1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/inode.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * 64-bit file support on 64-bit platforms by Jakub Jelinek 17 * (jj@sunsite.ms.mff.cuni.cz) 18 * 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/mount.h> 24 #include <linux/time.h> 25 #include <linux/highuid.h> 26 #include <linux/pagemap.h> 27 #include <linux/dax.h> 28 #include <linux/quotaops.h> 29 #include <linux/string.h> 30 #include <linux/buffer_head.h> 31 #include <linux/writeback.h> 32 #include <linux/pagevec.h> 33 #include <linux/mpage.h> 34 #include <linux/namei.h> 35 #include <linux/uio.h> 36 #include <linux/bio.h> 37 #include <linux/workqueue.h> 38 #include <linux/kernel.h> 39 #include <linux/printk.h> 40 #include <linux/slab.h> 41 #include <linux/bitops.h> 42 #include <linux/iomap.h> 43 #include <linux/iversion.h> 44 #include <linux/dax.h> 45 46 #include "ext4_jbd2.h" 47 #include "xattr.h" 48 #include "acl.h" 49 #include "truncate.h" 50 51 #include <trace/events/ext4.h> 52 53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 54 struct ext4_inode_info *ei) 55 { 56 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 57 __u32 csum; 58 __u16 dummy_csum = 0; 59 int offset = offsetof(struct ext4_inode, i_checksum_lo); 60 unsigned int csum_size = sizeof(dummy_csum); 61 62 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset); 63 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size); 64 offset += csum_size; 65 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 66 EXT4_GOOD_OLD_INODE_SIZE - offset); 67 68 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 69 offset = offsetof(struct ext4_inode, i_checksum_hi); 70 csum = ext4_chksum(sbi, csum, (__u8 *)raw + 71 EXT4_GOOD_OLD_INODE_SIZE, 72 offset - EXT4_GOOD_OLD_INODE_SIZE); 73 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 74 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, 75 csum_size); 76 offset += csum_size; 77 } 78 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 79 EXT4_INODE_SIZE(inode->i_sb) - offset); 80 } 81 82 return csum; 83 } 84 85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 86 struct ext4_inode_info *ei) 87 { 88 __u32 provided, calculated; 89 90 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 91 cpu_to_le32(EXT4_OS_LINUX) || 92 !ext4_has_metadata_csum(inode->i_sb)) 93 return 1; 94 95 provided = le16_to_cpu(raw->i_checksum_lo); 96 calculated = ext4_inode_csum(inode, raw, ei); 97 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 98 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 99 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 100 else 101 calculated &= 0xFFFF; 102 103 return provided == calculated; 104 } 105 106 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 107 struct ext4_inode_info *ei) 108 { 109 __u32 csum; 110 111 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 112 cpu_to_le32(EXT4_OS_LINUX) || 113 !ext4_has_metadata_csum(inode->i_sb)) 114 return; 115 116 csum = ext4_inode_csum(inode, raw, ei); 117 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 118 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 119 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 120 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 121 } 122 123 static inline int ext4_begin_ordered_truncate(struct inode *inode, 124 loff_t new_size) 125 { 126 trace_ext4_begin_ordered_truncate(inode, new_size); 127 /* 128 * If jinode is zero, then we never opened the file for 129 * writing, so there's no need to call 130 * jbd2_journal_begin_ordered_truncate() since there's no 131 * outstanding writes we need to flush. 132 */ 133 if (!EXT4_I(inode)->jinode) 134 return 0; 135 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 136 EXT4_I(inode)->jinode, 137 new_size); 138 } 139 140 static void ext4_invalidatepage(struct page *page, unsigned int offset, 141 unsigned int length); 142 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 143 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 144 int pextents); 145 146 /* 147 * Test whether an inode is a fast symlink. 148 * A fast symlink has its symlink data stored in ext4_inode_info->i_data. 149 */ 150 int ext4_inode_is_fast_symlink(struct inode *inode) 151 { 152 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 153 int ea_blocks = EXT4_I(inode)->i_file_acl ? 154 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 155 156 if (ext4_has_inline_data(inode)) 157 return 0; 158 159 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 160 } 161 return S_ISLNK(inode->i_mode) && inode->i_size && 162 (inode->i_size < EXT4_N_BLOCKS * 4); 163 } 164 165 /* 166 * Called at the last iput() if i_nlink is zero. 167 */ 168 void ext4_evict_inode(struct inode *inode) 169 { 170 handle_t *handle; 171 int err; 172 /* 173 * Credits for final inode cleanup and freeing: 174 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor 175 * (xattr block freeing), bitmap, group descriptor (inode freeing) 176 */ 177 int extra_credits = 6; 178 struct ext4_xattr_inode_array *ea_inode_array = NULL; 179 bool freeze_protected = false; 180 181 trace_ext4_evict_inode(inode); 182 183 if (inode->i_nlink) { 184 /* 185 * When journalling data dirty buffers are tracked only in the 186 * journal. So although mm thinks everything is clean and 187 * ready for reaping the inode might still have some pages to 188 * write in the running transaction or waiting to be 189 * checkpointed. Thus calling jbd2_journal_invalidatepage() 190 * (via truncate_inode_pages()) to discard these buffers can 191 * cause data loss. Also even if we did not discard these 192 * buffers, we would have no way to find them after the inode 193 * is reaped and thus user could see stale data if he tries to 194 * read them before the transaction is checkpointed. So be 195 * careful and force everything to disk here... We use 196 * ei->i_datasync_tid to store the newest transaction 197 * containing inode's data. 198 * 199 * Note that directories do not have this problem because they 200 * don't use page cache. 201 */ 202 if (inode->i_ino != EXT4_JOURNAL_INO && 203 ext4_should_journal_data(inode) && 204 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 205 inode->i_data.nrpages) { 206 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 207 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 208 209 jbd2_complete_transaction(journal, commit_tid); 210 filemap_write_and_wait(&inode->i_data); 211 } 212 truncate_inode_pages_final(&inode->i_data); 213 214 goto no_delete; 215 } 216 217 if (is_bad_inode(inode)) 218 goto no_delete; 219 dquot_initialize(inode); 220 221 if (ext4_should_order_data(inode)) 222 ext4_begin_ordered_truncate(inode, 0); 223 truncate_inode_pages_final(&inode->i_data); 224 225 /* 226 * For inodes with journalled data, transaction commit could have 227 * dirtied the inode. Flush worker is ignoring it because of I_FREEING 228 * flag but we still need to remove the inode from the writeback lists. 229 */ 230 if (!list_empty_careful(&inode->i_io_list)) { 231 WARN_ON_ONCE(!ext4_should_journal_data(inode)); 232 inode_io_list_del(inode); 233 } 234 235 /* 236 * Protect us against freezing - iput() caller didn't have to have any 237 * protection against it. When we are in a running transaction though, 238 * we are already protected against freezing and we cannot grab further 239 * protection due to lock ordering constraints. 240 */ 241 if (!ext4_journal_current_handle()) { 242 sb_start_intwrite(inode->i_sb); 243 freeze_protected = true; 244 } 245 246 if (!IS_NOQUOTA(inode)) 247 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); 248 249 /* 250 * Block bitmap, group descriptor, and inode are accounted in both 251 * ext4_blocks_for_truncate() and extra_credits. So subtract 3. 252 */ 253 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 254 ext4_blocks_for_truncate(inode) + extra_credits - 3); 255 if (IS_ERR(handle)) { 256 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 257 /* 258 * If we're going to skip the normal cleanup, we still need to 259 * make sure that the in-core orphan linked list is properly 260 * cleaned up. 261 */ 262 ext4_orphan_del(NULL, inode); 263 if (freeze_protected) 264 sb_end_intwrite(inode->i_sb); 265 goto no_delete; 266 } 267 268 if (IS_SYNC(inode)) 269 ext4_handle_sync(handle); 270 271 /* 272 * Set inode->i_size to 0 before calling ext4_truncate(). We need 273 * special handling of symlinks here because i_size is used to 274 * determine whether ext4_inode_info->i_data contains symlink data or 275 * block mappings. Setting i_size to 0 will remove its fast symlink 276 * status. Erase i_data so that it becomes a valid empty block map. 277 */ 278 if (ext4_inode_is_fast_symlink(inode)) 279 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data)); 280 inode->i_size = 0; 281 err = ext4_mark_inode_dirty(handle, inode); 282 if (err) { 283 ext4_warning(inode->i_sb, 284 "couldn't mark inode dirty (err %d)", err); 285 goto stop_handle; 286 } 287 if (inode->i_blocks) { 288 err = ext4_truncate(inode); 289 if (err) { 290 ext4_error_err(inode->i_sb, -err, 291 "couldn't truncate inode %lu (err %d)", 292 inode->i_ino, err); 293 goto stop_handle; 294 } 295 } 296 297 /* Remove xattr references. */ 298 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array, 299 extra_credits); 300 if (err) { 301 ext4_warning(inode->i_sb, "xattr delete (err %d)", err); 302 stop_handle: 303 ext4_journal_stop(handle); 304 ext4_orphan_del(NULL, inode); 305 if (freeze_protected) 306 sb_end_intwrite(inode->i_sb); 307 ext4_xattr_inode_array_free(ea_inode_array); 308 goto no_delete; 309 } 310 311 /* 312 * Kill off the orphan record which ext4_truncate created. 313 * AKPM: I think this can be inside the above `if'. 314 * Note that ext4_orphan_del() has to be able to cope with the 315 * deletion of a non-existent orphan - this is because we don't 316 * know if ext4_truncate() actually created an orphan record. 317 * (Well, we could do this if we need to, but heck - it works) 318 */ 319 ext4_orphan_del(handle, inode); 320 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds(); 321 322 /* 323 * One subtle ordering requirement: if anything has gone wrong 324 * (transaction abort, IO errors, whatever), then we can still 325 * do these next steps (the fs will already have been marked as 326 * having errors), but we can't free the inode if the mark_dirty 327 * fails. 328 */ 329 if (ext4_mark_inode_dirty(handle, inode)) 330 /* If that failed, just do the required in-core inode clear. */ 331 ext4_clear_inode(inode); 332 else 333 ext4_free_inode(handle, inode); 334 ext4_journal_stop(handle); 335 if (freeze_protected) 336 sb_end_intwrite(inode->i_sb); 337 ext4_xattr_inode_array_free(ea_inode_array); 338 return; 339 no_delete: 340 if (!list_empty(&EXT4_I(inode)->i_fc_list)) 341 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM); 342 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 343 } 344 345 #ifdef CONFIG_QUOTA 346 qsize_t *ext4_get_reserved_space(struct inode *inode) 347 { 348 return &EXT4_I(inode)->i_reserved_quota; 349 } 350 #endif 351 352 /* 353 * Called with i_data_sem down, which is important since we can call 354 * ext4_discard_preallocations() from here. 355 */ 356 void ext4_da_update_reserve_space(struct inode *inode, 357 int used, int quota_claim) 358 { 359 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 360 struct ext4_inode_info *ei = EXT4_I(inode); 361 362 spin_lock(&ei->i_block_reservation_lock); 363 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 364 if (unlikely(used > ei->i_reserved_data_blocks)) { 365 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 366 "with only %d reserved data blocks", 367 __func__, inode->i_ino, used, 368 ei->i_reserved_data_blocks); 369 WARN_ON(1); 370 used = ei->i_reserved_data_blocks; 371 } 372 373 /* Update per-inode reservations */ 374 ei->i_reserved_data_blocks -= used; 375 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 376 377 spin_unlock(&ei->i_block_reservation_lock); 378 379 /* Update quota subsystem for data blocks */ 380 if (quota_claim) 381 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 382 else { 383 /* 384 * We did fallocate with an offset that is already delayed 385 * allocated. So on delayed allocated writeback we should 386 * not re-claim the quota for fallocated blocks. 387 */ 388 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 389 } 390 391 /* 392 * If we have done all the pending block allocations and if 393 * there aren't any writers on the inode, we can discard the 394 * inode's preallocations. 395 */ 396 if ((ei->i_reserved_data_blocks == 0) && 397 !inode_is_open_for_write(inode)) 398 ext4_discard_preallocations(inode, 0); 399 } 400 401 static int __check_block_validity(struct inode *inode, const char *func, 402 unsigned int line, 403 struct ext4_map_blocks *map) 404 { 405 if (ext4_has_feature_journal(inode->i_sb) && 406 (inode->i_ino == 407 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum))) 408 return 0; 409 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) { 410 ext4_error_inode(inode, func, line, map->m_pblk, 411 "lblock %lu mapped to illegal pblock %llu " 412 "(length %d)", (unsigned long) map->m_lblk, 413 map->m_pblk, map->m_len); 414 return -EFSCORRUPTED; 415 } 416 return 0; 417 } 418 419 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 420 ext4_lblk_t len) 421 { 422 int ret; 423 424 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) 425 return fscrypt_zeroout_range(inode, lblk, pblk, len); 426 427 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 428 if (ret > 0) 429 ret = 0; 430 431 return ret; 432 } 433 434 #define check_block_validity(inode, map) \ 435 __check_block_validity((inode), __func__, __LINE__, (map)) 436 437 #ifdef ES_AGGRESSIVE_TEST 438 static void ext4_map_blocks_es_recheck(handle_t *handle, 439 struct inode *inode, 440 struct ext4_map_blocks *es_map, 441 struct ext4_map_blocks *map, 442 int flags) 443 { 444 int retval; 445 446 map->m_flags = 0; 447 /* 448 * There is a race window that the result is not the same. 449 * e.g. xfstests #223 when dioread_nolock enables. The reason 450 * is that we lookup a block mapping in extent status tree with 451 * out taking i_data_sem. So at the time the unwritten extent 452 * could be converted. 453 */ 454 down_read(&EXT4_I(inode)->i_data_sem); 455 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 456 retval = ext4_ext_map_blocks(handle, inode, map, 0); 457 } else { 458 retval = ext4_ind_map_blocks(handle, inode, map, 0); 459 } 460 up_read((&EXT4_I(inode)->i_data_sem)); 461 462 /* 463 * We don't check m_len because extent will be collpased in status 464 * tree. So the m_len might not equal. 465 */ 466 if (es_map->m_lblk != map->m_lblk || 467 es_map->m_flags != map->m_flags || 468 es_map->m_pblk != map->m_pblk) { 469 printk("ES cache assertion failed for inode: %lu " 470 "es_cached ex [%d/%d/%llu/%x] != " 471 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 472 inode->i_ino, es_map->m_lblk, es_map->m_len, 473 es_map->m_pblk, es_map->m_flags, map->m_lblk, 474 map->m_len, map->m_pblk, map->m_flags, 475 retval, flags); 476 } 477 } 478 #endif /* ES_AGGRESSIVE_TEST */ 479 480 /* 481 * The ext4_map_blocks() function tries to look up the requested blocks, 482 * and returns if the blocks are already mapped. 483 * 484 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 485 * and store the allocated blocks in the result buffer head and mark it 486 * mapped. 487 * 488 * If file type is extents based, it will call ext4_ext_map_blocks(), 489 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 490 * based files 491 * 492 * On success, it returns the number of blocks being mapped or allocated. if 493 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map 494 * is marked as unwritten. If the create == 1, it will mark @map as mapped. 495 * 496 * It returns 0 if plain look up failed (blocks have not been allocated), in 497 * that case, @map is returned as unmapped but we still do fill map->m_len to 498 * indicate the length of a hole starting at map->m_lblk. 499 * 500 * It returns the error in case of allocation failure. 501 */ 502 int ext4_map_blocks(handle_t *handle, struct inode *inode, 503 struct ext4_map_blocks *map, int flags) 504 { 505 struct extent_status es; 506 int retval; 507 int ret = 0; 508 #ifdef ES_AGGRESSIVE_TEST 509 struct ext4_map_blocks orig_map; 510 511 memcpy(&orig_map, map, sizeof(*map)); 512 #endif 513 514 map->m_flags = 0; 515 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n", 516 flags, map->m_len, (unsigned long) map->m_lblk); 517 518 /* 519 * ext4_map_blocks returns an int, and m_len is an unsigned int 520 */ 521 if (unlikely(map->m_len > INT_MAX)) 522 map->m_len = INT_MAX; 523 524 /* We can handle the block number less than EXT_MAX_BLOCKS */ 525 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 526 return -EFSCORRUPTED; 527 528 /* Lookup extent status tree firstly */ 529 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) && 530 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 531 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 532 map->m_pblk = ext4_es_pblock(&es) + 533 map->m_lblk - es.es_lblk; 534 map->m_flags |= ext4_es_is_written(&es) ? 535 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 536 retval = es.es_len - (map->m_lblk - es.es_lblk); 537 if (retval > map->m_len) 538 retval = map->m_len; 539 map->m_len = retval; 540 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 541 map->m_pblk = 0; 542 retval = es.es_len - (map->m_lblk - es.es_lblk); 543 if (retval > map->m_len) 544 retval = map->m_len; 545 map->m_len = retval; 546 retval = 0; 547 } else { 548 BUG(); 549 } 550 #ifdef ES_AGGRESSIVE_TEST 551 ext4_map_blocks_es_recheck(handle, inode, map, 552 &orig_map, flags); 553 #endif 554 goto found; 555 } 556 557 /* 558 * Try to see if we can get the block without requesting a new 559 * file system block. 560 */ 561 down_read(&EXT4_I(inode)->i_data_sem); 562 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 563 retval = ext4_ext_map_blocks(handle, inode, map, 0); 564 } else { 565 retval = ext4_ind_map_blocks(handle, inode, map, 0); 566 } 567 if (retval > 0) { 568 unsigned int status; 569 570 if (unlikely(retval != map->m_len)) { 571 ext4_warning(inode->i_sb, 572 "ES len assertion failed for inode " 573 "%lu: retval %d != map->m_len %d", 574 inode->i_ino, retval, map->m_len); 575 WARN_ON(1); 576 } 577 578 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 579 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 580 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 581 !(status & EXTENT_STATUS_WRITTEN) && 582 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 583 map->m_lblk + map->m_len - 1)) 584 status |= EXTENT_STATUS_DELAYED; 585 ret = ext4_es_insert_extent(inode, map->m_lblk, 586 map->m_len, map->m_pblk, status); 587 if (ret < 0) 588 retval = ret; 589 } 590 up_read((&EXT4_I(inode)->i_data_sem)); 591 592 found: 593 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 594 ret = check_block_validity(inode, map); 595 if (ret != 0) 596 return ret; 597 } 598 599 /* If it is only a block(s) look up */ 600 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 601 return retval; 602 603 /* 604 * Returns if the blocks have already allocated 605 * 606 * Note that if blocks have been preallocated 607 * ext4_ext_get_block() returns the create = 0 608 * with buffer head unmapped. 609 */ 610 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 611 /* 612 * If we need to convert extent to unwritten 613 * we continue and do the actual work in 614 * ext4_ext_map_blocks() 615 */ 616 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 617 return retval; 618 619 /* 620 * Here we clear m_flags because after allocating an new extent, 621 * it will be set again. 622 */ 623 map->m_flags &= ~EXT4_MAP_FLAGS; 624 625 /* 626 * New blocks allocate and/or writing to unwritten extent 627 * will possibly result in updating i_data, so we take 628 * the write lock of i_data_sem, and call get_block() 629 * with create == 1 flag. 630 */ 631 down_write(&EXT4_I(inode)->i_data_sem); 632 633 /* 634 * We need to check for EXT4 here because migrate 635 * could have changed the inode type in between 636 */ 637 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 638 retval = ext4_ext_map_blocks(handle, inode, map, flags); 639 } else { 640 retval = ext4_ind_map_blocks(handle, inode, map, flags); 641 642 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 643 /* 644 * We allocated new blocks which will result in 645 * i_data's format changing. Force the migrate 646 * to fail by clearing migrate flags 647 */ 648 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 649 } 650 651 /* 652 * Update reserved blocks/metadata blocks after successful 653 * block allocation which had been deferred till now. We don't 654 * support fallocate for non extent files. So we can update 655 * reserve space here. 656 */ 657 if ((retval > 0) && 658 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 659 ext4_da_update_reserve_space(inode, retval, 1); 660 } 661 662 if (retval > 0) { 663 unsigned int status; 664 665 if (unlikely(retval != map->m_len)) { 666 ext4_warning(inode->i_sb, 667 "ES len assertion failed for inode " 668 "%lu: retval %d != map->m_len %d", 669 inode->i_ino, retval, map->m_len); 670 WARN_ON(1); 671 } 672 673 /* 674 * We have to zeroout blocks before inserting them into extent 675 * status tree. Otherwise someone could look them up there and 676 * use them before they are really zeroed. We also have to 677 * unmap metadata before zeroing as otherwise writeback can 678 * overwrite zeros with stale data from block device. 679 */ 680 if (flags & EXT4_GET_BLOCKS_ZERO && 681 map->m_flags & EXT4_MAP_MAPPED && 682 map->m_flags & EXT4_MAP_NEW) { 683 ret = ext4_issue_zeroout(inode, map->m_lblk, 684 map->m_pblk, map->m_len); 685 if (ret) { 686 retval = ret; 687 goto out_sem; 688 } 689 } 690 691 /* 692 * If the extent has been zeroed out, we don't need to update 693 * extent status tree. 694 */ 695 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 696 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 697 if (ext4_es_is_written(&es)) 698 goto out_sem; 699 } 700 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 701 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 702 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 703 !(status & EXTENT_STATUS_WRITTEN) && 704 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 705 map->m_lblk + map->m_len - 1)) 706 status |= EXTENT_STATUS_DELAYED; 707 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 708 map->m_pblk, status); 709 if (ret < 0) { 710 retval = ret; 711 goto out_sem; 712 } 713 } 714 715 out_sem: 716 up_write((&EXT4_I(inode)->i_data_sem)); 717 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 718 ret = check_block_validity(inode, map); 719 if (ret != 0) 720 return ret; 721 722 /* 723 * Inodes with freshly allocated blocks where contents will be 724 * visible after transaction commit must be on transaction's 725 * ordered data list. 726 */ 727 if (map->m_flags & EXT4_MAP_NEW && 728 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 729 !(flags & EXT4_GET_BLOCKS_ZERO) && 730 !ext4_is_quota_file(inode) && 731 ext4_should_order_data(inode)) { 732 loff_t start_byte = 733 (loff_t)map->m_lblk << inode->i_blkbits; 734 loff_t length = (loff_t)map->m_len << inode->i_blkbits; 735 736 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 737 ret = ext4_jbd2_inode_add_wait(handle, inode, 738 start_byte, length); 739 else 740 ret = ext4_jbd2_inode_add_write(handle, inode, 741 start_byte, length); 742 if (ret) 743 return ret; 744 } 745 } 746 if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN || 747 map->m_flags & EXT4_MAP_MAPPED)) 748 ext4_fc_track_range(handle, inode, map->m_lblk, 749 map->m_lblk + map->m_len - 1); 750 if (retval < 0) 751 ext_debug(inode, "failed with err %d\n", retval); 752 return retval; 753 } 754 755 /* 756 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 757 * we have to be careful as someone else may be manipulating b_state as well. 758 */ 759 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 760 { 761 unsigned long old_state; 762 unsigned long new_state; 763 764 flags &= EXT4_MAP_FLAGS; 765 766 /* Dummy buffer_head? Set non-atomically. */ 767 if (!bh->b_page) { 768 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 769 return; 770 } 771 /* 772 * Someone else may be modifying b_state. Be careful! This is ugly but 773 * once we get rid of using bh as a container for mapping information 774 * to pass to / from get_block functions, this can go away. 775 */ 776 do { 777 old_state = READ_ONCE(bh->b_state); 778 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 779 } while (unlikely( 780 cmpxchg(&bh->b_state, old_state, new_state) != old_state)); 781 } 782 783 static int _ext4_get_block(struct inode *inode, sector_t iblock, 784 struct buffer_head *bh, int flags) 785 { 786 struct ext4_map_blocks map; 787 int ret = 0; 788 789 if (ext4_has_inline_data(inode)) 790 return -ERANGE; 791 792 map.m_lblk = iblock; 793 map.m_len = bh->b_size >> inode->i_blkbits; 794 795 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 796 flags); 797 if (ret > 0) { 798 map_bh(bh, inode->i_sb, map.m_pblk); 799 ext4_update_bh_state(bh, map.m_flags); 800 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 801 ret = 0; 802 } else if (ret == 0) { 803 /* hole case, need to fill in bh->b_size */ 804 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 805 } 806 return ret; 807 } 808 809 int ext4_get_block(struct inode *inode, sector_t iblock, 810 struct buffer_head *bh, int create) 811 { 812 return _ext4_get_block(inode, iblock, bh, 813 create ? EXT4_GET_BLOCKS_CREATE : 0); 814 } 815 816 /* 817 * Get block function used when preparing for buffered write if we require 818 * creating an unwritten extent if blocks haven't been allocated. The extent 819 * will be converted to written after the IO is complete. 820 */ 821 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 822 struct buffer_head *bh_result, int create) 823 { 824 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 825 inode->i_ino, create); 826 return _ext4_get_block(inode, iblock, bh_result, 827 EXT4_GET_BLOCKS_IO_CREATE_EXT); 828 } 829 830 /* Maximum number of blocks we map for direct IO at once. */ 831 #define DIO_MAX_BLOCKS 4096 832 833 /* 834 * `handle' can be NULL if create is zero 835 */ 836 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 837 ext4_lblk_t block, int map_flags) 838 { 839 struct ext4_map_blocks map; 840 struct buffer_head *bh; 841 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 842 int err; 843 844 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 845 || handle != NULL || create == 0); 846 847 map.m_lblk = block; 848 map.m_len = 1; 849 err = ext4_map_blocks(handle, inode, &map, map_flags); 850 851 if (err == 0) 852 return create ? ERR_PTR(-ENOSPC) : NULL; 853 if (err < 0) 854 return ERR_PTR(err); 855 856 bh = sb_getblk(inode->i_sb, map.m_pblk); 857 if (unlikely(!bh)) 858 return ERR_PTR(-ENOMEM); 859 if (map.m_flags & EXT4_MAP_NEW) { 860 ASSERT(create != 0); 861 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 862 || (handle != NULL)); 863 864 /* 865 * Now that we do not always journal data, we should 866 * keep in mind whether this should always journal the 867 * new buffer as metadata. For now, regular file 868 * writes use ext4_get_block instead, so it's not a 869 * problem. 870 */ 871 lock_buffer(bh); 872 BUFFER_TRACE(bh, "call get_create_access"); 873 err = ext4_journal_get_create_access(handle, inode->i_sb, bh, 874 EXT4_JTR_NONE); 875 if (unlikely(err)) { 876 unlock_buffer(bh); 877 goto errout; 878 } 879 if (!buffer_uptodate(bh)) { 880 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 881 set_buffer_uptodate(bh); 882 } 883 unlock_buffer(bh); 884 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 885 err = ext4_handle_dirty_metadata(handle, inode, bh); 886 if (unlikely(err)) 887 goto errout; 888 } else 889 BUFFER_TRACE(bh, "not a new buffer"); 890 return bh; 891 errout: 892 brelse(bh); 893 return ERR_PTR(err); 894 } 895 896 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 897 ext4_lblk_t block, int map_flags) 898 { 899 struct buffer_head *bh; 900 int ret; 901 902 bh = ext4_getblk(handle, inode, block, map_flags); 903 if (IS_ERR(bh)) 904 return bh; 905 if (!bh || ext4_buffer_uptodate(bh)) 906 return bh; 907 908 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true); 909 if (ret) { 910 put_bh(bh); 911 return ERR_PTR(ret); 912 } 913 return bh; 914 } 915 916 /* Read a contiguous batch of blocks. */ 917 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, 918 bool wait, struct buffer_head **bhs) 919 { 920 int i, err; 921 922 for (i = 0; i < bh_count; i++) { 923 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */); 924 if (IS_ERR(bhs[i])) { 925 err = PTR_ERR(bhs[i]); 926 bh_count = i; 927 goto out_brelse; 928 } 929 } 930 931 for (i = 0; i < bh_count; i++) 932 /* Note that NULL bhs[i] is valid because of holes. */ 933 if (bhs[i] && !ext4_buffer_uptodate(bhs[i])) 934 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false); 935 936 if (!wait) 937 return 0; 938 939 for (i = 0; i < bh_count; i++) 940 if (bhs[i]) 941 wait_on_buffer(bhs[i]); 942 943 for (i = 0; i < bh_count; i++) { 944 if (bhs[i] && !buffer_uptodate(bhs[i])) { 945 err = -EIO; 946 goto out_brelse; 947 } 948 } 949 return 0; 950 951 out_brelse: 952 for (i = 0; i < bh_count; i++) { 953 brelse(bhs[i]); 954 bhs[i] = NULL; 955 } 956 return err; 957 } 958 959 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode, 960 struct buffer_head *head, 961 unsigned from, 962 unsigned to, 963 int *partial, 964 int (*fn)(handle_t *handle, struct inode *inode, 965 struct buffer_head *bh)) 966 { 967 struct buffer_head *bh; 968 unsigned block_start, block_end; 969 unsigned blocksize = head->b_size; 970 int err, ret = 0; 971 struct buffer_head *next; 972 973 for (bh = head, block_start = 0; 974 ret == 0 && (bh != head || !block_start); 975 block_start = block_end, bh = next) { 976 next = bh->b_this_page; 977 block_end = block_start + blocksize; 978 if (block_end <= from || block_start >= to) { 979 if (partial && !buffer_uptodate(bh)) 980 *partial = 1; 981 continue; 982 } 983 err = (*fn)(handle, inode, bh); 984 if (!ret) 985 ret = err; 986 } 987 return ret; 988 } 989 990 /* 991 * To preserve ordering, it is essential that the hole instantiation and 992 * the data write be encapsulated in a single transaction. We cannot 993 * close off a transaction and start a new one between the ext4_get_block() 994 * and the commit_write(). So doing the jbd2_journal_start at the start of 995 * prepare_write() is the right place. 996 * 997 * Also, this function can nest inside ext4_writepage(). In that case, we 998 * *know* that ext4_writepage() has generated enough buffer credits to do the 999 * whole page. So we won't block on the journal in that case, which is good, 1000 * because the caller may be PF_MEMALLOC. 1001 * 1002 * By accident, ext4 can be reentered when a transaction is open via 1003 * quota file writes. If we were to commit the transaction while thus 1004 * reentered, there can be a deadlock - we would be holding a quota 1005 * lock, and the commit would never complete if another thread had a 1006 * transaction open and was blocking on the quota lock - a ranking 1007 * violation. 1008 * 1009 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1010 * will _not_ run commit under these circumstances because handle->h_ref 1011 * is elevated. We'll still have enough credits for the tiny quotafile 1012 * write. 1013 */ 1014 int do_journal_get_write_access(handle_t *handle, struct inode *inode, 1015 struct buffer_head *bh) 1016 { 1017 int dirty = buffer_dirty(bh); 1018 int ret; 1019 1020 if (!buffer_mapped(bh) || buffer_freed(bh)) 1021 return 0; 1022 /* 1023 * __block_write_begin() could have dirtied some buffers. Clean 1024 * the dirty bit as jbd2_journal_get_write_access() could complain 1025 * otherwise about fs integrity issues. Setting of the dirty bit 1026 * by __block_write_begin() isn't a real problem here as we clear 1027 * the bit before releasing a page lock and thus writeback cannot 1028 * ever write the buffer. 1029 */ 1030 if (dirty) 1031 clear_buffer_dirty(bh); 1032 BUFFER_TRACE(bh, "get write access"); 1033 ret = ext4_journal_get_write_access(handle, inode->i_sb, bh, 1034 EXT4_JTR_NONE); 1035 if (!ret && dirty) 1036 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1037 return ret; 1038 } 1039 1040 #ifdef CONFIG_FS_ENCRYPTION 1041 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len, 1042 get_block_t *get_block) 1043 { 1044 unsigned from = pos & (PAGE_SIZE - 1); 1045 unsigned to = from + len; 1046 struct inode *inode = page->mapping->host; 1047 unsigned block_start, block_end; 1048 sector_t block; 1049 int err = 0; 1050 unsigned blocksize = inode->i_sb->s_blocksize; 1051 unsigned bbits; 1052 struct buffer_head *bh, *head, *wait[2]; 1053 int nr_wait = 0; 1054 int i; 1055 1056 BUG_ON(!PageLocked(page)); 1057 BUG_ON(from > PAGE_SIZE); 1058 BUG_ON(to > PAGE_SIZE); 1059 BUG_ON(from > to); 1060 1061 if (!page_has_buffers(page)) 1062 create_empty_buffers(page, blocksize, 0); 1063 head = page_buffers(page); 1064 bbits = ilog2(blocksize); 1065 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1066 1067 for (bh = head, block_start = 0; bh != head || !block_start; 1068 block++, block_start = block_end, bh = bh->b_this_page) { 1069 block_end = block_start + blocksize; 1070 if (block_end <= from || block_start >= to) { 1071 if (PageUptodate(page)) { 1072 set_buffer_uptodate(bh); 1073 } 1074 continue; 1075 } 1076 if (buffer_new(bh)) 1077 clear_buffer_new(bh); 1078 if (!buffer_mapped(bh)) { 1079 WARN_ON(bh->b_size != blocksize); 1080 err = get_block(inode, block, bh, 1); 1081 if (err) 1082 break; 1083 if (buffer_new(bh)) { 1084 if (PageUptodate(page)) { 1085 clear_buffer_new(bh); 1086 set_buffer_uptodate(bh); 1087 mark_buffer_dirty(bh); 1088 continue; 1089 } 1090 if (block_end > to || block_start < from) 1091 zero_user_segments(page, to, block_end, 1092 block_start, from); 1093 continue; 1094 } 1095 } 1096 if (PageUptodate(page)) { 1097 set_buffer_uptodate(bh); 1098 continue; 1099 } 1100 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1101 !buffer_unwritten(bh) && 1102 (block_start < from || block_end > to)) { 1103 ext4_read_bh_lock(bh, 0, false); 1104 wait[nr_wait++] = bh; 1105 } 1106 } 1107 /* 1108 * If we issued read requests, let them complete. 1109 */ 1110 for (i = 0; i < nr_wait; i++) { 1111 wait_on_buffer(wait[i]); 1112 if (!buffer_uptodate(wait[i])) 1113 err = -EIO; 1114 } 1115 if (unlikely(err)) { 1116 page_zero_new_buffers(page, from, to); 1117 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 1118 for (i = 0; i < nr_wait; i++) { 1119 int err2; 1120 1121 err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize, 1122 bh_offset(wait[i])); 1123 if (err2) { 1124 clear_buffer_uptodate(wait[i]); 1125 err = err2; 1126 } 1127 } 1128 } 1129 1130 return err; 1131 } 1132 #endif 1133 1134 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1135 loff_t pos, unsigned len, unsigned flags, 1136 struct page **pagep, void **fsdata) 1137 { 1138 struct inode *inode = mapping->host; 1139 int ret, needed_blocks; 1140 handle_t *handle; 1141 int retries = 0; 1142 struct page *page; 1143 pgoff_t index; 1144 unsigned from, to; 1145 1146 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 1147 return -EIO; 1148 1149 trace_ext4_write_begin(inode, pos, len, flags); 1150 /* 1151 * Reserve one block more for addition to orphan list in case 1152 * we allocate blocks but write fails for some reason 1153 */ 1154 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1155 index = pos >> PAGE_SHIFT; 1156 from = pos & (PAGE_SIZE - 1); 1157 to = from + len; 1158 1159 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1160 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1161 flags, pagep); 1162 if (ret < 0) 1163 return ret; 1164 if (ret == 1) 1165 return 0; 1166 } 1167 1168 /* 1169 * grab_cache_page_write_begin() can take a long time if the 1170 * system is thrashing due to memory pressure, or if the page 1171 * is being written back. So grab it first before we start 1172 * the transaction handle. This also allows us to allocate 1173 * the page (if needed) without using GFP_NOFS. 1174 */ 1175 retry_grab: 1176 page = grab_cache_page_write_begin(mapping, index, flags); 1177 if (!page) 1178 return -ENOMEM; 1179 unlock_page(page); 1180 1181 retry_journal: 1182 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1183 if (IS_ERR(handle)) { 1184 put_page(page); 1185 return PTR_ERR(handle); 1186 } 1187 1188 lock_page(page); 1189 if (page->mapping != mapping) { 1190 /* The page got truncated from under us */ 1191 unlock_page(page); 1192 put_page(page); 1193 ext4_journal_stop(handle); 1194 goto retry_grab; 1195 } 1196 /* In case writeback began while the page was unlocked */ 1197 wait_for_stable_page(page); 1198 1199 #ifdef CONFIG_FS_ENCRYPTION 1200 if (ext4_should_dioread_nolock(inode)) 1201 ret = ext4_block_write_begin(page, pos, len, 1202 ext4_get_block_unwritten); 1203 else 1204 ret = ext4_block_write_begin(page, pos, len, 1205 ext4_get_block); 1206 #else 1207 if (ext4_should_dioread_nolock(inode)) 1208 ret = __block_write_begin(page, pos, len, 1209 ext4_get_block_unwritten); 1210 else 1211 ret = __block_write_begin(page, pos, len, ext4_get_block); 1212 #endif 1213 if (!ret && ext4_should_journal_data(inode)) { 1214 ret = ext4_walk_page_buffers(handle, inode, 1215 page_buffers(page), from, to, NULL, 1216 do_journal_get_write_access); 1217 } 1218 1219 if (ret) { 1220 bool extended = (pos + len > inode->i_size) && 1221 !ext4_verity_in_progress(inode); 1222 1223 unlock_page(page); 1224 /* 1225 * __block_write_begin may have instantiated a few blocks 1226 * outside i_size. Trim these off again. Don't need 1227 * i_size_read because we hold i_mutex. 1228 * 1229 * Add inode to orphan list in case we crash before 1230 * truncate finishes 1231 */ 1232 if (extended && ext4_can_truncate(inode)) 1233 ext4_orphan_add(handle, inode); 1234 1235 ext4_journal_stop(handle); 1236 if (extended) { 1237 ext4_truncate_failed_write(inode); 1238 /* 1239 * If truncate failed early the inode might 1240 * still be on the orphan list; we need to 1241 * make sure the inode is removed from the 1242 * orphan list in that case. 1243 */ 1244 if (inode->i_nlink) 1245 ext4_orphan_del(NULL, inode); 1246 } 1247 1248 if (ret == -ENOSPC && 1249 ext4_should_retry_alloc(inode->i_sb, &retries)) 1250 goto retry_journal; 1251 put_page(page); 1252 return ret; 1253 } 1254 *pagep = page; 1255 return ret; 1256 } 1257 1258 /* For write_end() in data=journal mode */ 1259 static int write_end_fn(handle_t *handle, struct inode *inode, 1260 struct buffer_head *bh) 1261 { 1262 int ret; 1263 if (!buffer_mapped(bh) || buffer_freed(bh)) 1264 return 0; 1265 set_buffer_uptodate(bh); 1266 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1267 clear_buffer_meta(bh); 1268 clear_buffer_prio(bh); 1269 return ret; 1270 } 1271 1272 /* 1273 * We need to pick up the new inode size which generic_commit_write gave us 1274 * `file' can be NULL - eg, when called from page_symlink(). 1275 * 1276 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1277 * buffers are managed internally. 1278 */ 1279 static int ext4_write_end(struct file *file, 1280 struct address_space *mapping, 1281 loff_t pos, unsigned len, unsigned copied, 1282 struct page *page, void *fsdata) 1283 { 1284 handle_t *handle = ext4_journal_current_handle(); 1285 struct inode *inode = mapping->host; 1286 loff_t old_size = inode->i_size; 1287 int ret = 0, ret2; 1288 int i_size_changed = 0; 1289 bool verity = ext4_verity_in_progress(inode); 1290 1291 trace_ext4_write_end(inode, pos, len, copied); 1292 1293 if (ext4_has_inline_data(inode)) 1294 return ext4_write_inline_data_end(inode, pos, len, copied, page); 1295 1296 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 1297 /* 1298 * it's important to update i_size while still holding page lock: 1299 * page writeout could otherwise come in and zero beyond i_size. 1300 * 1301 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree 1302 * blocks are being written past EOF, so skip the i_size update. 1303 */ 1304 if (!verity) 1305 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1306 unlock_page(page); 1307 put_page(page); 1308 1309 if (old_size < pos && !verity) 1310 pagecache_isize_extended(inode, old_size, pos); 1311 /* 1312 * Don't mark the inode dirty under page lock. First, it unnecessarily 1313 * makes the holding time of page lock longer. Second, it forces lock 1314 * ordering of page lock and transaction start for journaling 1315 * filesystems. 1316 */ 1317 if (i_size_changed) 1318 ret = ext4_mark_inode_dirty(handle, inode); 1319 1320 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1321 /* if we have allocated more blocks and copied 1322 * less. We will have blocks allocated outside 1323 * inode->i_size. So truncate them 1324 */ 1325 ext4_orphan_add(handle, inode); 1326 1327 ret2 = ext4_journal_stop(handle); 1328 if (!ret) 1329 ret = ret2; 1330 1331 if (pos + len > inode->i_size && !verity) { 1332 ext4_truncate_failed_write(inode); 1333 /* 1334 * If truncate failed early the inode might still be 1335 * on the orphan list; we need to make sure the inode 1336 * is removed from the orphan list in that case. 1337 */ 1338 if (inode->i_nlink) 1339 ext4_orphan_del(NULL, inode); 1340 } 1341 1342 return ret ? ret : copied; 1343 } 1344 1345 /* 1346 * This is a private version of page_zero_new_buffers() which doesn't 1347 * set the buffer to be dirty, since in data=journalled mode we need 1348 * to call ext4_handle_dirty_metadata() instead. 1349 */ 1350 static void ext4_journalled_zero_new_buffers(handle_t *handle, 1351 struct inode *inode, 1352 struct page *page, 1353 unsigned from, unsigned to) 1354 { 1355 unsigned int block_start = 0, block_end; 1356 struct buffer_head *head, *bh; 1357 1358 bh = head = page_buffers(page); 1359 do { 1360 block_end = block_start + bh->b_size; 1361 if (buffer_new(bh)) { 1362 if (block_end > from && block_start < to) { 1363 if (!PageUptodate(page)) { 1364 unsigned start, size; 1365 1366 start = max(from, block_start); 1367 size = min(to, block_end) - start; 1368 1369 zero_user(page, start, size); 1370 write_end_fn(handle, inode, bh); 1371 } 1372 clear_buffer_new(bh); 1373 } 1374 } 1375 block_start = block_end; 1376 bh = bh->b_this_page; 1377 } while (bh != head); 1378 } 1379 1380 static int ext4_journalled_write_end(struct file *file, 1381 struct address_space *mapping, 1382 loff_t pos, unsigned len, unsigned copied, 1383 struct page *page, void *fsdata) 1384 { 1385 handle_t *handle = ext4_journal_current_handle(); 1386 struct inode *inode = mapping->host; 1387 loff_t old_size = inode->i_size; 1388 int ret = 0, ret2; 1389 int partial = 0; 1390 unsigned from, to; 1391 int size_changed = 0; 1392 bool verity = ext4_verity_in_progress(inode); 1393 1394 trace_ext4_journalled_write_end(inode, pos, len, copied); 1395 from = pos & (PAGE_SIZE - 1); 1396 to = from + len; 1397 1398 BUG_ON(!ext4_handle_valid(handle)); 1399 1400 if (ext4_has_inline_data(inode)) 1401 return ext4_write_inline_data_end(inode, pos, len, copied, page); 1402 1403 if (unlikely(copied < len) && !PageUptodate(page)) { 1404 copied = 0; 1405 ext4_journalled_zero_new_buffers(handle, inode, page, from, to); 1406 } else { 1407 if (unlikely(copied < len)) 1408 ext4_journalled_zero_new_buffers(handle, inode, page, 1409 from + copied, to); 1410 ret = ext4_walk_page_buffers(handle, inode, page_buffers(page), 1411 from, from + copied, &partial, 1412 write_end_fn); 1413 if (!partial) 1414 SetPageUptodate(page); 1415 } 1416 if (!verity) 1417 size_changed = ext4_update_inode_size(inode, pos + copied); 1418 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1419 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1420 unlock_page(page); 1421 put_page(page); 1422 1423 if (old_size < pos && !verity) 1424 pagecache_isize_extended(inode, old_size, pos); 1425 1426 if (size_changed) { 1427 ret2 = ext4_mark_inode_dirty(handle, inode); 1428 if (!ret) 1429 ret = ret2; 1430 } 1431 1432 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1433 /* if we have allocated more blocks and copied 1434 * less. We will have blocks allocated outside 1435 * inode->i_size. So truncate them 1436 */ 1437 ext4_orphan_add(handle, inode); 1438 1439 ret2 = ext4_journal_stop(handle); 1440 if (!ret) 1441 ret = ret2; 1442 if (pos + len > inode->i_size && !verity) { 1443 ext4_truncate_failed_write(inode); 1444 /* 1445 * If truncate failed early the inode might still be 1446 * on the orphan list; we need to make sure the inode 1447 * is removed from the orphan list in that case. 1448 */ 1449 if (inode->i_nlink) 1450 ext4_orphan_del(NULL, inode); 1451 } 1452 1453 return ret ? ret : copied; 1454 } 1455 1456 /* 1457 * Reserve space for a single cluster 1458 */ 1459 static int ext4_da_reserve_space(struct inode *inode) 1460 { 1461 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1462 struct ext4_inode_info *ei = EXT4_I(inode); 1463 int ret; 1464 1465 /* 1466 * We will charge metadata quota at writeout time; this saves 1467 * us from metadata over-estimation, though we may go over by 1468 * a small amount in the end. Here we just reserve for data. 1469 */ 1470 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1471 if (ret) 1472 return ret; 1473 1474 spin_lock(&ei->i_block_reservation_lock); 1475 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1476 spin_unlock(&ei->i_block_reservation_lock); 1477 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1478 return -ENOSPC; 1479 } 1480 ei->i_reserved_data_blocks++; 1481 trace_ext4_da_reserve_space(inode); 1482 spin_unlock(&ei->i_block_reservation_lock); 1483 1484 return 0; /* success */ 1485 } 1486 1487 void ext4_da_release_space(struct inode *inode, int to_free) 1488 { 1489 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1490 struct ext4_inode_info *ei = EXT4_I(inode); 1491 1492 if (!to_free) 1493 return; /* Nothing to release, exit */ 1494 1495 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1496 1497 trace_ext4_da_release_space(inode, to_free); 1498 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1499 /* 1500 * if there aren't enough reserved blocks, then the 1501 * counter is messed up somewhere. Since this 1502 * function is called from invalidate page, it's 1503 * harmless to return without any action. 1504 */ 1505 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1506 "ino %lu, to_free %d with only %d reserved " 1507 "data blocks", inode->i_ino, to_free, 1508 ei->i_reserved_data_blocks); 1509 WARN_ON(1); 1510 to_free = ei->i_reserved_data_blocks; 1511 } 1512 ei->i_reserved_data_blocks -= to_free; 1513 1514 /* update fs dirty data blocks counter */ 1515 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1516 1517 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1518 1519 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1520 } 1521 1522 /* 1523 * Delayed allocation stuff 1524 */ 1525 1526 struct mpage_da_data { 1527 struct inode *inode; 1528 struct writeback_control *wbc; 1529 1530 pgoff_t first_page; /* The first page to write */ 1531 pgoff_t next_page; /* Current page to examine */ 1532 pgoff_t last_page; /* Last page to examine */ 1533 /* 1534 * Extent to map - this can be after first_page because that can be 1535 * fully mapped. We somewhat abuse m_flags to store whether the extent 1536 * is delalloc or unwritten. 1537 */ 1538 struct ext4_map_blocks map; 1539 struct ext4_io_submit io_submit; /* IO submission data */ 1540 unsigned int do_map:1; 1541 unsigned int scanned_until_end:1; 1542 }; 1543 1544 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1545 bool invalidate) 1546 { 1547 int nr_pages, i; 1548 pgoff_t index, end; 1549 struct pagevec pvec; 1550 struct inode *inode = mpd->inode; 1551 struct address_space *mapping = inode->i_mapping; 1552 1553 /* This is necessary when next_page == 0. */ 1554 if (mpd->first_page >= mpd->next_page) 1555 return; 1556 1557 mpd->scanned_until_end = 0; 1558 index = mpd->first_page; 1559 end = mpd->next_page - 1; 1560 if (invalidate) { 1561 ext4_lblk_t start, last; 1562 start = index << (PAGE_SHIFT - inode->i_blkbits); 1563 last = end << (PAGE_SHIFT - inode->i_blkbits); 1564 ext4_es_remove_extent(inode, start, last - start + 1); 1565 } 1566 1567 pagevec_init(&pvec); 1568 while (index <= end) { 1569 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end); 1570 if (nr_pages == 0) 1571 break; 1572 for (i = 0; i < nr_pages; i++) { 1573 struct page *page = pvec.pages[i]; 1574 1575 BUG_ON(!PageLocked(page)); 1576 BUG_ON(PageWriteback(page)); 1577 if (invalidate) { 1578 if (page_mapped(page)) 1579 clear_page_dirty_for_io(page); 1580 block_invalidatepage(page, 0, PAGE_SIZE); 1581 ClearPageUptodate(page); 1582 } 1583 unlock_page(page); 1584 } 1585 pagevec_release(&pvec); 1586 } 1587 } 1588 1589 static void ext4_print_free_blocks(struct inode *inode) 1590 { 1591 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1592 struct super_block *sb = inode->i_sb; 1593 struct ext4_inode_info *ei = EXT4_I(inode); 1594 1595 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1596 EXT4_C2B(EXT4_SB(inode->i_sb), 1597 ext4_count_free_clusters(sb))); 1598 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1599 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1600 (long long) EXT4_C2B(EXT4_SB(sb), 1601 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1602 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1603 (long long) EXT4_C2B(EXT4_SB(sb), 1604 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1605 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1606 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1607 ei->i_reserved_data_blocks); 1608 return; 1609 } 1610 1611 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct inode *inode, 1612 struct buffer_head *bh) 1613 { 1614 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1615 } 1616 1617 /* 1618 * ext4_insert_delayed_block - adds a delayed block to the extents status 1619 * tree, incrementing the reserved cluster/block 1620 * count or making a pending reservation 1621 * where needed 1622 * 1623 * @inode - file containing the newly added block 1624 * @lblk - logical block to be added 1625 * 1626 * Returns 0 on success, negative error code on failure. 1627 */ 1628 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk) 1629 { 1630 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1631 int ret; 1632 bool allocated = false; 1633 bool reserved = false; 1634 1635 /* 1636 * If the cluster containing lblk is shared with a delayed, 1637 * written, or unwritten extent in a bigalloc file system, it's 1638 * already been accounted for and does not need to be reserved. 1639 * A pending reservation must be made for the cluster if it's 1640 * shared with a written or unwritten extent and doesn't already 1641 * have one. Written and unwritten extents can be purged from the 1642 * extents status tree if the system is under memory pressure, so 1643 * it's necessary to examine the extent tree if a search of the 1644 * extents status tree doesn't get a match. 1645 */ 1646 if (sbi->s_cluster_ratio == 1) { 1647 ret = ext4_da_reserve_space(inode); 1648 if (ret != 0) /* ENOSPC */ 1649 goto errout; 1650 reserved = true; 1651 } else { /* bigalloc */ 1652 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) { 1653 if (!ext4_es_scan_clu(inode, 1654 &ext4_es_is_mapped, lblk)) { 1655 ret = ext4_clu_mapped(inode, 1656 EXT4_B2C(sbi, lblk)); 1657 if (ret < 0) 1658 goto errout; 1659 if (ret == 0) { 1660 ret = ext4_da_reserve_space(inode); 1661 if (ret != 0) /* ENOSPC */ 1662 goto errout; 1663 reserved = true; 1664 } else { 1665 allocated = true; 1666 } 1667 } else { 1668 allocated = true; 1669 } 1670 } 1671 } 1672 1673 ret = ext4_es_insert_delayed_block(inode, lblk, allocated); 1674 if (ret && reserved) 1675 ext4_da_release_space(inode, 1); 1676 1677 errout: 1678 return ret; 1679 } 1680 1681 /* 1682 * This function is grabs code from the very beginning of 1683 * ext4_map_blocks, but assumes that the caller is from delayed write 1684 * time. This function looks up the requested blocks and sets the 1685 * buffer delay bit under the protection of i_data_sem. 1686 */ 1687 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1688 struct ext4_map_blocks *map, 1689 struct buffer_head *bh) 1690 { 1691 struct extent_status es; 1692 int retval; 1693 sector_t invalid_block = ~((sector_t) 0xffff); 1694 #ifdef ES_AGGRESSIVE_TEST 1695 struct ext4_map_blocks orig_map; 1696 1697 memcpy(&orig_map, map, sizeof(*map)); 1698 #endif 1699 1700 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1701 invalid_block = ~0; 1702 1703 map->m_flags = 0; 1704 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len, 1705 (unsigned long) map->m_lblk); 1706 1707 /* Lookup extent status tree firstly */ 1708 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) { 1709 if (ext4_es_is_hole(&es)) { 1710 retval = 0; 1711 down_read(&EXT4_I(inode)->i_data_sem); 1712 goto add_delayed; 1713 } 1714 1715 /* 1716 * Delayed extent could be allocated by fallocate. 1717 * So we need to check it. 1718 */ 1719 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1720 map_bh(bh, inode->i_sb, invalid_block); 1721 set_buffer_new(bh); 1722 set_buffer_delay(bh); 1723 return 0; 1724 } 1725 1726 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1727 retval = es.es_len - (iblock - es.es_lblk); 1728 if (retval > map->m_len) 1729 retval = map->m_len; 1730 map->m_len = retval; 1731 if (ext4_es_is_written(&es)) 1732 map->m_flags |= EXT4_MAP_MAPPED; 1733 else if (ext4_es_is_unwritten(&es)) 1734 map->m_flags |= EXT4_MAP_UNWRITTEN; 1735 else 1736 BUG(); 1737 1738 #ifdef ES_AGGRESSIVE_TEST 1739 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1740 #endif 1741 return retval; 1742 } 1743 1744 /* 1745 * Try to see if we can get the block without requesting a new 1746 * file system block. 1747 */ 1748 down_read(&EXT4_I(inode)->i_data_sem); 1749 if (ext4_has_inline_data(inode)) 1750 retval = 0; 1751 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1752 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1753 else 1754 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1755 1756 add_delayed: 1757 if (retval == 0) { 1758 int ret; 1759 1760 /* 1761 * XXX: __block_prepare_write() unmaps passed block, 1762 * is it OK? 1763 */ 1764 1765 ret = ext4_insert_delayed_block(inode, map->m_lblk); 1766 if (ret != 0) { 1767 retval = ret; 1768 goto out_unlock; 1769 } 1770 1771 map_bh(bh, inode->i_sb, invalid_block); 1772 set_buffer_new(bh); 1773 set_buffer_delay(bh); 1774 } else if (retval > 0) { 1775 int ret; 1776 unsigned int status; 1777 1778 if (unlikely(retval != map->m_len)) { 1779 ext4_warning(inode->i_sb, 1780 "ES len assertion failed for inode " 1781 "%lu: retval %d != map->m_len %d", 1782 inode->i_ino, retval, map->m_len); 1783 WARN_ON(1); 1784 } 1785 1786 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1787 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1788 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1789 map->m_pblk, status); 1790 if (ret != 0) 1791 retval = ret; 1792 } 1793 1794 out_unlock: 1795 up_read((&EXT4_I(inode)->i_data_sem)); 1796 1797 return retval; 1798 } 1799 1800 /* 1801 * This is a special get_block_t callback which is used by 1802 * ext4_da_write_begin(). It will either return mapped block or 1803 * reserve space for a single block. 1804 * 1805 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1806 * We also have b_blocknr = -1 and b_bdev initialized properly 1807 * 1808 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1809 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1810 * initialized properly. 1811 */ 1812 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1813 struct buffer_head *bh, int create) 1814 { 1815 struct ext4_map_blocks map; 1816 int ret = 0; 1817 1818 BUG_ON(create == 0); 1819 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1820 1821 map.m_lblk = iblock; 1822 map.m_len = 1; 1823 1824 /* 1825 * first, we need to know whether the block is allocated already 1826 * preallocated blocks are unmapped but should treated 1827 * the same as allocated blocks. 1828 */ 1829 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1830 if (ret <= 0) 1831 return ret; 1832 1833 map_bh(bh, inode->i_sb, map.m_pblk); 1834 ext4_update_bh_state(bh, map.m_flags); 1835 1836 if (buffer_unwritten(bh)) { 1837 /* A delayed write to unwritten bh should be marked 1838 * new and mapped. Mapped ensures that we don't do 1839 * get_block multiple times when we write to the same 1840 * offset and new ensures that we do proper zero out 1841 * for partial write. 1842 */ 1843 set_buffer_new(bh); 1844 set_buffer_mapped(bh); 1845 } 1846 return 0; 1847 } 1848 1849 static int __ext4_journalled_writepage(struct page *page, 1850 unsigned int len) 1851 { 1852 struct address_space *mapping = page->mapping; 1853 struct inode *inode = mapping->host; 1854 handle_t *handle = NULL; 1855 int ret = 0, err = 0; 1856 int inline_data = ext4_has_inline_data(inode); 1857 struct buffer_head *inode_bh = NULL; 1858 loff_t size; 1859 1860 ClearPageChecked(page); 1861 1862 if (inline_data) { 1863 BUG_ON(page->index != 0); 1864 BUG_ON(len > ext4_get_max_inline_size(inode)); 1865 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1866 if (inode_bh == NULL) 1867 goto out; 1868 } 1869 /* 1870 * We need to release the page lock before we start the 1871 * journal, so grab a reference so the page won't disappear 1872 * out from under us. 1873 */ 1874 get_page(page); 1875 unlock_page(page); 1876 1877 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1878 ext4_writepage_trans_blocks(inode)); 1879 if (IS_ERR(handle)) { 1880 ret = PTR_ERR(handle); 1881 put_page(page); 1882 goto out_no_pagelock; 1883 } 1884 BUG_ON(!ext4_handle_valid(handle)); 1885 1886 lock_page(page); 1887 put_page(page); 1888 size = i_size_read(inode); 1889 if (page->mapping != mapping || page_offset(page) > size) { 1890 /* The page got truncated from under us */ 1891 ext4_journal_stop(handle); 1892 ret = 0; 1893 goto out; 1894 } 1895 1896 if (inline_data) { 1897 ret = ext4_mark_inode_dirty(handle, inode); 1898 } else { 1899 struct buffer_head *page_bufs = page_buffers(page); 1900 1901 if (page->index == size >> PAGE_SHIFT) 1902 len = size & ~PAGE_MASK; 1903 else 1904 len = PAGE_SIZE; 1905 1906 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 1907 NULL, do_journal_get_write_access); 1908 1909 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 1910 NULL, write_end_fn); 1911 } 1912 if (ret == 0) 1913 ret = err; 1914 err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len); 1915 if (ret == 0) 1916 ret = err; 1917 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1918 err = ext4_journal_stop(handle); 1919 if (!ret) 1920 ret = err; 1921 1922 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1923 out: 1924 unlock_page(page); 1925 out_no_pagelock: 1926 brelse(inode_bh); 1927 return ret; 1928 } 1929 1930 /* 1931 * Note that we don't need to start a transaction unless we're journaling data 1932 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1933 * need to file the inode to the transaction's list in ordered mode because if 1934 * we are writing back data added by write(), the inode is already there and if 1935 * we are writing back data modified via mmap(), no one guarantees in which 1936 * transaction the data will hit the disk. In case we are journaling data, we 1937 * cannot start transaction directly because transaction start ranks above page 1938 * lock so we have to do some magic. 1939 * 1940 * This function can get called via... 1941 * - ext4_writepages after taking page lock (have journal handle) 1942 * - journal_submit_inode_data_buffers (no journal handle) 1943 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 1944 * - grab_page_cache when doing write_begin (have journal handle) 1945 * 1946 * We don't do any block allocation in this function. If we have page with 1947 * multiple blocks we need to write those buffer_heads that are mapped. This 1948 * is important for mmaped based write. So if we do with blocksize 1K 1949 * truncate(f, 1024); 1950 * a = mmap(f, 0, 4096); 1951 * a[0] = 'a'; 1952 * truncate(f, 4096); 1953 * we have in the page first buffer_head mapped via page_mkwrite call back 1954 * but other buffer_heads would be unmapped but dirty (dirty done via the 1955 * do_wp_page). So writepage should write the first block. If we modify 1956 * the mmap area beyond 1024 we will again get a page_fault and the 1957 * page_mkwrite callback will do the block allocation and mark the 1958 * buffer_heads mapped. 1959 * 1960 * We redirty the page if we have any buffer_heads that is either delay or 1961 * unwritten in the page. 1962 * 1963 * We can get recursively called as show below. 1964 * 1965 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1966 * ext4_writepage() 1967 * 1968 * But since we don't do any block allocation we should not deadlock. 1969 * Page also have the dirty flag cleared so we don't get recurive page_lock. 1970 */ 1971 static int ext4_writepage(struct page *page, 1972 struct writeback_control *wbc) 1973 { 1974 int ret = 0; 1975 loff_t size; 1976 unsigned int len; 1977 struct buffer_head *page_bufs = NULL; 1978 struct inode *inode = page->mapping->host; 1979 struct ext4_io_submit io_submit; 1980 bool keep_towrite = false; 1981 1982 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 1983 inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE); 1984 unlock_page(page); 1985 return -EIO; 1986 } 1987 1988 trace_ext4_writepage(page); 1989 size = i_size_read(inode); 1990 if (page->index == size >> PAGE_SHIFT && 1991 !ext4_verity_in_progress(inode)) 1992 len = size & ~PAGE_MASK; 1993 else 1994 len = PAGE_SIZE; 1995 1996 page_bufs = page_buffers(page); 1997 /* 1998 * We cannot do block allocation or other extent handling in this 1999 * function. If there are buffers needing that, we have to redirty 2000 * the page. But we may reach here when we do a journal commit via 2001 * journal_submit_inode_data_buffers() and in that case we must write 2002 * allocated buffers to achieve data=ordered mode guarantees. 2003 * 2004 * Also, if there is only one buffer per page (the fs block 2005 * size == the page size), if one buffer needs block 2006 * allocation or needs to modify the extent tree to clear the 2007 * unwritten flag, we know that the page can't be written at 2008 * all, so we might as well refuse the write immediately. 2009 * Unfortunately if the block size != page size, we can't as 2010 * easily detect this case using ext4_walk_page_buffers(), but 2011 * for the extremely common case, this is an optimization that 2012 * skips a useless round trip through ext4_bio_write_page(). 2013 */ 2014 if (ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len, NULL, 2015 ext4_bh_delay_or_unwritten)) { 2016 redirty_page_for_writepage(wbc, page); 2017 if ((current->flags & PF_MEMALLOC) || 2018 (inode->i_sb->s_blocksize == PAGE_SIZE)) { 2019 /* 2020 * For memory cleaning there's no point in writing only 2021 * some buffers. So just bail out. Warn if we came here 2022 * from direct reclaim. 2023 */ 2024 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 2025 == PF_MEMALLOC); 2026 unlock_page(page); 2027 return 0; 2028 } 2029 keep_towrite = true; 2030 } 2031 2032 if (PageChecked(page) && ext4_should_journal_data(inode)) 2033 /* 2034 * It's mmapped pagecache. Add buffers and journal it. There 2035 * doesn't seem much point in redirtying the page here. 2036 */ 2037 return __ext4_journalled_writepage(page, len); 2038 2039 ext4_io_submit_init(&io_submit, wbc); 2040 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 2041 if (!io_submit.io_end) { 2042 redirty_page_for_writepage(wbc, page); 2043 unlock_page(page); 2044 return -ENOMEM; 2045 } 2046 ret = ext4_bio_write_page(&io_submit, page, len, keep_towrite); 2047 ext4_io_submit(&io_submit); 2048 /* Drop io_end reference we got from init */ 2049 ext4_put_io_end_defer(io_submit.io_end); 2050 return ret; 2051 } 2052 2053 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 2054 { 2055 int len; 2056 loff_t size; 2057 int err; 2058 2059 BUG_ON(page->index != mpd->first_page); 2060 clear_page_dirty_for_io(page); 2061 /* 2062 * We have to be very careful here! Nothing protects writeback path 2063 * against i_size changes and the page can be writeably mapped into 2064 * page tables. So an application can be growing i_size and writing 2065 * data through mmap while writeback runs. clear_page_dirty_for_io() 2066 * write-protects our page in page tables and the page cannot get 2067 * written to again until we release page lock. So only after 2068 * clear_page_dirty_for_io() we are safe to sample i_size for 2069 * ext4_bio_write_page() to zero-out tail of the written page. We rely 2070 * on the barrier provided by TestClearPageDirty in 2071 * clear_page_dirty_for_io() to make sure i_size is really sampled only 2072 * after page tables are updated. 2073 */ 2074 size = i_size_read(mpd->inode); 2075 if (page->index == size >> PAGE_SHIFT && 2076 !ext4_verity_in_progress(mpd->inode)) 2077 len = size & ~PAGE_MASK; 2078 else 2079 len = PAGE_SIZE; 2080 err = ext4_bio_write_page(&mpd->io_submit, page, len, false); 2081 if (!err) 2082 mpd->wbc->nr_to_write--; 2083 mpd->first_page++; 2084 2085 return err; 2086 } 2087 2088 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay)) 2089 2090 /* 2091 * mballoc gives us at most this number of blocks... 2092 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 2093 * The rest of mballoc seems to handle chunks up to full group size. 2094 */ 2095 #define MAX_WRITEPAGES_EXTENT_LEN 2048 2096 2097 /* 2098 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 2099 * 2100 * @mpd - extent of blocks 2101 * @lblk - logical number of the block in the file 2102 * @bh - buffer head we want to add to the extent 2103 * 2104 * The function is used to collect contig. blocks in the same state. If the 2105 * buffer doesn't require mapping for writeback and we haven't started the 2106 * extent of buffers to map yet, the function returns 'true' immediately - the 2107 * caller can write the buffer right away. Otherwise the function returns true 2108 * if the block has been added to the extent, false if the block couldn't be 2109 * added. 2110 */ 2111 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 2112 struct buffer_head *bh) 2113 { 2114 struct ext4_map_blocks *map = &mpd->map; 2115 2116 /* Buffer that doesn't need mapping for writeback? */ 2117 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 2118 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 2119 /* So far no extent to map => we write the buffer right away */ 2120 if (map->m_len == 0) 2121 return true; 2122 return false; 2123 } 2124 2125 /* First block in the extent? */ 2126 if (map->m_len == 0) { 2127 /* We cannot map unless handle is started... */ 2128 if (!mpd->do_map) 2129 return false; 2130 map->m_lblk = lblk; 2131 map->m_len = 1; 2132 map->m_flags = bh->b_state & BH_FLAGS; 2133 return true; 2134 } 2135 2136 /* Don't go larger than mballoc is willing to allocate */ 2137 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 2138 return false; 2139 2140 /* Can we merge the block to our big extent? */ 2141 if (lblk == map->m_lblk + map->m_len && 2142 (bh->b_state & BH_FLAGS) == map->m_flags) { 2143 map->m_len++; 2144 return true; 2145 } 2146 return false; 2147 } 2148 2149 /* 2150 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 2151 * 2152 * @mpd - extent of blocks for mapping 2153 * @head - the first buffer in the page 2154 * @bh - buffer we should start processing from 2155 * @lblk - logical number of the block in the file corresponding to @bh 2156 * 2157 * Walk through page buffers from @bh upto @head (exclusive) and either submit 2158 * the page for IO if all buffers in this page were mapped and there's no 2159 * accumulated extent of buffers to map or add buffers in the page to the 2160 * extent of buffers to map. The function returns 1 if the caller can continue 2161 * by processing the next page, 0 if it should stop adding buffers to the 2162 * extent to map because we cannot extend it anymore. It can also return value 2163 * < 0 in case of error during IO submission. 2164 */ 2165 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 2166 struct buffer_head *head, 2167 struct buffer_head *bh, 2168 ext4_lblk_t lblk) 2169 { 2170 struct inode *inode = mpd->inode; 2171 int err; 2172 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) 2173 >> inode->i_blkbits; 2174 2175 if (ext4_verity_in_progress(inode)) 2176 blocks = EXT_MAX_BLOCKS; 2177 2178 do { 2179 BUG_ON(buffer_locked(bh)); 2180 2181 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2182 /* Found extent to map? */ 2183 if (mpd->map.m_len) 2184 return 0; 2185 /* Buffer needs mapping and handle is not started? */ 2186 if (!mpd->do_map) 2187 return 0; 2188 /* Everything mapped so far and we hit EOF */ 2189 break; 2190 } 2191 } while (lblk++, (bh = bh->b_this_page) != head); 2192 /* So far everything mapped? Submit the page for IO. */ 2193 if (mpd->map.m_len == 0) { 2194 err = mpage_submit_page(mpd, head->b_page); 2195 if (err < 0) 2196 return err; 2197 } 2198 if (lblk >= blocks) { 2199 mpd->scanned_until_end = 1; 2200 return 0; 2201 } 2202 return 1; 2203 } 2204 2205 /* 2206 * mpage_process_page - update page buffers corresponding to changed extent and 2207 * may submit fully mapped page for IO 2208 * 2209 * @mpd - description of extent to map, on return next extent to map 2210 * @m_lblk - logical block mapping. 2211 * @m_pblk - corresponding physical mapping. 2212 * @map_bh - determines on return whether this page requires any further 2213 * mapping or not. 2214 * Scan given page buffers corresponding to changed extent and update buffer 2215 * state according to new extent state. 2216 * We map delalloc buffers to their physical location, clear unwritten bits. 2217 * If the given page is not fully mapped, we update @map to the next extent in 2218 * the given page that needs mapping & return @map_bh as true. 2219 */ 2220 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page, 2221 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk, 2222 bool *map_bh) 2223 { 2224 struct buffer_head *head, *bh; 2225 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2226 ext4_lblk_t lblk = *m_lblk; 2227 ext4_fsblk_t pblock = *m_pblk; 2228 int err = 0; 2229 int blkbits = mpd->inode->i_blkbits; 2230 ssize_t io_end_size = 0; 2231 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end); 2232 2233 bh = head = page_buffers(page); 2234 do { 2235 if (lblk < mpd->map.m_lblk) 2236 continue; 2237 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2238 /* 2239 * Buffer after end of mapped extent. 2240 * Find next buffer in the page to map. 2241 */ 2242 mpd->map.m_len = 0; 2243 mpd->map.m_flags = 0; 2244 io_end_vec->size += io_end_size; 2245 2246 err = mpage_process_page_bufs(mpd, head, bh, lblk); 2247 if (err > 0) 2248 err = 0; 2249 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) { 2250 io_end_vec = ext4_alloc_io_end_vec(io_end); 2251 if (IS_ERR(io_end_vec)) { 2252 err = PTR_ERR(io_end_vec); 2253 goto out; 2254 } 2255 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits; 2256 } 2257 *map_bh = true; 2258 goto out; 2259 } 2260 if (buffer_delay(bh)) { 2261 clear_buffer_delay(bh); 2262 bh->b_blocknr = pblock++; 2263 } 2264 clear_buffer_unwritten(bh); 2265 io_end_size += (1 << blkbits); 2266 } while (lblk++, (bh = bh->b_this_page) != head); 2267 2268 io_end_vec->size += io_end_size; 2269 *map_bh = false; 2270 out: 2271 *m_lblk = lblk; 2272 *m_pblk = pblock; 2273 return err; 2274 } 2275 2276 /* 2277 * mpage_map_buffers - update buffers corresponding to changed extent and 2278 * submit fully mapped pages for IO 2279 * 2280 * @mpd - description of extent to map, on return next extent to map 2281 * 2282 * Scan buffers corresponding to changed extent (we expect corresponding pages 2283 * to be already locked) and update buffer state according to new extent state. 2284 * We map delalloc buffers to their physical location, clear unwritten bits, 2285 * and mark buffers as uninit when we perform writes to unwritten extents 2286 * and do extent conversion after IO is finished. If the last page is not fully 2287 * mapped, we update @map to the next extent in the last page that needs 2288 * mapping. Otherwise we submit the page for IO. 2289 */ 2290 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2291 { 2292 struct pagevec pvec; 2293 int nr_pages, i; 2294 struct inode *inode = mpd->inode; 2295 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2296 pgoff_t start, end; 2297 ext4_lblk_t lblk; 2298 ext4_fsblk_t pblock; 2299 int err; 2300 bool map_bh = false; 2301 2302 start = mpd->map.m_lblk >> bpp_bits; 2303 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2304 lblk = start << bpp_bits; 2305 pblock = mpd->map.m_pblk; 2306 2307 pagevec_init(&pvec); 2308 while (start <= end) { 2309 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, 2310 &start, end); 2311 if (nr_pages == 0) 2312 break; 2313 for (i = 0; i < nr_pages; i++) { 2314 struct page *page = pvec.pages[i]; 2315 2316 err = mpage_process_page(mpd, page, &lblk, &pblock, 2317 &map_bh); 2318 /* 2319 * If map_bh is true, means page may require further bh 2320 * mapping, or maybe the page was submitted for IO. 2321 * So we return to call further extent mapping. 2322 */ 2323 if (err < 0 || map_bh) 2324 goto out; 2325 /* Page fully mapped - let IO run! */ 2326 err = mpage_submit_page(mpd, page); 2327 if (err < 0) 2328 goto out; 2329 } 2330 pagevec_release(&pvec); 2331 } 2332 /* Extent fully mapped and matches with page boundary. We are done. */ 2333 mpd->map.m_len = 0; 2334 mpd->map.m_flags = 0; 2335 return 0; 2336 out: 2337 pagevec_release(&pvec); 2338 return err; 2339 } 2340 2341 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2342 { 2343 struct inode *inode = mpd->inode; 2344 struct ext4_map_blocks *map = &mpd->map; 2345 int get_blocks_flags; 2346 int err, dioread_nolock; 2347 2348 trace_ext4_da_write_pages_extent(inode, map); 2349 /* 2350 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2351 * to convert an unwritten extent to be initialized (in the case 2352 * where we have written into one or more preallocated blocks). It is 2353 * possible that we're going to need more metadata blocks than 2354 * previously reserved. However we must not fail because we're in 2355 * writeback and there is nothing we can do about it so it might result 2356 * in data loss. So use reserved blocks to allocate metadata if 2357 * possible. 2358 * 2359 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2360 * the blocks in question are delalloc blocks. This indicates 2361 * that the blocks and quotas has already been checked when 2362 * the data was copied into the page cache. 2363 */ 2364 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2365 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2366 EXT4_GET_BLOCKS_IO_SUBMIT; 2367 dioread_nolock = ext4_should_dioread_nolock(inode); 2368 if (dioread_nolock) 2369 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2370 if (map->m_flags & BIT(BH_Delay)) 2371 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2372 2373 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2374 if (err < 0) 2375 return err; 2376 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2377 if (!mpd->io_submit.io_end->handle && 2378 ext4_handle_valid(handle)) { 2379 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2380 handle->h_rsv_handle = NULL; 2381 } 2382 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2383 } 2384 2385 BUG_ON(map->m_len == 0); 2386 return 0; 2387 } 2388 2389 /* 2390 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2391 * mpd->len and submit pages underlying it for IO 2392 * 2393 * @handle - handle for journal operations 2394 * @mpd - extent to map 2395 * @give_up_on_write - we set this to true iff there is a fatal error and there 2396 * is no hope of writing the data. The caller should discard 2397 * dirty pages to avoid infinite loops. 2398 * 2399 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2400 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2401 * them to initialized or split the described range from larger unwritten 2402 * extent. Note that we need not map all the described range since allocation 2403 * can return less blocks or the range is covered by more unwritten extents. We 2404 * cannot map more because we are limited by reserved transaction credits. On 2405 * the other hand we always make sure that the last touched page is fully 2406 * mapped so that it can be written out (and thus forward progress is 2407 * guaranteed). After mapping we submit all mapped pages for IO. 2408 */ 2409 static int mpage_map_and_submit_extent(handle_t *handle, 2410 struct mpage_da_data *mpd, 2411 bool *give_up_on_write) 2412 { 2413 struct inode *inode = mpd->inode; 2414 struct ext4_map_blocks *map = &mpd->map; 2415 int err; 2416 loff_t disksize; 2417 int progress = 0; 2418 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2419 struct ext4_io_end_vec *io_end_vec; 2420 2421 io_end_vec = ext4_alloc_io_end_vec(io_end); 2422 if (IS_ERR(io_end_vec)) 2423 return PTR_ERR(io_end_vec); 2424 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits; 2425 do { 2426 err = mpage_map_one_extent(handle, mpd); 2427 if (err < 0) { 2428 struct super_block *sb = inode->i_sb; 2429 2430 if (ext4_forced_shutdown(EXT4_SB(sb)) || 2431 ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) 2432 goto invalidate_dirty_pages; 2433 /* 2434 * Let the uper layers retry transient errors. 2435 * In the case of ENOSPC, if ext4_count_free_blocks() 2436 * is non-zero, a commit should free up blocks. 2437 */ 2438 if ((err == -ENOMEM) || 2439 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2440 if (progress) 2441 goto update_disksize; 2442 return err; 2443 } 2444 ext4_msg(sb, KERN_CRIT, 2445 "Delayed block allocation failed for " 2446 "inode %lu at logical offset %llu with" 2447 " max blocks %u with error %d", 2448 inode->i_ino, 2449 (unsigned long long)map->m_lblk, 2450 (unsigned)map->m_len, -err); 2451 ext4_msg(sb, KERN_CRIT, 2452 "This should not happen!! Data will " 2453 "be lost\n"); 2454 if (err == -ENOSPC) 2455 ext4_print_free_blocks(inode); 2456 invalidate_dirty_pages: 2457 *give_up_on_write = true; 2458 return err; 2459 } 2460 progress = 1; 2461 /* 2462 * Update buffer state, submit mapped pages, and get us new 2463 * extent to map 2464 */ 2465 err = mpage_map_and_submit_buffers(mpd); 2466 if (err < 0) 2467 goto update_disksize; 2468 } while (map->m_len); 2469 2470 update_disksize: 2471 /* 2472 * Update on-disk size after IO is submitted. Races with 2473 * truncate are avoided by checking i_size under i_data_sem. 2474 */ 2475 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2476 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) { 2477 int err2; 2478 loff_t i_size; 2479 2480 down_write(&EXT4_I(inode)->i_data_sem); 2481 i_size = i_size_read(inode); 2482 if (disksize > i_size) 2483 disksize = i_size; 2484 if (disksize > EXT4_I(inode)->i_disksize) 2485 EXT4_I(inode)->i_disksize = disksize; 2486 up_write(&EXT4_I(inode)->i_data_sem); 2487 err2 = ext4_mark_inode_dirty(handle, inode); 2488 if (err2) { 2489 ext4_error_err(inode->i_sb, -err2, 2490 "Failed to mark inode %lu dirty", 2491 inode->i_ino); 2492 } 2493 if (!err) 2494 err = err2; 2495 } 2496 return err; 2497 } 2498 2499 /* 2500 * Calculate the total number of credits to reserve for one writepages 2501 * iteration. This is called from ext4_writepages(). We map an extent of 2502 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2503 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2504 * bpp - 1 blocks in bpp different extents. 2505 */ 2506 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2507 { 2508 int bpp = ext4_journal_blocks_per_page(inode); 2509 2510 return ext4_meta_trans_blocks(inode, 2511 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2512 } 2513 2514 /* 2515 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2516 * and underlying extent to map 2517 * 2518 * @mpd - where to look for pages 2519 * 2520 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2521 * IO immediately. When we find a page which isn't mapped we start accumulating 2522 * extent of buffers underlying these pages that needs mapping (formed by 2523 * either delayed or unwritten buffers). We also lock the pages containing 2524 * these buffers. The extent found is returned in @mpd structure (starting at 2525 * mpd->lblk with length mpd->len blocks). 2526 * 2527 * Note that this function can attach bios to one io_end structure which are 2528 * neither logically nor physically contiguous. Although it may seem as an 2529 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2530 * case as we need to track IO to all buffers underlying a page in one io_end. 2531 */ 2532 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2533 { 2534 struct address_space *mapping = mpd->inode->i_mapping; 2535 struct pagevec pvec; 2536 unsigned int nr_pages; 2537 long left = mpd->wbc->nr_to_write; 2538 pgoff_t index = mpd->first_page; 2539 pgoff_t end = mpd->last_page; 2540 xa_mark_t tag; 2541 int i, err = 0; 2542 int blkbits = mpd->inode->i_blkbits; 2543 ext4_lblk_t lblk; 2544 struct buffer_head *head; 2545 2546 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2547 tag = PAGECACHE_TAG_TOWRITE; 2548 else 2549 tag = PAGECACHE_TAG_DIRTY; 2550 2551 pagevec_init(&pvec); 2552 mpd->map.m_len = 0; 2553 mpd->next_page = index; 2554 while (index <= end) { 2555 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2556 tag); 2557 if (nr_pages == 0) 2558 break; 2559 2560 for (i = 0; i < nr_pages; i++) { 2561 struct page *page = pvec.pages[i]; 2562 2563 /* 2564 * Accumulated enough dirty pages? This doesn't apply 2565 * to WB_SYNC_ALL mode. For integrity sync we have to 2566 * keep going because someone may be concurrently 2567 * dirtying pages, and we might have synced a lot of 2568 * newly appeared dirty pages, but have not synced all 2569 * of the old dirty pages. 2570 */ 2571 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2572 goto out; 2573 2574 /* If we can't merge this page, we are done. */ 2575 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2576 goto out; 2577 2578 lock_page(page); 2579 /* 2580 * If the page is no longer dirty, or its mapping no 2581 * longer corresponds to inode we are writing (which 2582 * means it has been truncated or invalidated), or the 2583 * page is already under writeback and we are not doing 2584 * a data integrity writeback, skip the page 2585 */ 2586 if (!PageDirty(page) || 2587 (PageWriteback(page) && 2588 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2589 unlikely(page->mapping != mapping)) { 2590 unlock_page(page); 2591 continue; 2592 } 2593 2594 wait_on_page_writeback(page); 2595 BUG_ON(PageWriteback(page)); 2596 2597 if (mpd->map.m_len == 0) 2598 mpd->first_page = page->index; 2599 mpd->next_page = page->index + 1; 2600 /* Add all dirty buffers to mpd */ 2601 lblk = ((ext4_lblk_t)page->index) << 2602 (PAGE_SHIFT - blkbits); 2603 head = page_buffers(page); 2604 err = mpage_process_page_bufs(mpd, head, head, lblk); 2605 if (err <= 0) 2606 goto out; 2607 err = 0; 2608 left--; 2609 } 2610 pagevec_release(&pvec); 2611 cond_resched(); 2612 } 2613 mpd->scanned_until_end = 1; 2614 return 0; 2615 out: 2616 pagevec_release(&pvec); 2617 return err; 2618 } 2619 2620 static int ext4_writepages(struct address_space *mapping, 2621 struct writeback_control *wbc) 2622 { 2623 pgoff_t writeback_index = 0; 2624 long nr_to_write = wbc->nr_to_write; 2625 int range_whole = 0; 2626 int cycled = 1; 2627 handle_t *handle = NULL; 2628 struct mpage_da_data mpd; 2629 struct inode *inode = mapping->host; 2630 int needed_blocks, rsv_blocks = 0, ret = 0; 2631 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2632 struct blk_plug plug; 2633 bool give_up_on_write = false; 2634 2635 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2636 return -EIO; 2637 2638 percpu_down_read(&sbi->s_writepages_rwsem); 2639 trace_ext4_writepages(inode, wbc); 2640 2641 /* 2642 * No pages to write? This is mainly a kludge to avoid starting 2643 * a transaction for special inodes like journal inode on last iput() 2644 * because that could violate lock ordering on umount 2645 */ 2646 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2647 goto out_writepages; 2648 2649 if (ext4_should_journal_data(inode)) { 2650 ret = generic_writepages(mapping, wbc); 2651 goto out_writepages; 2652 } 2653 2654 /* 2655 * If the filesystem has aborted, it is read-only, so return 2656 * right away instead of dumping stack traces later on that 2657 * will obscure the real source of the problem. We test 2658 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because 2659 * the latter could be true if the filesystem is mounted 2660 * read-only, and in that case, ext4_writepages should 2661 * *never* be called, so if that ever happens, we would want 2662 * the stack trace. 2663 */ 2664 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) || 2665 ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) { 2666 ret = -EROFS; 2667 goto out_writepages; 2668 } 2669 2670 /* 2671 * If we have inline data and arrive here, it means that 2672 * we will soon create the block for the 1st page, so 2673 * we'd better clear the inline data here. 2674 */ 2675 if (ext4_has_inline_data(inode)) { 2676 /* Just inode will be modified... */ 2677 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2678 if (IS_ERR(handle)) { 2679 ret = PTR_ERR(handle); 2680 goto out_writepages; 2681 } 2682 BUG_ON(ext4_test_inode_state(inode, 2683 EXT4_STATE_MAY_INLINE_DATA)); 2684 ext4_destroy_inline_data(handle, inode); 2685 ext4_journal_stop(handle); 2686 } 2687 2688 if (ext4_should_dioread_nolock(inode)) { 2689 /* 2690 * We may need to convert up to one extent per block in 2691 * the page and we may dirty the inode. 2692 */ 2693 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode, 2694 PAGE_SIZE >> inode->i_blkbits); 2695 } 2696 2697 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2698 range_whole = 1; 2699 2700 if (wbc->range_cyclic) { 2701 writeback_index = mapping->writeback_index; 2702 if (writeback_index) 2703 cycled = 0; 2704 mpd.first_page = writeback_index; 2705 mpd.last_page = -1; 2706 } else { 2707 mpd.first_page = wbc->range_start >> PAGE_SHIFT; 2708 mpd.last_page = wbc->range_end >> PAGE_SHIFT; 2709 } 2710 2711 mpd.inode = inode; 2712 mpd.wbc = wbc; 2713 ext4_io_submit_init(&mpd.io_submit, wbc); 2714 retry: 2715 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2716 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2717 blk_start_plug(&plug); 2718 2719 /* 2720 * First writeback pages that don't need mapping - we can avoid 2721 * starting a transaction unnecessarily and also avoid being blocked 2722 * in the block layer on device congestion while having transaction 2723 * started. 2724 */ 2725 mpd.do_map = 0; 2726 mpd.scanned_until_end = 0; 2727 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2728 if (!mpd.io_submit.io_end) { 2729 ret = -ENOMEM; 2730 goto unplug; 2731 } 2732 ret = mpage_prepare_extent_to_map(&mpd); 2733 /* Unlock pages we didn't use */ 2734 mpage_release_unused_pages(&mpd, false); 2735 /* Submit prepared bio */ 2736 ext4_io_submit(&mpd.io_submit); 2737 ext4_put_io_end_defer(mpd.io_submit.io_end); 2738 mpd.io_submit.io_end = NULL; 2739 if (ret < 0) 2740 goto unplug; 2741 2742 while (!mpd.scanned_until_end && wbc->nr_to_write > 0) { 2743 /* For each extent of pages we use new io_end */ 2744 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2745 if (!mpd.io_submit.io_end) { 2746 ret = -ENOMEM; 2747 break; 2748 } 2749 2750 /* 2751 * We have two constraints: We find one extent to map and we 2752 * must always write out whole page (makes a difference when 2753 * blocksize < pagesize) so that we don't block on IO when we 2754 * try to write out the rest of the page. Journalled mode is 2755 * not supported by delalloc. 2756 */ 2757 BUG_ON(ext4_should_journal_data(inode)); 2758 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2759 2760 /* start a new transaction */ 2761 handle = ext4_journal_start_with_reserve(inode, 2762 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2763 if (IS_ERR(handle)) { 2764 ret = PTR_ERR(handle); 2765 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2766 "%ld pages, ino %lu; err %d", __func__, 2767 wbc->nr_to_write, inode->i_ino, ret); 2768 /* Release allocated io_end */ 2769 ext4_put_io_end(mpd.io_submit.io_end); 2770 mpd.io_submit.io_end = NULL; 2771 break; 2772 } 2773 mpd.do_map = 1; 2774 2775 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2776 ret = mpage_prepare_extent_to_map(&mpd); 2777 if (!ret && mpd.map.m_len) 2778 ret = mpage_map_and_submit_extent(handle, &mpd, 2779 &give_up_on_write); 2780 /* 2781 * Caution: If the handle is synchronous, 2782 * ext4_journal_stop() can wait for transaction commit 2783 * to finish which may depend on writeback of pages to 2784 * complete or on page lock to be released. In that 2785 * case, we have to wait until after we have 2786 * submitted all the IO, released page locks we hold, 2787 * and dropped io_end reference (for extent conversion 2788 * to be able to complete) before stopping the handle. 2789 */ 2790 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2791 ext4_journal_stop(handle); 2792 handle = NULL; 2793 mpd.do_map = 0; 2794 } 2795 /* Unlock pages we didn't use */ 2796 mpage_release_unused_pages(&mpd, give_up_on_write); 2797 /* Submit prepared bio */ 2798 ext4_io_submit(&mpd.io_submit); 2799 2800 /* 2801 * Drop our io_end reference we got from init. We have 2802 * to be careful and use deferred io_end finishing if 2803 * we are still holding the transaction as we can 2804 * release the last reference to io_end which may end 2805 * up doing unwritten extent conversion. 2806 */ 2807 if (handle) { 2808 ext4_put_io_end_defer(mpd.io_submit.io_end); 2809 ext4_journal_stop(handle); 2810 } else 2811 ext4_put_io_end(mpd.io_submit.io_end); 2812 mpd.io_submit.io_end = NULL; 2813 2814 if (ret == -ENOSPC && sbi->s_journal) { 2815 /* 2816 * Commit the transaction which would 2817 * free blocks released in the transaction 2818 * and try again 2819 */ 2820 jbd2_journal_force_commit_nested(sbi->s_journal); 2821 ret = 0; 2822 continue; 2823 } 2824 /* Fatal error - ENOMEM, EIO... */ 2825 if (ret) 2826 break; 2827 } 2828 unplug: 2829 blk_finish_plug(&plug); 2830 if (!ret && !cycled && wbc->nr_to_write > 0) { 2831 cycled = 1; 2832 mpd.last_page = writeback_index - 1; 2833 mpd.first_page = 0; 2834 goto retry; 2835 } 2836 2837 /* Update index */ 2838 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2839 /* 2840 * Set the writeback_index so that range_cyclic 2841 * mode will write it back later 2842 */ 2843 mapping->writeback_index = mpd.first_page; 2844 2845 out_writepages: 2846 trace_ext4_writepages_result(inode, wbc, ret, 2847 nr_to_write - wbc->nr_to_write); 2848 percpu_up_read(&sbi->s_writepages_rwsem); 2849 return ret; 2850 } 2851 2852 static int ext4_dax_writepages(struct address_space *mapping, 2853 struct writeback_control *wbc) 2854 { 2855 int ret; 2856 long nr_to_write = wbc->nr_to_write; 2857 struct inode *inode = mapping->host; 2858 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2859 2860 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2861 return -EIO; 2862 2863 percpu_down_read(&sbi->s_writepages_rwsem); 2864 trace_ext4_writepages(inode, wbc); 2865 2866 ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc); 2867 trace_ext4_writepages_result(inode, wbc, ret, 2868 nr_to_write - wbc->nr_to_write); 2869 percpu_up_read(&sbi->s_writepages_rwsem); 2870 return ret; 2871 } 2872 2873 static int ext4_nonda_switch(struct super_block *sb) 2874 { 2875 s64 free_clusters, dirty_clusters; 2876 struct ext4_sb_info *sbi = EXT4_SB(sb); 2877 2878 /* 2879 * switch to non delalloc mode if we are running low 2880 * on free block. The free block accounting via percpu 2881 * counters can get slightly wrong with percpu_counter_batch getting 2882 * accumulated on each CPU without updating global counters 2883 * Delalloc need an accurate free block accounting. So switch 2884 * to non delalloc when we are near to error range. 2885 */ 2886 free_clusters = 2887 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2888 dirty_clusters = 2889 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2890 /* 2891 * Start pushing delalloc when 1/2 of free blocks are dirty. 2892 */ 2893 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2894 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2895 2896 if (2 * free_clusters < 3 * dirty_clusters || 2897 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2898 /* 2899 * free block count is less than 150% of dirty blocks 2900 * or free blocks is less than watermark 2901 */ 2902 return 1; 2903 } 2904 return 0; 2905 } 2906 2907 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2908 loff_t pos, unsigned len, unsigned flags, 2909 struct page **pagep, void **fsdata) 2910 { 2911 int ret, retries = 0; 2912 struct page *page; 2913 pgoff_t index; 2914 struct inode *inode = mapping->host; 2915 2916 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2917 return -EIO; 2918 2919 index = pos >> PAGE_SHIFT; 2920 2921 if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) || 2922 ext4_verity_in_progress(inode)) { 2923 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2924 return ext4_write_begin(file, mapping, pos, 2925 len, flags, pagep, fsdata); 2926 } 2927 *fsdata = (void *)0; 2928 trace_ext4_da_write_begin(inode, pos, len, flags); 2929 2930 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2931 ret = ext4_da_write_inline_data_begin(mapping, inode, 2932 pos, len, flags, 2933 pagep, fsdata); 2934 if (ret < 0) 2935 return ret; 2936 if (ret == 1) 2937 return 0; 2938 } 2939 2940 retry: 2941 page = grab_cache_page_write_begin(mapping, index, flags); 2942 if (!page) 2943 return -ENOMEM; 2944 2945 /* In case writeback began while the page was unlocked */ 2946 wait_for_stable_page(page); 2947 2948 #ifdef CONFIG_FS_ENCRYPTION 2949 ret = ext4_block_write_begin(page, pos, len, 2950 ext4_da_get_block_prep); 2951 #else 2952 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 2953 #endif 2954 if (ret < 0) { 2955 unlock_page(page); 2956 put_page(page); 2957 /* 2958 * block_write_begin may have instantiated a few blocks 2959 * outside i_size. Trim these off again. Don't need 2960 * i_size_read because we hold inode lock. 2961 */ 2962 if (pos + len > inode->i_size) 2963 ext4_truncate_failed_write(inode); 2964 2965 if (ret == -ENOSPC && 2966 ext4_should_retry_alloc(inode->i_sb, &retries)) 2967 goto retry; 2968 return ret; 2969 } 2970 2971 *pagep = page; 2972 return ret; 2973 } 2974 2975 /* 2976 * Check if we should update i_disksize 2977 * when write to the end of file but not require block allocation 2978 */ 2979 static int ext4_da_should_update_i_disksize(struct page *page, 2980 unsigned long offset) 2981 { 2982 struct buffer_head *bh; 2983 struct inode *inode = page->mapping->host; 2984 unsigned int idx; 2985 int i; 2986 2987 bh = page_buffers(page); 2988 idx = offset >> inode->i_blkbits; 2989 2990 for (i = 0; i < idx; i++) 2991 bh = bh->b_this_page; 2992 2993 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2994 return 0; 2995 return 1; 2996 } 2997 2998 static int ext4_da_write_end(struct file *file, 2999 struct address_space *mapping, 3000 loff_t pos, unsigned len, unsigned copied, 3001 struct page *page, void *fsdata) 3002 { 3003 struct inode *inode = mapping->host; 3004 loff_t new_i_size; 3005 unsigned long start, end; 3006 int write_mode = (int)(unsigned long)fsdata; 3007 3008 if (write_mode == FALL_BACK_TO_NONDELALLOC) 3009 return ext4_write_end(file, mapping, pos, 3010 len, copied, page, fsdata); 3011 3012 trace_ext4_da_write_end(inode, pos, len, copied); 3013 3014 if (write_mode != CONVERT_INLINE_DATA && 3015 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3016 ext4_has_inline_data(inode)) 3017 return ext4_write_inline_data_end(inode, pos, len, copied, page); 3018 3019 start = pos & (PAGE_SIZE - 1); 3020 end = start + copied - 1; 3021 3022 /* 3023 * Since we are holding inode lock, we are sure i_disksize <= 3024 * i_size. We also know that if i_disksize < i_size, there are 3025 * delalloc writes pending in the range upto i_size. If the end of 3026 * the current write is <= i_size, there's no need to touch 3027 * i_disksize since writeback will push i_disksize upto i_size 3028 * eventually. If the end of the current write is > i_size and 3029 * inside an allocated block (ext4_da_should_update_i_disksize() 3030 * check), we need to update i_disksize here as neither 3031 * ext4_writepage() nor certain ext4_writepages() paths not 3032 * allocating blocks update i_disksize. 3033 * 3034 * Note that we defer inode dirtying to generic_write_end() / 3035 * ext4_da_write_inline_data_end(). 3036 */ 3037 new_i_size = pos + copied; 3038 if (copied && new_i_size > inode->i_size && 3039 ext4_da_should_update_i_disksize(page, end)) 3040 ext4_update_i_disksize(inode, new_i_size); 3041 3042 return generic_write_end(file, mapping, pos, len, copied, page, fsdata); 3043 } 3044 3045 /* 3046 * Force all delayed allocation blocks to be allocated for a given inode. 3047 */ 3048 int ext4_alloc_da_blocks(struct inode *inode) 3049 { 3050 trace_ext4_alloc_da_blocks(inode); 3051 3052 if (!EXT4_I(inode)->i_reserved_data_blocks) 3053 return 0; 3054 3055 /* 3056 * We do something simple for now. The filemap_flush() will 3057 * also start triggering a write of the data blocks, which is 3058 * not strictly speaking necessary (and for users of 3059 * laptop_mode, not even desirable). However, to do otherwise 3060 * would require replicating code paths in: 3061 * 3062 * ext4_writepages() -> 3063 * write_cache_pages() ---> (via passed in callback function) 3064 * __mpage_da_writepage() --> 3065 * mpage_add_bh_to_extent() 3066 * mpage_da_map_blocks() 3067 * 3068 * The problem is that write_cache_pages(), located in 3069 * mm/page-writeback.c, marks pages clean in preparation for 3070 * doing I/O, which is not desirable if we're not planning on 3071 * doing I/O at all. 3072 * 3073 * We could call write_cache_pages(), and then redirty all of 3074 * the pages by calling redirty_page_for_writepage() but that 3075 * would be ugly in the extreme. So instead we would need to 3076 * replicate parts of the code in the above functions, 3077 * simplifying them because we wouldn't actually intend to 3078 * write out the pages, but rather only collect contiguous 3079 * logical block extents, call the multi-block allocator, and 3080 * then update the buffer heads with the block allocations. 3081 * 3082 * For now, though, we'll cheat by calling filemap_flush(), 3083 * which will map the blocks, and start the I/O, but not 3084 * actually wait for the I/O to complete. 3085 */ 3086 return filemap_flush(inode->i_mapping); 3087 } 3088 3089 /* 3090 * bmap() is special. It gets used by applications such as lilo and by 3091 * the swapper to find the on-disk block of a specific piece of data. 3092 * 3093 * Naturally, this is dangerous if the block concerned is still in the 3094 * journal. If somebody makes a swapfile on an ext4 data-journaling 3095 * filesystem and enables swap, then they may get a nasty shock when the 3096 * data getting swapped to that swapfile suddenly gets overwritten by 3097 * the original zero's written out previously to the journal and 3098 * awaiting writeback in the kernel's buffer cache. 3099 * 3100 * So, if we see any bmap calls here on a modified, data-journaled file, 3101 * take extra steps to flush any blocks which might be in the cache. 3102 */ 3103 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3104 { 3105 struct inode *inode = mapping->host; 3106 journal_t *journal; 3107 int err; 3108 3109 /* 3110 * We can get here for an inline file via the FIBMAP ioctl 3111 */ 3112 if (ext4_has_inline_data(inode)) 3113 return 0; 3114 3115 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3116 test_opt(inode->i_sb, DELALLOC)) { 3117 /* 3118 * With delalloc we want to sync the file 3119 * so that we can make sure we allocate 3120 * blocks for file 3121 */ 3122 filemap_write_and_wait(mapping); 3123 } 3124 3125 if (EXT4_JOURNAL(inode) && 3126 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 3127 /* 3128 * This is a REALLY heavyweight approach, but the use of 3129 * bmap on dirty files is expected to be extremely rare: 3130 * only if we run lilo or swapon on a freshly made file 3131 * do we expect this to happen. 3132 * 3133 * (bmap requires CAP_SYS_RAWIO so this does not 3134 * represent an unprivileged user DOS attack --- we'd be 3135 * in trouble if mortal users could trigger this path at 3136 * will.) 3137 * 3138 * NB. EXT4_STATE_JDATA is not set on files other than 3139 * regular files. If somebody wants to bmap a directory 3140 * or symlink and gets confused because the buffer 3141 * hasn't yet been flushed to disk, they deserve 3142 * everything they get. 3143 */ 3144 3145 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 3146 journal = EXT4_JOURNAL(inode); 3147 jbd2_journal_lock_updates(journal); 3148 err = jbd2_journal_flush(journal, 0); 3149 jbd2_journal_unlock_updates(journal); 3150 3151 if (err) 3152 return 0; 3153 } 3154 3155 return iomap_bmap(mapping, block, &ext4_iomap_ops); 3156 } 3157 3158 static int ext4_readpage(struct file *file, struct page *page) 3159 { 3160 int ret = -EAGAIN; 3161 struct inode *inode = page->mapping->host; 3162 3163 trace_ext4_readpage(page); 3164 3165 if (ext4_has_inline_data(inode)) 3166 ret = ext4_readpage_inline(inode, page); 3167 3168 if (ret == -EAGAIN) 3169 return ext4_mpage_readpages(inode, NULL, page); 3170 3171 return ret; 3172 } 3173 3174 static void ext4_readahead(struct readahead_control *rac) 3175 { 3176 struct inode *inode = rac->mapping->host; 3177 3178 /* If the file has inline data, no need to do readahead. */ 3179 if (ext4_has_inline_data(inode)) 3180 return; 3181 3182 ext4_mpage_readpages(inode, rac, NULL); 3183 } 3184 3185 static void ext4_invalidatepage(struct page *page, unsigned int offset, 3186 unsigned int length) 3187 { 3188 trace_ext4_invalidatepage(page, offset, length); 3189 3190 /* No journalling happens on data buffers when this function is used */ 3191 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 3192 3193 block_invalidatepage(page, offset, length); 3194 } 3195 3196 static int __ext4_journalled_invalidatepage(struct page *page, 3197 unsigned int offset, 3198 unsigned int length) 3199 { 3200 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3201 3202 trace_ext4_journalled_invalidatepage(page, offset, length); 3203 3204 /* 3205 * If it's a full truncate we just forget about the pending dirtying 3206 */ 3207 if (offset == 0 && length == PAGE_SIZE) 3208 ClearPageChecked(page); 3209 3210 return jbd2_journal_invalidatepage(journal, page, offset, length); 3211 } 3212 3213 /* Wrapper for aops... */ 3214 static void ext4_journalled_invalidatepage(struct page *page, 3215 unsigned int offset, 3216 unsigned int length) 3217 { 3218 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 3219 } 3220 3221 static int ext4_releasepage(struct page *page, gfp_t wait) 3222 { 3223 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3224 3225 trace_ext4_releasepage(page); 3226 3227 /* Page has dirty journalled data -> cannot release */ 3228 if (PageChecked(page)) 3229 return 0; 3230 if (journal) 3231 return jbd2_journal_try_to_free_buffers(journal, page); 3232 else 3233 return try_to_free_buffers(page); 3234 } 3235 3236 static bool ext4_inode_datasync_dirty(struct inode *inode) 3237 { 3238 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 3239 3240 if (journal) { 3241 if (jbd2_transaction_committed(journal, 3242 EXT4_I(inode)->i_datasync_tid)) 3243 return false; 3244 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT)) 3245 return !list_empty(&EXT4_I(inode)->i_fc_list); 3246 return true; 3247 } 3248 3249 /* Any metadata buffers to write? */ 3250 if (!list_empty(&inode->i_mapping->private_list)) 3251 return true; 3252 return inode->i_state & I_DIRTY_DATASYNC; 3253 } 3254 3255 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap, 3256 struct ext4_map_blocks *map, loff_t offset, 3257 loff_t length, unsigned int flags) 3258 { 3259 u8 blkbits = inode->i_blkbits; 3260 3261 /* 3262 * Writes that span EOF might trigger an I/O size update on completion, 3263 * so consider them to be dirty for the purpose of O_DSYNC, even if 3264 * there is no other metadata changes being made or are pending. 3265 */ 3266 iomap->flags = 0; 3267 if (ext4_inode_datasync_dirty(inode) || 3268 offset + length > i_size_read(inode)) 3269 iomap->flags |= IOMAP_F_DIRTY; 3270 3271 if (map->m_flags & EXT4_MAP_NEW) 3272 iomap->flags |= IOMAP_F_NEW; 3273 3274 if (flags & IOMAP_DAX) 3275 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev; 3276 else 3277 iomap->bdev = inode->i_sb->s_bdev; 3278 iomap->offset = (u64) map->m_lblk << blkbits; 3279 iomap->length = (u64) map->m_len << blkbits; 3280 3281 if ((map->m_flags & EXT4_MAP_MAPPED) && 3282 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3283 iomap->flags |= IOMAP_F_MERGED; 3284 3285 /* 3286 * Flags passed to ext4_map_blocks() for direct I/O writes can result 3287 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits 3288 * set. In order for any allocated unwritten extents to be converted 3289 * into written extents correctly within the ->end_io() handler, we 3290 * need to ensure that the iomap->type is set appropriately. Hence, the 3291 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has 3292 * been set first. 3293 */ 3294 if (map->m_flags & EXT4_MAP_UNWRITTEN) { 3295 iomap->type = IOMAP_UNWRITTEN; 3296 iomap->addr = (u64) map->m_pblk << blkbits; 3297 if (flags & IOMAP_DAX) 3298 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; 3299 } else if (map->m_flags & EXT4_MAP_MAPPED) { 3300 iomap->type = IOMAP_MAPPED; 3301 iomap->addr = (u64) map->m_pblk << blkbits; 3302 if (flags & IOMAP_DAX) 3303 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; 3304 } else { 3305 iomap->type = IOMAP_HOLE; 3306 iomap->addr = IOMAP_NULL_ADDR; 3307 } 3308 } 3309 3310 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map, 3311 unsigned int flags) 3312 { 3313 handle_t *handle; 3314 u8 blkbits = inode->i_blkbits; 3315 int ret, dio_credits, m_flags = 0, retries = 0; 3316 3317 /* 3318 * Trim the mapping request to the maximum value that we can map at 3319 * once for direct I/O. 3320 */ 3321 if (map->m_len > DIO_MAX_BLOCKS) 3322 map->m_len = DIO_MAX_BLOCKS; 3323 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len); 3324 3325 retry: 3326 /* 3327 * Either we allocate blocks and then don't get an unwritten extent, so 3328 * in that case we have reserved enough credits. Or, the blocks are 3329 * already allocated and unwritten. In that case, the extent conversion 3330 * fits into the credits as well. 3331 */ 3332 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 3333 if (IS_ERR(handle)) 3334 return PTR_ERR(handle); 3335 3336 /* 3337 * DAX and direct I/O are the only two operations that are currently 3338 * supported with IOMAP_WRITE. 3339 */ 3340 WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT))); 3341 if (flags & IOMAP_DAX) 3342 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO; 3343 /* 3344 * We use i_size instead of i_disksize here because delalloc writeback 3345 * can complete at any point during the I/O and subsequently push the 3346 * i_disksize out to i_size. This could be beyond where direct I/O is 3347 * happening and thus expose allocated blocks to direct I/O reads. 3348 */ 3349 else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode)) 3350 m_flags = EXT4_GET_BLOCKS_CREATE; 3351 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3352 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT; 3353 3354 ret = ext4_map_blocks(handle, inode, map, m_flags); 3355 3356 /* 3357 * We cannot fill holes in indirect tree based inodes as that could 3358 * expose stale data in the case of a crash. Use the magic error code 3359 * to fallback to buffered I/O. 3360 */ 3361 if (!m_flags && !ret) 3362 ret = -ENOTBLK; 3363 3364 ext4_journal_stop(handle); 3365 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3366 goto retry; 3367 3368 return ret; 3369 } 3370 3371 3372 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3373 unsigned flags, struct iomap *iomap, struct iomap *srcmap) 3374 { 3375 int ret; 3376 struct ext4_map_blocks map; 3377 u8 blkbits = inode->i_blkbits; 3378 3379 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3380 return -EINVAL; 3381 3382 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3383 return -ERANGE; 3384 3385 /* 3386 * Calculate the first and last logical blocks respectively. 3387 */ 3388 map.m_lblk = offset >> blkbits; 3389 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3390 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3391 3392 if (flags & IOMAP_WRITE) { 3393 /* 3394 * We check here if the blocks are already allocated, then we 3395 * don't need to start a journal txn and we can directly return 3396 * the mapping information. This could boost performance 3397 * especially in multi-threaded overwrite requests. 3398 */ 3399 if (offset + length <= i_size_read(inode)) { 3400 ret = ext4_map_blocks(NULL, inode, &map, 0); 3401 if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED)) 3402 goto out; 3403 } 3404 ret = ext4_iomap_alloc(inode, &map, flags); 3405 } else { 3406 ret = ext4_map_blocks(NULL, inode, &map, 0); 3407 } 3408 3409 if (ret < 0) 3410 return ret; 3411 out: 3412 ext4_set_iomap(inode, iomap, &map, offset, length, flags); 3413 3414 return 0; 3415 } 3416 3417 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset, 3418 loff_t length, unsigned flags, struct iomap *iomap, 3419 struct iomap *srcmap) 3420 { 3421 int ret; 3422 3423 /* 3424 * Even for writes we don't need to allocate blocks, so just pretend 3425 * we are reading to save overhead of starting a transaction. 3426 */ 3427 flags &= ~IOMAP_WRITE; 3428 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap); 3429 WARN_ON_ONCE(iomap->type != IOMAP_MAPPED); 3430 return ret; 3431 } 3432 3433 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, 3434 ssize_t written, unsigned flags, struct iomap *iomap) 3435 { 3436 /* 3437 * Check to see whether an error occurred while writing out the data to 3438 * the allocated blocks. If so, return the magic error code so that we 3439 * fallback to buffered I/O and attempt to complete the remainder of 3440 * the I/O. Any blocks that may have been allocated in preparation for 3441 * the direct I/O will be reused during buffered I/O. 3442 */ 3443 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0) 3444 return -ENOTBLK; 3445 3446 return 0; 3447 } 3448 3449 const struct iomap_ops ext4_iomap_ops = { 3450 .iomap_begin = ext4_iomap_begin, 3451 .iomap_end = ext4_iomap_end, 3452 }; 3453 3454 const struct iomap_ops ext4_iomap_overwrite_ops = { 3455 .iomap_begin = ext4_iomap_overwrite_begin, 3456 .iomap_end = ext4_iomap_end, 3457 }; 3458 3459 static bool ext4_iomap_is_delalloc(struct inode *inode, 3460 struct ext4_map_blocks *map) 3461 { 3462 struct extent_status es; 3463 ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1; 3464 3465 ext4_es_find_extent_range(inode, &ext4_es_is_delayed, 3466 map->m_lblk, end, &es); 3467 3468 if (!es.es_len || es.es_lblk > end) 3469 return false; 3470 3471 if (es.es_lblk > map->m_lblk) { 3472 map->m_len = es.es_lblk - map->m_lblk; 3473 return false; 3474 } 3475 3476 offset = map->m_lblk - es.es_lblk; 3477 map->m_len = es.es_len - offset; 3478 3479 return true; 3480 } 3481 3482 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset, 3483 loff_t length, unsigned int flags, 3484 struct iomap *iomap, struct iomap *srcmap) 3485 { 3486 int ret; 3487 bool delalloc = false; 3488 struct ext4_map_blocks map; 3489 u8 blkbits = inode->i_blkbits; 3490 3491 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3492 return -EINVAL; 3493 3494 if (ext4_has_inline_data(inode)) { 3495 ret = ext4_inline_data_iomap(inode, iomap); 3496 if (ret != -EAGAIN) { 3497 if (ret == 0 && offset >= iomap->length) 3498 ret = -ENOENT; 3499 return ret; 3500 } 3501 } 3502 3503 /* 3504 * Calculate the first and last logical block respectively. 3505 */ 3506 map.m_lblk = offset >> blkbits; 3507 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3508 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3509 3510 /* 3511 * Fiemap callers may call for offset beyond s_bitmap_maxbytes. 3512 * So handle it here itself instead of querying ext4_map_blocks(). 3513 * Since ext4_map_blocks() will warn about it and will return 3514 * -EIO error. 3515 */ 3516 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 3517 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3518 3519 if (offset >= sbi->s_bitmap_maxbytes) { 3520 map.m_flags = 0; 3521 goto set_iomap; 3522 } 3523 } 3524 3525 ret = ext4_map_blocks(NULL, inode, &map, 0); 3526 if (ret < 0) 3527 return ret; 3528 if (ret == 0) 3529 delalloc = ext4_iomap_is_delalloc(inode, &map); 3530 3531 set_iomap: 3532 ext4_set_iomap(inode, iomap, &map, offset, length, flags); 3533 if (delalloc && iomap->type == IOMAP_HOLE) 3534 iomap->type = IOMAP_DELALLOC; 3535 3536 return 0; 3537 } 3538 3539 const struct iomap_ops ext4_iomap_report_ops = { 3540 .iomap_begin = ext4_iomap_begin_report, 3541 }; 3542 3543 /* 3544 * Pages can be marked dirty completely asynchronously from ext4's journalling 3545 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3546 * much here because ->set_page_dirty is called under VFS locks. The page is 3547 * not necessarily locked. 3548 * 3549 * We cannot just dirty the page and leave attached buffers clean, because the 3550 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3551 * or jbddirty because all the journalling code will explode. 3552 * 3553 * So what we do is to mark the page "pending dirty" and next time writepage 3554 * is called, propagate that into the buffers appropriately. 3555 */ 3556 static int ext4_journalled_set_page_dirty(struct page *page) 3557 { 3558 SetPageChecked(page); 3559 return __set_page_dirty_nobuffers(page); 3560 } 3561 3562 static int ext4_set_page_dirty(struct page *page) 3563 { 3564 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page)); 3565 WARN_ON_ONCE(!page_has_buffers(page)); 3566 return __set_page_dirty_buffers(page); 3567 } 3568 3569 static int ext4_iomap_swap_activate(struct swap_info_struct *sis, 3570 struct file *file, sector_t *span) 3571 { 3572 return iomap_swapfile_activate(sis, file, span, 3573 &ext4_iomap_report_ops); 3574 } 3575 3576 static const struct address_space_operations ext4_aops = { 3577 .readpage = ext4_readpage, 3578 .readahead = ext4_readahead, 3579 .writepage = ext4_writepage, 3580 .writepages = ext4_writepages, 3581 .write_begin = ext4_write_begin, 3582 .write_end = ext4_write_end, 3583 .set_page_dirty = ext4_set_page_dirty, 3584 .bmap = ext4_bmap, 3585 .invalidatepage = ext4_invalidatepage, 3586 .releasepage = ext4_releasepage, 3587 .direct_IO = noop_direct_IO, 3588 .migratepage = buffer_migrate_page, 3589 .is_partially_uptodate = block_is_partially_uptodate, 3590 .error_remove_page = generic_error_remove_page, 3591 .swap_activate = ext4_iomap_swap_activate, 3592 }; 3593 3594 static const struct address_space_operations ext4_journalled_aops = { 3595 .readpage = ext4_readpage, 3596 .readahead = ext4_readahead, 3597 .writepage = ext4_writepage, 3598 .writepages = ext4_writepages, 3599 .write_begin = ext4_write_begin, 3600 .write_end = ext4_journalled_write_end, 3601 .set_page_dirty = ext4_journalled_set_page_dirty, 3602 .bmap = ext4_bmap, 3603 .invalidatepage = ext4_journalled_invalidatepage, 3604 .releasepage = ext4_releasepage, 3605 .direct_IO = noop_direct_IO, 3606 .is_partially_uptodate = block_is_partially_uptodate, 3607 .error_remove_page = generic_error_remove_page, 3608 .swap_activate = ext4_iomap_swap_activate, 3609 }; 3610 3611 static const struct address_space_operations ext4_da_aops = { 3612 .readpage = ext4_readpage, 3613 .readahead = ext4_readahead, 3614 .writepage = ext4_writepage, 3615 .writepages = ext4_writepages, 3616 .write_begin = ext4_da_write_begin, 3617 .write_end = ext4_da_write_end, 3618 .set_page_dirty = ext4_set_page_dirty, 3619 .bmap = ext4_bmap, 3620 .invalidatepage = ext4_invalidatepage, 3621 .releasepage = ext4_releasepage, 3622 .direct_IO = noop_direct_IO, 3623 .migratepage = buffer_migrate_page, 3624 .is_partially_uptodate = block_is_partially_uptodate, 3625 .error_remove_page = generic_error_remove_page, 3626 .swap_activate = ext4_iomap_swap_activate, 3627 }; 3628 3629 static const struct address_space_operations ext4_dax_aops = { 3630 .writepages = ext4_dax_writepages, 3631 .direct_IO = noop_direct_IO, 3632 .set_page_dirty = __set_page_dirty_no_writeback, 3633 .bmap = ext4_bmap, 3634 .invalidatepage = noop_invalidatepage, 3635 .swap_activate = ext4_iomap_swap_activate, 3636 }; 3637 3638 void ext4_set_aops(struct inode *inode) 3639 { 3640 switch (ext4_inode_journal_mode(inode)) { 3641 case EXT4_INODE_ORDERED_DATA_MODE: 3642 case EXT4_INODE_WRITEBACK_DATA_MODE: 3643 break; 3644 case EXT4_INODE_JOURNAL_DATA_MODE: 3645 inode->i_mapping->a_ops = &ext4_journalled_aops; 3646 return; 3647 default: 3648 BUG(); 3649 } 3650 if (IS_DAX(inode)) 3651 inode->i_mapping->a_ops = &ext4_dax_aops; 3652 else if (test_opt(inode->i_sb, DELALLOC)) 3653 inode->i_mapping->a_ops = &ext4_da_aops; 3654 else 3655 inode->i_mapping->a_ops = &ext4_aops; 3656 } 3657 3658 static int __ext4_block_zero_page_range(handle_t *handle, 3659 struct address_space *mapping, loff_t from, loff_t length) 3660 { 3661 ext4_fsblk_t index = from >> PAGE_SHIFT; 3662 unsigned offset = from & (PAGE_SIZE-1); 3663 unsigned blocksize, pos; 3664 ext4_lblk_t iblock; 3665 struct inode *inode = mapping->host; 3666 struct buffer_head *bh; 3667 struct page *page; 3668 int err = 0; 3669 3670 page = find_or_create_page(mapping, from >> PAGE_SHIFT, 3671 mapping_gfp_constraint(mapping, ~__GFP_FS)); 3672 if (!page) 3673 return -ENOMEM; 3674 3675 blocksize = inode->i_sb->s_blocksize; 3676 3677 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 3678 3679 if (!page_has_buffers(page)) 3680 create_empty_buffers(page, blocksize, 0); 3681 3682 /* Find the buffer that contains "offset" */ 3683 bh = page_buffers(page); 3684 pos = blocksize; 3685 while (offset >= pos) { 3686 bh = bh->b_this_page; 3687 iblock++; 3688 pos += blocksize; 3689 } 3690 if (buffer_freed(bh)) { 3691 BUFFER_TRACE(bh, "freed: skip"); 3692 goto unlock; 3693 } 3694 if (!buffer_mapped(bh)) { 3695 BUFFER_TRACE(bh, "unmapped"); 3696 ext4_get_block(inode, iblock, bh, 0); 3697 /* unmapped? It's a hole - nothing to do */ 3698 if (!buffer_mapped(bh)) { 3699 BUFFER_TRACE(bh, "still unmapped"); 3700 goto unlock; 3701 } 3702 } 3703 3704 /* Ok, it's mapped. Make sure it's up-to-date */ 3705 if (PageUptodate(page)) 3706 set_buffer_uptodate(bh); 3707 3708 if (!buffer_uptodate(bh)) { 3709 err = ext4_read_bh_lock(bh, 0, true); 3710 if (err) 3711 goto unlock; 3712 if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 3713 /* We expect the key to be set. */ 3714 BUG_ON(!fscrypt_has_encryption_key(inode)); 3715 err = fscrypt_decrypt_pagecache_blocks(page, blocksize, 3716 bh_offset(bh)); 3717 if (err) { 3718 clear_buffer_uptodate(bh); 3719 goto unlock; 3720 } 3721 } 3722 } 3723 if (ext4_should_journal_data(inode)) { 3724 BUFFER_TRACE(bh, "get write access"); 3725 err = ext4_journal_get_write_access(handle, inode->i_sb, bh, 3726 EXT4_JTR_NONE); 3727 if (err) 3728 goto unlock; 3729 } 3730 zero_user(page, offset, length); 3731 BUFFER_TRACE(bh, "zeroed end of block"); 3732 3733 if (ext4_should_journal_data(inode)) { 3734 err = ext4_handle_dirty_metadata(handle, inode, bh); 3735 } else { 3736 err = 0; 3737 mark_buffer_dirty(bh); 3738 if (ext4_should_order_data(inode)) 3739 err = ext4_jbd2_inode_add_write(handle, inode, from, 3740 length); 3741 } 3742 3743 unlock: 3744 unlock_page(page); 3745 put_page(page); 3746 return err; 3747 } 3748 3749 /* 3750 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3751 * starting from file offset 'from'. The range to be zero'd must 3752 * be contained with in one block. If the specified range exceeds 3753 * the end of the block it will be shortened to end of the block 3754 * that corresponds to 'from' 3755 */ 3756 static int ext4_block_zero_page_range(handle_t *handle, 3757 struct address_space *mapping, loff_t from, loff_t length) 3758 { 3759 struct inode *inode = mapping->host; 3760 unsigned offset = from & (PAGE_SIZE-1); 3761 unsigned blocksize = inode->i_sb->s_blocksize; 3762 unsigned max = blocksize - (offset & (blocksize - 1)); 3763 3764 /* 3765 * correct length if it does not fall between 3766 * 'from' and the end of the block 3767 */ 3768 if (length > max || length < 0) 3769 length = max; 3770 3771 if (IS_DAX(inode)) { 3772 return dax_zero_range(inode, from, length, NULL, 3773 &ext4_iomap_ops); 3774 } 3775 return __ext4_block_zero_page_range(handle, mapping, from, length); 3776 } 3777 3778 /* 3779 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3780 * up to the end of the block which corresponds to `from'. 3781 * This required during truncate. We need to physically zero the tail end 3782 * of that block so it doesn't yield old data if the file is later grown. 3783 */ 3784 static int ext4_block_truncate_page(handle_t *handle, 3785 struct address_space *mapping, loff_t from) 3786 { 3787 unsigned offset = from & (PAGE_SIZE-1); 3788 unsigned length; 3789 unsigned blocksize; 3790 struct inode *inode = mapping->host; 3791 3792 /* If we are processing an encrypted inode during orphan list handling */ 3793 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode)) 3794 return 0; 3795 3796 blocksize = inode->i_sb->s_blocksize; 3797 length = blocksize - (offset & (blocksize - 1)); 3798 3799 return ext4_block_zero_page_range(handle, mapping, from, length); 3800 } 3801 3802 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3803 loff_t lstart, loff_t length) 3804 { 3805 struct super_block *sb = inode->i_sb; 3806 struct address_space *mapping = inode->i_mapping; 3807 unsigned partial_start, partial_end; 3808 ext4_fsblk_t start, end; 3809 loff_t byte_end = (lstart + length - 1); 3810 int err = 0; 3811 3812 partial_start = lstart & (sb->s_blocksize - 1); 3813 partial_end = byte_end & (sb->s_blocksize - 1); 3814 3815 start = lstart >> sb->s_blocksize_bits; 3816 end = byte_end >> sb->s_blocksize_bits; 3817 3818 /* Handle partial zero within the single block */ 3819 if (start == end && 3820 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3821 err = ext4_block_zero_page_range(handle, mapping, 3822 lstart, length); 3823 return err; 3824 } 3825 /* Handle partial zero out on the start of the range */ 3826 if (partial_start) { 3827 err = ext4_block_zero_page_range(handle, mapping, 3828 lstart, sb->s_blocksize); 3829 if (err) 3830 return err; 3831 } 3832 /* Handle partial zero out on the end of the range */ 3833 if (partial_end != sb->s_blocksize - 1) 3834 err = ext4_block_zero_page_range(handle, mapping, 3835 byte_end - partial_end, 3836 partial_end + 1); 3837 return err; 3838 } 3839 3840 int ext4_can_truncate(struct inode *inode) 3841 { 3842 if (S_ISREG(inode->i_mode)) 3843 return 1; 3844 if (S_ISDIR(inode->i_mode)) 3845 return 1; 3846 if (S_ISLNK(inode->i_mode)) 3847 return !ext4_inode_is_fast_symlink(inode); 3848 return 0; 3849 } 3850 3851 /* 3852 * We have to make sure i_disksize gets properly updated before we truncate 3853 * page cache due to hole punching or zero range. Otherwise i_disksize update 3854 * can get lost as it may have been postponed to submission of writeback but 3855 * that will never happen after we truncate page cache. 3856 */ 3857 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 3858 loff_t len) 3859 { 3860 handle_t *handle; 3861 int ret; 3862 3863 loff_t size = i_size_read(inode); 3864 3865 WARN_ON(!inode_is_locked(inode)); 3866 if (offset > size || offset + len < size) 3867 return 0; 3868 3869 if (EXT4_I(inode)->i_disksize >= size) 3870 return 0; 3871 3872 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 3873 if (IS_ERR(handle)) 3874 return PTR_ERR(handle); 3875 ext4_update_i_disksize(inode, size); 3876 ret = ext4_mark_inode_dirty(handle, inode); 3877 ext4_journal_stop(handle); 3878 3879 return ret; 3880 } 3881 3882 static void ext4_wait_dax_page(struct inode *inode) 3883 { 3884 filemap_invalidate_unlock(inode->i_mapping); 3885 schedule(); 3886 filemap_invalidate_lock(inode->i_mapping); 3887 } 3888 3889 int ext4_break_layouts(struct inode *inode) 3890 { 3891 struct page *page; 3892 int error; 3893 3894 if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock))) 3895 return -EINVAL; 3896 3897 do { 3898 page = dax_layout_busy_page(inode->i_mapping); 3899 if (!page) 3900 return 0; 3901 3902 error = ___wait_var_event(&page->_refcount, 3903 atomic_read(&page->_refcount) == 1, 3904 TASK_INTERRUPTIBLE, 0, 0, 3905 ext4_wait_dax_page(inode)); 3906 } while (error == 0); 3907 3908 return error; 3909 } 3910 3911 /* 3912 * ext4_punch_hole: punches a hole in a file by releasing the blocks 3913 * associated with the given offset and length 3914 * 3915 * @inode: File inode 3916 * @offset: The offset where the hole will begin 3917 * @len: The length of the hole 3918 * 3919 * Returns: 0 on success or negative on failure 3920 */ 3921 3922 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 3923 { 3924 struct super_block *sb = inode->i_sb; 3925 ext4_lblk_t first_block, stop_block; 3926 struct address_space *mapping = inode->i_mapping; 3927 loff_t first_block_offset, last_block_offset; 3928 handle_t *handle; 3929 unsigned int credits; 3930 int ret = 0, ret2 = 0; 3931 3932 trace_ext4_punch_hole(inode, offset, length, 0); 3933 3934 ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 3935 if (ext4_has_inline_data(inode)) { 3936 filemap_invalidate_lock(mapping); 3937 ret = ext4_convert_inline_data(inode); 3938 filemap_invalidate_unlock(mapping); 3939 if (ret) 3940 return ret; 3941 } 3942 3943 /* 3944 * Write out all dirty pages to avoid race conditions 3945 * Then release them. 3946 */ 3947 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 3948 ret = filemap_write_and_wait_range(mapping, offset, 3949 offset + length - 1); 3950 if (ret) 3951 return ret; 3952 } 3953 3954 inode_lock(inode); 3955 3956 /* No need to punch hole beyond i_size */ 3957 if (offset >= inode->i_size) 3958 goto out_mutex; 3959 3960 /* 3961 * If the hole extends beyond i_size, set the hole 3962 * to end after the page that contains i_size 3963 */ 3964 if (offset + length > inode->i_size) { 3965 length = inode->i_size + 3966 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) - 3967 offset; 3968 } 3969 3970 if (offset & (sb->s_blocksize - 1) || 3971 (offset + length) & (sb->s_blocksize - 1)) { 3972 /* 3973 * Attach jinode to inode for jbd2 if we do any zeroing of 3974 * partial block 3975 */ 3976 ret = ext4_inode_attach_jinode(inode); 3977 if (ret < 0) 3978 goto out_mutex; 3979 3980 } 3981 3982 /* Wait all existing dio workers, newcomers will block on i_mutex */ 3983 inode_dio_wait(inode); 3984 3985 /* 3986 * Prevent page faults from reinstantiating pages we have released from 3987 * page cache. 3988 */ 3989 filemap_invalidate_lock(mapping); 3990 3991 ret = ext4_break_layouts(inode); 3992 if (ret) 3993 goto out_dio; 3994 3995 first_block_offset = round_up(offset, sb->s_blocksize); 3996 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 3997 3998 /* Now release the pages and zero block aligned part of pages*/ 3999 if (last_block_offset > first_block_offset) { 4000 ret = ext4_update_disksize_before_punch(inode, offset, length); 4001 if (ret) 4002 goto out_dio; 4003 truncate_pagecache_range(inode, first_block_offset, 4004 last_block_offset); 4005 } 4006 4007 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4008 credits = ext4_writepage_trans_blocks(inode); 4009 else 4010 credits = ext4_blocks_for_truncate(inode); 4011 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4012 if (IS_ERR(handle)) { 4013 ret = PTR_ERR(handle); 4014 ext4_std_error(sb, ret); 4015 goto out_dio; 4016 } 4017 4018 ret = ext4_zero_partial_blocks(handle, inode, offset, 4019 length); 4020 if (ret) 4021 goto out_stop; 4022 4023 first_block = (offset + sb->s_blocksize - 1) >> 4024 EXT4_BLOCK_SIZE_BITS(sb); 4025 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 4026 4027 /* If there are blocks to remove, do it */ 4028 if (stop_block > first_block) { 4029 4030 down_write(&EXT4_I(inode)->i_data_sem); 4031 ext4_discard_preallocations(inode, 0); 4032 4033 ret = ext4_es_remove_extent(inode, first_block, 4034 stop_block - first_block); 4035 if (ret) { 4036 up_write(&EXT4_I(inode)->i_data_sem); 4037 goto out_stop; 4038 } 4039 4040 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4041 ret = ext4_ext_remove_space(inode, first_block, 4042 stop_block - 1); 4043 else 4044 ret = ext4_ind_remove_space(handle, inode, first_block, 4045 stop_block); 4046 4047 up_write(&EXT4_I(inode)->i_data_sem); 4048 } 4049 ext4_fc_track_range(handle, inode, first_block, stop_block); 4050 if (IS_SYNC(inode)) 4051 ext4_handle_sync(handle); 4052 4053 inode->i_mtime = inode->i_ctime = current_time(inode); 4054 ret2 = ext4_mark_inode_dirty(handle, inode); 4055 if (unlikely(ret2)) 4056 ret = ret2; 4057 if (ret >= 0) 4058 ext4_update_inode_fsync_trans(handle, inode, 1); 4059 out_stop: 4060 ext4_journal_stop(handle); 4061 out_dio: 4062 filemap_invalidate_unlock(mapping); 4063 out_mutex: 4064 inode_unlock(inode); 4065 return ret; 4066 } 4067 4068 int ext4_inode_attach_jinode(struct inode *inode) 4069 { 4070 struct ext4_inode_info *ei = EXT4_I(inode); 4071 struct jbd2_inode *jinode; 4072 4073 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4074 return 0; 4075 4076 jinode = jbd2_alloc_inode(GFP_KERNEL); 4077 spin_lock(&inode->i_lock); 4078 if (!ei->jinode) { 4079 if (!jinode) { 4080 spin_unlock(&inode->i_lock); 4081 return -ENOMEM; 4082 } 4083 ei->jinode = jinode; 4084 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4085 jinode = NULL; 4086 } 4087 spin_unlock(&inode->i_lock); 4088 if (unlikely(jinode != NULL)) 4089 jbd2_free_inode(jinode); 4090 return 0; 4091 } 4092 4093 /* 4094 * ext4_truncate() 4095 * 4096 * We block out ext4_get_block() block instantiations across the entire 4097 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4098 * simultaneously on behalf of the same inode. 4099 * 4100 * As we work through the truncate and commit bits of it to the journal there 4101 * is one core, guiding principle: the file's tree must always be consistent on 4102 * disk. We must be able to restart the truncate after a crash. 4103 * 4104 * The file's tree may be transiently inconsistent in memory (although it 4105 * probably isn't), but whenever we close off and commit a journal transaction, 4106 * the contents of (the filesystem + the journal) must be consistent and 4107 * restartable. It's pretty simple, really: bottom up, right to left (although 4108 * left-to-right works OK too). 4109 * 4110 * Note that at recovery time, journal replay occurs *before* the restart of 4111 * truncate against the orphan inode list. 4112 * 4113 * The committed inode has the new, desired i_size (which is the same as 4114 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4115 * that this inode's truncate did not complete and it will again call 4116 * ext4_truncate() to have another go. So there will be instantiated blocks 4117 * to the right of the truncation point in a crashed ext4 filesystem. But 4118 * that's fine - as long as they are linked from the inode, the post-crash 4119 * ext4_truncate() run will find them and release them. 4120 */ 4121 int ext4_truncate(struct inode *inode) 4122 { 4123 struct ext4_inode_info *ei = EXT4_I(inode); 4124 unsigned int credits; 4125 int err = 0, err2; 4126 handle_t *handle; 4127 struct address_space *mapping = inode->i_mapping; 4128 4129 /* 4130 * There is a possibility that we're either freeing the inode 4131 * or it's a completely new inode. In those cases we might not 4132 * have i_mutex locked because it's not necessary. 4133 */ 4134 if (!(inode->i_state & (I_NEW|I_FREEING))) 4135 WARN_ON(!inode_is_locked(inode)); 4136 trace_ext4_truncate_enter(inode); 4137 4138 if (!ext4_can_truncate(inode)) 4139 goto out_trace; 4140 4141 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4142 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4143 4144 if (ext4_has_inline_data(inode)) { 4145 int has_inline = 1; 4146 4147 err = ext4_inline_data_truncate(inode, &has_inline); 4148 if (err || has_inline) 4149 goto out_trace; 4150 } 4151 4152 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4153 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4154 if (ext4_inode_attach_jinode(inode) < 0) 4155 goto out_trace; 4156 } 4157 4158 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4159 credits = ext4_writepage_trans_blocks(inode); 4160 else 4161 credits = ext4_blocks_for_truncate(inode); 4162 4163 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4164 if (IS_ERR(handle)) { 4165 err = PTR_ERR(handle); 4166 goto out_trace; 4167 } 4168 4169 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4170 ext4_block_truncate_page(handle, mapping, inode->i_size); 4171 4172 /* 4173 * We add the inode to the orphan list, so that if this 4174 * truncate spans multiple transactions, and we crash, we will 4175 * resume the truncate when the filesystem recovers. It also 4176 * marks the inode dirty, to catch the new size. 4177 * 4178 * Implication: the file must always be in a sane, consistent 4179 * truncatable state while each transaction commits. 4180 */ 4181 err = ext4_orphan_add(handle, inode); 4182 if (err) 4183 goto out_stop; 4184 4185 down_write(&EXT4_I(inode)->i_data_sem); 4186 4187 ext4_discard_preallocations(inode, 0); 4188 4189 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4190 err = ext4_ext_truncate(handle, inode); 4191 else 4192 ext4_ind_truncate(handle, inode); 4193 4194 up_write(&ei->i_data_sem); 4195 if (err) 4196 goto out_stop; 4197 4198 if (IS_SYNC(inode)) 4199 ext4_handle_sync(handle); 4200 4201 out_stop: 4202 /* 4203 * If this was a simple ftruncate() and the file will remain alive, 4204 * then we need to clear up the orphan record which we created above. 4205 * However, if this was a real unlink then we were called by 4206 * ext4_evict_inode(), and we allow that function to clean up the 4207 * orphan info for us. 4208 */ 4209 if (inode->i_nlink) 4210 ext4_orphan_del(handle, inode); 4211 4212 inode->i_mtime = inode->i_ctime = current_time(inode); 4213 err2 = ext4_mark_inode_dirty(handle, inode); 4214 if (unlikely(err2 && !err)) 4215 err = err2; 4216 ext4_journal_stop(handle); 4217 4218 out_trace: 4219 trace_ext4_truncate_exit(inode); 4220 return err; 4221 } 4222 4223 static inline u64 ext4_inode_peek_iversion(const struct inode *inode) 4224 { 4225 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4226 return inode_peek_iversion_raw(inode); 4227 else 4228 return inode_peek_iversion(inode); 4229 } 4230 4231 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode, 4232 struct ext4_inode_info *ei) 4233 { 4234 struct inode *inode = &(ei->vfs_inode); 4235 u64 i_blocks = READ_ONCE(inode->i_blocks); 4236 struct super_block *sb = inode->i_sb; 4237 4238 if (i_blocks <= ~0U) { 4239 /* 4240 * i_blocks can be represented in a 32 bit variable 4241 * as multiple of 512 bytes 4242 */ 4243 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4244 raw_inode->i_blocks_high = 0; 4245 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4246 return 0; 4247 } 4248 4249 /* 4250 * This should never happen since sb->s_maxbytes should not have 4251 * allowed this, sb->s_maxbytes was set according to the huge_file 4252 * feature in ext4_fill_super(). 4253 */ 4254 if (!ext4_has_feature_huge_file(sb)) 4255 return -EFSCORRUPTED; 4256 4257 if (i_blocks <= 0xffffffffffffULL) { 4258 /* 4259 * i_blocks can be represented in a 48 bit variable 4260 * as multiple of 512 bytes 4261 */ 4262 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4263 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4264 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4265 } else { 4266 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4267 /* i_block is stored in file system block size */ 4268 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4269 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4270 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4271 } 4272 return 0; 4273 } 4274 4275 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode) 4276 { 4277 struct ext4_inode_info *ei = EXT4_I(inode); 4278 uid_t i_uid; 4279 gid_t i_gid; 4280 projid_t i_projid; 4281 int block; 4282 int err; 4283 4284 err = ext4_inode_blocks_set(raw_inode, ei); 4285 4286 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4287 i_uid = i_uid_read(inode); 4288 i_gid = i_gid_read(inode); 4289 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 4290 if (!(test_opt(inode->i_sb, NO_UID32))) { 4291 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4292 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4293 /* 4294 * Fix up interoperability with old kernels. Otherwise, 4295 * old inodes get re-used with the upper 16 bits of the 4296 * uid/gid intact. 4297 */ 4298 if (ei->i_dtime && list_empty(&ei->i_orphan)) { 4299 raw_inode->i_uid_high = 0; 4300 raw_inode->i_gid_high = 0; 4301 } else { 4302 raw_inode->i_uid_high = 4303 cpu_to_le16(high_16_bits(i_uid)); 4304 raw_inode->i_gid_high = 4305 cpu_to_le16(high_16_bits(i_gid)); 4306 } 4307 } else { 4308 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4309 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4310 raw_inode->i_uid_high = 0; 4311 raw_inode->i_gid_high = 0; 4312 } 4313 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4314 4315 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4316 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4317 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4318 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4319 4320 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4321 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4322 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 4323 raw_inode->i_file_acl_high = 4324 cpu_to_le16(ei->i_file_acl >> 32); 4325 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4326 ext4_isize_set(raw_inode, ei->i_disksize); 4327 4328 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4329 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4330 if (old_valid_dev(inode->i_rdev)) { 4331 raw_inode->i_block[0] = 4332 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4333 raw_inode->i_block[1] = 0; 4334 } else { 4335 raw_inode->i_block[0] = 0; 4336 raw_inode->i_block[1] = 4337 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4338 raw_inode->i_block[2] = 0; 4339 } 4340 } else if (!ext4_has_inline_data(inode)) { 4341 for (block = 0; block < EXT4_N_BLOCKS; block++) 4342 raw_inode->i_block[block] = ei->i_data[block]; 4343 } 4344 4345 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4346 u64 ivers = ext4_inode_peek_iversion(inode); 4347 4348 raw_inode->i_disk_version = cpu_to_le32(ivers); 4349 if (ei->i_extra_isize) { 4350 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4351 raw_inode->i_version_hi = 4352 cpu_to_le32(ivers >> 32); 4353 raw_inode->i_extra_isize = 4354 cpu_to_le16(ei->i_extra_isize); 4355 } 4356 } 4357 4358 if (i_projid != EXT4_DEF_PROJID && 4359 !ext4_has_feature_project(inode->i_sb)) 4360 err = err ?: -EFSCORRUPTED; 4361 4362 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 4363 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4364 raw_inode->i_projid = cpu_to_le32(i_projid); 4365 4366 ext4_inode_csum_set(inode, raw_inode, ei); 4367 return err; 4368 } 4369 4370 /* 4371 * ext4_get_inode_loc returns with an extra refcount against the inode's 4372 * underlying buffer_head on success. If we pass 'inode' and it does not 4373 * have in-inode xattr, we have all inode data in memory that is needed 4374 * to recreate the on-disk version of this inode. 4375 */ 4376 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino, 4377 struct inode *inode, struct ext4_iloc *iloc, 4378 ext4_fsblk_t *ret_block) 4379 { 4380 struct ext4_group_desc *gdp; 4381 struct buffer_head *bh; 4382 ext4_fsblk_t block; 4383 struct blk_plug plug; 4384 int inodes_per_block, inode_offset; 4385 4386 iloc->bh = NULL; 4387 if (ino < EXT4_ROOT_INO || 4388 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 4389 return -EFSCORRUPTED; 4390 4391 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 4392 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4393 if (!gdp) 4394 return -EIO; 4395 4396 /* 4397 * Figure out the offset within the block group inode table 4398 */ 4399 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4400 inode_offset = ((ino - 1) % 4401 EXT4_INODES_PER_GROUP(sb)); 4402 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 4403 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4404 4405 bh = sb_getblk(sb, block); 4406 if (unlikely(!bh)) 4407 return -ENOMEM; 4408 if (ext4_buffer_uptodate(bh)) 4409 goto has_buffer; 4410 4411 lock_buffer(bh); 4412 if (ext4_buffer_uptodate(bh)) { 4413 /* Someone brought it uptodate while we waited */ 4414 unlock_buffer(bh); 4415 goto has_buffer; 4416 } 4417 4418 /* 4419 * If we have all information of the inode in memory and this 4420 * is the only valid inode in the block, we need not read the 4421 * block. 4422 */ 4423 if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { 4424 struct buffer_head *bitmap_bh; 4425 int i, start; 4426 4427 start = inode_offset & ~(inodes_per_block - 1); 4428 4429 /* Is the inode bitmap in cache? */ 4430 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4431 if (unlikely(!bitmap_bh)) 4432 goto make_io; 4433 4434 /* 4435 * If the inode bitmap isn't in cache then the 4436 * optimisation may end up performing two reads instead 4437 * of one, so skip it. 4438 */ 4439 if (!buffer_uptodate(bitmap_bh)) { 4440 brelse(bitmap_bh); 4441 goto make_io; 4442 } 4443 for (i = start; i < start + inodes_per_block; i++) { 4444 if (i == inode_offset) 4445 continue; 4446 if (ext4_test_bit(i, bitmap_bh->b_data)) 4447 break; 4448 } 4449 brelse(bitmap_bh); 4450 if (i == start + inodes_per_block) { 4451 struct ext4_inode *raw_inode = 4452 (struct ext4_inode *) (bh->b_data + iloc->offset); 4453 4454 /* all other inodes are free, so skip I/O */ 4455 memset(bh->b_data, 0, bh->b_size); 4456 if (!ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4457 ext4_fill_raw_inode(inode, raw_inode); 4458 set_buffer_uptodate(bh); 4459 unlock_buffer(bh); 4460 goto has_buffer; 4461 } 4462 } 4463 4464 make_io: 4465 /* 4466 * If we need to do any I/O, try to pre-readahead extra 4467 * blocks from the inode table. 4468 */ 4469 blk_start_plug(&plug); 4470 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4471 ext4_fsblk_t b, end, table; 4472 unsigned num; 4473 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4474 4475 table = ext4_inode_table(sb, gdp); 4476 /* s_inode_readahead_blks is always a power of 2 */ 4477 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4478 if (table > b) 4479 b = table; 4480 end = b + ra_blks; 4481 num = EXT4_INODES_PER_GROUP(sb); 4482 if (ext4_has_group_desc_csum(sb)) 4483 num -= ext4_itable_unused_count(sb, gdp); 4484 table += num / inodes_per_block; 4485 if (end > table) 4486 end = table; 4487 while (b <= end) 4488 ext4_sb_breadahead_unmovable(sb, b++); 4489 } 4490 4491 /* 4492 * There are other valid inodes in the buffer, this inode 4493 * has in-inode xattrs, or we don't have this inode in memory. 4494 * Read the block from disk. 4495 */ 4496 trace_ext4_load_inode(sb, ino); 4497 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL); 4498 blk_finish_plug(&plug); 4499 wait_on_buffer(bh); 4500 ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO); 4501 if (!buffer_uptodate(bh)) { 4502 if (ret_block) 4503 *ret_block = block; 4504 brelse(bh); 4505 return -EIO; 4506 } 4507 has_buffer: 4508 iloc->bh = bh; 4509 return 0; 4510 } 4511 4512 static int __ext4_get_inode_loc_noinmem(struct inode *inode, 4513 struct ext4_iloc *iloc) 4514 { 4515 ext4_fsblk_t err_blk = 0; 4516 int ret; 4517 4518 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc, 4519 &err_blk); 4520 4521 if (ret == -EIO) 4522 ext4_error_inode_block(inode, err_blk, EIO, 4523 "unable to read itable block"); 4524 4525 return ret; 4526 } 4527 4528 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4529 { 4530 ext4_fsblk_t err_blk = 0; 4531 int ret; 4532 4533 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc, 4534 &err_blk); 4535 4536 if (ret == -EIO) 4537 ext4_error_inode_block(inode, err_blk, EIO, 4538 "unable to read itable block"); 4539 4540 return ret; 4541 } 4542 4543 4544 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino, 4545 struct ext4_iloc *iloc) 4546 { 4547 return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL); 4548 } 4549 4550 static bool ext4_should_enable_dax(struct inode *inode) 4551 { 4552 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4553 4554 if (test_opt2(inode->i_sb, DAX_NEVER)) 4555 return false; 4556 if (!S_ISREG(inode->i_mode)) 4557 return false; 4558 if (ext4_should_journal_data(inode)) 4559 return false; 4560 if (ext4_has_inline_data(inode)) 4561 return false; 4562 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT)) 4563 return false; 4564 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY)) 4565 return false; 4566 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) 4567 return false; 4568 if (test_opt(inode->i_sb, DAX_ALWAYS)) 4569 return true; 4570 4571 return ext4_test_inode_flag(inode, EXT4_INODE_DAX); 4572 } 4573 4574 void ext4_set_inode_flags(struct inode *inode, bool init) 4575 { 4576 unsigned int flags = EXT4_I(inode)->i_flags; 4577 unsigned int new_fl = 0; 4578 4579 WARN_ON_ONCE(IS_DAX(inode) && init); 4580 4581 if (flags & EXT4_SYNC_FL) 4582 new_fl |= S_SYNC; 4583 if (flags & EXT4_APPEND_FL) 4584 new_fl |= S_APPEND; 4585 if (flags & EXT4_IMMUTABLE_FL) 4586 new_fl |= S_IMMUTABLE; 4587 if (flags & EXT4_NOATIME_FL) 4588 new_fl |= S_NOATIME; 4589 if (flags & EXT4_DIRSYNC_FL) 4590 new_fl |= S_DIRSYNC; 4591 4592 /* Because of the way inode_set_flags() works we must preserve S_DAX 4593 * here if already set. */ 4594 new_fl |= (inode->i_flags & S_DAX); 4595 if (init && ext4_should_enable_dax(inode)) 4596 new_fl |= S_DAX; 4597 4598 if (flags & EXT4_ENCRYPT_FL) 4599 new_fl |= S_ENCRYPTED; 4600 if (flags & EXT4_CASEFOLD_FL) 4601 new_fl |= S_CASEFOLD; 4602 if (flags & EXT4_VERITY_FL) 4603 new_fl |= S_VERITY; 4604 inode_set_flags(inode, new_fl, 4605 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX| 4606 S_ENCRYPTED|S_CASEFOLD|S_VERITY); 4607 } 4608 4609 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4610 struct ext4_inode_info *ei) 4611 { 4612 blkcnt_t i_blocks ; 4613 struct inode *inode = &(ei->vfs_inode); 4614 struct super_block *sb = inode->i_sb; 4615 4616 if (ext4_has_feature_huge_file(sb)) { 4617 /* we are using combined 48 bit field */ 4618 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4619 le32_to_cpu(raw_inode->i_blocks_lo); 4620 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4621 /* i_blocks represent file system block size */ 4622 return i_blocks << (inode->i_blkbits - 9); 4623 } else { 4624 return i_blocks; 4625 } 4626 } else { 4627 return le32_to_cpu(raw_inode->i_blocks_lo); 4628 } 4629 } 4630 4631 static inline int ext4_iget_extra_inode(struct inode *inode, 4632 struct ext4_inode *raw_inode, 4633 struct ext4_inode_info *ei) 4634 { 4635 __le32 *magic = (void *)raw_inode + 4636 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4637 4638 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <= 4639 EXT4_INODE_SIZE(inode->i_sb) && 4640 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4641 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4642 return ext4_find_inline_data_nolock(inode); 4643 } else 4644 EXT4_I(inode)->i_inline_off = 0; 4645 return 0; 4646 } 4647 4648 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4649 { 4650 if (!ext4_has_feature_project(inode->i_sb)) 4651 return -EOPNOTSUPP; 4652 *projid = EXT4_I(inode)->i_projid; 4653 return 0; 4654 } 4655 4656 /* 4657 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of 4658 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag 4659 * set. 4660 */ 4661 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val) 4662 { 4663 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4664 inode_set_iversion_raw(inode, val); 4665 else 4666 inode_set_iversion_queried(inode, val); 4667 } 4668 4669 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino, 4670 ext4_iget_flags flags, const char *function, 4671 unsigned int line) 4672 { 4673 struct ext4_iloc iloc; 4674 struct ext4_inode *raw_inode; 4675 struct ext4_inode_info *ei; 4676 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4677 struct inode *inode; 4678 journal_t *journal = EXT4_SB(sb)->s_journal; 4679 long ret; 4680 loff_t size; 4681 int block; 4682 uid_t i_uid; 4683 gid_t i_gid; 4684 projid_t i_projid; 4685 4686 if ((!(flags & EXT4_IGET_SPECIAL) && 4687 ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) || 4688 ino == le32_to_cpu(es->s_usr_quota_inum) || 4689 ino == le32_to_cpu(es->s_grp_quota_inum) || 4690 ino == le32_to_cpu(es->s_prj_quota_inum) || 4691 ino == le32_to_cpu(es->s_orphan_file_inum))) || 4692 (ino < EXT4_ROOT_INO) || 4693 (ino > le32_to_cpu(es->s_inodes_count))) { 4694 if (flags & EXT4_IGET_HANDLE) 4695 return ERR_PTR(-ESTALE); 4696 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0, 4697 "inode #%lu: comm %s: iget: illegal inode #", 4698 ino, current->comm); 4699 return ERR_PTR(-EFSCORRUPTED); 4700 } 4701 4702 inode = iget_locked(sb, ino); 4703 if (!inode) 4704 return ERR_PTR(-ENOMEM); 4705 if (!(inode->i_state & I_NEW)) 4706 return inode; 4707 4708 ei = EXT4_I(inode); 4709 iloc.bh = NULL; 4710 4711 ret = __ext4_get_inode_loc_noinmem(inode, &iloc); 4712 if (ret < 0) 4713 goto bad_inode; 4714 raw_inode = ext4_raw_inode(&iloc); 4715 4716 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) { 4717 ext4_error_inode(inode, function, line, 0, 4718 "iget: root inode unallocated"); 4719 ret = -EFSCORRUPTED; 4720 goto bad_inode; 4721 } 4722 4723 if ((flags & EXT4_IGET_HANDLE) && 4724 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) { 4725 ret = -ESTALE; 4726 goto bad_inode; 4727 } 4728 4729 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4730 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4731 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4732 EXT4_INODE_SIZE(inode->i_sb) || 4733 (ei->i_extra_isize & 3)) { 4734 ext4_error_inode(inode, function, line, 0, 4735 "iget: bad extra_isize %u " 4736 "(inode size %u)", 4737 ei->i_extra_isize, 4738 EXT4_INODE_SIZE(inode->i_sb)); 4739 ret = -EFSCORRUPTED; 4740 goto bad_inode; 4741 } 4742 } else 4743 ei->i_extra_isize = 0; 4744 4745 /* Precompute checksum seed for inode metadata */ 4746 if (ext4_has_metadata_csum(sb)) { 4747 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4748 __u32 csum; 4749 __le32 inum = cpu_to_le32(inode->i_ino); 4750 __le32 gen = raw_inode->i_generation; 4751 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4752 sizeof(inum)); 4753 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4754 sizeof(gen)); 4755 } 4756 4757 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) || 4758 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) && 4759 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) { 4760 ext4_error_inode_err(inode, function, line, 0, 4761 EFSBADCRC, "iget: checksum invalid"); 4762 ret = -EFSBADCRC; 4763 goto bad_inode; 4764 } 4765 4766 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4767 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4768 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4769 if (ext4_has_feature_project(sb) && 4770 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4771 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4772 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4773 else 4774 i_projid = EXT4_DEF_PROJID; 4775 4776 if (!(test_opt(inode->i_sb, NO_UID32))) { 4777 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4778 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4779 } 4780 i_uid_write(inode, i_uid); 4781 i_gid_write(inode, i_gid); 4782 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4783 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4784 4785 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4786 ei->i_inline_off = 0; 4787 ei->i_dir_start_lookup = 0; 4788 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4789 /* We now have enough fields to check if the inode was active or not. 4790 * This is needed because nfsd might try to access dead inodes 4791 * the test is that same one that e2fsck uses 4792 * NeilBrown 1999oct15 4793 */ 4794 if (inode->i_nlink == 0) { 4795 if ((inode->i_mode == 0 || 4796 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4797 ino != EXT4_BOOT_LOADER_INO) { 4798 /* this inode is deleted */ 4799 ret = -ESTALE; 4800 goto bad_inode; 4801 } 4802 /* The only unlinked inodes we let through here have 4803 * valid i_mode and are being read by the orphan 4804 * recovery code: that's fine, we're about to complete 4805 * the process of deleting those. 4806 * OR it is the EXT4_BOOT_LOADER_INO which is 4807 * not initialized on a new filesystem. */ 4808 } 4809 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4810 ext4_set_inode_flags(inode, true); 4811 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4812 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4813 if (ext4_has_feature_64bit(sb)) 4814 ei->i_file_acl |= 4815 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4816 inode->i_size = ext4_isize(sb, raw_inode); 4817 if ((size = i_size_read(inode)) < 0) { 4818 ext4_error_inode(inode, function, line, 0, 4819 "iget: bad i_size value: %lld", size); 4820 ret = -EFSCORRUPTED; 4821 goto bad_inode; 4822 } 4823 /* 4824 * If dir_index is not enabled but there's dir with INDEX flag set, 4825 * we'd normally treat htree data as empty space. But with metadata 4826 * checksumming that corrupts checksums so forbid that. 4827 */ 4828 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) && 4829 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) { 4830 ext4_error_inode(inode, function, line, 0, 4831 "iget: Dir with htree data on filesystem without dir_index feature."); 4832 ret = -EFSCORRUPTED; 4833 goto bad_inode; 4834 } 4835 ei->i_disksize = inode->i_size; 4836 #ifdef CONFIG_QUOTA 4837 ei->i_reserved_quota = 0; 4838 #endif 4839 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4840 ei->i_block_group = iloc.block_group; 4841 ei->i_last_alloc_group = ~0; 4842 /* 4843 * NOTE! The in-memory inode i_data array is in little-endian order 4844 * even on big-endian machines: we do NOT byteswap the block numbers! 4845 */ 4846 for (block = 0; block < EXT4_N_BLOCKS; block++) 4847 ei->i_data[block] = raw_inode->i_block[block]; 4848 INIT_LIST_HEAD(&ei->i_orphan); 4849 ext4_fc_init_inode(&ei->vfs_inode); 4850 4851 /* 4852 * Set transaction id's of transactions that have to be committed 4853 * to finish f[data]sync. We set them to currently running transaction 4854 * as we cannot be sure that the inode or some of its metadata isn't 4855 * part of the transaction - the inode could have been reclaimed and 4856 * now it is reread from disk. 4857 */ 4858 if (journal) { 4859 transaction_t *transaction; 4860 tid_t tid; 4861 4862 read_lock(&journal->j_state_lock); 4863 if (journal->j_running_transaction) 4864 transaction = journal->j_running_transaction; 4865 else 4866 transaction = journal->j_committing_transaction; 4867 if (transaction) 4868 tid = transaction->t_tid; 4869 else 4870 tid = journal->j_commit_sequence; 4871 read_unlock(&journal->j_state_lock); 4872 ei->i_sync_tid = tid; 4873 ei->i_datasync_tid = tid; 4874 } 4875 4876 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4877 if (ei->i_extra_isize == 0) { 4878 /* The extra space is currently unused. Use it. */ 4879 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 4880 ei->i_extra_isize = sizeof(struct ext4_inode) - 4881 EXT4_GOOD_OLD_INODE_SIZE; 4882 } else { 4883 ret = ext4_iget_extra_inode(inode, raw_inode, ei); 4884 if (ret) 4885 goto bad_inode; 4886 } 4887 } 4888 4889 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4890 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4891 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4892 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4893 4894 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4895 u64 ivers = le32_to_cpu(raw_inode->i_disk_version); 4896 4897 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4898 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4899 ivers |= 4900 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4901 } 4902 ext4_inode_set_iversion_queried(inode, ivers); 4903 } 4904 4905 ret = 0; 4906 if (ei->i_file_acl && 4907 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) { 4908 ext4_error_inode(inode, function, line, 0, 4909 "iget: bad extended attribute block %llu", 4910 ei->i_file_acl); 4911 ret = -EFSCORRUPTED; 4912 goto bad_inode; 4913 } else if (!ext4_has_inline_data(inode)) { 4914 /* validate the block references in the inode */ 4915 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) && 4916 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4917 (S_ISLNK(inode->i_mode) && 4918 !ext4_inode_is_fast_symlink(inode)))) { 4919 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4920 ret = ext4_ext_check_inode(inode); 4921 else 4922 ret = ext4_ind_check_inode(inode); 4923 } 4924 } 4925 if (ret) 4926 goto bad_inode; 4927 4928 if (S_ISREG(inode->i_mode)) { 4929 inode->i_op = &ext4_file_inode_operations; 4930 inode->i_fop = &ext4_file_operations; 4931 ext4_set_aops(inode); 4932 } else if (S_ISDIR(inode->i_mode)) { 4933 inode->i_op = &ext4_dir_inode_operations; 4934 inode->i_fop = &ext4_dir_operations; 4935 } else if (S_ISLNK(inode->i_mode)) { 4936 /* VFS does not allow setting these so must be corruption */ 4937 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 4938 ext4_error_inode(inode, function, line, 0, 4939 "iget: immutable or append flags " 4940 "not allowed on symlinks"); 4941 ret = -EFSCORRUPTED; 4942 goto bad_inode; 4943 } 4944 if (IS_ENCRYPTED(inode)) { 4945 inode->i_op = &ext4_encrypted_symlink_inode_operations; 4946 ext4_set_aops(inode); 4947 } else if (ext4_inode_is_fast_symlink(inode)) { 4948 inode->i_link = (char *)ei->i_data; 4949 inode->i_op = &ext4_fast_symlink_inode_operations; 4950 nd_terminate_link(ei->i_data, inode->i_size, 4951 sizeof(ei->i_data) - 1); 4952 } else { 4953 inode->i_op = &ext4_symlink_inode_operations; 4954 ext4_set_aops(inode); 4955 } 4956 inode_nohighmem(inode); 4957 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4958 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4959 inode->i_op = &ext4_special_inode_operations; 4960 if (raw_inode->i_block[0]) 4961 init_special_inode(inode, inode->i_mode, 4962 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4963 else 4964 init_special_inode(inode, inode->i_mode, 4965 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4966 } else if (ino == EXT4_BOOT_LOADER_INO) { 4967 make_bad_inode(inode); 4968 } else { 4969 ret = -EFSCORRUPTED; 4970 ext4_error_inode(inode, function, line, 0, 4971 "iget: bogus i_mode (%o)", inode->i_mode); 4972 goto bad_inode; 4973 } 4974 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) 4975 ext4_error_inode(inode, function, line, 0, 4976 "casefold flag without casefold feature"); 4977 brelse(iloc.bh); 4978 4979 unlock_new_inode(inode); 4980 return inode; 4981 4982 bad_inode: 4983 brelse(iloc.bh); 4984 iget_failed(inode); 4985 return ERR_PTR(ret); 4986 } 4987 4988 static void __ext4_update_other_inode_time(struct super_block *sb, 4989 unsigned long orig_ino, 4990 unsigned long ino, 4991 struct ext4_inode *raw_inode) 4992 { 4993 struct inode *inode; 4994 4995 inode = find_inode_by_ino_rcu(sb, ino); 4996 if (!inode) 4997 return; 4998 4999 if (!inode_is_dirtytime_only(inode)) 5000 return; 5001 5002 spin_lock(&inode->i_lock); 5003 if (inode_is_dirtytime_only(inode)) { 5004 struct ext4_inode_info *ei = EXT4_I(inode); 5005 5006 inode->i_state &= ~I_DIRTY_TIME; 5007 spin_unlock(&inode->i_lock); 5008 5009 spin_lock(&ei->i_raw_lock); 5010 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 5011 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 5012 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 5013 ext4_inode_csum_set(inode, raw_inode, ei); 5014 spin_unlock(&ei->i_raw_lock); 5015 trace_ext4_other_inode_update_time(inode, orig_ino); 5016 return; 5017 } 5018 spin_unlock(&inode->i_lock); 5019 } 5020 5021 /* 5022 * Opportunistically update the other time fields for other inodes in 5023 * the same inode table block. 5024 */ 5025 static void ext4_update_other_inodes_time(struct super_block *sb, 5026 unsigned long orig_ino, char *buf) 5027 { 5028 unsigned long ino; 5029 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 5030 int inode_size = EXT4_INODE_SIZE(sb); 5031 5032 /* 5033 * Calculate the first inode in the inode table block. Inode 5034 * numbers are one-based. That is, the first inode in a block 5035 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 5036 */ 5037 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 5038 rcu_read_lock(); 5039 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 5040 if (ino == orig_ino) 5041 continue; 5042 __ext4_update_other_inode_time(sb, orig_ino, ino, 5043 (struct ext4_inode *)buf); 5044 } 5045 rcu_read_unlock(); 5046 } 5047 5048 /* 5049 * Post the struct inode info into an on-disk inode location in the 5050 * buffer-cache. This gobbles the caller's reference to the 5051 * buffer_head in the inode location struct. 5052 * 5053 * The caller must have write access to iloc->bh. 5054 */ 5055 static int ext4_do_update_inode(handle_t *handle, 5056 struct inode *inode, 5057 struct ext4_iloc *iloc) 5058 { 5059 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5060 struct ext4_inode_info *ei = EXT4_I(inode); 5061 struct buffer_head *bh = iloc->bh; 5062 struct super_block *sb = inode->i_sb; 5063 int err; 5064 int need_datasync = 0, set_large_file = 0; 5065 5066 spin_lock(&ei->i_raw_lock); 5067 5068 /* 5069 * For fields not tracked in the in-memory inode, initialise them 5070 * to zero for new inodes. 5071 */ 5072 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5073 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5074 5075 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) 5076 need_datasync = 1; 5077 if (ei->i_disksize > 0x7fffffffULL) { 5078 if (!ext4_has_feature_large_file(sb) || 5079 EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV)) 5080 set_large_file = 1; 5081 } 5082 5083 err = ext4_fill_raw_inode(inode, raw_inode); 5084 spin_unlock(&ei->i_raw_lock); 5085 if (err) { 5086 EXT4_ERROR_INODE(inode, "corrupted inode contents"); 5087 goto out_brelse; 5088 } 5089 5090 if (inode->i_sb->s_flags & SB_LAZYTIME) 5091 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 5092 bh->b_data); 5093 5094 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5095 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5096 if (err) 5097 goto out_error; 5098 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5099 if (set_large_file) { 5100 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 5101 err = ext4_journal_get_write_access(handle, sb, 5102 EXT4_SB(sb)->s_sbh, 5103 EXT4_JTR_NONE); 5104 if (err) 5105 goto out_error; 5106 lock_buffer(EXT4_SB(sb)->s_sbh); 5107 ext4_set_feature_large_file(sb); 5108 ext4_superblock_csum_set(sb); 5109 unlock_buffer(EXT4_SB(sb)->s_sbh); 5110 ext4_handle_sync(handle); 5111 err = ext4_handle_dirty_metadata(handle, NULL, 5112 EXT4_SB(sb)->s_sbh); 5113 } 5114 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5115 out_error: 5116 ext4_std_error(inode->i_sb, err); 5117 out_brelse: 5118 brelse(bh); 5119 return err; 5120 } 5121 5122 /* 5123 * ext4_write_inode() 5124 * 5125 * We are called from a few places: 5126 * 5127 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5128 * Here, there will be no transaction running. We wait for any running 5129 * transaction to commit. 5130 * 5131 * - Within flush work (sys_sync(), kupdate and such). 5132 * We wait on commit, if told to. 5133 * 5134 * - Within iput_final() -> write_inode_now() 5135 * We wait on commit, if told to. 5136 * 5137 * In all cases it is actually safe for us to return without doing anything, 5138 * because the inode has been copied into a raw inode buffer in 5139 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5140 * writeback. 5141 * 5142 * Note that we are absolutely dependent upon all inode dirtiers doing the 5143 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5144 * which we are interested. 5145 * 5146 * It would be a bug for them to not do this. The code: 5147 * 5148 * mark_inode_dirty(inode) 5149 * stuff(); 5150 * inode->i_size = expr; 5151 * 5152 * is in error because write_inode() could occur while `stuff()' is running, 5153 * and the new i_size will be lost. Plus the inode will no longer be on the 5154 * superblock's dirty inode list. 5155 */ 5156 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5157 { 5158 int err; 5159 5160 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) || 5161 sb_rdonly(inode->i_sb)) 5162 return 0; 5163 5164 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5165 return -EIO; 5166 5167 if (EXT4_SB(inode->i_sb)->s_journal) { 5168 if (ext4_journal_current_handle()) { 5169 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 5170 dump_stack(); 5171 return -EIO; 5172 } 5173 5174 /* 5175 * No need to force transaction in WB_SYNC_NONE mode. Also 5176 * ext4_sync_fs() will force the commit after everything is 5177 * written. 5178 */ 5179 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5180 return 0; 5181 5182 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal, 5183 EXT4_I(inode)->i_sync_tid); 5184 } else { 5185 struct ext4_iloc iloc; 5186 5187 err = __ext4_get_inode_loc_noinmem(inode, &iloc); 5188 if (err) 5189 return err; 5190 /* 5191 * sync(2) will flush the whole buffer cache. No need to do 5192 * it here separately for each inode. 5193 */ 5194 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5195 sync_dirty_buffer(iloc.bh); 5196 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5197 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO, 5198 "IO error syncing inode"); 5199 err = -EIO; 5200 } 5201 brelse(iloc.bh); 5202 } 5203 return err; 5204 } 5205 5206 /* 5207 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 5208 * buffers that are attached to a page stradding i_size and are undergoing 5209 * commit. In that case we have to wait for commit to finish and try again. 5210 */ 5211 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5212 { 5213 struct page *page; 5214 unsigned offset; 5215 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5216 tid_t commit_tid = 0; 5217 int ret; 5218 5219 offset = inode->i_size & (PAGE_SIZE - 1); 5220 /* 5221 * If the page is fully truncated, we don't need to wait for any commit 5222 * (and we even should not as __ext4_journalled_invalidatepage() may 5223 * strip all buffers from the page but keep the page dirty which can then 5224 * confuse e.g. concurrent ext4_writepage() seeing dirty page without 5225 * buffers). Also we don't need to wait for any commit if all buffers in 5226 * the page remain valid. This is most beneficial for the common case of 5227 * blocksize == PAGESIZE. 5228 */ 5229 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode))) 5230 return; 5231 while (1) { 5232 page = find_lock_page(inode->i_mapping, 5233 inode->i_size >> PAGE_SHIFT); 5234 if (!page) 5235 return; 5236 ret = __ext4_journalled_invalidatepage(page, offset, 5237 PAGE_SIZE - offset); 5238 unlock_page(page); 5239 put_page(page); 5240 if (ret != -EBUSY) 5241 return; 5242 commit_tid = 0; 5243 read_lock(&journal->j_state_lock); 5244 if (journal->j_committing_transaction) 5245 commit_tid = journal->j_committing_transaction->t_tid; 5246 read_unlock(&journal->j_state_lock); 5247 if (commit_tid) 5248 jbd2_log_wait_commit(journal, commit_tid); 5249 } 5250 } 5251 5252 /* 5253 * ext4_setattr() 5254 * 5255 * Called from notify_change. 5256 * 5257 * We want to trap VFS attempts to truncate the file as soon as 5258 * possible. In particular, we want to make sure that when the VFS 5259 * shrinks i_size, we put the inode on the orphan list and modify 5260 * i_disksize immediately, so that during the subsequent flushing of 5261 * dirty pages and freeing of disk blocks, we can guarantee that any 5262 * commit will leave the blocks being flushed in an unused state on 5263 * disk. (On recovery, the inode will get truncated and the blocks will 5264 * be freed, so we have a strong guarantee that no future commit will 5265 * leave these blocks visible to the user.) 5266 * 5267 * Another thing we have to assure is that if we are in ordered mode 5268 * and inode is still attached to the committing transaction, we must 5269 * we start writeout of all the dirty pages which are being truncated. 5270 * This way we are sure that all the data written in the previous 5271 * transaction are already on disk (truncate waits for pages under 5272 * writeback). 5273 * 5274 * Called with inode->i_mutex down. 5275 */ 5276 int ext4_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, 5277 struct iattr *attr) 5278 { 5279 struct inode *inode = d_inode(dentry); 5280 int error, rc = 0; 5281 int orphan = 0; 5282 const unsigned int ia_valid = attr->ia_valid; 5283 5284 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5285 return -EIO; 5286 5287 if (unlikely(IS_IMMUTABLE(inode))) 5288 return -EPERM; 5289 5290 if (unlikely(IS_APPEND(inode) && 5291 (ia_valid & (ATTR_MODE | ATTR_UID | 5292 ATTR_GID | ATTR_TIMES_SET)))) 5293 return -EPERM; 5294 5295 error = setattr_prepare(mnt_userns, dentry, attr); 5296 if (error) 5297 return error; 5298 5299 error = fscrypt_prepare_setattr(dentry, attr); 5300 if (error) 5301 return error; 5302 5303 error = fsverity_prepare_setattr(dentry, attr); 5304 if (error) 5305 return error; 5306 5307 if (is_quota_modification(inode, attr)) { 5308 error = dquot_initialize(inode); 5309 if (error) 5310 return error; 5311 } 5312 5313 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 5314 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 5315 handle_t *handle; 5316 5317 /* (user+group)*(old+new) structure, inode write (sb, 5318 * inode block, ? - but truncate inode update has it) */ 5319 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5320 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5321 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5322 if (IS_ERR(handle)) { 5323 error = PTR_ERR(handle); 5324 goto err_out; 5325 } 5326 5327 /* dquot_transfer() calls back ext4_get_inode_usage() which 5328 * counts xattr inode references. 5329 */ 5330 down_read(&EXT4_I(inode)->xattr_sem); 5331 error = dquot_transfer(inode, attr); 5332 up_read(&EXT4_I(inode)->xattr_sem); 5333 5334 if (error) { 5335 ext4_journal_stop(handle); 5336 return error; 5337 } 5338 /* Update corresponding info in inode so that everything is in 5339 * one transaction */ 5340 if (attr->ia_valid & ATTR_UID) 5341 inode->i_uid = attr->ia_uid; 5342 if (attr->ia_valid & ATTR_GID) 5343 inode->i_gid = attr->ia_gid; 5344 error = ext4_mark_inode_dirty(handle, inode); 5345 ext4_journal_stop(handle); 5346 if (unlikely(error)) { 5347 return error; 5348 } 5349 } 5350 5351 if (attr->ia_valid & ATTR_SIZE) { 5352 handle_t *handle; 5353 loff_t oldsize = inode->i_size; 5354 int shrink = (attr->ia_size < inode->i_size); 5355 5356 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5357 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5358 5359 if (attr->ia_size > sbi->s_bitmap_maxbytes) { 5360 return -EFBIG; 5361 } 5362 } 5363 if (!S_ISREG(inode->i_mode)) { 5364 return -EINVAL; 5365 } 5366 5367 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size) 5368 inode_inc_iversion(inode); 5369 5370 if (shrink) { 5371 if (ext4_should_order_data(inode)) { 5372 error = ext4_begin_ordered_truncate(inode, 5373 attr->ia_size); 5374 if (error) 5375 goto err_out; 5376 } 5377 /* 5378 * Blocks are going to be removed from the inode. Wait 5379 * for dio in flight. 5380 */ 5381 inode_dio_wait(inode); 5382 } 5383 5384 filemap_invalidate_lock(inode->i_mapping); 5385 5386 rc = ext4_break_layouts(inode); 5387 if (rc) { 5388 filemap_invalidate_unlock(inode->i_mapping); 5389 goto err_out; 5390 } 5391 5392 if (attr->ia_size != inode->i_size) { 5393 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5394 if (IS_ERR(handle)) { 5395 error = PTR_ERR(handle); 5396 goto out_mmap_sem; 5397 } 5398 if (ext4_handle_valid(handle) && shrink) { 5399 error = ext4_orphan_add(handle, inode); 5400 orphan = 1; 5401 } 5402 /* 5403 * Update c/mtime on truncate up, ext4_truncate() will 5404 * update c/mtime in shrink case below 5405 */ 5406 if (!shrink) { 5407 inode->i_mtime = current_time(inode); 5408 inode->i_ctime = inode->i_mtime; 5409 } 5410 5411 if (shrink) 5412 ext4_fc_track_range(handle, inode, 5413 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5414 inode->i_sb->s_blocksize_bits, 5415 EXT_MAX_BLOCKS - 1); 5416 else 5417 ext4_fc_track_range( 5418 handle, inode, 5419 (oldsize > 0 ? oldsize - 1 : oldsize) >> 5420 inode->i_sb->s_blocksize_bits, 5421 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5422 inode->i_sb->s_blocksize_bits); 5423 5424 down_write(&EXT4_I(inode)->i_data_sem); 5425 EXT4_I(inode)->i_disksize = attr->ia_size; 5426 rc = ext4_mark_inode_dirty(handle, inode); 5427 if (!error) 5428 error = rc; 5429 /* 5430 * We have to update i_size under i_data_sem together 5431 * with i_disksize to avoid races with writeback code 5432 * running ext4_wb_update_i_disksize(). 5433 */ 5434 if (!error) 5435 i_size_write(inode, attr->ia_size); 5436 up_write(&EXT4_I(inode)->i_data_sem); 5437 ext4_journal_stop(handle); 5438 if (error) 5439 goto out_mmap_sem; 5440 if (!shrink) { 5441 pagecache_isize_extended(inode, oldsize, 5442 inode->i_size); 5443 } else if (ext4_should_journal_data(inode)) { 5444 ext4_wait_for_tail_page_commit(inode); 5445 } 5446 } 5447 5448 /* 5449 * Truncate pagecache after we've waited for commit 5450 * in data=journal mode to make pages freeable. 5451 */ 5452 truncate_pagecache(inode, inode->i_size); 5453 /* 5454 * Call ext4_truncate() even if i_size didn't change to 5455 * truncate possible preallocated blocks. 5456 */ 5457 if (attr->ia_size <= oldsize) { 5458 rc = ext4_truncate(inode); 5459 if (rc) 5460 error = rc; 5461 } 5462 out_mmap_sem: 5463 filemap_invalidate_unlock(inode->i_mapping); 5464 } 5465 5466 if (!error) { 5467 setattr_copy(mnt_userns, inode, attr); 5468 mark_inode_dirty(inode); 5469 } 5470 5471 /* 5472 * If the call to ext4_truncate failed to get a transaction handle at 5473 * all, we need to clean up the in-core orphan list manually. 5474 */ 5475 if (orphan && inode->i_nlink) 5476 ext4_orphan_del(NULL, inode); 5477 5478 if (!error && (ia_valid & ATTR_MODE)) 5479 rc = posix_acl_chmod(mnt_userns, inode, inode->i_mode); 5480 5481 err_out: 5482 if (error) 5483 ext4_std_error(inode->i_sb, error); 5484 if (!error) 5485 error = rc; 5486 return error; 5487 } 5488 5489 int ext4_getattr(struct user_namespace *mnt_userns, const struct path *path, 5490 struct kstat *stat, u32 request_mask, unsigned int query_flags) 5491 { 5492 struct inode *inode = d_inode(path->dentry); 5493 struct ext4_inode *raw_inode; 5494 struct ext4_inode_info *ei = EXT4_I(inode); 5495 unsigned int flags; 5496 5497 if ((request_mask & STATX_BTIME) && 5498 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { 5499 stat->result_mask |= STATX_BTIME; 5500 stat->btime.tv_sec = ei->i_crtime.tv_sec; 5501 stat->btime.tv_nsec = ei->i_crtime.tv_nsec; 5502 } 5503 5504 flags = ei->i_flags & EXT4_FL_USER_VISIBLE; 5505 if (flags & EXT4_APPEND_FL) 5506 stat->attributes |= STATX_ATTR_APPEND; 5507 if (flags & EXT4_COMPR_FL) 5508 stat->attributes |= STATX_ATTR_COMPRESSED; 5509 if (flags & EXT4_ENCRYPT_FL) 5510 stat->attributes |= STATX_ATTR_ENCRYPTED; 5511 if (flags & EXT4_IMMUTABLE_FL) 5512 stat->attributes |= STATX_ATTR_IMMUTABLE; 5513 if (flags & EXT4_NODUMP_FL) 5514 stat->attributes |= STATX_ATTR_NODUMP; 5515 if (flags & EXT4_VERITY_FL) 5516 stat->attributes |= STATX_ATTR_VERITY; 5517 5518 stat->attributes_mask |= (STATX_ATTR_APPEND | 5519 STATX_ATTR_COMPRESSED | 5520 STATX_ATTR_ENCRYPTED | 5521 STATX_ATTR_IMMUTABLE | 5522 STATX_ATTR_NODUMP | 5523 STATX_ATTR_VERITY); 5524 5525 generic_fillattr(mnt_userns, inode, stat); 5526 return 0; 5527 } 5528 5529 int ext4_file_getattr(struct user_namespace *mnt_userns, 5530 const struct path *path, struct kstat *stat, 5531 u32 request_mask, unsigned int query_flags) 5532 { 5533 struct inode *inode = d_inode(path->dentry); 5534 u64 delalloc_blocks; 5535 5536 ext4_getattr(mnt_userns, path, stat, request_mask, query_flags); 5537 5538 /* 5539 * If there is inline data in the inode, the inode will normally not 5540 * have data blocks allocated (it may have an external xattr block). 5541 * Report at least one sector for such files, so tools like tar, rsync, 5542 * others don't incorrectly think the file is completely sparse. 5543 */ 5544 if (unlikely(ext4_has_inline_data(inode))) 5545 stat->blocks += (stat->size + 511) >> 9; 5546 5547 /* 5548 * We can't update i_blocks if the block allocation is delayed 5549 * otherwise in the case of system crash before the real block 5550 * allocation is done, we will have i_blocks inconsistent with 5551 * on-disk file blocks. 5552 * We always keep i_blocks updated together with real 5553 * allocation. But to not confuse with user, stat 5554 * will return the blocks that include the delayed allocation 5555 * blocks for this file. 5556 */ 5557 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5558 EXT4_I(inode)->i_reserved_data_blocks); 5559 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5560 return 0; 5561 } 5562 5563 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5564 int pextents) 5565 { 5566 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5567 return ext4_ind_trans_blocks(inode, lblocks); 5568 return ext4_ext_index_trans_blocks(inode, pextents); 5569 } 5570 5571 /* 5572 * Account for index blocks, block groups bitmaps and block group 5573 * descriptor blocks if modify datablocks and index blocks 5574 * worse case, the indexs blocks spread over different block groups 5575 * 5576 * If datablocks are discontiguous, they are possible to spread over 5577 * different block groups too. If they are contiguous, with flexbg, 5578 * they could still across block group boundary. 5579 * 5580 * Also account for superblock, inode, quota and xattr blocks 5581 */ 5582 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5583 int pextents) 5584 { 5585 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5586 int gdpblocks; 5587 int idxblocks; 5588 int ret = 0; 5589 5590 /* 5591 * How many index blocks need to touch to map @lblocks logical blocks 5592 * to @pextents physical extents? 5593 */ 5594 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5595 5596 ret = idxblocks; 5597 5598 /* 5599 * Now let's see how many group bitmaps and group descriptors need 5600 * to account 5601 */ 5602 groups = idxblocks + pextents; 5603 gdpblocks = groups; 5604 if (groups > ngroups) 5605 groups = ngroups; 5606 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5607 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5608 5609 /* bitmaps and block group descriptor blocks */ 5610 ret += groups + gdpblocks; 5611 5612 /* Blocks for super block, inode, quota and xattr blocks */ 5613 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5614 5615 return ret; 5616 } 5617 5618 /* 5619 * Calculate the total number of credits to reserve to fit 5620 * the modification of a single pages into a single transaction, 5621 * which may include multiple chunks of block allocations. 5622 * 5623 * This could be called via ext4_write_begin() 5624 * 5625 * We need to consider the worse case, when 5626 * one new block per extent. 5627 */ 5628 int ext4_writepage_trans_blocks(struct inode *inode) 5629 { 5630 int bpp = ext4_journal_blocks_per_page(inode); 5631 int ret; 5632 5633 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5634 5635 /* Account for data blocks for journalled mode */ 5636 if (ext4_should_journal_data(inode)) 5637 ret += bpp; 5638 return ret; 5639 } 5640 5641 /* 5642 * Calculate the journal credits for a chunk of data modification. 5643 * 5644 * This is called from DIO, fallocate or whoever calling 5645 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5646 * 5647 * journal buffers for data blocks are not included here, as DIO 5648 * and fallocate do no need to journal data buffers. 5649 */ 5650 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5651 { 5652 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5653 } 5654 5655 /* 5656 * The caller must have previously called ext4_reserve_inode_write(). 5657 * Give this, we know that the caller already has write access to iloc->bh. 5658 */ 5659 int ext4_mark_iloc_dirty(handle_t *handle, 5660 struct inode *inode, struct ext4_iloc *iloc) 5661 { 5662 int err = 0; 5663 5664 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 5665 put_bh(iloc->bh); 5666 return -EIO; 5667 } 5668 ext4_fc_track_inode(handle, inode); 5669 5670 if (IS_I_VERSION(inode)) 5671 inode_inc_iversion(inode); 5672 5673 /* the do_update_inode consumes one bh->b_count */ 5674 get_bh(iloc->bh); 5675 5676 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5677 err = ext4_do_update_inode(handle, inode, iloc); 5678 put_bh(iloc->bh); 5679 return err; 5680 } 5681 5682 /* 5683 * On success, We end up with an outstanding reference count against 5684 * iloc->bh. This _must_ be cleaned up later. 5685 */ 5686 5687 int 5688 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5689 struct ext4_iloc *iloc) 5690 { 5691 int err; 5692 5693 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5694 return -EIO; 5695 5696 err = ext4_get_inode_loc(inode, iloc); 5697 if (!err) { 5698 BUFFER_TRACE(iloc->bh, "get_write_access"); 5699 err = ext4_journal_get_write_access(handle, inode->i_sb, 5700 iloc->bh, EXT4_JTR_NONE); 5701 if (err) { 5702 brelse(iloc->bh); 5703 iloc->bh = NULL; 5704 } 5705 } 5706 ext4_std_error(inode->i_sb, err); 5707 return err; 5708 } 5709 5710 static int __ext4_expand_extra_isize(struct inode *inode, 5711 unsigned int new_extra_isize, 5712 struct ext4_iloc *iloc, 5713 handle_t *handle, int *no_expand) 5714 { 5715 struct ext4_inode *raw_inode; 5716 struct ext4_xattr_ibody_header *header; 5717 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb); 5718 struct ext4_inode_info *ei = EXT4_I(inode); 5719 int error; 5720 5721 /* this was checked at iget time, but double check for good measure */ 5722 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) || 5723 (ei->i_extra_isize & 3)) { 5724 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)", 5725 ei->i_extra_isize, 5726 EXT4_INODE_SIZE(inode->i_sb)); 5727 return -EFSCORRUPTED; 5728 } 5729 if ((new_extra_isize < ei->i_extra_isize) || 5730 (new_extra_isize < 4) || 5731 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE)) 5732 return -EINVAL; /* Should never happen */ 5733 5734 raw_inode = ext4_raw_inode(iloc); 5735 5736 header = IHDR(inode, raw_inode); 5737 5738 /* No extended attributes present */ 5739 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5740 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5741 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + 5742 EXT4_I(inode)->i_extra_isize, 0, 5743 new_extra_isize - EXT4_I(inode)->i_extra_isize); 5744 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5745 return 0; 5746 } 5747 5748 /* try to expand with EAs present */ 5749 error = ext4_expand_extra_isize_ea(inode, new_extra_isize, 5750 raw_inode, handle); 5751 if (error) { 5752 /* 5753 * Inode size expansion failed; don't try again 5754 */ 5755 *no_expand = 1; 5756 } 5757 5758 return error; 5759 } 5760 5761 /* 5762 * Expand an inode by new_extra_isize bytes. 5763 * Returns 0 on success or negative error number on failure. 5764 */ 5765 static int ext4_try_to_expand_extra_isize(struct inode *inode, 5766 unsigned int new_extra_isize, 5767 struct ext4_iloc iloc, 5768 handle_t *handle) 5769 { 5770 int no_expand; 5771 int error; 5772 5773 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) 5774 return -EOVERFLOW; 5775 5776 /* 5777 * In nojournal mode, we can immediately attempt to expand 5778 * the inode. When journaled, we first need to obtain extra 5779 * buffer credits since we may write into the EA block 5780 * with this same handle. If journal_extend fails, then it will 5781 * only result in a minor loss of functionality for that inode. 5782 * If this is felt to be critical, then e2fsck should be run to 5783 * force a large enough s_min_extra_isize. 5784 */ 5785 if (ext4_journal_extend(handle, 5786 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0) 5787 return -ENOSPC; 5788 5789 if (ext4_write_trylock_xattr(inode, &no_expand) == 0) 5790 return -EBUSY; 5791 5792 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc, 5793 handle, &no_expand); 5794 ext4_write_unlock_xattr(inode, &no_expand); 5795 5796 return error; 5797 } 5798 5799 int ext4_expand_extra_isize(struct inode *inode, 5800 unsigned int new_extra_isize, 5801 struct ext4_iloc *iloc) 5802 { 5803 handle_t *handle; 5804 int no_expand; 5805 int error, rc; 5806 5807 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5808 brelse(iloc->bh); 5809 return -EOVERFLOW; 5810 } 5811 5812 handle = ext4_journal_start(inode, EXT4_HT_INODE, 5813 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)); 5814 if (IS_ERR(handle)) { 5815 error = PTR_ERR(handle); 5816 brelse(iloc->bh); 5817 return error; 5818 } 5819 5820 ext4_write_lock_xattr(inode, &no_expand); 5821 5822 BUFFER_TRACE(iloc->bh, "get_write_access"); 5823 error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh, 5824 EXT4_JTR_NONE); 5825 if (error) { 5826 brelse(iloc->bh); 5827 goto out_unlock; 5828 } 5829 5830 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc, 5831 handle, &no_expand); 5832 5833 rc = ext4_mark_iloc_dirty(handle, inode, iloc); 5834 if (!error) 5835 error = rc; 5836 5837 out_unlock: 5838 ext4_write_unlock_xattr(inode, &no_expand); 5839 ext4_journal_stop(handle); 5840 return error; 5841 } 5842 5843 /* 5844 * What we do here is to mark the in-core inode as clean with respect to inode 5845 * dirtiness (it may still be data-dirty). 5846 * This means that the in-core inode may be reaped by prune_icache 5847 * without having to perform any I/O. This is a very good thing, 5848 * because *any* task may call prune_icache - even ones which 5849 * have a transaction open against a different journal. 5850 * 5851 * Is this cheating? Not really. Sure, we haven't written the 5852 * inode out, but prune_icache isn't a user-visible syncing function. 5853 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5854 * we start and wait on commits. 5855 */ 5856 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode, 5857 const char *func, unsigned int line) 5858 { 5859 struct ext4_iloc iloc; 5860 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5861 int err; 5862 5863 might_sleep(); 5864 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5865 err = ext4_reserve_inode_write(handle, inode, &iloc); 5866 if (err) 5867 goto out; 5868 5869 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize) 5870 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize, 5871 iloc, handle); 5872 5873 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 5874 out: 5875 if (unlikely(err)) 5876 ext4_error_inode_err(inode, func, line, 0, err, 5877 "mark_inode_dirty error"); 5878 return err; 5879 } 5880 5881 /* 5882 * ext4_dirty_inode() is called from __mark_inode_dirty() 5883 * 5884 * We're really interested in the case where a file is being extended. 5885 * i_size has been changed by generic_commit_write() and we thus need 5886 * to include the updated inode in the current transaction. 5887 * 5888 * Also, dquot_alloc_block() will always dirty the inode when blocks 5889 * are allocated to the file. 5890 * 5891 * If the inode is marked synchronous, we don't honour that here - doing 5892 * so would cause a commit on atime updates, which we don't bother doing. 5893 * We handle synchronous inodes at the highest possible level. 5894 */ 5895 void ext4_dirty_inode(struct inode *inode, int flags) 5896 { 5897 handle_t *handle; 5898 5899 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 5900 if (IS_ERR(handle)) 5901 return; 5902 ext4_mark_inode_dirty(handle, inode); 5903 ext4_journal_stop(handle); 5904 } 5905 5906 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5907 { 5908 journal_t *journal; 5909 handle_t *handle; 5910 int err; 5911 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5912 5913 /* 5914 * We have to be very careful here: changing a data block's 5915 * journaling status dynamically is dangerous. If we write a 5916 * data block to the journal, change the status and then delete 5917 * that block, we risk forgetting to revoke the old log record 5918 * from the journal and so a subsequent replay can corrupt data. 5919 * So, first we make sure that the journal is empty and that 5920 * nobody is changing anything. 5921 */ 5922 5923 journal = EXT4_JOURNAL(inode); 5924 if (!journal) 5925 return 0; 5926 if (is_journal_aborted(journal)) 5927 return -EROFS; 5928 5929 /* Wait for all existing dio workers */ 5930 inode_dio_wait(inode); 5931 5932 /* 5933 * Before flushing the journal and switching inode's aops, we have 5934 * to flush all dirty data the inode has. There can be outstanding 5935 * delayed allocations, there can be unwritten extents created by 5936 * fallocate or buffered writes in dioread_nolock mode covered by 5937 * dirty data which can be converted only after flushing the dirty 5938 * data (and journalled aops don't know how to handle these cases). 5939 */ 5940 if (val) { 5941 filemap_invalidate_lock(inode->i_mapping); 5942 err = filemap_write_and_wait(inode->i_mapping); 5943 if (err < 0) { 5944 filemap_invalidate_unlock(inode->i_mapping); 5945 return err; 5946 } 5947 } 5948 5949 percpu_down_write(&sbi->s_writepages_rwsem); 5950 jbd2_journal_lock_updates(journal); 5951 5952 /* 5953 * OK, there are no updates running now, and all cached data is 5954 * synced to disk. We are now in a completely consistent state 5955 * which doesn't have anything in the journal, and we know that 5956 * no filesystem updates are running, so it is safe to modify 5957 * the inode's in-core data-journaling state flag now. 5958 */ 5959 5960 if (val) 5961 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5962 else { 5963 err = jbd2_journal_flush(journal, 0); 5964 if (err < 0) { 5965 jbd2_journal_unlock_updates(journal); 5966 percpu_up_write(&sbi->s_writepages_rwsem); 5967 return err; 5968 } 5969 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5970 } 5971 ext4_set_aops(inode); 5972 5973 jbd2_journal_unlock_updates(journal); 5974 percpu_up_write(&sbi->s_writepages_rwsem); 5975 5976 if (val) 5977 filemap_invalidate_unlock(inode->i_mapping); 5978 5979 /* Finally we can mark the inode as dirty. */ 5980 5981 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 5982 if (IS_ERR(handle)) 5983 return PTR_ERR(handle); 5984 5985 ext4_fc_mark_ineligible(inode->i_sb, 5986 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE); 5987 err = ext4_mark_inode_dirty(handle, inode); 5988 ext4_handle_sync(handle); 5989 ext4_journal_stop(handle); 5990 ext4_std_error(inode->i_sb, err); 5991 5992 return err; 5993 } 5994 5995 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode, 5996 struct buffer_head *bh) 5997 { 5998 return !buffer_mapped(bh); 5999 } 6000 6001 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf) 6002 { 6003 struct vm_area_struct *vma = vmf->vma; 6004 struct page *page = vmf->page; 6005 loff_t size; 6006 unsigned long len; 6007 int err; 6008 vm_fault_t ret; 6009 struct file *file = vma->vm_file; 6010 struct inode *inode = file_inode(file); 6011 struct address_space *mapping = inode->i_mapping; 6012 handle_t *handle; 6013 get_block_t *get_block; 6014 int retries = 0; 6015 6016 if (unlikely(IS_IMMUTABLE(inode))) 6017 return VM_FAULT_SIGBUS; 6018 6019 sb_start_pagefault(inode->i_sb); 6020 file_update_time(vma->vm_file); 6021 6022 filemap_invalidate_lock_shared(mapping); 6023 6024 err = ext4_convert_inline_data(inode); 6025 if (err) 6026 goto out_ret; 6027 6028 /* 6029 * On data journalling we skip straight to the transaction handle: 6030 * there's no delalloc; page truncated will be checked later; the 6031 * early return w/ all buffers mapped (calculates size/len) can't 6032 * be used; and there's no dioread_nolock, so only ext4_get_block. 6033 */ 6034 if (ext4_should_journal_data(inode)) 6035 goto retry_alloc; 6036 6037 /* Delalloc case is easy... */ 6038 if (test_opt(inode->i_sb, DELALLOC) && 6039 !ext4_nonda_switch(inode->i_sb)) { 6040 do { 6041 err = block_page_mkwrite(vma, vmf, 6042 ext4_da_get_block_prep); 6043 } while (err == -ENOSPC && 6044 ext4_should_retry_alloc(inode->i_sb, &retries)); 6045 goto out_ret; 6046 } 6047 6048 lock_page(page); 6049 size = i_size_read(inode); 6050 /* Page got truncated from under us? */ 6051 if (page->mapping != mapping || page_offset(page) > size) { 6052 unlock_page(page); 6053 ret = VM_FAULT_NOPAGE; 6054 goto out; 6055 } 6056 6057 if (page->index == size >> PAGE_SHIFT) 6058 len = size & ~PAGE_MASK; 6059 else 6060 len = PAGE_SIZE; 6061 /* 6062 * Return if we have all the buffers mapped. This avoids the need to do 6063 * journal_start/journal_stop which can block and take a long time 6064 * 6065 * This cannot be done for data journalling, as we have to add the 6066 * inode to the transaction's list to writeprotect pages on commit. 6067 */ 6068 if (page_has_buffers(page)) { 6069 if (!ext4_walk_page_buffers(NULL, inode, page_buffers(page), 6070 0, len, NULL, 6071 ext4_bh_unmapped)) { 6072 /* Wait so that we don't change page under IO */ 6073 wait_for_stable_page(page); 6074 ret = VM_FAULT_LOCKED; 6075 goto out; 6076 } 6077 } 6078 unlock_page(page); 6079 /* OK, we need to fill the hole... */ 6080 if (ext4_should_dioread_nolock(inode)) 6081 get_block = ext4_get_block_unwritten; 6082 else 6083 get_block = ext4_get_block; 6084 retry_alloc: 6085 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 6086 ext4_writepage_trans_blocks(inode)); 6087 if (IS_ERR(handle)) { 6088 ret = VM_FAULT_SIGBUS; 6089 goto out; 6090 } 6091 /* 6092 * Data journalling can't use block_page_mkwrite() because it 6093 * will set_buffer_dirty() before do_journal_get_write_access() 6094 * thus might hit warning messages for dirty metadata buffers. 6095 */ 6096 if (!ext4_should_journal_data(inode)) { 6097 err = block_page_mkwrite(vma, vmf, get_block); 6098 } else { 6099 lock_page(page); 6100 size = i_size_read(inode); 6101 /* Page got truncated from under us? */ 6102 if (page->mapping != mapping || page_offset(page) > size) { 6103 ret = VM_FAULT_NOPAGE; 6104 goto out_error; 6105 } 6106 6107 if (page->index == size >> PAGE_SHIFT) 6108 len = size & ~PAGE_MASK; 6109 else 6110 len = PAGE_SIZE; 6111 6112 err = __block_write_begin(page, 0, len, ext4_get_block); 6113 if (!err) { 6114 ret = VM_FAULT_SIGBUS; 6115 if (ext4_walk_page_buffers(handle, inode, 6116 page_buffers(page), 0, len, NULL, 6117 do_journal_get_write_access)) 6118 goto out_error; 6119 if (ext4_walk_page_buffers(handle, inode, 6120 page_buffers(page), 0, len, NULL, 6121 write_end_fn)) 6122 goto out_error; 6123 if (ext4_jbd2_inode_add_write(handle, inode, 6124 page_offset(page), len)) 6125 goto out_error; 6126 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 6127 } else { 6128 unlock_page(page); 6129 } 6130 } 6131 ext4_journal_stop(handle); 6132 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 6133 goto retry_alloc; 6134 out_ret: 6135 ret = block_page_mkwrite_return(err); 6136 out: 6137 filemap_invalidate_unlock_shared(mapping); 6138 sb_end_pagefault(inode->i_sb); 6139 return ret; 6140 out_error: 6141 unlock_page(page); 6142 ext4_journal_stop(handle); 6143 goto out; 6144 } 6145