1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * 64-bit file support on 64-bit platforms by Jakub Jelinek 16 * (jj@sunsite.ms.mff.cuni.cz) 17 * 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 19 */ 20 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/highuid.h> 24 #include <linux/pagemap.h> 25 #include <linux/quotaops.h> 26 #include <linux/string.h> 27 #include <linux/buffer_head.h> 28 #include <linux/writeback.h> 29 #include <linux/pagevec.h> 30 #include <linux/mpage.h> 31 #include <linux/namei.h> 32 #include <linux/uio.h> 33 #include <linux/bio.h> 34 #include <linux/workqueue.h> 35 #include <linux/kernel.h> 36 #include <linux/printk.h> 37 #include <linux/slab.h> 38 #include <linux/bitops.h> 39 40 #include "ext4_jbd2.h" 41 #include "xattr.h" 42 #include "acl.h" 43 #include "truncate.h" 44 45 #include <trace/events/ext4.h> 46 47 #define MPAGE_DA_EXTENT_TAIL 0x01 48 49 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 50 struct ext4_inode_info *ei) 51 { 52 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 53 __u16 csum_lo; 54 __u16 csum_hi = 0; 55 __u32 csum; 56 57 csum_lo = le16_to_cpu(raw->i_checksum_lo); 58 raw->i_checksum_lo = 0; 59 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 60 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 61 csum_hi = le16_to_cpu(raw->i_checksum_hi); 62 raw->i_checksum_hi = 0; 63 } 64 65 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, 66 EXT4_INODE_SIZE(inode->i_sb)); 67 68 raw->i_checksum_lo = cpu_to_le16(csum_lo); 69 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 70 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 71 raw->i_checksum_hi = cpu_to_le16(csum_hi); 72 73 return csum; 74 } 75 76 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 77 struct ext4_inode_info *ei) 78 { 79 __u32 provided, calculated; 80 81 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 82 cpu_to_le32(EXT4_OS_LINUX) || 83 !ext4_has_metadata_csum(inode->i_sb)) 84 return 1; 85 86 provided = le16_to_cpu(raw->i_checksum_lo); 87 calculated = ext4_inode_csum(inode, raw, ei); 88 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 89 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 90 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 91 else 92 calculated &= 0xFFFF; 93 94 return provided == calculated; 95 } 96 97 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 98 struct ext4_inode_info *ei) 99 { 100 __u32 csum; 101 102 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 103 cpu_to_le32(EXT4_OS_LINUX) || 104 !ext4_has_metadata_csum(inode->i_sb)) 105 return; 106 107 csum = ext4_inode_csum(inode, raw, ei); 108 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 109 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 110 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 111 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 112 } 113 114 static inline int ext4_begin_ordered_truncate(struct inode *inode, 115 loff_t new_size) 116 { 117 trace_ext4_begin_ordered_truncate(inode, new_size); 118 /* 119 * If jinode is zero, then we never opened the file for 120 * writing, so there's no need to call 121 * jbd2_journal_begin_ordered_truncate() since there's no 122 * outstanding writes we need to flush. 123 */ 124 if (!EXT4_I(inode)->jinode) 125 return 0; 126 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 127 EXT4_I(inode)->jinode, 128 new_size); 129 } 130 131 static void ext4_invalidatepage(struct page *page, unsigned int offset, 132 unsigned int length); 133 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 134 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 135 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 136 int pextents); 137 138 /* 139 * Test whether an inode is a fast symlink. 140 */ 141 int ext4_inode_is_fast_symlink(struct inode *inode) 142 { 143 int ea_blocks = EXT4_I(inode)->i_file_acl ? 144 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 145 146 if (ext4_has_inline_data(inode)) 147 return 0; 148 149 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 150 } 151 152 /* 153 * Restart the transaction associated with *handle. This does a commit, 154 * so before we call here everything must be consistently dirtied against 155 * this transaction. 156 */ 157 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 158 int nblocks) 159 { 160 int ret; 161 162 /* 163 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 164 * moment, get_block can be called only for blocks inside i_size since 165 * page cache has been already dropped and writes are blocked by 166 * i_mutex. So we can safely drop the i_data_sem here. 167 */ 168 BUG_ON(EXT4_JOURNAL(inode) == NULL); 169 jbd_debug(2, "restarting handle %p\n", handle); 170 up_write(&EXT4_I(inode)->i_data_sem); 171 ret = ext4_journal_restart(handle, nblocks); 172 down_write(&EXT4_I(inode)->i_data_sem); 173 ext4_discard_preallocations(inode); 174 175 return ret; 176 } 177 178 /* 179 * Called at the last iput() if i_nlink is zero. 180 */ 181 void ext4_evict_inode(struct inode *inode) 182 { 183 handle_t *handle; 184 int err; 185 186 trace_ext4_evict_inode(inode); 187 188 if (inode->i_nlink) { 189 /* 190 * When journalling data dirty buffers are tracked only in the 191 * journal. So although mm thinks everything is clean and 192 * ready for reaping the inode might still have some pages to 193 * write in the running transaction or waiting to be 194 * checkpointed. Thus calling jbd2_journal_invalidatepage() 195 * (via truncate_inode_pages()) to discard these buffers can 196 * cause data loss. Also even if we did not discard these 197 * buffers, we would have no way to find them after the inode 198 * is reaped and thus user could see stale data if he tries to 199 * read them before the transaction is checkpointed. So be 200 * careful and force everything to disk here... We use 201 * ei->i_datasync_tid to store the newest transaction 202 * containing inode's data. 203 * 204 * Note that directories do not have this problem because they 205 * don't use page cache. 206 */ 207 if (ext4_should_journal_data(inode) && 208 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 209 inode->i_ino != EXT4_JOURNAL_INO) { 210 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 211 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 212 213 jbd2_complete_transaction(journal, commit_tid); 214 filemap_write_and_wait(&inode->i_data); 215 } 216 truncate_inode_pages_final(&inode->i_data); 217 218 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count)); 219 goto no_delete; 220 } 221 222 if (is_bad_inode(inode)) 223 goto no_delete; 224 dquot_initialize(inode); 225 226 if (ext4_should_order_data(inode)) 227 ext4_begin_ordered_truncate(inode, 0); 228 truncate_inode_pages_final(&inode->i_data); 229 230 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count)); 231 232 /* 233 * Protect us against freezing - iput() caller didn't have to have any 234 * protection against it 235 */ 236 sb_start_intwrite(inode->i_sb); 237 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 238 ext4_blocks_for_truncate(inode)+3); 239 if (IS_ERR(handle)) { 240 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 241 /* 242 * If we're going to skip the normal cleanup, we still need to 243 * make sure that the in-core orphan linked list is properly 244 * cleaned up. 245 */ 246 ext4_orphan_del(NULL, inode); 247 sb_end_intwrite(inode->i_sb); 248 goto no_delete; 249 } 250 251 if (IS_SYNC(inode)) 252 ext4_handle_sync(handle); 253 inode->i_size = 0; 254 err = ext4_mark_inode_dirty(handle, inode); 255 if (err) { 256 ext4_warning(inode->i_sb, 257 "couldn't mark inode dirty (err %d)", err); 258 goto stop_handle; 259 } 260 if (inode->i_blocks) 261 ext4_truncate(inode); 262 263 /* 264 * ext4_ext_truncate() doesn't reserve any slop when it 265 * restarts journal transactions; therefore there may not be 266 * enough credits left in the handle to remove the inode from 267 * the orphan list and set the dtime field. 268 */ 269 if (!ext4_handle_has_enough_credits(handle, 3)) { 270 err = ext4_journal_extend(handle, 3); 271 if (err > 0) 272 err = ext4_journal_restart(handle, 3); 273 if (err != 0) { 274 ext4_warning(inode->i_sb, 275 "couldn't extend journal (err %d)", err); 276 stop_handle: 277 ext4_journal_stop(handle); 278 ext4_orphan_del(NULL, inode); 279 sb_end_intwrite(inode->i_sb); 280 goto no_delete; 281 } 282 } 283 284 /* 285 * Kill off the orphan record which ext4_truncate created. 286 * AKPM: I think this can be inside the above `if'. 287 * Note that ext4_orphan_del() has to be able to cope with the 288 * deletion of a non-existent orphan - this is because we don't 289 * know if ext4_truncate() actually created an orphan record. 290 * (Well, we could do this if we need to, but heck - it works) 291 */ 292 ext4_orphan_del(handle, inode); 293 EXT4_I(inode)->i_dtime = get_seconds(); 294 295 /* 296 * One subtle ordering requirement: if anything has gone wrong 297 * (transaction abort, IO errors, whatever), then we can still 298 * do these next steps (the fs will already have been marked as 299 * having errors), but we can't free the inode if the mark_dirty 300 * fails. 301 */ 302 if (ext4_mark_inode_dirty(handle, inode)) 303 /* If that failed, just do the required in-core inode clear. */ 304 ext4_clear_inode(inode); 305 else 306 ext4_free_inode(handle, inode); 307 ext4_journal_stop(handle); 308 sb_end_intwrite(inode->i_sb); 309 return; 310 no_delete: 311 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 312 } 313 314 #ifdef CONFIG_QUOTA 315 qsize_t *ext4_get_reserved_space(struct inode *inode) 316 { 317 return &EXT4_I(inode)->i_reserved_quota; 318 } 319 #endif 320 321 /* 322 * Called with i_data_sem down, which is important since we can call 323 * ext4_discard_preallocations() from here. 324 */ 325 void ext4_da_update_reserve_space(struct inode *inode, 326 int used, int quota_claim) 327 { 328 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 329 struct ext4_inode_info *ei = EXT4_I(inode); 330 331 spin_lock(&ei->i_block_reservation_lock); 332 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 333 if (unlikely(used > ei->i_reserved_data_blocks)) { 334 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 335 "with only %d reserved data blocks", 336 __func__, inode->i_ino, used, 337 ei->i_reserved_data_blocks); 338 WARN_ON(1); 339 used = ei->i_reserved_data_blocks; 340 } 341 342 /* Update per-inode reservations */ 343 ei->i_reserved_data_blocks -= used; 344 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 345 346 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 347 348 /* Update quota subsystem for data blocks */ 349 if (quota_claim) 350 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 351 else { 352 /* 353 * We did fallocate with an offset that is already delayed 354 * allocated. So on delayed allocated writeback we should 355 * not re-claim the quota for fallocated blocks. 356 */ 357 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 358 } 359 360 /* 361 * If we have done all the pending block allocations and if 362 * there aren't any writers on the inode, we can discard the 363 * inode's preallocations. 364 */ 365 if ((ei->i_reserved_data_blocks == 0) && 366 (atomic_read(&inode->i_writecount) == 0)) 367 ext4_discard_preallocations(inode); 368 } 369 370 static int __check_block_validity(struct inode *inode, const char *func, 371 unsigned int line, 372 struct ext4_map_blocks *map) 373 { 374 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 375 map->m_len)) { 376 ext4_error_inode(inode, func, line, map->m_pblk, 377 "lblock %lu mapped to illegal pblock " 378 "(length %d)", (unsigned long) map->m_lblk, 379 map->m_len); 380 return -EIO; 381 } 382 return 0; 383 } 384 385 #define check_block_validity(inode, map) \ 386 __check_block_validity((inode), __func__, __LINE__, (map)) 387 388 #ifdef ES_AGGRESSIVE_TEST 389 static void ext4_map_blocks_es_recheck(handle_t *handle, 390 struct inode *inode, 391 struct ext4_map_blocks *es_map, 392 struct ext4_map_blocks *map, 393 int flags) 394 { 395 int retval; 396 397 map->m_flags = 0; 398 /* 399 * There is a race window that the result is not the same. 400 * e.g. xfstests #223 when dioread_nolock enables. The reason 401 * is that we lookup a block mapping in extent status tree with 402 * out taking i_data_sem. So at the time the unwritten extent 403 * could be converted. 404 */ 405 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 406 down_read(&EXT4_I(inode)->i_data_sem); 407 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 408 retval = ext4_ext_map_blocks(handle, inode, map, flags & 409 EXT4_GET_BLOCKS_KEEP_SIZE); 410 } else { 411 retval = ext4_ind_map_blocks(handle, inode, map, flags & 412 EXT4_GET_BLOCKS_KEEP_SIZE); 413 } 414 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 415 up_read((&EXT4_I(inode)->i_data_sem)); 416 417 /* 418 * We don't check m_len because extent will be collpased in status 419 * tree. So the m_len might not equal. 420 */ 421 if (es_map->m_lblk != map->m_lblk || 422 es_map->m_flags != map->m_flags || 423 es_map->m_pblk != map->m_pblk) { 424 printk("ES cache assertion failed for inode: %lu " 425 "es_cached ex [%d/%d/%llu/%x] != " 426 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 427 inode->i_ino, es_map->m_lblk, es_map->m_len, 428 es_map->m_pblk, es_map->m_flags, map->m_lblk, 429 map->m_len, map->m_pblk, map->m_flags, 430 retval, flags); 431 } 432 } 433 #endif /* ES_AGGRESSIVE_TEST */ 434 435 /* 436 * The ext4_map_blocks() function tries to look up the requested blocks, 437 * and returns if the blocks are already mapped. 438 * 439 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 440 * and store the allocated blocks in the result buffer head and mark it 441 * mapped. 442 * 443 * If file type is extents based, it will call ext4_ext_map_blocks(), 444 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 445 * based files 446 * 447 * On success, it returns the number of blocks being mapped or allocated. 448 * if create==0 and the blocks are pre-allocated and unwritten block, 449 * the result buffer head is unmapped. If the create ==1, it will make sure 450 * the buffer head is mapped. 451 * 452 * It returns 0 if plain look up failed (blocks have not been allocated), in 453 * that case, buffer head is unmapped 454 * 455 * It returns the error in case of allocation failure. 456 */ 457 int ext4_map_blocks(handle_t *handle, struct inode *inode, 458 struct ext4_map_blocks *map, int flags) 459 { 460 struct extent_status es; 461 int retval; 462 int ret = 0; 463 #ifdef ES_AGGRESSIVE_TEST 464 struct ext4_map_blocks orig_map; 465 466 memcpy(&orig_map, map, sizeof(*map)); 467 #endif 468 469 map->m_flags = 0; 470 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 471 "logical block %lu\n", inode->i_ino, flags, map->m_len, 472 (unsigned long) map->m_lblk); 473 474 /* 475 * ext4_map_blocks returns an int, and m_len is an unsigned int 476 */ 477 if (unlikely(map->m_len > INT_MAX)) 478 map->m_len = INT_MAX; 479 480 /* We can handle the block number less than EXT_MAX_BLOCKS */ 481 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 482 return -EIO; 483 484 /* Lookup extent status tree firstly */ 485 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 486 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 487 map->m_pblk = ext4_es_pblock(&es) + 488 map->m_lblk - es.es_lblk; 489 map->m_flags |= ext4_es_is_written(&es) ? 490 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 491 retval = es.es_len - (map->m_lblk - es.es_lblk); 492 if (retval > map->m_len) 493 retval = map->m_len; 494 map->m_len = retval; 495 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 496 retval = 0; 497 } else { 498 BUG_ON(1); 499 } 500 #ifdef ES_AGGRESSIVE_TEST 501 ext4_map_blocks_es_recheck(handle, inode, map, 502 &orig_map, flags); 503 #endif 504 goto found; 505 } 506 507 /* 508 * Try to see if we can get the block without requesting a new 509 * file system block. 510 */ 511 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 512 down_read(&EXT4_I(inode)->i_data_sem); 513 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 514 retval = ext4_ext_map_blocks(handle, inode, map, flags & 515 EXT4_GET_BLOCKS_KEEP_SIZE); 516 } else { 517 retval = ext4_ind_map_blocks(handle, inode, map, flags & 518 EXT4_GET_BLOCKS_KEEP_SIZE); 519 } 520 if (retval > 0) { 521 unsigned int status; 522 523 if (unlikely(retval != map->m_len)) { 524 ext4_warning(inode->i_sb, 525 "ES len assertion failed for inode " 526 "%lu: retval %d != map->m_len %d", 527 inode->i_ino, retval, map->m_len); 528 WARN_ON(1); 529 } 530 531 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 532 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 533 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 534 !(status & EXTENT_STATUS_WRITTEN) && 535 ext4_find_delalloc_range(inode, map->m_lblk, 536 map->m_lblk + map->m_len - 1)) 537 status |= EXTENT_STATUS_DELAYED; 538 ret = ext4_es_insert_extent(inode, map->m_lblk, 539 map->m_len, map->m_pblk, status); 540 if (ret < 0) 541 retval = ret; 542 } 543 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 544 up_read((&EXT4_I(inode)->i_data_sem)); 545 546 found: 547 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 548 ret = check_block_validity(inode, map); 549 if (ret != 0) 550 return ret; 551 } 552 553 /* If it is only a block(s) look up */ 554 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 555 return retval; 556 557 /* 558 * Returns if the blocks have already allocated 559 * 560 * Note that if blocks have been preallocated 561 * ext4_ext_get_block() returns the create = 0 562 * with buffer head unmapped. 563 */ 564 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 565 /* 566 * If we need to convert extent to unwritten 567 * we continue and do the actual work in 568 * ext4_ext_map_blocks() 569 */ 570 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 571 return retval; 572 573 /* 574 * Here we clear m_flags because after allocating an new extent, 575 * it will be set again. 576 */ 577 map->m_flags &= ~EXT4_MAP_FLAGS; 578 579 /* 580 * New blocks allocate and/or writing to unwritten extent 581 * will possibly result in updating i_data, so we take 582 * the write lock of i_data_sem, and call get_block() 583 * with create == 1 flag. 584 */ 585 down_write(&EXT4_I(inode)->i_data_sem); 586 587 /* 588 * We need to check for EXT4 here because migrate 589 * could have changed the inode type in between 590 */ 591 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 592 retval = ext4_ext_map_blocks(handle, inode, map, flags); 593 } else { 594 retval = ext4_ind_map_blocks(handle, inode, map, flags); 595 596 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 597 /* 598 * We allocated new blocks which will result in 599 * i_data's format changing. Force the migrate 600 * to fail by clearing migrate flags 601 */ 602 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 603 } 604 605 /* 606 * Update reserved blocks/metadata blocks after successful 607 * block allocation which had been deferred till now. We don't 608 * support fallocate for non extent files. So we can update 609 * reserve space here. 610 */ 611 if ((retval > 0) && 612 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 613 ext4_da_update_reserve_space(inode, retval, 1); 614 } 615 616 if (retval > 0) { 617 unsigned int status; 618 619 if (unlikely(retval != map->m_len)) { 620 ext4_warning(inode->i_sb, 621 "ES len assertion failed for inode " 622 "%lu: retval %d != map->m_len %d", 623 inode->i_ino, retval, map->m_len); 624 WARN_ON(1); 625 } 626 627 /* 628 * If the extent has been zeroed out, we don't need to update 629 * extent status tree. 630 */ 631 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 632 ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 633 if (ext4_es_is_written(&es)) 634 goto has_zeroout; 635 } 636 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 637 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 638 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 639 !(status & EXTENT_STATUS_WRITTEN) && 640 ext4_find_delalloc_range(inode, map->m_lblk, 641 map->m_lblk + map->m_len - 1)) 642 status |= EXTENT_STATUS_DELAYED; 643 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 644 map->m_pblk, status); 645 if (ret < 0) 646 retval = ret; 647 } 648 649 has_zeroout: 650 up_write((&EXT4_I(inode)->i_data_sem)); 651 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 652 ret = check_block_validity(inode, map); 653 if (ret != 0) 654 return ret; 655 } 656 return retval; 657 } 658 659 static void ext4_end_io_unwritten(struct buffer_head *bh, int uptodate) 660 { 661 struct inode *inode = bh->b_assoc_map->host; 662 /* XXX: breaks on 32-bit > 16GB. Is that even supported? */ 663 loff_t offset = (loff_t)(uintptr_t)bh->b_private << inode->i_blkbits; 664 int err; 665 if (!uptodate) 666 return; 667 WARN_ON(!buffer_unwritten(bh)); 668 err = ext4_convert_unwritten_extents(NULL, inode, offset, bh->b_size); 669 } 670 671 /* Maximum number of blocks we map for direct IO at once. */ 672 #define DIO_MAX_BLOCKS 4096 673 674 static int _ext4_get_block(struct inode *inode, sector_t iblock, 675 struct buffer_head *bh, int flags) 676 { 677 handle_t *handle = ext4_journal_current_handle(); 678 struct ext4_map_blocks map; 679 int ret = 0, started = 0; 680 int dio_credits; 681 682 if (ext4_has_inline_data(inode)) 683 return -ERANGE; 684 685 map.m_lblk = iblock; 686 map.m_len = bh->b_size >> inode->i_blkbits; 687 688 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) { 689 /* Direct IO write... */ 690 if (map.m_len > DIO_MAX_BLOCKS) 691 map.m_len = DIO_MAX_BLOCKS; 692 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 693 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 694 dio_credits); 695 if (IS_ERR(handle)) { 696 ret = PTR_ERR(handle); 697 return ret; 698 } 699 started = 1; 700 } 701 702 ret = ext4_map_blocks(handle, inode, &map, flags); 703 if (ret > 0) { 704 ext4_io_end_t *io_end = ext4_inode_aio(inode); 705 706 map_bh(bh, inode->i_sb, map.m_pblk); 707 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 708 if (IS_DAX(inode) && buffer_unwritten(bh) && !io_end) { 709 bh->b_assoc_map = inode->i_mapping; 710 bh->b_private = (void *)(unsigned long)iblock; 711 bh->b_end_io = ext4_end_io_unwritten; 712 } 713 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN) 714 set_buffer_defer_completion(bh); 715 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 716 ret = 0; 717 } 718 if (started) 719 ext4_journal_stop(handle); 720 return ret; 721 } 722 723 int ext4_get_block(struct inode *inode, sector_t iblock, 724 struct buffer_head *bh, int create) 725 { 726 return _ext4_get_block(inode, iblock, bh, 727 create ? EXT4_GET_BLOCKS_CREATE : 0); 728 } 729 730 /* 731 * `handle' can be NULL if create is zero 732 */ 733 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 734 ext4_lblk_t block, int create) 735 { 736 struct ext4_map_blocks map; 737 struct buffer_head *bh; 738 int err; 739 740 J_ASSERT(handle != NULL || create == 0); 741 742 map.m_lblk = block; 743 map.m_len = 1; 744 err = ext4_map_blocks(handle, inode, &map, 745 create ? EXT4_GET_BLOCKS_CREATE : 0); 746 747 if (err == 0) 748 return create ? ERR_PTR(-ENOSPC) : NULL; 749 if (err < 0) 750 return ERR_PTR(err); 751 752 bh = sb_getblk(inode->i_sb, map.m_pblk); 753 if (unlikely(!bh)) 754 return ERR_PTR(-ENOMEM); 755 if (map.m_flags & EXT4_MAP_NEW) { 756 J_ASSERT(create != 0); 757 J_ASSERT(handle != NULL); 758 759 /* 760 * Now that we do not always journal data, we should 761 * keep in mind whether this should always journal the 762 * new buffer as metadata. For now, regular file 763 * writes use ext4_get_block instead, so it's not a 764 * problem. 765 */ 766 lock_buffer(bh); 767 BUFFER_TRACE(bh, "call get_create_access"); 768 err = ext4_journal_get_create_access(handle, bh); 769 if (unlikely(err)) { 770 unlock_buffer(bh); 771 goto errout; 772 } 773 if (!buffer_uptodate(bh)) { 774 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 775 set_buffer_uptodate(bh); 776 } 777 unlock_buffer(bh); 778 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 779 err = ext4_handle_dirty_metadata(handle, inode, bh); 780 if (unlikely(err)) 781 goto errout; 782 } else 783 BUFFER_TRACE(bh, "not a new buffer"); 784 return bh; 785 errout: 786 brelse(bh); 787 return ERR_PTR(err); 788 } 789 790 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 791 ext4_lblk_t block, int create) 792 { 793 struct buffer_head *bh; 794 795 bh = ext4_getblk(handle, inode, block, create); 796 if (IS_ERR(bh)) 797 return bh; 798 if (!bh || buffer_uptodate(bh)) 799 return bh; 800 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh); 801 wait_on_buffer(bh); 802 if (buffer_uptodate(bh)) 803 return bh; 804 put_bh(bh); 805 return ERR_PTR(-EIO); 806 } 807 808 int ext4_walk_page_buffers(handle_t *handle, 809 struct buffer_head *head, 810 unsigned from, 811 unsigned to, 812 int *partial, 813 int (*fn)(handle_t *handle, 814 struct buffer_head *bh)) 815 { 816 struct buffer_head *bh; 817 unsigned block_start, block_end; 818 unsigned blocksize = head->b_size; 819 int err, ret = 0; 820 struct buffer_head *next; 821 822 for (bh = head, block_start = 0; 823 ret == 0 && (bh != head || !block_start); 824 block_start = block_end, bh = next) { 825 next = bh->b_this_page; 826 block_end = block_start + blocksize; 827 if (block_end <= from || block_start >= to) { 828 if (partial && !buffer_uptodate(bh)) 829 *partial = 1; 830 continue; 831 } 832 err = (*fn)(handle, bh); 833 if (!ret) 834 ret = err; 835 } 836 return ret; 837 } 838 839 /* 840 * To preserve ordering, it is essential that the hole instantiation and 841 * the data write be encapsulated in a single transaction. We cannot 842 * close off a transaction and start a new one between the ext4_get_block() 843 * and the commit_write(). So doing the jbd2_journal_start at the start of 844 * prepare_write() is the right place. 845 * 846 * Also, this function can nest inside ext4_writepage(). In that case, we 847 * *know* that ext4_writepage() has generated enough buffer credits to do the 848 * whole page. So we won't block on the journal in that case, which is good, 849 * because the caller may be PF_MEMALLOC. 850 * 851 * By accident, ext4 can be reentered when a transaction is open via 852 * quota file writes. If we were to commit the transaction while thus 853 * reentered, there can be a deadlock - we would be holding a quota 854 * lock, and the commit would never complete if another thread had a 855 * transaction open and was blocking on the quota lock - a ranking 856 * violation. 857 * 858 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 859 * will _not_ run commit under these circumstances because handle->h_ref 860 * is elevated. We'll still have enough credits for the tiny quotafile 861 * write. 862 */ 863 int do_journal_get_write_access(handle_t *handle, 864 struct buffer_head *bh) 865 { 866 int dirty = buffer_dirty(bh); 867 int ret; 868 869 if (!buffer_mapped(bh) || buffer_freed(bh)) 870 return 0; 871 /* 872 * __block_write_begin() could have dirtied some buffers. Clean 873 * the dirty bit as jbd2_journal_get_write_access() could complain 874 * otherwise about fs integrity issues. Setting of the dirty bit 875 * by __block_write_begin() isn't a real problem here as we clear 876 * the bit before releasing a page lock and thus writeback cannot 877 * ever write the buffer. 878 */ 879 if (dirty) 880 clear_buffer_dirty(bh); 881 BUFFER_TRACE(bh, "get write access"); 882 ret = ext4_journal_get_write_access(handle, bh); 883 if (!ret && dirty) 884 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 885 return ret; 886 } 887 888 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 889 struct buffer_head *bh_result, int create); 890 891 #ifdef CONFIG_EXT4_FS_ENCRYPTION 892 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len, 893 get_block_t *get_block) 894 { 895 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 896 unsigned to = from + len; 897 struct inode *inode = page->mapping->host; 898 unsigned block_start, block_end; 899 sector_t block; 900 int err = 0; 901 unsigned blocksize = inode->i_sb->s_blocksize; 902 unsigned bbits; 903 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait; 904 bool decrypt = false; 905 906 BUG_ON(!PageLocked(page)); 907 BUG_ON(from > PAGE_CACHE_SIZE); 908 BUG_ON(to > PAGE_CACHE_SIZE); 909 BUG_ON(from > to); 910 911 if (!page_has_buffers(page)) 912 create_empty_buffers(page, blocksize, 0); 913 head = page_buffers(page); 914 bbits = ilog2(blocksize); 915 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 916 917 for (bh = head, block_start = 0; bh != head || !block_start; 918 block++, block_start = block_end, bh = bh->b_this_page) { 919 block_end = block_start + blocksize; 920 if (block_end <= from || block_start >= to) { 921 if (PageUptodate(page)) { 922 if (!buffer_uptodate(bh)) 923 set_buffer_uptodate(bh); 924 } 925 continue; 926 } 927 if (buffer_new(bh)) 928 clear_buffer_new(bh); 929 if (!buffer_mapped(bh)) { 930 WARN_ON(bh->b_size != blocksize); 931 err = get_block(inode, block, bh, 1); 932 if (err) 933 break; 934 if (buffer_new(bh)) { 935 unmap_underlying_metadata(bh->b_bdev, 936 bh->b_blocknr); 937 if (PageUptodate(page)) { 938 clear_buffer_new(bh); 939 set_buffer_uptodate(bh); 940 mark_buffer_dirty(bh); 941 continue; 942 } 943 if (block_end > to || block_start < from) 944 zero_user_segments(page, to, block_end, 945 block_start, from); 946 continue; 947 } 948 } 949 if (PageUptodate(page)) { 950 if (!buffer_uptodate(bh)) 951 set_buffer_uptodate(bh); 952 continue; 953 } 954 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 955 !buffer_unwritten(bh) && 956 (block_start < from || block_end > to)) { 957 ll_rw_block(READ, 1, &bh); 958 *wait_bh++ = bh; 959 decrypt = ext4_encrypted_inode(inode) && 960 S_ISREG(inode->i_mode); 961 } 962 } 963 /* 964 * If we issued read requests, let them complete. 965 */ 966 while (wait_bh > wait) { 967 wait_on_buffer(*--wait_bh); 968 if (!buffer_uptodate(*wait_bh)) 969 err = -EIO; 970 } 971 if (unlikely(err)) 972 page_zero_new_buffers(page, from, to); 973 else if (decrypt) 974 err = ext4_decrypt_one(inode, page); 975 return err; 976 } 977 #endif 978 979 static int ext4_write_begin(struct file *file, struct address_space *mapping, 980 loff_t pos, unsigned len, unsigned flags, 981 struct page **pagep, void **fsdata) 982 { 983 struct inode *inode = mapping->host; 984 int ret, needed_blocks; 985 handle_t *handle; 986 int retries = 0; 987 struct page *page; 988 pgoff_t index; 989 unsigned from, to; 990 991 trace_ext4_write_begin(inode, pos, len, flags); 992 /* 993 * Reserve one block more for addition to orphan list in case 994 * we allocate blocks but write fails for some reason 995 */ 996 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 997 index = pos >> PAGE_CACHE_SHIFT; 998 from = pos & (PAGE_CACHE_SIZE - 1); 999 to = from + len; 1000 1001 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1002 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1003 flags, pagep); 1004 if (ret < 0) 1005 return ret; 1006 if (ret == 1) 1007 return 0; 1008 } 1009 1010 /* 1011 * grab_cache_page_write_begin() can take a long time if the 1012 * system is thrashing due to memory pressure, or if the page 1013 * is being written back. So grab it first before we start 1014 * the transaction handle. This also allows us to allocate 1015 * the page (if needed) without using GFP_NOFS. 1016 */ 1017 retry_grab: 1018 page = grab_cache_page_write_begin(mapping, index, flags); 1019 if (!page) 1020 return -ENOMEM; 1021 unlock_page(page); 1022 1023 retry_journal: 1024 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1025 if (IS_ERR(handle)) { 1026 page_cache_release(page); 1027 return PTR_ERR(handle); 1028 } 1029 1030 lock_page(page); 1031 if (page->mapping != mapping) { 1032 /* The page got truncated from under us */ 1033 unlock_page(page); 1034 page_cache_release(page); 1035 ext4_journal_stop(handle); 1036 goto retry_grab; 1037 } 1038 /* In case writeback began while the page was unlocked */ 1039 wait_for_stable_page(page); 1040 1041 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1042 if (ext4_should_dioread_nolock(inode)) 1043 ret = ext4_block_write_begin(page, pos, len, 1044 ext4_get_block_write); 1045 else 1046 ret = ext4_block_write_begin(page, pos, len, 1047 ext4_get_block); 1048 #else 1049 if (ext4_should_dioread_nolock(inode)) 1050 ret = __block_write_begin(page, pos, len, ext4_get_block_write); 1051 else 1052 ret = __block_write_begin(page, pos, len, ext4_get_block); 1053 #endif 1054 if (!ret && ext4_should_journal_data(inode)) { 1055 ret = ext4_walk_page_buffers(handle, page_buffers(page), 1056 from, to, NULL, 1057 do_journal_get_write_access); 1058 } 1059 1060 if (ret) { 1061 unlock_page(page); 1062 /* 1063 * __block_write_begin may have instantiated a few blocks 1064 * outside i_size. Trim these off again. Don't need 1065 * i_size_read because we hold i_mutex. 1066 * 1067 * Add inode to orphan list in case we crash before 1068 * truncate finishes 1069 */ 1070 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1071 ext4_orphan_add(handle, inode); 1072 1073 ext4_journal_stop(handle); 1074 if (pos + len > inode->i_size) { 1075 ext4_truncate_failed_write(inode); 1076 /* 1077 * If truncate failed early the inode might 1078 * still be on the orphan list; we need to 1079 * make sure the inode is removed from the 1080 * orphan list in that case. 1081 */ 1082 if (inode->i_nlink) 1083 ext4_orphan_del(NULL, inode); 1084 } 1085 1086 if (ret == -ENOSPC && 1087 ext4_should_retry_alloc(inode->i_sb, &retries)) 1088 goto retry_journal; 1089 page_cache_release(page); 1090 return ret; 1091 } 1092 *pagep = page; 1093 return ret; 1094 } 1095 1096 /* For write_end() in data=journal mode */ 1097 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1098 { 1099 int ret; 1100 if (!buffer_mapped(bh) || buffer_freed(bh)) 1101 return 0; 1102 set_buffer_uptodate(bh); 1103 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1104 clear_buffer_meta(bh); 1105 clear_buffer_prio(bh); 1106 return ret; 1107 } 1108 1109 /* 1110 * We need to pick up the new inode size which generic_commit_write gave us 1111 * `file' can be NULL - eg, when called from page_symlink(). 1112 * 1113 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1114 * buffers are managed internally. 1115 */ 1116 static int ext4_write_end(struct file *file, 1117 struct address_space *mapping, 1118 loff_t pos, unsigned len, unsigned copied, 1119 struct page *page, void *fsdata) 1120 { 1121 handle_t *handle = ext4_journal_current_handle(); 1122 struct inode *inode = mapping->host; 1123 loff_t old_size = inode->i_size; 1124 int ret = 0, ret2; 1125 int i_size_changed = 0; 1126 1127 trace_ext4_write_end(inode, pos, len, copied); 1128 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) { 1129 ret = ext4_jbd2_file_inode(handle, inode); 1130 if (ret) { 1131 unlock_page(page); 1132 page_cache_release(page); 1133 goto errout; 1134 } 1135 } 1136 1137 if (ext4_has_inline_data(inode)) { 1138 ret = ext4_write_inline_data_end(inode, pos, len, 1139 copied, page); 1140 if (ret < 0) 1141 goto errout; 1142 copied = ret; 1143 } else 1144 copied = block_write_end(file, mapping, pos, 1145 len, copied, page, fsdata); 1146 /* 1147 * it's important to update i_size while still holding page lock: 1148 * page writeout could otherwise come in and zero beyond i_size. 1149 */ 1150 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1151 unlock_page(page); 1152 page_cache_release(page); 1153 1154 if (old_size < pos) 1155 pagecache_isize_extended(inode, old_size, pos); 1156 /* 1157 * Don't mark the inode dirty under page lock. First, it unnecessarily 1158 * makes the holding time of page lock longer. Second, it forces lock 1159 * ordering of page lock and transaction start for journaling 1160 * filesystems. 1161 */ 1162 if (i_size_changed) 1163 ext4_mark_inode_dirty(handle, inode); 1164 1165 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1166 /* if we have allocated more blocks and copied 1167 * less. We will have blocks allocated outside 1168 * inode->i_size. So truncate them 1169 */ 1170 ext4_orphan_add(handle, inode); 1171 errout: 1172 ret2 = ext4_journal_stop(handle); 1173 if (!ret) 1174 ret = ret2; 1175 1176 if (pos + len > inode->i_size) { 1177 ext4_truncate_failed_write(inode); 1178 /* 1179 * If truncate failed early the inode might still be 1180 * on the orphan list; we need to make sure the inode 1181 * is removed from the orphan list in that case. 1182 */ 1183 if (inode->i_nlink) 1184 ext4_orphan_del(NULL, inode); 1185 } 1186 1187 return ret ? ret : copied; 1188 } 1189 1190 static int ext4_journalled_write_end(struct file *file, 1191 struct address_space *mapping, 1192 loff_t pos, unsigned len, unsigned copied, 1193 struct page *page, void *fsdata) 1194 { 1195 handle_t *handle = ext4_journal_current_handle(); 1196 struct inode *inode = mapping->host; 1197 loff_t old_size = inode->i_size; 1198 int ret = 0, ret2; 1199 int partial = 0; 1200 unsigned from, to; 1201 int size_changed = 0; 1202 1203 trace_ext4_journalled_write_end(inode, pos, len, copied); 1204 from = pos & (PAGE_CACHE_SIZE - 1); 1205 to = from + len; 1206 1207 BUG_ON(!ext4_handle_valid(handle)); 1208 1209 if (ext4_has_inline_data(inode)) 1210 copied = ext4_write_inline_data_end(inode, pos, len, 1211 copied, page); 1212 else { 1213 if (copied < len) { 1214 if (!PageUptodate(page)) 1215 copied = 0; 1216 page_zero_new_buffers(page, from+copied, to); 1217 } 1218 1219 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1220 to, &partial, write_end_fn); 1221 if (!partial) 1222 SetPageUptodate(page); 1223 } 1224 size_changed = ext4_update_inode_size(inode, pos + copied); 1225 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1226 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1227 unlock_page(page); 1228 page_cache_release(page); 1229 1230 if (old_size < pos) 1231 pagecache_isize_extended(inode, old_size, pos); 1232 1233 if (size_changed) { 1234 ret2 = ext4_mark_inode_dirty(handle, inode); 1235 if (!ret) 1236 ret = ret2; 1237 } 1238 1239 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1240 /* if we have allocated more blocks and copied 1241 * less. We will have blocks allocated outside 1242 * inode->i_size. So truncate them 1243 */ 1244 ext4_orphan_add(handle, inode); 1245 1246 ret2 = ext4_journal_stop(handle); 1247 if (!ret) 1248 ret = ret2; 1249 if (pos + len > inode->i_size) { 1250 ext4_truncate_failed_write(inode); 1251 /* 1252 * If truncate failed early the inode might still be 1253 * on the orphan list; we need to make sure the inode 1254 * is removed from the orphan list in that case. 1255 */ 1256 if (inode->i_nlink) 1257 ext4_orphan_del(NULL, inode); 1258 } 1259 1260 return ret ? ret : copied; 1261 } 1262 1263 /* 1264 * Reserve a single cluster located at lblock 1265 */ 1266 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock) 1267 { 1268 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1269 struct ext4_inode_info *ei = EXT4_I(inode); 1270 unsigned int md_needed; 1271 int ret; 1272 1273 /* 1274 * We will charge metadata quota at writeout time; this saves 1275 * us from metadata over-estimation, though we may go over by 1276 * a small amount in the end. Here we just reserve for data. 1277 */ 1278 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1279 if (ret) 1280 return ret; 1281 1282 /* 1283 * recalculate the amount of metadata blocks to reserve 1284 * in order to allocate nrblocks 1285 * worse case is one extent per block 1286 */ 1287 spin_lock(&ei->i_block_reservation_lock); 1288 /* 1289 * ext4_calc_metadata_amount() has side effects, which we have 1290 * to be prepared undo if we fail to claim space. 1291 */ 1292 md_needed = 0; 1293 trace_ext4_da_reserve_space(inode, 0); 1294 1295 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1296 spin_unlock(&ei->i_block_reservation_lock); 1297 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1298 return -ENOSPC; 1299 } 1300 ei->i_reserved_data_blocks++; 1301 spin_unlock(&ei->i_block_reservation_lock); 1302 1303 return 0; /* success */ 1304 } 1305 1306 static void ext4_da_release_space(struct inode *inode, int to_free) 1307 { 1308 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1309 struct ext4_inode_info *ei = EXT4_I(inode); 1310 1311 if (!to_free) 1312 return; /* Nothing to release, exit */ 1313 1314 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1315 1316 trace_ext4_da_release_space(inode, to_free); 1317 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1318 /* 1319 * if there aren't enough reserved blocks, then the 1320 * counter is messed up somewhere. Since this 1321 * function is called from invalidate page, it's 1322 * harmless to return without any action. 1323 */ 1324 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1325 "ino %lu, to_free %d with only %d reserved " 1326 "data blocks", inode->i_ino, to_free, 1327 ei->i_reserved_data_blocks); 1328 WARN_ON(1); 1329 to_free = ei->i_reserved_data_blocks; 1330 } 1331 ei->i_reserved_data_blocks -= to_free; 1332 1333 /* update fs dirty data blocks counter */ 1334 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1335 1336 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1337 1338 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1339 } 1340 1341 static void ext4_da_page_release_reservation(struct page *page, 1342 unsigned int offset, 1343 unsigned int length) 1344 { 1345 int to_release = 0; 1346 struct buffer_head *head, *bh; 1347 unsigned int curr_off = 0; 1348 struct inode *inode = page->mapping->host; 1349 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1350 unsigned int stop = offset + length; 1351 int num_clusters; 1352 ext4_fsblk_t lblk; 1353 1354 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length); 1355 1356 head = page_buffers(page); 1357 bh = head; 1358 do { 1359 unsigned int next_off = curr_off + bh->b_size; 1360 1361 if (next_off > stop) 1362 break; 1363 1364 if ((offset <= curr_off) && (buffer_delay(bh))) { 1365 to_release++; 1366 clear_buffer_delay(bh); 1367 } 1368 curr_off = next_off; 1369 } while ((bh = bh->b_this_page) != head); 1370 1371 if (to_release) { 1372 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1373 ext4_es_remove_extent(inode, lblk, to_release); 1374 } 1375 1376 /* If we have released all the blocks belonging to a cluster, then we 1377 * need to release the reserved space for that cluster. */ 1378 num_clusters = EXT4_NUM_B2C(sbi, to_release); 1379 while (num_clusters > 0) { 1380 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) + 1381 ((num_clusters - 1) << sbi->s_cluster_bits); 1382 if (sbi->s_cluster_ratio == 1 || 1383 !ext4_find_delalloc_cluster(inode, lblk)) 1384 ext4_da_release_space(inode, 1); 1385 1386 num_clusters--; 1387 } 1388 } 1389 1390 /* 1391 * Delayed allocation stuff 1392 */ 1393 1394 struct mpage_da_data { 1395 struct inode *inode; 1396 struct writeback_control *wbc; 1397 1398 pgoff_t first_page; /* The first page to write */ 1399 pgoff_t next_page; /* Current page to examine */ 1400 pgoff_t last_page; /* Last page to examine */ 1401 /* 1402 * Extent to map - this can be after first_page because that can be 1403 * fully mapped. We somewhat abuse m_flags to store whether the extent 1404 * is delalloc or unwritten. 1405 */ 1406 struct ext4_map_blocks map; 1407 struct ext4_io_submit io_submit; /* IO submission data */ 1408 }; 1409 1410 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1411 bool invalidate) 1412 { 1413 int nr_pages, i; 1414 pgoff_t index, end; 1415 struct pagevec pvec; 1416 struct inode *inode = mpd->inode; 1417 struct address_space *mapping = inode->i_mapping; 1418 1419 /* This is necessary when next_page == 0. */ 1420 if (mpd->first_page >= mpd->next_page) 1421 return; 1422 1423 index = mpd->first_page; 1424 end = mpd->next_page - 1; 1425 if (invalidate) { 1426 ext4_lblk_t start, last; 1427 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1428 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1429 ext4_es_remove_extent(inode, start, last - start + 1); 1430 } 1431 1432 pagevec_init(&pvec, 0); 1433 while (index <= end) { 1434 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1435 if (nr_pages == 0) 1436 break; 1437 for (i = 0; i < nr_pages; i++) { 1438 struct page *page = pvec.pages[i]; 1439 if (page->index > end) 1440 break; 1441 BUG_ON(!PageLocked(page)); 1442 BUG_ON(PageWriteback(page)); 1443 if (invalidate) { 1444 block_invalidatepage(page, 0, PAGE_CACHE_SIZE); 1445 ClearPageUptodate(page); 1446 } 1447 unlock_page(page); 1448 } 1449 index = pvec.pages[nr_pages - 1]->index + 1; 1450 pagevec_release(&pvec); 1451 } 1452 } 1453 1454 static void ext4_print_free_blocks(struct inode *inode) 1455 { 1456 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1457 struct super_block *sb = inode->i_sb; 1458 struct ext4_inode_info *ei = EXT4_I(inode); 1459 1460 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1461 EXT4_C2B(EXT4_SB(inode->i_sb), 1462 ext4_count_free_clusters(sb))); 1463 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1464 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1465 (long long) EXT4_C2B(EXT4_SB(sb), 1466 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1467 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1468 (long long) EXT4_C2B(EXT4_SB(sb), 1469 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1470 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1471 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1472 ei->i_reserved_data_blocks); 1473 return; 1474 } 1475 1476 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1477 { 1478 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1479 } 1480 1481 /* 1482 * This function is grabs code from the very beginning of 1483 * ext4_map_blocks, but assumes that the caller is from delayed write 1484 * time. This function looks up the requested blocks and sets the 1485 * buffer delay bit under the protection of i_data_sem. 1486 */ 1487 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1488 struct ext4_map_blocks *map, 1489 struct buffer_head *bh) 1490 { 1491 struct extent_status es; 1492 int retval; 1493 sector_t invalid_block = ~((sector_t) 0xffff); 1494 #ifdef ES_AGGRESSIVE_TEST 1495 struct ext4_map_blocks orig_map; 1496 1497 memcpy(&orig_map, map, sizeof(*map)); 1498 #endif 1499 1500 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1501 invalid_block = ~0; 1502 1503 map->m_flags = 0; 1504 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1505 "logical block %lu\n", inode->i_ino, map->m_len, 1506 (unsigned long) map->m_lblk); 1507 1508 /* Lookup extent status tree firstly */ 1509 if (ext4_es_lookup_extent(inode, iblock, &es)) { 1510 if (ext4_es_is_hole(&es)) { 1511 retval = 0; 1512 down_read(&EXT4_I(inode)->i_data_sem); 1513 goto add_delayed; 1514 } 1515 1516 /* 1517 * Delayed extent could be allocated by fallocate. 1518 * So we need to check it. 1519 */ 1520 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1521 map_bh(bh, inode->i_sb, invalid_block); 1522 set_buffer_new(bh); 1523 set_buffer_delay(bh); 1524 return 0; 1525 } 1526 1527 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1528 retval = es.es_len - (iblock - es.es_lblk); 1529 if (retval > map->m_len) 1530 retval = map->m_len; 1531 map->m_len = retval; 1532 if (ext4_es_is_written(&es)) 1533 map->m_flags |= EXT4_MAP_MAPPED; 1534 else if (ext4_es_is_unwritten(&es)) 1535 map->m_flags |= EXT4_MAP_UNWRITTEN; 1536 else 1537 BUG_ON(1); 1538 1539 #ifdef ES_AGGRESSIVE_TEST 1540 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1541 #endif 1542 return retval; 1543 } 1544 1545 /* 1546 * Try to see if we can get the block without requesting a new 1547 * file system block. 1548 */ 1549 down_read(&EXT4_I(inode)->i_data_sem); 1550 if (ext4_has_inline_data(inode)) 1551 retval = 0; 1552 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1553 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1554 else 1555 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1556 1557 add_delayed: 1558 if (retval == 0) { 1559 int ret; 1560 /* 1561 * XXX: __block_prepare_write() unmaps passed block, 1562 * is it OK? 1563 */ 1564 /* 1565 * If the block was allocated from previously allocated cluster, 1566 * then we don't need to reserve it again. However we still need 1567 * to reserve metadata for every block we're going to write. 1568 */ 1569 if (EXT4_SB(inode->i_sb)->s_cluster_ratio <= 1 || 1570 !ext4_find_delalloc_cluster(inode, map->m_lblk)) { 1571 ret = ext4_da_reserve_space(inode, iblock); 1572 if (ret) { 1573 /* not enough space to reserve */ 1574 retval = ret; 1575 goto out_unlock; 1576 } 1577 } 1578 1579 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1580 ~0, EXTENT_STATUS_DELAYED); 1581 if (ret) { 1582 retval = ret; 1583 goto out_unlock; 1584 } 1585 1586 map_bh(bh, inode->i_sb, invalid_block); 1587 set_buffer_new(bh); 1588 set_buffer_delay(bh); 1589 } else if (retval > 0) { 1590 int ret; 1591 unsigned int status; 1592 1593 if (unlikely(retval != map->m_len)) { 1594 ext4_warning(inode->i_sb, 1595 "ES len assertion failed for inode " 1596 "%lu: retval %d != map->m_len %d", 1597 inode->i_ino, retval, map->m_len); 1598 WARN_ON(1); 1599 } 1600 1601 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1602 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1603 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1604 map->m_pblk, status); 1605 if (ret != 0) 1606 retval = ret; 1607 } 1608 1609 out_unlock: 1610 up_read((&EXT4_I(inode)->i_data_sem)); 1611 1612 return retval; 1613 } 1614 1615 /* 1616 * This is a special get_block_t callback which is used by 1617 * ext4_da_write_begin(). It will either return mapped block or 1618 * reserve space for a single block. 1619 * 1620 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1621 * We also have b_blocknr = -1 and b_bdev initialized properly 1622 * 1623 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1624 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1625 * initialized properly. 1626 */ 1627 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1628 struct buffer_head *bh, int create) 1629 { 1630 struct ext4_map_blocks map; 1631 int ret = 0; 1632 1633 BUG_ON(create == 0); 1634 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1635 1636 map.m_lblk = iblock; 1637 map.m_len = 1; 1638 1639 /* 1640 * first, we need to know whether the block is allocated already 1641 * preallocated blocks are unmapped but should treated 1642 * the same as allocated blocks. 1643 */ 1644 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1645 if (ret <= 0) 1646 return ret; 1647 1648 map_bh(bh, inode->i_sb, map.m_pblk); 1649 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 1650 1651 if (buffer_unwritten(bh)) { 1652 /* A delayed write to unwritten bh should be marked 1653 * new and mapped. Mapped ensures that we don't do 1654 * get_block multiple times when we write to the same 1655 * offset and new ensures that we do proper zero out 1656 * for partial write. 1657 */ 1658 set_buffer_new(bh); 1659 set_buffer_mapped(bh); 1660 } 1661 return 0; 1662 } 1663 1664 static int bget_one(handle_t *handle, struct buffer_head *bh) 1665 { 1666 get_bh(bh); 1667 return 0; 1668 } 1669 1670 static int bput_one(handle_t *handle, struct buffer_head *bh) 1671 { 1672 put_bh(bh); 1673 return 0; 1674 } 1675 1676 static int __ext4_journalled_writepage(struct page *page, 1677 unsigned int len) 1678 { 1679 struct address_space *mapping = page->mapping; 1680 struct inode *inode = mapping->host; 1681 struct buffer_head *page_bufs = NULL; 1682 handle_t *handle = NULL; 1683 int ret = 0, err = 0; 1684 int inline_data = ext4_has_inline_data(inode); 1685 struct buffer_head *inode_bh = NULL; 1686 1687 ClearPageChecked(page); 1688 1689 if (inline_data) { 1690 BUG_ON(page->index != 0); 1691 BUG_ON(len > ext4_get_max_inline_size(inode)); 1692 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1693 if (inode_bh == NULL) 1694 goto out; 1695 } else { 1696 page_bufs = page_buffers(page); 1697 if (!page_bufs) { 1698 BUG(); 1699 goto out; 1700 } 1701 ext4_walk_page_buffers(handle, page_bufs, 0, len, 1702 NULL, bget_one); 1703 } 1704 /* As soon as we unlock the page, it can go away, but we have 1705 * references to buffers so we are safe */ 1706 unlock_page(page); 1707 1708 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1709 ext4_writepage_trans_blocks(inode)); 1710 if (IS_ERR(handle)) { 1711 ret = PTR_ERR(handle); 1712 goto out; 1713 } 1714 1715 BUG_ON(!ext4_handle_valid(handle)); 1716 1717 if (inline_data) { 1718 BUFFER_TRACE(inode_bh, "get write access"); 1719 ret = ext4_journal_get_write_access(handle, inode_bh); 1720 1721 err = ext4_handle_dirty_metadata(handle, inode, inode_bh); 1722 1723 } else { 1724 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1725 do_journal_get_write_access); 1726 1727 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1728 write_end_fn); 1729 } 1730 if (ret == 0) 1731 ret = err; 1732 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1733 err = ext4_journal_stop(handle); 1734 if (!ret) 1735 ret = err; 1736 1737 if (!ext4_has_inline_data(inode)) 1738 ext4_walk_page_buffers(NULL, page_bufs, 0, len, 1739 NULL, bput_one); 1740 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1741 out: 1742 brelse(inode_bh); 1743 return ret; 1744 } 1745 1746 /* 1747 * Note that we don't need to start a transaction unless we're journaling data 1748 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1749 * need to file the inode to the transaction's list in ordered mode because if 1750 * we are writing back data added by write(), the inode is already there and if 1751 * we are writing back data modified via mmap(), no one guarantees in which 1752 * transaction the data will hit the disk. In case we are journaling data, we 1753 * cannot start transaction directly because transaction start ranks above page 1754 * lock so we have to do some magic. 1755 * 1756 * This function can get called via... 1757 * - ext4_writepages after taking page lock (have journal handle) 1758 * - journal_submit_inode_data_buffers (no journal handle) 1759 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 1760 * - grab_page_cache when doing write_begin (have journal handle) 1761 * 1762 * We don't do any block allocation in this function. If we have page with 1763 * multiple blocks we need to write those buffer_heads that are mapped. This 1764 * is important for mmaped based write. So if we do with blocksize 1K 1765 * truncate(f, 1024); 1766 * a = mmap(f, 0, 4096); 1767 * a[0] = 'a'; 1768 * truncate(f, 4096); 1769 * we have in the page first buffer_head mapped via page_mkwrite call back 1770 * but other buffer_heads would be unmapped but dirty (dirty done via the 1771 * do_wp_page). So writepage should write the first block. If we modify 1772 * the mmap area beyond 1024 we will again get a page_fault and the 1773 * page_mkwrite callback will do the block allocation and mark the 1774 * buffer_heads mapped. 1775 * 1776 * We redirty the page if we have any buffer_heads that is either delay or 1777 * unwritten in the page. 1778 * 1779 * We can get recursively called as show below. 1780 * 1781 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1782 * ext4_writepage() 1783 * 1784 * But since we don't do any block allocation we should not deadlock. 1785 * Page also have the dirty flag cleared so we don't get recurive page_lock. 1786 */ 1787 static int ext4_writepage(struct page *page, 1788 struct writeback_control *wbc) 1789 { 1790 int ret = 0; 1791 loff_t size; 1792 unsigned int len; 1793 struct buffer_head *page_bufs = NULL; 1794 struct inode *inode = page->mapping->host; 1795 struct ext4_io_submit io_submit; 1796 bool keep_towrite = false; 1797 1798 trace_ext4_writepage(page); 1799 size = i_size_read(inode); 1800 if (page->index == size >> PAGE_CACHE_SHIFT) 1801 len = size & ~PAGE_CACHE_MASK; 1802 else 1803 len = PAGE_CACHE_SIZE; 1804 1805 page_bufs = page_buffers(page); 1806 /* 1807 * We cannot do block allocation or other extent handling in this 1808 * function. If there are buffers needing that, we have to redirty 1809 * the page. But we may reach here when we do a journal commit via 1810 * journal_submit_inode_data_buffers() and in that case we must write 1811 * allocated buffers to achieve data=ordered mode guarantees. 1812 */ 1813 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 1814 ext4_bh_delay_or_unwritten)) { 1815 redirty_page_for_writepage(wbc, page); 1816 if (current->flags & PF_MEMALLOC) { 1817 /* 1818 * For memory cleaning there's no point in writing only 1819 * some buffers. So just bail out. Warn if we came here 1820 * from direct reclaim. 1821 */ 1822 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 1823 == PF_MEMALLOC); 1824 unlock_page(page); 1825 return 0; 1826 } 1827 keep_towrite = true; 1828 } 1829 1830 if (PageChecked(page) && ext4_should_journal_data(inode)) 1831 /* 1832 * It's mmapped pagecache. Add buffers and journal it. There 1833 * doesn't seem much point in redirtying the page here. 1834 */ 1835 return __ext4_journalled_writepage(page, len); 1836 1837 ext4_io_submit_init(&io_submit, wbc); 1838 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 1839 if (!io_submit.io_end) { 1840 redirty_page_for_writepage(wbc, page); 1841 unlock_page(page); 1842 return -ENOMEM; 1843 } 1844 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite); 1845 ext4_io_submit(&io_submit); 1846 /* Drop io_end reference we got from init */ 1847 ext4_put_io_end_defer(io_submit.io_end); 1848 return ret; 1849 } 1850 1851 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 1852 { 1853 int len; 1854 loff_t size = i_size_read(mpd->inode); 1855 int err; 1856 1857 BUG_ON(page->index != mpd->first_page); 1858 if (page->index == size >> PAGE_CACHE_SHIFT) 1859 len = size & ~PAGE_CACHE_MASK; 1860 else 1861 len = PAGE_CACHE_SIZE; 1862 clear_page_dirty_for_io(page); 1863 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false); 1864 if (!err) 1865 mpd->wbc->nr_to_write--; 1866 mpd->first_page++; 1867 1868 return err; 1869 } 1870 1871 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay)) 1872 1873 /* 1874 * mballoc gives us at most this number of blocks... 1875 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 1876 * The rest of mballoc seems to handle chunks up to full group size. 1877 */ 1878 #define MAX_WRITEPAGES_EXTENT_LEN 2048 1879 1880 /* 1881 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 1882 * 1883 * @mpd - extent of blocks 1884 * @lblk - logical number of the block in the file 1885 * @bh - buffer head we want to add to the extent 1886 * 1887 * The function is used to collect contig. blocks in the same state. If the 1888 * buffer doesn't require mapping for writeback and we haven't started the 1889 * extent of buffers to map yet, the function returns 'true' immediately - the 1890 * caller can write the buffer right away. Otherwise the function returns true 1891 * if the block has been added to the extent, false if the block couldn't be 1892 * added. 1893 */ 1894 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 1895 struct buffer_head *bh) 1896 { 1897 struct ext4_map_blocks *map = &mpd->map; 1898 1899 /* Buffer that doesn't need mapping for writeback? */ 1900 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 1901 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 1902 /* So far no extent to map => we write the buffer right away */ 1903 if (map->m_len == 0) 1904 return true; 1905 return false; 1906 } 1907 1908 /* First block in the extent? */ 1909 if (map->m_len == 0) { 1910 map->m_lblk = lblk; 1911 map->m_len = 1; 1912 map->m_flags = bh->b_state & BH_FLAGS; 1913 return true; 1914 } 1915 1916 /* Don't go larger than mballoc is willing to allocate */ 1917 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 1918 return false; 1919 1920 /* Can we merge the block to our big extent? */ 1921 if (lblk == map->m_lblk + map->m_len && 1922 (bh->b_state & BH_FLAGS) == map->m_flags) { 1923 map->m_len++; 1924 return true; 1925 } 1926 return false; 1927 } 1928 1929 /* 1930 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 1931 * 1932 * @mpd - extent of blocks for mapping 1933 * @head - the first buffer in the page 1934 * @bh - buffer we should start processing from 1935 * @lblk - logical number of the block in the file corresponding to @bh 1936 * 1937 * Walk through page buffers from @bh upto @head (exclusive) and either submit 1938 * the page for IO if all buffers in this page were mapped and there's no 1939 * accumulated extent of buffers to map or add buffers in the page to the 1940 * extent of buffers to map. The function returns 1 if the caller can continue 1941 * by processing the next page, 0 if it should stop adding buffers to the 1942 * extent to map because we cannot extend it anymore. It can also return value 1943 * < 0 in case of error during IO submission. 1944 */ 1945 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 1946 struct buffer_head *head, 1947 struct buffer_head *bh, 1948 ext4_lblk_t lblk) 1949 { 1950 struct inode *inode = mpd->inode; 1951 int err; 1952 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1) 1953 >> inode->i_blkbits; 1954 1955 do { 1956 BUG_ON(buffer_locked(bh)); 1957 1958 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 1959 /* Found extent to map? */ 1960 if (mpd->map.m_len) 1961 return 0; 1962 /* Everything mapped so far and we hit EOF */ 1963 break; 1964 } 1965 } while (lblk++, (bh = bh->b_this_page) != head); 1966 /* So far everything mapped? Submit the page for IO. */ 1967 if (mpd->map.m_len == 0) { 1968 err = mpage_submit_page(mpd, head->b_page); 1969 if (err < 0) 1970 return err; 1971 } 1972 return lblk < blocks; 1973 } 1974 1975 /* 1976 * mpage_map_buffers - update buffers corresponding to changed extent and 1977 * submit fully mapped pages for IO 1978 * 1979 * @mpd - description of extent to map, on return next extent to map 1980 * 1981 * Scan buffers corresponding to changed extent (we expect corresponding pages 1982 * to be already locked) and update buffer state according to new extent state. 1983 * We map delalloc buffers to their physical location, clear unwritten bits, 1984 * and mark buffers as uninit when we perform writes to unwritten extents 1985 * and do extent conversion after IO is finished. If the last page is not fully 1986 * mapped, we update @map to the next extent in the last page that needs 1987 * mapping. Otherwise we submit the page for IO. 1988 */ 1989 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 1990 { 1991 struct pagevec pvec; 1992 int nr_pages, i; 1993 struct inode *inode = mpd->inode; 1994 struct buffer_head *head, *bh; 1995 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits; 1996 pgoff_t start, end; 1997 ext4_lblk_t lblk; 1998 sector_t pblock; 1999 int err; 2000 2001 start = mpd->map.m_lblk >> bpp_bits; 2002 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2003 lblk = start << bpp_bits; 2004 pblock = mpd->map.m_pblk; 2005 2006 pagevec_init(&pvec, 0); 2007 while (start <= end) { 2008 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start, 2009 PAGEVEC_SIZE); 2010 if (nr_pages == 0) 2011 break; 2012 for (i = 0; i < nr_pages; i++) { 2013 struct page *page = pvec.pages[i]; 2014 2015 if (page->index > end) 2016 break; 2017 /* Up to 'end' pages must be contiguous */ 2018 BUG_ON(page->index != start); 2019 bh = head = page_buffers(page); 2020 do { 2021 if (lblk < mpd->map.m_lblk) 2022 continue; 2023 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2024 /* 2025 * Buffer after end of mapped extent. 2026 * Find next buffer in the page to map. 2027 */ 2028 mpd->map.m_len = 0; 2029 mpd->map.m_flags = 0; 2030 /* 2031 * FIXME: If dioread_nolock supports 2032 * blocksize < pagesize, we need to make 2033 * sure we add size mapped so far to 2034 * io_end->size as the following call 2035 * can submit the page for IO. 2036 */ 2037 err = mpage_process_page_bufs(mpd, head, 2038 bh, lblk); 2039 pagevec_release(&pvec); 2040 if (err > 0) 2041 err = 0; 2042 return err; 2043 } 2044 if (buffer_delay(bh)) { 2045 clear_buffer_delay(bh); 2046 bh->b_blocknr = pblock++; 2047 } 2048 clear_buffer_unwritten(bh); 2049 } while (lblk++, (bh = bh->b_this_page) != head); 2050 2051 /* 2052 * FIXME: This is going to break if dioread_nolock 2053 * supports blocksize < pagesize as we will try to 2054 * convert potentially unmapped parts of inode. 2055 */ 2056 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE; 2057 /* Page fully mapped - let IO run! */ 2058 err = mpage_submit_page(mpd, page); 2059 if (err < 0) { 2060 pagevec_release(&pvec); 2061 return err; 2062 } 2063 start++; 2064 } 2065 pagevec_release(&pvec); 2066 } 2067 /* Extent fully mapped and matches with page boundary. We are done. */ 2068 mpd->map.m_len = 0; 2069 mpd->map.m_flags = 0; 2070 return 0; 2071 } 2072 2073 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2074 { 2075 struct inode *inode = mpd->inode; 2076 struct ext4_map_blocks *map = &mpd->map; 2077 int get_blocks_flags; 2078 int err, dioread_nolock; 2079 2080 trace_ext4_da_write_pages_extent(inode, map); 2081 /* 2082 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2083 * to convert an unwritten extent to be initialized (in the case 2084 * where we have written into one or more preallocated blocks). It is 2085 * possible that we're going to need more metadata blocks than 2086 * previously reserved. However we must not fail because we're in 2087 * writeback and there is nothing we can do about it so it might result 2088 * in data loss. So use reserved blocks to allocate metadata if 2089 * possible. 2090 * 2091 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2092 * the blocks in question are delalloc blocks. This indicates 2093 * that the blocks and quotas has already been checked when 2094 * the data was copied into the page cache. 2095 */ 2096 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2097 EXT4_GET_BLOCKS_METADATA_NOFAIL; 2098 dioread_nolock = ext4_should_dioread_nolock(inode); 2099 if (dioread_nolock) 2100 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2101 if (map->m_flags & (1 << BH_Delay)) 2102 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2103 2104 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2105 if (err < 0) 2106 return err; 2107 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2108 if (!mpd->io_submit.io_end->handle && 2109 ext4_handle_valid(handle)) { 2110 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2111 handle->h_rsv_handle = NULL; 2112 } 2113 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2114 } 2115 2116 BUG_ON(map->m_len == 0); 2117 if (map->m_flags & EXT4_MAP_NEW) { 2118 struct block_device *bdev = inode->i_sb->s_bdev; 2119 int i; 2120 2121 for (i = 0; i < map->m_len; i++) 2122 unmap_underlying_metadata(bdev, map->m_pblk + i); 2123 } 2124 return 0; 2125 } 2126 2127 /* 2128 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2129 * mpd->len and submit pages underlying it for IO 2130 * 2131 * @handle - handle for journal operations 2132 * @mpd - extent to map 2133 * @give_up_on_write - we set this to true iff there is a fatal error and there 2134 * is no hope of writing the data. The caller should discard 2135 * dirty pages to avoid infinite loops. 2136 * 2137 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2138 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2139 * them to initialized or split the described range from larger unwritten 2140 * extent. Note that we need not map all the described range since allocation 2141 * can return less blocks or the range is covered by more unwritten extents. We 2142 * cannot map more because we are limited by reserved transaction credits. On 2143 * the other hand we always make sure that the last touched page is fully 2144 * mapped so that it can be written out (and thus forward progress is 2145 * guaranteed). After mapping we submit all mapped pages for IO. 2146 */ 2147 static int mpage_map_and_submit_extent(handle_t *handle, 2148 struct mpage_da_data *mpd, 2149 bool *give_up_on_write) 2150 { 2151 struct inode *inode = mpd->inode; 2152 struct ext4_map_blocks *map = &mpd->map; 2153 int err; 2154 loff_t disksize; 2155 int progress = 0; 2156 2157 mpd->io_submit.io_end->offset = 2158 ((loff_t)map->m_lblk) << inode->i_blkbits; 2159 do { 2160 err = mpage_map_one_extent(handle, mpd); 2161 if (err < 0) { 2162 struct super_block *sb = inode->i_sb; 2163 2164 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 2165 goto invalidate_dirty_pages; 2166 /* 2167 * Let the uper layers retry transient errors. 2168 * In the case of ENOSPC, if ext4_count_free_blocks() 2169 * is non-zero, a commit should free up blocks. 2170 */ 2171 if ((err == -ENOMEM) || 2172 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2173 if (progress) 2174 goto update_disksize; 2175 return err; 2176 } 2177 ext4_msg(sb, KERN_CRIT, 2178 "Delayed block allocation failed for " 2179 "inode %lu at logical offset %llu with" 2180 " max blocks %u with error %d", 2181 inode->i_ino, 2182 (unsigned long long)map->m_lblk, 2183 (unsigned)map->m_len, -err); 2184 ext4_msg(sb, KERN_CRIT, 2185 "This should not happen!! Data will " 2186 "be lost\n"); 2187 if (err == -ENOSPC) 2188 ext4_print_free_blocks(inode); 2189 invalidate_dirty_pages: 2190 *give_up_on_write = true; 2191 return err; 2192 } 2193 progress = 1; 2194 /* 2195 * Update buffer state, submit mapped pages, and get us new 2196 * extent to map 2197 */ 2198 err = mpage_map_and_submit_buffers(mpd); 2199 if (err < 0) 2200 goto update_disksize; 2201 } while (map->m_len); 2202 2203 update_disksize: 2204 /* 2205 * Update on-disk size after IO is submitted. Races with 2206 * truncate are avoided by checking i_size under i_data_sem. 2207 */ 2208 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT; 2209 if (disksize > EXT4_I(inode)->i_disksize) { 2210 int err2; 2211 loff_t i_size; 2212 2213 down_write(&EXT4_I(inode)->i_data_sem); 2214 i_size = i_size_read(inode); 2215 if (disksize > i_size) 2216 disksize = i_size; 2217 if (disksize > EXT4_I(inode)->i_disksize) 2218 EXT4_I(inode)->i_disksize = disksize; 2219 err2 = ext4_mark_inode_dirty(handle, inode); 2220 up_write(&EXT4_I(inode)->i_data_sem); 2221 if (err2) 2222 ext4_error(inode->i_sb, 2223 "Failed to mark inode %lu dirty", 2224 inode->i_ino); 2225 if (!err) 2226 err = err2; 2227 } 2228 return err; 2229 } 2230 2231 /* 2232 * Calculate the total number of credits to reserve for one writepages 2233 * iteration. This is called from ext4_writepages(). We map an extent of 2234 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2235 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2236 * bpp - 1 blocks in bpp different extents. 2237 */ 2238 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2239 { 2240 int bpp = ext4_journal_blocks_per_page(inode); 2241 2242 return ext4_meta_trans_blocks(inode, 2243 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2244 } 2245 2246 /* 2247 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2248 * and underlying extent to map 2249 * 2250 * @mpd - where to look for pages 2251 * 2252 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2253 * IO immediately. When we find a page which isn't mapped we start accumulating 2254 * extent of buffers underlying these pages that needs mapping (formed by 2255 * either delayed or unwritten buffers). We also lock the pages containing 2256 * these buffers. The extent found is returned in @mpd structure (starting at 2257 * mpd->lblk with length mpd->len blocks). 2258 * 2259 * Note that this function can attach bios to one io_end structure which are 2260 * neither logically nor physically contiguous. Although it may seem as an 2261 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2262 * case as we need to track IO to all buffers underlying a page in one io_end. 2263 */ 2264 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2265 { 2266 struct address_space *mapping = mpd->inode->i_mapping; 2267 struct pagevec pvec; 2268 unsigned int nr_pages; 2269 long left = mpd->wbc->nr_to_write; 2270 pgoff_t index = mpd->first_page; 2271 pgoff_t end = mpd->last_page; 2272 int tag; 2273 int i, err = 0; 2274 int blkbits = mpd->inode->i_blkbits; 2275 ext4_lblk_t lblk; 2276 struct buffer_head *head; 2277 2278 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2279 tag = PAGECACHE_TAG_TOWRITE; 2280 else 2281 tag = PAGECACHE_TAG_DIRTY; 2282 2283 pagevec_init(&pvec, 0); 2284 mpd->map.m_len = 0; 2285 mpd->next_page = index; 2286 while (index <= end) { 2287 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2288 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2289 if (nr_pages == 0) 2290 goto out; 2291 2292 for (i = 0; i < nr_pages; i++) { 2293 struct page *page = pvec.pages[i]; 2294 2295 /* 2296 * At this point, the page may be truncated or 2297 * invalidated (changing page->mapping to NULL), or 2298 * even swizzled back from swapper_space to tmpfs file 2299 * mapping. However, page->index will not change 2300 * because we have a reference on the page. 2301 */ 2302 if (page->index > end) 2303 goto out; 2304 2305 /* 2306 * Accumulated enough dirty pages? This doesn't apply 2307 * to WB_SYNC_ALL mode. For integrity sync we have to 2308 * keep going because someone may be concurrently 2309 * dirtying pages, and we might have synced a lot of 2310 * newly appeared dirty pages, but have not synced all 2311 * of the old dirty pages. 2312 */ 2313 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2314 goto out; 2315 2316 /* If we can't merge this page, we are done. */ 2317 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2318 goto out; 2319 2320 lock_page(page); 2321 /* 2322 * If the page is no longer dirty, or its mapping no 2323 * longer corresponds to inode we are writing (which 2324 * means it has been truncated or invalidated), or the 2325 * page is already under writeback and we are not doing 2326 * a data integrity writeback, skip the page 2327 */ 2328 if (!PageDirty(page) || 2329 (PageWriteback(page) && 2330 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2331 unlikely(page->mapping != mapping)) { 2332 unlock_page(page); 2333 continue; 2334 } 2335 2336 wait_on_page_writeback(page); 2337 BUG_ON(PageWriteback(page)); 2338 2339 if (mpd->map.m_len == 0) 2340 mpd->first_page = page->index; 2341 mpd->next_page = page->index + 1; 2342 /* Add all dirty buffers to mpd */ 2343 lblk = ((ext4_lblk_t)page->index) << 2344 (PAGE_CACHE_SHIFT - blkbits); 2345 head = page_buffers(page); 2346 err = mpage_process_page_bufs(mpd, head, head, lblk); 2347 if (err <= 0) 2348 goto out; 2349 err = 0; 2350 left--; 2351 } 2352 pagevec_release(&pvec); 2353 cond_resched(); 2354 } 2355 return 0; 2356 out: 2357 pagevec_release(&pvec); 2358 return err; 2359 } 2360 2361 static int __writepage(struct page *page, struct writeback_control *wbc, 2362 void *data) 2363 { 2364 struct address_space *mapping = data; 2365 int ret = ext4_writepage(page, wbc); 2366 mapping_set_error(mapping, ret); 2367 return ret; 2368 } 2369 2370 static int ext4_writepages(struct address_space *mapping, 2371 struct writeback_control *wbc) 2372 { 2373 pgoff_t writeback_index = 0; 2374 long nr_to_write = wbc->nr_to_write; 2375 int range_whole = 0; 2376 int cycled = 1; 2377 handle_t *handle = NULL; 2378 struct mpage_da_data mpd; 2379 struct inode *inode = mapping->host; 2380 int needed_blocks, rsv_blocks = 0, ret = 0; 2381 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2382 bool done; 2383 struct blk_plug plug; 2384 bool give_up_on_write = false; 2385 2386 trace_ext4_writepages(inode, wbc); 2387 2388 /* 2389 * No pages to write? This is mainly a kludge to avoid starting 2390 * a transaction for special inodes like journal inode on last iput() 2391 * because that could violate lock ordering on umount 2392 */ 2393 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2394 goto out_writepages; 2395 2396 if (ext4_should_journal_data(inode)) { 2397 struct blk_plug plug; 2398 2399 blk_start_plug(&plug); 2400 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 2401 blk_finish_plug(&plug); 2402 goto out_writepages; 2403 } 2404 2405 /* 2406 * If the filesystem has aborted, it is read-only, so return 2407 * right away instead of dumping stack traces later on that 2408 * will obscure the real source of the problem. We test 2409 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2410 * the latter could be true if the filesystem is mounted 2411 * read-only, and in that case, ext4_writepages should 2412 * *never* be called, so if that ever happens, we would want 2413 * the stack trace. 2414 */ 2415 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) { 2416 ret = -EROFS; 2417 goto out_writepages; 2418 } 2419 2420 if (ext4_should_dioread_nolock(inode)) { 2421 /* 2422 * We may need to convert up to one extent per block in 2423 * the page and we may dirty the inode. 2424 */ 2425 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits); 2426 } 2427 2428 /* 2429 * If we have inline data and arrive here, it means that 2430 * we will soon create the block for the 1st page, so 2431 * we'd better clear the inline data here. 2432 */ 2433 if (ext4_has_inline_data(inode)) { 2434 /* Just inode will be modified... */ 2435 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2436 if (IS_ERR(handle)) { 2437 ret = PTR_ERR(handle); 2438 goto out_writepages; 2439 } 2440 BUG_ON(ext4_test_inode_state(inode, 2441 EXT4_STATE_MAY_INLINE_DATA)); 2442 ext4_destroy_inline_data(handle, inode); 2443 ext4_journal_stop(handle); 2444 } 2445 2446 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2447 range_whole = 1; 2448 2449 if (wbc->range_cyclic) { 2450 writeback_index = mapping->writeback_index; 2451 if (writeback_index) 2452 cycled = 0; 2453 mpd.first_page = writeback_index; 2454 mpd.last_page = -1; 2455 } else { 2456 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT; 2457 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT; 2458 } 2459 2460 mpd.inode = inode; 2461 mpd.wbc = wbc; 2462 ext4_io_submit_init(&mpd.io_submit, wbc); 2463 retry: 2464 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2465 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2466 done = false; 2467 blk_start_plug(&plug); 2468 while (!done && mpd.first_page <= mpd.last_page) { 2469 /* For each extent of pages we use new io_end */ 2470 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2471 if (!mpd.io_submit.io_end) { 2472 ret = -ENOMEM; 2473 break; 2474 } 2475 2476 /* 2477 * We have two constraints: We find one extent to map and we 2478 * must always write out whole page (makes a difference when 2479 * blocksize < pagesize) so that we don't block on IO when we 2480 * try to write out the rest of the page. Journalled mode is 2481 * not supported by delalloc. 2482 */ 2483 BUG_ON(ext4_should_journal_data(inode)); 2484 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2485 2486 /* start a new transaction */ 2487 handle = ext4_journal_start_with_reserve(inode, 2488 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2489 if (IS_ERR(handle)) { 2490 ret = PTR_ERR(handle); 2491 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2492 "%ld pages, ino %lu; err %d", __func__, 2493 wbc->nr_to_write, inode->i_ino, ret); 2494 /* Release allocated io_end */ 2495 ext4_put_io_end(mpd.io_submit.io_end); 2496 break; 2497 } 2498 2499 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2500 ret = mpage_prepare_extent_to_map(&mpd); 2501 if (!ret) { 2502 if (mpd.map.m_len) 2503 ret = mpage_map_and_submit_extent(handle, &mpd, 2504 &give_up_on_write); 2505 else { 2506 /* 2507 * We scanned the whole range (or exhausted 2508 * nr_to_write), submitted what was mapped and 2509 * didn't find anything needing mapping. We are 2510 * done. 2511 */ 2512 done = true; 2513 } 2514 } 2515 ext4_journal_stop(handle); 2516 /* Submit prepared bio */ 2517 ext4_io_submit(&mpd.io_submit); 2518 /* Unlock pages we didn't use */ 2519 mpage_release_unused_pages(&mpd, give_up_on_write); 2520 /* Drop our io_end reference we got from init */ 2521 ext4_put_io_end(mpd.io_submit.io_end); 2522 2523 if (ret == -ENOSPC && sbi->s_journal) { 2524 /* 2525 * Commit the transaction which would 2526 * free blocks released in the transaction 2527 * and try again 2528 */ 2529 jbd2_journal_force_commit_nested(sbi->s_journal); 2530 ret = 0; 2531 continue; 2532 } 2533 /* Fatal error - ENOMEM, EIO... */ 2534 if (ret) 2535 break; 2536 } 2537 blk_finish_plug(&plug); 2538 if (!ret && !cycled && wbc->nr_to_write > 0) { 2539 cycled = 1; 2540 mpd.last_page = writeback_index - 1; 2541 mpd.first_page = 0; 2542 goto retry; 2543 } 2544 2545 /* Update index */ 2546 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2547 /* 2548 * Set the writeback_index so that range_cyclic 2549 * mode will write it back later 2550 */ 2551 mapping->writeback_index = mpd.first_page; 2552 2553 out_writepages: 2554 trace_ext4_writepages_result(inode, wbc, ret, 2555 nr_to_write - wbc->nr_to_write); 2556 return ret; 2557 } 2558 2559 static int ext4_nonda_switch(struct super_block *sb) 2560 { 2561 s64 free_clusters, dirty_clusters; 2562 struct ext4_sb_info *sbi = EXT4_SB(sb); 2563 2564 /* 2565 * switch to non delalloc mode if we are running low 2566 * on free block. The free block accounting via percpu 2567 * counters can get slightly wrong with percpu_counter_batch getting 2568 * accumulated on each CPU without updating global counters 2569 * Delalloc need an accurate free block accounting. So switch 2570 * to non delalloc when we are near to error range. 2571 */ 2572 free_clusters = 2573 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2574 dirty_clusters = 2575 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2576 /* 2577 * Start pushing delalloc when 1/2 of free blocks are dirty. 2578 */ 2579 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2580 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2581 2582 if (2 * free_clusters < 3 * dirty_clusters || 2583 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2584 /* 2585 * free block count is less than 150% of dirty blocks 2586 * or free blocks is less than watermark 2587 */ 2588 return 1; 2589 } 2590 return 0; 2591 } 2592 2593 /* We always reserve for an inode update; the superblock could be there too */ 2594 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len) 2595 { 2596 if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 2597 EXT4_FEATURE_RO_COMPAT_LARGE_FILE))) 2598 return 1; 2599 2600 if (pos + len <= 0x7fffffffULL) 2601 return 1; 2602 2603 /* We might need to update the superblock to set LARGE_FILE */ 2604 return 2; 2605 } 2606 2607 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2608 loff_t pos, unsigned len, unsigned flags, 2609 struct page **pagep, void **fsdata) 2610 { 2611 int ret, retries = 0; 2612 struct page *page; 2613 pgoff_t index; 2614 struct inode *inode = mapping->host; 2615 handle_t *handle; 2616 2617 index = pos >> PAGE_CACHE_SHIFT; 2618 2619 if (ext4_nonda_switch(inode->i_sb)) { 2620 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2621 return ext4_write_begin(file, mapping, pos, 2622 len, flags, pagep, fsdata); 2623 } 2624 *fsdata = (void *)0; 2625 trace_ext4_da_write_begin(inode, pos, len, flags); 2626 2627 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2628 ret = ext4_da_write_inline_data_begin(mapping, inode, 2629 pos, len, flags, 2630 pagep, fsdata); 2631 if (ret < 0) 2632 return ret; 2633 if (ret == 1) 2634 return 0; 2635 } 2636 2637 /* 2638 * grab_cache_page_write_begin() can take a long time if the 2639 * system is thrashing due to memory pressure, or if the page 2640 * is being written back. So grab it first before we start 2641 * the transaction handle. This also allows us to allocate 2642 * the page (if needed) without using GFP_NOFS. 2643 */ 2644 retry_grab: 2645 page = grab_cache_page_write_begin(mapping, index, flags); 2646 if (!page) 2647 return -ENOMEM; 2648 unlock_page(page); 2649 2650 /* 2651 * With delayed allocation, we don't log the i_disksize update 2652 * if there is delayed block allocation. But we still need 2653 * to journalling the i_disksize update if writes to the end 2654 * of file which has an already mapped buffer. 2655 */ 2656 retry_journal: 2657 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 2658 ext4_da_write_credits(inode, pos, len)); 2659 if (IS_ERR(handle)) { 2660 page_cache_release(page); 2661 return PTR_ERR(handle); 2662 } 2663 2664 lock_page(page); 2665 if (page->mapping != mapping) { 2666 /* The page got truncated from under us */ 2667 unlock_page(page); 2668 page_cache_release(page); 2669 ext4_journal_stop(handle); 2670 goto retry_grab; 2671 } 2672 /* In case writeback began while the page was unlocked */ 2673 wait_for_stable_page(page); 2674 2675 #ifdef CONFIG_EXT4_FS_ENCRYPTION 2676 ret = ext4_block_write_begin(page, pos, len, 2677 ext4_da_get_block_prep); 2678 #else 2679 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 2680 #endif 2681 if (ret < 0) { 2682 unlock_page(page); 2683 ext4_journal_stop(handle); 2684 /* 2685 * block_write_begin may have instantiated a few blocks 2686 * outside i_size. Trim these off again. Don't need 2687 * i_size_read because we hold i_mutex. 2688 */ 2689 if (pos + len > inode->i_size) 2690 ext4_truncate_failed_write(inode); 2691 2692 if (ret == -ENOSPC && 2693 ext4_should_retry_alloc(inode->i_sb, &retries)) 2694 goto retry_journal; 2695 2696 page_cache_release(page); 2697 return ret; 2698 } 2699 2700 *pagep = page; 2701 return ret; 2702 } 2703 2704 /* 2705 * Check if we should update i_disksize 2706 * when write to the end of file but not require block allocation 2707 */ 2708 static int ext4_da_should_update_i_disksize(struct page *page, 2709 unsigned long offset) 2710 { 2711 struct buffer_head *bh; 2712 struct inode *inode = page->mapping->host; 2713 unsigned int idx; 2714 int i; 2715 2716 bh = page_buffers(page); 2717 idx = offset >> inode->i_blkbits; 2718 2719 for (i = 0; i < idx; i++) 2720 bh = bh->b_this_page; 2721 2722 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2723 return 0; 2724 return 1; 2725 } 2726 2727 static int ext4_da_write_end(struct file *file, 2728 struct address_space *mapping, 2729 loff_t pos, unsigned len, unsigned copied, 2730 struct page *page, void *fsdata) 2731 { 2732 struct inode *inode = mapping->host; 2733 int ret = 0, ret2; 2734 handle_t *handle = ext4_journal_current_handle(); 2735 loff_t new_i_size; 2736 unsigned long start, end; 2737 int write_mode = (int)(unsigned long)fsdata; 2738 2739 if (write_mode == FALL_BACK_TO_NONDELALLOC) 2740 return ext4_write_end(file, mapping, pos, 2741 len, copied, page, fsdata); 2742 2743 trace_ext4_da_write_end(inode, pos, len, copied); 2744 start = pos & (PAGE_CACHE_SIZE - 1); 2745 end = start + copied - 1; 2746 2747 /* 2748 * generic_write_end() will run mark_inode_dirty() if i_size 2749 * changes. So let's piggyback the i_disksize mark_inode_dirty 2750 * into that. 2751 */ 2752 new_i_size = pos + copied; 2753 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 2754 if (ext4_has_inline_data(inode) || 2755 ext4_da_should_update_i_disksize(page, end)) { 2756 ext4_update_i_disksize(inode, new_i_size); 2757 /* We need to mark inode dirty even if 2758 * new_i_size is less that inode->i_size 2759 * bu greater than i_disksize.(hint delalloc) 2760 */ 2761 ext4_mark_inode_dirty(handle, inode); 2762 } 2763 } 2764 2765 if (write_mode != CONVERT_INLINE_DATA && 2766 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 2767 ext4_has_inline_data(inode)) 2768 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 2769 page); 2770 else 2771 ret2 = generic_write_end(file, mapping, pos, len, copied, 2772 page, fsdata); 2773 2774 copied = ret2; 2775 if (ret2 < 0) 2776 ret = ret2; 2777 ret2 = ext4_journal_stop(handle); 2778 if (!ret) 2779 ret = ret2; 2780 2781 return ret ? ret : copied; 2782 } 2783 2784 static void ext4_da_invalidatepage(struct page *page, unsigned int offset, 2785 unsigned int length) 2786 { 2787 /* 2788 * Drop reserved blocks 2789 */ 2790 BUG_ON(!PageLocked(page)); 2791 if (!page_has_buffers(page)) 2792 goto out; 2793 2794 ext4_da_page_release_reservation(page, offset, length); 2795 2796 out: 2797 ext4_invalidatepage(page, offset, length); 2798 2799 return; 2800 } 2801 2802 /* 2803 * Force all delayed allocation blocks to be allocated for a given inode. 2804 */ 2805 int ext4_alloc_da_blocks(struct inode *inode) 2806 { 2807 trace_ext4_alloc_da_blocks(inode); 2808 2809 if (!EXT4_I(inode)->i_reserved_data_blocks) 2810 return 0; 2811 2812 /* 2813 * We do something simple for now. The filemap_flush() will 2814 * also start triggering a write of the data blocks, which is 2815 * not strictly speaking necessary (and for users of 2816 * laptop_mode, not even desirable). However, to do otherwise 2817 * would require replicating code paths in: 2818 * 2819 * ext4_writepages() -> 2820 * write_cache_pages() ---> (via passed in callback function) 2821 * __mpage_da_writepage() --> 2822 * mpage_add_bh_to_extent() 2823 * mpage_da_map_blocks() 2824 * 2825 * The problem is that write_cache_pages(), located in 2826 * mm/page-writeback.c, marks pages clean in preparation for 2827 * doing I/O, which is not desirable if we're not planning on 2828 * doing I/O at all. 2829 * 2830 * We could call write_cache_pages(), and then redirty all of 2831 * the pages by calling redirty_page_for_writepage() but that 2832 * would be ugly in the extreme. So instead we would need to 2833 * replicate parts of the code in the above functions, 2834 * simplifying them because we wouldn't actually intend to 2835 * write out the pages, but rather only collect contiguous 2836 * logical block extents, call the multi-block allocator, and 2837 * then update the buffer heads with the block allocations. 2838 * 2839 * For now, though, we'll cheat by calling filemap_flush(), 2840 * which will map the blocks, and start the I/O, but not 2841 * actually wait for the I/O to complete. 2842 */ 2843 return filemap_flush(inode->i_mapping); 2844 } 2845 2846 /* 2847 * bmap() is special. It gets used by applications such as lilo and by 2848 * the swapper to find the on-disk block of a specific piece of data. 2849 * 2850 * Naturally, this is dangerous if the block concerned is still in the 2851 * journal. If somebody makes a swapfile on an ext4 data-journaling 2852 * filesystem and enables swap, then they may get a nasty shock when the 2853 * data getting swapped to that swapfile suddenly gets overwritten by 2854 * the original zero's written out previously to the journal and 2855 * awaiting writeback in the kernel's buffer cache. 2856 * 2857 * So, if we see any bmap calls here on a modified, data-journaled file, 2858 * take extra steps to flush any blocks which might be in the cache. 2859 */ 2860 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 2861 { 2862 struct inode *inode = mapping->host; 2863 journal_t *journal; 2864 int err; 2865 2866 /* 2867 * We can get here for an inline file via the FIBMAP ioctl 2868 */ 2869 if (ext4_has_inline_data(inode)) 2870 return 0; 2871 2872 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 2873 test_opt(inode->i_sb, DELALLOC)) { 2874 /* 2875 * With delalloc we want to sync the file 2876 * so that we can make sure we allocate 2877 * blocks for file 2878 */ 2879 filemap_write_and_wait(mapping); 2880 } 2881 2882 if (EXT4_JOURNAL(inode) && 2883 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 2884 /* 2885 * This is a REALLY heavyweight approach, but the use of 2886 * bmap on dirty files is expected to be extremely rare: 2887 * only if we run lilo or swapon on a freshly made file 2888 * do we expect this to happen. 2889 * 2890 * (bmap requires CAP_SYS_RAWIO so this does not 2891 * represent an unprivileged user DOS attack --- we'd be 2892 * in trouble if mortal users could trigger this path at 2893 * will.) 2894 * 2895 * NB. EXT4_STATE_JDATA is not set on files other than 2896 * regular files. If somebody wants to bmap a directory 2897 * or symlink and gets confused because the buffer 2898 * hasn't yet been flushed to disk, they deserve 2899 * everything they get. 2900 */ 2901 2902 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 2903 journal = EXT4_JOURNAL(inode); 2904 jbd2_journal_lock_updates(journal); 2905 err = jbd2_journal_flush(journal); 2906 jbd2_journal_unlock_updates(journal); 2907 2908 if (err) 2909 return 0; 2910 } 2911 2912 return generic_block_bmap(mapping, block, ext4_get_block); 2913 } 2914 2915 static int ext4_readpage(struct file *file, struct page *page) 2916 { 2917 int ret = -EAGAIN; 2918 struct inode *inode = page->mapping->host; 2919 2920 trace_ext4_readpage(page); 2921 2922 if (ext4_has_inline_data(inode)) 2923 ret = ext4_readpage_inline(inode, page); 2924 2925 if (ret == -EAGAIN) 2926 return ext4_mpage_readpages(page->mapping, NULL, page, 1); 2927 2928 return ret; 2929 } 2930 2931 static int 2932 ext4_readpages(struct file *file, struct address_space *mapping, 2933 struct list_head *pages, unsigned nr_pages) 2934 { 2935 struct inode *inode = mapping->host; 2936 2937 /* If the file has inline data, no need to do readpages. */ 2938 if (ext4_has_inline_data(inode)) 2939 return 0; 2940 2941 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages); 2942 } 2943 2944 static void ext4_invalidatepage(struct page *page, unsigned int offset, 2945 unsigned int length) 2946 { 2947 trace_ext4_invalidatepage(page, offset, length); 2948 2949 /* No journalling happens on data buffers when this function is used */ 2950 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 2951 2952 block_invalidatepage(page, offset, length); 2953 } 2954 2955 static int __ext4_journalled_invalidatepage(struct page *page, 2956 unsigned int offset, 2957 unsigned int length) 2958 { 2959 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2960 2961 trace_ext4_journalled_invalidatepage(page, offset, length); 2962 2963 /* 2964 * If it's a full truncate we just forget about the pending dirtying 2965 */ 2966 if (offset == 0 && length == PAGE_CACHE_SIZE) 2967 ClearPageChecked(page); 2968 2969 return jbd2_journal_invalidatepage(journal, page, offset, length); 2970 } 2971 2972 /* Wrapper for aops... */ 2973 static void ext4_journalled_invalidatepage(struct page *page, 2974 unsigned int offset, 2975 unsigned int length) 2976 { 2977 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 2978 } 2979 2980 static int ext4_releasepage(struct page *page, gfp_t wait) 2981 { 2982 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2983 2984 trace_ext4_releasepage(page); 2985 2986 /* Page has dirty journalled data -> cannot release */ 2987 if (PageChecked(page)) 2988 return 0; 2989 if (journal) 2990 return jbd2_journal_try_to_free_buffers(journal, page, wait); 2991 else 2992 return try_to_free_buffers(page); 2993 } 2994 2995 /* 2996 * ext4_get_block used when preparing for a DIO write or buffer write. 2997 * We allocate an uinitialized extent if blocks haven't been allocated. 2998 * The extent will be converted to initialized after the IO is complete. 2999 */ 3000 int ext4_get_block_write(struct inode *inode, sector_t iblock, 3001 struct buffer_head *bh_result, int create) 3002 { 3003 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n", 3004 inode->i_ino, create); 3005 return _ext4_get_block(inode, iblock, bh_result, 3006 EXT4_GET_BLOCKS_IO_CREATE_EXT); 3007 } 3008 3009 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 3010 struct buffer_head *bh_result, int create) 3011 { 3012 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n", 3013 inode->i_ino, create); 3014 return _ext4_get_block(inode, iblock, bh_result, 3015 EXT4_GET_BLOCKS_NO_LOCK); 3016 } 3017 3018 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 3019 ssize_t size, void *private) 3020 { 3021 ext4_io_end_t *io_end = iocb->private; 3022 3023 /* if not async direct IO just return */ 3024 if (!io_end) 3025 return; 3026 3027 ext_debug("ext4_end_io_dio(): io_end 0x%p " 3028 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", 3029 iocb->private, io_end->inode->i_ino, iocb, offset, 3030 size); 3031 3032 iocb->private = NULL; 3033 io_end->offset = offset; 3034 io_end->size = size; 3035 ext4_put_io_end(io_end); 3036 } 3037 3038 /* 3039 * For ext4 extent files, ext4 will do direct-io write to holes, 3040 * preallocated extents, and those write extend the file, no need to 3041 * fall back to buffered IO. 3042 * 3043 * For holes, we fallocate those blocks, mark them as unwritten 3044 * If those blocks were preallocated, we mark sure they are split, but 3045 * still keep the range to write as unwritten. 3046 * 3047 * The unwritten extents will be converted to written when DIO is completed. 3048 * For async direct IO, since the IO may still pending when return, we 3049 * set up an end_io call back function, which will do the conversion 3050 * when async direct IO completed. 3051 * 3052 * If the O_DIRECT write will extend the file then add this inode to the 3053 * orphan list. So recovery will truncate it back to the original size 3054 * if the machine crashes during the write. 3055 * 3056 */ 3057 static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter, 3058 loff_t offset) 3059 { 3060 struct file *file = iocb->ki_filp; 3061 struct inode *inode = file->f_mapping->host; 3062 ssize_t ret; 3063 size_t count = iov_iter_count(iter); 3064 int overwrite = 0; 3065 get_block_t *get_block_func = NULL; 3066 int dio_flags = 0; 3067 loff_t final_size = offset + count; 3068 ext4_io_end_t *io_end = NULL; 3069 3070 /* Use the old path for reads and writes beyond i_size. */ 3071 if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size) 3072 return ext4_ind_direct_IO(iocb, iter, offset); 3073 3074 BUG_ON(iocb->private == NULL); 3075 3076 /* 3077 * Make all waiters for direct IO properly wait also for extent 3078 * conversion. This also disallows race between truncate() and 3079 * overwrite DIO as i_dio_count needs to be incremented under i_mutex. 3080 */ 3081 if (iov_iter_rw(iter) == WRITE) 3082 inode_dio_begin(inode); 3083 3084 /* If we do a overwrite dio, i_mutex locking can be released */ 3085 overwrite = *((int *)iocb->private); 3086 3087 if (overwrite) { 3088 down_read(&EXT4_I(inode)->i_data_sem); 3089 mutex_unlock(&inode->i_mutex); 3090 } 3091 3092 /* 3093 * We could direct write to holes and fallocate. 3094 * 3095 * Allocated blocks to fill the hole are marked as 3096 * unwritten to prevent parallel buffered read to expose 3097 * the stale data before DIO complete the data IO. 3098 * 3099 * As to previously fallocated extents, ext4 get_block will 3100 * just simply mark the buffer mapped but still keep the 3101 * extents unwritten. 3102 * 3103 * For non AIO case, we will convert those unwritten extents 3104 * to written after return back from blockdev_direct_IO. 3105 * 3106 * For async DIO, the conversion needs to be deferred when the 3107 * IO is completed. The ext4 end_io callback function will be 3108 * called to take care of the conversion work. Here for async 3109 * case, we allocate an io_end structure to hook to the iocb. 3110 */ 3111 iocb->private = NULL; 3112 ext4_inode_aio_set(inode, NULL); 3113 if (!is_sync_kiocb(iocb)) { 3114 io_end = ext4_init_io_end(inode, GFP_NOFS); 3115 if (!io_end) { 3116 ret = -ENOMEM; 3117 goto retake_lock; 3118 } 3119 /* 3120 * Grab reference for DIO. Will be dropped in ext4_end_io_dio() 3121 */ 3122 iocb->private = ext4_get_io_end(io_end); 3123 /* 3124 * we save the io structure for current async direct 3125 * IO, so that later ext4_map_blocks() could flag the 3126 * io structure whether there is a unwritten extents 3127 * needs to be converted when IO is completed. 3128 */ 3129 ext4_inode_aio_set(inode, io_end); 3130 } 3131 3132 if (overwrite) { 3133 get_block_func = ext4_get_block_write_nolock; 3134 } else { 3135 get_block_func = ext4_get_block_write; 3136 dio_flags = DIO_LOCKING; 3137 } 3138 #ifdef CONFIG_EXT4_FS_ENCRYPTION 3139 BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode)); 3140 #endif 3141 if (IS_DAX(inode)) 3142 ret = dax_do_io(iocb, inode, iter, offset, get_block_func, 3143 ext4_end_io_dio, dio_flags); 3144 else 3145 ret = __blockdev_direct_IO(iocb, inode, 3146 inode->i_sb->s_bdev, iter, offset, 3147 get_block_func, 3148 ext4_end_io_dio, NULL, dio_flags); 3149 3150 /* 3151 * Put our reference to io_end. This can free the io_end structure e.g. 3152 * in sync IO case or in case of error. It can even perform extent 3153 * conversion if all bios we submitted finished before we got here. 3154 * Note that in that case iocb->private can be already set to NULL 3155 * here. 3156 */ 3157 if (io_end) { 3158 ext4_inode_aio_set(inode, NULL); 3159 ext4_put_io_end(io_end); 3160 /* 3161 * When no IO was submitted ext4_end_io_dio() was not 3162 * called so we have to put iocb's reference. 3163 */ 3164 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) { 3165 WARN_ON(iocb->private != io_end); 3166 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN); 3167 ext4_put_io_end(io_end); 3168 iocb->private = NULL; 3169 } 3170 } 3171 if (ret > 0 && !overwrite && ext4_test_inode_state(inode, 3172 EXT4_STATE_DIO_UNWRITTEN)) { 3173 int err; 3174 /* 3175 * for non AIO case, since the IO is already 3176 * completed, we could do the conversion right here 3177 */ 3178 err = ext4_convert_unwritten_extents(NULL, inode, 3179 offset, ret); 3180 if (err < 0) 3181 ret = err; 3182 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3183 } 3184 3185 retake_lock: 3186 if (iov_iter_rw(iter) == WRITE) 3187 inode_dio_end(inode); 3188 /* take i_mutex locking again if we do a ovewrite dio */ 3189 if (overwrite) { 3190 up_read(&EXT4_I(inode)->i_data_sem); 3191 mutex_lock(&inode->i_mutex); 3192 } 3193 3194 return ret; 3195 } 3196 3197 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter, 3198 loff_t offset) 3199 { 3200 struct file *file = iocb->ki_filp; 3201 struct inode *inode = file->f_mapping->host; 3202 size_t count = iov_iter_count(iter); 3203 ssize_t ret; 3204 3205 #ifdef CONFIG_EXT4_FS_ENCRYPTION 3206 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode)) 3207 return 0; 3208 #endif 3209 3210 /* 3211 * If we are doing data journalling we don't support O_DIRECT 3212 */ 3213 if (ext4_should_journal_data(inode)) 3214 return 0; 3215 3216 /* Let buffer I/O handle the inline data case. */ 3217 if (ext4_has_inline_data(inode)) 3218 return 0; 3219 3220 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter)); 3221 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3222 ret = ext4_ext_direct_IO(iocb, iter, offset); 3223 else 3224 ret = ext4_ind_direct_IO(iocb, iter, offset); 3225 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret); 3226 return ret; 3227 } 3228 3229 /* 3230 * Pages can be marked dirty completely asynchronously from ext4's journalling 3231 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3232 * much here because ->set_page_dirty is called under VFS locks. The page is 3233 * not necessarily locked. 3234 * 3235 * We cannot just dirty the page and leave attached buffers clean, because the 3236 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3237 * or jbddirty because all the journalling code will explode. 3238 * 3239 * So what we do is to mark the page "pending dirty" and next time writepage 3240 * is called, propagate that into the buffers appropriately. 3241 */ 3242 static int ext4_journalled_set_page_dirty(struct page *page) 3243 { 3244 SetPageChecked(page); 3245 return __set_page_dirty_nobuffers(page); 3246 } 3247 3248 static const struct address_space_operations ext4_aops = { 3249 .readpage = ext4_readpage, 3250 .readpages = ext4_readpages, 3251 .writepage = ext4_writepage, 3252 .writepages = ext4_writepages, 3253 .write_begin = ext4_write_begin, 3254 .write_end = ext4_write_end, 3255 .bmap = ext4_bmap, 3256 .invalidatepage = ext4_invalidatepage, 3257 .releasepage = ext4_releasepage, 3258 .direct_IO = ext4_direct_IO, 3259 .migratepage = buffer_migrate_page, 3260 .is_partially_uptodate = block_is_partially_uptodate, 3261 .error_remove_page = generic_error_remove_page, 3262 }; 3263 3264 static const struct address_space_operations ext4_journalled_aops = { 3265 .readpage = ext4_readpage, 3266 .readpages = ext4_readpages, 3267 .writepage = ext4_writepage, 3268 .writepages = ext4_writepages, 3269 .write_begin = ext4_write_begin, 3270 .write_end = ext4_journalled_write_end, 3271 .set_page_dirty = ext4_journalled_set_page_dirty, 3272 .bmap = ext4_bmap, 3273 .invalidatepage = ext4_journalled_invalidatepage, 3274 .releasepage = ext4_releasepage, 3275 .direct_IO = ext4_direct_IO, 3276 .is_partially_uptodate = block_is_partially_uptodate, 3277 .error_remove_page = generic_error_remove_page, 3278 }; 3279 3280 static const struct address_space_operations ext4_da_aops = { 3281 .readpage = ext4_readpage, 3282 .readpages = ext4_readpages, 3283 .writepage = ext4_writepage, 3284 .writepages = ext4_writepages, 3285 .write_begin = ext4_da_write_begin, 3286 .write_end = ext4_da_write_end, 3287 .bmap = ext4_bmap, 3288 .invalidatepage = ext4_da_invalidatepage, 3289 .releasepage = ext4_releasepage, 3290 .direct_IO = ext4_direct_IO, 3291 .migratepage = buffer_migrate_page, 3292 .is_partially_uptodate = block_is_partially_uptodate, 3293 .error_remove_page = generic_error_remove_page, 3294 }; 3295 3296 void ext4_set_aops(struct inode *inode) 3297 { 3298 switch (ext4_inode_journal_mode(inode)) { 3299 case EXT4_INODE_ORDERED_DATA_MODE: 3300 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3301 break; 3302 case EXT4_INODE_WRITEBACK_DATA_MODE: 3303 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3304 break; 3305 case EXT4_INODE_JOURNAL_DATA_MODE: 3306 inode->i_mapping->a_ops = &ext4_journalled_aops; 3307 return; 3308 default: 3309 BUG(); 3310 } 3311 if (test_opt(inode->i_sb, DELALLOC)) 3312 inode->i_mapping->a_ops = &ext4_da_aops; 3313 else 3314 inode->i_mapping->a_ops = &ext4_aops; 3315 } 3316 3317 static int __ext4_block_zero_page_range(handle_t *handle, 3318 struct address_space *mapping, loff_t from, loff_t length) 3319 { 3320 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3321 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3322 unsigned blocksize, pos; 3323 ext4_lblk_t iblock; 3324 struct inode *inode = mapping->host; 3325 struct buffer_head *bh; 3326 struct page *page; 3327 int err = 0; 3328 3329 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 3330 mapping_gfp_mask(mapping) & ~__GFP_FS); 3331 if (!page) 3332 return -ENOMEM; 3333 3334 blocksize = inode->i_sb->s_blocksize; 3335 3336 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3337 3338 if (!page_has_buffers(page)) 3339 create_empty_buffers(page, blocksize, 0); 3340 3341 /* Find the buffer that contains "offset" */ 3342 bh = page_buffers(page); 3343 pos = blocksize; 3344 while (offset >= pos) { 3345 bh = bh->b_this_page; 3346 iblock++; 3347 pos += blocksize; 3348 } 3349 if (buffer_freed(bh)) { 3350 BUFFER_TRACE(bh, "freed: skip"); 3351 goto unlock; 3352 } 3353 if (!buffer_mapped(bh)) { 3354 BUFFER_TRACE(bh, "unmapped"); 3355 ext4_get_block(inode, iblock, bh, 0); 3356 /* unmapped? It's a hole - nothing to do */ 3357 if (!buffer_mapped(bh)) { 3358 BUFFER_TRACE(bh, "still unmapped"); 3359 goto unlock; 3360 } 3361 } 3362 3363 /* Ok, it's mapped. Make sure it's up-to-date */ 3364 if (PageUptodate(page)) 3365 set_buffer_uptodate(bh); 3366 3367 if (!buffer_uptodate(bh)) { 3368 err = -EIO; 3369 ll_rw_block(READ, 1, &bh); 3370 wait_on_buffer(bh); 3371 /* Uhhuh. Read error. Complain and punt. */ 3372 if (!buffer_uptodate(bh)) 3373 goto unlock; 3374 if (S_ISREG(inode->i_mode) && 3375 ext4_encrypted_inode(inode)) { 3376 /* We expect the key to be set. */ 3377 BUG_ON(!ext4_has_encryption_key(inode)); 3378 BUG_ON(blocksize != PAGE_CACHE_SIZE); 3379 WARN_ON_ONCE(ext4_decrypt_one(inode, page)); 3380 } 3381 } 3382 if (ext4_should_journal_data(inode)) { 3383 BUFFER_TRACE(bh, "get write access"); 3384 err = ext4_journal_get_write_access(handle, bh); 3385 if (err) 3386 goto unlock; 3387 } 3388 zero_user(page, offset, length); 3389 BUFFER_TRACE(bh, "zeroed end of block"); 3390 3391 if (ext4_should_journal_data(inode)) { 3392 err = ext4_handle_dirty_metadata(handle, inode, bh); 3393 } else { 3394 err = 0; 3395 mark_buffer_dirty(bh); 3396 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) 3397 err = ext4_jbd2_file_inode(handle, inode); 3398 } 3399 3400 unlock: 3401 unlock_page(page); 3402 page_cache_release(page); 3403 return err; 3404 } 3405 3406 /* 3407 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3408 * starting from file offset 'from'. The range to be zero'd must 3409 * be contained with in one block. If the specified range exceeds 3410 * the end of the block it will be shortened to end of the block 3411 * that cooresponds to 'from' 3412 */ 3413 static int ext4_block_zero_page_range(handle_t *handle, 3414 struct address_space *mapping, loff_t from, loff_t length) 3415 { 3416 struct inode *inode = mapping->host; 3417 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3418 unsigned blocksize = inode->i_sb->s_blocksize; 3419 unsigned max = blocksize - (offset & (blocksize - 1)); 3420 3421 /* 3422 * correct length if it does not fall between 3423 * 'from' and the end of the block 3424 */ 3425 if (length > max || length < 0) 3426 length = max; 3427 3428 if (IS_DAX(inode)) 3429 return dax_zero_page_range(inode, from, length, ext4_get_block); 3430 return __ext4_block_zero_page_range(handle, mapping, from, length); 3431 } 3432 3433 /* 3434 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3435 * up to the end of the block which corresponds to `from'. 3436 * This required during truncate. We need to physically zero the tail end 3437 * of that block so it doesn't yield old data if the file is later grown. 3438 */ 3439 static int ext4_block_truncate_page(handle_t *handle, 3440 struct address_space *mapping, loff_t from) 3441 { 3442 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3443 unsigned length; 3444 unsigned blocksize; 3445 struct inode *inode = mapping->host; 3446 3447 blocksize = inode->i_sb->s_blocksize; 3448 length = blocksize - (offset & (blocksize - 1)); 3449 3450 return ext4_block_zero_page_range(handle, mapping, from, length); 3451 } 3452 3453 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3454 loff_t lstart, loff_t length) 3455 { 3456 struct super_block *sb = inode->i_sb; 3457 struct address_space *mapping = inode->i_mapping; 3458 unsigned partial_start, partial_end; 3459 ext4_fsblk_t start, end; 3460 loff_t byte_end = (lstart + length - 1); 3461 int err = 0; 3462 3463 partial_start = lstart & (sb->s_blocksize - 1); 3464 partial_end = byte_end & (sb->s_blocksize - 1); 3465 3466 start = lstart >> sb->s_blocksize_bits; 3467 end = byte_end >> sb->s_blocksize_bits; 3468 3469 /* Handle partial zero within the single block */ 3470 if (start == end && 3471 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3472 err = ext4_block_zero_page_range(handle, mapping, 3473 lstart, length); 3474 return err; 3475 } 3476 /* Handle partial zero out on the start of the range */ 3477 if (partial_start) { 3478 err = ext4_block_zero_page_range(handle, mapping, 3479 lstart, sb->s_blocksize); 3480 if (err) 3481 return err; 3482 } 3483 /* Handle partial zero out on the end of the range */ 3484 if (partial_end != sb->s_blocksize - 1) 3485 err = ext4_block_zero_page_range(handle, mapping, 3486 byte_end - partial_end, 3487 partial_end + 1); 3488 return err; 3489 } 3490 3491 int ext4_can_truncate(struct inode *inode) 3492 { 3493 if (S_ISREG(inode->i_mode)) 3494 return 1; 3495 if (S_ISDIR(inode->i_mode)) 3496 return 1; 3497 if (S_ISLNK(inode->i_mode)) 3498 return !ext4_inode_is_fast_symlink(inode); 3499 return 0; 3500 } 3501 3502 /* 3503 * ext4_punch_hole: punches a hole in a file by releaseing the blocks 3504 * associated with the given offset and length 3505 * 3506 * @inode: File inode 3507 * @offset: The offset where the hole will begin 3508 * @len: The length of the hole 3509 * 3510 * Returns: 0 on success or negative on failure 3511 */ 3512 3513 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 3514 { 3515 struct super_block *sb = inode->i_sb; 3516 ext4_lblk_t first_block, stop_block; 3517 struct address_space *mapping = inode->i_mapping; 3518 loff_t first_block_offset, last_block_offset; 3519 handle_t *handle; 3520 unsigned int credits; 3521 int ret = 0; 3522 3523 if (!S_ISREG(inode->i_mode)) 3524 return -EOPNOTSUPP; 3525 3526 trace_ext4_punch_hole(inode, offset, length, 0); 3527 3528 /* 3529 * Write out all dirty pages to avoid race conditions 3530 * Then release them. 3531 */ 3532 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 3533 ret = filemap_write_and_wait_range(mapping, offset, 3534 offset + length - 1); 3535 if (ret) 3536 return ret; 3537 } 3538 3539 mutex_lock(&inode->i_mutex); 3540 3541 /* No need to punch hole beyond i_size */ 3542 if (offset >= inode->i_size) 3543 goto out_mutex; 3544 3545 /* 3546 * If the hole extends beyond i_size, set the hole 3547 * to end after the page that contains i_size 3548 */ 3549 if (offset + length > inode->i_size) { 3550 length = inode->i_size + 3551 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) - 3552 offset; 3553 } 3554 3555 if (offset & (sb->s_blocksize - 1) || 3556 (offset + length) & (sb->s_blocksize - 1)) { 3557 /* 3558 * Attach jinode to inode for jbd2 if we do any zeroing of 3559 * partial block 3560 */ 3561 ret = ext4_inode_attach_jinode(inode); 3562 if (ret < 0) 3563 goto out_mutex; 3564 3565 } 3566 3567 first_block_offset = round_up(offset, sb->s_blocksize); 3568 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 3569 3570 /* Now release the pages and zero block aligned part of pages*/ 3571 if (last_block_offset > first_block_offset) 3572 truncate_pagecache_range(inode, first_block_offset, 3573 last_block_offset); 3574 3575 /* Wait all existing dio workers, newcomers will block on i_mutex */ 3576 ext4_inode_block_unlocked_dio(inode); 3577 inode_dio_wait(inode); 3578 3579 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3580 credits = ext4_writepage_trans_blocks(inode); 3581 else 3582 credits = ext4_blocks_for_truncate(inode); 3583 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3584 if (IS_ERR(handle)) { 3585 ret = PTR_ERR(handle); 3586 ext4_std_error(sb, ret); 3587 goto out_dio; 3588 } 3589 3590 ret = ext4_zero_partial_blocks(handle, inode, offset, 3591 length); 3592 if (ret) 3593 goto out_stop; 3594 3595 first_block = (offset + sb->s_blocksize - 1) >> 3596 EXT4_BLOCK_SIZE_BITS(sb); 3597 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 3598 3599 /* If there are no blocks to remove, return now */ 3600 if (first_block >= stop_block) 3601 goto out_stop; 3602 3603 down_write(&EXT4_I(inode)->i_data_sem); 3604 ext4_discard_preallocations(inode); 3605 3606 ret = ext4_es_remove_extent(inode, first_block, 3607 stop_block - first_block); 3608 if (ret) { 3609 up_write(&EXT4_I(inode)->i_data_sem); 3610 goto out_stop; 3611 } 3612 3613 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3614 ret = ext4_ext_remove_space(inode, first_block, 3615 stop_block - 1); 3616 else 3617 ret = ext4_ind_remove_space(handle, inode, first_block, 3618 stop_block); 3619 3620 up_write(&EXT4_I(inode)->i_data_sem); 3621 if (IS_SYNC(inode)) 3622 ext4_handle_sync(handle); 3623 3624 /* Now release the pages again to reduce race window */ 3625 if (last_block_offset > first_block_offset) 3626 truncate_pagecache_range(inode, first_block_offset, 3627 last_block_offset); 3628 3629 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3630 ext4_mark_inode_dirty(handle, inode); 3631 out_stop: 3632 ext4_journal_stop(handle); 3633 out_dio: 3634 ext4_inode_resume_unlocked_dio(inode); 3635 out_mutex: 3636 mutex_unlock(&inode->i_mutex); 3637 return ret; 3638 } 3639 3640 int ext4_inode_attach_jinode(struct inode *inode) 3641 { 3642 struct ext4_inode_info *ei = EXT4_I(inode); 3643 struct jbd2_inode *jinode; 3644 3645 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 3646 return 0; 3647 3648 jinode = jbd2_alloc_inode(GFP_KERNEL); 3649 spin_lock(&inode->i_lock); 3650 if (!ei->jinode) { 3651 if (!jinode) { 3652 spin_unlock(&inode->i_lock); 3653 return -ENOMEM; 3654 } 3655 ei->jinode = jinode; 3656 jbd2_journal_init_jbd_inode(ei->jinode, inode); 3657 jinode = NULL; 3658 } 3659 spin_unlock(&inode->i_lock); 3660 if (unlikely(jinode != NULL)) 3661 jbd2_free_inode(jinode); 3662 return 0; 3663 } 3664 3665 /* 3666 * ext4_truncate() 3667 * 3668 * We block out ext4_get_block() block instantiations across the entire 3669 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 3670 * simultaneously on behalf of the same inode. 3671 * 3672 * As we work through the truncate and commit bits of it to the journal there 3673 * is one core, guiding principle: the file's tree must always be consistent on 3674 * disk. We must be able to restart the truncate after a crash. 3675 * 3676 * The file's tree may be transiently inconsistent in memory (although it 3677 * probably isn't), but whenever we close off and commit a journal transaction, 3678 * the contents of (the filesystem + the journal) must be consistent and 3679 * restartable. It's pretty simple, really: bottom up, right to left (although 3680 * left-to-right works OK too). 3681 * 3682 * Note that at recovery time, journal replay occurs *before* the restart of 3683 * truncate against the orphan inode list. 3684 * 3685 * The committed inode has the new, desired i_size (which is the same as 3686 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 3687 * that this inode's truncate did not complete and it will again call 3688 * ext4_truncate() to have another go. So there will be instantiated blocks 3689 * to the right of the truncation point in a crashed ext4 filesystem. But 3690 * that's fine - as long as they are linked from the inode, the post-crash 3691 * ext4_truncate() run will find them and release them. 3692 */ 3693 void ext4_truncate(struct inode *inode) 3694 { 3695 struct ext4_inode_info *ei = EXT4_I(inode); 3696 unsigned int credits; 3697 handle_t *handle; 3698 struct address_space *mapping = inode->i_mapping; 3699 3700 /* 3701 * There is a possibility that we're either freeing the inode 3702 * or it's a completely new inode. In those cases we might not 3703 * have i_mutex locked because it's not necessary. 3704 */ 3705 if (!(inode->i_state & (I_NEW|I_FREEING))) 3706 WARN_ON(!mutex_is_locked(&inode->i_mutex)); 3707 trace_ext4_truncate_enter(inode); 3708 3709 if (!ext4_can_truncate(inode)) 3710 return; 3711 3712 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3713 3714 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 3715 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 3716 3717 if (ext4_has_inline_data(inode)) { 3718 int has_inline = 1; 3719 3720 ext4_inline_data_truncate(inode, &has_inline); 3721 if (has_inline) 3722 return; 3723 } 3724 3725 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 3726 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 3727 if (ext4_inode_attach_jinode(inode) < 0) 3728 return; 3729 } 3730 3731 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3732 credits = ext4_writepage_trans_blocks(inode); 3733 else 3734 credits = ext4_blocks_for_truncate(inode); 3735 3736 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3737 if (IS_ERR(handle)) { 3738 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 3739 return; 3740 } 3741 3742 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 3743 ext4_block_truncate_page(handle, mapping, inode->i_size); 3744 3745 /* 3746 * We add the inode to the orphan list, so that if this 3747 * truncate spans multiple transactions, and we crash, we will 3748 * resume the truncate when the filesystem recovers. It also 3749 * marks the inode dirty, to catch the new size. 3750 * 3751 * Implication: the file must always be in a sane, consistent 3752 * truncatable state while each transaction commits. 3753 */ 3754 if (ext4_orphan_add(handle, inode)) 3755 goto out_stop; 3756 3757 down_write(&EXT4_I(inode)->i_data_sem); 3758 3759 ext4_discard_preallocations(inode); 3760 3761 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3762 ext4_ext_truncate(handle, inode); 3763 else 3764 ext4_ind_truncate(handle, inode); 3765 3766 up_write(&ei->i_data_sem); 3767 3768 if (IS_SYNC(inode)) 3769 ext4_handle_sync(handle); 3770 3771 out_stop: 3772 /* 3773 * If this was a simple ftruncate() and the file will remain alive, 3774 * then we need to clear up the orphan record which we created above. 3775 * However, if this was a real unlink then we were called by 3776 * ext4_evict_inode(), and we allow that function to clean up the 3777 * orphan info for us. 3778 */ 3779 if (inode->i_nlink) 3780 ext4_orphan_del(handle, inode); 3781 3782 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3783 ext4_mark_inode_dirty(handle, inode); 3784 ext4_journal_stop(handle); 3785 3786 trace_ext4_truncate_exit(inode); 3787 } 3788 3789 /* 3790 * ext4_get_inode_loc returns with an extra refcount against the inode's 3791 * underlying buffer_head on success. If 'in_mem' is true, we have all 3792 * data in memory that is needed to recreate the on-disk version of this 3793 * inode. 3794 */ 3795 static int __ext4_get_inode_loc(struct inode *inode, 3796 struct ext4_iloc *iloc, int in_mem) 3797 { 3798 struct ext4_group_desc *gdp; 3799 struct buffer_head *bh; 3800 struct super_block *sb = inode->i_sb; 3801 ext4_fsblk_t block; 3802 int inodes_per_block, inode_offset; 3803 3804 iloc->bh = NULL; 3805 if (!ext4_valid_inum(sb, inode->i_ino)) 3806 return -EIO; 3807 3808 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 3809 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 3810 if (!gdp) 3811 return -EIO; 3812 3813 /* 3814 * Figure out the offset within the block group inode table 3815 */ 3816 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 3817 inode_offset = ((inode->i_ino - 1) % 3818 EXT4_INODES_PER_GROUP(sb)); 3819 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 3820 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 3821 3822 bh = sb_getblk(sb, block); 3823 if (unlikely(!bh)) 3824 return -ENOMEM; 3825 if (!buffer_uptodate(bh)) { 3826 lock_buffer(bh); 3827 3828 /* 3829 * If the buffer has the write error flag, we have failed 3830 * to write out another inode in the same block. In this 3831 * case, we don't have to read the block because we may 3832 * read the old inode data successfully. 3833 */ 3834 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 3835 set_buffer_uptodate(bh); 3836 3837 if (buffer_uptodate(bh)) { 3838 /* someone brought it uptodate while we waited */ 3839 unlock_buffer(bh); 3840 goto has_buffer; 3841 } 3842 3843 /* 3844 * If we have all information of the inode in memory and this 3845 * is the only valid inode in the block, we need not read the 3846 * block. 3847 */ 3848 if (in_mem) { 3849 struct buffer_head *bitmap_bh; 3850 int i, start; 3851 3852 start = inode_offset & ~(inodes_per_block - 1); 3853 3854 /* Is the inode bitmap in cache? */ 3855 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 3856 if (unlikely(!bitmap_bh)) 3857 goto make_io; 3858 3859 /* 3860 * If the inode bitmap isn't in cache then the 3861 * optimisation may end up performing two reads instead 3862 * of one, so skip it. 3863 */ 3864 if (!buffer_uptodate(bitmap_bh)) { 3865 brelse(bitmap_bh); 3866 goto make_io; 3867 } 3868 for (i = start; i < start + inodes_per_block; i++) { 3869 if (i == inode_offset) 3870 continue; 3871 if (ext4_test_bit(i, bitmap_bh->b_data)) 3872 break; 3873 } 3874 brelse(bitmap_bh); 3875 if (i == start + inodes_per_block) { 3876 /* all other inodes are free, so skip I/O */ 3877 memset(bh->b_data, 0, bh->b_size); 3878 set_buffer_uptodate(bh); 3879 unlock_buffer(bh); 3880 goto has_buffer; 3881 } 3882 } 3883 3884 make_io: 3885 /* 3886 * If we need to do any I/O, try to pre-readahead extra 3887 * blocks from the inode table. 3888 */ 3889 if (EXT4_SB(sb)->s_inode_readahead_blks) { 3890 ext4_fsblk_t b, end, table; 3891 unsigned num; 3892 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 3893 3894 table = ext4_inode_table(sb, gdp); 3895 /* s_inode_readahead_blks is always a power of 2 */ 3896 b = block & ~((ext4_fsblk_t) ra_blks - 1); 3897 if (table > b) 3898 b = table; 3899 end = b + ra_blks; 3900 num = EXT4_INODES_PER_GROUP(sb); 3901 if (ext4_has_group_desc_csum(sb)) 3902 num -= ext4_itable_unused_count(sb, gdp); 3903 table += num / inodes_per_block; 3904 if (end > table) 3905 end = table; 3906 while (b <= end) 3907 sb_breadahead(sb, b++); 3908 } 3909 3910 /* 3911 * There are other valid inodes in the buffer, this inode 3912 * has in-inode xattrs, or we don't have this inode in memory. 3913 * Read the block from disk. 3914 */ 3915 trace_ext4_load_inode(inode); 3916 get_bh(bh); 3917 bh->b_end_io = end_buffer_read_sync; 3918 submit_bh(READ | REQ_META | REQ_PRIO, bh); 3919 wait_on_buffer(bh); 3920 if (!buffer_uptodate(bh)) { 3921 EXT4_ERROR_INODE_BLOCK(inode, block, 3922 "unable to read itable block"); 3923 brelse(bh); 3924 return -EIO; 3925 } 3926 } 3927 has_buffer: 3928 iloc->bh = bh; 3929 return 0; 3930 } 3931 3932 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 3933 { 3934 /* We have all inode data except xattrs in memory here. */ 3935 return __ext4_get_inode_loc(inode, iloc, 3936 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 3937 } 3938 3939 void ext4_set_inode_flags(struct inode *inode) 3940 { 3941 unsigned int flags = EXT4_I(inode)->i_flags; 3942 unsigned int new_fl = 0; 3943 3944 if (flags & EXT4_SYNC_FL) 3945 new_fl |= S_SYNC; 3946 if (flags & EXT4_APPEND_FL) 3947 new_fl |= S_APPEND; 3948 if (flags & EXT4_IMMUTABLE_FL) 3949 new_fl |= S_IMMUTABLE; 3950 if (flags & EXT4_NOATIME_FL) 3951 new_fl |= S_NOATIME; 3952 if (flags & EXT4_DIRSYNC_FL) 3953 new_fl |= S_DIRSYNC; 3954 if (test_opt(inode->i_sb, DAX)) 3955 new_fl |= S_DAX; 3956 inode_set_flags(inode, new_fl, 3957 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX); 3958 } 3959 3960 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 3961 void ext4_get_inode_flags(struct ext4_inode_info *ei) 3962 { 3963 unsigned int vfs_fl; 3964 unsigned long old_fl, new_fl; 3965 3966 do { 3967 vfs_fl = ei->vfs_inode.i_flags; 3968 old_fl = ei->i_flags; 3969 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 3970 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL| 3971 EXT4_DIRSYNC_FL); 3972 if (vfs_fl & S_SYNC) 3973 new_fl |= EXT4_SYNC_FL; 3974 if (vfs_fl & S_APPEND) 3975 new_fl |= EXT4_APPEND_FL; 3976 if (vfs_fl & S_IMMUTABLE) 3977 new_fl |= EXT4_IMMUTABLE_FL; 3978 if (vfs_fl & S_NOATIME) 3979 new_fl |= EXT4_NOATIME_FL; 3980 if (vfs_fl & S_DIRSYNC) 3981 new_fl |= EXT4_DIRSYNC_FL; 3982 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl); 3983 } 3984 3985 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 3986 struct ext4_inode_info *ei) 3987 { 3988 blkcnt_t i_blocks ; 3989 struct inode *inode = &(ei->vfs_inode); 3990 struct super_block *sb = inode->i_sb; 3991 3992 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3993 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 3994 /* we are using combined 48 bit field */ 3995 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 3996 le32_to_cpu(raw_inode->i_blocks_lo); 3997 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 3998 /* i_blocks represent file system block size */ 3999 return i_blocks << (inode->i_blkbits - 9); 4000 } else { 4001 return i_blocks; 4002 } 4003 } else { 4004 return le32_to_cpu(raw_inode->i_blocks_lo); 4005 } 4006 } 4007 4008 static inline void ext4_iget_extra_inode(struct inode *inode, 4009 struct ext4_inode *raw_inode, 4010 struct ext4_inode_info *ei) 4011 { 4012 __le32 *magic = (void *)raw_inode + 4013 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4014 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4015 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4016 ext4_find_inline_data_nolock(inode); 4017 } else 4018 EXT4_I(inode)->i_inline_off = 0; 4019 } 4020 4021 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 4022 { 4023 struct ext4_iloc iloc; 4024 struct ext4_inode *raw_inode; 4025 struct ext4_inode_info *ei; 4026 struct inode *inode; 4027 journal_t *journal = EXT4_SB(sb)->s_journal; 4028 long ret; 4029 int block; 4030 uid_t i_uid; 4031 gid_t i_gid; 4032 4033 inode = iget_locked(sb, ino); 4034 if (!inode) 4035 return ERR_PTR(-ENOMEM); 4036 if (!(inode->i_state & I_NEW)) 4037 return inode; 4038 4039 ei = EXT4_I(inode); 4040 iloc.bh = NULL; 4041 4042 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4043 if (ret < 0) 4044 goto bad_inode; 4045 raw_inode = ext4_raw_inode(&iloc); 4046 4047 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4048 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4049 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4050 EXT4_INODE_SIZE(inode->i_sb)) { 4051 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)", 4052 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize, 4053 EXT4_INODE_SIZE(inode->i_sb)); 4054 ret = -EIO; 4055 goto bad_inode; 4056 } 4057 } else 4058 ei->i_extra_isize = 0; 4059 4060 /* Precompute checksum seed for inode metadata */ 4061 if (ext4_has_metadata_csum(sb)) { 4062 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4063 __u32 csum; 4064 __le32 inum = cpu_to_le32(inode->i_ino); 4065 __le32 gen = raw_inode->i_generation; 4066 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4067 sizeof(inum)); 4068 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4069 sizeof(gen)); 4070 } 4071 4072 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 4073 EXT4_ERROR_INODE(inode, "checksum invalid"); 4074 ret = -EIO; 4075 goto bad_inode; 4076 } 4077 4078 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4079 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4080 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4081 if (!(test_opt(inode->i_sb, NO_UID32))) { 4082 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4083 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4084 } 4085 i_uid_write(inode, i_uid); 4086 i_gid_write(inode, i_gid); 4087 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4088 4089 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4090 ei->i_inline_off = 0; 4091 ei->i_dir_start_lookup = 0; 4092 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4093 /* We now have enough fields to check if the inode was active or not. 4094 * This is needed because nfsd might try to access dead inodes 4095 * the test is that same one that e2fsck uses 4096 * NeilBrown 1999oct15 4097 */ 4098 if (inode->i_nlink == 0) { 4099 if ((inode->i_mode == 0 || 4100 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4101 ino != EXT4_BOOT_LOADER_INO) { 4102 /* this inode is deleted */ 4103 ret = -ESTALE; 4104 goto bad_inode; 4105 } 4106 /* The only unlinked inodes we let through here have 4107 * valid i_mode and are being read by the orphan 4108 * recovery code: that's fine, we're about to complete 4109 * the process of deleting those. 4110 * OR it is the EXT4_BOOT_LOADER_INO which is 4111 * not initialized on a new filesystem. */ 4112 } 4113 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4114 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4115 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4116 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) 4117 ei->i_file_acl |= 4118 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4119 inode->i_size = ext4_isize(raw_inode); 4120 ei->i_disksize = inode->i_size; 4121 #ifdef CONFIG_QUOTA 4122 ei->i_reserved_quota = 0; 4123 #endif 4124 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4125 ei->i_block_group = iloc.block_group; 4126 ei->i_last_alloc_group = ~0; 4127 /* 4128 * NOTE! The in-memory inode i_data array is in little-endian order 4129 * even on big-endian machines: we do NOT byteswap the block numbers! 4130 */ 4131 for (block = 0; block < EXT4_N_BLOCKS; block++) 4132 ei->i_data[block] = raw_inode->i_block[block]; 4133 INIT_LIST_HEAD(&ei->i_orphan); 4134 4135 /* 4136 * Set transaction id's of transactions that have to be committed 4137 * to finish f[data]sync. We set them to currently running transaction 4138 * as we cannot be sure that the inode or some of its metadata isn't 4139 * part of the transaction - the inode could have been reclaimed and 4140 * now it is reread from disk. 4141 */ 4142 if (journal) { 4143 transaction_t *transaction; 4144 tid_t tid; 4145 4146 read_lock(&journal->j_state_lock); 4147 if (journal->j_running_transaction) 4148 transaction = journal->j_running_transaction; 4149 else 4150 transaction = journal->j_committing_transaction; 4151 if (transaction) 4152 tid = transaction->t_tid; 4153 else 4154 tid = journal->j_commit_sequence; 4155 read_unlock(&journal->j_state_lock); 4156 ei->i_sync_tid = tid; 4157 ei->i_datasync_tid = tid; 4158 } 4159 4160 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4161 if (ei->i_extra_isize == 0) { 4162 /* The extra space is currently unused. Use it. */ 4163 ei->i_extra_isize = sizeof(struct ext4_inode) - 4164 EXT4_GOOD_OLD_INODE_SIZE; 4165 } else { 4166 ext4_iget_extra_inode(inode, raw_inode, ei); 4167 } 4168 } 4169 4170 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4171 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4172 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4173 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4174 4175 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4176 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4177 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4178 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4179 inode->i_version |= 4180 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4181 } 4182 } 4183 4184 ret = 0; 4185 if (ei->i_file_acl && 4186 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 4187 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 4188 ei->i_file_acl); 4189 ret = -EIO; 4190 goto bad_inode; 4191 } else if (!ext4_has_inline_data(inode)) { 4192 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 4193 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4194 (S_ISLNK(inode->i_mode) && 4195 !ext4_inode_is_fast_symlink(inode)))) 4196 /* Validate extent which is part of inode */ 4197 ret = ext4_ext_check_inode(inode); 4198 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4199 (S_ISLNK(inode->i_mode) && 4200 !ext4_inode_is_fast_symlink(inode))) { 4201 /* Validate block references which are part of inode */ 4202 ret = ext4_ind_check_inode(inode); 4203 } 4204 } 4205 if (ret) 4206 goto bad_inode; 4207 4208 if (S_ISREG(inode->i_mode)) { 4209 inode->i_op = &ext4_file_inode_operations; 4210 inode->i_fop = &ext4_file_operations; 4211 ext4_set_aops(inode); 4212 } else if (S_ISDIR(inode->i_mode)) { 4213 inode->i_op = &ext4_dir_inode_operations; 4214 inode->i_fop = &ext4_dir_operations; 4215 } else if (S_ISLNK(inode->i_mode)) { 4216 if (ext4_inode_is_fast_symlink(inode) && 4217 !ext4_encrypted_inode(inode)) { 4218 inode->i_op = &ext4_fast_symlink_inode_operations; 4219 nd_terminate_link(ei->i_data, inode->i_size, 4220 sizeof(ei->i_data) - 1); 4221 } else { 4222 inode->i_op = &ext4_symlink_inode_operations; 4223 ext4_set_aops(inode); 4224 } 4225 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4226 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4227 inode->i_op = &ext4_special_inode_operations; 4228 if (raw_inode->i_block[0]) 4229 init_special_inode(inode, inode->i_mode, 4230 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4231 else 4232 init_special_inode(inode, inode->i_mode, 4233 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4234 } else if (ino == EXT4_BOOT_LOADER_INO) { 4235 make_bad_inode(inode); 4236 } else { 4237 ret = -EIO; 4238 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 4239 goto bad_inode; 4240 } 4241 brelse(iloc.bh); 4242 ext4_set_inode_flags(inode); 4243 unlock_new_inode(inode); 4244 return inode; 4245 4246 bad_inode: 4247 brelse(iloc.bh); 4248 iget_failed(inode); 4249 return ERR_PTR(ret); 4250 } 4251 4252 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino) 4253 { 4254 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 4255 return ERR_PTR(-EIO); 4256 return ext4_iget(sb, ino); 4257 } 4258 4259 static int ext4_inode_blocks_set(handle_t *handle, 4260 struct ext4_inode *raw_inode, 4261 struct ext4_inode_info *ei) 4262 { 4263 struct inode *inode = &(ei->vfs_inode); 4264 u64 i_blocks = inode->i_blocks; 4265 struct super_block *sb = inode->i_sb; 4266 4267 if (i_blocks <= ~0U) { 4268 /* 4269 * i_blocks can be represented in a 32 bit variable 4270 * as multiple of 512 bytes 4271 */ 4272 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4273 raw_inode->i_blocks_high = 0; 4274 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4275 return 0; 4276 } 4277 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) 4278 return -EFBIG; 4279 4280 if (i_blocks <= 0xffffffffffffULL) { 4281 /* 4282 * i_blocks can be represented in a 48 bit variable 4283 * as multiple of 512 bytes 4284 */ 4285 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4286 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4287 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4288 } else { 4289 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4290 /* i_block is stored in file system block size */ 4291 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4292 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4293 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4294 } 4295 return 0; 4296 } 4297 4298 struct other_inode { 4299 unsigned long orig_ino; 4300 struct ext4_inode *raw_inode; 4301 }; 4302 4303 static int other_inode_match(struct inode * inode, unsigned long ino, 4304 void *data) 4305 { 4306 struct other_inode *oi = (struct other_inode *) data; 4307 4308 if ((inode->i_ino != ino) || 4309 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4310 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) || 4311 ((inode->i_state & I_DIRTY_TIME) == 0)) 4312 return 0; 4313 spin_lock(&inode->i_lock); 4314 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4315 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) && 4316 (inode->i_state & I_DIRTY_TIME)) { 4317 struct ext4_inode_info *ei = EXT4_I(inode); 4318 4319 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED); 4320 spin_unlock(&inode->i_lock); 4321 4322 spin_lock(&ei->i_raw_lock); 4323 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode); 4324 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode); 4325 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode); 4326 ext4_inode_csum_set(inode, oi->raw_inode, ei); 4327 spin_unlock(&ei->i_raw_lock); 4328 trace_ext4_other_inode_update_time(inode, oi->orig_ino); 4329 return -1; 4330 } 4331 spin_unlock(&inode->i_lock); 4332 return -1; 4333 } 4334 4335 /* 4336 * Opportunistically update the other time fields for other inodes in 4337 * the same inode table block. 4338 */ 4339 static void ext4_update_other_inodes_time(struct super_block *sb, 4340 unsigned long orig_ino, char *buf) 4341 { 4342 struct other_inode oi; 4343 unsigned long ino; 4344 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4345 int inode_size = EXT4_INODE_SIZE(sb); 4346 4347 oi.orig_ino = orig_ino; 4348 ino = (orig_ino & ~(inodes_per_block - 1)) + 1; 4349 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 4350 if (ino == orig_ino) 4351 continue; 4352 oi.raw_inode = (struct ext4_inode *) buf; 4353 (void) find_inode_nowait(sb, ino, other_inode_match, &oi); 4354 } 4355 } 4356 4357 /* 4358 * Post the struct inode info into an on-disk inode location in the 4359 * buffer-cache. This gobbles the caller's reference to the 4360 * buffer_head in the inode location struct. 4361 * 4362 * The caller must have write access to iloc->bh. 4363 */ 4364 static int ext4_do_update_inode(handle_t *handle, 4365 struct inode *inode, 4366 struct ext4_iloc *iloc) 4367 { 4368 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4369 struct ext4_inode_info *ei = EXT4_I(inode); 4370 struct buffer_head *bh = iloc->bh; 4371 struct super_block *sb = inode->i_sb; 4372 int err = 0, rc, block; 4373 int need_datasync = 0, set_large_file = 0; 4374 uid_t i_uid; 4375 gid_t i_gid; 4376 4377 spin_lock(&ei->i_raw_lock); 4378 4379 /* For fields not tracked in the in-memory inode, 4380 * initialise them to zero for new inodes. */ 4381 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4382 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4383 4384 ext4_get_inode_flags(ei); 4385 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4386 i_uid = i_uid_read(inode); 4387 i_gid = i_gid_read(inode); 4388 if (!(test_opt(inode->i_sb, NO_UID32))) { 4389 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4390 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4391 /* 4392 * Fix up interoperability with old kernels. Otherwise, old inodes get 4393 * re-used with the upper 16 bits of the uid/gid intact 4394 */ 4395 if (!ei->i_dtime) { 4396 raw_inode->i_uid_high = 4397 cpu_to_le16(high_16_bits(i_uid)); 4398 raw_inode->i_gid_high = 4399 cpu_to_le16(high_16_bits(i_gid)); 4400 } else { 4401 raw_inode->i_uid_high = 0; 4402 raw_inode->i_gid_high = 0; 4403 } 4404 } else { 4405 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4406 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4407 raw_inode->i_uid_high = 0; 4408 raw_inode->i_gid_high = 0; 4409 } 4410 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4411 4412 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4413 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4414 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4415 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4416 4417 err = ext4_inode_blocks_set(handle, raw_inode, ei); 4418 if (err) { 4419 spin_unlock(&ei->i_raw_lock); 4420 goto out_brelse; 4421 } 4422 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4423 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4424 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 4425 raw_inode->i_file_acl_high = 4426 cpu_to_le16(ei->i_file_acl >> 32); 4427 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4428 if (ei->i_disksize != ext4_isize(raw_inode)) { 4429 ext4_isize_set(raw_inode, ei->i_disksize); 4430 need_datasync = 1; 4431 } 4432 if (ei->i_disksize > 0x7fffffffULL) { 4433 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 4434 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 4435 EXT4_SB(sb)->s_es->s_rev_level == 4436 cpu_to_le32(EXT4_GOOD_OLD_REV)) 4437 set_large_file = 1; 4438 } 4439 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4440 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4441 if (old_valid_dev(inode->i_rdev)) { 4442 raw_inode->i_block[0] = 4443 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4444 raw_inode->i_block[1] = 0; 4445 } else { 4446 raw_inode->i_block[0] = 0; 4447 raw_inode->i_block[1] = 4448 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4449 raw_inode->i_block[2] = 0; 4450 } 4451 } else if (!ext4_has_inline_data(inode)) { 4452 for (block = 0; block < EXT4_N_BLOCKS; block++) 4453 raw_inode->i_block[block] = ei->i_data[block]; 4454 } 4455 4456 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4457 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 4458 if (ei->i_extra_isize) { 4459 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4460 raw_inode->i_version_hi = 4461 cpu_to_le32(inode->i_version >> 32); 4462 raw_inode->i_extra_isize = 4463 cpu_to_le16(ei->i_extra_isize); 4464 } 4465 } 4466 ext4_inode_csum_set(inode, raw_inode, ei); 4467 spin_unlock(&ei->i_raw_lock); 4468 if (inode->i_sb->s_flags & MS_LAZYTIME) 4469 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 4470 bh->b_data); 4471 4472 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4473 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 4474 if (!err) 4475 err = rc; 4476 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 4477 if (set_large_file) { 4478 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 4479 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh); 4480 if (err) 4481 goto out_brelse; 4482 ext4_update_dynamic_rev(sb); 4483 EXT4_SET_RO_COMPAT_FEATURE(sb, 4484 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 4485 ext4_handle_sync(handle); 4486 err = ext4_handle_dirty_super(handle, sb); 4487 } 4488 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 4489 out_brelse: 4490 brelse(bh); 4491 ext4_std_error(inode->i_sb, err); 4492 return err; 4493 } 4494 4495 /* 4496 * ext4_write_inode() 4497 * 4498 * We are called from a few places: 4499 * 4500 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 4501 * Here, there will be no transaction running. We wait for any running 4502 * transaction to commit. 4503 * 4504 * - Within flush work (sys_sync(), kupdate and such). 4505 * We wait on commit, if told to. 4506 * 4507 * - Within iput_final() -> write_inode_now() 4508 * We wait on commit, if told to. 4509 * 4510 * In all cases it is actually safe for us to return without doing anything, 4511 * because the inode has been copied into a raw inode buffer in 4512 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 4513 * writeback. 4514 * 4515 * Note that we are absolutely dependent upon all inode dirtiers doing the 4516 * right thing: they *must* call mark_inode_dirty() after dirtying info in 4517 * which we are interested. 4518 * 4519 * It would be a bug for them to not do this. The code: 4520 * 4521 * mark_inode_dirty(inode) 4522 * stuff(); 4523 * inode->i_size = expr; 4524 * 4525 * is in error because write_inode() could occur while `stuff()' is running, 4526 * and the new i_size will be lost. Plus the inode will no longer be on the 4527 * superblock's dirty inode list. 4528 */ 4529 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 4530 { 4531 int err; 4532 4533 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC)) 4534 return 0; 4535 4536 if (EXT4_SB(inode->i_sb)->s_journal) { 4537 if (ext4_journal_current_handle()) { 4538 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 4539 dump_stack(); 4540 return -EIO; 4541 } 4542 4543 /* 4544 * No need to force transaction in WB_SYNC_NONE mode. Also 4545 * ext4_sync_fs() will force the commit after everything is 4546 * written. 4547 */ 4548 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 4549 return 0; 4550 4551 err = ext4_force_commit(inode->i_sb); 4552 } else { 4553 struct ext4_iloc iloc; 4554 4555 err = __ext4_get_inode_loc(inode, &iloc, 0); 4556 if (err) 4557 return err; 4558 /* 4559 * sync(2) will flush the whole buffer cache. No need to do 4560 * it here separately for each inode. 4561 */ 4562 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 4563 sync_dirty_buffer(iloc.bh); 4564 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 4565 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 4566 "IO error syncing inode"); 4567 err = -EIO; 4568 } 4569 brelse(iloc.bh); 4570 } 4571 return err; 4572 } 4573 4574 /* 4575 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 4576 * buffers that are attached to a page stradding i_size and are undergoing 4577 * commit. In that case we have to wait for commit to finish and try again. 4578 */ 4579 static void ext4_wait_for_tail_page_commit(struct inode *inode) 4580 { 4581 struct page *page; 4582 unsigned offset; 4583 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 4584 tid_t commit_tid = 0; 4585 int ret; 4586 4587 offset = inode->i_size & (PAGE_CACHE_SIZE - 1); 4588 /* 4589 * All buffers in the last page remain valid? Then there's nothing to 4590 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE == 4591 * blocksize case 4592 */ 4593 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits)) 4594 return; 4595 while (1) { 4596 page = find_lock_page(inode->i_mapping, 4597 inode->i_size >> PAGE_CACHE_SHIFT); 4598 if (!page) 4599 return; 4600 ret = __ext4_journalled_invalidatepage(page, offset, 4601 PAGE_CACHE_SIZE - offset); 4602 unlock_page(page); 4603 page_cache_release(page); 4604 if (ret != -EBUSY) 4605 return; 4606 commit_tid = 0; 4607 read_lock(&journal->j_state_lock); 4608 if (journal->j_committing_transaction) 4609 commit_tid = journal->j_committing_transaction->t_tid; 4610 read_unlock(&journal->j_state_lock); 4611 if (commit_tid) 4612 jbd2_log_wait_commit(journal, commit_tid); 4613 } 4614 } 4615 4616 /* 4617 * ext4_setattr() 4618 * 4619 * Called from notify_change. 4620 * 4621 * We want to trap VFS attempts to truncate the file as soon as 4622 * possible. In particular, we want to make sure that when the VFS 4623 * shrinks i_size, we put the inode on the orphan list and modify 4624 * i_disksize immediately, so that during the subsequent flushing of 4625 * dirty pages and freeing of disk blocks, we can guarantee that any 4626 * commit will leave the blocks being flushed in an unused state on 4627 * disk. (On recovery, the inode will get truncated and the blocks will 4628 * be freed, so we have a strong guarantee that no future commit will 4629 * leave these blocks visible to the user.) 4630 * 4631 * Another thing we have to assure is that if we are in ordered mode 4632 * and inode is still attached to the committing transaction, we must 4633 * we start writeout of all the dirty pages which are being truncated. 4634 * This way we are sure that all the data written in the previous 4635 * transaction are already on disk (truncate waits for pages under 4636 * writeback). 4637 * 4638 * Called with inode->i_mutex down. 4639 */ 4640 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 4641 { 4642 struct inode *inode = d_inode(dentry); 4643 int error, rc = 0; 4644 int orphan = 0; 4645 const unsigned int ia_valid = attr->ia_valid; 4646 4647 error = inode_change_ok(inode, attr); 4648 if (error) 4649 return error; 4650 4651 if (is_quota_modification(inode, attr)) 4652 dquot_initialize(inode); 4653 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 4654 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 4655 handle_t *handle; 4656 4657 /* (user+group)*(old+new) structure, inode write (sb, 4658 * inode block, ? - but truncate inode update has it) */ 4659 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 4660 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 4661 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 4662 if (IS_ERR(handle)) { 4663 error = PTR_ERR(handle); 4664 goto err_out; 4665 } 4666 error = dquot_transfer(inode, attr); 4667 if (error) { 4668 ext4_journal_stop(handle); 4669 return error; 4670 } 4671 /* Update corresponding info in inode so that everything is in 4672 * one transaction */ 4673 if (attr->ia_valid & ATTR_UID) 4674 inode->i_uid = attr->ia_uid; 4675 if (attr->ia_valid & ATTR_GID) 4676 inode->i_gid = attr->ia_gid; 4677 error = ext4_mark_inode_dirty(handle, inode); 4678 ext4_journal_stop(handle); 4679 } 4680 4681 if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) { 4682 handle_t *handle; 4683 4684 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4685 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4686 4687 if (attr->ia_size > sbi->s_bitmap_maxbytes) 4688 return -EFBIG; 4689 } 4690 4691 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size) 4692 inode_inc_iversion(inode); 4693 4694 if (S_ISREG(inode->i_mode) && 4695 (attr->ia_size < inode->i_size)) { 4696 if (ext4_should_order_data(inode)) { 4697 error = ext4_begin_ordered_truncate(inode, 4698 attr->ia_size); 4699 if (error) 4700 goto err_out; 4701 } 4702 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 4703 if (IS_ERR(handle)) { 4704 error = PTR_ERR(handle); 4705 goto err_out; 4706 } 4707 if (ext4_handle_valid(handle)) { 4708 error = ext4_orphan_add(handle, inode); 4709 orphan = 1; 4710 } 4711 down_write(&EXT4_I(inode)->i_data_sem); 4712 EXT4_I(inode)->i_disksize = attr->ia_size; 4713 rc = ext4_mark_inode_dirty(handle, inode); 4714 if (!error) 4715 error = rc; 4716 /* 4717 * We have to update i_size under i_data_sem together 4718 * with i_disksize to avoid races with writeback code 4719 * running ext4_wb_update_i_disksize(). 4720 */ 4721 if (!error) 4722 i_size_write(inode, attr->ia_size); 4723 up_write(&EXT4_I(inode)->i_data_sem); 4724 ext4_journal_stop(handle); 4725 if (error) { 4726 ext4_orphan_del(NULL, inode); 4727 goto err_out; 4728 } 4729 } else { 4730 loff_t oldsize = inode->i_size; 4731 4732 i_size_write(inode, attr->ia_size); 4733 pagecache_isize_extended(inode, oldsize, inode->i_size); 4734 } 4735 4736 /* 4737 * Blocks are going to be removed from the inode. Wait 4738 * for dio in flight. Temporarily disable 4739 * dioread_nolock to prevent livelock. 4740 */ 4741 if (orphan) { 4742 if (!ext4_should_journal_data(inode)) { 4743 ext4_inode_block_unlocked_dio(inode); 4744 inode_dio_wait(inode); 4745 ext4_inode_resume_unlocked_dio(inode); 4746 } else 4747 ext4_wait_for_tail_page_commit(inode); 4748 } 4749 /* 4750 * Truncate pagecache after we've waited for commit 4751 * in data=journal mode to make pages freeable. 4752 */ 4753 truncate_pagecache(inode, inode->i_size); 4754 } 4755 /* 4756 * We want to call ext4_truncate() even if attr->ia_size == 4757 * inode->i_size for cases like truncation of fallocated space 4758 */ 4759 if (attr->ia_valid & ATTR_SIZE) 4760 ext4_truncate(inode); 4761 4762 if (!rc) { 4763 setattr_copy(inode, attr); 4764 mark_inode_dirty(inode); 4765 } 4766 4767 /* 4768 * If the call to ext4_truncate failed to get a transaction handle at 4769 * all, we need to clean up the in-core orphan list manually. 4770 */ 4771 if (orphan && inode->i_nlink) 4772 ext4_orphan_del(NULL, inode); 4773 4774 if (!rc && (ia_valid & ATTR_MODE)) 4775 rc = posix_acl_chmod(inode, inode->i_mode); 4776 4777 err_out: 4778 ext4_std_error(inode->i_sb, error); 4779 if (!error) 4780 error = rc; 4781 return error; 4782 } 4783 4784 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 4785 struct kstat *stat) 4786 { 4787 struct inode *inode; 4788 unsigned long long delalloc_blocks; 4789 4790 inode = d_inode(dentry); 4791 generic_fillattr(inode, stat); 4792 4793 /* 4794 * If there is inline data in the inode, the inode will normally not 4795 * have data blocks allocated (it may have an external xattr block). 4796 * Report at least one sector for such files, so tools like tar, rsync, 4797 * others doen't incorrectly think the file is completely sparse. 4798 */ 4799 if (unlikely(ext4_has_inline_data(inode))) 4800 stat->blocks += (stat->size + 511) >> 9; 4801 4802 /* 4803 * We can't update i_blocks if the block allocation is delayed 4804 * otherwise in the case of system crash before the real block 4805 * allocation is done, we will have i_blocks inconsistent with 4806 * on-disk file blocks. 4807 * We always keep i_blocks updated together with real 4808 * allocation. But to not confuse with user, stat 4809 * will return the blocks that include the delayed allocation 4810 * blocks for this file. 4811 */ 4812 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 4813 EXT4_I(inode)->i_reserved_data_blocks); 4814 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 4815 return 0; 4816 } 4817 4818 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 4819 int pextents) 4820 { 4821 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4822 return ext4_ind_trans_blocks(inode, lblocks); 4823 return ext4_ext_index_trans_blocks(inode, pextents); 4824 } 4825 4826 /* 4827 * Account for index blocks, block groups bitmaps and block group 4828 * descriptor blocks if modify datablocks and index blocks 4829 * worse case, the indexs blocks spread over different block groups 4830 * 4831 * If datablocks are discontiguous, they are possible to spread over 4832 * different block groups too. If they are contiguous, with flexbg, 4833 * they could still across block group boundary. 4834 * 4835 * Also account for superblock, inode, quota and xattr blocks 4836 */ 4837 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 4838 int pextents) 4839 { 4840 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 4841 int gdpblocks; 4842 int idxblocks; 4843 int ret = 0; 4844 4845 /* 4846 * How many index blocks need to touch to map @lblocks logical blocks 4847 * to @pextents physical extents? 4848 */ 4849 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 4850 4851 ret = idxblocks; 4852 4853 /* 4854 * Now let's see how many group bitmaps and group descriptors need 4855 * to account 4856 */ 4857 groups = idxblocks + pextents; 4858 gdpblocks = groups; 4859 if (groups > ngroups) 4860 groups = ngroups; 4861 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 4862 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 4863 4864 /* bitmaps and block group descriptor blocks */ 4865 ret += groups + gdpblocks; 4866 4867 /* Blocks for super block, inode, quota and xattr blocks */ 4868 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 4869 4870 return ret; 4871 } 4872 4873 /* 4874 * Calculate the total number of credits to reserve to fit 4875 * the modification of a single pages into a single transaction, 4876 * which may include multiple chunks of block allocations. 4877 * 4878 * This could be called via ext4_write_begin() 4879 * 4880 * We need to consider the worse case, when 4881 * one new block per extent. 4882 */ 4883 int ext4_writepage_trans_blocks(struct inode *inode) 4884 { 4885 int bpp = ext4_journal_blocks_per_page(inode); 4886 int ret; 4887 4888 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 4889 4890 /* Account for data blocks for journalled mode */ 4891 if (ext4_should_journal_data(inode)) 4892 ret += bpp; 4893 return ret; 4894 } 4895 4896 /* 4897 * Calculate the journal credits for a chunk of data modification. 4898 * 4899 * This is called from DIO, fallocate or whoever calling 4900 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 4901 * 4902 * journal buffers for data blocks are not included here, as DIO 4903 * and fallocate do no need to journal data buffers. 4904 */ 4905 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 4906 { 4907 return ext4_meta_trans_blocks(inode, nrblocks, 1); 4908 } 4909 4910 /* 4911 * The caller must have previously called ext4_reserve_inode_write(). 4912 * Give this, we know that the caller already has write access to iloc->bh. 4913 */ 4914 int ext4_mark_iloc_dirty(handle_t *handle, 4915 struct inode *inode, struct ext4_iloc *iloc) 4916 { 4917 int err = 0; 4918 4919 if (IS_I_VERSION(inode)) 4920 inode_inc_iversion(inode); 4921 4922 /* the do_update_inode consumes one bh->b_count */ 4923 get_bh(iloc->bh); 4924 4925 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 4926 err = ext4_do_update_inode(handle, inode, iloc); 4927 put_bh(iloc->bh); 4928 return err; 4929 } 4930 4931 /* 4932 * On success, We end up with an outstanding reference count against 4933 * iloc->bh. This _must_ be cleaned up later. 4934 */ 4935 4936 int 4937 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 4938 struct ext4_iloc *iloc) 4939 { 4940 int err; 4941 4942 err = ext4_get_inode_loc(inode, iloc); 4943 if (!err) { 4944 BUFFER_TRACE(iloc->bh, "get_write_access"); 4945 err = ext4_journal_get_write_access(handle, iloc->bh); 4946 if (err) { 4947 brelse(iloc->bh); 4948 iloc->bh = NULL; 4949 } 4950 } 4951 ext4_std_error(inode->i_sb, err); 4952 return err; 4953 } 4954 4955 /* 4956 * Expand an inode by new_extra_isize bytes. 4957 * Returns 0 on success or negative error number on failure. 4958 */ 4959 static int ext4_expand_extra_isize(struct inode *inode, 4960 unsigned int new_extra_isize, 4961 struct ext4_iloc iloc, 4962 handle_t *handle) 4963 { 4964 struct ext4_inode *raw_inode; 4965 struct ext4_xattr_ibody_header *header; 4966 4967 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 4968 return 0; 4969 4970 raw_inode = ext4_raw_inode(&iloc); 4971 4972 header = IHDR(inode, raw_inode); 4973 4974 /* No extended attributes present */ 4975 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 4976 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 4977 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 4978 new_extra_isize); 4979 EXT4_I(inode)->i_extra_isize = new_extra_isize; 4980 return 0; 4981 } 4982 4983 /* try to expand with EAs present */ 4984 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 4985 raw_inode, handle); 4986 } 4987 4988 /* 4989 * What we do here is to mark the in-core inode as clean with respect to inode 4990 * dirtiness (it may still be data-dirty). 4991 * This means that the in-core inode may be reaped by prune_icache 4992 * without having to perform any I/O. This is a very good thing, 4993 * because *any* task may call prune_icache - even ones which 4994 * have a transaction open against a different journal. 4995 * 4996 * Is this cheating? Not really. Sure, we haven't written the 4997 * inode out, but prune_icache isn't a user-visible syncing function. 4998 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 4999 * we start and wait on commits. 5000 */ 5001 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 5002 { 5003 struct ext4_iloc iloc; 5004 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5005 static unsigned int mnt_count; 5006 int err, ret; 5007 5008 might_sleep(); 5009 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5010 err = ext4_reserve_inode_write(handle, inode, &iloc); 5011 if (ext4_handle_valid(handle) && 5012 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 5013 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5014 /* 5015 * We need extra buffer credits since we may write into EA block 5016 * with this same handle. If journal_extend fails, then it will 5017 * only result in a minor loss of functionality for that inode. 5018 * If this is felt to be critical, then e2fsck should be run to 5019 * force a large enough s_min_extra_isize. 5020 */ 5021 if ((jbd2_journal_extend(handle, 5022 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 5023 ret = ext4_expand_extra_isize(inode, 5024 sbi->s_want_extra_isize, 5025 iloc, handle); 5026 if (ret) { 5027 ext4_set_inode_state(inode, 5028 EXT4_STATE_NO_EXPAND); 5029 if (mnt_count != 5030 le16_to_cpu(sbi->s_es->s_mnt_count)) { 5031 ext4_warning(inode->i_sb, 5032 "Unable to expand inode %lu. Delete" 5033 " some EAs or run e2fsck.", 5034 inode->i_ino); 5035 mnt_count = 5036 le16_to_cpu(sbi->s_es->s_mnt_count); 5037 } 5038 } 5039 } 5040 } 5041 if (!err) 5042 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 5043 return err; 5044 } 5045 5046 /* 5047 * ext4_dirty_inode() is called from __mark_inode_dirty() 5048 * 5049 * We're really interested in the case where a file is being extended. 5050 * i_size has been changed by generic_commit_write() and we thus need 5051 * to include the updated inode in the current transaction. 5052 * 5053 * Also, dquot_alloc_block() will always dirty the inode when blocks 5054 * are allocated to the file. 5055 * 5056 * If the inode is marked synchronous, we don't honour that here - doing 5057 * so would cause a commit on atime updates, which we don't bother doing. 5058 * We handle synchronous inodes at the highest possible level. 5059 * 5060 * If only the I_DIRTY_TIME flag is set, we can skip everything. If 5061 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need 5062 * to copy into the on-disk inode structure are the timestamp files. 5063 */ 5064 void ext4_dirty_inode(struct inode *inode, int flags) 5065 { 5066 handle_t *handle; 5067 5068 if (flags == I_DIRTY_TIME) 5069 return; 5070 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 5071 if (IS_ERR(handle)) 5072 goto out; 5073 5074 ext4_mark_inode_dirty(handle, inode); 5075 5076 ext4_journal_stop(handle); 5077 out: 5078 return; 5079 } 5080 5081 #if 0 5082 /* 5083 * Bind an inode's backing buffer_head into this transaction, to prevent 5084 * it from being flushed to disk early. Unlike 5085 * ext4_reserve_inode_write, this leaves behind no bh reference and 5086 * returns no iloc structure, so the caller needs to repeat the iloc 5087 * lookup to mark the inode dirty later. 5088 */ 5089 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 5090 { 5091 struct ext4_iloc iloc; 5092 5093 int err = 0; 5094 if (handle) { 5095 err = ext4_get_inode_loc(inode, &iloc); 5096 if (!err) { 5097 BUFFER_TRACE(iloc.bh, "get_write_access"); 5098 err = jbd2_journal_get_write_access(handle, iloc.bh); 5099 if (!err) 5100 err = ext4_handle_dirty_metadata(handle, 5101 NULL, 5102 iloc.bh); 5103 brelse(iloc.bh); 5104 } 5105 } 5106 ext4_std_error(inode->i_sb, err); 5107 return err; 5108 } 5109 #endif 5110 5111 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5112 { 5113 journal_t *journal; 5114 handle_t *handle; 5115 int err; 5116 5117 /* 5118 * We have to be very careful here: changing a data block's 5119 * journaling status dynamically is dangerous. If we write a 5120 * data block to the journal, change the status and then delete 5121 * that block, we risk forgetting to revoke the old log record 5122 * from the journal and so a subsequent replay can corrupt data. 5123 * So, first we make sure that the journal is empty and that 5124 * nobody is changing anything. 5125 */ 5126 5127 journal = EXT4_JOURNAL(inode); 5128 if (!journal) 5129 return 0; 5130 if (is_journal_aborted(journal)) 5131 return -EROFS; 5132 /* We have to allocate physical blocks for delalloc blocks 5133 * before flushing journal. otherwise delalloc blocks can not 5134 * be allocated any more. even more truncate on delalloc blocks 5135 * could trigger BUG by flushing delalloc blocks in journal. 5136 * There is no delalloc block in non-journal data mode. 5137 */ 5138 if (val && test_opt(inode->i_sb, DELALLOC)) { 5139 err = ext4_alloc_da_blocks(inode); 5140 if (err < 0) 5141 return err; 5142 } 5143 5144 /* Wait for all existing dio workers */ 5145 ext4_inode_block_unlocked_dio(inode); 5146 inode_dio_wait(inode); 5147 5148 jbd2_journal_lock_updates(journal); 5149 5150 /* 5151 * OK, there are no updates running now, and all cached data is 5152 * synced to disk. We are now in a completely consistent state 5153 * which doesn't have anything in the journal, and we know that 5154 * no filesystem updates are running, so it is safe to modify 5155 * the inode's in-core data-journaling state flag now. 5156 */ 5157 5158 if (val) 5159 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5160 else { 5161 err = jbd2_journal_flush(journal); 5162 if (err < 0) { 5163 jbd2_journal_unlock_updates(journal); 5164 ext4_inode_resume_unlocked_dio(inode); 5165 return err; 5166 } 5167 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5168 } 5169 ext4_set_aops(inode); 5170 5171 jbd2_journal_unlock_updates(journal); 5172 ext4_inode_resume_unlocked_dio(inode); 5173 5174 /* Finally we can mark the inode as dirty. */ 5175 5176 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 5177 if (IS_ERR(handle)) 5178 return PTR_ERR(handle); 5179 5180 err = ext4_mark_inode_dirty(handle, inode); 5181 ext4_handle_sync(handle); 5182 ext4_journal_stop(handle); 5183 ext4_std_error(inode->i_sb, err); 5184 5185 return err; 5186 } 5187 5188 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 5189 { 5190 return !buffer_mapped(bh); 5191 } 5192 5193 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 5194 { 5195 struct page *page = vmf->page; 5196 loff_t size; 5197 unsigned long len; 5198 int ret; 5199 struct file *file = vma->vm_file; 5200 struct inode *inode = file_inode(file); 5201 struct address_space *mapping = inode->i_mapping; 5202 handle_t *handle; 5203 get_block_t *get_block; 5204 int retries = 0; 5205 5206 sb_start_pagefault(inode->i_sb); 5207 file_update_time(vma->vm_file); 5208 /* Delalloc case is easy... */ 5209 if (test_opt(inode->i_sb, DELALLOC) && 5210 !ext4_should_journal_data(inode) && 5211 !ext4_nonda_switch(inode->i_sb)) { 5212 do { 5213 ret = __block_page_mkwrite(vma, vmf, 5214 ext4_da_get_block_prep); 5215 } while (ret == -ENOSPC && 5216 ext4_should_retry_alloc(inode->i_sb, &retries)); 5217 goto out_ret; 5218 } 5219 5220 lock_page(page); 5221 size = i_size_read(inode); 5222 /* Page got truncated from under us? */ 5223 if (page->mapping != mapping || page_offset(page) > size) { 5224 unlock_page(page); 5225 ret = VM_FAULT_NOPAGE; 5226 goto out; 5227 } 5228 5229 if (page->index == size >> PAGE_CACHE_SHIFT) 5230 len = size & ~PAGE_CACHE_MASK; 5231 else 5232 len = PAGE_CACHE_SIZE; 5233 /* 5234 * Return if we have all the buffers mapped. This avoids the need to do 5235 * journal_start/journal_stop which can block and take a long time 5236 */ 5237 if (page_has_buffers(page)) { 5238 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 5239 0, len, NULL, 5240 ext4_bh_unmapped)) { 5241 /* Wait so that we don't change page under IO */ 5242 wait_for_stable_page(page); 5243 ret = VM_FAULT_LOCKED; 5244 goto out; 5245 } 5246 } 5247 unlock_page(page); 5248 /* OK, we need to fill the hole... */ 5249 if (ext4_should_dioread_nolock(inode)) 5250 get_block = ext4_get_block_write; 5251 else 5252 get_block = ext4_get_block; 5253 retry_alloc: 5254 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 5255 ext4_writepage_trans_blocks(inode)); 5256 if (IS_ERR(handle)) { 5257 ret = VM_FAULT_SIGBUS; 5258 goto out; 5259 } 5260 ret = __block_page_mkwrite(vma, vmf, get_block); 5261 if (!ret && ext4_should_journal_data(inode)) { 5262 if (ext4_walk_page_buffers(handle, page_buffers(page), 0, 5263 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) { 5264 unlock_page(page); 5265 ret = VM_FAULT_SIGBUS; 5266 ext4_journal_stop(handle); 5267 goto out; 5268 } 5269 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 5270 } 5271 ext4_journal_stop(handle); 5272 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 5273 goto retry_alloc; 5274 out_ret: 5275 ret = block_page_mkwrite_return(ret); 5276 out: 5277 sb_end_pagefault(inode->i_sb); 5278 return ret; 5279 } 5280