mapped. Make sure it's up-to-date */
4055 	if (PageUptodate(page))
4056 		set_buffer_uptodate(bh);
4057 
4058 	if (!buffer_uptodate(bh)) {
4059 		err = -EIO;
4060 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
4061 		wait_on_buffer(bh);
4062 		/* Uhhuh. Read error. Complain and punt. */
4063 		if (!buffer_uptodate(bh))
4064 			goto unlock;
4065 		if (S_ISREG(inode->i_mode) && IS_ENCRYPTED(inode)) {
4066 			/* We expect the key to be set. */
4067 			BUG_ON(!fscrypt_has_encryption_key(inode));
4068 			BUG_ON(blocksize != PAGE_SIZE);
4069 			WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
4070 						page, PAGE_SIZE, 0, page->index));
4071 		}
4072 	}
4073 	if (ext4_should_journal_data(inode)) {
4074 		BUFFER_TRACE(bh, "get write access");
4075 		err = ext4_journal_get_write_access(handle, bh);
4076 		if (err)
4077 			goto unlock;
4078 	}
4079 	zero_user(page, offset, length);
4080 	BUFFER_TRACE(bh, "zeroed end of block");
4081 
4082 	if (ext4_should_journal_data(inode)) {
4083 		err = ext4_handle_dirty_metadata(handle, inode, bh);
4084 	} else {
4085 		err = 0;
4086 		mark_buffer_dirty(bh);
4087 		if (ext4_should_order_data(inode))
4088 			err = ext4_jbd2_inode_add_write(handle, inode);
4089 	}
4090 
4091 unlock:
4092 	unlock_page(page);
4093 	put_page(page);
4094 	return err;
4095 }
4096 
4097 /*
4098  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4099  * starting from file offset 'from'.  The range to be zero'd must
4100  * be contained with in one block.  If the specified range exceeds
4101  * the end of the block it will be shortened to end of the block
4102  * that cooresponds to 'from'
4103  */
4104 static int ext4_block_zero_page_range(handle_t *handle,
4105 		struct address_space *mapping, loff_t from, loff_t length)
4106 {
4107 	struct inode *inode = mapping->host;
4108 	unsigned offset = from & (PAGE_SIZE-1);
4109 	unsigned blocksize = inode->i_sb->s_blocksize;
4110 	unsigned max = blocksize - (offset & (blocksize - 1));
4111 
4112 	/*
4113 	 * correct length if it does not fall between
4114 	 * 'from' and the end of the block
4115 	 */
4116 	if (length > max || length < 0)
4117 		length = max;
4118 
4119 	if (IS_DAX(inode)) {
4120 		return iomap_zero_range(inode, from, length, NULL,
4121 					&ext4_iomap_ops);
4122 	}
4123 	return __ext4_block_zero_page_range(handle, mapping, from, length);
4124 }
4125 
4126 /*
4127  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4128  * up to the end of the block which corresponds to `from'.
4129  * This required during truncate. We need to physically zero the tail end
4130  * of that block so it doesn't yield old data if the file is later grown.
4131  */
4132 static int ext4_block_truncate_page(handle_t *handle,
4133 		struct address_space *mapping, loff_t from)
4134 {
4135 	unsigned offset = from & (PAGE_SIZE-1);
4136 	unsigned length;
4137 	unsigned blocksize;
4138 	struct inode *inode = mapping->host;
4139 
4140 	/* If we are processing an encrypted inode during orphan list handling */
4141 	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
4142 		return 0;
4143 
4144 	blocksize = inode->i_sb->s_blocksize;
4145 	length = blocksize - (offset & (blocksize - 1));
4146 
4147 	return ext4_block_zero_page_range(handle, mapping, from, length);
4148 }
4149 
4150 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4151 			     loff_t lstart, loff_t length)
4152 {
4153 	struct super_block *sb = inode->i_sb;
4154 	struct address_space *mapping = inode->i_mapping;
4155 	unsigned partial_start, partial_end;
4156 	ext4_fsblk_t start, end;
4157 	loff_t byte_end = (lstart + length - 1);
4158 	int err = 0;
4159 
4160 	partial_start = lstart & (sb->s_blocksize - 1);
4161 	partial_end = byte_end & (sb->s_blocksize - 1);
4162 
4163 	start = lstart >> sb->s_blocksize_bits;
4164 	end = byte_end >> sb->s_blocksize_bits;
4165 
4166 	/* Handle partial zero within the single block */
4167 	if (start == end &&
4168 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
4169 		err = ext4_block_zero_page_range(handle, mapping,
4170 						 lstart, length);
4171 		return err;
4172 	}
4173 	/* Handle partial zero out on the start of the range */
4174 	if (partial_start) {
4175 		err = ext4_block_zero_page_range(handle, mapping,
4176 						 lstart, sb->s_blocksize);
4177 		if (err)
4178 			return err;
4179 	}
4180 	/* Handle partial zero out on the end of the range */
4181 	if (partial_end != sb->s_blocksize - 1)
4182 		err = ext4_block_zero_page_range(handle, mapping,
4183 						 byte_end - partial_end,
4184 						 partial_end + 1);
4185 	return err;
4186 }
4187 
4188 int ext4_can_truncate(struct inode *inode)
4189 {
4190 	if (S_ISREG(inode->i_mode))
4191 		return 1;
4192 	if (S_ISDIR(inode->i_mode))
4193 		return 1;
4194 	if (S_ISLNK(inode->i_mode))
4195 		return !ext4_inode_is_fast_symlink(inode);
4196 	return 0;
4197 }
4198 
4199 /*
4200  * We have to make sure i_disksize gets properly updated before we truncate
4201  * page cache due to hole punching or zero range. Otherwise i_disksize update
4202  * can get lost as it may have been postponed to submission of writeback but
4203  * that will never happen after we truncate page cache.
4204  */
4205 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4206 				      loff_t len)
4207 {
4208 	handle_t *handle;
4209 	loff_t size = i_size_read(inode);
4210 
4211 	WARN_ON(!inode_is_locked(inode));
4212 	if (offset > size || offset + len < size)
4213 		return 0;
4214 
4215 	if (EXT4_I(inode)->i_disksize >= size)
4216 		return 0;
4217 
4218 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4219 	if (IS_ERR(handle))
4220 		return PTR_ERR(handle);
4221 	ext4_update_i_disksize(inode, size);
4222 	ext4_mark_inode_dirty(handle, inode);
4223 	ext4_journal_stop(handle);
4224 
4225 	return 0;
4226 }
4227 
4228 static void ext4_wait_dax_page(struct ext4_inode_info *ei)
4229 {
4230 	up_write(&ei->i_mmap_sem);
4231 	schedule();
4232 	down_write(&ei->i_mmap_sem);
4233 }
4234 
4235 int ext4_break_layouts(struct inode *inode)
4236 {
4237 	struct ext4_inode_info *ei = EXT4_I(inode);
4238 	struct page *page;
4239 	int error;
4240 
4241 	if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
4242 		return -EINVAL;
4243 
4244 	do {
4245 		page = dax_layout_busy_page(inode->i_mapping);
4246 		if (!page)
4247 			return 0;
4248 
4249 		error = ___wait_var_event(&page->_refcount,
4250 				atomic_read(&page->_refcount) == 1,
4251 				TASK_INTERRUPTIBLE, 0, 0,
4252 				ext4_wait_dax_page(ei));
4253 	} while (error == 0);
4254 
4255 	return error;
4256 }
4257 
4258 /*
4259  * ext4_punch_hole: punches a hole in a file by releasing the blocks
4260  * associated with the given offset and length
4261  *
4262  * @inode:  File inode
4263  * @offset: The offset where the hole will begin
4264  * @len:    The length of the hole
4265  *
4266  * Returns: 0 on success or negative on failure
4267  */
4268 
4269 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4270 {
4271 	struct super_block *sb = inode->i_sb;
4272 	ext4_lblk_t first_block, stop_block;
4273 	struct address_space *mapping = inode->i_mapping;
4274 	loff_t first_block_offset, last_block_offset;
4275 	handle_t *handle;
4276 	unsigned int credits;
4277 	int ret = 0;
4278 
4279 	if (!S_ISREG(inode->i_mode))
4280 		return -EOPNOTSUPP;
4281 
4282 	trace_ext4_punch_hole(inode, offset, length, 0);
4283 
4284 	/*
4285 	 * Write out all dirty pages to avoid race conditions
4286 	 * Then release them.
4287 	 */
4288 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4289 		ret = filemap_write_and_wait_range(mapping, offset,
4290 						   offset + length - 1);
4291 		if (ret)
4292 			return ret;
4293 	}
4294 
4295 	inode_lock(inode);
4296 
4297 	/* No need to punch hole beyond i_size */
4298 	if (offset >= inode->i_size)
4299 		goto out_mutex;
4300 
4301 	/*
4302 	 * If the hole extends beyond i_size, set the hole
4303 	 * to end after the page that contains i_size
4304 	 */
4305 	if (offset + length > inode->i_size) {
4306 		length = inode->i_size +
4307 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4308 		   offset;
4309 	}
4310 
4311 	if (offset & (sb->s_blocksize - 1) ||
4312 	    (offset + length) & (sb->s_blocksize - 1)) {
4313 		/*
4314 		 * Attach jinode to inode for jbd2 if we do any zeroing of
4315 		 * partial block
4316 		 */
4317 		ret = ext4_inode_attach_jinode(inode);
4318 		if (ret < 0)
4319 			goto out_mutex;
4320 
4321 	}
4322 
4323 	/* Wait all existing dio workers, newcomers will block on i_mutex */
4324 	inode_dio_wait(inode);
4325 
4326 	/*
4327 	 * Prevent page faults from reinstantiating pages we have released from
4328 	 * page cache.
4329 	 */
4330 	down_write(&EXT4_I(inode)->i_mmap_sem);
4331 
4332 	ret = ext4_break_layouts(inode);
4333 	if (ret)
4334 		goto out_dio;
4335 
4336 	first_block_offset = round_up(offset, sb->s_blocksize);
4337 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4338 
4339 	/* Now release the pages and zero block aligned part of pages*/
4340 	if (last_block_offset > first_block_offset) {
4341 		ret = ext4_update_disksize_before_punch(inode, offset, length);
4342 		if (ret)
4343 			goto out_dio;
4344 		truncate_pagecache_range(inode, first_block_offset,
4345 					 last_block_offset);
4346 	}
4347 
4348 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4349 		credits = ext4_writepage_trans_blocks(inode);
4350 	else
4351 		credits = ext4_blocks_for_truncate(inode);
4352 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4353 	if (IS_ERR(handle)) {
4354 		ret = PTR_ERR(handle);
4355 		ext4_std_error(sb, ret);
4356 		goto out_dio;
4357 	}
4358 
4359 	ret = ext4_zero_partial_blocks(handle, inode, offset,
4360 				       length);
4361 	if (ret)
4362 		goto out_stop;
4363 
4364 	first_block = (offset + sb->s_blocksize - 1) >>
4365 		EXT4_BLOCK_SIZE_BITS(sb);
4366 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4367 
4368 	/* If there are blocks to remove, do it */
4369 	if (stop_block > first_block) {
4370 
4371 		down_write(&EXT4_I(inode)->i_data_sem);
4372 		ext4_discard_preallocations(inode);
4373 
4374 		ret = ext4_es_remove_extent(inode, first_block,
4375 					    stop_block - first_block);
4376 		if (ret) {
4377 			up_write(&EXT4_I(inode)->i_data_sem);
4378 			goto out_stop;
4379 		}
4380 
4381 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4382 			ret = ext4_ext_remove_space(inode, first_block,
4383 						    stop_block - 1);
4384 		else
4385 			ret = ext4_ind_remove_space(handle, inode, first_block,
4386 						    stop_block);
4387 
4388 		up_write(&EXT4_I(inode)->i_data_sem);
4389 	}
4390 	if (IS_SYNC(inode))
4391 		ext4_handle_sync(handle);
4392 
4393 	inode->i_mtime = inode->i_ctime = current_time(inode);
4394 	ext4_mark_inode_dirty(handle, inode);
4395 	if (ret >= 0)
4396 		ext4_update_inode_fsync_trans(handle, inode, 1);
4397 out_stop:
4398 	ext4_journal_stop(handle);
4399 out_dio:
4400 	up_write(&EXT4_I(inode)->i_mmap_sem);
4401 out_mutex:
4402 	inode_unlock(inode);
4403 	return ret;
4404 }
4405 
4406 int ext4_inode_attach_jinode(struct inode *inode)
4407 {
4408 	struct ext4_inode_info *ei = EXT4_I(inode);
4409 	struct jbd2_inode *jinode;
4410 
4411 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4412 		return 0;
4413 
4414 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4415 	spin_lock(&inode->i_lock);
4416 	if (!ei->jinode) {
4417 		if (!jinode) {
4418 			spin_unlock(&inode->i_lock);
4419 			return -ENOMEM;
4420 		}
4421 		ei->jinode = jinode;
4422 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4423 		jinode = NULL;
4424 	}
4425 	spin_unlock(&inode->i_lock);
4426 	if (unlikely(jinode != NULL))
4427 		jbd2_free_inode(jinode);
4428 	return 0;
4429 }
4430 
4431 /*
4432  * ext4_truncate()
4433  *
4434  * We block out ext4_get_block() block instantiations across the entire
4435  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4436  * simultaneously on behalf of the same inode.
4437  *
4438  * As we work through the truncate and commit bits of it to the journal there
4439  * is one core, guiding principle: the file's tree must always be consistent on
4440  * disk.  We must be able to restart the truncate after a crash.
4441  *
4442  * The file's tree may be transiently inconsistent in memory (although it
4443  * probably isn't), but whenever we close off and commit a journal transaction,
4444  * the contents of (the filesystem + the journal) must be consistent and
4445  * restartable.  It's pretty simple, really: bottom up, right to left (although
4446  * left-to-right works OK too).
4447  *
4448  * Note that at recovery time, journal replay occurs *before* the restart of
4449  * truncate against the orphan inode list.
4450  *
4451  * The committed inode has the new, desired i_size (which is the same as
4452  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4453  * that this inode's truncate did not complete and it will again call
4454  * ext4_truncate() to have another go.  So there will be instantiated blocks
4455  * to the right of the truncation point in a crashed ext4 filesystem.  But
4456  * that's fine - as long as they are linked from the inode, the post-crash
4457  * ext4_truncate() run will find them and release them.
4458  */
4459 int ext4_truncate(struct inode *inode)
4460 {
4461 	struct ext4_inode_info *ei = EXT4_I(inode);
4462 	unsigned int credits;
4463 	int err = 0;
4464 	handle_t *handle;
4465 	struct address_space *mapping = inode->i_mapping;
4466 
4467 	/*
4468 	 * There is a possibility that we're either freeing the inode
4469 	 * or it's a completely new inode. In those cases we might not
4470 	 * have i_mutex locked because it's not necessary.
4471 	 */
4472 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4473 		WARN_ON(!inode_is_locked(inode));
4474 	trace_ext4_truncate_enter(inode);
4475 
4476 	if (!ext4_can_truncate(inode))
4477 		return 0;
4478 
4479 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4480 
4481 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4482 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4483 
4484 	if (ext4_has_inline_data(inode)) {
4485 		int has_inline = 1;
4486 
4487 		err = ext4_inline_data_truncate(inode, &has_inline);
4488 		if (err)
4489 			return err;
4490 		if (has_inline)
4491 			return 0;
4492 	}
4493 
4494 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4495 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4496 		if (ext4_inode_attach_jinode(inode) < 0)
4497 			return 0;
4498 	}
4499 
4500 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4501 		credits = ext4_writepage_trans_blocks(inode);
4502 	else
4503 		credits = ext4_blocks_for_truncate(inode);
4504 
4505 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4506 	if (IS_ERR(handle))
4507 		return PTR_ERR(handle);
4508 
4509 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4510 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4511 
4512 	/*
4513 	 * We add the inode to the orphan list, so that if this
4514 	 * truncate spans multiple transactions, and we crash, we will
4515 	 * resume the truncate when the filesystem recovers.  It also
4516 	 * marks the inode dirty, to catch the new size.
4517 	 *
4518 	 * Implication: the file must always be in a sane, consistent
4519 	 * truncatable state while each transaction commits.
4520 	 */
4521 	err = ext4_orphan_add(handle, inode);
4522 	if (err)
4523 		goto out_stop;
4524 
4525 	down_write(&EXT4_I(inode)->i_data_sem);
4526 
4527 	ext4_discard_preallocations(inode);
4528 
4529 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4530 		err = ext4_ext_truncate(handle, inode);
4531 	else
4532 		ext4_ind_truncate(handle, inode);
4533 
4534 	up_write(&ei->i_data_sem);
4535 	if (err)
4536 		goto out_stop;
4537 
4538 	if (IS_SYNC(inode))
4539 		ext4_handle_sync(handle);
4540 
4541 out_stop:
4542 	/*
4543 	 * If this was a simple ftruncate() and the file will remain alive,
4544 	 * then we need to clear up the orphan record which we created above.
4545 	 * However, if this was a real unlink then we were called by
4546 	 * ext4_evict_inode(), and we allow that function to clean up the
4547 	 * orphan info for us.
4548 	 */
4549 	if (inode->i_nlink)
4550 		ext4_orphan_del(handle, inode);
4551 
4552 	inode->i_mtime = inode->i_ctime = current_time(inode);
4553 	ext4_mark_inode_dirty(handle, inode);
4554 	ext4_journal_stop(handle);
4555 
4556 	trace_ext4_truncate_exit(inode);
4557 	return err;
4558 }
4559 
4560 /*
4561  * ext4_get_inode_loc returns with an extra refcount against the inode's
4562  * underlying buffer_head on success. If 'in_mem' is true, we have all
4563  * data in memory that is needed to recreate the on-disk version of this
4564  * inode.
4565  */
4566 static int __ext4_get_inode_loc(struct inode *inode,
4567 				struct ext4_iloc *iloc, int in_mem)
4568 {
4569 	struct ext4_group_desc	*gdp;
4570 	struct buffer_head	*bh;
4571 	struct super_block	*sb = inode->i_sb;
4572 	ext4_fsblk_t		block;
4573 	int			inodes_per_block, inode_offset;
4574 
4575 	iloc->bh = NULL;
4576 	if (inode->i_ino < EXT4_ROOT_INO ||
4577 	    inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4578 		return -EFSCORRUPTED;
4579 
4580 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4581 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4582 	if (!gdp)
4583 		return -EIO;
4584 
4585 	/*
4586 	 * Figure out the offset within the block group inode table
4587 	 */
4588 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4589 	inode_offset = ((inode->i_ino - 1) %
4590 			EXT4_INODES_PER_GROUP(sb));
4591 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4592 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4593 
4594 	bh = sb_getblk(sb, block);
4595 	if (unlikely(!bh))
4596 		return -ENOMEM;
4597 	if (!buffer_uptodate(bh)) {
4598 		lock_buffer(bh);
4599 
4600 		/*
4601 		 * If the buffer has the write error flag, we have failed
4602 		 * to write out another inode in the same block.  In this
4603 		 * case, we don't have to read the block because we may
4604 		 * read the old inode data successfully.
4605 		 */
4606 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4607 			set_buffer_uptodate(bh);
4608 
4609 		if (buffer_uptodate(bh)) {
4610 			/* someone brought it uptodate while we waited */
4611 			unlock_buffer(bh);
4612 			goto has_buffer;
4613 		}
4614 
4615 		/*
4616 		 * If we have all information of the inode in memory and this
4617 		 * is the only valid inode in the block, we need not read the
4618 		 * block.
4619 		 */
4620 		if (in_mem) {
4621 			struct buffer_head *bitmap_bh;
4622 			int i, start;
4623 
4624 			start = inode_offset & ~(inodes_per_block - 1);
4625 
4626 			/* Is the inode bitmap in cache? */
4627 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4628 			if (unlikely(!bitmap_bh))
4629 				goto make_io;
4630 
4631 			/*
4632 			 * If the inode bitmap isn't in cache then the
4633 			 * optimisation may end up performing two reads instead
4634 			 * of one, so skip it.
4635 			 */
4636 			if (!buffer_uptodate(bitmap_bh)) {
4637 				brelse(bitmap_bh);
4638 				goto make_io;
4639 			}
4640 			for (i = start; i < start + inodes_per_block; i++) {
4641 				if (i == inode_offset)
4642 					continue;
4643 				if (ext4_test_bit(i, bitmap_bh->b_data))
4644 					break;
4645 			}
4646 			brelse(bitmap_bh);
4647 			if (i == start + inodes_per_block) {
4648 				/* all other inodes are free, so skip I/O */
4649 				memset(bh->b_data, 0, bh->b_size);
4650 				set_buffer_uptodate(bh);
4651 				unlock_buffer(bh);
4652 				goto has_buffer;
4653 			}
4654 		}
4655 
4656 make_io:
4657 		/*
4658 		 * If we need to do any I/O, try to pre-readahead extra
4659 		 * blocks from the inode table.
4660 		 */
4661 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4662 			ext4_fsblk_t b, end, table;
4663 			unsigned num;
4664 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4665 
4666 			table = ext4_inode_table(sb, gdp);
4667 			/* s_inode_readahead_blks is always a power of 2 */
4668 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4669 			if (table > b)
4670 				b = table;
4671 			end = b + ra_blks;
4672 			num = EXT4_INODES_PER_GROUP(sb);
4673 			if (ext4_has_group_desc_csum(sb))
4674 				num -= ext4_itable_unused_count(sb, gdp);
4675 			table += num / inodes_per_block;
4676 			if (end > table)
4677 				end = table;
4678 			while (b <= end)
4679 				sb_breadahead(sb, b++);
4680 		}
4681 
4682 		/*
4683 		 * There are other valid inodes in the buffer, this inode
4684 		 * has in-inode xattrs, or we don't have this inode in memory.
4685 		 * Read the block from disk.
4686 		 */
4687 		trace_ext4_load_inode(inode);
4688 		get_bh(bh);
4689 		bh->b_end_io = end_buffer_read_sync;
4690 		submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4691 		wait_on_buffer(bh);
4692 		if (!buffer_uptodate(bh)) {
4693 			EXT4_ERROR_INODE_BLOCK(inode, block,
4694 					       "unable to read itable block");
4695 			brelse(bh);
4696 			return -EIO;
4697 		}
4698 	}
4699 has_buffer:
4700 	iloc->bh = bh;
4701 	return 0;
4702 }
4703 
4704 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4705 {
4706 	/* We have all inode data except xattrs in memory here. */
4707 	return __ext4_get_inode_loc(inode, iloc,
4708 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4709 }
4710 
4711 static bool ext4_should_use_dax(struct inode *inode)
4712 {
4713 	if (!test_opt(inode->i_sb, DAX))
4714 		return false;
4715 	if (!S_ISREG(inode->i_mode))
4716 		return false;
4717 	if (ext4_should_journal_data(inode))
4718 		return false;
4719 	if (ext4_has_inline_data(inode))
4720 		return false;
4721 	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4722 		return false;
4723 	return true;
4724 }
4725 
4726 void ext4_set_inode_flags(struct inode *inode)
4727 {
4728 	unsigned int flags = EXT4_I(inode)->i_flags;
4729 	unsigned int new_fl = 0;
4730 
4731 	if (flags & EXT4_SYNC_FL)
4732 		new_fl |= S_SYNC;
4733 	if (flags & EXT4_APPEND_FL)
4734 		new_fl |= S_APPEND;
4735 	if (flags & EXT4_IMMUTABLE_FL)
4736 		new_fl |= S_IMMUTABLE;
4737 	if (flags & EXT4_NOATIME_FL)
4738 		new_fl |= S_NOATIME;
4739 	if (flags & EXT4_DIRSYNC_FL)
4740 		new_fl |= S_DIRSYNC;
4741 	if (ext4_should_use_dax(inode))
4742 		new_fl |= S_DAX;
4743 	if (flags & EXT4_ENCRYPT_FL)
4744 		new_fl |= S_ENCRYPTED;
4745 	if (flags & EXT4_CASEFOLD_FL)
4746 		new_fl |= S_CASEFOLD;
4747 	inode_set_flags(inode, new_fl,
4748 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4749 			S_ENCRYPTED|S_CASEFOLD);
4750 }
4751 
4752 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4753 				  struct ext4_inode_info *ei)
4754 {
4755 	blkcnt_t i_blocks ;
4756 	struct inode *inode = &(ei->vfs_inode);
4757 	struct super_block *sb = inode->i_sb;
4758 
4759 	if (ext4_has_feature_huge_file(sb)) {
4760 		/* we are using combined 48 bit field */
4761 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4762 					le32_to_cpu(raw_inode->i_blocks_lo);
4763 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4764 			/* i_blocks represent file system block size */
4765 			return i_blocks  << (inode->i_blkbits - 9);
4766 		} else {
4767 			return i_blocks;
4768 		}
4769 	} else {
4770 		return le32_to_cpu(raw_inode->i_blocks_lo);
4771 	}
4772 }
4773 
4774 static inline int ext4_iget_extra_inode(struct inode *inode,
4775 					 struct ext4_inode *raw_inode,
4776 					 struct ext4_inode_info *ei)
4777 {
4778 	__le32 *magic = (void *)raw_inode +
4779 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4780 
4781 	if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4782 	    EXT4_INODE_SIZE(inode->i_sb) &&
4783 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4784 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4785 		return ext4_find_inline_data_nolock(inode);
4786 	} else
4787 		EXT4_I(inode)->i_inline_off = 0;
4788 	return 0;
4789 }
4790 
4791 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4792 {
4793 	if (!ext4_has_feature_project(inode->i_sb))
4794 		return -EOPNOTSUPP;
4795 	*projid = EXT4_I(inode)->i_projid;
4796 	return 0;
4797 }
4798 
4799 /*
4800  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4801  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4802  * set.
4803  */
4804 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4805 {
4806 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4807 		inode_set_iversion_raw(inode, val);
4808 	else
4809 		inode_set_iversion_queried(inode, val);
4810 }
4811 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4812 {
4813 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4814 		return inode_peek_iversion_raw(inode);
4815 	else
4816 		return inode_peek_iversion(inode);
4817 }
4818 
4819 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4820 			  ext4_iget_flags flags, const char *function,
4821 			  unsigned int line)
4822 {
4823 	struct ext4_iloc iloc;
4824 	struct ext4_inode *raw_inode;
4825 	struct ext4_inode_info *ei;
4826 	struct inode *inode;
4827 	journal_t *journal = EXT4_SB(sb)->s_journal;
4828 	long ret;
4829 	loff_t size;
4830 	int block;
4831 	uid_t i_uid;
4832 	gid_t i_gid;
4833 	projid_t i_projid;
4834 
4835 	if ((!(flags & EXT4_IGET_SPECIAL) &&
4836 	     (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4837 	    (ino < EXT4_ROOT_INO) ||
4838 	    (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4839 		if (flags & EXT4_IGET_HANDLE)
4840 			return ERR_PTR(-ESTALE);
4841 		__ext4_error(sb, function, line,
4842 			     "inode #%lu: comm %s: iget: illegal inode #",
4843 			     ino, current->comm);
4844 		return ERR_PTR(-EFSCORRUPTED);
4845 	}
4846 
4847 	inode = iget_locked(sb, ino);
4848 	if (!inode)
4849 		return ERR_PTR(-ENOMEM);
4850 	if (!(inode->i_state & I_NEW))
4851 		return inode;
4852 
4853 	ei = EXT4_I(inode);
4854 	iloc.bh = NULL;
4855 
4856 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4857 	if (ret < 0)
4858 		goto bad_inode;
4859 	raw_inode = ext4_raw_inode(&iloc);
4860 
4861 	if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4862 		ext4_error_inode(inode, function, line, 0,
4863 				 "iget: root inode unallocated");
4864 		ret = -EFSCORRUPTED;
4865 		goto bad_inode;
4866 	}
4867 
4868 	if ((flags & EXT4_IGET_HANDLE) &&
4869 	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4870 		ret = -ESTALE;
4871 		goto bad_inode;
4872 	}
4873 
4874 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4875 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4876 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4877 			EXT4_INODE_SIZE(inode->i_sb) ||
4878 		    (ei->i_extra_isize & 3)) {
4879 			ext4_error_inode(inode, function, line, 0,
4880 					 "iget: bad extra_isize %u "
4881 					 "(inode size %u)",
4882 					 ei->i_extra_isize,
4883 					 EXT4_INODE_SIZE(inode->i_sb));
4884 			ret = -EFSCORRUPTED;
4885 			goto bad_inode;
4886 		}
4887 	} else
4888 		ei->i_extra_isize = 0;
4889 
4890 	/* Precompute checksum seed for inode metadata */
4891 	if (ext4_has_metadata_csum(sb)) {
4892 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4893 		__u32 csum;
4894 		__le32 inum = cpu_to_le32(inode->i_ino);
4895 		__le32 gen = raw_inode->i_generation;
4896 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4897 				   sizeof(inum));
4898 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4899 					      sizeof(gen));
4900 	}
4901 
4902 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4903 		ext4_error_inode(inode, function, line, 0,
4904 				 "iget: checksum invalid");
4905 		ret = -EFSBADCRC;
4906 		goto bad_inode;
4907 	}
4908 
4909 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4910 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4911 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4912 	if (ext4_has_feature_project(sb) &&
4913 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4914 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4915 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4916 	else
4917 		i_projid = EXT4_DEF_PROJID;
4918 
4919 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4920 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4921 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4922 	}
4923 	i_uid_write(inode, i_uid);
4924 	i_gid_write(inode, i_gid);
4925 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4926 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4927 
4928 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4929 	ei->i_inline_off = 0;
4930 	ei->i_dir_start_lookup = 0;
4931 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4932 	/* We now have enough fields to check if the inode was active or not.
4933 	 * This is needed because nfsd might try to access dead inodes
4934 	 * the test is that same one that e2fsck uses
4935 	 * NeilBrown 1999oct15
4936 	 */
4937 	if (inode->i_nlink == 0) {
4938 		if ((inode->i_mode == 0 ||
4939 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4940 		    ino != EXT4_BOOT_LOADER_INO) {
4941 			/* this inode is deleted */
4942 			ret = -ESTALE;
4943 			goto bad_inode;
4944 		}
4945 		/* The only unlinked inodes we let through here have
4946 		 * valid i_mode and are being read by the orphan
4947 		 * recovery code: that's fine, we're about to complete
4948 		 * the process of deleting those.
4949 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4950 		 * not initialized on a new filesystem. */
4951 	}
4952 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4953 	ext4_set_inode_flags(inode);
4954 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4955 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4956 	if (ext4_has_feature_64bit(sb))
4957 		ei->i_file_acl |=
4958 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4959 	inode->i_size = ext4_isize(sb, raw_inode);
4960 	if ((size = i_size_read(inode)) < 0) {
4961 		ext4_error_inode(inode, function, line, 0,
4962 				 "iget: bad i_size value: %lld", size);
4963 		ret = -EFSCORRUPTED;
4964 		goto bad_inode;
4965 	}
4966 	ei->i_disksize = inode->i_size;
4967 #ifdef CONFIG_QUOTA
4968 	ei->i_reserved_quota = 0;
4969 #endif
4970 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4971 	ei->i_block_group = iloc.block_group;
4972 	ei->i_last_alloc_group = ~0;
4973 	/*
4974 	 * NOTE! The in-memory inode i_data array is in little-endian order
4975 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4976 	 */
4977 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4978 		ei->i_data[block] = raw_inode->i_block[block];
4979 	INIT_LIST_HEAD(&ei->i_orphan);
4980 
4981 	/*
4982 	 * Set transaction id's of transactions that have to be committed
4983 	 * to finish f[data]sync. We set them to currently running transaction
4984 	 * as we cannot be sure that the inode or some of its metadata isn't
4985 	 * part of the transaction - the inode could have been reclaimed and
4986 	 * now it is reread from disk.
4987 	 */
4988 	if (journal) {
4989 		transaction_t *transaction;
4990 		tid_t tid;
4991 
4992 		read_lock(&journal->j_state_lock);
4993 		if (journal->j_running_transaction)
4994 			transaction = journal->j_running_transaction;
4995 		else
4996 			transaction = journal->j_committing_transaction;
4997 		if (transaction)
4998 			tid = transaction->t_tid;
4999 		else
5000 			tid = journal->j_commit_sequence;
5001 		read_unlock(&journal->j_state_lock);
5002 		ei->i_sync_tid = tid;
5003 		ei->i_datasync_tid = tid;
5004 	}
5005 
5006 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5007 		if (ei->i_extra_isize == 0) {
5008 			/* The extra space is currently unused. Use it. */
5009 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
5010 			ei->i_extra_isize = sizeof(struct ext4_inode) -
5011 					    EXT4_GOOD_OLD_INODE_SIZE;
5012 		} else {
5013 			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
5014 			if (ret)
5015 				goto bad_inode;
5016 		}
5017 	}
5018 
5019 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5020 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5021 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5022 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5023 
5024 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5025 		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
5026 
5027 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5028 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5029 				ivers |=
5030 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5031 		}
5032 		ext4_inode_set_iversion_queried(inode, ivers);
5033 	}
5034 
5035 	ret = 0;
5036 	if (ei->i_file_acl &&
5037 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
5038 		ext4_error_inode(inode, function, line, 0,
5039 				 "iget: bad extended attribute block %llu",
5040 				 ei->i_file_acl);
5041 		ret = -EFSCORRUPTED;
5042 		goto bad_inode;
5043 	} else if (!ext4_has_inline_data(inode)) {
5044 		/* validate the block references in the inode */
5045 		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5046 		   (S_ISLNK(inode->i_mode) &&
5047 		    !ext4_inode_is_fast_symlink(inode))) {
5048 			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5049 				ret = ext4_ext_check_inode(inode);
5050 			else
5051 				ret = ext4_ind_check_inode(inode);
5052 		}
5053 	}
5054 	if (ret)
5055 		goto bad_inode;
5056 
5057 	if (S_ISREG(inode->i_mode)) {
5058 		inode->i_op = &ext4_file_inode_operations;
5059 		inode->i_fop = &ext4_file_operations;
5060 		ext4_set_aops(inode);
5061 	} else if (S_ISDIR(inode->i_mode)) {
5062 		inode->i_op = &ext4_dir_inode_operations;
5063 		inode->i_fop = &ext4_dir_operations;
5064 	} else if (S_ISLNK(inode->i_mode)) {
5065 		/* VFS does not allow setting these so must be corruption */
5066 		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5067 			ext4_error_inode(inode, function, line, 0,
5068 					 "iget: immutable or append flags "
5069 					 "not allowed on symlinks");
5070 			ret = -EFSCORRUPTED;
5071 			goto bad_inode;
5072 		}
5073 		if (IS_ENCRYPTED(inode)) {
5074 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
5075 			ext4_set_aops(inode);
5076 		} else if (ext4_inode_is_fast_symlink(inode)) {
5077 			inode->i_link = (char *)ei->i_data;
5078 			inode->i_op = &ext4_fast_symlink_inode_operations;
5079 			nd_terminate_link(ei->i_data, inode->i_size,
5080 				sizeof(ei->i_data) - 1);
5081 		} else {
5082 			inode->i_op = &ext4_symlink_inode_operations;
5083 			ext4_set_aops(inode);
5084 		}
5085 		inode_nohighmem(inode);
5086 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5087 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5088 		inode->i_op = &ext4_special_inode_operations;
5089 		if (raw_inode->i_block[0])
5090 			init_special_inode(inode, inode->i_mode,
5091 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5092 		else
5093 			init_special_inode(inode, inode->i_mode,
5094 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5095 	} else if (ino == EXT4_BOOT_LOADER_INO) {
5096 		make_bad_inode(inode);
5097 	} else {
5098 		ret = -EFSCORRUPTED;
5099 		ext4_error_inode(inode, function, line, 0,
5100 				 "iget: bogus i_mode (%o)", inode->i_mode);
5101 		goto bad_inode;
5102 	}
5103 	brelse(iloc.bh);
5104 
5105 	unlock_new_inode(inode);
5106 	return inode;
5107 
5108 bad_inode:
5109 	brelse(iloc.bh);
5110 	iget_failed(inode);
5111 	return ERR_PTR(ret);
5112 }
5113 
5114 static int ext4_inode_blocks_set(handle_t *handle,
5115 				struct ext4_inode *raw_inode,
5116 				struct ext4_inode_info *ei)
5117 {
5118 	struct inode *inode = &(ei->vfs_inode);
5119 	u64 i_blocks = inode->i_blocks;
5120 	struct super_block *sb = inode->i_sb;
5121 
5122 	if (i_blocks <= ~0U) {
5123 		/*
5124 		 * i_blocks can be represented in a 32 bit variable
5125 		 * as multiple of 512 bytes
5126 		 */
5127 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5128 		raw_inode->i_blocks_high = 0;
5129 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5130 		return 0;
5131 	}
5132 	if (!ext4_has_feature_huge_file(sb))
5133 		return -EFBIG;
5134 
5135 	if (i_blocks <= 0xffffffffffffULL) {
5136 		/*
5137 		 * i_blocks can be represented in a 48 bit variable
5138 		 * as multiple of 512 bytes
5139 		 */
5140 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5141 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5142 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5143 	} else {
5144 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5145 		/* i_block is stored in file system block size */
5146 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
5147 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5148 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5149 	}
5150 	return 0;
5151 }
5152 
5153 struct other_inode {
5154 	unsigned long		orig_ino;
5155 	struct ext4_inode	*raw_inode;
5156 };
5157 
5158 static int other_inode_match(struct inode * inode, unsigned long ino,
5159 			     void *data)
5160 {
5161 	struct other_inode *oi = (struct other_inode *) data;
5162 
5163 	if ((inode->i_ino != ino) ||
5164 	    (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5165 			       I_DIRTY_INODE)) ||
5166 	    ((inode->i_state & I_DIRTY_TIME) == 0))
5167 		return 0;
5168 	spin_lock(&inode->i_lock);
5169 	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5170 				I_DIRTY_INODE)) == 0) &&
5171 	    (inode->i_state & I_DIRTY_TIME)) {
5172 		struct ext4_inode_info	*ei = EXT4_I(inode);
5173 
5174 		inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
5175 		spin_unlock(&inode->i_lock);
5176 
5177 		spin_lock(&ei->i_raw_lock);
5178 		EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
5179 		EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
5180 		EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
5181 		ext4_inode_csum_set(inode, oi->raw_inode, ei);
5182 		spin_unlock(&ei->i_raw_lock);
5183 		trace_ext4_other_inode_update_time(inode, oi->orig_ino);
5184 		return -1;
5185 	}
5186 	spin_unlock(&inode->i_lock);
5187 	return -1;
5188 }
5189 
5190 /*
5191  * Opportunistically update the other time fields for other inodes in
5192  * the same inode table block.
5193  */
5194 static void ext4_update_other_inodes_time(struct super_block *sb,
5195 					  unsigned long orig_ino, char *buf)
5196 {
5197 	struct other_inode oi;
5198 	unsigned long ino;
5199 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5200 	int inode_size = EXT4_INODE_SIZE(sb);
5201 
5202 	oi.orig_ino = orig_ino;
5203 	/*
5204 	 * Calculate the first inode in the inode table block.  Inode
5205 	 * numbers are one-based.  That is, the first inode in a block
5206 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5207 	 */
5208 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5209 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5210 		if (ino == orig_ino)
5211 			continue;
5212 		oi.raw_inode = (struct ext4_inode *) buf;
5213 		(void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5214 	}
5215 }
5216 
5217 /*
5218  * Post the struct inode info into an on-disk inode location in the
5219  * buffer-cache.  This gobbles the caller's reference to the
5220  * buffer_head in the inode location struct.
5221  *
5222  * The caller must have write access to iloc->bh.
5223  */
5224 static int ext4_do_update_inode(handle_t *handle,
5225 				struct inode *inode,
5226 				struct ext4_iloc *iloc)
5227 {
5228 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5229 	struct ext4_inode_info *ei = EXT4_I(inode);
5230 	struct buffer_head *bh = iloc->bh;
5231 	struct super_block *sb = inode->i_sb;
5232 	int err = 0, rc, block;
5233 	int need_datasync = 0, set_large_file = 0;
5234 	uid_t i_uid;
5235 	gid_t i_gid;
5236 	projid_t i_projid;
5237 
5238 	spin_lock(&ei->i_raw_lock);
5239 
5240 	/* For fields not tracked in the in-memory inode,
5241 	 * initialise them to zero for new inodes. */
5242 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5243 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5244 
5245 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5246 	i_uid = i_uid_read(inode);
5247 	i_gid = i_gid_read(inode);
5248 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5249 	if (!(test_opt(inode->i_sb, NO_UID32))) {
5250 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5251 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5252 /*
5253  * Fix up interoperability with old kernels. Otherwise, old inodes get
5254  * re-used with the upper 16 bits of the uid/gid intact
5255  */
5256 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5257 			raw_inode->i_uid_high = 0;
5258 			raw_inode->i_gid_high = 0;
5259 		} else {
5260 			raw_inode->i_uid_high =
5261 				cpu_to_le16(high_16_bits(i_uid));
5262 			raw_inode->i_gid_high =
5263 				cpu_to_le16(high_16_bits(i_gid));
5264 		}
5265 	} else {
5266 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5267 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5268 		raw_inode->i_uid_high = 0;
5269 		raw_inode->i_gid_high = 0;
5270 	}
5271 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5272 
5273 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5274 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5275 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5276 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5277 
5278 	err = ext4_inode_blocks_set(handle, raw_inode, ei);
5279 	if (err) {
5280 		spin_unlock(&ei->i_raw_lock);
5281 		goto out_brelse;
5282 	}
5283 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5284 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5285 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5286 		raw_inode->i_file_acl_high =
5287 			cpu_to_le16(ei->i_file_acl >> 32);
5288 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5289 	if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
5290 		ext4_isize_set(raw_inode, ei->i_disksize);
5291 		need_datasync = 1;
5292 	}
5293 	if (ei->i_disksize > 0x7fffffffULL) {
5294 		if (!ext4_has_feature_large_file(sb) ||
5295 				EXT4_SB(sb)->s_es->s_rev_level ==
5296 		    cpu_to_le32(EXT4_GOOD_OLD_REV))
5297 			set_large_file = 1;
5298 	}
5299 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5300 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5301 		if (old_valid_dev(inode->i_rdev)) {
5302 			raw_inode->i_block[0] =
5303 				cpu_to_le32(old_encode_dev(inode->i_rdev));
5304 			raw_inode->i_block[1] = 0;
5305 		} else {
5306 			raw_inode->i_block[0] = 0;
5307 			raw_inode->i_block[1] =
5308 				cpu_to_le32(new_encode_dev(inode->i_rdev));
5309 			raw_inode->i_block[2] = 0;
5310 		}
5311 	} else if (!ext4_has_inline_data(inode)) {
5312 		for (block = 0; block < EXT4_N_BLOCKS; block++)
5313 			raw_inode->i_block[block] = ei->i_data[block];
5314 	}
5315 
5316 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5317 		u64 ivers = ext4_inode_peek_iversion(inode);
5318 
5319 		raw_inode->i_disk_version = cpu_to_le32(ivers);
5320 		if (ei->i_extra_isize) {
5321 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5322 				raw_inode->i_version_hi =
5323 					cpu_to_le32(ivers >> 32);
5324 			raw_inode->i_extra_isize =
5325 				cpu_to_le16(ei->i_extra_isize);
5326 		}
5327 	}
5328 
5329 	BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5330 	       i_projid != EXT4_DEF_PROJID);
5331 
5332 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5333 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5334 		raw_inode->i_projid = cpu_to_le32(i_projid);
5335 
5336 	ext4_inode_csum_set(inode, raw_inode, ei);
5337 	spin_unlock(&ei->i_raw_lock);
5338 	if (inode->i_sb->s_flags & SB_LAZYTIME)
5339 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5340 					      bh->b_data);
5341 
5342 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5343 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5344 	if (!err)
5345 		err = rc;
5346 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5347 	if (set_large_file) {
5348 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5349 		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5350 		if (err)
5351 			goto out_brelse;
5352 		ext4_set_feature_large_file(sb);
5353 		ext4_handle_sync(handle);
5354 		err = ext4_handle_dirty_super(handle, sb);
5355 	}
5356 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5357 out_brelse:
5358 	brelse(bh);
5359 	ext4_std_error(inode->i_sb, err);
5360 	return err;
5361 }
5362 
5363 /*
5364  * ext4_write_inode()
5365  *
5366  * We are called from a few places:
5367  *
5368  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5369  *   Here, there will be no transaction running. We wait for any running
5370  *   transaction to commit.
5371  *
5372  * - Within flush work (sys_sync(), kupdate and such).
5373  *   We wait on commit, if told to.
5374  *
5375  * - Within iput_final() -> write_inode_now()
5376  *   We wait on commit, if told to.
5377  *
5378  * In all cases it is actually safe for us to return without doing anything,
5379  * because the inode has been copied into a raw inode buffer in
5380  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5381  * writeback.
5382  *
5383  * Note that we are absolutely dependent upon all inode dirtiers doing the
5384  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5385  * which we are interested.
5386  *
5387  * It would be a bug for them to not do this.  The code:
5388  *
5389  *	mark_inode_dirty(inode)
5390  *	stuff();
5391  *	inode->i_size = expr;
5392  *
5393  * is in error because write_inode() could occur while `stuff()' is running,
5394  * and the new i_size will be lost.  Plus the inode will no longer be on the
5395  * superblock's dirty inode list.
5396  */
5397 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5398 {
5399 	int err;
5400 
5401 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5402 	    sb_rdonly(inode->i_sb))
5403 		return 0;
5404 
5405 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5406 		return -EIO;
5407 
5408 	if (EXT4_SB(inode->i_sb)->s_journal) {
5409 		if (ext4_journal_current_handle()) {
5410 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5411 			dump_stack();
5412 			return -EIO;
5413 		}
5414 
5415 		/*
5416 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5417 		 * ext4_sync_fs() will force the commit after everything is
5418 		 * written.
5419 		 */
5420 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5421 			return 0;
5422 
5423 		err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
5424 						EXT4_I(inode)->i_sync_tid);
5425 	} else {
5426 		struct ext4_iloc iloc;
5427 
5428 		err = __ext4_get_inode_loc(inode, &iloc, 0);
5429 		if (err)
5430 			return err;
5431 		/*
5432 		 * sync(2) will flush the whole buffer cache. No need to do
5433 		 * it here separately for each inode.
5434 		 */
5435 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5436 			sync_dirty_buffer(iloc.bh);
5437 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5438 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5439 					 "IO error syncing inode");
5440 			err = -EIO;
5441 		}
5442 		brelse(iloc.bh);
5443 	}
5444 	return err;
5445 }
5446 
5447 /*
5448  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5449  * buffers that are attached to a page stradding i_size and are undergoing
5450  * commit. In that case we have to wait for commit to finish and try again.
5451  */
5452 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5453 {
5454 	struct page *page;
5455 	unsigned offset;
5456 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5457 	tid_t commit_tid = 0;
5458 	int ret;
5459 
5460 	offset = inode->i_size & (PAGE_SIZE - 1);
5461 	/*
5462 	 * All buffers in the last page remain valid? Then there's nothing to
5463 	 * do. We do the check mainly to optimize the common PAGE_SIZE ==
5464 	 * blocksize case
5465 	 */
5466 	if (offset > PAGE_SIZE - i_blocksize(inode))
5467 		return;
5468 	while (1) {
5469 		page = find_lock_page(inode->i_mapping,
5470 				      inode->i_size >> PAGE_SHIFT);
5471 		if (!page)
5472 			return;
5473 		ret = __ext4_journalled_invalidatepage(page, offset,
5474 						PAGE_SIZE - offset);
5475 		unlock_page(page);
5476 		put_page(page);
5477 		if (ret != -EBUSY)
5478 			return;
5479 		commit_tid = 0;
5480 		read_lock(&journal->j_state_lock);
5481 		if (journal->j_committing_transaction)
5482 			commit_tid = journal->j_committing_transaction->t_tid;
5483 		read_unlock(&journal->j_state_lock);
5484 		if (commit_tid)
5485 			jbd2_log_wait_commit(journal, commit_tid);
5486 	}
5487 }
5488 
5489 /*
5490  * ext4_setattr()
5491  *
5492  * Called from notify_change.
5493  *
5494  * We want to trap VFS attempts to truncate the file as soon as
5495  * possible.  In particular, we want to make sure that when the VFS
5496  * shrinks i_size, we put the inode on the orphan list and modify
5497  * i_disksize immediately, so that during the subsequent flushing of
5498  * dirty pages and freeing of disk blocks, we can guarantee that any
5499  * commit will leave the blocks being flushed in an unused state on
5500  * disk.  (On recovery, the inode will get truncated and the blocks will
5501  * be freed, so we have a strong guarantee that no future commit will
5502  * leave these blocks visible to the user.)
5503  *
5504  * Another thing we have to assure is that if we are in ordered mode
5505  * and inode is still attached to the committing transaction, we must
5506  * we start writeout of all the dirty pages which are being truncated.
5507  * This way we are sure that all the data written in the previous
5508  * transaction are already on disk (truncate waits for pages under
5509  * writeback).
5510  *
5511  * Called with inode->i_mutex down.
5512  */
5513 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5514 {
5515 	struct inode *inode = d_inode(dentry);
5516 	int error, rc = 0;
5517 	int orphan = 0;
5518 	const unsigned int ia_valid = attr->ia_valid;
5519 
5520 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5521 		return -EIO;
5522 
5523 	error = setattr_prepare(dentry, attr);
5524 	if (error)
5525 		return error;
5526 
5527 	error = fscrypt_prepare_setattr(dentry, attr);
5528 	if (error)
5529 		return error;
5530 
5531 	if (is_quota_modification(inode, attr)) {
5532 		error = dquot_initialize(inode);
5533 		if (error)
5534 			return error;
5535 	}
5536 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5537 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5538 		handle_t *handle;
5539 
5540 		/* (user+group)*(old+new) structure, inode write (sb,
5541 		 * inode block, ? - but truncate inode update has it) */
5542 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5543 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5544 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5545 		if (IS_ERR(handle)) {
5546 			error = PTR_ERR(handle);
5547 			goto err_out;
5548 		}
5549 
5550 		/* dquot_transfer() calls back ext4_get_inode_usage() which
5551 		 * counts xattr inode references.
5552 		 */
5553 		down_read(&EXT4_I(inode)->xattr_sem);
5554 		error = dquot_transfer(inode, attr);
5555 		up_read(&EXT4_I(inode)->xattr_sem);
5556 
5557 		if (error) {
5558 			ext4_journal_stop(handle);
5559 			return error;
5560 		}
5561 		/* Update corresponding info in inode so that everything is in
5562 		 * one transaction */
5563 		if (attr->ia_valid & ATTR_UID)
5564 			inode->i_uid = attr->ia_uid;
5565 		if (attr->ia_valid & ATTR_GID)
5566 			inode->i_gid = attr->ia_gid;
5567 		error = ext4_mark_inode_dirty(handle, inode);
5568 		ext4_journal_stop(handle);
5569 	}
5570 
5571 	if (attr->ia_valid & ATTR_SIZE) {
5572 		handle_t *handle;
5573 		loff_t oldsize = inode->i_size;
5574 		int shrink = (attr->ia_size <= inode->i_size);
5575 
5576 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5577 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5578 
5579 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
5580 				return -EFBIG;
5581 		}
5582 		if (!S_ISREG(inode->i_mode))
5583 			return -EINVAL;
5584 
5585 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5586 			inode_inc_iversion(inode);
5587 
5588 		if (ext4_should_order_data(inode) &&
5589 		    (attr->ia_size < inode->i_size)) {
5590 			error = ext4_begin_ordered_truncate(inode,
5591 							    attr->ia_size);
5592 			if (error)
5593 				goto err_out;
5594 		}
5595 		if (attr->ia_size != inode->i_size) {
5596 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5597 			if (IS_ERR(handle)) {
5598 				error = PTR_ERR(handle);
5599 				goto err_out;
5600 			}
5601 			if (ext4_handle_valid(handle) && shrink) {
5602 				error = ext4_orphan_add(handle, inode);
5603 				orphan = 1;
5604 			}
5605 			/*
5606 			 * Update c/mtime on truncate up, ext4_truncate() will
5607 			 * update c/mtime in shrink case below
5608 			 */
5609 			if (!shrink) {
5610 				inode->i_mtime = current_time(inode);
5611 				inode->i_ctime = inode->i_mtime;
5612 			}
5613 			down_write(&EXT4_I(inode)->i_data_sem);
5614 			EXT4_I(inode)->i_disksize = attr->ia_size;
5615 			rc = ext4_mark_inode_dirty(handle, inode);
5616 			if (!error)
5617 				error = rc;
5618 			/*
5619 			 * We have to update i_size under i_data_sem together
5620 			 * with i_disksize to avoid races with writeback code
5621 			 * running ext4_wb_update_i_disksize().
5622 			 */
5623 			if (!error)
5624 				i_size_write(inode, attr->ia_size);
5625 			up_write(&EXT4_I(inode)->i_data_sem);
5626 			ext4_journal_stop(handle);
5627 			if (error) {
5628 				if (orphan)
5629 					ext4_orphan_del(NULL, inode);
5630 				goto err_out;
5631 			}
5632 		}
5633 		if (!shrink)
5634 			pagecache_isize_extended(inode, oldsize, inode->i_size);
5635 
5636 		/*
5637 		 * Blocks are going to be removed from the inode. Wait
5638 		 * for dio in flight.  Temporarily disable
5639 		 * dioread_nolock to prevent livelock.
5640 		 */
5641 		if (orphan) {
5642 			if (!ext4_should_journal_data(inode)) {
5643 				inode_dio_wait(inode);
5644 			} else
5645 				ext4_wait_for_tail_page_commit(inode);
5646 		}
5647 		down_write(&EXT4_I(inode)->i_mmap_sem);
5648 
5649 		rc = ext4_break_layouts(inode);
5650 		if (rc) {
5651 			up_write(&EXT4_I(inode)->i_mmap_sem);
5652 			error = rc;
5653 			goto err_out;
5654 		}
5655 
5656 		/*
5657 		 * Truncate pagecache after we've waited for commit
5658 		 * in data=journal mode to make pages freeable.
5659 		 */
5660 		truncate_pagecache(inode, inode->i_size);
5661 		if (shrink) {
5662 			rc = ext4_truncate(inode);
5663 			if (rc)
5664 				error = rc;
5665 		}
5666 		up_write(&EXT4_I(inode)->i_mmap_sem);
5667 	}
5668 
5669 	if (!error) {
5670 		setattr_copy(inode, attr);
5671 		mark_inode_dirty(inode);
5672 	}
5673 
5674 	/*
5675 	 * If the call to ext4_truncate failed to get a transaction handle at
5676 	 * all, we need to clean up the in-core orphan list manually.
5677 	 */
5678 	if (orphan && inode->i_nlink)
5679 		ext4_orphan_del(NULL, inode);
5680 
5681 	if (!error && (ia_valid & ATTR_MODE))
5682 		rc = posix_acl_chmod(inode, inode->i_mode);
5683 
5684 err_out:
5685 	ext4_std_error(inode->i_sb, error);
5686 	if (!error)
5687 		error = rc;
5688 	return error;
5689 }
5690 
5691 int ext4_getattr(const struct path *path, struct kstat *stat,
5692 		 u32 request_mask, unsigned int query_flags)
5693 {
5694 	struct inode *inode = d_inode(path->dentry);
5695 	struct ext4_inode *raw_inode;
5696 	struct ext4_inode_info *ei = EXT4_I(inode);
5697 	unsigned int flags;
5698 
5699 	if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5700 		stat->result_mask |= STATX_BTIME;
5701 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5702 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5703 	}
5704 
5705 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5706 	if (flags & EXT4_APPEND_FL)
5707 		stat->attributes |= STATX_ATTR_APPEND;
5708 	if (flags & EXT4_COMPR_FL)
5709 		stat->attributes |= STATX_ATTR_COMPRESSED;
5710 	if (flags & EXT4_ENCRYPT_FL)
5711 		stat->attributes |= STATX_ATTR_ENCRYPTED;
5712 	if (flags & EXT4_IMMUTABLE_FL)
5713 		stat->attributes |= STATX_ATTR_IMMUTABLE;
5714 	if (flags & EXT4_NODUMP_FL)
5715 		stat->attributes |= STATX_ATTR_NODUMP;
5716 
5717 	stat->attributes_mask |= (STATX_ATTR_APPEND |
5718 				  STATX_ATTR_COMPRESSED |
5719 				  STATX_ATTR_ENCRYPTED |
5720 				  STATX_ATTR_IMMUTABLE |
5721 				  STATX_ATTR_NODUMP);
5722 
5723 	generic_fillattr(inode, stat);
5724 	return 0;
5725 }
5726 
5727 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5728 		      u32 request_mask, unsigned int query_flags)
5729 {
5730 	struct inode *inode = d_inode(path->dentry);
5731 	u64 delalloc_blocks;
5732 
5733 	ext4_getattr(path, stat, request_mask, query_flags);
5734 
5735 	/*
5736 	 * If there is inline data in the inode, the inode will normally not
5737 	 * have data blocks allocated (it may have an external xattr block).
5738 	 * Report at least one sector for such files, so tools like tar, rsync,
5739 	 * others don't incorrectly think the file is completely sparse.
5740 	 */
5741 	if (unlikely(ext4_has_inline_data(inode)))
5742 		stat->blocks += (stat->size + 511) >> 9;
5743 
5744 	/*
5745 	 * We can't update i_blocks if the block allocation is delayed
5746 	 * otherwise in the case of system crash before the real block
5747 	 * allocation is done, we will have i_blocks inconsistent with
5748 	 * on-disk file blocks.
5749 	 * We always keep i_blocks updated together with real
5750 	 * allocation. But to not confuse with user, stat
5751 	 * will return the blocks that include the delayed allocation
5752 	 * blocks for this file.
5753 	 */
5754 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5755 				   EXT4_I(inode)->i_reserved_data_blocks);
5756 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5757 	return 0;
5758 }
5759 
5760 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5761 				   int pextents)
5762 {
5763 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5764 		return ext4_ind_trans_blocks(inode, lblocks);
5765 	return ext4_ext_index_trans_blocks(inode, pextents);
5766 }
5767 
5768 /*
5769  * Account for index blocks, block groups bitmaps and block group
5770  * descriptor blocks if modify datablocks and index blocks
5771  * worse case, the indexs blocks spread over different block groups
5772  *
5773  * If datablocks are discontiguous, they are possible to spread over
5774  * different block groups too. If they are contiguous, with flexbg,
5775  * they could still across block group boundary.
5776  *
5777  * Also account for superblock, inode, quota and xattr blocks
5778  */
5779 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5780 				  int pextents)
5781 {
5782 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5783 	int gdpblocks;
5784 	int idxblocks;
5785 	int ret = 0;
5786 
5787 	/*
5788 	 * How many index blocks need to touch to map @lblocks logical blocks
5789 	 * to @pextents physical extents?
5790 	 */
5791 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5792 
5793 	ret = idxblocks;
5794 
5795 	/*
5796 	 * Now let's see how many group bitmaps and group descriptors need
5797 	 * to account
5798 	 */
5799 	groups = idxblocks + pextents;
5800 	gdpblocks = groups;
5801 	if (groups > ngroups)
5802 		groups = ngroups;
5803 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5804 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5805 
5806 	/* bitmaps and block group descriptor blocks */
5807 	ret += groups + gdpblocks;
5808 
5809 	/* Blocks for super block, inode, quota and xattr blocks */
5810 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5811 
5812 	return ret;
5813 }
5814 
5815 /*
5816  * Calculate the total number of credits to reserve to fit
5817  * the modification of a single pages into a single transaction,
5818  * which may include multiple chunks of block allocations.
5819  *
5820  * This could be called via ext4_write_begin()
5821  *
5822  * We need to consider the worse case, when
5823  * one new block per extent.
5824  */
5825 int ext4_writepage_trans_blocks(struct inode *inode)
5826 {
5827 	int bpp = ext4_journal_blocks_per_page(inode);
5828 	int ret;
5829 
5830 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5831 
5832 	/* Account for data blocks for journalled mode */
5833 	if (ext4_should_journal_data(inode))
5834 		ret += bpp;
5835 	return ret;
5836 }
5837 
5838 /*
5839  * Calculate the journal credits for a chunk of data modification.
5840  *
5841  * This is called from DIO, fallocate or whoever calling
5842  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5843  *
5844  * journal buffers for data blocks are not included here, as DIO
5845  * and fallocate do no need to journal data buffers.
5846  */
5847 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5848 {
5849 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5850 }
5851 
5852 /*
5853  * The caller must have previously called ext4_reserve_inode_write().
5854  * Give this, we know that the caller already has write access to iloc->bh.
5855  */
5856 int ext4_mark_iloc_dirty(handle_t *handle,
5857 			 struct inode *inode, struct ext4_iloc *iloc)
5858 {
5859 	int err = 0;
5860 
5861 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5862 		put_bh(iloc->bh);
5863 		return -EIO;
5864 	}
5865 	if (IS_I_VERSION(inode))
5866 		inode_inc_iversion(inode);
5867 
5868 	/* the do_update_inode consumes one bh->b_count */
5869 	get_bh(iloc->bh);
5870 
5871 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5872 	err = ext4_do_update_inode(handle, inode, iloc);
5873 	put_bh(iloc->bh);
5874 	return err;
5875 }
5876 
5877 /*
5878  * On success, We end up with an outstanding reference count against
5879  * iloc->bh.  This _must_ be cleaned up later.
5880  */
5881 
5882 int
5883 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5884 			 struct ext4_iloc *iloc)
5885 {
5886 	int err;
5887 
5888 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5889 		return -EIO;
5890 
5891 	err = ext4_get_inode_loc(inode, iloc);
5892 	if (!err) {
5893 		BUFFER_TRACE(iloc->bh, "get_write_access");
5894 		err = ext4_journal_get_write_access(handle, iloc->bh);
5895 		if (err) {
5896 			brelse(iloc->bh);
5897 			iloc->bh = NULL;
5898 		}
5899 	}
5900 	ext4_std_error(inode->i_sb, err);
5901 	return err;
5902 }
5903 
5904 static int __ext4_expand_extra_isize(struct inode *inode,
5905 				     unsigned int new_extra_isize,
5906 				     struct ext4_iloc *iloc,
5907 				     handle_t *handle, int *no_expand)
5908 {
5909 	struct ext4_inode *raw_inode;
5910 	struct ext4_xattr_ibody_header *header;
5911 	int error;
5912 
5913 	raw_inode = ext4_raw_inode(iloc);
5914 
5915 	header = IHDR(inode, raw_inode);
5916 
5917 	/* No extended attributes present */
5918 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5919 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5920 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5921 		       EXT4_I(inode)->i_extra_isize, 0,
5922 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5923 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5924 		return 0;
5925 	}
5926 
5927 	/* try to expand with EAs present */
5928 	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5929 					   raw_inode, handle);
5930 	if (error) {
5931 		/*
5932 		 * Inode size expansion failed; don't try again
5933 		 */
5934 		*no_expand = 1;
5935 	}
5936 
5937 	return error;
5938 }
5939 
5940 /*
5941  * Expand an inode by new_extra_isize bytes.
5942  * Returns 0 on success or negative error number on failure.
5943  */
5944 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5945 					  unsigned int new_extra_isize,
5946 					  struct ext4_iloc iloc,
5947 					  handle_t *handle)
5948 {
5949 	int no_expand;
5950 	int error;
5951 
5952 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5953 		return -EOVERFLOW;
5954 
5955 	/*
5956 	 * In nojournal mode, we can immediately attempt to expand
5957 	 * the inode.  When journaled, we first need to obtain extra
5958 	 * buffer credits since we may write into the EA block
5959 	 * with this same handle. If journal_extend fails, then it will
5960 	 * only result in a minor loss of functionality for that inode.
5961 	 * If this is felt to be critical, then e2fsck should be run to
5962 	 * force a large enough s_min_extra_isize.
5963 	 */
5964 	if (ext4_handle_valid(handle) &&
5965 	    jbd2_journal_extend(handle,
5966 				EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
5967 		return -ENOSPC;
5968 
5969 	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5970 		return -EBUSY;
5971 
5972 	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5973 					  handle, &no_expand);
5974 	ext4_write_unlock_xattr(inode, &no_expand);
5975 
5976 	return error;
5977 }
5978 
5979 int ext4_expand_extra_isize(struct inode *inode,
5980 			    unsigned int new_extra_isize,
5981 			    struct ext4_iloc *iloc)
5982 {
5983 	handle_t *handle;
5984 	int no_expand;
5985 	int error, rc;
5986 
5987 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5988 		brelse(iloc->bh);
5989 		return -EOVERFLOW;
5990 	}
5991 
5992 	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5993 				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5994 	if (IS_ERR(handle)) {
5995 		error = PTR_ERR(handle);
5996 		brelse(iloc->bh);
5997 		return error;
5998 	}
5999 
6000 	ext4_write_lock_xattr(inode, &no_expand);
6001 
6002 	BUFFER_TRACE(iloc->bh, "get_write_access");
6003 	error = ext4_journal_get_write_access(handle, iloc->bh);
6004 	if (error) {
6005 		brelse(iloc->bh);
6006 		goto out_stop;
6007 	}
6008 
6009 	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
6010 					  handle, &no_expand);
6011 
6012 	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
6013 	if (!error)
6014 		error = rc;
6015 
6016 	ext4_write_unlock_xattr(inode, &no_expand);
6017 out_stop:
6018 	ext4_journal_stop(handle);
6019 	return error;
6020 }
6021 
6022 /*
6023  * What we do here is to mark the in-core inode as clean with respect to inode
6024  * dirtiness (it may still be data-dirty).
6025  * This means that the in-core inode may be reaped by prune_icache
6026  * without having to perform any I/O.  This is a very good thing,
6027  * because *any* task may call prune_icache - even ones which
6028  * have a transaction open against a different journal.
6029  *
6030  * Is this cheating?  Not really.  Sure, we haven't written the
6031  * inode out, but prune_icache isn't a user-visible syncing function.
6032  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
6033  * we start and wait on commits.
6034  */
6035 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
6036 {
6037 	struct ext4_iloc iloc;
6038 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6039 	int err;
6040 
6041 	might_sleep();
6042 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6043 	err = ext4_reserve_inode_write(handle, inode, &iloc);
6044 	if (err)
6045 		return err;
6046 
6047 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6048 		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6049 					       iloc, handle);
6050 
6051 	return ext4_mark_iloc_dirty(handle, inode, &iloc);
6052 }
6053 
6054 /*
6055  * ext4_dirty_inode() is called from __mark_inode_dirty()
6056  *
6057  * We're really interested in the case where a file is being extended.
6058  * i_size has been changed by generic_commit_write() and we thus need
6059  * to include the updated inode in the current transaction.
6060  *
6061  * Also, dquot_alloc_block() will always dirty the inode when blocks
6062  * are allocated to the file.
6063  *
6064  * If the inode is marked synchronous, we don't honour that here - doing
6065  * so would cause a commit on atime updates, which we don't bother doing.
6066  * We handle synchronous inodes at the highest possible level.
6067  *
6068  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
6069  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
6070  * to copy into the on-disk inode structure are the timestamp files.
6071  */
6072 void ext4_dirty_inode(struct inode *inode, int flags)
6073 {
6074 	handle_t *handle;
6075 
6076 	if (flags == I_DIRTY_TIME)
6077 		return;
6078 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6079 	if (IS_ERR(handle))
6080 		goto out;
6081 
6082 	ext4_mark_inode_dirty(handle, inode);
6083 
6084 	ext4_journal_stop(handle);
6085 out:
6086 	return;
6087 }
6088 
6089 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6090 {
6091 	journal_t *journal;
6092 	handle_t *handle;
6093 	int err;
6094 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6095 
6096 	/*
6097 	 * We have to be very careful here: changing a data block's
6098 	 * journaling status dynamically is dangerous.  If we write a
6099 	 * data block to the journal, change the status and then delete
6100 	 * that block, we risk forgetting to revoke the old log record
6101 	 * from the journal and so a subsequent replay can corrupt data.
6102 	 * So, first we make sure that the journal is empty and that
6103 	 * nobody is changing anything.
6104 	 */
6105 
6106 	journal = EXT4_JOURNAL(inode);
6107 	if (!journal)
6108 		return 0;
6109 	if (is_journal_aborted(journal))
6110 		return -EROFS;
6111 
6112 	/* Wait for all existing dio workers */
6113 	inode_dio_wait(inode);
6114 
6115 	/*
6116 	 * Before flushing the journal and switching inode's aops, we have
6117 	 * to flush all dirty data the inode has. There can be outstanding
6118 	 * delayed allocations, there can be unwritten extents created by
6119 	 * fallocate or buffered writes in dioread_nolock mode covered by
6120 	 * dirty data which can be converted only after flushing the dirty
6121 	 * data (and journalled aops don't know how to handle these cases).
6122 	 */
6123 	if (val) {
6124 		down_write(&EXT4_I(inode)->i_mmap_sem);
6125 		err = filemap_write_and_wait(inode->i_mapping);
6126 		if (err < 0) {
6127 			up_write(&EXT4_I(inode)->i_mmap_sem);
6128 			return err;
6129 		}
6130 	}
6131 
6132 	percpu_down_write(&sbi->s_journal_flag_rwsem);
6133 	jbd2_journal_lock_updates(journal);
6134 
6135 	/*
6136 	 * OK, there are no updates running now, and all cached data is
6137 	 * synced to disk.  We are now in a completely consistent state
6138 	 * which doesn't have anything in the journal, and we know that
6139 	 * no filesystem updates are running, so it is safe to modify
6140 	 * the inode's in-core data-journaling state flag now.
6141 	 */
6142 
6143 	if (val)
6144 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6145 	else {
6146 		err = jbd2_journal_flush(journal);
6147 		if (err < 0) {
6148 			jbd2_journal_unlock_updates(journal);
6149 			percpu_up_write(&sbi->s_journal_flag_rwsem);
6150 			return err;
6151 		}
6152 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6153 	}
6154 	ext4_set_aops(inode);
6155 
6156 	jbd2_journal_unlock_updates(journal);
6157 	percpu_up_write(&sbi->s_journal_flag_rwsem);
6158 
6159 	if (val)
6160 		up_write(&EXT4_I(inode)->i_mmap_sem);
6161 
6162 	/* Finally we can mark the inode as dirty. */
6163 
6164 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6165 	if (IS_ERR(handle))
6166 		return PTR_ERR(handle);
6167 
6168 	err = ext4_mark_inode_dirty(handle, inode);
6169 	ext4_handle_sync(handle);
6170 	ext4_journal_stop(handle);
6171 	ext4_std_error(inode->i_sb, err);
6172 
6173 	return err;
6174 }
6175 
6176 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6177 {
6178 	return !buffer_mapped(bh);
6179 }
6180 
6181 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6182 {
6183 	struct vm_area_struct *vma = vmf->vma;
6184 	struct page *page = vmf->page;
6185 	loff_t size;
6186 	unsigned long len;
6187 	int err;
6188 	vm_fault_t ret;
6189 	struct file *file = vma->vm_file;
6190 	struct inode *inode = file_inode(file);
6191 	struct address_space *mapping = inode->i_mapping;
6192 	handle_t *handle;
6193 	get_block_t *get_block;
6194 	int retries = 0;
6195 
6196 	sb_start_pagefault(inode->i_sb);
6197 	file_update_time(vma->vm_file);
6198 
6199 	down_read(&EXT4_I(inode)->i_mmap_sem);
6200 
6201 	err = ext4_convert_inline_data(inode);
6202 	if (err)
6203 		goto out_ret;
6204 
6205 	/* Delalloc case is easy... */
6206 	if (test_opt(inode->i_sb, DELALLOC) &&
6207 	    !ext4_should_journal_data(inode) &&
6208 	    !ext4_nonda_switch(inode->i_sb)) {
6209 		do {
6210 			err = block_page_mkwrite(vma, vmf,
6211 						   ext4_da_get_block_prep);
6212 		} while (err == -ENOSPC &&
6213 		       ext4_should_retry_alloc(inode->i_sb, &retries));
6214 		goto out_ret;
6215 	}
6216 
6217 	lock_page(page);
6218 	size = i_size_read(inode);
6219 	/* Page got truncated from under us? */
6220 	if (page->mapping != mapping || page_offset(page) > size) {
6221 		unlock_page(page);
6222 		ret = VM_FAULT_NOPAGE;
6223 		goto out;
6224 	}
6225 
6226 	if (page->index == size >> PAGE_SHIFT)
6227 		len = size & ~PAGE_MASK;
6228 	else
6229 		len = PAGE_SIZE;
6230 	/*
6231 	 * Return if we have all the buffers mapped. This avoids the need to do
6232 	 * journal_start/journal_stop which can block and take a long time
6233 	 */
6234 	if (page_has_buffers(page)) {
6235 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6236 					    0, len, NULL,
6237 					    ext4_bh_unmapped)) {
6238 			/* Wait so that we don't change page under IO */
6239 			wait_for_stable_page(page);
6240 			ret = VM_FAULT_LOCKED;
6241 			goto out;
6242 		}
6243 	}
6244 	unlock_page(page);
6245 	/* OK, we need to fill the hole... */
6246 	if (ext4_should_dioread_nolock(inode))
6247 		get_block = ext4_get_block_unwritten;
6248 	else
6249 		get_block = ext4_get_block;
6250 retry_alloc:
6251 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6252 				    ext4_writepage_trans_blocks(inode));
6253 	if (IS_ERR(handle)) {
6254 		ret = VM_FAULT_SIGBUS;
6255 		goto out;
6256 	}
6257 	err = block_page_mkwrite(vma, vmf, get_block);
6258 	if (!err && ext4_should_journal_data(inode)) {
6259 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6260 			  PAGE_SIZE, NULL, do_journal_get_write_access)) {
6261 			unlock_page(page);
6262 			ret = VM_FAULT_SIGBUS;
6263 			ext4_journal_stop(handle);
6264 			goto out;
6265 		}
6266 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6267 	}
6268 	ext4_journal_stop(handle);
6269 	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6270 		goto retry_alloc;
6271 out_ret:
6272 	ret = block_page_mkwrite_return(err);
6273 out:
6274 	up_read(&EXT4_I(inode)->i_mmap_sem);
6275 	sb_end_pagefault(inode->i_sb);
6276 	return ret;
6277 }
6278 
6279 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6280 {
6281 	struct inode *inode = file_inode(vmf->vma->vm_file);
6282 	vm_fault_t ret;
6283 
6284 	down_read(&EXT4_I(inode)->i_mmap_sem);
6285 	ret = filemap_fault(vmf);
6286 	up_read(&EXT4_I(inode)->i_mmap_sem);
6287 
6288 	return ret;
6289 }
6290