xref: /openbmc/linux/fs/ext4/inode.c (revision 6c9111bc)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *	(jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
43 
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "truncate.h"
48 
49 #include <trace/events/ext4.h>
50 
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 			      struct ext4_inode_info *ei)
53 {
54 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 	__u32 csum;
56 	__u16 dummy_csum = 0;
57 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
58 	unsigned int csum_size = sizeof(dummy_csum);
59 
60 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62 	offset += csum_size;
63 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
65 
66 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67 		offset = offsetof(struct ext4_inode, i_checksum_hi);
68 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69 				   EXT4_GOOD_OLD_INODE_SIZE,
70 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
71 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73 					   csum_size);
74 			offset += csum_size;
75 		}
76 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
78 	}
79 
80 	return csum;
81 }
82 
83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84 				  struct ext4_inode_info *ei)
85 {
86 	__u32 provided, calculated;
87 
88 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89 	    cpu_to_le32(EXT4_OS_LINUX) ||
90 	    !ext4_has_metadata_csum(inode->i_sb))
91 		return 1;
92 
93 	provided = le16_to_cpu(raw->i_checksum_lo);
94 	calculated = ext4_inode_csum(inode, raw, ei);
95 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98 	else
99 		calculated &= 0xFFFF;
100 
101 	return provided == calculated;
102 }
103 
104 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105 			 struct ext4_inode_info *ei)
106 {
107 	__u32 csum;
108 
109 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110 	    cpu_to_le32(EXT4_OS_LINUX) ||
111 	    !ext4_has_metadata_csum(inode->i_sb))
112 		return;
113 
114 	csum = ext4_inode_csum(inode, raw, ei);
115 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119 }
120 
121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122 					      loff_t new_size)
123 {
124 	trace_ext4_begin_ordered_truncate(inode, new_size);
125 	/*
126 	 * If jinode is zero, then we never opened the file for
127 	 * writing, so there's no need to call
128 	 * jbd2_journal_begin_ordered_truncate() since there's no
129 	 * outstanding writes we need to flush.
130 	 */
131 	if (!EXT4_I(inode)->jinode)
132 		return 0;
133 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134 						   EXT4_I(inode)->jinode,
135 						   new_size);
136 }
137 
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139 				unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143 				  int pextents);
144 
145 /*
146  * Test whether an inode is a fast symlink.
147  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
148  */
149 int ext4_inode_is_fast_symlink(struct inode *inode)
150 {
151 	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
152 		int ea_blocks = EXT4_I(inode)->i_file_acl ?
153 				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
154 
155 		if (ext4_has_inline_data(inode))
156 			return 0;
157 
158 		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
159 	}
160 	return S_ISLNK(inode->i_mode) && inode->i_size &&
161 	       (inode->i_size < EXT4_N_BLOCKS * 4);
162 }
163 
164 /*
165  * Called at the last iput() if i_nlink is zero.
166  */
167 void ext4_evict_inode(struct inode *inode)
168 {
169 	handle_t *handle;
170 	int err;
171 	/*
172 	 * Credits for final inode cleanup and freeing:
173 	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
174 	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
175 	 */
176 	int extra_credits = 6;
177 	struct ext4_xattr_inode_array *ea_inode_array = NULL;
178 
179 	trace_ext4_evict_inode(inode);
180 
181 	if (inode->i_nlink) {
182 		/*
183 		 * When journalling data dirty buffers are tracked only in the
184 		 * journal. So although mm thinks everything is clean and
185 		 * ready for reaping the inode might still have some pages to
186 		 * write in the running transaction or waiting to be
187 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
188 		 * (via truncate_inode_pages()) to discard these buffers can
189 		 * cause data loss. Also even if we did not discard these
190 		 * buffers, we would have no way to find them after the inode
191 		 * is reaped and thus user could see stale data if he tries to
192 		 * read them before the transaction is checkpointed. So be
193 		 * careful and force everything to disk here... We use
194 		 * ei->i_datasync_tid to store the newest transaction
195 		 * containing inode's data.
196 		 *
197 		 * Note that directories do not have this problem because they
198 		 * don't use page cache.
199 		 */
200 		if (inode->i_ino != EXT4_JOURNAL_INO &&
201 		    ext4_should_journal_data(inode) &&
202 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
203 		    inode->i_data.nrpages) {
204 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
205 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
206 
207 			jbd2_complete_transaction(journal, commit_tid);
208 			filemap_write_and_wait(&inode->i_data);
209 		}
210 		truncate_inode_pages_final(&inode->i_data);
211 
212 		goto no_delete;
213 	}
214 
215 	if (is_bad_inode(inode))
216 		goto no_delete;
217 	dquot_initialize(inode);
218 
219 	if (ext4_should_order_data(inode))
220 		ext4_begin_ordered_truncate(inode, 0);
221 	truncate_inode_pages_final(&inode->i_data);
222 
223 	/*
224 	 * For inodes with journalled data, transaction commit could have
225 	 * dirtied the inode. Flush worker is ignoring it because of I_FREEING
226 	 * flag but we still need to remove the inode from the writeback lists.
227 	 */
228 	if (!list_empty_careful(&inode->i_io_list)) {
229 		WARN_ON_ONCE(!ext4_should_journal_data(inode));
230 		inode_io_list_del(inode);
231 	}
232 
233 	/*
234 	 * Protect us against freezing - iput() caller didn't have to have any
235 	 * protection against it
236 	 */
237 	sb_start_intwrite(inode->i_sb);
238 
239 	if (!IS_NOQUOTA(inode))
240 		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
241 
242 	/*
243 	 * Block bitmap, group descriptor, and inode are accounted in both
244 	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
245 	 */
246 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
247 			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
248 	if (IS_ERR(handle)) {
249 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
250 		/*
251 		 * If we're going to skip the normal cleanup, we still need to
252 		 * make sure that the in-core orphan linked list is properly
253 		 * cleaned up.
254 		 */
255 		ext4_orphan_del(NULL, inode);
256 		sb_end_intwrite(inode->i_sb);
257 		goto no_delete;
258 	}
259 
260 	if (IS_SYNC(inode))
261 		ext4_handle_sync(handle);
262 
263 	/*
264 	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
265 	 * special handling of symlinks here because i_size is used to
266 	 * determine whether ext4_inode_info->i_data contains symlink data or
267 	 * block mappings. Setting i_size to 0 will remove its fast symlink
268 	 * status. Erase i_data so that it becomes a valid empty block map.
269 	 */
270 	if (ext4_inode_is_fast_symlink(inode))
271 		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
272 	inode->i_size = 0;
273 	err = ext4_mark_inode_dirty(handle, inode);
274 	if (err) {
275 		ext4_warning(inode->i_sb,
276 			     "couldn't mark inode dirty (err %d)", err);
277 		goto stop_handle;
278 	}
279 	if (inode->i_blocks) {
280 		err = ext4_truncate(inode);
281 		if (err) {
282 			ext4_error_err(inode->i_sb, -err,
283 				       "couldn't truncate inode %lu (err %d)",
284 				       inode->i_ino, err);
285 			goto stop_handle;
286 		}
287 	}
288 
289 	/* Remove xattr references. */
290 	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
291 				      extra_credits);
292 	if (err) {
293 		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
294 stop_handle:
295 		ext4_journal_stop(handle);
296 		ext4_orphan_del(NULL, inode);
297 		sb_end_intwrite(inode->i_sb);
298 		ext4_xattr_inode_array_free(ea_inode_array);
299 		goto no_delete;
300 	}
301 
302 	/*
303 	 * Kill off the orphan record which ext4_truncate created.
304 	 * AKPM: I think this can be inside the above `if'.
305 	 * Note that ext4_orphan_del() has to be able to cope with the
306 	 * deletion of a non-existent orphan - this is because we don't
307 	 * know if ext4_truncate() actually created an orphan record.
308 	 * (Well, we could do this if we need to, but heck - it works)
309 	 */
310 	ext4_orphan_del(handle, inode);
311 	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
312 
313 	/*
314 	 * One subtle ordering requirement: if anything has gone wrong
315 	 * (transaction abort, IO errors, whatever), then we can still
316 	 * do these next steps (the fs will already have been marked as
317 	 * having errors), but we can't free the inode if the mark_dirty
318 	 * fails.
319 	 */
320 	if (ext4_mark_inode_dirty(handle, inode))
321 		/* If that failed, just do the required in-core inode clear. */
322 		ext4_clear_inode(inode);
323 	else
324 		ext4_free_inode(handle, inode);
325 	ext4_journal_stop(handle);
326 	sb_end_intwrite(inode->i_sb);
327 	ext4_xattr_inode_array_free(ea_inode_array);
328 	return;
329 no_delete:
330 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
331 }
332 
333 #ifdef CONFIG_QUOTA
334 qsize_t *ext4_get_reserved_space(struct inode *inode)
335 {
336 	return &EXT4_I(inode)->i_reserved_quota;
337 }
338 #endif
339 
340 /*
341  * Called with i_data_sem down, which is important since we can call
342  * ext4_discard_preallocations() from here.
343  */
344 void ext4_da_update_reserve_space(struct inode *inode,
345 					int used, int quota_claim)
346 {
347 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
348 	struct ext4_inode_info *ei = EXT4_I(inode);
349 
350 	spin_lock(&ei->i_block_reservation_lock);
351 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
352 	if (unlikely(used > ei->i_reserved_data_blocks)) {
353 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
354 			 "with only %d reserved data blocks",
355 			 __func__, inode->i_ino, used,
356 			 ei->i_reserved_data_blocks);
357 		WARN_ON(1);
358 		used = ei->i_reserved_data_blocks;
359 	}
360 
361 	/* Update per-inode reservations */
362 	ei->i_reserved_data_blocks -= used;
363 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
364 
365 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
366 
367 	/* Update quota subsystem for data blocks */
368 	if (quota_claim)
369 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
370 	else {
371 		/*
372 		 * We did fallocate with an offset that is already delayed
373 		 * allocated. So on delayed allocated writeback we should
374 		 * not re-claim the quota for fallocated blocks.
375 		 */
376 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
377 	}
378 
379 	/*
380 	 * If we have done all the pending block allocations and if
381 	 * there aren't any writers on the inode, we can discard the
382 	 * inode's preallocations.
383 	 */
384 	if ((ei->i_reserved_data_blocks == 0) &&
385 	    !inode_is_open_for_write(inode))
386 		ext4_discard_preallocations(inode, 0);
387 }
388 
389 static int __check_block_validity(struct inode *inode, const char *func,
390 				unsigned int line,
391 				struct ext4_map_blocks *map)
392 {
393 	if (ext4_has_feature_journal(inode->i_sb) &&
394 	    (inode->i_ino ==
395 	     le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
396 		return 0;
397 	if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
398 		ext4_error_inode(inode, func, line, map->m_pblk,
399 				 "lblock %lu mapped to illegal pblock %llu "
400 				 "(length %d)", (unsigned long) map->m_lblk,
401 				 map->m_pblk, map->m_len);
402 		return -EFSCORRUPTED;
403 	}
404 	return 0;
405 }
406 
407 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
408 		       ext4_lblk_t len)
409 {
410 	int ret;
411 
412 	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
413 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
414 
415 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
416 	if (ret > 0)
417 		ret = 0;
418 
419 	return ret;
420 }
421 
422 #define check_block_validity(inode, map)	\
423 	__check_block_validity((inode), __func__, __LINE__, (map))
424 
425 #ifdef ES_AGGRESSIVE_TEST
426 static void ext4_map_blocks_es_recheck(handle_t *handle,
427 				       struct inode *inode,
428 				       struct ext4_map_blocks *es_map,
429 				       struct ext4_map_blocks *map,
430 				       int flags)
431 {
432 	int retval;
433 
434 	map->m_flags = 0;
435 	/*
436 	 * There is a race window that the result is not the same.
437 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
438 	 * is that we lookup a block mapping in extent status tree with
439 	 * out taking i_data_sem.  So at the time the unwritten extent
440 	 * could be converted.
441 	 */
442 	down_read(&EXT4_I(inode)->i_data_sem);
443 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
444 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
445 	} else {
446 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
447 	}
448 	up_read((&EXT4_I(inode)->i_data_sem));
449 
450 	/*
451 	 * We don't check m_len because extent will be collpased in status
452 	 * tree.  So the m_len might not equal.
453 	 */
454 	if (es_map->m_lblk != map->m_lblk ||
455 	    es_map->m_flags != map->m_flags ||
456 	    es_map->m_pblk != map->m_pblk) {
457 		printk("ES cache assertion failed for inode: %lu "
458 		       "es_cached ex [%d/%d/%llu/%x] != "
459 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
460 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
461 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
462 		       map->m_len, map->m_pblk, map->m_flags,
463 		       retval, flags);
464 	}
465 }
466 #endif /* ES_AGGRESSIVE_TEST */
467 
468 /*
469  * The ext4_map_blocks() function tries to look up the requested blocks,
470  * and returns if the blocks are already mapped.
471  *
472  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
473  * and store the allocated blocks in the result buffer head and mark it
474  * mapped.
475  *
476  * If file type is extents based, it will call ext4_ext_map_blocks(),
477  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
478  * based files
479  *
480  * On success, it returns the number of blocks being mapped or allocated.  if
481  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
482  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
483  *
484  * It returns 0 if plain look up failed (blocks have not been allocated), in
485  * that case, @map is returned as unmapped but we still do fill map->m_len to
486  * indicate the length of a hole starting at map->m_lblk.
487  *
488  * It returns the error in case of allocation failure.
489  */
490 int ext4_map_blocks(handle_t *handle, struct inode *inode,
491 		    struct ext4_map_blocks *map, int flags)
492 {
493 	struct extent_status es;
494 	int retval;
495 	int ret = 0;
496 #ifdef ES_AGGRESSIVE_TEST
497 	struct ext4_map_blocks orig_map;
498 
499 	memcpy(&orig_map, map, sizeof(*map));
500 #endif
501 
502 	map->m_flags = 0;
503 	ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
504 		  flags, map->m_len, (unsigned long) map->m_lblk);
505 
506 	/*
507 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
508 	 */
509 	if (unlikely(map->m_len > INT_MAX))
510 		map->m_len = INT_MAX;
511 
512 	/* We can handle the block number less than EXT_MAX_BLOCKS */
513 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
514 		return -EFSCORRUPTED;
515 
516 	/* Lookup extent status tree firstly */
517 	if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
518 	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
519 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
520 			map->m_pblk = ext4_es_pblock(&es) +
521 					map->m_lblk - es.es_lblk;
522 			map->m_flags |= ext4_es_is_written(&es) ?
523 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
524 			retval = es.es_len - (map->m_lblk - es.es_lblk);
525 			if (retval > map->m_len)
526 				retval = map->m_len;
527 			map->m_len = retval;
528 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
529 			map->m_pblk = 0;
530 			retval = es.es_len - (map->m_lblk - es.es_lblk);
531 			if (retval > map->m_len)
532 				retval = map->m_len;
533 			map->m_len = retval;
534 			retval = 0;
535 		} else {
536 			BUG();
537 		}
538 #ifdef ES_AGGRESSIVE_TEST
539 		ext4_map_blocks_es_recheck(handle, inode, map,
540 					   &orig_map, flags);
541 #endif
542 		goto found;
543 	}
544 
545 	/*
546 	 * Try to see if we can get the block without requesting a new
547 	 * file system block.
548 	 */
549 	down_read(&EXT4_I(inode)->i_data_sem);
550 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
551 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
552 	} else {
553 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
554 	}
555 	if (retval > 0) {
556 		unsigned int status;
557 
558 		if (unlikely(retval != map->m_len)) {
559 			ext4_warning(inode->i_sb,
560 				     "ES len assertion failed for inode "
561 				     "%lu: retval %d != map->m_len %d",
562 				     inode->i_ino, retval, map->m_len);
563 			WARN_ON(1);
564 		}
565 
566 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
567 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
568 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
569 		    !(status & EXTENT_STATUS_WRITTEN) &&
570 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
571 				       map->m_lblk + map->m_len - 1))
572 			status |= EXTENT_STATUS_DELAYED;
573 		ret = ext4_es_insert_extent(inode, map->m_lblk,
574 					    map->m_len, map->m_pblk, status);
575 		if (ret < 0)
576 			retval = ret;
577 	}
578 	up_read((&EXT4_I(inode)->i_data_sem));
579 
580 found:
581 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
582 		ret = check_block_validity(inode, map);
583 		if (ret != 0)
584 			return ret;
585 	}
586 
587 	/* If it is only a block(s) look up */
588 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
589 		return retval;
590 
591 	/*
592 	 * Returns if the blocks have already allocated
593 	 *
594 	 * Note that if blocks have been preallocated
595 	 * ext4_ext_get_block() returns the create = 0
596 	 * with buffer head unmapped.
597 	 */
598 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
599 		/*
600 		 * If we need to convert extent to unwritten
601 		 * we continue and do the actual work in
602 		 * ext4_ext_map_blocks()
603 		 */
604 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
605 			return retval;
606 
607 	/*
608 	 * Here we clear m_flags because after allocating an new extent,
609 	 * it will be set again.
610 	 */
611 	map->m_flags &= ~EXT4_MAP_FLAGS;
612 
613 	/*
614 	 * New blocks allocate and/or writing to unwritten extent
615 	 * will possibly result in updating i_data, so we take
616 	 * the write lock of i_data_sem, and call get_block()
617 	 * with create == 1 flag.
618 	 */
619 	down_write(&EXT4_I(inode)->i_data_sem);
620 
621 	/*
622 	 * We need to check for EXT4 here because migrate
623 	 * could have changed the inode type in between
624 	 */
625 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
626 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
627 	} else {
628 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
629 
630 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
631 			/*
632 			 * We allocated new blocks which will result in
633 			 * i_data's format changing.  Force the migrate
634 			 * to fail by clearing migrate flags
635 			 */
636 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
637 		}
638 
639 		/*
640 		 * Update reserved blocks/metadata blocks after successful
641 		 * block allocation which had been deferred till now. We don't
642 		 * support fallocate for non extent files. So we can update
643 		 * reserve space here.
644 		 */
645 		if ((retval > 0) &&
646 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
647 			ext4_da_update_reserve_space(inode, retval, 1);
648 	}
649 
650 	if (retval > 0) {
651 		unsigned int status;
652 
653 		if (unlikely(retval != map->m_len)) {
654 			ext4_warning(inode->i_sb,
655 				     "ES len assertion failed for inode "
656 				     "%lu: retval %d != map->m_len %d",
657 				     inode->i_ino, retval, map->m_len);
658 			WARN_ON(1);
659 		}
660 
661 		/*
662 		 * We have to zeroout blocks before inserting them into extent
663 		 * status tree. Otherwise someone could look them up there and
664 		 * use them before they are really zeroed. We also have to
665 		 * unmap metadata before zeroing as otherwise writeback can
666 		 * overwrite zeros with stale data from block device.
667 		 */
668 		if (flags & EXT4_GET_BLOCKS_ZERO &&
669 		    map->m_flags & EXT4_MAP_MAPPED &&
670 		    map->m_flags & EXT4_MAP_NEW) {
671 			ret = ext4_issue_zeroout(inode, map->m_lblk,
672 						 map->m_pblk, map->m_len);
673 			if (ret) {
674 				retval = ret;
675 				goto out_sem;
676 			}
677 		}
678 
679 		/*
680 		 * If the extent has been zeroed out, we don't need to update
681 		 * extent status tree.
682 		 */
683 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
684 		    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
685 			if (ext4_es_is_written(&es))
686 				goto out_sem;
687 		}
688 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
689 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
690 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
691 		    !(status & EXTENT_STATUS_WRITTEN) &&
692 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
693 				       map->m_lblk + map->m_len - 1))
694 			status |= EXTENT_STATUS_DELAYED;
695 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
696 					    map->m_pblk, status);
697 		if (ret < 0) {
698 			retval = ret;
699 			goto out_sem;
700 		}
701 	}
702 
703 out_sem:
704 	up_write((&EXT4_I(inode)->i_data_sem));
705 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
706 		ret = check_block_validity(inode, map);
707 		if (ret != 0)
708 			return ret;
709 
710 		/*
711 		 * Inodes with freshly allocated blocks where contents will be
712 		 * visible after transaction commit must be on transaction's
713 		 * ordered data list.
714 		 */
715 		if (map->m_flags & EXT4_MAP_NEW &&
716 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
717 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
718 		    !ext4_is_quota_file(inode) &&
719 		    ext4_should_order_data(inode)) {
720 			loff_t start_byte =
721 				(loff_t)map->m_lblk << inode->i_blkbits;
722 			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
723 
724 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
725 				ret = ext4_jbd2_inode_add_wait(handle, inode,
726 						start_byte, length);
727 			else
728 				ret = ext4_jbd2_inode_add_write(handle, inode,
729 						start_byte, length);
730 			if (ret)
731 				return ret;
732 		}
733 		ext4_fc_track_range(inode, map->m_lblk,
734 			    map->m_lblk + map->m_len - 1);
735 	}
736 
737 	if (retval < 0)
738 		ext_debug(inode, "failed with err %d\n", retval);
739 	return retval;
740 }
741 
742 /*
743  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
744  * we have to be careful as someone else may be manipulating b_state as well.
745  */
746 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
747 {
748 	unsigned long old_state;
749 	unsigned long new_state;
750 
751 	flags &= EXT4_MAP_FLAGS;
752 
753 	/* Dummy buffer_head? Set non-atomically. */
754 	if (!bh->b_page) {
755 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
756 		return;
757 	}
758 	/*
759 	 * Someone else may be modifying b_state. Be careful! This is ugly but
760 	 * once we get rid of using bh as a container for mapping information
761 	 * to pass to / from get_block functions, this can go away.
762 	 */
763 	do {
764 		old_state = READ_ONCE(bh->b_state);
765 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
766 	} while (unlikely(
767 		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
768 }
769 
770 static int _ext4_get_block(struct inode *inode, sector_t iblock,
771 			   struct buffer_head *bh, int flags)
772 {
773 	struct ext4_map_blocks map;
774 	int ret = 0;
775 
776 	if (ext4_has_inline_data(inode))
777 		return -ERANGE;
778 
779 	map.m_lblk = iblock;
780 	map.m_len = bh->b_size >> inode->i_blkbits;
781 
782 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
783 			      flags);
784 	if (ret > 0) {
785 		map_bh(bh, inode->i_sb, map.m_pblk);
786 		ext4_update_bh_state(bh, map.m_flags);
787 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
788 		ret = 0;
789 	} else if (ret == 0) {
790 		/* hole case, need to fill in bh->b_size */
791 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
792 	}
793 	return ret;
794 }
795 
796 int ext4_get_block(struct inode *inode, sector_t iblock,
797 		   struct buffer_head *bh, int create)
798 {
799 	return _ext4_get_block(inode, iblock, bh,
800 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
801 }
802 
803 /*
804  * Get block function used when preparing for buffered write if we require
805  * creating an unwritten extent if blocks haven't been allocated.  The extent
806  * will be converted to written after the IO is complete.
807  */
808 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
809 			     struct buffer_head *bh_result, int create)
810 {
811 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
812 		   inode->i_ino, create);
813 	return _ext4_get_block(inode, iblock, bh_result,
814 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
815 }
816 
817 /* Maximum number of blocks we map for direct IO at once. */
818 #define DIO_MAX_BLOCKS 4096
819 
820 /*
821  * `handle' can be NULL if create is zero
822  */
823 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
824 				ext4_lblk_t block, int map_flags)
825 {
826 	struct ext4_map_blocks map;
827 	struct buffer_head *bh;
828 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
829 	int err;
830 
831 	J_ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
832 		 || handle != NULL || create == 0);
833 
834 	map.m_lblk = block;
835 	map.m_len = 1;
836 	err = ext4_map_blocks(handle, inode, &map, map_flags);
837 
838 	if (err == 0)
839 		return create ? ERR_PTR(-ENOSPC) : NULL;
840 	if (err < 0)
841 		return ERR_PTR(err);
842 
843 	bh = sb_getblk(inode->i_sb, map.m_pblk);
844 	if (unlikely(!bh))
845 		return ERR_PTR(-ENOMEM);
846 	if (map.m_flags & EXT4_MAP_NEW) {
847 		J_ASSERT(create != 0);
848 		J_ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
849 			 || (handle != NULL));
850 
851 		/*
852 		 * Now that we do not always journal data, we should
853 		 * keep in mind whether this should always journal the
854 		 * new buffer as metadata.  For now, regular file
855 		 * writes use ext4_get_block instead, so it's not a
856 		 * problem.
857 		 */
858 		lock_buffer(bh);
859 		BUFFER_TRACE(bh, "call get_create_access");
860 		err = ext4_journal_get_create_access(handle, bh);
861 		if (unlikely(err)) {
862 			unlock_buffer(bh);
863 			goto errout;
864 		}
865 		if (!buffer_uptodate(bh)) {
866 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
867 			set_buffer_uptodate(bh);
868 		}
869 		unlock_buffer(bh);
870 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
871 		err = ext4_handle_dirty_metadata(handle, inode, bh);
872 		if (unlikely(err))
873 			goto errout;
874 	} else
875 		BUFFER_TRACE(bh, "not a new buffer");
876 	return bh;
877 errout:
878 	brelse(bh);
879 	return ERR_PTR(err);
880 }
881 
882 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
883 			       ext4_lblk_t block, int map_flags)
884 {
885 	struct buffer_head *bh;
886 	int ret;
887 
888 	bh = ext4_getblk(handle, inode, block, map_flags);
889 	if (IS_ERR(bh))
890 		return bh;
891 	if (!bh || ext4_buffer_uptodate(bh))
892 		return bh;
893 
894 	ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
895 	if (ret) {
896 		put_bh(bh);
897 		return ERR_PTR(ret);
898 	}
899 	return bh;
900 }
901 
902 /* Read a contiguous batch of blocks. */
903 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
904 		     bool wait, struct buffer_head **bhs)
905 {
906 	int i, err;
907 
908 	for (i = 0; i < bh_count; i++) {
909 		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
910 		if (IS_ERR(bhs[i])) {
911 			err = PTR_ERR(bhs[i]);
912 			bh_count = i;
913 			goto out_brelse;
914 		}
915 	}
916 
917 	for (i = 0; i < bh_count; i++)
918 		/* Note that NULL bhs[i] is valid because of holes. */
919 		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
920 			ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
921 
922 	if (!wait)
923 		return 0;
924 
925 	for (i = 0; i < bh_count; i++)
926 		if (bhs[i])
927 			wait_on_buffer(bhs[i]);
928 
929 	for (i = 0; i < bh_count; i++) {
930 		if (bhs[i] && !buffer_uptodate(bhs[i])) {
931 			err = -EIO;
932 			goto out_brelse;
933 		}
934 	}
935 	return 0;
936 
937 out_brelse:
938 	for (i = 0; i < bh_count; i++) {
939 		brelse(bhs[i]);
940 		bhs[i] = NULL;
941 	}
942 	return err;
943 }
944 
945 int ext4_walk_page_buffers(handle_t *handle,
946 			   struct buffer_head *head,
947 			   unsigned from,
948 			   unsigned to,
949 			   int *partial,
950 			   int (*fn)(handle_t *handle,
951 				     struct buffer_head *bh))
952 {
953 	struct buffer_head *bh;
954 	unsigned block_start, block_end;
955 	unsigned blocksize = head->b_size;
956 	int err, ret = 0;
957 	struct buffer_head *next;
958 
959 	for (bh = head, block_start = 0;
960 	     ret == 0 && (bh != head || !block_start);
961 	     block_start = block_end, bh = next) {
962 		next = bh->b_this_page;
963 		block_end = block_start + blocksize;
964 		if (block_end <= from || block_start >= to) {
965 			if (partial && !buffer_uptodate(bh))
966 				*partial = 1;
967 			continue;
968 		}
969 		err = (*fn)(handle, bh);
970 		if (!ret)
971 			ret = err;
972 	}
973 	return ret;
974 }
975 
976 /*
977  * To preserve ordering, it is essential that the hole instantiation and
978  * the data write be encapsulated in a single transaction.  We cannot
979  * close off a transaction and start a new one between the ext4_get_block()
980  * and the commit_write().  So doing the jbd2_journal_start at the start of
981  * prepare_write() is the right place.
982  *
983  * Also, this function can nest inside ext4_writepage().  In that case, we
984  * *know* that ext4_writepage() has generated enough buffer credits to do the
985  * whole page.  So we won't block on the journal in that case, which is good,
986  * because the caller may be PF_MEMALLOC.
987  *
988  * By accident, ext4 can be reentered when a transaction is open via
989  * quota file writes.  If we were to commit the transaction while thus
990  * reentered, there can be a deadlock - we would be holding a quota
991  * lock, and the commit would never complete if another thread had a
992  * transaction open and was blocking on the quota lock - a ranking
993  * violation.
994  *
995  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
996  * will _not_ run commit under these circumstances because handle->h_ref
997  * is elevated.  We'll still have enough credits for the tiny quotafile
998  * write.
999  */
1000 int do_journal_get_write_access(handle_t *handle,
1001 				struct buffer_head *bh)
1002 {
1003 	int dirty = buffer_dirty(bh);
1004 	int ret;
1005 
1006 	if (!buffer_mapped(bh) || buffer_freed(bh))
1007 		return 0;
1008 	/*
1009 	 * __block_write_begin() could have dirtied some buffers. Clean
1010 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1011 	 * otherwise about fs integrity issues. Setting of the dirty bit
1012 	 * by __block_write_begin() isn't a real problem here as we clear
1013 	 * the bit before releasing a page lock and thus writeback cannot
1014 	 * ever write the buffer.
1015 	 */
1016 	if (dirty)
1017 		clear_buffer_dirty(bh);
1018 	BUFFER_TRACE(bh, "get write access");
1019 	ret = ext4_journal_get_write_access(handle, bh);
1020 	if (!ret && dirty)
1021 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1022 	return ret;
1023 }
1024 
1025 #ifdef CONFIG_FS_ENCRYPTION
1026 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1027 				  get_block_t *get_block)
1028 {
1029 	unsigned from = pos & (PAGE_SIZE - 1);
1030 	unsigned to = from + len;
1031 	struct inode *inode = page->mapping->host;
1032 	unsigned block_start, block_end;
1033 	sector_t block;
1034 	int err = 0;
1035 	unsigned blocksize = inode->i_sb->s_blocksize;
1036 	unsigned bbits;
1037 	struct buffer_head *bh, *head, *wait[2];
1038 	int nr_wait = 0;
1039 	int i;
1040 
1041 	BUG_ON(!PageLocked(page));
1042 	BUG_ON(from > PAGE_SIZE);
1043 	BUG_ON(to > PAGE_SIZE);
1044 	BUG_ON(from > to);
1045 
1046 	if (!page_has_buffers(page))
1047 		create_empty_buffers(page, blocksize, 0);
1048 	head = page_buffers(page);
1049 	bbits = ilog2(blocksize);
1050 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1051 
1052 	for (bh = head, block_start = 0; bh != head || !block_start;
1053 	    block++, block_start = block_end, bh = bh->b_this_page) {
1054 		block_end = block_start + blocksize;
1055 		if (block_end <= from || block_start >= to) {
1056 			if (PageUptodate(page)) {
1057 				if (!buffer_uptodate(bh))
1058 					set_buffer_uptodate(bh);
1059 			}
1060 			continue;
1061 		}
1062 		if (buffer_new(bh))
1063 			clear_buffer_new(bh);
1064 		if (!buffer_mapped(bh)) {
1065 			WARN_ON(bh->b_size != blocksize);
1066 			err = get_block(inode, block, bh, 1);
1067 			if (err)
1068 				break;
1069 			if (buffer_new(bh)) {
1070 				if (PageUptodate(page)) {
1071 					clear_buffer_new(bh);
1072 					set_buffer_uptodate(bh);
1073 					mark_buffer_dirty(bh);
1074 					continue;
1075 				}
1076 				if (block_end > to || block_start < from)
1077 					zero_user_segments(page, to, block_end,
1078 							   block_start, from);
1079 				continue;
1080 			}
1081 		}
1082 		if (PageUptodate(page)) {
1083 			if (!buffer_uptodate(bh))
1084 				set_buffer_uptodate(bh);
1085 			continue;
1086 		}
1087 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1088 		    !buffer_unwritten(bh) &&
1089 		    (block_start < from || block_end > to)) {
1090 			ext4_read_bh_lock(bh, 0, false);
1091 			wait[nr_wait++] = bh;
1092 		}
1093 	}
1094 	/*
1095 	 * If we issued read requests, let them complete.
1096 	 */
1097 	for (i = 0; i < nr_wait; i++) {
1098 		wait_on_buffer(wait[i]);
1099 		if (!buffer_uptodate(wait[i]))
1100 			err = -EIO;
1101 	}
1102 	if (unlikely(err)) {
1103 		page_zero_new_buffers(page, from, to);
1104 	} else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1105 		for (i = 0; i < nr_wait; i++) {
1106 			int err2;
1107 
1108 			err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1109 								bh_offset(wait[i]));
1110 			if (err2) {
1111 				clear_buffer_uptodate(wait[i]);
1112 				err = err2;
1113 			}
1114 		}
1115 	}
1116 
1117 	return err;
1118 }
1119 #endif
1120 
1121 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1122 			    loff_t pos, unsigned len, unsigned flags,
1123 			    struct page **pagep, void **fsdata)
1124 {
1125 	struct inode *inode = mapping->host;
1126 	int ret, needed_blocks;
1127 	handle_t *handle;
1128 	int retries = 0;
1129 	struct page *page;
1130 	pgoff_t index;
1131 	unsigned from, to;
1132 
1133 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1134 		return -EIO;
1135 
1136 	trace_ext4_write_begin(inode, pos, len, flags);
1137 	/*
1138 	 * Reserve one block more for addition to orphan list in case
1139 	 * we allocate blocks but write fails for some reason
1140 	 */
1141 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1142 	index = pos >> PAGE_SHIFT;
1143 	from = pos & (PAGE_SIZE - 1);
1144 	to = from + len;
1145 
1146 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1147 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1148 						    flags, pagep);
1149 		if (ret < 0)
1150 			return ret;
1151 		if (ret == 1)
1152 			return 0;
1153 	}
1154 
1155 	/*
1156 	 * grab_cache_page_write_begin() can take a long time if the
1157 	 * system is thrashing due to memory pressure, or if the page
1158 	 * is being written back.  So grab it first before we start
1159 	 * the transaction handle.  This also allows us to allocate
1160 	 * the page (if needed) without using GFP_NOFS.
1161 	 */
1162 retry_grab:
1163 	page = grab_cache_page_write_begin(mapping, index, flags);
1164 	if (!page)
1165 		return -ENOMEM;
1166 	unlock_page(page);
1167 
1168 retry_journal:
1169 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1170 	if (IS_ERR(handle)) {
1171 		put_page(page);
1172 		return PTR_ERR(handle);
1173 	}
1174 
1175 	lock_page(page);
1176 	if (page->mapping != mapping) {
1177 		/* The page got truncated from under us */
1178 		unlock_page(page);
1179 		put_page(page);
1180 		ext4_journal_stop(handle);
1181 		goto retry_grab;
1182 	}
1183 	/* In case writeback began while the page was unlocked */
1184 	wait_for_stable_page(page);
1185 
1186 #ifdef CONFIG_FS_ENCRYPTION
1187 	if (ext4_should_dioread_nolock(inode))
1188 		ret = ext4_block_write_begin(page, pos, len,
1189 					     ext4_get_block_unwritten);
1190 	else
1191 		ret = ext4_block_write_begin(page, pos, len,
1192 					     ext4_get_block);
1193 #else
1194 	if (ext4_should_dioread_nolock(inode))
1195 		ret = __block_write_begin(page, pos, len,
1196 					  ext4_get_block_unwritten);
1197 	else
1198 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1199 #endif
1200 	if (!ret && ext4_should_journal_data(inode)) {
1201 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1202 					     from, to, NULL,
1203 					     do_journal_get_write_access);
1204 	}
1205 
1206 	if (ret) {
1207 		bool extended = (pos + len > inode->i_size) &&
1208 				!ext4_verity_in_progress(inode);
1209 
1210 		unlock_page(page);
1211 		/*
1212 		 * __block_write_begin may have instantiated a few blocks
1213 		 * outside i_size.  Trim these off again. Don't need
1214 		 * i_size_read because we hold i_mutex.
1215 		 *
1216 		 * Add inode to orphan list in case we crash before
1217 		 * truncate finishes
1218 		 */
1219 		if (extended && ext4_can_truncate(inode))
1220 			ext4_orphan_add(handle, inode);
1221 
1222 		ext4_journal_stop(handle);
1223 		if (extended) {
1224 			ext4_truncate_failed_write(inode);
1225 			/*
1226 			 * If truncate failed early the inode might
1227 			 * still be on the orphan list; we need to
1228 			 * make sure the inode is removed from the
1229 			 * orphan list in that case.
1230 			 */
1231 			if (inode->i_nlink)
1232 				ext4_orphan_del(NULL, inode);
1233 		}
1234 
1235 		if (ret == -ENOSPC &&
1236 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1237 			goto retry_journal;
1238 		put_page(page);
1239 		return ret;
1240 	}
1241 	*pagep = page;
1242 	return ret;
1243 }
1244 
1245 /* For write_end() in data=journal mode */
1246 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1247 {
1248 	int ret;
1249 	if (!buffer_mapped(bh) || buffer_freed(bh))
1250 		return 0;
1251 	set_buffer_uptodate(bh);
1252 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1253 	clear_buffer_meta(bh);
1254 	clear_buffer_prio(bh);
1255 	return ret;
1256 }
1257 
1258 /*
1259  * We need to pick up the new inode size which generic_commit_write gave us
1260  * `file' can be NULL - eg, when called from page_symlink().
1261  *
1262  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1263  * buffers are managed internally.
1264  */
1265 static int ext4_write_end(struct file *file,
1266 			  struct address_space *mapping,
1267 			  loff_t pos, unsigned len, unsigned copied,
1268 			  struct page *page, void *fsdata)
1269 {
1270 	handle_t *handle = ext4_journal_current_handle();
1271 	struct inode *inode = mapping->host;
1272 	loff_t old_size = inode->i_size;
1273 	int ret = 0, ret2;
1274 	int i_size_changed = 0;
1275 	int inline_data = ext4_has_inline_data(inode);
1276 	bool verity = ext4_verity_in_progress(inode);
1277 
1278 	trace_ext4_write_end(inode, pos, len, copied);
1279 	if (inline_data) {
1280 		ret = ext4_write_inline_data_end(inode, pos, len,
1281 						 copied, page);
1282 		if (ret < 0) {
1283 			unlock_page(page);
1284 			put_page(page);
1285 			goto errout;
1286 		}
1287 		copied = ret;
1288 	} else
1289 		copied = block_write_end(file, mapping, pos,
1290 					 len, copied, page, fsdata);
1291 	/*
1292 	 * it's important to update i_size while still holding page lock:
1293 	 * page writeout could otherwise come in and zero beyond i_size.
1294 	 *
1295 	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1296 	 * blocks are being written past EOF, so skip the i_size update.
1297 	 */
1298 	if (!verity)
1299 		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1300 	unlock_page(page);
1301 	put_page(page);
1302 
1303 	if (old_size < pos && !verity)
1304 		pagecache_isize_extended(inode, old_size, pos);
1305 	/*
1306 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1307 	 * makes the holding time of page lock longer. Second, it forces lock
1308 	 * ordering of page lock and transaction start for journaling
1309 	 * filesystems.
1310 	 */
1311 	if (i_size_changed || inline_data)
1312 		ret = ext4_mark_inode_dirty(handle, inode);
1313 
1314 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1315 		/* if we have allocated more blocks and copied
1316 		 * less. We will have blocks allocated outside
1317 		 * inode->i_size. So truncate them
1318 		 */
1319 		ext4_orphan_add(handle, inode);
1320 errout:
1321 	ret2 = ext4_journal_stop(handle);
1322 	if (!ret)
1323 		ret = ret2;
1324 
1325 	if (pos + len > inode->i_size && !verity) {
1326 		ext4_truncate_failed_write(inode);
1327 		/*
1328 		 * If truncate failed early the inode might still be
1329 		 * on the orphan list; we need to make sure the inode
1330 		 * is removed from the orphan list in that case.
1331 		 */
1332 		if (inode->i_nlink)
1333 			ext4_orphan_del(NULL, inode);
1334 	}
1335 
1336 	return ret ? ret : copied;
1337 }
1338 
1339 /*
1340  * This is a private version of page_zero_new_buffers() which doesn't
1341  * set the buffer to be dirty, since in data=journalled mode we need
1342  * to call ext4_handle_dirty_metadata() instead.
1343  */
1344 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1345 					    struct page *page,
1346 					    unsigned from, unsigned to)
1347 {
1348 	unsigned int block_start = 0, block_end;
1349 	struct buffer_head *head, *bh;
1350 
1351 	bh = head = page_buffers(page);
1352 	do {
1353 		block_end = block_start + bh->b_size;
1354 		if (buffer_new(bh)) {
1355 			if (block_end > from && block_start < to) {
1356 				if (!PageUptodate(page)) {
1357 					unsigned start, size;
1358 
1359 					start = max(from, block_start);
1360 					size = min(to, block_end) - start;
1361 
1362 					zero_user(page, start, size);
1363 					write_end_fn(handle, bh);
1364 				}
1365 				clear_buffer_new(bh);
1366 			}
1367 		}
1368 		block_start = block_end;
1369 		bh = bh->b_this_page;
1370 	} while (bh != head);
1371 }
1372 
1373 static int ext4_journalled_write_end(struct file *file,
1374 				     struct address_space *mapping,
1375 				     loff_t pos, unsigned len, unsigned copied,
1376 				     struct page *page, void *fsdata)
1377 {
1378 	handle_t *handle = ext4_journal_current_handle();
1379 	struct inode *inode = mapping->host;
1380 	loff_t old_size = inode->i_size;
1381 	int ret = 0, ret2;
1382 	int partial = 0;
1383 	unsigned from, to;
1384 	int size_changed = 0;
1385 	int inline_data = ext4_has_inline_data(inode);
1386 	bool verity = ext4_verity_in_progress(inode);
1387 
1388 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1389 	from = pos & (PAGE_SIZE - 1);
1390 	to = from + len;
1391 
1392 	BUG_ON(!ext4_handle_valid(handle));
1393 
1394 	if (inline_data) {
1395 		ret = ext4_write_inline_data_end(inode, pos, len,
1396 						 copied, page);
1397 		if (ret < 0) {
1398 			unlock_page(page);
1399 			put_page(page);
1400 			goto errout;
1401 		}
1402 		copied = ret;
1403 	} else if (unlikely(copied < len) && !PageUptodate(page)) {
1404 		copied = 0;
1405 		ext4_journalled_zero_new_buffers(handle, page, from, to);
1406 	} else {
1407 		if (unlikely(copied < len))
1408 			ext4_journalled_zero_new_buffers(handle, page,
1409 							 from + copied, to);
1410 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1411 					     from + copied, &partial,
1412 					     write_end_fn);
1413 		if (!partial)
1414 			SetPageUptodate(page);
1415 	}
1416 	if (!verity)
1417 		size_changed = ext4_update_inode_size(inode, pos + copied);
1418 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1419 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1420 	unlock_page(page);
1421 	put_page(page);
1422 
1423 	if (old_size < pos && !verity)
1424 		pagecache_isize_extended(inode, old_size, pos);
1425 
1426 	if (size_changed || inline_data) {
1427 		ret2 = ext4_mark_inode_dirty(handle, inode);
1428 		if (!ret)
1429 			ret = ret2;
1430 	}
1431 
1432 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1433 		/* if we have allocated more blocks and copied
1434 		 * less. We will have blocks allocated outside
1435 		 * inode->i_size. So truncate them
1436 		 */
1437 		ext4_orphan_add(handle, inode);
1438 
1439 errout:
1440 	ret2 = ext4_journal_stop(handle);
1441 	if (!ret)
1442 		ret = ret2;
1443 	if (pos + len > inode->i_size && !verity) {
1444 		ext4_truncate_failed_write(inode);
1445 		/*
1446 		 * If truncate failed early the inode might still be
1447 		 * on the orphan list; we need to make sure the inode
1448 		 * is removed from the orphan list in that case.
1449 		 */
1450 		if (inode->i_nlink)
1451 			ext4_orphan_del(NULL, inode);
1452 	}
1453 
1454 	return ret ? ret : copied;
1455 }
1456 
1457 /*
1458  * Reserve space for a single cluster
1459  */
1460 static int ext4_da_reserve_space(struct inode *inode)
1461 {
1462 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1463 	struct ext4_inode_info *ei = EXT4_I(inode);
1464 	int ret;
1465 
1466 	/*
1467 	 * We will charge metadata quota at writeout time; this saves
1468 	 * us from metadata over-estimation, though we may go over by
1469 	 * a small amount in the end.  Here we just reserve for data.
1470 	 */
1471 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1472 	if (ret)
1473 		return ret;
1474 
1475 	spin_lock(&ei->i_block_reservation_lock);
1476 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1477 		spin_unlock(&ei->i_block_reservation_lock);
1478 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1479 		return -ENOSPC;
1480 	}
1481 	ei->i_reserved_data_blocks++;
1482 	trace_ext4_da_reserve_space(inode);
1483 	spin_unlock(&ei->i_block_reservation_lock);
1484 
1485 	return 0;       /* success */
1486 }
1487 
1488 void ext4_da_release_space(struct inode *inode, int to_free)
1489 {
1490 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1491 	struct ext4_inode_info *ei = EXT4_I(inode);
1492 
1493 	if (!to_free)
1494 		return;		/* Nothing to release, exit */
1495 
1496 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1497 
1498 	trace_ext4_da_release_space(inode, to_free);
1499 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1500 		/*
1501 		 * if there aren't enough reserved blocks, then the
1502 		 * counter is messed up somewhere.  Since this
1503 		 * function is called from invalidate page, it's
1504 		 * harmless to return without any action.
1505 		 */
1506 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1507 			 "ino %lu, to_free %d with only %d reserved "
1508 			 "data blocks", inode->i_ino, to_free,
1509 			 ei->i_reserved_data_blocks);
1510 		WARN_ON(1);
1511 		to_free = ei->i_reserved_data_blocks;
1512 	}
1513 	ei->i_reserved_data_blocks -= to_free;
1514 
1515 	/* update fs dirty data blocks counter */
1516 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1517 
1518 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1519 
1520 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1521 }
1522 
1523 /*
1524  * Delayed allocation stuff
1525  */
1526 
1527 struct mpage_da_data {
1528 	struct inode *inode;
1529 	struct writeback_control *wbc;
1530 
1531 	pgoff_t first_page;	/* The first page to write */
1532 	pgoff_t next_page;	/* Current page to examine */
1533 	pgoff_t last_page;	/* Last page to examine */
1534 	/*
1535 	 * Extent to map - this can be after first_page because that can be
1536 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1537 	 * is delalloc or unwritten.
1538 	 */
1539 	struct ext4_map_blocks map;
1540 	struct ext4_io_submit io_submit;	/* IO submission data */
1541 	unsigned int do_map:1;
1542 	unsigned int scanned_until_end:1;
1543 };
1544 
1545 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1546 				       bool invalidate)
1547 {
1548 	int nr_pages, i;
1549 	pgoff_t index, end;
1550 	struct pagevec pvec;
1551 	struct inode *inode = mpd->inode;
1552 	struct address_space *mapping = inode->i_mapping;
1553 
1554 	/* This is necessary when next_page == 0. */
1555 	if (mpd->first_page >= mpd->next_page)
1556 		return;
1557 
1558 	mpd->scanned_until_end = 0;
1559 	index = mpd->first_page;
1560 	end   = mpd->next_page - 1;
1561 	if (invalidate) {
1562 		ext4_lblk_t start, last;
1563 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1564 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1565 		ext4_es_remove_extent(inode, start, last - start + 1);
1566 	}
1567 
1568 	pagevec_init(&pvec);
1569 	while (index <= end) {
1570 		nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1571 		if (nr_pages == 0)
1572 			break;
1573 		for (i = 0; i < nr_pages; i++) {
1574 			struct page *page = pvec.pages[i];
1575 
1576 			BUG_ON(!PageLocked(page));
1577 			BUG_ON(PageWriteback(page));
1578 			if (invalidate) {
1579 				if (page_mapped(page))
1580 					clear_page_dirty_for_io(page);
1581 				block_invalidatepage(page, 0, PAGE_SIZE);
1582 				ClearPageUptodate(page);
1583 			}
1584 			unlock_page(page);
1585 		}
1586 		pagevec_release(&pvec);
1587 	}
1588 }
1589 
1590 static void ext4_print_free_blocks(struct inode *inode)
1591 {
1592 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1593 	struct super_block *sb = inode->i_sb;
1594 	struct ext4_inode_info *ei = EXT4_I(inode);
1595 
1596 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1597 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1598 			ext4_count_free_clusters(sb)));
1599 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1600 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1601 	       (long long) EXT4_C2B(EXT4_SB(sb),
1602 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1603 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1604 	       (long long) EXT4_C2B(EXT4_SB(sb),
1605 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1606 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1607 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1608 		 ei->i_reserved_data_blocks);
1609 	return;
1610 }
1611 
1612 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1613 {
1614 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1615 }
1616 
1617 /*
1618  * ext4_insert_delayed_block - adds a delayed block to the extents status
1619  *                             tree, incrementing the reserved cluster/block
1620  *                             count or making a pending reservation
1621  *                             where needed
1622  *
1623  * @inode - file containing the newly added block
1624  * @lblk - logical block to be added
1625  *
1626  * Returns 0 on success, negative error code on failure.
1627  */
1628 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1629 {
1630 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1631 	int ret;
1632 	bool allocated = false;
1633 
1634 	/*
1635 	 * If the cluster containing lblk is shared with a delayed,
1636 	 * written, or unwritten extent in a bigalloc file system, it's
1637 	 * already been accounted for and does not need to be reserved.
1638 	 * A pending reservation must be made for the cluster if it's
1639 	 * shared with a written or unwritten extent and doesn't already
1640 	 * have one.  Written and unwritten extents can be purged from the
1641 	 * extents status tree if the system is under memory pressure, so
1642 	 * it's necessary to examine the extent tree if a search of the
1643 	 * extents status tree doesn't get a match.
1644 	 */
1645 	if (sbi->s_cluster_ratio == 1) {
1646 		ret = ext4_da_reserve_space(inode);
1647 		if (ret != 0)   /* ENOSPC */
1648 			goto errout;
1649 	} else {   /* bigalloc */
1650 		if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1651 			if (!ext4_es_scan_clu(inode,
1652 					      &ext4_es_is_mapped, lblk)) {
1653 				ret = ext4_clu_mapped(inode,
1654 						      EXT4_B2C(sbi, lblk));
1655 				if (ret < 0)
1656 					goto errout;
1657 				if (ret == 0) {
1658 					ret = ext4_da_reserve_space(inode);
1659 					if (ret != 0)   /* ENOSPC */
1660 						goto errout;
1661 				} else {
1662 					allocated = true;
1663 				}
1664 			} else {
1665 				allocated = true;
1666 			}
1667 		}
1668 	}
1669 
1670 	ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1671 
1672 errout:
1673 	return ret;
1674 }
1675 
1676 /*
1677  * This function is grabs code from the very beginning of
1678  * ext4_map_blocks, but assumes that the caller is from delayed write
1679  * time. This function looks up the requested blocks and sets the
1680  * buffer delay bit under the protection of i_data_sem.
1681  */
1682 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1683 			      struct ext4_map_blocks *map,
1684 			      struct buffer_head *bh)
1685 {
1686 	struct extent_status es;
1687 	int retval;
1688 	sector_t invalid_block = ~((sector_t) 0xffff);
1689 #ifdef ES_AGGRESSIVE_TEST
1690 	struct ext4_map_blocks orig_map;
1691 
1692 	memcpy(&orig_map, map, sizeof(*map));
1693 #endif
1694 
1695 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1696 		invalid_block = ~0;
1697 
1698 	map->m_flags = 0;
1699 	ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1700 		  (unsigned long) map->m_lblk);
1701 
1702 	/* Lookup extent status tree firstly */
1703 	if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1704 		if (ext4_es_is_hole(&es)) {
1705 			retval = 0;
1706 			down_read(&EXT4_I(inode)->i_data_sem);
1707 			goto add_delayed;
1708 		}
1709 
1710 		/*
1711 		 * Delayed extent could be allocated by fallocate.
1712 		 * So we need to check it.
1713 		 */
1714 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1715 			map_bh(bh, inode->i_sb, invalid_block);
1716 			set_buffer_new(bh);
1717 			set_buffer_delay(bh);
1718 			return 0;
1719 		}
1720 
1721 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1722 		retval = es.es_len - (iblock - es.es_lblk);
1723 		if (retval > map->m_len)
1724 			retval = map->m_len;
1725 		map->m_len = retval;
1726 		if (ext4_es_is_written(&es))
1727 			map->m_flags |= EXT4_MAP_MAPPED;
1728 		else if (ext4_es_is_unwritten(&es))
1729 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1730 		else
1731 			BUG();
1732 
1733 #ifdef ES_AGGRESSIVE_TEST
1734 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1735 #endif
1736 		return retval;
1737 	}
1738 
1739 	/*
1740 	 * Try to see if we can get the block without requesting a new
1741 	 * file system block.
1742 	 */
1743 	down_read(&EXT4_I(inode)->i_data_sem);
1744 	if (ext4_has_inline_data(inode))
1745 		retval = 0;
1746 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1747 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1748 	else
1749 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1750 
1751 add_delayed:
1752 	if (retval == 0) {
1753 		int ret;
1754 
1755 		/*
1756 		 * XXX: __block_prepare_write() unmaps passed block,
1757 		 * is it OK?
1758 		 */
1759 
1760 		ret = ext4_insert_delayed_block(inode, map->m_lblk);
1761 		if (ret != 0) {
1762 			retval = ret;
1763 			goto out_unlock;
1764 		}
1765 
1766 		map_bh(bh, inode->i_sb, invalid_block);
1767 		set_buffer_new(bh);
1768 		set_buffer_delay(bh);
1769 	} else if (retval > 0) {
1770 		int ret;
1771 		unsigned int status;
1772 
1773 		if (unlikely(retval != map->m_len)) {
1774 			ext4_warning(inode->i_sb,
1775 				     "ES len assertion failed for inode "
1776 				     "%lu: retval %d != map->m_len %d",
1777 				     inode->i_ino, retval, map->m_len);
1778 			WARN_ON(1);
1779 		}
1780 
1781 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1782 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1783 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1784 					    map->m_pblk, status);
1785 		if (ret != 0)
1786 			retval = ret;
1787 	}
1788 
1789 out_unlock:
1790 	up_read((&EXT4_I(inode)->i_data_sem));
1791 
1792 	return retval;
1793 }
1794 
1795 /*
1796  * This is a special get_block_t callback which is used by
1797  * ext4_da_write_begin().  It will either return mapped block or
1798  * reserve space for a single block.
1799  *
1800  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1801  * We also have b_blocknr = -1 and b_bdev initialized properly
1802  *
1803  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1804  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1805  * initialized properly.
1806  */
1807 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1808 			   struct buffer_head *bh, int create)
1809 {
1810 	struct ext4_map_blocks map;
1811 	int ret = 0;
1812 
1813 	BUG_ON(create == 0);
1814 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1815 
1816 	map.m_lblk = iblock;
1817 	map.m_len = 1;
1818 
1819 	/*
1820 	 * first, we need to know whether the block is allocated already
1821 	 * preallocated blocks are unmapped but should treated
1822 	 * the same as allocated blocks.
1823 	 */
1824 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1825 	if (ret <= 0)
1826 		return ret;
1827 
1828 	map_bh(bh, inode->i_sb, map.m_pblk);
1829 	ext4_update_bh_state(bh, map.m_flags);
1830 
1831 	if (buffer_unwritten(bh)) {
1832 		/* A delayed write to unwritten bh should be marked
1833 		 * new and mapped.  Mapped ensures that we don't do
1834 		 * get_block multiple times when we write to the same
1835 		 * offset and new ensures that we do proper zero out
1836 		 * for partial write.
1837 		 */
1838 		set_buffer_new(bh);
1839 		set_buffer_mapped(bh);
1840 	}
1841 	return 0;
1842 }
1843 
1844 static int bget_one(handle_t *handle, struct buffer_head *bh)
1845 {
1846 	get_bh(bh);
1847 	return 0;
1848 }
1849 
1850 static int bput_one(handle_t *handle, struct buffer_head *bh)
1851 {
1852 	put_bh(bh);
1853 	return 0;
1854 }
1855 
1856 static int __ext4_journalled_writepage(struct page *page,
1857 				       unsigned int len)
1858 {
1859 	struct address_space *mapping = page->mapping;
1860 	struct inode *inode = mapping->host;
1861 	struct buffer_head *page_bufs = NULL;
1862 	handle_t *handle = NULL;
1863 	int ret = 0, err = 0;
1864 	int inline_data = ext4_has_inline_data(inode);
1865 	struct buffer_head *inode_bh = NULL;
1866 
1867 	ClearPageChecked(page);
1868 
1869 	if (inline_data) {
1870 		BUG_ON(page->index != 0);
1871 		BUG_ON(len > ext4_get_max_inline_size(inode));
1872 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1873 		if (inode_bh == NULL)
1874 			goto out;
1875 	} else {
1876 		page_bufs = page_buffers(page);
1877 		if (!page_bufs) {
1878 			BUG();
1879 			goto out;
1880 		}
1881 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1882 				       NULL, bget_one);
1883 	}
1884 	/*
1885 	 * We need to release the page lock before we start the
1886 	 * journal, so grab a reference so the page won't disappear
1887 	 * out from under us.
1888 	 */
1889 	get_page(page);
1890 	unlock_page(page);
1891 
1892 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1893 				    ext4_writepage_trans_blocks(inode));
1894 	if (IS_ERR(handle)) {
1895 		ret = PTR_ERR(handle);
1896 		put_page(page);
1897 		goto out_no_pagelock;
1898 	}
1899 	BUG_ON(!ext4_handle_valid(handle));
1900 
1901 	lock_page(page);
1902 	put_page(page);
1903 	if (page->mapping != mapping) {
1904 		/* The page got truncated from under us */
1905 		ext4_journal_stop(handle);
1906 		ret = 0;
1907 		goto out;
1908 	}
1909 
1910 	if (inline_data) {
1911 		ret = ext4_mark_inode_dirty(handle, inode);
1912 	} else {
1913 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1914 					     do_journal_get_write_access);
1915 
1916 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1917 					     write_end_fn);
1918 	}
1919 	if (ret == 0)
1920 		ret = err;
1921 	err = ext4_jbd2_inode_add_write(handle, inode, 0, len);
1922 	if (ret == 0)
1923 		ret = err;
1924 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1925 	err = ext4_journal_stop(handle);
1926 	if (!ret)
1927 		ret = err;
1928 
1929 	if (!ext4_has_inline_data(inode))
1930 		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1931 				       NULL, bput_one);
1932 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1933 out:
1934 	unlock_page(page);
1935 out_no_pagelock:
1936 	brelse(inode_bh);
1937 	return ret;
1938 }
1939 
1940 /*
1941  * Note that we don't need to start a transaction unless we're journaling data
1942  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1943  * need to file the inode to the transaction's list in ordered mode because if
1944  * we are writing back data added by write(), the inode is already there and if
1945  * we are writing back data modified via mmap(), no one guarantees in which
1946  * transaction the data will hit the disk. In case we are journaling data, we
1947  * cannot start transaction directly because transaction start ranks above page
1948  * lock so we have to do some magic.
1949  *
1950  * This function can get called via...
1951  *   - ext4_writepages after taking page lock (have journal handle)
1952  *   - journal_submit_inode_data_buffers (no journal handle)
1953  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1954  *   - grab_page_cache when doing write_begin (have journal handle)
1955  *
1956  * We don't do any block allocation in this function. If we have page with
1957  * multiple blocks we need to write those buffer_heads that are mapped. This
1958  * is important for mmaped based write. So if we do with blocksize 1K
1959  * truncate(f, 1024);
1960  * a = mmap(f, 0, 4096);
1961  * a[0] = 'a';
1962  * truncate(f, 4096);
1963  * we have in the page first buffer_head mapped via page_mkwrite call back
1964  * but other buffer_heads would be unmapped but dirty (dirty done via the
1965  * do_wp_page). So writepage should write the first block. If we modify
1966  * the mmap area beyond 1024 we will again get a page_fault and the
1967  * page_mkwrite callback will do the block allocation and mark the
1968  * buffer_heads mapped.
1969  *
1970  * We redirty the page if we have any buffer_heads that is either delay or
1971  * unwritten in the page.
1972  *
1973  * We can get recursively called as show below.
1974  *
1975  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1976  *		ext4_writepage()
1977  *
1978  * But since we don't do any block allocation we should not deadlock.
1979  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1980  */
1981 static int ext4_writepage(struct page *page,
1982 			  struct writeback_control *wbc)
1983 {
1984 	int ret = 0;
1985 	loff_t size;
1986 	unsigned int len;
1987 	struct buffer_head *page_bufs = NULL;
1988 	struct inode *inode = page->mapping->host;
1989 	struct ext4_io_submit io_submit;
1990 	bool keep_towrite = false;
1991 
1992 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
1993 		inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
1994 		unlock_page(page);
1995 		return -EIO;
1996 	}
1997 
1998 	trace_ext4_writepage(page);
1999 	size = i_size_read(inode);
2000 	if (page->index == size >> PAGE_SHIFT &&
2001 	    !ext4_verity_in_progress(inode))
2002 		len = size & ~PAGE_MASK;
2003 	else
2004 		len = PAGE_SIZE;
2005 
2006 	page_bufs = page_buffers(page);
2007 	/*
2008 	 * We cannot do block allocation or other extent handling in this
2009 	 * function. If there are buffers needing that, we have to redirty
2010 	 * the page. But we may reach here when we do a journal commit via
2011 	 * journal_submit_inode_data_buffers() and in that case we must write
2012 	 * allocated buffers to achieve data=ordered mode guarantees.
2013 	 *
2014 	 * Also, if there is only one buffer per page (the fs block
2015 	 * size == the page size), if one buffer needs block
2016 	 * allocation or needs to modify the extent tree to clear the
2017 	 * unwritten flag, we know that the page can't be written at
2018 	 * all, so we might as well refuse the write immediately.
2019 	 * Unfortunately if the block size != page size, we can't as
2020 	 * easily detect this case using ext4_walk_page_buffers(), but
2021 	 * for the extremely common case, this is an optimization that
2022 	 * skips a useless round trip through ext4_bio_write_page().
2023 	 */
2024 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2025 				   ext4_bh_delay_or_unwritten)) {
2026 		redirty_page_for_writepage(wbc, page);
2027 		if ((current->flags & PF_MEMALLOC) ||
2028 		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2029 			/*
2030 			 * For memory cleaning there's no point in writing only
2031 			 * some buffers. So just bail out. Warn if we came here
2032 			 * from direct reclaim.
2033 			 */
2034 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2035 							== PF_MEMALLOC);
2036 			unlock_page(page);
2037 			return 0;
2038 		}
2039 		keep_towrite = true;
2040 	}
2041 
2042 	if (PageChecked(page) && ext4_should_journal_data(inode))
2043 		/*
2044 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2045 		 * doesn't seem much point in redirtying the page here.
2046 		 */
2047 		return __ext4_journalled_writepage(page, len);
2048 
2049 	ext4_io_submit_init(&io_submit, wbc);
2050 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2051 	if (!io_submit.io_end) {
2052 		redirty_page_for_writepage(wbc, page);
2053 		unlock_page(page);
2054 		return -ENOMEM;
2055 	}
2056 	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2057 	ext4_io_submit(&io_submit);
2058 	/* Drop io_end reference we got from init */
2059 	ext4_put_io_end_defer(io_submit.io_end);
2060 	return ret;
2061 }
2062 
2063 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2064 {
2065 	int len;
2066 	loff_t size;
2067 	int err;
2068 
2069 	BUG_ON(page->index != mpd->first_page);
2070 	clear_page_dirty_for_io(page);
2071 	/*
2072 	 * We have to be very careful here!  Nothing protects writeback path
2073 	 * against i_size changes and the page can be writeably mapped into
2074 	 * page tables. So an application can be growing i_size and writing
2075 	 * data through mmap while writeback runs. clear_page_dirty_for_io()
2076 	 * write-protects our page in page tables and the page cannot get
2077 	 * written to again until we release page lock. So only after
2078 	 * clear_page_dirty_for_io() we are safe to sample i_size for
2079 	 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2080 	 * on the barrier provided by TestClearPageDirty in
2081 	 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2082 	 * after page tables are updated.
2083 	 */
2084 	size = i_size_read(mpd->inode);
2085 	if (page->index == size >> PAGE_SHIFT &&
2086 	    !ext4_verity_in_progress(mpd->inode))
2087 		len = size & ~PAGE_MASK;
2088 	else
2089 		len = PAGE_SIZE;
2090 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2091 	if (!err)
2092 		mpd->wbc->nr_to_write--;
2093 	mpd->first_page++;
2094 
2095 	return err;
2096 }
2097 
2098 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2099 
2100 /*
2101  * mballoc gives us at most this number of blocks...
2102  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2103  * The rest of mballoc seems to handle chunks up to full group size.
2104  */
2105 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2106 
2107 /*
2108  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2109  *
2110  * @mpd - extent of blocks
2111  * @lblk - logical number of the block in the file
2112  * @bh - buffer head we want to add to the extent
2113  *
2114  * The function is used to collect contig. blocks in the same state. If the
2115  * buffer doesn't require mapping for writeback and we haven't started the
2116  * extent of buffers to map yet, the function returns 'true' immediately - the
2117  * caller can write the buffer right away. Otherwise the function returns true
2118  * if the block has been added to the extent, false if the block couldn't be
2119  * added.
2120  */
2121 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2122 				   struct buffer_head *bh)
2123 {
2124 	struct ext4_map_blocks *map = &mpd->map;
2125 
2126 	/* Buffer that doesn't need mapping for writeback? */
2127 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2128 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2129 		/* So far no extent to map => we write the buffer right away */
2130 		if (map->m_len == 0)
2131 			return true;
2132 		return false;
2133 	}
2134 
2135 	/* First block in the extent? */
2136 	if (map->m_len == 0) {
2137 		/* We cannot map unless handle is started... */
2138 		if (!mpd->do_map)
2139 			return false;
2140 		map->m_lblk = lblk;
2141 		map->m_len = 1;
2142 		map->m_flags = bh->b_state & BH_FLAGS;
2143 		return true;
2144 	}
2145 
2146 	/* Don't go larger than mballoc is willing to allocate */
2147 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2148 		return false;
2149 
2150 	/* Can we merge the block to our big extent? */
2151 	if (lblk == map->m_lblk + map->m_len &&
2152 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2153 		map->m_len++;
2154 		return true;
2155 	}
2156 	return false;
2157 }
2158 
2159 /*
2160  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2161  *
2162  * @mpd - extent of blocks for mapping
2163  * @head - the first buffer in the page
2164  * @bh - buffer we should start processing from
2165  * @lblk - logical number of the block in the file corresponding to @bh
2166  *
2167  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2168  * the page for IO if all buffers in this page were mapped and there's no
2169  * accumulated extent of buffers to map or add buffers in the page to the
2170  * extent of buffers to map. The function returns 1 if the caller can continue
2171  * by processing the next page, 0 if it should stop adding buffers to the
2172  * extent to map because we cannot extend it anymore. It can also return value
2173  * < 0 in case of error during IO submission.
2174  */
2175 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2176 				   struct buffer_head *head,
2177 				   struct buffer_head *bh,
2178 				   ext4_lblk_t lblk)
2179 {
2180 	struct inode *inode = mpd->inode;
2181 	int err;
2182 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2183 							>> inode->i_blkbits;
2184 
2185 	if (ext4_verity_in_progress(inode))
2186 		blocks = EXT_MAX_BLOCKS;
2187 
2188 	do {
2189 		BUG_ON(buffer_locked(bh));
2190 
2191 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2192 			/* Found extent to map? */
2193 			if (mpd->map.m_len)
2194 				return 0;
2195 			/* Buffer needs mapping and handle is not started? */
2196 			if (!mpd->do_map)
2197 				return 0;
2198 			/* Everything mapped so far and we hit EOF */
2199 			break;
2200 		}
2201 	} while (lblk++, (bh = bh->b_this_page) != head);
2202 	/* So far everything mapped? Submit the page for IO. */
2203 	if (mpd->map.m_len == 0) {
2204 		err = mpage_submit_page(mpd, head->b_page);
2205 		if (err < 0)
2206 			return err;
2207 	}
2208 	if (lblk >= blocks) {
2209 		mpd->scanned_until_end = 1;
2210 		return 0;
2211 	}
2212 	return 1;
2213 }
2214 
2215 /*
2216  * mpage_process_page - update page buffers corresponding to changed extent and
2217  *		       may submit fully mapped page for IO
2218  *
2219  * @mpd		- description of extent to map, on return next extent to map
2220  * @m_lblk	- logical block mapping.
2221  * @m_pblk	- corresponding physical mapping.
2222  * @map_bh	- determines on return whether this page requires any further
2223  *		  mapping or not.
2224  * Scan given page buffers corresponding to changed extent and update buffer
2225  * state according to new extent state.
2226  * We map delalloc buffers to their physical location, clear unwritten bits.
2227  * If the given page is not fully mapped, we update @map to the next extent in
2228  * the given page that needs mapping & return @map_bh as true.
2229  */
2230 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2231 			      ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2232 			      bool *map_bh)
2233 {
2234 	struct buffer_head *head, *bh;
2235 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2236 	ext4_lblk_t lblk = *m_lblk;
2237 	ext4_fsblk_t pblock = *m_pblk;
2238 	int err = 0;
2239 	int blkbits = mpd->inode->i_blkbits;
2240 	ssize_t io_end_size = 0;
2241 	struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2242 
2243 	bh = head = page_buffers(page);
2244 	do {
2245 		if (lblk < mpd->map.m_lblk)
2246 			continue;
2247 		if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2248 			/*
2249 			 * Buffer after end of mapped extent.
2250 			 * Find next buffer in the page to map.
2251 			 */
2252 			mpd->map.m_len = 0;
2253 			mpd->map.m_flags = 0;
2254 			io_end_vec->size += io_end_size;
2255 			io_end_size = 0;
2256 
2257 			err = mpage_process_page_bufs(mpd, head, bh, lblk);
2258 			if (err > 0)
2259 				err = 0;
2260 			if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2261 				io_end_vec = ext4_alloc_io_end_vec(io_end);
2262 				if (IS_ERR(io_end_vec)) {
2263 					err = PTR_ERR(io_end_vec);
2264 					goto out;
2265 				}
2266 				io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2267 			}
2268 			*map_bh = true;
2269 			goto out;
2270 		}
2271 		if (buffer_delay(bh)) {
2272 			clear_buffer_delay(bh);
2273 			bh->b_blocknr = pblock++;
2274 		}
2275 		clear_buffer_unwritten(bh);
2276 		io_end_size += (1 << blkbits);
2277 	} while (lblk++, (bh = bh->b_this_page) != head);
2278 
2279 	io_end_vec->size += io_end_size;
2280 	io_end_size = 0;
2281 	*map_bh = false;
2282 out:
2283 	*m_lblk = lblk;
2284 	*m_pblk = pblock;
2285 	return err;
2286 }
2287 
2288 /*
2289  * mpage_map_buffers - update buffers corresponding to changed extent and
2290  *		       submit fully mapped pages for IO
2291  *
2292  * @mpd - description of extent to map, on return next extent to map
2293  *
2294  * Scan buffers corresponding to changed extent (we expect corresponding pages
2295  * to be already locked) and update buffer state according to new extent state.
2296  * We map delalloc buffers to their physical location, clear unwritten bits,
2297  * and mark buffers as uninit when we perform writes to unwritten extents
2298  * and do extent conversion after IO is finished. If the last page is not fully
2299  * mapped, we update @map to the next extent in the last page that needs
2300  * mapping. Otherwise we submit the page for IO.
2301  */
2302 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2303 {
2304 	struct pagevec pvec;
2305 	int nr_pages, i;
2306 	struct inode *inode = mpd->inode;
2307 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2308 	pgoff_t start, end;
2309 	ext4_lblk_t lblk;
2310 	ext4_fsblk_t pblock;
2311 	int err;
2312 	bool map_bh = false;
2313 
2314 	start = mpd->map.m_lblk >> bpp_bits;
2315 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2316 	lblk = start << bpp_bits;
2317 	pblock = mpd->map.m_pblk;
2318 
2319 	pagevec_init(&pvec);
2320 	while (start <= end) {
2321 		nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2322 						&start, end);
2323 		if (nr_pages == 0)
2324 			break;
2325 		for (i = 0; i < nr_pages; i++) {
2326 			struct page *page = pvec.pages[i];
2327 
2328 			err = mpage_process_page(mpd, page, &lblk, &pblock,
2329 						 &map_bh);
2330 			/*
2331 			 * If map_bh is true, means page may require further bh
2332 			 * mapping, or maybe the page was submitted for IO.
2333 			 * So we return to call further extent mapping.
2334 			 */
2335 			if (err < 0 || map_bh)
2336 				goto out;
2337 			/* Page fully mapped - let IO run! */
2338 			err = mpage_submit_page(mpd, page);
2339 			if (err < 0)
2340 				goto out;
2341 		}
2342 		pagevec_release(&pvec);
2343 	}
2344 	/* Extent fully mapped and matches with page boundary. We are done. */
2345 	mpd->map.m_len = 0;
2346 	mpd->map.m_flags = 0;
2347 	return 0;
2348 out:
2349 	pagevec_release(&pvec);
2350 	return err;
2351 }
2352 
2353 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2354 {
2355 	struct inode *inode = mpd->inode;
2356 	struct ext4_map_blocks *map = &mpd->map;
2357 	int get_blocks_flags;
2358 	int err, dioread_nolock;
2359 
2360 	trace_ext4_da_write_pages_extent(inode, map);
2361 	/*
2362 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2363 	 * to convert an unwritten extent to be initialized (in the case
2364 	 * where we have written into one or more preallocated blocks).  It is
2365 	 * possible that we're going to need more metadata blocks than
2366 	 * previously reserved. However we must not fail because we're in
2367 	 * writeback and there is nothing we can do about it so it might result
2368 	 * in data loss.  So use reserved blocks to allocate metadata if
2369 	 * possible.
2370 	 *
2371 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2372 	 * the blocks in question are delalloc blocks.  This indicates
2373 	 * that the blocks and quotas has already been checked when
2374 	 * the data was copied into the page cache.
2375 	 */
2376 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2377 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2378 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2379 	dioread_nolock = ext4_should_dioread_nolock(inode);
2380 	if (dioread_nolock)
2381 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2382 	if (map->m_flags & BIT(BH_Delay))
2383 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2384 
2385 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2386 	if (err < 0)
2387 		return err;
2388 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2389 		if (!mpd->io_submit.io_end->handle &&
2390 		    ext4_handle_valid(handle)) {
2391 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2392 			handle->h_rsv_handle = NULL;
2393 		}
2394 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2395 	}
2396 
2397 	BUG_ON(map->m_len == 0);
2398 	return 0;
2399 }
2400 
2401 /*
2402  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2403  *				 mpd->len and submit pages underlying it for IO
2404  *
2405  * @handle - handle for journal operations
2406  * @mpd - extent to map
2407  * @give_up_on_write - we set this to true iff there is a fatal error and there
2408  *                     is no hope of writing the data. The caller should discard
2409  *                     dirty pages to avoid infinite loops.
2410  *
2411  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2412  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2413  * them to initialized or split the described range from larger unwritten
2414  * extent. Note that we need not map all the described range since allocation
2415  * can return less blocks or the range is covered by more unwritten extents. We
2416  * cannot map more because we are limited by reserved transaction credits. On
2417  * the other hand we always make sure that the last touched page is fully
2418  * mapped so that it can be written out (and thus forward progress is
2419  * guaranteed). After mapping we submit all mapped pages for IO.
2420  */
2421 static int mpage_map_and_submit_extent(handle_t *handle,
2422 				       struct mpage_da_data *mpd,
2423 				       bool *give_up_on_write)
2424 {
2425 	struct inode *inode = mpd->inode;
2426 	struct ext4_map_blocks *map = &mpd->map;
2427 	int err;
2428 	loff_t disksize;
2429 	int progress = 0;
2430 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2431 	struct ext4_io_end_vec *io_end_vec;
2432 
2433 	io_end_vec = ext4_alloc_io_end_vec(io_end);
2434 	if (IS_ERR(io_end_vec))
2435 		return PTR_ERR(io_end_vec);
2436 	io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2437 	do {
2438 		err = mpage_map_one_extent(handle, mpd);
2439 		if (err < 0) {
2440 			struct super_block *sb = inode->i_sb;
2441 
2442 			if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2443 			    EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2444 				goto invalidate_dirty_pages;
2445 			/*
2446 			 * Let the uper layers retry transient errors.
2447 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2448 			 * is non-zero, a commit should free up blocks.
2449 			 */
2450 			if ((err == -ENOMEM) ||
2451 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2452 				if (progress)
2453 					goto update_disksize;
2454 				return err;
2455 			}
2456 			ext4_msg(sb, KERN_CRIT,
2457 				 "Delayed block allocation failed for "
2458 				 "inode %lu at logical offset %llu with"
2459 				 " max blocks %u with error %d",
2460 				 inode->i_ino,
2461 				 (unsigned long long)map->m_lblk,
2462 				 (unsigned)map->m_len, -err);
2463 			ext4_msg(sb, KERN_CRIT,
2464 				 "This should not happen!! Data will "
2465 				 "be lost\n");
2466 			if (err == -ENOSPC)
2467 				ext4_print_free_blocks(inode);
2468 		invalidate_dirty_pages:
2469 			*give_up_on_write = true;
2470 			return err;
2471 		}
2472 		progress = 1;
2473 		/*
2474 		 * Update buffer state, submit mapped pages, and get us new
2475 		 * extent to map
2476 		 */
2477 		err = mpage_map_and_submit_buffers(mpd);
2478 		if (err < 0)
2479 			goto update_disksize;
2480 	} while (map->m_len);
2481 
2482 update_disksize:
2483 	/*
2484 	 * Update on-disk size after IO is submitted.  Races with
2485 	 * truncate are avoided by checking i_size under i_data_sem.
2486 	 */
2487 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2488 	if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2489 		int err2;
2490 		loff_t i_size;
2491 
2492 		down_write(&EXT4_I(inode)->i_data_sem);
2493 		i_size = i_size_read(inode);
2494 		if (disksize > i_size)
2495 			disksize = i_size;
2496 		if (disksize > EXT4_I(inode)->i_disksize)
2497 			EXT4_I(inode)->i_disksize = disksize;
2498 		up_write(&EXT4_I(inode)->i_data_sem);
2499 		err2 = ext4_mark_inode_dirty(handle, inode);
2500 		if (err2) {
2501 			ext4_error_err(inode->i_sb, -err2,
2502 				       "Failed to mark inode %lu dirty",
2503 				       inode->i_ino);
2504 		}
2505 		if (!err)
2506 			err = err2;
2507 	}
2508 	return err;
2509 }
2510 
2511 /*
2512  * Calculate the total number of credits to reserve for one writepages
2513  * iteration. This is called from ext4_writepages(). We map an extent of
2514  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2515  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2516  * bpp - 1 blocks in bpp different extents.
2517  */
2518 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2519 {
2520 	int bpp = ext4_journal_blocks_per_page(inode);
2521 
2522 	return ext4_meta_trans_blocks(inode,
2523 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2524 }
2525 
2526 /*
2527  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2528  * 				 and underlying extent to map
2529  *
2530  * @mpd - where to look for pages
2531  *
2532  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2533  * IO immediately. When we find a page which isn't mapped we start accumulating
2534  * extent of buffers underlying these pages that needs mapping (formed by
2535  * either delayed or unwritten buffers). We also lock the pages containing
2536  * these buffers. The extent found is returned in @mpd structure (starting at
2537  * mpd->lblk with length mpd->len blocks).
2538  *
2539  * Note that this function can attach bios to one io_end structure which are
2540  * neither logically nor physically contiguous. Although it may seem as an
2541  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2542  * case as we need to track IO to all buffers underlying a page in one io_end.
2543  */
2544 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2545 {
2546 	struct address_space *mapping = mpd->inode->i_mapping;
2547 	struct pagevec pvec;
2548 	unsigned int nr_pages;
2549 	long left = mpd->wbc->nr_to_write;
2550 	pgoff_t index = mpd->first_page;
2551 	pgoff_t end = mpd->last_page;
2552 	xa_mark_t tag;
2553 	int i, err = 0;
2554 	int blkbits = mpd->inode->i_blkbits;
2555 	ext4_lblk_t lblk;
2556 	struct buffer_head *head;
2557 
2558 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2559 		tag = PAGECACHE_TAG_TOWRITE;
2560 	else
2561 		tag = PAGECACHE_TAG_DIRTY;
2562 
2563 	pagevec_init(&pvec);
2564 	mpd->map.m_len = 0;
2565 	mpd->next_page = index;
2566 	while (index <= end) {
2567 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2568 				tag);
2569 		if (nr_pages == 0)
2570 			break;
2571 
2572 		for (i = 0; i < nr_pages; i++) {
2573 			struct page *page = pvec.pages[i];
2574 
2575 			/*
2576 			 * Accumulated enough dirty pages? This doesn't apply
2577 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2578 			 * keep going because someone may be concurrently
2579 			 * dirtying pages, and we might have synced a lot of
2580 			 * newly appeared dirty pages, but have not synced all
2581 			 * of the old dirty pages.
2582 			 */
2583 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2584 				goto out;
2585 
2586 			/* If we can't merge this page, we are done. */
2587 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2588 				goto out;
2589 
2590 			lock_page(page);
2591 			/*
2592 			 * If the page is no longer dirty, or its mapping no
2593 			 * longer corresponds to inode we are writing (which
2594 			 * means it has been truncated or invalidated), or the
2595 			 * page is already under writeback and we are not doing
2596 			 * a data integrity writeback, skip the page
2597 			 */
2598 			if (!PageDirty(page) ||
2599 			    (PageWriteback(page) &&
2600 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2601 			    unlikely(page->mapping != mapping)) {
2602 				unlock_page(page);
2603 				continue;
2604 			}
2605 
2606 			wait_on_page_writeback(page);
2607 			BUG_ON(PageWriteback(page));
2608 
2609 			if (mpd->map.m_len == 0)
2610 				mpd->first_page = page->index;
2611 			mpd->next_page = page->index + 1;
2612 			/* Add all dirty buffers to mpd */
2613 			lblk = ((ext4_lblk_t)page->index) <<
2614 				(PAGE_SHIFT - blkbits);
2615 			head = page_buffers(page);
2616 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2617 			if (err <= 0)
2618 				goto out;
2619 			err = 0;
2620 			left--;
2621 		}
2622 		pagevec_release(&pvec);
2623 		cond_resched();
2624 	}
2625 	mpd->scanned_until_end = 1;
2626 	return 0;
2627 out:
2628 	pagevec_release(&pvec);
2629 	return err;
2630 }
2631 
2632 static int ext4_writepages(struct address_space *mapping,
2633 			   struct writeback_control *wbc)
2634 {
2635 	pgoff_t	writeback_index = 0;
2636 	long nr_to_write = wbc->nr_to_write;
2637 	int range_whole = 0;
2638 	int cycled = 1;
2639 	handle_t *handle = NULL;
2640 	struct mpage_da_data mpd;
2641 	struct inode *inode = mapping->host;
2642 	int needed_blocks, rsv_blocks = 0, ret = 0;
2643 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2644 	struct blk_plug plug;
2645 	bool give_up_on_write = false;
2646 
2647 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2648 		return -EIO;
2649 
2650 	percpu_down_read(&sbi->s_writepages_rwsem);
2651 	trace_ext4_writepages(inode, wbc);
2652 
2653 	/*
2654 	 * No pages to write? This is mainly a kludge to avoid starting
2655 	 * a transaction for special inodes like journal inode on last iput()
2656 	 * because that could violate lock ordering on umount
2657 	 */
2658 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2659 		goto out_writepages;
2660 
2661 	if (ext4_should_journal_data(inode)) {
2662 		ret = generic_writepages(mapping, wbc);
2663 		goto out_writepages;
2664 	}
2665 
2666 	/*
2667 	 * If the filesystem has aborted, it is read-only, so return
2668 	 * right away instead of dumping stack traces later on that
2669 	 * will obscure the real source of the problem.  We test
2670 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2671 	 * the latter could be true if the filesystem is mounted
2672 	 * read-only, and in that case, ext4_writepages should
2673 	 * *never* be called, so if that ever happens, we would want
2674 	 * the stack trace.
2675 	 */
2676 	if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2677 		     sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2678 		ret = -EROFS;
2679 		goto out_writepages;
2680 	}
2681 
2682 	/*
2683 	 * If we have inline data and arrive here, it means that
2684 	 * we will soon create the block for the 1st page, so
2685 	 * we'd better clear the inline data here.
2686 	 */
2687 	if (ext4_has_inline_data(inode)) {
2688 		/* Just inode will be modified... */
2689 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2690 		if (IS_ERR(handle)) {
2691 			ret = PTR_ERR(handle);
2692 			goto out_writepages;
2693 		}
2694 		BUG_ON(ext4_test_inode_state(inode,
2695 				EXT4_STATE_MAY_INLINE_DATA));
2696 		ext4_destroy_inline_data(handle, inode);
2697 		ext4_journal_stop(handle);
2698 	}
2699 
2700 	if (ext4_should_dioread_nolock(inode)) {
2701 		/*
2702 		 * We may need to convert up to one extent per block in
2703 		 * the page and we may dirty the inode.
2704 		 */
2705 		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2706 						PAGE_SIZE >> inode->i_blkbits);
2707 	}
2708 
2709 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2710 		range_whole = 1;
2711 
2712 	if (wbc->range_cyclic) {
2713 		writeback_index = mapping->writeback_index;
2714 		if (writeback_index)
2715 			cycled = 0;
2716 		mpd.first_page = writeback_index;
2717 		mpd.last_page = -1;
2718 	} else {
2719 		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2720 		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2721 	}
2722 
2723 	mpd.inode = inode;
2724 	mpd.wbc = wbc;
2725 	ext4_io_submit_init(&mpd.io_submit, wbc);
2726 retry:
2727 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2728 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2729 	blk_start_plug(&plug);
2730 
2731 	/*
2732 	 * First writeback pages that don't need mapping - we can avoid
2733 	 * starting a transaction unnecessarily and also avoid being blocked
2734 	 * in the block layer on device congestion while having transaction
2735 	 * started.
2736 	 */
2737 	mpd.do_map = 0;
2738 	mpd.scanned_until_end = 0;
2739 	mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2740 	if (!mpd.io_submit.io_end) {
2741 		ret = -ENOMEM;
2742 		goto unplug;
2743 	}
2744 	ret = mpage_prepare_extent_to_map(&mpd);
2745 	/* Unlock pages we didn't use */
2746 	mpage_release_unused_pages(&mpd, false);
2747 	/* Submit prepared bio */
2748 	ext4_io_submit(&mpd.io_submit);
2749 	ext4_put_io_end_defer(mpd.io_submit.io_end);
2750 	mpd.io_submit.io_end = NULL;
2751 	if (ret < 0)
2752 		goto unplug;
2753 
2754 	while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2755 		/* For each extent of pages we use new io_end */
2756 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2757 		if (!mpd.io_submit.io_end) {
2758 			ret = -ENOMEM;
2759 			break;
2760 		}
2761 
2762 		/*
2763 		 * We have two constraints: We find one extent to map and we
2764 		 * must always write out whole page (makes a difference when
2765 		 * blocksize < pagesize) so that we don't block on IO when we
2766 		 * try to write out the rest of the page. Journalled mode is
2767 		 * not supported by delalloc.
2768 		 */
2769 		BUG_ON(ext4_should_journal_data(inode));
2770 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2771 
2772 		/* start a new transaction */
2773 		handle = ext4_journal_start_with_reserve(inode,
2774 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2775 		if (IS_ERR(handle)) {
2776 			ret = PTR_ERR(handle);
2777 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2778 			       "%ld pages, ino %lu; err %d", __func__,
2779 				wbc->nr_to_write, inode->i_ino, ret);
2780 			/* Release allocated io_end */
2781 			ext4_put_io_end(mpd.io_submit.io_end);
2782 			mpd.io_submit.io_end = NULL;
2783 			break;
2784 		}
2785 		mpd.do_map = 1;
2786 
2787 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2788 		ret = mpage_prepare_extent_to_map(&mpd);
2789 		if (!ret && mpd.map.m_len)
2790 			ret = mpage_map_and_submit_extent(handle, &mpd,
2791 					&give_up_on_write);
2792 		/*
2793 		 * Caution: If the handle is synchronous,
2794 		 * ext4_journal_stop() can wait for transaction commit
2795 		 * to finish which may depend on writeback of pages to
2796 		 * complete or on page lock to be released.  In that
2797 		 * case, we have to wait until after we have
2798 		 * submitted all the IO, released page locks we hold,
2799 		 * and dropped io_end reference (for extent conversion
2800 		 * to be able to complete) before stopping the handle.
2801 		 */
2802 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2803 			ext4_journal_stop(handle);
2804 			handle = NULL;
2805 			mpd.do_map = 0;
2806 		}
2807 		/* Unlock pages we didn't use */
2808 		mpage_release_unused_pages(&mpd, give_up_on_write);
2809 		/* Submit prepared bio */
2810 		ext4_io_submit(&mpd.io_submit);
2811 
2812 		/*
2813 		 * Drop our io_end reference we got from init. We have
2814 		 * to be careful and use deferred io_end finishing if
2815 		 * we are still holding the transaction as we can
2816 		 * release the last reference to io_end which may end
2817 		 * up doing unwritten extent conversion.
2818 		 */
2819 		if (handle) {
2820 			ext4_put_io_end_defer(mpd.io_submit.io_end);
2821 			ext4_journal_stop(handle);
2822 		} else
2823 			ext4_put_io_end(mpd.io_submit.io_end);
2824 		mpd.io_submit.io_end = NULL;
2825 
2826 		if (ret == -ENOSPC && sbi->s_journal) {
2827 			/*
2828 			 * Commit the transaction which would
2829 			 * free blocks released in the transaction
2830 			 * and try again
2831 			 */
2832 			jbd2_journal_force_commit_nested(sbi->s_journal);
2833 			ret = 0;
2834 			continue;
2835 		}
2836 		/* Fatal error - ENOMEM, EIO... */
2837 		if (ret)
2838 			break;
2839 	}
2840 unplug:
2841 	blk_finish_plug(&plug);
2842 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2843 		cycled = 1;
2844 		mpd.last_page = writeback_index - 1;
2845 		mpd.first_page = 0;
2846 		goto retry;
2847 	}
2848 
2849 	/* Update index */
2850 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2851 		/*
2852 		 * Set the writeback_index so that range_cyclic
2853 		 * mode will write it back later
2854 		 */
2855 		mapping->writeback_index = mpd.first_page;
2856 
2857 out_writepages:
2858 	trace_ext4_writepages_result(inode, wbc, ret,
2859 				     nr_to_write - wbc->nr_to_write);
2860 	percpu_up_read(&sbi->s_writepages_rwsem);
2861 	return ret;
2862 }
2863 
2864 static int ext4_dax_writepages(struct address_space *mapping,
2865 			       struct writeback_control *wbc)
2866 {
2867 	int ret;
2868 	long nr_to_write = wbc->nr_to_write;
2869 	struct inode *inode = mapping->host;
2870 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2871 
2872 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2873 		return -EIO;
2874 
2875 	percpu_down_read(&sbi->s_writepages_rwsem);
2876 	trace_ext4_writepages(inode, wbc);
2877 
2878 	ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2879 	trace_ext4_writepages_result(inode, wbc, ret,
2880 				     nr_to_write - wbc->nr_to_write);
2881 	percpu_up_read(&sbi->s_writepages_rwsem);
2882 	return ret;
2883 }
2884 
2885 static int ext4_nonda_switch(struct super_block *sb)
2886 {
2887 	s64 free_clusters, dirty_clusters;
2888 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2889 
2890 	/*
2891 	 * switch to non delalloc mode if we are running low
2892 	 * on free block. The free block accounting via percpu
2893 	 * counters can get slightly wrong with percpu_counter_batch getting
2894 	 * accumulated on each CPU without updating global counters
2895 	 * Delalloc need an accurate free block accounting. So switch
2896 	 * to non delalloc when we are near to error range.
2897 	 */
2898 	free_clusters =
2899 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2900 	dirty_clusters =
2901 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2902 	/*
2903 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2904 	 */
2905 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2906 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2907 
2908 	if (2 * free_clusters < 3 * dirty_clusters ||
2909 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2910 		/*
2911 		 * free block count is less than 150% of dirty blocks
2912 		 * or free blocks is less than watermark
2913 		 */
2914 		return 1;
2915 	}
2916 	return 0;
2917 }
2918 
2919 /* We always reserve for an inode update; the superblock could be there too */
2920 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2921 {
2922 	if (likely(ext4_has_feature_large_file(inode->i_sb)))
2923 		return 1;
2924 
2925 	if (pos + len <= 0x7fffffffULL)
2926 		return 1;
2927 
2928 	/* We might need to update the superblock to set LARGE_FILE */
2929 	return 2;
2930 }
2931 
2932 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2933 			       loff_t pos, unsigned len, unsigned flags,
2934 			       struct page **pagep, void **fsdata)
2935 {
2936 	int ret, retries = 0;
2937 	struct page *page;
2938 	pgoff_t index;
2939 	struct inode *inode = mapping->host;
2940 	handle_t *handle;
2941 
2942 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2943 		return -EIO;
2944 
2945 	index = pos >> PAGE_SHIFT;
2946 
2947 	if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2948 	    ext4_verity_in_progress(inode)) {
2949 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2950 		return ext4_write_begin(file, mapping, pos,
2951 					len, flags, pagep, fsdata);
2952 	}
2953 	*fsdata = (void *)0;
2954 	trace_ext4_da_write_begin(inode, pos, len, flags);
2955 
2956 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2957 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2958 						      pos, len, flags,
2959 						      pagep, fsdata);
2960 		if (ret < 0)
2961 			return ret;
2962 		if (ret == 1)
2963 			return 0;
2964 	}
2965 
2966 	/*
2967 	 * grab_cache_page_write_begin() can take a long time if the
2968 	 * system is thrashing due to memory pressure, or if the page
2969 	 * is being written back.  So grab it first before we start
2970 	 * the transaction handle.  This also allows us to allocate
2971 	 * the page (if needed) without using GFP_NOFS.
2972 	 */
2973 retry_grab:
2974 	page = grab_cache_page_write_begin(mapping, index, flags);
2975 	if (!page)
2976 		return -ENOMEM;
2977 	unlock_page(page);
2978 
2979 	/*
2980 	 * With delayed allocation, we don't log the i_disksize update
2981 	 * if there is delayed block allocation. But we still need
2982 	 * to journalling the i_disksize update if writes to the end
2983 	 * of file which has an already mapped buffer.
2984 	 */
2985 retry_journal:
2986 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2987 				ext4_da_write_credits(inode, pos, len));
2988 	if (IS_ERR(handle)) {
2989 		put_page(page);
2990 		return PTR_ERR(handle);
2991 	}
2992 
2993 	lock_page(page);
2994 	if (page->mapping != mapping) {
2995 		/* The page got truncated from under us */
2996 		unlock_page(page);
2997 		put_page(page);
2998 		ext4_journal_stop(handle);
2999 		goto retry_grab;
3000 	}
3001 	/* In case writeback began while the page was unlocked */
3002 	wait_for_stable_page(page);
3003 
3004 #ifdef CONFIG_FS_ENCRYPTION
3005 	ret = ext4_block_write_begin(page, pos, len,
3006 				     ext4_da_get_block_prep);
3007 #else
3008 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3009 #endif
3010 	if (ret < 0) {
3011 		unlock_page(page);
3012 		ext4_journal_stop(handle);
3013 		/*
3014 		 * block_write_begin may have instantiated a few blocks
3015 		 * outside i_size.  Trim these off again. Don't need
3016 		 * i_size_read because we hold i_mutex.
3017 		 */
3018 		if (pos + len > inode->i_size)
3019 			ext4_truncate_failed_write(inode);
3020 
3021 		if (ret == -ENOSPC &&
3022 		    ext4_should_retry_alloc(inode->i_sb, &retries))
3023 			goto retry_journal;
3024 
3025 		put_page(page);
3026 		return ret;
3027 	}
3028 
3029 	*pagep = page;
3030 	return ret;
3031 }
3032 
3033 /*
3034  * Check if we should update i_disksize
3035  * when write to the end of file but not require block allocation
3036  */
3037 static int ext4_da_should_update_i_disksize(struct page *page,
3038 					    unsigned long offset)
3039 {
3040 	struct buffer_head *bh;
3041 	struct inode *inode = page->mapping->host;
3042 	unsigned int idx;
3043 	int i;
3044 
3045 	bh = page_buffers(page);
3046 	idx = offset >> inode->i_blkbits;
3047 
3048 	for (i = 0; i < idx; i++)
3049 		bh = bh->b_this_page;
3050 
3051 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3052 		return 0;
3053 	return 1;
3054 }
3055 
3056 static int ext4_da_write_end(struct file *file,
3057 			     struct address_space *mapping,
3058 			     loff_t pos, unsigned len, unsigned copied,
3059 			     struct page *page, void *fsdata)
3060 {
3061 	struct inode *inode = mapping->host;
3062 	int ret = 0, ret2;
3063 	handle_t *handle = ext4_journal_current_handle();
3064 	loff_t new_i_size;
3065 	unsigned long start, end;
3066 	int write_mode = (int)(unsigned long)fsdata;
3067 
3068 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3069 		return ext4_write_end(file, mapping, pos,
3070 				      len, copied, page, fsdata);
3071 
3072 	trace_ext4_da_write_end(inode, pos, len, copied);
3073 	start = pos & (PAGE_SIZE - 1);
3074 	end = start + copied - 1;
3075 
3076 	/*
3077 	 * generic_write_end() will run mark_inode_dirty() if i_size
3078 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
3079 	 * into that.
3080 	 */
3081 	new_i_size = pos + copied;
3082 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3083 		if (ext4_has_inline_data(inode) ||
3084 		    ext4_da_should_update_i_disksize(page, end)) {
3085 			ext4_update_i_disksize(inode, new_i_size);
3086 			/* We need to mark inode dirty even if
3087 			 * new_i_size is less that inode->i_size
3088 			 * bu greater than i_disksize.(hint delalloc)
3089 			 */
3090 			ret = ext4_mark_inode_dirty(handle, inode);
3091 		}
3092 	}
3093 
3094 	if (write_mode != CONVERT_INLINE_DATA &&
3095 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3096 	    ext4_has_inline_data(inode))
3097 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3098 						     page);
3099 	else
3100 		ret2 = generic_write_end(file, mapping, pos, len, copied,
3101 							page, fsdata);
3102 
3103 	copied = ret2;
3104 	if (ret2 < 0)
3105 		ret = ret2;
3106 	ret2 = ext4_journal_stop(handle);
3107 	if (unlikely(ret2 && !ret))
3108 		ret = ret2;
3109 
3110 	return ret ? ret : copied;
3111 }
3112 
3113 /*
3114  * Force all delayed allocation blocks to be allocated for a given inode.
3115  */
3116 int ext4_alloc_da_blocks(struct inode *inode)
3117 {
3118 	trace_ext4_alloc_da_blocks(inode);
3119 
3120 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3121 		return 0;
3122 
3123 	/*
3124 	 * We do something simple for now.  The filemap_flush() will
3125 	 * also start triggering a write of the data blocks, which is
3126 	 * not strictly speaking necessary (and for users of
3127 	 * laptop_mode, not even desirable).  However, to do otherwise
3128 	 * would require replicating code paths in:
3129 	 *
3130 	 * ext4_writepages() ->
3131 	 *    write_cache_pages() ---> (via passed in callback function)
3132 	 *        __mpage_da_writepage() -->
3133 	 *           mpage_add_bh_to_extent()
3134 	 *           mpage_da_map_blocks()
3135 	 *
3136 	 * The problem is that write_cache_pages(), located in
3137 	 * mm/page-writeback.c, marks pages clean in preparation for
3138 	 * doing I/O, which is not desirable if we're not planning on
3139 	 * doing I/O at all.
3140 	 *
3141 	 * We could call write_cache_pages(), and then redirty all of
3142 	 * the pages by calling redirty_page_for_writepage() but that
3143 	 * would be ugly in the extreme.  So instead we would need to
3144 	 * replicate parts of the code in the above functions,
3145 	 * simplifying them because we wouldn't actually intend to
3146 	 * write out the pages, but rather only collect contiguous
3147 	 * logical block extents, call the multi-block allocator, and
3148 	 * then update the buffer heads with the block allocations.
3149 	 *
3150 	 * For now, though, we'll cheat by calling filemap_flush(),
3151 	 * which will map the blocks, and start the I/O, but not
3152 	 * actually wait for the I/O to complete.
3153 	 */
3154 	return filemap_flush(inode->i_mapping);
3155 }
3156 
3157 /*
3158  * bmap() is special.  It gets used by applications such as lilo and by
3159  * the swapper to find the on-disk block of a specific piece of data.
3160  *
3161  * Naturally, this is dangerous if the block concerned is still in the
3162  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3163  * filesystem and enables swap, then they may get a nasty shock when the
3164  * data getting swapped to that swapfile suddenly gets overwritten by
3165  * the original zero's written out previously to the journal and
3166  * awaiting writeback in the kernel's buffer cache.
3167  *
3168  * So, if we see any bmap calls here on a modified, data-journaled file,
3169  * take extra steps to flush any blocks which might be in the cache.
3170  */
3171 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3172 {
3173 	struct inode *inode = mapping->host;
3174 	journal_t *journal;
3175 	int err;
3176 
3177 	/*
3178 	 * We can get here for an inline file via the FIBMAP ioctl
3179 	 */
3180 	if (ext4_has_inline_data(inode))
3181 		return 0;
3182 
3183 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3184 			test_opt(inode->i_sb, DELALLOC)) {
3185 		/*
3186 		 * With delalloc we want to sync the file
3187 		 * so that we can make sure we allocate
3188 		 * blocks for file
3189 		 */
3190 		filemap_write_and_wait(mapping);
3191 	}
3192 
3193 	if (EXT4_JOURNAL(inode) &&
3194 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3195 		/*
3196 		 * This is a REALLY heavyweight approach, but the use of
3197 		 * bmap on dirty files is expected to be extremely rare:
3198 		 * only if we run lilo or swapon on a freshly made file
3199 		 * do we expect this to happen.
3200 		 *
3201 		 * (bmap requires CAP_SYS_RAWIO so this does not
3202 		 * represent an unprivileged user DOS attack --- we'd be
3203 		 * in trouble if mortal users could trigger this path at
3204 		 * will.)
3205 		 *
3206 		 * NB. EXT4_STATE_JDATA is not set on files other than
3207 		 * regular files.  If somebody wants to bmap a directory
3208 		 * or symlink and gets confused because the buffer
3209 		 * hasn't yet been flushed to disk, they deserve
3210 		 * everything they get.
3211 		 */
3212 
3213 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3214 		journal = EXT4_JOURNAL(inode);
3215 		jbd2_journal_lock_updates(journal);
3216 		err = jbd2_journal_flush(journal);
3217 		jbd2_journal_unlock_updates(journal);
3218 
3219 		if (err)
3220 			return 0;
3221 	}
3222 
3223 	return iomap_bmap(mapping, block, &ext4_iomap_ops);
3224 }
3225 
3226 static int ext4_readpage(struct file *file, struct page *page)
3227 {
3228 	int ret = -EAGAIN;
3229 	struct inode *inode = page->mapping->host;
3230 
3231 	trace_ext4_readpage(page);
3232 
3233 	if (ext4_has_inline_data(inode))
3234 		ret = ext4_readpage_inline(inode, page);
3235 
3236 	if (ret == -EAGAIN)
3237 		return ext4_mpage_readpages(inode, NULL, page);
3238 
3239 	return ret;
3240 }
3241 
3242 static void ext4_readahead(struct readahead_control *rac)
3243 {
3244 	struct inode *inode = rac->mapping->host;
3245 
3246 	/* If the file has inline data, no need to do readahead. */
3247 	if (ext4_has_inline_data(inode))
3248 		return;
3249 
3250 	ext4_mpage_readpages(inode, rac, NULL);
3251 }
3252 
3253 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3254 				unsigned int length)
3255 {
3256 	trace_ext4_invalidatepage(page, offset, length);
3257 
3258 	/* No journalling happens on data buffers when this function is used */
3259 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3260 
3261 	block_invalidatepage(page, offset, length);
3262 }
3263 
3264 static int __ext4_journalled_invalidatepage(struct page *page,
3265 					    unsigned int offset,
3266 					    unsigned int length)
3267 {
3268 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3269 
3270 	trace_ext4_journalled_invalidatepage(page, offset, length);
3271 
3272 	/*
3273 	 * If it's a full truncate we just forget about the pending dirtying
3274 	 */
3275 	if (offset == 0 && length == PAGE_SIZE)
3276 		ClearPageChecked(page);
3277 
3278 	return jbd2_journal_invalidatepage(journal, page, offset, length);
3279 }
3280 
3281 /* Wrapper for aops... */
3282 static void ext4_journalled_invalidatepage(struct page *page,
3283 					   unsigned int offset,
3284 					   unsigned int length)
3285 {
3286 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3287 }
3288 
3289 static int ext4_releasepage(struct page *page, gfp_t wait)
3290 {
3291 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3292 
3293 	trace_ext4_releasepage(page);
3294 
3295 	/* Page has dirty journalled data -> cannot release */
3296 	if (PageChecked(page))
3297 		return 0;
3298 	if (journal)
3299 		return jbd2_journal_try_to_free_buffers(journal, page);
3300 	else
3301 		return try_to_free_buffers(page);
3302 }
3303 
3304 static bool ext4_inode_datasync_dirty(struct inode *inode)
3305 {
3306 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3307 
3308 	if (journal) {
3309 		if (jbd2_transaction_committed(journal,
3310 					EXT4_I(inode)->i_datasync_tid))
3311 			return true;
3312 		return atomic_read(&EXT4_SB(inode->i_sb)->s_fc_subtid) >=
3313 			EXT4_I(inode)->i_fc_committed_subtid;
3314 	}
3315 
3316 	/* Any metadata buffers to write? */
3317 	if (!list_empty(&inode->i_mapping->private_list))
3318 		return true;
3319 	return inode->i_state & I_DIRTY_DATASYNC;
3320 }
3321 
3322 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3323 			   struct ext4_map_blocks *map, loff_t offset,
3324 			   loff_t length)
3325 {
3326 	u8 blkbits = inode->i_blkbits;
3327 
3328 	/*
3329 	 * Writes that span EOF might trigger an I/O size update on completion,
3330 	 * so consider them to be dirty for the purpose of O_DSYNC, even if
3331 	 * there is no other metadata changes being made or are pending.
3332 	 */
3333 	iomap->flags = 0;
3334 	if (ext4_inode_datasync_dirty(inode) ||
3335 	    offset + length > i_size_read(inode))
3336 		iomap->flags |= IOMAP_F_DIRTY;
3337 
3338 	if (map->m_flags & EXT4_MAP_NEW)
3339 		iomap->flags |= IOMAP_F_NEW;
3340 
3341 	iomap->bdev = inode->i_sb->s_bdev;
3342 	iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3343 	iomap->offset = (u64) map->m_lblk << blkbits;
3344 	iomap->length = (u64) map->m_len << blkbits;
3345 
3346 	if ((map->m_flags & EXT4_MAP_MAPPED) &&
3347 	    !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3348 		iomap->flags |= IOMAP_F_MERGED;
3349 
3350 	/*
3351 	 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3352 	 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3353 	 * set. In order for any allocated unwritten extents to be converted
3354 	 * into written extents correctly within the ->end_io() handler, we
3355 	 * need to ensure that the iomap->type is set appropriately. Hence, the
3356 	 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3357 	 * been set first.
3358 	 */
3359 	if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3360 		iomap->type = IOMAP_UNWRITTEN;
3361 		iomap->addr = (u64) map->m_pblk << blkbits;
3362 	} else if (map->m_flags & EXT4_MAP_MAPPED) {
3363 		iomap->type = IOMAP_MAPPED;
3364 		iomap->addr = (u64) map->m_pblk << blkbits;
3365 	} else {
3366 		iomap->type = IOMAP_HOLE;
3367 		iomap->addr = IOMAP_NULL_ADDR;
3368 	}
3369 }
3370 
3371 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3372 			    unsigned int flags)
3373 {
3374 	handle_t *handle;
3375 	u8 blkbits = inode->i_blkbits;
3376 	int ret, dio_credits, m_flags = 0, retries = 0;
3377 
3378 	/*
3379 	 * Trim the mapping request to the maximum value that we can map at
3380 	 * once for direct I/O.
3381 	 */
3382 	if (map->m_len > DIO_MAX_BLOCKS)
3383 		map->m_len = DIO_MAX_BLOCKS;
3384 	dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3385 
3386 retry:
3387 	/*
3388 	 * Either we allocate blocks and then don't get an unwritten extent, so
3389 	 * in that case we have reserved enough credits. Or, the blocks are
3390 	 * already allocated and unwritten. In that case, the extent conversion
3391 	 * fits into the credits as well.
3392 	 */
3393 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3394 	if (IS_ERR(handle))
3395 		return PTR_ERR(handle);
3396 
3397 	/*
3398 	 * DAX and direct I/O are the only two operations that are currently
3399 	 * supported with IOMAP_WRITE.
3400 	 */
3401 	WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT));
3402 	if (IS_DAX(inode))
3403 		m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3404 	/*
3405 	 * We use i_size instead of i_disksize here because delalloc writeback
3406 	 * can complete at any point during the I/O and subsequently push the
3407 	 * i_disksize out to i_size. This could be beyond where direct I/O is
3408 	 * happening and thus expose allocated blocks to direct I/O reads.
3409 	 */
3410 	else if ((map->m_lblk * (1 << blkbits)) >= i_size_read(inode))
3411 		m_flags = EXT4_GET_BLOCKS_CREATE;
3412 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3413 		m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3414 
3415 	ret = ext4_map_blocks(handle, inode, map, m_flags);
3416 
3417 	/*
3418 	 * We cannot fill holes in indirect tree based inodes as that could
3419 	 * expose stale data in the case of a crash. Use the magic error code
3420 	 * to fallback to buffered I/O.
3421 	 */
3422 	if (!m_flags && !ret)
3423 		ret = -ENOTBLK;
3424 
3425 	ext4_journal_stop(handle);
3426 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3427 		goto retry;
3428 
3429 	return ret;
3430 }
3431 
3432 
3433 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3434 		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3435 {
3436 	int ret;
3437 	struct ext4_map_blocks map;
3438 	u8 blkbits = inode->i_blkbits;
3439 
3440 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3441 		return -EINVAL;
3442 
3443 	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3444 		return -ERANGE;
3445 
3446 	/*
3447 	 * Calculate the first and last logical blocks respectively.
3448 	 */
3449 	map.m_lblk = offset >> blkbits;
3450 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3451 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3452 
3453 	if (flags & IOMAP_WRITE) {
3454 		/*
3455 		 * We check here if the blocks are already allocated, then we
3456 		 * don't need to start a journal txn and we can directly return
3457 		 * the mapping information. This could boost performance
3458 		 * especially in multi-threaded overwrite requests.
3459 		 */
3460 		if (offset + length <= i_size_read(inode)) {
3461 			ret = ext4_map_blocks(NULL, inode, &map, 0);
3462 			if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3463 				goto out;
3464 		}
3465 		ret = ext4_iomap_alloc(inode, &map, flags);
3466 	} else {
3467 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3468 	}
3469 
3470 	if (ret < 0)
3471 		return ret;
3472 out:
3473 	ext4_set_iomap(inode, iomap, &map, offset, length);
3474 
3475 	return 0;
3476 }
3477 
3478 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3479 		loff_t length, unsigned flags, struct iomap *iomap,
3480 		struct iomap *srcmap)
3481 {
3482 	int ret;
3483 
3484 	/*
3485 	 * Even for writes we don't need to allocate blocks, so just pretend
3486 	 * we are reading to save overhead of starting a transaction.
3487 	 */
3488 	flags &= ~IOMAP_WRITE;
3489 	ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3490 	WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3491 	return ret;
3492 }
3493 
3494 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3495 			  ssize_t written, unsigned flags, struct iomap *iomap)
3496 {
3497 	/*
3498 	 * Check to see whether an error occurred while writing out the data to
3499 	 * the allocated blocks. If so, return the magic error code so that we
3500 	 * fallback to buffered I/O and attempt to complete the remainder of
3501 	 * the I/O. Any blocks that may have been allocated in preparation for
3502 	 * the direct I/O will be reused during buffered I/O.
3503 	 */
3504 	if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3505 		return -ENOTBLK;
3506 
3507 	return 0;
3508 }
3509 
3510 const struct iomap_ops ext4_iomap_ops = {
3511 	.iomap_begin		= ext4_iomap_begin,
3512 	.iomap_end		= ext4_iomap_end,
3513 };
3514 
3515 const struct iomap_ops ext4_iomap_overwrite_ops = {
3516 	.iomap_begin		= ext4_iomap_overwrite_begin,
3517 	.iomap_end		= ext4_iomap_end,
3518 };
3519 
3520 static bool ext4_iomap_is_delalloc(struct inode *inode,
3521 				   struct ext4_map_blocks *map)
3522 {
3523 	struct extent_status es;
3524 	ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3525 
3526 	ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3527 				  map->m_lblk, end, &es);
3528 
3529 	if (!es.es_len || es.es_lblk > end)
3530 		return false;
3531 
3532 	if (es.es_lblk > map->m_lblk) {
3533 		map->m_len = es.es_lblk - map->m_lblk;
3534 		return false;
3535 	}
3536 
3537 	offset = map->m_lblk - es.es_lblk;
3538 	map->m_len = es.es_len - offset;
3539 
3540 	return true;
3541 }
3542 
3543 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3544 				   loff_t length, unsigned int flags,
3545 				   struct iomap *iomap, struct iomap *srcmap)
3546 {
3547 	int ret;
3548 	bool delalloc = false;
3549 	struct ext4_map_blocks map;
3550 	u8 blkbits = inode->i_blkbits;
3551 
3552 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3553 		return -EINVAL;
3554 
3555 	if (ext4_has_inline_data(inode)) {
3556 		ret = ext4_inline_data_iomap(inode, iomap);
3557 		if (ret != -EAGAIN) {
3558 			if (ret == 0 && offset >= iomap->length)
3559 				ret = -ENOENT;
3560 			return ret;
3561 		}
3562 	}
3563 
3564 	/*
3565 	 * Calculate the first and last logical block respectively.
3566 	 */
3567 	map.m_lblk = offset >> blkbits;
3568 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3569 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3570 
3571 	/*
3572 	 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3573 	 * So handle it here itself instead of querying ext4_map_blocks().
3574 	 * Since ext4_map_blocks() will warn about it and will return
3575 	 * -EIO error.
3576 	 */
3577 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3578 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3579 
3580 		if (offset >= sbi->s_bitmap_maxbytes) {
3581 			map.m_flags = 0;
3582 			goto set_iomap;
3583 		}
3584 	}
3585 
3586 	ret = ext4_map_blocks(NULL, inode, &map, 0);
3587 	if (ret < 0)
3588 		return ret;
3589 	if (ret == 0)
3590 		delalloc = ext4_iomap_is_delalloc(inode, &map);
3591 
3592 set_iomap:
3593 	ext4_set_iomap(inode, iomap, &map, offset, length);
3594 	if (delalloc && iomap->type == IOMAP_HOLE)
3595 		iomap->type = IOMAP_DELALLOC;
3596 
3597 	return 0;
3598 }
3599 
3600 const struct iomap_ops ext4_iomap_report_ops = {
3601 	.iomap_begin = ext4_iomap_begin_report,
3602 };
3603 
3604 /*
3605  * Pages can be marked dirty completely asynchronously from ext4's journalling
3606  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3607  * much here because ->set_page_dirty is called under VFS locks.  The page is
3608  * not necessarily locked.
3609  *
3610  * We cannot just dirty the page and leave attached buffers clean, because the
3611  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3612  * or jbddirty because all the journalling code will explode.
3613  *
3614  * So what we do is to mark the page "pending dirty" and next time writepage
3615  * is called, propagate that into the buffers appropriately.
3616  */
3617 static int ext4_journalled_set_page_dirty(struct page *page)
3618 {
3619 	SetPageChecked(page);
3620 	return __set_page_dirty_nobuffers(page);
3621 }
3622 
3623 static int ext4_set_page_dirty(struct page *page)
3624 {
3625 	WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3626 	WARN_ON_ONCE(!page_has_buffers(page));
3627 	return __set_page_dirty_buffers(page);
3628 }
3629 
3630 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3631 				    struct file *file, sector_t *span)
3632 {
3633 	return iomap_swapfile_activate(sis, file, span,
3634 				       &ext4_iomap_report_ops);
3635 }
3636 
3637 static const struct address_space_operations ext4_aops = {
3638 	.readpage		= ext4_readpage,
3639 	.readahead		= ext4_readahead,
3640 	.writepage		= ext4_writepage,
3641 	.writepages		= ext4_writepages,
3642 	.write_begin		= ext4_write_begin,
3643 	.write_end		= ext4_write_end,
3644 	.set_page_dirty		= ext4_set_page_dirty,
3645 	.bmap			= ext4_bmap,
3646 	.invalidatepage		= ext4_invalidatepage,
3647 	.releasepage		= ext4_releasepage,
3648 	.direct_IO		= noop_direct_IO,
3649 	.migratepage		= buffer_migrate_page,
3650 	.is_partially_uptodate  = block_is_partially_uptodate,
3651 	.error_remove_page	= generic_error_remove_page,
3652 	.swap_activate		= ext4_iomap_swap_activate,
3653 };
3654 
3655 static const struct address_space_operations ext4_journalled_aops = {
3656 	.readpage		= ext4_readpage,
3657 	.readahead		= ext4_readahead,
3658 	.writepage		= ext4_writepage,
3659 	.writepages		= ext4_writepages,
3660 	.write_begin		= ext4_write_begin,
3661 	.write_end		= ext4_journalled_write_end,
3662 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3663 	.bmap			= ext4_bmap,
3664 	.invalidatepage		= ext4_journalled_invalidatepage,
3665 	.releasepage		= ext4_releasepage,
3666 	.direct_IO		= noop_direct_IO,
3667 	.is_partially_uptodate  = block_is_partially_uptodate,
3668 	.error_remove_page	= generic_error_remove_page,
3669 	.swap_activate		= ext4_iomap_swap_activate,
3670 };
3671 
3672 static const struct address_space_operations ext4_da_aops = {
3673 	.readpage		= ext4_readpage,
3674 	.readahead		= ext4_readahead,
3675 	.writepage		= ext4_writepage,
3676 	.writepages		= ext4_writepages,
3677 	.write_begin		= ext4_da_write_begin,
3678 	.write_end		= ext4_da_write_end,
3679 	.set_page_dirty		= ext4_set_page_dirty,
3680 	.bmap			= ext4_bmap,
3681 	.invalidatepage		= ext4_invalidatepage,
3682 	.releasepage		= ext4_releasepage,
3683 	.direct_IO		= noop_direct_IO,
3684 	.migratepage		= buffer_migrate_page,
3685 	.is_partially_uptodate  = block_is_partially_uptodate,
3686 	.error_remove_page	= generic_error_remove_page,
3687 	.swap_activate		= ext4_iomap_swap_activate,
3688 };
3689 
3690 static const struct address_space_operations ext4_dax_aops = {
3691 	.writepages		= ext4_dax_writepages,
3692 	.direct_IO		= noop_direct_IO,
3693 	.set_page_dirty		= noop_set_page_dirty,
3694 	.bmap			= ext4_bmap,
3695 	.invalidatepage		= noop_invalidatepage,
3696 	.swap_activate		= ext4_iomap_swap_activate,
3697 };
3698 
3699 void ext4_set_aops(struct inode *inode)
3700 {
3701 	switch (ext4_inode_journal_mode(inode)) {
3702 	case EXT4_INODE_ORDERED_DATA_MODE:
3703 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3704 		break;
3705 	case EXT4_INODE_JOURNAL_DATA_MODE:
3706 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3707 		return;
3708 	default:
3709 		BUG();
3710 	}
3711 	if (IS_DAX(inode))
3712 		inode->i_mapping->a_ops = &ext4_dax_aops;
3713 	else if (test_opt(inode->i_sb, DELALLOC))
3714 		inode->i_mapping->a_ops = &ext4_da_aops;
3715 	else
3716 		inode->i_mapping->a_ops = &ext4_aops;
3717 }
3718 
3719 static int __ext4_block_zero_page_range(handle_t *handle,
3720 		struct address_space *mapping, loff_t from, loff_t length)
3721 {
3722 	ext4_fsblk_t index = from >> PAGE_SHIFT;
3723 	unsigned offset = from & (PAGE_SIZE-1);
3724 	unsigned blocksize, pos;
3725 	ext4_lblk_t iblock;
3726 	struct inode *inode = mapping->host;
3727 	struct buffer_head *bh;
3728 	struct page *page;
3729 	int err = 0;
3730 
3731 	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3732 				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3733 	if (!page)
3734 		return -ENOMEM;
3735 
3736 	blocksize = inode->i_sb->s_blocksize;
3737 
3738 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3739 
3740 	if (!page_has_buffers(page))
3741 		create_empty_buffers(page, blocksize, 0);
3742 
3743 	/* Find the buffer that contains "offset" */
3744 	bh = page_buffers(page);
3745 	pos = blocksize;
3746 	while (offset >= pos) {
3747 		bh = bh->b_this_page;
3748 		iblock++;
3749 		pos += blocksize;
3750 	}
3751 	if (buffer_freed(bh)) {
3752 		BUFFER_TRACE(bh, "freed: skip");
3753 		goto unlock;
3754 	}
3755 	if (!buffer_mapped(bh)) {
3756 		BUFFER_TRACE(bh, "unmapped");
3757 		ext4_get_block(inode, iblock, bh, 0);
3758 		/* unmapped? It's a hole - nothing to do */
3759 		if (!buffer_mapped(bh)) {
3760 			BUFFER_TRACE(bh, "still unmapped");
3761 			goto unlock;
3762 		}
3763 	}
3764 
3765 	/* Ok, it's mapped. Make sure it's up-to-date */
3766 	if (PageUptodate(page))
3767 		set_buffer_uptodate(bh);
3768 
3769 	if (!buffer_uptodate(bh)) {
3770 		err = ext4_read_bh_lock(bh, 0, true);
3771 		if (err)
3772 			goto unlock;
3773 		if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3774 			/* We expect the key to be set. */
3775 			BUG_ON(!fscrypt_has_encryption_key(inode));
3776 			err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3777 							       bh_offset(bh));
3778 			if (err) {
3779 				clear_buffer_uptodate(bh);
3780 				goto unlock;
3781 			}
3782 		}
3783 	}
3784 	if (ext4_should_journal_data(inode)) {
3785 		BUFFER_TRACE(bh, "get write access");
3786 		err = ext4_journal_get_write_access(handle, bh);
3787 		if (err)
3788 			goto unlock;
3789 	}
3790 	zero_user(page, offset, length);
3791 	BUFFER_TRACE(bh, "zeroed end of block");
3792 
3793 	if (ext4_should_journal_data(inode)) {
3794 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3795 	} else {
3796 		err = 0;
3797 		mark_buffer_dirty(bh);
3798 		if (ext4_should_order_data(inode))
3799 			err = ext4_jbd2_inode_add_write(handle, inode, from,
3800 					length);
3801 	}
3802 
3803 unlock:
3804 	unlock_page(page);
3805 	put_page(page);
3806 	return err;
3807 }
3808 
3809 /*
3810  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3811  * starting from file offset 'from'.  The range to be zero'd must
3812  * be contained with in one block.  If the specified range exceeds
3813  * the end of the block it will be shortened to end of the block
3814  * that cooresponds to 'from'
3815  */
3816 static int ext4_block_zero_page_range(handle_t *handle,
3817 		struct address_space *mapping, loff_t from, loff_t length)
3818 {
3819 	struct inode *inode = mapping->host;
3820 	unsigned offset = from & (PAGE_SIZE-1);
3821 	unsigned blocksize = inode->i_sb->s_blocksize;
3822 	unsigned max = blocksize - (offset & (blocksize - 1));
3823 
3824 	/*
3825 	 * correct length if it does not fall between
3826 	 * 'from' and the end of the block
3827 	 */
3828 	if (length > max || length < 0)
3829 		length = max;
3830 
3831 	if (IS_DAX(inode)) {
3832 		return iomap_zero_range(inode, from, length, NULL,
3833 					&ext4_iomap_ops);
3834 	}
3835 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3836 }
3837 
3838 /*
3839  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3840  * up to the end of the block which corresponds to `from'.
3841  * This required during truncate. We need to physically zero the tail end
3842  * of that block so it doesn't yield old data if the file is later grown.
3843  */
3844 static int ext4_block_truncate_page(handle_t *handle,
3845 		struct address_space *mapping, loff_t from)
3846 {
3847 	unsigned offset = from & (PAGE_SIZE-1);
3848 	unsigned length;
3849 	unsigned blocksize;
3850 	struct inode *inode = mapping->host;
3851 
3852 	/* If we are processing an encrypted inode during orphan list handling */
3853 	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3854 		return 0;
3855 
3856 	blocksize = inode->i_sb->s_blocksize;
3857 	length = blocksize - (offset & (blocksize - 1));
3858 
3859 	return ext4_block_zero_page_range(handle, mapping, from, length);
3860 }
3861 
3862 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3863 			     loff_t lstart, loff_t length)
3864 {
3865 	struct super_block *sb = inode->i_sb;
3866 	struct address_space *mapping = inode->i_mapping;
3867 	unsigned partial_start, partial_end;
3868 	ext4_fsblk_t start, end;
3869 	loff_t byte_end = (lstart + length - 1);
3870 	int err = 0;
3871 
3872 	partial_start = lstart & (sb->s_blocksize - 1);
3873 	partial_end = byte_end & (sb->s_blocksize - 1);
3874 
3875 	start = lstart >> sb->s_blocksize_bits;
3876 	end = byte_end >> sb->s_blocksize_bits;
3877 
3878 	/* Handle partial zero within the single block */
3879 	if (start == end &&
3880 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3881 		err = ext4_block_zero_page_range(handle, mapping,
3882 						 lstart, length);
3883 		return err;
3884 	}
3885 	/* Handle partial zero out on the start of the range */
3886 	if (partial_start) {
3887 		err = ext4_block_zero_page_range(handle, mapping,
3888 						 lstart, sb->s_blocksize);
3889 		if (err)
3890 			return err;
3891 	}
3892 	/* Handle partial zero out on the end of the range */
3893 	if (partial_end != sb->s_blocksize - 1)
3894 		err = ext4_block_zero_page_range(handle, mapping,
3895 						 byte_end - partial_end,
3896 						 partial_end + 1);
3897 	return err;
3898 }
3899 
3900 int ext4_can_truncate(struct inode *inode)
3901 {
3902 	if (S_ISREG(inode->i_mode))
3903 		return 1;
3904 	if (S_ISDIR(inode->i_mode))
3905 		return 1;
3906 	if (S_ISLNK(inode->i_mode))
3907 		return !ext4_inode_is_fast_symlink(inode);
3908 	return 0;
3909 }
3910 
3911 /*
3912  * We have to make sure i_disksize gets properly updated before we truncate
3913  * page cache due to hole punching or zero range. Otherwise i_disksize update
3914  * can get lost as it may have been postponed to submission of writeback but
3915  * that will never happen after we truncate page cache.
3916  */
3917 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3918 				      loff_t len)
3919 {
3920 	handle_t *handle;
3921 	int ret;
3922 
3923 	loff_t size = i_size_read(inode);
3924 
3925 	WARN_ON(!inode_is_locked(inode));
3926 	if (offset > size || offset + len < size)
3927 		return 0;
3928 
3929 	if (EXT4_I(inode)->i_disksize >= size)
3930 		return 0;
3931 
3932 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3933 	if (IS_ERR(handle))
3934 		return PTR_ERR(handle);
3935 	ext4_update_i_disksize(inode, size);
3936 	ret = ext4_mark_inode_dirty(handle, inode);
3937 	ext4_journal_stop(handle);
3938 
3939 	return ret;
3940 }
3941 
3942 static void ext4_wait_dax_page(struct ext4_inode_info *ei)
3943 {
3944 	up_write(&ei->i_mmap_sem);
3945 	schedule();
3946 	down_write(&ei->i_mmap_sem);
3947 }
3948 
3949 int ext4_break_layouts(struct inode *inode)
3950 {
3951 	struct ext4_inode_info *ei = EXT4_I(inode);
3952 	struct page *page;
3953 	int error;
3954 
3955 	if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
3956 		return -EINVAL;
3957 
3958 	do {
3959 		page = dax_layout_busy_page(inode->i_mapping);
3960 		if (!page)
3961 			return 0;
3962 
3963 		error = ___wait_var_event(&page->_refcount,
3964 				atomic_read(&page->_refcount) == 1,
3965 				TASK_INTERRUPTIBLE, 0, 0,
3966 				ext4_wait_dax_page(ei));
3967 	} while (error == 0);
3968 
3969 	return error;
3970 }
3971 
3972 /*
3973  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3974  * associated with the given offset and length
3975  *
3976  * @inode:  File inode
3977  * @offset: The offset where the hole will begin
3978  * @len:    The length of the hole
3979  *
3980  * Returns: 0 on success or negative on failure
3981  */
3982 
3983 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3984 {
3985 	struct super_block *sb = inode->i_sb;
3986 	ext4_lblk_t first_block, stop_block;
3987 	struct address_space *mapping = inode->i_mapping;
3988 	loff_t first_block_offset, last_block_offset;
3989 	handle_t *handle;
3990 	unsigned int credits;
3991 	int ret = 0, ret2 = 0;
3992 
3993 	trace_ext4_punch_hole(inode, offset, length, 0);
3994 
3995 	ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
3996 	if (ext4_has_inline_data(inode)) {
3997 		down_write(&EXT4_I(inode)->i_mmap_sem);
3998 		ret = ext4_convert_inline_data(inode);
3999 		up_write(&EXT4_I(inode)->i_mmap_sem);
4000 		if (ret)
4001 			return ret;
4002 	}
4003 
4004 	/*
4005 	 * Write out all dirty pages to avoid race conditions
4006 	 * Then release them.
4007 	 */
4008 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4009 		ret = filemap_write_and_wait_range(mapping, offset,
4010 						   offset + length - 1);
4011 		if (ret)
4012 			return ret;
4013 	}
4014 
4015 	inode_lock(inode);
4016 
4017 	/* No need to punch hole beyond i_size */
4018 	if (offset >= inode->i_size)
4019 		goto out_mutex;
4020 
4021 	/*
4022 	 * If the hole extends beyond i_size, set the hole
4023 	 * to end after the page that contains i_size
4024 	 */
4025 	if (offset + length > inode->i_size) {
4026 		length = inode->i_size +
4027 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4028 		   offset;
4029 	}
4030 
4031 	if (offset & (sb->s_blocksize - 1) ||
4032 	    (offset + length) & (sb->s_blocksize - 1)) {
4033 		/*
4034 		 * Attach jinode to inode for jbd2 if we do any zeroing of
4035 		 * partial block
4036 		 */
4037 		ret = ext4_inode_attach_jinode(inode);
4038 		if (ret < 0)
4039 			goto out_mutex;
4040 
4041 	}
4042 
4043 	/* Wait all existing dio workers, newcomers will block on i_mutex */
4044 	inode_dio_wait(inode);
4045 
4046 	/*
4047 	 * Prevent page faults from reinstantiating pages we have released from
4048 	 * page cache.
4049 	 */
4050 	down_write(&EXT4_I(inode)->i_mmap_sem);
4051 
4052 	ret = ext4_break_layouts(inode);
4053 	if (ret)
4054 		goto out_dio;
4055 
4056 	first_block_offset = round_up(offset, sb->s_blocksize);
4057 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4058 
4059 	/* Now release the pages and zero block aligned part of pages*/
4060 	if (last_block_offset > first_block_offset) {
4061 		ret = ext4_update_disksize_before_punch(inode, offset, length);
4062 		if (ret)
4063 			goto out_dio;
4064 		truncate_pagecache_range(inode, first_block_offset,
4065 					 last_block_offset);
4066 	}
4067 
4068 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4069 		credits = ext4_writepage_trans_blocks(inode);
4070 	else
4071 		credits = ext4_blocks_for_truncate(inode);
4072 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4073 	if (IS_ERR(handle)) {
4074 		ret = PTR_ERR(handle);
4075 		ext4_std_error(sb, ret);
4076 		goto out_dio;
4077 	}
4078 
4079 	ret = ext4_zero_partial_blocks(handle, inode, offset,
4080 				       length);
4081 	if (ret)
4082 		goto out_stop;
4083 
4084 	first_block = (offset + sb->s_blocksize - 1) >>
4085 		EXT4_BLOCK_SIZE_BITS(sb);
4086 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4087 
4088 	/* If there are blocks to remove, do it */
4089 	if (stop_block > first_block) {
4090 
4091 		down_write(&EXT4_I(inode)->i_data_sem);
4092 		ext4_discard_preallocations(inode, 0);
4093 
4094 		ret = ext4_es_remove_extent(inode, first_block,
4095 					    stop_block - first_block);
4096 		if (ret) {
4097 			up_write(&EXT4_I(inode)->i_data_sem);
4098 			goto out_stop;
4099 		}
4100 
4101 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4102 			ret = ext4_ext_remove_space(inode, first_block,
4103 						    stop_block - 1);
4104 		else
4105 			ret = ext4_ind_remove_space(handle, inode, first_block,
4106 						    stop_block);
4107 
4108 		up_write(&EXT4_I(inode)->i_data_sem);
4109 	}
4110 	ext4_fc_track_range(inode, first_block, stop_block);
4111 	if (IS_SYNC(inode))
4112 		ext4_handle_sync(handle);
4113 
4114 	inode->i_mtime = inode->i_ctime = current_time(inode);
4115 	ret2 = ext4_mark_inode_dirty(handle, inode);
4116 	if (unlikely(ret2))
4117 		ret = ret2;
4118 	if (ret >= 0)
4119 		ext4_update_inode_fsync_trans(handle, inode, 1);
4120 out_stop:
4121 	ext4_journal_stop(handle);
4122 out_dio:
4123 	up_write(&EXT4_I(inode)->i_mmap_sem);
4124 out_mutex:
4125 	inode_unlock(inode);
4126 	return ret;
4127 }
4128 
4129 int ext4_inode_attach_jinode(struct inode *inode)
4130 {
4131 	struct ext4_inode_info *ei = EXT4_I(inode);
4132 	struct jbd2_inode *jinode;
4133 
4134 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4135 		return 0;
4136 
4137 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4138 	spin_lock(&inode->i_lock);
4139 	if (!ei->jinode) {
4140 		if (!jinode) {
4141 			spin_unlock(&inode->i_lock);
4142 			return -ENOMEM;
4143 		}
4144 		ei->jinode = jinode;
4145 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4146 		jinode = NULL;
4147 	}
4148 	spin_unlock(&inode->i_lock);
4149 	if (unlikely(jinode != NULL))
4150 		jbd2_free_inode(jinode);
4151 	return 0;
4152 }
4153 
4154 /*
4155  * ext4_truncate()
4156  *
4157  * We block out ext4_get_block() block instantiations across the entire
4158  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4159  * simultaneously on behalf of the same inode.
4160  *
4161  * As we work through the truncate and commit bits of it to the journal there
4162  * is one core, guiding principle: the file's tree must always be consistent on
4163  * disk.  We must be able to restart the truncate after a crash.
4164  *
4165  * The file's tree may be transiently inconsistent in memory (although it
4166  * probably isn't), but whenever we close off and commit a journal transaction,
4167  * the contents of (the filesystem + the journal) must be consistent and
4168  * restartable.  It's pretty simple, really: bottom up, right to left (although
4169  * left-to-right works OK too).
4170  *
4171  * Note that at recovery time, journal replay occurs *before* the restart of
4172  * truncate against the orphan inode list.
4173  *
4174  * The committed inode has the new, desired i_size (which is the same as
4175  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4176  * that this inode's truncate did not complete and it will again call
4177  * ext4_truncate() to have another go.  So there will be instantiated blocks
4178  * to the right of the truncation point in a crashed ext4 filesystem.  But
4179  * that's fine - as long as they are linked from the inode, the post-crash
4180  * ext4_truncate() run will find them and release them.
4181  */
4182 int ext4_truncate(struct inode *inode)
4183 {
4184 	struct ext4_inode_info *ei = EXT4_I(inode);
4185 	unsigned int credits;
4186 	int err = 0, err2;
4187 	handle_t *handle;
4188 	struct address_space *mapping = inode->i_mapping;
4189 
4190 	/*
4191 	 * There is a possibility that we're either freeing the inode
4192 	 * or it's a completely new inode. In those cases we might not
4193 	 * have i_mutex locked because it's not necessary.
4194 	 */
4195 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4196 		WARN_ON(!inode_is_locked(inode));
4197 	trace_ext4_truncate_enter(inode);
4198 
4199 	if (!ext4_can_truncate(inode))
4200 		goto out_trace;
4201 
4202 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4203 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4204 
4205 	if (ext4_has_inline_data(inode)) {
4206 		int has_inline = 1;
4207 
4208 		err = ext4_inline_data_truncate(inode, &has_inline);
4209 		if (err || has_inline)
4210 			goto out_trace;
4211 	}
4212 
4213 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4214 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4215 		if (ext4_inode_attach_jinode(inode) < 0)
4216 			goto out_trace;
4217 	}
4218 
4219 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4220 		credits = ext4_writepage_trans_blocks(inode);
4221 	else
4222 		credits = ext4_blocks_for_truncate(inode);
4223 
4224 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4225 	if (IS_ERR(handle)) {
4226 		err = PTR_ERR(handle);
4227 		goto out_trace;
4228 	}
4229 
4230 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4231 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4232 
4233 	/*
4234 	 * We add the inode to the orphan list, so that if this
4235 	 * truncate spans multiple transactions, and we crash, we will
4236 	 * resume the truncate when the filesystem recovers.  It also
4237 	 * marks the inode dirty, to catch the new size.
4238 	 *
4239 	 * Implication: the file must always be in a sane, consistent
4240 	 * truncatable state while each transaction commits.
4241 	 */
4242 	err = ext4_orphan_add(handle, inode);
4243 	if (err)
4244 		goto out_stop;
4245 
4246 	down_write(&EXT4_I(inode)->i_data_sem);
4247 
4248 	ext4_discard_preallocations(inode, 0);
4249 
4250 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4251 		err = ext4_ext_truncate(handle, inode);
4252 	else
4253 		ext4_ind_truncate(handle, inode);
4254 
4255 	up_write(&ei->i_data_sem);
4256 	if (err)
4257 		goto out_stop;
4258 
4259 	if (IS_SYNC(inode))
4260 		ext4_handle_sync(handle);
4261 
4262 out_stop:
4263 	/*
4264 	 * If this was a simple ftruncate() and the file will remain alive,
4265 	 * then we need to clear up the orphan record which we created above.
4266 	 * However, if this was a real unlink then we were called by
4267 	 * ext4_evict_inode(), and we allow that function to clean up the
4268 	 * orphan info for us.
4269 	 */
4270 	if (inode->i_nlink)
4271 		ext4_orphan_del(handle, inode);
4272 
4273 	inode->i_mtime = inode->i_ctime = current_time(inode);
4274 	err2 = ext4_mark_inode_dirty(handle, inode);
4275 	if (unlikely(err2 && !err))
4276 		err = err2;
4277 	ext4_journal_stop(handle);
4278 
4279 out_trace:
4280 	trace_ext4_truncate_exit(inode);
4281 	return err;
4282 }
4283 
4284 /*
4285  * ext4_get_inode_loc returns with an extra refcount against the inode's
4286  * underlying buffer_head on success. If 'in_mem' is true, we have all
4287  * data in memory that is needed to recreate the on-disk version of this
4288  * inode.
4289  */
4290 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4291 				struct ext4_iloc *iloc, int in_mem,
4292 				ext4_fsblk_t *ret_block)
4293 {
4294 	struct ext4_group_desc	*gdp;
4295 	struct buffer_head	*bh;
4296 	ext4_fsblk_t		block;
4297 	struct blk_plug		plug;
4298 	int			inodes_per_block, inode_offset;
4299 
4300 	iloc->bh = NULL;
4301 	if (ino < EXT4_ROOT_INO ||
4302 	    ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4303 		return -EFSCORRUPTED;
4304 
4305 	iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4306 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4307 	if (!gdp)
4308 		return -EIO;
4309 
4310 	/*
4311 	 * Figure out the offset within the block group inode table
4312 	 */
4313 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4314 	inode_offset = ((ino - 1) %
4315 			EXT4_INODES_PER_GROUP(sb));
4316 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4317 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4318 
4319 	bh = sb_getblk(sb, block);
4320 	if (unlikely(!bh))
4321 		return -ENOMEM;
4322 	if (ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO))
4323 		goto simulate_eio;
4324 	if (!buffer_uptodate(bh)) {
4325 		lock_buffer(bh);
4326 
4327 		if (ext4_buffer_uptodate(bh)) {
4328 			/* someone brought it uptodate while we waited */
4329 			unlock_buffer(bh);
4330 			goto has_buffer;
4331 		}
4332 
4333 		/*
4334 		 * If we have all information of the inode in memory and this
4335 		 * is the only valid inode in the block, we need not read the
4336 		 * block.
4337 		 */
4338 		if (in_mem) {
4339 			struct buffer_head *bitmap_bh;
4340 			int i, start;
4341 
4342 			start = inode_offset & ~(inodes_per_block - 1);
4343 
4344 			/* Is the inode bitmap in cache? */
4345 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4346 			if (unlikely(!bitmap_bh))
4347 				goto make_io;
4348 
4349 			/*
4350 			 * If the inode bitmap isn't in cache then the
4351 			 * optimisation may end up performing two reads instead
4352 			 * of one, so skip it.
4353 			 */
4354 			if (!buffer_uptodate(bitmap_bh)) {
4355 				brelse(bitmap_bh);
4356 				goto make_io;
4357 			}
4358 			for (i = start; i < start + inodes_per_block; i++) {
4359 				if (i == inode_offset)
4360 					continue;
4361 				if (ext4_test_bit(i, bitmap_bh->b_data))
4362 					break;
4363 			}
4364 			brelse(bitmap_bh);
4365 			if (i == start + inodes_per_block) {
4366 				/* all other inodes are free, so skip I/O */
4367 				memset(bh->b_data, 0, bh->b_size);
4368 				set_buffer_uptodate(bh);
4369 				unlock_buffer(bh);
4370 				goto has_buffer;
4371 			}
4372 		}
4373 
4374 make_io:
4375 		/*
4376 		 * If we need to do any I/O, try to pre-readahead extra
4377 		 * blocks from the inode table.
4378 		 */
4379 		blk_start_plug(&plug);
4380 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4381 			ext4_fsblk_t b, end, table;
4382 			unsigned num;
4383 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4384 
4385 			table = ext4_inode_table(sb, gdp);
4386 			/* s_inode_readahead_blks is always a power of 2 */
4387 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4388 			if (table > b)
4389 				b = table;
4390 			end = b + ra_blks;
4391 			num = EXT4_INODES_PER_GROUP(sb);
4392 			if (ext4_has_group_desc_csum(sb))
4393 				num -= ext4_itable_unused_count(sb, gdp);
4394 			table += num / inodes_per_block;
4395 			if (end > table)
4396 				end = table;
4397 			while (b <= end)
4398 				ext4_sb_breadahead_unmovable(sb, b++);
4399 		}
4400 
4401 		/*
4402 		 * There are other valid inodes in the buffer, this inode
4403 		 * has in-inode xattrs, or we don't have this inode in memory.
4404 		 * Read the block from disk.
4405 		 */
4406 		trace_ext4_load_inode(sb, ino);
4407 		ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4408 		blk_finish_plug(&plug);
4409 		wait_on_buffer(bh);
4410 		if (!buffer_uptodate(bh)) {
4411 		simulate_eio:
4412 			if (ret_block)
4413 				*ret_block = block;
4414 			brelse(bh);
4415 			return -EIO;
4416 		}
4417 	}
4418 has_buffer:
4419 	iloc->bh = bh;
4420 	return 0;
4421 }
4422 
4423 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4424 					struct ext4_iloc *iloc)
4425 {
4426 	ext4_fsblk_t err_blk;
4427 	int ret;
4428 
4429 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc, 0,
4430 					&err_blk);
4431 
4432 	if (ret == -EIO)
4433 		ext4_error_inode_block(inode, err_blk, EIO,
4434 					"unable to read itable block");
4435 
4436 	return ret;
4437 }
4438 
4439 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4440 {
4441 	ext4_fsblk_t err_blk;
4442 	int ret;
4443 
4444 	/* We have all inode data except xattrs in memory here. */
4445 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc,
4446 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR), &err_blk);
4447 
4448 	if (ret == -EIO)
4449 		ext4_error_inode_block(inode, err_blk, EIO,
4450 					"unable to read itable block");
4451 
4452 	return ret;
4453 }
4454 
4455 
4456 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4457 			  struct ext4_iloc *iloc)
4458 {
4459 	return __ext4_get_inode_loc(sb, ino, iloc, 0, NULL);
4460 }
4461 
4462 static bool ext4_should_enable_dax(struct inode *inode)
4463 {
4464 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4465 
4466 	if (test_opt2(inode->i_sb, DAX_NEVER))
4467 		return false;
4468 	if (!S_ISREG(inode->i_mode))
4469 		return false;
4470 	if (ext4_should_journal_data(inode))
4471 		return false;
4472 	if (ext4_has_inline_data(inode))
4473 		return false;
4474 	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4475 		return false;
4476 	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4477 		return false;
4478 	if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4479 		return false;
4480 	if (test_opt(inode->i_sb, DAX_ALWAYS))
4481 		return true;
4482 
4483 	return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4484 }
4485 
4486 void ext4_set_inode_flags(struct inode *inode, bool init)
4487 {
4488 	unsigned int flags = EXT4_I(inode)->i_flags;
4489 	unsigned int new_fl = 0;
4490 
4491 	WARN_ON_ONCE(IS_DAX(inode) && init);
4492 
4493 	if (flags & EXT4_SYNC_FL)
4494 		new_fl |= S_SYNC;
4495 	if (flags & EXT4_APPEND_FL)
4496 		new_fl |= S_APPEND;
4497 	if (flags & EXT4_IMMUTABLE_FL)
4498 		new_fl |= S_IMMUTABLE;
4499 	if (flags & EXT4_NOATIME_FL)
4500 		new_fl |= S_NOATIME;
4501 	if (flags & EXT4_DIRSYNC_FL)
4502 		new_fl |= S_DIRSYNC;
4503 
4504 	/* Because of the way inode_set_flags() works we must preserve S_DAX
4505 	 * here if already set. */
4506 	new_fl |= (inode->i_flags & S_DAX);
4507 	if (init && ext4_should_enable_dax(inode))
4508 		new_fl |= S_DAX;
4509 
4510 	if (flags & EXT4_ENCRYPT_FL)
4511 		new_fl |= S_ENCRYPTED;
4512 	if (flags & EXT4_CASEFOLD_FL)
4513 		new_fl |= S_CASEFOLD;
4514 	if (flags & EXT4_VERITY_FL)
4515 		new_fl |= S_VERITY;
4516 	inode_set_flags(inode, new_fl,
4517 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4518 			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4519 }
4520 
4521 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4522 				  struct ext4_inode_info *ei)
4523 {
4524 	blkcnt_t i_blocks ;
4525 	struct inode *inode = &(ei->vfs_inode);
4526 	struct super_block *sb = inode->i_sb;
4527 
4528 	if (ext4_has_feature_huge_file(sb)) {
4529 		/* we are using combined 48 bit field */
4530 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4531 					le32_to_cpu(raw_inode->i_blocks_lo);
4532 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4533 			/* i_blocks represent file system block size */
4534 			return i_blocks  << (inode->i_blkbits - 9);
4535 		} else {
4536 			return i_blocks;
4537 		}
4538 	} else {
4539 		return le32_to_cpu(raw_inode->i_blocks_lo);
4540 	}
4541 }
4542 
4543 static inline int ext4_iget_extra_inode(struct inode *inode,
4544 					 struct ext4_inode *raw_inode,
4545 					 struct ext4_inode_info *ei)
4546 {
4547 	__le32 *magic = (void *)raw_inode +
4548 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4549 
4550 	if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4551 	    EXT4_INODE_SIZE(inode->i_sb) &&
4552 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4553 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4554 		return ext4_find_inline_data_nolock(inode);
4555 	} else
4556 		EXT4_I(inode)->i_inline_off = 0;
4557 	return 0;
4558 }
4559 
4560 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4561 {
4562 	if (!ext4_has_feature_project(inode->i_sb))
4563 		return -EOPNOTSUPP;
4564 	*projid = EXT4_I(inode)->i_projid;
4565 	return 0;
4566 }
4567 
4568 /*
4569  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4570  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4571  * set.
4572  */
4573 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4574 {
4575 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4576 		inode_set_iversion_raw(inode, val);
4577 	else
4578 		inode_set_iversion_queried(inode, val);
4579 }
4580 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4581 {
4582 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4583 		return inode_peek_iversion_raw(inode);
4584 	else
4585 		return inode_peek_iversion(inode);
4586 }
4587 
4588 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4589 			  ext4_iget_flags flags, const char *function,
4590 			  unsigned int line)
4591 {
4592 	struct ext4_iloc iloc;
4593 	struct ext4_inode *raw_inode;
4594 	struct ext4_inode_info *ei;
4595 	struct inode *inode;
4596 	journal_t *journal = EXT4_SB(sb)->s_journal;
4597 	long ret;
4598 	loff_t size;
4599 	int block;
4600 	uid_t i_uid;
4601 	gid_t i_gid;
4602 	projid_t i_projid;
4603 
4604 	if ((!(flags & EXT4_IGET_SPECIAL) &&
4605 	     (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4606 	    (ino < EXT4_ROOT_INO) ||
4607 	    (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4608 		if (flags & EXT4_IGET_HANDLE)
4609 			return ERR_PTR(-ESTALE);
4610 		__ext4_error(sb, function, line, EFSCORRUPTED, 0,
4611 			     "inode #%lu: comm %s: iget: illegal inode #",
4612 			     ino, current->comm);
4613 		return ERR_PTR(-EFSCORRUPTED);
4614 	}
4615 
4616 	inode = iget_locked(sb, ino);
4617 	if (!inode)
4618 		return ERR_PTR(-ENOMEM);
4619 	if (!(inode->i_state & I_NEW))
4620 		return inode;
4621 
4622 	ei = EXT4_I(inode);
4623 	iloc.bh = NULL;
4624 
4625 	ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4626 	if (ret < 0)
4627 		goto bad_inode;
4628 	raw_inode = ext4_raw_inode(&iloc);
4629 
4630 	if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4631 		ext4_error_inode(inode, function, line, 0,
4632 				 "iget: root inode unallocated");
4633 		ret = -EFSCORRUPTED;
4634 		goto bad_inode;
4635 	}
4636 
4637 	if ((flags & EXT4_IGET_HANDLE) &&
4638 	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4639 		ret = -ESTALE;
4640 		goto bad_inode;
4641 	}
4642 
4643 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4644 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4645 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4646 			EXT4_INODE_SIZE(inode->i_sb) ||
4647 		    (ei->i_extra_isize & 3)) {
4648 			ext4_error_inode(inode, function, line, 0,
4649 					 "iget: bad extra_isize %u "
4650 					 "(inode size %u)",
4651 					 ei->i_extra_isize,
4652 					 EXT4_INODE_SIZE(inode->i_sb));
4653 			ret = -EFSCORRUPTED;
4654 			goto bad_inode;
4655 		}
4656 	} else
4657 		ei->i_extra_isize = 0;
4658 
4659 	/* Precompute checksum seed for inode metadata */
4660 	if (ext4_has_metadata_csum(sb)) {
4661 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4662 		__u32 csum;
4663 		__le32 inum = cpu_to_le32(inode->i_ino);
4664 		__le32 gen = raw_inode->i_generation;
4665 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4666 				   sizeof(inum));
4667 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4668 					      sizeof(gen));
4669 	}
4670 
4671 	if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4672 	    ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4673 	     (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4674 		ext4_error_inode_err(inode, function, line, 0,
4675 				EFSBADCRC, "iget: checksum invalid");
4676 		ret = -EFSBADCRC;
4677 		goto bad_inode;
4678 	}
4679 
4680 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4681 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4682 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4683 	if (ext4_has_feature_project(sb) &&
4684 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4685 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4686 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4687 	else
4688 		i_projid = EXT4_DEF_PROJID;
4689 
4690 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4691 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4692 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4693 	}
4694 	i_uid_write(inode, i_uid);
4695 	i_gid_write(inode, i_gid);
4696 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4697 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4698 
4699 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4700 	ei->i_inline_off = 0;
4701 	ei->i_dir_start_lookup = 0;
4702 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4703 	/* We now have enough fields to check if the inode was active or not.
4704 	 * This is needed because nfsd might try to access dead inodes
4705 	 * the test is that same one that e2fsck uses
4706 	 * NeilBrown 1999oct15
4707 	 */
4708 	if (inode->i_nlink == 0) {
4709 		if ((inode->i_mode == 0 ||
4710 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4711 		    ino != EXT4_BOOT_LOADER_INO) {
4712 			/* this inode is deleted */
4713 			ret = -ESTALE;
4714 			goto bad_inode;
4715 		}
4716 		/* The only unlinked inodes we let through here have
4717 		 * valid i_mode and are being read by the orphan
4718 		 * recovery code: that's fine, we're about to complete
4719 		 * the process of deleting those.
4720 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4721 		 * not initialized on a new filesystem. */
4722 	}
4723 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4724 	ext4_set_inode_flags(inode, true);
4725 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4726 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4727 	if (ext4_has_feature_64bit(sb))
4728 		ei->i_file_acl |=
4729 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4730 	inode->i_size = ext4_isize(sb, raw_inode);
4731 	if ((size = i_size_read(inode)) < 0) {
4732 		ext4_error_inode(inode, function, line, 0,
4733 				 "iget: bad i_size value: %lld", size);
4734 		ret = -EFSCORRUPTED;
4735 		goto bad_inode;
4736 	}
4737 	/*
4738 	 * If dir_index is not enabled but there's dir with INDEX flag set,
4739 	 * we'd normally treat htree data as empty space. But with metadata
4740 	 * checksumming that corrupts checksums so forbid that.
4741 	 */
4742 	if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4743 	    ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4744 		ext4_error_inode(inode, function, line, 0,
4745 			 "iget: Dir with htree data on filesystem without dir_index feature.");
4746 		ret = -EFSCORRUPTED;
4747 		goto bad_inode;
4748 	}
4749 	ei->i_disksize = inode->i_size;
4750 #ifdef CONFIG_QUOTA
4751 	ei->i_reserved_quota = 0;
4752 #endif
4753 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4754 	ei->i_block_group = iloc.block_group;
4755 	ei->i_last_alloc_group = ~0;
4756 	/*
4757 	 * NOTE! The in-memory inode i_data array is in little-endian order
4758 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4759 	 */
4760 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4761 		ei->i_data[block] = raw_inode->i_block[block];
4762 	INIT_LIST_HEAD(&ei->i_orphan);
4763 	ext4_fc_init_inode(&ei->vfs_inode);
4764 
4765 	/*
4766 	 * Set transaction id's of transactions that have to be committed
4767 	 * to finish f[data]sync. We set them to currently running transaction
4768 	 * as we cannot be sure that the inode or some of its metadata isn't
4769 	 * part of the transaction - the inode could have been reclaimed and
4770 	 * now it is reread from disk.
4771 	 */
4772 	if (journal) {
4773 		transaction_t *transaction;
4774 		tid_t tid;
4775 
4776 		read_lock(&journal->j_state_lock);
4777 		if (journal->j_running_transaction)
4778 			transaction = journal->j_running_transaction;
4779 		else
4780 			transaction = journal->j_committing_transaction;
4781 		if (transaction)
4782 			tid = transaction->t_tid;
4783 		else
4784 			tid = journal->j_commit_sequence;
4785 		read_unlock(&journal->j_state_lock);
4786 		ei->i_sync_tid = tid;
4787 		ei->i_datasync_tid = tid;
4788 	}
4789 
4790 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4791 		if (ei->i_extra_isize == 0) {
4792 			/* The extra space is currently unused. Use it. */
4793 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4794 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4795 					    EXT4_GOOD_OLD_INODE_SIZE;
4796 		} else {
4797 			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4798 			if (ret)
4799 				goto bad_inode;
4800 		}
4801 	}
4802 
4803 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4804 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4805 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4806 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4807 
4808 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4809 		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4810 
4811 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4812 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4813 				ivers |=
4814 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4815 		}
4816 		ext4_inode_set_iversion_queried(inode, ivers);
4817 	}
4818 
4819 	ret = 0;
4820 	if (ei->i_file_acl &&
4821 	    !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4822 		ext4_error_inode(inode, function, line, 0,
4823 				 "iget: bad extended attribute block %llu",
4824 				 ei->i_file_acl);
4825 		ret = -EFSCORRUPTED;
4826 		goto bad_inode;
4827 	} else if (!ext4_has_inline_data(inode)) {
4828 		/* validate the block references in the inode */
4829 		if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4830 			(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4831 			(S_ISLNK(inode->i_mode) &&
4832 			!ext4_inode_is_fast_symlink(inode)))) {
4833 			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4834 				ret = ext4_ext_check_inode(inode);
4835 			else
4836 				ret = ext4_ind_check_inode(inode);
4837 		}
4838 	}
4839 	if (ret)
4840 		goto bad_inode;
4841 
4842 	if (S_ISREG(inode->i_mode)) {
4843 		inode->i_op = &ext4_file_inode_operations;
4844 		inode->i_fop = &ext4_file_operations;
4845 		ext4_set_aops(inode);
4846 	} else if (S_ISDIR(inode->i_mode)) {
4847 		inode->i_op = &ext4_dir_inode_operations;
4848 		inode->i_fop = &ext4_dir_operations;
4849 	} else if (S_ISLNK(inode->i_mode)) {
4850 		/* VFS does not allow setting these so must be corruption */
4851 		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4852 			ext4_error_inode(inode, function, line, 0,
4853 					 "iget: immutable or append flags "
4854 					 "not allowed on symlinks");
4855 			ret = -EFSCORRUPTED;
4856 			goto bad_inode;
4857 		}
4858 		if (IS_ENCRYPTED(inode)) {
4859 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4860 			ext4_set_aops(inode);
4861 		} else if (ext4_inode_is_fast_symlink(inode)) {
4862 			inode->i_link = (char *)ei->i_data;
4863 			inode->i_op = &ext4_fast_symlink_inode_operations;
4864 			nd_terminate_link(ei->i_data, inode->i_size,
4865 				sizeof(ei->i_data) - 1);
4866 		} else {
4867 			inode->i_op = &ext4_symlink_inode_operations;
4868 			ext4_set_aops(inode);
4869 		}
4870 		inode_nohighmem(inode);
4871 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4872 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4873 		inode->i_op = &ext4_special_inode_operations;
4874 		if (raw_inode->i_block[0])
4875 			init_special_inode(inode, inode->i_mode,
4876 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4877 		else
4878 			init_special_inode(inode, inode->i_mode,
4879 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4880 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4881 		make_bad_inode(inode);
4882 	} else {
4883 		ret = -EFSCORRUPTED;
4884 		ext4_error_inode(inode, function, line, 0,
4885 				 "iget: bogus i_mode (%o)", inode->i_mode);
4886 		goto bad_inode;
4887 	}
4888 	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
4889 		ext4_error_inode(inode, function, line, 0,
4890 				 "casefold flag without casefold feature");
4891 	brelse(iloc.bh);
4892 
4893 	unlock_new_inode(inode);
4894 	return inode;
4895 
4896 bad_inode:
4897 	brelse(iloc.bh);
4898 	iget_failed(inode);
4899 	return ERR_PTR(ret);
4900 }
4901 
4902 static int ext4_inode_blocks_set(handle_t *handle,
4903 				struct ext4_inode *raw_inode,
4904 				struct ext4_inode_info *ei)
4905 {
4906 	struct inode *inode = &(ei->vfs_inode);
4907 	u64 i_blocks = READ_ONCE(inode->i_blocks);
4908 	struct super_block *sb = inode->i_sb;
4909 
4910 	if (i_blocks <= ~0U) {
4911 		/*
4912 		 * i_blocks can be represented in a 32 bit variable
4913 		 * as multiple of 512 bytes
4914 		 */
4915 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4916 		raw_inode->i_blocks_high = 0;
4917 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4918 		return 0;
4919 	}
4920 	if (!ext4_has_feature_huge_file(sb))
4921 		return -EFBIG;
4922 
4923 	if (i_blocks <= 0xffffffffffffULL) {
4924 		/*
4925 		 * i_blocks can be represented in a 48 bit variable
4926 		 * as multiple of 512 bytes
4927 		 */
4928 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4929 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4930 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4931 	} else {
4932 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4933 		/* i_block is stored in file system block size */
4934 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4935 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4936 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4937 	}
4938 	return 0;
4939 }
4940 
4941 static void __ext4_update_other_inode_time(struct super_block *sb,
4942 					   unsigned long orig_ino,
4943 					   unsigned long ino,
4944 					   struct ext4_inode *raw_inode)
4945 {
4946 	struct inode *inode;
4947 
4948 	inode = find_inode_by_ino_rcu(sb, ino);
4949 	if (!inode)
4950 		return;
4951 
4952 	if ((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4953 			       I_DIRTY_INODE)) ||
4954 	    ((inode->i_state & I_DIRTY_TIME) == 0))
4955 		return;
4956 
4957 	spin_lock(&inode->i_lock);
4958 	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4959 				I_DIRTY_INODE)) == 0) &&
4960 	    (inode->i_state & I_DIRTY_TIME)) {
4961 		struct ext4_inode_info	*ei = EXT4_I(inode);
4962 
4963 		inode->i_state &= ~I_DIRTY_TIME;
4964 		spin_unlock(&inode->i_lock);
4965 
4966 		spin_lock(&ei->i_raw_lock);
4967 		EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4968 		EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4969 		EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4970 		ext4_inode_csum_set(inode, raw_inode, ei);
4971 		spin_unlock(&ei->i_raw_lock);
4972 		trace_ext4_other_inode_update_time(inode, orig_ino);
4973 		return;
4974 	}
4975 	spin_unlock(&inode->i_lock);
4976 }
4977 
4978 /*
4979  * Opportunistically update the other time fields for other inodes in
4980  * the same inode table block.
4981  */
4982 static void ext4_update_other_inodes_time(struct super_block *sb,
4983 					  unsigned long orig_ino, char *buf)
4984 {
4985 	unsigned long ino;
4986 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4987 	int inode_size = EXT4_INODE_SIZE(sb);
4988 
4989 	/*
4990 	 * Calculate the first inode in the inode table block.  Inode
4991 	 * numbers are one-based.  That is, the first inode in a block
4992 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4993 	 */
4994 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4995 	rcu_read_lock();
4996 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4997 		if (ino == orig_ino)
4998 			continue;
4999 		__ext4_update_other_inode_time(sb, orig_ino, ino,
5000 					       (struct ext4_inode *)buf);
5001 	}
5002 	rcu_read_unlock();
5003 }
5004 
5005 /*
5006  * Post the struct inode info into an on-disk inode location in the
5007  * buffer-cache.  This gobbles the caller's reference to the
5008  * buffer_head in the inode location struct.
5009  *
5010  * The caller must have write access to iloc->bh.
5011  */
5012 static int ext4_do_update_inode(handle_t *handle,
5013 				struct inode *inode,
5014 				struct ext4_iloc *iloc)
5015 {
5016 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5017 	struct ext4_inode_info *ei = EXT4_I(inode);
5018 	struct buffer_head *bh = iloc->bh;
5019 	struct super_block *sb = inode->i_sb;
5020 	int err = 0, rc, block;
5021 	int need_datasync = 0, set_large_file = 0;
5022 	uid_t i_uid;
5023 	gid_t i_gid;
5024 	projid_t i_projid;
5025 
5026 	spin_lock(&ei->i_raw_lock);
5027 
5028 	/* For fields not tracked in the in-memory inode,
5029 	 * initialise them to zero for new inodes. */
5030 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5031 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5032 
5033 	err = ext4_inode_blocks_set(handle, raw_inode, ei);
5034 	if (err) {
5035 		spin_unlock(&ei->i_raw_lock);
5036 		goto out_brelse;
5037 	}
5038 
5039 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5040 	i_uid = i_uid_read(inode);
5041 	i_gid = i_gid_read(inode);
5042 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5043 	if (!(test_opt(inode->i_sb, NO_UID32))) {
5044 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5045 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5046 /*
5047  * Fix up interoperability with old kernels. Otherwise, old inodes get
5048  * re-used with the upper 16 bits of the uid/gid intact
5049  */
5050 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5051 			raw_inode->i_uid_high = 0;
5052 			raw_inode->i_gid_high = 0;
5053 		} else {
5054 			raw_inode->i_uid_high =
5055 				cpu_to_le16(high_16_bits(i_uid));
5056 			raw_inode->i_gid_high =
5057 				cpu_to_le16(high_16_bits(i_gid));
5058 		}
5059 	} else {
5060 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5061 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5062 		raw_inode->i_uid_high = 0;
5063 		raw_inode->i_gid_high = 0;
5064 	}
5065 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5066 
5067 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5068 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5069 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5070 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5071 
5072 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5073 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5074 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5075 		raw_inode->i_file_acl_high =
5076 			cpu_to_le16(ei->i_file_acl >> 32);
5077 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5078 	if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) {
5079 		ext4_isize_set(raw_inode, ei->i_disksize);
5080 		need_datasync = 1;
5081 	}
5082 	if (ei->i_disksize > 0x7fffffffULL) {
5083 		if (!ext4_has_feature_large_file(sb) ||
5084 				EXT4_SB(sb)->s_es->s_rev_level ==
5085 		    cpu_to_le32(EXT4_GOOD_OLD_REV))
5086 			set_large_file = 1;
5087 	}
5088 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5089 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5090 		if (old_valid_dev(inode->i_rdev)) {
5091 			raw_inode->i_block[0] =
5092 				cpu_to_le32(old_encode_dev(inode->i_rdev));
5093 			raw_inode->i_block[1] = 0;
5094 		} else {
5095 			raw_inode->i_block[0] = 0;
5096 			raw_inode->i_block[1] =
5097 				cpu_to_le32(new_encode_dev(inode->i_rdev));
5098 			raw_inode->i_block[2] = 0;
5099 		}
5100 	} else if (!ext4_has_inline_data(inode)) {
5101 		for (block = 0; block < EXT4_N_BLOCKS; block++)
5102 			raw_inode->i_block[block] = ei->i_data[block];
5103 	}
5104 
5105 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5106 		u64 ivers = ext4_inode_peek_iversion(inode);
5107 
5108 		raw_inode->i_disk_version = cpu_to_le32(ivers);
5109 		if (ei->i_extra_isize) {
5110 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5111 				raw_inode->i_version_hi =
5112 					cpu_to_le32(ivers >> 32);
5113 			raw_inode->i_extra_isize =
5114 				cpu_to_le16(ei->i_extra_isize);
5115 		}
5116 	}
5117 
5118 	BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5119 	       i_projid != EXT4_DEF_PROJID);
5120 
5121 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5122 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5123 		raw_inode->i_projid = cpu_to_le32(i_projid);
5124 
5125 	ext4_inode_csum_set(inode, raw_inode, ei);
5126 	spin_unlock(&ei->i_raw_lock);
5127 	if (inode->i_sb->s_flags & SB_LAZYTIME)
5128 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5129 					      bh->b_data);
5130 
5131 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5132 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5133 	if (!err)
5134 		err = rc;
5135 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5136 	if (set_large_file) {
5137 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5138 		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5139 		if (err)
5140 			goto out_brelse;
5141 		ext4_set_feature_large_file(sb);
5142 		ext4_handle_sync(handle);
5143 		err = ext4_handle_dirty_super(handle, sb);
5144 	}
5145 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5146 out_brelse:
5147 	brelse(bh);
5148 	ext4_std_error(inode->i_sb, err);
5149 	return err;
5150 }
5151 
5152 /*
5153  * ext4_write_inode()
5154  *
5155  * We are called from a few places:
5156  *
5157  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5158  *   Here, there will be no transaction running. We wait for any running
5159  *   transaction to commit.
5160  *
5161  * - Within flush work (sys_sync(), kupdate and such).
5162  *   We wait on commit, if told to.
5163  *
5164  * - Within iput_final() -> write_inode_now()
5165  *   We wait on commit, if told to.
5166  *
5167  * In all cases it is actually safe for us to return without doing anything,
5168  * because the inode has been copied into a raw inode buffer in
5169  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5170  * writeback.
5171  *
5172  * Note that we are absolutely dependent upon all inode dirtiers doing the
5173  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5174  * which we are interested.
5175  *
5176  * It would be a bug for them to not do this.  The code:
5177  *
5178  *	mark_inode_dirty(inode)
5179  *	stuff();
5180  *	inode->i_size = expr;
5181  *
5182  * is in error because write_inode() could occur while `stuff()' is running,
5183  * and the new i_size will be lost.  Plus the inode will no longer be on the
5184  * superblock's dirty inode list.
5185  */
5186 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5187 {
5188 	int err;
5189 
5190 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5191 	    sb_rdonly(inode->i_sb))
5192 		return 0;
5193 
5194 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5195 		return -EIO;
5196 
5197 	if (EXT4_SB(inode->i_sb)->s_journal) {
5198 		if (ext4_journal_current_handle()) {
5199 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5200 			dump_stack();
5201 			return -EIO;
5202 		}
5203 
5204 		/*
5205 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5206 		 * ext4_sync_fs() will force the commit after everything is
5207 		 * written.
5208 		 */
5209 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5210 			return 0;
5211 
5212 		err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5213 						EXT4_I(inode)->i_sync_tid);
5214 	} else {
5215 		struct ext4_iloc iloc;
5216 
5217 		err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5218 		if (err)
5219 			return err;
5220 		/*
5221 		 * sync(2) will flush the whole buffer cache. No need to do
5222 		 * it here separately for each inode.
5223 		 */
5224 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5225 			sync_dirty_buffer(iloc.bh);
5226 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5227 			ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5228 					       "IO error syncing inode");
5229 			err = -EIO;
5230 		}
5231 		brelse(iloc.bh);
5232 	}
5233 	return err;
5234 }
5235 
5236 /*
5237  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5238  * buffers that are attached to a page stradding i_size and are undergoing
5239  * commit. In that case we have to wait for commit to finish and try again.
5240  */
5241 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5242 {
5243 	struct page *page;
5244 	unsigned offset;
5245 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5246 	tid_t commit_tid = 0;
5247 	int ret;
5248 
5249 	offset = inode->i_size & (PAGE_SIZE - 1);
5250 	/*
5251 	 * If the page is fully truncated, we don't need to wait for any commit
5252 	 * (and we even should not as __ext4_journalled_invalidatepage() may
5253 	 * strip all buffers from the page but keep the page dirty which can then
5254 	 * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5255 	 * buffers). Also we don't need to wait for any commit if all buffers in
5256 	 * the page remain valid. This is most beneficial for the common case of
5257 	 * blocksize == PAGESIZE.
5258 	 */
5259 	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5260 		return;
5261 	while (1) {
5262 		page = find_lock_page(inode->i_mapping,
5263 				      inode->i_size >> PAGE_SHIFT);
5264 		if (!page)
5265 			return;
5266 		ret = __ext4_journalled_invalidatepage(page, offset,
5267 						PAGE_SIZE - offset);
5268 		unlock_page(page);
5269 		put_page(page);
5270 		if (ret != -EBUSY)
5271 			return;
5272 		commit_tid = 0;
5273 		read_lock(&journal->j_state_lock);
5274 		if (journal->j_committing_transaction)
5275 			commit_tid = journal->j_committing_transaction->t_tid;
5276 		read_unlock(&journal->j_state_lock);
5277 		if (commit_tid)
5278 			jbd2_log_wait_commit(journal, commit_tid);
5279 	}
5280 }
5281 
5282 /*
5283  * ext4_setattr()
5284  *
5285  * Called from notify_change.
5286  *
5287  * We want to trap VFS attempts to truncate the file as soon as
5288  * possible.  In particular, we want to make sure that when the VFS
5289  * shrinks i_size, we put the inode on the orphan list and modify
5290  * i_disksize immediately, so that during the subsequent flushing of
5291  * dirty pages and freeing of disk blocks, we can guarantee that any
5292  * commit will leave the blocks being flushed in an unused state on
5293  * disk.  (On recovery, the inode will get truncated and the blocks will
5294  * be freed, so we have a strong guarantee that no future commit will
5295  * leave these blocks visible to the user.)
5296  *
5297  * Another thing we have to assure is that if we are in ordered mode
5298  * and inode is still attached to the committing transaction, we must
5299  * we start writeout of all the dirty pages which are being truncated.
5300  * This way we are sure that all the data written in the previous
5301  * transaction are already on disk (truncate waits for pages under
5302  * writeback).
5303  *
5304  * Called with inode->i_mutex down.
5305  */
5306 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5307 {
5308 	struct inode *inode = d_inode(dentry);
5309 	int error, rc = 0;
5310 	int orphan = 0;
5311 	const unsigned int ia_valid = attr->ia_valid;
5312 
5313 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5314 		return -EIO;
5315 
5316 	if (unlikely(IS_IMMUTABLE(inode)))
5317 		return -EPERM;
5318 
5319 	if (unlikely(IS_APPEND(inode) &&
5320 		     (ia_valid & (ATTR_MODE | ATTR_UID |
5321 				  ATTR_GID | ATTR_TIMES_SET))))
5322 		return -EPERM;
5323 
5324 	error = setattr_prepare(dentry, attr);
5325 	if (error)
5326 		return error;
5327 
5328 	error = fscrypt_prepare_setattr(dentry, attr);
5329 	if (error)
5330 		return error;
5331 
5332 	error = fsverity_prepare_setattr(dentry, attr);
5333 	if (error)
5334 		return error;
5335 
5336 	if (is_quota_modification(inode, attr)) {
5337 		error = dquot_initialize(inode);
5338 		if (error)
5339 			return error;
5340 	}
5341 	ext4_fc_start_update(inode);
5342 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5343 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5344 		handle_t *handle;
5345 
5346 		/* (user+group)*(old+new) structure, inode write (sb,
5347 		 * inode block, ? - but truncate inode update has it) */
5348 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5349 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5350 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5351 		if (IS_ERR(handle)) {
5352 			error = PTR_ERR(handle);
5353 			goto err_out;
5354 		}
5355 
5356 		/* dquot_transfer() calls back ext4_get_inode_usage() which
5357 		 * counts xattr inode references.
5358 		 */
5359 		down_read(&EXT4_I(inode)->xattr_sem);
5360 		error = dquot_transfer(inode, attr);
5361 		up_read(&EXT4_I(inode)->xattr_sem);
5362 
5363 		if (error) {
5364 			ext4_journal_stop(handle);
5365 			ext4_fc_stop_update(inode);
5366 			return error;
5367 		}
5368 		/* Update corresponding info in inode so that everything is in
5369 		 * one transaction */
5370 		if (attr->ia_valid & ATTR_UID)
5371 			inode->i_uid = attr->ia_uid;
5372 		if (attr->ia_valid & ATTR_GID)
5373 			inode->i_gid = attr->ia_gid;
5374 		error = ext4_mark_inode_dirty(handle, inode);
5375 		ext4_journal_stop(handle);
5376 		if (unlikely(error))
5377 			return error;
5378 	}
5379 
5380 	if (attr->ia_valid & ATTR_SIZE) {
5381 		handle_t *handle;
5382 		loff_t oldsize = inode->i_size;
5383 		int shrink = (attr->ia_size < inode->i_size);
5384 
5385 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5386 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5387 
5388 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5389 				ext4_fc_stop_update(inode);
5390 				return -EFBIG;
5391 			}
5392 		}
5393 		if (!S_ISREG(inode->i_mode)) {
5394 			ext4_fc_stop_update(inode);
5395 			return -EINVAL;
5396 		}
5397 
5398 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5399 			inode_inc_iversion(inode);
5400 
5401 		if (shrink) {
5402 			if (ext4_should_order_data(inode)) {
5403 				error = ext4_begin_ordered_truncate(inode,
5404 							    attr->ia_size);
5405 				if (error)
5406 					goto err_out;
5407 			}
5408 			/*
5409 			 * Blocks are going to be removed from the inode. Wait
5410 			 * for dio in flight.
5411 			 */
5412 			inode_dio_wait(inode);
5413 		}
5414 
5415 		down_write(&EXT4_I(inode)->i_mmap_sem);
5416 
5417 		rc = ext4_break_layouts(inode);
5418 		if (rc) {
5419 			up_write(&EXT4_I(inode)->i_mmap_sem);
5420 			goto err_out;
5421 		}
5422 
5423 		if (attr->ia_size != inode->i_size) {
5424 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5425 			if (IS_ERR(handle)) {
5426 				error = PTR_ERR(handle);
5427 				goto out_mmap_sem;
5428 			}
5429 			if (ext4_handle_valid(handle) && shrink) {
5430 				error = ext4_orphan_add(handle, inode);
5431 				orphan = 1;
5432 			}
5433 			/*
5434 			 * Update c/mtime on truncate up, ext4_truncate() will
5435 			 * update c/mtime in shrink case below
5436 			 */
5437 			if (!shrink) {
5438 				inode->i_mtime = current_time(inode);
5439 				inode->i_ctime = inode->i_mtime;
5440 			}
5441 
5442 			if (shrink)
5443 				ext4_fc_track_range(inode,
5444 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5445 					inode->i_sb->s_blocksize_bits,
5446 					(oldsize > 0 ? oldsize - 1 : 0) >>
5447 					inode->i_sb->s_blocksize_bits);
5448 			else
5449 				ext4_fc_track_range(
5450 					inode,
5451 					(oldsize > 0 ? oldsize - 1 : oldsize) >>
5452 					inode->i_sb->s_blocksize_bits,
5453 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5454 					inode->i_sb->s_blocksize_bits);
5455 
5456 			down_write(&EXT4_I(inode)->i_data_sem);
5457 			EXT4_I(inode)->i_disksize = attr->ia_size;
5458 			rc = ext4_mark_inode_dirty(handle, inode);
5459 			if (!error)
5460 				error = rc;
5461 			/*
5462 			 * We have to update i_size under i_data_sem together
5463 			 * with i_disksize to avoid races with writeback code
5464 			 * running ext4_wb_update_i_disksize().
5465 			 */
5466 			if (!error)
5467 				i_size_write(inode, attr->ia_size);
5468 			up_write(&EXT4_I(inode)->i_data_sem);
5469 			ext4_journal_stop(handle);
5470 			if (error)
5471 				goto out_mmap_sem;
5472 			if (!shrink) {
5473 				pagecache_isize_extended(inode, oldsize,
5474 							 inode->i_size);
5475 			} else if (ext4_should_journal_data(inode)) {
5476 				ext4_wait_for_tail_page_commit(inode);
5477 			}
5478 		}
5479 
5480 		/*
5481 		 * Truncate pagecache after we've waited for commit
5482 		 * in data=journal mode to make pages freeable.
5483 		 */
5484 		truncate_pagecache(inode, inode->i_size);
5485 		/*
5486 		 * Call ext4_truncate() even if i_size didn't change to
5487 		 * truncate possible preallocated blocks.
5488 		 */
5489 		if (attr->ia_size <= oldsize) {
5490 			rc = ext4_truncate(inode);
5491 			if (rc)
5492 				error = rc;
5493 		}
5494 out_mmap_sem:
5495 		up_write(&EXT4_I(inode)->i_mmap_sem);
5496 	}
5497 
5498 	if (!error) {
5499 		setattr_copy(inode, attr);
5500 		mark_inode_dirty(inode);
5501 	}
5502 
5503 	/*
5504 	 * If the call to ext4_truncate failed to get a transaction handle at
5505 	 * all, we need to clean up the in-core orphan list manually.
5506 	 */
5507 	if (orphan && inode->i_nlink)
5508 		ext4_orphan_del(NULL, inode);
5509 
5510 	if (!error && (ia_valid & ATTR_MODE))
5511 		rc = posix_acl_chmod(inode, inode->i_mode);
5512 
5513 err_out:
5514 	if  (error)
5515 		ext4_std_error(inode->i_sb, error);
5516 	if (!error)
5517 		error = rc;
5518 	ext4_fc_stop_update(inode);
5519 	return error;
5520 }
5521 
5522 int ext4_getattr(const struct path *path, struct kstat *stat,
5523 		 u32 request_mask, unsigned int query_flags)
5524 {
5525 	struct inode *inode = d_inode(path->dentry);
5526 	struct ext4_inode *raw_inode;
5527 	struct ext4_inode_info *ei = EXT4_I(inode);
5528 	unsigned int flags;
5529 
5530 	if ((request_mask & STATX_BTIME) &&
5531 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5532 		stat->result_mask |= STATX_BTIME;
5533 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5534 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5535 	}
5536 
5537 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5538 	if (flags & EXT4_APPEND_FL)
5539 		stat->attributes |= STATX_ATTR_APPEND;
5540 	if (flags & EXT4_COMPR_FL)
5541 		stat->attributes |= STATX_ATTR_COMPRESSED;
5542 	if (flags & EXT4_ENCRYPT_FL)
5543 		stat->attributes |= STATX_ATTR_ENCRYPTED;
5544 	if (flags & EXT4_IMMUTABLE_FL)
5545 		stat->attributes |= STATX_ATTR_IMMUTABLE;
5546 	if (flags & EXT4_NODUMP_FL)
5547 		stat->attributes |= STATX_ATTR_NODUMP;
5548 	if (flags & EXT4_VERITY_FL)
5549 		stat->attributes |= STATX_ATTR_VERITY;
5550 
5551 	stat->attributes_mask |= (STATX_ATTR_APPEND |
5552 				  STATX_ATTR_COMPRESSED |
5553 				  STATX_ATTR_ENCRYPTED |
5554 				  STATX_ATTR_IMMUTABLE |
5555 				  STATX_ATTR_NODUMP |
5556 				  STATX_ATTR_VERITY);
5557 
5558 	generic_fillattr(inode, stat);
5559 	return 0;
5560 }
5561 
5562 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5563 		      u32 request_mask, unsigned int query_flags)
5564 {
5565 	struct inode *inode = d_inode(path->dentry);
5566 	u64 delalloc_blocks;
5567 
5568 	ext4_getattr(path, stat, request_mask, query_flags);
5569 
5570 	/*
5571 	 * If there is inline data in the inode, the inode will normally not
5572 	 * have data blocks allocated (it may have an external xattr block).
5573 	 * Report at least one sector for such files, so tools like tar, rsync,
5574 	 * others don't incorrectly think the file is completely sparse.
5575 	 */
5576 	if (unlikely(ext4_has_inline_data(inode)))
5577 		stat->blocks += (stat->size + 511) >> 9;
5578 
5579 	/*
5580 	 * We can't update i_blocks if the block allocation is delayed
5581 	 * otherwise in the case of system crash before the real block
5582 	 * allocation is done, we will have i_blocks inconsistent with
5583 	 * on-disk file blocks.
5584 	 * We always keep i_blocks updated together with real
5585 	 * allocation. But to not confuse with user, stat
5586 	 * will return the blocks that include the delayed allocation
5587 	 * blocks for this file.
5588 	 */
5589 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5590 				   EXT4_I(inode)->i_reserved_data_blocks);
5591 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5592 	return 0;
5593 }
5594 
5595 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5596 				   int pextents)
5597 {
5598 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5599 		return ext4_ind_trans_blocks(inode, lblocks);
5600 	return ext4_ext_index_trans_blocks(inode, pextents);
5601 }
5602 
5603 /*
5604  * Account for index blocks, block groups bitmaps and block group
5605  * descriptor blocks if modify datablocks and index blocks
5606  * worse case, the indexs blocks spread over different block groups
5607  *
5608  * If datablocks are discontiguous, they are possible to spread over
5609  * different block groups too. If they are contiguous, with flexbg,
5610  * they could still across block group boundary.
5611  *
5612  * Also account for superblock, inode, quota and xattr blocks
5613  */
5614 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5615 				  int pextents)
5616 {
5617 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5618 	int gdpblocks;
5619 	int idxblocks;
5620 	int ret = 0;
5621 
5622 	/*
5623 	 * How many index blocks need to touch to map @lblocks logical blocks
5624 	 * to @pextents physical extents?
5625 	 */
5626 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5627 
5628 	ret = idxblocks;
5629 
5630 	/*
5631 	 * Now let's see how many group bitmaps and group descriptors need
5632 	 * to account
5633 	 */
5634 	groups = idxblocks + pextents;
5635 	gdpblocks = groups;
5636 	if (groups > ngroups)
5637 		groups = ngroups;
5638 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5639 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5640 
5641 	/* bitmaps and block group descriptor blocks */
5642 	ret += groups + gdpblocks;
5643 
5644 	/* Blocks for super block, inode, quota and xattr blocks */
5645 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5646 
5647 	return ret;
5648 }
5649 
5650 /*
5651  * Calculate the total number of credits to reserve to fit
5652  * the modification of a single pages into a single transaction,
5653  * which may include multiple chunks of block allocations.
5654  *
5655  * This could be called via ext4_write_begin()
5656  *
5657  * We need to consider the worse case, when
5658  * one new block per extent.
5659  */
5660 int ext4_writepage_trans_blocks(struct inode *inode)
5661 {
5662 	int bpp = ext4_journal_blocks_per_page(inode);
5663 	int ret;
5664 
5665 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5666 
5667 	/* Account for data blocks for journalled mode */
5668 	if (ext4_should_journal_data(inode))
5669 		ret += bpp;
5670 	return ret;
5671 }
5672 
5673 /*
5674  * Calculate the journal credits for a chunk of data modification.
5675  *
5676  * This is called from DIO, fallocate or whoever calling
5677  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5678  *
5679  * journal buffers for data blocks are not included here, as DIO
5680  * and fallocate do no need to journal data buffers.
5681  */
5682 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5683 {
5684 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5685 }
5686 
5687 /*
5688  * The caller must have previously called ext4_reserve_inode_write().
5689  * Give this, we know that the caller already has write access to iloc->bh.
5690  */
5691 int ext4_mark_iloc_dirty(handle_t *handle,
5692 			 struct inode *inode, struct ext4_iloc *iloc)
5693 {
5694 	int err = 0;
5695 
5696 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5697 		put_bh(iloc->bh);
5698 		return -EIO;
5699 	}
5700 	ext4_fc_track_inode(inode);
5701 
5702 	if (IS_I_VERSION(inode))
5703 		inode_inc_iversion(inode);
5704 
5705 	/* the do_update_inode consumes one bh->b_count */
5706 	get_bh(iloc->bh);
5707 
5708 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5709 	err = ext4_do_update_inode(handle, inode, iloc);
5710 	put_bh(iloc->bh);
5711 	return err;
5712 }
5713 
5714 /*
5715  * On success, We end up with an outstanding reference count against
5716  * iloc->bh.  This _must_ be cleaned up later.
5717  */
5718 
5719 int
5720 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5721 			 struct ext4_iloc *iloc)
5722 {
5723 	int err;
5724 
5725 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5726 		return -EIO;
5727 
5728 	err = ext4_get_inode_loc(inode, iloc);
5729 	if (!err) {
5730 		BUFFER_TRACE(iloc->bh, "get_write_access");
5731 		err = ext4_journal_get_write_access(handle, iloc->bh);
5732 		if (err) {
5733 			brelse(iloc->bh);
5734 			iloc->bh = NULL;
5735 		}
5736 	}
5737 	ext4_std_error(inode->i_sb, err);
5738 	return err;
5739 }
5740 
5741 static int __ext4_expand_extra_isize(struct inode *inode,
5742 				     unsigned int new_extra_isize,
5743 				     struct ext4_iloc *iloc,
5744 				     handle_t *handle, int *no_expand)
5745 {
5746 	struct ext4_inode *raw_inode;
5747 	struct ext4_xattr_ibody_header *header;
5748 	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5749 	struct ext4_inode_info *ei = EXT4_I(inode);
5750 	int error;
5751 
5752 	/* this was checked at iget time, but double check for good measure */
5753 	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5754 	    (ei->i_extra_isize & 3)) {
5755 		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5756 				 ei->i_extra_isize,
5757 				 EXT4_INODE_SIZE(inode->i_sb));
5758 		return -EFSCORRUPTED;
5759 	}
5760 	if ((new_extra_isize < ei->i_extra_isize) ||
5761 	    (new_extra_isize < 4) ||
5762 	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5763 		return -EINVAL;	/* Should never happen */
5764 
5765 	raw_inode = ext4_raw_inode(iloc);
5766 
5767 	header = IHDR(inode, raw_inode);
5768 
5769 	/* No extended attributes present */
5770 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5771 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5772 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5773 		       EXT4_I(inode)->i_extra_isize, 0,
5774 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5775 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5776 		return 0;
5777 	}
5778 
5779 	/* try to expand with EAs present */
5780 	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5781 					   raw_inode, handle);
5782 	if (error) {
5783 		/*
5784 		 * Inode size expansion failed; don't try again
5785 		 */
5786 		*no_expand = 1;
5787 	}
5788 
5789 	return error;
5790 }
5791 
5792 /*
5793  * Expand an inode by new_extra_isize bytes.
5794  * Returns 0 on success or negative error number on failure.
5795  */
5796 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5797 					  unsigned int new_extra_isize,
5798 					  struct ext4_iloc iloc,
5799 					  handle_t *handle)
5800 {
5801 	int no_expand;
5802 	int error;
5803 
5804 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5805 		return -EOVERFLOW;
5806 
5807 	/*
5808 	 * In nojournal mode, we can immediately attempt to expand
5809 	 * the inode.  When journaled, we first need to obtain extra
5810 	 * buffer credits since we may write into the EA block
5811 	 * with this same handle. If journal_extend fails, then it will
5812 	 * only result in a minor loss of functionality for that inode.
5813 	 * If this is felt to be critical, then e2fsck should be run to
5814 	 * force a large enough s_min_extra_isize.
5815 	 */
5816 	if (ext4_journal_extend(handle,
5817 				EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5818 		return -ENOSPC;
5819 
5820 	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5821 		return -EBUSY;
5822 
5823 	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5824 					  handle, &no_expand);
5825 	ext4_write_unlock_xattr(inode, &no_expand);
5826 
5827 	return error;
5828 }
5829 
5830 int ext4_expand_extra_isize(struct inode *inode,
5831 			    unsigned int new_extra_isize,
5832 			    struct ext4_iloc *iloc)
5833 {
5834 	handle_t *handle;
5835 	int no_expand;
5836 	int error, rc;
5837 
5838 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5839 		brelse(iloc->bh);
5840 		return -EOVERFLOW;
5841 	}
5842 
5843 	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5844 				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5845 	if (IS_ERR(handle)) {
5846 		error = PTR_ERR(handle);
5847 		brelse(iloc->bh);
5848 		return error;
5849 	}
5850 
5851 	ext4_write_lock_xattr(inode, &no_expand);
5852 
5853 	BUFFER_TRACE(iloc->bh, "get_write_access");
5854 	error = ext4_journal_get_write_access(handle, iloc->bh);
5855 	if (error) {
5856 		brelse(iloc->bh);
5857 		goto out_unlock;
5858 	}
5859 
5860 	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5861 					  handle, &no_expand);
5862 
5863 	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5864 	if (!error)
5865 		error = rc;
5866 
5867 out_unlock:
5868 	ext4_write_unlock_xattr(inode, &no_expand);
5869 	ext4_journal_stop(handle);
5870 	return error;
5871 }
5872 
5873 /*
5874  * What we do here is to mark the in-core inode as clean with respect to inode
5875  * dirtiness (it may still be data-dirty).
5876  * This means that the in-core inode may be reaped by prune_icache
5877  * without having to perform any I/O.  This is a very good thing,
5878  * because *any* task may call prune_icache - even ones which
5879  * have a transaction open against a different journal.
5880  *
5881  * Is this cheating?  Not really.  Sure, we haven't written the
5882  * inode out, but prune_icache isn't a user-visible syncing function.
5883  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5884  * we start and wait on commits.
5885  */
5886 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5887 				const char *func, unsigned int line)
5888 {
5889 	struct ext4_iloc iloc;
5890 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5891 	int err;
5892 
5893 	might_sleep();
5894 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5895 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5896 	if (err)
5897 		goto out;
5898 
5899 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5900 		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5901 					       iloc, handle);
5902 
5903 	err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5904 out:
5905 	if (unlikely(err))
5906 		ext4_error_inode_err(inode, func, line, 0, err,
5907 					"mark_inode_dirty error");
5908 	return err;
5909 }
5910 
5911 /*
5912  * ext4_dirty_inode() is called from __mark_inode_dirty()
5913  *
5914  * We're really interested in the case where a file is being extended.
5915  * i_size has been changed by generic_commit_write() and we thus need
5916  * to include the updated inode in the current transaction.
5917  *
5918  * Also, dquot_alloc_block() will always dirty the inode when blocks
5919  * are allocated to the file.
5920  *
5921  * If the inode is marked synchronous, we don't honour that here - doing
5922  * so would cause a commit on atime updates, which we don't bother doing.
5923  * We handle synchronous inodes at the highest possible level.
5924  *
5925  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5926  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5927  * to copy into the on-disk inode structure are the timestamp files.
5928  */
5929 void ext4_dirty_inode(struct inode *inode, int flags)
5930 {
5931 	handle_t *handle;
5932 
5933 	if (flags == I_DIRTY_TIME)
5934 		return;
5935 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5936 	if (IS_ERR(handle))
5937 		goto out;
5938 
5939 	ext4_mark_inode_dirty(handle, inode);
5940 
5941 	ext4_journal_stop(handle);
5942 out:
5943 	return;
5944 }
5945 
5946 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5947 {
5948 	journal_t *journal;
5949 	handle_t *handle;
5950 	int err;
5951 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5952 
5953 	/*
5954 	 * We have to be very careful here: changing a data block's
5955 	 * journaling status dynamically is dangerous.  If we write a
5956 	 * data block to the journal, change the status and then delete
5957 	 * that block, we risk forgetting to revoke the old log record
5958 	 * from the journal and so a subsequent replay can corrupt data.
5959 	 * So, first we make sure that the journal is empty and that
5960 	 * nobody is changing anything.
5961 	 */
5962 
5963 	journal = EXT4_JOURNAL(inode);
5964 	if (!journal)
5965 		return 0;
5966 	if (is_journal_aborted(journal))
5967 		return -EROFS;
5968 
5969 	/* Wait for all existing dio workers */
5970 	inode_dio_wait(inode);
5971 
5972 	/*
5973 	 * Before flushing the journal and switching inode's aops, we have
5974 	 * to flush all dirty data the inode has. There can be outstanding
5975 	 * delayed allocations, there can be unwritten extents created by
5976 	 * fallocate or buffered writes in dioread_nolock mode covered by
5977 	 * dirty data which can be converted only after flushing the dirty
5978 	 * data (and journalled aops don't know how to handle these cases).
5979 	 */
5980 	if (val) {
5981 		down_write(&EXT4_I(inode)->i_mmap_sem);
5982 		err = filemap_write_and_wait(inode->i_mapping);
5983 		if (err < 0) {
5984 			up_write(&EXT4_I(inode)->i_mmap_sem);
5985 			return err;
5986 		}
5987 	}
5988 
5989 	percpu_down_write(&sbi->s_writepages_rwsem);
5990 	jbd2_journal_lock_updates(journal);
5991 
5992 	/*
5993 	 * OK, there are no updates running now, and all cached data is
5994 	 * synced to disk.  We are now in a completely consistent state
5995 	 * which doesn't have anything in the journal, and we know that
5996 	 * no filesystem updates are running, so it is safe to modify
5997 	 * the inode's in-core data-journaling state flag now.
5998 	 */
5999 
6000 	if (val)
6001 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6002 	else {
6003 		err = jbd2_journal_flush(journal);
6004 		if (err < 0) {
6005 			jbd2_journal_unlock_updates(journal);
6006 			percpu_up_write(&sbi->s_writepages_rwsem);
6007 			return err;
6008 		}
6009 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6010 	}
6011 	ext4_set_aops(inode);
6012 
6013 	jbd2_journal_unlock_updates(journal);
6014 	percpu_up_write(&sbi->s_writepages_rwsem);
6015 
6016 	if (val)
6017 		up_write(&EXT4_I(inode)->i_mmap_sem);
6018 
6019 	/* Finally we can mark the inode as dirty. */
6020 
6021 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6022 	if (IS_ERR(handle))
6023 		return PTR_ERR(handle);
6024 
6025 	ext4_fc_mark_ineligible(inode->i_sb,
6026 		EXT4_FC_REASON_JOURNAL_FLAG_CHANGE);
6027 	err = ext4_mark_inode_dirty(handle, inode);
6028 	ext4_handle_sync(handle);
6029 	ext4_journal_stop(handle);
6030 	ext4_std_error(inode->i_sb, err);
6031 
6032 	return err;
6033 }
6034 
6035 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6036 {
6037 	return !buffer_mapped(bh);
6038 }
6039 
6040 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6041 {
6042 	struct vm_area_struct *vma = vmf->vma;
6043 	struct page *page = vmf->page;
6044 	loff_t size;
6045 	unsigned long len;
6046 	int err;
6047 	vm_fault_t ret;
6048 	struct file *file = vma->vm_file;
6049 	struct inode *inode = file_inode(file);
6050 	struct address_space *mapping = inode->i_mapping;
6051 	handle_t *handle;
6052 	get_block_t *get_block;
6053 	int retries = 0;
6054 
6055 	if (unlikely(IS_IMMUTABLE(inode)))
6056 		return VM_FAULT_SIGBUS;
6057 
6058 	sb_start_pagefault(inode->i_sb);
6059 	file_update_time(vma->vm_file);
6060 
6061 	down_read(&EXT4_I(inode)->i_mmap_sem);
6062 
6063 	err = ext4_convert_inline_data(inode);
6064 	if (err)
6065 		goto out_ret;
6066 
6067 	/*
6068 	 * On data journalling we skip straight to the transaction handle:
6069 	 * there's no delalloc; page truncated will be checked later; the
6070 	 * early return w/ all buffers mapped (calculates size/len) can't
6071 	 * be used; and there's no dioread_nolock, so only ext4_get_block.
6072 	 */
6073 	if (ext4_should_journal_data(inode))
6074 		goto retry_alloc;
6075 
6076 	/* Delalloc case is easy... */
6077 	if (test_opt(inode->i_sb, DELALLOC) &&
6078 	    !ext4_nonda_switch(inode->i_sb)) {
6079 		do {
6080 			err = block_page_mkwrite(vma, vmf,
6081 						   ext4_da_get_block_prep);
6082 		} while (err == -ENOSPC &&
6083 		       ext4_should_retry_alloc(inode->i_sb, &retries));
6084 		goto out_ret;
6085 	}
6086 
6087 	lock_page(page);
6088 	size = i_size_read(inode);
6089 	/* Page got truncated from under us? */
6090 	if (page->mapping != mapping || page_offset(page) > size) {
6091 		unlock_page(page);
6092 		ret = VM_FAULT_NOPAGE;
6093 		goto out;
6094 	}
6095 
6096 	if (page->index == size >> PAGE_SHIFT)
6097 		len = size & ~PAGE_MASK;
6098 	else
6099 		len = PAGE_SIZE;
6100 	/*
6101 	 * Return if we have all the buffers mapped. This avoids the need to do
6102 	 * journal_start/journal_stop which can block and take a long time
6103 	 *
6104 	 * This cannot be done for data journalling, as we have to add the
6105 	 * inode to the transaction's list to writeprotect pages on commit.
6106 	 */
6107 	if (page_has_buffers(page)) {
6108 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6109 					    0, len, NULL,
6110 					    ext4_bh_unmapped)) {
6111 			/* Wait so that we don't change page under IO */
6112 			wait_for_stable_page(page);
6113 			ret = VM_FAULT_LOCKED;
6114 			goto out;
6115 		}
6116 	}
6117 	unlock_page(page);
6118 	/* OK, we need to fill the hole... */
6119 	if (ext4_should_dioread_nolock(inode))
6120 		get_block = ext4_get_block_unwritten;
6121 	else
6122 		get_block = ext4_get_block;
6123 retry_alloc:
6124 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6125 				    ext4_writepage_trans_blocks(inode));
6126 	if (IS_ERR(handle)) {
6127 		ret = VM_FAULT_SIGBUS;
6128 		goto out;
6129 	}
6130 	/*
6131 	 * Data journalling can't use block_page_mkwrite() because it
6132 	 * will set_buffer_dirty() before do_journal_get_write_access()
6133 	 * thus might hit warning messages for dirty metadata buffers.
6134 	 */
6135 	if (!ext4_should_journal_data(inode)) {
6136 		err = block_page_mkwrite(vma, vmf, get_block);
6137 	} else {
6138 		lock_page(page);
6139 		size = i_size_read(inode);
6140 		/* Page got truncated from under us? */
6141 		if (page->mapping != mapping || page_offset(page) > size) {
6142 			ret = VM_FAULT_NOPAGE;
6143 			goto out_error;
6144 		}
6145 
6146 		if (page->index == size >> PAGE_SHIFT)
6147 			len = size & ~PAGE_MASK;
6148 		else
6149 			len = PAGE_SIZE;
6150 
6151 		err = __block_write_begin(page, 0, len, ext4_get_block);
6152 		if (!err) {
6153 			ret = VM_FAULT_SIGBUS;
6154 			if (ext4_walk_page_buffers(handle, page_buffers(page),
6155 					0, len, NULL, do_journal_get_write_access))
6156 				goto out_error;
6157 			if (ext4_walk_page_buffers(handle, page_buffers(page),
6158 					0, len, NULL, write_end_fn))
6159 				goto out_error;
6160 			if (ext4_jbd2_inode_add_write(handle, inode, 0, len))
6161 				goto out_error;
6162 			ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6163 		} else {
6164 			unlock_page(page);
6165 		}
6166 	}
6167 	ext4_journal_stop(handle);
6168 	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6169 		goto retry_alloc;
6170 out_ret:
6171 	ret = block_page_mkwrite_return(err);
6172 out:
6173 	up_read(&EXT4_I(inode)->i_mmap_sem);
6174 	sb_end_pagefault(inode->i_sb);
6175 	return ret;
6176 out_error:
6177 	unlock_page(page);
6178 	ext4_journal_stop(handle);
6179 	goto out;
6180 }
6181 
6182 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6183 {
6184 	struct inode *inode = file_inode(vmf->vma->vm_file);
6185 	vm_fault_t ret;
6186 
6187 	down_read(&EXT4_I(inode)->i_mmap_sem);
6188 	ret = filemap_fault(vmf);
6189 	up_read(&EXT4_I(inode)->i_mmap_sem);
6190 
6191 	return ret;
6192 }
6193