1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * 64-bit file support on 64-bit platforms by Jakub Jelinek 16 * (jj@sunsite.ms.mff.cuni.cz) 17 * 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 19 */ 20 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/jbd2.h> 24 #include <linux/highuid.h> 25 #include <linux/pagemap.h> 26 #include <linux/quotaops.h> 27 #include <linux/string.h> 28 #include <linux/buffer_head.h> 29 #include <linux/writeback.h> 30 #include <linux/pagevec.h> 31 #include <linux/mpage.h> 32 #include <linux/namei.h> 33 #include <linux/uio.h> 34 #include <linux/bio.h> 35 #include <linux/workqueue.h> 36 #include <linux/kernel.h> 37 #include <linux/printk.h> 38 #include <linux/slab.h> 39 #include <linux/ratelimit.h> 40 41 #include "ext4_jbd2.h" 42 #include "xattr.h" 43 #include "acl.h" 44 #include "truncate.h" 45 46 #include <trace/events/ext4.h> 47 48 #define MPAGE_DA_EXTENT_TAIL 0x01 49 50 static inline int ext4_begin_ordered_truncate(struct inode *inode, 51 loff_t new_size) 52 { 53 trace_ext4_begin_ordered_truncate(inode, new_size); 54 /* 55 * If jinode is zero, then we never opened the file for 56 * writing, so there's no need to call 57 * jbd2_journal_begin_ordered_truncate() since there's no 58 * outstanding writes we need to flush. 59 */ 60 if (!EXT4_I(inode)->jinode) 61 return 0; 62 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 63 EXT4_I(inode)->jinode, 64 new_size); 65 } 66 67 static void ext4_invalidatepage(struct page *page, unsigned long offset); 68 static int noalloc_get_block_write(struct inode *inode, sector_t iblock, 69 struct buffer_head *bh_result, int create); 70 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode); 71 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate); 72 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 73 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 74 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle, 75 struct inode *inode, struct page *page, loff_t from, 76 loff_t length, int flags); 77 78 /* 79 * Test whether an inode is a fast symlink. 80 */ 81 static int ext4_inode_is_fast_symlink(struct inode *inode) 82 { 83 int ea_blocks = EXT4_I(inode)->i_file_acl ? 84 (inode->i_sb->s_blocksize >> 9) : 0; 85 86 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 87 } 88 89 /* 90 * Restart the transaction associated with *handle. This does a commit, 91 * so before we call here everything must be consistently dirtied against 92 * this transaction. 93 */ 94 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 95 int nblocks) 96 { 97 int ret; 98 99 /* 100 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 101 * moment, get_block can be called only for blocks inside i_size since 102 * page cache has been already dropped and writes are blocked by 103 * i_mutex. So we can safely drop the i_data_sem here. 104 */ 105 BUG_ON(EXT4_JOURNAL(inode) == NULL); 106 jbd_debug(2, "restarting handle %p\n", handle); 107 up_write(&EXT4_I(inode)->i_data_sem); 108 ret = ext4_journal_restart(handle, nblocks); 109 down_write(&EXT4_I(inode)->i_data_sem); 110 ext4_discard_preallocations(inode); 111 112 return ret; 113 } 114 115 /* 116 * Called at the last iput() if i_nlink is zero. 117 */ 118 void ext4_evict_inode(struct inode *inode) 119 { 120 handle_t *handle; 121 int err; 122 123 trace_ext4_evict_inode(inode); 124 125 ext4_ioend_wait(inode); 126 127 if (inode->i_nlink) { 128 /* 129 * When journalling data dirty buffers are tracked only in the 130 * journal. So although mm thinks everything is clean and 131 * ready for reaping the inode might still have some pages to 132 * write in the running transaction or waiting to be 133 * checkpointed. Thus calling jbd2_journal_invalidatepage() 134 * (via truncate_inode_pages()) to discard these buffers can 135 * cause data loss. Also even if we did not discard these 136 * buffers, we would have no way to find them after the inode 137 * is reaped and thus user could see stale data if he tries to 138 * read them before the transaction is checkpointed. So be 139 * careful and force everything to disk here... We use 140 * ei->i_datasync_tid to store the newest transaction 141 * containing inode's data. 142 * 143 * Note that directories do not have this problem because they 144 * don't use page cache. 145 */ 146 if (ext4_should_journal_data(inode) && 147 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) { 148 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 149 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 150 151 jbd2_log_start_commit(journal, commit_tid); 152 jbd2_log_wait_commit(journal, commit_tid); 153 filemap_write_and_wait(&inode->i_data); 154 } 155 truncate_inode_pages(&inode->i_data, 0); 156 goto no_delete; 157 } 158 159 if (!is_bad_inode(inode)) 160 dquot_initialize(inode); 161 162 if (ext4_should_order_data(inode)) 163 ext4_begin_ordered_truncate(inode, 0); 164 truncate_inode_pages(&inode->i_data, 0); 165 166 if (is_bad_inode(inode)) 167 goto no_delete; 168 169 handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3); 170 if (IS_ERR(handle)) { 171 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 172 /* 173 * If we're going to skip the normal cleanup, we still need to 174 * make sure that the in-core orphan linked list is properly 175 * cleaned up. 176 */ 177 ext4_orphan_del(NULL, inode); 178 goto no_delete; 179 } 180 181 if (IS_SYNC(inode)) 182 ext4_handle_sync(handle); 183 inode->i_size = 0; 184 err = ext4_mark_inode_dirty(handle, inode); 185 if (err) { 186 ext4_warning(inode->i_sb, 187 "couldn't mark inode dirty (err %d)", err); 188 goto stop_handle; 189 } 190 if (inode->i_blocks) 191 ext4_truncate(inode); 192 193 /* 194 * ext4_ext_truncate() doesn't reserve any slop when it 195 * restarts journal transactions; therefore there may not be 196 * enough credits left in the handle to remove the inode from 197 * the orphan list and set the dtime field. 198 */ 199 if (!ext4_handle_has_enough_credits(handle, 3)) { 200 err = ext4_journal_extend(handle, 3); 201 if (err > 0) 202 err = ext4_journal_restart(handle, 3); 203 if (err != 0) { 204 ext4_warning(inode->i_sb, 205 "couldn't extend journal (err %d)", err); 206 stop_handle: 207 ext4_journal_stop(handle); 208 ext4_orphan_del(NULL, inode); 209 goto no_delete; 210 } 211 } 212 213 /* 214 * Kill off the orphan record which ext4_truncate created. 215 * AKPM: I think this can be inside the above `if'. 216 * Note that ext4_orphan_del() has to be able to cope with the 217 * deletion of a non-existent orphan - this is because we don't 218 * know if ext4_truncate() actually created an orphan record. 219 * (Well, we could do this if we need to, but heck - it works) 220 */ 221 ext4_orphan_del(handle, inode); 222 EXT4_I(inode)->i_dtime = get_seconds(); 223 224 /* 225 * One subtle ordering requirement: if anything has gone wrong 226 * (transaction abort, IO errors, whatever), then we can still 227 * do these next steps (the fs will already have been marked as 228 * having errors), but we can't free the inode if the mark_dirty 229 * fails. 230 */ 231 if (ext4_mark_inode_dirty(handle, inode)) 232 /* If that failed, just do the required in-core inode clear. */ 233 ext4_clear_inode(inode); 234 else 235 ext4_free_inode(handle, inode); 236 ext4_journal_stop(handle); 237 return; 238 no_delete: 239 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 240 } 241 242 #ifdef CONFIG_QUOTA 243 qsize_t *ext4_get_reserved_space(struct inode *inode) 244 { 245 return &EXT4_I(inode)->i_reserved_quota; 246 } 247 #endif 248 249 /* 250 * Calculate the number of metadata blocks need to reserve 251 * to allocate a block located at @lblock 252 */ 253 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 254 { 255 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 256 return ext4_ext_calc_metadata_amount(inode, lblock); 257 258 return ext4_ind_calc_metadata_amount(inode, lblock); 259 } 260 261 /* 262 * Called with i_data_sem down, which is important since we can call 263 * ext4_discard_preallocations() from here. 264 */ 265 void ext4_da_update_reserve_space(struct inode *inode, 266 int used, int quota_claim) 267 { 268 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 269 struct ext4_inode_info *ei = EXT4_I(inode); 270 271 spin_lock(&ei->i_block_reservation_lock); 272 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 273 if (unlikely(used > ei->i_reserved_data_blocks)) { 274 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d " 275 "with only %d reserved data blocks", 276 __func__, inode->i_ino, used, 277 ei->i_reserved_data_blocks); 278 WARN_ON(1); 279 used = ei->i_reserved_data_blocks; 280 } 281 282 /* Update per-inode reservations */ 283 ei->i_reserved_data_blocks -= used; 284 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks; 285 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 286 used + ei->i_allocated_meta_blocks); 287 ei->i_allocated_meta_blocks = 0; 288 289 if (ei->i_reserved_data_blocks == 0) { 290 /* 291 * We can release all of the reserved metadata blocks 292 * only when we have written all of the delayed 293 * allocation blocks. 294 */ 295 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 296 ei->i_reserved_meta_blocks); 297 ei->i_reserved_meta_blocks = 0; 298 ei->i_da_metadata_calc_len = 0; 299 } 300 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 301 302 /* Update quota subsystem for data blocks */ 303 if (quota_claim) 304 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 305 else { 306 /* 307 * We did fallocate with an offset that is already delayed 308 * allocated. So on delayed allocated writeback we should 309 * not re-claim the quota for fallocated blocks. 310 */ 311 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 312 } 313 314 /* 315 * If we have done all the pending block allocations and if 316 * there aren't any writers on the inode, we can discard the 317 * inode's preallocations. 318 */ 319 if ((ei->i_reserved_data_blocks == 0) && 320 (atomic_read(&inode->i_writecount) == 0)) 321 ext4_discard_preallocations(inode); 322 } 323 324 static int __check_block_validity(struct inode *inode, const char *func, 325 unsigned int line, 326 struct ext4_map_blocks *map) 327 { 328 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 329 map->m_len)) { 330 ext4_error_inode(inode, func, line, map->m_pblk, 331 "lblock %lu mapped to illegal pblock " 332 "(length %d)", (unsigned long) map->m_lblk, 333 map->m_len); 334 return -EIO; 335 } 336 return 0; 337 } 338 339 #define check_block_validity(inode, map) \ 340 __check_block_validity((inode), __func__, __LINE__, (map)) 341 342 /* 343 * Return the number of contiguous dirty pages in a given inode 344 * starting at page frame idx. 345 */ 346 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx, 347 unsigned int max_pages) 348 { 349 struct address_space *mapping = inode->i_mapping; 350 pgoff_t index; 351 struct pagevec pvec; 352 pgoff_t num = 0; 353 int i, nr_pages, done = 0; 354 355 if (max_pages == 0) 356 return 0; 357 pagevec_init(&pvec, 0); 358 while (!done) { 359 index = idx; 360 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 361 PAGECACHE_TAG_DIRTY, 362 (pgoff_t)PAGEVEC_SIZE); 363 if (nr_pages == 0) 364 break; 365 for (i = 0; i < nr_pages; i++) { 366 struct page *page = pvec.pages[i]; 367 struct buffer_head *bh, *head; 368 369 lock_page(page); 370 if (unlikely(page->mapping != mapping) || 371 !PageDirty(page) || 372 PageWriteback(page) || 373 page->index != idx) { 374 done = 1; 375 unlock_page(page); 376 break; 377 } 378 if (page_has_buffers(page)) { 379 bh = head = page_buffers(page); 380 do { 381 if (!buffer_delay(bh) && 382 !buffer_unwritten(bh)) 383 done = 1; 384 bh = bh->b_this_page; 385 } while (!done && (bh != head)); 386 } 387 unlock_page(page); 388 if (done) 389 break; 390 idx++; 391 num++; 392 if (num >= max_pages) { 393 done = 1; 394 break; 395 } 396 } 397 pagevec_release(&pvec); 398 } 399 return num; 400 } 401 402 /* 403 * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map. 404 */ 405 static void set_buffers_da_mapped(struct inode *inode, 406 struct ext4_map_blocks *map) 407 { 408 struct address_space *mapping = inode->i_mapping; 409 struct pagevec pvec; 410 int i, nr_pages; 411 pgoff_t index, end; 412 413 index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 414 end = (map->m_lblk + map->m_len - 1) >> 415 (PAGE_CACHE_SHIFT - inode->i_blkbits); 416 417 pagevec_init(&pvec, 0); 418 while (index <= end) { 419 nr_pages = pagevec_lookup(&pvec, mapping, index, 420 min(end - index + 1, 421 (pgoff_t)PAGEVEC_SIZE)); 422 if (nr_pages == 0) 423 break; 424 for (i = 0; i < nr_pages; i++) { 425 struct page *page = pvec.pages[i]; 426 struct buffer_head *bh, *head; 427 428 if (unlikely(page->mapping != mapping) || 429 !PageDirty(page)) 430 break; 431 432 if (page_has_buffers(page)) { 433 bh = head = page_buffers(page); 434 do { 435 set_buffer_da_mapped(bh); 436 bh = bh->b_this_page; 437 } while (bh != head); 438 } 439 index++; 440 } 441 pagevec_release(&pvec); 442 } 443 } 444 445 /* 446 * The ext4_map_blocks() function tries to look up the requested blocks, 447 * and returns if the blocks are already mapped. 448 * 449 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 450 * and store the allocated blocks in the result buffer head and mark it 451 * mapped. 452 * 453 * If file type is extents based, it will call ext4_ext_map_blocks(), 454 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 455 * based files 456 * 457 * On success, it returns the number of blocks being mapped or allocate. 458 * if create==0 and the blocks are pre-allocated and uninitialized block, 459 * the result buffer head is unmapped. If the create ==1, it will make sure 460 * the buffer head is mapped. 461 * 462 * It returns 0 if plain look up failed (blocks have not been allocated), in 463 * that case, buffer head is unmapped 464 * 465 * It returns the error in case of allocation failure. 466 */ 467 int ext4_map_blocks(handle_t *handle, struct inode *inode, 468 struct ext4_map_blocks *map, int flags) 469 { 470 int retval; 471 472 map->m_flags = 0; 473 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 474 "logical block %lu\n", inode->i_ino, flags, map->m_len, 475 (unsigned long) map->m_lblk); 476 /* 477 * Try to see if we can get the block without requesting a new 478 * file system block. 479 */ 480 down_read((&EXT4_I(inode)->i_data_sem)); 481 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 482 retval = ext4_ext_map_blocks(handle, inode, map, flags & 483 EXT4_GET_BLOCKS_KEEP_SIZE); 484 } else { 485 retval = ext4_ind_map_blocks(handle, inode, map, flags & 486 EXT4_GET_BLOCKS_KEEP_SIZE); 487 } 488 up_read((&EXT4_I(inode)->i_data_sem)); 489 490 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 491 int ret = check_block_validity(inode, map); 492 if (ret != 0) 493 return ret; 494 } 495 496 /* If it is only a block(s) look up */ 497 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 498 return retval; 499 500 /* 501 * Returns if the blocks have already allocated 502 * 503 * Note that if blocks have been preallocated 504 * ext4_ext_get_block() returns the create = 0 505 * with buffer head unmapped. 506 */ 507 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 508 return retval; 509 510 /* 511 * When we call get_blocks without the create flag, the 512 * BH_Unwritten flag could have gotten set if the blocks 513 * requested were part of a uninitialized extent. We need to 514 * clear this flag now that we are committed to convert all or 515 * part of the uninitialized extent to be an initialized 516 * extent. This is because we need to avoid the combination 517 * of BH_Unwritten and BH_Mapped flags being simultaneously 518 * set on the buffer_head. 519 */ 520 map->m_flags &= ~EXT4_MAP_UNWRITTEN; 521 522 /* 523 * New blocks allocate and/or writing to uninitialized extent 524 * will possibly result in updating i_data, so we take 525 * the write lock of i_data_sem, and call get_blocks() 526 * with create == 1 flag. 527 */ 528 down_write((&EXT4_I(inode)->i_data_sem)); 529 530 /* 531 * if the caller is from delayed allocation writeout path 532 * we have already reserved fs blocks for allocation 533 * let the underlying get_block() function know to 534 * avoid double accounting 535 */ 536 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 537 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 538 /* 539 * We need to check for EXT4 here because migrate 540 * could have changed the inode type in between 541 */ 542 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 543 retval = ext4_ext_map_blocks(handle, inode, map, flags); 544 } else { 545 retval = ext4_ind_map_blocks(handle, inode, map, flags); 546 547 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 548 /* 549 * We allocated new blocks which will result in 550 * i_data's format changing. Force the migrate 551 * to fail by clearing migrate flags 552 */ 553 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 554 } 555 556 /* 557 * Update reserved blocks/metadata blocks after successful 558 * block allocation which had been deferred till now. We don't 559 * support fallocate for non extent files. So we can update 560 * reserve space here. 561 */ 562 if ((retval > 0) && 563 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 564 ext4_da_update_reserve_space(inode, retval, 1); 565 } 566 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { 567 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 568 569 /* If we have successfully mapped the delayed allocated blocks, 570 * set the BH_Da_Mapped bit on them. Its important to do this 571 * under the protection of i_data_sem. 572 */ 573 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 574 set_buffers_da_mapped(inode, map); 575 } 576 577 up_write((&EXT4_I(inode)->i_data_sem)); 578 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 579 int ret = check_block_validity(inode, map); 580 if (ret != 0) 581 return ret; 582 } 583 return retval; 584 } 585 586 /* Maximum number of blocks we map for direct IO at once. */ 587 #define DIO_MAX_BLOCKS 4096 588 589 static int _ext4_get_block(struct inode *inode, sector_t iblock, 590 struct buffer_head *bh, int flags) 591 { 592 handle_t *handle = ext4_journal_current_handle(); 593 struct ext4_map_blocks map; 594 int ret = 0, started = 0; 595 int dio_credits; 596 597 map.m_lblk = iblock; 598 map.m_len = bh->b_size >> inode->i_blkbits; 599 600 if (flags && !handle) { 601 /* Direct IO write... */ 602 if (map.m_len > DIO_MAX_BLOCKS) 603 map.m_len = DIO_MAX_BLOCKS; 604 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 605 handle = ext4_journal_start(inode, dio_credits); 606 if (IS_ERR(handle)) { 607 ret = PTR_ERR(handle); 608 return ret; 609 } 610 started = 1; 611 } 612 613 ret = ext4_map_blocks(handle, inode, &map, flags); 614 if (ret > 0) { 615 map_bh(bh, inode->i_sb, map.m_pblk); 616 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 617 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 618 ret = 0; 619 } 620 if (started) 621 ext4_journal_stop(handle); 622 return ret; 623 } 624 625 int ext4_get_block(struct inode *inode, sector_t iblock, 626 struct buffer_head *bh, int create) 627 { 628 return _ext4_get_block(inode, iblock, bh, 629 create ? EXT4_GET_BLOCKS_CREATE : 0); 630 } 631 632 /* 633 * `handle' can be NULL if create is zero 634 */ 635 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 636 ext4_lblk_t block, int create, int *errp) 637 { 638 struct ext4_map_blocks map; 639 struct buffer_head *bh; 640 int fatal = 0, err; 641 642 J_ASSERT(handle != NULL || create == 0); 643 644 map.m_lblk = block; 645 map.m_len = 1; 646 err = ext4_map_blocks(handle, inode, &map, 647 create ? EXT4_GET_BLOCKS_CREATE : 0); 648 649 if (err < 0) 650 *errp = err; 651 if (err <= 0) 652 return NULL; 653 *errp = 0; 654 655 bh = sb_getblk(inode->i_sb, map.m_pblk); 656 if (!bh) { 657 *errp = -EIO; 658 return NULL; 659 } 660 if (map.m_flags & EXT4_MAP_NEW) { 661 J_ASSERT(create != 0); 662 J_ASSERT(handle != NULL); 663 664 /* 665 * Now that we do not always journal data, we should 666 * keep in mind whether this should always journal the 667 * new buffer as metadata. For now, regular file 668 * writes use ext4_get_block instead, so it's not a 669 * problem. 670 */ 671 lock_buffer(bh); 672 BUFFER_TRACE(bh, "call get_create_access"); 673 fatal = ext4_journal_get_create_access(handle, bh); 674 if (!fatal && !buffer_uptodate(bh)) { 675 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 676 set_buffer_uptodate(bh); 677 } 678 unlock_buffer(bh); 679 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 680 err = ext4_handle_dirty_metadata(handle, inode, bh); 681 if (!fatal) 682 fatal = err; 683 } else { 684 BUFFER_TRACE(bh, "not a new buffer"); 685 } 686 if (fatal) { 687 *errp = fatal; 688 brelse(bh); 689 bh = NULL; 690 } 691 return bh; 692 } 693 694 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 695 ext4_lblk_t block, int create, int *err) 696 { 697 struct buffer_head *bh; 698 699 bh = ext4_getblk(handle, inode, block, create, err); 700 if (!bh) 701 return bh; 702 if (buffer_uptodate(bh)) 703 return bh; 704 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh); 705 wait_on_buffer(bh); 706 if (buffer_uptodate(bh)) 707 return bh; 708 put_bh(bh); 709 *err = -EIO; 710 return NULL; 711 } 712 713 static int walk_page_buffers(handle_t *handle, 714 struct buffer_head *head, 715 unsigned from, 716 unsigned to, 717 int *partial, 718 int (*fn)(handle_t *handle, 719 struct buffer_head *bh)) 720 { 721 struct buffer_head *bh; 722 unsigned block_start, block_end; 723 unsigned blocksize = head->b_size; 724 int err, ret = 0; 725 struct buffer_head *next; 726 727 for (bh = head, block_start = 0; 728 ret == 0 && (bh != head || !block_start); 729 block_start = block_end, bh = next) { 730 next = bh->b_this_page; 731 block_end = block_start + blocksize; 732 if (block_end <= from || block_start >= to) { 733 if (partial && !buffer_uptodate(bh)) 734 *partial = 1; 735 continue; 736 } 737 err = (*fn)(handle, bh); 738 if (!ret) 739 ret = err; 740 } 741 return ret; 742 } 743 744 /* 745 * To preserve ordering, it is essential that the hole instantiation and 746 * the data write be encapsulated in a single transaction. We cannot 747 * close off a transaction and start a new one between the ext4_get_block() 748 * and the commit_write(). So doing the jbd2_journal_start at the start of 749 * prepare_write() is the right place. 750 * 751 * Also, this function can nest inside ext4_writepage() -> 752 * block_write_full_page(). In that case, we *know* that ext4_writepage() 753 * has generated enough buffer credits to do the whole page. So we won't 754 * block on the journal in that case, which is good, because the caller may 755 * be PF_MEMALLOC. 756 * 757 * By accident, ext4 can be reentered when a transaction is open via 758 * quota file writes. If we were to commit the transaction while thus 759 * reentered, there can be a deadlock - we would be holding a quota 760 * lock, and the commit would never complete if another thread had a 761 * transaction open and was blocking on the quota lock - a ranking 762 * violation. 763 * 764 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 765 * will _not_ run commit under these circumstances because handle->h_ref 766 * is elevated. We'll still have enough credits for the tiny quotafile 767 * write. 768 */ 769 static int do_journal_get_write_access(handle_t *handle, 770 struct buffer_head *bh) 771 { 772 int dirty = buffer_dirty(bh); 773 int ret; 774 775 if (!buffer_mapped(bh) || buffer_freed(bh)) 776 return 0; 777 /* 778 * __block_write_begin() could have dirtied some buffers. Clean 779 * the dirty bit as jbd2_journal_get_write_access() could complain 780 * otherwise about fs integrity issues. Setting of the dirty bit 781 * by __block_write_begin() isn't a real problem here as we clear 782 * the bit before releasing a page lock and thus writeback cannot 783 * ever write the buffer. 784 */ 785 if (dirty) 786 clear_buffer_dirty(bh); 787 ret = ext4_journal_get_write_access(handle, bh); 788 if (!ret && dirty) 789 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 790 return ret; 791 } 792 793 static int ext4_get_block_write(struct inode *inode, sector_t iblock, 794 struct buffer_head *bh_result, int create); 795 static int ext4_write_begin(struct file *file, struct address_space *mapping, 796 loff_t pos, unsigned len, unsigned flags, 797 struct page **pagep, void **fsdata) 798 { 799 struct inode *inode = mapping->host; 800 int ret, needed_blocks; 801 handle_t *handle; 802 int retries = 0; 803 struct page *page; 804 pgoff_t index; 805 unsigned from, to; 806 807 trace_ext4_write_begin(inode, pos, len, flags); 808 /* 809 * Reserve one block more for addition to orphan list in case 810 * we allocate blocks but write fails for some reason 811 */ 812 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 813 index = pos >> PAGE_CACHE_SHIFT; 814 from = pos & (PAGE_CACHE_SIZE - 1); 815 to = from + len; 816 817 retry: 818 handle = ext4_journal_start(inode, needed_blocks); 819 if (IS_ERR(handle)) { 820 ret = PTR_ERR(handle); 821 goto out; 822 } 823 824 /* We cannot recurse into the filesystem as the transaction is already 825 * started */ 826 flags |= AOP_FLAG_NOFS; 827 828 page = grab_cache_page_write_begin(mapping, index, flags); 829 if (!page) { 830 ext4_journal_stop(handle); 831 ret = -ENOMEM; 832 goto out; 833 } 834 *pagep = page; 835 836 if (ext4_should_dioread_nolock(inode)) 837 ret = __block_write_begin(page, pos, len, ext4_get_block_write); 838 else 839 ret = __block_write_begin(page, pos, len, ext4_get_block); 840 841 if (!ret && ext4_should_journal_data(inode)) { 842 ret = walk_page_buffers(handle, page_buffers(page), 843 from, to, NULL, do_journal_get_write_access); 844 } 845 846 if (ret) { 847 unlock_page(page); 848 page_cache_release(page); 849 /* 850 * __block_write_begin may have instantiated a few blocks 851 * outside i_size. Trim these off again. Don't need 852 * i_size_read because we hold i_mutex. 853 * 854 * Add inode to orphan list in case we crash before 855 * truncate finishes 856 */ 857 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 858 ext4_orphan_add(handle, inode); 859 860 ext4_journal_stop(handle); 861 if (pos + len > inode->i_size) { 862 ext4_truncate_failed_write(inode); 863 /* 864 * If truncate failed early the inode might 865 * still be on the orphan list; we need to 866 * make sure the inode is removed from the 867 * orphan list in that case. 868 */ 869 if (inode->i_nlink) 870 ext4_orphan_del(NULL, inode); 871 } 872 } 873 874 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 875 goto retry; 876 out: 877 return ret; 878 } 879 880 /* For write_end() in data=journal mode */ 881 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 882 { 883 if (!buffer_mapped(bh) || buffer_freed(bh)) 884 return 0; 885 set_buffer_uptodate(bh); 886 return ext4_handle_dirty_metadata(handle, NULL, bh); 887 } 888 889 static int ext4_generic_write_end(struct file *file, 890 struct address_space *mapping, 891 loff_t pos, unsigned len, unsigned copied, 892 struct page *page, void *fsdata) 893 { 894 int i_size_changed = 0; 895 struct inode *inode = mapping->host; 896 handle_t *handle = ext4_journal_current_handle(); 897 898 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 899 900 /* 901 * No need to use i_size_read() here, the i_size 902 * cannot change under us because we hold i_mutex. 903 * 904 * But it's important to update i_size while still holding page lock: 905 * page writeout could otherwise come in and zero beyond i_size. 906 */ 907 if (pos + copied > inode->i_size) { 908 i_size_write(inode, pos + copied); 909 i_size_changed = 1; 910 } 911 912 if (pos + copied > EXT4_I(inode)->i_disksize) { 913 /* We need to mark inode dirty even if 914 * new_i_size is less that inode->i_size 915 * bu greater than i_disksize.(hint delalloc) 916 */ 917 ext4_update_i_disksize(inode, (pos + copied)); 918 i_size_changed = 1; 919 } 920 unlock_page(page); 921 page_cache_release(page); 922 923 /* 924 * Don't mark the inode dirty under page lock. First, it unnecessarily 925 * makes the holding time of page lock longer. Second, it forces lock 926 * ordering of page lock and transaction start for journaling 927 * filesystems. 928 */ 929 if (i_size_changed) 930 ext4_mark_inode_dirty(handle, inode); 931 932 return copied; 933 } 934 935 /* 936 * We need to pick up the new inode size which generic_commit_write gave us 937 * `file' can be NULL - eg, when called from page_symlink(). 938 * 939 * ext4 never places buffers on inode->i_mapping->private_list. metadata 940 * buffers are managed internally. 941 */ 942 static int ext4_ordered_write_end(struct file *file, 943 struct address_space *mapping, 944 loff_t pos, unsigned len, unsigned copied, 945 struct page *page, void *fsdata) 946 { 947 handle_t *handle = ext4_journal_current_handle(); 948 struct inode *inode = mapping->host; 949 int ret = 0, ret2; 950 951 trace_ext4_ordered_write_end(inode, pos, len, copied); 952 ret = ext4_jbd2_file_inode(handle, inode); 953 954 if (ret == 0) { 955 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied, 956 page, fsdata); 957 copied = ret2; 958 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 959 /* if we have allocated more blocks and copied 960 * less. We will have blocks allocated outside 961 * inode->i_size. So truncate them 962 */ 963 ext4_orphan_add(handle, inode); 964 if (ret2 < 0) 965 ret = ret2; 966 } else { 967 unlock_page(page); 968 page_cache_release(page); 969 } 970 971 ret2 = ext4_journal_stop(handle); 972 if (!ret) 973 ret = ret2; 974 975 if (pos + len > inode->i_size) { 976 ext4_truncate_failed_write(inode); 977 /* 978 * If truncate failed early the inode might still be 979 * on the orphan list; we need to make sure the inode 980 * is removed from the orphan list in that case. 981 */ 982 if (inode->i_nlink) 983 ext4_orphan_del(NULL, inode); 984 } 985 986 987 return ret ? ret : copied; 988 } 989 990 static int ext4_writeback_write_end(struct file *file, 991 struct address_space *mapping, 992 loff_t pos, unsigned len, unsigned copied, 993 struct page *page, void *fsdata) 994 { 995 handle_t *handle = ext4_journal_current_handle(); 996 struct inode *inode = mapping->host; 997 int ret = 0, ret2; 998 999 trace_ext4_writeback_write_end(inode, pos, len, copied); 1000 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied, 1001 page, fsdata); 1002 copied = ret2; 1003 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1004 /* if we have allocated more blocks and copied 1005 * less. We will have blocks allocated outside 1006 * inode->i_size. So truncate them 1007 */ 1008 ext4_orphan_add(handle, inode); 1009 1010 if (ret2 < 0) 1011 ret = ret2; 1012 1013 ret2 = ext4_journal_stop(handle); 1014 if (!ret) 1015 ret = ret2; 1016 1017 if (pos + len > inode->i_size) { 1018 ext4_truncate_failed_write(inode); 1019 /* 1020 * If truncate failed early the inode might still be 1021 * on the orphan list; we need to make sure the inode 1022 * is removed from the orphan list in that case. 1023 */ 1024 if (inode->i_nlink) 1025 ext4_orphan_del(NULL, inode); 1026 } 1027 1028 return ret ? ret : copied; 1029 } 1030 1031 static int ext4_journalled_write_end(struct file *file, 1032 struct address_space *mapping, 1033 loff_t pos, unsigned len, unsigned copied, 1034 struct page *page, void *fsdata) 1035 { 1036 handle_t *handle = ext4_journal_current_handle(); 1037 struct inode *inode = mapping->host; 1038 int ret = 0, ret2; 1039 int partial = 0; 1040 unsigned from, to; 1041 loff_t new_i_size; 1042 1043 trace_ext4_journalled_write_end(inode, pos, len, copied); 1044 from = pos & (PAGE_CACHE_SIZE - 1); 1045 to = from + len; 1046 1047 BUG_ON(!ext4_handle_valid(handle)); 1048 1049 if (copied < len) { 1050 if (!PageUptodate(page)) 1051 copied = 0; 1052 page_zero_new_buffers(page, from+copied, to); 1053 } 1054 1055 ret = walk_page_buffers(handle, page_buffers(page), from, 1056 to, &partial, write_end_fn); 1057 if (!partial) 1058 SetPageUptodate(page); 1059 new_i_size = pos + copied; 1060 if (new_i_size > inode->i_size) 1061 i_size_write(inode, pos+copied); 1062 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1063 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1064 if (new_i_size > EXT4_I(inode)->i_disksize) { 1065 ext4_update_i_disksize(inode, new_i_size); 1066 ret2 = ext4_mark_inode_dirty(handle, inode); 1067 if (!ret) 1068 ret = ret2; 1069 } 1070 1071 unlock_page(page); 1072 page_cache_release(page); 1073 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1074 /* if we have allocated more blocks and copied 1075 * less. We will have blocks allocated outside 1076 * inode->i_size. So truncate them 1077 */ 1078 ext4_orphan_add(handle, inode); 1079 1080 ret2 = ext4_journal_stop(handle); 1081 if (!ret) 1082 ret = ret2; 1083 if (pos + len > inode->i_size) { 1084 ext4_truncate_failed_write(inode); 1085 /* 1086 * If truncate failed early the inode might still be 1087 * on the orphan list; we need to make sure the inode 1088 * is removed from the orphan list in that case. 1089 */ 1090 if (inode->i_nlink) 1091 ext4_orphan_del(NULL, inode); 1092 } 1093 1094 return ret ? ret : copied; 1095 } 1096 1097 /* 1098 * Reserve a single cluster located at lblock 1099 */ 1100 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock) 1101 { 1102 int retries = 0; 1103 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1104 struct ext4_inode_info *ei = EXT4_I(inode); 1105 unsigned int md_needed; 1106 int ret; 1107 1108 /* 1109 * recalculate the amount of metadata blocks to reserve 1110 * in order to allocate nrblocks 1111 * worse case is one extent per block 1112 */ 1113 repeat: 1114 spin_lock(&ei->i_block_reservation_lock); 1115 md_needed = EXT4_NUM_B2C(sbi, 1116 ext4_calc_metadata_amount(inode, lblock)); 1117 trace_ext4_da_reserve_space(inode, md_needed); 1118 spin_unlock(&ei->i_block_reservation_lock); 1119 1120 /* 1121 * We will charge metadata quota at writeout time; this saves 1122 * us from metadata over-estimation, though we may go over by 1123 * a small amount in the end. Here we just reserve for data. 1124 */ 1125 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1126 if (ret) 1127 return ret; 1128 /* 1129 * We do still charge estimated metadata to the sb though; 1130 * we cannot afford to run out of free blocks. 1131 */ 1132 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) { 1133 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1134 if (ext4_should_retry_alloc(inode->i_sb, &retries)) { 1135 yield(); 1136 goto repeat; 1137 } 1138 return -ENOSPC; 1139 } 1140 spin_lock(&ei->i_block_reservation_lock); 1141 ei->i_reserved_data_blocks++; 1142 ei->i_reserved_meta_blocks += md_needed; 1143 spin_unlock(&ei->i_block_reservation_lock); 1144 1145 return 0; /* success */ 1146 } 1147 1148 static void ext4_da_release_space(struct inode *inode, int to_free) 1149 { 1150 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1151 struct ext4_inode_info *ei = EXT4_I(inode); 1152 1153 if (!to_free) 1154 return; /* Nothing to release, exit */ 1155 1156 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1157 1158 trace_ext4_da_release_space(inode, to_free); 1159 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1160 /* 1161 * if there aren't enough reserved blocks, then the 1162 * counter is messed up somewhere. Since this 1163 * function is called from invalidate page, it's 1164 * harmless to return without any action. 1165 */ 1166 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: " 1167 "ino %lu, to_free %d with only %d reserved " 1168 "data blocks", inode->i_ino, to_free, 1169 ei->i_reserved_data_blocks); 1170 WARN_ON(1); 1171 to_free = ei->i_reserved_data_blocks; 1172 } 1173 ei->i_reserved_data_blocks -= to_free; 1174 1175 if (ei->i_reserved_data_blocks == 0) { 1176 /* 1177 * We can release all of the reserved metadata blocks 1178 * only when we have written all of the delayed 1179 * allocation blocks. 1180 * Note that in case of bigalloc, i_reserved_meta_blocks, 1181 * i_reserved_data_blocks, etc. refer to number of clusters. 1182 */ 1183 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 1184 ei->i_reserved_meta_blocks); 1185 ei->i_reserved_meta_blocks = 0; 1186 ei->i_da_metadata_calc_len = 0; 1187 } 1188 1189 /* update fs dirty data blocks counter */ 1190 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1191 1192 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1193 1194 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1195 } 1196 1197 static void ext4_da_page_release_reservation(struct page *page, 1198 unsigned long offset) 1199 { 1200 int to_release = 0; 1201 struct buffer_head *head, *bh; 1202 unsigned int curr_off = 0; 1203 struct inode *inode = page->mapping->host; 1204 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1205 int num_clusters; 1206 1207 head = page_buffers(page); 1208 bh = head; 1209 do { 1210 unsigned int next_off = curr_off + bh->b_size; 1211 1212 if ((offset <= curr_off) && (buffer_delay(bh))) { 1213 to_release++; 1214 clear_buffer_delay(bh); 1215 clear_buffer_da_mapped(bh); 1216 } 1217 curr_off = next_off; 1218 } while ((bh = bh->b_this_page) != head); 1219 1220 /* If we have released all the blocks belonging to a cluster, then we 1221 * need to release the reserved space for that cluster. */ 1222 num_clusters = EXT4_NUM_B2C(sbi, to_release); 1223 while (num_clusters > 0) { 1224 ext4_fsblk_t lblk; 1225 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) + 1226 ((num_clusters - 1) << sbi->s_cluster_bits); 1227 if (sbi->s_cluster_ratio == 1 || 1228 !ext4_find_delalloc_cluster(inode, lblk, 1)) 1229 ext4_da_release_space(inode, 1); 1230 1231 num_clusters--; 1232 } 1233 } 1234 1235 /* 1236 * Delayed allocation stuff 1237 */ 1238 1239 /* 1240 * mpage_da_submit_io - walks through extent of pages and try to write 1241 * them with writepage() call back 1242 * 1243 * @mpd->inode: inode 1244 * @mpd->first_page: first page of the extent 1245 * @mpd->next_page: page after the last page of the extent 1246 * 1247 * By the time mpage_da_submit_io() is called we expect all blocks 1248 * to be allocated. this may be wrong if allocation failed. 1249 * 1250 * As pages are already locked by write_cache_pages(), we can't use it 1251 */ 1252 static int mpage_da_submit_io(struct mpage_da_data *mpd, 1253 struct ext4_map_blocks *map) 1254 { 1255 struct pagevec pvec; 1256 unsigned long index, end; 1257 int ret = 0, err, nr_pages, i; 1258 struct inode *inode = mpd->inode; 1259 struct address_space *mapping = inode->i_mapping; 1260 loff_t size = i_size_read(inode); 1261 unsigned int len, block_start; 1262 struct buffer_head *bh, *page_bufs = NULL; 1263 int journal_data = ext4_should_journal_data(inode); 1264 sector_t pblock = 0, cur_logical = 0; 1265 struct ext4_io_submit io_submit; 1266 1267 BUG_ON(mpd->next_page <= mpd->first_page); 1268 memset(&io_submit, 0, sizeof(io_submit)); 1269 /* 1270 * We need to start from the first_page to the next_page - 1 1271 * to make sure we also write the mapped dirty buffer_heads. 1272 * If we look at mpd->b_blocknr we would only be looking 1273 * at the currently mapped buffer_heads. 1274 */ 1275 index = mpd->first_page; 1276 end = mpd->next_page - 1; 1277 1278 pagevec_init(&pvec, 0); 1279 while (index <= end) { 1280 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1281 if (nr_pages == 0) 1282 break; 1283 for (i = 0; i < nr_pages; i++) { 1284 int commit_write = 0, skip_page = 0; 1285 struct page *page = pvec.pages[i]; 1286 1287 index = page->index; 1288 if (index > end) 1289 break; 1290 1291 if (index == size >> PAGE_CACHE_SHIFT) 1292 len = size & ~PAGE_CACHE_MASK; 1293 else 1294 len = PAGE_CACHE_SIZE; 1295 if (map) { 1296 cur_logical = index << (PAGE_CACHE_SHIFT - 1297 inode->i_blkbits); 1298 pblock = map->m_pblk + (cur_logical - 1299 map->m_lblk); 1300 } 1301 index++; 1302 1303 BUG_ON(!PageLocked(page)); 1304 BUG_ON(PageWriteback(page)); 1305 1306 /* 1307 * If the page does not have buffers (for 1308 * whatever reason), try to create them using 1309 * __block_write_begin. If this fails, 1310 * skip the page and move on. 1311 */ 1312 if (!page_has_buffers(page)) { 1313 if (__block_write_begin(page, 0, len, 1314 noalloc_get_block_write)) { 1315 skip_page: 1316 unlock_page(page); 1317 continue; 1318 } 1319 commit_write = 1; 1320 } 1321 1322 bh = page_bufs = page_buffers(page); 1323 block_start = 0; 1324 do { 1325 if (!bh) 1326 goto skip_page; 1327 if (map && (cur_logical >= map->m_lblk) && 1328 (cur_logical <= (map->m_lblk + 1329 (map->m_len - 1)))) { 1330 if (buffer_delay(bh)) { 1331 clear_buffer_delay(bh); 1332 bh->b_blocknr = pblock; 1333 } 1334 if (buffer_da_mapped(bh)) 1335 clear_buffer_da_mapped(bh); 1336 if (buffer_unwritten(bh) || 1337 buffer_mapped(bh)) 1338 BUG_ON(bh->b_blocknr != pblock); 1339 if (map->m_flags & EXT4_MAP_UNINIT) 1340 set_buffer_uninit(bh); 1341 clear_buffer_unwritten(bh); 1342 } 1343 1344 /* 1345 * skip page if block allocation undone and 1346 * block is dirty 1347 */ 1348 if (ext4_bh_delay_or_unwritten(NULL, bh)) 1349 skip_page = 1; 1350 bh = bh->b_this_page; 1351 block_start += bh->b_size; 1352 cur_logical++; 1353 pblock++; 1354 } while (bh != page_bufs); 1355 1356 if (skip_page) 1357 goto skip_page; 1358 1359 if (commit_write) 1360 /* mark the buffer_heads as dirty & uptodate */ 1361 block_commit_write(page, 0, len); 1362 1363 clear_page_dirty_for_io(page); 1364 /* 1365 * Delalloc doesn't support data journalling, 1366 * but eventually maybe we'll lift this 1367 * restriction. 1368 */ 1369 if (unlikely(journal_data && PageChecked(page))) 1370 err = __ext4_journalled_writepage(page, len); 1371 else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT)) 1372 err = ext4_bio_write_page(&io_submit, page, 1373 len, mpd->wbc); 1374 else if (buffer_uninit(page_bufs)) { 1375 ext4_set_bh_endio(page_bufs, inode); 1376 err = block_write_full_page_endio(page, 1377 noalloc_get_block_write, 1378 mpd->wbc, ext4_end_io_buffer_write); 1379 } else 1380 err = block_write_full_page(page, 1381 noalloc_get_block_write, mpd->wbc); 1382 1383 if (!err) 1384 mpd->pages_written++; 1385 /* 1386 * In error case, we have to continue because 1387 * remaining pages are still locked 1388 */ 1389 if (ret == 0) 1390 ret = err; 1391 } 1392 pagevec_release(&pvec); 1393 } 1394 ext4_io_submit(&io_submit); 1395 return ret; 1396 } 1397 1398 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd) 1399 { 1400 int nr_pages, i; 1401 pgoff_t index, end; 1402 struct pagevec pvec; 1403 struct inode *inode = mpd->inode; 1404 struct address_space *mapping = inode->i_mapping; 1405 1406 index = mpd->first_page; 1407 end = mpd->next_page - 1; 1408 while (index <= end) { 1409 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1410 if (nr_pages == 0) 1411 break; 1412 for (i = 0; i < nr_pages; i++) { 1413 struct page *page = pvec.pages[i]; 1414 if (page->index > end) 1415 break; 1416 BUG_ON(!PageLocked(page)); 1417 BUG_ON(PageWriteback(page)); 1418 block_invalidatepage(page, 0); 1419 ClearPageUptodate(page); 1420 unlock_page(page); 1421 } 1422 index = pvec.pages[nr_pages - 1]->index + 1; 1423 pagevec_release(&pvec); 1424 } 1425 return; 1426 } 1427 1428 static void ext4_print_free_blocks(struct inode *inode) 1429 { 1430 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1431 struct super_block *sb = inode->i_sb; 1432 1433 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1434 EXT4_C2B(EXT4_SB(inode->i_sb), 1435 ext4_count_free_clusters(inode->i_sb))); 1436 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1437 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1438 (long long) EXT4_C2B(EXT4_SB(inode->i_sb), 1439 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1440 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1441 (long long) EXT4_C2B(EXT4_SB(inode->i_sb), 1442 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1443 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1444 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1445 EXT4_I(inode)->i_reserved_data_blocks); 1446 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u", 1447 EXT4_I(inode)->i_reserved_meta_blocks); 1448 return; 1449 } 1450 1451 /* 1452 * mpage_da_map_and_submit - go through given space, map them 1453 * if necessary, and then submit them for I/O 1454 * 1455 * @mpd - bh describing space 1456 * 1457 * The function skips space we know is already mapped to disk blocks. 1458 * 1459 */ 1460 static void mpage_da_map_and_submit(struct mpage_da_data *mpd) 1461 { 1462 int err, blks, get_blocks_flags; 1463 struct ext4_map_blocks map, *mapp = NULL; 1464 sector_t next = mpd->b_blocknr; 1465 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits; 1466 loff_t disksize = EXT4_I(mpd->inode)->i_disksize; 1467 handle_t *handle = NULL; 1468 1469 /* 1470 * If the blocks are mapped already, or we couldn't accumulate 1471 * any blocks, then proceed immediately to the submission stage. 1472 */ 1473 if ((mpd->b_size == 0) || 1474 ((mpd->b_state & (1 << BH_Mapped)) && 1475 !(mpd->b_state & (1 << BH_Delay)) && 1476 !(mpd->b_state & (1 << BH_Unwritten)))) 1477 goto submit_io; 1478 1479 handle = ext4_journal_current_handle(); 1480 BUG_ON(!handle); 1481 1482 /* 1483 * Call ext4_map_blocks() to allocate any delayed allocation 1484 * blocks, or to convert an uninitialized extent to be 1485 * initialized (in the case where we have written into 1486 * one or more preallocated blocks). 1487 * 1488 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to 1489 * indicate that we are on the delayed allocation path. This 1490 * affects functions in many different parts of the allocation 1491 * call path. This flag exists primarily because we don't 1492 * want to change *many* call functions, so ext4_map_blocks() 1493 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the 1494 * inode's allocation semaphore is taken. 1495 * 1496 * If the blocks in questions were delalloc blocks, set 1497 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting 1498 * variables are updated after the blocks have been allocated. 1499 */ 1500 map.m_lblk = next; 1501 map.m_len = max_blocks; 1502 get_blocks_flags = EXT4_GET_BLOCKS_CREATE; 1503 if (ext4_should_dioread_nolock(mpd->inode)) 1504 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 1505 if (mpd->b_state & (1 << BH_Delay)) 1506 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 1507 1508 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags); 1509 if (blks < 0) { 1510 struct super_block *sb = mpd->inode->i_sb; 1511 1512 err = blks; 1513 /* 1514 * If get block returns EAGAIN or ENOSPC and there 1515 * appears to be free blocks we will just let 1516 * mpage_da_submit_io() unlock all of the pages. 1517 */ 1518 if (err == -EAGAIN) 1519 goto submit_io; 1520 1521 if (err == -ENOSPC && ext4_count_free_clusters(sb)) { 1522 mpd->retval = err; 1523 goto submit_io; 1524 } 1525 1526 /* 1527 * get block failure will cause us to loop in 1528 * writepages, because a_ops->writepage won't be able 1529 * to make progress. The page will be redirtied by 1530 * writepage and writepages will again try to write 1531 * the same. 1532 */ 1533 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) { 1534 ext4_msg(sb, KERN_CRIT, 1535 "delayed block allocation failed for inode %lu " 1536 "at logical offset %llu with max blocks %zd " 1537 "with error %d", mpd->inode->i_ino, 1538 (unsigned long long) next, 1539 mpd->b_size >> mpd->inode->i_blkbits, err); 1540 ext4_msg(sb, KERN_CRIT, 1541 "This should not happen!! Data will be lost\n"); 1542 if (err == -ENOSPC) 1543 ext4_print_free_blocks(mpd->inode); 1544 } 1545 /* invalidate all the pages */ 1546 ext4_da_block_invalidatepages(mpd); 1547 1548 /* Mark this page range as having been completed */ 1549 mpd->io_done = 1; 1550 return; 1551 } 1552 BUG_ON(blks == 0); 1553 1554 mapp = ↦ 1555 if (map.m_flags & EXT4_MAP_NEW) { 1556 struct block_device *bdev = mpd->inode->i_sb->s_bdev; 1557 int i; 1558 1559 for (i = 0; i < map.m_len; i++) 1560 unmap_underlying_metadata(bdev, map.m_pblk + i); 1561 1562 if (ext4_should_order_data(mpd->inode)) { 1563 err = ext4_jbd2_file_inode(handle, mpd->inode); 1564 if (err) { 1565 /* Only if the journal is aborted */ 1566 mpd->retval = err; 1567 goto submit_io; 1568 } 1569 } 1570 } 1571 1572 /* 1573 * Update on-disk size along with block allocation. 1574 */ 1575 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits; 1576 if (disksize > i_size_read(mpd->inode)) 1577 disksize = i_size_read(mpd->inode); 1578 if (disksize > EXT4_I(mpd->inode)->i_disksize) { 1579 ext4_update_i_disksize(mpd->inode, disksize); 1580 err = ext4_mark_inode_dirty(handle, mpd->inode); 1581 if (err) 1582 ext4_error(mpd->inode->i_sb, 1583 "Failed to mark inode %lu dirty", 1584 mpd->inode->i_ino); 1585 } 1586 1587 submit_io: 1588 mpage_da_submit_io(mpd, mapp); 1589 mpd->io_done = 1; 1590 } 1591 1592 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \ 1593 (1 << BH_Delay) | (1 << BH_Unwritten)) 1594 1595 /* 1596 * mpage_add_bh_to_extent - try to add one more block to extent of blocks 1597 * 1598 * @mpd->lbh - extent of blocks 1599 * @logical - logical number of the block in the file 1600 * @bh - bh of the block (used to access block's state) 1601 * 1602 * the function is used to collect contig. blocks in same state 1603 */ 1604 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, 1605 sector_t logical, size_t b_size, 1606 unsigned long b_state) 1607 { 1608 sector_t next; 1609 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits; 1610 1611 /* 1612 * XXX Don't go larger than mballoc is willing to allocate 1613 * This is a stopgap solution. We eventually need to fold 1614 * mpage_da_submit_io() into this function and then call 1615 * ext4_map_blocks() multiple times in a loop 1616 */ 1617 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize) 1618 goto flush_it; 1619 1620 /* check if thereserved journal credits might overflow */ 1621 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) { 1622 if (nrblocks >= EXT4_MAX_TRANS_DATA) { 1623 /* 1624 * With non-extent format we are limited by the journal 1625 * credit available. Total credit needed to insert 1626 * nrblocks contiguous blocks is dependent on the 1627 * nrblocks. So limit nrblocks. 1628 */ 1629 goto flush_it; 1630 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) > 1631 EXT4_MAX_TRANS_DATA) { 1632 /* 1633 * Adding the new buffer_head would make it cross the 1634 * allowed limit for which we have journal credit 1635 * reserved. So limit the new bh->b_size 1636 */ 1637 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) << 1638 mpd->inode->i_blkbits; 1639 /* we will do mpage_da_submit_io in the next loop */ 1640 } 1641 } 1642 /* 1643 * First block in the extent 1644 */ 1645 if (mpd->b_size == 0) { 1646 mpd->b_blocknr = logical; 1647 mpd->b_size = b_size; 1648 mpd->b_state = b_state & BH_FLAGS; 1649 return; 1650 } 1651 1652 next = mpd->b_blocknr + nrblocks; 1653 /* 1654 * Can we merge the block to our big extent? 1655 */ 1656 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) { 1657 mpd->b_size += b_size; 1658 return; 1659 } 1660 1661 flush_it: 1662 /* 1663 * We couldn't merge the block to our extent, so we 1664 * need to flush current extent and start new one 1665 */ 1666 mpage_da_map_and_submit(mpd); 1667 return; 1668 } 1669 1670 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1671 { 1672 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1673 } 1674 1675 /* 1676 * This function is grabs code from the very beginning of 1677 * ext4_map_blocks, but assumes that the caller is from delayed write 1678 * time. This function looks up the requested blocks and sets the 1679 * buffer delay bit under the protection of i_data_sem. 1680 */ 1681 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1682 struct ext4_map_blocks *map, 1683 struct buffer_head *bh) 1684 { 1685 int retval; 1686 sector_t invalid_block = ~((sector_t) 0xffff); 1687 1688 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1689 invalid_block = ~0; 1690 1691 map->m_flags = 0; 1692 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1693 "logical block %lu\n", inode->i_ino, map->m_len, 1694 (unsigned long) map->m_lblk); 1695 /* 1696 * Try to see if we can get the block without requesting a new 1697 * file system block. 1698 */ 1699 down_read((&EXT4_I(inode)->i_data_sem)); 1700 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1701 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1702 else 1703 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1704 1705 if (retval == 0) { 1706 /* 1707 * XXX: __block_prepare_write() unmaps passed block, 1708 * is it OK? 1709 */ 1710 /* If the block was allocated from previously allocated cluster, 1711 * then we dont need to reserve it again. */ 1712 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) { 1713 retval = ext4_da_reserve_space(inode, iblock); 1714 if (retval) 1715 /* not enough space to reserve */ 1716 goto out_unlock; 1717 } 1718 1719 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served 1720 * and it should not appear on the bh->b_state. 1721 */ 1722 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER; 1723 1724 map_bh(bh, inode->i_sb, invalid_block); 1725 set_buffer_new(bh); 1726 set_buffer_delay(bh); 1727 } 1728 1729 out_unlock: 1730 up_read((&EXT4_I(inode)->i_data_sem)); 1731 1732 return retval; 1733 } 1734 1735 /* 1736 * This is a special get_blocks_t callback which is used by 1737 * ext4_da_write_begin(). It will either return mapped block or 1738 * reserve space for a single block. 1739 * 1740 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1741 * We also have b_blocknr = -1 and b_bdev initialized properly 1742 * 1743 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1744 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1745 * initialized properly. 1746 */ 1747 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1748 struct buffer_head *bh, int create) 1749 { 1750 struct ext4_map_blocks map; 1751 int ret = 0; 1752 1753 BUG_ON(create == 0); 1754 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1755 1756 map.m_lblk = iblock; 1757 map.m_len = 1; 1758 1759 /* 1760 * first, we need to know whether the block is allocated already 1761 * preallocated blocks are unmapped but should treated 1762 * the same as allocated blocks. 1763 */ 1764 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1765 if (ret <= 0) 1766 return ret; 1767 1768 map_bh(bh, inode->i_sb, map.m_pblk); 1769 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 1770 1771 if (buffer_unwritten(bh)) { 1772 /* A delayed write to unwritten bh should be marked 1773 * new and mapped. Mapped ensures that we don't do 1774 * get_block multiple times when we write to the same 1775 * offset and new ensures that we do proper zero out 1776 * for partial write. 1777 */ 1778 set_buffer_new(bh); 1779 set_buffer_mapped(bh); 1780 } 1781 return 0; 1782 } 1783 1784 /* 1785 * This function is used as a standard get_block_t calback function 1786 * when there is no desire to allocate any blocks. It is used as a 1787 * callback function for block_write_begin() and block_write_full_page(). 1788 * These functions should only try to map a single block at a time. 1789 * 1790 * Since this function doesn't do block allocations even if the caller 1791 * requests it by passing in create=1, it is critically important that 1792 * any caller checks to make sure that any buffer heads are returned 1793 * by this function are either all already mapped or marked for 1794 * delayed allocation before calling block_write_full_page(). Otherwise, 1795 * b_blocknr could be left unitialized, and the page write functions will 1796 * be taken by surprise. 1797 */ 1798 static int noalloc_get_block_write(struct inode *inode, sector_t iblock, 1799 struct buffer_head *bh_result, int create) 1800 { 1801 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize); 1802 return _ext4_get_block(inode, iblock, bh_result, 0); 1803 } 1804 1805 static int bget_one(handle_t *handle, struct buffer_head *bh) 1806 { 1807 get_bh(bh); 1808 return 0; 1809 } 1810 1811 static int bput_one(handle_t *handle, struct buffer_head *bh) 1812 { 1813 put_bh(bh); 1814 return 0; 1815 } 1816 1817 static int __ext4_journalled_writepage(struct page *page, 1818 unsigned int len) 1819 { 1820 struct address_space *mapping = page->mapping; 1821 struct inode *inode = mapping->host; 1822 struct buffer_head *page_bufs; 1823 handle_t *handle = NULL; 1824 int ret = 0; 1825 int err; 1826 1827 ClearPageChecked(page); 1828 page_bufs = page_buffers(page); 1829 BUG_ON(!page_bufs); 1830 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one); 1831 /* As soon as we unlock the page, it can go away, but we have 1832 * references to buffers so we are safe */ 1833 unlock_page(page); 1834 1835 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 1836 if (IS_ERR(handle)) { 1837 ret = PTR_ERR(handle); 1838 goto out; 1839 } 1840 1841 BUG_ON(!ext4_handle_valid(handle)); 1842 1843 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL, 1844 do_journal_get_write_access); 1845 1846 err = walk_page_buffers(handle, page_bufs, 0, len, NULL, 1847 write_end_fn); 1848 if (ret == 0) 1849 ret = err; 1850 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1851 err = ext4_journal_stop(handle); 1852 if (!ret) 1853 ret = err; 1854 1855 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one); 1856 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1857 out: 1858 return ret; 1859 } 1860 1861 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode); 1862 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate); 1863 1864 /* 1865 * Note that we don't need to start a transaction unless we're journaling data 1866 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1867 * need to file the inode to the transaction's list in ordered mode because if 1868 * we are writing back data added by write(), the inode is already there and if 1869 * we are writing back data modified via mmap(), no one guarantees in which 1870 * transaction the data will hit the disk. In case we are journaling data, we 1871 * cannot start transaction directly because transaction start ranks above page 1872 * lock so we have to do some magic. 1873 * 1874 * This function can get called via... 1875 * - ext4_da_writepages after taking page lock (have journal handle) 1876 * - journal_submit_inode_data_buffers (no journal handle) 1877 * - shrink_page_list via pdflush (no journal handle) 1878 * - grab_page_cache when doing write_begin (have journal handle) 1879 * 1880 * We don't do any block allocation in this function. If we have page with 1881 * multiple blocks we need to write those buffer_heads that are mapped. This 1882 * is important for mmaped based write. So if we do with blocksize 1K 1883 * truncate(f, 1024); 1884 * a = mmap(f, 0, 4096); 1885 * a[0] = 'a'; 1886 * truncate(f, 4096); 1887 * we have in the page first buffer_head mapped via page_mkwrite call back 1888 * but other buffer_heads would be unmapped but dirty (dirty done via the 1889 * do_wp_page). So writepage should write the first block. If we modify 1890 * the mmap area beyond 1024 we will again get a page_fault and the 1891 * page_mkwrite callback will do the block allocation and mark the 1892 * buffer_heads mapped. 1893 * 1894 * We redirty the page if we have any buffer_heads that is either delay or 1895 * unwritten in the page. 1896 * 1897 * We can get recursively called as show below. 1898 * 1899 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1900 * ext4_writepage() 1901 * 1902 * But since we don't do any block allocation we should not deadlock. 1903 * Page also have the dirty flag cleared so we don't get recurive page_lock. 1904 */ 1905 static int ext4_writepage(struct page *page, 1906 struct writeback_control *wbc) 1907 { 1908 int ret = 0, commit_write = 0; 1909 loff_t size; 1910 unsigned int len; 1911 struct buffer_head *page_bufs = NULL; 1912 struct inode *inode = page->mapping->host; 1913 1914 trace_ext4_writepage(page); 1915 size = i_size_read(inode); 1916 if (page->index == size >> PAGE_CACHE_SHIFT) 1917 len = size & ~PAGE_CACHE_MASK; 1918 else 1919 len = PAGE_CACHE_SIZE; 1920 1921 /* 1922 * If the page does not have buffers (for whatever reason), 1923 * try to create them using __block_write_begin. If this 1924 * fails, redirty the page and move on. 1925 */ 1926 if (!page_has_buffers(page)) { 1927 if (__block_write_begin(page, 0, len, 1928 noalloc_get_block_write)) { 1929 redirty_page: 1930 redirty_page_for_writepage(wbc, page); 1931 unlock_page(page); 1932 return 0; 1933 } 1934 commit_write = 1; 1935 } 1936 page_bufs = page_buffers(page); 1937 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL, 1938 ext4_bh_delay_or_unwritten)) { 1939 /* 1940 * We don't want to do block allocation, so redirty 1941 * the page and return. We may reach here when we do 1942 * a journal commit via journal_submit_inode_data_buffers. 1943 * We can also reach here via shrink_page_list but it 1944 * should never be for direct reclaim so warn if that 1945 * happens 1946 */ 1947 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == 1948 PF_MEMALLOC); 1949 goto redirty_page; 1950 } 1951 if (commit_write) 1952 /* now mark the buffer_heads as dirty and uptodate */ 1953 block_commit_write(page, 0, len); 1954 1955 if (PageChecked(page) && ext4_should_journal_data(inode)) 1956 /* 1957 * It's mmapped pagecache. Add buffers and journal it. There 1958 * doesn't seem much point in redirtying the page here. 1959 */ 1960 return __ext4_journalled_writepage(page, len); 1961 1962 if (buffer_uninit(page_bufs)) { 1963 ext4_set_bh_endio(page_bufs, inode); 1964 ret = block_write_full_page_endio(page, noalloc_get_block_write, 1965 wbc, ext4_end_io_buffer_write); 1966 } else 1967 ret = block_write_full_page(page, noalloc_get_block_write, 1968 wbc); 1969 1970 return ret; 1971 } 1972 1973 /* 1974 * This is called via ext4_da_writepages() to 1975 * calculate the total number of credits to reserve to fit 1976 * a single extent allocation into a single transaction, 1977 * ext4_da_writpeages() will loop calling this before 1978 * the block allocation. 1979 */ 1980 1981 static int ext4_da_writepages_trans_blocks(struct inode *inode) 1982 { 1983 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks; 1984 1985 /* 1986 * With non-extent format the journal credit needed to 1987 * insert nrblocks contiguous block is dependent on 1988 * number of contiguous block. So we will limit 1989 * number of contiguous block to a sane value 1990 */ 1991 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) && 1992 (max_blocks > EXT4_MAX_TRANS_DATA)) 1993 max_blocks = EXT4_MAX_TRANS_DATA; 1994 1995 return ext4_chunk_trans_blocks(inode, max_blocks); 1996 } 1997 1998 /* 1999 * write_cache_pages_da - walk the list of dirty pages of the given 2000 * address space and accumulate pages that need writing, and call 2001 * mpage_da_map_and_submit to map a single contiguous memory region 2002 * and then write them. 2003 */ 2004 static int write_cache_pages_da(struct address_space *mapping, 2005 struct writeback_control *wbc, 2006 struct mpage_da_data *mpd, 2007 pgoff_t *done_index) 2008 { 2009 struct buffer_head *bh, *head; 2010 struct inode *inode = mapping->host; 2011 struct pagevec pvec; 2012 unsigned int nr_pages; 2013 sector_t logical; 2014 pgoff_t index, end; 2015 long nr_to_write = wbc->nr_to_write; 2016 int i, tag, ret = 0; 2017 2018 memset(mpd, 0, sizeof(struct mpage_da_data)); 2019 mpd->wbc = wbc; 2020 mpd->inode = inode; 2021 pagevec_init(&pvec, 0); 2022 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2023 end = wbc->range_end >> PAGE_CACHE_SHIFT; 2024 2025 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2026 tag = PAGECACHE_TAG_TOWRITE; 2027 else 2028 tag = PAGECACHE_TAG_DIRTY; 2029 2030 *done_index = index; 2031 while (index <= end) { 2032 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2033 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2034 if (nr_pages == 0) 2035 return 0; 2036 2037 for (i = 0; i < nr_pages; i++) { 2038 struct page *page = pvec.pages[i]; 2039 2040 /* 2041 * At this point, the page may be truncated or 2042 * invalidated (changing page->mapping to NULL), or 2043 * even swizzled back from swapper_space to tmpfs file 2044 * mapping. However, page->index will not change 2045 * because we have a reference on the page. 2046 */ 2047 if (page->index > end) 2048 goto out; 2049 2050 *done_index = page->index + 1; 2051 2052 /* 2053 * If we can't merge this page, and we have 2054 * accumulated an contiguous region, write it 2055 */ 2056 if ((mpd->next_page != page->index) && 2057 (mpd->next_page != mpd->first_page)) { 2058 mpage_da_map_and_submit(mpd); 2059 goto ret_extent_tail; 2060 } 2061 2062 lock_page(page); 2063 2064 /* 2065 * If the page is no longer dirty, or its 2066 * mapping no longer corresponds to inode we 2067 * are writing (which means it has been 2068 * truncated or invalidated), or the page is 2069 * already under writeback and we are not 2070 * doing a data integrity writeback, skip the page 2071 */ 2072 if (!PageDirty(page) || 2073 (PageWriteback(page) && 2074 (wbc->sync_mode == WB_SYNC_NONE)) || 2075 unlikely(page->mapping != mapping)) { 2076 unlock_page(page); 2077 continue; 2078 } 2079 2080 wait_on_page_writeback(page); 2081 BUG_ON(PageWriteback(page)); 2082 2083 if (mpd->next_page != page->index) 2084 mpd->first_page = page->index; 2085 mpd->next_page = page->index + 1; 2086 logical = (sector_t) page->index << 2087 (PAGE_CACHE_SHIFT - inode->i_blkbits); 2088 2089 if (!page_has_buffers(page)) { 2090 mpage_add_bh_to_extent(mpd, logical, 2091 PAGE_CACHE_SIZE, 2092 (1 << BH_Dirty) | (1 << BH_Uptodate)); 2093 if (mpd->io_done) 2094 goto ret_extent_tail; 2095 } else { 2096 /* 2097 * Page with regular buffer heads, 2098 * just add all dirty ones 2099 */ 2100 head = page_buffers(page); 2101 bh = head; 2102 do { 2103 BUG_ON(buffer_locked(bh)); 2104 /* 2105 * We need to try to allocate 2106 * unmapped blocks in the same page. 2107 * Otherwise we won't make progress 2108 * with the page in ext4_writepage 2109 */ 2110 if (ext4_bh_delay_or_unwritten(NULL, bh)) { 2111 mpage_add_bh_to_extent(mpd, logical, 2112 bh->b_size, 2113 bh->b_state); 2114 if (mpd->io_done) 2115 goto ret_extent_tail; 2116 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) { 2117 /* 2118 * mapped dirty buffer. We need 2119 * to update the b_state 2120 * because we look at b_state 2121 * in mpage_da_map_blocks. We 2122 * don't update b_size because 2123 * if we find an unmapped 2124 * buffer_head later we need to 2125 * use the b_state flag of that 2126 * buffer_head. 2127 */ 2128 if (mpd->b_size == 0) 2129 mpd->b_state = bh->b_state & BH_FLAGS; 2130 } 2131 logical++; 2132 } while ((bh = bh->b_this_page) != head); 2133 } 2134 2135 if (nr_to_write > 0) { 2136 nr_to_write--; 2137 if (nr_to_write == 0 && 2138 wbc->sync_mode == WB_SYNC_NONE) 2139 /* 2140 * We stop writing back only if we are 2141 * not doing integrity sync. In case of 2142 * integrity sync we have to keep going 2143 * because someone may be concurrently 2144 * dirtying pages, and we might have 2145 * synced a lot of newly appeared dirty 2146 * pages, but have not synced all of the 2147 * old dirty pages. 2148 */ 2149 goto out; 2150 } 2151 } 2152 pagevec_release(&pvec); 2153 cond_resched(); 2154 } 2155 return 0; 2156 ret_extent_tail: 2157 ret = MPAGE_DA_EXTENT_TAIL; 2158 out: 2159 pagevec_release(&pvec); 2160 cond_resched(); 2161 return ret; 2162 } 2163 2164 2165 static int ext4_da_writepages(struct address_space *mapping, 2166 struct writeback_control *wbc) 2167 { 2168 pgoff_t index; 2169 int range_whole = 0; 2170 handle_t *handle = NULL; 2171 struct mpage_da_data mpd; 2172 struct inode *inode = mapping->host; 2173 int pages_written = 0; 2174 unsigned int max_pages; 2175 int range_cyclic, cycled = 1, io_done = 0; 2176 int needed_blocks, ret = 0; 2177 long desired_nr_to_write, nr_to_writebump = 0; 2178 loff_t range_start = wbc->range_start; 2179 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2180 pgoff_t done_index = 0; 2181 pgoff_t end; 2182 struct blk_plug plug; 2183 2184 trace_ext4_da_writepages(inode, wbc); 2185 2186 /* 2187 * No pages to write? This is mainly a kludge to avoid starting 2188 * a transaction for special inodes like journal inode on last iput() 2189 * because that could violate lock ordering on umount 2190 */ 2191 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2192 return 0; 2193 2194 /* 2195 * If the filesystem has aborted, it is read-only, so return 2196 * right away instead of dumping stack traces later on that 2197 * will obscure the real source of the problem. We test 2198 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2199 * the latter could be true if the filesystem is mounted 2200 * read-only, and in that case, ext4_da_writepages should 2201 * *never* be called, so if that ever happens, we would want 2202 * the stack trace. 2203 */ 2204 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) 2205 return -EROFS; 2206 2207 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2208 range_whole = 1; 2209 2210 range_cyclic = wbc->range_cyclic; 2211 if (wbc->range_cyclic) { 2212 index = mapping->writeback_index; 2213 if (index) 2214 cycled = 0; 2215 wbc->range_start = index << PAGE_CACHE_SHIFT; 2216 wbc->range_end = LLONG_MAX; 2217 wbc->range_cyclic = 0; 2218 end = -1; 2219 } else { 2220 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2221 end = wbc->range_end >> PAGE_CACHE_SHIFT; 2222 } 2223 2224 /* 2225 * This works around two forms of stupidity. The first is in 2226 * the writeback code, which caps the maximum number of pages 2227 * written to be 1024 pages. This is wrong on multiple 2228 * levels; different architectues have a different page size, 2229 * which changes the maximum amount of data which gets 2230 * written. Secondly, 4 megabytes is way too small. XFS 2231 * forces this value to be 16 megabytes by multiplying 2232 * nr_to_write parameter by four, and then relies on its 2233 * allocator to allocate larger extents to make them 2234 * contiguous. Unfortunately this brings us to the second 2235 * stupidity, which is that ext4's mballoc code only allocates 2236 * at most 2048 blocks. So we force contiguous writes up to 2237 * the number of dirty blocks in the inode, or 2238 * sbi->max_writeback_mb_bump whichever is smaller. 2239 */ 2240 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT); 2241 if (!range_cyclic && range_whole) { 2242 if (wbc->nr_to_write == LONG_MAX) 2243 desired_nr_to_write = wbc->nr_to_write; 2244 else 2245 desired_nr_to_write = wbc->nr_to_write * 8; 2246 } else 2247 desired_nr_to_write = ext4_num_dirty_pages(inode, index, 2248 max_pages); 2249 if (desired_nr_to_write > max_pages) 2250 desired_nr_to_write = max_pages; 2251 2252 if (wbc->nr_to_write < desired_nr_to_write) { 2253 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write; 2254 wbc->nr_to_write = desired_nr_to_write; 2255 } 2256 2257 retry: 2258 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2259 tag_pages_for_writeback(mapping, index, end); 2260 2261 blk_start_plug(&plug); 2262 while (!ret && wbc->nr_to_write > 0) { 2263 2264 /* 2265 * we insert one extent at a time. So we need 2266 * credit needed for single extent allocation. 2267 * journalled mode is currently not supported 2268 * by delalloc 2269 */ 2270 BUG_ON(ext4_should_journal_data(inode)); 2271 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2272 2273 /* start a new transaction*/ 2274 handle = ext4_journal_start(inode, needed_blocks); 2275 if (IS_ERR(handle)) { 2276 ret = PTR_ERR(handle); 2277 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2278 "%ld pages, ino %lu; err %d", __func__, 2279 wbc->nr_to_write, inode->i_ino, ret); 2280 blk_finish_plug(&plug); 2281 goto out_writepages; 2282 } 2283 2284 /* 2285 * Now call write_cache_pages_da() to find the next 2286 * contiguous region of logical blocks that need 2287 * blocks to be allocated by ext4 and submit them. 2288 */ 2289 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index); 2290 /* 2291 * If we have a contiguous extent of pages and we 2292 * haven't done the I/O yet, map the blocks and submit 2293 * them for I/O. 2294 */ 2295 if (!mpd.io_done && mpd.next_page != mpd.first_page) { 2296 mpage_da_map_and_submit(&mpd); 2297 ret = MPAGE_DA_EXTENT_TAIL; 2298 } 2299 trace_ext4_da_write_pages(inode, &mpd); 2300 wbc->nr_to_write -= mpd.pages_written; 2301 2302 ext4_journal_stop(handle); 2303 2304 if ((mpd.retval == -ENOSPC) && sbi->s_journal) { 2305 /* commit the transaction which would 2306 * free blocks released in the transaction 2307 * and try again 2308 */ 2309 jbd2_journal_force_commit_nested(sbi->s_journal); 2310 ret = 0; 2311 } else if (ret == MPAGE_DA_EXTENT_TAIL) { 2312 /* 2313 * Got one extent now try with rest of the pages. 2314 * If mpd.retval is set -EIO, journal is aborted. 2315 * So we don't need to write any more. 2316 */ 2317 pages_written += mpd.pages_written; 2318 ret = mpd.retval; 2319 io_done = 1; 2320 } else if (wbc->nr_to_write) 2321 /* 2322 * There is no more writeout needed 2323 * or we requested for a noblocking writeout 2324 * and we found the device congested 2325 */ 2326 break; 2327 } 2328 blk_finish_plug(&plug); 2329 if (!io_done && !cycled) { 2330 cycled = 1; 2331 index = 0; 2332 wbc->range_start = index << PAGE_CACHE_SHIFT; 2333 wbc->range_end = mapping->writeback_index - 1; 2334 goto retry; 2335 } 2336 2337 /* Update index */ 2338 wbc->range_cyclic = range_cyclic; 2339 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2340 /* 2341 * set the writeback_index so that range_cyclic 2342 * mode will write it back later 2343 */ 2344 mapping->writeback_index = done_index; 2345 2346 out_writepages: 2347 wbc->nr_to_write -= nr_to_writebump; 2348 wbc->range_start = range_start; 2349 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written); 2350 return ret; 2351 } 2352 2353 #define FALL_BACK_TO_NONDELALLOC 1 2354 static int ext4_nonda_switch(struct super_block *sb) 2355 { 2356 s64 free_blocks, dirty_blocks; 2357 struct ext4_sb_info *sbi = EXT4_SB(sb); 2358 2359 /* 2360 * switch to non delalloc mode if we are running low 2361 * on free block. The free block accounting via percpu 2362 * counters can get slightly wrong with percpu_counter_batch getting 2363 * accumulated on each CPU without updating global counters 2364 * Delalloc need an accurate free block accounting. So switch 2365 * to non delalloc when we are near to error range. 2366 */ 2367 free_blocks = EXT4_C2B(sbi, 2368 percpu_counter_read_positive(&sbi->s_freeclusters_counter)); 2369 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2370 if (2 * free_blocks < 3 * dirty_blocks || 2371 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) { 2372 /* 2373 * free block count is less than 150% of dirty blocks 2374 * or free blocks is less than watermark 2375 */ 2376 return 1; 2377 } 2378 /* 2379 * Even if we don't switch but are nearing capacity, 2380 * start pushing delalloc when 1/2 of free blocks are dirty. 2381 */ 2382 if (free_blocks < 2 * dirty_blocks) 2383 writeback_inodes_sb_if_idle(sb, WB_REASON_FS_FREE_SPACE); 2384 2385 return 0; 2386 } 2387 2388 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2389 loff_t pos, unsigned len, unsigned flags, 2390 struct page **pagep, void **fsdata) 2391 { 2392 int ret, retries = 0; 2393 struct page *page; 2394 pgoff_t index; 2395 struct inode *inode = mapping->host; 2396 handle_t *handle; 2397 2398 index = pos >> PAGE_CACHE_SHIFT; 2399 2400 if (ext4_nonda_switch(inode->i_sb)) { 2401 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2402 return ext4_write_begin(file, mapping, pos, 2403 len, flags, pagep, fsdata); 2404 } 2405 *fsdata = (void *)0; 2406 trace_ext4_da_write_begin(inode, pos, len, flags); 2407 retry: 2408 /* 2409 * With delayed allocation, we don't log the i_disksize update 2410 * if there is delayed block allocation. But we still need 2411 * to journalling the i_disksize update if writes to the end 2412 * of file which has an already mapped buffer. 2413 */ 2414 handle = ext4_journal_start(inode, 1); 2415 if (IS_ERR(handle)) { 2416 ret = PTR_ERR(handle); 2417 goto out; 2418 } 2419 /* We cannot recurse into the filesystem as the transaction is already 2420 * started */ 2421 flags |= AOP_FLAG_NOFS; 2422 2423 page = grab_cache_page_write_begin(mapping, index, flags); 2424 if (!page) { 2425 ext4_journal_stop(handle); 2426 ret = -ENOMEM; 2427 goto out; 2428 } 2429 *pagep = page; 2430 2431 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 2432 if (ret < 0) { 2433 unlock_page(page); 2434 ext4_journal_stop(handle); 2435 page_cache_release(page); 2436 /* 2437 * block_write_begin may have instantiated a few blocks 2438 * outside i_size. Trim these off again. Don't need 2439 * i_size_read because we hold i_mutex. 2440 */ 2441 if (pos + len > inode->i_size) 2442 ext4_truncate_failed_write(inode); 2443 } 2444 2445 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 2446 goto retry; 2447 out: 2448 return ret; 2449 } 2450 2451 /* 2452 * Check if we should update i_disksize 2453 * when write to the end of file but not require block allocation 2454 */ 2455 static int ext4_da_should_update_i_disksize(struct page *page, 2456 unsigned long offset) 2457 { 2458 struct buffer_head *bh; 2459 struct inode *inode = page->mapping->host; 2460 unsigned int idx; 2461 int i; 2462 2463 bh = page_buffers(page); 2464 idx = offset >> inode->i_blkbits; 2465 2466 for (i = 0; i < idx; i++) 2467 bh = bh->b_this_page; 2468 2469 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2470 return 0; 2471 return 1; 2472 } 2473 2474 static int ext4_da_write_end(struct file *file, 2475 struct address_space *mapping, 2476 loff_t pos, unsigned len, unsigned copied, 2477 struct page *page, void *fsdata) 2478 { 2479 struct inode *inode = mapping->host; 2480 int ret = 0, ret2; 2481 handle_t *handle = ext4_journal_current_handle(); 2482 loff_t new_i_size; 2483 unsigned long start, end; 2484 int write_mode = (int)(unsigned long)fsdata; 2485 2486 if (write_mode == FALL_BACK_TO_NONDELALLOC) { 2487 switch (ext4_inode_journal_mode(inode)) { 2488 case EXT4_INODE_ORDERED_DATA_MODE: 2489 return ext4_ordered_write_end(file, mapping, pos, 2490 len, copied, page, fsdata); 2491 case EXT4_INODE_WRITEBACK_DATA_MODE: 2492 return ext4_writeback_write_end(file, mapping, pos, 2493 len, copied, page, fsdata); 2494 default: 2495 BUG(); 2496 } 2497 } 2498 2499 trace_ext4_da_write_end(inode, pos, len, copied); 2500 start = pos & (PAGE_CACHE_SIZE - 1); 2501 end = start + copied - 1; 2502 2503 /* 2504 * generic_write_end() will run mark_inode_dirty() if i_size 2505 * changes. So let's piggyback the i_disksize mark_inode_dirty 2506 * into that. 2507 */ 2508 2509 new_i_size = pos + copied; 2510 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 2511 if (ext4_da_should_update_i_disksize(page, end)) { 2512 down_write(&EXT4_I(inode)->i_data_sem); 2513 if (new_i_size > EXT4_I(inode)->i_disksize) { 2514 /* 2515 * Updating i_disksize when extending file 2516 * without needing block allocation 2517 */ 2518 if (ext4_should_order_data(inode)) 2519 ret = ext4_jbd2_file_inode(handle, 2520 inode); 2521 2522 EXT4_I(inode)->i_disksize = new_i_size; 2523 } 2524 up_write(&EXT4_I(inode)->i_data_sem); 2525 /* We need to mark inode dirty even if 2526 * new_i_size is less that inode->i_size 2527 * bu greater than i_disksize.(hint delalloc) 2528 */ 2529 ext4_mark_inode_dirty(handle, inode); 2530 } 2531 } 2532 ret2 = generic_write_end(file, mapping, pos, len, copied, 2533 page, fsdata); 2534 copied = ret2; 2535 if (ret2 < 0) 2536 ret = ret2; 2537 ret2 = ext4_journal_stop(handle); 2538 if (!ret) 2539 ret = ret2; 2540 2541 return ret ? ret : copied; 2542 } 2543 2544 static void ext4_da_invalidatepage(struct page *page, unsigned long offset) 2545 { 2546 /* 2547 * Drop reserved blocks 2548 */ 2549 BUG_ON(!PageLocked(page)); 2550 if (!page_has_buffers(page)) 2551 goto out; 2552 2553 ext4_da_page_release_reservation(page, offset); 2554 2555 out: 2556 ext4_invalidatepage(page, offset); 2557 2558 return; 2559 } 2560 2561 /* 2562 * Force all delayed allocation blocks to be allocated for a given inode. 2563 */ 2564 int ext4_alloc_da_blocks(struct inode *inode) 2565 { 2566 trace_ext4_alloc_da_blocks(inode); 2567 2568 if (!EXT4_I(inode)->i_reserved_data_blocks && 2569 !EXT4_I(inode)->i_reserved_meta_blocks) 2570 return 0; 2571 2572 /* 2573 * We do something simple for now. The filemap_flush() will 2574 * also start triggering a write of the data blocks, which is 2575 * not strictly speaking necessary (and for users of 2576 * laptop_mode, not even desirable). However, to do otherwise 2577 * would require replicating code paths in: 2578 * 2579 * ext4_da_writepages() -> 2580 * write_cache_pages() ---> (via passed in callback function) 2581 * __mpage_da_writepage() --> 2582 * mpage_add_bh_to_extent() 2583 * mpage_da_map_blocks() 2584 * 2585 * The problem is that write_cache_pages(), located in 2586 * mm/page-writeback.c, marks pages clean in preparation for 2587 * doing I/O, which is not desirable if we're not planning on 2588 * doing I/O at all. 2589 * 2590 * We could call write_cache_pages(), and then redirty all of 2591 * the pages by calling redirty_page_for_writepage() but that 2592 * would be ugly in the extreme. So instead we would need to 2593 * replicate parts of the code in the above functions, 2594 * simplifying them because we wouldn't actually intend to 2595 * write out the pages, but rather only collect contiguous 2596 * logical block extents, call the multi-block allocator, and 2597 * then update the buffer heads with the block allocations. 2598 * 2599 * For now, though, we'll cheat by calling filemap_flush(), 2600 * which will map the blocks, and start the I/O, but not 2601 * actually wait for the I/O to complete. 2602 */ 2603 return filemap_flush(inode->i_mapping); 2604 } 2605 2606 /* 2607 * bmap() is special. It gets used by applications such as lilo and by 2608 * the swapper to find the on-disk block of a specific piece of data. 2609 * 2610 * Naturally, this is dangerous if the block concerned is still in the 2611 * journal. If somebody makes a swapfile on an ext4 data-journaling 2612 * filesystem and enables swap, then they may get a nasty shock when the 2613 * data getting swapped to that swapfile suddenly gets overwritten by 2614 * the original zero's written out previously to the journal and 2615 * awaiting writeback in the kernel's buffer cache. 2616 * 2617 * So, if we see any bmap calls here on a modified, data-journaled file, 2618 * take extra steps to flush any blocks which might be in the cache. 2619 */ 2620 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 2621 { 2622 struct inode *inode = mapping->host; 2623 journal_t *journal; 2624 int err; 2625 2626 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 2627 test_opt(inode->i_sb, DELALLOC)) { 2628 /* 2629 * With delalloc we want to sync the file 2630 * so that we can make sure we allocate 2631 * blocks for file 2632 */ 2633 filemap_write_and_wait(mapping); 2634 } 2635 2636 if (EXT4_JOURNAL(inode) && 2637 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 2638 /* 2639 * This is a REALLY heavyweight approach, but the use of 2640 * bmap on dirty files is expected to be extremely rare: 2641 * only if we run lilo or swapon on a freshly made file 2642 * do we expect this to happen. 2643 * 2644 * (bmap requires CAP_SYS_RAWIO so this does not 2645 * represent an unprivileged user DOS attack --- we'd be 2646 * in trouble if mortal users could trigger this path at 2647 * will.) 2648 * 2649 * NB. EXT4_STATE_JDATA is not set on files other than 2650 * regular files. If somebody wants to bmap a directory 2651 * or symlink and gets confused because the buffer 2652 * hasn't yet been flushed to disk, they deserve 2653 * everything they get. 2654 */ 2655 2656 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 2657 journal = EXT4_JOURNAL(inode); 2658 jbd2_journal_lock_updates(journal); 2659 err = jbd2_journal_flush(journal); 2660 jbd2_journal_unlock_updates(journal); 2661 2662 if (err) 2663 return 0; 2664 } 2665 2666 return generic_block_bmap(mapping, block, ext4_get_block); 2667 } 2668 2669 static int ext4_readpage(struct file *file, struct page *page) 2670 { 2671 trace_ext4_readpage(page); 2672 return mpage_readpage(page, ext4_get_block); 2673 } 2674 2675 static int 2676 ext4_readpages(struct file *file, struct address_space *mapping, 2677 struct list_head *pages, unsigned nr_pages) 2678 { 2679 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 2680 } 2681 2682 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset) 2683 { 2684 struct buffer_head *head, *bh; 2685 unsigned int curr_off = 0; 2686 2687 if (!page_has_buffers(page)) 2688 return; 2689 head = bh = page_buffers(page); 2690 do { 2691 if (offset <= curr_off && test_clear_buffer_uninit(bh) 2692 && bh->b_private) { 2693 ext4_free_io_end(bh->b_private); 2694 bh->b_private = NULL; 2695 bh->b_end_io = NULL; 2696 } 2697 curr_off = curr_off + bh->b_size; 2698 bh = bh->b_this_page; 2699 } while (bh != head); 2700 } 2701 2702 static void ext4_invalidatepage(struct page *page, unsigned long offset) 2703 { 2704 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2705 2706 trace_ext4_invalidatepage(page, offset); 2707 2708 /* 2709 * free any io_end structure allocated for buffers to be discarded 2710 */ 2711 if (ext4_should_dioread_nolock(page->mapping->host)) 2712 ext4_invalidatepage_free_endio(page, offset); 2713 /* 2714 * If it's a full truncate we just forget about the pending dirtying 2715 */ 2716 if (offset == 0) 2717 ClearPageChecked(page); 2718 2719 if (journal) 2720 jbd2_journal_invalidatepage(journal, page, offset); 2721 else 2722 block_invalidatepage(page, offset); 2723 } 2724 2725 static int ext4_releasepage(struct page *page, gfp_t wait) 2726 { 2727 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2728 2729 trace_ext4_releasepage(page); 2730 2731 WARN_ON(PageChecked(page)); 2732 if (!page_has_buffers(page)) 2733 return 0; 2734 if (journal) 2735 return jbd2_journal_try_to_free_buffers(journal, page, wait); 2736 else 2737 return try_to_free_buffers(page); 2738 } 2739 2740 /* 2741 * ext4_get_block used when preparing for a DIO write or buffer write. 2742 * We allocate an uinitialized extent if blocks haven't been allocated. 2743 * The extent will be converted to initialized after the IO is complete. 2744 */ 2745 static int ext4_get_block_write(struct inode *inode, sector_t iblock, 2746 struct buffer_head *bh_result, int create) 2747 { 2748 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n", 2749 inode->i_ino, create); 2750 return _ext4_get_block(inode, iblock, bh_result, 2751 EXT4_GET_BLOCKS_IO_CREATE_EXT); 2752 } 2753 2754 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 2755 ssize_t size, void *private, int ret, 2756 bool is_async) 2757 { 2758 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode; 2759 ext4_io_end_t *io_end = iocb->private; 2760 struct workqueue_struct *wq; 2761 unsigned long flags; 2762 struct ext4_inode_info *ei; 2763 2764 /* if not async direct IO or dio with 0 bytes write, just return */ 2765 if (!io_end || !size) 2766 goto out; 2767 2768 ext_debug("ext4_end_io_dio(): io_end 0x%p " 2769 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", 2770 iocb->private, io_end->inode->i_ino, iocb, offset, 2771 size); 2772 2773 iocb->private = NULL; 2774 2775 /* if not aio dio with unwritten extents, just free io and return */ 2776 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) { 2777 ext4_free_io_end(io_end); 2778 out: 2779 if (is_async) 2780 aio_complete(iocb, ret, 0); 2781 inode_dio_done(inode); 2782 return; 2783 } 2784 2785 io_end->offset = offset; 2786 io_end->size = size; 2787 if (is_async) { 2788 io_end->iocb = iocb; 2789 io_end->result = ret; 2790 } 2791 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq; 2792 2793 /* Add the io_end to per-inode completed aio dio list*/ 2794 ei = EXT4_I(io_end->inode); 2795 spin_lock_irqsave(&ei->i_completed_io_lock, flags); 2796 list_add_tail(&io_end->list, &ei->i_completed_io_list); 2797 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); 2798 2799 /* queue the work to convert unwritten extents to written */ 2800 queue_work(wq, &io_end->work); 2801 } 2802 2803 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate) 2804 { 2805 ext4_io_end_t *io_end = bh->b_private; 2806 struct workqueue_struct *wq; 2807 struct inode *inode; 2808 unsigned long flags; 2809 2810 if (!test_clear_buffer_uninit(bh) || !io_end) 2811 goto out; 2812 2813 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) { 2814 ext4_msg(io_end->inode->i_sb, KERN_INFO, 2815 "sb umounted, discard end_io request for inode %lu", 2816 io_end->inode->i_ino); 2817 ext4_free_io_end(io_end); 2818 goto out; 2819 } 2820 2821 /* 2822 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now, 2823 * but being more careful is always safe for the future change. 2824 */ 2825 inode = io_end->inode; 2826 ext4_set_io_unwritten_flag(inode, io_end); 2827 2828 /* Add the io_end to per-inode completed io list*/ 2829 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags); 2830 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list); 2831 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags); 2832 2833 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq; 2834 /* queue the work to convert unwritten extents to written */ 2835 queue_work(wq, &io_end->work); 2836 out: 2837 bh->b_private = NULL; 2838 bh->b_end_io = NULL; 2839 clear_buffer_uninit(bh); 2840 end_buffer_async_write(bh, uptodate); 2841 } 2842 2843 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode) 2844 { 2845 ext4_io_end_t *io_end; 2846 struct page *page = bh->b_page; 2847 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT; 2848 size_t size = bh->b_size; 2849 2850 retry: 2851 io_end = ext4_init_io_end(inode, GFP_ATOMIC); 2852 if (!io_end) { 2853 pr_warn_ratelimited("%s: allocation fail\n", __func__); 2854 schedule(); 2855 goto retry; 2856 } 2857 io_end->offset = offset; 2858 io_end->size = size; 2859 /* 2860 * We need to hold a reference to the page to make sure it 2861 * doesn't get evicted before ext4_end_io_work() has a chance 2862 * to convert the extent from written to unwritten. 2863 */ 2864 io_end->page = page; 2865 get_page(io_end->page); 2866 2867 bh->b_private = io_end; 2868 bh->b_end_io = ext4_end_io_buffer_write; 2869 return 0; 2870 } 2871 2872 /* 2873 * For ext4 extent files, ext4 will do direct-io write to holes, 2874 * preallocated extents, and those write extend the file, no need to 2875 * fall back to buffered IO. 2876 * 2877 * For holes, we fallocate those blocks, mark them as uninitialized 2878 * If those blocks were preallocated, we mark sure they are splited, but 2879 * still keep the range to write as uninitialized. 2880 * 2881 * The unwrritten extents will be converted to written when DIO is completed. 2882 * For async direct IO, since the IO may still pending when return, we 2883 * set up an end_io call back function, which will do the conversion 2884 * when async direct IO completed. 2885 * 2886 * If the O_DIRECT write will extend the file then add this inode to the 2887 * orphan list. So recovery will truncate it back to the original size 2888 * if the machine crashes during the write. 2889 * 2890 */ 2891 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb, 2892 const struct iovec *iov, loff_t offset, 2893 unsigned long nr_segs) 2894 { 2895 struct file *file = iocb->ki_filp; 2896 struct inode *inode = file->f_mapping->host; 2897 ssize_t ret; 2898 size_t count = iov_length(iov, nr_segs); 2899 2900 loff_t final_size = offset + count; 2901 if (rw == WRITE && final_size <= inode->i_size) { 2902 /* 2903 * We could direct write to holes and fallocate. 2904 * 2905 * Allocated blocks to fill the hole are marked as uninitialized 2906 * to prevent parallel buffered read to expose the stale data 2907 * before DIO complete the data IO. 2908 * 2909 * As to previously fallocated extents, ext4 get_block 2910 * will just simply mark the buffer mapped but still 2911 * keep the extents uninitialized. 2912 * 2913 * for non AIO case, we will convert those unwritten extents 2914 * to written after return back from blockdev_direct_IO. 2915 * 2916 * for async DIO, the conversion needs to be defered when 2917 * the IO is completed. The ext4 end_io callback function 2918 * will be called to take care of the conversion work. 2919 * Here for async case, we allocate an io_end structure to 2920 * hook to the iocb. 2921 */ 2922 iocb->private = NULL; 2923 EXT4_I(inode)->cur_aio_dio = NULL; 2924 if (!is_sync_kiocb(iocb)) { 2925 ext4_io_end_t *io_end = 2926 ext4_init_io_end(inode, GFP_NOFS); 2927 if (!io_end) 2928 return -ENOMEM; 2929 io_end->flag |= EXT4_IO_END_DIRECT; 2930 iocb->private = io_end; 2931 /* 2932 * we save the io structure for current async 2933 * direct IO, so that later ext4_map_blocks() 2934 * could flag the io structure whether there 2935 * is a unwritten extents needs to be converted 2936 * when IO is completed. 2937 */ 2938 EXT4_I(inode)->cur_aio_dio = iocb->private; 2939 } 2940 2941 ret = __blockdev_direct_IO(rw, iocb, inode, 2942 inode->i_sb->s_bdev, iov, 2943 offset, nr_segs, 2944 ext4_get_block_write, 2945 ext4_end_io_dio, 2946 NULL, 2947 DIO_LOCKING); 2948 if (iocb->private) 2949 EXT4_I(inode)->cur_aio_dio = NULL; 2950 /* 2951 * The io_end structure takes a reference to the inode, 2952 * that structure needs to be destroyed and the 2953 * reference to the inode need to be dropped, when IO is 2954 * complete, even with 0 byte write, or failed. 2955 * 2956 * In the successful AIO DIO case, the io_end structure will be 2957 * desctroyed and the reference to the inode will be dropped 2958 * after the end_io call back function is called. 2959 * 2960 * In the case there is 0 byte write, or error case, since 2961 * VFS direct IO won't invoke the end_io call back function, 2962 * we need to free the end_io structure here. 2963 */ 2964 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) { 2965 ext4_free_io_end(iocb->private); 2966 iocb->private = NULL; 2967 } else if (ret > 0 && ext4_test_inode_state(inode, 2968 EXT4_STATE_DIO_UNWRITTEN)) { 2969 int err; 2970 /* 2971 * for non AIO case, since the IO is already 2972 * completed, we could do the conversion right here 2973 */ 2974 err = ext4_convert_unwritten_extents(inode, 2975 offset, ret); 2976 if (err < 0) 2977 ret = err; 2978 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 2979 } 2980 return ret; 2981 } 2982 2983 /* for write the the end of file case, we fall back to old way */ 2984 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 2985 } 2986 2987 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 2988 const struct iovec *iov, loff_t offset, 2989 unsigned long nr_segs) 2990 { 2991 struct file *file = iocb->ki_filp; 2992 struct inode *inode = file->f_mapping->host; 2993 ssize_t ret; 2994 2995 /* 2996 * If we are doing data journalling we don't support O_DIRECT 2997 */ 2998 if (ext4_should_journal_data(inode)) 2999 return 0; 3000 3001 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw); 3002 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3003 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs); 3004 else 3005 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3006 trace_ext4_direct_IO_exit(inode, offset, 3007 iov_length(iov, nr_segs), rw, ret); 3008 return ret; 3009 } 3010 3011 /* 3012 * Pages can be marked dirty completely asynchronously from ext4's journalling 3013 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3014 * much here because ->set_page_dirty is called under VFS locks. The page is 3015 * not necessarily locked. 3016 * 3017 * We cannot just dirty the page and leave attached buffers clean, because the 3018 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3019 * or jbddirty because all the journalling code will explode. 3020 * 3021 * So what we do is to mark the page "pending dirty" and next time writepage 3022 * is called, propagate that into the buffers appropriately. 3023 */ 3024 static int ext4_journalled_set_page_dirty(struct page *page) 3025 { 3026 SetPageChecked(page); 3027 return __set_page_dirty_nobuffers(page); 3028 } 3029 3030 static const struct address_space_operations ext4_ordered_aops = { 3031 .readpage = ext4_readpage, 3032 .readpages = ext4_readpages, 3033 .writepage = ext4_writepage, 3034 .write_begin = ext4_write_begin, 3035 .write_end = ext4_ordered_write_end, 3036 .bmap = ext4_bmap, 3037 .invalidatepage = ext4_invalidatepage, 3038 .releasepage = ext4_releasepage, 3039 .direct_IO = ext4_direct_IO, 3040 .migratepage = buffer_migrate_page, 3041 .is_partially_uptodate = block_is_partially_uptodate, 3042 .error_remove_page = generic_error_remove_page, 3043 }; 3044 3045 static const struct address_space_operations ext4_writeback_aops = { 3046 .readpage = ext4_readpage, 3047 .readpages = ext4_readpages, 3048 .writepage = ext4_writepage, 3049 .write_begin = ext4_write_begin, 3050 .write_end = ext4_writeback_write_end, 3051 .bmap = ext4_bmap, 3052 .invalidatepage = ext4_invalidatepage, 3053 .releasepage = ext4_releasepage, 3054 .direct_IO = ext4_direct_IO, 3055 .migratepage = buffer_migrate_page, 3056 .is_partially_uptodate = block_is_partially_uptodate, 3057 .error_remove_page = generic_error_remove_page, 3058 }; 3059 3060 static const struct address_space_operations ext4_journalled_aops = { 3061 .readpage = ext4_readpage, 3062 .readpages = ext4_readpages, 3063 .writepage = ext4_writepage, 3064 .write_begin = ext4_write_begin, 3065 .write_end = ext4_journalled_write_end, 3066 .set_page_dirty = ext4_journalled_set_page_dirty, 3067 .bmap = ext4_bmap, 3068 .invalidatepage = ext4_invalidatepage, 3069 .releasepage = ext4_releasepage, 3070 .direct_IO = ext4_direct_IO, 3071 .is_partially_uptodate = block_is_partially_uptodate, 3072 .error_remove_page = generic_error_remove_page, 3073 }; 3074 3075 static const struct address_space_operations ext4_da_aops = { 3076 .readpage = ext4_readpage, 3077 .readpages = ext4_readpages, 3078 .writepage = ext4_writepage, 3079 .writepages = ext4_da_writepages, 3080 .write_begin = ext4_da_write_begin, 3081 .write_end = ext4_da_write_end, 3082 .bmap = ext4_bmap, 3083 .invalidatepage = ext4_da_invalidatepage, 3084 .releasepage = ext4_releasepage, 3085 .direct_IO = ext4_direct_IO, 3086 .migratepage = buffer_migrate_page, 3087 .is_partially_uptodate = block_is_partially_uptodate, 3088 .error_remove_page = generic_error_remove_page, 3089 }; 3090 3091 void ext4_set_aops(struct inode *inode) 3092 { 3093 switch (ext4_inode_journal_mode(inode)) { 3094 case EXT4_INODE_ORDERED_DATA_MODE: 3095 if (test_opt(inode->i_sb, DELALLOC)) 3096 inode->i_mapping->a_ops = &ext4_da_aops; 3097 else 3098 inode->i_mapping->a_ops = &ext4_ordered_aops; 3099 break; 3100 case EXT4_INODE_WRITEBACK_DATA_MODE: 3101 if (test_opt(inode->i_sb, DELALLOC)) 3102 inode->i_mapping->a_ops = &ext4_da_aops; 3103 else 3104 inode->i_mapping->a_ops = &ext4_writeback_aops; 3105 break; 3106 case EXT4_INODE_JOURNAL_DATA_MODE: 3107 inode->i_mapping->a_ops = &ext4_journalled_aops; 3108 break; 3109 default: 3110 BUG(); 3111 } 3112 } 3113 3114 3115 /* 3116 * ext4_discard_partial_page_buffers() 3117 * Wrapper function for ext4_discard_partial_page_buffers_no_lock. 3118 * This function finds and locks the page containing the offset 3119 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock. 3120 * Calling functions that already have the page locked should call 3121 * ext4_discard_partial_page_buffers_no_lock directly. 3122 */ 3123 int ext4_discard_partial_page_buffers(handle_t *handle, 3124 struct address_space *mapping, loff_t from, 3125 loff_t length, int flags) 3126 { 3127 struct inode *inode = mapping->host; 3128 struct page *page; 3129 int err = 0; 3130 3131 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 3132 mapping_gfp_mask(mapping) & ~__GFP_FS); 3133 if (!page) 3134 return -ENOMEM; 3135 3136 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page, 3137 from, length, flags); 3138 3139 unlock_page(page); 3140 page_cache_release(page); 3141 return err; 3142 } 3143 3144 /* 3145 * ext4_discard_partial_page_buffers_no_lock() 3146 * Zeros a page range of length 'length' starting from offset 'from'. 3147 * Buffer heads that correspond to the block aligned regions of the 3148 * zeroed range will be unmapped. Unblock aligned regions 3149 * will have the corresponding buffer head mapped if needed so that 3150 * that region of the page can be updated with the partial zero out. 3151 * 3152 * This function assumes that the page has already been locked. The 3153 * The range to be discarded must be contained with in the given page. 3154 * If the specified range exceeds the end of the page it will be shortened 3155 * to the end of the page that corresponds to 'from'. This function is 3156 * appropriate for updating a page and it buffer heads to be unmapped and 3157 * zeroed for blocks that have been either released, or are going to be 3158 * released. 3159 * 3160 * handle: The journal handle 3161 * inode: The files inode 3162 * page: A locked page that contains the offset "from" 3163 * from: The starting byte offset (from the begining of the file) 3164 * to begin discarding 3165 * len: The length of bytes to discard 3166 * flags: Optional flags that may be used: 3167 * 3168 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED 3169 * Only zero the regions of the page whose buffer heads 3170 * have already been unmapped. This flag is appropriate 3171 * for updateing the contents of a page whose blocks may 3172 * have already been released, and we only want to zero 3173 * out the regions that correspond to those released blocks. 3174 * 3175 * Returns zero on sucess or negative on failure. 3176 */ 3177 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle, 3178 struct inode *inode, struct page *page, loff_t from, 3179 loff_t length, int flags) 3180 { 3181 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3182 unsigned int offset = from & (PAGE_CACHE_SIZE-1); 3183 unsigned int blocksize, max, pos; 3184 ext4_lblk_t iblock; 3185 struct buffer_head *bh; 3186 int err = 0; 3187 3188 blocksize = inode->i_sb->s_blocksize; 3189 max = PAGE_CACHE_SIZE - offset; 3190 3191 if (index != page->index) 3192 return -EINVAL; 3193 3194 /* 3195 * correct length if it does not fall between 3196 * 'from' and the end of the page 3197 */ 3198 if (length > max || length < 0) 3199 length = max; 3200 3201 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3202 3203 if (!page_has_buffers(page)) 3204 create_empty_buffers(page, blocksize, 0); 3205 3206 /* Find the buffer that contains "offset" */ 3207 bh = page_buffers(page); 3208 pos = blocksize; 3209 while (offset >= pos) { 3210 bh = bh->b_this_page; 3211 iblock++; 3212 pos += blocksize; 3213 } 3214 3215 pos = offset; 3216 while (pos < offset + length) { 3217 unsigned int end_of_block, range_to_discard; 3218 3219 err = 0; 3220 3221 /* The length of space left to zero and unmap */ 3222 range_to_discard = offset + length - pos; 3223 3224 /* The length of space until the end of the block */ 3225 end_of_block = blocksize - (pos & (blocksize-1)); 3226 3227 /* 3228 * Do not unmap or zero past end of block 3229 * for this buffer head 3230 */ 3231 if (range_to_discard > end_of_block) 3232 range_to_discard = end_of_block; 3233 3234 3235 /* 3236 * Skip this buffer head if we are only zeroing unampped 3237 * regions of the page 3238 */ 3239 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED && 3240 buffer_mapped(bh)) 3241 goto next; 3242 3243 /* If the range is block aligned, unmap */ 3244 if (range_to_discard == blocksize) { 3245 clear_buffer_dirty(bh); 3246 bh->b_bdev = NULL; 3247 clear_buffer_mapped(bh); 3248 clear_buffer_req(bh); 3249 clear_buffer_new(bh); 3250 clear_buffer_delay(bh); 3251 clear_buffer_unwritten(bh); 3252 clear_buffer_uptodate(bh); 3253 zero_user(page, pos, range_to_discard); 3254 BUFFER_TRACE(bh, "Buffer discarded"); 3255 goto next; 3256 } 3257 3258 /* 3259 * If this block is not completely contained in the range 3260 * to be discarded, then it is not going to be released. Because 3261 * we need to keep this block, we need to make sure this part 3262 * of the page is uptodate before we modify it by writeing 3263 * partial zeros on it. 3264 */ 3265 if (!buffer_mapped(bh)) { 3266 /* 3267 * Buffer head must be mapped before we can read 3268 * from the block 3269 */ 3270 BUFFER_TRACE(bh, "unmapped"); 3271 ext4_get_block(inode, iblock, bh, 0); 3272 /* unmapped? It's a hole - nothing to do */ 3273 if (!buffer_mapped(bh)) { 3274 BUFFER_TRACE(bh, "still unmapped"); 3275 goto next; 3276 } 3277 } 3278 3279 /* Ok, it's mapped. Make sure it's up-to-date */ 3280 if (PageUptodate(page)) 3281 set_buffer_uptodate(bh); 3282 3283 if (!buffer_uptodate(bh)) { 3284 err = -EIO; 3285 ll_rw_block(READ, 1, &bh); 3286 wait_on_buffer(bh); 3287 /* Uhhuh. Read error. Complain and punt.*/ 3288 if (!buffer_uptodate(bh)) 3289 goto next; 3290 } 3291 3292 if (ext4_should_journal_data(inode)) { 3293 BUFFER_TRACE(bh, "get write access"); 3294 err = ext4_journal_get_write_access(handle, bh); 3295 if (err) 3296 goto next; 3297 } 3298 3299 zero_user(page, pos, range_to_discard); 3300 3301 err = 0; 3302 if (ext4_should_journal_data(inode)) { 3303 err = ext4_handle_dirty_metadata(handle, inode, bh); 3304 } else 3305 mark_buffer_dirty(bh); 3306 3307 BUFFER_TRACE(bh, "Partial buffer zeroed"); 3308 next: 3309 bh = bh->b_this_page; 3310 iblock++; 3311 pos += range_to_discard; 3312 } 3313 3314 return err; 3315 } 3316 3317 int ext4_can_truncate(struct inode *inode) 3318 { 3319 if (S_ISREG(inode->i_mode)) 3320 return 1; 3321 if (S_ISDIR(inode->i_mode)) 3322 return 1; 3323 if (S_ISLNK(inode->i_mode)) 3324 return !ext4_inode_is_fast_symlink(inode); 3325 return 0; 3326 } 3327 3328 /* 3329 * ext4_punch_hole: punches a hole in a file by releaseing the blocks 3330 * associated with the given offset and length 3331 * 3332 * @inode: File inode 3333 * @offset: The offset where the hole will begin 3334 * @len: The length of the hole 3335 * 3336 * Returns: 0 on sucess or negative on failure 3337 */ 3338 3339 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length) 3340 { 3341 struct inode *inode = file->f_path.dentry->d_inode; 3342 if (!S_ISREG(inode->i_mode)) 3343 return -EOPNOTSUPP; 3344 3345 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 3346 /* TODO: Add support for non extent hole punching */ 3347 return -EOPNOTSUPP; 3348 } 3349 3350 if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) { 3351 /* TODO: Add support for bigalloc file systems */ 3352 return -EOPNOTSUPP; 3353 } 3354 3355 return ext4_ext_punch_hole(file, offset, length); 3356 } 3357 3358 /* 3359 * ext4_truncate() 3360 * 3361 * We block out ext4_get_block() block instantiations across the entire 3362 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 3363 * simultaneously on behalf of the same inode. 3364 * 3365 * As we work through the truncate and commit bits of it to the journal there 3366 * is one core, guiding principle: the file's tree must always be consistent on 3367 * disk. We must be able to restart the truncate after a crash. 3368 * 3369 * The file's tree may be transiently inconsistent in memory (although it 3370 * probably isn't), but whenever we close off and commit a journal transaction, 3371 * the contents of (the filesystem + the journal) must be consistent and 3372 * restartable. It's pretty simple, really: bottom up, right to left (although 3373 * left-to-right works OK too). 3374 * 3375 * Note that at recovery time, journal replay occurs *before* the restart of 3376 * truncate against the orphan inode list. 3377 * 3378 * The committed inode has the new, desired i_size (which is the same as 3379 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 3380 * that this inode's truncate did not complete and it will again call 3381 * ext4_truncate() to have another go. So there will be instantiated blocks 3382 * to the right of the truncation point in a crashed ext4 filesystem. But 3383 * that's fine - as long as they are linked from the inode, the post-crash 3384 * ext4_truncate() run will find them and release them. 3385 */ 3386 void ext4_truncate(struct inode *inode) 3387 { 3388 trace_ext4_truncate_enter(inode); 3389 3390 if (!ext4_can_truncate(inode)) 3391 return; 3392 3393 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3394 3395 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 3396 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 3397 3398 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3399 ext4_ext_truncate(inode); 3400 else 3401 ext4_ind_truncate(inode); 3402 3403 trace_ext4_truncate_exit(inode); 3404 } 3405 3406 /* 3407 * ext4_get_inode_loc returns with an extra refcount against the inode's 3408 * underlying buffer_head on success. If 'in_mem' is true, we have all 3409 * data in memory that is needed to recreate the on-disk version of this 3410 * inode. 3411 */ 3412 static int __ext4_get_inode_loc(struct inode *inode, 3413 struct ext4_iloc *iloc, int in_mem) 3414 { 3415 struct ext4_group_desc *gdp; 3416 struct buffer_head *bh; 3417 struct super_block *sb = inode->i_sb; 3418 ext4_fsblk_t block; 3419 int inodes_per_block, inode_offset; 3420 3421 iloc->bh = NULL; 3422 if (!ext4_valid_inum(sb, inode->i_ino)) 3423 return -EIO; 3424 3425 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 3426 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 3427 if (!gdp) 3428 return -EIO; 3429 3430 /* 3431 * Figure out the offset within the block group inode table 3432 */ 3433 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 3434 inode_offset = ((inode->i_ino - 1) % 3435 EXT4_INODES_PER_GROUP(sb)); 3436 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 3437 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 3438 3439 bh = sb_getblk(sb, block); 3440 if (!bh) { 3441 EXT4_ERROR_INODE_BLOCK(inode, block, 3442 "unable to read itable block"); 3443 return -EIO; 3444 } 3445 if (!buffer_uptodate(bh)) { 3446 lock_buffer(bh); 3447 3448 /* 3449 * If the buffer has the write error flag, we have failed 3450 * to write out another inode in the same block. In this 3451 * case, we don't have to read the block because we may 3452 * read the old inode data successfully. 3453 */ 3454 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 3455 set_buffer_uptodate(bh); 3456 3457 if (buffer_uptodate(bh)) { 3458 /* someone brought it uptodate while we waited */ 3459 unlock_buffer(bh); 3460 goto has_buffer; 3461 } 3462 3463 /* 3464 * If we have all information of the inode in memory and this 3465 * is the only valid inode in the block, we need not read the 3466 * block. 3467 */ 3468 if (in_mem) { 3469 struct buffer_head *bitmap_bh; 3470 int i, start; 3471 3472 start = inode_offset & ~(inodes_per_block - 1); 3473 3474 /* Is the inode bitmap in cache? */ 3475 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 3476 if (!bitmap_bh) 3477 goto make_io; 3478 3479 /* 3480 * If the inode bitmap isn't in cache then the 3481 * optimisation may end up performing two reads instead 3482 * of one, so skip it. 3483 */ 3484 if (!buffer_uptodate(bitmap_bh)) { 3485 brelse(bitmap_bh); 3486 goto make_io; 3487 } 3488 for (i = start; i < start + inodes_per_block; i++) { 3489 if (i == inode_offset) 3490 continue; 3491 if (ext4_test_bit(i, bitmap_bh->b_data)) 3492 break; 3493 } 3494 brelse(bitmap_bh); 3495 if (i == start + inodes_per_block) { 3496 /* all other inodes are free, so skip I/O */ 3497 memset(bh->b_data, 0, bh->b_size); 3498 set_buffer_uptodate(bh); 3499 unlock_buffer(bh); 3500 goto has_buffer; 3501 } 3502 } 3503 3504 make_io: 3505 /* 3506 * If we need to do any I/O, try to pre-readahead extra 3507 * blocks from the inode table. 3508 */ 3509 if (EXT4_SB(sb)->s_inode_readahead_blks) { 3510 ext4_fsblk_t b, end, table; 3511 unsigned num; 3512 3513 table = ext4_inode_table(sb, gdp); 3514 /* s_inode_readahead_blks is always a power of 2 */ 3515 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1); 3516 if (table > b) 3517 b = table; 3518 end = b + EXT4_SB(sb)->s_inode_readahead_blks; 3519 num = EXT4_INODES_PER_GROUP(sb); 3520 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3521 EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) 3522 num -= ext4_itable_unused_count(sb, gdp); 3523 table += num / inodes_per_block; 3524 if (end > table) 3525 end = table; 3526 while (b <= end) 3527 sb_breadahead(sb, b++); 3528 } 3529 3530 /* 3531 * There are other valid inodes in the buffer, this inode 3532 * has in-inode xattrs, or we don't have this inode in memory. 3533 * Read the block from disk. 3534 */ 3535 trace_ext4_load_inode(inode); 3536 get_bh(bh); 3537 bh->b_end_io = end_buffer_read_sync; 3538 submit_bh(READ | REQ_META | REQ_PRIO, bh); 3539 wait_on_buffer(bh); 3540 if (!buffer_uptodate(bh)) { 3541 EXT4_ERROR_INODE_BLOCK(inode, block, 3542 "unable to read itable block"); 3543 brelse(bh); 3544 return -EIO; 3545 } 3546 } 3547 has_buffer: 3548 iloc->bh = bh; 3549 return 0; 3550 } 3551 3552 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 3553 { 3554 /* We have all inode data except xattrs in memory here. */ 3555 return __ext4_get_inode_loc(inode, iloc, 3556 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 3557 } 3558 3559 void ext4_set_inode_flags(struct inode *inode) 3560 { 3561 unsigned int flags = EXT4_I(inode)->i_flags; 3562 3563 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 3564 if (flags & EXT4_SYNC_FL) 3565 inode->i_flags |= S_SYNC; 3566 if (flags & EXT4_APPEND_FL) 3567 inode->i_flags |= S_APPEND; 3568 if (flags & EXT4_IMMUTABLE_FL) 3569 inode->i_flags |= S_IMMUTABLE; 3570 if (flags & EXT4_NOATIME_FL) 3571 inode->i_flags |= S_NOATIME; 3572 if (flags & EXT4_DIRSYNC_FL) 3573 inode->i_flags |= S_DIRSYNC; 3574 } 3575 3576 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 3577 void ext4_get_inode_flags(struct ext4_inode_info *ei) 3578 { 3579 unsigned int vfs_fl; 3580 unsigned long old_fl, new_fl; 3581 3582 do { 3583 vfs_fl = ei->vfs_inode.i_flags; 3584 old_fl = ei->i_flags; 3585 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 3586 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL| 3587 EXT4_DIRSYNC_FL); 3588 if (vfs_fl & S_SYNC) 3589 new_fl |= EXT4_SYNC_FL; 3590 if (vfs_fl & S_APPEND) 3591 new_fl |= EXT4_APPEND_FL; 3592 if (vfs_fl & S_IMMUTABLE) 3593 new_fl |= EXT4_IMMUTABLE_FL; 3594 if (vfs_fl & S_NOATIME) 3595 new_fl |= EXT4_NOATIME_FL; 3596 if (vfs_fl & S_DIRSYNC) 3597 new_fl |= EXT4_DIRSYNC_FL; 3598 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl); 3599 } 3600 3601 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 3602 struct ext4_inode_info *ei) 3603 { 3604 blkcnt_t i_blocks ; 3605 struct inode *inode = &(ei->vfs_inode); 3606 struct super_block *sb = inode->i_sb; 3607 3608 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3609 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 3610 /* we are using combined 48 bit field */ 3611 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 3612 le32_to_cpu(raw_inode->i_blocks_lo); 3613 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 3614 /* i_blocks represent file system block size */ 3615 return i_blocks << (inode->i_blkbits - 9); 3616 } else { 3617 return i_blocks; 3618 } 3619 } else { 3620 return le32_to_cpu(raw_inode->i_blocks_lo); 3621 } 3622 } 3623 3624 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 3625 { 3626 struct ext4_iloc iloc; 3627 struct ext4_inode *raw_inode; 3628 struct ext4_inode_info *ei; 3629 struct inode *inode; 3630 journal_t *journal = EXT4_SB(sb)->s_journal; 3631 long ret; 3632 int block; 3633 3634 inode = iget_locked(sb, ino); 3635 if (!inode) 3636 return ERR_PTR(-ENOMEM); 3637 if (!(inode->i_state & I_NEW)) 3638 return inode; 3639 3640 ei = EXT4_I(inode); 3641 iloc.bh = NULL; 3642 3643 ret = __ext4_get_inode_loc(inode, &iloc, 0); 3644 if (ret < 0) 3645 goto bad_inode; 3646 raw_inode = ext4_raw_inode(&iloc); 3647 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 3648 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 3649 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 3650 if (!(test_opt(inode->i_sb, NO_UID32))) { 3651 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 3652 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 3653 } 3654 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 3655 3656 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 3657 ei->i_dir_start_lookup = 0; 3658 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 3659 /* We now have enough fields to check if the inode was active or not. 3660 * This is needed because nfsd might try to access dead inodes 3661 * the test is that same one that e2fsck uses 3662 * NeilBrown 1999oct15 3663 */ 3664 if (inode->i_nlink == 0) { 3665 if (inode->i_mode == 0 || 3666 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) { 3667 /* this inode is deleted */ 3668 ret = -ESTALE; 3669 goto bad_inode; 3670 } 3671 /* The only unlinked inodes we let through here have 3672 * valid i_mode and are being read by the orphan 3673 * recovery code: that's fine, we're about to complete 3674 * the process of deleting those. */ 3675 } 3676 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 3677 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 3678 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 3679 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) 3680 ei->i_file_acl |= 3681 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 3682 inode->i_size = ext4_isize(raw_inode); 3683 ei->i_disksize = inode->i_size; 3684 #ifdef CONFIG_QUOTA 3685 ei->i_reserved_quota = 0; 3686 #endif 3687 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 3688 ei->i_block_group = iloc.block_group; 3689 ei->i_last_alloc_group = ~0; 3690 /* 3691 * NOTE! The in-memory inode i_data array is in little-endian order 3692 * even on big-endian machines: we do NOT byteswap the block numbers! 3693 */ 3694 for (block = 0; block < EXT4_N_BLOCKS; block++) 3695 ei->i_data[block] = raw_inode->i_block[block]; 3696 INIT_LIST_HEAD(&ei->i_orphan); 3697 3698 /* 3699 * Set transaction id's of transactions that have to be committed 3700 * to finish f[data]sync. We set them to currently running transaction 3701 * as we cannot be sure that the inode or some of its metadata isn't 3702 * part of the transaction - the inode could have been reclaimed and 3703 * now it is reread from disk. 3704 */ 3705 if (journal) { 3706 transaction_t *transaction; 3707 tid_t tid; 3708 3709 read_lock(&journal->j_state_lock); 3710 if (journal->j_running_transaction) 3711 transaction = journal->j_running_transaction; 3712 else 3713 transaction = journal->j_committing_transaction; 3714 if (transaction) 3715 tid = transaction->t_tid; 3716 else 3717 tid = journal->j_commit_sequence; 3718 read_unlock(&journal->j_state_lock); 3719 ei->i_sync_tid = tid; 3720 ei->i_datasync_tid = tid; 3721 } 3722 3723 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 3724 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 3725 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 3726 EXT4_INODE_SIZE(inode->i_sb)) { 3727 ret = -EIO; 3728 goto bad_inode; 3729 } 3730 if (ei->i_extra_isize == 0) { 3731 /* The extra space is currently unused. Use it. */ 3732 ei->i_extra_isize = sizeof(struct ext4_inode) - 3733 EXT4_GOOD_OLD_INODE_SIZE; 3734 } else { 3735 __le32 *magic = (void *)raw_inode + 3736 EXT4_GOOD_OLD_INODE_SIZE + 3737 ei->i_extra_isize; 3738 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) 3739 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 3740 } 3741 } else 3742 ei->i_extra_isize = 0; 3743 3744 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 3745 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 3746 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 3747 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 3748 3749 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 3750 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 3751 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 3752 inode->i_version |= 3753 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 3754 } 3755 3756 ret = 0; 3757 if (ei->i_file_acl && 3758 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 3759 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 3760 ei->i_file_acl); 3761 ret = -EIO; 3762 goto bad_inode; 3763 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 3764 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 3765 (S_ISLNK(inode->i_mode) && 3766 !ext4_inode_is_fast_symlink(inode))) 3767 /* Validate extent which is part of inode */ 3768 ret = ext4_ext_check_inode(inode); 3769 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 3770 (S_ISLNK(inode->i_mode) && 3771 !ext4_inode_is_fast_symlink(inode))) { 3772 /* Validate block references which are part of inode */ 3773 ret = ext4_ind_check_inode(inode); 3774 } 3775 if (ret) 3776 goto bad_inode; 3777 3778 if (S_ISREG(inode->i_mode)) { 3779 inode->i_op = &ext4_file_inode_operations; 3780 inode->i_fop = &ext4_file_operations; 3781 ext4_set_aops(inode); 3782 } else if (S_ISDIR(inode->i_mode)) { 3783 inode->i_op = &ext4_dir_inode_operations; 3784 inode->i_fop = &ext4_dir_operations; 3785 } else if (S_ISLNK(inode->i_mode)) { 3786 if (ext4_inode_is_fast_symlink(inode)) { 3787 inode->i_op = &ext4_fast_symlink_inode_operations; 3788 nd_terminate_link(ei->i_data, inode->i_size, 3789 sizeof(ei->i_data) - 1); 3790 } else { 3791 inode->i_op = &ext4_symlink_inode_operations; 3792 ext4_set_aops(inode); 3793 } 3794 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 3795 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 3796 inode->i_op = &ext4_special_inode_operations; 3797 if (raw_inode->i_block[0]) 3798 init_special_inode(inode, inode->i_mode, 3799 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 3800 else 3801 init_special_inode(inode, inode->i_mode, 3802 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 3803 } else { 3804 ret = -EIO; 3805 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 3806 goto bad_inode; 3807 } 3808 brelse(iloc.bh); 3809 ext4_set_inode_flags(inode); 3810 unlock_new_inode(inode); 3811 return inode; 3812 3813 bad_inode: 3814 brelse(iloc.bh); 3815 iget_failed(inode); 3816 return ERR_PTR(ret); 3817 } 3818 3819 static int ext4_inode_blocks_set(handle_t *handle, 3820 struct ext4_inode *raw_inode, 3821 struct ext4_inode_info *ei) 3822 { 3823 struct inode *inode = &(ei->vfs_inode); 3824 u64 i_blocks = inode->i_blocks; 3825 struct super_block *sb = inode->i_sb; 3826 3827 if (i_blocks <= ~0U) { 3828 /* 3829 * i_blocks can be represnted in a 32 bit variable 3830 * as multiple of 512 bytes 3831 */ 3832 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 3833 raw_inode->i_blocks_high = 0; 3834 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 3835 return 0; 3836 } 3837 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) 3838 return -EFBIG; 3839 3840 if (i_blocks <= 0xffffffffffffULL) { 3841 /* 3842 * i_blocks can be represented in a 48 bit variable 3843 * as multiple of 512 bytes 3844 */ 3845 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 3846 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 3847 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 3848 } else { 3849 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 3850 /* i_block is stored in file system block size */ 3851 i_blocks = i_blocks >> (inode->i_blkbits - 9); 3852 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 3853 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 3854 } 3855 return 0; 3856 } 3857 3858 /* 3859 * Post the struct inode info into an on-disk inode location in the 3860 * buffer-cache. This gobbles the caller's reference to the 3861 * buffer_head in the inode location struct. 3862 * 3863 * The caller must have write access to iloc->bh. 3864 */ 3865 static int ext4_do_update_inode(handle_t *handle, 3866 struct inode *inode, 3867 struct ext4_iloc *iloc) 3868 { 3869 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 3870 struct ext4_inode_info *ei = EXT4_I(inode); 3871 struct buffer_head *bh = iloc->bh; 3872 int err = 0, rc, block; 3873 3874 /* For fields not not tracking in the in-memory inode, 3875 * initialise them to zero for new inodes. */ 3876 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 3877 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 3878 3879 ext4_get_inode_flags(ei); 3880 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 3881 if (!(test_opt(inode->i_sb, NO_UID32))) { 3882 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid)); 3883 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid)); 3884 /* 3885 * Fix up interoperability with old kernels. Otherwise, old inodes get 3886 * re-used with the upper 16 bits of the uid/gid intact 3887 */ 3888 if (!ei->i_dtime) { 3889 raw_inode->i_uid_high = 3890 cpu_to_le16(high_16_bits(inode->i_uid)); 3891 raw_inode->i_gid_high = 3892 cpu_to_le16(high_16_bits(inode->i_gid)); 3893 } else { 3894 raw_inode->i_uid_high = 0; 3895 raw_inode->i_gid_high = 0; 3896 } 3897 } else { 3898 raw_inode->i_uid_low = 3899 cpu_to_le16(fs_high2lowuid(inode->i_uid)); 3900 raw_inode->i_gid_low = 3901 cpu_to_le16(fs_high2lowgid(inode->i_gid)); 3902 raw_inode->i_uid_high = 0; 3903 raw_inode->i_gid_high = 0; 3904 } 3905 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 3906 3907 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 3908 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 3909 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 3910 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 3911 3912 if (ext4_inode_blocks_set(handle, raw_inode, ei)) 3913 goto out_brelse; 3914 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 3915 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 3916 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 3917 cpu_to_le32(EXT4_OS_HURD)) 3918 raw_inode->i_file_acl_high = 3919 cpu_to_le16(ei->i_file_acl >> 32); 3920 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 3921 ext4_isize_set(raw_inode, ei->i_disksize); 3922 if (ei->i_disksize > 0x7fffffffULL) { 3923 struct super_block *sb = inode->i_sb; 3924 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 3925 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 3926 EXT4_SB(sb)->s_es->s_rev_level == 3927 cpu_to_le32(EXT4_GOOD_OLD_REV)) { 3928 /* If this is the first large file 3929 * created, add a flag to the superblock. 3930 */ 3931 err = ext4_journal_get_write_access(handle, 3932 EXT4_SB(sb)->s_sbh); 3933 if (err) 3934 goto out_brelse; 3935 ext4_update_dynamic_rev(sb); 3936 EXT4_SET_RO_COMPAT_FEATURE(sb, 3937 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 3938 ext4_handle_sync(handle); 3939 err = ext4_handle_dirty_super(handle, sb); 3940 } 3941 } 3942 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 3943 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 3944 if (old_valid_dev(inode->i_rdev)) { 3945 raw_inode->i_block[0] = 3946 cpu_to_le32(old_encode_dev(inode->i_rdev)); 3947 raw_inode->i_block[1] = 0; 3948 } else { 3949 raw_inode->i_block[0] = 0; 3950 raw_inode->i_block[1] = 3951 cpu_to_le32(new_encode_dev(inode->i_rdev)); 3952 raw_inode->i_block[2] = 0; 3953 } 3954 } else 3955 for (block = 0; block < EXT4_N_BLOCKS; block++) 3956 raw_inode->i_block[block] = ei->i_data[block]; 3957 3958 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 3959 if (ei->i_extra_isize) { 3960 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 3961 raw_inode->i_version_hi = 3962 cpu_to_le32(inode->i_version >> 32); 3963 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); 3964 } 3965 3966 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 3967 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 3968 if (!err) 3969 err = rc; 3970 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 3971 3972 ext4_update_inode_fsync_trans(handle, inode, 0); 3973 out_brelse: 3974 brelse(bh); 3975 ext4_std_error(inode->i_sb, err); 3976 return err; 3977 } 3978 3979 /* 3980 * ext4_write_inode() 3981 * 3982 * We are called from a few places: 3983 * 3984 * - Within generic_file_write() for O_SYNC files. 3985 * Here, there will be no transaction running. We wait for any running 3986 * trasnaction to commit. 3987 * 3988 * - Within sys_sync(), kupdate and such. 3989 * We wait on commit, if tol to. 3990 * 3991 * - Within prune_icache() (PF_MEMALLOC == true) 3992 * Here we simply return. We can't afford to block kswapd on the 3993 * journal commit. 3994 * 3995 * In all cases it is actually safe for us to return without doing anything, 3996 * because the inode has been copied into a raw inode buffer in 3997 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for 3998 * knfsd. 3999 * 4000 * Note that we are absolutely dependent upon all inode dirtiers doing the 4001 * right thing: they *must* call mark_inode_dirty() after dirtying info in 4002 * which we are interested. 4003 * 4004 * It would be a bug for them to not do this. The code: 4005 * 4006 * mark_inode_dirty(inode) 4007 * stuff(); 4008 * inode->i_size = expr; 4009 * 4010 * is in error because a kswapd-driven write_inode() could occur while 4011 * `stuff()' is running, and the new i_size will be lost. Plus the inode 4012 * will no longer be on the superblock's dirty inode list. 4013 */ 4014 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 4015 { 4016 int err; 4017 4018 if (current->flags & PF_MEMALLOC) 4019 return 0; 4020 4021 if (EXT4_SB(inode->i_sb)->s_journal) { 4022 if (ext4_journal_current_handle()) { 4023 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 4024 dump_stack(); 4025 return -EIO; 4026 } 4027 4028 if (wbc->sync_mode != WB_SYNC_ALL) 4029 return 0; 4030 4031 err = ext4_force_commit(inode->i_sb); 4032 } else { 4033 struct ext4_iloc iloc; 4034 4035 err = __ext4_get_inode_loc(inode, &iloc, 0); 4036 if (err) 4037 return err; 4038 if (wbc->sync_mode == WB_SYNC_ALL) 4039 sync_dirty_buffer(iloc.bh); 4040 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 4041 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 4042 "IO error syncing inode"); 4043 err = -EIO; 4044 } 4045 brelse(iloc.bh); 4046 } 4047 return err; 4048 } 4049 4050 /* 4051 * ext4_setattr() 4052 * 4053 * Called from notify_change. 4054 * 4055 * We want to trap VFS attempts to truncate the file as soon as 4056 * possible. In particular, we want to make sure that when the VFS 4057 * shrinks i_size, we put the inode on the orphan list and modify 4058 * i_disksize immediately, so that during the subsequent flushing of 4059 * dirty pages and freeing of disk blocks, we can guarantee that any 4060 * commit will leave the blocks being flushed in an unused state on 4061 * disk. (On recovery, the inode will get truncated and the blocks will 4062 * be freed, so we have a strong guarantee that no future commit will 4063 * leave these blocks visible to the user.) 4064 * 4065 * Another thing we have to assure is that if we are in ordered mode 4066 * and inode is still attached to the committing transaction, we must 4067 * we start writeout of all the dirty pages which are being truncated. 4068 * This way we are sure that all the data written in the previous 4069 * transaction are already on disk (truncate waits for pages under 4070 * writeback). 4071 * 4072 * Called with inode->i_mutex down. 4073 */ 4074 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 4075 { 4076 struct inode *inode = dentry->d_inode; 4077 int error, rc = 0; 4078 int orphan = 0; 4079 const unsigned int ia_valid = attr->ia_valid; 4080 4081 error = inode_change_ok(inode, attr); 4082 if (error) 4083 return error; 4084 4085 if (is_quota_modification(inode, attr)) 4086 dquot_initialize(inode); 4087 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) || 4088 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) { 4089 handle_t *handle; 4090 4091 /* (user+group)*(old+new) structure, inode write (sb, 4092 * inode block, ? - but truncate inode update has it) */ 4093 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+ 4094 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3); 4095 if (IS_ERR(handle)) { 4096 error = PTR_ERR(handle); 4097 goto err_out; 4098 } 4099 error = dquot_transfer(inode, attr); 4100 if (error) { 4101 ext4_journal_stop(handle); 4102 return error; 4103 } 4104 /* Update corresponding info in inode so that everything is in 4105 * one transaction */ 4106 if (attr->ia_valid & ATTR_UID) 4107 inode->i_uid = attr->ia_uid; 4108 if (attr->ia_valid & ATTR_GID) 4109 inode->i_gid = attr->ia_gid; 4110 error = ext4_mark_inode_dirty(handle, inode); 4111 ext4_journal_stop(handle); 4112 } 4113 4114 if (attr->ia_valid & ATTR_SIZE) { 4115 inode_dio_wait(inode); 4116 4117 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4118 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4119 4120 if (attr->ia_size > sbi->s_bitmap_maxbytes) 4121 return -EFBIG; 4122 } 4123 } 4124 4125 if (S_ISREG(inode->i_mode) && 4126 attr->ia_valid & ATTR_SIZE && 4127 (attr->ia_size < inode->i_size)) { 4128 handle_t *handle; 4129 4130 handle = ext4_journal_start(inode, 3); 4131 if (IS_ERR(handle)) { 4132 error = PTR_ERR(handle); 4133 goto err_out; 4134 } 4135 if (ext4_handle_valid(handle)) { 4136 error = ext4_orphan_add(handle, inode); 4137 orphan = 1; 4138 } 4139 EXT4_I(inode)->i_disksize = attr->ia_size; 4140 rc = ext4_mark_inode_dirty(handle, inode); 4141 if (!error) 4142 error = rc; 4143 ext4_journal_stop(handle); 4144 4145 if (ext4_should_order_data(inode)) { 4146 error = ext4_begin_ordered_truncate(inode, 4147 attr->ia_size); 4148 if (error) { 4149 /* Do as much error cleanup as possible */ 4150 handle = ext4_journal_start(inode, 3); 4151 if (IS_ERR(handle)) { 4152 ext4_orphan_del(NULL, inode); 4153 goto err_out; 4154 } 4155 ext4_orphan_del(handle, inode); 4156 orphan = 0; 4157 ext4_journal_stop(handle); 4158 goto err_out; 4159 } 4160 } 4161 } 4162 4163 if (attr->ia_valid & ATTR_SIZE) { 4164 if (attr->ia_size != i_size_read(inode)) 4165 truncate_setsize(inode, attr->ia_size); 4166 ext4_truncate(inode); 4167 } 4168 4169 if (!rc) { 4170 setattr_copy(inode, attr); 4171 mark_inode_dirty(inode); 4172 } 4173 4174 /* 4175 * If the call to ext4_truncate failed to get a transaction handle at 4176 * all, we need to clean up the in-core orphan list manually. 4177 */ 4178 if (orphan && inode->i_nlink) 4179 ext4_orphan_del(NULL, inode); 4180 4181 if (!rc && (ia_valid & ATTR_MODE)) 4182 rc = ext4_acl_chmod(inode); 4183 4184 err_out: 4185 ext4_std_error(inode->i_sb, error); 4186 if (!error) 4187 error = rc; 4188 return error; 4189 } 4190 4191 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 4192 struct kstat *stat) 4193 { 4194 struct inode *inode; 4195 unsigned long delalloc_blocks; 4196 4197 inode = dentry->d_inode; 4198 generic_fillattr(inode, stat); 4199 4200 /* 4201 * We can't update i_blocks if the block allocation is delayed 4202 * otherwise in the case of system crash before the real block 4203 * allocation is done, we will have i_blocks inconsistent with 4204 * on-disk file blocks. 4205 * We always keep i_blocks updated together with real 4206 * allocation. But to not confuse with user, stat 4207 * will return the blocks that include the delayed allocation 4208 * blocks for this file. 4209 */ 4210 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks; 4211 4212 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9; 4213 return 0; 4214 } 4215 4216 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk) 4217 { 4218 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4219 return ext4_ind_trans_blocks(inode, nrblocks, chunk); 4220 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk); 4221 } 4222 4223 /* 4224 * Account for index blocks, block groups bitmaps and block group 4225 * descriptor blocks if modify datablocks and index blocks 4226 * worse case, the indexs blocks spread over different block groups 4227 * 4228 * If datablocks are discontiguous, they are possible to spread over 4229 * different block groups too. If they are contiuguous, with flexbg, 4230 * they could still across block group boundary. 4231 * 4232 * Also account for superblock, inode, quota and xattr blocks 4233 */ 4234 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk) 4235 { 4236 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 4237 int gdpblocks; 4238 int idxblocks; 4239 int ret = 0; 4240 4241 /* 4242 * How many index blocks need to touch to modify nrblocks? 4243 * The "Chunk" flag indicating whether the nrblocks is 4244 * physically contiguous on disk 4245 * 4246 * For Direct IO and fallocate, they calls get_block to allocate 4247 * one single extent at a time, so they could set the "Chunk" flag 4248 */ 4249 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk); 4250 4251 ret = idxblocks; 4252 4253 /* 4254 * Now let's see how many group bitmaps and group descriptors need 4255 * to account 4256 */ 4257 groups = idxblocks; 4258 if (chunk) 4259 groups += 1; 4260 else 4261 groups += nrblocks; 4262 4263 gdpblocks = groups; 4264 if (groups > ngroups) 4265 groups = ngroups; 4266 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 4267 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 4268 4269 /* bitmaps and block group descriptor blocks */ 4270 ret += groups + gdpblocks; 4271 4272 /* Blocks for super block, inode, quota and xattr blocks */ 4273 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 4274 4275 return ret; 4276 } 4277 4278 /* 4279 * Calculate the total number of credits to reserve to fit 4280 * the modification of a single pages into a single transaction, 4281 * which may include multiple chunks of block allocations. 4282 * 4283 * This could be called via ext4_write_begin() 4284 * 4285 * We need to consider the worse case, when 4286 * one new block per extent. 4287 */ 4288 int ext4_writepage_trans_blocks(struct inode *inode) 4289 { 4290 int bpp = ext4_journal_blocks_per_page(inode); 4291 int ret; 4292 4293 ret = ext4_meta_trans_blocks(inode, bpp, 0); 4294 4295 /* Account for data blocks for journalled mode */ 4296 if (ext4_should_journal_data(inode)) 4297 ret += bpp; 4298 return ret; 4299 } 4300 4301 /* 4302 * Calculate the journal credits for a chunk of data modification. 4303 * 4304 * This is called from DIO, fallocate or whoever calling 4305 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 4306 * 4307 * journal buffers for data blocks are not included here, as DIO 4308 * and fallocate do no need to journal data buffers. 4309 */ 4310 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 4311 { 4312 return ext4_meta_trans_blocks(inode, nrblocks, 1); 4313 } 4314 4315 /* 4316 * The caller must have previously called ext4_reserve_inode_write(). 4317 * Give this, we know that the caller already has write access to iloc->bh. 4318 */ 4319 int ext4_mark_iloc_dirty(handle_t *handle, 4320 struct inode *inode, struct ext4_iloc *iloc) 4321 { 4322 int err = 0; 4323 4324 if (IS_I_VERSION(inode)) 4325 inode_inc_iversion(inode); 4326 4327 /* the do_update_inode consumes one bh->b_count */ 4328 get_bh(iloc->bh); 4329 4330 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 4331 err = ext4_do_update_inode(handle, inode, iloc); 4332 put_bh(iloc->bh); 4333 return err; 4334 } 4335 4336 /* 4337 * On success, We end up with an outstanding reference count against 4338 * iloc->bh. This _must_ be cleaned up later. 4339 */ 4340 4341 int 4342 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 4343 struct ext4_iloc *iloc) 4344 { 4345 int err; 4346 4347 err = ext4_get_inode_loc(inode, iloc); 4348 if (!err) { 4349 BUFFER_TRACE(iloc->bh, "get_write_access"); 4350 err = ext4_journal_get_write_access(handle, iloc->bh); 4351 if (err) { 4352 brelse(iloc->bh); 4353 iloc->bh = NULL; 4354 } 4355 } 4356 ext4_std_error(inode->i_sb, err); 4357 return err; 4358 } 4359 4360 /* 4361 * Expand an inode by new_extra_isize bytes. 4362 * Returns 0 on success or negative error number on failure. 4363 */ 4364 static int ext4_expand_extra_isize(struct inode *inode, 4365 unsigned int new_extra_isize, 4366 struct ext4_iloc iloc, 4367 handle_t *handle) 4368 { 4369 struct ext4_inode *raw_inode; 4370 struct ext4_xattr_ibody_header *header; 4371 4372 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 4373 return 0; 4374 4375 raw_inode = ext4_raw_inode(&iloc); 4376 4377 header = IHDR(inode, raw_inode); 4378 4379 /* No extended attributes present */ 4380 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 4381 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 4382 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 4383 new_extra_isize); 4384 EXT4_I(inode)->i_extra_isize = new_extra_isize; 4385 return 0; 4386 } 4387 4388 /* try to expand with EAs present */ 4389 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 4390 raw_inode, handle); 4391 } 4392 4393 /* 4394 * What we do here is to mark the in-core inode as clean with respect to inode 4395 * dirtiness (it may still be data-dirty). 4396 * This means that the in-core inode may be reaped by prune_icache 4397 * without having to perform any I/O. This is a very good thing, 4398 * because *any* task may call prune_icache - even ones which 4399 * have a transaction open against a different journal. 4400 * 4401 * Is this cheating? Not really. Sure, we haven't written the 4402 * inode out, but prune_icache isn't a user-visible syncing function. 4403 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 4404 * we start and wait on commits. 4405 * 4406 * Is this efficient/effective? Well, we're being nice to the system 4407 * by cleaning up our inodes proactively so they can be reaped 4408 * without I/O. But we are potentially leaving up to five seconds' 4409 * worth of inodes floating about which prune_icache wants us to 4410 * write out. One way to fix that would be to get prune_icache() 4411 * to do a write_super() to free up some memory. It has the desired 4412 * effect. 4413 */ 4414 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 4415 { 4416 struct ext4_iloc iloc; 4417 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4418 static unsigned int mnt_count; 4419 int err, ret; 4420 4421 might_sleep(); 4422 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 4423 err = ext4_reserve_inode_write(handle, inode, &iloc); 4424 if (ext4_handle_valid(handle) && 4425 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 4426 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 4427 /* 4428 * We need extra buffer credits since we may write into EA block 4429 * with this same handle. If journal_extend fails, then it will 4430 * only result in a minor loss of functionality for that inode. 4431 * If this is felt to be critical, then e2fsck should be run to 4432 * force a large enough s_min_extra_isize. 4433 */ 4434 if ((jbd2_journal_extend(handle, 4435 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 4436 ret = ext4_expand_extra_isize(inode, 4437 sbi->s_want_extra_isize, 4438 iloc, handle); 4439 if (ret) { 4440 ext4_set_inode_state(inode, 4441 EXT4_STATE_NO_EXPAND); 4442 if (mnt_count != 4443 le16_to_cpu(sbi->s_es->s_mnt_count)) { 4444 ext4_warning(inode->i_sb, 4445 "Unable to expand inode %lu. Delete" 4446 " some EAs or run e2fsck.", 4447 inode->i_ino); 4448 mnt_count = 4449 le16_to_cpu(sbi->s_es->s_mnt_count); 4450 } 4451 } 4452 } 4453 } 4454 if (!err) 4455 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 4456 return err; 4457 } 4458 4459 /* 4460 * ext4_dirty_inode() is called from __mark_inode_dirty() 4461 * 4462 * We're really interested in the case where a file is being extended. 4463 * i_size has been changed by generic_commit_write() and we thus need 4464 * to include the updated inode in the current transaction. 4465 * 4466 * Also, dquot_alloc_block() will always dirty the inode when blocks 4467 * are allocated to the file. 4468 * 4469 * If the inode is marked synchronous, we don't honour that here - doing 4470 * so would cause a commit on atime updates, which we don't bother doing. 4471 * We handle synchronous inodes at the highest possible level. 4472 */ 4473 void ext4_dirty_inode(struct inode *inode, int flags) 4474 { 4475 handle_t *handle; 4476 4477 handle = ext4_journal_start(inode, 2); 4478 if (IS_ERR(handle)) 4479 goto out; 4480 4481 ext4_mark_inode_dirty(handle, inode); 4482 4483 ext4_journal_stop(handle); 4484 out: 4485 return; 4486 } 4487 4488 #if 0 4489 /* 4490 * Bind an inode's backing buffer_head into this transaction, to prevent 4491 * it from being flushed to disk early. Unlike 4492 * ext4_reserve_inode_write, this leaves behind no bh reference and 4493 * returns no iloc structure, so the caller needs to repeat the iloc 4494 * lookup to mark the inode dirty later. 4495 */ 4496 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 4497 { 4498 struct ext4_iloc iloc; 4499 4500 int err = 0; 4501 if (handle) { 4502 err = ext4_get_inode_loc(inode, &iloc); 4503 if (!err) { 4504 BUFFER_TRACE(iloc.bh, "get_write_access"); 4505 err = jbd2_journal_get_write_access(handle, iloc.bh); 4506 if (!err) 4507 err = ext4_handle_dirty_metadata(handle, 4508 NULL, 4509 iloc.bh); 4510 brelse(iloc.bh); 4511 } 4512 } 4513 ext4_std_error(inode->i_sb, err); 4514 return err; 4515 } 4516 #endif 4517 4518 int ext4_change_inode_journal_flag(struct inode *inode, int val) 4519 { 4520 journal_t *journal; 4521 handle_t *handle; 4522 int err; 4523 4524 /* 4525 * We have to be very careful here: changing a data block's 4526 * journaling status dynamically is dangerous. If we write a 4527 * data block to the journal, change the status and then delete 4528 * that block, we risk forgetting to revoke the old log record 4529 * from the journal and so a subsequent replay can corrupt data. 4530 * So, first we make sure that the journal is empty and that 4531 * nobody is changing anything. 4532 */ 4533 4534 journal = EXT4_JOURNAL(inode); 4535 if (!journal) 4536 return 0; 4537 if (is_journal_aborted(journal)) 4538 return -EROFS; 4539 /* We have to allocate physical blocks for delalloc blocks 4540 * before flushing journal. otherwise delalloc blocks can not 4541 * be allocated any more. even more truncate on delalloc blocks 4542 * could trigger BUG by flushing delalloc blocks in journal. 4543 * There is no delalloc block in non-journal data mode. 4544 */ 4545 if (val && test_opt(inode->i_sb, DELALLOC)) { 4546 err = ext4_alloc_da_blocks(inode); 4547 if (err < 0) 4548 return err; 4549 } 4550 4551 jbd2_journal_lock_updates(journal); 4552 4553 /* 4554 * OK, there are no updates running now, and all cached data is 4555 * synced to disk. We are now in a completely consistent state 4556 * which doesn't have anything in the journal, and we know that 4557 * no filesystem updates are running, so it is safe to modify 4558 * the inode's in-core data-journaling state flag now. 4559 */ 4560 4561 if (val) 4562 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 4563 else { 4564 jbd2_journal_flush(journal); 4565 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 4566 } 4567 ext4_set_aops(inode); 4568 4569 jbd2_journal_unlock_updates(journal); 4570 4571 /* Finally we can mark the inode as dirty. */ 4572 4573 handle = ext4_journal_start(inode, 1); 4574 if (IS_ERR(handle)) 4575 return PTR_ERR(handle); 4576 4577 err = ext4_mark_inode_dirty(handle, inode); 4578 ext4_handle_sync(handle); 4579 ext4_journal_stop(handle); 4580 ext4_std_error(inode->i_sb, err); 4581 4582 return err; 4583 } 4584 4585 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 4586 { 4587 return !buffer_mapped(bh); 4588 } 4589 4590 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 4591 { 4592 struct page *page = vmf->page; 4593 loff_t size; 4594 unsigned long len; 4595 int ret; 4596 struct file *file = vma->vm_file; 4597 struct inode *inode = file->f_path.dentry->d_inode; 4598 struct address_space *mapping = inode->i_mapping; 4599 handle_t *handle; 4600 get_block_t *get_block; 4601 int retries = 0; 4602 4603 /* 4604 * This check is racy but catches the common case. We rely on 4605 * __block_page_mkwrite() to do a reliable check. 4606 */ 4607 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); 4608 /* Delalloc case is easy... */ 4609 if (test_opt(inode->i_sb, DELALLOC) && 4610 !ext4_should_journal_data(inode) && 4611 !ext4_nonda_switch(inode->i_sb)) { 4612 do { 4613 ret = __block_page_mkwrite(vma, vmf, 4614 ext4_da_get_block_prep); 4615 } while (ret == -ENOSPC && 4616 ext4_should_retry_alloc(inode->i_sb, &retries)); 4617 goto out_ret; 4618 } 4619 4620 lock_page(page); 4621 size = i_size_read(inode); 4622 /* Page got truncated from under us? */ 4623 if (page->mapping != mapping || page_offset(page) > size) { 4624 unlock_page(page); 4625 ret = VM_FAULT_NOPAGE; 4626 goto out; 4627 } 4628 4629 if (page->index == size >> PAGE_CACHE_SHIFT) 4630 len = size & ~PAGE_CACHE_MASK; 4631 else 4632 len = PAGE_CACHE_SIZE; 4633 /* 4634 * Return if we have all the buffers mapped. This avoids the need to do 4635 * journal_start/journal_stop which can block and take a long time 4636 */ 4637 if (page_has_buffers(page)) { 4638 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL, 4639 ext4_bh_unmapped)) { 4640 /* Wait so that we don't change page under IO */ 4641 wait_on_page_writeback(page); 4642 ret = VM_FAULT_LOCKED; 4643 goto out; 4644 } 4645 } 4646 unlock_page(page); 4647 /* OK, we need to fill the hole... */ 4648 if (ext4_should_dioread_nolock(inode)) 4649 get_block = ext4_get_block_write; 4650 else 4651 get_block = ext4_get_block; 4652 retry_alloc: 4653 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 4654 if (IS_ERR(handle)) { 4655 ret = VM_FAULT_SIGBUS; 4656 goto out; 4657 } 4658 ret = __block_page_mkwrite(vma, vmf, get_block); 4659 if (!ret && ext4_should_journal_data(inode)) { 4660 if (walk_page_buffers(handle, page_buffers(page), 0, 4661 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) { 4662 unlock_page(page); 4663 ret = VM_FAULT_SIGBUS; 4664 ext4_journal_stop(handle); 4665 goto out; 4666 } 4667 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 4668 } 4669 ext4_journal_stop(handle); 4670 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 4671 goto retry_alloc; 4672 out_ret: 4673 ret = block_page_mkwrite_return(ret); 4674 out: 4675 return ret; 4676 } 4677