1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/inode.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * 64-bit file support on 64-bit platforms by Jakub Jelinek 17 * (jj@sunsite.ms.mff.cuni.cz) 18 * 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/mount.h> 24 #include <linux/time.h> 25 #include <linux/highuid.h> 26 #include <linux/pagemap.h> 27 #include <linux/dax.h> 28 #include <linux/quotaops.h> 29 #include <linux/string.h> 30 #include <linux/buffer_head.h> 31 #include <linux/writeback.h> 32 #include <linux/pagevec.h> 33 #include <linux/mpage.h> 34 #include <linux/namei.h> 35 #include <linux/uio.h> 36 #include <linux/bio.h> 37 #include <linux/workqueue.h> 38 #include <linux/kernel.h> 39 #include <linux/printk.h> 40 #include <linux/slab.h> 41 #include <linux/bitops.h> 42 #include <linux/iomap.h> 43 #include <linux/iversion.h> 44 45 #include "ext4_jbd2.h" 46 #include "xattr.h" 47 #include "acl.h" 48 #include "truncate.h" 49 50 #include <trace/events/ext4.h> 51 52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 53 struct ext4_inode_info *ei) 54 { 55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 56 __u32 csum; 57 __u16 dummy_csum = 0; 58 int offset = offsetof(struct ext4_inode, i_checksum_lo); 59 unsigned int csum_size = sizeof(dummy_csum); 60 61 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset); 62 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size); 63 offset += csum_size; 64 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 65 EXT4_GOOD_OLD_INODE_SIZE - offset); 66 67 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 68 offset = offsetof(struct ext4_inode, i_checksum_hi); 69 csum = ext4_chksum(sbi, csum, (__u8 *)raw + 70 EXT4_GOOD_OLD_INODE_SIZE, 71 offset - EXT4_GOOD_OLD_INODE_SIZE); 72 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 73 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, 74 csum_size); 75 offset += csum_size; 76 } 77 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 78 EXT4_INODE_SIZE(inode->i_sb) - offset); 79 } 80 81 return csum; 82 } 83 84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 85 struct ext4_inode_info *ei) 86 { 87 __u32 provided, calculated; 88 89 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 90 cpu_to_le32(EXT4_OS_LINUX) || 91 !ext4_has_metadata_csum(inode->i_sb)) 92 return 1; 93 94 provided = le16_to_cpu(raw->i_checksum_lo); 95 calculated = ext4_inode_csum(inode, raw, ei); 96 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 97 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 98 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 99 else 100 calculated &= 0xFFFF; 101 102 return provided == calculated; 103 } 104 105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 106 struct ext4_inode_info *ei) 107 { 108 __u32 csum; 109 110 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 111 cpu_to_le32(EXT4_OS_LINUX) || 112 !ext4_has_metadata_csum(inode->i_sb)) 113 return; 114 115 csum = ext4_inode_csum(inode, raw, ei); 116 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 117 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 118 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 119 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 120 } 121 122 static inline int ext4_begin_ordered_truncate(struct inode *inode, 123 loff_t new_size) 124 { 125 trace_ext4_begin_ordered_truncate(inode, new_size); 126 /* 127 * If jinode is zero, then we never opened the file for 128 * writing, so there's no need to call 129 * jbd2_journal_begin_ordered_truncate() since there's no 130 * outstanding writes we need to flush. 131 */ 132 if (!EXT4_I(inode)->jinode) 133 return 0; 134 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 135 EXT4_I(inode)->jinode, 136 new_size); 137 } 138 139 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 140 int pextents); 141 142 /* 143 * Test whether an inode is a fast symlink. 144 * A fast symlink has its symlink data stored in ext4_inode_info->i_data. 145 */ 146 int ext4_inode_is_fast_symlink(struct inode *inode) 147 { 148 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 149 int ea_blocks = EXT4_I(inode)->i_file_acl ? 150 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 151 152 if (ext4_has_inline_data(inode)) 153 return 0; 154 155 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 156 } 157 return S_ISLNK(inode->i_mode) && inode->i_size && 158 (inode->i_size < EXT4_N_BLOCKS * 4); 159 } 160 161 /* 162 * Called at the last iput() if i_nlink is zero. 163 */ 164 void ext4_evict_inode(struct inode *inode) 165 { 166 handle_t *handle; 167 int err; 168 /* 169 * Credits for final inode cleanup and freeing: 170 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor 171 * (xattr block freeing), bitmap, group descriptor (inode freeing) 172 */ 173 int extra_credits = 6; 174 struct ext4_xattr_inode_array *ea_inode_array = NULL; 175 bool freeze_protected = false; 176 177 trace_ext4_evict_inode(inode); 178 179 if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL) 180 ext4_evict_ea_inode(inode); 181 if (inode->i_nlink) { 182 truncate_inode_pages_final(&inode->i_data); 183 184 goto no_delete; 185 } 186 187 if (is_bad_inode(inode)) 188 goto no_delete; 189 dquot_initialize(inode); 190 191 if (ext4_should_order_data(inode)) 192 ext4_begin_ordered_truncate(inode, 0); 193 truncate_inode_pages_final(&inode->i_data); 194 195 /* 196 * For inodes with journalled data, transaction commit could have 197 * dirtied the inode. And for inodes with dioread_nolock, unwritten 198 * extents converting worker could merge extents and also have dirtied 199 * the inode. Flush worker is ignoring it because of I_FREEING flag but 200 * we still need to remove the inode from the writeback lists. 201 */ 202 if (!list_empty_careful(&inode->i_io_list)) 203 inode_io_list_del(inode); 204 205 /* 206 * Protect us against freezing - iput() caller didn't have to have any 207 * protection against it. When we are in a running transaction though, 208 * we are already protected against freezing and we cannot grab further 209 * protection due to lock ordering constraints. 210 */ 211 if (!ext4_journal_current_handle()) { 212 sb_start_intwrite(inode->i_sb); 213 freeze_protected = true; 214 } 215 216 if (!IS_NOQUOTA(inode)) 217 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); 218 219 /* 220 * Block bitmap, group descriptor, and inode are accounted in both 221 * ext4_blocks_for_truncate() and extra_credits. So subtract 3. 222 */ 223 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 224 ext4_blocks_for_truncate(inode) + extra_credits - 3); 225 if (IS_ERR(handle)) { 226 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 227 /* 228 * If we're going to skip the normal cleanup, we still need to 229 * make sure that the in-core orphan linked list is properly 230 * cleaned up. 231 */ 232 ext4_orphan_del(NULL, inode); 233 if (freeze_protected) 234 sb_end_intwrite(inode->i_sb); 235 goto no_delete; 236 } 237 238 if (IS_SYNC(inode)) 239 ext4_handle_sync(handle); 240 241 /* 242 * Set inode->i_size to 0 before calling ext4_truncate(). We need 243 * special handling of symlinks here because i_size is used to 244 * determine whether ext4_inode_info->i_data contains symlink data or 245 * block mappings. Setting i_size to 0 will remove its fast symlink 246 * status. Erase i_data so that it becomes a valid empty block map. 247 */ 248 if (ext4_inode_is_fast_symlink(inode)) 249 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data)); 250 inode->i_size = 0; 251 err = ext4_mark_inode_dirty(handle, inode); 252 if (err) { 253 ext4_warning(inode->i_sb, 254 "couldn't mark inode dirty (err %d)", err); 255 goto stop_handle; 256 } 257 if (inode->i_blocks) { 258 err = ext4_truncate(inode); 259 if (err) { 260 ext4_error_err(inode->i_sb, -err, 261 "couldn't truncate inode %lu (err %d)", 262 inode->i_ino, err); 263 goto stop_handle; 264 } 265 } 266 267 /* Remove xattr references. */ 268 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array, 269 extra_credits); 270 if (err) { 271 ext4_warning(inode->i_sb, "xattr delete (err %d)", err); 272 stop_handle: 273 ext4_journal_stop(handle); 274 ext4_orphan_del(NULL, inode); 275 if (freeze_protected) 276 sb_end_intwrite(inode->i_sb); 277 ext4_xattr_inode_array_free(ea_inode_array); 278 goto no_delete; 279 } 280 281 /* 282 * Kill off the orphan record which ext4_truncate created. 283 * AKPM: I think this can be inside the above `if'. 284 * Note that ext4_orphan_del() has to be able to cope with the 285 * deletion of a non-existent orphan - this is because we don't 286 * know if ext4_truncate() actually created an orphan record. 287 * (Well, we could do this if we need to, but heck - it works) 288 */ 289 ext4_orphan_del(handle, inode); 290 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds(); 291 292 /* 293 * One subtle ordering requirement: if anything has gone wrong 294 * (transaction abort, IO errors, whatever), then we can still 295 * do these next steps (the fs will already have been marked as 296 * having errors), but we can't free the inode if the mark_dirty 297 * fails. 298 */ 299 if (ext4_mark_inode_dirty(handle, inode)) 300 /* If that failed, just do the required in-core inode clear. */ 301 ext4_clear_inode(inode); 302 else 303 ext4_free_inode(handle, inode); 304 ext4_journal_stop(handle); 305 if (freeze_protected) 306 sb_end_intwrite(inode->i_sb); 307 ext4_xattr_inode_array_free(ea_inode_array); 308 return; 309 no_delete: 310 /* 311 * Check out some where else accidentally dirty the evicting inode, 312 * which may probably cause inode use-after-free issues later. 313 */ 314 WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list)); 315 316 if (!list_empty(&EXT4_I(inode)->i_fc_list)) 317 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL); 318 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 319 } 320 321 #ifdef CONFIG_QUOTA 322 qsize_t *ext4_get_reserved_space(struct inode *inode) 323 { 324 return &EXT4_I(inode)->i_reserved_quota; 325 } 326 #endif 327 328 /* 329 * Called with i_data_sem down, which is important since we can call 330 * ext4_discard_preallocations() from here. 331 */ 332 void ext4_da_update_reserve_space(struct inode *inode, 333 int used, int quota_claim) 334 { 335 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 336 struct ext4_inode_info *ei = EXT4_I(inode); 337 338 spin_lock(&ei->i_block_reservation_lock); 339 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 340 if (unlikely(used > ei->i_reserved_data_blocks)) { 341 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 342 "with only %d reserved data blocks", 343 __func__, inode->i_ino, used, 344 ei->i_reserved_data_blocks); 345 WARN_ON(1); 346 used = ei->i_reserved_data_blocks; 347 } 348 349 /* Update per-inode reservations */ 350 ei->i_reserved_data_blocks -= used; 351 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 352 353 spin_unlock(&ei->i_block_reservation_lock); 354 355 /* Update quota subsystem for data blocks */ 356 if (quota_claim) 357 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 358 else { 359 /* 360 * We did fallocate with an offset that is already delayed 361 * allocated. So on delayed allocated writeback we should 362 * not re-claim the quota for fallocated blocks. 363 */ 364 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 365 } 366 367 /* 368 * If we have done all the pending block allocations and if 369 * there aren't any writers on the inode, we can discard the 370 * inode's preallocations. 371 */ 372 if ((ei->i_reserved_data_blocks == 0) && 373 !inode_is_open_for_write(inode)) 374 ext4_discard_preallocations(inode, 0); 375 } 376 377 static int __check_block_validity(struct inode *inode, const char *func, 378 unsigned int line, 379 struct ext4_map_blocks *map) 380 { 381 if (ext4_has_feature_journal(inode->i_sb) && 382 (inode->i_ino == 383 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum))) 384 return 0; 385 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) { 386 ext4_error_inode(inode, func, line, map->m_pblk, 387 "lblock %lu mapped to illegal pblock %llu " 388 "(length %d)", (unsigned long) map->m_lblk, 389 map->m_pblk, map->m_len); 390 return -EFSCORRUPTED; 391 } 392 return 0; 393 } 394 395 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 396 ext4_lblk_t len) 397 { 398 int ret; 399 400 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) 401 return fscrypt_zeroout_range(inode, lblk, pblk, len); 402 403 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 404 if (ret > 0) 405 ret = 0; 406 407 return ret; 408 } 409 410 #define check_block_validity(inode, map) \ 411 __check_block_validity((inode), __func__, __LINE__, (map)) 412 413 #ifdef ES_AGGRESSIVE_TEST 414 static void ext4_map_blocks_es_recheck(handle_t *handle, 415 struct inode *inode, 416 struct ext4_map_blocks *es_map, 417 struct ext4_map_blocks *map, 418 int flags) 419 { 420 int retval; 421 422 map->m_flags = 0; 423 /* 424 * There is a race window that the result is not the same. 425 * e.g. xfstests #223 when dioread_nolock enables. The reason 426 * is that we lookup a block mapping in extent status tree with 427 * out taking i_data_sem. So at the time the unwritten extent 428 * could be converted. 429 */ 430 down_read(&EXT4_I(inode)->i_data_sem); 431 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 432 retval = ext4_ext_map_blocks(handle, inode, map, 0); 433 } else { 434 retval = ext4_ind_map_blocks(handle, inode, map, 0); 435 } 436 up_read((&EXT4_I(inode)->i_data_sem)); 437 438 /* 439 * We don't check m_len because extent will be collpased in status 440 * tree. So the m_len might not equal. 441 */ 442 if (es_map->m_lblk != map->m_lblk || 443 es_map->m_flags != map->m_flags || 444 es_map->m_pblk != map->m_pblk) { 445 printk("ES cache assertion failed for inode: %lu " 446 "es_cached ex [%d/%d/%llu/%x] != " 447 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 448 inode->i_ino, es_map->m_lblk, es_map->m_len, 449 es_map->m_pblk, es_map->m_flags, map->m_lblk, 450 map->m_len, map->m_pblk, map->m_flags, 451 retval, flags); 452 } 453 } 454 #endif /* ES_AGGRESSIVE_TEST */ 455 456 /* 457 * The ext4_map_blocks() function tries to look up the requested blocks, 458 * and returns if the blocks are already mapped. 459 * 460 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 461 * and store the allocated blocks in the result buffer head and mark it 462 * mapped. 463 * 464 * If file type is extents based, it will call ext4_ext_map_blocks(), 465 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 466 * based files 467 * 468 * On success, it returns the number of blocks being mapped or allocated. if 469 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map 470 * is marked as unwritten. If the create == 1, it will mark @map as mapped. 471 * 472 * It returns 0 if plain look up failed (blocks have not been allocated), in 473 * that case, @map is returned as unmapped but we still do fill map->m_len to 474 * indicate the length of a hole starting at map->m_lblk. 475 * 476 * It returns the error in case of allocation failure. 477 */ 478 int ext4_map_blocks(handle_t *handle, struct inode *inode, 479 struct ext4_map_blocks *map, int flags) 480 { 481 struct extent_status es; 482 int retval; 483 int ret = 0; 484 #ifdef ES_AGGRESSIVE_TEST 485 struct ext4_map_blocks orig_map; 486 487 memcpy(&orig_map, map, sizeof(*map)); 488 #endif 489 490 map->m_flags = 0; 491 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n", 492 flags, map->m_len, (unsigned long) map->m_lblk); 493 494 /* 495 * ext4_map_blocks returns an int, and m_len is an unsigned int 496 */ 497 if (unlikely(map->m_len > INT_MAX)) 498 map->m_len = INT_MAX; 499 500 /* We can handle the block number less than EXT_MAX_BLOCKS */ 501 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 502 return -EFSCORRUPTED; 503 504 /* Lookup extent status tree firstly */ 505 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) && 506 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 507 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 508 map->m_pblk = ext4_es_pblock(&es) + 509 map->m_lblk - es.es_lblk; 510 map->m_flags |= ext4_es_is_written(&es) ? 511 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 512 retval = es.es_len - (map->m_lblk - es.es_lblk); 513 if (retval > map->m_len) 514 retval = map->m_len; 515 map->m_len = retval; 516 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 517 map->m_pblk = 0; 518 retval = es.es_len - (map->m_lblk - es.es_lblk); 519 if (retval > map->m_len) 520 retval = map->m_len; 521 map->m_len = retval; 522 retval = 0; 523 } else { 524 BUG(); 525 } 526 527 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT) 528 return retval; 529 #ifdef ES_AGGRESSIVE_TEST 530 ext4_map_blocks_es_recheck(handle, inode, map, 531 &orig_map, flags); 532 #endif 533 goto found; 534 } 535 /* 536 * In the query cache no-wait mode, nothing we can do more if we 537 * cannot find extent in the cache. 538 */ 539 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT) 540 return 0; 541 542 /* 543 * Try to see if we can get the block without requesting a new 544 * file system block. 545 */ 546 down_read(&EXT4_I(inode)->i_data_sem); 547 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 548 retval = ext4_ext_map_blocks(handle, inode, map, 0); 549 } else { 550 retval = ext4_ind_map_blocks(handle, inode, map, 0); 551 } 552 if (retval > 0) { 553 unsigned int status; 554 555 if (unlikely(retval != map->m_len)) { 556 ext4_warning(inode->i_sb, 557 "ES len assertion failed for inode " 558 "%lu: retval %d != map->m_len %d", 559 inode->i_ino, retval, map->m_len); 560 WARN_ON(1); 561 } 562 563 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 564 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 565 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 566 !(status & EXTENT_STATUS_WRITTEN) && 567 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 568 map->m_lblk + map->m_len - 1)) 569 status |= EXTENT_STATUS_DELAYED; 570 ret = ext4_es_insert_extent(inode, map->m_lblk, 571 map->m_len, map->m_pblk, status); 572 if (ret < 0) 573 retval = ret; 574 } 575 up_read((&EXT4_I(inode)->i_data_sem)); 576 577 found: 578 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 579 ret = check_block_validity(inode, map); 580 if (ret != 0) 581 return ret; 582 } 583 584 /* If it is only a block(s) look up */ 585 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 586 return retval; 587 588 /* 589 * Returns if the blocks have already allocated 590 * 591 * Note that if blocks have been preallocated 592 * ext4_ext_get_block() returns the create = 0 593 * with buffer head unmapped. 594 */ 595 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 596 /* 597 * If we need to convert extent to unwritten 598 * we continue and do the actual work in 599 * ext4_ext_map_blocks() 600 */ 601 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 602 return retval; 603 604 /* 605 * Here we clear m_flags because after allocating an new extent, 606 * it will be set again. 607 */ 608 map->m_flags &= ~EXT4_MAP_FLAGS; 609 610 /* 611 * New blocks allocate and/or writing to unwritten extent 612 * will possibly result in updating i_data, so we take 613 * the write lock of i_data_sem, and call get_block() 614 * with create == 1 flag. 615 */ 616 down_write(&EXT4_I(inode)->i_data_sem); 617 618 /* 619 * We need to check for EXT4 here because migrate 620 * could have changed the inode type in between 621 */ 622 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 623 retval = ext4_ext_map_blocks(handle, inode, map, flags); 624 } else { 625 retval = ext4_ind_map_blocks(handle, inode, map, flags); 626 627 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 628 /* 629 * We allocated new blocks which will result in 630 * i_data's format changing. Force the migrate 631 * to fail by clearing migrate flags 632 */ 633 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 634 } 635 636 /* 637 * Update reserved blocks/metadata blocks after successful 638 * block allocation which had been deferred till now. We don't 639 * support fallocate for non extent files. So we can update 640 * reserve space here. 641 */ 642 if ((retval > 0) && 643 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 644 ext4_da_update_reserve_space(inode, retval, 1); 645 } 646 647 if (retval > 0) { 648 unsigned int status; 649 650 if (unlikely(retval != map->m_len)) { 651 ext4_warning(inode->i_sb, 652 "ES len assertion failed for inode " 653 "%lu: retval %d != map->m_len %d", 654 inode->i_ino, retval, map->m_len); 655 WARN_ON(1); 656 } 657 658 /* 659 * We have to zeroout blocks before inserting them into extent 660 * status tree. Otherwise someone could look them up there and 661 * use them before they are really zeroed. We also have to 662 * unmap metadata before zeroing as otherwise writeback can 663 * overwrite zeros with stale data from block device. 664 */ 665 if (flags & EXT4_GET_BLOCKS_ZERO && 666 map->m_flags & EXT4_MAP_MAPPED && 667 map->m_flags & EXT4_MAP_NEW) { 668 ret = ext4_issue_zeroout(inode, map->m_lblk, 669 map->m_pblk, map->m_len); 670 if (ret) { 671 retval = ret; 672 goto out_sem; 673 } 674 } 675 676 /* 677 * If the extent has been zeroed out, we don't need to update 678 * extent status tree. 679 */ 680 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 681 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 682 if (ext4_es_is_written(&es)) 683 goto out_sem; 684 } 685 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 686 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 687 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 688 !(status & EXTENT_STATUS_WRITTEN) && 689 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 690 map->m_lblk + map->m_len - 1)) 691 status |= EXTENT_STATUS_DELAYED; 692 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 693 map->m_pblk, status); 694 if (ret < 0) { 695 retval = ret; 696 goto out_sem; 697 } 698 } 699 700 out_sem: 701 up_write((&EXT4_I(inode)->i_data_sem)); 702 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 703 ret = check_block_validity(inode, map); 704 if (ret != 0) 705 return ret; 706 707 /* 708 * Inodes with freshly allocated blocks where contents will be 709 * visible after transaction commit must be on transaction's 710 * ordered data list. 711 */ 712 if (map->m_flags & EXT4_MAP_NEW && 713 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 714 !(flags & EXT4_GET_BLOCKS_ZERO) && 715 !ext4_is_quota_file(inode) && 716 ext4_should_order_data(inode)) { 717 loff_t start_byte = 718 (loff_t)map->m_lblk << inode->i_blkbits; 719 loff_t length = (loff_t)map->m_len << inode->i_blkbits; 720 721 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 722 ret = ext4_jbd2_inode_add_wait(handle, inode, 723 start_byte, length); 724 else 725 ret = ext4_jbd2_inode_add_write(handle, inode, 726 start_byte, length); 727 if (ret) 728 return ret; 729 } 730 } 731 if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN || 732 map->m_flags & EXT4_MAP_MAPPED)) 733 ext4_fc_track_range(handle, inode, map->m_lblk, 734 map->m_lblk + map->m_len - 1); 735 if (retval < 0) 736 ext_debug(inode, "failed with err %d\n", retval); 737 return retval; 738 } 739 740 /* 741 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 742 * we have to be careful as someone else may be manipulating b_state as well. 743 */ 744 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 745 { 746 unsigned long old_state; 747 unsigned long new_state; 748 749 flags &= EXT4_MAP_FLAGS; 750 751 /* Dummy buffer_head? Set non-atomically. */ 752 if (!bh->b_page) { 753 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 754 return; 755 } 756 /* 757 * Someone else may be modifying b_state. Be careful! This is ugly but 758 * once we get rid of using bh as a container for mapping information 759 * to pass to / from get_block functions, this can go away. 760 */ 761 old_state = READ_ONCE(bh->b_state); 762 do { 763 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 764 } while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state))); 765 } 766 767 static int _ext4_get_block(struct inode *inode, sector_t iblock, 768 struct buffer_head *bh, int flags) 769 { 770 struct ext4_map_blocks map; 771 int ret = 0; 772 773 if (ext4_has_inline_data(inode)) 774 return -ERANGE; 775 776 map.m_lblk = iblock; 777 map.m_len = bh->b_size >> inode->i_blkbits; 778 779 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 780 flags); 781 if (ret > 0) { 782 map_bh(bh, inode->i_sb, map.m_pblk); 783 ext4_update_bh_state(bh, map.m_flags); 784 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 785 ret = 0; 786 } else if (ret == 0) { 787 /* hole case, need to fill in bh->b_size */ 788 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 789 } 790 return ret; 791 } 792 793 int ext4_get_block(struct inode *inode, sector_t iblock, 794 struct buffer_head *bh, int create) 795 { 796 return _ext4_get_block(inode, iblock, bh, 797 create ? EXT4_GET_BLOCKS_CREATE : 0); 798 } 799 800 /* 801 * Get block function used when preparing for buffered write if we require 802 * creating an unwritten extent if blocks haven't been allocated. The extent 803 * will be converted to written after the IO is complete. 804 */ 805 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 806 struct buffer_head *bh_result, int create) 807 { 808 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 809 inode->i_ino, create); 810 return _ext4_get_block(inode, iblock, bh_result, 811 EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT); 812 } 813 814 /* Maximum number of blocks we map for direct IO at once. */ 815 #define DIO_MAX_BLOCKS 4096 816 817 /* 818 * `handle' can be NULL if create is zero 819 */ 820 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 821 ext4_lblk_t block, int map_flags) 822 { 823 struct ext4_map_blocks map; 824 struct buffer_head *bh; 825 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 826 bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT; 827 int err; 828 829 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 830 || handle != NULL || create == 0); 831 ASSERT(create == 0 || !nowait); 832 833 map.m_lblk = block; 834 map.m_len = 1; 835 err = ext4_map_blocks(handle, inode, &map, map_flags); 836 837 if (err == 0) 838 return create ? ERR_PTR(-ENOSPC) : NULL; 839 if (err < 0) 840 return ERR_PTR(err); 841 842 if (nowait) 843 return sb_find_get_block(inode->i_sb, map.m_pblk); 844 845 bh = sb_getblk(inode->i_sb, map.m_pblk); 846 if (unlikely(!bh)) 847 return ERR_PTR(-ENOMEM); 848 if (map.m_flags & EXT4_MAP_NEW) { 849 ASSERT(create != 0); 850 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 851 || (handle != NULL)); 852 853 /* 854 * Now that we do not always journal data, we should 855 * keep in mind whether this should always journal the 856 * new buffer as metadata. For now, regular file 857 * writes use ext4_get_block instead, so it's not a 858 * problem. 859 */ 860 lock_buffer(bh); 861 BUFFER_TRACE(bh, "call get_create_access"); 862 err = ext4_journal_get_create_access(handle, inode->i_sb, bh, 863 EXT4_JTR_NONE); 864 if (unlikely(err)) { 865 unlock_buffer(bh); 866 goto errout; 867 } 868 if (!buffer_uptodate(bh)) { 869 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 870 set_buffer_uptodate(bh); 871 } 872 unlock_buffer(bh); 873 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 874 err = ext4_handle_dirty_metadata(handle, inode, bh); 875 if (unlikely(err)) 876 goto errout; 877 } else 878 BUFFER_TRACE(bh, "not a new buffer"); 879 return bh; 880 errout: 881 brelse(bh); 882 return ERR_PTR(err); 883 } 884 885 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 886 ext4_lblk_t block, int map_flags) 887 { 888 struct buffer_head *bh; 889 int ret; 890 891 bh = ext4_getblk(handle, inode, block, map_flags); 892 if (IS_ERR(bh)) 893 return bh; 894 if (!bh || ext4_buffer_uptodate(bh)) 895 return bh; 896 897 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true); 898 if (ret) { 899 put_bh(bh); 900 return ERR_PTR(ret); 901 } 902 return bh; 903 } 904 905 /* Read a contiguous batch of blocks. */ 906 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, 907 bool wait, struct buffer_head **bhs) 908 { 909 int i, err; 910 911 for (i = 0; i < bh_count; i++) { 912 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */); 913 if (IS_ERR(bhs[i])) { 914 err = PTR_ERR(bhs[i]); 915 bh_count = i; 916 goto out_brelse; 917 } 918 } 919 920 for (i = 0; i < bh_count; i++) 921 /* Note that NULL bhs[i] is valid because of holes. */ 922 if (bhs[i] && !ext4_buffer_uptodate(bhs[i])) 923 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false); 924 925 if (!wait) 926 return 0; 927 928 for (i = 0; i < bh_count; i++) 929 if (bhs[i]) 930 wait_on_buffer(bhs[i]); 931 932 for (i = 0; i < bh_count; i++) { 933 if (bhs[i] && !buffer_uptodate(bhs[i])) { 934 err = -EIO; 935 goto out_brelse; 936 } 937 } 938 return 0; 939 940 out_brelse: 941 for (i = 0; i < bh_count; i++) { 942 brelse(bhs[i]); 943 bhs[i] = NULL; 944 } 945 return err; 946 } 947 948 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode, 949 struct buffer_head *head, 950 unsigned from, 951 unsigned to, 952 int *partial, 953 int (*fn)(handle_t *handle, struct inode *inode, 954 struct buffer_head *bh)) 955 { 956 struct buffer_head *bh; 957 unsigned block_start, block_end; 958 unsigned blocksize = head->b_size; 959 int err, ret = 0; 960 struct buffer_head *next; 961 962 for (bh = head, block_start = 0; 963 ret == 0 && (bh != head || !block_start); 964 block_start = block_end, bh = next) { 965 next = bh->b_this_page; 966 block_end = block_start + blocksize; 967 if (block_end <= from || block_start >= to) { 968 if (partial && !buffer_uptodate(bh)) 969 *partial = 1; 970 continue; 971 } 972 err = (*fn)(handle, inode, bh); 973 if (!ret) 974 ret = err; 975 } 976 return ret; 977 } 978 979 /* 980 * Helper for handling dirtying of journalled data. We also mark the folio as 981 * dirty so that writeback code knows about this page (and inode) contains 982 * dirty data. ext4_writepages() then commits appropriate transaction to 983 * make data stable. 984 */ 985 static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh) 986 { 987 folio_mark_dirty(bh->b_folio); 988 return ext4_handle_dirty_metadata(handle, NULL, bh); 989 } 990 991 int do_journal_get_write_access(handle_t *handle, struct inode *inode, 992 struct buffer_head *bh) 993 { 994 int dirty = buffer_dirty(bh); 995 int ret; 996 997 if (!buffer_mapped(bh) || buffer_freed(bh)) 998 return 0; 999 /* 1000 * __block_write_begin() could have dirtied some buffers. Clean 1001 * the dirty bit as jbd2_journal_get_write_access() could complain 1002 * otherwise about fs integrity issues. Setting of the dirty bit 1003 * by __block_write_begin() isn't a real problem here as we clear 1004 * the bit before releasing a page lock and thus writeback cannot 1005 * ever write the buffer. 1006 */ 1007 if (dirty) 1008 clear_buffer_dirty(bh); 1009 BUFFER_TRACE(bh, "get write access"); 1010 ret = ext4_journal_get_write_access(handle, inode->i_sb, bh, 1011 EXT4_JTR_NONE); 1012 if (!ret && dirty) 1013 ret = ext4_dirty_journalled_data(handle, bh); 1014 return ret; 1015 } 1016 1017 #ifdef CONFIG_FS_ENCRYPTION 1018 static int ext4_block_write_begin(struct folio *folio, loff_t pos, unsigned len, 1019 get_block_t *get_block) 1020 { 1021 unsigned from = pos & (PAGE_SIZE - 1); 1022 unsigned to = from + len; 1023 struct inode *inode = folio->mapping->host; 1024 unsigned block_start, block_end; 1025 sector_t block; 1026 int err = 0; 1027 unsigned blocksize = inode->i_sb->s_blocksize; 1028 unsigned bbits; 1029 struct buffer_head *bh, *head, *wait[2]; 1030 int nr_wait = 0; 1031 int i; 1032 1033 BUG_ON(!folio_test_locked(folio)); 1034 BUG_ON(from > PAGE_SIZE); 1035 BUG_ON(to > PAGE_SIZE); 1036 BUG_ON(from > to); 1037 1038 head = folio_buffers(folio); 1039 if (!head) { 1040 create_empty_buffers(&folio->page, blocksize, 0); 1041 head = folio_buffers(folio); 1042 } 1043 bbits = ilog2(blocksize); 1044 block = (sector_t)folio->index << (PAGE_SHIFT - bbits); 1045 1046 for (bh = head, block_start = 0; bh != head || !block_start; 1047 block++, block_start = block_end, bh = bh->b_this_page) { 1048 block_end = block_start + blocksize; 1049 if (block_end <= from || block_start >= to) { 1050 if (folio_test_uptodate(folio)) { 1051 set_buffer_uptodate(bh); 1052 } 1053 continue; 1054 } 1055 if (buffer_new(bh)) 1056 clear_buffer_new(bh); 1057 if (!buffer_mapped(bh)) { 1058 WARN_ON(bh->b_size != blocksize); 1059 err = get_block(inode, block, bh, 1); 1060 if (err) 1061 break; 1062 if (buffer_new(bh)) { 1063 if (folio_test_uptodate(folio)) { 1064 clear_buffer_new(bh); 1065 set_buffer_uptodate(bh); 1066 mark_buffer_dirty(bh); 1067 continue; 1068 } 1069 if (block_end > to || block_start < from) 1070 folio_zero_segments(folio, to, 1071 block_end, 1072 block_start, from); 1073 continue; 1074 } 1075 } 1076 if (folio_test_uptodate(folio)) { 1077 set_buffer_uptodate(bh); 1078 continue; 1079 } 1080 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1081 !buffer_unwritten(bh) && 1082 (block_start < from || block_end > to)) { 1083 ext4_read_bh_lock(bh, 0, false); 1084 wait[nr_wait++] = bh; 1085 } 1086 } 1087 /* 1088 * If we issued read requests, let them complete. 1089 */ 1090 for (i = 0; i < nr_wait; i++) { 1091 wait_on_buffer(wait[i]); 1092 if (!buffer_uptodate(wait[i])) 1093 err = -EIO; 1094 } 1095 if (unlikely(err)) { 1096 page_zero_new_buffers(&folio->page, from, to); 1097 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 1098 for (i = 0; i < nr_wait; i++) { 1099 int err2; 1100 1101 err2 = fscrypt_decrypt_pagecache_blocks(folio, 1102 blocksize, bh_offset(wait[i])); 1103 if (err2) { 1104 clear_buffer_uptodate(wait[i]); 1105 err = err2; 1106 } 1107 } 1108 } 1109 1110 return err; 1111 } 1112 #endif 1113 1114 /* 1115 * To preserve ordering, it is essential that the hole instantiation and 1116 * the data write be encapsulated in a single transaction. We cannot 1117 * close off a transaction and start a new one between the ext4_get_block() 1118 * and the ext4_write_end(). So doing the jbd2_journal_start at the start of 1119 * ext4_write_begin() is the right place. 1120 */ 1121 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1122 loff_t pos, unsigned len, 1123 struct page **pagep, void **fsdata) 1124 { 1125 struct inode *inode = mapping->host; 1126 int ret, needed_blocks; 1127 handle_t *handle; 1128 int retries = 0; 1129 struct folio *folio; 1130 pgoff_t index; 1131 unsigned from, to; 1132 1133 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 1134 return -EIO; 1135 1136 trace_ext4_write_begin(inode, pos, len); 1137 /* 1138 * Reserve one block more for addition to orphan list in case 1139 * we allocate blocks but write fails for some reason 1140 */ 1141 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1142 index = pos >> PAGE_SHIFT; 1143 from = pos & (PAGE_SIZE - 1); 1144 to = from + len; 1145 1146 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1147 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1148 pagep); 1149 if (ret < 0) 1150 return ret; 1151 if (ret == 1) 1152 return 0; 1153 } 1154 1155 /* 1156 * __filemap_get_folio() can take a long time if the 1157 * system is thrashing due to memory pressure, or if the folio 1158 * is being written back. So grab it first before we start 1159 * the transaction handle. This also allows us to allocate 1160 * the folio (if needed) without using GFP_NOFS. 1161 */ 1162 retry_grab: 1163 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN, 1164 mapping_gfp_mask(mapping)); 1165 if (IS_ERR(folio)) 1166 return PTR_ERR(folio); 1167 /* 1168 * The same as page allocation, we prealloc buffer heads before 1169 * starting the handle. 1170 */ 1171 if (!folio_buffers(folio)) 1172 create_empty_buffers(&folio->page, inode->i_sb->s_blocksize, 0); 1173 1174 folio_unlock(folio); 1175 1176 retry_journal: 1177 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1178 if (IS_ERR(handle)) { 1179 folio_put(folio); 1180 return PTR_ERR(handle); 1181 } 1182 1183 folio_lock(folio); 1184 if (folio->mapping != mapping) { 1185 /* The folio got truncated from under us */ 1186 folio_unlock(folio); 1187 folio_put(folio); 1188 ext4_journal_stop(handle); 1189 goto retry_grab; 1190 } 1191 /* In case writeback began while the folio was unlocked */ 1192 folio_wait_stable(folio); 1193 1194 #ifdef CONFIG_FS_ENCRYPTION 1195 if (ext4_should_dioread_nolock(inode)) 1196 ret = ext4_block_write_begin(folio, pos, len, 1197 ext4_get_block_unwritten); 1198 else 1199 ret = ext4_block_write_begin(folio, pos, len, ext4_get_block); 1200 #else 1201 if (ext4_should_dioread_nolock(inode)) 1202 ret = __block_write_begin(&folio->page, pos, len, 1203 ext4_get_block_unwritten); 1204 else 1205 ret = __block_write_begin(&folio->page, pos, len, ext4_get_block); 1206 #endif 1207 if (!ret && ext4_should_journal_data(inode)) { 1208 ret = ext4_walk_page_buffers(handle, inode, 1209 folio_buffers(folio), from, to, 1210 NULL, do_journal_get_write_access); 1211 } 1212 1213 if (ret) { 1214 bool extended = (pos + len > inode->i_size) && 1215 !ext4_verity_in_progress(inode); 1216 1217 folio_unlock(folio); 1218 /* 1219 * __block_write_begin may have instantiated a few blocks 1220 * outside i_size. Trim these off again. Don't need 1221 * i_size_read because we hold i_rwsem. 1222 * 1223 * Add inode to orphan list in case we crash before 1224 * truncate finishes 1225 */ 1226 if (extended && ext4_can_truncate(inode)) 1227 ext4_orphan_add(handle, inode); 1228 1229 ext4_journal_stop(handle); 1230 if (extended) { 1231 ext4_truncate_failed_write(inode); 1232 /* 1233 * If truncate failed early the inode might 1234 * still be on the orphan list; we need to 1235 * make sure the inode is removed from the 1236 * orphan list in that case. 1237 */ 1238 if (inode->i_nlink) 1239 ext4_orphan_del(NULL, inode); 1240 } 1241 1242 if (ret == -ENOSPC && 1243 ext4_should_retry_alloc(inode->i_sb, &retries)) 1244 goto retry_journal; 1245 folio_put(folio); 1246 return ret; 1247 } 1248 *pagep = &folio->page; 1249 return ret; 1250 } 1251 1252 /* For write_end() in data=journal mode */ 1253 static int write_end_fn(handle_t *handle, struct inode *inode, 1254 struct buffer_head *bh) 1255 { 1256 int ret; 1257 if (!buffer_mapped(bh) || buffer_freed(bh)) 1258 return 0; 1259 set_buffer_uptodate(bh); 1260 ret = ext4_dirty_journalled_data(handle, bh); 1261 clear_buffer_meta(bh); 1262 clear_buffer_prio(bh); 1263 return ret; 1264 } 1265 1266 /* 1267 * We need to pick up the new inode size which generic_commit_write gave us 1268 * `file' can be NULL - eg, when called from page_symlink(). 1269 * 1270 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1271 * buffers are managed internally. 1272 */ 1273 static int ext4_write_end(struct file *file, 1274 struct address_space *mapping, 1275 loff_t pos, unsigned len, unsigned copied, 1276 struct page *page, void *fsdata) 1277 { 1278 struct folio *folio = page_folio(page); 1279 handle_t *handle = ext4_journal_current_handle(); 1280 struct inode *inode = mapping->host; 1281 loff_t old_size = inode->i_size; 1282 int ret = 0, ret2; 1283 int i_size_changed = 0; 1284 bool verity = ext4_verity_in_progress(inode); 1285 1286 trace_ext4_write_end(inode, pos, len, copied); 1287 1288 if (ext4_has_inline_data(inode) && 1289 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) 1290 return ext4_write_inline_data_end(inode, pos, len, copied, page); 1291 1292 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 1293 /* 1294 * it's important to update i_size while still holding folio lock: 1295 * page writeout could otherwise come in and zero beyond i_size. 1296 * 1297 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree 1298 * blocks are being written past EOF, so skip the i_size update. 1299 */ 1300 if (!verity) 1301 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1302 folio_unlock(folio); 1303 folio_put(folio); 1304 1305 if (old_size < pos && !verity) 1306 pagecache_isize_extended(inode, old_size, pos); 1307 /* 1308 * Don't mark the inode dirty under folio lock. First, it unnecessarily 1309 * makes the holding time of folio lock longer. Second, it forces lock 1310 * ordering of folio lock and transaction start for journaling 1311 * filesystems. 1312 */ 1313 if (i_size_changed) 1314 ret = ext4_mark_inode_dirty(handle, inode); 1315 1316 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1317 /* if we have allocated more blocks and copied 1318 * less. We will have blocks allocated outside 1319 * inode->i_size. So truncate them 1320 */ 1321 ext4_orphan_add(handle, inode); 1322 1323 ret2 = ext4_journal_stop(handle); 1324 if (!ret) 1325 ret = ret2; 1326 1327 if (pos + len > inode->i_size && !verity) { 1328 ext4_truncate_failed_write(inode); 1329 /* 1330 * If truncate failed early the inode might still be 1331 * on the orphan list; we need to make sure the inode 1332 * is removed from the orphan list in that case. 1333 */ 1334 if (inode->i_nlink) 1335 ext4_orphan_del(NULL, inode); 1336 } 1337 1338 return ret ? ret : copied; 1339 } 1340 1341 /* 1342 * This is a private version of page_zero_new_buffers() which doesn't 1343 * set the buffer to be dirty, since in data=journalled mode we need 1344 * to call ext4_dirty_journalled_data() instead. 1345 */ 1346 static void ext4_journalled_zero_new_buffers(handle_t *handle, 1347 struct inode *inode, 1348 struct folio *folio, 1349 unsigned from, unsigned to) 1350 { 1351 unsigned int block_start = 0, block_end; 1352 struct buffer_head *head, *bh; 1353 1354 bh = head = folio_buffers(folio); 1355 do { 1356 block_end = block_start + bh->b_size; 1357 if (buffer_new(bh)) { 1358 if (block_end > from && block_start < to) { 1359 if (!folio_test_uptodate(folio)) { 1360 unsigned start, size; 1361 1362 start = max(from, block_start); 1363 size = min(to, block_end) - start; 1364 1365 folio_zero_range(folio, start, size); 1366 write_end_fn(handle, inode, bh); 1367 } 1368 clear_buffer_new(bh); 1369 } 1370 } 1371 block_start = block_end; 1372 bh = bh->b_this_page; 1373 } while (bh != head); 1374 } 1375 1376 static int ext4_journalled_write_end(struct file *file, 1377 struct address_space *mapping, 1378 loff_t pos, unsigned len, unsigned copied, 1379 struct page *page, void *fsdata) 1380 { 1381 struct folio *folio = page_folio(page); 1382 handle_t *handle = ext4_journal_current_handle(); 1383 struct inode *inode = mapping->host; 1384 loff_t old_size = inode->i_size; 1385 int ret = 0, ret2; 1386 int partial = 0; 1387 unsigned from, to; 1388 int size_changed = 0; 1389 bool verity = ext4_verity_in_progress(inode); 1390 1391 trace_ext4_journalled_write_end(inode, pos, len, copied); 1392 from = pos & (PAGE_SIZE - 1); 1393 to = from + len; 1394 1395 BUG_ON(!ext4_handle_valid(handle)); 1396 1397 if (ext4_has_inline_data(inode)) 1398 return ext4_write_inline_data_end(inode, pos, len, copied, page); 1399 1400 if (unlikely(copied < len) && !folio_test_uptodate(folio)) { 1401 copied = 0; 1402 ext4_journalled_zero_new_buffers(handle, inode, folio, 1403 from, to); 1404 } else { 1405 if (unlikely(copied < len)) 1406 ext4_journalled_zero_new_buffers(handle, inode, folio, 1407 from + copied, to); 1408 ret = ext4_walk_page_buffers(handle, inode, 1409 folio_buffers(folio), 1410 from, from + copied, &partial, 1411 write_end_fn); 1412 if (!partial) 1413 folio_mark_uptodate(folio); 1414 } 1415 if (!verity) 1416 size_changed = ext4_update_inode_size(inode, pos + copied); 1417 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1418 folio_unlock(folio); 1419 folio_put(folio); 1420 1421 if (old_size < pos && !verity) 1422 pagecache_isize_extended(inode, old_size, pos); 1423 1424 if (size_changed) { 1425 ret2 = ext4_mark_inode_dirty(handle, inode); 1426 if (!ret) 1427 ret = ret2; 1428 } 1429 1430 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1431 /* if we have allocated more blocks and copied 1432 * less. We will have blocks allocated outside 1433 * inode->i_size. So truncate them 1434 */ 1435 ext4_orphan_add(handle, inode); 1436 1437 ret2 = ext4_journal_stop(handle); 1438 if (!ret) 1439 ret = ret2; 1440 if (pos + len > inode->i_size && !verity) { 1441 ext4_truncate_failed_write(inode); 1442 /* 1443 * If truncate failed early the inode might still be 1444 * on the orphan list; we need to make sure the inode 1445 * is removed from the orphan list in that case. 1446 */ 1447 if (inode->i_nlink) 1448 ext4_orphan_del(NULL, inode); 1449 } 1450 1451 return ret ? ret : copied; 1452 } 1453 1454 /* 1455 * Reserve space for a single cluster 1456 */ 1457 static int ext4_da_reserve_space(struct inode *inode) 1458 { 1459 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1460 struct ext4_inode_info *ei = EXT4_I(inode); 1461 int ret; 1462 1463 /* 1464 * We will charge metadata quota at writeout time; this saves 1465 * us from metadata over-estimation, though we may go over by 1466 * a small amount in the end. Here we just reserve for data. 1467 */ 1468 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1469 if (ret) 1470 return ret; 1471 1472 spin_lock(&ei->i_block_reservation_lock); 1473 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1474 spin_unlock(&ei->i_block_reservation_lock); 1475 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1476 return -ENOSPC; 1477 } 1478 ei->i_reserved_data_blocks++; 1479 trace_ext4_da_reserve_space(inode); 1480 spin_unlock(&ei->i_block_reservation_lock); 1481 1482 return 0; /* success */ 1483 } 1484 1485 void ext4_da_release_space(struct inode *inode, int to_free) 1486 { 1487 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1488 struct ext4_inode_info *ei = EXT4_I(inode); 1489 1490 if (!to_free) 1491 return; /* Nothing to release, exit */ 1492 1493 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1494 1495 trace_ext4_da_release_space(inode, to_free); 1496 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1497 /* 1498 * if there aren't enough reserved blocks, then the 1499 * counter is messed up somewhere. Since this 1500 * function is called from invalidate page, it's 1501 * harmless to return without any action. 1502 */ 1503 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1504 "ino %lu, to_free %d with only %d reserved " 1505 "data blocks", inode->i_ino, to_free, 1506 ei->i_reserved_data_blocks); 1507 WARN_ON(1); 1508 to_free = ei->i_reserved_data_blocks; 1509 } 1510 ei->i_reserved_data_blocks -= to_free; 1511 1512 /* update fs dirty data blocks counter */ 1513 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1514 1515 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1516 1517 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1518 } 1519 1520 /* 1521 * Delayed allocation stuff 1522 */ 1523 1524 struct mpage_da_data { 1525 /* These are input fields for ext4_do_writepages() */ 1526 struct inode *inode; 1527 struct writeback_control *wbc; 1528 unsigned int can_map:1; /* Can writepages call map blocks? */ 1529 1530 /* These are internal state of ext4_do_writepages() */ 1531 pgoff_t first_page; /* The first page to write */ 1532 pgoff_t next_page; /* Current page to examine */ 1533 pgoff_t last_page; /* Last page to examine */ 1534 /* 1535 * Extent to map - this can be after first_page because that can be 1536 * fully mapped. We somewhat abuse m_flags to store whether the extent 1537 * is delalloc or unwritten. 1538 */ 1539 struct ext4_map_blocks map; 1540 struct ext4_io_submit io_submit; /* IO submission data */ 1541 unsigned int do_map:1; 1542 unsigned int scanned_until_end:1; 1543 unsigned int journalled_more_data:1; 1544 }; 1545 1546 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1547 bool invalidate) 1548 { 1549 unsigned nr, i; 1550 pgoff_t index, end; 1551 struct folio_batch fbatch; 1552 struct inode *inode = mpd->inode; 1553 struct address_space *mapping = inode->i_mapping; 1554 1555 /* This is necessary when next_page == 0. */ 1556 if (mpd->first_page >= mpd->next_page) 1557 return; 1558 1559 mpd->scanned_until_end = 0; 1560 index = mpd->first_page; 1561 end = mpd->next_page - 1; 1562 if (invalidate) { 1563 ext4_lblk_t start, last; 1564 start = index << (PAGE_SHIFT - inode->i_blkbits); 1565 last = end << (PAGE_SHIFT - inode->i_blkbits); 1566 1567 /* 1568 * avoid racing with extent status tree scans made by 1569 * ext4_insert_delayed_block() 1570 */ 1571 down_write(&EXT4_I(inode)->i_data_sem); 1572 ext4_es_remove_extent(inode, start, last - start + 1); 1573 up_write(&EXT4_I(inode)->i_data_sem); 1574 } 1575 1576 folio_batch_init(&fbatch); 1577 while (index <= end) { 1578 nr = filemap_get_folios(mapping, &index, end, &fbatch); 1579 if (nr == 0) 1580 break; 1581 for (i = 0; i < nr; i++) { 1582 struct folio *folio = fbatch.folios[i]; 1583 1584 if (folio->index < mpd->first_page) 1585 continue; 1586 if (folio->index + folio_nr_pages(folio) - 1 > end) 1587 continue; 1588 BUG_ON(!folio_test_locked(folio)); 1589 BUG_ON(folio_test_writeback(folio)); 1590 if (invalidate) { 1591 if (folio_mapped(folio)) 1592 folio_clear_dirty_for_io(folio); 1593 block_invalidate_folio(folio, 0, 1594 folio_size(folio)); 1595 folio_clear_uptodate(folio); 1596 } 1597 folio_unlock(folio); 1598 } 1599 folio_batch_release(&fbatch); 1600 } 1601 } 1602 1603 static void ext4_print_free_blocks(struct inode *inode) 1604 { 1605 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1606 struct super_block *sb = inode->i_sb; 1607 struct ext4_inode_info *ei = EXT4_I(inode); 1608 1609 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1610 EXT4_C2B(EXT4_SB(inode->i_sb), 1611 ext4_count_free_clusters(sb))); 1612 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1613 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1614 (long long) EXT4_C2B(EXT4_SB(sb), 1615 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1616 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1617 (long long) EXT4_C2B(EXT4_SB(sb), 1618 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1619 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1620 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1621 ei->i_reserved_data_blocks); 1622 return; 1623 } 1624 1625 /* 1626 * ext4_insert_delayed_block - adds a delayed block to the extents status 1627 * tree, incrementing the reserved cluster/block 1628 * count or making a pending reservation 1629 * where needed 1630 * 1631 * @inode - file containing the newly added block 1632 * @lblk - logical block to be added 1633 * 1634 * Returns 0 on success, negative error code on failure. 1635 */ 1636 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk) 1637 { 1638 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1639 int ret; 1640 bool allocated = false; 1641 bool reserved = false; 1642 1643 /* 1644 * If the cluster containing lblk is shared with a delayed, 1645 * written, or unwritten extent in a bigalloc file system, it's 1646 * already been accounted for and does not need to be reserved. 1647 * A pending reservation must be made for the cluster if it's 1648 * shared with a written or unwritten extent and doesn't already 1649 * have one. Written and unwritten extents can be purged from the 1650 * extents status tree if the system is under memory pressure, so 1651 * it's necessary to examine the extent tree if a search of the 1652 * extents status tree doesn't get a match. 1653 */ 1654 if (sbi->s_cluster_ratio == 1) { 1655 ret = ext4_da_reserve_space(inode); 1656 if (ret != 0) /* ENOSPC */ 1657 goto errout; 1658 reserved = true; 1659 } else { /* bigalloc */ 1660 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) { 1661 if (!ext4_es_scan_clu(inode, 1662 &ext4_es_is_mapped, lblk)) { 1663 ret = ext4_clu_mapped(inode, 1664 EXT4_B2C(sbi, lblk)); 1665 if (ret < 0) 1666 goto errout; 1667 if (ret == 0) { 1668 ret = ext4_da_reserve_space(inode); 1669 if (ret != 0) /* ENOSPC */ 1670 goto errout; 1671 reserved = true; 1672 } else { 1673 allocated = true; 1674 } 1675 } else { 1676 allocated = true; 1677 } 1678 } 1679 } 1680 1681 ret = ext4_es_insert_delayed_block(inode, lblk, allocated); 1682 if (ret && reserved) 1683 ext4_da_release_space(inode, 1); 1684 1685 errout: 1686 return ret; 1687 } 1688 1689 /* 1690 * This function is grabs code from the very beginning of 1691 * ext4_map_blocks, but assumes that the caller is from delayed write 1692 * time. This function looks up the requested blocks and sets the 1693 * buffer delay bit under the protection of i_data_sem. 1694 */ 1695 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1696 struct ext4_map_blocks *map, 1697 struct buffer_head *bh) 1698 { 1699 struct extent_status es; 1700 int retval; 1701 sector_t invalid_block = ~((sector_t) 0xffff); 1702 #ifdef ES_AGGRESSIVE_TEST 1703 struct ext4_map_blocks orig_map; 1704 1705 memcpy(&orig_map, map, sizeof(*map)); 1706 #endif 1707 1708 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1709 invalid_block = ~0; 1710 1711 map->m_flags = 0; 1712 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len, 1713 (unsigned long) map->m_lblk); 1714 1715 /* Lookup extent status tree firstly */ 1716 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) { 1717 if (ext4_es_is_hole(&es)) { 1718 retval = 0; 1719 down_read(&EXT4_I(inode)->i_data_sem); 1720 goto add_delayed; 1721 } 1722 1723 /* 1724 * Delayed extent could be allocated by fallocate. 1725 * So we need to check it. 1726 */ 1727 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1728 map_bh(bh, inode->i_sb, invalid_block); 1729 set_buffer_new(bh); 1730 set_buffer_delay(bh); 1731 return 0; 1732 } 1733 1734 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1735 retval = es.es_len - (iblock - es.es_lblk); 1736 if (retval > map->m_len) 1737 retval = map->m_len; 1738 map->m_len = retval; 1739 if (ext4_es_is_written(&es)) 1740 map->m_flags |= EXT4_MAP_MAPPED; 1741 else if (ext4_es_is_unwritten(&es)) 1742 map->m_flags |= EXT4_MAP_UNWRITTEN; 1743 else 1744 BUG(); 1745 1746 #ifdef ES_AGGRESSIVE_TEST 1747 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1748 #endif 1749 return retval; 1750 } 1751 1752 /* 1753 * Try to see if we can get the block without requesting a new 1754 * file system block. 1755 */ 1756 down_read(&EXT4_I(inode)->i_data_sem); 1757 if (ext4_has_inline_data(inode)) 1758 retval = 0; 1759 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1760 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1761 else 1762 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1763 1764 add_delayed: 1765 if (retval == 0) { 1766 int ret; 1767 1768 /* 1769 * XXX: __block_prepare_write() unmaps passed block, 1770 * is it OK? 1771 */ 1772 1773 ret = ext4_insert_delayed_block(inode, map->m_lblk); 1774 if (ret != 0) { 1775 retval = ret; 1776 goto out_unlock; 1777 } 1778 1779 map_bh(bh, inode->i_sb, invalid_block); 1780 set_buffer_new(bh); 1781 set_buffer_delay(bh); 1782 } else if (retval > 0) { 1783 int ret; 1784 unsigned int status; 1785 1786 if (unlikely(retval != map->m_len)) { 1787 ext4_warning(inode->i_sb, 1788 "ES len assertion failed for inode " 1789 "%lu: retval %d != map->m_len %d", 1790 inode->i_ino, retval, map->m_len); 1791 WARN_ON(1); 1792 } 1793 1794 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1795 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1796 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1797 map->m_pblk, status); 1798 if (ret != 0) 1799 retval = ret; 1800 } 1801 1802 out_unlock: 1803 up_read((&EXT4_I(inode)->i_data_sem)); 1804 1805 return retval; 1806 } 1807 1808 /* 1809 * This is a special get_block_t callback which is used by 1810 * ext4_da_write_begin(). It will either return mapped block or 1811 * reserve space for a single block. 1812 * 1813 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1814 * We also have b_blocknr = -1 and b_bdev initialized properly 1815 * 1816 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1817 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1818 * initialized properly. 1819 */ 1820 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1821 struct buffer_head *bh, int create) 1822 { 1823 struct ext4_map_blocks map; 1824 int ret = 0; 1825 1826 BUG_ON(create == 0); 1827 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1828 1829 map.m_lblk = iblock; 1830 map.m_len = 1; 1831 1832 /* 1833 * first, we need to know whether the block is allocated already 1834 * preallocated blocks are unmapped but should treated 1835 * the same as allocated blocks. 1836 */ 1837 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1838 if (ret <= 0) 1839 return ret; 1840 1841 map_bh(bh, inode->i_sb, map.m_pblk); 1842 ext4_update_bh_state(bh, map.m_flags); 1843 1844 if (buffer_unwritten(bh)) { 1845 /* A delayed write to unwritten bh should be marked 1846 * new and mapped. Mapped ensures that we don't do 1847 * get_block multiple times when we write to the same 1848 * offset and new ensures that we do proper zero out 1849 * for partial write. 1850 */ 1851 set_buffer_new(bh); 1852 set_buffer_mapped(bh); 1853 } 1854 return 0; 1855 } 1856 1857 static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio) 1858 { 1859 mpd->first_page += folio_nr_pages(folio); 1860 folio_unlock(folio); 1861 } 1862 1863 static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio) 1864 { 1865 size_t len; 1866 loff_t size; 1867 int err; 1868 1869 BUG_ON(folio->index != mpd->first_page); 1870 folio_clear_dirty_for_io(folio); 1871 /* 1872 * We have to be very careful here! Nothing protects writeback path 1873 * against i_size changes and the page can be writeably mapped into 1874 * page tables. So an application can be growing i_size and writing 1875 * data through mmap while writeback runs. folio_clear_dirty_for_io() 1876 * write-protects our page in page tables and the page cannot get 1877 * written to again until we release folio lock. So only after 1878 * folio_clear_dirty_for_io() we are safe to sample i_size for 1879 * ext4_bio_write_folio() to zero-out tail of the written page. We rely 1880 * on the barrier provided by folio_test_clear_dirty() in 1881 * folio_clear_dirty_for_io() to make sure i_size is really sampled only 1882 * after page tables are updated. 1883 */ 1884 size = i_size_read(mpd->inode); 1885 len = folio_size(folio); 1886 if (folio_pos(folio) + len > size && 1887 !ext4_verity_in_progress(mpd->inode)) 1888 len = size & ~PAGE_MASK; 1889 err = ext4_bio_write_folio(&mpd->io_submit, folio, len); 1890 if (!err) 1891 mpd->wbc->nr_to_write--; 1892 1893 return err; 1894 } 1895 1896 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay)) 1897 1898 /* 1899 * mballoc gives us at most this number of blocks... 1900 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 1901 * The rest of mballoc seems to handle chunks up to full group size. 1902 */ 1903 #define MAX_WRITEPAGES_EXTENT_LEN 2048 1904 1905 /* 1906 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 1907 * 1908 * @mpd - extent of blocks 1909 * @lblk - logical number of the block in the file 1910 * @bh - buffer head we want to add to the extent 1911 * 1912 * The function is used to collect contig. blocks in the same state. If the 1913 * buffer doesn't require mapping for writeback and we haven't started the 1914 * extent of buffers to map yet, the function returns 'true' immediately - the 1915 * caller can write the buffer right away. Otherwise the function returns true 1916 * if the block has been added to the extent, false if the block couldn't be 1917 * added. 1918 */ 1919 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 1920 struct buffer_head *bh) 1921 { 1922 struct ext4_map_blocks *map = &mpd->map; 1923 1924 /* Buffer that doesn't need mapping for writeback? */ 1925 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 1926 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 1927 /* So far no extent to map => we write the buffer right away */ 1928 if (map->m_len == 0) 1929 return true; 1930 return false; 1931 } 1932 1933 /* First block in the extent? */ 1934 if (map->m_len == 0) { 1935 /* We cannot map unless handle is started... */ 1936 if (!mpd->do_map) 1937 return false; 1938 map->m_lblk = lblk; 1939 map->m_len = 1; 1940 map->m_flags = bh->b_state & BH_FLAGS; 1941 return true; 1942 } 1943 1944 /* Don't go larger than mballoc is willing to allocate */ 1945 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 1946 return false; 1947 1948 /* Can we merge the block to our big extent? */ 1949 if (lblk == map->m_lblk + map->m_len && 1950 (bh->b_state & BH_FLAGS) == map->m_flags) { 1951 map->m_len++; 1952 return true; 1953 } 1954 return false; 1955 } 1956 1957 /* 1958 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 1959 * 1960 * @mpd - extent of blocks for mapping 1961 * @head - the first buffer in the page 1962 * @bh - buffer we should start processing from 1963 * @lblk - logical number of the block in the file corresponding to @bh 1964 * 1965 * Walk through page buffers from @bh upto @head (exclusive) and either submit 1966 * the page for IO if all buffers in this page were mapped and there's no 1967 * accumulated extent of buffers to map or add buffers in the page to the 1968 * extent of buffers to map. The function returns 1 if the caller can continue 1969 * by processing the next page, 0 if it should stop adding buffers to the 1970 * extent to map because we cannot extend it anymore. It can also return value 1971 * < 0 in case of error during IO submission. 1972 */ 1973 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 1974 struct buffer_head *head, 1975 struct buffer_head *bh, 1976 ext4_lblk_t lblk) 1977 { 1978 struct inode *inode = mpd->inode; 1979 int err; 1980 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) 1981 >> inode->i_blkbits; 1982 1983 if (ext4_verity_in_progress(inode)) 1984 blocks = EXT_MAX_BLOCKS; 1985 1986 do { 1987 BUG_ON(buffer_locked(bh)); 1988 1989 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 1990 /* Found extent to map? */ 1991 if (mpd->map.m_len) 1992 return 0; 1993 /* Buffer needs mapping and handle is not started? */ 1994 if (!mpd->do_map) 1995 return 0; 1996 /* Everything mapped so far and we hit EOF */ 1997 break; 1998 } 1999 } while (lblk++, (bh = bh->b_this_page) != head); 2000 /* So far everything mapped? Submit the page for IO. */ 2001 if (mpd->map.m_len == 0) { 2002 err = mpage_submit_folio(mpd, head->b_folio); 2003 if (err < 0) 2004 return err; 2005 mpage_folio_done(mpd, head->b_folio); 2006 } 2007 if (lblk >= blocks) { 2008 mpd->scanned_until_end = 1; 2009 return 0; 2010 } 2011 return 1; 2012 } 2013 2014 /* 2015 * mpage_process_folio - update folio buffers corresponding to changed extent 2016 * and may submit fully mapped page for IO 2017 * @mpd: description of extent to map, on return next extent to map 2018 * @folio: Contains these buffers. 2019 * @m_lblk: logical block mapping. 2020 * @m_pblk: corresponding physical mapping. 2021 * @map_bh: determines on return whether this page requires any further 2022 * mapping or not. 2023 * 2024 * Scan given folio buffers corresponding to changed extent and update buffer 2025 * state according to new extent state. 2026 * We map delalloc buffers to their physical location, clear unwritten bits. 2027 * If the given folio is not fully mapped, we update @mpd to the next extent in 2028 * the given folio that needs mapping & return @map_bh as true. 2029 */ 2030 static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio, 2031 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk, 2032 bool *map_bh) 2033 { 2034 struct buffer_head *head, *bh; 2035 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2036 ext4_lblk_t lblk = *m_lblk; 2037 ext4_fsblk_t pblock = *m_pblk; 2038 int err = 0; 2039 int blkbits = mpd->inode->i_blkbits; 2040 ssize_t io_end_size = 0; 2041 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end); 2042 2043 bh = head = folio_buffers(folio); 2044 do { 2045 if (lblk < mpd->map.m_lblk) 2046 continue; 2047 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2048 /* 2049 * Buffer after end of mapped extent. 2050 * Find next buffer in the folio to map. 2051 */ 2052 mpd->map.m_len = 0; 2053 mpd->map.m_flags = 0; 2054 io_end_vec->size += io_end_size; 2055 2056 err = mpage_process_page_bufs(mpd, head, bh, lblk); 2057 if (err > 0) 2058 err = 0; 2059 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) { 2060 io_end_vec = ext4_alloc_io_end_vec(io_end); 2061 if (IS_ERR(io_end_vec)) { 2062 err = PTR_ERR(io_end_vec); 2063 goto out; 2064 } 2065 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits; 2066 } 2067 *map_bh = true; 2068 goto out; 2069 } 2070 if (buffer_delay(bh)) { 2071 clear_buffer_delay(bh); 2072 bh->b_blocknr = pblock++; 2073 } 2074 clear_buffer_unwritten(bh); 2075 io_end_size += (1 << blkbits); 2076 } while (lblk++, (bh = bh->b_this_page) != head); 2077 2078 io_end_vec->size += io_end_size; 2079 *map_bh = false; 2080 out: 2081 *m_lblk = lblk; 2082 *m_pblk = pblock; 2083 return err; 2084 } 2085 2086 /* 2087 * mpage_map_buffers - update buffers corresponding to changed extent and 2088 * submit fully mapped pages for IO 2089 * 2090 * @mpd - description of extent to map, on return next extent to map 2091 * 2092 * Scan buffers corresponding to changed extent (we expect corresponding pages 2093 * to be already locked) and update buffer state according to new extent state. 2094 * We map delalloc buffers to their physical location, clear unwritten bits, 2095 * and mark buffers as uninit when we perform writes to unwritten extents 2096 * and do extent conversion after IO is finished. If the last page is not fully 2097 * mapped, we update @map to the next extent in the last page that needs 2098 * mapping. Otherwise we submit the page for IO. 2099 */ 2100 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2101 { 2102 struct folio_batch fbatch; 2103 unsigned nr, i; 2104 struct inode *inode = mpd->inode; 2105 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2106 pgoff_t start, end; 2107 ext4_lblk_t lblk; 2108 ext4_fsblk_t pblock; 2109 int err; 2110 bool map_bh = false; 2111 2112 start = mpd->map.m_lblk >> bpp_bits; 2113 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2114 lblk = start << bpp_bits; 2115 pblock = mpd->map.m_pblk; 2116 2117 folio_batch_init(&fbatch); 2118 while (start <= end) { 2119 nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch); 2120 if (nr == 0) 2121 break; 2122 for (i = 0; i < nr; i++) { 2123 struct folio *folio = fbatch.folios[i]; 2124 2125 err = mpage_process_folio(mpd, folio, &lblk, &pblock, 2126 &map_bh); 2127 /* 2128 * If map_bh is true, means page may require further bh 2129 * mapping, or maybe the page was submitted for IO. 2130 * So we return to call further extent mapping. 2131 */ 2132 if (err < 0 || map_bh) 2133 goto out; 2134 /* Page fully mapped - let IO run! */ 2135 err = mpage_submit_folio(mpd, folio); 2136 if (err < 0) 2137 goto out; 2138 mpage_folio_done(mpd, folio); 2139 } 2140 folio_batch_release(&fbatch); 2141 } 2142 /* Extent fully mapped and matches with page boundary. We are done. */ 2143 mpd->map.m_len = 0; 2144 mpd->map.m_flags = 0; 2145 return 0; 2146 out: 2147 folio_batch_release(&fbatch); 2148 return err; 2149 } 2150 2151 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2152 { 2153 struct inode *inode = mpd->inode; 2154 struct ext4_map_blocks *map = &mpd->map; 2155 int get_blocks_flags; 2156 int err, dioread_nolock; 2157 2158 trace_ext4_da_write_pages_extent(inode, map); 2159 /* 2160 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2161 * to convert an unwritten extent to be initialized (in the case 2162 * where we have written into one or more preallocated blocks). It is 2163 * possible that we're going to need more metadata blocks than 2164 * previously reserved. However we must not fail because we're in 2165 * writeback and there is nothing we can do about it so it might result 2166 * in data loss. So use reserved blocks to allocate metadata if 2167 * possible. 2168 * 2169 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2170 * the blocks in question are delalloc blocks. This indicates 2171 * that the blocks and quotas has already been checked when 2172 * the data was copied into the page cache. 2173 */ 2174 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2175 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2176 EXT4_GET_BLOCKS_IO_SUBMIT; 2177 dioread_nolock = ext4_should_dioread_nolock(inode); 2178 if (dioread_nolock) 2179 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2180 if (map->m_flags & BIT(BH_Delay)) 2181 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2182 2183 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2184 if (err < 0) 2185 return err; 2186 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2187 if (!mpd->io_submit.io_end->handle && 2188 ext4_handle_valid(handle)) { 2189 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2190 handle->h_rsv_handle = NULL; 2191 } 2192 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2193 } 2194 2195 BUG_ON(map->m_len == 0); 2196 return 0; 2197 } 2198 2199 /* 2200 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2201 * mpd->len and submit pages underlying it for IO 2202 * 2203 * @handle - handle for journal operations 2204 * @mpd - extent to map 2205 * @give_up_on_write - we set this to true iff there is a fatal error and there 2206 * is no hope of writing the data. The caller should discard 2207 * dirty pages to avoid infinite loops. 2208 * 2209 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2210 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2211 * them to initialized or split the described range from larger unwritten 2212 * extent. Note that we need not map all the described range since allocation 2213 * can return less blocks or the range is covered by more unwritten extents. We 2214 * cannot map more because we are limited by reserved transaction credits. On 2215 * the other hand we always make sure that the last touched page is fully 2216 * mapped so that it can be written out (and thus forward progress is 2217 * guaranteed). After mapping we submit all mapped pages for IO. 2218 */ 2219 static int mpage_map_and_submit_extent(handle_t *handle, 2220 struct mpage_da_data *mpd, 2221 bool *give_up_on_write) 2222 { 2223 struct inode *inode = mpd->inode; 2224 struct ext4_map_blocks *map = &mpd->map; 2225 int err; 2226 loff_t disksize; 2227 int progress = 0; 2228 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2229 struct ext4_io_end_vec *io_end_vec; 2230 2231 io_end_vec = ext4_alloc_io_end_vec(io_end); 2232 if (IS_ERR(io_end_vec)) 2233 return PTR_ERR(io_end_vec); 2234 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits; 2235 do { 2236 err = mpage_map_one_extent(handle, mpd); 2237 if (err < 0) { 2238 struct super_block *sb = inode->i_sb; 2239 2240 if (ext4_forced_shutdown(EXT4_SB(sb)) || 2241 ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) 2242 goto invalidate_dirty_pages; 2243 /* 2244 * Let the uper layers retry transient errors. 2245 * In the case of ENOSPC, if ext4_count_free_blocks() 2246 * is non-zero, a commit should free up blocks. 2247 */ 2248 if ((err == -ENOMEM) || 2249 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2250 if (progress) 2251 goto update_disksize; 2252 return err; 2253 } 2254 ext4_msg(sb, KERN_CRIT, 2255 "Delayed block allocation failed for " 2256 "inode %lu at logical offset %llu with" 2257 " max blocks %u with error %d", 2258 inode->i_ino, 2259 (unsigned long long)map->m_lblk, 2260 (unsigned)map->m_len, -err); 2261 ext4_msg(sb, KERN_CRIT, 2262 "This should not happen!! Data will " 2263 "be lost\n"); 2264 if (err == -ENOSPC) 2265 ext4_print_free_blocks(inode); 2266 invalidate_dirty_pages: 2267 *give_up_on_write = true; 2268 return err; 2269 } 2270 progress = 1; 2271 /* 2272 * Update buffer state, submit mapped pages, and get us new 2273 * extent to map 2274 */ 2275 err = mpage_map_and_submit_buffers(mpd); 2276 if (err < 0) 2277 goto update_disksize; 2278 } while (map->m_len); 2279 2280 update_disksize: 2281 /* 2282 * Update on-disk size after IO is submitted. Races with 2283 * truncate are avoided by checking i_size under i_data_sem. 2284 */ 2285 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2286 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) { 2287 int err2; 2288 loff_t i_size; 2289 2290 down_write(&EXT4_I(inode)->i_data_sem); 2291 i_size = i_size_read(inode); 2292 if (disksize > i_size) 2293 disksize = i_size; 2294 if (disksize > EXT4_I(inode)->i_disksize) 2295 EXT4_I(inode)->i_disksize = disksize; 2296 up_write(&EXT4_I(inode)->i_data_sem); 2297 err2 = ext4_mark_inode_dirty(handle, inode); 2298 if (err2) { 2299 ext4_error_err(inode->i_sb, -err2, 2300 "Failed to mark inode %lu dirty", 2301 inode->i_ino); 2302 } 2303 if (!err) 2304 err = err2; 2305 } 2306 return err; 2307 } 2308 2309 /* 2310 * Calculate the total number of credits to reserve for one writepages 2311 * iteration. This is called from ext4_writepages(). We map an extent of 2312 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2313 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2314 * bpp - 1 blocks in bpp different extents. 2315 */ 2316 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2317 { 2318 int bpp = ext4_journal_blocks_per_page(inode); 2319 2320 return ext4_meta_trans_blocks(inode, 2321 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2322 } 2323 2324 static int ext4_journal_page_buffers(handle_t *handle, struct page *page, 2325 int len) 2326 { 2327 struct buffer_head *page_bufs = page_buffers(page); 2328 struct inode *inode = page->mapping->host; 2329 int ret, err; 2330 2331 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 2332 NULL, do_journal_get_write_access); 2333 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 2334 NULL, write_end_fn); 2335 if (ret == 0) 2336 ret = err; 2337 err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len); 2338 if (ret == 0) 2339 ret = err; 2340 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 2341 2342 return ret; 2343 } 2344 2345 static int mpage_journal_page_buffers(handle_t *handle, 2346 struct mpage_da_data *mpd, 2347 struct page *page) 2348 { 2349 struct inode *inode = mpd->inode; 2350 loff_t size = i_size_read(inode); 2351 int len; 2352 2353 ClearPageChecked(page); 2354 mpd->wbc->nr_to_write--; 2355 2356 if (page->index == size >> PAGE_SHIFT && 2357 !ext4_verity_in_progress(inode)) 2358 len = size & ~PAGE_MASK; 2359 else 2360 len = PAGE_SIZE; 2361 2362 return ext4_journal_page_buffers(handle, page, len); 2363 } 2364 2365 /* 2366 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2367 * needing mapping, submit mapped pages 2368 * 2369 * @mpd - where to look for pages 2370 * 2371 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2372 * IO immediately. If we cannot map blocks, we submit just already mapped 2373 * buffers in the page for IO and keep page dirty. When we can map blocks and 2374 * we find a page which isn't mapped we start accumulating extent of buffers 2375 * underlying these pages that needs mapping (formed by either delayed or 2376 * unwritten buffers). We also lock the pages containing these buffers. The 2377 * extent found is returned in @mpd structure (starting at mpd->lblk with 2378 * length mpd->len blocks). 2379 * 2380 * Note that this function can attach bios to one io_end structure which are 2381 * neither logically nor physically contiguous. Although it may seem as an 2382 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2383 * case as we need to track IO to all buffers underlying a page in one io_end. 2384 */ 2385 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2386 { 2387 struct address_space *mapping = mpd->inode->i_mapping; 2388 struct folio_batch fbatch; 2389 unsigned int nr_folios; 2390 pgoff_t index = mpd->first_page; 2391 pgoff_t end = mpd->last_page; 2392 xa_mark_t tag; 2393 int i, err = 0; 2394 int blkbits = mpd->inode->i_blkbits; 2395 ext4_lblk_t lblk; 2396 struct buffer_head *head; 2397 handle_t *handle = NULL; 2398 int bpp = ext4_journal_blocks_per_page(mpd->inode); 2399 2400 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2401 tag = PAGECACHE_TAG_TOWRITE; 2402 else 2403 tag = PAGECACHE_TAG_DIRTY; 2404 2405 mpd->map.m_len = 0; 2406 mpd->next_page = index; 2407 if (ext4_should_journal_data(mpd->inode)) { 2408 handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE, 2409 bpp); 2410 if (IS_ERR(handle)) 2411 return PTR_ERR(handle); 2412 } 2413 folio_batch_init(&fbatch); 2414 while (index <= end) { 2415 nr_folios = filemap_get_folios_tag(mapping, &index, end, 2416 tag, &fbatch); 2417 if (nr_folios == 0) 2418 break; 2419 2420 for (i = 0; i < nr_folios; i++) { 2421 struct folio *folio = fbatch.folios[i]; 2422 2423 /* 2424 * Accumulated enough dirty pages? This doesn't apply 2425 * to WB_SYNC_ALL mode. For integrity sync we have to 2426 * keep going because someone may be concurrently 2427 * dirtying pages, and we might have synced a lot of 2428 * newly appeared dirty pages, but have not synced all 2429 * of the old dirty pages. 2430 */ 2431 if (mpd->wbc->sync_mode == WB_SYNC_NONE && 2432 mpd->wbc->nr_to_write <= 2433 mpd->map.m_len >> (PAGE_SHIFT - blkbits)) 2434 goto out; 2435 2436 /* If we can't merge this page, we are done. */ 2437 if (mpd->map.m_len > 0 && mpd->next_page != folio->index) 2438 goto out; 2439 2440 if (handle) { 2441 err = ext4_journal_ensure_credits(handle, bpp, 2442 0); 2443 if (err < 0) 2444 goto out; 2445 } 2446 2447 folio_lock(folio); 2448 /* 2449 * If the page is no longer dirty, or its mapping no 2450 * longer corresponds to inode we are writing (which 2451 * means it has been truncated or invalidated), or the 2452 * page is already under writeback and we are not doing 2453 * a data integrity writeback, skip the page 2454 */ 2455 if (!folio_test_dirty(folio) || 2456 (folio_test_writeback(folio) && 2457 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2458 unlikely(folio->mapping != mapping)) { 2459 folio_unlock(folio); 2460 continue; 2461 } 2462 2463 folio_wait_writeback(folio); 2464 BUG_ON(folio_test_writeback(folio)); 2465 2466 /* 2467 * Should never happen but for buggy code in 2468 * other subsystems that call 2469 * set_page_dirty() without properly warning 2470 * the file system first. See [1] for more 2471 * information. 2472 * 2473 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz 2474 */ 2475 if (!folio_buffers(folio)) { 2476 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index); 2477 folio_clear_dirty(folio); 2478 folio_unlock(folio); 2479 continue; 2480 } 2481 2482 if (mpd->map.m_len == 0) 2483 mpd->first_page = folio->index; 2484 mpd->next_page = folio->index + folio_nr_pages(folio); 2485 /* 2486 * Writeout when we cannot modify metadata is simple. 2487 * Just submit the page. For data=journal mode we 2488 * first handle writeout of the page for checkpoint and 2489 * only after that handle delayed page dirtying. This 2490 * makes sure current data is checkpointed to the final 2491 * location before possibly journalling it again which 2492 * is desirable when the page is frequently dirtied 2493 * through a pin. 2494 */ 2495 if (!mpd->can_map) { 2496 err = mpage_submit_folio(mpd, folio); 2497 if (err < 0) 2498 goto out; 2499 /* Pending dirtying of journalled data? */ 2500 if (folio_test_checked(folio)) { 2501 err = mpage_journal_page_buffers(handle, 2502 mpd, &folio->page); 2503 if (err < 0) 2504 goto out; 2505 mpd->journalled_more_data = 1; 2506 } 2507 mpage_folio_done(mpd, folio); 2508 } else { 2509 /* Add all dirty buffers to mpd */ 2510 lblk = ((ext4_lblk_t)folio->index) << 2511 (PAGE_SHIFT - blkbits); 2512 head = folio_buffers(folio); 2513 err = mpage_process_page_bufs(mpd, head, head, 2514 lblk); 2515 if (err <= 0) 2516 goto out; 2517 err = 0; 2518 } 2519 } 2520 folio_batch_release(&fbatch); 2521 cond_resched(); 2522 } 2523 mpd->scanned_until_end = 1; 2524 if (handle) 2525 ext4_journal_stop(handle); 2526 return 0; 2527 out: 2528 folio_batch_release(&fbatch); 2529 if (handle) 2530 ext4_journal_stop(handle); 2531 return err; 2532 } 2533 2534 static int ext4_do_writepages(struct mpage_da_data *mpd) 2535 { 2536 struct writeback_control *wbc = mpd->wbc; 2537 pgoff_t writeback_index = 0; 2538 long nr_to_write = wbc->nr_to_write; 2539 int range_whole = 0; 2540 int cycled = 1; 2541 handle_t *handle = NULL; 2542 struct inode *inode = mpd->inode; 2543 struct address_space *mapping = inode->i_mapping; 2544 int needed_blocks, rsv_blocks = 0, ret = 0; 2545 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2546 struct blk_plug plug; 2547 bool give_up_on_write = false; 2548 2549 trace_ext4_writepages(inode, wbc); 2550 2551 /* 2552 * No pages to write? This is mainly a kludge to avoid starting 2553 * a transaction for special inodes like journal inode on last iput() 2554 * because that could violate lock ordering on umount 2555 */ 2556 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2557 goto out_writepages; 2558 2559 /* 2560 * If the filesystem has aborted, it is read-only, so return 2561 * right away instead of dumping stack traces later on that 2562 * will obscure the real source of the problem. We test 2563 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because 2564 * the latter could be true if the filesystem is mounted 2565 * read-only, and in that case, ext4_writepages should 2566 * *never* be called, so if that ever happens, we would want 2567 * the stack trace. 2568 */ 2569 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) || 2570 ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) { 2571 ret = -EROFS; 2572 goto out_writepages; 2573 } 2574 2575 /* 2576 * If we have inline data and arrive here, it means that 2577 * we will soon create the block for the 1st page, so 2578 * we'd better clear the inline data here. 2579 */ 2580 if (ext4_has_inline_data(inode)) { 2581 /* Just inode will be modified... */ 2582 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2583 if (IS_ERR(handle)) { 2584 ret = PTR_ERR(handle); 2585 goto out_writepages; 2586 } 2587 BUG_ON(ext4_test_inode_state(inode, 2588 EXT4_STATE_MAY_INLINE_DATA)); 2589 ext4_destroy_inline_data(handle, inode); 2590 ext4_journal_stop(handle); 2591 } 2592 2593 /* 2594 * data=journal mode does not do delalloc so we just need to writeout / 2595 * journal already mapped buffers. On the other hand we need to commit 2596 * transaction to make data stable. We expect all the data to be 2597 * already in the journal (the only exception are DMA pinned pages 2598 * dirtied behind our back) so we commit transaction here and run the 2599 * writeback loop to checkpoint them. The checkpointing is not actually 2600 * necessary to make data persistent *but* quite a few places (extent 2601 * shifting operations, fsverity, ...) depend on being able to drop 2602 * pagecache pages after calling filemap_write_and_wait() and for that 2603 * checkpointing needs to happen. 2604 */ 2605 if (ext4_should_journal_data(inode)) { 2606 mpd->can_map = 0; 2607 if (wbc->sync_mode == WB_SYNC_ALL) 2608 ext4_fc_commit(sbi->s_journal, 2609 EXT4_I(inode)->i_datasync_tid); 2610 } 2611 mpd->journalled_more_data = 0; 2612 2613 if (ext4_should_dioread_nolock(inode)) { 2614 /* 2615 * We may need to convert up to one extent per block in 2616 * the page and we may dirty the inode. 2617 */ 2618 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode, 2619 PAGE_SIZE >> inode->i_blkbits); 2620 } 2621 2622 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2623 range_whole = 1; 2624 2625 if (wbc->range_cyclic) { 2626 writeback_index = mapping->writeback_index; 2627 if (writeback_index) 2628 cycled = 0; 2629 mpd->first_page = writeback_index; 2630 mpd->last_page = -1; 2631 } else { 2632 mpd->first_page = wbc->range_start >> PAGE_SHIFT; 2633 mpd->last_page = wbc->range_end >> PAGE_SHIFT; 2634 } 2635 2636 ext4_io_submit_init(&mpd->io_submit, wbc); 2637 retry: 2638 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2639 tag_pages_for_writeback(mapping, mpd->first_page, 2640 mpd->last_page); 2641 blk_start_plug(&plug); 2642 2643 /* 2644 * First writeback pages that don't need mapping - we can avoid 2645 * starting a transaction unnecessarily and also avoid being blocked 2646 * in the block layer on device congestion while having transaction 2647 * started. 2648 */ 2649 mpd->do_map = 0; 2650 mpd->scanned_until_end = 0; 2651 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2652 if (!mpd->io_submit.io_end) { 2653 ret = -ENOMEM; 2654 goto unplug; 2655 } 2656 ret = mpage_prepare_extent_to_map(mpd); 2657 /* Unlock pages we didn't use */ 2658 mpage_release_unused_pages(mpd, false); 2659 /* Submit prepared bio */ 2660 ext4_io_submit(&mpd->io_submit); 2661 ext4_put_io_end_defer(mpd->io_submit.io_end); 2662 mpd->io_submit.io_end = NULL; 2663 if (ret < 0) 2664 goto unplug; 2665 2666 while (!mpd->scanned_until_end && wbc->nr_to_write > 0) { 2667 /* For each extent of pages we use new io_end */ 2668 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2669 if (!mpd->io_submit.io_end) { 2670 ret = -ENOMEM; 2671 break; 2672 } 2673 2674 WARN_ON_ONCE(!mpd->can_map); 2675 /* 2676 * We have two constraints: We find one extent to map and we 2677 * must always write out whole page (makes a difference when 2678 * blocksize < pagesize) so that we don't block on IO when we 2679 * try to write out the rest of the page. Journalled mode is 2680 * not supported by delalloc. 2681 */ 2682 BUG_ON(ext4_should_journal_data(inode)); 2683 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2684 2685 /* start a new transaction */ 2686 handle = ext4_journal_start_with_reserve(inode, 2687 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2688 if (IS_ERR(handle)) { 2689 ret = PTR_ERR(handle); 2690 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2691 "%ld pages, ino %lu; err %d", __func__, 2692 wbc->nr_to_write, inode->i_ino, ret); 2693 /* Release allocated io_end */ 2694 ext4_put_io_end(mpd->io_submit.io_end); 2695 mpd->io_submit.io_end = NULL; 2696 break; 2697 } 2698 mpd->do_map = 1; 2699 2700 trace_ext4_da_write_pages(inode, mpd->first_page, wbc); 2701 ret = mpage_prepare_extent_to_map(mpd); 2702 if (!ret && mpd->map.m_len) 2703 ret = mpage_map_and_submit_extent(handle, mpd, 2704 &give_up_on_write); 2705 /* 2706 * Caution: If the handle is synchronous, 2707 * ext4_journal_stop() can wait for transaction commit 2708 * to finish which may depend on writeback of pages to 2709 * complete or on page lock to be released. In that 2710 * case, we have to wait until after we have 2711 * submitted all the IO, released page locks we hold, 2712 * and dropped io_end reference (for extent conversion 2713 * to be able to complete) before stopping the handle. 2714 */ 2715 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2716 ext4_journal_stop(handle); 2717 handle = NULL; 2718 mpd->do_map = 0; 2719 } 2720 /* Unlock pages we didn't use */ 2721 mpage_release_unused_pages(mpd, give_up_on_write); 2722 /* Submit prepared bio */ 2723 ext4_io_submit(&mpd->io_submit); 2724 2725 /* 2726 * Drop our io_end reference we got from init. We have 2727 * to be careful and use deferred io_end finishing if 2728 * we are still holding the transaction as we can 2729 * release the last reference to io_end which may end 2730 * up doing unwritten extent conversion. 2731 */ 2732 if (handle) { 2733 ext4_put_io_end_defer(mpd->io_submit.io_end); 2734 ext4_journal_stop(handle); 2735 } else 2736 ext4_put_io_end(mpd->io_submit.io_end); 2737 mpd->io_submit.io_end = NULL; 2738 2739 if (ret == -ENOSPC && sbi->s_journal) { 2740 /* 2741 * Commit the transaction which would 2742 * free blocks released in the transaction 2743 * and try again 2744 */ 2745 jbd2_journal_force_commit_nested(sbi->s_journal); 2746 ret = 0; 2747 continue; 2748 } 2749 /* Fatal error - ENOMEM, EIO... */ 2750 if (ret) 2751 break; 2752 } 2753 unplug: 2754 blk_finish_plug(&plug); 2755 if (!ret && !cycled && wbc->nr_to_write > 0) { 2756 cycled = 1; 2757 mpd->last_page = writeback_index - 1; 2758 mpd->first_page = 0; 2759 goto retry; 2760 } 2761 2762 /* Update index */ 2763 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2764 /* 2765 * Set the writeback_index so that range_cyclic 2766 * mode will write it back later 2767 */ 2768 mapping->writeback_index = mpd->first_page; 2769 2770 out_writepages: 2771 trace_ext4_writepages_result(inode, wbc, ret, 2772 nr_to_write - wbc->nr_to_write); 2773 return ret; 2774 } 2775 2776 static int ext4_writepages(struct address_space *mapping, 2777 struct writeback_control *wbc) 2778 { 2779 struct super_block *sb = mapping->host->i_sb; 2780 struct mpage_da_data mpd = { 2781 .inode = mapping->host, 2782 .wbc = wbc, 2783 .can_map = 1, 2784 }; 2785 int ret; 2786 int alloc_ctx; 2787 2788 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 2789 return -EIO; 2790 2791 alloc_ctx = ext4_writepages_down_read(sb); 2792 ret = ext4_do_writepages(&mpd); 2793 /* 2794 * For data=journal writeback we could have come across pages marked 2795 * for delayed dirtying (PageChecked) which were just added to the 2796 * running transaction. Try once more to get them to stable storage. 2797 */ 2798 if (!ret && mpd.journalled_more_data) 2799 ret = ext4_do_writepages(&mpd); 2800 ext4_writepages_up_read(sb, alloc_ctx); 2801 2802 return ret; 2803 } 2804 2805 int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode) 2806 { 2807 struct writeback_control wbc = { 2808 .sync_mode = WB_SYNC_ALL, 2809 .nr_to_write = LONG_MAX, 2810 .range_start = jinode->i_dirty_start, 2811 .range_end = jinode->i_dirty_end, 2812 }; 2813 struct mpage_da_data mpd = { 2814 .inode = jinode->i_vfs_inode, 2815 .wbc = &wbc, 2816 .can_map = 0, 2817 }; 2818 return ext4_do_writepages(&mpd); 2819 } 2820 2821 static int ext4_dax_writepages(struct address_space *mapping, 2822 struct writeback_control *wbc) 2823 { 2824 int ret; 2825 long nr_to_write = wbc->nr_to_write; 2826 struct inode *inode = mapping->host; 2827 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2828 int alloc_ctx; 2829 2830 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2831 return -EIO; 2832 2833 alloc_ctx = ext4_writepages_down_read(inode->i_sb); 2834 trace_ext4_writepages(inode, wbc); 2835 2836 ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc); 2837 trace_ext4_writepages_result(inode, wbc, ret, 2838 nr_to_write - wbc->nr_to_write); 2839 ext4_writepages_up_read(inode->i_sb, alloc_ctx); 2840 return ret; 2841 } 2842 2843 static int ext4_nonda_switch(struct super_block *sb) 2844 { 2845 s64 free_clusters, dirty_clusters; 2846 struct ext4_sb_info *sbi = EXT4_SB(sb); 2847 2848 /* 2849 * switch to non delalloc mode if we are running low 2850 * on free block. The free block accounting via percpu 2851 * counters can get slightly wrong with percpu_counter_batch getting 2852 * accumulated on each CPU without updating global counters 2853 * Delalloc need an accurate free block accounting. So switch 2854 * to non delalloc when we are near to error range. 2855 */ 2856 free_clusters = 2857 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2858 dirty_clusters = 2859 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2860 /* 2861 * Start pushing delalloc when 1/2 of free blocks are dirty. 2862 */ 2863 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2864 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2865 2866 if (2 * free_clusters < 3 * dirty_clusters || 2867 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2868 /* 2869 * free block count is less than 150% of dirty blocks 2870 * or free blocks is less than watermark 2871 */ 2872 return 1; 2873 } 2874 return 0; 2875 } 2876 2877 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2878 loff_t pos, unsigned len, 2879 struct page **pagep, void **fsdata) 2880 { 2881 int ret, retries = 0; 2882 struct folio *folio; 2883 pgoff_t index; 2884 struct inode *inode = mapping->host; 2885 2886 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2887 return -EIO; 2888 2889 index = pos >> PAGE_SHIFT; 2890 2891 if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) { 2892 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2893 return ext4_write_begin(file, mapping, pos, 2894 len, pagep, fsdata); 2895 } 2896 *fsdata = (void *)0; 2897 trace_ext4_da_write_begin(inode, pos, len); 2898 2899 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2900 ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len, 2901 pagep, fsdata); 2902 if (ret < 0) 2903 return ret; 2904 if (ret == 1) 2905 return 0; 2906 } 2907 2908 retry: 2909 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN, 2910 mapping_gfp_mask(mapping)); 2911 if (IS_ERR(folio)) 2912 return PTR_ERR(folio); 2913 2914 /* In case writeback began while the folio was unlocked */ 2915 folio_wait_stable(folio); 2916 2917 #ifdef CONFIG_FS_ENCRYPTION 2918 ret = ext4_block_write_begin(folio, pos, len, ext4_da_get_block_prep); 2919 #else 2920 ret = __block_write_begin(&folio->page, pos, len, ext4_da_get_block_prep); 2921 #endif 2922 if (ret < 0) { 2923 folio_unlock(folio); 2924 folio_put(folio); 2925 /* 2926 * block_write_begin may have instantiated a few blocks 2927 * outside i_size. Trim these off again. Don't need 2928 * i_size_read because we hold inode lock. 2929 */ 2930 if (pos + len > inode->i_size) 2931 ext4_truncate_failed_write(inode); 2932 2933 if (ret == -ENOSPC && 2934 ext4_should_retry_alloc(inode->i_sb, &retries)) 2935 goto retry; 2936 return ret; 2937 } 2938 2939 *pagep = &folio->page; 2940 return ret; 2941 } 2942 2943 /* 2944 * Check if we should update i_disksize 2945 * when write to the end of file but not require block allocation 2946 */ 2947 static int ext4_da_should_update_i_disksize(struct page *page, 2948 unsigned long offset) 2949 { 2950 struct buffer_head *bh; 2951 struct inode *inode = page->mapping->host; 2952 unsigned int idx; 2953 int i; 2954 2955 bh = page_buffers(page); 2956 idx = offset >> inode->i_blkbits; 2957 2958 for (i = 0; i < idx; i++) 2959 bh = bh->b_this_page; 2960 2961 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2962 return 0; 2963 return 1; 2964 } 2965 2966 static int ext4_da_write_end(struct file *file, 2967 struct address_space *mapping, 2968 loff_t pos, unsigned len, unsigned copied, 2969 struct page *page, void *fsdata) 2970 { 2971 struct inode *inode = mapping->host; 2972 loff_t new_i_size; 2973 unsigned long start, end; 2974 int write_mode = (int)(unsigned long)fsdata; 2975 2976 if (write_mode == FALL_BACK_TO_NONDELALLOC) 2977 return ext4_write_end(file, mapping, pos, 2978 len, copied, page, fsdata); 2979 2980 trace_ext4_da_write_end(inode, pos, len, copied); 2981 2982 if (write_mode != CONVERT_INLINE_DATA && 2983 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 2984 ext4_has_inline_data(inode)) 2985 return ext4_write_inline_data_end(inode, pos, len, copied, page); 2986 2987 if (unlikely(copied < len) && !PageUptodate(page)) 2988 copied = 0; 2989 2990 start = pos & (PAGE_SIZE - 1); 2991 end = start + copied - 1; 2992 2993 /* 2994 * Since we are holding inode lock, we are sure i_disksize <= 2995 * i_size. We also know that if i_disksize < i_size, there are 2996 * delalloc writes pending in the range upto i_size. If the end of 2997 * the current write is <= i_size, there's no need to touch 2998 * i_disksize since writeback will push i_disksize upto i_size 2999 * eventually. If the end of the current write is > i_size and 3000 * inside an allocated block (ext4_da_should_update_i_disksize() 3001 * check), we need to update i_disksize here as certain 3002 * ext4_writepages() paths not allocating blocks update i_disksize. 3003 * 3004 * Note that we defer inode dirtying to generic_write_end() / 3005 * ext4_da_write_inline_data_end(). 3006 */ 3007 new_i_size = pos + copied; 3008 if (copied && new_i_size > inode->i_size && 3009 ext4_da_should_update_i_disksize(page, end)) 3010 ext4_update_i_disksize(inode, new_i_size); 3011 3012 return generic_write_end(file, mapping, pos, len, copied, page, fsdata); 3013 } 3014 3015 /* 3016 * Force all delayed allocation blocks to be allocated for a given inode. 3017 */ 3018 int ext4_alloc_da_blocks(struct inode *inode) 3019 { 3020 trace_ext4_alloc_da_blocks(inode); 3021 3022 if (!EXT4_I(inode)->i_reserved_data_blocks) 3023 return 0; 3024 3025 /* 3026 * We do something simple for now. The filemap_flush() will 3027 * also start triggering a write of the data blocks, which is 3028 * not strictly speaking necessary (and for users of 3029 * laptop_mode, not even desirable). However, to do otherwise 3030 * would require replicating code paths in: 3031 * 3032 * ext4_writepages() -> 3033 * write_cache_pages() ---> (via passed in callback function) 3034 * __mpage_da_writepage() --> 3035 * mpage_add_bh_to_extent() 3036 * mpage_da_map_blocks() 3037 * 3038 * The problem is that write_cache_pages(), located in 3039 * mm/page-writeback.c, marks pages clean in preparation for 3040 * doing I/O, which is not desirable if we're not planning on 3041 * doing I/O at all. 3042 * 3043 * We could call write_cache_pages(), and then redirty all of 3044 * the pages by calling redirty_page_for_writepage() but that 3045 * would be ugly in the extreme. So instead we would need to 3046 * replicate parts of the code in the above functions, 3047 * simplifying them because we wouldn't actually intend to 3048 * write out the pages, but rather only collect contiguous 3049 * logical block extents, call the multi-block allocator, and 3050 * then update the buffer heads with the block allocations. 3051 * 3052 * For now, though, we'll cheat by calling filemap_flush(), 3053 * which will map the blocks, and start the I/O, but not 3054 * actually wait for the I/O to complete. 3055 */ 3056 return filemap_flush(inode->i_mapping); 3057 } 3058 3059 /* 3060 * bmap() is special. It gets used by applications such as lilo and by 3061 * the swapper to find the on-disk block of a specific piece of data. 3062 * 3063 * Naturally, this is dangerous if the block concerned is still in the 3064 * journal. If somebody makes a swapfile on an ext4 data-journaling 3065 * filesystem and enables swap, then they may get a nasty shock when the 3066 * data getting swapped to that swapfile suddenly gets overwritten by 3067 * the original zero's written out previously to the journal and 3068 * awaiting writeback in the kernel's buffer cache. 3069 * 3070 * So, if we see any bmap calls here on a modified, data-journaled file, 3071 * take extra steps to flush any blocks which might be in the cache. 3072 */ 3073 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3074 { 3075 struct inode *inode = mapping->host; 3076 sector_t ret = 0; 3077 3078 inode_lock_shared(inode); 3079 /* 3080 * We can get here for an inline file via the FIBMAP ioctl 3081 */ 3082 if (ext4_has_inline_data(inode)) 3083 goto out; 3084 3085 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3086 (test_opt(inode->i_sb, DELALLOC) || 3087 ext4_should_journal_data(inode))) { 3088 /* 3089 * With delalloc or journalled data we want to sync the file so 3090 * that we can make sure we allocate blocks for file and data 3091 * is in place for the user to see it 3092 */ 3093 filemap_write_and_wait(mapping); 3094 } 3095 3096 ret = iomap_bmap(mapping, block, &ext4_iomap_ops); 3097 3098 out: 3099 inode_unlock_shared(inode); 3100 return ret; 3101 } 3102 3103 static int ext4_read_folio(struct file *file, struct folio *folio) 3104 { 3105 int ret = -EAGAIN; 3106 struct inode *inode = folio->mapping->host; 3107 3108 trace_ext4_readpage(&folio->page); 3109 3110 if (ext4_has_inline_data(inode)) 3111 ret = ext4_readpage_inline(inode, folio); 3112 3113 if (ret == -EAGAIN) 3114 return ext4_mpage_readpages(inode, NULL, folio); 3115 3116 return ret; 3117 } 3118 3119 static void ext4_readahead(struct readahead_control *rac) 3120 { 3121 struct inode *inode = rac->mapping->host; 3122 3123 /* If the file has inline data, no need to do readahead. */ 3124 if (ext4_has_inline_data(inode)) 3125 return; 3126 3127 ext4_mpage_readpages(inode, rac, NULL); 3128 } 3129 3130 static void ext4_invalidate_folio(struct folio *folio, size_t offset, 3131 size_t length) 3132 { 3133 trace_ext4_invalidate_folio(folio, offset, length); 3134 3135 /* No journalling happens on data buffers when this function is used */ 3136 WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio))); 3137 3138 block_invalidate_folio(folio, offset, length); 3139 } 3140 3141 static int __ext4_journalled_invalidate_folio(struct folio *folio, 3142 size_t offset, size_t length) 3143 { 3144 journal_t *journal = EXT4_JOURNAL(folio->mapping->host); 3145 3146 trace_ext4_journalled_invalidate_folio(folio, offset, length); 3147 3148 /* 3149 * If it's a full truncate we just forget about the pending dirtying 3150 */ 3151 if (offset == 0 && length == folio_size(folio)) 3152 folio_clear_checked(folio); 3153 3154 return jbd2_journal_invalidate_folio(journal, folio, offset, length); 3155 } 3156 3157 /* Wrapper for aops... */ 3158 static void ext4_journalled_invalidate_folio(struct folio *folio, 3159 size_t offset, 3160 size_t length) 3161 { 3162 WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0); 3163 } 3164 3165 static bool ext4_release_folio(struct folio *folio, gfp_t wait) 3166 { 3167 journal_t *journal = EXT4_JOURNAL(folio->mapping->host); 3168 3169 trace_ext4_releasepage(&folio->page); 3170 3171 /* Page has dirty journalled data -> cannot release */ 3172 if (folio_test_checked(folio)) 3173 return false; 3174 if (journal) 3175 return jbd2_journal_try_to_free_buffers(journal, folio); 3176 else 3177 return try_to_free_buffers(folio); 3178 } 3179 3180 static bool ext4_inode_datasync_dirty(struct inode *inode) 3181 { 3182 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 3183 3184 if (journal) { 3185 if (jbd2_transaction_committed(journal, 3186 EXT4_I(inode)->i_datasync_tid)) 3187 return false; 3188 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT)) 3189 return !list_empty(&EXT4_I(inode)->i_fc_list); 3190 return true; 3191 } 3192 3193 /* Any metadata buffers to write? */ 3194 if (!list_empty(&inode->i_mapping->private_list)) 3195 return true; 3196 return inode->i_state & I_DIRTY_DATASYNC; 3197 } 3198 3199 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap, 3200 struct ext4_map_blocks *map, loff_t offset, 3201 loff_t length, unsigned int flags) 3202 { 3203 u8 blkbits = inode->i_blkbits; 3204 3205 /* 3206 * Writes that span EOF might trigger an I/O size update on completion, 3207 * so consider them to be dirty for the purpose of O_DSYNC, even if 3208 * there is no other metadata changes being made or are pending. 3209 */ 3210 iomap->flags = 0; 3211 if (ext4_inode_datasync_dirty(inode) || 3212 offset + length > i_size_read(inode)) 3213 iomap->flags |= IOMAP_F_DIRTY; 3214 3215 if (map->m_flags & EXT4_MAP_NEW) 3216 iomap->flags |= IOMAP_F_NEW; 3217 3218 if (flags & IOMAP_DAX) 3219 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev; 3220 else 3221 iomap->bdev = inode->i_sb->s_bdev; 3222 iomap->offset = (u64) map->m_lblk << blkbits; 3223 iomap->length = (u64) map->m_len << blkbits; 3224 3225 if ((map->m_flags & EXT4_MAP_MAPPED) && 3226 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3227 iomap->flags |= IOMAP_F_MERGED; 3228 3229 /* 3230 * Flags passed to ext4_map_blocks() for direct I/O writes can result 3231 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits 3232 * set. In order for any allocated unwritten extents to be converted 3233 * into written extents correctly within the ->end_io() handler, we 3234 * need to ensure that the iomap->type is set appropriately. Hence, the 3235 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has 3236 * been set first. 3237 */ 3238 if (map->m_flags & EXT4_MAP_UNWRITTEN) { 3239 iomap->type = IOMAP_UNWRITTEN; 3240 iomap->addr = (u64) map->m_pblk << blkbits; 3241 if (flags & IOMAP_DAX) 3242 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; 3243 } else if (map->m_flags & EXT4_MAP_MAPPED) { 3244 iomap->type = IOMAP_MAPPED; 3245 iomap->addr = (u64) map->m_pblk << blkbits; 3246 if (flags & IOMAP_DAX) 3247 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; 3248 } else { 3249 iomap->type = IOMAP_HOLE; 3250 iomap->addr = IOMAP_NULL_ADDR; 3251 } 3252 } 3253 3254 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map, 3255 unsigned int flags) 3256 { 3257 handle_t *handle; 3258 u8 blkbits = inode->i_blkbits; 3259 int ret, dio_credits, m_flags = 0, retries = 0; 3260 3261 /* 3262 * Trim the mapping request to the maximum value that we can map at 3263 * once for direct I/O. 3264 */ 3265 if (map->m_len > DIO_MAX_BLOCKS) 3266 map->m_len = DIO_MAX_BLOCKS; 3267 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len); 3268 3269 retry: 3270 /* 3271 * Either we allocate blocks and then don't get an unwritten extent, so 3272 * in that case we have reserved enough credits. Or, the blocks are 3273 * already allocated and unwritten. In that case, the extent conversion 3274 * fits into the credits as well. 3275 */ 3276 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 3277 if (IS_ERR(handle)) 3278 return PTR_ERR(handle); 3279 3280 /* 3281 * DAX and direct I/O are the only two operations that are currently 3282 * supported with IOMAP_WRITE. 3283 */ 3284 WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT))); 3285 if (flags & IOMAP_DAX) 3286 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO; 3287 /* 3288 * We use i_size instead of i_disksize here because delalloc writeback 3289 * can complete at any point during the I/O and subsequently push the 3290 * i_disksize out to i_size. This could be beyond where direct I/O is 3291 * happening and thus expose allocated blocks to direct I/O reads. 3292 */ 3293 else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode)) 3294 m_flags = EXT4_GET_BLOCKS_CREATE; 3295 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3296 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT; 3297 3298 ret = ext4_map_blocks(handle, inode, map, m_flags); 3299 3300 /* 3301 * We cannot fill holes in indirect tree based inodes as that could 3302 * expose stale data in the case of a crash. Use the magic error code 3303 * to fallback to buffered I/O. 3304 */ 3305 if (!m_flags && !ret) 3306 ret = -ENOTBLK; 3307 3308 ext4_journal_stop(handle); 3309 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3310 goto retry; 3311 3312 return ret; 3313 } 3314 3315 3316 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3317 unsigned flags, struct iomap *iomap, struct iomap *srcmap) 3318 { 3319 int ret; 3320 struct ext4_map_blocks map; 3321 u8 blkbits = inode->i_blkbits; 3322 3323 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3324 return -EINVAL; 3325 3326 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3327 return -ERANGE; 3328 3329 /* 3330 * Calculate the first and last logical blocks respectively. 3331 */ 3332 map.m_lblk = offset >> blkbits; 3333 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3334 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3335 3336 if (flags & IOMAP_WRITE) { 3337 /* 3338 * We check here if the blocks are already allocated, then we 3339 * don't need to start a journal txn and we can directly return 3340 * the mapping information. This could boost performance 3341 * especially in multi-threaded overwrite requests. 3342 */ 3343 if (offset + length <= i_size_read(inode)) { 3344 ret = ext4_map_blocks(NULL, inode, &map, 0); 3345 if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED)) 3346 goto out; 3347 } 3348 ret = ext4_iomap_alloc(inode, &map, flags); 3349 } else { 3350 ret = ext4_map_blocks(NULL, inode, &map, 0); 3351 } 3352 3353 if (ret < 0) 3354 return ret; 3355 out: 3356 /* 3357 * When inline encryption is enabled, sometimes I/O to an encrypted file 3358 * has to be broken up to guarantee DUN contiguity. Handle this by 3359 * limiting the length of the mapping returned. 3360 */ 3361 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len); 3362 3363 ext4_set_iomap(inode, iomap, &map, offset, length, flags); 3364 3365 return 0; 3366 } 3367 3368 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset, 3369 loff_t length, unsigned flags, struct iomap *iomap, 3370 struct iomap *srcmap) 3371 { 3372 int ret; 3373 3374 /* 3375 * Even for writes we don't need to allocate blocks, so just pretend 3376 * we are reading to save overhead of starting a transaction. 3377 */ 3378 flags &= ~IOMAP_WRITE; 3379 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap); 3380 WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED); 3381 return ret; 3382 } 3383 3384 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, 3385 ssize_t written, unsigned flags, struct iomap *iomap) 3386 { 3387 /* 3388 * Check to see whether an error occurred while writing out the data to 3389 * the allocated blocks. If so, return the magic error code so that we 3390 * fallback to buffered I/O and attempt to complete the remainder of 3391 * the I/O. Any blocks that may have been allocated in preparation for 3392 * the direct I/O will be reused during buffered I/O. 3393 */ 3394 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0) 3395 return -ENOTBLK; 3396 3397 return 0; 3398 } 3399 3400 const struct iomap_ops ext4_iomap_ops = { 3401 .iomap_begin = ext4_iomap_begin, 3402 .iomap_end = ext4_iomap_end, 3403 }; 3404 3405 const struct iomap_ops ext4_iomap_overwrite_ops = { 3406 .iomap_begin = ext4_iomap_overwrite_begin, 3407 .iomap_end = ext4_iomap_end, 3408 }; 3409 3410 static bool ext4_iomap_is_delalloc(struct inode *inode, 3411 struct ext4_map_blocks *map) 3412 { 3413 struct extent_status es; 3414 ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1; 3415 3416 ext4_es_find_extent_range(inode, &ext4_es_is_delayed, 3417 map->m_lblk, end, &es); 3418 3419 if (!es.es_len || es.es_lblk > end) 3420 return false; 3421 3422 if (es.es_lblk > map->m_lblk) { 3423 map->m_len = es.es_lblk - map->m_lblk; 3424 return false; 3425 } 3426 3427 offset = map->m_lblk - es.es_lblk; 3428 map->m_len = es.es_len - offset; 3429 3430 return true; 3431 } 3432 3433 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset, 3434 loff_t length, unsigned int flags, 3435 struct iomap *iomap, struct iomap *srcmap) 3436 { 3437 int ret; 3438 bool delalloc = false; 3439 struct ext4_map_blocks map; 3440 u8 blkbits = inode->i_blkbits; 3441 3442 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3443 return -EINVAL; 3444 3445 if (ext4_has_inline_data(inode)) { 3446 ret = ext4_inline_data_iomap(inode, iomap); 3447 if (ret != -EAGAIN) { 3448 if (ret == 0 && offset >= iomap->length) 3449 ret = -ENOENT; 3450 return ret; 3451 } 3452 } 3453 3454 /* 3455 * Calculate the first and last logical block respectively. 3456 */ 3457 map.m_lblk = offset >> blkbits; 3458 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3459 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3460 3461 /* 3462 * Fiemap callers may call for offset beyond s_bitmap_maxbytes. 3463 * So handle it here itself instead of querying ext4_map_blocks(). 3464 * Since ext4_map_blocks() will warn about it and will return 3465 * -EIO error. 3466 */ 3467 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 3468 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3469 3470 if (offset >= sbi->s_bitmap_maxbytes) { 3471 map.m_flags = 0; 3472 goto set_iomap; 3473 } 3474 } 3475 3476 ret = ext4_map_blocks(NULL, inode, &map, 0); 3477 if (ret < 0) 3478 return ret; 3479 if (ret == 0) 3480 delalloc = ext4_iomap_is_delalloc(inode, &map); 3481 3482 set_iomap: 3483 ext4_set_iomap(inode, iomap, &map, offset, length, flags); 3484 if (delalloc && iomap->type == IOMAP_HOLE) 3485 iomap->type = IOMAP_DELALLOC; 3486 3487 return 0; 3488 } 3489 3490 const struct iomap_ops ext4_iomap_report_ops = { 3491 .iomap_begin = ext4_iomap_begin_report, 3492 }; 3493 3494 /* 3495 * For data=journal mode, folio should be marked dirty only when it was 3496 * writeably mapped. When that happens, it was already attached to the 3497 * transaction and marked as jbddirty (we take care of this in 3498 * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings 3499 * so we should have nothing to do here, except for the case when someone 3500 * had the page pinned and dirtied the page through this pin (e.g. by doing 3501 * direct IO to it). In that case we'd need to attach buffers here to the 3502 * transaction but we cannot due to lock ordering. We cannot just dirty the 3503 * folio and leave attached buffers clean, because the buffers' dirty state is 3504 * "definitive". We cannot just set the buffers dirty or jbddirty because all 3505 * the journalling code will explode. So what we do is to mark the folio 3506 * "pending dirty" and next time ext4_writepages() is called, attach buffers 3507 * to the transaction appropriately. 3508 */ 3509 static bool ext4_journalled_dirty_folio(struct address_space *mapping, 3510 struct folio *folio) 3511 { 3512 WARN_ON_ONCE(!folio_buffers(folio)); 3513 if (folio_maybe_dma_pinned(folio)) 3514 folio_set_checked(folio); 3515 return filemap_dirty_folio(mapping, folio); 3516 } 3517 3518 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio) 3519 { 3520 WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio)); 3521 WARN_ON_ONCE(!folio_buffers(folio)); 3522 return block_dirty_folio(mapping, folio); 3523 } 3524 3525 static int ext4_iomap_swap_activate(struct swap_info_struct *sis, 3526 struct file *file, sector_t *span) 3527 { 3528 return iomap_swapfile_activate(sis, file, span, 3529 &ext4_iomap_report_ops); 3530 } 3531 3532 static const struct address_space_operations ext4_aops = { 3533 .read_folio = ext4_read_folio, 3534 .readahead = ext4_readahead, 3535 .writepages = ext4_writepages, 3536 .write_begin = ext4_write_begin, 3537 .write_end = ext4_write_end, 3538 .dirty_folio = ext4_dirty_folio, 3539 .bmap = ext4_bmap, 3540 .invalidate_folio = ext4_invalidate_folio, 3541 .release_folio = ext4_release_folio, 3542 .direct_IO = noop_direct_IO, 3543 .migrate_folio = buffer_migrate_folio, 3544 .is_partially_uptodate = block_is_partially_uptodate, 3545 .error_remove_page = generic_error_remove_page, 3546 .swap_activate = ext4_iomap_swap_activate, 3547 }; 3548 3549 static const struct address_space_operations ext4_journalled_aops = { 3550 .read_folio = ext4_read_folio, 3551 .readahead = ext4_readahead, 3552 .writepages = ext4_writepages, 3553 .write_begin = ext4_write_begin, 3554 .write_end = ext4_journalled_write_end, 3555 .dirty_folio = ext4_journalled_dirty_folio, 3556 .bmap = ext4_bmap, 3557 .invalidate_folio = ext4_journalled_invalidate_folio, 3558 .release_folio = ext4_release_folio, 3559 .direct_IO = noop_direct_IO, 3560 .migrate_folio = buffer_migrate_folio_norefs, 3561 .is_partially_uptodate = block_is_partially_uptodate, 3562 .error_remove_page = generic_error_remove_page, 3563 .swap_activate = ext4_iomap_swap_activate, 3564 }; 3565 3566 static const struct address_space_operations ext4_da_aops = { 3567 .read_folio = ext4_read_folio, 3568 .readahead = ext4_readahead, 3569 .writepages = ext4_writepages, 3570 .write_begin = ext4_da_write_begin, 3571 .write_end = ext4_da_write_end, 3572 .dirty_folio = ext4_dirty_folio, 3573 .bmap = ext4_bmap, 3574 .invalidate_folio = ext4_invalidate_folio, 3575 .release_folio = ext4_release_folio, 3576 .direct_IO = noop_direct_IO, 3577 .migrate_folio = buffer_migrate_folio, 3578 .is_partially_uptodate = block_is_partially_uptodate, 3579 .error_remove_page = generic_error_remove_page, 3580 .swap_activate = ext4_iomap_swap_activate, 3581 }; 3582 3583 static const struct address_space_operations ext4_dax_aops = { 3584 .writepages = ext4_dax_writepages, 3585 .direct_IO = noop_direct_IO, 3586 .dirty_folio = noop_dirty_folio, 3587 .bmap = ext4_bmap, 3588 .swap_activate = ext4_iomap_swap_activate, 3589 }; 3590 3591 void ext4_set_aops(struct inode *inode) 3592 { 3593 switch (ext4_inode_journal_mode(inode)) { 3594 case EXT4_INODE_ORDERED_DATA_MODE: 3595 case EXT4_INODE_WRITEBACK_DATA_MODE: 3596 break; 3597 case EXT4_INODE_JOURNAL_DATA_MODE: 3598 inode->i_mapping->a_ops = &ext4_journalled_aops; 3599 return; 3600 default: 3601 BUG(); 3602 } 3603 if (IS_DAX(inode)) 3604 inode->i_mapping->a_ops = &ext4_dax_aops; 3605 else if (test_opt(inode->i_sb, DELALLOC)) 3606 inode->i_mapping->a_ops = &ext4_da_aops; 3607 else 3608 inode->i_mapping->a_ops = &ext4_aops; 3609 } 3610 3611 static int __ext4_block_zero_page_range(handle_t *handle, 3612 struct address_space *mapping, loff_t from, loff_t length) 3613 { 3614 ext4_fsblk_t index = from >> PAGE_SHIFT; 3615 unsigned offset = from & (PAGE_SIZE-1); 3616 unsigned blocksize, pos; 3617 ext4_lblk_t iblock; 3618 struct inode *inode = mapping->host; 3619 struct buffer_head *bh; 3620 struct folio *folio; 3621 int err = 0; 3622 3623 folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT, 3624 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, 3625 mapping_gfp_constraint(mapping, ~__GFP_FS)); 3626 if (IS_ERR(folio)) 3627 return PTR_ERR(folio); 3628 3629 blocksize = inode->i_sb->s_blocksize; 3630 3631 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 3632 3633 bh = folio_buffers(folio); 3634 if (!bh) { 3635 create_empty_buffers(&folio->page, blocksize, 0); 3636 bh = folio_buffers(folio); 3637 } 3638 3639 /* Find the buffer that contains "offset" */ 3640 pos = blocksize; 3641 while (offset >= pos) { 3642 bh = bh->b_this_page; 3643 iblock++; 3644 pos += blocksize; 3645 } 3646 if (buffer_freed(bh)) { 3647 BUFFER_TRACE(bh, "freed: skip"); 3648 goto unlock; 3649 } 3650 if (!buffer_mapped(bh)) { 3651 BUFFER_TRACE(bh, "unmapped"); 3652 ext4_get_block(inode, iblock, bh, 0); 3653 /* unmapped? It's a hole - nothing to do */ 3654 if (!buffer_mapped(bh)) { 3655 BUFFER_TRACE(bh, "still unmapped"); 3656 goto unlock; 3657 } 3658 } 3659 3660 /* Ok, it's mapped. Make sure it's up-to-date */ 3661 if (folio_test_uptodate(folio)) 3662 set_buffer_uptodate(bh); 3663 3664 if (!buffer_uptodate(bh)) { 3665 err = ext4_read_bh_lock(bh, 0, true); 3666 if (err) 3667 goto unlock; 3668 if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 3669 /* We expect the key to be set. */ 3670 BUG_ON(!fscrypt_has_encryption_key(inode)); 3671 err = fscrypt_decrypt_pagecache_blocks(folio, 3672 blocksize, 3673 bh_offset(bh)); 3674 if (err) { 3675 clear_buffer_uptodate(bh); 3676 goto unlock; 3677 } 3678 } 3679 } 3680 if (ext4_should_journal_data(inode)) { 3681 BUFFER_TRACE(bh, "get write access"); 3682 err = ext4_journal_get_write_access(handle, inode->i_sb, bh, 3683 EXT4_JTR_NONE); 3684 if (err) 3685 goto unlock; 3686 } 3687 folio_zero_range(folio, offset, length); 3688 BUFFER_TRACE(bh, "zeroed end of block"); 3689 3690 if (ext4_should_journal_data(inode)) { 3691 err = ext4_dirty_journalled_data(handle, bh); 3692 } else { 3693 err = 0; 3694 mark_buffer_dirty(bh); 3695 if (ext4_should_order_data(inode)) 3696 err = ext4_jbd2_inode_add_write(handle, inode, from, 3697 length); 3698 } 3699 3700 unlock: 3701 folio_unlock(folio); 3702 folio_put(folio); 3703 return err; 3704 } 3705 3706 /* 3707 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3708 * starting from file offset 'from'. The range to be zero'd must 3709 * be contained with in one block. If the specified range exceeds 3710 * the end of the block it will be shortened to end of the block 3711 * that corresponds to 'from' 3712 */ 3713 static int ext4_block_zero_page_range(handle_t *handle, 3714 struct address_space *mapping, loff_t from, loff_t length) 3715 { 3716 struct inode *inode = mapping->host; 3717 unsigned offset = from & (PAGE_SIZE-1); 3718 unsigned blocksize = inode->i_sb->s_blocksize; 3719 unsigned max = blocksize - (offset & (blocksize - 1)); 3720 3721 /* 3722 * correct length if it does not fall between 3723 * 'from' and the end of the block 3724 */ 3725 if (length > max || length < 0) 3726 length = max; 3727 3728 if (IS_DAX(inode)) { 3729 return dax_zero_range(inode, from, length, NULL, 3730 &ext4_iomap_ops); 3731 } 3732 return __ext4_block_zero_page_range(handle, mapping, from, length); 3733 } 3734 3735 /* 3736 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3737 * up to the end of the block which corresponds to `from'. 3738 * This required during truncate. We need to physically zero the tail end 3739 * of that block so it doesn't yield old data if the file is later grown. 3740 */ 3741 static int ext4_block_truncate_page(handle_t *handle, 3742 struct address_space *mapping, loff_t from) 3743 { 3744 unsigned offset = from & (PAGE_SIZE-1); 3745 unsigned length; 3746 unsigned blocksize; 3747 struct inode *inode = mapping->host; 3748 3749 /* If we are processing an encrypted inode during orphan list handling */ 3750 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode)) 3751 return 0; 3752 3753 blocksize = inode->i_sb->s_blocksize; 3754 length = blocksize - (offset & (blocksize - 1)); 3755 3756 return ext4_block_zero_page_range(handle, mapping, from, length); 3757 } 3758 3759 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3760 loff_t lstart, loff_t length) 3761 { 3762 struct super_block *sb = inode->i_sb; 3763 struct address_space *mapping = inode->i_mapping; 3764 unsigned partial_start, partial_end; 3765 ext4_fsblk_t start, end; 3766 loff_t byte_end = (lstart + length - 1); 3767 int err = 0; 3768 3769 partial_start = lstart & (sb->s_blocksize - 1); 3770 partial_end = byte_end & (sb->s_blocksize - 1); 3771 3772 start = lstart >> sb->s_blocksize_bits; 3773 end = byte_end >> sb->s_blocksize_bits; 3774 3775 /* Handle partial zero within the single block */ 3776 if (start == end && 3777 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3778 err = ext4_block_zero_page_range(handle, mapping, 3779 lstart, length); 3780 return err; 3781 } 3782 /* Handle partial zero out on the start of the range */ 3783 if (partial_start) { 3784 err = ext4_block_zero_page_range(handle, mapping, 3785 lstart, sb->s_blocksize); 3786 if (err) 3787 return err; 3788 } 3789 /* Handle partial zero out on the end of the range */ 3790 if (partial_end != sb->s_blocksize - 1) 3791 err = ext4_block_zero_page_range(handle, mapping, 3792 byte_end - partial_end, 3793 partial_end + 1); 3794 return err; 3795 } 3796 3797 int ext4_can_truncate(struct inode *inode) 3798 { 3799 if (S_ISREG(inode->i_mode)) 3800 return 1; 3801 if (S_ISDIR(inode->i_mode)) 3802 return 1; 3803 if (S_ISLNK(inode->i_mode)) 3804 return !ext4_inode_is_fast_symlink(inode); 3805 return 0; 3806 } 3807 3808 /* 3809 * We have to make sure i_disksize gets properly updated before we truncate 3810 * page cache due to hole punching or zero range. Otherwise i_disksize update 3811 * can get lost as it may have been postponed to submission of writeback but 3812 * that will never happen after we truncate page cache. 3813 */ 3814 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 3815 loff_t len) 3816 { 3817 handle_t *handle; 3818 int ret; 3819 3820 loff_t size = i_size_read(inode); 3821 3822 WARN_ON(!inode_is_locked(inode)); 3823 if (offset > size || offset + len < size) 3824 return 0; 3825 3826 if (EXT4_I(inode)->i_disksize >= size) 3827 return 0; 3828 3829 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 3830 if (IS_ERR(handle)) 3831 return PTR_ERR(handle); 3832 ext4_update_i_disksize(inode, size); 3833 ret = ext4_mark_inode_dirty(handle, inode); 3834 ext4_journal_stop(handle); 3835 3836 return ret; 3837 } 3838 3839 static void ext4_wait_dax_page(struct inode *inode) 3840 { 3841 filemap_invalidate_unlock(inode->i_mapping); 3842 schedule(); 3843 filemap_invalidate_lock(inode->i_mapping); 3844 } 3845 3846 int ext4_break_layouts(struct inode *inode) 3847 { 3848 struct page *page; 3849 int error; 3850 3851 if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock))) 3852 return -EINVAL; 3853 3854 do { 3855 page = dax_layout_busy_page(inode->i_mapping); 3856 if (!page) 3857 return 0; 3858 3859 error = ___wait_var_event(&page->_refcount, 3860 atomic_read(&page->_refcount) == 1, 3861 TASK_INTERRUPTIBLE, 0, 0, 3862 ext4_wait_dax_page(inode)); 3863 } while (error == 0); 3864 3865 return error; 3866 } 3867 3868 /* 3869 * ext4_punch_hole: punches a hole in a file by releasing the blocks 3870 * associated with the given offset and length 3871 * 3872 * @inode: File inode 3873 * @offset: The offset where the hole will begin 3874 * @len: The length of the hole 3875 * 3876 * Returns: 0 on success or negative on failure 3877 */ 3878 3879 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length) 3880 { 3881 struct inode *inode = file_inode(file); 3882 struct super_block *sb = inode->i_sb; 3883 ext4_lblk_t first_block, stop_block; 3884 struct address_space *mapping = inode->i_mapping; 3885 loff_t first_block_offset, last_block_offset, max_length; 3886 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3887 handle_t *handle; 3888 unsigned int credits; 3889 int ret = 0, ret2 = 0; 3890 3891 trace_ext4_punch_hole(inode, offset, length, 0); 3892 3893 /* 3894 * Write out all dirty pages to avoid race conditions 3895 * Then release them. 3896 */ 3897 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 3898 ret = filemap_write_and_wait_range(mapping, offset, 3899 offset + length - 1); 3900 if (ret) 3901 return ret; 3902 } 3903 3904 inode_lock(inode); 3905 3906 /* No need to punch hole beyond i_size */ 3907 if (offset >= inode->i_size) 3908 goto out_mutex; 3909 3910 /* 3911 * If the hole extends beyond i_size, set the hole 3912 * to end after the page that contains i_size 3913 */ 3914 if (offset + length > inode->i_size) { 3915 length = inode->i_size + 3916 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) - 3917 offset; 3918 } 3919 3920 /* 3921 * For punch hole the length + offset needs to be within one block 3922 * before last range. Adjust the length if it goes beyond that limit. 3923 */ 3924 max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize; 3925 if (offset + length > max_length) 3926 length = max_length - offset; 3927 3928 if (offset & (sb->s_blocksize - 1) || 3929 (offset + length) & (sb->s_blocksize - 1)) { 3930 /* 3931 * Attach jinode to inode for jbd2 if we do any zeroing of 3932 * partial block 3933 */ 3934 ret = ext4_inode_attach_jinode(inode); 3935 if (ret < 0) 3936 goto out_mutex; 3937 3938 } 3939 3940 /* Wait all existing dio workers, newcomers will block on i_rwsem */ 3941 inode_dio_wait(inode); 3942 3943 ret = file_modified(file); 3944 if (ret) 3945 goto out_mutex; 3946 3947 /* 3948 * Prevent page faults from reinstantiating pages we have released from 3949 * page cache. 3950 */ 3951 filemap_invalidate_lock(mapping); 3952 3953 ret = ext4_break_layouts(inode); 3954 if (ret) 3955 goto out_dio; 3956 3957 first_block_offset = round_up(offset, sb->s_blocksize); 3958 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 3959 3960 /* Now release the pages and zero block aligned part of pages*/ 3961 if (last_block_offset > first_block_offset) { 3962 ret = ext4_update_disksize_before_punch(inode, offset, length); 3963 if (ret) 3964 goto out_dio; 3965 truncate_pagecache_range(inode, first_block_offset, 3966 last_block_offset); 3967 } 3968 3969 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3970 credits = ext4_writepage_trans_blocks(inode); 3971 else 3972 credits = ext4_blocks_for_truncate(inode); 3973 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3974 if (IS_ERR(handle)) { 3975 ret = PTR_ERR(handle); 3976 ext4_std_error(sb, ret); 3977 goto out_dio; 3978 } 3979 3980 ret = ext4_zero_partial_blocks(handle, inode, offset, 3981 length); 3982 if (ret) 3983 goto out_stop; 3984 3985 first_block = (offset + sb->s_blocksize - 1) >> 3986 EXT4_BLOCK_SIZE_BITS(sb); 3987 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 3988 3989 /* If there are blocks to remove, do it */ 3990 if (stop_block > first_block) { 3991 3992 down_write(&EXT4_I(inode)->i_data_sem); 3993 ext4_discard_preallocations(inode, 0); 3994 3995 ret = ext4_es_remove_extent(inode, first_block, 3996 stop_block - first_block); 3997 if (ret) { 3998 up_write(&EXT4_I(inode)->i_data_sem); 3999 goto out_stop; 4000 } 4001 4002 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4003 ret = ext4_ext_remove_space(inode, first_block, 4004 stop_block - 1); 4005 else 4006 ret = ext4_ind_remove_space(handle, inode, first_block, 4007 stop_block); 4008 4009 up_write(&EXT4_I(inode)->i_data_sem); 4010 } 4011 ext4_fc_track_range(handle, inode, first_block, stop_block); 4012 if (IS_SYNC(inode)) 4013 ext4_handle_sync(handle); 4014 4015 inode->i_mtime = inode->i_ctime = current_time(inode); 4016 ret2 = ext4_mark_inode_dirty(handle, inode); 4017 if (unlikely(ret2)) 4018 ret = ret2; 4019 if (ret >= 0) 4020 ext4_update_inode_fsync_trans(handle, inode, 1); 4021 out_stop: 4022 ext4_journal_stop(handle); 4023 out_dio: 4024 filemap_invalidate_unlock(mapping); 4025 out_mutex: 4026 inode_unlock(inode); 4027 return ret; 4028 } 4029 4030 int ext4_inode_attach_jinode(struct inode *inode) 4031 { 4032 struct ext4_inode_info *ei = EXT4_I(inode); 4033 struct jbd2_inode *jinode; 4034 4035 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4036 return 0; 4037 4038 jinode = jbd2_alloc_inode(GFP_KERNEL); 4039 spin_lock(&inode->i_lock); 4040 if (!ei->jinode) { 4041 if (!jinode) { 4042 spin_unlock(&inode->i_lock); 4043 return -ENOMEM; 4044 } 4045 ei->jinode = jinode; 4046 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4047 jinode = NULL; 4048 } 4049 spin_unlock(&inode->i_lock); 4050 if (unlikely(jinode != NULL)) 4051 jbd2_free_inode(jinode); 4052 return 0; 4053 } 4054 4055 /* 4056 * ext4_truncate() 4057 * 4058 * We block out ext4_get_block() block instantiations across the entire 4059 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4060 * simultaneously on behalf of the same inode. 4061 * 4062 * As we work through the truncate and commit bits of it to the journal there 4063 * is one core, guiding principle: the file's tree must always be consistent on 4064 * disk. We must be able to restart the truncate after a crash. 4065 * 4066 * The file's tree may be transiently inconsistent in memory (although it 4067 * probably isn't), but whenever we close off and commit a journal transaction, 4068 * the contents of (the filesystem + the journal) must be consistent and 4069 * restartable. It's pretty simple, really: bottom up, right to left (although 4070 * left-to-right works OK too). 4071 * 4072 * Note that at recovery time, journal replay occurs *before* the restart of 4073 * truncate against the orphan inode list. 4074 * 4075 * The committed inode has the new, desired i_size (which is the same as 4076 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4077 * that this inode's truncate did not complete and it will again call 4078 * ext4_truncate() to have another go. So there will be instantiated blocks 4079 * to the right of the truncation point in a crashed ext4 filesystem. But 4080 * that's fine - as long as they are linked from the inode, the post-crash 4081 * ext4_truncate() run will find them and release them. 4082 */ 4083 int ext4_truncate(struct inode *inode) 4084 { 4085 struct ext4_inode_info *ei = EXT4_I(inode); 4086 unsigned int credits; 4087 int err = 0, err2; 4088 handle_t *handle; 4089 struct address_space *mapping = inode->i_mapping; 4090 4091 /* 4092 * There is a possibility that we're either freeing the inode 4093 * or it's a completely new inode. In those cases we might not 4094 * have i_rwsem locked because it's not necessary. 4095 */ 4096 if (!(inode->i_state & (I_NEW|I_FREEING))) 4097 WARN_ON(!inode_is_locked(inode)); 4098 trace_ext4_truncate_enter(inode); 4099 4100 if (!ext4_can_truncate(inode)) 4101 goto out_trace; 4102 4103 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4104 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4105 4106 if (ext4_has_inline_data(inode)) { 4107 int has_inline = 1; 4108 4109 err = ext4_inline_data_truncate(inode, &has_inline); 4110 if (err || has_inline) 4111 goto out_trace; 4112 } 4113 4114 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4115 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4116 err = ext4_inode_attach_jinode(inode); 4117 if (err) 4118 goto out_trace; 4119 } 4120 4121 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4122 credits = ext4_writepage_trans_blocks(inode); 4123 else 4124 credits = ext4_blocks_for_truncate(inode); 4125 4126 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4127 if (IS_ERR(handle)) { 4128 err = PTR_ERR(handle); 4129 goto out_trace; 4130 } 4131 4132 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4133 ext4_block_truncate_page(handle, mapping, inode->i_size); 4134 4135 /* 4136 * We add the inode to the orphan list, so that if this 4137 * truncate spans multiple transactions, and we crash, we will 4138 * resume the truncate when the filesystem recovers. It also 4139 * marks the inode dirty, to catch the new size. 4140 * 4141 * Implication: the file must always be in a sane, consistent 4142 * truncatable state while each transaction commits. 4143 */ 4144 err = ext4_orphan_add(handle, inode); 4145 if (err) 4146 goto out_stop; 4147 4148 down_write(&EXT4_I(inode)->i_data_sem); 4149 4150 ext4_discard_preallocations(inode, 0); 4151 4152 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4153 err = ext4_ext_truncate(handle, inode); 4154 else 4155 ext4_ind_truncate(handle, inode); 4156 4157 up_write(&ei->i_data_sem); 4158 if (err) 4159 goto out_stop; 4160 4161 if (IS_SYNC(inode)) 4162 ext4_handle_sync(handle); 4163 4164 out_stop: 4165 /* 4166 * If this was a simple ftruncate() and the file will remain alive, 4167 * then we need to clear up the orphan record which we created above. 4168 * However, if this was a real unlink then we were called by 4169 * ext4_evict_inode(), and we allow that function to clean up the 4170 * orphan info for us. 4171 */ 4172 if (inode->i_nlink) 4173 ext4_orphan_del(handle, inode); 4174 4175 inode->i_mtime = inode->i_ctime = current_time(inode); 4176 err2 = ext4_mark_inode_dirty(handle, inode); 4177 if (unlikely(err2 && !err)) 4178 err = err2; 4179 ext4_journal_stop(handle); 4180 4181 out_trace: 4182 trace_ext4_truncate_exit(inode); 4183 return err; 4184 } 4185 4186 static inline u64 ext4_inode_peek_iversion(const struct inode *inode) 4187 { 4188 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4189 return inode_peek_iversion_raw(inode); 4190 else 4191 return inode_peek_iversion(inode); 4192 } 4193 4194 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode, 4195 struct ext4_inode_info *ei) 4196 { 4197 struct inode *inode = &(ei->vfs_inode); 4198 u64 i_blocks = READ_ONCE(inode->i_blocks); 4199 struct super_block *sb = inode->i_sb; 4200 4201 if (i_blocks <= ~0U) { 4202 /* 4203 * i_blocks can be represented in a 32 bit variable 4204 * as multiple of 512 bytes 4205 */ 4206 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4207 raw_inode->i_blocks_high = 0; 4208 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4209 return 0; 4210 } 4211 4212 /* 4213 * This should never happen since sb->s_maxbytes should not have 4214 * allowed this, sb->s_maxbytes was set according to the huge_file 4215 * feature in ext4_fill_super(). 4216 */ 4217 if (!ext4_has_feature_huge_file(sb)) 4218 return -EFSCORRUPTED; 4219 4220 if (i_blocks <= 0xffffffffffffULL) { 4221 /* 4222 * i_blocks can be represented in a 48 bit variable 4223 * as multiple of 512 bytes 4224 */ 4225 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4226 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4227 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4228 } else { 4229 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4230 /* i_block is stored in file system block size */ 4231 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4232 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4233 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4234 } 4235 return 0; 4236 } 4237 4238 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode) 4239 { 4240 struct ext4_inode_info *ei = EXT4_I(inode); 4241 uid_t i_uid; 4242 gid_t i_gid; 4243 projid_t i_projid; 4244 int block; 4245 int err; 4246 4247 err = ext4_inode_blocks_set(raw_inode, ei); 4248 4249 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4250 i_uid = i_uid_read(inode); 4251 i_gid = i_gid_read(inode); 4252 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 4253 if (!(test_opt(inode->i_sb, NO_UID32))) { 4254 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4255 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4256 /* 4257 * Fix up interoperability with old kernels. Otherwise, 4258 * old inodes get re-used with the upper 16 bits of the 4259 * uid/gid intact. 4260 */ 4261 if (ei->i_dtime && list_empty(&ei->i_orphan)) { 4262 raw_inode->i_uid_high = 0; 4263 raw_inode->i_gid_high = 0; 4264 } else { 4265 raw_inode->i_uid_high = 4266 cpu_to_le16(high_16_bits(i_uid)); 4267 raw_inode->i_gid_high = 4268 cpu_to_le16(high_16_bits(i_gid)); 4269 } 4270 } else { 4271 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4272 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4273 raw_inode->i_uid_high = 0; 4274 raw_inode->i_gid_high = 0; 4275 } 4276 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4277 4278 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4279 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4280 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4281 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4282 4283 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4284 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4285 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 4286 raw_inode->i_file_acl_high = 4287 cpu_to_le16(ei->i_file_acl >> 32); 4288 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4289 ext4_isize_set(raw_inode, ei->i_disksize); 4290 4291 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4292 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4293 if (old_valid_dev(inode->i_rdev)) { 4294 raw_inode->i_block[0] = 4295 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4296 raw_inode->i_block[1] = 0; 4297 } else { 4298 raw_inode->i_block[0] = 0; 4299 raw_inode->i_block[1] = 4300 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4301 raw_inode->i_block[2] = 0; 4302 } 4303 } else if (!ext4_has_inline_data(inode)) { 4304 for (block = 0; block < EXT4_N_BLOCKS; block++) 4305 raw_inode->i_block[block] = ei->i_data[block]; 4306 } 4307 4308 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4309 u64 ivers = ext4_inode_peek_iversion(inode); 4310 4311 raw_inode->i_disk_version = cpu_to_le32(ivers); 4312 if (ei->i_extra_isize) { 4313 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4314 raw_inode->i_version_hi = 4315 cpu_to_le32(ivers >> 32); 4316 raw_inode->i_extra_isize = 4317 cpu_to_le16(ei->i_extra_isize); 4318 } 4319 } 4320 4321 if (i_projid != EXT4_DEF_PROJID && 4322 !ext4_has_feature_project(inode->i_sb)) 4323 err = err ?: -EFSCORRUPTED; 4324 4325 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 4326 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4327 raw_inode->i_projid = cpu_to_le32(i_projid); 4328 4329 ext4_inode_csum_set(inode, raw_inode, ei); 4330 return err; 4331 } 4332 4333 /* 4334 * ext4_get_inode_loc returns with an extra refcount against the inode's 4335 * underlying buffer_head on success. If we pass 'inode' and it does not 4336 * have in-inode xattr, we have all inode data in memory that is needed 4337 * to recreate the on-disk version of this inode. 4338 */ 4339 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino, 4340 struct inode *inode, struct ext4_iloc *iloc, 4341 ext4_fsblk_t *ret_block) 4342 { 4343 struct ext4_group_desc *gdp; 4344 struct buffer_head *bh; 4345 ext4_fsblk_t block; 4346 struct blk_plug plug; 4347 int inodes_per_block, inode_offset; 4348 4349 iloc->bh = NULL; 4350 if (ino < EXT4_ROOT_INO || 4351 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 4352 return -EFSCORRUPTED; 4353 4354 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 4355 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4356 if (!gdp) 4357 return -EIO; 4358 4359 /* 4360 * Figure out the offset within the block group inode table 4361 */ 4362 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4363 inode_offset = ((ino - 1) % 4364 EXT4_INODES_PER_GROUP(sb)); 4365 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4366 4367 block = ext4_inode_table(sb, gdp); 4368 if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) || 4369 (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) { 4370 ext4_error(sb, "Invalid inode table block %llu in " 4371 "block_group %u", block, iloc->block_group); 4372 return -EFSCORRUPTED; 4373 } 4374 block += (inode_offset / inodes_per_block); 4375 4376 bh = sb_getblk(sb, block); 4377 if (unlikely(!bh)) 4378 return -ENOMEM; 4379 if (ext4_buffer_uptodate(bh)) 4380 goto has_buffer; 4381 4382 lock_buffer(bh); 4383 if (ext4_buffer_uptodate(bh)) { 4384 /* Someone brought it uptodate while we waited */ 4385 unlock_buffer(bh); 4386 goto has_buffer; 4387 } 4388 4389 /* 4390 * If we have all information of the inode in memory and this 4391 * is the only valid inode in the block, we need not read the 4392 * block. 4393 */ 4394 if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { 4395 struct buffer_head *bitmap_bh; 4396 int i, start; 4397 4398 start = inode_offset & ~(inodes_per_block - 1); 4399 4400 /* Is the inode bitmap in cache? */ 4401 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4402 if (unlikely(!bitmap_bh)) 4403 goto make_io; 4404 4405 /* 4406 * If the inode bitmap isn't in cache then the 4407 * optimisation may end up performing two reads instead 4408 * of one, so skip it. 4409 */ 4410 if (!buffer_uptodate(bitmap_bh)) { 4411 brelse(bitmap_bh); 4412 goto make_io; 4413 } 4414 for (i = start; i < start + inodes_per_block; i++) { 4415 if (i == inode_offset) 4416 continue; 4417 if (ext4_test_bit(i, bitmap_bh->b_data)) 4418 break; 4419 } 4420 brelse(bitmap_bh); 4421 if (i == start + inodes_per_block) { 4422 struct ext4_inode *raw_inode = 4423 (struct ext4_inode *) (bh->b_data + iloc->offset); 4424 4425 /* all other inodes are free, so skip I/O */ 4426 memset(bh->b_data, 0, bh->b_size); 4427 if (!ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4428 ext4_fill_raw_inode(inode, raw_inode); 4429 set_buffer_uptodate(bh); 4430 unlock_buffer(bh); 4431 goto has_buffer; 4432 } 4433 } 4434 4435 make_io: 4436 /* 4437 * If we need to do any I/O, try to pre-readahead extra 4438 * blocks from the inode table. 4439 */ 4440 blk_start_plug(&plug); 4441 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4442 ext4_fsblk_t b, end, table; 4443 unsigned num; 4444 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4445 4446 table = ext4_inode_table(sb, gdp); 4447 /* s_inode_readahead_blks is always a power of 2 */ 4448 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4449 if (table > b) 4450 b = table; 4451 end = b + ra_blks; 4452 num = EXT4_INODES_PER_GROUP(sb); 4453 if (ext4_has_group_desc_csum(sb)) 4454 num -= ext4_itable_unused_count(sb, gdp); 4455 table += num / inodes_per_block; 4456 if (end > table) 4457 end = table; 4458 while (b <= end) 4459 ext4_sb_breadahead_unmovable(sb, b++); 4460 } 4461 4462 /* 4463 * There are other valid inodes in the buffer, this inode 4464 * has in-inode xattrs, or we don't have this inode in memory. 4465 * Read the block from disk. 4466 */ 4467 trace_ext4_load_inode(sb, ino); 4468 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL); 4469 blk_finish_plug(&plug); 4470 wait_on_buffer(bh); 4471 ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO); 4472 if (!buffer_uptodate(bh)) { 4473 if (ret_block) 4474 *ret_block = block; 4475 brelse(bh); 4476 return -EIO; 4477 } 4478 has_buffer: 4479 iloc->bh = bh; 4480 return 0; 4481 } 4482 4483 static int __ext4_get_inode_loc_noinmem(struct inode *inode, 4484 struct ext4_iloc *iloc) 4485 { 4486 ext4_fsblk_t err_blk = 0; 4487 int ret; 4488 4489 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc, 4490 &err_blk); 4491 4492 if (ret == -EIO) 4493 ext4_error_inode_block(inode, err_blk, EIO, 4494 "unable to read itable block"); 4495 4496 return ret; 4497 } 4498 4499 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4500 { 4501 ext4_fsblk_t err_blk = 0; 4502 int ret; 4503 4504 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc, 4505 &err_blk); 4506 4507 if (ret == -EIO) 4508 ext4_error_inode_block(inode, err_blk, EIO, 4509 "unable to read itable block"); 4510 4511 return ret; 4512 } 4513 4514 4515 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino, 4516 struct ext4_iloc *iloc) 4517 { 4518 return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL); 4519 } 4520 4521 static bool ext4_should_enable_dax(struct inode *inode) 4522 { 4523 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4524 4525 if (test_opt2(inode->i_sb, DAX_NEVER)) 4526 return false; 4527 if (!S_ISREG(inode->i_mode)) 4528 return false; 4529 if (ext4_should_journal_data(inode)) 4530 return false; 4531 if (ext4_has_inline_data(inode)) 4532 return false; 4533 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT)) 4534 return false; 4535 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY)) 4536 return false; 4537 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) 4538 return false; 4539 if (test_opt(inode->i_sb, DAX_ALWAYS)) 4540 return true; 4541 4542 return ext4_test_inode_flag(inode, EXT4_INODE_DAX); 4543 } 4544 4545 void ext4_set_inode_flags(struct inode *inode, bool init) 4546 { 4547 unsigned int flags = EXT4_I(inode)->i_flags; 4548 unsigned int new_fl = 0; 4549 4550 WARN_ON_ONCE(IS_DAX(inode) && init); 4551 4552 if (flags & EXT4_SYNC_FL) 4553 new_fl |= S_SYNC; 4554 if (flags & EXT4_APPEND_FL) 4555 new_fl |= S_APPEND; 4556 if (flags & EXT4_IMMUTABLE_FL) 4557 new_fl |= S_IMMUTABLE; 4558 if (flags & EXT4_NOATIME_FL) 4559 new_fl |= S_NOATIME; 4560 if (flags & EXT4_DIRSYNC_FL) 4561 new_fl |= S_DIRSYNC; 4562 4563 /* Because of the way inode_set_flags() works we must preserve S_DAX 4564 * here if already set. */ 4565 new_fl |= (inode->i_flags & S_DAX); 4566 if (init && ext4_should_enable_dax(inode)) 4567 new_fl |= S_DAX; 4568 4569 if (flags & EXT4_ENCRYPT_FL) 4570 new_fl |= S_ENCRYPTED; 4571 if (flags & EXT4_CASEFOLD_FL) 4572 new_fl |= S_CASEFOLD; 4573 if (flags & EXT4_VERITY_FL) 4574 new_fl |= S_VERITY; 4575 inode_set_flags(inode, new_fl, 4576 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX| 4577 S_ENCRYPTED|S_CASEFOLD|S_VERITY); 4578 } 4579 4580 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4581 struct ext4_inode_info *ei) 4582 { 4583 blkcnt_t i_blocks ; 4584 struct inode *inode = &(ei->vfs_inode); 4585 struct super_block *sb = inode->i_sb; 4586 4587 if (ext4_has_feature_huge_file(sb)) { 4588 /* we are using combined 48 bit field */ 4589 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4590 le32_to_cpu(raw_inode->i_blocks_lo); 4591 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4592 /* i_blocks represent file system block size */ 4593 return i_blocks << (inode->i_blkbits - 9); 4594 } else { 4595 return i_blocks; 4596 } 4597 } else { 4598 return le32_to_cpu(raw_inode->i_blocks_lo); 4599 } 4600 } 4601 4602 static inline int ext4_iget_extra_inode(struct inode *inode, 4603 struct ext4_inode *raw_inode, 4604 struct ext4_inode_info *ei) 4605 { 4606 __le32 *magic = (void *)raw_inode + 4607 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4608 4609 if (EXT4_INODE_HAS_XATTR_SPACE(inode) && 4610 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4611 int err; 4612 4613 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4614 err = ext4_find_inline_data_nolock(inode); 4615 if (!err && ext4_has_inline_data(inode)) 4616 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 4617 return err; 4618 } else 4619 EXT4_I(inode)->i_inline_off = 0; 4620 return 0; 4621 } 4622 4623 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4624 { 4625 if (!ext4_has_feature_project(inode->i_sb)) 4626 return -EOPNOTSUPP; 4627 *projid = EXT4_I(inode)->i_projid; 4628 return 0; 4629 } 4630 4631 /* 4632 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of 4633 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag 4634 * set. 4635 */ 4636 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val) 4637 { 4638 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4639 inode_set_iversion_raw(inode, val); 4640 else 4641 inode_set_iversion_queried(inode, val); 4642 } 4643 4644 static const char *check_igot_inode(struct inode *inode, ext4_iget_flags flags) 4645 4646 { 4647 if (flags & EXT4_IGET_EA_INODE) { 4648 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4649 return "missing EA_INODE flag"; 4650 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 4651 EXT4_I(inode)->i_file_acl) 4652 return "ea_inode with extended attributes"; 4653 } else { 4654 if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4655 return "unexpected EA_INODE flag"; 4656 } 4657 if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD)) 4658 return "unexpected bad inode w/o EXT4_IGET_BAD"; 4659 return NULL; 4660 } 4661 4662 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino, 4663 ext4_iget_flags flags, const char *function, 4664 unsigned int line) 4665 { 4666 struct ext4_iloc iloc; 4667 struct ext4_inode *raw_inode; 4668 struct ext4_inode_info *ei; 4669 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4670 struct inode *inode; 4671 const char *err_str; 4672 journal_t *journal = EXT4_SB(sb)->s_journal; 4673 long ret; 4674 loff_t size; 4675 int block; 4676 uid_t i_uid; 4677 gid_t i_gid; 4678 projid_t i_projid; 4679 4680 if ((!(flags & EXT4_IGET_SPECIAL) && 4681 ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) || 4682 ino == le32_to_cpu(es->s_usr_quota_inum) || 4683 ino == le32_to_cpu(es->s_grp_quota_inum) || 4684 ino == le32_to_cpu(es->s_prj_quota_inum) || 4685 ino == le32_to_cpu(es->s_orphan_file_inum))) || 4686 (ino < EXT4_ROOT_INO) || 4687 (ino > le32_to_cpu(es->s_inodes_count))) { 4688 if (flags & EXT4_IGET_HANDLE) 4689 return ERR_PTR(-ESTALE); 4690 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0, 4691 "inode #%lu: comm %s: iget: illegal inode #", 4692 ino, current->comm); 4693 return ERR_PTR(-EFSCORRUPTED); 4694 } 4695 4696 inode = iget_locked(sb, ino); 4697 if (!inode) 4698 return ERR_PTR(-ENOMEM); 4699 if (!(inode->i_state & I_NEW)) { 4700 if ((err_str = check_igot_inode(inode, flags)) != NULL) { 4701 ext4_error_inode(inode, function, line, 0, err_str); 4702 iput(inode); 4703 return ERR_PTR(-EFSCORRUPTED); 4704 } 4705 return inode; 4706 } 4707 4708 ei = EXT4_I(inode); 4709 iloc.bh = NULL; 4710 4711 ret = __ext4_get_inode_loc_noinmem(inode, &iloc); 4712 if (ret < 0) 4713 goto bad_inode; 4714 raw_inode = ext4_raw_inode(&iloc); 4715 4716 if ((flags & EXT4_IGET_HANDLE) && 4717 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) { 4718 ret = -ESTALE; 4719 goto bad_inode; 4720 } 4721 4722 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4723 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4724 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4725 EXT4_INODE_SIZE(inode->i_sb) || 4726 (ei->i_extra_isize & 3)) { 4727 ext4_error_inode(inode, function, line, 0, 4728 "iget: bad extra_isize %u " 4729 "(inode size %u)", 4730 ei->i_extra_isize, 4731 EXT4_INODE_SIZE(inode->i_sb)); 4732 ret = -EFSCORRUPTED; 4733 goto bad_inode; 4734 } 4735 } else 4736 ei->i_extra_isize = 0; 4737 4738 /* Precompute checksum seed for inode metadata */ 4739 if (ext4_has_metadata_csum(sb)) { 4740 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4741 __u32 csum; 4742 __le32 inum = cpu_to_le32(inode->i_ino); 4743 __le32 gen = raw_inode->i_generation; 4744 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4745 sizeof(inum)); 4746 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4747 sizeof(gen)); 4748 } 4749 4750 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) || 4751 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) && 4752 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) { 4753 ext4_error_inode_err(inode, function, line, 0, 4754 EFSBADCRC, "iget: checksum invalid"); 4755 ret = -EFSBADCRC; 4756 goto bad_inode; 4757 } 4758 4759 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4760 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4761 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4762 if (ext4_has_feature_project(sb) && 4763 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4764 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4765 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4766 else 4767 i_projid = EXT4_DEF_PROJID; 4768 4769 if (!(test_opt(inode->i_sb, NO_UID32))) { 4770 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4771 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4772 } 4773 i_uid_write(inode, i_uid); 4774 i_gid_write(inode, i_gid); 4775 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4776 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4777 4778 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4779 ei->i_inline_off = 0; 4780 ei->i_dir_start_lookup = 0; 4781 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4782 /* We now have enough fields to check if the inode was active or not. 4783 * This is needed because nfsd might try to access dead inodes 4784 * the test is that same one that e2fsck uses 4785 * NeilBrown 1999oct15 4786 */ 4787 if (inode->i_nlink == 0) { 4788 if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL || 4789 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4790 ino != EXT4_BOOT_LOADER_INO) { 4791 /* this inode is deleted or unallocated */ 4792 if (flags & EXT4_IGET_SPECIAL) { 4793 ext4_error_inode(inode, function, line, 0, 4794 "iget: special inode unallocated"); 4795 ret = -EFSCORRUPTED; 4796 } else 4797 ret = -ESTALE; 4798 goto bad_inode; 4799 } 4800 /* The only unlinked inodes we let through here have 4801 * valid i_mode and are being read by the orphan 4802 * recovery code: that's fine, we're about to complete 4803 * the process of deleting those. 4804 * OR it is the EXT4_BOOT_LOADER_INO which is 4805 * not initialized on a new filesystem. */ 4806 } 4807 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4808 ext4_set_inode_flags(inode, true); 4809 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4810 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4811 if (ext4_has_feature_64bit(sb)) 4812 ei->i_file_acl |= 4813 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4814 inode->i_size = ext4_isize(sb, raw_inode); 4815 if ((size = i_size_read(inode)) < 0) { 4816 ext4_error_inode(inode, function, line, 0, 4817 "iget: bad i_size value: %lld", size); 4818 ret = -EFSCORRUPTED; 4819 goto bad_inode; 4820 } 4821 /* 4822 * If dir_index is not enabled but there's dir with INDEX flag set, 4823 * we'd normally treat htree data as empty space. But with metadata 4824 * checksumming that corrupts checksums so forbid that. 4825 */ 4826 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) && 4827 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) { 4828 ext4_error_inode(inode, function, line, 0, 4829 "iget: Dir with htree data on filesystem without dir_index feature."); 4830 ret = -EFSCORRUPTED; 4831 goto bad_inode; 4832 } 4833 ei->i_disksize = inode->i_size; 4834 #ifdef CONFIG_QUOTA 4835 ei->i_reserved_quota = 0; 4836 #endif 4837 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4838 ei->i_block_group = iloc.block_group; 4839 ei->i_last_alloc_group = ~0; 4840 /* 4841 * NOTE! The in-memory inode i_data array is in little-endian order 4842 * even on big-endian machines: we do NOT byteswap the block numbers! 4843 */ 4844 for (block = 0; block < EXT4_N_BLOCKS; block++) 4845 ei->i_data[block] = raw_inode->i_block[block]; 4846 INIT_LIST_HEAD(&ei->i_orphan); 4847 ext4_fc_init_inode(&ei->vfs_inode); 4848 4849 /* 4850 * Set transaction id's of transactions that have to be committed 4851 * to finish f[data]sync. We set them to currently running transaction 4852 * as we cannot be sure that the inode or some of its metadata isn't 4853 * part of the transaction - the inode could have been reclaimed and 4854 * now it is reread from disk. 4855 */ 4856 if (journal) { 4857 transaction_t *transaction; 4858 tid_t tid; 4859 4860 read_lock(&journal->j_state_lock); 4861 if (journal->j_running_transaction) 4862 transaction = journal->j_running_transaction; 4863 else 4864 transaction = journal->j_committing_transaction; 4865 if (transaction) 4866 tid = transaction->t_tid; 4867 else 4868 tid = journal->j_commit_sequence; 4869 read_unlock(&journal->j_state_lock); 4870 ei->i_sync_tid = tid; 4871 ei->i_datasync_tid = tid; 4872 } 4873 4874 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4875 if (ei->i_extra_isize == 0) { 4876 /* The extra space is currently unused. Use it. */ 4877 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 4878 ei->i_extra_isize = sizeof(struct ext4_inode) - 4879 EXT4_GOOD_OLD_INODE_SIZE; 4880 } else { 4881 ret = ext4_iget_extra_inode(inode, raw_inode, ei); 4882 if (ret) 4883 goto bad_inode; 4884 } 4885 } 4886 4887 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4888 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4889 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4890 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4891 4892 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4893 u64 ivers = le32_to_cpu(raw_inode->i_disk_version); 4894 4895 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4896 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4897 ivers |= 4898 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4899 } 4900 ext4_inode_set_iversion_queried(inode, ivers); 4901 } 4902 4903 ret = 0; 4904 if (ei->i_file_acl && 4905 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) { 4906 ext4_error_inode(inode, function, line, 0, 4907 "iget: bad extended attribute block %llu", 4908 ei->i_file_acl); 4909 ret = -EFSCORRUPTED; 4910 goto bad_inode; 4911 } else if (!ext4_has_inline_data(inode)) { 4912 /* validate the block references in the inode */ 4913 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) && 4914 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4915 (S_ISLNK(inode->i_mode) && 4916 !ext4_inode_is_fast_symlink(inode)))) { 4917 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4918 ret = ext4_ext_check_inode(inode); 4919 else 4920 ret = ext4_ind_check_inode(inode); 4921 } 4922 } 4923 if (ret) 4924 goto bad_inode; 4925 4926 if (S_ISREG(inode->i_mode)) { 4927 inode->i_op = &ext4_file_inode_operations; 4928 inode->i_fop = &ext4_file_operations; 4929 ext4_set_aops(inode); 4930 } else if (S_ISDIR(inode->i_mode)) { 4931 inode->i_op = &ext4_dir_inode_operations; 4932 inode->i_fop = &ext4_dir_operations; 4933 } else if (S_ISLNK(inode->i_mode)) { 4934 /* VFS does not allow setting these so must be corruption */ 4935 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 4936 ext4_error_inode(inode, function, line, 0, 4937 "iget: immutable or append flags " 4938 "not allowed on symlinks"); 4939 ret = -EFSCORRUPTED; 4940 goto bad_inode; 4941 } 4942 if (IS_ENCRYPTED(inode)) { 4943 inode->i_op = &ext4_encrypted_symlink_inode_operations; 4944 } else if (ext4_inode_is_fast_symlink(inode)) { 4945 inode->i_link = (char *)ei->i_data; 4946 inode->i_op = &ext4_fast_symlink_inode_operations; 4947 nd_terminate_link(ei->i_data, inode->i_size, 4948 sizeof(ei->i_data) - 1); 4949 } else { 4950 inode->i_op = &ext4_symlink_inode_operations; 4951 } 4952 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4953 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4954 inode->i_op = &ext4_special_inode_operations; 4955 if (raw_inode->i_block[0]) 4956 init_special_inode(inode, inode->i_mode, 4957 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4958 else 4959 init_special_inode(inode, inode->i_mode, 4960 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4961 } else if (ino == EXT4_BOOT_LOADER_INO) { 4962 make_bad_inode(inode); 4963 } else { 4964 ret = -EFSCORRUPTED; 4965 ext4_error_inode(inode, function, line, 0, 4966 "iget: bogus i_mode (%o)", inode->i_mode); 4967 goto bad_inode; 4968 } 4969 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) 4970 ext4_error_inode(inode, function, line, 0, 4971 "casefold flag without casefold feature"); 4972 if ((err_str = check_igot_inode(inode, flags)) != NULL) { 4973 ext4_error_inode(inode, function, line, 0, err_str); 4974 ret = -EFSCORRUPTED; 4975 goto bad_inode; 4976 } 4977 4978 brelse(iloc.bh); 4979 unlock_new_inode(inode); 4980 return inode; 4981 4982 bad_inode: 4983 brelse(iloc.bh); 4984 iget_failed(inode); 4985 return ERR_PTR(ret); 4986 } 4987 4988 static void __ext4_update_other_inode_time(struct super_block *sb, 4989 unsigned long orig_ino, 4990 unsigned long ino, 4991 struct ext4_inode *raw_inode) 4992 { 4993 struct inode *inode; 4994 4995 inode = find_inode_by_ino_rcu(sb, ino); 4996 if (!inode) 4997 return; 4998 4999 if (!inode_is_dirtytime_only(inode)) 5000 return; 5001 5002 spin_lock(&inode->i_lock); 5003 if (inode_is_dirtytime_only(inode)) { 5004 struct ext4_inode_info *ei = EXT4_I(inode); 5005 5006 inode->i_state &= ~I_DIRTY_TIME; 5007 spin_unlock(&inode->i_lock); 5008 5009 spin_lock(&ei->i_raw_lock); 5010 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 5011 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 5012 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 5013 ext4_inode_csum_set(inode, raw_inode, ei); 5014 spin_unlock(&ei->i_raw_lock); 5015 trace_ext4_other_inode_update_time(inode, orig_ino); 5016 return; 5017 } 5018 spin_unlock(&inode->i_lock); 5019 } 5020 5021 /* 5022 * Opportunistically update the other time fields for other inodes in 5023 * the same inode table block. 5024 */ 5025 static void ext4_update_other_inodes_time(struct super_block *sb, 5026 unsigned long orig_ino, char *buf) 5027 { 5028 unsigned long ino; 5029 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 5030 int inode_size = EXT4_INODE_SIZE(sb); 5031 5032 /* 5033 * Calculate the first inode in the inode table block. Inode 5034 * numbers are one-based. That is, the first inode in a block 5035 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 5036 */ 5037 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 5038 rcu_read_lock(); 5039 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 5040 if (ino == orig_ino) 5041 continue; 5042 __ext4_update_other_inode_time(sb, orig_ino, ino, 5043 (struct ext4_inode *)buf); 5044 } 5045 rcu_read_unlock(); 5046 } 5047 5048 /* 5049 * Post the struct inode info into an on-disk inode location in the 5050 * buffer-cache. This gobbles the caller's reference to the 5051 * buffer_head in the inode location struct. 5052 * 5053 * The caller must have write access to iloc->bh. 5054 */ 5055 static int ext4_do_update_inode(handle_t *handle, 5056 struct inode *inode, 5057 struct ext4_iloc *iloc) 5058 { 5059 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5060 struct ext4_inode_info *ei = EXT4_I(inode); 5061 struct buffer_head *bh = iloc->bh; 5062 struct super_block *sb = inode->i_sb; 5063 int err; 5064 int need_datasync = 0, set_large_file = 0; 5065 5066 spin_lock(&ei->i_raw_lock); 5067 5068 /* 5069 * For fields not tracked in the in-memory inode, initialise them 5070 * to zero for new inodes. 5071 */ 5072 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5073 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5074 5075 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) 5076 need_datasync = 1; 5077 if (ei->i_disksize > 0x7fffffffULL) { 5078 if (!ext4_has_feature_large_file(sb) || 5079 EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV)) 5080 set_large_file = 1; 5081 } 5082 5083 err = ext4_fill_raw_inode(inode, raw_inode); 5084 spin_unlock(&ei->i_raw_lock); 5085 if (err) { 5086 EXT4_ERROR_INODE(inode, "corrupted inode contents"); 5087 goto out_brelse; 5088 } 5089 5090 if (inode->i_sb->s_flags & SB_LAZYTIME) 5091 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 5092 bh->b_data); 5093 5094 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5095 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5096 if (err) 5097 goto out_error; 5098 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5099 if (set_large_file) { 5100 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 5101 err = ext4_journal_get_write_access(handle, sb, 5102 EXT4_SB(sb)->s_sbh, 5103 EXT4_JTR_NONE); 5104 if (err) 5105 goto out_error; 5106 lock_buffer(EXT4_SB(sb)->s_sbh); 5107 ext4_set_feature_large_file(sb); 5108 ext4_superblock_csum_set(sb); 5109 unlock_buffer(EXT4_SB(sb)->s_sbh); 5110 ext4_handle_sync(handle); 5111 err = ext4_handle_dirty_metadata(handle, NULL, 5112 EXT4_SB(sb)->s_sbh); 5113 } 5114 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5115 out_error: 5116 ext4_std_error(inode->i_sb, err); 5117 out_brelse: 5118 brelse(bh); 5119 return err; 5120 } 5121 5122 /* 5123 * ext4_write_inode() 5124 * 5125 * We are called from a few places: 5126 * 5127 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5128 * Here, there will be no transaction running. We wait for any running 5129 * transaction to commit. 5130 * 5131 * - Within flush work (sys_sync(), kupdate and such). 5132 * We wait on commit, if told to. 5133 * 5134 * - Within iput_final() -> write_inode_now() 5135 * We wait on commit, if told to. 5136 * 5137 * In all cases it is actually safe for us to return without doing anything, 5138 * because the inode has been copied into a raw inode buffer in 5139 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5140 * writeback. 5141 * 5142 * Note that we are absolutely dependent upon all inode dirtiers doing the 5143 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5144 * which we are interested. 5145 * 5146 * It would be a bug for them to not do this. The code: 5147 * 5148 * mark_inode_dirty(inode) 5149 * stuff(); 5150 * inode->i_size = expr; 5151 * 5152 * is in error because write_inode() could occur while `stuff()' is running, 5153 * and the new i_size will be lost. Plus the inode will no longer be on the 5154 * superblock's dirty inode list. 5155 */ 5156 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5157 { 5158 int err; 5159 5160 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) || 5161 sb_rdonly(inode->i_sb)) 5162 return 0; 5163 5164 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5165 return -EIO; 5166 5167 if (EXT4_SB(inode->i_sb)->s_journal) { 5168 if (ext4_journal_current_handle()) { 5169 ext4_debug("called recursively, non-PF_MEMALLOC!\n"); 5170 dump_stack(); 5171 return -EIO; 5172 } 5173 5174 /* 5175 * No need to force transaction in WB_SYNC_NONE mode. Also 5176 * ext4_sync_fs() will force the commit after everything is 5177 * written. 5178 */ 5179 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5180 return 0; 5181 5182 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal, 5183 EXT4_I(inode)->i_sync_tid); 5184 } else { 5185 struct ext4_iloc iloc; 5186 5187 err = __ext4_get_inode_loc_noinmem(inode, &iloc); 5188 if (err) 5189 return err; 5190 /* 5191 * sync(2) will flush the whole buffer cache. No need to do 5192 * it here separately for each inode. 5193 */ 5194 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5195 sync_dirty_buffer(iloc.bh); 5196 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5197 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO, 5198 "IO error syncing inode"); 5199 err = -EIO; 5200 } 5201 brelse(iloc.bh); 5202 } 5203 return err; 5204 } 5205 5206 /* 5207 * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate 5208 * buffers that are attached to a folio straddling i_size and are undergoing 5209 * commit. In that case we have to wait for commit to finish and try again. 5210 */ 5211 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5212 { 5213 unsigned offset; 5214 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5215 tid_t commit_tid = 0; 5216 int ret; 5217 5218 offset = inode->i_size & (PAGE_SIZE - 1); 5219 /* 5220 * If the folio is fully truncated, we don't need to wait for any commit 5221 * (and we even should not as __ext4_journalled_invalidate_folio() may 5222 * strip all buffers from the folio but keep the folio dirty which can then 5223 * confuse e.g. concurrent ext4_writepages() seeing dirty folio without 5224 * buffers). Also we don't need to wait for any commit if all buffers in 5225 * the folio remain valid. This is most beneficial for the common case of 5226 * blocksize == PAGESIZE. 5227 */ 5228 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode))) 5229 return; 5230 while (1) { 5231 struct folio *folio = filemap_lock_folio(inode->i_mapping, 5232 inode->i_size >> PAGE_SHIFT); 5233 if (IS_ERR(folio)) 5234 return; 5235 ret = __ext4_journalled_invalidate_folio(folio, offset, 5236 folio_size(folio) - offset); 5237 folio_unlock(folio); 5238 folio_put(folio); 5239 if (ret != -EBUSY) 5240 return; 5241 commit_tid = 0; 5242 read_lock(&journal->j_state_lock); 5243 if (journal->j_committing_transaction) 5244 commit_tid = journal->j_committing_transaction->t_tid; 5245 read_unlock(&journal->j_state_lock); 5246 if (commit_tid) 5247 jbd2_log_wait_commit(journal, commit_tid); 5248 } 5249 } 5250 5251 /* 5252 * ext4_setattr() 5253 * 5254 * Called from notify_change. 5255 * 5256 * We want to trap VFS attempts to truncate the file as soon as 5257 * possible. In particular, we want to make sure that when the VFS 5258 * shrinks i_size, we put the inode on the orphan list and modify 5259 * i_disksize immediately, so that during the subsequent flushing of 5260 * dirty pages and freeing of disk blocks, we can guarantee that any 5261 * commit will leave the blocks being flushed in an unused state on 5262 * disk. (On recovery, the inode will get truncated and the blocks will 5263 * be freed, so we have a strong guarantee that no future commit will 5264 * leave these blocks visible to the user.) 5265 * 5266 * Another thing we have to assure is that if we are in ordered mode 5267 * and inode is still attached to the committing transaction, we must 5268 * we start writeout of all the dirty pages which are being truncated. 5269 * This way we are sure that all the data written in the previous 5270 * transaction are already on disk (truncate waits for pages under 5271 * writeback). 5272 * 5273 * Called with inode->i_rwsem down. 5274 */ 5275 int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 5276 struct iattr *attr) 5277 { 5278 struct inode *inode = d_inode(dentry); 5279 int error, rc = 0; 5280 int orphan = 0; 5281 const unsigned int ia_valid = attr->ia_valid; 5282 bool inc_ivers = true; 5283 5284 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5285 return -EIO; 5286 5287 if (unlikely(IS_IMMUTABLE(inode))) 5288 return -EPERM; 5289 5290 if (unlikely(IS_APPEND(inode) && 5291 (ia_valid & (ATTR_MODE | ATTR_UID | 5292 ATTR_GID | ATTR_TIMES_SET)))) 5293 return -EPERM; 5294 5295 error = setattr_prepare(idmap, dentry, attr); 5296 if (error) 5297 return error; 5298 5299 error = fscrypt_prepare_setattr(dentry, attr); 5300 if (error) 5301 return error; 5302 5303 error = fsverity_prepare_setattr(dentry, attr); 5304 if (error) 5305 return error; 5306 5307 if (is_quota_modification(idmap, inode, attr)) { 5308 error = dquot_initialize(inode); 5309 if (error) 5310 return error; 5311 } 5312 5313 if (i_uid_needs_update(idmap, attr, inode) || 5314 i_gid_needs_update(idmap, attr, inode)) { 5315 handle_t *handle; 5316 5317 /* (user+group)*(old+new) structure, inode write (sb, 5318 * inode block, ? - but truncate inode update has it) */ 5319 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5320 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5321 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5322 if (IS_ERR(handle)) { 5323 error = PTR_ERR(handle); 5324 goto err_out; 5325 } 5326 5327 /* dquot_transfer() calls back ext4_get_inode_usage() which 5328 * counts xattr inode references. 5329 */ 5330 down_read(&EXT4_I(inode)->xattr_sem); 5331 error = dquot_transfer(idmap, inode, attr); 5332 up_read(&EXT4_I(inode)->xattr_sem); 5333 5334 if (error) { 5335 ext4_journal_stop(handle); 5336 return error; 5337 } 5338 /* Update corresponding info in inode so that everything is in 5339 * one transaction */ 5340 i_uid_update(idmap, attr, inode); 5341 i_gid_update(idmap, attr, inode); 5342 error = ext4_mark_inode_dirty(handle, inode); 5343 ext4_journal_stop(handle); 5344 if (unlikely(error)) { 5345 return error; 5346 } 5347 } 5348 5349 if (attr->ia_valid & ATTR_SIZE) { 5350 handle_t *handle; 5351 loff_t oldsize = inode->i_size; 5352 loff_t old_disksize; 5353 int shrink = (attr->ia_size < inode->i_size); 5354 5355 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5356 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5357 5358 if (attr->ia_size > sbi->s_bitmap_maxbytes) { 5359 return -EFBIG; 5360 } 5361 } 5362 if (!S_ISREG(inode->i_mode)) { 5363 return -EINVAL; 5364 } 5365 5366 if (attr->ia_size == inode->i_size) 5367 inc_ivers = false; 5368 5369 if (shrink) { 5370 if (ext4_should_order_data(inode)) { 5371 error = ext4_begin_ordered_truncate(inode, 5372 attr->ia_size); 5373 if (error) 5374 goto err_out; 5375 } 5376 /* 5377 * Blocks are going to be removed from the inode. Wait 5378 * for dio in flight. 5379 */ 5380 inode_dio_wait(inode); 5381 } 5382 5383 filemap_invalidate_lock(inode->i_mapping); 5384 5385 rc = ext4_break_layouts(inode); 5386 if (rc) { 5387 filemap_invalidate_unlock(inode->i_mapping); 5388 goto err_out; 5389 } 5390 5391 if (attr->ia_size != inode->i_size) { 5392 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5393 if (IS_ERR(handle)) { 5394 error = PTR_ERR(handle); 5395 goto out_mmap_sem; 5396 } 5397 if (ext4_handle_valid(handle) && shrink) { 5398 error = ext4_orphan_add(handle, inode); 5399 orphan = 1; 5400 } 5401 /* 5402 * Update c/mtime on truncate up, ext4_truncate() will 5403 * update c/mtime in shrink case below 5404 */ 5405 if (!shrink) { 5406 inode->i_mtime = current_time(inode); 5407 inode->i_ctime = inode->i_mtime; 5408 } 5409 5410 if (shrink) 5411 ext4_fc_track_range(handle, inode, 5412 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5413 inode->i_sb->s_blocksize_bits, 5414 EXT_MAX_BLOCKS - 1); 5415 else 5416 ext4_fc_track_range( 5417 handle, inode, 5418 (oldsize > 0 ? oldsize - 1 : oldsize) >> 5419 inode->i_sb->s_blocksize_bits, 5420 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5421 inode->i_sb->s_blocksize_bits); 5422 5423 down_write(&EXT4_I(inode)->i_data_sem); 5424 old_disksize = EXT4_I(inode)->i_disksize; 5425 EXT4_I(inode)->i_disksize = attr->ia_size; 5426 rc = ext4_mark_inode_dirty(handle, inode); 5427 if (!error) 5428 error = rc; 5429 /* 5430 * We have to update i_size under i_data_sem together 5431 * with i_disksize to avoid races with writeback code 5432 * running ext4_wb_update_i_disksize(). 5433 */ 5434 if (!error) 5435 i_size_write(inode, attr->ia_size); 5436 else 5437 EXT4_I(inode)->i_disksize = old_disksize; 5438 up_write(&EXT4_I(inode)->i_data_sem); 5439 ext4_journal_stop(handle); 5440 if (error) 5441 goto out_mmap_sem; 5442 if (!shrink) { 5443 pagecache_isize_extended(inode, oldsize, 5444 inode->i_size); 5445 } else if (ext4_should_journal_data(inode)) { 5446 ext4_wait_for_tail_page_commit(inode); 5447 } 5448 } 5449 5450 /* 5451 * Truncate pagecache after we've waited for commit 5452 * in data=journal mode to make pages freeable. 5453 */ 5454 truncate_pagecache(inode, inode->i_size); 5455 /* 5456 * Call ext4_truncate() even if i_size didn't change to 5457 * truncate possible preallocated blocks. 5458 */ 5459 if (attr->ia_size <= oldsize) { 5460 rc = ext4_truncate(inode); 5461 if (rc) 5462 error = rc; 5463 } 5464 out_mmap_sem: 5465 filemap_invalidate_unlock(inode->i_mapping); 5466 } 5467 5468 if (!error) { 5469 if (inc_ivers) 5470 inode_inc_iversion(inode); 5471 setattr_copy(idmap, inode, attr); 5472 mark_inode_dirty(inode); 5473 } 5474 5475 /* 5476 * If the call to ext4_truncate failed to get a transaction handle at 5477 * all, we need to clean up the in-core orphan list manually. 5478 */ 5479 if (orphan && inode->i_nlink) 5480 ext4_orphan_del(NULL, inode); 5481 5482 if (!error && (ia_valid & ATTR_MODE)) 5483 rc = posix_acl_chmod(idmap, dentry, inode->i_mode); 5484 5485 err_out: 5486 if (error) 5487 ext4_std_error(inode->i_sb, error); 5488 if (!error) 5489 error = rc; 5490 return error; 5491 } 5492 5493 u32 ext4_dio_alignment(struct inode *inode) 5494 { 5495 if (fsverity_active(inode)) 5496 return 0; 5497 if (ext4_should_journal_data(inode)) 5498 return 0; 5499 if (ext4_has_inline_data(inode)) 5500 return 0; 5501 if (IS_ENCRYPTED(inode)) { 5502 if (!fscrypt_dio_supported(inode)) 5503 return 0; 5504 return i_blocksize(inode); 5505 } 5506 return 1; /* use the iomap defaults */ 5507 } 5508 5509 int ext4_getattr(struct mnt_idmap *idmap, const struct path *path, 5510 struct kstat *stat, u32 request_mask, unsigned int query_flags) 5511 { 5512 struct inode *inode = d_inode(path->dentry); 5513 struct ext4_inode *raw_inode; 5514 struct ext4_inode_info *ei = EXT4_I(inode); 5515 unsigned int flags; 5516 5517 if ((request_mask & STATX_BTIME) && 5518 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { 5519 stat->result_mask |= STATX_BTIME; 5520 stat->btime.tv_sec = ei->i_crtime.tv_sec; 5521 stat->btime.tv_nsec = ei->i_crtime.tv_nsec; 5522 } 5523 5524 /* 5525 * Return the DIO alignment restrictions if requested. We only return 5526 * this information when requested, since on encrypted files it might 5527 * take a fair bit of work to get if the file wasn't opened recently. 5528 */ 5529 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) { 5530 u32 dio_align = ext4_dio_alignment(inode); 5531 5532 stat->result_mask |= STATX_DIOALIGN; 5533 if (dio_align == 1) { 5534 struct block_device *bdev = inode->i_sb->s_bdev; 5535 5536 /* iomap defaults */ 5537 stat->dio_mem_align = bdev_dma_alignment(bdev) + 1; 5538 stat->dio_offset_align = bdev_logical_block_size(bdev); 5539 } else { 5540 stat->dio_mem_align = dio_align; 5541 stat->dio_offset_align = dio_align; 5542 } 5543 } 5544 5545 flags = ei->i_flags & EXT4_FL_USER_VISIBLE; 5546 if (flags & EXT4_APPEND_FL) 5547 stat->attributes |= STATX_ATTR_APPEND; 5548 if (flags & EXT4_COMPR_FL) 5549 stat->attributes |= STATX_ATTR_COMPRESSED; 5550 if (flags & EXT4_ENCRYPT_FL) 5551 stat->attributes |= STATX_ATTR_ENCRYPTED; 5552 if (flags & EXT4_IMMUTABLE_FL) 5553 stat->attributes |= STATX_ATTR_IMMUTABLE; 5554 if (flags & EXT4_NODUMP_FL) 5555 stat->attributes |= STATX_ATTR_NODUMP; 5556 if (flags & EXT4_VERITY_FL) 5557 stat->attributes |= STATX_ATTR_VERITY; 5558 5559 stat->attributes_mask |= (STATX_ATTR_APPEND | 5560 STATX_ATTR_COMPRESSED | 5561 STATX_ATTR_ENCRYPTED | 5562 STATX_ATTR_IMMUTABLE | 5563 STATX_ATTR_NODUMP | 5564 STATX_ATTR_VERITY); 5565 5566 generic_fillattr(idmap, inode, stat); 5567 return 0; 5568 } 5569 5570 int ext4_file_getattr(struct mnt_idmap *idmap, 5571 const struct path *path, struct kstat *stat, 5572 u32 request_mask, unsigned int query_flags) 5573 { 5574 struct inode *inode = d_inode(path->dentry); 5575 u64 delalloc_blocks; 5576 5577 ext4_getattr(idmap, path, stat, request_mask, query_flags); 5578 5579 /* 5580 * If there is inline data in the inode, the inode will normally not 5581 * have data blocks allocated (it may have an external xattr block). 5582 * Report at least one sector for such files, so tools like tar, rsync, 5583 * others don't incorrectly think the file is completely sparse. 5584 */ 5585 if (unlikely(ext4_has_inline_data(inode))) 5586 stat->blocks += (stat->size + 511) >> 9; 5587 5588 /* 5589 * We can't update i_blocks if the block allocation is delayed 5590 * otherwise in the case of system crash before the real block 5591 * allocation is done, we will have i_blocks inconsistent with 5592 * on-disk file blocks. 5593 * We always keep i_blocks updated together with real 5594 * allocation. But to not confuse with user, stat 5595 * will return the blocks that include the delayed allocation 5596 * blocks for this file. 5597 */ 5598 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5599 EXT4_I(inode)->i_reserved_data_blocks); 5600 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5601 return 0; 5602 } 5603 5604 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5605 int pextents) 5606 { 5607 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5608 return ext4_ind_trans_blocks(inode, lblocks); 5609 return ext4_ext_index_trans_blocks(inode, pextents); 5610 } 5611 5612 /* 5613 * Account for index blocks, block groups bitmaps and block group 5614 * descriptor blocks if modify datablocks and index blocks 5615 * worse case, the indexs blocks spread over different block groups 5616 * 5617 * If datablocks are discontiguous, they are possible to spread over 5618 * different block groups too. If they are contiguous, with flexbg, 5619 * they could still across block group boundary. 5620 * 5621 * Also account for superblock, inode, quota and xattr blocks 5622 */ 5623 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5624 int pextents) 5625 { 5626 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5627 int gdpblocks; 5628 int idxblocks; 5629 int ret; 5630 5631 /* 5632 * How many index blocks need to touch to map @lblocks logical blocks 5633 * to @pextents physical extents? 5634 */ 5635 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5636 5637 ret = idxblocks; 5638 5639 /* 5640 * Now let's see how many group bitmaps and group descriptors need 5641 * to account 5642 */ 5643 groups = idxblocks + pextents; 5644 gdpblocks = groups; 5645 if (groups > ngroups) 5646 groups = ngroups; 5647 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5648 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5649 5650 /* bitmaps and block group descriptor blocks */ 5651 ret += groups + gdpblocks; 5652 5653 /* Blocks for super block, inode, quota and xattr blocks */ 5654 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5655 5656 return ret; 5657 } 5658 5659 /* 5660 * Calculate the total number of credits to reserve to fit 5661 * the modification of a single pages into a single transaction, 5662 * which may include multiple chunks of block allocations. 5663 * 5664 * This could be called via ext4_write_begin() 5665 * 5666 * We need to consider the worse case, when 5667 * one new block per extent. 5668 */ 5669 int ext4_writepage_trans_blocks(struct inode *inode) 5670 { 5671 int bpp = ext4_journal_blocks_per_page(inode); 5672 int ret; 5673 5674 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5675 5676 /* Account for data blocks for journalled mode */ 5677 if (ext4_should_journal_data(inode)) 5678 ret += bpp; 5679 return ret; 5680 } 5681 5682 /* 5683 * Calculate the journal credits for a chunk of data modification. 5684 * 5685 * This is called from DIO, fallocate or whoever calling 5686 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5687 * 5688 * journal buffers for data blocks are not included here, as DIO 5689 * and fallocate do no need to journal data buffers. 5690 */ 5691 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5692 { 5693 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5694 } 5695 5696 /* 5697 * The caller must have previously called ext4_reserve_inode_write(). 5698 * Give this, we know that the caller already has write access to iloc->bh. 5699 */ 5700 int ext4_mark_iloc_dirty(handle_t *handle, 5701 struct inode *inode, struct ext4_iloc *iloc) 5702 { 5703 int err = 0; 5704 5705 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 5706 put_bh(iloc->bh); 5707 return -EIO; 5708 } 5709 ext4_fc_track_inode(handle, inode); 5710 5711 /* the do_update_inode consumes one bh->b_count */ 5712 get_bh(iloc->bh); 5713 5714 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5715 err = ext4_do_update_inode(handle, inode, iloc); 5716 put_bh(iloc->bh); 5717 return err; 5718 } 5719 5720 /* 5721 * On success, We end up with an outstanding reference count against 5722 * iloc->bh. This _must_ be cleaned up later. 5723 */ 5724 5725 int 5726 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5727 struct ext4_iloc *iloc) 5728 { 5729 int err; 5730 5731 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5732 return -EIO; 5733 5734 err = ext4_get_inode_loc(inode, iloc); 5735 if (!err) { 5736 BUFFER_TRACE(iloc->bh, "get_write_access"); 5737 err = ext4_journal_get_write_access(handle, inode->i_sb, 5738 iloc->bh, EXT4_JTR_NONE); 5739 if (err) { 5740 brelse(iloc->bh); 5741 iloc->bh = NULL; 5742 } 5743 } 5744 ext4_std_error(inode->i_sb, err); 5745 return err; 5746 } 5747 5748 static int __ext4_expand_extra_isize(struct inode *inode, 5749 unsigned int new_extra_isize, 5750 struct ext4_iloc *iloc, 5751 handle_t *handle, int *no_expand) 5752 { 5753 struct ext4_inode *raw_inode; 5754 struct ext4_xattr_ibody_header *header; 5755 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb); 5756 struct ext4_inode_info *ei = EXT4_I(inode); 5757 int error; 5758 5759 /* this was checked at iget time, but double check for good measure */ 5760 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) || 5761 (ei->i_extra_isize & 3)) { 5762 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)", 5763 ei->i_extra_isize, 5764 EXT4_INODE_SIZE(inode->i_sb)); 5765 return -EFSCORRUPTED; 5766 } 5767 if ((new_extra_isize < ei->i_extra_isize) || 5768 (new_extra_isize < 4) || 5769 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE)) 5770 return -EINVAL; /* Should never happen */ 5771 5772 raw_inode = ext4_raw_inode(iloc); 5773 5774 header = IHDR(inode, raw_inode); 5775 5776 /* No extended attributes present */ 5777 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5778 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5779 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + 5780 EXT4_I(inode)->i_extra_isize, 0, 5781 new_extra_isize - EXT4_I(inode)->i_extra_isize); 5782 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5783 return 0; 5784 } 5785 5786 /* 5787 * We may need to allocate external xattr block so we need quotas 5788 * initialized. Here we can be called with various locks held so we 5789 * cannot affort to initialize quotas ourselves. So just bail. 5790 */ 5791 if (dquot_initialize_needed(inode)) 5792 return -EAGAIN; 5793 5794 /* try to expand with EAs present */ 5795 error = ext4_expand_extra_isize_ea(inode, new_extra_isize, 5796 raw_inode, handle); 5797 if (error) { 5798 /* 5799 * Inode size expansion failed; don't try again 5800 */ 5801 *no_expand = 1; 5802 } 5803 5804 return error; 5805 } 5806 5807 /* 5808 * Expand an inode by new_extra_isize bytes. 5809 * Returns 0 on success or negative error number on failure. 5810 */ 5811 static int ext4_try_to_expand_extra_isize(struct inode *inode, 5812 unsigned int new_extra_isize, 5813 struct ext4_iloc iloc, 5814 handle_t *handle) 5815 { 5816 int no_expand; 5817 int error; 5818 5819 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) 5820 return -EOVERFLOW; 5821 5822 /* 5823 * In nojournal mode, we can immediately attempt to expand 5824 * the inode. When journaled, we first need to obtain extra 5825 * buffer credits since we may write into the EA block 5826 * with this same handle. If journal_extend fails, then it will 5827 * only result in a minor loss of functionality for that inode. 5828 * If this is felt to be critical, then e2fsck should be run to 5829 * force a large enough s_min_extra_isize. 5830 */ 5831 if (ext4_journal_extend(handle, 5832 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0) 5833 return -ENOSPC; 5834 5835 if (ext4_write_trylock_xattr(inode, &no_expand) == 0) 5836 return -EBUSY; 5837 5838 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc, 5839 handle, &no_expand); 5840 ext4_write_unlock_xattr(inode, &no_expand); 5841 5842 return error; 5843 } 5844 5845 int ext4_expand_extra_isize(struct inode *inode, 5846 unsigned int new_extra_isize, 5847 struct ext4_iloc *iloc) 5848 { 5849 handle_t *handle; 5850 int no_expand; 5851 int error, rc; 5852 5853 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5854 brelse(iloc->bh); 5855 return -EOVERFLOW; 5856 } 5857 5858 handle = ext4_journal_start(inode, EXT4_HT_INODE, 5859 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)); 5860 if (IS_ERR(handle)) { 5861 error = PTR_ERR(handle); 5862 brelse(iloc->bh); 5863 return error; 5864 } 5865 5866 ext4_write_lock_xattr(inode, &no_expand); 5867 5868 BUFFER_TRACE(iloc->bh, "get_write_access"); 5869 error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh, 5870 EXT4_JTR_NONE); 5871 if (error) { 5872 brelse(iloc->bh); 5873 goto out_unlock; 5874 } 5875 5876 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc, 5877 handle, &no_expand); 5878 5879 rc = ext4_mark_iloc_dirty(handle, inode, iloc); 5880 if (!error) 5881 error = rc; 5882 5883 out_unlock: 5884 ext4_write_unlock_xattr(inode, &no_expand); 5885 ext4_journal_stop(handle); 5886 return error; 5887 } 5888 5889 /* 5890 * What we do here is to mark the in-core inode as clean with respect to inode 5891 * dirtiness (it may still be data-dirty). 5892 * This means that the in-core inode may be reaped by prune_icache 5893 * without having to perform any I/O. This is a very good thing, 5894 * because *any* task may call prune_icache - even ones which 5895 * have a transaction open against a different journal. 5896 * 5897 * Is this cheating? Not really. Sure, we haven't written the 5898 * inode out, but prune_icache isn't a user-visible syncing function. 5899 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5900 * we start and wait on commits. 5901 */ 5902 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode, 5903 const char *func, unsigned int line) 5904 { 5905 struct ext4_iloc iloc; 5906 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5907 int err; 5908 5909 might_sleep(); 5910 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5911 err = ext4_reserve_inode_write(handle, inode, &iloc); 5912 if (err) 5913 goto out; 5914 5915 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize) 5916 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize, 5917 iloc, handle); 5918 5919 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 5920 out: 5921 if (unlikely(err)) 5922 ext4_error_inode_err(inode, func, line, 0, err, 5923 "mark_inode_dirty error"); 5924 return err; 5925 } 5926 5927 /* 5928 * ext4_dirty_inode() is called from __mark_inode_dirty() 5929 * 5930 * We're really interested in the case where a file is being extended. 5931 * i_size has been changed by generic_commit_write() and we thus need 5932 * to include the updated inode in the current transaction. 5933 * 5934 * Also, dquot_alloc_block() will always dirty the inode when blocks 5935 * are allocated to the file. 5936 * 5937 * If the inode is marked synchronous, we don't honour that here - doing 5938 * so would cause a commit on atime updates, which we don't bother doing. 5939 * We handle synchronous inodes at the highest possible level. 5940 */ 5941 void ext4_dirty_inode(struct inode *inode, int flags) 5942 { 5943 handle_t *handle; 5944 5945 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 5946 if (IS_ERR(handle)) 5947 return; 5948 ext4_mark_inode_dirty(handle, inode); 5949 ext4_journal_stop(handle); 5950 } 5951 5952 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5953 { 5954 journal_t *journal; 5955 handle_t *handle; 5956 int err; 5957 int alloc_ctx; 5958 5959 /* 5960 * We have to be very careful here: changing a data block's 5961 * journaling status dynamically is dangerous. If we write a 5962 * data block to the journal, change the status and then delete 5963 * that block, we risk forgetting to revoke the old log record 5964 * from the journal and so a subsequent replay can corrupt data. 5965 * So, first we make sure that the journal is empty and that 5966 * nobody is changing anything. 5967 */ 5968 5969 journal = EXT4_JOURNAL(inode); 5970 if (!journal) 5971 return 0; 5972 if (is_journal_aborted(journal)) 5973 return -EROFS; 5974 5975 /* Wait for all existing dio workers */ 5976 inode_dio_wait(inode); 5977 5978 /* 5979 * Before flushing the journal and switching inode's aops, we have 5980 * to flush all dirty data the inode has. There can be outstanding 5981 * delayed allocations, there can be unwritten extents created by 5982 * fallocate or buffered writes in dioread_nolock mode covered by 5983 * dirty data which can be converted only after flushing the dirty 5984 * data (and journalled aops don't know how to handle these cases). 5985 */ 5986 if (val) { 5987 filemap_invalidate_lock(inode->i_mapping); 5988 err = filemap_write_and_wait(inode->i_mapping); 5989 if (err < 0) { 5990 filemap_invalidate_unlock(inode->i_mapping); 5991 return err; 5992 } 5993 } 5994 5995 alloc_ctx = ext4_writepages_down_write(inode->i_sb); 5996 jbd2_journal_lock_updates(journal); 5997 5998 /* 5999 * OK, there are no updates running now, and all cached data is 6000 * synced to disk. We are now in a completely consistent state 6001 * which doesn't have anything in the journal, and we know that 6002 * no filesystem updates are running, so it is safe to modify 6003 * the inode's in-core data-journaling state flag now. 6004 */ 6005 6006 if (val) 6007 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6008 else { 6009 err = jbd2_journal_flush(journal, 0); 6010 if (err < 0) { 6011 jbd2_journal_unlock_updates(journal); 6012 ext4_writepages_up_write(inode->i_sb, alloc_ctx); 6013 return err; 6014 } 6015 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6016 } 6017 ext4_set_aops(inode); 6018 6019 jbd2_journal_unlock_updates(journal); 6020 ext4_writepages_up_write(inode->i_sb, alloc_ctx); 6021 6022 if (val) 6023 filemap_invalidate_unlock(inode->i_mapping); 6024 6025 /* Finally we can mark the inode as dirty. */ 6026 6027 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 6028 if (IS_ERR(handle)) 6029 return PTR_ERR(handle); 6030 6031 ext4_fc_mark_ineligible(inode->i_sb, 6032 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle); 6033 err = ext4_mark_inode_dirty(handle, inode); 6034 ext4_handle_sync(handle); 6035 ext4_journal_stop(handle); 6036 ext4_std_error(inode->i_sb, err); 6037 6038 return err; 6039 } 6040 6041 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode, 6042 struct buffer_head *bh) 6043 { 6044 return !buffer_mapped(bh); 6045 } 6046 6047 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf) 6048 { 6049 struct vm_area_struct *vma = vmf->vma; 6050 struct folio *folio = page_folio(vmf->page); 6051 loff_t size; 6052 unsigned long len; 6053 int err; 6054 vm_fault_t ret; 6055 struct file *file = vma->vm_file; 6056 struct inode *inode = file_inode(file); 6057 struct address_space *mapping = inode->i_mapping; 6058 handle_t *handle; 6059 get_block_t *get_block; 6060 int retries = 0; 6061 6062 if (unlikely(IS_IMMUTABLE(inode))) 6063 return VM_FAULT_SIGBUS; 6064 6065 sb_start_pagefault(inode->i_sb); 6066 file_update_time(vma->vm_file); 6067 6068 filemap_invalidate_lock_shared(mapping); 6069 6070 err = ext4_convert_inline_data(inode); 6071 if (err) 6072 goto out_ret; 6073 6074 /* 6075 * On data journalling we skip straight to the transaction handle: 6076 * there's no delalloc; page truncated will be checked later; the 6077 * early return w/ all buffers mapped (calculates size/len) can't 6078 * be used; and there's no dioread_nolock, so only ext4_get_block. 6079 */ 6080 if (ext4_should_journal_data(inode)) 6081 goto retry_alloc; 6082 6083 /* Delalloc case is easy... */ 6084 if (test_opt(inode->i_sb, DELALLOC) && 6085 !ext4_nonda_switch(inode->i_sb)) { 6086 do { 6087 err = block_page_mkwrite(vma, vmf, 6088 ext4_da_get_block_prep); 6089 } while (err == -ENOSPC && 6090 ext4_should_retry_alloc(inode->i_sb, &retries)); 6091 goto out_ret; 6092 } 6093 6094 folio_lock(folio); 6095 size = i_size_read(inode); 6096 /* Page got truncated from under us? */ 6097 if (folio->mapping != mapping || folio_pos(folio) > size) { 6098 folio_unlock(folio); 6099 ret = VM_FAULT_NOPAGE; 6100 goto out; 6101 } 6102 6103 len = folio_size(folio); 6104 if (folio_pos(folio) + len > size) 6105 len = size - folio_pos(folio); 6106 /* 6107 * Return if we have all the buffers mapped. This avoids the need to do 6108 * journal_start/journal_stop which can block and take a long time 6109 * 6110 * This cannot be done for data journalling, as we have to add the 6111 * inode to the transaction's list to writeprotect pages on commit. 6112 */ 6113 if (folio_buffers(folio)) { 6114 if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio), 6115 0, len, NULL, 6116 ext4_bh_unmapped)) { 6117 /* Wait so that we don't change page under IO */ 6118 folio_wait_stable(folio); 6119 ret = VM_FAULT_LOCKED; 6120 goto out; 6121 } 6122 } 6123 folio_unlock(folio); 6124 /* OK, we need to fill the hole... */ 6125 if (ext4_should_dioread_nolock(inode)) 6126 get_block = ext4_get_block_unwritten; 6127 else 6128 get_block = ext4_get_block; 6129 retry_alloc: 6130 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 6131 ext4_writepage_trans_blocks(inode)); 6132 if (IS_ERR(handle)) { 6133 ret = VM_FAULT_SIGBUS; 6134 goto out; 6135 } 6136 /* 6137 * Data journalling can't use block_page_mkwrite() because it 6138 * will set_buffer_dirty() before do_journal_get_write_access() 6139 * thus might hit warning messages for dirty metadata buffers. 6140 */ 6141 if (!ext4_should_journal_data(inode)) { 6142 err = block_page_mkwrite(vma, vmf, get_block); 6143 } else { 6144 folio_lock(folio); 6145 size = i_size_read(inode); 6146 /* Page got truncated from under us? */ 6147 if (folio->mapping != mapping || folio_pos(folio) > size) { 6148 ret = VM_FAULT_NOPAGE; 6149 goto out_error; 6150 } 6151 6152 len = folio_size(folio); 6153 if (folio_pos(folio) + len > size) 6154 len = size - folio_pos(folio); 6155 6156 err = __block_write_begin(&folio->page, 0, len, ext4_get_block); 6157 if (!err) { 6158 ret = VM_FAULT_SIGBUS; 6159 if (ext4_journal_page_buffers(handle, &folio->page, len)) 6160 goto out_error; 6161 } else { 6162 folio_unlock(folio); 6163 } 6164 } 6165 ext4_journal_stop(handle); 6166 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 6167 goto retry_alloc; 6168 out_ret: 6169 ret = block_page_mkwrite_return(err); 6170 out: 6171 filemap_invalidate_unlock_shared(mapping); 6172 sb_end_pagefault(inode->i_sb); 6173 return ret; 6174 out_error: 6175 folio_unlock(folio); 6176 ext4_journal_stop(handle); 6177 goto out; 6178 } 6179