xref: /openbmc/linux/fs/ext4/inode.c (revision 6a613ac6)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *	(jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20 
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40 
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45 
46 #include <trace/events/ext4.h>
47 
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49 
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 			      struct ext4_inode_info *ei)
52 {
53 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 	__u16 csum_lo;
55 	__u16 csum_hi = 0;
56 	__u32 csum;
57 
58 	csum_lo = le16_to_cpu(raw->i_checksum_lo);
59 	raw->i_checksum_lo = 0;
60 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62 		csum_hi = le16_to_cpu(raw->i_checksum_hi);
63 		raw->i_checksum_hi = 0;
64 	}
65 
66 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67 			   EXT4_INODE_SIZE(inode->i_sb));
68 
69 	raw->i_checksum_lo = cpu_to_le16(csum_lo);
70 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72 		raw->i_checksum_hi = cpu_to_le16(csum_hi);
73 
74 	return csum;
75 }
76 
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78 				  struct ext4_inode_info *ei)
79 {
80 	__u32 provided, calculated;
81 
82 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83 	    cpu_to_le32(EXT4_OS_LINUX) ||
84 	    !ext4_has_metadata_csum(inode->i_sb))
85 		return 1;
86 
87 	provided = le16_to_cpu(raw->i_checksum_lo);
88 	calculated = ext4_inode_csum(inode, raw, ei);
89 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
90 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
91 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
92 	else
93 		calculated &= 0xFFFF;
94 
95 	return provided == calculated;
96 }
97 
98 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
99 				struct ext4_inode_info *ei)
100 {
101 	__u32 csum;
102 
103 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
104 	    cpu_to_le32(EXT4_OS_LINUX) ||
105 	    !ext4_has_metadata_csum(inode->i_sb))
106 		return;
107 
108 	csum = ext4_inode_csum(inode, raw, ei);
109 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
110 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
111 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
112 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
113 }
114 
115 static inline int ext4_begin_ordered_truncate(struct inode *inode,
116 					      loff_t new_size)
117 {
118 	trace_ext4_begin_ordered_truncate(inode, new_size);
119 	/*
120 	 * If jinode is zero, then we never opened the file for
121 	 * writing, so there's no need to call
122 	 * jbd2_journal_begin_ordered_truncate() since there's no
123 	 * outstanding writes we need to flush.
124 	 */
125 	if (!EXT4_I(inode)->jinode)
126 		return 0;
127 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
128 						   EXT4_I(inode)->jinode,
129 						   new_size);
130 }
131 
132 static void ext4_invalidatepage(struct page *page, unsigned int offset,
133 				unsigned int length);
134 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
135 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
136 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
137 				  int pextents);
138 
139 /*
140  * Test whether an inode is a fast symlink.
141  */
142 int ext4_inode_is_fast_symlink(struct inode *inode)
143 {
144         int ea_blocks = EXT4_I(inode)->i_file_acl ?
145 		EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
146 
147 	if (ext4_has_inline_data(inode))
148 		return 0;
149 
150 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151 }
152 
153 /*
154  * Restart the transaction associated with *handle.  This does a commit,
155  * so before we call here everything must be consistently dirtied against
156  * this transaction.
157  */
158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
159 				 int nblocks)
160 {
161 	int ret;
162 
163 	/*
164 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
165 	 * moment, get_block can be called only for blocks inside i_size since
166 	 * page cache has been already dropped and writes are blocked by
167 	 * i_mutex. So we can safely drop the i_data_sem here.
168 	 */
169 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
170 	jbd_debug(2, "restarting handle %p\n", handle);
171 	up_write(&EXT4_I(inode)->i_data_sem);
172 	ret = ext4_journal_restart(handle, nblocks);
173 	down_write(&EXT4_I(inode)->i_data_sem);
174 	ext4_discard_preallocations(inode);
175 
176 	return ret;
177 }
178 
179 /*
180  * Called at the last iput() if i_nlink is zero.
181  */
182 void ext4_evict_inode(struct inode *inode)
183 {
184 	handle_t *handle;
185 	int err;
186 
187 	trace_ext4_evict_inode(inode);
188 
189 	if (inode->i_nlink) {
190 		/*
191 		 * When journalling data dirty buffers are tracked only in the
192 		 * journal. So although mm thinks everything is clean and
193 		 * ready for reaping the inode might still have some pages to
194 		 * write in the running transaction or waiting to be
195 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
196 		 * (via truncate_inode_pages()) to discard these buffers can
197 		 * cause data loss. Also even if we did not discard these
198 		 * buffers, we would have no way to find them after the inode
199 		 * is reaped and thus user could see stale data if he tries to
200 		 * read them before the transaction is checkpointed. So be
201 		 * careful and force everything to disk here... We use
202 		 * ei->i_datasync_tid to store the newest transaction
203 		 * containing inode's data.
204 		 *
205 		 * Note that directories do not have this problem because they
206 		 * don't use page cache.
207 		 */
208 		if (ext4_should_journal_data(inode) &&
209 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210 		    inode->i_ino != EXT4_JOURNAL_INO) {
211 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213 
214 			jbd2_complete_transaction(journal, commit_tid);
215 			filemap_write_and_wait(&inode->i_data);
216 		}
217 		truncate_inode_pages_final(&inode->i_data);
218 
219 		WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
220 		goto no_delete;
221 	}
222 
223 	if (is_bad_inode(inode))
224 		goto no_delete;
225 	dquot_initialize(inode);
226 
227 	if (ext4_should_order_data(inode))
228 		ext4_begin_ordered_truncate(inode, 0);
229 	truncate_inode_pages_final(&inode->i_data);
230 
231 	WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
232 
233 	/*
234 	 * Protect us against freezing - iput() caller didn't have to have any
235 	 * protection against it
236 	 */
237 	sb_start_intwrite(inode->i_sb);
238 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
239 				    ext4_blocks_for_truncate(inode)+3);
240 	if (IS_ERR(handle)) {
241 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
242 		/*
243 		 * If we're going to skip the normal cleanup, we still need to
244 		 * make sure that the in-core orphan linked list is properly
245 		 * cleaned up.
246 		 */
247 		ext4_orphan_del(NULL, inode);
248 		sb_end_intwrite(inode->i_sb);
249 		goto no_delete;
250 	}
251 
252 	if (IS_SYNC(inode))
253 		ext4_handle_sync(handle);
254 	inode->i_size = 0;
255 	err = ext4_mark_inode_dirty(handle, inode);
256 	if (err) {
257 		ext4_warning(inode->i_sb,
258 			     "couldn't mark inode dirty (err %d)", err);
259 		goto stop_handle;
260 	}
261 	if (inode->i_blocks)
262 		ext4_truncate(inode);
263 
264 	/*
265 	 * ext4_ext_truncate() doesn't reserve any slop when it
266 	 * restarts journal transactions; therefore there may not be
267 	 * enough credits left in the handle to remove the inode from
268 	 * the orphan list and set the dtime field.
269 	 */
270 	if (!ext4_handle_has_enough_credits(handle, 3)) {
271 		err = ext4_journal_extend(handle, 3);
272 		if (err > 0)
273 			err = ext4_journal_restart(handle, 3);
274 		if (err != 0) {
275 			ext4_warning(inode->i_sb,
276 				     "couldn't extend journal (err %d)", err);
277 		stop_handle:
278 			ext4_journal_stop(handle);
279 			ext4_orphan_del(NULL, inode);
280 			sb_end_intwrite(inode->i_sb);
281 			goto no_delete;
282 		}
283 	}
284 
285 	/*
286 	 * Kill off the orphan record which ext4_truncate created.
287 	 * AKPM: I think this can be inside the above `if'.
288 	 * Note that ext4_orphan_del() has to be able to cope with the
289 	 * deletion of a non-existent orphan - this is because we don't
290 	 * know if ext4_truncate() actually created an orphan record.
291 	 * (Well, we could do this if we need to, but heck - it works)
292 	 */
293 	ext4_orphan_del(handle, inode);
294 	EXT4_I(inode)->i_dtime	= get_seconds();
295 
296 	/*
297 	 * One subtle ordering requirement: if anything has gone wrong
298 	 * (transaction abort, IO errors, whatever), then we can still
299 	 * do these next steps (the fs will already have been marked as
300 	 * having errors), but we can't free the inode if the mark_dirty
301 	 * fails.
302 	 */
303 	if (ext4_mark_inode_dirty(handle, inode))
304 		/* If that failed, just do the required in-core inode clear. */
305 		ext4_clear_inode(inode);
306 	else
307 		ext4_free_inode(handle, inode);
308 	ext4_journal_stop(handle);
309 	sb_end_intwrite(inode->i_sb);
310 	return;
311 no_delete:
312 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
313 }
314 
315 #ifdef CONFIG_QUOTA
316 qsize_t *ext4_get_reserved_space(struct inode *inode)
317 {
318 	return &EXT4_I(inode)->i_reserved_quota;
319 }
320 #endif
321 
322 /*
323  * Called with i_data_sem down, which is important since we can call
324  * ext4_discard_preallocations() from here.
325  */
326 void ext4_da_update_reserve_space(struct inode *inode,
327 					int used, int quota_claim)
328 {
329 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
330 	struct ext4_inode_info *ei = EXT4_I(inode);
331 
332 	spin_lock(&ei->i_block_reservation_lock);
333 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
334 	if (unlikely(used > ei->i_reserved_data_blocks)) {
335 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
336 			 "with only %d reserved data blocks",
337 			 __func__, inode->i_ino, used,
338 			 ei->i_reserved_data_blocks);
339 		WARN_ON(1);
340 		used = ei->i_reserved_data_blocks;
341 	}
342 
343 	/* Update per-inode reservations */
344 	ei->i_reserved_data_blocks -= used;
345 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
346 
347 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
348 
349 	/* Update quota subsystem for data blocks */
350 	if (quota_claim)
351 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
352 	else {
353 		/*
354 		 * We did fallocate with an offset that is already delayed
355 		 * allocated. So on delayed allocated writeback we should
356 		 * not re-claim the quota for fallocated blocks.
357 		 */
358 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
359 	}
360 
361 	/*
362 	 * If we have done all the pending block allocations and if
363 	 * there aren't any writers on the inode, we can discard the
364 	 * inode's preallocations.
365 	 */
366 	if ((ei->i_reserved_data_blocks == 0) &&
367 	    (atomic_read(&inode->i_writecount) == 0))
368 		ext4_discard_preallocations(inode);
369 }
370 
371 static int __check_block_validity(struct inode *inode, const char *func,
372 				unsigned int line,
373 				struct ext4_map_blocks *map)
374 {
375 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
376 				   map->m_len)) {
377 		ext4_error_inode(inode, func, line, map->m_pblk,
378 				 "lblock %lu mapped to illegal pblock "
379 				 "(length %d)", (unsigned long) map->m_lblk,
380 				 map->m_len);
381 		return -EFSCORRUPTED;
382 	}
383 	return 0;
384 }
385 
386 #define check_block_validity(inode, map)	\
387 	__check_block_validity((inode), __func__, __LINE__, (map))
388 
389 #ifdef ES_AGGRESSIVE_TEST
390 static void ext4_map_blocks_es_recheck(handle_t *handle,
391 				       struct inode *inode,
392 				       struct ext4_map_blocks *es_map,
393 				       struct ext4_map_blocks *map,
394 				       int flags)
395 {
396 	int retval;
397 
398 	map->m_flags = 0;
399 	/*
400 	 * There is a race window that the result is not the same.
401 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
402 	 * is that we lookup a block mapping in extent status tree with
403 	 * out taking i_data_sem.  So at the time the unwritten extent
404 	 * could be converted.
405 	 */
406 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
407 		down_read(&EXT4_I(inode)->i_data_sem);
408 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
409 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
410 					     EXT4_GET_BLOCKS_KEEP_SIZE);
411 	} else {
412 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
413 					     EXT4_GET_BLOCKS_KEEP_SIZE);
414 	}
415 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
416 		up_read((&EXT4_I(inode)->i_data_sem));
417 
418 	/*
419 	 * We don't check m_len because extent will be collpased in status
420 	 * tree.  So the m_len might not equal.
421 	 */
422 	if (es_map->m_lblk != map->m_lblk ||
423 	    es_map->m_flags != map->m_flags ||
424 	    es_map->m_pblk != map->m_pblk) {
425 		printk("ES cache assertion failed for inode: %lu "
426 		       "es_cached ex [%d/%d/%llu/%x] != "
427 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
428 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
429 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
430 		       map->m_len, map->m_pblk, map->m_flags,
431 		       retval, flags);
432 	}
433 }
434 #endif /* ES_AGGRESSIVE_TEST */
435 
436 /*
437  * The ext4_map_blocks() function tries to look up the requested blocks,
438  * and returns if the blocks are already mapped.
439  *
440  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
441  * and store the allocated blocks in the result buffer head and mark it
442  * mapped.
443  *
444  * If file type is extents based, it will call ext4_ext_map_blocks(),
445  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
446  * based files
447  *
448  * On success, it returns the number of blocks being mapped or allocated.
449  * if create==0 and the blocks are pre-allocated and unwritten block,
450  * the result buffer head is unmapped. If the create ==1, it will make sure
451  * the buffer head is mapped.
452  *
453  * It returns 0 if plain look up failed (blocks have not been allocated), in
454  * that case, buffer head is unmapped
455  *
456  * It returns the error in case of allocation failure.
457  */
458 int ext4_map_blocks(handle_t *handle, struct inode *inode,
459 		    struct ext4_map_blocks *map, int flags)
460 {
461 	struct extent_status es;
462 	int retval;
463 	int ret = 0;
464 #ifdef ES_AGGRESSIVE_TEST
465 	struct ext4_map_blocks orig_map;
466 
467 	memcpy(&orig_map, map, sizeof(*map));
468 #endif
469 
470 	map->m_flags = 0;
471 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
472 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
473 		  (unsigned long) map->m_lblk);
474 
475 	/*
476 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
477 	 */
478 	if (unlikely(map->m_len > INT_MAX))
479 		map->m_len = INT_MAX;
480 
481 	/* We can handle the block number less than EXT_MAX_BLOCKS */
482 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
483 		return -EFSCORRUPTED;
484 
485 	/* Lookup extent status tree firstly */
486 	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
487 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
488 			map->m_pblk = ext4_es_pblock(&es) +
489 					map->m_lblk - es.es_lblk;
490 			map->m_flags |= ext4_es_is_written(&es) ?
491 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
492 			retval = es.es_len - (map->m_lblk - es.es_lblk);
493 			if (retval > map->m_len)
494 				retval = map->m_len;
495 			map->m_len = retval;
496 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
497 			retval = 0;
498 		} else {
499 			BUG_ON(1);
500 		}
501 #ifdef ES_AGGRESSIVE_TEST
502 		ext4_map_blocks_es_recheck(handle, inode, map,
503 					   &orig_map, flags);
504 #endif
505 		goto found;
506 	}
507 
508 	/*
509 	 * Try to see if we can get the block without requesting a new
510 	 * file system block.
511 	 */
512 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
513 		down_read(&EXT4_I(inode)->i_data_sem);
514 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
515 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
516 					     EXT4_GET_BLOCKS_KEEP_SIZE);
517 	} else {
518 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
519 					     EXT4_GET_BLOCKS_KEEP_SIZE);
520 	}
521 	if (retval > 0) {
522 		unsigned int status;
523 
524 		if (unlikely(retval != map->m_len)) {
525 			ext4_warning(inode->i_sb,
526 				     "ES len assertion failed for inode "
527 				     "%lu: retval %d != map->m_len %d",
528 				     inode->i_ino, retval, map->m_len);
529 			WARN_ON(1);
530 		}
531 
532 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
533 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
534 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
535 		    !(status & EXTENT_STATUS_WRITTEN) &&
536 		    ext4_find_delalloc_range(inode, map->m_lblk,
537 					     map->m_lblk + map->m_len - 1))
538 			status |= EXTENT_STATUS_DELAYED;
539 		ret = ext4_es_insert_extent(inode, map->m_lblk,
540 					    map->m_len, map->m_pblk, status);
541 		if (ret < 0)
542 			retval = ret;
543 	}
544 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
545 		up_read((&EXT4_I(inode)->i_data_sem));
546 
547 found:
548 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
549 		ret = check_block_validity(inode, map);
550 		if (ret != 0)
551 			return ret;
552 	}
553 
554 	/* If it is only a block(s) look up */
555 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
556 		return retval;
557 
558 	/*
559 	 * Returns if the blocks have already allocated
560 	 *
561 	 * Note that if blocks have been preallocated
562 	 * ext4_ext_get_block() returns the create = 0
563 	 * with buffer head unmapped.
564 	 */
565 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
566 		/*
567 		 * If we need to convert extent to unwritten
568 		 * we continue and do the actual work in
569 		 * ext4_ext_map_blocks()
570 		 */
571 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
572 			return retval;
573 
574 	/*
575 	 * Here we clear m_flags because after allocating an new extent,
576 	 * it will be set again.
577 	 */
578 	map->m_flags &= ~EXT4_MAP_FLAGS;
579 
580 	/*
581 	 * New blocks allocate and/or writing to unwritten extent
582 	 * will possibly result in updating i_data, so we take
583 	 * the write lock of i_data_sem, and call get_block()
584 	 * with create == 1 flag.
585 	 */
586 	down_write(&EXT4_I(inode)->i_data_sem);
587 
588 	/*
589 	 * We need to check for EXT4 here because migrate
590 	 * could have changed the inode type in between
591 	 */
592 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
593 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
594 	} else {
595 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
596 
597 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
598 			/*
599 			 * We allocated new blocks which will result in
600 			 * i_data's format changing.  Force the migrate
601 			 * to fail by clearing migrate flags
602 			 */
603 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
604 		}
605 
606 		/*
607 		 * Update reserved blocks/metadata blocks after successful
608 		 * block allocation which had been deferred till now. We don't
609 		 * support fallocate for non extent files. So we can update
610 		 * reserve space here.
611 		 */
612 		if ((retval > 0) &&
613 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
614 			ext4_da_update_reserve_space(inode, retval, 1);
615 	}
616 
617 	if (retval > 0) {
618 		unsigned int status;
619 
620 		if (unlikely(retval != map->m_len)) {
621 			ext4_warning(inode->i_sb,
622 				     "ES len assertion failed for inode "
623 				     "%lu: retval %d != map->m_len %d",
624 				     inode->i_ino, retval, map->m_len);
625 			WARN_ON(1);
626 		}
627 
628 		/*
629 		 * If the extent has been zeroed out, we don't need to update
630 		 * extent status tree.
631 		 */
632 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
633 		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
634 			if (ext4_es_is_written(&es))
635 				goto has_zeroout;
636 		}
637 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
638 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
639 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
640 		    !(status & EXTENT_STATUS_WRITTEN) &&
641 		    ext4_find_delalloc_range(inode, map->m_lblk,
642 					     map->m_lblk + map->m_len - 1))
643 			status |= EXTENT_STATUS_DELAYED;
644 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
645 					    map->m_pblk, status);
646 		if (ret < 0)
647 			retval = ret;
648 	}
649 
650 has_zeroout:
651 	up_write((&EXT4_I(inode)->i_data_sem));
652 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
653 		ret = check_block_validity(inode, map);
654 		if (ret != 0)
655 			return ret;
656 	}
657 	return retval;
658 }
659 
660 /* Maximum number of blocks we map for direct IO at once. */
661 #define DIO_MAX_BLOCKS 4096
662 
663 static int _ext4_get_block(struct inode *inode, sector_t iblock,
664 			   struct buffer_head *bh, int flags)
665 {
666 	handle_t *handle = ext4_journal_current_handle();
667 	struct ext4_map_blocks map;
668 	int ret = 0, started = 0;
669 	int dio_credits;
670 
671 	if (ext4_has_inline_data(inode))
672 		return -ERANGE;
673 
674 	map.m_lblk = iblock;
675 	map.m_len = bh->b_size >> inode->i_blkbits;
676 
677 	if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
678 		/* Direct IO write... */
679 		if (map.m_len > DIO_MAX_BLOCKS)
680 			map.m_len = DIO_MAX_BLOCKS;
681 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
682 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
683 					    dio_credits);
684 		if (IS_ERR(handle)) {
685 			ret = PTR_ERR(handle);
686 			return ret;
687 		}
688 		started = 1;
689 	}
690 
691 	ret = ext4_map_blocks(handle, inode, &map, flags);
692 	if (ret > 0) {
693 		ext4_io_end_t *io_end = ext4_inode_aio(inode);
694 
695 		map_bh(bh, inode->i_sb, map.m_pblk);
696 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
697 		if (IS_DAX(inode) && buffer_unwritten(bh)) {
698 			/*
699 			 * dgc: I suspect unwritten conversion on ext4+DAX is
700 			 * fundamentally broken here when there are concurrent
701 			 * read/write in progress on this inode.
702 			 */
703 			WARN_ON_ONCE(io_end);
704 			bh->b_assoc_map = inode->i_mapping;
705 			bh->b_private = (void *)(unsigned long)iblock;
706 		}
707 		if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
708 			set_buffer_defer_completion(bh);
709 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
710 		ret = 0;
711 	}
712 	if (started)
713 		ext4_journal_stop(handle);
714 	return ret;
715 }
716 
717 int ext4_get_block(struct inode *inode, sector_t iblock,
718 		   struct buffer_head *bh, int create)
719 {
720 	return _ext4_get_block(inode, iblock, bh,
721 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
722 }
723 
724 /*
725  * `handle' can be NULL if create is zero
726  */
727 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
728 				ext4_lblk_t block, int map_flags)
729 {
730 	struct ext4_map_blocks map;
731 	struct buffer_head *bh;
732 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
733 	int err;
734 
735 	J_ASSERT(handle != NULL || create == 0);
736 
737 	map.m_lblk = block;
738 	map.m_len = 1;
739 	err = ext4_map_blocks(handle, inode, &map, map_flags);
740 
741 	if (err == 0)
742 		return create ? ERR_PTR(-ENOSPC) : NULL;
743 	if (err < 0)
744 		return ERR_PTR(err);
745 
746 	bh = sb_getblk(inode->i_sb, map.m_pblk);
747 	if (unlikely(!bh))
748 		return ERR_PTR(-ENOMEM);
749 	if (map.m_flags & EXT4_MAP_NEW) {
750 		J_ASSERT(create != 0);
751 		J_ASSERT(handle != NULL);
752 
753 		/*
754 		 * Now that we do not always journal data, we should
755 		 * keep in mind whether this should always journal the
756 		 * new buffer as metadata.  For now, regular file
757 		 * writes use ext4_get_block instead, so it's not a
758 		 * problem.
759 		 */
760 		lock_buffer(bh);
761 		BUFFER_TRACE(bh, "call get_create_access");
762 		err = ext4_journal_get_create_access(handle, bh);
763 		if (unlikely(err)) {
764 			unlock_buffer(bh);
765 			goto errout;
766 		}
767 		if (!buffer_uptodate(bh)) {
768 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
769 			set_buffer_uptodate(bh);
770 		}
771 		unlock_buffer(bh);
772 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
773 		err = ext4_handle_dirty_metadata(handle, inode, bh);
774 		if (unlikely(err))
775 			goto errout;
776 	} else
777 		BUFFER_TRACE(bh, "not a new buffer");
778 	return bh;
779 errout:
780 	brelse(bh);
781 	return ERR_PTR(err);
782 }
783 
784 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
785 			       ext4_lblk_t block, int map_flags)
786 {
787 	struct buffer_head *bh;
788 
789 	bh = ext4_getblk(handle, inode, block, map_flags);
790 	if (IS_ERR(bh))
791 		return bh;
792 	if (!bh || buffer_uptodate(bh))
793 		return bh;
794 	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
795 	wait_on_buffer(bh);
796 	if (buffer_uptodate(bh))
797 		return bh;
798 	put_bh(bh);
799 	return ERR_PTR(-EIO);
800 }
801 
802 int ext4_walk_page_buffers(handle_t *handle,
803 			   struct buffer_head *head,
804 			   unsigned from,
805 			   unsigned to,
806 			   int *partial,
807 			   int (*fn)(handle_t *handle,
808 				     struct buffer_head *bh))
809 {
810 	struct buffer_head *bh;
811 	unsigned block_start, block_end;
812 	unsigned blocksize = head->b_size;
813 	int err, ret = 0;
814 	struct buffer_head *next;
815 
816 	for (bh = head, block_start = 0;
817 	     ret == 0 && (bh != head || !block_start);
818 	     block_start = block_end, bh = next) {
819 		next = bh->b_this_page;
820 		block_end = block_start + blocksize;
821 		if (block_end <= from || block_start >= to) {
822 			if (partial && !buffer_uptodate(bh))
823 				*partial = 1;
824 			continue;
825 		}
826 		err = (*fn)(handle, bh);
827 		if (!ret)
828 			ret = err;
829 	}
830 	return ret;
831 }
832 
833 /*
834  * To preserve ordering, it is essential that the hole instantiation and
835  * the data write be encapsulated in a single transaction.  We cannot
836  * close off a transaction and start a new one between the ext4_get_block()
837  * and the commit_write().  So doing the jbd2_journal_start at the start of
838  * prepare_write() is the right place.
839  *
840  * Also, this function can nest inside ext4_writepage().  In that case, we
841  * *know* that ext4_writepage() has generated enough buffer credits to do the
842  * whole page.  So we won't block on the journal in that case, which is good,
843  * because the caller may be PF_MEMALLOC.
844  *
845  * By accident, ext4 can be reentered when a transaction is open via
846  * quota file writes.  If we were to commit the transaction while thus
847  * reentered, there can be a deadlock - we would be holding a quota
848  * lock, and the commit would never complete if another thread had a
849  * transaction open and was blocking on the quota lock - a ranking
850  * violation.
851  *
852  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
853  * will _not_ run commit under these circumstances because handle->h_ref
854  * is elevated.  We'll still have enough credits for the tiny quotafile
855  * write.
856  */
857 int do_journal_get_write_access(handle_t *handle,
858 				struct buffer_head *bh)
859 {
860 	int dirty = buffer_dirty(bh);
861 	int ret;
862 
863 	if (!buffer_mapped(bh) || buffer_freed(bh))
864 		return 0;
865 	/*
866 	 * __block_write_begin() could have dirtied some buffers. Clean
867 	 * the dirty bit as jbd2_journal_get_write_access() could complain
868 	 * otherwise about fs integrity issues. Setting of the dirty bit
869 	 * by __block_write_begin() isn't a real problem here as we clear
870 	 * the bit before releasing a page lock and thus writeback cannot
871 	 * ever write the buffer.
872 	 */
873 	if (dirty)
874 		clear_buffer_dirty(bh);
875 	BUFFER_TRACE(bh, "get write access");
876 	ret = ext4_journal_get_write_access(handle, bh);
877 	if (!ret && dirty)
878 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
879 	return ret;
880 }
881 
882 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
883 		   struct buffer_head *bh_result, int create);
884 
885 #ifdef CONFIG_EXT4_FS_ENCRYPTION
886 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
887 				  get_block_t *get_block)
888 {
889 	unsigned from = pos & (PAGE_CACHE_SIZE - 1);
890 	unsigned to = from + len;
891 	struct inode *inode = page->mapping->host;
892 	unsigned block_start, block_end;
893 	sector_t block;
894 	int err = 0;
895 	unsigned blocksize = inode->i_sb->s_blocksize;
896 	unsigned bbits;
897 	struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
898 	bool decrypt = false;
899 
900 	BUG_ON(!PageLocked(page));
901 	BUG_ON(from > PAGE_CACHE_SIZE);
902 	BUG_ON(to > PAGE_CACHE_SIZE);
903 	BUG_ON(from > to);
904 
905 	if (!page_has_buffers(page))
906 		create_empty_buffers(page, blocksize, 0);
907 	head = page_buffers(page);
908 	bbits = ilog2(blocksize);
909 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
910 
911 	for (bh = head, block_start = 0; bh != head || !block_start;
912 	    block++, block_start = block_end, bh = bh->b_this_page) {
913 		block_end = block_start + blocksize;
914 		if (block_end <= from || block_start >= to) {
915 			if (PageUptodate(page)) {
916 				if (!buffer_uptodate(bh))
917 					set_buffer_uptodate(bh);
918 			}
919 			continue;
920 		}
921 		if (buffer_new(bh))
922 			clear_buffer_new(bh);
923 		if (!buffer_mapped(bh)) {
924 			WARN_ON(bh->b_size != blocksize);
925 			err = get_block(inode, block, bh, 1);
926 			if (err)
927 				break;
928 			if (buffer_new(bh)) {
929 				unmap_underlying_metadata(bh->b_bdev,
930 							  bh->b_blocknr);
931 				if (PageUptodate(page)) {
932 					clear_buffer_new(bh);
933 					set_buffer_uptodate(bh);
934 					mark_buffer_dirty(bh);
935 					continue;
936 				}
937 				if (block_end > to || block_start < from)
938 					zero_user_segments(page, to, block_end,
939 							   block_start, from);
940 				continue;
941 			}
942 		}
943 		if (PageUptodate(page)) {
944 			if (!buffer_uptodate(bh))
945 				set_buffer_uptodate(bh);
946 			continue;
947 		}
948 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
949 		    !buffer_unwritten(bh) &&
950 		    (block_start < from || block_end > to)) {
951 			ll_rw_block(READ, 1, &bh);
952 			*wait_bh++ = bh;
953 			decrypt = ext4_encrypted_inode(inode) &&
954 				S_ISREG(inode->i_mode);
955 		}
956 	}
957 	/*
958 	 * If we issued read requests, let them complete.
959 	 */
960 	while (wait_bh > wait) {
961 		wait_on_buffer(*--wait_bh);
962 		if (!buffer_uptodate(*wait_bh))
963 			err = -EIO;
964 	}
965 	if (unlikely(err))
966 		page_zero_new_buffers(page, from, to);
967 	else if (decrypt)
968 		err = ext4_decrypt(page);
969 	return err;
970 }
971 #endif
972 
973 static int ext4_write_begin(struct file *file, struct address_space *mapping,
974 			    loff_t pos, unsigned len, unsigned flags,
975 			    struct page **pagep, void **fsdata)
976 {
977 	struct inode *inode = mapping->host;
978 	int ret, needed_blocks;
979 	handle_t *handle;
980 	int retries = 0;
981 	struct page *page;
982 	pgoff_t index;
983 	unsigned from, to;
984 
985 	trace_ext4_write_begin(inode, pos, len, flags);
986 	/*
987 	 * Reserve one block more for addition to orphan list in case
988 	 * we allocate blocks but write fails for some reason
989 	 */
990 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
991 	index = pos >> PAGE_CACHE_SHIFT;
992 	from = pos & (PAGE_CACHE_SIZE - 1);
993 	to = from + len;
994 
995 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
996 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
997 						    flags, pagep);
998 		if (ret < 0)
999 			return ret;
1000 		if (ret == 1)
1001 			return 0;
1002 	}
1003 
1004 	/*
1005 	 * grab_cache_page_write_begin() can take a long time if the
1006 	 * system is thrashing due to memory pressure, or if the page
1007 	 * is being written back.  So grab it first before we start
1008 	 * the transaction handle.  This also allows us to allocate
1009 	 * the page (if needed) without using GFP_NOFS.
1010 	 */
1011 retry_grab:
1012 	page = grab_cache_page_write_begin(mapping, index, flags);
1013 	if (!page)
1014 		return -ENOMEM;
1015 	unlock_page(page);
1016 
1017 retry_journal:
1018 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1019 	if (IS_ERR(handle)) {
1020 		page_cache_release(page);
1021 		return PTR_ERR(handle);
1022 	}
1023 
1024 	lock_page(page);
1025 	if (page->mapping != mapping) {
1026 		/* The page got truncated from under us */
1027 		unlock_page(page);
1028 		page_cache_release(page);
1029 		ext4_journal_stop(handle);
1030 		goto retry_grab;
1031 	}
1032 	/* In case writeback began while the page was unlocked */
1033 	wait_for_stable_page(page);
1034 
1035 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1036 	if (ext4_should_dioread_nolock(inode))
1037 		ret = ext4_block_write_begin(page, pos, len,
1038 					     ext4_get_block_write);
1039 	else
1040 		ret = ext4_block_write_begin(page, pos, len,
1041 					     ext4_get_block);
1042 #else
1043 	if (ext4_should_dioread_nolock(inode))
1044 		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1045 	else
1046 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1047 #endif
1048 	if (!ret && ext4_should_journal_data(inode)) {
1049 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1050 					     from, to, NULL,
1051 					     do_journal_get_write_access);
1052 	}
1053 
1054 	if (ret) {
1055 		unlock_page(page);
1056 		/*
1057 		 * __block_write_begin may have instantiated a few blocks
1058 		 * outside i_size.  Trim these off again. Don't need
1059 		 * i_size_read because we hold i_mutex.
1060 		 *
1061 		 * Add inode to orphan list in case we crash before
1062 		 * truncate finishes
1063 		 */
1064 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1065 			ext4_orphan_add(handle, inode);
1066 
1067 		ext4_journal_stop(handle);
1068 		if (pos + len > inode->i_size) {
1069 			ext4_truncate_failed_write(inode);
1070 			/*
1071 			 * If truncate failed early the inode might
1072 			 * still be on the orphan list; we need to
1073 			 * make sure the inode is removed from the
1074 			 * orphan list in that case.
1075 			 */
1076 			if (inode->i_nlink)
1077 				ext4_orphan_del(NULL, inode);
1078 		}
1079 
1080 		if (ret == -ENOSPC &&
1081 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1082 			goto retry_journal;
1083 		page_cache_release(page);
1084 		return ret;
1085 	}
1086 	*pagep = page;
1087 	return ret;
1088 }
1089 
1090 /* For write_end() in data=journal mode */
1091 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1092 {
1093 	int ret;
1094 	if (!buffer_mapped(bh) || buffer_freed(bh))
1095 		return 0;
1096 	set_buffer_uptodate(bh);
1097 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1098 	clear_buffer_meta(bh);
1099 	clear_buffer_prio(bh);
1100 	return ret;
1101 }
1102 
1103 /*
1104  * We need to pick up the new inode size which generic_commit_write gave us
1105  * `file' can be NULL - eg, when called from page_symlink().
1106  *
1107  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1108  * buffers are managed internally.
1109  */
1110 static int ext4_write_end(struct file *file,
1111 			  struct address_space *mapping,
1112 			  loff_t pos, unsigned len, unsigned copied,
1113 			  struct page *page, void *fsdata)
1114 {
1115 	handle_t *handle = ext4_journal_current_handle();
1116 	struct inode *inode = mapping->host;
1117 	loff_t old_size = inode->i_size;
1118 	int ret = 0, ret2;
1119 	int i_size_changed = 0;
1120 
1121 	trace_ext4_write_end(inode, pos, len, copied);
1122 	if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1123 		ret = ext4_jbd2_file_inode(handle, inode);
1124 		if (ret) {
1125 			unlock_page(page);
1126 			page_cache_release(page);
1127 			goto errout;
1128 		}
1129 	}
1130 
1131 	if (ext4_has_inline_data(inode)) {
1132 		ret = ext4_write_inline_data_end(inode, pos, len,
1133 						 copied, page);
1134 		if (ret < 0)
1135 			goto errout;
1136 		copied = ret;
1137 	} else
1138 		copied = block_write_end(file, mapping, pos,
1139 					 len, copied, page, fsdata);
1140 	/*
1141 	 * it's important to update i_size while still holding page lock:
1142 	 * page writeout could otherwise come in and zero beyond i_size.
1143 	 */
1144 	i_size_changed = ext4_update_inode_size(inode, pos + copied);
1145 	unlock_page(page);
1146 	page_cache_release(page);
1147 
1148 	if (old_size < pos)
1149 		pagecache_isize_extended(inode, old_size, pos);
1150 	/*
1151 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1152 	 * makes the holding time of page lock longer. Second, it forces lock
1153 	 * ordering of page lock and transaction start for journaling
1154 	 * filesystems.
1155 	 */
1156 	if (i_size_changed)
1157 		ext4_mark_inode_dirty(handle, inode);
1158 
1159 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1160 		/* if we have allocated more blocks and copied
1161 		 * less. We will have blocks allocated outside
1162 		 * inode->i_size. So truncate them
1163 		 */
1164 		ext4_orphan_add(handle, inode);
1165 errout:
1166 	ret2 = ext4_journal_stop(handle);
1167 	if (!ret)
1168 		ret = ret2;
1169 
1170 	if (pos + len > inode->i_size) {
1171 		ext4_truncate_failed_write(inode);
1172 		/*
1173 		 * If truncate failed early the inode might still be
1174 		 * on the orphan list; we need to make sure the inode
1175 		 * is removed from the orphan list in that case.
1176 		 */
1177 		if (inode->i_nlink)
1178 			ext4_orphan_del(NULL, inode);
1179 	}
1180 
1181 	return ret ? ret : copied;
1182 }
1183 
1184 /*
1185  * This is a private version of page_zero_new_buffers() which doesn't
1186  * set the buffer to be dirty, since in data=journalled mode we need
1187  * to call ext4_handle_dirty_metadata() instead.
1188  */
1189 static void zero_new_buffers(struct page *page, unsigned from, unsigned to)
1190 {
1191 	unsigned int block_start = 0, block_end;
1192 	struct buffer_head *head, *bh;
1193 
1194 	bh = head = page_buffers(page);
1195 	do {
1196 		block_end = block_start + bh->b_size;
1197 		if (buffer_new(bh)) {
1198 			if (block_end > from && block_start < to) {
1199 				if (!PageUptodate(page)) {
1200 					unsigned start, size;
1201 
1202 					start = max(from, block_start);
1203 					size = min(to, block_end) - start;
1204 
1205 					zero_user(page, start, size);
1206 					set_buffer_uptodate(bh);
1207 				}
1208 				clear_buffer_new(bh);
1209 			}
1210 		}
1211 		block_start = block_end;
1212 		bh = bh->b_this_page;
1213 	} while (bh != head);
1214 }
1215 
1216 static int ext4_journalled_write_end(struct file *file,
1217 				     struct address_space *mapping,
1218 				     loff_t pos, unsigned len, unsigned copied,
1219 				     struct page *page, void *fsdata)
1220 {
1221 	handle_t *handle = ext4_journal_current_handle();
1222 	struct inode *inode = mapping->host;
1223 	loff_t old_size = inode->i_size;
1224 	int ret = 0, ret2;
1225 	int partial = 0;
1226 	unsigned from, to;
1227 	int size_changed = 0;
1228 
1229 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1230 	from = pos & (PAGE_CACHE_SIZE - 1);
1231 	to = from + len;
1232 
1233 	BUG_ON(!ext4_handle_valid(handle));
1234 
1235 	if (ext4_has_inline_data(inode))
1236 		copied = ext4_write_inline_data_end(inode, pos, len,
1237 						    copied, page);
1238 	else {
1239 		if (copied < len) {
1240 			if (!PageUptodate(page))
1241 				copied = 0;
1242 			zero_new_buffers(page, from+copied, to);
1243 		}
1244 
1245 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1246 					     to, &partial, write_end_fn);
1247 		if (!partial)
1248 			SetPageUptodate(page);
1249 	}
1250 	size_changed = ext4_update_inode_size(inode, pos + copied);
1251 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1252 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1253 	unlock_page(page);
1254 	page_cache_release(page);
1255 
1256 	if (old_size < pos)
1257 		pagecache_isize_extended(inode, old_size, pos);
1258 
1259 	if (size_changed) {
1260 		ret2 = ext4_mark_inode_dirty(handle, inode);
1261 		if (!ret)
1262 			ret = ret2;
1263 	}
1264 
1265 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1266 		/* if we have allocated more blocks and copied
1267 		 * less. We will have blocks allocated outside
1268 		 * inode->i_size. So truncate them
1269 		 */
1270 		ext4_orphan_add(handle, inode);
1271 
1272 	ret2 = ext4_journal_stop(handle);
1273 	if (!ret)
1274 		ret = ret2;
1275 	if (pos + len > inode->i_size) {
1276 		ext4_truncate_failed_write(inode);
1277 		/*
1278 		 * If truncate failed early the inode might still be
1279 		 * on the orphan list; we need to make sure the inode
1280 		 * is removed from the orphan list in that case.
1281 		 */
1282 		if (inode->i_nlink)
1283 			ext4_orphan_del(NULL, inode);
1284 	}
1285 
1286 	return ret ? ret : copied;
1287 }
1288 
1289 /*
1290  * Reserve space for a single cluster
1291  */
1292 static int ext4_da_reserve_space(struct inode *inode)
1293 {
1294 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1295 	struct ext4_inode_info *ei = EXT4_I(inode);
1296 	int ret;
1297 
1298 	/*
1299 	 * We will charge metadata quota at writeout time; this saves
1300 	 * us from metadata over-estimation, though we may go over by
1301 	 * a small amount in the end.  Here we just reserve for data.
1302 	 */
1303 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1304 	if (ret)
1305 		return ret;
1306 
1307 	spin_lock(&ei->i_block_reservation_lock);
1308 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1309 		spin_unlock(&ei->i_block_reservation_lock);
1310 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1311 		return -ENOSPC;
1312 	}
1313 	ei->i_reserved_data_blocks++;
1314 	trace_ext4_da_reserve_space(inode);
1315 	spin_unlock(&ei->i_block_reservation_lock);
1316 
1317 	return 0;       /* success */
1318 }
1319 
1320 static void ext4_da_release_space(struct inode *inode, int to_free)
1321 {
1322 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1323 	struct ext4_inode_info *ei = EXT4_I(inode);
1324 
1325 	if (!to_free)
1326 		return;		/* Nothing to release, exit */
1327 
1328 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1329 
1330 	trace_ext4_da_release_space(inode, to_free);
1331 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1332 		/*
1333 		 * if there aren't enough reserved blocks, then the
1334 		 * counter is messed up somewhere.  Since this
1335 		 * function is called from invalidate page, it's
1336 		 * harmless to return without any action.
1337 		 */
1338 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1339 			 "ino %lu, to_free %d with only %d reserved "
1340 			 "data blocks", inode->i_ino, to_free,
1341 			 ei->i_reserved_data_blocks);
1342 		WARN_ON(1);
1343 		to_free = ei->i_reserved_data_blocks;
1344 	}
1345 	ei->i_reserved_data_blocks -= to_free;
1346 
1347 	/* update fs dirty data blocks counter */
1348 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1349 
1350 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1351 
1352 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1353 }
1354 
1355 static void ext4_da_page_release_reservation(struct page *page,
1356 					     unsigned int offset,
1357 					     unsigned int length)
1358 {
1359 	int to_release = 0, contiguous_blks = 0;
1360 	struct buffer_head *head, *bh;
1361 	unsigned int curr_off = 0;
1362 	struct inode *inode = page->mapping->host;
1363 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1364 	unsigned int stop = offset + length;
1365 	int num_clusters;
1366 	ext4_fsblk_t lblk;
1367 
1368 	BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1369 
1370 	head = page_buffers(page);
1371 	bh = head;
1372 	do {
1373 		unsigned int next_off = curr_off + bh->b_size;
1374 
1375 		if (next_off > stop)
1376 			break;
1377 
1378 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1379 			to_release++;
1380 			contiguous_blks++;
1381 			clear_buffer_delay(bh);
1382 		} else if (contiguous_blks) {
1383 			lblk = page->index <<
1384 			       (PAGE_CACHE_SHIFT - inode->i_blkbits);
1385 			lblk += (curr_off >> inode->i_blkbits) -
1386 				contiguous_blks;
1387 			ext4_es_remove_extent(inode, lblk, contiguous_blks);
1388 			contiguous_blks = 0;
1389 		}
1390 		curr_off = next_off;
1391 	} while ((bh = bh->b_this_page) != head);
1392 
1393 	if (contiguous_blks) {
1394 		lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1395 		lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1396 		ext4_es_remove_extent(inode, lblk, contiguous_blks);
1397 	}
1398 
1399 	/* If we have released all the blocks belonging to a cluster, then we
1400 	 * need to release the reserved space for that cluster. */
1401 	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1402 	while (num_clusters > 0) {
1403 		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1404 			((num_clusters - 1) << sbi->s_cluster_bits);
1405 		if (sbi->s_cluster_ratio == 1 ||
1406 		    !ext4_find_delalloc_cluster(inode, lblk))
1407 			ext4_da_release_space(inode, 1);
1408 
1409 		num_clusters--;
1410 	}
1411 }
1412 
1413 /*
1414  * Delayed allocation stuff
1415  */
1416 
1417 struct mpage_da_data {
1418 	struct inode *inode;
1419 	struct writeback_control *wbc;
1420 
1421 	pgoff_t first_page;	/* The first page to write */
1422 	pgoff_t next_page;	/* Current page to examine */
1423 	pgoff_t last_page;	/* Last page to examine */
1424 	/*
1425 	 * Extent to map - this can be after first_page because that can be
1426 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1427 	 * is delalloc or unwritten.
1428 	 */
1429 	struct ext4_map_blocks map;
1430 	struct ext4_io_submit io_submit;	/* IO submission data */
1431 };
1432 
1433 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1434 				       bool invalidate)
1435 {
1436 	int nr_pages, i;
1437 	pgoff_t index, end;
1438 	struct pagevec pvec;
1439 	struct inode *inode = mpd->inode;
1440 	struct address_space *mapping = inode->i_mapping;
1441 
1442 	/* This is necessary when next_page == 0. */
1443 	if (mpd->first_page >= mpd->next_page)
1444 		return;
1445 
1446 	index = mpd->first_page;
1447 	end   = mpd->next_page - 1;
1448 	if (invalidate) {
1449 		ext4_lblk_t start, last;
1450 		start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1451 		last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1452 		ext4_es_remove_extent(inode, start, last - start + 1);
1453 	}
1454 
1455 	pagevec_init(&pvec, 0);
1456 	while (index <= end) {
1457 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1458 		if (nr_pages == 0)
1459 			break;
1460 		for (i = 0; i < nr_pages; i++) {
1461 			struct page *page = pvec.pages[i];
1462 			if (page->index > end)
1463 				break;
1464 			BUG_ON(!PageLocked(page));
1465 			BUG_ON(PageWriteback(page));
1466 			if (invalidate) {
1467 				block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1468 				ClearPageUptodate(page);
1469 			}
1470 			unlock_page(page);
1471 		}
1472 		index = pvec.pages[nr_pages - 1]->index + 1;
1473 		pagevec_release(&pvec);
1474 	}
1475 }
1476 
1477 static void ext4_print_free_blocks(struct inode *inode)
1478 {
1479 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1480 	struct super_block *sb = inode->i_sb;
1481 	struct ext4_inode_info *ei = EXT4_I(inode);
1482 
1483 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1484 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1485 			ext4_count_free_clusters(sb)));
1486 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1487 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1488 	       (long long) EXT4_C2B(EXT4_SB(sb),
1489 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1490 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1491 	       (long long) EXT4_C2B(EXT4_SB(sb),
1492 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1493 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1494 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1495 		 ei->i_reserved_data_blocks);
1496 	return;
1497 }
1498 
1499 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1500 {
1501 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1502 }
1503 
1504 /*
1505  * This function is grabs code from the very beginning of
1506  * ext4_map_blocks, but assumes that the caller is from delayed write
1507  * time. This function looks up the requested blocks and sets the
1508  * buffer delay bit under the protection of i_data_sem.
1509  */
1510 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1511 			      struct ext4_map_blocks *map,
1512 			      struct buffer_head *bh)
1513 {
1514 	struct extent_status es;
1515 	int retval;
1516 	sector_t invalid_block = ~((sector_t) 0xffff);
1517 #ifdef ES_AGGRESSIVE_TEST
1518 	struct ext4_map_blocks orig_map;
1519 
1520 	memcpy(&orig_map, map, sizeof(*map));
1521 #endif
1522 
1523 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1524 		invalid_block = ~0;
1525 
1526 	map->m_flags = 0;
1527 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1528 		  "logical block %lu\n", inode->i_ino, map->m_len,
1529 		  (unsigned long) map->m_lblk);
1530 
1531 	/* Lookup extent status tree firstly */
1532 	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1533 		if (ext4_es_is_hole(&es)) {
1534 			retval = 0;
1535 			down_read(&EXT4_I(inode)->i_data_sem);
1536 			goto add_delayed;
1537 		}
1538 
1539 		/*
1540 		 * Delayed extent could be allocated by fallocate.
1541 		 * So we need to check it.
1542 		 */
1543 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1544 			map_bh(bh, inode->i_sb, invalid_block);
1545 			set_buffer_new(bh);
1546 			set_buffer_delay(bh);
1547 			return 0;
1548 		}
1549 
1550 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1551 		retval = es.es_len - (iblock - es.es_lblk);
1552 		if (retval > map->m_len)
1553 			retval = map->m_len;
1554 		map->m_len = retval;
1555 		if (ext4_es_is_written(&es))
1556 			map->m_flags |= EXT4_MAP_MAPPED;
1557 		else if (ext4_es_is_unwritten(&es))
1558 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1559 		else
1560 			BUG_ON(1);
1561 
1562 #ifdef ES_AGGRESSIVE_TEST
1563 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1564 #endif
1565 		return retval;
1566 	}
1567 
1568 	/*
1569 	 * Try to see if we can get the block without requesting a new
1570 	 * file system block.
1571 	 */
1572 	down_read(&EXT4_I(inode)->i_data_sem);
1573 	if (ext4_has_inline_data(inode))
1574 		retval = 0;
1575 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1576 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1577 	else
1578 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1579 
1580 add_delayed:
1581 	if (retval == 0) {
1582 		int ret;
1583 		/*
1584 		 * XXX: __block_prepare_write() unmaps passed block,
1585 		 * is it OK?
1586 		 */
1587 		/*
1588 		 * If the block was allocated from previously allocated cluster,
1589 		 * then we don't need to reserve it again. However we still need
1590 		 * to reserve metadata for every block we're going to write.
1591 		 */
1592 		if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1593 		    !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1594 			ret = ext4_da_reserve_space(inode);
1595 			if (ret) {
1596 				/* not enough space to reserve */
1597 				retval = ret;
1598 				goto out_unlock;
1599 			}
1600 		}
1601 
1602 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1603 					    ~0, EXTENT_STATUS_DELAYED);
1604 		if (ret) {
1605 			retval = ret;
1606 			goto out_unlock;
1607 		}
1608 
1609 		map_bh(bh, inode->i_sb, invalid_block);
1610 		set_buffer_new(bh);
1611 		set_buffer_delay(bh);
1612 	} else if (retval > 0) {
1613 		int ret;
1614 		unsigned int status;
1615 
1616 		if (unlikely(retval != map->m_len)) {
1617 			ext4_warning(inode->i_sb,
1618 				     "ES len assertion failed for inode "
1619 				     "%lu: retval %d != map->m_len %d",
1620 				     inode->i_ino, retval, map->m_len);
1621 			WARN_ON(1);
1622 		}
1623 
1624 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1625 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1626 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1627 					    map->m_pblk, status);
1628 		if (ret != 0)
1629 			retval = ret;
1630 	}
1631 
1632 out_unlock:
1633 	up_read((&EXT4_I(inode)->i_data_sem));
1634 
1635 	return retval;
1636 }
1637 
1638 /*
1639  * This is a special get_block_t callback which is used by
1640  * ext4_da_write_begin().  It will either return mapped block or
1641  * reserve space for a single block.
1642  *
1643  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1644  * We also have b_blocknr = -1 and b_bdev initialized properly
1645  *
1646  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1647  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1648  * initialized properly.
1649  */
1650 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1651 			   struct buffer_head *bh, int create)
1652 {
1653 	struct ext4_map_blocks map;
1654 	int ret = 0;
1655 
1656 	BUG_ON(create == 0);
1657 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1658 
1659 	map.m_lblk = iblock;
1660 	map.m_len = 1;
1661 
1662 	/*
1663 	 * first, we need to know whether the block is allocated already
1664 	 * preallocated blocks are unmapped but should treated
1665 	 * the same as allocated blocks.
1666 	 */
1667 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1668 	if (ret <= 0)
1669 		return ret;
1670 
1671 	map_bh(bh, inode->i_sb, map.m_pblk);
1672 	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1673 
1674 	if (buffer_unwritten(bh)) {
1675 		/* A delayed write to unwritten bh should be marked
1676 		 * new and mapped.  Mapped ensures that we don't do
1677 		 * get_block multiple times when we write to the same
1678 		 * offset and new ensures that we do proper zero out
1679 		 * for partial write.
1680 		 */
1681 		set_buffer_new(bh);
1682 		set_buffer_mapped(bh);
1683 	}
1684 	return 0;
1685 }
1686 
1687 static int bget_one(handle_t *handle, struct buffer_head *bh)
1688 {
1689 	get_bh(bh);
1690 	return 0;
1691 }
1692 
1693 static int bput_one(handle_t *handle, struct buffer_head *bh)
1694 {
1695 	put_bh(bh);
1696 	return 0;
1697 }
1698 
1699 static int __ext4_journalled_writepage(struct page *page,
1700 				       unsigned int len)
1701 {
1702 	struct address_space *mapping = page->mapping;
1703 	struct inode *inode = mapping->host;
1704 	struct buffer_head *page_bufs = NULL;
1705 	handle_t *handle = NULL;
1706 	int ret = 0, err = 0;
1707 	int inline_data = ext4_has_inline_data(inode);
1708 	struct buffer_head *inode_bh = NULL;
1709 
1710 	ClearPageChecked(page);
1711 
1712 	if (inline_data) {
1713 		BUG_ON(page->index != 0);
1714 		BUG_ON(len > ext4_get_max_inline_size(inode));
1715 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1716 		if (inode_bh == NULL)
1717 			goto out;
1718 	} else {
1719 		page_bufs = page_buffers(page);
1720 		if (!page_bufs) {
1721 			BUG();
1722 			goto out;
1723 		}
1724 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1725 				       NULL, bget_one);
1726 	}
1727 	/*
1728 	 * We need to release the page lock before we start the
1729 	 * journal, so grab a reference so the page won't disappear
1730 	 * out from under us.
1731 	 */
1732 	get_page(page);
1733 	unlock_page(page);
1734 
1735 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1736 				    ext4_writepage_trans_blocks(inode));
1737 	if (IS_ERR(handle)) {
1738 		ret = PTR_ERR(handle);
1739 		put_page(page);
1740 		goto out_no_pagelock;
1741 	}
1742 	BUG_ON(!ext4_handle_valid(handle));
1743 
1744 	lock_page(page);
1745 	put_page(page);
1746 	if (page->mapping != mapping) {
1747 		/* The page got truncated from under us */
1748 		ext4_journal_stop(handle);
1749 		ret = 0;
1750 		goto out;
1751 	}
1752 
1753 	if (inline_data) {
1754 		BUFFER_TRACE(inode_bh, "get write access");
1755 		ret = ext4_journal_get_write_access(handle, inode_bh);
1756 
1757 		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1758 
1759 	} else {
1760 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1761 					     do_journal_get_write_access);
1762 
1763 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1764 					     write_end_fn);
1765 	}
1766 	if (ret == 0)
1767 		ret = err;
1768 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1769 	err = ext4_journal_stop(handle);
1770 	if (!ret)
1771 		ret = err;
1772 
1773 	if (!ext4_has_inline_data(inode))
1774 		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1775 				       NULL, bput_one);
1776 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1777 out:
1778 	unlock_page(page);
1779 out_no_pagelock:
1780 	brelse(inode_bh);
1781 	return ret;
1782 }
1783 
1784 /*
1785  * Note that we don't need to start a transaction unless we're journaling data
1786  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1787  * need to file the inode to the transaction's list in ordered mode because if
1788  * we are writing back data added by write(), the inode is already there and if
1789  * we are writing back data modified via mmap(), no one guarantees in which
1790  * transaction the data will hit the disk. In case we are journaling data, we
1791  * cannot start transaction directly because transaction start ranks above page
1792  * lock so we have to do some magic.
1793  *
1794  * This function can get called via...
1795  *   - ext4_writepages after taking page lock (have journal handle)
1796  *   - journal_submit_inode_data_buffers (no journal handle)
1797  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1798  *   - grab_page_cache when doing write_begin (have journal handle)
1799  *
1800  * We don't do any block allocation in this function. If we have page with
1801  * multiple blocks we need to write those buffer_heads that are mapped. This
1802  * is important for mmaped based write. So if we do with blocksize 1K
1803  * truncate(f, 1024);
1804  * a = mmap(f, 0, 4096);
1805  * a[0] = 'a';
1806  * truncate(f, 4096);
1807  * we have in the page first buffer_head mapped via page_mkwrite call back
1808  * but other buffer_heads would be unmapped but dirty (dirty done via the
1809  * do_wp_page). So writepage should write the first block. If we modify
1810  * the mmap area beyond 1024 we will again get a page_fault and the
1811  * page_mkwrite callback will do the block allocation and mark the
1812  * buffer_heads mapped.
1813  *
1814  * We redirty the page if we have any buffer_heads that is either delay or
1815  * unwritten in the page.
1816  *
1817  * We can get recursively called as show below.
1818  *
1819  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1820  *		ext4_writepage()
1821  *
1822  * But since we don't do any block allocation we should not deadlock.
1823  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1824  */
1825 static int ext4_writepage(struct page *page,
1826 			  struct writeback_control *wbc)
1827 {
1828 	int ret = 0;
1829 	loff_t size;
1830 	unsigned int len;
1831 	struct buffer_head *page_bufs = NULL;
1832 	struct inode *inode = page->mapping->host;
1833 	struct ext4_io_submit io_submit;
1834 	bool keep_towrite = false;
1835 
1836 	trace_ext4_writepage(page);
1837 	size = i_size_read(inode);
1838 	if (page->index == size >> PAGE_CACHE_SHIFT)
1839 		len = size & ~PAGE_CACHE_MASK;
1840 	else
1841 		len = PAGE_CACHE_SIZE;
1842 
1843 	page_bufs = page_buffers(page);
1844 	/*
1845 	 * We cannot do block allocation or other extent handling in this
1846 	 * function. If there are buffers needing that, we have to redirty
1847 	 * the page. But we may reach here when we do a journal commit via
1848 	 * journal_submit_inode_data_buffers() and in that case we must write
1849 	 * allocated buffers to achieve data=ordered mode guarantees.
1850 	 *
1851 	 * Also, if there is only one buffer per page (the fs block
1852 	 * size == the page size), if one buffer needs block
1853 	 * allocation or needs to modify the extent tree to clear the
1854 	 * unwritten flag, we know that the page can't be written at
1855 	 * all, so we might as well refuse the write immediately.
1856 	 * Unfortunately if the block size != page size, we can't as
1857 	 * easily detect this case using ext4_walk_page_buffers(), but
1858 	 * for the extremely common case, this is an optimization that
1859 	 * skips a useless round trip through ext4_bio_write_page().
1860 	 */
1861 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1862 				   ext4_bh_delay_or_unwritten)) {
1863 		redirty_page_for_writepage(wbc, page);
1864 		if ((current->flags & PF_MEMALLOC) ||
1865 		    (inode->i_sb->s_blocksize == PAGE_CACHE_SIZE)) {
1866 			/*
1867 			 * For memory cleaning there's no point in writing only
1868 			 * some buffers. So just bail out. Warn if we came here
1869 			 * from direct reclaim.
1870 			 */
1871 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1872 							== PF_MEMALLOC);
1873 			unlock_page(page);
1874 			return 0;
1875 		}
1876 		keep_towrite = true;
1877 	}
1878 
1879 	if (PageChecked(page) && ext4_should_journal_data(inode))
1880 		/*
1881 		 * It's mmapped pagecache.  Add buffers and journal it.  There
1882 		 * doesn't seem much point in redirtying the page here.
1883 		 */
1884 		return __ext4_journalled_writepage(page, len);
1885 
1886 	ext4_io_submit_init(&io_submit, wbc);
1887 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1888 	if (!io_submit.io_end) {
1889 		redirty_page_for_writepage(wbc, page);
1890 		unlock_page(page);
1891 		return -ENOMEM;
1892 	}
1893 	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1894 	ext4_io_submit(&io_submit);
1895 	/* Drop io_end reference we got from init */
1896 	ext4_put_io_end_defer(io_submit.io_end);
1897 	return ret;
1898 }
1899 
1900 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1901 {
1902 	int len;
1903 	loff_t size = i_size_read(mpd->inode);
1904 	int err;
1905 
1906 	BUG_ON(page->index != mpd->first_page);
1907 	if (page->index == size >> PAGE_CACHE_SHIFT)
1908 		len = size & ~PAGE_CACHE_MASK;
1909 	else
1910 		len = PAGE_CACHE_SIZE;
1911 	clear_page_dirty_for_io(page);
1912 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1913 	if (!err)
1914 		mpd->wbc->nr_to_write--;
1915 	mpd->first_page++;
1916 
1917 	return err;
1918 }
1919 
1920 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1921 
1922 /*
1923  * mballoc gives us at most this number of blocks...
1924  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1925  * The rest of mballoc seems to handle chunks up to full group size.
1926  */
1927 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1928 
1929 /*
1930  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1931  *
1932  * @mpd - extent of blocks
1933  * @lblk - logical number of the block in the file
1934  * @bh - buffer head we want to add to the extent
1935  *
1936  * The function is used to collect contig. blocks in the same state. If the
1937  * buffer doesn't require mapping for writeback and we haven't started the
1938  * extent of buffers to map yet, the function returns 'true' immediately - the
1939  * caller can write the buffer right away. Otherwise the function returns true
1940  * if the block has been added to the extent, false if the block couldn't be
1941  * added.
1942  */
1943 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1944 				   struct buffer_head *bh)
1945 {
1946 	struct ext4_map_blocks *map = &mpd->map;
1947 
1948 	/* Buffer that doesn't need mapping for writeback? */
1949 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1950 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1951 		/* So far no extent to map => we write the buffer right away */
1952 		if (map->m_len == 0)
1953 			return true;
1954 		return false;
1955 	}
1956 
1957 	/* First block in the extent? */
1958 	if (map->m_len == 0) {
1959 		map->m_lblk = lblk;
1960 		map->m_len = 1;
1961 		map->m_flags = bh->b_state & BH_FLAGS;
1962 		return true;
1963 	}
1964 
1965 	/* Don't go larger than mballoc is willing to allocate */
1966 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1967 		return false;
1968 
1969 	/* Can we merge the block to our big extent? */
1970 	if (lblk == map->m_lblk + map->m_len &&
1971 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
1972 		map->m_len++;
1973 		return true;
1974 	}
1975 	return false;
1976 }
1977 
1978 /*
1979  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1980  *
1981  * @mpd - extent of blocks for mapping
1982  * @head - the first buffer in the page
1983  * @bh - buffer we should start processing from
1984  * @lblk - logical number of the block in the file corresponding to @bh
1985  *
1986  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1987  * the page for IO if all buffers in this page were mapped and there's no
1988  * accumulated extent of buffers to map or add buffers in the page to the
1989  * extent of buffers to map. The function returns 1 if the caller can continue
1990  * by processing the next page, 0 if it should stop adding buffers to the
1991  * extent to map because we cannot extend it anymore. It can also return value
1992  * < 0 in case of error during IO submission.
1993  */
1994 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1995 				   struct buffer_head *head,
1996 				   struct buffer_head *bh,
1997 				   ext4_lblk_t lblk)
1998 {
1999 	struct inode *inode = mpd->inode;
2000 	int err;
2001 	ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2002 							>> inode->i_blkbits;
2003 
2004 	do {
2005 		BUG_ON(buffer_locked(bh));
2006 
2007 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2008 			/* Found extent to map? */
2009 			if (mpd->map.m_len)
2010 				return 0;
2011 			/* Everything mapped so far and we hit EOF */
2012 			break;
2013 		}
2014 	} while (lblk++, (bh = bh->b_this_page) != head);
2015 	/* So far everything mapped? Submit the page for IO. */
2016 	if (mpd->map.m_len == 0) {
2017 		err = mpage_submit_page(mpd, head->b_page);
2018 		if (err < 0)
2019 			return err;
2020 	}
2021 	return lblk < blocks;
2022 }
2023 
2024 /*
2025  * mpage_map_buffers - update buffers corresponding to changed extent and
2026  *		       submit fully mapped pages for IO
2027  *
2028  * @mpd - description of extent to map, on return next extent to map
2029  *
2030  * Scan buffers corresponding to changed extent (we expect corresponding pages
2031  * to be already locked) and update buffer state according to new extent state.
2032  * We map delalloc buffers to their physical location, clear unwritten bits,
2033  * and mark buffers as uninit when we perform writes to unwritten extents
2034  * and do extent conversion after IO is finished. If the last page is not fully
2035  * mapped, we update @map to the next extent in the last page that needs
2036  * mapping. Otherwise we submit the page for IO.
2037  */
2038 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2039 {
2040 	struct pagevec pvec;
2041 	int nr_pages, i;
2042 	struct inode *inode = mpd->inode;
2043 	struct buffer_head *head, *bh;
2044 	int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2045 	pgoff_t start, end;
2046 	ext4_lblk_t lblk;
2047 	sector_t pblock;
2048 	int err;
2049 
2050 	start = mpd->map.m_lblk >> bpp_bits;
2051 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2052 	lblk = start << bpp_bits;
2053 	pblock = mpd->map.m_pblk;
2054 
2055 	pagevec_init(&pvec, 0);
2056 	while (start <= end) {
2057 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2058 					  PAGEVEC_SIZE);
2059 		if (nr_pages == 0)
2060 			break;
2061 		for (i = 0; i < nr_pages; i++) {
2062 			struct page *page = pvec.pages[i];
2063 
2064 			if (page->index > end)
2065 				break;
2066 			/* Up to 'end' pages must be contiguous */
2067 			BUG_ON(page->index != start);
2068 			bh = head = page_buffers(page);
2069 			do {
2070 				if (lblk < mpd->map.m_lblk)
2071 					continue;
2072 				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2073 					/*
2074 					 * Buffer after end of mapped extent.
2075 					 * Find next buffer in the page to map.
2076 					 */
2077 					mpd->map.m_len = 0;
2078 					mpd->map.m_flags = 0;
2079 					/*
2080 					 * FIXME: If dioread_nolock supports
2081 					 * blocksize < pagesize, we need to make
2082 					 * sure we add size mapped so far to
2083 					 * io_end->size as the following call
2084 					 * can submit the page for IO.
2085 					 */
2086 					err = mpage_process_page_bufs(mpd, head,
2087 								      bh, lblk);
2088 					pagevec_release(&pvec);
2089 					if (err > 0)
2090 						err = 0;
2091 					return err;
2092 				}
2093 				if (buffer_delay(bh)) {
2094 					clear_buffer_delay(bh);
2095 					bh->b_blocknr = pblock++;
2096 				}
2097 				clear_buffer_unwritten(bh);
2098 			} while (lblk++, (bh = bh->b_this_page) != head);
2099 
2100 			/*
2101 			 * FIXME: This is going to break if dioread_nolock
2102 			 * supports blocksize < pagesize as we will try to
2103 			 * convert potentially unmapped parts of inode.
2104 			 */
2105 			mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2106 			/* Page fully mapped - let IO run! */
2107 			err = mpage_submit_page(mpd, page);
2108 			if (err < 0) {
2109 				pagevec_release(&pvec);
2110 				return err;
2111 			}
2112 			start++;
2113 		}
2114 		pagevec_release(&pvec);
2115 	}
2116 	/* Extent fully mapped and matches with page boundary. We are done. */
2117 	mpd->map.m_len = 0;
2118 	mpd->map.m_flags = 0;
2119 	return 0;
2120 }
2121 
2122 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2123 {
2124 	struct inode *inode = mpd->inode;
2125 	struct ext4_map_blocks *map = &mpd->map;
2126 	int get_blocks_flags;
2127 	int err, dioread_nolock;
2128 
2129 	trace_ext4_da_write_pages_extent(inode, map);
2130 	/*
2131 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2132 	 * to convert an unwritten extent to be initialized (in the case
2133 	 * where we have written into one or more preallocated blocks).  It is
2134 	 * possible that we're going to need more metadata blocks than
2135 	 * previously reserved. However we must not fail because we're in
2136 	 * writeback and there is nothing we can do about it so it might result
2137 	 * in data loss.  So use reserved blocks to allocate metadata if
2138 	 * possible.
2139 	 *
2140 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2141 	 * the blocks in question are delalloc blocks.  This indicates
2142 	 * that the blocks and quotas has already been checked when
2143 	 * the data was copied into the page cache.
2144 	 */
2145 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2146 			   EXT4_GET_BLOCKS_METADATA_NOFAIL;
2147 	dioread_nolock = ext4_should_dioread_nolock(inode);
2148 	if (dioread_nolock)
2149 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2150 	if (map->m_flags & (1 << BH_Delay))
2151 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2152 
2153 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2154 	if (err < 0)
2155 		return err;
2156 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2157 		if (!mpd->io_submit.io_end->handle &&
2158 		    ext4_handle_valid(handle)) {
2159 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2160 			handle->h_rsv_handle = NULL;
2161 		}
2162 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2163 	}
2164 
2165 	BUG_ON(map->m_len == 0);
2166 	if (map->m_flags & EXT4_MAP_NEW) {
2167 		struct block_device *bdev = inode->i_sb->s_bdev;
2168 		int i;
2169 
2170 		for (i = 0; i < map->m_len; i++)
2171 			unmap_underlying_metadata(bdev, map->m_pblk + i);
2172 	}
2173 	return 0;
2174 }
2175 
2176 /*
2177  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2178  *				 mpd->len and submit pages underlying it for IO
2179  *
2180  * @handle - handle for journal operations
2181  * @mpd - extent to map
2182  * @give_up_on_write - we set this to true iff there is a fatal error and there
2183  *                     is no hope of writing the data. The caller should discard
2184  *                     dirty pages to avoid infinite loops.
2185  *
2186  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2187  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2188  * them to initialized or split the described range from larger unwritten
2189  * extent. Note that we need not map all the described range since allocation
2190  * can return less blocks or the range is covered by more unwritten extents. We
2191  * cannot map more because we are limited by reserved transaction credits. On
2192  * the other hand we always make sure that the last touched page is fully
2193  * mapped so that it can be written out (and thus forward progress is
2194  * guaranteed). After mapping we submit all mapped pages for IO.
2195  */
2196 static int mpage_map_and_submit_extent(handle_t *handle,
2197 				       struct mpage_da_data *mpd,
2198 				       bool *give_up_on_write)
2199 {
2200 	struct inode *inode = mpd->inode;
2201 	struct ext4_map_blocks *map = &mpd->map;
2202 	int err;
2203 	loff_t disksize;
2204 	int progress = 0;
2205 
2206 	mpd->io_submit.io_end->offset =
2207 				((loff_t)map->m_lblk) << inode->i_blkbits;
2208 	do {
2209 		err = mpage_map_one_extent(handle, mpd);
2210 		if (err < 0) {
2211 			struct super_block *sb = inode->i_sb;
2212 
2213 			if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2214 				goto invalidate_dirty_pages;
2215 			/*
2216 			 * Let the uper layers retry transient errors.
2217 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2218 			 * is non-zero, a commit should free up blocks.
2219 			 */
2220 			if ((err == -ENOMEM) ||
2221 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2222 				if (progress)
2223 					goto update_disksize;
2224 				return err;
2225 			}
2226 			ext4_msg(sb, KERN_CRIT,
2227 				 "Delayed block allocation failed for "
2228 				 "inode %lu at logical offset %llu with"
2229 				 " max blocks %u with error %d",
2230 				 inode->i_ino,
2231 				 (unsigned long long)map->m_lblk,
2232 				 (unsigned)map->m_len, -err);
2233 			ext4_msg(sb, KERN_CRIT,
2234 				 "This should not happen!! Data will "
2235 				 "be lost\n");
2236 			if (err == -ENOSPC)
2237 				ext4_print_free_blocks(inode);
2238 		invalidate_dirty_pages:
2239 			*give_up_on_write = true;
2240 			return err;
2241 		}
2242 		progress = 1;
2243 		/*
2244 		 * Update buffer state, submit mapped pages, and get us new
2245 		 * extent to map
2246 		 */
2247 		err = mpage_map_and_submit_buffers(mpd);
2248 		if (err < 0)
2249 			goto update_disksize;
2250 	} while (map->m_len);
2251 
2252 update_disksize:
2253 	/*
2254 	 * Update on-disk size after IO is submitted.  Races with
2255 	 * truncate are avoided by checking i_size under i_data_sem.
2256 	 */
2257 	disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2258 	if (disksize > EXT4_I(inode)->i_disksize) {
2259 		int err2;
2260 		loff_t i_size;
2261 
2262 		down_write(&EXT4_I(inode)->i_data_sem);
2263 		i_size = i_size_read(inode);
2264 		if (disksize > i_size)
2265 			disksize = i_size;
2266 		if (disksize > EXT4_I(inode)->i_disksize)
2267 			EXT4_I(inode)->i_disksize = disksize;
2268 		err2 = ext4_mark_inode_dirty(handle, inode);
2269 		up_write(&EXT4_I(inode)->i_data_sem);
2270 		if (err2)
2271 			ext4_error(inode->i_sb,
2272 				   "Failed to mark inode %lu dirty",
2273 				   inode->i_ino);
2274 		if (!err)
2275 			err = err2;
2276 	}
2277 	return err;
2278 }
2279 
2280 /*
2281  * Calculate the total number of credits to reserve for one writepages
2282  * iteration. This is called from ext4_writepages(). We map an extent of
2283  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2284  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2285  * bpp - 1 blocks in bpp different extents.
2286  */
2287 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2288 {
2289 	int bpp = ext4_journal_blocks_per_page(inode);
2290 
2291 	return ext4_meta_trans_blocks(inode,
2292 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2293 }
2294 
2295 /*
2296  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2297  * 				 and underlying extent to map
2298  *
2299  * @mpd - where to look for pages
2300  *
2301  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2302  * IO immediately. When we find a page which isn't mapped we start accumulating
2303  * extent of buffers underlying these pages that needs mapping (formed by
2304  * either delayed or unwritten buffers). We also lock the pages containing
2305  * these buffers. The extent found is returned in @mpd structure (starting at
2306  * mpd->lblk with length mpd->len blocks).
2307  *
2308  * Note that this function can attach bios to one io_end structure which are
2309  * neither logically nor physically contiguous. Although it may seem as an
2310  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2311  * case as we need to track IO to all buffers underlying a page in one io_end.
2312  */
2313 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2314 {
2315 	struct address_space *mapping = mpd->inode->i_mapping;
2316 	struct pagevec pvec;
2317 	unsigned int nr_pages;
2318 	long left = mpd->wbc->nr_to_write;
2319 	pgoff_t index = mpd->first_page;
2320 	pgoff_t end = mpd->last_page;
2321 	int tag;
2322 	int i, err = 0;
2323 	int blkbits = mpd->inode->i_blkbits;
2324 	ext4_lblk_t lblk;
2325 	struct buffer_head *head;
2326 
2327 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2328 		tag = PAGECACHE_TAG_TOWRITE;
2329 	else
2330 		tag = PAGECACHE_TAG_DIRTY;
2331 
2332 	pagevec_init(&pvec, 0);
2333 	mpd->map.m_len = 0;
2334 	mpd->next_page = index;
2335 	while (index <= end) {
2336 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2337 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2338 		if (nr_pages == 0)
2339 			goto out;
2340 
2341 		for (i = 0; i < nr_pages; i++) {
2342 			struct page *page = pvec.pages[i];
2343 
2344 			/*
2345 			 * At this point, the page may be truncated or
2346 			 * invalidated (changing page->mapping to NULL), or
2347 			 * even swizzled back from swapper_space to tmpfs file
2348 			 * mapping. However, page->index will not change
2349 			 * because we have a reference on the page.
2350 			 */
2351 			if (page->index > end)
2352 				goto out;
2353 
2354 			/*
2355 			 * Accumulated enough dirty pages? This doesn't apply
2356 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2357 			 * keep going because someone may be concurrently
2358 			 * dirtying pages, and we might have synced a lot of
2359 			 * newly appeared dirty pages, but have not synced all
2360 			 * of the old dirty pages.
2361 			 */
2362 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2363 				goto out;
2364 
2365 			/* If we can't merge this page, we are done. */
2366 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2367 				goto out;
2368 
2369 			lock_page(page);
2370 			/*
2371 			 * If the page is no longer dirty, or its mapping no
2372 			 * longer corresponds to inode we are writing (which
2373 			 * means it has been truncated or invalidated), or the
2374 			 * page is already under writeback and we are not doing
2375 			 * a data integrity writeback, skip the page
2376 			 */
2377 			if (!PageDirty(page) ||
2378 			    (PageWriteback(page) &&
2379 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2380 			    unlikely(page->mapping != mapping)) {
2381 				unlock_page(page);
2382 				continue;
2383 			}
2384 
2385 			wait_on_page_writeback(page);
2386 			BUG_ON(PageWriteback(page));
2387 
2388 			if (mpd->map.m_len == 0)
2389 				mpd->first_page = page->index;
2390 			mpd->next_page = page->index + 1;
2391 			/* Add all dirty buffers to mpd */
2392 			lblk = ((ext4_lblk_t)page->index) <<
2393 				(PAGE_CACHE_SHIFT - blkbits);
2394 			head = page_buffers(page);
2395 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2396 			if (err <= 0)
2397 				goto out;
2398 			err = 0;
2399 			left--;
2400 		}
2401 		pagevec_release(&pvec);
2402 		cond_resched();
2403 	}
2404 	return 0;
2405 out:
2406 	pagevec_release(&pvec);
2407 	return err;
2408 }
2409 
2410 static int __writepage(struct page *page, struct writeback_control *wbc,
2411 		       void *data)
2412 {
2413 	struct address_space *mapping = data;
2414 	int ret = ext4_writepage(page, wbc);
2415 	mapping_set_error(mapping, ret);
2416 	return ret;
2417 }
2418 
2419 static int ext4_writepages(struct address_space *mapping,
2420 			   struct writeback_control *wbc)
2421 {
2422 	pgoff_t	writeback_index = 0;
2423 	long nr_to_write = wbc->nr_to_write;
2424 	int range_whole = 0;
2425 	int cycled = 1;
2426 	handle_t *handle = NULL;
2427 	struct mpage_da_data mpd;
2428 	struct inode *inode = mapping->host;
2429 	int needed_blocks, rsv_blocks = 0, ret = 0;
2430 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2431 	bool done;
2432 	struct blk_plug plug;
2433 	bool give_up_on_write = false;
2434 
2435 	trace_ext4_writepages(inode, wbc);
2436 
2437 	/*
2438 	 * No pages to write? This is mainly a kludge to avoid starting
2439 	 * a transaction for special inodes like journal inode on last iput()
2440 	 * because that could violate lock ordering on umount
2441 	 */
2442 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2443 		goto out_writepages;
2444 
2445 	if (ext4_should_journal_data(inode)) {
2446 		struct blk_plug plug;
2447 
2448 		blk_start_plug(&plug);
2449 		ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2450 		blk_finish_plug(&plug);
2451 		goto out_writepages;
2452 	}
2453 
2454 	/*
2455 	 * If the filesystem has aborted, it is read-only, so return
2456 	 * right away instead of dumping stack traces later on that
2457 	 * will obscure the real source of the problem.  We test
2458 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2459 	 * the latter could be true if the filesystem is mounted
2460 	 * read-only, and in that case, ext4_writepages should
2461 	 * *never* be called, so if that ever happens, we would want
2462 	 * the stack trace.
2463 	 */
2464 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2465 		ret = -EROFS;
2466 		goto out_writepages;
2467 	}
2468 
2469 	if (ext4_should_dioread_nolock(inode)) {
2470 		/*
2471 		 * We may need to convert up to one extent per block in
2472 		 * the page and we may dirty the inode.
2473 		 */
2474 		rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2475 	}
2476 
2477 	/*
2478 	 * If we have inline data and arrive here, it means that
2479 	 * we will soon create the block for the 1st page, so
2480 	 * we'd better clear the inline data here.
2481 	 */
2482 	if (ext4_has_inline_data(inode)) {
2483 		/* Just inode will be modified... */
2484 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2485 		if (IS_ERR(handle)) {
2486 			ret = PTR_ERR(handle);
2487 			goto out_writepages;
2488 		}
2489 		BUG_ON(ext4_test_inode_state(inode,
2490 				EXT4_STATE_MAY_INLINE_DATA));
2491 		ext4_destroy_inline_data(handle, inode);
2492 		ext4_journal_stop(handle);
2493 	}
2494 
2495 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2496 		range_whole = 1;
2497 
2498 	if (wbc->range_cyclic) {
2499 		writeback_index = mapping->writeback_index;
2500 		if (writeback_index)
2501 			cycled = 0;
2502 		mpd.first_page = writeback_index;
2503 		mpd.last_page = -1;
2504 	} else {
2505 		mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2506 		mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2507 	}
2508 
2509 	mpd.inode = inode;
2510 	mpd.wbc = wbc;
2511 	ext4_io_submit_init(&mpd.io_submit, wbc);
2512 retry:
2513 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2514 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2515 	done = false;
2516 	blk_start_plug(&plug);
2517 	while (!done && mpd.first_page <= mpd.last_page) {
2518 		/* For each extent of pages we use new io_end */
2519 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2520 		if (!mpd.io_submit.io_end) {
2521 			ret = -ENOMEM;
2522 			break;
2523 		}
2524 
2525 		/*
2526 		 * We have two constraints: We find one extent to map and we
2527 		 * must always write out whole page (makes a difference when
2528 		 * blocksize < pagesize) so that we don't block on IO when we
2529 		 * try to write out the rest of the page. Journalled mode is
2530 		 * not supported by delalloc.
2531 		 */
2532 		BUG_ON(ext4_should_journal_data(inode));
2533 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2534 
2535 		/* start a new transaction */
2536 		handle = ext4_journal_start_with_reserve(inode,
2537 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2538 		if (IS_ERR(handle)) {
2539 			ret = PTR_ERR(handle);
2540 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2541 			       "%ld pages, ino %lu; err %d", __func__,
2542 				wbc->nr_to_write, inode->i_ino, ret);
2543 			/* Release allocated io_end */
2544 			ext4_put_io_end(mpd.io_submit.io_end);
2545 			break;
2546 		}
2547 
2548 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2549 		ret = mpage_prepare_extent_to_map(&mpd);
2550 		if (!ret) {
2551 			if (mpd.map.m_len)
2552 				ret = mpage_map_and_submit_extent(handle, &mpd,
2553 					&give_up_on_write);
2554 			else {
2555 				/*
2556 				 * We scanned the whole range (or exhausted
2557 				 * nr_to_write), submitted what was mapped and
2558 				 * didn't find anything needing mapping. We are
2559 				 * done.
2560 				 */
2561 				done = true;
2562 			}
2563 		}
2564 		ext4_journal_stop(handle);
2565 		/* Submit prepared bio */
2566 		ext4_io_submit(&mpd.io_submit);
2567 		/* Unlock pages we didn't use */
2568 		mpage_release_unused_pages(&mpd, give_up_on_write);
2569 		/* Drop our io_end reference we got from init */
2570 		ext4_put_io_end(mpd.io_submit.io_end);
2571 
2572 		if (ret == -ENOSPC && sbi->s_journal) {
2573 			/*
2574 			 * Commit the transaction which would
2575 			 * free blocks released in the transaction
2576 			 * and try again
2577 			 */
2578 			jbd2_journal_force_commit_nested(sbi->s_journal);
2579 			ret = 0;
2580 			continue;
2581 		}
2582 		/* Fatal error - ENOMEM, EIO... */
2583 		if (ret)
2584 			break;
2585 	}
2586 	blk_finish_plug(&plug);
2587 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2588 		cycled = 1;
2589 		mpd.last_page = writeback_index - 1;
2590 		mpd.first_page = 0;
2591 		goto retry;
2592 	}
2593 
2594 	/* Update index */
2595 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2596 		/*
2597 		 * Set the writeback_index so that range_cyclic
2598 		 * mode will write it back later
2599 		 */
2600 		mapping->writeback_index = mpd.first_page;
2601 
2602 out_writepages:
2603 	trace_ext4_writepages_result(inode, wbc, ret,
2604 				     nr_to_write - wbc->nr_to_write);
2605 	return ret;
2606 }
2607 
2608 static int ext4_nonda_switch(struct super_block *sb)
2609 {
2610 	s64 free_clusters, dirty_clusters;
2611 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2612 
2613 	/*
2614 	 * switch to non delalloc mode if we are running low
2615 	 * on free block. The free block accounting via percpu
2616 	 * counters can get slightly wrong with percpu_counter_batch getting
2617 	 * accumulated on each CPU without updating global counters
2618 	 * Delalloc need an accurate free block accounting. So switch
2619 	 * to non delalloc when we are near to error range.
2620 	 */
2621 	free_clusters =
2622 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2623 	dirty_clusters =
2624 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2625 	/*
2626 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2627 	 */
2628 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2629 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2630 
2631 	if (2 * free_clusters < 3 * dirty_clusters ||
2632 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2633 		/*
2634 		 * free block count is less than 150% of dirty blocks
2635 		 * or free blocks is less than watermark
2636 		 */
2637 		return 1;
2638 	}
2639 	return 0;
2640 }
2641 
2642 /* We always reserve for an inode update; the superblock could be there too */
2643 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2644 {
2645 	if (likely(ext4_has_feature_large_file(inode->i_sb)))
2646 		return 1;
2647 
2648 	if (pos + len <= 0x7fffffffULL)
2649 		return 1;
2650 
2651 	/* We might need to update the superblock to set LARGE_FILE */
2652 	return 2;
2653 }
2654 
2655 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2656 			       loff_t pos, unsigned len, unsigned flags,
2657 			       struct page **pagep, void **fsdata)
2658 {
2659 	int ret, retries = 0;
2660 	struct page *page;
2661 	pgoff_t index;
2662 	struct inode *inode = mapping->host;
2663 	handle_t *handle;
2664 
2665 	index = pos >> PAGE_CACHE_SHIFT;
2666 
2667 	if (ext4_nonda_switch(inode->i_sb)) {
2668 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2669 		return ext4_write_begin(file, mapping, pos,
2670 					len, flags, pagep, fsdata);
2671 	}
2672 	*fsdata = (void *)0;
2673 	trace_ext4_da_write_begin(inode, pos, len, flags);
2674 
2675 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2676 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2677 						      pos, len, flags,
2678 						      pagep, fsdata);
2679 		if (ret < 0)
2680 			return ret;
2681 		if (ret == 1)
2682 			return 0;
2683 	}
2684 
2685 	/*
2686 	 * grab_cache_page_write_begin() can take a long time if the
2687 	 * system is thrashing due to memory pressure, or if the page
2688 	 * is being written back.  So grab it first before we start
2689 	 * the transaction handle.  This also allows us to allocate
2690 	 * the page (if needed) without using GFP_NOFS.
2691 	 */
2692 retry_grab:
2693 	page = grab_cache_page_write_begin(mapping, index, flags);
2694 	if (!page)
2695 		return -ENOMEM;
2696 	unlock_page(page);
2697 
2698 	/*
2699 	 * With delayed allocation, we don't log the i_disksize update
2700 	 * if there is delayed block allocation. But we still need
2701 	 * to journalling the i_disksize update if writes to the end
2702 	 * of file which has an already mapped buffer.
2703 	 */
2704 retry_journal:
2705 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2706 				ext4_da_write_credits(inode, pos, len));
2707 	if (IS_ERR(handle)) {
2708 		page_cache_release(page);
2709 		return PTR_ERR(handle);
2710 	}
2711 
2712 	lock_page(page);
2713 	if (page->mapping != mapping) {
2714 		/* The page got truncated from under us */
2715 		unlock_page(page);
2716 		page_cache_release(page);
2717 		ext4_journal_stop(handle);
2718 		goto retry_grab;
2719 	}
2720 	/* In case writeback began while the page was unlocked */
2721 	wait_for_stable_page(page);
2722 
2723 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2724 	ret = ext4_block_write_begin(page, pos, len,
2725 				     ext4_da_get_block_prep);
2726 #else
2727 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2728 #endif
2729 	if (ret < 0) {
2730 		unlock_page(page);
2731 		ext4_journal_stop(handle);
2732 		/*
2733 		 * block_write_begin may have instantiated a few blocks
2734 		 * outside i_size.  Trim these off again. Don't need
2735 		 * i_size_read because we hold i_mutex.
2736 		 */
2737 		if (pos + len > inode->i_size)
2738 			ext4_truncate_failed_write(inode);
2739 
2740 		if (ret == -ENOSPC &&
2741 		    ext4_should_retry_alloc(inode->i_sb, &retries))
2742 			goto retry_journal;
2743 
2744 		page_cache_release(page);
2745 		return ret;
2746 	}
2747 
2748 	*pagep = page;
2749 	return ret;
2750 }
2751 
2752 /*
2753  * Check if we should update i_disksize
2754  * when write to the end of file but not require block allocation
2755  */
2756 static int ext4_da_should_update_i_disksize(struct page *page,
2757 					    unsigned long offset)
2758 {
2759 	struct buffer_head *bh;
2760 	struct inode *inode = page->mapping->host;
2761 	unsigned int idx;
2762 	int i;
2763 
2764 	bh = page_buffers(page);
2765 	idx = offset >> inode->i_blkbits;
2766 
2767 	for (i = 0; i < idx; i++)
2768 		bh = bh->b_this_page;
2769 
2770 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2771 		return 0;
2772 	return 1;
2773 }
2774 
2775 static int ext4_da_write_end(struct file *file,
2776 			     struct address_space *mapping,
2777 			     loff_t pos, unsigned len, unsigned copied,
2778 			     struct page *page, void *fsdata)
2779 {
2780 	struct inode *inode = mapping->host;
2781 	int ret = 0, ret2;
2782 	handle_t *handle = ext4_journal_current_handle();
2783 	loff_t new_i_size;
2784 	unsigned long start, end;
2785 	int write_mode = (int)(unsigned long)fsdata;
2786 
2787 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
2788 		return ext4_write_end(file, mapping, pos,
2789 				      len, copied, page, fsdata);
2790 
2791 	trace_ext4_da_write_end(inode, pos, len, copied);
2792 	start = pos & (PAGE_CACHE_SIZE - 1);
2793 	end = start + copied - 1;
2794 
2795 	/*
2796 	 * generic_write_end() will run mark_inode_dirty() if i_size
2797 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2798 	 * into that.
2799 	 */
2800 	new_i_size = pos + copied;
2801 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2802 		if (ext4_has_inline_data(inode) ||
2803 		    ext4_da_should_update_i_disksize(page, end)) {
2804 			ext4_update_i_disksize(inode, new_i_size);
2805 			/* We need to mark inode dirty even if
2806 			 * new_i_size is less that inode->i_size
2807 			 * bu greater than i_disksize.(hint delalloc)
2808 			 */
2809 			ext4_mark_inode_dirty(handle, inode);
2810 		}
2811 	}
2812 
2813 	if (write_mode != CONVERT_INLINE_DATA &&
2814 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2815 	    ext4_has_inline_data(inode))
2816 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2817 						     page);
2818 	else
2819 		ret2 = generic_write_end(file, mapping, pos, len, copied,
2820 							page, fsdata);
2821 
2822 	copied = ret2;
2823 	if (ret2 < 0)
2824 		ret = ret2;
2825 	ret2 = ext4_journal_stop(handle);
2826 	if (!ret)
2827 		ret = ret2;
2828 
2829 	return ret ? ret : copied;
2830 }
2831 
2832 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2833 				   unsigned int length)
2834 {
2835 	/*
2836 	 * Drop reserved blocks
2837 	 */
2838 	BUG_ON(!PageLocked(page));
2839 	if (!page_has_buffers(page))
2840 		goto out;
2841 
2842 	ext4_da_page_release_reservation(page, offset, length);
2843 
2844 out:
2845 	ext4_invalidatepage(page, offset, length);
2846 
2847 	return;
2848 }
2849 
2850 /*
2851  * Force all delayed allocation blocks to be allocated for a given inode.
2852  */
2853 int ext4_alloc_da_blocks(struct inode *inode)
2854 {
2855 	trace_ext4_alloc_da_blocks(inode);
2856 
2857 	if (!EXT4_I(inode)->i_reserved_data_blocks)
2858 		return 0;
2859 
2860 	/*
2861 	 * We do something simple for now.  The filemap_flush() will
2862 	 * also start triggering a write of the data blocks, which is
2863 	 * not strictly speaking necessary (and for users of
2864 	 * laptop_mode, not even desirable).  However, to do otherwise
2865 	 * would require replicating code paths in:
2866 	 *
2867 	 * ext4_writepages() ->
2868 	 *    write_cache_pages() ---> (via passed in callback function)
2869 	 *        __mpage_da_writepage() -->
2870 	 *           mpage_add_bh_to_extent()
2871 	 *           mpage_da_map_blocks()
2872 	 *
2873 	 * The problem is that write_cache_pages(), located in
2874 	 * mm/page-writeback.c, marks pages clean in preparation for
2875 	 * doing I/O, which is not desirable if we're not planning on
2876 	 * doing I/O at all.
2877 	 *
2878 	 * We could call write_cache_pages(), and then redirty all of
2879 	 * the pages by calling redirty_page_for_writepage() but that
2880 	 * would be ugly in the extreme.  So instead we would need to
2881 	 * replicate parts of the code in the above functions,
2882 	 * simplifying them because we wouldn't actually intend to
2883 	 * write out the pages, but rather only collect contiguous
2884 	 * logical block extents, call the multi-block allocator, and
2885 	 * then update the buffer heads with the block allocations.
2886 	 *
2887 	 * For now, though, we'll cheat by calling filemap_flush(),
2888 	 * which will map the blocks, and start the I/O, but not
2889 	 * actually wait for the I/O to complete.
2890 	 */
2891 	return filemap_flush(inode->i_mapping);
2892 }
2893 
2894 /*
2895  * bmap() is special.  It gets used by applications such as lilo and by
2896  * the swapper to find the on-disk block of a specific piece of data.
2897  *
2898  * Naturally, this is dangerous if the block concerned is still in the
2899  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2900  * filesystem and enables swap, then they may get a nasty shock when the
2901  * data getting swapped to that swapfile suddenly gets overwritten by
2902  * the original zero's written out previously to the journal and
2903  * awaiting writeback in the kernel's buffer cache.
2904  *
2905  * So, if we see any bmap calls here on a modified, data-journaled file,
2906  * take extra steps to flush any blocks which might be in the cache.
2907  */
2908 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2909 {
2910 	struct inode *inode = mapping->host;
2911 	journal_t *journal;
2912 	int err;
2913 
2914 	/*
2915 	 * We can get here for an inline file via the FIBMAP ioctl
2916 	 */
2917 	if (ext4_has_inline_data(inode))
2918 		return 0;
2919 
2920 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2921 			test_opt(inode->i_sb, DELALLOC)) {
2922 		/*
2923 		 * With delalloc we want to sync the file
2924 		 * so that we can make sure we allocate
2925 		 * blocks for file
2926 		 */
2927 		filemap_write_and_wait(mapping);
2928 	}
2929 
2930 	if (EXT4_JOURNAL(inode) &&
2931 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2932 		/*
2933 		 * This is a REALLY heavyweight approach, but the use of
2934 		 * bmap on dirty files is expected to be extremely rare:
2935 		 * only if we run lilo or swapon on a freshly made file
2936 		 * do we expect this to happen.
2937 		 *
2938 		 * (bmap requires CAP_SYS_RAWIO so this does not
2939 		 * represent an unprivileged user DOS attack --- we'd be
2940 		 * in trouble if mortal users could trigger this path at
2941 		 * will.)
2942 		 *
2943 		 * NB. EXT4_STATE_JDATA is not set on files other than
2944 		 * regular files.  If somebody wants to bmap a directory
2945 		 * or symlink and gets confused because the buffer
2946 		 * hasn't yet been flushed to disk, they deserve
2947 		 * everything they get.
2948 		 */
2949 
2950 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2951 		journal = EXT4_JOURNAL(inode);
2952 		jbd2_journal_lock_updates(journal);
2953 		err = jbd2_journal_flush(journal);
2954 		jbd2_journal_unlock_updates(journal);
2955 
2956 		if (err)
2957 			return 0;
2958 	}
2959 
2960 	return generic_block_bmap(mapping, block, ext4_get_block);
2961 }
2962 
2963 static int ext4_readpage(struct file *file, struct page *page)
2964 {
2965 	int ret = -EAGAIN;
2966 	struct inode *inode = page->mapping->host;
2967 
2968 	trace_ext4_readpage(page);
2969 
2970 	if (ext4_has_inline_data(inode))
2971 		ret = ext4_readpage_inline(inode, page);
2972 
2973 	if (ret == -EAGAIN)
2974 		return ext4_mpage_readpages(page->mapping, NULL, page, 1);
2975 
2976 	return ret;
2977 }
2978 
2979 static int
2980 ext4_readpages(struct file *file, struct address_space *mapping,
2981 		struct list_head *pages, unsigned nr_pages)
2982 {
2983 	struct inode *inode = mapping->host;
2984 
2985 	/* If the file has inline data, no need to do readpages. */
2986 	if (ext4_has_inline_data(inode))
2987 		return 0;
2988 
2989 	return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
2990 }
2991 
2992 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2993 				unsigned int length)
2994 {
2995 	trace_ext4_invalidatepage(page, offset, length);
2996 
2997 	/* No journalling happens on data buffers when this function is used */
2998 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2999 
3000 	block_invalidatepage(page, offset, length);
3001 }
3002 
3003 static int __ext4_journalled_invalidatepage(struct page *page,
3004 					    unsigned int offset,
3005 					    unsigned int length)
3006 {
3007 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3008 
3009 	trace_ext4_journalled_invalidatepage(page, offset, length);
3010 
3011 	/*
3012 	 * If it's a full truncate we just forget about the pending dirtying
3013 	 */
3014 	if (offset == 0 && length == PAGE_CACHE_SIZE)
3015 		ClearPageChecked(page);
3016 
3017 	return jbd2_journal_invalidatepage(journal, page, offset, length);
3018 }
3019 
3020 /* Wrapper for aops... */
3021 static void ext4_journalled_invalidatepage(struct page *page,
3022 					   unsigned int offset,
3023 					   unsigned int length)
3024 {
3025 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3026 }
3027 
3028 static int ext4_releasepage(struct page *page, gfp_t wait)
3029 {
3030 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3031 
3032 	trace_ext4_releasepage(page);
3033 
3034 	/* Page has dirty journalled data -> cannot release */
3035 	if (PageChecked(page))
3036 		return 0;
3037 	if (journal)
3038 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3039 	else
3040 		return try_to_free_buffers(page);
3041 }
3042 
3043 /*
3044  * ext4_get_block used when preparing for a DIO write or buffer write.
3045  * We allocate an uinitialized extent if blocks haven't been allocated.
3046  * The extent will be converted to initialized after the IO is complete.
3047  */
3048 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3049 		   struct buffer_head *bh_result, int create)
3050 {
3051 	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3052 		   inode->i_ino, create);
3053 	return _ext4_get_block(inode, iblock, bh_result,
3054 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
3055 }
3056 
3057 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3058 		   struct buffer_head *bh_result, int create)
3059 {
3060 	ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3061 		   inode->i_ino, create);
3062 	return _ext4_get_block(inode, iblock, bh_result,
3063 			       EXT4_GET_BLOCKS_NO_LOCK);
3064 }
3065 
3066 int ext4_get_block_dax(struct inode *inode, sector_t iblock,
3067 		   struct buffer_head *bh_result, int create)
3068 {
3069 	int flags = EXT4_GET_BLOCKS_PRE_IO | EXT4_GET_BLOCKS_UNWRIT_EXT;
3070 	if (create)
3071 		flags |= EXT4_GET_BLOCKS_CREATE;
3072 	ext4_debug("ext4_get_block_dax: inode %lu, create flag %d\n",
3073 		   inode->i_ino, create);
3074 	return _ext4_get_block(inode, iblock, bh_result, flags);
3075 }
3076 
3077 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3078 			    ssize_t size, void *private)
3079 {
3080         ext4_io_end_t *io_end = iocb->private;
3081 
3082 	/* if not async direct IO just return */
3083 	if (!io_end)
3084 		return;
3085 
3086 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3087 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3088  		  iocb->private, io_end->inode->i_ino, iocb, offset,
3089 		  size);
3090 
3091 	iocb->private = NULL;
3092 	io_end->offset = offset;
3093 	io_end->size = size;
3094 	ext4_put_io_end(io_end);
3095 }
3096 
3097 /*
3098  * For ext4 extent files, ext4 will do direct-io write to holes,
3099  * preallocated extents, and those write extend the file, no need to
3100  * fall back to buffered IO.
3101  *
3102  * For holes, we fallocate those blocks, mark them as unwritten
3103  * If those blocks were preallocated, we mark sure they are split, but
3104  * still keep the range to write as unwritten.
3105  *
3106  * The unwritten extents will be converted to written when DIO is completed.
3107  * For async direct IO, since the IO may still pending when return, we
3108  * set up an end_io call back function, which will do the conversion
3109  * when async direct IO completed.
3110  *
3111  * If the O_DIRECT write will extend the file then add this inode to the
3112  * orphan list.  So recovery will truncate it back to the original size
3113  * if the machine crashes during the write.
3114  *
3115  */
3116 static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3117 				  loff_t offset)
3118 {
3119 	struct file *file = iocb->ki_filp;
3120 	struct inode *inode = file->f_mapping->host;
3121 	ssize_t ret;
3122 	size_t count = iov_iter_count(iter);
3123 	int overwrite = 0;
3124 	get_block_t *get_block_func = NULL;
3125 	int dio_flags = 0;
3126 	loff_t final_size = offset + count;
3127 	ext4_io_end_t *io_end = NULL;
3128 
3129 	/* Use the old path for reads and writes beyond i_size. */
3130 	if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size)
3131 		return ext4_ind_direct_IO(iocb, iter, offset);
3132 
3133 	BUG_ON(iocb->private == NULL);
3134 
3135 	/*
3136 	 * Make all waiters for direct IO properly wait also for extent
3137 	 * conversion. This also disallows race between truncate() and
3138 	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3139 	 */
3140 	if (iov_iter_rw(iter) == WRITE)
3141 		inode_dio_begin(inode);
3142 
3143 	/* If we do a overwrite dio, i_mutex locking can be released */
3144 	overwrite = *((int *)iocb->private);
3145 
3146 	if (overwrite) {
3147 		down_read(&EXT4_I(inode)->i_data_sem);
3148 		mutex_unlock(&inode->i_mutex);
3149 	}
3150 
3151 	/*
3152 	 * We could direct write to holes and fallocate.
3153 	 *
3154 	 * Allocated blocks to fill the hole are marked as
3155 	 * unwritten to prevent parallel buffered read to expose
3156 	 * the stale data before DIO complete the data IO.
3157 	 *
3158 	 * As to previously fallocated extents, ext4 get_block will
3159 	 * just simply mark the buffer mapped but still keep the
3160 	 * extents unwritten.
3161 	 *
3162 	 * For non AIO case, we will convert those unwritten extents
3163 	 * to written after return back from blockdev_direct_IO.
3164 	 *
3165 	 * For async DIO, the conversion needs to be deferred when the
3166 	 * IO is completed. The ext4 end_io callback function will be
3167 	 * called to take care of the conversion work.  Here for async
3168 	 * case, we allocate an io_end structure to hook to the iocb.
3169 	 */
3170 	iocb->private = NULL;
3171 	ext4_inode_aio_set(inode, NULL);
3172 	if (!is_sync_kiocb(iocb)) {
3173 		io_end = ext4_init_io_end(inode, GFP_NOFS);
3174 		if (!io_end) {
3175 			ret = -ENOMEM;
3176 			goto retake_lock;
3177 		}
3178 		/*
3179 		 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3180 		 */
3181 		iocb->private = ext4_get_io_end(io_end);
3182 		/*
3183 		 * we save the io structure for current async direct
3184 		 * IO, so that later ext4_map_blocks() could flag the
3185 		 * io structure whether there is a unwritten extents
3186 		 * needs to be converted when IO is completed.
3187 		 */
3188 		ext4_inode_aio_set(inode, io_end);
3189 	}
3190 
3191 	if (overwrite) {
3192 		get_block_func = ext4_get_block_write_nolock;
3193 	} else {
3194 		get_block_func = ext4_get_block_write;
3195 		dio_flags = DIO_LOCKING;
3196 	}
3197 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3198 	BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3199 #endif
3200 	if (IS_DAX(inode))
3201 		ret = dax_do_io(iocb, inode, iter, offset, get_block_func,
3202 				ext4_end_io_dio, dio_flags);
3203 	else
3204 		ret = __blockdev_direct_IO(iocb, inode,
3205 					   inode->i_sb->s_bdev, iter, offset,
3206 					   get_block_func,
3207 					   ext4_end_io_dio, NULL, dio_flags);
3208 
3209 	/*
3210 	 * Put our reference to io_end. This can free the io_end structure e.g.
3211 	 * in sync IO case or in case of error. It can even perform extent
3212 	 * conversion if all bios we submitted finished before we got here.
3213 	 * Note that in that case iocb->private can be already set to NULL
3214 	 * here.
3215 	 */
3216 	if (io_end) {
3217 		ext4_inode_aio_set(inode, NULL);
3218 		ext4_put_io_end(io_end);
3219 		/*
3220 		 * When no IO was submitted ext4_end_io_dio() was not
3221 		 * called so we have to put iocb's reference.
3222 		 */
3223 		if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3224 			WARN_ON(iocb->private != io_end);
3225 			WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3226 			ext4_put_io_end(io_end);
3227 			iocb->private = NULL;
3228 		}
3229 	}
3230 	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3231 						EXT4_STATE_DIO_UNWRITTEN)) {
3232 		int err;
3233 		/*
3234 		 * for non AIO case, since the IO is already
3235 		 * completed, we could do the conversion right here
3236 		 */
3237 		err = ext4_convert_unwritten_extents(NULL, inode,
3238 						     offset, ret);
3239 		if (err < 0)
3240 			ret = err;
3241 		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3242 	}
3243 
3244 retake_lock:
3245 	if (iov_iter_rw(iter) == WRITE)
3246 		inode_dio_end(inode);
3247 	/* take i_mutex locking again if we do a ovewrite dio */
3248 	if (overwrite) {
3249 		up_read(&EXT4_I(inode)->i_data_sem);
3250 		mutex_lock(&inode->i_mutex);
3251 	}
3252 
3253 	return ret;
3254 }
3255 
3256 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3257 			      loff_t offset)
3258 {
3259 	struct file *file = iocb->ki_filp;
3260 	struct inode *inode = file->f_mapping->host;
3261 	size_t count = iov_iter_count(iter);
3262 	ssize_t ret;
3263 
3264 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3265 	if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3266 		return 0;
3267 #endif
3268 
3269 	/*
3270 	 * If we are doing data journalling we don't support O_DIRECT
3271 	 */
3272 	if (ext4_should_journal_data(inode))
3273 		return 0;
3274 
3275 	/* Let buffer I/O handle the inline data case. */
3276 	if (ext4_has_inline_data(inode))
3277 		return 0;
3278 
3279 	trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3280 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3281 		ret = ext4_ext_direct_IO(iocb, iter, offset);
3282 	else
3283 		ret = ext4_ind_direct_IO(iocb, iter, offset);
3284 	trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3285 	return ret;
3286 }
3287 
3288 /*
3289  * Pages can be marked dirty completely asynchronously from ext4's journalling
3290  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3291  * much here because ->set_page_dirty is called under VFS locks.  The page is
3292  * not necessarily locked.
3293  *
3294  * We cannot just dirty the page and leave attached buffers clean, because the
3295  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3296  * or jbddirty because all the journalling code will explode.
3297  *
3298  * So what we do is to mark the page "pending dirty" and next time writepage
3299  * is called, propagate that into the buffers appropriately.
3300  */
3301 static int ext4_journalled_set_page_dirty(struct page *page)
3302 {
3303 	SetPageChecked(page);
3304 	return __set_page_dirty_nobuffers(page);
3305 }
3306 
3307 static const struct address_space_operations ext4_aops = {
3308 	.readpage		= ext4_readpage,
3309 	.readpages		= ext4_readpages,
3310 	.writepage		= ext4_writepage,
3311 	.writepages		= ext4_writepages,
3312 	.write_begin		= ext4_write_begin,
3313 	.write_end		= ext4_write_end,
3314 	.bmap			= ext4_bmap,
3315 	.invalidatepage		= ext4_invalidatepage,
3316 	.releasepage		= ext4_releasepage,
3317 	.direct_IO		= ext4_direct_IO,
3318 	.migratepage		= buffer_migrate_page,
3319 	.is_partially_uptodate  = block_is_partially_uptodate,
3320 	.error_remove_page	= generic_error_remove_page,
3321 };
3322 
3323 static const struct address_space_operations ext4_journalled_aops = {
3324 	.readpage		= ext4_readpage,
3325 	.readpages		= ext4_readpages,
3326 	.writepage		= ext4_writepage,
3327 	.writepages		= ext4_writepages,
3328 	.write_begin		= ext4_write_begin,
3329 	.write_end		= ext4_journalled_write_end,
3330 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3331 	.bmap			= ext4_bmap,
3332 	.invalidatepage		= ext4_journalled_invalidatepage,
3333 	.releasepage		= ext4_releasepage,
3334 	.direct_IO		= ext4_direct_IO,
3335 	.is_partially_uptodate  = block_is_partially_uptodate,
3336 	.error_remove_page	= generic_error_remove_page,
3337 };
3338 
3339 static const struct address_space_operations ext4_da_aops = {
3340 	.readpage		= ext4_readpage,
3341 	.readpages		= ext4_readpages,
3342 	.writepage		= ext4_writepage,
3343 	.writepages		= ext4_writepages,
3344 	.write_begin		= ext4_da_write_begin,
3345 	.write_end		= ext4_da_write_end,
3346 	.bmap			= ext4_bmap,
3347 	.invalidatepage		= ext4_da_invalidatepage,
3348 	.releasepage		= ext4_releasepage,
3349 	.direct_IO		= ext4_direct_IO,
3350 	.migratepage		= buffer_migrate_page,
3351 	.is_partially_uptodate  = block_is_partially_uptodate,
3352 	.error_remove_page	= generic_error_remove_page,
3353 };
3354 
3355 void ext4_set_aops(struct inode *inode)
3356 {
3357 	switch (ext4_inode_journal_mode(inode)) {
3358 	case EXT4_INODE_ORDERED_DATA_MODE:
3359 		ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3360 		break;
3361 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3362 		ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3363 		break;
3364 	case EXT4_INODE_JOURNAL_DATA_MODE:
3365 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3366 		return;
3367 	default:
3368 		BUG();
3369 	}
3370 	if (test_opt(inode->i_sb, DELALLOC))
3371 		inode->i_mapping->a_ops = &ext4_da_aops;
3372 	else
3373 		inode->i_mapping->a_ops = &ext4_aops;
3374 }
3375 
3376 static int __ext4_block_zero_page_range(handle_t *handle,
3377 		struct address_space *mapping, loff_t from, loff_t length)
3378 {
3379 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3380 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3381 	unsigned blocksize, pos;
3382 	ext4_lblk_t iblock;
3383 	struct inode *inode = mapping->host;
3384 	struct buffer_head *bh;
3385 	struct page *page;
3386 	int err = 0;
3387 
3388 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3389 				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3390 	if (!page)
3391 		return -ENOMEM;
3392 
3393 	blocksize = inode->i_sb->s_blocksize;
3394 
3395 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3396 
3397 	if (!page_has_buffers(page))
3398 		create_empty_buffers(page, blocksize, 0);
3399 
3400 	/* Find the buffer that contains "offset" */
3401 	bh = page_buffers(page);
3402 	pos = blocksize;
3403 	while (offset >= pos) {
3404 		bh = bh->b_this_page;
3405 		iblock++;
3406 		pos += blocksize;
3407 	}
3408 	if (buffer_freed(bh)) {
3409 		BUFFER_TRACE(bh, "freed: skip");
3410 		goto unlock;
3411 	}
3412 	if (!buffer_mapped(bh)) {
3413 		BUFFER_TRACE(bh, "unmapped");
3414 		ext4_get_block(inode, iblock, bh, 0);
3415 		/* unmapped? It's a hole - nothing to do */
3416 		if (!buffer_mapped(bh)) {
3417 			BUFFER_TRACE(bh, "still unmapped");
3418 			goto unlock;
3419 		}
3420 	}
3421 
3422 	/* Ok, it's mapped. Make sure it's up-to-date */
3423 	if (PageUptodate(page))
3424 		set_buffer_uptodate(bh);
3425 
3426 	if (!buffer_uptodate(bh)) {
3427 		err = -EIO;
3428 		ll_rw_block(READ, 1, &bh);
3429 		wait_on_buffer(bh);
3430 		/* Uhhuh. Read error. Complain and punt. */
3431 		if (!buffer_uptodate(bh))
3432 			goto unlock;
3433 		if (S_ISREG(inode->i_mode) &&
3434 		    ext4_encrypted_inode(inode)) {
3435 			/* We expect the key to be set. */
3436 			BUG_ON(!ext4_has_encryption_key(inode));
3437 			BUG_ON(blocksize != PAGE_CACHE_SIZE);
3438 			WARN_ON_ONCE(ext4_decrypt(page));
3439 		}
3440 	}
3441 	if (ext4_should_journal_data(inode)) {
3442 		BUFFER_TRACE(bh, "get write access");
3443 		err = ext4_journal_get_write_access(handle, bh);
3444 		if (err)
3445 			goto unlock;
3446 	}
3447 	zero_user(page, offset, length);
3448 	BUFFER_TRACE(bh, "zeroed end of block");
3449 
3450 	if (ext4_should_journal_data(inode)) {
3451 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3452 	} else {
3453 		err = 0;
3454 		mark_buffer_dirty(bh);
3455 		if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3456 			err = ext4_jbd2_file_inode(handle, inode);
3457 	}
3458 
3459 unlock:
3460 	unlock_page(page);
3461 	page_cache_release(page);
3462 	return err;
3463 }
3464 
3465 /*
3466  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3467  * starting from file offset 'from'.  The range to be zero'd must
3468  * be contained with in one block.  If the specified range exceeds
3469  * the end of the block it will be shortened to end of the block
3470  * that cooresponds to 'from'
3471  */
3472 static int ext4_block_zero_page_range(handle_t *handle,
3473 		struct address_space *mapping, loff_t from, loff_t length)
3474 {
3475 	struct inode *inode = mapping->host;
3476 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3477 	unsigned blocksize = inode->i_sb->s_blocksize;
3478 	unsigned max = blocksize - (offset & (blocksize - 1));
3479 
3480 	/*
3481 	 * correct length if it does not fall between
3482 	 * 'from' and the end of the block
3483 	 */
3484 	if (length > max || length < 0)
3485 		length = max;
3486 
3487 	if (IS_DAX(inode))
3488 		return dax_zero_page_range(inode, from, length, ext4_get_block);
3489 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3490 }
3491 
3492 /*
3493  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3494  * up to the end of the block which corresponds to `from'.
3495  * This required during truncate. We need to physically zero the tail end
3496  * of that block so it doesn't yield old data if the file is later grown.
3497  */
3498 static int ext4_block_truncate_page(handle_t *handle,
3499 		struct address_space *mapping, loff_t from)
3500 {
3501 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3502 	unsigned length;
3503 	unsigned blocksize;
3504 	struct inode *inode = mapping->host;
3505 
3506 	blocksize = inode->i_sb->s_blocksize;
3507 	length = blocksize - (offset & (blocksize - 1));
3508 
3509 	return ext4_block_zero_page_range(handle, mapping, from, length);
3510 }
3511 
3512 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3513 			     loff_t lstart, loff_t length)
3514 {
3515 	struct super_block *sb = inode->i_sb;
3516 	struct address_space *mapping = inode->i_mapping;
3517 	unsigned partial_start, partial_end;
3518 	ext4_fsblk_t start, end;
3519 	loff_t byte_end = (lstart + length - 1);
3520 	int err = 0;
3521 
3522 	partial_start = lstart & (sb->s_blocksize - 1);
3523 	partial_end = byte_end & (sb->s_blocksize - 1);
3524 
3525 	start = lstart >> sb->s_blocksize_bits;
3526 	end = byte_end >> sb->s_blocksize_bits;
3527 
3528 	/* Handle partial zero within the single block */
3529 	if (start == end &&
3530 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3531 		err = ext4_block_zero_page_range(handle, mapping,
3532 						 lstart, length);
3533 		return err;
3534 	}
3535 	/* Handle partial zero out on the start of the range */
3536 	if (partial_start) {
3537 		err = ext4_block_zero_page_range(handle, mapping,
3538 						 lstart, sb->s_blocksize);
3539 		if (err)
3540 			return err;
3541 	}
3542 	/* Handle partial zero out on the end of the range */
3543 	if (partial_end != sb->s_blocksize - 1)
3544 		err = ext4_block_zero_page_range(handle, mapping,
3545 						 byte_end - partial_end,
3546 						 partial_end + 1);
3547 	return err;
3548 }
3549 
3550 int ext4_can_truncate(struct inode *inode)
3551 {
3552 	if (S_ISREG(inode->i_mode))
3553 		return 1;
3554 	if (S_ISDIR(inode->i_mode))
3555 		return 1;
3556 	if (S_ISLNK(inode->i_mode))
3557 		return !ext4_inode_is_fast_symlink(inode);
3558 	return 0;
3559 }
3560 
3561 /*
3562  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3563  * associated with the given offset and length
3564  *
3565  * @inode:  File inode
3566  * @offset: The offset where the hole will begin
3567  * @len:    The length of the hole
3568  *
3569  * Returns: 0 on success or negative on failure
3570  */
3571 
3572 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3573 {
3574 	struct super_block *sb = inode->i_sb;
3575 	ext4_lblk_t first_block, stop_block;
3576 	struct address_space *mapping = inode->i_mapping;
3577 	loff_t first_block_offset, last_block_offset;
3578 	handle_t *handle;
3579 	unsigned int credits;
3580 	int ret = 0;
3581 
3582 	if (!S_ISREG(inode->i_mode))
3583 		return -EOPNOTSUPP;
3584 
3585 	trace_ext4_punch_hole(inode, offset, length, 0);
3586 
3587 	/*
3588 	 * Write out all dirty pages to avoid race conditions
3589 	 * Then release them.
3590 	 */
3591 	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3592 		ret = filemap_write_and_wait_range(mapping, offset,
3593 						   offset + length - 1);
3594 		if (ret)
3595 			return ret;
3596 	}
3597 
3598 	mutex_lock(&inode->i_mutex);
3599 
3600 	/* No need to punch hole beyond i_size */
3601 	if (offset >= inode->i_size)
3602 		goto out_mutex;
3603 
3604 	/*
3605 	 * If the hole extends beyond i_size, set the hole
3606 	 * to end after the page that contains i_size
3607 	 */
3608 	if (offset + length > inode->i_size) {
3609 		length = inode->i_size +
3610 		   PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3611 		   offset;
3612 	}
3613 
3614 	if (offset & (sb->s_blocksize - 1) ||
3615 	    (offset + length) & (sb->s_blocksize - 1)) {
3616 		/*
3617 		 * Attach jinode to inode for jbd2 if we do any zeroing of
3618 		 * partial block
3619 		 */
3620 		ret = ext4_inode_attach_jinode(inode);
3621 		if (ret < 0)
3622 			goto out_mutex;
3623 
3624 	}
3625 
3626 	first_block_offset = round_up(offset, sb->s_blocksize);
3627 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3628 
3629 	/* Now release the pages and zero block aligned part of pages*/
3630 	if (last_block_offset > first_block_offset)
3631 		truncate_pagecache_range(inode, first_block_offset,
3632 					 last_block_offset);
3633 
3634 	/* Wait all existing dio workers, newcomers will block on i_mutex */
3635 	ext4_inode_block_unlocked_dio(inode);
3636 	inode_dio_wait(inode);
3637 
3638 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3639 		credits = ext4_writepage_trans_blocks(inode);
3640 	else
3641 		credits = ext4_blocks_for_truncate(inode);
3642 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3643 	if (IS_ERR(handle)) {
3644 		ret = PTR_ERR(handle);
3645 		ext4_std_error(sb, ret);
3646 		goto out_dio;
3647 	}
3648 
3649 	ret = ext4_zero_partial_blocks(handle, inode, offset,
3650 				       length);
3651 	if (ret)
3652 		goto out_stop;
3653 
3654 	first_block = (offset + sb->s_blocksize - 1) >>
3655 		EXT4_BLOCK_SIZE_BITS(sb);
3656 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3657 
3658 	/* If there are no blocks to remove, return now */
3659 	if (first_block >= stop_block)
3660 		goto out_stop;
3661 
3662 	down_write(&EXT4_I(inode)->i_data_sem);
3663 	ext4_discard_preallocations(inode);
3664 
3665 	ret = ext4_es_remove_extent(inode, first_block,
3666 				    stop_block - first_block);
3667 	if (ret) {
3668 		up_write(&EXT4_I(inode)->i_data_sem);
3669 		goto out_stop;
3670 	}
3671 
3672 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3673 		ret = ext4_ext_remove_space(inode, first_block,
3674 					    stop_block - 1);
3675 	else
3676 		ret = ext4_ind_remove_space(handle, inode, first_block,
3677 					    stop_block);
3678 
3679 	up_write(&EXT4_I(inode)->i_data_sem);
3680 	if (IS_SYNC(inode))
3681 		ext4_handle_sync(handle);
3682 
3683 	/* Now release the pages again to reduce race window */
3684 	if (last_block_offset > first_block_offset)
3685 		truncate_pagecache_range(inode, first_block_offset,
3686 					 last_block_offset);
3687 
3688 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3689 	ext4_mark_inode_dirty(handle, inode);
3690 out_stop:
3691 	ext4_journal_stop(handle);
3692 out_dio:
3693 	ext4_inode_resume_unlocked_dio(inode);
3694 out_mutex:
3695 	mutex_unlock(&inode->i_mutex);
3696 	return ret;
3697 }
3698 
3699 int ext4_inode_attach_jinode(struct inode *inode)
3700 {
3701 	struct ext4_inode_info *ei = EXT4_I(inode);
3702 	struct jbd2_inode *jinode;
3703 
3704 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3705 		return 0;
3706 
3707 	jinode = jbd2_alloc_inode(GFP_KERNEL);
3708 	spin_lock(&inode->i_lock);
3709 	if (!ei->jinode) {
3710 		if (!jinode) {
3711 			spin_unlock(&inode->i_lock);
3712 			return -ENOMEM;
3713 		}
3714 		ei->jinode = jinode;
3715 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
3716 		jinode = NULL;
3717 	}
3718 	spin_unlock(&inode->i_lock);
3719 	if (unlikely(jinode != NULL))
3720 		jbd2_free_inode(jinode);
3721 	return 0;
3722 }
3723 
3724 /*
3725  * ext4_truncate()
3726  *
3727  * We block out ext4_get_block() block instantiations across the entire
3728  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3729  * simultaneously on behalf of the same inode.
3730  *
3731  * As we work through the truncate and commit bits of it to the journal there
3732  * is one core, guiding principle: the file's tree must always be consistent on
3733  * disk.  We must be able to restart the truncate after a crash.
3734  *
3735  * The file's tree may be transiently inconsistent in memory (although it
3736  * probably isn't), but whenever we close off and commit a journal transaction,
3737  * the contents of (the filesystem + the journal) must be consistent and
3738  * restartable.  It's pretty simple, really: bottom up, right to left (although
3739  * left-to-right works OK too).
3740  *
3741  * Note that at recovery time, journal replay occurs *before* the restart of
3742  * truncate against the orphan inode list.
3743  *
3744  * The committed inode has the new, desired i_size (which is the same as
3745  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3746  * that this inode's truncate did not complete and it will again call
3747  * ext4_truncate() to have another go.  So there will be instantiated blocks
3748  * to the right of the truncation point in a crashed ext4 filesystem.  But
3749  * that's fine - as long as they are linked from the inode, the post-crash
3750  * ext4_truncate() run will find them and release them.
3751  */
3752 void ext4_truncate(struct inode *inode)
3753 {
3754 	struct ext4_inode_info *ei = EXT4_I(inode);
3755 	unsigned int credits;
3756 	handle_t *handle;
3757 	struct address_space *mapping = inode->i_mapping;
3758 
3759 	/*
3760 	 * There is a possibility that we're either freeing the inode
3761 	 * or it's a completely new inode. In those cases we might not
3762 	 * have i_mutex locked because it's not necessary.
3763 	 */
3764 	if (!(inode->i_state & (I_NEW|I_FREEING)))
3765 		WARN_ON(!mutex_is_locked(&inode->i_mutex));
3766 	trace_ext4_truncate_enter(inode);
3767 
3768 	if (!ext4_can_truncate(inode))
3769 		return;
3770 
3771 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3772 
3773 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3774 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3775 
3776 	if (ext4_has_inline_data(inode)) {
3777 		int has_inline = 1;
3778 
3779 		ext4_inline_data_truncate(inode, &has_inline);
3780 		if (has_inline)
3781 			return;
3782 	}
3783 
3784 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
3785 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3786 		if (ext4_inode_attach_jinode(inode) < 0)
3787 			return;
3788 	}
3789 
3790 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3791 		credits = ext4_writepage_trans_blocks(inode);
3792 	else
3793 		credits = ext4_blocks_for_truncate(inode);
3794 
3795 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3796 	if (IS_ERR(handle)) {
3797 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
3798 		return;
3799 	}
3800 
3801 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3802 		ext4_block_truncate_page(handle, mapping, inode->i_size);
3803 
3804 	/*
3805 	 * We add the inode to the orphan list, so that if this
3806 	 * truncate spans multiple transactions, and we crash, we will
3807 	 * resume the truncate when the filesystem recovers.  It also
3808 	 * marks the inode dirty, to catch the new size.
3809 	 *
3810 	 * Implication: the file must always be in a sane, consistent
3811 	 * truncatable state while each transaction commits.
3812 	 */
3813 	if (ext4_orphan_add(handle, inode))
3814 		goto out_stop;
3815 
3816 	down_write(&EXT4_I(inode)->i_data_sem);
3817 
3818 	ext4_discard_preallocations(inode);
3819 
3820 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3821 		ext4_ext_truncate(handle, inode);
3822 	else
3823 		ext4_ind_truncate(handle, inode);
3824 
3825 	up_write(&ei->i_data_sem);
3826 
3827 	if (IS_SYNC(inode))
3828 		ext4_handle_sync(handle);
3829 
3830 out_stop:
3831 	/*
3832 	 * If this was a simple ftruncate() and the file will remain alive,
3833 	 * then we need to clear up the orphan record which we created above.
3834 	 * However, if this was a real unlink then we were called by
3835 	 * ext4_evict_inode(), and we allow that function to clean up the
3836 	 * orphan info for us.
3837 	 */
3838 	if (inode->i_nlink)
3839 		ext4_orphan_del(handle, inode);
3840 
3841 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3842 	ext4_mark_inode_dirty(handle, inode);
3843 	ext4_journal_stop(handle);
3844 
3845 	trace_ext4_truncate_exit(inode);
3846 }
3847 
3848 /*
3849  * ext4_get_inode_loc returns with an extra refcount against the inode's
3850  * underlying buffer_head on success. If 'in_mem' is true, we have all
3851  * data in memory that is needed to recreate the on-disk version of this
3852  * inode.
3853  */
3854 static int __ext4_get_inode_loc(struct inode *inode,
3855 				struct ext4_iloc *iloc, int in_mem)
3856 {
3857 	struct ext4_group_desc	*gdp;
3858 	struct buffer_head	*bh;
3859 	struct super_block	*sb = inode->i_sb;
3860 	ext4_fsblk_t		block;
3861 	int			inodes_per_block, inode_offset;
3862 
3863 	iloc->bh = NULL;
3864 	if (!ext4_valid_inum(sb, inode->i_ino))
3865 		return -EFSCORRUPTED;
3866 
3867 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3868 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3869 	if (!gdp)
3870 		return -EIO;
3871 
3872 	/*
3873 	 * Figure out the offset within the block group inode table
3874 	 */
3875 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3876 	inode_offset = ((inode->i_ino - 1) %
3877 			EXT4_INODES_PER_GROUP(sb));
3878 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3879 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3880 
3881 	bh = sb_getblk(sb, block);
3882 	if (unlikely(!bh))
3883 		return -ENOMEM;
3884 	if (!buffer_uptodate(bh)) {
3885 		lock_buffer(bh);
3886 
3887 		/*
3888 		 * If the buffer has the write error flag, we have failed
3889 		 * to write out another inode in the same block.  In this
3890 		 * case, we don't have to read the block because we may
3891 		 * read the old inode data successfully.
3892 		 */
3893 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3894 			set_buffer_uptodate(bh);
3895 
3896 		if (buffer_uptodate(bh)) {
3897 			/* someone brought it uptodate while we waited */
3898 			unlock_buffer(bh);
3899 			goto has_buffer;
3900 		}
3901 
3902 		/*
3903 		 * If we have all information of the inode in memory and this
3904 		 * is the only valid inode in the block, we need not read the
3905 		 * block.
3906 		 */
3907 		if (in_mem) {
3908 			struct buffer_head *bitmap_bh;
3909 			int i, start;
3910 
3911 			start = inode_offset & ~(inodes_per_block - 1);
3912 
3913 			/* Is the inode bitmap in cache? */
3914 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3915 			if (unlikely(!bitmap_bh))
3916 				goto make_io;
3917 
3918 			/*
3919 			 * If the inode bitmap isn't in cache then the
3920 			 * optimisation may end up performing two reads instead
3921 			 * of one, so skip it.
3922 			 */
3923 			if (!buffer_uptodate(bitmap_bh)) {
3924 				brelse(bitmap_bh);
3925 				goto make_io;
3926 			}
3927 			for (i = start; i < start + inodes_per_block; i++) {
3928 				if (i == inode_offset)
3929 					continue;
3930 				if (ext4_test_bit(i, bitmap_bh->b_data))
3931 					break;
3932 			}
3933 			brelse(bitmap_bh);
3934 			if (i == start + inodes_per_block) {
3935 				/* all other inodes are free, so skip I/O */
3936 				memset(bh->b_data, 0, bh->b_size);
3937 				set_buffer_uptodate(bh);
3938 				unlock_buffer(bh);
3939 				goto has_buffer;
3940 			}
3941 		}
3942 
3943 make_io:
3944 		/*
3945 		 * If we need to do any I/O, try to pre-readahead extra
3946 		 * blocks from the inode table.
3947 		 */
3948 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
3949 			ext4_fsblk_t b, end, table;
3950 			unsigned num;
3951 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3952 
3953 			table = ext4_inode_table(sb, gdp);
3954 			/* s_inode_readahead_blks is always a power of 2 */
3955 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
3956 			if (table > b)
3957 				b = table;
3958 			end = b + ra_blks;
3959 			num = EXT4_INODES_PER_GROUP(sb);
3960 			if (ext4_has_group_desc_csum(sb))
3961 				num -= ext4_itable_unused_count(sb, gdp);
3962 			table += num / inodes_per_block;
3963 			if (end > table)
3964 				end = table;
3965 			while (b <= end)
3966 				sb_breadahead(sb, b++);
3967 		}
3968 
3969 		/*
3970 		 * There are other valid inodes in the buffer, this inode
3971 		 * has in-inode xattrs, or we don't have this inode in memory.
3972 		 * Read the block from disk.
3973 		 */
3974 		trace_ext4_load_inode(inode);
3975 		get_bh(bh);
3976 		bh->b_end_io = end_buffer_read_sync;
3977 		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3978 		wait_on_buffer(bh);
3979 		if (!buffer_uptodate(bh)) {
3980 			EXT4_ERROR_INODE_BLOCK(inode, block,
3981 					       "unable to read itable block");
3982 			brelse(bh);
3983 			return -EIO;
3984 		}
3985 	}
3986 has_buffer:
3987 	iloc->bh = bh;
3988 	return 0;
3989 }
3990 
3991 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3992 {
3993 	/* We have all inode data except xattrs in memory here. */
3994 	return __ext4_get_inode_loc(inode, iloc,
3995 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3996 }
3997 
3998 void ext4_set_inode_flags(struct inode *inode)
3999 {
4000 	unsigned int flags = EXT4_I(inode)->i_flags;
4001 	unsigned int new_fl = 0;
4002 
4003 	if (flags & EXT4_SYNC_FL)
4004 		new_fl |= S_SYNC;
4005 	if (flags & EXT4_APPEND_FL)
4006 		new_fl |= S_APPEND;
4007 	if (flags & EXT4_IMMUTABLE_FL)
4008 		new_fl |= S_IMMUTABLE;
4009 	if (flags & EXT4_NOATIME_FL)
4010 		new_fl |= S_NOATIME;
4011 	if (flags & EXT4_DIRSYNC_FL)
4012 		new_fl |= S_DIRSYNC;
4013 	if (test_opt(inode->i_sb, DAX))
4014 		new_fl |= S_DAX;
4015 	inode_set_flags(inode, new_fl,
4016 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4017 }
4018 
4019 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4020 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4021 {
4022 	unsigned int vfs_fl;
4023 	unsigned long old_fl, new_fl;
4024 
4025 	do {
4026 		vfs_fl = ei->vfs_inode.i_flags;
4027 		old_fl = ei->i_flags;
4028 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4029 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4030 				EXT4_DIRSYNC_FL);
4031 		if (vfs_fl & S_SYNC)
4032 			new_fl |= EXT4_SYNC_FL;
4033 		if (vfs_fl & S_APPEND)
4034 			new_fl |= EXT4_APPEND_FL;
4035 		if (vfs_fl & S_IMMUTABLE)
4036 			new_fl |= EXT4_IMMUTABLE_FL;
4037 		if (vfs_fl & S_NOATIME)
4038 			new_fl |= EXT4_NOATIME_FL;
4039 		if (vfs_fl & S_DIRSYNC)
4040 			new_fl |= EXT4_DIRSYNC_FL;
4041 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4042 }
4043 
4044 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4045 				  struct ext4_inode_info *ei)
4046 {
4047 	blkcnt_t i_blocks ;
4048 	struct inode *inode = &(ei->vfs_inode);
4049 	struct super_block *sb = inode->i_sb;
4050 
4051 	if (ext4_has_feature_huge_file(sb)) {
4052 		/* we are using combined 48 bit field */
4053 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4054 					le32_to_cpu(raw_inode->i_blocks_lo);
4055 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4056 			/* i_blocks represent file system block size */
4057 			return i_blocks  << (inode->i_blkbits - 9);
4058 		} else {
4059 			return i_blocks;
4060 		}
4061 	} else {
4062 		return le32_to_cpu(raw_inode->i_blocks_lo);
4063 	}
4064 }
4065 
4066 static inline void ext4_iget_extra_inode(struct inode *inode,
4067 					 struct ext4_inode *raw_inode,
4068 					 struct ext4_inode_info *ei)
4069 {
4070 	__le32 *magic = (void *)raw_inode +
4071 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4072 	if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4073 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4074 		ext4_find_inline_data_nolock(inode);
4075 	} else
4076 		EXT4_I(inode)->i_inline_off = 0;
4077 }
4078 
4079 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4080 {
4081 	struct ext4_iloc iloc;
4082 	struct ext4_inode *raw_inode;
4083 	struct ext4_inode_info *ei;
4084 	struct inode *inode;
4085 	journal_t *journal = EXT4_SB(sb)->s_journal;
4086 	long ret;
4087 	int block;
4088 	uid_t i_uid;
4089 	gid_t i_gid;
4090 
4091 	inode = iget_locked(sb, ino);
4092 	if (!inode)
4093 		return ERR_PTR(-ENOMEM);
4094 	if (!(inode->i_state & I_NEW))
4095 		return inode;
4096 
4097 	ei = EXT4_I(inode);
4098 	iloc.bh = NULL;
4099 
4100 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4101 	if (ret < 0)
4102 		goto bad_inode;
4103 	raw_inode = ext4_raw_inode(&iloc);
4104 
4105 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4106 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4107 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4108 		    EXT4_INODE_SIZE(inode->i_sb)) {
4109 			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4110 				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4111 				EXT4_INODE_SIZE(inode->i_sb));
4112 			ret = -EFSCORRUPTED;
4113 			goto bad_inode;
4114 		}
4115 	} else
4116 		ei->i_extra_isize = 0;
4117 
4118 	/* Precompute checksum seed for inode metadata */
4119 	if (ext4_has_metadata_csum(sb)) {
4120 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4121 		__u32 csum;
4122 		__le32 inum = cpu_to_le32(inode->i_ino);
4123 		__le32 gen = raw_inode->i_generation;
4124 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4125 				   sizeof(inum));
4126 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4127 					      sizeof(gen));
4128 	}
4129 
4130 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4131 		EXT4_ERROR_INODE(inode, "checksum invalid");
4132 		ret = -EFSBADCRC;
4133 		goto bad_inode;
4134 	}
4135 
4136 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4137 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4138 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4139 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4140 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4141 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4142 	}
4143 	i_uid_write(inode, i_uid);
4144 	i_gid_write(inode, i_gid);
4145 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4146 
4147 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4148 	ei->i_inline_off = 0;
4149 	ei->i_dir_start_lookup = 0;
4150 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4151 	/* We now have enough fields to check if the inode was active or not.
4152 	 * This is needed because nfsd might try to access dead inodes
4153 	 * the test is that same one that e2fsck uses
4154 	 * NeilBrown 1999oct15
4155 	 */
4156 	if (inode->i_nlink == 0) {
4157 		if ((inode->i_mode == 0 ||
4158 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4159 		    ino != EXT4_BOOT_LOADER_INO) {
4160 			/* this inode is deleted */
4161 			ret = -ESTALE;
4162 			goto bad_inode;
4163 		}
4164 		/* The only unlinked inodes we let through here have
4165 		 * valid i_mode and are being read by the orphan
4166 		 * recovery code: that's fine, we're about to complete
4167 		 * the process of deleting those.
4168 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4169 		 * not initialized on a new filesystem. */
4170 	}
4171 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4172 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4173 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4174 	if (ext4_has_feature_64bit(sb))
4175 		ei->i_file_acl |=
4176 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4177 	inode->i_size = ext4_isize(raw_inode);
4178 	ei->i_disksize = inode->i_size;
4179 #ifdef CONFIG_QUOTA
4180 	ei->i_reserved_quota = 0;
4181 #endif
4182 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4183 	ei->i_block_group = iloc.block_group;
4184 	ei->i_last_alloc_group = ~0;
4185 	/*
4186 	 * NOTE! The in-memory inode i_data array is in little-endian order
4187 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4188 	 */
4189 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4190 		ei->i_data[block] = raw_inode->i_block[block];
4191 	INIT_LIST_HEAD(&ei->i_orphan);
4192 
4193 	/*
4194 	 * Set transaction id's of transactions that have to be committed
4195 	 * to finish f[data]sync. We set them to currently running transaction
4196 	 * as we cannot be sure that the inode or some of its metadata isn't
4197 	 * part of the transaction - the inode could have been reclaimed and
4198 	 * now it is reread from disk.
4199 	 */
4200 	if (journal) {
4201 		transaction_t *transaction;
4202 		tid_t tid;
4203 
4204 		read_lock(&journal->j_state_lock);
4205 		if (journal->j_running_transaction)
4206 			transaction = journal->j_running_transaction;
4207 		else
4208 			transaction = journal->j_committing_transaction;
4209 		if (transaction)
4210 			tid = transaction->t_tid;
4211 		else
4212 			tid = journal->j_commit_sequence;
4213 		read_unlock(&journal->j_state_lock);
4214 		ei->i_sync_tid = tid;
4215 		ei->i_datasync_tid = tid;
4216 	}
4217 
4218 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4219 		if (ei->i_extra_isize == 0) {
4220 			/* The extra space is currently unused. Use it. */
4221 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4222 					    EXT4_GOOD_OLD_INODE_SIZE;
4223 		} else {
4224 			ext4_iget_extra_inode(inode, raw_inode, ei);
4225 		}
4226 	}
4227 
4228 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4229 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4230 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4231 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4232 
4233 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4234 		inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4235 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4236 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4237 				inode->i_version |=
4238 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4239 		}
4240 	}
4241 
4242 	ret = 0;
4243 	if (ei->i_file_acl &&
4244 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4245 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4246 				 ei->i_file_acl);
4247 		ret = -EFSCORRUPTED;
4248 		goto bad_inode;
4249 	} else if (!ext4_has_inline_data(inode)) {
4250 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4251 			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4252 			    (S_ISLNK(inode->i_mode) &&
4253 			     !ext4_inode_is_fast_symlink(inode))))
4254 				/* Validate extent which is part of inode */
4255 				ret = ext4_ext_check_inode(inode);
4256 		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4257 			   (S_ISLNK(inode->i_mode) &&
4258 			    !ext4_inode_is_fast_symlink(inode))) {
4259 			/* Validate block references which are part of inode */
4260 			ret = ext4_ind_check_inode(inode);
4261 		}
4262 	}
4263 	if (ret)
4264 		goto bad_inode;
4265 
4266 	if (S_ISREG(inode->i_mode)) {
4267 		inode->i_op = &ext4_file_inode_operations;
4268 		inode->i_fop = &ext4_file_operations;
4269 		ext4_set_aops(inode);
4270 	} else if (S_ISDIR(inode->i_mode)) {
4271 		inode->i_op = &ext4_dir_inode_operations;
4272 		inode->i_fop = &ext4_dir_operations;
4273 	} else if (S_ISLNK(inode->i_mode)) {
4274 		if (ext4_encrypted_inode(inode)) {
4275 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4276 			ext4_set_aops(inode);
4277 		} else if (ext4_inode_is_fast_symlink(inode)) {
4278 			inode->i_link = (char *)ei->i_data;
4279 			inode->i_op = &ext4_fast_symlink_inode_operations;
4280 			nd_terminate_link(ei->i_data, inode->i_size,
4281 				sizeof(ei->i_data) - 1);
4282 		} else {
4283 			inode->i_op = &ext4_symlink_inode_operations;
4284 			ext4_set_aops(inode);
4285 		}
4286 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4287 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4288 		inode->i_op = &ext4_special_inode_operations;
4289 		if (raw_inode->i_block[0])
4290 			init_special_inode(inode, inode->i_mode,
4291 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4292 		else
4293 			init_special_inode(inode, inode->i_mode,
4294 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4295 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4296 		make_bad_inode(inode);
4297 	} else {
4298 		ret = -EFSCORRUPTED;
4299 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4300 		goto bad_inode;
4301 	}
4302 	brelse(iloc.bh);
4303 	ext4_set_inode_flags(inode);
4304 	unlock_new_inode(inode);
4305 	return inode;
4306 
4307 bad_inode:
4308 	brelse(iloc.bh);
4309 	iget_failed(inode);
4310 	return ERR_PTR(ret);
4311 }
4312 
4313 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4314 {
4315 	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4316 		return ERR_PTR(-EFSCORRUPTED);
4317 	return ext4_iget(sb, ino);
4318 }
4319 
4320 static int ext4_inode_blocks_set(handle_t *handle,
4321 				struct ext4_inode *raw_inode,
4322 				struct ext4_inode_info *ei)
4323 {
4324 	struct inode *inode = &(ei->vfs_inode);
4325 	u64 i_blocks = inode->i_blocks;
4326 	struct super_block *sb = inode->i_sb;
4327 
4328 	if (i_blocks <= ~0U) {
4329 		/*
4330 		 * i_blocks can be represented in a 32 bit variable
4331 		 * as multiple of 512 bytes
4332 		 */
4333 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4334 		raw_inode->i_blocks_high = 0;
4335 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4336 		return 0;
4337 	}
4338 	if (!ext4_has_feature_huge_file(sb))
4339 		return -EFBIG;
4340 
4341 	if (i_blocks <= 0xffffffffffffULL) {
4342 		/*
4343 		 * i_blocks can be represented in a 48 bit variable
4344 		 * as multiple of 512 bytes
4345 		 */
4346 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4347 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4348 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4349 	} else {
4350 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4351 		/* i_block is stored in file system block size */
4352 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4353 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4354 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4355 	}
4356 	return 0;
4357 }
4358 
4359 struct other_inode {
4360 	unsigned long		orig_ino;
4361 	struct ext4_inode	*raw_inode;
4362 };
4363 
4364 static int other_inode_match(struct inode * inode, unsigned long ino,
4365 			     void *data)
4366 {
4367 	struct other_inode *oi = (struct other_inode *) data;
4368 
4369 	if ((inode->i_ino != ino) ||
4370 	    (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4371 			       I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4372 	    ((inode->i_state & I_DIRTY_TIME) == 0))
4373 		return 0;
4374 	spin_lock(&inode->i_lock);
4375 	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4376 				I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4377 	    (inode->i_state & I_DIRTY_TIME)) {
4378 		struct ext4_inode_info	*ei = EXT4_I(inode);
4379 
4380 		inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4381 		spin_unlock(&inode->i_lock);
4382 
4383 		spin_lock(&ei->i_raw_lock);
4384 		EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4385 		EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4386 		EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4387 		ext4_inode_csum_set(inode, oi->raw_inode, ei);
4388 		spin_unlock(&ei->i_raw_lock);
4389 		trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4390 		return -1;
4391 	}
4392 	spin_unlock(&inode->i_lock);
4393 	return -1;
4394 }
4395 
4396 /*
4397  * Opportunistically update the other time fields for other inodes in
4398  * the same inode table block.
4399  */
4400 static void ext4_update_other_inodes_time(struct super_block *sb,
4401 					  unsigned long orig_ino, char *buf)
4402 {
4403 	struct other_inode oi;
4404 	unsigned long ino;
4405 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4406 	int inode_size = EXT4_INODE_SIZE(sb);
4407 
4408 	oi.orig_ino = orig_ino;
4409 	/*
4410 	 * Calculate the first inode in the inode table block.  Inode
4411 	 * numbers are one-based.  That is, the first inode in a block
4412 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4413 	 */
4414 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4415 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4416 		if (ino == orig_ino)
4417 			continue;
4418 		oi.raw_inode = (struct ext4_inode *) buf;
4419 		(void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4420 	}
4421 }
4422 
4423 /*
4424  * Post the struct inode info into an on-disk inode location in the
4425  * buffer-cache.  This gobbles the caller's reference to the
4426  * buffer_head in the inode location struct.
4427  *
4428  * The caller must have write access to iloc->bh.
4429  */
4430 static int ext4_do_update_inode(handle_t *handle,
4431 				struct inode *inode,
4432 				struct ext4_iloc *iloc)
4433 {
4434 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4435 	struct ext4_inode_info *ei = EXT4_I(inode);
4436 	struct buffer_head *bh = iloc->bh;
4437 	struct super_block *sb = inode->i_sb;
4438 	int err = 0, rc, block;
4439 	int need_datasync = 0, set_large_file = 0;
4440 	uid_t i_uid;
4441 	gid_t i_gid;
4442 
4443 	spin_lock(&ei->i_raw_lock);
4444 
4445 	/* For fields not tracked in the in-memory inode,
4446 	 * initialise them to zero for new inodes. */
4447 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4448 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4449 
4450 	ext4_get_inode_flags(ei);
4451 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4452 	i_uid = i_uid_read(inode);
4453 	i_gid = i_gid_read(inode);
4454 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4455 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4456 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4457 /*
4458  * Fix up interoperability with old kernels. Otherwise, old inodes get
4459  * re-used with the upper 16 bits of the uid/gid intact
4460  */
4461 		if (!ei->i_dtime) {
4462 			raw_inode->i_uid_high =
4463 				cpu_to_le16(high_16_bits(i_uid));
4464 			raw_inode->i_gid_high =
4465 				cpu_to_le16(high_16_bits(i_gid));
4466 		} else {
4467 			raw_inode->i_uid_high = 0;
4468 			raw_inode->i_gid_high = 0;
4469 		}
4470 	} else {
4471 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4472 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4473 		raw_inode->i_uid_high = 0;
4474 		raw_inode->i_gid_high = 0;
4475 	}
4476 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4477 
4478 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4479 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4480 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4481 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4482 
4483 	err = ext4_inode_blocks_set(handle, raw_inode, ei);
4484 	if (err) {
4485 		spin_unlock(&ei->i_raw_lock);
4486 		goto out_brelse;
4487 	}
4488 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4489 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4490 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4491 		raw_inode->i_file_acl_high =
4492 			cpu_to_le16(ei->i_file_acl >> 32);
4493 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4494 	if (ei->i_disksize != ext4_isize(raw_inode)) {
4495 		ext4_isize_set(raw_inode, ei->i_disksize);
4496 		need_datasync = 1;
4497 	}
4498 	if (ei->i_disksize > 0x7fffffffULL) {
4499 		if (!ext4_has_feature_large_file(sb) ||
4500 				EXT4_SB(sb)->s_es->s_rev_level ==
4501 		    cpu_to_le32(EXT4_GOOD_OLD_REV))
4502 			set_large_file = 1;
4503 	}
4504 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4505 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4506 		if (old_valid_dev(inode->i_rdev)) {
4507 			raw_inode->i_block[0] =
4508 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4509 			raw_inode->i_block[1] = 0;
4510 		} else {
4511 			raw_inode->i_block[0] = 0;
4512 			raw_inode->i_block[1] =
4513 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4514 			raw_inode->i_block[2] = 0;
4515 		}
4516 	} else if (!ext4_has_inline_data(inode)) {
4517 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4518 			raw_inode->i_block[block] = ei->i_data[block];
4519 	}
4520 
4521 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4522 		raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4523 		if (ei->i_extra_isize) {
4524 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4525 				raw_inode->i_version_hi =
4526 					cpu_to_le32(inode->i_version >> 32);
4527 			raw_inode->i_extra_isize =
4528 				cpu_to_le16(ei->i_extra_isize);
4529 		}
4530 	}
4531 	ext4_inode_csum_set(inode, raw_inode, ei);
4532 	spin_unlock(&ei->i_raw_lock);
4533 	if (inode->i_sb->s_flags & MS_LAZYTIME)
4534 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4535 					      bh->b_data);
4536 
4537 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4538 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4539 	if (!err)
4540 		err = rc;
4541 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4542 	if (set_large_file) {
4543 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4544 		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4545 		if (err)
4546 			goto out_brelse;
4547 		ext4_update_dynamic_rev(sb);
4548 		ext4_set_feature_large_file(sb);
4549 		ext4_handle_sync(handle);
4550 		err = ext4_handle_dirty_super(handle, sb);
4551 	}
4552 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4553 out_brelse:
4554 	brelse(bh);
4555 	ext4_std_error(inode->i_sb, err);
4556 	return err;
4557 }
4558 
4559 /*
4560  * ext4_write_inode()
4561  *
4562  * We are called from a few places:
4563  *
4564  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4565  *   Here, there will be no transaction running. We wait for any running
4566  *   transaction to commit.
4567  *
4568  * - Within flush work (sys_sync(), kupdate and such).
4569  *   We wait on commit, if told to.
4570  *
4571  * - Within iput_final() -> write_inode_now()
4572  *   We wait on commit, if told to.
4573  *
4574  * In all cases it is actually safe for us to return without doing anything,
4575  * because the inode has been copied into a raw inode buffer in
4576  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4577  * writeback.
4578  *
4579  * Note that we are absolutely dependent upon all inode dirtiers doing the
4580  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4581  * which we are interested.
4582  *
4583  * It would be a bug for them to not do this.  The code:
4584  *
4585  *	mark_inode_dirty(inode)
4586  *	stuff();
4587  *	inode->i_size = expr;
4588  *
4589  * is in error because write_inode() could occur while `stuff()' is running,
4590  * and the new i_size will be lost.  Plus the inode will no longer be on the
4591  * superblock's dirty inode list.
4592  */
4593 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4594 {
4595 	int err;
4596 
4597 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4598 		return 0;
4599 
4600 	if (EXT4_SB(inode->i_sb)->s_journal) {
4601 		if (ext4_journal_current_handle()) {
4602 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4603 			dump_stack();
4604 			return -EIO;
4605 		}
4606 
4607 		/*
4608 		 * No need to force transaction in WB_SYNC_NONE mode. Also
4609 		 * ext4_sync_fs() will force the commit after everything is
4610 		 * written.
4611 		 */
4612 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4613 			return 0;
4614 
4615 		err = ext4_force_commit(inode->i_sb);
4616 	} else {
4617 		struct ext4_iloc iloc;
4618 
4619 		err = __ext4_get_inode_loc(inode, &iloc, 0);
4620 		if (err)
4621 			return err;
4622 		/*
4623 		 * sync(2) will flush the whole buffer cache. No need to do
4624 		 * it here separately for each inode.
4625 		 */
4626 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4627 			sync_dirty_buffer(iloc.bh);
4628 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4629 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4630 					 "IO error syncing inode");
4631 			err = -EIO;
4632 		}
4633 		brelse(iloc.bh);
4634 	}
4635 	return err;
4636 }
4637 
4638 /*
4639  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4640  * buffers that are attached to a page stradding i_size and are undergoing
4641  * commit. In that case we have to wait for commit to finish and try again.
4642  */
4643 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4644 {
4645 	struct page *page;
4646 	unsigned offset;
4647 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4648 	tid_t commit_tid = 0;
4649 	int ret;
4650 
4651 	offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4652 	/*
4653 	 * All buffers in the last page remain valid? Then there's nothing to
4654 	 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4655 	 * blocksize case
4656 	 */
4657 	if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4658 		return;
4659 	while (1) {
4660 		page = find_lock_page(inode->i_mapping,
4661 				      inode->i_size >> PAGE_CACHE_SHIFT);
4662 		if (!page)
4663 			return;
4664 		ret = __ext4_journalled_invalidatepage(page, offset,
4665 						PAGE_CACHE_SIZE - offset);
4666 		unlock_page(page);
4667 		page_cache_release(page);
4668 		if (ret != -EBUSY)
4669 			return;
4670 		commit_tid = 0;
4671 		read_lock(&journal->j_state_lock);
4672 		if (journal->j_committing_transaction)
4673 			commit_tid = journal->j_committing_transaction->t_tid;
4674 		read_unlock(&journal->j_state_lock);
4675 		if (commit_tid)
4676 			jbd2_log_wait_commit(journal, commit_tid);
4677 	}
4678 }
4679 
4680 /*
4681  * ext4_setattr()
4682  *
4683  * Called from notify_change.
4684  *
4685  * We want to trap VFS attempts to truncate the file as soon as
4686  * possible.  In particular, we want to make sure that when the VFS
4687  * shrinks i_size, we put the inode on the orphan list and modify
4688  * i_disksize immediately, so that during the subsequent flushing of
4689  * dirty pages and freeing of disk blocks, we can guarantee that any
4690  * commit will leave the blocks being flushed in an unused state on
4691  * disk.  (On recovery, the inode will get truncated and the blocks will
4692  * be freed, so we have a strong guarantee that no future commit will
4693  * leave these blocks visible to the user.)
4694  *
4695  * Another thing we have to assure is that if we are in ordered mode
4696  * and inode is still attached to the committing transaction, we must
4697  * we start writeout of all the dirty pages which are being truncated.
4698  * This way we are sure that all the data written in the previous
4699  * transaction are already on disk (truncate waits for pages under
4700  * writeback).
4701  *
4702  * Called with inode->i_mutex down.
4703  */
4704 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4705 {
4706 	struct inode *inode = d_inode(dentry);
4707 	int error, rc = 0;
4708 	int orphan = 0;
4709 	const unsigned int ia_valid = attr->ia_valid;
4710 
4711 	error = inode_change_ok(inode, attr);
4712 	if (error)
4713 		return error;
4714 
4715 	if (is_quota_modification(inode, attr)) {
4716 		error = dquot_initialize(inode);
4717 		if (error)
4718 			return error;
4719 	}
4720 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4721 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4722 		handle_t *handle;
4723 
4724 		/* (user+group)*(old+new) structure, inode write (sb,
4725 		 * inode block, ? - but truncate inode update has it) */
4726 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4727 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4728 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4729 		if (IS_ERR(handle)) {
4730 			error = PTR_ERR(handle);
4731 			goto err_out;
4732 		}
4733 		error = dquot_transfer(inode, attr);
4734 		if (error) {
4735 			ext4_journal_stop(handle);
4736 			return error;
4737 		}
4738 		/* Update corresponding info in inode so that everything is in
4739 		 * one transaction */
4740 		if (attr->ia_valid & ATTR_UID)
4741 			inode->i_uid = attr->ia_uid;
4742 		if (attr->ia_valid & ATTR_GID)
4743 			inode->i_gid = attr->ia_gid;
4744 		error = ext4_mark_inode_dirty(handle, inode);
4745 		ext4_journal_stop(handle);
4746 	}
4747 
4748 	if (attr->ia_valid & ATTR_SIZE) {
4749 		handle_t *handle;
4750 		loff_t oldsize = inode->i_size;
4751 		int shrink = (attr->ia_size <= inode->i_size);
4752 
4753 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4754 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4755 
4756 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
4757 				return -EFBIG;
4758 		}
4759 		if (!S_ISREG(inode->i_mode))
4760 			return -EINVAL;
4761 
4762 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4763 			inode_inc_iversion(inode);
4764 
4765 		if (ext4_should_order_data(inode) &&
4766 		    (attr->ia_size < inode->i_size)) {
4767 			error = ext4_begin_ordered_truncate(inode,
4768 							    attr->ia_size);
4769 			if (error)
4770 				goto err_out;
4771 		}
4772 		if (attr->ia_size != inode->i_size) {
4773 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4774 			if (IS_ERR(handle)) {
4775 				error = PTR_ERR(handle);
4776 				goto err_out;
4777 			}
4778 			if (ext4_handle_valid(handle) && shrink) {
4779 				error = ext4_orphan_add(handle, inode);
4780 				orphan = 1;
4781 			}
4782 			/*
4783 			 * Update c/mtime on truncate up, ext4_truncate() will
4784 			 * update c/mtime in shrink case below
4785 			 */
4786 			if (!shrink) {
4787 				inode->i_mtime = ext4_current_time(inode);
4788 				inode->i_ctime = inode->i_mtime;
4789 			}
4790 			down_write(&EXT4_I(inode)->i_data_sem);
4791 			EXT4_I(inode)->i_disksize = attr->ia_size;
4792 			rc = ext4_mark_inode_dirty(handle, inode);
4793 			if (!error)
4794 				error = rc;
4795 			/*
4796 			 * We have to update i_size under i_data_sem together
4797 			 * with i_disksize to avoid races with writeback code
4798 			 * running ext4_wb_update_i_disksize().
4799 			 */
4800 			if (!error)
4801 				i_size_write(inode, attr->ia_size);
4802 			up_write(&EXT4_I(inode)->i_data_sem);
4803 			ext4_journal_stop(handle);
4804 			if (error) {
4805 				if (orphan)
4806 					ext4_orphan_del(NULL, inode);
4807 				goto err_out;
4808 			}
4809 		}
4810 		if (!shrink)
4811 			pagecache_isize_extended(inode, oldsize, inode->i_size);
4812 
4813 		/*
4814 		 * Blocks are going to be removed from the inode. Wait
4815 		 * for dio in flight.  Temporarily disable
4816 		 * dioread_nolock to prevent livelock.
4817 		 */
4818 		if (orphan) {
4819 			if (!ext4_should_journal_data(inode)) {
4820 				ext4_inode_block_unlocked_dio(inode);
4821 				inode_dio_wait(inode);
4822 				ext4_inode_resume_unlocked_dio(inode);
4823 			} else
4824 				ext4_wait_for_tail_page_commit(inode);
4825 		}
4826 		/*
4827 		 * Truncate pagecache after we've waited for commit
4828 		 * in data=journal mode to make pages freeable.
4829 		 */
4830 		truncate_pagecache(inode, inode->i_size);
4831 		if (shrink)
4832 			ext4_truncate(inode);
4833 	}
4834 
4835 	if (!rc) {
4836 		setattr_copy(inode, attr);
4837 		mark_inode_dirty(inode);
4838 	}
4839 
4840 	/*
4841 	 * If the call to ext4_truncate failed to get a transaction handle at
4842 	 * all, we need to clean up the in-core orphan list manually.
4843 	 */
4844 	if (orphan && inode->i_nlink)
4845 		ext4_orphan_del(NULL, inode);
4846 
4847 	if (!rc && (ia_valid & ATTR_MODE))
4848 		rc = posix_acl_chmod(inode, inode->i_mode);
4849 
4850 err_out:
4851 	ext4_std_error(inode->i_sb, error);
4852 	if (!error)
4853 		error = rc;
4854 	return error;
4855 }
4856 
4857 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4858 		 struct kstat *stat)
4859 {
4860 	struct inode *inode;
4861 	unsigned long long delalloc_blocks;
4862 
4863 	inode = d_inode(dentry);
4864 	generic_fillattr(inode, stat);
4865 
4866 	/*
4867 	 * If there is inline data in the inode, the inode will normally not
4868 	 * have data blocks allocated (it may have an external xattr block).
4869 	 * Report at least one sector for such files, so tools like tar, rsync,
4870 	 * others doen't incorrectly think the file is completely sparse.
4871 	 */
4872 	if (unlikely(ext4_has_inline_data(inode)))
4873 		stat->blocks += (stat->size + 511) >> 9;
4874 
4875 	/*
4876 	 * We can't update i_blocks if the block allocation is delayed
4877 	 * otherwise in the case of system crash before the real block
4878 	 * allocation is done, we will have i_blocks inconsistent with
4879 	 * on-disk file blocks.
4880 	 * We always keep i_blocks updated together with real
4881 	 * allocation. But to not confuse with user, stat
4882 	 * will return the blocks that include the delayed allocation
4883 	 * blocks for this file.
4884 	 */
4885 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4886 				   EXT4_I(inode)->i_reserved_data_blocks);
4887 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4888 	return 0;
4889 }
4890 
4891 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4892 				   int pextents)
4893 {
4894 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4895 		return ext4_ind_trans_blocks(inode, lblocks);
4896 	return ext4_ext_index_trans_blocks(inode, pextents);
4897 }
4898 
4899 /*
4900  * Account for index blocks, block groups bitmaps and block group
4901  * descriptor blocks if modify datablocks and index blocks
4902  * worse case, the indexs blocks spread over different block groups
4903  *
4904  * If datablocks are discontiguous, they are possible to spread over
4905  * different block groups too. If they are contiguous, with flexbg,
4906  * they could still across block group boundary.
4907  *
4908  * Also account for superblock, inode, quota and xattr blocks
4909  */
4910 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4911 				  int pextents)
4912 {
4913 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4914 	int gdpblocks;
4915 	int idxblocks;
4916 	int ret = 0;
4917 
4918 	/*
4919 	 * How many index blocks need to touch to map @lblocks logical blocks
4920 	 * to @pextents physical extents?
4921 	 */
4922 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4923 
4924 	ret = idxblocks;
4925 
4926 	/*
4927 	 * Now let's see how many group bitmaps and group descriptors need
4928 	 * to account
4929 	 */
4930 	groups = idxblocks + pextents;
4931 	gdpblocks = groups;
4932 	if (groups > ngroups)
4933 		groups = ngroups;
4934 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4935 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4936 
4937 	/* bitmaps and block group descriptor blocks */
4938 	ret += groups + gdpblocks;
4939 
4940 	/* Blocks for super block, inode, quota and xattr blocks */
4941 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4942 
4943 	return ret;
4944 }
4945 
4946 /*
4947  * Calculate the total number of credits to reserve to fit
4948  * the modification of a single pages into a single transaction,
4949  * which may include multiple chunks of block allocations.
4950  *
4951  * This could be called via ext4_write_begin()
4952  *
4953  * We need to consider the worse case, when
4954  * one new block per extent.
4955  */
4956 int ext4_writepage_trans_blocks(struct inode *inode)
4957 {
4958 	int bpp = ext4_journal_blocks_per_page(inode);
4959 	int ret;
4960 
4961 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4962 
4963 	/* Account for data blocks for journalled mode */
4964 	if (ext4_should_journal_data(inode))
4965 		ret += bpp;
4966 	return ret;
4967 }
4968 
4969 /*
4970  * Calculate the journal credits for a chunk of data modification.
4971  *
4972  * This is called from DIO, fallocate or whoever calling
4973  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4974  *
4975  * journal buffers for data blocks are not included here, as DIO
4976  * and fallocate do no need to journal data buffers.
4977  */
4978 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4979 {
4980 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
4981 }
4982 
4983 /*
4984  * The caller must have previously called ext4_reserve_inode_write().
4985  * Give this, we know that the caller already has write access to iloc->bh.
4986  */
4987 int ext4_mark_iloc_dirty(handle_t *handle,
4988 			 struct inode *inode, struct ext4_iloc *iloc)
4989 {
4990 	int err = 0;
4991 
4992 	if (IS_I_VERSION(inode))
4993 		inode_inc_iversion(inode);
4994 
4995 	/* the do_update_inode consumes one bh->b_count */
4996 	get_bh(iloc->bh);
4997 
4998 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4999 	err = ext4_do_update_inode(handle, inode, iloc);
5000 	put_bh(iloc->bh);
5001 	return err;
5002 }
5003 
5004 /*
5005  * On success, We end up with an outstanding reference count against
5006  * iloc->bh.  This _must_ be cleaned up later.
5007  */
5008 
5009 int
5010 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5011 			 struct ext4_iloc *iloc)
5012 {
5013 	int err;
5014 
5015 	err = ext4_get_inode_loc(inode, iloc);
5016 	if (!err) {
5017 		BUFFER_TRACE(iloc->bh, "get_write_access");
5018 		err = ext4_journal_get_write_access(handle, iloc->bh);
5019 		if (err) {
5020 			brelse(iloc->bh);
5021 			iloc->bh = NULL;
5022 		}
5023 	}
5024 	ext4_std_error(inode->i_sb, err);
5025 	return err;
5026 }
5027 
5028 /*
5029  * Expand an inode by new_extra_isize bytes.
5030  * Returns 0 on success or negative error number on failure.
5031  */
5032 static int ext4_expand_extra_isize(struct inode *inode,
5033 				   unsigned int new_extra_isize,
5034 				   struct ext4_iloc iloc,
5035 				   handle_t *handle)
5036 {
5037 	struct ext4_inode *raw_inode;
5038 	struct ext4_xattr_ibody_header *header;
5039 
5040 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5041 		return 0;
5042 
5043 	raw_inode = ext4_raw_inode(&iloc);
5044 
5045 	header = IHDR(inode, raw_inode);
5046 
5047 	/* No extended attributes present */
5048 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5049 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5050 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5051 			new_extra_isize);
5052 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5053 		return 0;
5054 	}
5055 
5056 	/* try to expand with EAs present */
5057 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5058 					  raw_inode, handle);
5059 }
5060 
5061 /*
5062  * What we do here is to mark the in-core inode as clean with respect to inode
5063  * dirtiness (it may still be data-dirty).
5064  * This means that the in-core inode may be reaped by prune_icache
5065  * without having to perform any I/O.  This is a very good thing,
5066  * because *any* task may call prune_icache - even ones which
5067  * have a transaction open against a different journal.
5068  *
5069  * Is this cheating?  Not really.  Sure, we haven't written the
5070  * inode out, but prune_icache isn't a user-visible syncing function.
5071  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5072  * we start and wait on commits.
5073  */
5074 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5075 {
5076 	struct ext4_iloc iloc;
5077 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5078 	static unsigned int mnt_count;
5079 	int err, ret;
5080 
5081 	might_sleep();
5082 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5083 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5084 	if (ext4_handle_valid(handle) &&
5085 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5086 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5087 		/*
5088 		 * We need extra buffer credits since we may write into EA block
5089 		 * with this same handle. If journal_extend fails, then it will
5090 		 * only result in a minor loss of functionality for that inode.
5091 		 * If this is felt to be critical, then e2fsck should be run to
5092 		 * force a large enough s_min_extra_isize.
5093 		 */
5094 		if ((jbd2_journal_extend(handle,
5095 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5096 			ret = ext4_expand_extra_isize(inode,
5097 						      sbi->s_want_extra_isize,
5098 						      iloc, handle);
5099 			if (ret) {
5100 				ext4_set_inode_state(inode,
5101 						     EXT4_STATE_NO_EXPAND);
5102 				if (mnt_count !=
5103 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5104 					ext4_warning(inode->i_sb,
5105 					"Unable to expand inode %lu. Delete"
5106 					" some EAs or run e2fsck.",
5107 					inode->i_ino);
5108 					mnt_count =
5109 					  le16_to_cpu(sbi->s_es->s_mnt_count);
5110 				}
5111 			}
5112 		}
5113 	}
5114 	if (!err)
5115 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5116 	return err;
5117 }
5118 
5119 /*
5120  * ext4_dirty_inode() is called from __mark_inode_dirty()
5121  *
5122  * We're really interested in the case where a file is being extended.
5123  * i_size has been changed by generic_commit_write() and we thus need
5124  * to include the updated inode in the current transaction.
5125  *
5126  * Also, dquot_alloc_block() will always dirty the inode when blocks
5127  * are allocated to the file.
5128  *
5129  * If the inode is marked synchronous, we don't honour that here - doing
5130  * so would cause a commit on atime updates, which we don't bother doing.
5131  * We handle synchronous inodes at the highest possible level.
5132  *
5133  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5134  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5135  * to copy into the on-disk inode structure are the timestamp files.
5136  */
5137 void ext4_dirty_inode(struct inode *inode, int flags)
5138 {
5139 	handle_t *handle;
5140 
5141 	if (flags == I_DIRTY_TIME)
5142 		return;
5143 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5144 	if (IS_ERR(handle))
5145 		goto out;
5146 
5147 	ext4_mark_inode_dirty(handle, inode);
5148 
5149 	ext4_journal_stop(handle);
5150 out:
5151 	return;
5152 }
5153 
5154 #if 0
5155 /*
5156  * Bind an inode's backing buffer_head into this transaction, to prevent
5157  * it from being flushed to disk early.  Unlike
5158  * ext4_reserve_inode_write, this leaves behind no bh reference and
5159  * returns no iloc structure, so the caller needs to repeat the iloc
5160  * lookup to mark the inode dirty later.
5161  */
5162 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5163 {
5164 	struct ext4_iloc iloc;
5165 
5166 	int err = 0;
5167 	if (handle) {
5168 		err = ext4_get_inode_loc(inode, &iloc);
5169 		if (!err) {
5170 			BUFFER_TRACE(iloc.bh, "get_write_access");
5171 			err = jbd2_journal_get_write_access(handle, iloc.bh);
5172 			if (!err)
5173 				err = ext4_handle_dirty_metadata(handle,
5174 								 NULL,
5175 								 iloc.bh);
5176 			brelse(iloc.bh);
5177 		}
5178 	}
5179 	ext4_std_error(inode->i_sb, err);
5180 	return err;
5181 }
5182 #endif
5183 
5184 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5185 {
5186 	journal_t *journal;
5187 	handle_t *handle;
5188 	int err;
5189 
5190 	/*
5191 	 * We have to be very careful here: changing a data block's
5192 	 * journaling status dynamically is dangerous.  If we write a
5193 	 * data block to the journal, change the status and then delete
5194 	 * that block, we risk forgetting to revoke the old log record
5195 	 * from the journal and so a subsequent replay can corrupt data.
5196 	 * So, first we make sure that the journal is empty and that
5197 	 * nobody is changing anything.
5198 	 */
5199 
5200 	journal = EXT4_JOURNAL(inode);
5201 	if (!journal)
5202 		return 0;
5203 	if (is_journal_aborted(journal))
5204 		return -EROFS;
5205 	/* We have to allocate physical blocks for delalloc blocks
5206 	 * before flushing journal. otherwise delalloc blocks can not
5207 	 * be allocated any more. even more truncate on delalloc blocks
5208 	 * could trigger BUG by flushing delalloc blocks in journal.
5209 	 * There is no delalloc block in non-journal data mode.
5210 	 */
5211 	if (val && test_opt(inode->i_sb, DELALLOC)) {
5212 		err = ext4_alloc_da_blocks(inode);
5213 		if (err < 0)
5214 			return err;
5215 	}
5216 
5217 	/* Wait for all existing dio workers */
5218 	ext4_inode_block_unlocked_dio(inode);
5219 	inode_dio_wait(inode);
5220 
5221 	jbd2_journal_lock_updates(journal);
5222 
5223 	/*
5224 	 * OK, there are no updates running now, and all cached data is
5225 	 * synced to disk.  We are now in a completely consistent state
5226 	 * which doesn't have anything in the journal, and we know that
5227 	 * no filesystem updates are running, so it is safe to modify
5228 	 * the inode's in-core data-journaling state flag now.
5229 	 */
5230 
5231 	if (val)
5232 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5233 	else {
5234 		err = jbd2_journal_flush(journal);
5235 		if (err < 0) {
5236 			jbd2_journal_unlock_updates(journal);
5237 			ext4_inode_resume_unlocked_dio(inode);
5238 			return err;
5239 		}
5240 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5241 	}
5242 	ext4_set_aops(inode);
5243 
5244 	jbd2_journal_unlock_updates(journal);
5245 	ext4_inode_resume_unlocked_dio(inode);
5246 
5247 	/* Finally we can mark the inode as dirty. */
5248 
5249 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5250 	if (IS_ERR(handle))
5251 		return PTR_ERR(handle);
5252 
5253 	err = ext4_mark_inode_dirty(handle, inode);
5254 	ext4_handle_sync(handle);
5255 	ext4_journal_stop(handle);
5256 	ext4_std_error(inode->i_sb, err);
5257 
5258 	return err;
5259 }
5260 
5261 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5262 {
5263 	return !buffer_mapped(bh);
5264 }
5265 
5266 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5267 {
5268 	struct page *page = vmf->page;
5269 	loff_t size;
5270 	unsigned long len;
5271 	int ret;
5272 	struct file *file = vma->vm_file;
5273 	struct inode *inode = file_inode(file);
5274 	struct address_space *mapping = inode->i_mapping;
5275 	handle_t *handle;
5276 	get_block_t *get_block;
5277 	int retries = 0;
5278 
5279 	sb_start_pagefault(inode->i_sb);
5280 	file_update_time(vma->vm_file);
5281 	/* Delalloc case is easy... */
5282 	if (test_opt(inode->i_sb, DELALLOC) &&
5283 	    !ext4_should_journal_data(inode) &&
5284 	    !ext4_nonda_switch(inode->i_sb)) {
5285 		do {
5286 			ret = block_page_mkwrite(vma, vmf,
5287 						   ext4_da_get_block_prep);
5288 		} while (ret == -ENOSPC &&
5289 		       ext4_should_retry_alloc(inode->i_sb, &retries));
5290 		goto out_ret;
5291 	}
5292 
5293 	lock_page(page);
5294 	size = i_size_read(inode);
5295 	/* Page got truncated from under us? */
5296 	if (page->mapping != mapping || page_offset(page) > size) {
5297 		unlock_page(page);
5298 		ret = VM_FAULT_NOPAGE;
5299 		goto out;
5300 	}
5301 
5302 	if (page->index == size >> PAGE_CACHE_SHIFT)
5303 		len = size & ~PAGE_CACHE_MASK;
5304 	else
5305 		len = PAGE_CACHE_SIZE;
5306 	/*
5307 	 * Return if we have all the buffers mapped. This avoids the need to do
5308 	 * journal_start/journal_stop which can block and take a long time
5309 	 */
5310 	if (page_has_buffers(page)) {
5311 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5312 					    0, len, NULL,
5313 					    ext4_bh_unmapped)) {
5314 			/* Wait so that we don't change page under IO */
5315 			wait_for_stable_page(page);
5316 			ret = VM_FAULT_LOCKED;
5317 			goto out;
5318 		}
5319 	}
5320 	unlock_page(page);
5321 	/* OK, we need to fill the hole... */
5322 	if (ext4_should_dioread_nolock(inode))
5323 		get_block = ext4_get_block_write;
5324 	else
5325 		get_block = ext4_get_block;
5326 retry_alloc:
5327 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5328 				    ext4_writepage_trans_blocks(inode));
5329 	if (IS_ERR(handle)) {
5330 		ret = VM_FAULT_SIGBUS;
5331 		goto out;
5332 	}
5333 	ret = block_page_mkwrite(vma, vmf, get_block);
5334 	if (!ret && ext4_should_journal_data(inode)) {
5335 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5336 			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5337 			unlock_page(page);
5338 			ret = VM_FAULT_SIGBUS;
5339 			ext4_journal_stop(handle);
5340 			goto out;
5341 		}
5342 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5343 	}
5344 	ext4_journal_stop(handle);
5345 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5346 		goto retry_alloc;
5347 out_ret:
5348 	ret = block_page_mkwrite_return(ret);
5349 out:
5350 	sb_end_pagefault(inode->i_sb);
5351 	return ret;
5352 }
5353