xref: /openbmc/linux/fs/ext4/inode.c (revision 63dc02bd)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *	(jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20 
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45 
46 #include <trace/events/ext4.h>
47 
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49 
50 static inline int ext4_begin_ordered_truncate(struct inode *inode,
51 					      loff_t new_size)
52 {
53 	trace_ext4_begin_ordered_truncate(inode, new_size);
54 	/*
55 	 * If jinode is zero, then we never opened the file for
56 	 * writing, so there's no need to call
57 	 * jbd2_journal_begin_ordered_truncate() since there's no
58 	 * outstanding writes we need to flush.
59 	 */
60 	if (!EXT4_I(inode)->jinode)
61 		return 0;
62 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
63 						   EXT4_I(inode)->jinode,
64 						   new_size);
65 }
66 
67 static void ext4_invalidatepage(struct page *page, unsigned long offset);
68 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
69 				   struct buffer_head *bh_result, int create);
70 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
71 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
72 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
73 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
74 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
75 		struct inode *inode, struct page *page, loff_t from,
76 		loff_t length, int flags);
77 
78 /*
79  * Test whether an inode is a fast symlink.
80  */
81 static int ext4_inode_is_fast_symlink(struct inode *inode)
82 {
83 	int ea_blocks = EXT4_I(inode)->i_file_acl ?
84 		(inode->i_sb->s_blocksize >> 9) : 0;
85 
86 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
87 }
88 
89 /*
90  * Restart the transaction associated with *handle.  This does a commit,
91  * so before we call here everything must be consistently dirtied against
92  * this transaction.
93  */
94 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
95 				 int nblocks)
96 {
97 	int ret;
98 
99 	/*
100 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
101 	 * moment, get_block can be called only for blocks inside i_size since
102 	 * page cache has been already dropped and writes are blocked by
103 	 * i_mutex. So we can safely drop the i_data_sem here.
104 	 */
105 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
106 	jbd_debug(2, "restarting handle %p\n", handle);
107 	up_write(&EXT4_I(inode)->i_data_sem);
108 	ret = ext4_journal_restart(handle, nblocks);
109 	down_write(&EXT4_I(inode)->i_data_sem);
110 	ext4_discard_preallocations(inode);
111 
112 	return ret;
113 }
114 
115 /*
116  * Called at the last iput() if i_nlink is zero.
117  */
118 void ext4_evict_inode(struct inode *inode)
119 {
120 	handle_t *handle;
121 	int err;
122 
123 	trace_ext4_evict_inode(inode);
124 
125 	ext4_ioend_wait(inode);
126 
127 	if (inode->i_nlink) {
128 		/*
129 		 * When journalling data dirty buffers are tracked only in the
130 		 * journal. So although mm thinks everything is clean and
131 		 * ready for reaping the inode might still have some pages to
132 		 * write in the running transaction or waiting to be
133 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
134 		 * (via truncate_inode_pages()) to discard these buffers can
135 		 * cause data loss. Also even if we did not discard these
136 		 * buffers, we would have no way to find them after the inode
137 		 * is reaped and thus user could see stale data if he tries to
138 		 * read them before the transaction is checkpointed. So be
139 		 * careful and force everything to disk here... We use
140 		 * ei->i_datasync_tid to store the newest transaction
141 		 * containing inode's data.
142 		 *
143 		 * Note that directories do not have this problem because they
144 		 * don't use page cache.
145 		 */
146 		if (ext4_should_journal_data(inode) &&
147 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
148 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
149 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
150 
151 			jbd2_log_start_commit(journal, commit_tid);
152 			jbd2_log_wait_commit(journal, commit_tid);
153 			filemap_write_and_wait(&inode->i_data);
154 		}
155 		truncate_inode_pages(&inode->i_data, 0);
156 		goto no_delete;
157 	}
158 
159 	if (!is_bad_inode(inode))
160 		dquot_initialize(inode);
161 
162 	if (ext4_should_order_data(inode))
163 		ext4_begin_ordered_truncate(inode, 0);
164 	truncate_inode_pages(&inode->i_data, 0);
165 
166 	if (is_bad_inode(inode))
167 		goto no_delete;
168 
169 	handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
170 	if (IS_ERR(handle)) {
171 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
172 		/*
173 		 * If we're going to skip the normal cleanup, we still need to
174 		 * make sure that the in-core orphan linked list is properly
175 		 * cleaned up.
176 		 */
177 		ext4_orphan_del(NULL, inode);
178 		goto no_delete;
179 	}
180 
181 	if (IS_SYNC(inode))
182 		ext4_handle_sync(handle);
183 	inode->i_size = 0;
184 	err = ext4_mark_inode_dirty(handle, inode);
185 	if (err) {
186 		ext4_warning(inode->i_sb,
187 			     "couldn't mark inode dirty (err %d)", err);
188 		goto stop_handle;
189 	}
190 	if (inode->i_blocks)
191 		ext4_truncate(inode);
192 
193 	/*
194 	 * ext4_ext_truncate() doesn't reserve any slop when it
195 	 * restarts journal transactions; therefore there may not be
196 	 * enough credits left in the handle to remove the inode from
197 	 * the orphan list and set the dtime field.
198 	 */
199 	if (!ext4_handle_has_enough_credits(handle, 3)) {
200 		err = ext4_journal_extend(handle, 3);
201 		if (err > 0)
202 			err = ext4_journal_restart(handle, 3);
203 		if (err != 0) {
204 			ext4_warning(inode->i_sb,
205 				     "couldn't extend journal (err %d)", err);
206 		stop_handle:
207 			ext4_journal_stop(handle);
208 			ext4_orphan_del(NULL, inode);
209 			goto no_delete;
210 		}
211 	}
212 
213 	/*
214 	 * Kill off the orphan record which ext4_truncate created.
215 	 * AKPM: I think this can be inside the above `if'.
216 	 * Note that ext4_orphan_del() has to be able to cope with the
217 	 * deletion of a non-existent orphan - this is because we don't
218 	 * know if ext4_truncate() actually created an orphan record.
219 	 * (Well, we could do this if we need to, but heck - it works)
220 	 */
221 	ext4_orphan_del(handle, inode);
222 	EXT4_I(inode)->i_dtime	= get_seconds();
223 
224 	/*
225 	 * One subtle ordering requirement: if anything has gone wrong
226 	 * (transaction abort, IO errors, whatever), then we can still
227 	 * do these next steps (the fs will already have been marked as
228 	 * having errors), but we can't free the inode if the mark_dirty
229 	 * fails.
230 	 */
231 	if (ext4_mark_inode_dirty(handle, inode))
232 		/* If that failed, just do the required in-core inode clear. */
233 		ext4_clear_inode(inode);
234 	else
235 		ext4_free_inode(handle, inode);
236 	ext4_journal_stop(handle);
237 	return;
238 no_delete:
239 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
240 }
241 
242 #ifdef CONFIG_QUOTA
243 qsize_t *ext4_get_reserved_space(struct inode *inode)
244 {
245 	return &EXT4_I(inode)->i_reserved_quota;
246 }
247 #endif
248 
249 /*
250  * Calculate the number of metadata blocks need to reserve
251  * to allocate a block located at @lblock
252  */
253 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
254 {
255 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
256 		return ext4_ext_calc_metadata_amount(inode, lblock);
257 
258 	return ext4_ind_calc_metadata_amount(inode, lblock);
259 }
260 
261 /*
262  * Called with i_data_sem down, which is important since we can call
263  * ext4_discard_preallocations() from here.
264  */
265 void ext4_da_update_reserve_space(struct inode *inode,
266 					int used, int quota_claim)
267 {
268 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
269 	struct ext4_inode_info *ei = EXT4_I(inode);
270 
271 	spin_lock(&ei->i_block_reservation_lock);
272 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
273 	if (unlikely(used > ei->i_reserved_data_blocks)) {
274 		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
275 			 "with only %d reserved data blocks",
276 			 __func__, inode->i_ino, used,
277 			 ei->i_reserved_data_blocks);
278 		WARN_ON(1);
279 		used = ei->i_reserved_data_blocks;
280 	}
281 
282 	/* Update per-inode reservations */
283 	ei->i_reserved_data_blocks -= used;
284 	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
285 	percpu_counter_sub(&sbi->s_dirtyclusters_counter,
286 			   used + ei->i_allocated_meta_blocks);
287 	ei->i_allocated_meta_blocks = 0;
288 
289 	if (ei->i_reserved_data_blocks == 0) {
290 		/*
291 		 * We can release all of the reserved metadata blocks
292 		 * only when we have written all of the delayed
293 		 * allocation blocks.
294 		 */
295 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
296 				   ei->i_reserved_meta_blocks);
297 		ei->i_reserved_meta_blocks = 0;
298 		ei->i_da_metadata_calc_len = 0;
299 	}
300 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
301 
302 	/* Update quota subsystem for data blocks */
303 	if (quota_claim)
304 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
305 	else {
306 		/*
307 		 * We did fallocate with an offset that is already delayed
308 		 * allocated. So on delayed allocated writeback we should
309 		 * not re-claim the quota for fallocated blocks.
310 		 */
311 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
312 	}
313 
314 	/*
315 	 * If we have done all the pending block allocations and if
316 	 * there aren't any writers on the inode, we can discard the
317 	 * inode's preallocations.
318 	 */
319 	if ((ei->i_reserved_data_blocks == 0) &&
320 	    (atomic_read(&inode->i_writecount) == 0))
321 		ext4_discard_preallocations(inode);
322 }
323 
324 static int __check_block_validity(struct inode *inode, const char *func,
325 				unsigned int line,
326 				struct ext4_map_blocks *map)
327 {
328 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
329 				   map->m_len)) {
330 		ext4_error_inode(inode, func, line, map->m_pblk,
331 				 "lblock %lu mapped to illegal pblock "
332 				 "(length %d)", (unsigned long) map->m_lblk,
333 				 map->m_len);
334 		return -EIO;
335 	}
336 	return 0;
337 }
338 
339 #define check_block_validity(inode, map)	\
340 	__check_block_validity((inode), __func__, __LINE__, (map))
341 
342 /*
343  * Return the number of contiguous dirty pages in a given inode
344  * starting at page frame idx.
345  */
346 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
347 				    unsigned int max_pages)
348 {
349 	struct address_space *mapping = inode->i_mapping;
350 	pgoff_t	index;
351 	struct pagevec pvec;
352 	pgoff_t num = 0;
353 	int i, nr_pages, done = 0;
354 
355 	if (max_pages == 0)
356 		return 0;
357 	pagevec_init(&pvec, 0);
358 	while (!done) {
359 		index = idx;
360 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
361 					      PAGECACHE_TAG_DIRTY,
362 					      (pgoff_t)PAGEVEC_SIZE);
363 		if (nr_pages == 0)
364 			break;
365 		for (i = 0; i < nr_pages; i++) {
366 			struct page *page = pvec.pages[i];
367 			struct buffer_head *bh, *head;
368 
369 			lock_page(page);
370 			if (unlikely(page->mapping != mapping) ||
371 			    !PageDirty(page) ||
372 			    PageWriteback(page) ||
373 			    page->index != idx) {
374 				done = 1;
375 				unlock_page(page);
376 				break;
377 			}
378 			if (page_has_buffers(page)) {
379 				bh = head = page_buffers(page);
380 				do {
381 					if (!buffer_delay(bh) &&
382 					    !buffer_unwritten(bh))
383 						done = 1;
384 					bh = bh->b_this_page;
385 				} while (!done && (bh != head));
386 			}
387 			unlock_page(page);
388 			if (done)
389 				break;
390 			idx++;
391 			num++;
392 			if (num >= max_pages) {
393 				done = 1;
394 				break;
395 			}
396 		}
397 		pagevec_release(&pvec);
398 	}
399 	return num;
400 }
401 
402 /*
403  * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map.
404  */
405 static void set_buffers_da_mapped(struct inode *inode,
406 				   struct ext4_map_blocks *map)
407 {
408 	struct address_space *mapping = inode->i_mapping;
409 	struct pagevec pvec;
410 	int i, nr_pages;
411 	pgoff_t index, end;
412 
413 	index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
414 	end = (map->m_lblk + map->m_len - 1) >>
415 		(PAGE_CACHE_SHIFT - inode->i_blkbits);
416 
417 	pagevec_init(&pvec, 0);
418 	while (index <= end) {
419 		nr_pages = pagevec_lookup(&pvec, mapping, index,
420 					  min(end - index + 1,
421 					      (pgoff_t)PAGEVEC_SIZE));
422 		if (nr_pages == 0)
423 			break;
424 		for (i = 0; i < nr_pages; i++) {
425 			struct page *page = pvec.pages[i];
426 			struct buffer_head *bh, *head;
427 
428 			if (unlikely(page->mapping != mapping) ||
429 			    !PageDirty(page))
430 				break;
431 
432 			if (page_has_buffers(page)) {
433 				bh = head = page_buffers(page);
434 				do {
435 					set_buffer_da_mapped(bh);
436 					bh = bh->b_this_page;
437 				} while (bh != head);
438 			}
439 			index++;
440 		}
441 		pagevec_release(&pvec);
442 	}
443 }
444 
445 /*
446  * The ext4_map_blocks() function tries to look up the requested blocks,
447  * and returns if the blocks are already mapped.
448  *
449  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
450  * and store the allocated blocks in the result buffer head and mark it
451  * mapped.
452  *
453  * If file type is extents based, it will call ext4_ext_map_blocks(),
454  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
455  * based files
456  *
457  * On success, it returns the number of blocks being mapped or allocate.
458  * if create==0 and the blocks are pre-allocated and uninitialized block,
459  * the result buffer head is unmapped. If the create ==1, it will make sure
460  * the buffer head is mapped.
461  *
462  * It returns 0 if plain look up failed (blocks have not been allocated), in
463  * that case, buffer head is unmapped
464  *
465  * It returns the error in case of allocation failure.
466  */
467 int ext4_map_blocks(handle_t *handle, struct inode *inode,
468 		    struct ext4_map_blocks *map, int flags)
469 {
470 	int retval;
471 
472 	map->m_flags = 0;
473 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
474 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
475 		  (unsigned long) map->m_lblk);
476 	/*
477 	 * Try to see if we can get the block without requesting a new
478 	 * file system block.
479 	 */
480 	down_read((&EXT4_I(inode)->i_data_sem));
481 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
482 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
483 					     EXT4_GET_BLOCKS_KEEP_SIZE);
484 	} else {
485 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
486 					     EXT4_GET_BLOCKS_KEEP_SIZE);
487 	}
488 	up_read((&EXT4_I(inode)->i_data_sem));
489 
490 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
491 		int ret = check_block_validity(inode, map);
492 		if (ret != 0)
493 			return ret;
494 	}
495 
496 	/* If it is only a block(s) look up */
497 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
498 		return retval;
499 
500 	/*
501 	 * Returns if the blocks have already allocated
502 	 *
503 	 * Note that if blocks have been preallocated
504 	 * ext4_ext_get_block() returns the create = 0
505 	 * with buffer head unmapped.
506 	 */
507 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
508 		return retval;
509 
510 	/*
511 	 * When we call get_blocks without the create flag, the
512 	 * BH_Unwritten flag could have gotten set if the blocks
513 	 * requested were part of a uninitialized extent.  We need to
514 	 * clear this flag now that we are committed to convert all or
515 	 * part of the uninitialized extent to be an initialized
516 	 * extent.  This is because we need to avoid the combination
517 	 * of BH_Unwritten and BH_Mapped flags being simultaneously
518 	 * set on the buffer_head.
519 	 */
520 	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
521 
522 	/*
523 	 * New blocks allocate and/or writing to uninitialized extent
524 	 * will possibly result in updating i_data, so we take
525 	 * the write lock of i_data_sem, and call get_blocks()
526 	 * with create == 1 flag.
527 	 */
528 	down_write((&EXT4_I(inode)->i_data_sem));
529 
530 	/*
531 	 * if the caller is from delayed allocation writeout path
532 	 * we have already reserved fs blocks for allocation
533 	 * let the underlying get_block() function know to
534 	 * avoid double accounting
535 	 */
536 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
537 		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
538 	/*
539 	 * We need to check for EXT4 here because migrate
540 	 * could have changed the inode type in between
541 	 */
542 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
543 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
544 	} else {
545 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
546 
547 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
548 			/*
549 			 * We allocated new blocks which will result in
550 			 * i_data's format changing.  Force the migrate
551 			 * to fail by clearing migrate flags
552 			 */
553 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
554 		}
555 
556 		/*
557 		 * Update reserved blocks/metadata blocks after successful
558 		 * block allocation which had been deferred till now. We don't
559 		 * support fallocate for non extent files. So we can update
560 		 * reserve space here.
561 		 */
562 		if ((retval > 0) &&
563 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
564 			ext4_da_update_reserve_space(inode, retval, 1);
565 	}
566 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
567 		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
568 
569 		/* If we have successfully mapped the delayed allocated blocks,
570 		 * set the BH_Da_Mapped bit on them. Its important to do this
571 		 * under the protection of i_data_sem.
572 		 */
573 		if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
574 			set_buffers_da_mapped(inode, map);
575 	}
576 
577 	up_write((&EXT4_I(inode)->i_data_sem));
578 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
579 		int ret = check_block_validity(inode, map);
580 		if (ret != 0)
581 			return ret;
582 	}
583 	return retval;
584 }
585 
586 /* Maximum number of blocks we map for direct IO at once. */
587 #define DIO_MAX_BLOCKS 4096
588 
589 static int _ext4_get_block(struct inode *inode, sector_t iblock,
590 			   struct buffer_head *bh, int flags)
591 {
592 	handle_t *handle = ext4_journal_current_handle();
593 	struct ext4_map_blocks map;
594 	int ret = 0, started = 0;
595 	int dio_credits;
596 
597 	map.m_lblk = iblock;
598 	map.m_len = bh->b_size >> inode->i_blkbits;
599 
600 	if (flags && !handle) {
601 		/* Direct IO write... */
602 		if (map.m_len > DIO_MAX_BLOCKS)
603 			map.m_len = DIO_MAX_BLOCKS;
604 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
605 		handle = ext4_journal_start(inode, dio_credits);
606 		if (IS_ERR(handle)) {
607 			ret = PTR_ERR(handle);
608 			return ret;
609 		}
610 		started = 1;
611 	}
612 
613 	ret = ext4_map_blocks(handle, inode, &map, flags);
614 	if (ret > 0) {
615 		map_bh(bh, inode->i_sb, map.m_pblk);
616 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
617 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
618 		ret = 0;
619 	}
620 	if (started)
621 		ext4_journal_stop(handle);
622 	return ret;
623 }
624 
625 int ext4_get_block(struct inode *inode, sector_t iblock,
626 		   struct buffer_head *bh, int create)
627 {
628 	return _ext4_get_block(inode, iblock, bh,
629 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
630 }
631 
632 /*
633  * `handle' can be NULL if create is zero
634  */
635 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
636 				ext4_lblk_t block, int create, int *errp)
637 {
638 	struct ext4_map_blocks map;
639 	struct buffer_head *bh;
640 	int fatal = 0, err;
641 
642 	J_ASSERT(handle != NULL || create == 0);
643 
644 	map.m_lblk = block;
645 	map.m_len = 1;
646 	err = ext4_map_blocks(handle, inode, &map,
647 			      create ? EXT4_GET_BLOCKS_CREATE : 0);
648 
649 	if (err < 0)
650 		*errp = err;
651 	if (err <= 0)
652 		return NULL;
653 	*errp = 0;
654 
655 	bh = sb_getblk(inode->i_sb, map.m_pblk);
656 	if (!bh) {
657 		*errp = -EIO;
658 		return NULL;
659 	}
660 	if (map.m_flags & EXT4_MAP_NEW) {
661 		J_ASSERT(create != 0);
662 		J_ASSERT(handle != NULL);
663 
664 		/*
665 		 * Now that we do not always journal data, we should
666 		 * keep in mind whether this should always journal the
667 		 * new buffer as metadata.  For now, regular file
668 		 * writes use ext4_get_block instead, so it's not a
669 		 * problem.
670 		 */
671 		lock_buffer(bh);
672 		BUFFER_TRACE(bh, "call get_create_access");
673 		fatal = ext4_journal_get_create_access(handle, bh);
674 		if (!fatal && !buffer_uptodate(bh)) {
675 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
676 			set_buffer_uptodate(bh);
677 		}
678 		unlock_buffer(bh);
679 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
680 		err = ext4_handle_dirty_metadata(handle, inode, bh);
681 		if (!fatal)
682 			fatal = err;
683 	} else {
684 		BUFFER_TRACE(bh, "not a new buffer");
685 	}
686 	if (fatal) {
687 		*errp = fatal;
688 		brelse(bh);
689 		bh = NULL;
690 	}
691 	return bh;
692 }
693 
694 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
695 			       ext4_lblk_t block, int create, int *err)
696 {
697 	struct buffer_head *bh;
698 
699 	bh = ext4_getblk(handle, inode, block, create, err);
700 	if (!bh)
701 		return bh;
702 	if (buffer_uptodate(bh))
703 		return bh;
704 	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
705 	wait_on_buffer(bh);
706 	if (buffer_uptodate(bh))
707 		return bh;
708 	put_bh(bh);
709 	*err = -EIO;
710 	return NULL;
711 }
712 
713 static int walk_page_buffers(handle_t *handle,
714 			     struct buffer_head *head,
715 			     unsigned from,
716 			     unsigned to,
717 			     int *partial,
718 			     int (*fn)(handle_t *handle,
719 				       struct buffer_head *bh))
720 {
721 	struct buffer_head *bh;
722 	unsigned block_start, block_end;
723 	unsigned blocksize = head->b_size;
724 	int err, ret = 0;
725 	struct buffer_head *next;
726 
727 	for (bh = head, block_start = 0;
728 	     ret == 0 && (bh != head || !block_start);
729 	     block_start = block_end, bh = next) {
730 		next = bh->b_this_page;
731 		block_end = block_start + blocksize;
732 		if (block_end <= from || block_start >= to) {
733 			if (partial && !buffer_uptodate(bh))
734 				*partial = 1;
735 			continue;
736 		}
737 		err = (*fn)(handle, bh);
738 		if (!ret)
739 			ret = err;
740 	}
741 	return ret;
742 }
743 
744 /*
745  * To preserve ordering, it is essential that the hole instantiation and
746  * the data write be encapsulated in a single transaction.  We cannot
747  * close off a transaction and start a new one between the ext4_get_block()
748  * and the commit_write().  So doing the jbd2_journal_start at the start of
749  * prepare_write() is the right place.
750  *
751  * Also, this function can nest inside ext4_writepage() ->
752  * block_write_full_page(). In that case, we *know* that ext4_writepage()
753  * has generated enough buffer credits to do the whole page.  So we won't
754  * block on the journal in that case, which is good, because the caller may
755  * be PF_MEMALLOC.
756  *
757  * By accident, ext4 can be reentered when a transaction is open via
758  * quota file writes.  If we were to commit the transaction while thus
759  * reentered, there can be a deadlock - we would be holding a quota
760  * lock, and the commit would never complete if another thread had a
761  * transaction open and was blocking on the quota lock - a ranking
762  * violation.
763  *
764  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
765  * will _not_ run commit under these circumstances because handle->h_ref
766  * is elevated.  We'll still have enough credits for the tiny quotafile
767  * write.
768  */
769 static int do_journal_get_write_access(handle_t *handle,
770 				       struct buffer_head *bh)
771 {
772 	int dirty = buffer_dirty(bh);
773 	int ret;
774 
775 	if (!buffer_mapped(bh) || buffer_freed(bh))
776 		return 0;
777 	/*
778 	 * __block_write_begin() could have dirtied some buffers. Clean
779 	 * the dirty bit as jbd2_journal_get_write_access() could complain
780 	 * otherwise about fs integrity issues. Setting of the dirty bit
781 	 * by __block_write_begin() isn't a real problem here as we clear
782 	 * the bit before releasing a page lock and thus writeback cannot
783 	 * ever write the buffer.
784 	 */
785 	if (dirty)
786 		clear_buffer_dirty(bh);
787 	ret = ext4_journal_get_write_access(handle, bh);
788 	if (!ret && dirty)
789 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
790 	return ret;
791 }
792 
793 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
794 		   struct buffer_head *bh_result, int create);
795 static int ext4_write_begin(struct file *file, struct address_space *mapping,
796 			    loff_t pos, unsigned len, unsigned flags,
797 			    struct page **pagep, void **fsdata)
798 {
799 	struct inode *inode = mapping->host;
800 	int ret, needed_blocks;
801 	handle_t *handle;
802 	int retries = 0;
803 	struct page *page;
804 	pgoff_t index;
805 	unsigned from, to;
806 
807 	trace_ext4_write_begin(inode, pos, len, flags);
808 	/*
809 	 * Reserve one block more for addition to orphan list in case
810 	 * we allocate blocks but write fails for some reason
811 	 */
812 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
813 	index = pos >> PAGE_CACHE_SHIFT;
814 	from = pos & (PAGE_CACHE_SIZE - 1);
815 	to = from + len;
816 
817 retry:
818 	handle = ext4_journal_start(inode, needed_blocks);
819 	if (IS_ERR(handle)) {
820 		ret = PTR_ERR(handle);
821 		goto out;
822 	}
823 
824 	/* We cannot recurse into the filesystem as the transaction is already
825 	 * started */
826 	flags |= AOP_FLAG_NOFS;
827 
828 	page = grab_cache_page_write_begin(mapping, index, flags);
829 	if (!page) {
830 		ext4_journal_stop(handle);
831 		ret = -ENOMEM;
832 		goto out;
833 	}
834 	*pagep = page;
835 
836 	if (ext4_should_dioread_nolock(inode))
837 		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
838 	else
839 		ret = __block_write_begin(page, pos, len, ext4_get_block);
840 
841 	if (!ret && ext4_should_journal_data(inode)) {
842 		ret = walk_page_buffers(handle, page_buffers(page),
843 				from, to, NULL, do_journal_get_write_access);
844 	}
845 
846 	if (ret) {
847 		unlock_page(page);
848 		page_cache_release(page);
849 		/*
850 		 * __block_write_begin may have instantiated a few blocks
851 		 * outside i_size.  Trim these off again. Don't need
852 		 * i_size_read because we hold i_mutex.
853 		 *
854 		 * Add inode to orphan list in case we crash before
855 		 * truncate finishes
856 		 */
857 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
858 			ext4_orphan_add(handle, inode);
859 
860 		ext4_journal_stop(handle);
861 		if (pos + len > inode->i_size) {
862 			ext4_truncate_failed_write(inode);
863 			/*
864 			 * If truncate failed early the inode might
865 			 * still be on the orphan list; we need to
866 			 * make sure the inode is removed from the
867 			 * orphan list in that case.
868 			 */
869 			if (inode->i_nlink)
870 				ext4_orphan_del(NULL, inode);
871 		}
872 	}
873 
874 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
875 		goto retry;
876 out:
877 	return ret;
878 }
879 
880 /* For write_end() in data=journal mode */
881 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
882 {
883 	if (!buffer_mapped(bh) || buffer_freed(bh))
884 		return 0;
885 	set_buffer_uptodate(bh);
886 	return ext4_handle_dirty_metadata(handle, NULL, bh);
887 }
888 
889 static int ext4_generic_write_end(struct file *file,
890 				  struct address_space *mapping,
891 				  loff_t pos, unsigned len, unsigned copied,
892 				  struct page *page, void *fsdata)
893 {
894 	int i_size_changed = 0;
895 	struct inode *inode = mapping->host;
896 	handle_t *handle = ext4_journal_current_handle();
897 
898 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
899 
900 	/*
901 	 * No need to use i_size_read() here, the i_size
902 	 * cannot change under us because we hold i_mutex.
903 	 *
904 	 * But it's important to update i_size while still holding page lock:
905 	 * page writeout could otherwise come in and zero beyond i_size.
906 	 */
907 	if (pos + copied > inode->i_size) {
908 		i_size_write(inode, pos + copied);
909 		i_size_changed = 1;
910 	}
911 
912 	if (pos + copied >  EXT4_I(inode)->i_disksize) {
913 		/* We need to mark inode dirty even if
914 		 * new_i_size is less that inode->i_size
915 		 * bu greater than i_disksize.(hint delalloc)
916 		 */
917 		ext4_update_i_disksize(inode, (pos + copied));
918 		i_size_changed = 1;
919 	}
920 	unlock_page(page);
921 	page_cache_release(page);
922 
923 	/*
924 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
925 	 * makes the holding time of page lock longer. Second, it forces lock
926 	 * ordering of page lock and transaction start for journaling
927 	 * filesystems.
928 	 */
929 	if (i_size_changed)
930 		ext4_mark_inode_dirty(handle, inode);
931 
932 	return copied;
933 }
934 
935 /*
936  * We need to pick up the new inode size which generic_commit_write gave us
937  * `file' can be NULL - eg, when called from page_symlink().
938  *
939  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
940  * buffers are managed internally.
941  */
942 static int ext4_ordered_write_end(struct file *file,
943 				  struct address_space *mapping,
944 				  loff_t pos, unsigned len, unsigned copied,
945 				  struct page *page, void *fsdata)
946 {
947 	handle_t *handle = ext4_journal_current_handle();
948 	struct inode *inode = mapping->host;
949 	int ret = 0, ret2;
950 
951 	trace_ext4_ordered_write_end(inode, pos, len, copied);
952 	ret = ext4_jbd2_file_inode(handle, inode);
953 
954 	if (ret == 0) {
955 		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
956 							page, fsdata);
957 		copied = ret2;
958 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
959 			/* if we have allocated more blocks and copied
960 			 * less. We will have blocks allocated outside
961 			 * inode->i_size. So truncate them
962 			 */
963 			ext4_orphan_add(handle, inode);
964 		if (ret2 < 0)
965 			ret = ret2;
966 	} else {
967 		unlock_page(page);
968 		page_cache_release(page);
969 	}
970 
971 	ret2 = ext4_journal_stop(handle);
972 	if (!ret)
973 		ret = ret2;
974 
975 	if (pos + len > inode->i_size) {
976 		ext4_truncate_failed_write(inode);
977 		/*
978 		 * If truncate failed early the inode might still be
979 		 * on the orphan list; we need to make sure the inode
980 		 * is removed from the orphan list in that case.
981 		 */
982 		if (inode->i_nlink)
983 			ext4_orphan_del(NULL, inode);
984 	}
985 
986 
987 	return ret ? ret : copied;
988 }
989 
990 static int ext4_writeback_write_end(struct file *file,
991 				    struct address_space *mapping,
992 				    loff_t pos, unsigned len, unsigned copied,
993 				    struct page *page, void *fsdata)
994 {
995 	handle_t *handle = ext4_journal_current_handle();
996 	struct inode *inode = mapping->host;
997 	int ret = 0, ret2;
998 
999 	trace_ext4_writeback_write_end(inode, pos, len, copied);
1000 	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1001 							page, fsdata);
1002 	copied = ret2;
1003 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1004 		/* if we have allocated more blocks and copied
1005 		 * less. We will have blocks allocated outside
1006 		 * inode->i_size. So truncate them
1007 		 */
1008 		ext4_orphan_add(handle, inode);
1009 
1010 	if (ret2 < 0)
1011 		ret = ret2;
1012 
1013 	ret2 = ext4_journal_stop(handle);
1014 	if (!ret)
1015 		ret = ret2;
1016 
1017 	if (pos + len > inode->i_size) {
1018 		ext4_truncate_failed_write(inode);
1019 		/*
1020 		 * If truncate failed early the inode might still be
1021 		 * on the orphan list; we need to make sure the inode
1022 		 * is removed from the orphan list in that case.
1023 		 */
1024 		if (inode->i_nlink)
1025 			ext4_orphan_del(NULL, inode);
1026 	}
1027 
1028 	return ret ? ret : copied;
1029 }
1030 
1031 static int ext4_journalled_write_end(struct file *file,
1032 				     struct address_space *mapping,
1033 				     loff_t pos, unsigned len, unsigned copied,
1034 				     struct page *page, void *fsdata)
1035 {
1036 	handle_t *handle = ext4_journal_current_handle();
1037 	struct inode *inode = mapping->host;
1038 	int ret = 0, ret2;
1039 	int partial = 0;
1040 	unsigned from, to;
1041 	loff_t new_i_size;
1042 
1043 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1044 	from = pos & (PAGE_CACHE_SIZE - 1);
1045 	to = from + len;
1046 
1047 	BUG_ON(!ext4_handle_valid(handle));
1048 
1049 	if (copied < len) {
1050 		if (!PageUptodate(page))
1051 			copied = 0;
1052 		page_zero_new_buffers(page, from+copied, to);
1053 	}
1054 
1055 	ret = walk_page_buffers(handle, page_buffers(page), from,
1056 				to, &partial, write_end_fn);
1057 	if (!partial)
1058 		SetPageUptodate(page);
1059 	new_i_size = pos + copied;
1060 	if (new_i_size > inode->i_size)
1061 		i_size_write(inode, pos+copied);
1062 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1063 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1064 	if (new_i_size > EXT4_I(inode)->i_disksize) {
1065 		ext4_update_i_disksize(inode, new_i_size);
1066 		ret2 = ext4_mark_inode_dirty(handle, inode);
1067 		if (!ret)
1068 			ret = ret2;
1069 	}
1070 
1071 	unlock_page(page);
1072 	page_cache_release(page);
1073 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1074 		/* if we have allocated more blocks and copied
1075 		 * less. We will have blocks allocated outside
1076 		 * inode->i_size. So truncate them
1077 		 */
1078 		ext4_orphan_add(handle, inode);
1079 
1080 	ret2 = ext4_journal_stop(handle);
1081 	if (!ret)
1082 		ret = ret2;
1083 	if (pos + len > inode->i_size) {
1084 		ext4_truncate_failed_write(inode);
1085 		/*
1086 		 * If truncate failed early the inode might still be
1087 		 * on the orphan list; we need to make sure the inode
1088 		 * is removed from the orphan list in that case.
1089 		 */
1090 		if (inode->i_nlink)
1091 			ext4_orphan_del(NULL, inode);
1092 	}
1093 
1094 	return ret ? ret : copied;
1095 }
1096 
1097 /*
1098  * Reserve a single cluster located at lblock
1099  */
1100 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1101 {
1102 	int retries = 0;
1103 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1104 	struct ext4_inode_info *ei = EXT4_I(inode);
1105 	unsigned int md_needed;
1106 	int ret;
1107 
1108 	/*
1109 	 * recalculate the amount of metadata blocks to reserve
1110 	 * in order to allocate nrblocks
1111 	 * worse case is one extent per block
1112 	 */
1113 repeat:
1114 	spin_lock(&ei->i_block_reservation_lock);
1115 	md_needed = EXT4_NUM_B2C(sbi,
1116 				 ext4_calc_metadata_amount(inode, lblock));
1117 	trace_ext4_da_reserve_space(inode, md_needed);
1118 	spin_unlock(&ei->i_block_reservation_lock);
1119 
1120 	/*
1121 	 * We will charge metadata quota at writeout time; this saves
1122 	 * us from metadata over-estimation, though we may go over by
1123 	 * a small amount in the end.  Here we just reserve for data.
1124 	 */
1125 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1126 	if (ret)
1127 		return ret;
1128 	/*
1129 	 * We do still charge estimated metadata to the sb though;
1130 	 * we cannot afford to run out of free blocks.
1131 	 */
1132 	if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1133 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1134 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1135 			yield();
1136 			goto repeat;
1137 		}
1138 		return -ENOSPC;
1139 	}
1140 	spin_lock(&ei->i_block_reservation_lock);
1141 	ei->i_reserved_data_blocks++;
1142 	ei->i_reserved_meta_blocks += md_needed;
1143 	spin_unlock(&ei->i_block_reservation_lock);
1144 
1145 	return 0;       /* success */
1146 }
1147 
1148 static void ext4_da_release_space(struct inode *inode, int to_free)
1149 {
1150 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1151 	struct ext4_inode_info *ei = EXT4_I(inode);
1152 
1153 	if (!to_free)
1154 		return;		/* Nothing to release, exit */
1155 
1156 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1157 
1158 	trace_ext4_da_release_space(inode, to_free);
1159 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1160 		/*
1161 		 * if there aren't enough reserved blocks, then the
1162 		 * counter is messed up somewhere.  Since this
1163 		 * function is called from invalidate page, it's
1164 		 * harmless to return without any action.
1165 		 */
1166 		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1167 			 "ino %lu, to_free %d with only %d reserved "
1168 			 "data blocks", inode->i_ino, to_free,
1169 			 ei->i_reserved_data_blocks);
1170 		WARN_ON(1);
1171 		to_free = ei->i_reserved_data_blocks;
1172 	}
1173 	ei->i_reserved_data_blocks -= to_free;
1174 
1175 	if (ei->i_reserved_data_blocks == 0) {
1176 		/*
1177 		 * We can release all of the reserved metadata blocks
1178 		 * only when we have written all of the delayed
1179 		 * allocation blocks.
1180 		 * Note that in case of bigalloc, i_reserved_meta_blocks,
1181 		 * i_reserved_data_blocks, etc. refer to number of clusters.
1182 		 */
1183 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1184 				   ei->i_reserved_meta_blocks);
1185 		ei->i_reserved_meta_blocks = 0;
1186 		ei->i_da_metadata_calc_len = 0;
1187 	}
1188 
1189 	/* update fs dirty data blocks counter */
1190 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1191 
1192 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1193 
1194 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1195 }
1196 
1197 static void ext4_da_page_release_reservation(struct page *page,
1198 					     unsigned long offset)
1199 {
1200 	int to_release = 0;
1201 	struct buffer_head *head, *bh;
1202 	unsigned int curr_off = 0;
1203 	struct inode *inode = page->mapping->host;
1204 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1205 	int num_clusters;
1206 
1207 	head = page_buffers(page);
1208 	bh = head;
1209 	do {
1210 		unsigned int next_off = curr_off + bh->b_size;
1211 
1212 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1213 			to_release++;
1214 			clear_buffer_delay(bh);
1215 			clear_buffer_da_mapped(bh);
1216 		}
1217 		curr_off = next_off;
1218 	} while ((bh = bh->b_this_page) != head);
1219 
1220 	/* If we have released all the blocks belonging to a cluster, then we
1221 	 * need to release the reserved space for that cluster. */
1222 	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1223 	while (num_clusters > 0) {
1224 		ext4_fsblk_t lblk;
1225 		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1226 			((num_clusters - 1) << sbi->s_cluster_bits);
1227 		if (sbi->s_cluster_ratio == 1 ||
1228 		    !ext4_find_delalloc_cluster(inode, lblk, 1))
1229 			ext4_da_release_space(inode, 1);
1230 
1231 		num_clusters--;
1232 	}
1233 }
1234 
1235 /*
1236  * Delayed allocation stuff
1237  */
1238 
1239 /*
1240  * mpage_da_submit_io - walks through extent of pages and try to write
1241  * them with writepage() call back
1242  *
1243  * @mpd->inode: inode
1244  * @mpd->first_page: first page of the extent
1245  * @mpd->next_page: page after the last page of the extent
1246  *
1247  * By the time mpage_da_submit_io() is called we expect all blocks
1248  * to be allocated. this may be wrong if allocation failed.
1249  *
1250  * As pages are already locked by write_cache_pages(), we can't use it
1251  */
1252 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1253 			      struct ext4_map_blocks *map)
1254 {
1255 	struct pagevec pvec;
1256 	unsigned long index, end;
1257 	int ret = 0, err, nr_pages, i;
1258 	struct inode *inode = mpd->inode;
1259 	struct address_space *mapping = inode->i_mapping;
1260 	loff_t size = i_size_read(inode);
1261 	unsigned int len, block_start;
1262 	struct buffer_head *bh, *page_bufs = NULL;
1263 	int journal_data = ext4_should_journal_data(inode);
1264 	sector_t pblock = 0, cur_logical = 0;
1265 	struct ext4_io_submit io_submit;
1266 
1267 	BUG_ON(mpd->next_page <= mpd->first_page);
1268 	memset(&io_submit, 0, sizeof(io_submit));
1269 	/*
1270 	 * We need to start from the first_page to the next_page - 1
1271 	 * to make sure we also write the mapped dirty buffer_heads.
1272 	 * If we look at mpd->b_blocknr we would only be looking
1273 	 * at the currently mapped buffer_heads.
1274 	 */
1275 	index = mpd->first_page;
1276 	end = mpd->next_page - 1;
1277 
1278 	pagevec_init(&pvec, 0);
1279 	while (index <= end) {
1280 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1281 		if (nr_pages == 0)
1282 			break;
1283 		for (i = 0; i < nr_pages; i++) {
1284 			int commit_write = 0, skip_page = 0;
1285 			struct page *page = pvec.pages[i];
1286 
1287 			index = page->index;
1288 			if (index > end)
1289 				break;
1290 
1291 			if (index == size >> PAGE_CACHE_SHIFT)
1292 				len = size & ~PAGE_CACHE_MASK;
1293 			else
1294 				len = PAGE_CACHE_SIZE;
1295 			if (map) {
1296 				cur_logical = index << (PAGE_CACHE_SHIFT -
1297 							inode->i_blkbits);
1298 				pblock = map->m_pblk + (cur_logical -
1299 							map->m_lblk);
1300 			}
1301 			index++;
1302 
1303 			BUG_ON(!PageLocked(page));
1304 			BUG_ON(PageWriteback(page));
1305 
1306 			/*
1307 			 * If the page does not have buffers (for
1308 			 * whatever reason), try to create them using
1309 			 * __block_write_begin.  If this fails,
1310 			 * skip the page and move on.
1311 			 */
1312 			if (!page_has_buffers(page)) {
1313 				if (__block_write_begin(page, 0, len,
1314 						noalloc_get_block_write)) {
1315 				skip_page:
1316 					unlock_page(page);
1317 					continue;
1318 				}
1319 				commit_write = 1;
1320 			}
1321 
1322 			bh = page_bufs = page_buffers(page);
1323 			block_start = 0;
1324 			do {
1325 				if (!bh)
1326 					goto skip_page;
1327 				if (map && (cur_logical >= map->m_lblk) &&
1328 				    (cur_logical <= (map->m_lblk +
1329 						     (map->m_len - 1)))) {
1330 					if (buffer_delay(bh)) {
1331 						clear_buffer_delay(bh);
1332 						bh->b_blocknr = pblock;
1333 					}
1334 					if (buffer_da_mapped(bh))
1335 						clear_buffer_da_mapped(bh);
1336 					if (buffer_unwritten(bh) ||
1337 					    buffer_mapped(bh))
1338 						BUG_ON(bh->b_blocknr != pblock);
1339 					if (map->m_flags & EXT4_MAP_UNINIT)
1340 						set_buffer_uninit(bh);
1341 					clear_buffer_unwritten(bh);
1342 				}
1343 
1344 				/*
1345 				 * skip page if block allocation undone and
1346 				 * block is dirty
1347 				 */
1348 				if (ext4_bh_delay_or_unwritten(NULL, bh))
1349 					skip_page = 1;
1350 				bh = bh->b_this_page;
1351 				block_start += bh->b_size;
1352 				cur_logical++;
1353 				pblock++;
1354 			} while (bh != page_bufs);
1355 
1356 			if (skip_page)
1357 				goto skip_page;
1358 
1359 			if (commit_write)
1360 				/* mark the buffer_heads as dirty & uptodate */
1361 				block_commit_write(page, 0, len);
1362 
1363 			clear_page_dirty_for_io(page);
1364 			/*
1365 			 * Delalloc doesn't support data journalling,
1366 			 * but eventually maybe we'll lift this
1367 			 * restriction.
1368 			 */
1369 			if (unlikely(journal_data && PageChecked(page)))
1370 				err = __ext4_journalled_writepage(page, len);
1371 			else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1372 				err = ext4_bio_write_page(&io_submit, page,
1373 							  len, mpd->wbc);
1374 			else if (buffer_uninit(page_bufs)) {
1375 				ext4_set_bh_endio(page_bufs, inode);
1376 				err = block_write_full_page_endio(page,
1377 					noalloc_get_block_write,
1378 					mpd->wbc, ext4_end_io_buffer_write);
1379 			} else
1380 				err = block_write_full_page(page,
1381 					noalloc_get_block_write, mpd->wbc);
1382 
1383 			if (!err)
1384 				mpd->pages_written++;
1385 			/*
1386 			 * In error case, we have to continue because
1387 			 * remaining pages are still locked
1388 			 */
1389 			if (ret == 0)
1390 				ret = err;
1391 		}
1392 		pagevec_release(&pvec);
1393 	}
1394 	ext4_io_submit(&io_submit);
1395 	return ret;
1396 }
1397 
1398 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1399 {
1400 	int nr_pages, i;
1401 	pgoff_t index, end;
1402 	struct pagevec pvec;
1403 	struct inode *inode = mpd->inode;
1404 	struct address_space *mapping = inode->i_mapping;
1405 
1406 	index = mpd->first_page;
1407 	end   = mpd->next_page - 1;
1408 	while (index <= end) {
1409 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1410 		if (nr_pages == 0)
1411 			break;
1412 		for (i = 0; i < nr_pages; i++) {
1413 			struct page *page = pvec.pages[i];
1414 			if (page->index > end)
1415 				break;
1416 			BUG_ON(!PageLocked(page));
1417 			BUG_ON(PageWriteback(page));
1418 			block_invalidatepage(page, 0);
1419 			ClearPageUptodate(page);
1420 			unlock_page(page);
1421 		}
1422 		index = pvec.pages[nr_pages - 1]->index + 1;
1423 		pagevec_release(&pvec);
1424 	}
1425 	return;
1426 }
1427 
1428 static void ext4_print_free_blocks(struct inode *inode)
1429 {
1430 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1431 	struct super_block *sb = inode->i_sb;
1432 
1433 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1434 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1435 			ext4_count_free_clusters(inode->i_sb)));
1436 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1437 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1438 	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1439 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1440 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1441 	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1442 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1443 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1444 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1445 		 EXT4_I(inode)->i_reserved_data_blocks);
1446 	ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1447 	       EXT4_I(inode)->i_reserved_meta_blocks);
1448 	return;
1449 }
1450 
1451 /*
1452  * mpage_da_map_and_submit - go through given space, map them
1453  *       if necessary, and then submit them for I/O
1454  *
1455  * @mpd - bh describing space
1456  *
1457  * The function skips space we know is already mapped to disk blocks.
1458  *
1459  */
1460 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1461 {
1462 	int err, blks, get_blocks_flags;
1463 	struct ext4_map_blocks map, *mapp = NULL;
1464 	sector_t next = mpd->b_blocknr;
1465 	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1466 	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1467 	handle_t *handle = NULL;
1468 
1469 	/*
1470 	 * If the blocks are mapped already, or we couldn't accumulate
1471 	 * any blocks, then proceed immediately to the submission stage.
1472 	 */
1473 	if ((mpd->b_size == 0) ||
1474 	    ((mpd->b_state  & (1 << BH_Mapped)) &&
1475 	     !(mpd->b_state & (1 << BH_Delay)) &&
1476 	     !(mpd->b_state & (1 << BH_Unwritten))))
1477 		goto submit_io;
1478 
1479 	handle = ext4_journal_current_handle();
1480 	BUG_ON(!handle);
1481 
1482 	/*
1483 	 * Call ext4_map_blocks() to allocate any delayed allocation
1484 	 * blocks, or to convert an uninitialized extent to be
1485 	 * initialized (in the case where we have written into
1486 	 * one or more preallocated blocks).
1487 	 *
1488 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1489 	 * indicate that we are on the delayed allocation path.  This
1490 	 * affects functions in many different parts of the allocation
1491 	 * call path.  This flag exists primarily because we don't
1492 	 * want to change *many* call functions, so ext4_map_blocks()
1493 	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1494 	 * inode's allocation semaphore is taken.
1495 	 *
1496 	 * If the blocks in questions were delalloc blocks, set
1497 	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1498 	 * variables are updated after the blocks have been allocated.
1499 	 */
1500 	map.m_lblk = next;
1501 	map.m_len = max_blocks;
1502 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1503 	if (ext4_should_dioread_nolock(mpd->inode))
1504 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1505 	if (mpd->b_state & (1 << BH_Delay))
1506 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1507 
1508 	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1509 	if (blks < 0) {
1510 		struct super_block *sb = mpd->inode->i_sb;
1511 
1512 		err = blks;
1513 		/*
1514 		 * If get block returns EAGAIN or ENOSPC and there
1515 		 * appears to be free blocks we will just let
1516 		 * mpage_da_submit_io() unlock all of the pages.
1517 		 */
1518 		if (err == -EAGAIN)
1519 			goto submit_io;
1520 
1521 		if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1522 			mpd->retval = err;
1523 			goto submit_io;
1524 		}
1525 
1526 		/*
1527 		 * get block failure will cause us to loop in
1528 		 * writepages, because a_ops->writepage won't be able
1529 		 * to make progress. The page will be redirtied by
1530 		 * writepage and writepages will again try to write
1531 		 * the same.
1532 		 */
1533 		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1534 			ext4_msg(sb, KERN_CRIT,
1535 				 "delayed block allocation failed for inode %lu "
1536 				 "at logical offset %llu with max blocks %zd "
1537 				 "with error %d", mpd->inode->i_ino,
1538 				 (unsigned long long) next,
1539 				 mpd->b_size >> mpd->inode->i_blkbits, err);
1540 			ext4_msg(sb, KERN_CRIT,
1541 				"This should not happen!! Data will be lost\n");
1542 			if (err == -ENOSPC)
1543 				ext4_print_free_blocks(mpd->inode);
1544 		}
1545 		/* invalidate all the pages */
1546 		ext4_da_block_invalidatepages(mpd);
1547 
1548 		/* Mark this page range as having been completed */
1549 		mpd->io_done = 1;
1550 		return;
1551 	}
1552 	BUG_ON(blks == 0);
1553 
1554 	mapp = &map;
1555 	if (map.m_flags & EXT4_MAP_NEW) {
1556 		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1557 		int i;
1558 
1559 		for (i = 0; i < map.m_len; i++)
1560 			unmap_underlying_metadata(bdev, map.m_pblk + i);
1561 
1562 		if (ext4_should_order_data(mpd->inode)) {
1563 			err = ext4_jbd2_file_inode(handle, mpd->inode);
1564 			if (err) {
1565 				/* Only if the journal is aborted */
1566 				mpd->retval = err;
1567 				goto submit_io;
1568 			}
1569 		}
1570 	}
1571 
1572 	/*
1573 	 * Update on-disk size along with block allocation.
1574 	 */
1575 	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1576 	if (disksize > i_size_read(mpd->inode))
1577 		disksize = i_size_read(mpd->inode);
1578 	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1579 		ext4_update_i_disksize(mpd->inode, disksize);
1580 		err = ext4_mark_inode_dirty(handle, mpd->inode);
1581 		if (err)
1582 			ext4_error(mpd->inode->i_sb,
1583 				   "Failed to mark inode %lu dirty",
1584 				   mpd->inode->i_ino);
1585 	}
1586 
1587 submit_io:
1588 	mpage_da_submit_io(mpd, mapp);
1589 	mpd->io_done = 1;
1590 }
1591 
1592 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1593 		(1 << BH_Delay) | (1 << BH_Unwritten))
1594 
1595 /*
1596  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1597  *
1598  * @mpd->lbh - extent of blocks
1599  * @logical - logical number of the block in the file
1600  * @bh - bh of the block (used to access block's state)
1601  *
1602  * the function is used to collect contig. blocks in same state
1603  */
1604 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1605 				   sector_t logical, size_t b_size,
1606 				   unsigned long b_state)
1607 {
1608 	sector_t next;
1609 	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1610 
1611 	/*
1612 	 * XXX Don't go larger than mballoc is willing to allocate
1613 	 * This is a stopgap solution.  We eventually need to fold
1614 	 * mpage_da_submit_io() into this function and then call
1615 	 * ext4_map_blocks() multiple times in a loop
1616 	 */
1617 	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1618 		goto flush_it;
1619 
1620 	/* check if thereserved journal credits might overflow */
1621 	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1622 		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1623 			/*
1624 			 * With non-extent format we are limited by the journal
1625 			 * credit available.  Total credit needed to insert
1626 			 * nrblocks contiguous blocks is dependent on the
1627 			 * nrblocks.  So limit nrblocks.
1628 			 */
1629 			goto flush_it;
1630 		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1631 				EXT4_MAX_TRANS_DATA) {
1632 			/*
1633 			 * Adding the new buffer_head would make it cross the
1634 			 * allowed limit for which we have journal credit
1635 			 * reserved. So limit the new bh->b_size
1636 			 */
1637 			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1638 						mpd->inode->i_blkbits;
1639 			/* we will do mpage_da_submit_io in the next loop */
1640 		}
1641 	}
1642 	/*
1643 	 * First block in the extent
1644 	 */
1645 	if (mpd->b_size == 0) {
1646 		mpd->b_blocknr = logical;
1647 		mpd->b_size = b_size;
1648 		mpd->b_state = b_state & BH_FLAGS;
1649 		return;
1650 	}
1651 
1652 	next = mpd->b_blocknr + nrblocks;
1653 	/*
1654 	 * Can we merge the block to our big extent?
1655 	 */
1656 	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1657 		mpd->b_size += b_size;
1658 		return;
1659 	}
1660 
1661 flush_it:
1662 	/*
1663 	 * We couldn't merge the block to our extent, so we
1664 	 * need to flush current  extent and start new one
1665 	 */
1666 	mpage_da_map_and_submit(mpd);
1667 	return;
1668 }
1669 
1670 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1671 {
1672 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1673 }
1674 
1675 /*
1676  * This function is grabs code from the very beginning of
1677  * ext4_map_blocks, but assumes that the caller is from delayed write
1678  * time. This function looks up the requested blocks and sets the
1679  * buffer delay bit under the protection of i_data_sem.
1680  */
1681 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1682 			      struct ext4_map_blocks *map,
1683 			      struct buffer_head *bh)
1684 {
1685 	int retval;
1686 	sector_t invalid_block = ~((sector_t) 0xffff);
1687 
1688 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1689 		invalid_block = ~0;
1690 
1691 	map->m_flags = 0;
1692 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1693 		  "logical block %lu\n", inode->i_ino, map->m_len,
1694 		  (unsigned long) map->m_lblk);
1695 	/*
1696 	 * Try to see if we can get the block without requesting a new
1697 	 * file system block.
1698 	 */
1699 	down_read((&EXT4_I(inode)->i_data_sem));
1700 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1701 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1702 	else
1703 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1704 
1705 	if (retval == 0) {
1706 		/*
1707 		 * XXX: __block_prepare_write() unmaps passed block,
1708 		 * is it OK?
1709 		 */
1710 		/* If the block was allocated from previously allocated cluster,
1711 		 * then we dont need to reserve it again. */
1712 		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1713 			retval = ext4_da_reserve_space(inode, iblock);
1714 			if (retval)
1715 				/* not enough space to reserve */
1716 				goto out_unlock;
1717 		}
1718 
1719 		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1720 		 * and it should not appear on the bh->b_state.
1721 		 */
1722 		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1723 
1724 		map_bh(bh, inode->i_sb, invalid_block);
1725 		set_buffer_new(bh);
1726 		set_buffer_delay(bh);
1727 	}
1728 
1729 out_unlock:
1730 	up_read((&EXT4_I(inode)->i_data_sem));
1731 
1732 	return retval;
1733 }
1734 
1735 /*
1736  * This is a special get_blocks_t callback which is used by
1737  * ext4_da_write_begin().  It will either return mapped block or
1738  * reserve space for a single block.
1739  *
1740  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1741  * We also have b_blocknr = -1 and b_bdev initialized properly
1742  *
1743  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1744  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1745  * initialized properly.
1746  */
1747 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1748 				  struct buffer_head *bh, int create)
1749 {
1750 	struct ext4_map_blocks map;
1751 	int ret = 0;
1752 
1753 	BUG_ON(create == 0);
1754 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1755 
1756 	map.m_lblk = iblock;
1757 	map.m_len = 1;
1758 
1759 	/*
1760 	 * first, we need to know whether the block is allocated already
1761 	 * preallocated blocks are unmapped but should treated
1762 	 * the same as allocated blocks.
1763 	 */
1764 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1765 	if (ret <= 0)
1766 		return ret;
1767 
1768 	map_bh(bh, inode->i_sb, map.m_pblk);
1769 	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1770 
1771 	if (buffer_unwritten(bh)) {
1772 		/* A delayed write to unwritten bh should be marked
1773 		 * new and mapped.  Mapped ensures that we don't do
1774 		 * get_block multiple times when we write to the same
1775 		 * offset and new ensures that we do proper zero out
1776 		 * for partial write.
1777 		 */
1778 		set_buffer_new(bh);
1779 		set_buffer_mapped(bh);
1780 	}
1781 	return 0;
1782 }
1783 
1784 /*
1785  * This function is used as a standard get_block_t calback function
1786  * when there is no desire to allocate any blocks.  It is used as a
1787  * callback function for block_write_begin() and block_write_full_page().
1788  * These functions should only try to map a single block at a time.
1789  *
1790  * Since this function doesn't do block allocations even if the caller
1791  * requests it by passing in create=1, it is critically important that
1792  * any caller checks to make sure that any buffer heads are returned
1793  * by this function are either all already mapped or marked for
1794  * delayed allocation before calling  block_write_full_page().  Otherwise,
1795  * b_blocknr could be left unitialized, and the page write functions will
1796  * be taken by surprise.
1797  */
1798 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1799 				   struct buffer_head *bh_result, int create)
1800 {
1801 	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1802 	return _ext4_get_block(inode, iblock, bh_result, 0);
1803 }
1804 
1805 static int bget_one(handle_t *handle, struct buffer_head *bh)
1806 {
1807 	get_bh(bh);
1808 	return 0;
1809 }
1810 
1811 static int bput_one(handle_t *handle, struct buffer_head *bh)
1812 {
1813 	put_bh(bh);
1814 	return 0;
1815 }
1816 
1817 static int __ext4_journalled_writepage(struct page *page,
1818 				       unsigned int len)
1819 {
1820 	struct address_space *mapping = page->mapping;
1821 	struct inode *inode = mapping->host;
1822 	struct buffer_head *page_bufs;
1823 	handle_t *handle = NULL;
1824 	int ret = 0;
1825 	int err;
1826 
1827 	ClearPageChecked(page);
1828 	page_bufs = page_buffers(page);
1829 	BUG_ON(!page_bufs);
1830 	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1831 	/* As soon as we unlock the page, it can go away, but we have
1832 	 * references to buffers so we are safe */
1833 	unlock_page(page);
1834 
1835 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1836 	if (IS_ERR(handle)) {
1837 		ret = PTR_ERR(handle);
1838 		goto out;
1839 	}
1840 
1841 	BUG_ON(!ext4_handle_valid(handle));
1842 
1843 	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1844 				do_journal_get_write_access);
1845 
1846 	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1847 				write_end_fn);
1848 	if (ret == 0)
1849 		ret = err;
1850 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1851 	err = ext4_journal_stop(handle);
1852 	if (!ret)
1853 		ret = err;
1854 
1855 	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1856 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1857 out:
1858 	return ret;
1859 }
1860 
1861 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
1862 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
1863 
1864 /*
1865  * Note that we don't need to start a transaction unless we're journaling data
1866  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1867  * need to file the inode to the transaction's list in ordered mode because if
1868  * we are writing back data added by write(), the inode is already there and if
1869  * we are writing back data modified via mmap(), no one guarantees in which
1870  * transaction the data will hit the disk. In case we are journaling data, we
1871  * cannot start transaction directly because transaction start ranks above page
1872  * lock so we have to do some magic.
1873  *
1874  * This function can get called via...
1875  *   - ext4_da_writepages after taking page lock (have journal handle)
1876  *   - journal_submit_inode_data_buffers (no journal handle)
1877  *   - shrink_page_list via pdflush (no journal handle)
1878  *   - grab_page_cache when doing write_begin (have journal handle)
1879  *
1880  * We don't do any block allocation in this function. If we have page with
1881  * multiple blocks we need to write those buffer_heads that are mapped. This
1882  * is important for mmaped based write. So if we do with blocksize 1K
1883  * truncate(f, 1024);
1884  * a = mmap(f, 0, 4096);
1885  * a[0] = 'a';
1886  * truncate(f, 4096);
1887  * we have in the page first buffer_head mapped via page_mkwrite call back
1888  * but other buffer_heads would be unmapped but dirty (dirty done via the
1889  * do_wp_page). So writepage should write the first block. If we modify
1890  * the mmap area beyond 1024 we will again get a page_fault and the
1891  * page_mkwrite callback will do the block allocation and mark the
1892  * buffer_heads mapped.
1893  *
1894  * We redirty the page if we have any buffer_heads that is either delay or
1895  * unwritten in the page.
1896  *
1897  * We can get recursively called as show below.
1898  *
1899  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1900  *		ext4_writepage()
1901  *
1902  * But since we don't do any block allocation we should not deadlock.
1903  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1904  */
1905 static int ext4_writepage(struct page *page,
1906 			  struct writeback_control *wbc)
1907 {
1908 	int ret = 0, commit_write = 0;
1909 	loff_t size;
1910 	unsigned int len;
1911 	struct buffer_head *page_bufs = NULL;
1912 	struct inode *inode = page->mapping->host;
1913 
1914 	trace_ext4_writepage(page);
1915 	size = i_size_read(inode);
1916 	if (page->index == size >> PAGE_CACHE_SHIFT)
1917 		len = size & ~PAGE_CACHE_MASK;
1918 	else
1919 		len = PAGE_CACHE_SIZE;
1920 
1921 	/*
1922 	 * If the page does not have buffers (for whatever reason),
1923 	 * try to create them using __block_write_begin.  If this
1924 	 * fails, redirty the page and move on.
1925 	 */
1926 	if (!page_has_buffers(page)) {
1927 		if (__block_write_begin(page, 0, len,
1928 					noalloc_get_block_write)) {
1929 		redirty_page:
1930 			redirty_page_for_writepage(wbc, page);
1931 			unlock_page(page);
1932 			return 0;
1933 		}
1934 		commit_write = 1;
1935 	}
1936 	page_bufs = page_buffers(page);
1937 	if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1938 			      ext4_bh_delay_or_unwritten)) {
1939 		/*
1940 		 * We don't want to do block allocation, so redirty
1941 		 * the page and return.  We may reach here when we do
1942 		 * a journal commit via journal_submit_inode_data_buffers.
1943 		 * We can also reach here via shrink_page_list but it
1944 		 * should never be for direct reclaim so warn if that
1945 		 * happens
1946 		 */
1947 		WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1948 								PF_MEMALLOC);
1949 		goto redirty_page;
1950 	}
1951 	if (commit_write)
1952 		/* now mark the buffer_heads as dirty and uptodate */
1953 		block_commit_write(page, 0, len);
1954 
1955 	if (PageChecked(page) && ext4_should_journal_data(inode))
1956 		/*
1957 		 * It's mmapped pagecache.  Add buffers and journal it.  There
1958 		 * doesn't seem much point in redirtying the page here.
1959 		 */
1960 		return __ext4_journalled_writepage(page, len);
1961 
1962 	if (buffer_uninit(page_bufs)) {
1963 		ext4_set_bh_endio(page_bufs, inode);
1964 		ret = block_write_full_page_endio(page, noalloc_get_block_write,
1965 					    wbc, ext4_end_io_buffer_write);
1966 	} else
1967 		ret = block_write_full_page(page, noalloc_get_block_write,
1968 					    wbc);
1969 
1970 	return ret;
1971 }
1972 
1973 /*
1974  * This is called via ext4_da_writepages() to
1975  * calculate the total number of credits to reserve to fit
1976  * a single extent allocation into a single transaction,
1977  * ext4_da_writpeages() will loop calling this before
1978  * the block allocation.
1979  */
1980 
1981 static int ext4_da_writepages_trans_blocks(struct inode *inode)
1982 {
1983 	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
1984 
1985 	/*
1986 	 * With non-extent format the journal credit needed to
1987 	 * insert nrblocks contiguous block is dependent on
1988 	 * number of contiguous block. So we will limit
1989 	 * number of contiguous block to a sane value
1990 	 */
1991 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
1992 	    (max_blocks > EXT4_MAX_TRANS_DATA))
1993 		max_blocks = EXT4_MAX_TRANS_DATA;
1994 
1995 	return ext4_chunk_trans_blocks(inode, max_blocks);
1996 }
1997 
1998 /*
1999  * write_cache_pages_da - walk the list of dirty pages of the given
2000  * address space and accumulate pages that need writing, and call
2001  * mpage_da_map_and_submit to map a single contiguous memory region
2002  * and then write them.
2003  */
2004 static int write_cache_pages_da(struct address_space *mapping,
2005 				struct writeback_control *wbc,
2006 				struct mpage_da_data *mpd,
2007 				pgoff_t *done_index)
2008 {
2009 	struct buffer_head	*bh, *head;
2010 	struct inode		*inode = mapping->host;
2011 	struct pagevec		pvec;
2012 	unsigned int		nr_pages;
2013 	sector_t		logical;
2014 	pgoff_t			index, end;
2015 	long			nr_to_write = wbc->nr_to_write;
2016 	int			i, tag, ret = 0;
2017 
2018 	memset(mpd, 0, sizeof(struct mpage_da_data));
2019 	mpd->wbc = wbc;
2020 	mpd->inode = inode;
2021 	pagevec_init(&pvec, 0);
2022 	index = wbc->range_start >> PAGE_CACHE_SHIFT;
2023 	end = wbc->range_end >> PAGE_CACHE_SHIFT;
2024 
2025 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2026 		tag = PAGECACHE_TAG_TOWRITE;
2027 	else
2028 		tag = PAGECACHE_TAG_DIRTY;
2029 
2030 	*done_index = index;
2031 	while (index <= end) {
2032 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2033 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2034 		if (nr_pages == 0)
2035 			return 0;
2036 
2037 		for (i = 0; i < nr_pages; i++) {
2038 			struct page *page = pvec.pages[i];
2039 
2040 			/*
2041 			 * At this point, the page may be truncated or
2042 			 * invalidated (changing page->mapping to NULL), or
2043 			 * even swizzled back from swapper_space to tmpfs file
2044 			 * mapping. However, page->index will not change
2045 			 * because we have a reference on the page.
2046 			 */
2047 			if (page->index > end)
2048 				goto out;
2049 
2050 			*done_index = page->index + 1;
2051 
2052 			/*
2053 			 * If we can't merge this page, and we have
2054 			 * accumulated an contiguous region, write it
2055 			 */
2056 			if ((mpd->next_page != page->index) &&
2057 			    (mpd->next_page != mpd->first_page)) {
2058 				mpage_da_map_and_submit(mpd);
2059 				goto ret_extent_tail;
2060 			}
2061 
2062 			lock_page(page);
2063 
2064 			/*
2065 			 * If the page is no longer dirty, or its
2066 			 * mapping no longer corresponds to inode we
2067 			 * are writing (which means it has been
2068 			 * truncated or invalidated), or the page is
2069 			 * already under writeback and we are not
2070 			 * doing a data integrity writeback, skip the page
2071 			 */
2072 			if (!PageDirty(page) ||
2073 			    (PageWriteback(page) &&
2074 			     (wbc->sync_mode == WB_SYNC_NONE)) ||
2075 			    unlikely(page->mapping != mapping)) {
2076 				unlock_page(page);
2077 				continue;
2078 			}
2079 
2080 			wait_on_page_writeback(page);
2081 			BUG_ON(PageWriteback(page));
2082 
2083 			if (mpd->next_page != page->index)
2084 				mpd->first_page = page->index;
2085 			mpd->next_page = page->index + 1;
2086 			logical = (sector_t) page->index <<
2087 				(PAGE_CACHE_SHIFT - inode->i_blkbits);
2088 
2089 			if (!page_has_buffers(page)) {
2090 				mpage_add_bh_to_extent(mpd, logical,
2091 						       PAGE_CACHE_SIZE,
2092 						       (1 << BH_Dirty) | (1 << BH_Uptodate));
2093 				if (mpd->io_done)
2094 					goto ret_extent_tail;
2095 			} else {
2096 				/*
2097 				 * Page with regular buffer heads,
2098 				 * just add all dirty ones
2099 				 */
2100 				head = page_buffers(page);
2101 				bh = head;
2102 				do {
2103 					BUG_ON(buffer_locked(bh));
2104 					/*
2105 					 * We need to try to allocate
2106 					 * unmapped blocks in the same page.
2107 					 * Otherwise we won't make progress
2108 					 * with the page in ext4_writepage
2109 					 */
2110 					if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2111 						mpage_add_bh_to_extent(mpd, logical,
2112 								       bh->b_size,
2113 								       bh->b_state);
2114 						if (mpd->io_done)
2115 							goto ret_extent_tail;
2116 					} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2117 						/*
2118 						 * mapped dirty buffer. We need
2119 						 * to update the b_state
2120 						 * because we look at b_state
2121 						 * in mpage_da_map_blocks.  We
2122 						 * don't update b_size because
2123 						 * if we find an unmapped
2124 						 * buffer_head later we need to
2125 						 * use the b_state flag of that
2126 						 * buffer_head.
2127 						 */
2128 						if (mpd->b_size == 0)
2129 							mpd->b_state = bh->b_state & BH_FLAGS;
2130 					}
2131 					logical++;
2132 				} while ((bh = bh->b_this_page) != head);
2133 			}
2134 
2135 			if (nr_to_write > 0) {
2136 				nr_to_write--;
2137 				if (nr_to_write == 0 &&
2138 				    wbc->sync_mode == WB_SYNC_NONE)
2139 					/*
2140 					 * We stop writing back only if we are
2141 					 * not doing integrity sync. In case of
2142 					 * integrity sync we have to keep going
2143 					 * because someone may be concurrently
2144 					 * dirtying pages, and we might have
2145 					 * synced a lot of newly appeared dirty
2146 					 * pages, but have not synced all of the
2147 					 * old dirty pages.
2148 					 */
2149 					goto out;
2150 			}
2151 		}
2152 		pagevec_release(&pvec);
2153 		cond_resched();
2154 	}
2155 	return 0;
2156 ret_extent_tail:
2157 	ret = MPAGE_DA_EXTENT_TAIL;
2158 out:
2159 	pagevec_release(&pvec);
2160 	cond_resched();
2161 	return ret;
2162 }
2163 
2164 
2165 static int ext4_da_writepages(struct address_space *mapping,
2166 			      struct writeback_control *wbc)
2167 {
2168 	pgoff_t	index;
2169 	int range_whole = 0;
2170 	handle_t *handle = NULL;
2171 	struct mpage_da_data mpd;
2172 	struct inode *inode = mapping->host;
2173 	int pages_written = 0;
2174 	unsigned int max_pages;
2175 	int range_cyclic, cycled = 1, io_done = 0;
2176 	int needed_blocks, ret = 0;
2177 	long desired_nr_to_write, nr_to_writebump = 0;
2178 	loff_t range_start = wbc->range_start;
2179 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2180 	pgoff_t done_index = 0;
2181 	pgoff_t end;
2182 	struct blk_plug plug;
2183 
2184 	trace_ext4_da_writepages(inode, wbc);
2185 
2186 	/*
2187 	 * No pages to write? This is mainly a kludge to avoid starting
2188 	 * a transaction for special inodes like journal inode on last iput()
2189 	 * because that could violate lock ordering on umount
2190 	 */
2191 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2192 		return 0;
2193 
2194 	/*
2195 	 * If the filesystem has aborted, it is read-only, so return
2196 	 * right away instead of dumping stack traces later on that
2197 	 * will obscure the real source of the problem.  We test
2198 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2199 	 * the latter could be true if the filesystem is mounted
2200 	 * read-only, and in that case, ext4_da_writepages should
2201 	 * *never* be called, so if that ever happens, we would want
2202 	 * the stack trace.
2203 	 */
2204 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2205 		return -EROFS;
2206 
2207 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2208 		range_whole = 1;
2209 
2210 	range_cyclic = wbc->range_cyclic;
2211 	if (wbc->range_cyclic) {
2212 		index = mapping->writeback_index;
2213 		if (index)
2214 			cycled = 0;
2215 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2216 		wbc->range_end  = LLONG_MAX;
2217 		wbc->range_cyclic = 0;
2218 		end = -1;
2219 	} else {
2220 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2221 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
2222 	}
2223 
2224 	/*
2225 	 * This works around two forms of stupidity.  The first is in
2226 	 * the writeback code, which caps the maximum number of pages
2227 	 * written to be 1024 pages.  This is wrong on multiple
2228 	 * levels; different architectues have a different page size,
2229 	 * which changes the maximum amount of data which gets
2230 	 * written.  Secondly, 4 megabytes is way too small.  XFS
2231 	 * forces this value to be 16 megabytes by multiplying
2232 	 * nr_to_write parameter by four, and then relies on its
2233 	 * allocator to allocate larger extents to make them
2234 	 * contiguous.  Unfortunately this brings us to the second
2235 	 * stupidity, which is that ext4's mballoc code only allocates
2236 	 * at most 2048 blocks.  So we force contiguous writes up to
2237 	 * the number of dirty blocks in the inode, or
2238 	 * sbi->max_writeback_mb_bump whichever is smaller.
2239 	 */
2240 	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2241 	if (!range_cyclic && range_whole) {
2242 		if (wbc->nr_to_write == LONG_MAX)
2243 			desired_nr_to_write = wbc->nr_to_write;
2244 		else
2245 			desired_nr_to_write = wbc->nr_to_write * 8;
2246 	} else
2247 		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2248 							   max_pages);
2249 	if (desired_nr_to_write > max_pages)
2250 		desired_nr_to_write = max_pages;
2251 
2252 	if (wbc->nr_to_write < desired_nr_to_write) {
2253 		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2254 		wbc->nr_to_write = desired_nr_to_write;
2255 	}
2256 
2257 retry:
2258 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2259 		tag_pages_for_writeback(mapping, index, end);
2260 
2261 	blk_start_plug(&plug);
2262 	while (!ret && wbc->nr_to_write > 0) {
2263 
2264 		/*
2265 		 * we  insert one extent at a time. So we need
2266 		 * credit needed for single extent allocation.
2267 		 * journalled mode is currently not supported
2268 		 * by delalloc
2269 		 */
2270 		BUG_ON(ext4_should_journal_data(inode));
2271 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2272 
2273 		/* start a new transaction*/
2274 		handle = ext4_journal_start(inode, needed_blocks);
2275 		if (IS_ERR(handle)) {
2276 			ret = PTR_ERR(handle);
2277 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2278 			       "%ld pages, ino %lu; err %d", __func__,
2279 				wbc->nr_to_write, inode->i_ino, ret);
2280 			blk_finish_plug(&plug);
2281 			goto out_writepages;
2282 		}
2283 
2284 		/*
2285 		 * Now call write_cache_pages_da() to find the next
2286 		 * contiguous region of logical blocks that need
2287 		 * blocks to be allocated by ext4 and submit them.
2288 		 */
2289 		ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2290 		/*
2291 		 * If we have a contiguous extent of pages and we
2292 		 * haven't done the I/O yet, map the blocks and submit
2293 		 * them for I/O.
2294 		 */
2295 		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2296 			mpage_da_map_and_submit(&mpd);
2297 			ret = MPAGE_DA_EXTENT_TAIL;
2298 		}
2299 		trace_ext4_da_write_pages(inode, &mpd);
2300 		wbc->nr_to_write -= mpd.pages_written;
2301 
2302 		ext4_journal_stop(handle);
2303 
2304 		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2305 			/* commit the transaction which would
2306 			 * free blocks released in the transaction
2307 			 * and try again
2308 			 */
2309 			jbd2_journal_force_commit_nested(sbi->s_journal);
2310 			ret = 0;
2311 		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2312 			/*
2313 			 * Got one extent now try with rest of the pages.
2314 			 * If mpd.retval is set -EIO, journal is aborted.
2315 			 * So we don't need to write any more.
2316 			 */
2317 			pages_written += mpd.pages_written;
2318 			ret = mpd.retval;
2319 			io_done = 1;
2320 		} else if (wbc->nr_to_write)
2321 			/*
2322 			 * There is no more writeout needed
2323 			 * or we requested for a noblocking writeout
2324 			 * and we found the device congested
2325 			 */
2326 			break;
2327 	}
2328 	blk_finish_plug(&plug);
2329 	if (!io_done && !cycled) {
2330 		cycled = 1;
2331 		index = 0;
2332 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2333 		wbc->range_end  = mapping->writeback_index - 1;
2334 		goto retry;
2335 	}
2336 
2337 	/* Update index */
2338 	wbc->range_cyclic = range_cyclic;
2339 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2340 		/*
2341 		 * set the writeback_index so that range_cyclic
2342 		 * mode will write it back later
2343 		 */
2344 		mapping->writeback_index = done_index;
2345 
2346 out_writepages:
2347 	wbc->nr_to_write -= nr_to_writebump;
2348 	wbc->range_start = range_start;
2349 	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2350 	return ret;
2351 }
2352 
2353 #define FALL_BACK_TO_NONDELALLOC 1
2354 static int ext4_nonda_switch(struct super_block *sb)
2355 {
2356 	s64 free_blocks, dirty_blocks;
2357 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2358 
2359 	/*
2360 	 * switch to non delalloc mode if we are running low
2361 	 * on free block. The free block accounting via percpu
2362 	 * counters can get slightly wrong with percpu_counter_batch getting
2363 	 * accumulated on each CPU without updating global counters
2364 	 * Delalloc need an accurate free block accounting. So switch
2365 	 * to non delalloc when we are near to error range.
2366 	 */
2367 	free_blocks  = EXT4_C2B(sbi,
2368 		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2369 	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2370 	if (2 * free_blocks < 3 * dirty_blocks ||
2371 		free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2372 		/*
2373 		 * free block count is less than 150% of dirty blocks
2374 		 * or free blocks is less than watermark
2375 		 */
2376 		return 1;
2377 	}
2378 	/*
2379 	 * Even if we don't switch but are nearing capacity,
2380 	 * start pushing delalloc when 1/2 of free blocks are dirty.
2381 	 */
2382 	if (free_blocks < 2 * dirty_blocks)
2383 		writeback_inodes_sb_if_idle(sb, WB_REASON_FS_FREE_SPACE);
2384 
2385 	return 0;
2386 }
2387 
2388 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2389 			       loff_t pos, unsigned len, unsigned flags,
2390 			       struct page **pagep, void **fsdata)
2391 {
2392 	int ret, retries = 0;
2393 	struct page *page;
2394 	pgoff_t index;
2395 	struct inode *inode = mapping->host;
2396 	handle_t *handle;
2397 
2398 	index = pos >> PAGE_CACHE_SHIFT;
2399 
2400 	if (ext4_nonda_switch(inode->i_sb)) {
2401 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2402 		return ext4_write_begin(file, mapping, pos,
2403 					len, flags, pagep, fsdata);
2404 	}
2405 	*fsdata = (void *)0;
2406 	trace_ext4_da_write_begin(inode, pos, len, flags);
2407 retry:
2408 	/*
2409 	 * With delayed allocation, we don't log the i_disksize update
2410 	 * if there is delayed block allocation. But we still need
2411 	 * to journalling the i_disksize update if writes to the end
2412 	 * of file which has an already mapped buffer.
2413 	 */
2414 	handle = ext4_journal_start(inode, 1);
2415 	if (IS_ERR(handle)) {
2416 		ret = PTR_ERR(handle);
2417 		goto out;
2418 	}
2419 	/* We cannot recurse into the filesystem as the transaction is already
2420 	 * started */
2421 	flags |= AOP_FLAG_NOFS;
2422 
2423 	page = grab_cache_page_write_begin(mapping, index, flags);
2424 	if (!page) {
2425 		ext4_journal_stop(handle);
2426 		ret = -ENOMEM;
2427 		goto out;
2428 	}
2429 	*pagep = page;
2430 
2431 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2432 	if (ret < 0) {
2433 		unlock_page(page);
2434 		ext4_journal_stop(handle);
2435 		page_cache_release(page);
2436 		/*
2437 		 * block_write_begin may have instantiated a few blocks
2438 		 * outside i_size.  Trim these off again. Don't need
2439 		 * i_size_read because we hold i_mutex.
2440 		 */
2441 		if (pos + len > inode->i_size)
2442 			ext4_truncate_failed_write(inode);
2443 	}
2444 
2445 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2446 		goto retry;
2447 out:
2448 	return ret;
2449 }
2450 
2451 /*
2452  * Check if we should update i_disksize
2453  * when write to the end of file but not require block allocation
2454  */
2455 static int ext4_da_should_update_i_disksize(struct page *page,
2456 					    unsigned long offset)
2457 {
2458 	struct buffer_head *bh;
2459 	struct inode *inode = page->mapping->host;
2460 	unsigned int idx;
2461 	int i;
2462 
2463 	bh = page_buffers(page);
2464 	idx = offset >> inode->i_blkbits;
2465 
2466 	for (i = 0; i < idx; i++)
2467 		bh = bh->b_this_page;
2468 
2469 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2470 		return 0;
2471 	return 1;
2472 }
2473 
2474 static int ext4_da_write_end(struct file *file,
2475 			     struct address_space *mapping,
2476 			     loff_t pos, unsigned len, unsigned copied,
2477 			     struct page *page, void *fsdata)
2478 {
2479 	struct inode *inode = mapping->host;
2480 	int ret = 0, ret2;
2481 	handle_t *handle = ext4_journal_current_handle();
2482 	loff_t new_i_size;
2483 	unsigned long start, end;
2484 	int write_mode = (int)(unsigned long)fsdata;
2485 
2486 	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2487 		switch (ext4_inode_journal_mode(inode)) {
2488 		case EXT4_INODE_ORDERED_DATA_MODE:
2489 			return ext4_ordered_write_end(file, mapping, pos,
2490 					len, copied, page, fsdata);
2491 		case EXT4_INODE_WRITEBACK_DATA_MODE:
2492 			return ext4_writeback_write_end(file, mapping, pos,
2493 					len, copied, page, fsdata);
2494 		default:
2495 			BUG();
2496 		}
2497 	}
2498 
2499 	trace_ext4_da_write_end(inode, pos, len, copied);
2500 	start = pos & (PAGE_CACHE_SIZE - 1);
2501 	end = start + copied - 1;
2502 
2503 	/*
2504 	 * generic_write_end() will run mark_inode_dirty() if i_size
2505 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2506 	 * into that.
2507 	 */
2508 
2509 	new_i_size = pos + copied;
2510 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2511 		if (ext4_da_should_update_i_disksize(page, end)) {
2512 			down_write(&EXT4_I(inode)->i_data_sem);
2513 			if (new_i_size > EXT4_I(inode)->i_disksize) {
2514 				/*
2515 				 * Updating i_disksize when extending file
2516 				 * without needing block allocation
2517 				 */
2518 				if (ext4_should_order_data(inode))
2519 					ret = ext4_jbd2_file_inode(handle,
2520 								   inode);
2521 
2522 				EXT4_I(inode)->i_disksize = new_i_size;
2523 			}
2524 			up_write(&EXT4_I(inode)->i_data_sem);
2525 			/* We need to mark inode dirty even if
2526 			 * new_i_size is less that inode->i_size
2527 			 * bu greater than i_disksize.(hint delalloc)
2528 			 */
2529 			ext4_mark_inode_dirty(handle, inode);
2530 		}
2531 	}
2532 	ret2 = generic_write_end(file, mapping, pos, len, copied,
2533 							page, fsdata);
2534 	copied = ret2;
2535 	if (ret2 < 0)
2536 		ret = ret2;
2537 	ret2 = ext4_journal_stop(handle);
2538 	if (!ret)
2539 		ret = ret2;
2540 
2541 	return ret ? ret : copied;
2542 }
2543 
2544 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2545 {
2546 	/*
2547 	 * Drop reserved blocks
2548 	 */
2549 	BUG_ON(!PageLocked(page));
2550 	if (!page_has_buffers(page))
2551 		goto out;
2552 
2553 	ext4_da_page_release_reservation(page, offset);
2554 
2555 out:
2556 	ext4_invalidatepage(page, offset);
2557 
2558 	return;
2559 }
2560 
2561 /*
2562  * Force all delayed allocation blocks to be allocated for a given inode.
2563  */
2564 int ext4_alloc_da_blocks(struct inode *inode)
2565 {
2566 	trace_ext4_alloc_da_blocks(inode);
2567 
2568 	if (!EXT4_I(inode)->i_reserved_data_blocks &&
2569 	    !EXT4_I(inode)->i_reserved_meta_blocks)
2570 		return 0;
2571 
2572 	/*
2573 	 * We do something simple for now.  The filemap_flush() will
2574 	 * also start triggering a write of the data blocks, which is
2575 	 * not strictly speaking necessary (and for users of
2576 	 * laptop_mode, not even desirable).  However, to do otherwise
2577 	 * would require replicating code paths in:
2578 	 *
2579 	 * ext4_da_writepages() ->
2580 	 *    write_cache_pages() ---> (via passed in callback function)
2581 	 *        __mpage_da_writepage() -->
2582 	 *           mpage_add_bh_to_extent()
2583 	 *           mpage_da_map_blocks()
2584 	 *
2585 	 * The problem is that write_cache_pages(), located in
2586 	 * mm/page-writeback.c, marks pages clean in preparation for
2587 	 * doing I/O, which is not desirable if we're not planning on
2588 	 * doing I/O at all.
2589 	 *
2590 	 * We could call write_cache_pages(), and then redirty all of
2591 	 * the pages by calling redirty_page_for_writepage() but that
2592 	 * would be ugly in the extreme.  So instead we would need to
2593 	 * replicate parts of the code in the above functions,
2594 	 * simplifying them because we wouldn't actually intend to
2595 	 * write out the pages, but rather only collect contiguous
2596 	 * logical block extents, call the multi-block allocator, and
2597 	 * then update the buffer heads with the block allocations.
2598 	 *
2599 	 * For now, though, we'll cheat by calling filemap_flush(),
2600 	 * which will map the blocks, and start the I/O, but not
2601 	 * actually wait for the I/O to complete.
2602 	 */
2603 	return filemap_flush(inode->i_mapping);
2604 }
2605 
2606 /*
2607  * bmap() is special.  It gets used by applications such as lilo and by
2608  * the swapper to find the on-disk block of a specific piece of data.
2609  *
2610  * Naturally, this is dangerous if the block concerned is still in the
2611  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2612  * filesystem and enables swap, then they may get a nasty shock when the
2613  * data getting swapped to that swapfile suddenly gets overwritten by
2614  * the original zero's written out previously to the journal and
2615  * awaiting writeback in the kernel's buffer cache.
2616  *
2617  * So, if we see any bmap calls here on a modified, data-journaled file,
2618  * take extra steps to flush any blocks which might be in the cache.
2619  */
2620 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2621 {
2622 	struct inode *inode = mapping->host;
2623 	journal_t *journal;
2624 	int err;
2625 
2626 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2627 			test_opt(inode->i_sb, DELALLOC)) {
2628 		/*
2629 		 * With delalloc we want to sync the file
2630 		 * so that we can make sure we allocate
2631 		 * blocks for file
2632 		 */
2633 		filemap_write_and_wait(mapping);
2634 	}
2635 
2636 	if (EXT4_JOURNAL(inode) &&
2637 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2638 		/*
2639 		 * This is a REALLY heavyweight approach, but the use of
2640 		 * bmap on dirty files is expected to be extremely rare:
2641 		 * only if we run lilo or swapon on a freshly made file
2642 		 * do we expect this to happen.
2643 		 *
2644 		 * (bmap requires CAP_SYS_RAWIO so this does not
2645 		 * represent an unprivileged user DOS attack --- we'd be
2646 		 * in trouble if mortal users could trigger this path at
2647 		 * will.)
2648 		 *
2649 		 * NB. EXT4_STATE_JDATA is not set on files other than
2650 		 * regular files.  If somebody wants to bmap a directory
2651 		 * or symlink and gets confused because the buffer
2652 		 * hasn't yet been flushed to disk, they deserve
2653 		 * everything they get.
2654 		 */
2655 
2656 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2657 		journal = EXT4_JOURNAL(inode);
2658 		jbd2_journal_lock_updates(journal);
2659 		err = jbd2_journal_flush(journal);
2660 		jbd2_journal_unlock_updates(journal);
2661 
2662 		if (err)
2663 			return 0;
2664 	}
2665 
2666 	return generic_block_bmap(mapping, block, ext4_get_block);
2667 }
2668 
2669 static int ext4_readpage(struct file *file, struct page *page)
2670 {
2671 	trace_ext4_readpage(page);
2672 	return mpage_readpage(page, ext4_get_block);
2673 }
2674 
2675 static int
2676 ext4_readpages(struct file *file, struct address_space *mapping,
2677 		struct list_head *pages, unsigned nr_pages)
2678 {
2679 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2680 }
2681 
2682 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2683 {
2684 	struct buffer_head *head, *bh;
2685 	unsigned int curr_off = 0;
2686 
2687 	if (!page_has_buffers(page))
2688 		return;
2689 	head = bh = page_buffers(page);
2690 	do {
2691 		if (offset <= curr_off && test_clear_buffer_uninit(bh)
2692 					&& bh->b_private) {
2693 			ext4_free_io_end(bh->b_private);
2694 			bh->b_private = NULL;
2695 			bh->b_end_io = NULL;
2696 		}
2697 		curr_off = curr_off + bh->b_size;
2698 		bh = bh->b_this_page;
2699 	} while (bh != head);
2700 }
2701 
2702 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2703 {
2704 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2705 
2706 	trace_ext4_invalidatepage(page, offset);
2707 
2708 	/*
2709 	 * free any io_end structure allocated for buffers to be discarded
2710 	 */
2711 	if (ext4_should_dioread_nolock(page->mapping->host))
2712 		ext4_invalidatepage_free_endio(page, offset);
2713 	/*
2714 	 * If it's a full truncate we just forget about the pending dirtying
2715 	 */
2716 	if (offset == 0)
2717 		ClearPageChecked(page);
2718 
2719 	if (journal)
2720 		jbd2_journal_invalidatepage(journal, page, offset);
2721 	else
2722 		block_invalidatepage(page, offset);
2723 }
2724 
2725 static int ext4_releasepage(struct page *page, gfp_t wait)
2726 {
2727 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2728 
2729 	trace_ext4_releasepage(page);
2730 
2731 	WARN_ON(PageChecked(page));
2732 	if (!page_has_buffers(page))
2733 		return 0;
2734 	if (journal)
2735 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
2736 	else
2737 		return try_to_free_buffers(page);
2738 }
2739 
2740 /*
2741  * ext4_get_block used when preparing for a DIO write or buffer write.
2742  * We allocate an uinitialized extent if blocks haven't been allocated.
2743  * The extent will be converted to initialized after the IO is complete.
2744  */
2745 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2746 		   struct buffer_head *bh_result, int create)
2747 {
2748 	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2749 		   inode->i_ino, create);
2750 	return _ext4_get_block(inode, iblock, bh_result,
2751 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
2752 }
2753 
2754 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2755 			    ssize_t size, void *private, int ret,
2756 			    bool is_async)
2757 {
2758 	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2759         ext4_io_end_t *io_end = iocb->private;
2760 	struct workqueue_struct *wq;
2761 	unsigned long flags;
2762 	struct ext4_inode_info *ei;
2763 
2764 	/* if not async direct IO or dio with 0 bytes write, just return */
2765 	if (!io_end || !size)
2766 		goto out;
2767 
2768 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
2769 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2770  		  iocb->private, io_end->inode->i_ino, iocb, offset,
2771 		  size);
2772 
2773 	iocb->private = NULL;
2774 
2775 	/* if not aio dio with unwritten extents, just free io and return */
2776 	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2777 		ext4_free_io_end(io_end);
2778 out:
2779 		if (is_async)
2780 			aio_complete(iocb, ret, 0);
2781 		inode_dio_done(inode);
2782 		return;
2783 	}
2784 
2785 	io_end->offset = offset;
2786 	io_end->size = size;
2787 	if (is_async) {
2788 		io_end->iocb = iocb;
2789 		io_end->result = ret;
2790 	}
2791 	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
2792 
2793 	/* Add the io_end to per-inode completed aio dio list*/
2794 	ei = EXT4_I(io_end->inode);
2795 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
2796 	list_add_tail(&io_end->list, &ei->i_completed_io_list);
2797 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2798 
2799 	/* queue the work to convert unwritten extents to written */
2800 	queue_work(wq, &io_end->work);
2801 }
2802 
2803 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2804 {
2805 	ext4_io_end_t *io_end = bh->b_private;
2806 	struct workqueue_struct *wq;
2807 	struct inode *inode;
2808 	unsigned long flags;
2809 
2810 	if (!test_clear_buffer_uninit(bh) || !io_end)
2811 		goto out;
2812 
2813 	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2814 		ext4_msg(io_end->inode->i_sb, KERN_INFO,
2815 			 "sb umounted, discard end_io request for inode %lu",
2816 			 io_end->inode->i_ino);
2817 		ext4_free_io_end(io_end);
2818 		goto out;
2819 	}
2820 
2821 	/*
2822 	 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2823 	 * but being more careful is always safe for the future change.
2824 	 */
2825 	inode = io_end->inode;
2826 	ext4_set_io_unwritten_flag(inode, io_end);
2827 
2828 	/* Add the io_end to per-inode completed io list*/
2829 	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
2830 	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
2831 	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
2832 
2833 	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
2834 	/* queue the work to convert unwritten extents to written */
2835 	queue_work(wq, &io_end->work);
2836 out:
2837 	bh->b_private = NULL;
2838 	bh->b_end_io = NULL;
2839 	clear_buffer_uninit(bh);
2840 	end_buffer_async_write(bh, uptodate);
2841 }
2842 
2843 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2844 {
2845 	ext4_io_end_t *io_end;
2846 	struct page *page = bh->b_page;
2847 	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2848 	size_t size = bh->b_size;
2849 
2850 retry:
2851 	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2852 	if (!io_end) {
2853 		pr_warn_ratelimited("%s: allocation fail\n", __func__);
2854 		schedule();
2855 		goto retry;
2856 	}
2857 	io_end->offset = offset;
2858 	io_end->size = size;
2859 	/*
2860 	 * We need to hold a reference to the page to make sure it
2861 	 * doesn't get evicted before ext4_end_io_work() has a chance
2862 	 * to convert the extent from written to unwritten.
2863 	 */
2864 	io_end->page = page;
2865 	get_page(io_end->page);
2866 
2867 	bh->b_private = io_end;
2868 	bh->b_end_io = ext4_end_io_buffer_write;
2869 	return 0;
2870 }
2871 
2872 /*
2873  * For ext4 extent files, ext4 will do direct-io write to holes,
2874  * preallocated extents, and those write extend the file, no need to
2875  * fall back to buffered IO.
2876  *
2877  * For holes, we fallocate those blocks, mark them as uninitialized
2878  * If those blocks were preallocated, we mark sure they are splited, but
2879  * still keep the range to write as uninitialized.
2880  *
2881  * The unwrritten extents will be converted to written when DIO is completed.
2882  * For async direct IO, since the IO may still pending when return, we
2883  * set up an end_io call back function, which will do the conversion
2884  * when async direct IO completed.
2885  *
2886  * If the O_DIRECT write will extend the file then add this inode to the
2887  * orphan list.  So recovery will truncate it back to the original size
2888  * if the machine crashes during the write.
2889  *
2890  */
2891 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2892 			      const struct iovec *iov, loff_t offset,
2893 			      unsigned long nr_segs)
2894 {
2895 	struct file *file = iocb->ki_filp;
2896 	struct inode *inode = file->f_mapping->host;
2897 	ssize_t ret;
2898 	size_t count = iov_length(iov, nr_segs);
2899 
2900 	loff_t final_size = offset + count;
2901 	if (rw == WRITE && final_size <= inode->i_size) {
2902 		/*
2903  		 * We could direct write to holes and fallocate.
2904 		 *
2905  		 * Allocated blocks to fill the hole are marked as uninitialized
2906  		 * to prevent parallel buffered read to expose the stale data
2907  		 * before DIO complete the data IO.
2908 		 *
2909  		 * As to previously fallocated extents, ext4 get_block
2910  		 * will just simply mark the buffer mapped but still
2911  		 * keep the extents uninitialized.
2912  		 *
2913 		 * for non AIO case, we will convert those unwritten extents
2914 		 * to written after return back from blockdev_direct_IO.
2915 		 *
2916 		 * for async DIO, the conversion needs to be defered when
2917 		 * the IO is completed. The ext4 end_io callback function
2918 		 * will be called to take care of the conversion work.
2919 		 * Here for async case, we allocate an io_end structure to
2920 		 * hook to the iocb.
2921  		 */
2922 		iocb->private = NULL;
2923 		EXT4_I(inode)->cur_aio_dio = NULL;
2924 		if (!is_sync_kiocb(iocb)) {
2925 			ext4_io_end_t *io_end =
2926 				ext4_init_io_end(inode, GFP_NOFS);
2927 			if (!io_end)
2928 				return -ENOMEM;
2929 			io_end->flag |= EXT4_IO_END_DIRECT;
2930 			iocb->private = io_end;
2931 			/*
2932 			 * we save the io structure for current async
2933 			 * direct IO, so that later ext4_map_blocks()
2934 			 * could flag the io structure whether there
2935 			 * is a unwritten extents needs to be converted
2936 			 * when IO is completed.
2937 			 */
2938 			EXT4_I(inode)->cur_aio_dio = iocb->private;
2939 		}
2940 
2941 		ret = __blockdev_direct_IO(rw, iocb, inode,
2942 					 inode->i_sb->s_bdev, iov,
2943 					 offset, nr_segs,
2944 					 ext4_get_block_write,
2945 					 ext4_end_io_dio,
2946 					 NULL,
2947 					 DIO_LOCKING);
2948 		if (iocb->private)
2949 			EXT4_I(inode)->cur_aio_dio = NULL;
2950 		/*
2951 		 * The io_end structure takes a reference to the inode,
2952 		 * that structure needs to be destroyed and the
2953 		 * reference to the inode need to be dropped, when IO is
2954 		 * complete, even with 0 byte write, or failed.
2955 		 *
2956 		 * In the successful AIO DIO case, the io_end structure will be
2957 		 * desctroyed and the reference to the inode will be dropped
2958 		 * after the end_io call back function is called.
2959 		 *
2960 		 * In the case there is 0 byte write, or error case, since
2961 		 * VFS direct IO won't invoke the end_io call back function,
2962 		 * we need to free the end_io structure here.
2963 		 */
2964 		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
2965 			ext4_free_io_end(iocb->private);
2966 			iocb->private = NULL;
2967 		} else if (ret > 0 && ext4_test_inode_state(inode,
2968 						EXT4_STATE_DIO_UNWRITTEN)) {
2969 			int err;
2970 			/*
2971 			 * for non AIO case, since the IO is already
2972 			 * completed, we could do the conversion right here
2973 			 */
2974 			err = ext4_convert_unwritten_extents(inode,
2975 							     offset, ret);
2976 			if (err < 0)
2977 				ret = err;
2978 			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
2979 		}
2980 		return ret;
2981 	}
2982 
2983 	/* for write the the end of file case, we fall back to old way */
2984 	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2985 }
2986 
2987 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2988 			      const struct iovec *iov, loff_t offset,
2989 			      unsigned long nr_segs)
2990 {
2991 	struct file *file = iocb->ki_filp;
2992 	struct inode *inode = file->f_mapping->host;
2993 	ssize_t ret;
2994 
2995 	/*
2996 	 * If we are doing data journalling we don't support O_DIRECT
2997 	 */
2998 	if (ext4_should_journal_data(inode))
2999 		return 0;
3000 
3001 	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3002 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3003 		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3004 	else
3005 		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3006 	trace_ext4_direct_IO_exit(inode, offset,
3007 				iov_length(iov, nr_segs), rw, ret);
3008 	return ret;
3009 }
3010 
3011 /*
3012  * Pages can be marked dirty completely asynchronously from ext4's journalling
3013  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3014  * much here because ->set_page_dirty is called under VFS locks.  The page is
3015  * not necessarily locked.
3016  *
3017  * We cannot just dirty the page and leave attached buffers clean, because the
3018  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3019  * or jbddirty because all the journalling code will explode.
3020  *
3021  * So what we do is to mark the page "pending dirty" and next time writepage
3022  * is called, propagate that into the buffers appropriately.
3023  */
3024 static int ext4_journalled_set_page_dirty(struct page *page)
3025 {
3026 	SetPageChecked(page);
3027 	return __set_page_dirty_nobuffers(page);
3028 }
3029 
3030 static const struct address_space_operations ext4_ordered_aops = {
3031 	.readpage		= ext4_readpage,
3032 	.readpages		= ext4_readpages,
3033 	.writepage		= ext4_writepage,
3034 	.write_begin		= ext4_write_begin,
3035 	.write_end		= ext4_ordered_write_end,
3036 	.bmap			= ext4_bmap,
3037 	.invalidatepage		= ext4_invalidatepage,
3038 	.releasepage		= ext4_releasepage,
3039 	.direct_IO		= ext4_direct_IO,
3040 	.migratepage		= buffer_migrate_page,
3041 	.is_partially_uptodate  = block_is_partially_uptodate,
3042 	.error_remove_page	= generic_error_remove_page,
3043 };
3044 
3045 static const struct address_space_operations ext4_writeback_aops = {
3046 	.readpage		= ext4_readpage,
3047 	.readpages		= ext4_readpages,
3048 	.writepage		= ext4_writepage,
3049 	.write_begin		= ext4_write_begin,
3050 	.write_end		= ext4_writeback_write_end,
3051 	.bmap			= ext4_bmap,
3052 	.invalidatepage		= ext4_invalidatepage,
3053 	.releasepage		= ext4_releasepage,
3054 	.direct_IO		= ext4_direct_IO,
3055 	.migratepage		= buffer_migrate_page,
3056 	.is_partially_uptodate  = block_is_partially_uptodate,
3057 	.error_remove_page	= generic_error_remove_page,
3058 };
3059 
3060 static const struct address_space_operations ext4_journalled_aops = {
3061 	.readpage		= ext4_readpage,
3062 	.readpages		= ext4_readpages,
3063 	.writepage		= ext4_writepage,
3064 	.write_begin		= ext4_write_begin,
3065 	.write_end		= ext4_journalled_write_end,
3066 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3067 	.bmap			= ext4_bmap,
3068 	.invalidatepage		= ext4_invalidatepage,
3069 	.releasepage		= ext4_releasepage,
3070 	.direct_IO		= ext4_direct_IO,
3071 	.is_partially_uptodate  = block_is_partially_uptodate,
3072 	.error_remove_page	= generic_error_remove_page,
3073 };
3074 
3075 static const struct address_space_operations ext4_da_aops = {
3076 	.readpage		= ext4_readpage,
3077 	.readpages		= ext4_readpages,
3078 	.writepage		= ext4_writepage,
3079 	.writepages		= ext4_da_writepages,
3080 	.write_begin		= ext4_da_write_begin,
3081 	.write_end		= ext4_da_write_end,
3082 	.bmap			= ext4_bmap,
3083 	.invalidatepage		= ext4_da_invalidatepage,
3084 	.releasepage		= ext4_releasepage,
3085 	.direct_IO		= ext4_direct_IO,
3086 	.migratepage		= buffer_migrate_page,
3087 	.is_partially_uptodate  = block_is_partially_uptodate,
3088 	.error_remove_page	= generic_error_remove_page,
3089 };
3090 
3091 void ext4_set_aops(struct inode *inode)
3092 {
3093 	switch (ext4_inode_journal_mode(inode)) {
3094 	case EXT4_INODE_ORDERED_DATA_MODE:
3095 		if (test_opt(inode->i_sb, DELALLOC))
3096 			inode->i_mapping->a_ops = &ext4_da_aops;
3097 		else
3098 			inode->i_mapping->a_ops = &ext4_ordered_aops;
3099 		break;
3100 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3101 		if (test_opt(inode->i_sb, DELALLOC))
3102 			inode->i_mapping->a_ops = &ext4_da_aops;
3103 		else
3104 			inode->i_mapping->a_ops = &ext4_writeback_aops;
3105 		break;
3106 	case EXT4_INODE_JOURNAL_DATA_MODE:
3107 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3108 		break;
3109 	default:
3110 		BUG();
3111 	}
3112 }
3113 
3114 
3115 /*
3116  * ext4_discard_partial_page_buffers()
3117  * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3118  * This function finds and locks the page containing the offset
3119  * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3120  * Calling functions that already have the page locked should call
3121  * ext4_discard_partial_page_buffers_no_lock directly.
3122  */
3123 int ext4_discard_partial_page_buffers(handle_t *handle,
3124 		struct address_space *mapping, loff_t from,
3125 		loff_t length, int flags)
3126 {
3127 	struct inode *inode = mapping->host;
3128 	struct page *page;
3129 	int err = 0;
3130 
3131 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3132 				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3133 	if (!page)
3134 		return -ENOMEM;
3135 
3136 	err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3137 		from, length, flags);
3138 
3139 	unlock_page(page);
3140 	page_cache_release(page);
3141 	return err;
3142 }
3143 
3144 /*
3145  * ext4_discard_partial_page_buffers_no_lock()
3146  * Zeros a page range of length 'length' starting from offset 'from'.
3147  * Buffer heads that correspond to the block aligned regions of the
3148  * zeroed range will be unmapped.  Unblock aligned regions
3149  * will have the corresponding buffer head mapped if needed so that
3150  * that region of the page can be updated with the partial zero out.
3151  *
3152  * This function assumes that the page has already been  locked.  The
3153  * The range to be discarded must be contained with in the given page.
3154  * If the specified range exceeds the end of the page it will be shortened
3155  * to the end of the page that corresponds to 'from'.  This function is
3156  * appropriate for updating a page and it buffer heads to be unmapped and
3157  * zeroed for blocks that have been either released, or are going to be
3158  * released.
3159  *
3160  * handle: The journal handle
3161  * inode:  The files inode
3162  * page:   A locked page that contains the offset "from"
3163  * from:   The starting byte offset (from the begining of the file)
3164  *         to begin discarding
3165  * len:    The length of bytes to discard
3166  * flags:  Optional flags that may be used:
3167  *
3168  *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3169  *         Only zero the regions of the page whose buffer heads
3170  *         have already been unmapped.  This flag is appropriate
3171  *         for updateing the contents of a page whose blocks may
3172  *         have already been released, and we only want to zero
3173  *         out the regions that correspond to those released blocks.
3174  *
3175  * Returns zero on sucess or negative on failure.
3176  */
3177 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3178 		struct inode *inode, struct page *page, loff_t from,
3179 		loff_t length, int flags)
3180 {
3181 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3182 	unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3183 	unsigned int blocksize, max, pos;
3184 	ext4_lblk_t iblock;
3185 	struct buffer_head *bh;
3186 	int err = 0;
3187 
3188 	blocksize = inode->i_sb->s_blocksize;
3189 	max = PAGE_CACHE_SIZE - offset;
3190 
3191 	if (index != page->index)
3192 		return -EINVAL;
3193 
3194 	/*
3195 	 * correct length if it does not fall between
3196 	 * 'from' and the end of the page
3197 	 */
3198 	if (length > max || length < 0)
3199 		length = max;
3200 
3201 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3202 
3203 	if (!page_has_buffers(page))
3204 		create_empty_buffers(page, blocksize, 0);
3205 
3206 	/* Find the buffer that contains "offset" */
3207 	bh = page_buffers(page);
3208 	pos = blocksize;
3209 	while (offset >= pos) {
3210 		bh = bh->b_this_page;
3211 		iblock++;
3212 		pos += blocksize;
3213 	}
3214 
3215 	pos = offset;
3216 	while (pos < offset + length) {
3217 		unsigned int end_of_block, range_to_discard;
3218 
3219 		err = 0;
3220 
3221 		/* The length of space left to zero and unmap */
3222 		range_to_discard = offset + length - pos;
3223 
3224 		/* The length of space until the end of the block */
3225 		end_of_block = blocksize - (pos & (blocksize-1));
3226 
3227 		/*
3228 		 * Do not unmap or zero past end of block
3229 		 * for this buffer head
3230 		 */
3231 		if (range_to_discard > end_of_block)
3232 			range_to_discard = end_of_block;
3233 
3234 
3235 		/*
3236 		 * Skip this buffer head if we are only zeroing unampped
3237 		 * regions of the page
3238 		 */
3239 		if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3240 			buffer_mapped(bh))
3241 				goto next;
3242 
3243 		/* If the range is block aligned, unmap */
3244 		if (range_to_discard == blocksize) {
3245 			clear_buffer_dirty(bh);
3246 			bh->b_bdev = NULL;
3247 			clear_buffer_mapped(bh);
3248 			clear_buffer_req(bh);
3249 			clear_buffer_new(bh);
3250 			clear_buffer_delay(bh);
3251 			clear_buffer_unwritten(bh);
3252 			clear_buffer_uptodate(bh);
3253 			zero_user(page, pos, range_to_discard);
3254 			BUFFER_TRACE(bh, "Buffer discarded");
3255 			goto next;
3256 		}
3257 
3258 		/*
3259 		 * If this block is not completely contained in the range
3260 		 * to be discarded, then it is not going to be released. Because
3261 		 * we need to keep this block, we need to make sure this part
3262 		 * of the page is uptodate before we modify it by writeing
3263 		 * partial zeros on it.
3264 		 */
3265 		if (!buffer_mapped(bh)) {
3266 			/*
3267 			 * Buffer head must be mapped before we can read
3268 			 * from the block
3269 			 */
3270 			BUFFER_TRACE(bh, "unmapped");
3271 			ext4_get_block(inode, iblock, bh, 0);
3272 			/* unmapped? It's a hole - nothing to do */
3273 			if (!buffer_mapped(bh)) {
3274 				BUFFER_TRACE(bh, "still unmapped");
3275 				goto next;
3276 			}
3277 		}
3278 
3279 		/* Ok, it's mapped. Make sure it's up-to-date */
3280 		if (PageUptodate(page))
3281 			set_buffer_uptodate(bh);
3282 
3283 		if (!buffer_uptodate(bh)) {
3284 			err = -EIO;
3285 			ll_rw_block(READ, 1, &bh);
3286 			wait_on_buffer(bh);
3287 			/* Uhhuh. Read error. Complain and punt.*/
3288 			if (!buffer_uptodate(bh))
3289 				goto next;
3290 		}
3291 
3292 		if (ext4_should_journal_data(inode)) {
3293 			BUFFER_TRACE(bh, "get write access");
3294 			err = ext4_journal_get_write_access(handle, bh);
3295 			if (err)
3296 				goto next;
3297 		}
3298 
3299 		zero_user(page, pos, range_to_discard);
3300 
3301 		err = 0;
3302 		if (ext4_should_journal_data(inode)) {
3303 			err = ext4_handle_dirty_metadata(handle, inode, bh);
3304 		} else
3305 			mark_buffer_dirty(bh);
3306 
3307 		BUFFER_TRACE(bh, "Partial buffer zeroed");
3308 next:
3309 		bh = bh->b_this_page;
3310 		iblock++;
3311 		pos += range_to_discard;
3312 	}
3313 
3314 	return err;
3315 }
3316 
3317 int ext4_can_truncate(struct inode *inode)
3318 {
3319 	if (S_ISREG(inode->i_mode))
3320 		return 1;
3321 	if (S_ISDIR(inode->i_mode))
3322 		return 1;
3323 	if (S_ISLNK(inode->i_mode))
3324 		return !ext4_inode_is_fast_symlink(inode);
3325 	return 0;
3326 }
3327 
3328 /*
3329  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3330  * associated with the given offset and length
3331  *
3332  * @inode:  File inode
3333  * @offset: The offset where the hole will begin
3334  * @len:    The length of the hole
3335  *
3336  * Returns: 0 on sucess or negative on failure
3337  */
3338 
3339 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3340 {
3341 	struct inode *inode = file->f_path.dentry->d_inode;
3342 	if (!S_ISREG(inode->i_mode))
3343 		return -EOPNOTSUPP;
3344 
3345 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3346 		/* TODO: Add support for non extent hole punching */
3347 		return -EOPNOTSUPP;
3348 	}
3349 
3350 	if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3351 		/* TODO: Add support for bigalloc file systems */
3352 		return -EOPNOTSUPP;
3353 	}
3354 
3355 	return ext4_ext_punch_hole(file, offset, length);
3356 }
3357 
3358 /*
3359  * ext4_truncate()
3360  *
3361  * We block out ext4_get_block() block instantiations across the entire
3362  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3363  * simultaneously on behalf of the same inode.
3364  *
3365  * As we work through the truncate and commit bits of it to the journal there
3366  * is one core, guiding principle: the file's tree must always be consistent on
3367  * disk.  We must be able to restart the truncate after a crash.
3368  *
3369  * The file's tree may be transiently inconsistent in memory (although it
3370  * probably isn't), but whenever we close off and commit a journal transaction,
3371  * the contents of (the filesystem + the journal) must be consistent and
3372  * restartable.  It's pretty simple, really: bottom up, right to left (although
3373  * left-to-right works OK too).
3374  *
3375  * Note that at recovery time, journal replay occurs *before* the restart of
3376  * truncate against the orphan inode list.
3377  *
3378  * The committed inode has the new, desired i_size (which is the same as
3379  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3380  * that this inode's truncate did not complete and it will again call
3381  * ext4_truncate() to have another go.  So there will be instantiated blocks
3382  * to the right of the truncation point in a crashed ext4 filesystem.  But
3383  * that's fine - as long as they are linked from the inode, the post-crash
3384  * ext4_truncate() run will find them and release them.
3385  */
3386 void ext4_truncate(struct inode *inode)
3387 {
3388 	trace_ext4_truncate_enter(inode);
3389 
3390 	if (!ext4_can_truncate(inode))
3391 		return;
3392 
3393 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3394 
3395 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3396 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3397 
3398 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3399 		ext4_ext_truncate(inode);
3400 	else
3401 		ext4_ind_truncate(inode);
3402 
3403 	trace_ext4_truncate_exit(inode);
3404 }
3405 
3406 /*
3407  * ext4_get_inode_loc returns with an extra refcount against the inode's
3408  * underlying buffer_head on success. If 'in_mem' is true, we have all
3409  * data in memory that is needed to recreate the on-disk version of this
3410  * inode.
3411  */
3412 static int __ext4_get_inode_loc(struct inode *inode,
3413 				struct ext4_iloc *iloc, int in_mem)
3414 {
3415 	struct ext4_group_desc	*gdp;
3416 	struct buffer_head	*bh;
3417 	struct super_block	*sb = inode->i_sb;
3418 	ext4_fsblk_t		block;
3419 	int			inodes_per_block, inode_offset;
3420 
3421 	iloc->bh = NULL;
3422 	if (!ext4_valid_inum(sb, inode->i_ino))
3423 		return -EIO;
3424 
3425 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3426 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3427 	if (!gdp)
3428 		return -EIO;
3429 
3430 	/*
3431 	 * Figure out the offset within the block group inode table
3432 	 */
3433 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3434 	inode_offset = ((inode->i_ino - 1) %
3435 			EXT4_INODES_PER_GROUP(sb));
3436 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3437 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3438 
3439 	bh = sb_getblk(sb, block);
3440 	if (!bh) {
3441 		EXT4_ERROR_INODE_BLOCK(inode, block,
3442 				       "unable to read itable block");
3443 		return -EIO;
3444 	}
3445 	if (!buffer_uptodate(bh)) {
3446 		lock_buffer(bh);
3447 
3448 		/*
3449 		 * If the buffer has the write error flag, we have failed
3450 		 * to write out another inode in the same block.  In this
3451 		 * case, we don't have to read the block because we may
3452 		 * read the old inode data successfully.
3453 		 */
3454 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3455 			set_buffer_uptodate(bh);
3456 
3457 		if (buffer_uptodate(bh)) {
3458 			/* someone brought it uptodate while we waited */
3459 			unlock_buffer(bh);
3460 			goto has_buffer;
3461 		}
3462 
3463 		/*
3464 		 * If we have all information of the inode in memory and this
3465 		 * is the only valid inode in the block, we need not read the
3466 		 * block.
3467 		 */
3468 		if (in_mem) {
3469 			struct buffer_head *bitmap_bh;
3470 			int i, start;
3471 
3472 			start = inode_offset & ~(inodes_per_block - 1);
3473 
3474 			/* Is the inode bitmap in cache? */
3475 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3476 			if (!bitmap_bh)
3477 				goto make_io;
3478 
3479 			/*
3480 			 * If the inode bitmap isn't in cache then the
3481 			 * optimisation may end up performing two reads instead
3482 			 * of one, so skip it.
3483 			 */
3484 			if (!buffer_uptodate(bitmap_bh)) {
3485 				brelse(bitmap_bh);
3486 				goto make_io;
3487 			}
3488 			for (i = start; i < start + inodes_per_block; i++) {
3489 				if (i == inode_offset)
3490 					continue;
3491 				if (ext4_test_bit(i, bitmap_bh->b_data))
3492 					break;
3493 			}
3494 			brelse(bitmap_bh);
3495 			if (i == start + inodes_per_block) {
3496 				/* all other inodes are free, so skip I/O */
3497 				memset(bh->b_data, 0, bh->b_size);
3498 				set_buffer_uptodate(bh);
3499 				unlock_buffer(bh);
3500 				goto has_buffer;
3501 			}
3502 		}
3503 
3504 make_io:
3505 		/*
3506 		 * If we need to do any I/O, try to pre-readahead extra
3507 		 * blocks from the inode table.
3508 		 */
3509 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
3510 			ext4_fsblk_t b, end, table;
3511 			unsigned num;
3512 
3513 			table = ext4_inode_table(sb, gdp);
3514 			/* s_inode_readahead_blks is always a power of 2 */
3515 			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3516 			if (table > b)
3517 				b = table;
3518 			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3519 			num = EXT4_INODES_PER_GROUP(sb);
3520 			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3521 				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3522 				num -= ext4_itable_unused_count(sb, gdp);
3523 			table += num / inodes_per_block;
3524 			if (end > table)
3525 				end = table;
3526 			while (b <= end)
3527 				sb_breadahead(sb, b++);
3528 		}
3529 
3530 		/*
3531 		 * There are other valid inodes in the buffer, this inode
3532 		 * has in-inode xattrs, or we don't have this inode in memory.
3533 		 * Read the block from disk.
3534 		 */
3535 		trace_ext4_load_inode(inode);
3536 		get_bh(bh);
3537 		bh->b_end_io = end_buffer_read_sync;
3538 		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3539 		wait_on_buffer(bh);
3540 		if (!buffer_uptodate(bh)) {
3541 			EXT4_ERROR_INODE_BLOCK(inode, block,
3542 					       "unable to read itable block");
3543 			brelse(bh);
3544 			return -EIO;
3545 		}
3546 	}
3547 has_buffer:
3548 	iloc->bh = bh;
3549 	return 0;
3550 }
3551 
3552 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3553 {
3554 	/* We have all inode data except xattrs in memory here. */
3555 	return __ext4_get_inode_loc(inode, iloc,
3556 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3557 }
3558 
3559 void ext4_set_inode_flags(struct inode *inode)
3560 {
3561 	unsigned int flags = EXT4_I(inode)->i_flags;
3562 
3563 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3564 	if (flags & EXT4_SYNC_FL)
3565 		inode->i_flags |= S_SYNC;
3566 	if (flags & EXT4_APPEND_FL)
3567 		inode->i_flags |= S_APPEND;
3568 	if (flags & EXT4_IMMUTABLE_FL)
3569 		inode->i_flags |= S_IMMUTABLE;
3570 	if (flags & EXT4_NOATIME_FL)
3571 		inode->i_flags |= S_NOATIME;
3572 	if (flags & EXT4_DIRSYNC_FL)
3573 		inode->i_flags |= S_DIRSYNC;
3574 }
3575 
3576 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3577 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3578 {
3579 	unsigned int vfs_fl;
3580 	unsigned long old_fl, new_fl;
3581 
3582 	do {
3583 		vfs_fl = ei->vfs_inode.i_flags;
3584 		old_fl = ei->i_flags;
3585 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3586 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3587 				EXT4_DIRSYNC_FL);
3588 		if (vfs_fl & S_SYNC)
3589 			new_fl |= EXT4_SYNC_FL;
3590 		if (vfs_fl & S_APPEND)
3591 			new_fl |= EXT4_APPEND_FL;
3592 		if (vfs_fl & S_IMMUTABLE)
3593 			new_fl |= EXT4_IMMUTABLE_FL;
3594 		if (vfs_fl & S_NOATIME)
3595 			new_fl |= EXT4_NOATIME_FL;
3596 		if (vfs_fl & S_DIRSYNC)
3597 			new_fl |= EXT4_DIRSYNC_FL;
3598 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3599 }
3600 
3601 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3602 				  struct ext4_inode_info *ei)
3603 {
3604 	blkcnt_t i_blocks ;
3605 	struct inode *inode = &(ei->vfs_inode);
3606 	struct super_block *sb = inode->i_sb;
3607 
3608 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3609 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3610 		/* we are using combined 48 bit field */
3611 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3612 					le32_to_cpu(raw_inode->i_blocks_lo);
3613 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3614 			/* i_blocks represent file system block size */
3615 			return i_blocks  << (inode->i_blkbits - 9);
3616 		} else {
3617 			return i_blocks;
3618 		}
3619 	} else {
3620 		return le32_to_cpu(raw_inode->i_blocks_lo);
3621 	}
3622 }
3623 
3624 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3625 {
3626 	struct ext4_iloc iloc;
3627 	struct ext4_inode *raw_inode;
3628 	struct ext4_inode_info *ei;
3629 	struct inode *inode;
3630 	journal_t *journal = EXT4_SB(sb)->s_journal;
3631 	long ret;
3632 	int block;
3633 
3634 	inode = iget_locked(sb, ino);
3635 	if (!inode)
3636 		return ERR_PTR(-ENOMEM);
3637 	if (!(inode->i_state & I_NEW))
3638 		return inode;
3639 
3640 	ei = EXT4_I(inode);
3641 	iloc.bh = NULL;
3642 
3643 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
3644 	if (ret < 0)
3645 		goto bad_inode;
3646 	raw_inode = ext4_raw_inode(&iloc);
3647 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3648 	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3649 	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3650 	if (!(test_opt(inode->i_sb, NO_UID32))) {
3651 		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3652 		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3653 	}
3654 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3655 
3656 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
3657 	ei->i_dir_start_lookup = 0;
3658 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3659 	/* We now have enough fields to check if the inode was active or not.
3660 	 * This is needed because nfsd might try to access dead inodes
3661 	 * the test is that same one that e2fsck uses
3662 	 * NeilBrown 1999oct15
3663 	 */
3664 	if (inode->i_nlink == 0) {
3665 		if (inode->i_mode == 0 ||
3666 		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3667 			/* this inode is deleted */
3668 			ret = -ESTALE;
3669 			goto bad_inode;
3670 		}
3671 		/* The only unlinked inodes we let through here have
3672 		 * valid i_mode and are being read by the orphan
3673 		 * recovery code: that's fine, we're about to complete
3674 		 * the process of deleting those. */
3675 	}
3676 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3677 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3678 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3679 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3680 		ei->i_file_acl |=
3681 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3682 	inode->i_size = ext4_isize(raw_inode);
3683 	ei->i_disksize = inode->i_size;
3684 #ifdef CONFIG_QUOTA
3685 	ei->i_reserved_quota = 0;
3686 #endif
3687 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3688 	ei->i_block_group = iloc.block_group;
3689 	ei->i_last_alloc_group = ~0;
3690 	/*
3691 	 * NOTE! The in-memory inode i_data array is in little-endian order
3692 	 * even on big-endian machines: we do NOT byteswap the block numbers!
3693 	 */
3694 	for (block = 0; block < EXT4_N_BLOCKS; block++)
3695 		ei->i_data[block] = raw_inode->i_block[block];
3696 	INIT_LIST_HEAD(&ei->i_orphan);
3697 
3698 	/*
3699 	 * Set transaction id's of transactions that have to be committed
3700 	 * to finish f[data]sync. We set them to currently running transaction
3701 	 * as we cannot be sure that the inode or some of its metadata isn't
3702 	 * part of the transaction - the inode could have been reclaimed and
3703 	 * now it is reread from disk.
3704 	 */
3705 	if (journal) {
3706 		transaction_t *transaction;
3707 		tid_t tid;
3708 
3709 		read_lock(&journal->j_state_lock);
3710 		if (journal->j_running_transaction)
3711 			transaction = journal->j_running_transaction;
3712 		else
3713 			transaction = journal->j_committing_transaction;
3714 		if (transaction)
3715 			tid = transaction->t_tid;
3716 		else
3717 			tid = journal->j_commit_sequence;
3718 		read_unlock(&journal->j_state_lock);
3719 		ei->i_sync_tid = tid;
3720 		ei->i_datasync_tid = tid;
3721 	}
3722 
3723 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3724 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3725 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3726 		    EXT4_INODE_SIZE(inode->i_sb)) {
3727 			ret = -EIO;
3728 			goto bad_inode;
3729 		}
3730 		if (ei->i_extra_isize == 0) {
3731 			/* The extra space is currently unused. Use it. */
3732 			ei->i_extra_isize = sizeof(struct ext4_inode) -
3733 					    EXT4_GOOD_OLD_INODE_SIZE;
3734 		} else {
3735 			__le32 *magic = (void *)raw_inode +
3736 					EXT4_GOOD_OLD_INODE_SIZE +
3737 					ei->i_extra_isize;
3738 			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3739 				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3740 		}
3741 	} else
3742 		ei->i_extra_isize = 0;
3743 
3744 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3745 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3746 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3747 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3748 
3749 	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3750 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3751 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3752 			inode->i_version |=
3753 			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3754 	}
3755 
3756 	ret = 0;
3757 	if (ei->i_file_acl &&
3758 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3759 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3760 				 ei->i_file_acl);
3761 		ret = -EIO;
3762 		goto bad_inode;
3763 	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3764 		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3765 		    (S_ISLNK(inode->i_mode) &&
3766 		     !ext4_inode_is_fast_symlink(inode)))
3767 			/* Validate extent which is part of inode */
3768 			ret = ext4_ext_check_inode(inode);
3769 	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3770 		   (S_ISLNK(inode->i_mode) &&
3771 		    !ext4_inode_is_fast_symlink(inode))) {
3772 		/* Validate block references which are part of inode */
3773 		ret = ext4_ind_check_inode(inode);
3774 	}
3775 	if (ret)
3776 		goto bad_inode;
3777 
3778 	if (S_ISREG(inode->i_mode)) {
3779 		inode->i_op = &ext4_file_inode_operations;
3780 		inode->i_fop = &ext4_file_operations;
3781 		ext4_set_aops(inode);
3782 	} else if (S_ISDIR(inode->i_mode)) {
3783 		inode->i_op = &ext4_dir_inode_operations;
3784 		inode->i_fop = &ext4_dir_operations;
3785 	} else if (S_ISLNK(inode->i_mode)) {
3786 		if (ext4_inode_is_fast_symlink(inode)) {
3787 			inode->i_op = &ext4_fast_symlink_inode_operations;
3788 			nd_terminate_link(ei->i_data, inode->i_size,
3789 				sizeof(ei->i_data) - 1);
3790 		} else {
3791 			inode->i_op = &ext4_symlink_inode_operations;
3792 			ext4_set_aops(inode);
3793 		}
3794 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3795 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3796 		inode->i_op = &ext4_special_inode_operations;
3797 		if (raw_inode->i_block[0])
3798 			init_special_inode(inode, inode->i_mode,
3799 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3800 		else
3801 			init_special_inode(inode, inode->i_mode,
3802 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3803 	} else {
3804 		ret = -EIO;
3805 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3806 		goto bad_inode;
3807 	}
3808 	brelse(iloc.bh);
3809 	ext4_set_inode_flags(inode);
3810 	unlock_new_inode(inode);
3811 	return inode;
3812 
3813 bad_inode:
3814 	brelse(iloc.bh);
3815 	iget_failed(inode);
3816 	return ERR_PTR(ret);
3817 }
3818 
3819 static int ext4_inode_blocks_set(handle_t *handle,
3820 				struct ext4_inode *raw_inode,
3821 				struct ext4_inode_info *ei)
3822 {
3823 	struct inode *inode = &(ei->vfs_inode);
3824 	u64 i_blocks = inode->i_blocks;
3825 	struct super_block *sb = inode->i_sb;
3826 
3827 	if (i_blocks <= ~0U) {
3828 		/*
3829 		 * i_blocks can be represnted in a 32 bit variable
3830 		 * as multiple of 512 bytes
3831 		 */
3832 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3833 		raw_inode->i_blocks_high = 0;
3834 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3835 		return 0;
3836 	}
3837 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3838 		return -EFBIG;
3839 
3840 	if (i_blocks <= 0xffffffffffffULL) {
3841 		/*
3842 		 * i_blocks can be represented in a 48 bit variable
3843 		 * as multiple of 512 bytes
3844 		 */
3845 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3846 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3847 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3848 	} else {
3849 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3850 		/* i_block is stored in file system block size */
3851 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
3852 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3853 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3854 	}
3855 	return 0;
3856 }
3857 
3858 /*
3859  * Post the struct inode info into an on-disk inode location in the
3860  * buffer-cache.  This gobbles the caller's reference to the
3861  * buffer_head in the inode location struct.
3862  *
3863  * The caller must have write access to iloc->bh.
3864  */
3865 static int ext4_do_update_inode(handle_t *handle,
3866 				struct inode *inode,
3867 				struct ext4_iloc *iloc)
3868 {
3869 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
3870 	struct ext4_inode_info *ei = EXT4_I(inode);
3871 	struct buffer_head *bh = iloc->bh;
3872 	int err = 0, rc, block;
3873 
3874 	/* For fields not not tracking in the in-memory inode,
3875 	 * initialise them to zero for new inodes. */
3876 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
3877 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
3878 
3879 	ext4_get_inode_flags(ei);
3880 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3881 	if (!(test_opt(inode->i_sb, NO_UID32))) {
3882 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
3883 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
3884 /*
3885  * Fix up interoperability with old kernels. Otherwise, old inodes get
3886  * re-used with the upper 16 bits of the uid/gid intact
3887  */
3888 		if (!ei->i_dtime) {
3889 			raw_inode->i_uid_high =
3890 				cpu_to_le16(high_16_bits(inode->i_uid));
3891 			raw_inode->i_gid_high =
3892 				cpu_to_le16(high_16_bits(inode->i_gid));
3893 		} else {
3894 			raw_inode->i_uid_high = 0;
3895 			raw_inode->i_gid_high = 0;
3896 		}
3897 	} else {
3898 		raw_inode->i_uid_low =
3899 			cpu_to_le16(fs_high2lowuid(inode->i_uid));
3900 		raw_inode->i_gid_low =
3901 			cpu_to_le16(fs_high2lowgid(inode->i_gid));
3902 		raw_inode->i_uid_high = 0;
3903 		raw_inode->i_gid_high = 0;
3904 	}
3905 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
3906 
3907 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
3908 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
3909 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
3910 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
3911 
3912 	if (ext4_inode_blocks_set(handle, raw_inode, ei))
3913 		goto out_brelse;
3914 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3915 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
3916 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
3917 	    cpu_to_le32(EXT4_OS_HURD))
3918 		raw_inode->i_file_acl_high =
3919 			cpu_to_le16(ei->i_file_acl >> 32);
3920 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
3921 	ext4_isize_set(raw_inode, ei->i_disksize);
3922 	if (ei->i_disksize > 0x7fffffffULL) {
3923 		struct super_block *sb = inode->i_sb;
3924 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
3925 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
3926 				EXT4_SB(sb)->s_es->s_rev_level ==
3927 				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
3928 			/* If this is the first large file
3929 			 * created, add a flag to the superblock.
3930 			 */
3931 			err = ext4_journal_get_write_access(handle,
3932 					EXT4_SB(sb)->s_sbh);
3933 			if (err)
3934 				goto out_brelse;
3935 			ext4_update_dynamic_rev(sb);
3936 			EXT4_SET_RO_COMPAT_FEATURE(sb,
3937 					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
3938 			ext4_handle_sync(handle);
3939 			err = ext4_handle_dirty_super(handle, sb);
3940 		}
3941 	}
3942 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3943 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3944 		if (old_valid_dev(inode->i_rdev)) {
3945 			raw_inode->i_block[0] =
3946 				cpu_to_le32(old_encode_dev(inode->i_rdev));
3947 			raw_inode->i_block[1] = 0;
3948 		} else {
3949 			raw_inode->i_block[0] = 0;
3950 			raw_inode->i_block[1] =
3951 				cpu_to_le32(new_encode_dev(inode->i_rdev));
3952 			raw_inode->i_block[2] = 0;
3953 		}
3954 	} else
3955 		for (block = 0; block < EXT4_N_BLOCKS; block++)
3956 			raw_inode->i_block[block] = ei->i_data[block];
3957 
3958 	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
3959 	if (ei->i_extra_isize) {
3960 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3961 			raw_inode->i_version_hi =
3962 			cpu_to_le32(inode->i_version >> 32);
3963 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3964 	}
3965 
3966 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3967 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
3968 	if (!err)
3969 		err = rc;
3970 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
3971 
3972 	ext4_update_inode_fsync_trans(handle, inode, 0);
3973 out_brelse:
3974 	brelse(bh);
3975 	ext4_std_error(inode->i_sb, err);
3976 	return err;
3977 }
3978 
3979 /*
3980  * ext4_write_inode()
3981  *
3982  * We are called from a few places:
3983  *
3984  * - Within generic_file_write() for O_SYNC files.
3985  *   Here, there will be no transaction running. We wait for any running
3986  *   trasnaction to commit.
3987  *
3988  * - Within sys_sync(), kupdate and such.
3989  *   We wait on commit, if tol to.
3990  *
3991  * - Within prune_icache() (PF_MEMALLOC == true)
3992  *   Here we simply return.  We can't afford to block kswapd on the
3993  *   journal commit.
3994  *
3995  * In all cases it is actually safe for us to return without doing anything,
3996  * because the inode has been copied into a raw inode buffer in
3997  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
3998  * knfsd.
3999  *
4000  * Note that we are absolutely dependent upon all inode dirtiers doing the
4001  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4002  * which we are interested.
4003  *
4004  * It would be a bug for them to not do this.  The code:
4005  *
4006  *	mark_inode_dirty(inode)
4007  *	stuff();
4008  *	inode->i_size = expr;
4009  *
4010  * is in error because a kswapd-driven write_inode() could occur while
4011  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4012  * will no longer be on the superblock's dirty inode list.
4013  */
4014 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4015 {
4016 	int err;
4017 
4018 	if (current->flags & PF_MEMALLOC)
4019 		return 0;
4020 
4021 	if (EXT4_SB(inode->i_sb)->s_journal) {
4022 		if (ext4_journal_current_handle()) {
4023 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4024 			dump_stack();
4025 			return -EIO;
4026 		}
4027 
4028 		if (wbc->sync_mode != WB_SYNC_ALL)
4029 			return 0;
4030 
4031 		err = ext4_force_commit(inode->i_sb);
4032 	} else {
4033 		struct ext4_iloc iloc;
4034 
4035 		err = __ext4_get_inode_loc(inode, &iloc, 0);
4036 		if (err)
4037 			return err;
4038 		if (wbc->sync_mode == WB_SYNC_ALL)
4039 			sync_dirty_buffer(iloc.bh);
4040 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4041 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4042 					 "IO error syncing inode");
4043 			err = -EIO;
4044 		}
4045 		brelse(iloc.bh);
4046 	}
4047 	return err;
4048 }
4049 
4050 /*
4051  * ext4_setattr()
4052  *
4053  * Called from notify_change.
4054  *
4055  * We want to trap VFS attempts to truncate the file as soon as
4056  * possible.  In particular, we want to make sure that when the VFS
4057  * shrinks i_size, we put the inode on the orphan list and modify
4058  * i_disksize immediately, so that during the subsequent flushing of
4059  * dirty pages and freeing of disk blocks, we can guarantee that any
4060  * commit will leave the blocks being flushed in an unused state on
4061  * disk.  (On recovery, the inode will get truncated and the blocks will
4062  * be freed, so we have a strong guarantee that no future commit will
4063  * leave these blocks visible to the user.)
4064  *
4065  * Another thing we have to assure is that if we are in ordered mode
4066  * and inode is still attached to the committing transaction, we must
4067  * we start writeout of all the dirty pages which are being truncated.
4068  * This way we are sure that all the data written in the previous
4069  * transaction are already on disk (truncate waits for pages under
4070  * writeback).
4071  *
4072  * Called with inode->i_mutex down.
4073  */
4074 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4075 {
4076 	struct inode *inode = dentry->d_inode;
4077 	int error, rc = 0;
4078 	int orphan = 0;
4079 	const unsigned int ia_valid = attr->ia_valid;
4080 
4081 	error = inode_change_ok(inode, attr);
4082 	if (error)
4083 		return error;
4084 
4085 	if (is_quota_modification(inode, attr))
4086 		dquot_initialize(inode);
4087 	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4088 		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4089 		handle_t *handle;
4090 
4091 		/* (user+group)*(old+new) structure, inode write (sb,
4092 		 * inode block, ? - but truncate inode update has it) */
4093 		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4094 					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4095 		if (IS_ERR(handle)) {
4096 			error = PTR_ERR(handle);
4097 			goto err_out;
4098 		}
4099 		error = dquot_transfer(inode, attr);
4100 		if (error) {
4101 			ext4_journal_stop(handle);
4102 			return error;
4103 		}
4104 		/* Update corresponding info in inode so that everything is in
4105 		 * one transaction */
4106 		if (attr->ia_valid & ATTR_UID)
4107 			inode->i_uid = attr->ia_uid;
4108 		if (attr->ia_valid & ATTR_GID)
4109 			inode->i_gid = attr->ia_gid;
4110 		error = ext4_mark_inode_dirty(handle, inode);
4111 		ext4_journal_stop(handle);
4112 	}
4113 
4114 	if (attr->ia_valid & ATTR_SIZE) {
4115 		inode_dio_wait(inode);
4116 
4117 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4118 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4119 
4120 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
4121 				return -EFBIG;
4122 		}
4123 	}
4124 
4125 	if (S_ISREG(inode->i_mode) &&
4126 	    attr->ia_valid & ATTR_SIZE &&
4127 	    (attr->ia_size < inode->i_size)) {
4128 		handle_t *handle;
4129 
4130 		handle = ext4_journal_start(inode, 3);
4131 		if (IS_ERR(handle)) {
4132 			error = PTR_ERR(handle);
4133 			goto err_out;
4134 		}
4135 		if (ext4_handle_valid(handle)) {
4136 			error = ext4_orphan_add(handle, inode);
4137 			orphan = 1;
4138 		}
4139 		EXT4_I(inode)->i_disksize = attr->ia_size;
4140 		rc = ext4_mark_inode_dirty(handle, inode);
4141 		if (!error)
4142 			error = rc;
4143 		ext4_journal_stop(handle);
4144 
4145 		if (ext4_should_order_data(inode)) {
4146 			error = ext4_begin_ordered_truncate(inode,
4147 							    attr->ia_size);
4148 			if (error) {
4149 				/* Do as much error cleanup as possible */
4150 				handle = ext4_journal_start(inode, 3);
4151 				if (IS_ERR(handle)) {
4152 					ext4_orphan_del(NULL, inode);
4153 					goto err_out;
4154 				}
4155 				ext4_orphan_del(handle, inode);
4156 				orphan = 0;
4157 				ext4_journal_stop(handle);
4158 				goto err_out;
4159 			}
4160 		}
4161 	}
4162 
4163 	if (attr->ia_valid & ATTR_SIZE) {
4164 		if (attr->ia_size != i_size_read(inode))
4165 			truncate_setsize(inode, attr->ia_size);
4166 		ext4_truncate(inode);
4167 	}
4168 
4169 	if (!rc) {
4170 		setattr_copy(inode, attr);
4171 		mark_inode_dirty(inode);
4172 	}
4173 
4174 	/*
4175 	 * If the call to ext4_truncate failed to get a transaction handle at
4176 	 * all, we need to clean up the in-core orphan list manually.
4177 	 */
4178 	if (orphan && inode->i_nlink)
4179 		ext4_orphan_del(NULL, inode);
4180 
4181 	if (!rc && (ia_valid & ATTR_MODE))
4182 		rc = ext4_acl_chmod(inode);
4183 
4184 err_out:
4185 	ext4_std_error(inode->i_sb, error);
4186 	if (!error)
4187 		error = rc;
4188 	return error;
4189 }
4190 
4191 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4192 		 struct kstat *stat)
4193 {
4194 	struct inode *inode;
4195 	unsigned long delalloc_blocks;
4196 
4197 	inode = dentry->d_inode;
4198 	generic_fillattr(inode, stat);
4199 
4200 	/*
4201 	 * We can't update i_blocks if the block allocation is delayed
4202 	 * otherwise in the case of system crash before the real block
4203 	 * allocation is done, we will have i_blocks inconsistent with
4204 	 * on-disk file blocks.
4205 	 * We always keep i_blocks updated together with real
4206 	 * allocation. But to not confuse with user, stat
4207 	 * will return the blocks that include the delayed allocation
4208 	 * blocks for this file.
4209 	 */
4210 	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4211 
4212 	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4213 	return 0;
4214 }
4215 
4216 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4217 {
4218 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4219 		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4220 	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4221 }
4222 
4223 /*
4224  * Account for index blocks, block groups bitmaps and block group
4225  * descriptor blocks if modify datablocks and index blocks
4226  * worse case, the indexs blocks spread over different block groups
4227  *
4228  * If datablocks are discontiguous, they are possible to spread over
4229  * different block groups too. If they are contiuguous, with flexbg,
4230  * they could still across block group boundary.
4231  *
4232  * Also account for superblock, inode, quota and xattr blocks
4233  */
4234 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4235 {
4236 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4237 	int gdpblocks;
4238 	int idxblocks;
4239 	int ret = 0;
4240 
4241 	/*
4242 	 * How many index blocks need to touch to modify nrblocks?
4243 	 * The "Chunk" flag indicating whether the nrblocks is
4244 	 * physically contiguous on disk
4245 	 *
4246 	 * For Direct IO and fallocate, they calls get_block to allocate
4247 	 * one single extent at a time, so they could set the "Chunk" flag
4248 	 */
4249 	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4250 
4251 	ret = idxblocks;
4252 
4253 	/*
4254 	 * Now let's see how many group bitmaps and group descriptors need
4255 	 * to account
4256 	 */
4257 	groups = idxblocks;
4258 	if (chunk)
4259 		groups += 1;
4260 	else
4261 		groups += nrblocks;
4262 
4263 	gdpblocks = groups;
4264 	if (groups > ngroups)
4265 		groups = ngroups;
4266 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4267 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4268 
4269 	/* bitmaps and block group descriptor blocks */
4270 	ret += groups + gdpblocks;
4271 
4272 	/* Blocks for super block, inode, quota and xattr blocks */
4273 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4274 
4275 	return ret;
4276 }
4277 
4278 /*
4279  * Calculate the total number of credits to reserve to fit
4280  * the modification of a single pages into a single transaction,
4281  * which may include multiple chunks of block allocations.
4282  *
4283  * This could be called via ext4_write_begin()
4284  *
4285  * We need to consider the worse case, when
4286  * one new block per extent.
4287  */
4288 int ext4_writepage_trans_blocks(struct inode *inode)
4289 {
4290 	int bpp = ext4_journal_blocks_per_page(inode);
4291 	int ret;
4292 
4293 	ret = ext4_meta_trans_blocks(inode, bpp, 0);
4294 
4295 	/* Account for data blocks for journalled mode */
4296 	if (ext4_should_journal_data(inode))
4297 		ret += bpp;
4298 	return ret;
4299 }
4300 
4301 /*
4302  * Calculate the journal credits for a chunk of data modification.
4303  *
4304  * This is called from DIO, fallocate or whoever calling
4305  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4306  *
4307  * journal buffers for data blocks are not included here, as DIO
4308  * and fallocate do no need to journal data buffers.
4309  */
4310 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4311 {
4312 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
4313 }
4314 
4315 /*
4316  * The caller must have previously called ext4_reserve_inode_write().
4317  * Give this, we know that the caller already has write access to iloc->bh.
4318  */
4319 int ext4_mark_iloc_dirty(handle_t *handle,
4320 			 struct inode *inode, struct ext4_iloc *iloc)
4321 {
4322 	int err = 0;
4323 
4324 	if (IS_I_VERSION(inode))
4325 		inode_inc_iversion(inode);
4326 
4327 	/* the do_update_inode consumes one bh->b_count */
4328 	get_bh(iloc->bh);
4329 
4330 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4331 	err = ext4_do_update_inode(handle, inode, iloc);
4332 	put_bh(iloc->bh);
4333 	return err;
4334 }
4335 
4336 /*
4337  * On success, We end up with an outstanding reference count against
4338  * iloc->bh.  This _must_ be cleaned up later.
4339  */
4340 
4341 int
4342 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4343 			 struct ext4_iloc *iloc)
4344 {
4345 	int err;
4346 
4347 	err = ext4_get_inode_loc(inode, iloc);
4348 	if (!err) {
4349 		BUFFER_TRACE(iloc->bh, "get_write_access");
4350 		err = ext4_journal_get_write_access(handle, iloc->bh);
4351 		if (err) {
4352 			brelse(iloc->bh);
4353 			iloc->bh = NULL;
4354 		}
4355 	}
4356 	ext4_std_error(inode->i_sb, err);
4357 	return err;
4358 }
4359 
4360 /*
4361  * Expand an inode by new_extra_isize bytes.
4362  * Returns 0 on success or negative error number on failure.
4363  */
4364 static int ext4_expand_extra_isize(struct inode *inode,
4365 				   unsigned int new_extra_isize,
4366 				   struct ext4_iloc iloc,
4367 				   handle_t *handle)
4368 {
4369 	struct ext4_inode *raw_inode;
4370 	struct ext4_xattr_ibody_header *header;
4371 
4372 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4373 		return 0;
4374 
4375 	raw_inode = ext4_raw_inode(&iloc);
4376 
4377 	header = IHDR(inode, raw_inode);
4378 
4379 	/* No extended attributes present */
4380 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4381 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4382 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4383 			new_extra_isize);
4384 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
4385 		return 0;
4386 	}
4387 
4388 	/* try to expand with EAs present */
4389 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4390 					  raw_inode, handle);
4391 }
4392 
4393 /*
4394  * What we do here is to mark the in-core inode as clean with respect to inode
4395  * dirtiness (it may still be data-dirty).
4396  * This means that the in-core inode may be reaped by prune_icache
4397  * without having to perform any I/O.  This is a very good thing,
4398  * because *any* task may call prune_icache - even ones which
4399  * have a transaction open against a different journal.
4400  *
4401  * Is this cheating?  Not really.  Sure, we haven't written the
4402  * inode out, but prune_icache isn't a user-visible syncing function.
4403  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4404  * we start and wait on commits.
4405  *
4406  * Is this efficient/effective?  Well, we're being nice to the system
4407  * by cleaning up our inodes proactively so they can be reaped
4408  * without I/O.  But we are potentially leaving up to five seconds'
4409  * worth of inodes floating about which prune_icache wants us to
4410  * write out.  One way to fix that would be to get prune_icache()
4411  * to do a write_super() to free up some memory.  It has the desired
4412  * effect.
4413  */
4414 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4415 {
4416 	struct ext4_iloc iloc;
4417 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4418 	static unsigned int mnt_count;
4419 	int err, ret;
4420 
4421 	might_sleep();
4422 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4423 	err = ext4_reserve_inode_write(handle, inode, &iloc);
4424 	if (ext4_handle_valid(handle) &&
4425 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4426 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4427 		/*
4428 		 * We need extra buffer credits since we may write into EA block
4429 		 * with this same handle. If journal_extend fails, then it will
4430 		 * only result in a minor loss of functionality for that inode.
4431 		 * If this is felt to be critical, then e2fsck should be run to
4432 		 * force a large enough s_min_extra_isize.
4433 		 */
4434 		if ((jbd2_journal_extend(handle,
4435 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4436 			ret = ext4_expand_extra_isize(inode,
4437 						      sbi->s_want_extra_isize,
4438 						      iloc, handle);
4439 			if (ret) {
4440 				ext4_set_inode_state(inode,
4441 						     EXT4_STATE_NO_EXPAND);
4442 				if (mnt_count !=
4443 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4444 					ext4_warning(inode->i_sb,
4445 					"Unable to expand inode %lu. Delete"
4446 					" some EAs or run e2fsck.",
4447 					inode->i_ino);
4448 					mnt_count =
4449 					  le16_to_cpu(sbi->s_es->s_mnt_count);
4450 				}
4451 			}
4452 		}
4453 	}
4454 	if (!err)
4455 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4456 	return err;
4457 }
4458 
4459 /*
4460  * ext4_dirty_inode() is called from __mark_inode_dirty()
4461  *
4462  * We're really interested in the case where a file is being extended.
4463  * i_size has been changed by generic_commit_write() and we thus need
4464  * to include the updated inode in the current transaction.
4465  *
4466  * Also, dquot_alloc_block() will always dirty the inode when blocks
4467  * are allocated to the file.
4468  *
4469  * If the inode is marked synchronous, we don't honour that here - doing
4470  * so would cause a commit on atime updates, which we don't bother doing.
4471  * We handle synchronous inodes at the highest possible level.
4472  */
4473 void ext4_dirty_inode(struct inode *inode, int flags)
4474 {
4475 	handle_t *handle;
4476 
4477 	handle = ext4_journal_start(inode, 2);
4478 	if (IS_ERR(handle))
4479 		goto out;
4480 
4481 	ext4_mark_inode_dirty(handle, inode);
4482 
4483 	ext4_journal_stop(handle);
4484 out:
4485 	return;
4486 }
4487 
4488 #if 0
4489 /*
4490  * Bind an inode's backing buffer_head into this transaction, to prevent
4491  * it from being flushed to disk early.  Unlike
4492  * ext4_reserve_inode_write, this leaves behind no bh reference and
4493  * returns no iloc structure, so the caller needs to repeat the iloc
4494  * lookup to mark the inode dirty later.
4495  */
4496 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4497 {
4498 	struct ext4_iloc iloc;
4499 
4500 	int err = 0;
4501 	if (handle) {
4502 		err = ext4_get_inode_loc(inode, &iloc);
4503 		if (!err) {
4504 			BUFFER_TRACE(iloc.bh, "get_write_access");
4505 			err = jbd2_journal_get_write_access(handle, iloc.bh);
4506 			if (!err)
4507 				err = ext4_handle_dirty_metadata(handle,
4508 								 NULL,
4509 								 iloc.bh);
4510 			brelse(iloc.bh);
4511 		}
4512 	}
4513 	ext4_std_error(inode->i_sb, err);
4514 	return err;
4515 }
4516 #endif
4517 
4518 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4519 {
4520 	journal_t *journal;
4521 	handle_t *handle;
4522 	int err;
4523 
4524 	/*
4525 	 * We have to be very careful here: changing a data block's
4526 	 * journaling status dynamically is dangerous.  If we write a
4527 	 * data block to the journal, change the status and then delete
4528 	 * that block, we risk forgetting to revoke the old log record
4529 	 * from the journal and so a subsequent replay can corrupt data.
4530 	 * So, first we make sure that the journal is empty and that
4531 	 * nobody is changing anything.
4532 	 */
4533 
4534 	journal = EXT4_JOURNAL(inode);
4535 	if (!journal)
4536 		return 0;
4537 	if (is_journal_aborted(journal))
4538 		return -EROFS;
4539 	/* We have to allocate physical blocks for delalloc blocks
4540 	 * before flushing journal. otherwise delalloc blocks can not
4541 	 * be allocated any more. even more truncate on delalloc blocks
4542 	 * could trigger BUG by flushing delalloc blocks in journal.
4543 	 * There is no delalloc block in non-journal data mode.
4544 	 */
4545 	if (val && test_opt(inode->i_sb, DELALLOC)) {
4546 		err = ext4_alloc_da_blocks(inode);
4547 		if (err < 0)
4548 			return err;
4549 	}
4550 
4551 	jbd2_journal_lock_updates(journal);
4552 
4553 	/*
4554 	 * OK, there are no updates running now, and all cached data is
4555 	 * synced to disk.  We are now in a completely consistent state
4556 	 * which doesn't have anything in the journal, and we know that
4557 	 * no filesystem updates are running, so it is safe to modify
4558 	 * the inode's in-core data-journaling state flag now.
4559 	 */
4560 
4561 	if (val)
4562 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4563 	else {
4564 		jbd2_journal_flush(journal);
4565 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4566 	}
4567 	ext4_set_aops(inode);
4568 
4569 	jbd2_journal_unlock_updates(journal);
4570 
4571 	/* Finally we can mark the inode as dirty. */
4572 
4573 	handle = ext4_journal_start(inode, 1);
4574 	if (IS_ERR(handle))
4575 		return PTR_ERR(handle);
4576 
4577 	err = ext4_mark_inode_dirty(handle, inode);
4578 	ext4_handle_sync(handle);
4579 	ext4_journal_stop(handle);
4580 	ext4_std_error(inode->i_sb, err);
4581 
4582 	return err;
4583 }
4584 
4585 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4586 {
4587 	return !buffer_mapped(bh);
4588 }
4589 
4590 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4591 {
4592 	struct page *page = vmf->page;
4593 	loff_t size;
4594 	unsigned long len;
4595 	int ret;
4596 	struct file *file = vma->vm_file;
4597 	struct inode *inode = file->f_path.dentry->d_inode;
4598 	struct address_space *mapping = inode->i_mapping;
4599 	handle_t *handle;
4600 	get_block_t *get_block;
4601 	int retries = 0;
4602 
4603 	/*
4604 	 * This check is racy but catches the common case. We rely on
4605 	 * __block_page_mkwrite() to do a reliable check.
4606 	 */
4607 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
4608 	/* Delalloc case is easy... */
4609 	if (test_opt(inode->i_sb, DELALLOC) &&
4610 	    !ext4_should_journal_data(inode) &&
4611 	    !ext4_nonda_switch(inode->i_sb)) {
4612 		do {
4613 			ret = __block_page_mkwrite(vma, vmf,
4614 						   ext4_da_get_block_prep);
4615 		} while (ret == -ENOSPC &&
4616 		       ext4_should_retry_alloc(inode->i_sb, &retries));
4617 		goto out_ret;
4618 	}
4619 
4620 	lock_page(page);
4621 	size = i_size_read(inode);
4622 	/* Page got truncated from under us? */
4623 	if (page->mapping != mapping || page_offset(page) > size) {
4624 		unlock_page(page);
4625 		ret = VM_FAULT_NOPAGE;
4626 		goto out;
4627 	}
4628 
4629 	if (page->index == size >> PAGE_CACHE_SHIFT)
4630 		len = size & ~PAGE_CACHE_MASK;
4631 	else
4632 		len = PAGE_CACHE_SIZE;
4633 	/*
4634 	 * Return if we have all the buffers mapped. This avoids the need to do
4635 	 * journal_start/journal_stop which can block and take a long time
4636 	 */
4637 	if (page_has_buffers(page)) {
4638 		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4639 					ext4_bh_unmapped)) {
4640 			/* Wait so that we don't change page under IO */
4641 			wait_on_page_writeback(page);
4642 			ret = VM_FAULT_LOCKED;
4643 			goto out;
4644 		}
4645 	}
4646 	unlock_page(page);
4647 	/* OK, we need to fill the hole... */
4648 	if (ext4_should_dioread_nolock(inode))
4649 		get_block = ext4_get_block_write;
4650 	else
4651 		get_block = ext4_get_block;
4652 retry_alloc:
4653 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4654 	if (IS_ERR(handle)) {
4655 		ret = VM_FAULT_SIGBUS;
4656 		goto out;
4657 	}
4658 	ret = __block_page_mkwrite(vma, vmf, get_block);
4659 	if (!ret && ext4_should_journal_data(inode)) {
4660 		if (walk_page_buffers(handle, page_buffers(page), 0,
4661 			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4662 			unlock_page(page);
4663 			ret = VM_FAULT_SIGBUS;
4664 			ext4_journal_stop(handle);
4665 			goto out;
4666 		}
4667 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4668 	}
4669 	ext4_journal_stop(handle);
4670 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4671 		goto retry_alloc;
4672 out_ret:
4673 	ret = block_page_mkwrite_return(ret);
4674 out:
4675 	return ret;
4676 }
4677