xref: /openbmc/linux/fs/ext4/inode.c (revision 6391503b)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *	(jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20 
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40 
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45 
46 #include <trace/events/ext4.h>
47 
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49 
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 			      struct ext4_inode_info *ei)
52 {
53 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 	__u16 csum_lo;
55 	__u16 csum_hi = 0;
56 	__u32 csum;
57 
58 	csum_lo = le16_to_cpu(raw->i_checksum_lo);
59 	raw->i_checksum_lo = 0;
60 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62 		csum_hi = le16_to_cpu(raw->i_checksum_hi);
63 		raw->i_checksum_hi = 0;
64 	}
65 
66 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67 			   EXT4_INODE_SIZE(inode->i_sb));
68 
69 	raw->i_checksum_lo = cpu_to_le16(csum_lo);
70 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72 		raw->i_checksum_hi = cpu_to_le16(csum_hi);
73 
74 	return csum;
75 }
76 
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78 				  struct ext4_inode_info *ei)
79 {
80 	__u32 provided, calculated;
81 
82 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83 	    cpu_to_le32(EXT4_OS_LINUX) ||
84 	    !ext4_has_metadata_csum(inode->i_sb))
85 		return 1;
86 
87 	provided = le16_to_cpu(raw->i_checksum_lo);
88 	calculated = ext4_inode_csum(inode, raw, ei);
89 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
90 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
91 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
92 	else
93 		calculated &= 0xFFFF;
94 
95 	return provided == calculated;
96 }
97 
98 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
99 				struct ext4_inode_info *ei)
100 {
101 	__u32 csum;
102 
103 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
104 	    cpu_to_le32(EXT4_OS_LINUX) ||
105 	    !ext4_has_metadata_csum(inode->i_sb))
106 		return;
107 
108 	csum = ext4_inode_csum(inode, raw, ei);
109 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
110 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
111 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
112 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
113 }
114 
115 static inline int ext4_begin_ordered_truncate(struct inode *inode,
116 					      loff_t new_size)
117 {
118 	trace_ext4_begin_ordered_truncate(inode, new_size);
119 	/*
120 	 * If jinode is zero, then we never opened the file for
121 	 * writing, so there's no need to call
122 	 * jbd2_journal_begin_ordered_truncate() since there's no
123 	 * outstanding writes we need to flush.
124 	 */
125 	if (!EXT4_I(inode)->jinode)
126 		return 0;
127 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
128 						   EXT4_I(inode)->jinode,
129 						   new_size);
130 }
131 
132 static void ext4_invalidatepage(struct page *page, unsigned int offset,
133 				unsigned int length);
134 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
135 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
136 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
137 				  int pextents);
138 
139 /*
140  * Test whether an inode is a fast symlink.
141  */
142 int ext4_inode_is_fast_symlink(struct inode *inode)
143 {
144         int ea_blocks = EXT4_I(inode)->i_file_acl ?
145 		EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
146 
147 	if (ext4_has_inline_data(inode))
148 		return 0;
149 
150 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151 }
152 
153 /*
154  * Restart the transaction associated with *handle.  This does a commit,
155  * so before we call here everything must be consistently dirtied against
156  * this transaction.
157  */
158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
159 				 int nblocks)
160 {
161 	int ret;
162 
163 	/*
164 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
165 	 * moment, get_block can be called only for blocks inside i_size since
166 	 * page cache has been already dropped and writes are blocked by
167 	 * i_mutex. So we can safely drop the i_data_sem here.
168 	 */
169 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
170 	jbd_debug(2, "restarting handle %p\n", handle);
171 	up_write(&EXT4_I(inode)->i_data_sem);
172 	ret = ext4_journal_restart(handle, nblocks);
173 	down_write(&EXT4_I(inode)->i_data_sem);
174 	ext4_discard_preallocations(inode);
175 
176 	return ret;
177 }
178 
179 /*
180  * Called at the last iput() if i_nlink is zero.
181  */
182 void ext4_evict_inode(struct inode *inode)
183 {
184 	handle_t *handle;
185 	int err;
186 
187 	trace_ext4_evict_inode(inode);
188 
189 	if (inode->i_nlink) {
190 		/*
191 		 * When journalling data dirty buffers are tracked only in the
192 		 * journal. So although mm thinks everything is clean and
193 		 * ready for reaping the inode might still have some pages to
194 		 * write in the running transaction or waiting to be
195 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
196 		 * (via truncate_inode_pages()) to discard these buffers can
197 		 * cause data loss. Also even if we did not discard these
198 		 * buffers, we would have no way to find them after the inode
199 		 * is reaped and thus user could see stale data if he tries to
200 		 * read them before the transaction is checkpointed. So be
201 		 * careful and force everything to disk here... We use
202 		 * ei->i_datasync_tid to store the newest transaction
203 		 * containing inode's data.
204 		 *
205 		 * Note that directories do not have this problem because they
206 		 * don't use page cache.
207 		 */
208 		if (ext4_should_journal_data(inode) &&
209 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210 		    inode->i_ino != EXT4_JOURNAL_INO) {
211 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213 
214 			jbd2_complete_transaction(journal, commit_tid);
215 			filemap_write_and_wait(&inode->i_data);
216 		}
217 		truncate_inode_pages_final(&inode->i_data);
218 
219 		WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
220 		goto no_delete;
221 	}
222 
223 	if (is_bad_inode(inode))
224 		goto no_delete;
225 	dquot_initialize(inode);
226 
227 	if (ext4_should_order_data(inode))
228 		ext4_begin_ordered_truncate(inode, 0);
229 	truncate_inode_pages_final(&inode->i_data);
230 
231 	WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
232 
233 	/*
234 	 * Protect us against freezing - iput() caller didn't have to have any
235 	 * protection against it
236 	 */
237 	sb_start_intwrite(inode->i_sb);
238 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
239 				    ext4_blocks_for_truncate(inode)+3);
240 	if (IS_ERR(handle)) {
241 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
242 		/*
243 		 * If we're going to skip the normal cleanup, we still need to
244 		 * make sure that the in-core orphan linked list is properly
245 		 * cleaned up.
246 		 */
247 		ext4_orphan_del(NULL, inode);
248 		sb_end_intwrite(inode->i_sb);
249 		goto no_delete;
250 	}
251 
252 	if (IS_SYNC(inode))
253 		ext4_handle_sync(handle);
254 	inode->i_size = 0;
255 	err = ext4_mark_inode_dirty(handle, inode);
256 	if (err) {
257 		ext4_warning(inode->i_sb,
258 			     "couldn't mark inode dirty (err %d)", err);
259 		goto stop_handle;
260 	}
261 	if (inode->i_blocks)
262 		ext4_truncate(inode);
263 
264 	/*
265 	 * ext4_ext_truncate() doesn't reserve any slop when it
266 	 * restarts journal transactions; therefore there may not be
267 	 * enough credits left in the handle to remove the inode from
268 	 * the orphan list and set the dtime field.
269 	 */
270 	if (!ext4_handle_has_enough_credits(handle, 3)) {
271 		err = ext4_journal_extend(handle, 3);
272 		if (err > 0)
273 			err = ext4_journal_restart(handle, 3);
274 		if (err != 0) {
275 			ext4_warning(inode->i_sb,
276 				     "couldn't extend journal (err %d)", err);
277 		stop_handle:
278 			ext4_journal_stop(handle);
279 			ext4_orphan_del(NULL, inode);
280 			sb_end_intwrite(inode->i_sb);
281 			goto no_delete;
282 		}
283 	}
284 
285 	/*
286 	 * Kill off the orphan record which ext4_truncate created.
287 	 * AKPM: I think this can be inside the above `if'.
288 	 * Note that ext4_orphan_del() has to be able to cope with the
289 	 * deletion of a non-existent orphan - this is because we don't
290 	 * know if ext4_truncate() actually created an orphan record.
291 	 * (Well, we could do this if we need to, but heck - it works)
292 	 */
293 	ext4_orphan_del(handle, inode);
294 	EXT4_I(inode)->i_dtime	= get_seconds();
295 
296 	/*
297 	 * One subtle ordering requirement: if anything has gone wrong
298 	 * (transaction abort, IO errors, whatever), then we can still
299 	 * do these next steps (the fs will already have been marked as
300 	 * having errors), but we can't free the inode if the mark_dirty
301 	 * fails.
302 	 */
303 	if (ext4_mark_inode_dirty(handle, inode))
304 		/* If that failed, just do the required in-core inode clear. */
305 		ext4_clear_inode(inode);
306 	else
307 		ext4_free_inode(handle, inode);
308 	ext4_journal_stop(handle);
309 	sb_end_intwrite(inode->i_sb);
310 	return;
311 no_delete:
312 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
313 }
314 
315 #ifdef CONFIG_QUOTA
316 qsize_t *ext4_get_reserved_space(struct inode *inode)
317 {
318 	return &EXT4_I(inode)->i_reserved_quota;
319 }
320 #endif
321 
322 /*
323  * Called with i_data_sem down, which is important since we can call
324  * ext4_discard_preallocations() from here.
325  */
326 void ext4_da_update_reserve_space(struct inode *inode,
327 					int used, int quota_claim)
328 {
329 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
330 	struct ext4_inode_info *ei = EXT4_I(inode);
331 
332 	spin_lock(&ei->i_block_reservation_lock);
333 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
334 	if (unlikely(used > ei->i_reserved_data_blocks)) {
335 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
336 			 "with only %d reserved data blocks",
337 			 __func__, inode->i_ino, used,
338 			 ei->i_reserved_data_blocks);
339 		WARN_ON(1);
340 		used = ei->i_reserved_data_blocks;
341 	}
342 
343 	/* Update per-inode reservations */
344 	ei->i_reserved_data_blocks -= used;
345 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
346 
347 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
348 
349 	/* Update quota subsystem for data blocks */
350 	if (quota_claim)
351 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
352 	else {
353 		/*
354 		 * We did fallocate with an offset that is already delayed
355 		 * allocated. So on delayed allocated writeback we should
356 		 * not re-claim the quota for fallocated blocks.
357 		 */
358 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
359 	}
360 
361 	/*
362 	 * If we have done all the pending block allocations and if
363 	 * there aren't any writers on the inode, we can discard the
364 	 * inode's preallocations.
365 	 */
366 	if ((ei->i_reserved_data_blocks == 0) &&
367 	    (atomic_read(&inode->i_writecount) == 0))
368 		ext4_discard_preallocations(inode);
369 }
370 
371 static int __check_block_validity(struct inode *inode, const char *func,
372 				unsigned int line,
373 				struct ext4_map_blocks *map)
374 {
375 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
376 				   map->m_len)) {
377 		ext4_error_inode(inode, func, line, map->m_pblk,
378 				 "lblock %lu mapped to illegal pblock "
379 				 "(length %d)", (unsigned long) map->m_lblk,
380 				 map->m_len);
381 		return -EFSCORRUPTED;
382 	}
383 	return 0;
384 }
385 
386 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
387 		       ext4_lblk_t len)
388 {
389 	int ret;
390 
391 	if (ext4_encrypted_inode(inode))
392 		return ext4_encrypted_zeroout(inode, lblk, pblk, len);
393 
394 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
395 	if (ret > 0)
396 		ret = 0;
397 
398 	return ret;
399 }
400 
401 #define check_block_validity(inode, map)	\
402 	__check_block_validity((inode), __func__, __LINE__, (map))
403 
404 #ifdef ES_AGGRESSIVE_TEST
405 static void ext4_map_blocks_es_recheck(handle_t *handle,
406 				       struct inode *inode,
407 				       struct ext4_map_blocks *es_map,
408 				       struct ext4_map_blocks *map,
409 				       int flags)
410 {
411 	int retval;
412 
413 	map->m_flags = 0;
414 	/*
415 	 * There is a race window that the result is not the same.
416 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
417 	 * is that we lookup a block mapping in extent status tree with
418 	 * out taking i_data_sem.  So at the time the unwritten extent
419 	 * could be converted.
420 	 */
421 	down_read(&EXT4_I(inode)->i_data_sem);
422 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
423 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
424 					     EXT4_GET_BLOCKS_KEEP_SIZE);
425 	} else {
426 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
427 					     EXT4_GET_BLOCKS_KEEP_SIZE);
428 	}
429 	up_read((&EXT4_I(inode)->i_data_sem));
430 
431 	/*
432 	 * We don't check m_len because extent will be collpased in status
433 	 * tree.  So the m_len might not equal.
434 	 */
435 	if (es_map->m_lblk != map->m_lblk ||
436 	    es_map->m_flags != map->m_flags ||
437 	    es_map->m_pblk != map->m_pblk) {
438 		printk("ES cache assertion failed for inode: %lu "
439 		       "es_cached ex [%d/%d/%llu/%x] != "
440 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
441 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
442 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
443 		       map->m_len, map->m_pblk, map->m_flags,
444 		       retval, flags);
445 	}
446 }
447 #endif /* ES_AGGRESSIVE_TEST */
448 
449 /*
450  * The ext4_map_blocks() function tries to look up the requested blocks,
451  * and returns if the blocks are already mapped.
452  *
453  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
454  * and store the allocated blocks in the result buffer head and mark it
455  * mapped.
456  *
457  * If file type is extents based, it will call ext4_ext_map_blocks(),
458  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
459  * based files
460  *
461  * On success, it returns the number of blocks being mapped or allocated.
462  * if create==0 and the blocks are pre-allocated and unwritten block,
463  * the result buffer head is unmapped. If the create ==1, it will make sure
464  * the buffer head is mapped.
465  *
466  * It returns 0 if plain look up failed (blocks have not been allocated), in
467  * that case, buffer head is unmapped
468  *
469  * It returns the error in case of allocation failure.
470  */
471 int ext4_map_blocks(handle_t *handle, struct inode *inode,
472 		    struct ext4_map_blocks *map, int flags)
473 {
474 	struct extent_status es;
475 	int retval;
476 	int ret = 0;
477 #ifdef ES_AGGRESSIVE_TEST
478 	struct ext4_map_blocks orig_map;
479 
480 	memcpy(&orig_map, map, sizeof(*map));
481 #endif
482 
483 	map->m_flags = 0;
484 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
485 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
486 		  (unsigned long) map->m_lblk);
487 
488 	/*
489 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
490 	 */
491 	if (unlikely(map->m_len > INT_MAX))
492 		map->m_len = INT_MAX;
493 
494 	/* We can handle the block number less than EXT_MAX_BLOCKS */
495 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
496 		return -EFSCORRUPTED;
497 
498 	/* Lookup extent status tree firstly */
499 	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
500 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
501 			map->m_pblk = ext4_es_pblock(&es) +
502 					map->m_lblk - es.es_lblk;
503 			map->m_flags |= ext4_es_is_written(&es) ?
504 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
505 			retval = es.es_len - (map->m_lblk - es.es_lblk);
506 			if (retval > map->m_len)
507 				retval = map->m_len;
508 			map->m_len = retval;
509 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
510 			retval = 0;
511 		} else {
512 			BUG_ON(1);
513 		}
514 #ifdef ES_AGGRESSIVE_TEST
515 		ext4_map_blocks_es_recheck(handle, inode, map,
516 					   &orig_map, flags);
517 #endif
518 		goto found;
519 	}
520 
521 	/*
522 	 * Try to see if we can get the block without requesting a new
523 	 * file system block.
524 	 */
525 	down_read(&EXT4_I(inode)->i_data_sem);
526 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
527 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
528 					     EXT4_GET_BLOCKS_KEEP_SIZE);
529 	} else {
530 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
531 					     EXT4_GET_BLOCKS_KEEP_SIZE);
532 	}
533 	if (retval > 0) {
534 		unsigned int status;
535 
536 		if (unlikely(retval != map->m_len)) {
537 			ext4_warning(inode->i_sb,
538 				     "ES len assertion failed for inode "
539 				     "%lu: retval %d != map->m_len %d",
540 				     inode->i_ino, retval, map->m_len);
541 			WARN_ON(1);
542 		}
543 
544 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
545 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
546 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
547 		    !(status & EXTENT_STATUS_WRITTEN) &&
548 		    ext4_find_delalloc_range(inode, map->m_lblk,
549 					     map->m_lblk + map->m_len - 1))
550 			status |= EXTENT_STATUS_DELAYED;
551 		ret = ext4_es_insert_extent(inode, map->m_lblk,
552 					    map->m_len, map->m_pblk, status);
553 		if (ret < 0)
554 			retval = ret;
555 	}
556 	up_read((&EXT4_I(inode)->i_data_sem));
557 
558 found:
559 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
560 		ret = check_block_validity(inode, map);
561 		if (ret != 0)
562 			return ret;
563 	}
564 
565 	/* If it is only a block(s) look up */
566 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
567 		return retval;
568 
569 	/*
570 	 * Returns if the blocks have already allocated
571 	 *
572 	 * Note that if blocks have been preallocated
573 	 * ext4_ext_get_block() returns the create = 0
574 	 * with buffer head unmapped.
575 	 */
576 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
577 		/*
578 		 * If we need to convert extent to unwritten
579 		 * we continue and do the actual work in
580 		 * ext4_ext_map_blocks()
581 		 */
582 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
583 			return retval;
584 
585 	/*
586 	 * Here we clear m_flags because after allocating an new extent,
587 	 * it will be set again.
588 	 */
589 	map->m_flags &= ~EXT4_MAP_FLAGS;
590 
591 	/*
592 	 * New blocks allocate and/or writing to unwritten extent
593 	 * will possibly result in updating i_data, so we take
594 	 * the write lock of i_data_sem, and call get_block()
595 	 * with create == 1 flag.
596 	 */
597 	down_write(&EXT4_I(inode)->i_data_sem);
598 
599 	/*
600 	 * We need to check for EXT4 here because migrate
601 	 * could have changed the inode type in between
602 	 */
603 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
604 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
605 	} else {
606 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
607 
608 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
609 			/*
610 			 * We allocated new blocks which will result in
611 			 * i_data's format changing.  Force the migrate
612 			 * to fail by clearing migrate flags
613 			 */
614 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
615 		}
616 
617 		/*
618 		 * Update reserved blocks/metadata blocks after successful
619 		 * block allocation which had been deferred till now. We don't
620 		 * support fallocate for non extent files. So we can update
621 		 * reserve space here.
622 		 */
623 		if ((retval > 0) &&
624 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
625 			ext4_da_update_reserve_space(inode, retval, 1);
626 	}
627 
628 	if (retval > 0) {
629 		unsigned int status;
630 
631 		if (unlikely(retval != map->m_len)) {
632 			ext4_warning(inode->i_sb,
633 				     "ES len assertion failed for inode "
634 				     "%lu: retval %d != map->m_len %d",
635 				     inode->i_ino, retval, map->m_len);
636 			WARN_ON(1);
637 		}
638 
639 		/*
640 		 * We have to zeroout blocks before inserting them into extent
641 		 * status tree. Otherwise someone could look them up there and
642 		 * use them before they are really zeroed.
643 		 */
644 		if (flags & EXT4_GET_BLOCKS_ZERO &&
645 		    map->m_flags & EXT4_MAP_MAPPED &&
646 		    map->m_flags & EXT4_MAP_NEW) {
647 			ret = ext4_issue_zeroout(inode, map->m_lblk,
648 						 map->m_pblk, map->m_len);
649 			if (ret) {
650 				retval = ret;
651 				goto out_sem;
652 			}
653 		}
654 
655 		/*
656 		 * If the extent has been zeroed out, we don't need to update
657 		 * extent status tree.
658 		 */
659 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
660 		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
661 			if (ext4_es_is_written(&es))
662 				goto out_sem;
663 		}
664 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
665 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
666 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
667 		    !(status & EXTENT_STATUS_WRITTEN) &&
668 		    ext4_find_delalloc_range(inode, map->m_lblk,
669 					     map->m_lblk + map->m_len - 1))
670 			status |= EXTENT_STATUS_DELAYED;
671 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
672 					    map->m_pblk, status);
673 		if (ret < 0) {
674 			retval = ret;
675 			goto out_sem;
676 		}
677 	}
678 
679 out_sem:
680 	up_write((&EXT4_I(inode)->i_data_sem));
681 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
682 		ret = check_block_validity(inode, map);
683 		if (ret != 0)
684 			return ret;
685 	}
686 	return retval;
687 }
688 
689 /* Maximum number of blocks we map for direct IO at once. */
690 #define DIO_MAX_BLOCKS 4096
691 
692 static int _ext4_get_block(struct inode *inode, sector_t iblock,
693 			   struct buffer_head *bh, int flags)
694 {
695 	handle_t *handle = ext4_journal_current_handle();
696 	struct ext4_map_blocks map;
697 	int ret = 0, started = 0;
698 	int dio_credits;
699 
700 	if (ext4_has_inline_data(inode))
701 		return -ERANGE;
702 
703 	map.m_lblk = iblock;
704 	map.m_len = bh->b_size >> inode->i_blkbits;
705 
706 	if (flags && !handle) {
707 		/* Direct IO write... */
708 		if (map.m_len > DIO_MAX_BLOCKS)
709 			map.m_len = DIO_MAX_BLOCKS;
710 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
711 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
712 					    dio_credits);
713 		if (IS_ERR(handle)) {
714 			ret = PTR_ERR(handle);
715 			return ret;
716 		}
717 		started = 1;
718 	}
719 
720 	ret = ext4_map_blocks(handle, inode, &map, flags);
721 	if (ret > 0) {
722 		ext4_io_end_t *io_end = ext4_inode_aio(inode);
723 
724 		map_bh(bh, inode->i_sb, map.m_pblk);
725 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
726 		if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
727 			set_buffer_defer_completion(bh);
728 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
729 		ret = 0;
730 	}
731 	if (started)
732 		ext4_journal_stop(handle);
733 	return ret;
734 }
735 
736 int ext4_get_block(struct inode *inode, sector_t iblock,
737 		   struct buffer_head *bh, int create)
738 {
739 	return _ext4_get_block(inode, iblock, bh,
740 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
741 }
742 
743 /*
744  * `handle' can be NULL if create is zero
745  */
746 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
747 				ext4_lblk_t block, int map_flags)
748 {
749 	struct ext4_map_blocks map;
750 	struct buffer_head *bh;
751 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
752 	int err;
753 
754 	J_ASSERT(handle != NULL || create == 0);
755 
756 	map.m_lblk = block;
757 	map.m_len = 1;
758 	err = ext4_map_blocks(handle, inode, &map, map_flags);
759 
760 	if (err == 0)
761 		return create ? ERR_PTR(-ENOSPC) : NULL;
762 	if (err < 0)
763 		return ERR_PTR(err);
764 
765 	bh = sb_getblk(inode->i_sb, map.m_pblk);
766 	if (unlikely(!bh))
767 		return ERR_PTR(-ENOMEM);
768 	if (map.m_flags & EXT4_MAP_NEW) {
769 		J_ASSERT(create != 0);
770 		J_ASSERT(handle != NULL);
771 
772 		/*
773 		 * Now that we do not always journal data, we should
774 		 * keep in mind whether this should always journal the
775 		 * new buffer as metadata.  For now, regular file
776 		 * writes use ext4_get_block instead, so it's not a
777 		 * problem.
778 		 */
779 		lock_buffer(bh);
780 		BUFFER_TRACE(bh, "call get_create_access");
781 		err = ext4_journal_get_create_access(handle, bh);
782 		if (unlikely(err)) {
783 			unlock_buffer(bh);
784 			goto errout;
785 		}
786 		if (!buffer_uptodate(bh)) {
787 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
788 			set_buffer_uptodate(bh);
789 		}
790 		unlock_buffer(bh);
791 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
792 		err = ext4_handle_dirty_metadata(handle, inode, bh);
793 		if (unlikely(err))
794 			goto errout;
795 	} else
796 		BUFFER_TRACE(bh, "not a new buffer");
797 	return bh;
798 errout:
799 	brelse(bh);
800 	return ERR_PTR(err);
801 }
802 
803 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
804 			       ext4_lblk_t block, int map_flags)
805 {
806 	struct buffer_head *bh;
807 
808 	bh = ext4_getblk(handle, inode, block, map_flags);
809 	if (IS_ERR(bh))
810 		return bh;
811 	if (!bh || buffer_uptodate(bh))
812 		return bh;
813 	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
814 	wait_on_buffer(bh);
815 	if (buffer_uptodate(bh))
816 		return bh;
817 	put_bh(bh);
818 	return ERR_PTR(-EIO);
819 }
820 
821 int ext4_walk_page_buffers(handle_t *handle,
822 			   struct buffer_head *head,
823 			   unsigned from,
824 			   unsigned to,
825 			   int *partial,
826 			   int (*fn)(handle_t *handle,
827 				     struct buffer_head *bh))
828 {
829 	struct buffer_head *bh;
830 	unsigned block_start, block_end;
831 	unsigned blocksize = head->b_size;
832 	int err, ret = 0;
833 	struct buffer_head *next;
834 
835 	for (bh = head, block_start = 0;
836 	     ret == 0 && (bh != head || !block_start);
837 	     block_start = block_end, bh = next) {
838 		next = bh->b_this_page;
839 		block_end = block_start + blocksize;
840 		if (block_end <= from || block_start >= to) {
841 			if (partial && !buffer_uptodate(bh))
842 				*partial = 1;
843 			continue;
844 		}
845 		err = (*fn)(handle, bh);
846 		if (!ret)
847 			ret = err;
848 	}
849 	return ret;
850 }
851 
852 /*
853  * To preserve ordering, it is essential that the hole instantiation and
854  * the data write be encapsulated in a single transaction.  We cannot
855  * close off a transaction and start a new one between the ext4_get_block()
856  * and the commit_write().  So doing the jbd2_journal_start at the start of
857  * prepare_write() is the right place.
858  *
859  * Also, this function can nest inside ext4_writepage().  In that case, we
860  * *know* that ext4_writepage() has generated enough buffer credits to do the
861  * whole page.  So we won't block on the journal in that case, which is good,
862  * because the caller may be PF_MEMALLOC.
863  *
864  * By accident, ext4 can be reentered when a transaction is open via
865  * quota file writes.  If we were to commit the transaction while thus
866  * reentered, there can be a deadlock - we would be holding a quota
867  * lock, and the commit would never complete if another thread had a
868  * transaction open and was blocking on the quota lock - a ranking
869  * violation.
870  *
871  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
872  * will _not_ run commit under these circumstances because handle->h_ref
873  * is elevated.  We'll still have enough credits for the tiny quotafile
874  * write.
875  */
876 int do_journal_get_write_access(handle_t *handle,
877 				struct buffer_head *bh)
878 {
879 	int dirty = buffer_dirty(bh);
880 	int ret;
881 
882 	if (!buffer_mapped(bh) || buffer_freed(bh))
883 		return 0;
884 	/*
885 	 * __block_write_begin() could have dirtied some buffers. Clean
886 	 * the dirty bit as jbd2_journal_get_write_access() could complain
887 	 * otherwise about fs integrity issues. Setting of the dirty bit
888 	 * by __block_write_begin() isn't a real problem here as we clear
889 	 * the bit before releasing a page lock and thus writeback cannot
890 	 * ever write the buffer.
891 	 */
892 	if (dirty)
893 		clear_buffer_dirty(bh);
894 	BUFFER_TRACE(bh, "get write access");
895 	ret = ext4_journal_get_write_access(handle, bh);
896 	if (!ret && dirty)
897 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
898 	return ret;
899 }
900 
901 #ifdef CONFIG_EXT4_FS_ENCRYPTION
902 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
903 				  get_block_t *get_block)
904 {
905 	unsigned from = pos & (PAGE_CACHE_SIZE - 1);
906 	unsigned to = from + len;
907 	struct inode *inode = page->mapping->host;
908 	unsigned block_start, block_end;
909 	sector_t block;
910 	int err = 0;
911 	unsigned blocksize = inode->i_sb->s_blocksize;
912 	unsigned bbits;
913 	struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
914 	bool decrypt = false;
915 
916 	BUG_ON(!PageLocked(page));
917 	BUG_ON(from > PAGE_CACHE_SIZE);
918 	BUG_ON(to > PAGE_CACHE_SIZE);
919 	BUG_ON(from > to);
920 
921 	if (!page_has_buffers(page))
922 		create_empty_buffers(page, blocksize, 0);
923 	head = page_buffers(page);
924 	bbits = ilog2(blocksize);
925 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
926 
927 	for (bh = head, block_start = 0; bh != head || !block_start;
928 	    block++, block_start = block_end, bh = bh->b_this_page) {
929 		block_end = block_start + blocksize;
930 		if (block_end <= from || block_start >= to) {
931 			if (PageUptodate(page)) {
932 				if (!buffer_uptodate(bh))
933 					set_buffer_uptodate(bh);
934 			}
935 			continue;
936 		}
937 		if (buffer_new(bh))
938 			clear_buffer_new(bh);
939 		if (!buffer_mapped(bh)) {
940 			WARN_ON(bh->b_size != blocksize);
941 			err = get_block(inode, block, bh, 1);
942 			if (err)
943 				break;
944 			if (buffer_new(bh)) {
945 				unmap_underlying_metadata(bh->b_bdev,
946 							  bh->b_blocknr);
947 				if (PageUptodate(page)) {
948 					clear_buffer_new(bh);
949 					set_buffer_uptodate(bh);
950 					mark_buffer_dirty(bh);
951 					continue;
952 				}
953 				if (block_end > to || block_start < from)
954 					zero_user_segments(page, to, block_end,
955 							   block_start, from);
956 				continue;
957 			}
958 		}
959 		if (PageUptodate(page)) {
960 			if (!buffer_uptodate(bh))
961 				set_buffer_uptodate(bh);
962 			continue;
963 		}
964 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
965 		    !buffer_unwritten(bh) &&
966 		    (block_start < from || block_end > to)) {
967 			ll_rw_block(READ, 1, &bh);
968 			*wait_bh++ = bh;
969 			decrypt = ext4_encrypted_inode(inode) &&
970 				S_ISREG(inode->i_mode);
971 		}
972 	}
973 	/*
974 	 * If we issued read requests, let them complete.
975 	 */
976 	while (wait_bh > wait) {
977 		wait_on_buffer(*--wait_bh);
978 		if (!buffer_uptodate(*wait_bh))
979 			err = -EIO;
980 	}
981 	if (unlikely(err))
982 		page_zero_new_buffers(page, from, to);
983 	else if (decrypt)
984 		err = ext4_decrypt(page);
985 	return err;
986 }
987 #endif
988 
989 static int ext4_write_begin(struct file *file, struct address_space *mapping,
990 			    loff_t pos, unsigned len, unsigned flags,
991 			    struct page **pagep, void **fsdata)
992 {
993 	struct inode *inode = mapping->host;
994 	int ret, needed_blocks;
995 	handle_t *handle;
996 	int retries = 0;
997 	struct page *page;
998 	pgoff_t index;
999 	unsigned from, to;
1000 
1001 	trace_ext4_write_begin(inode, pos, len, flags);
1002 	/*
1003 	 * Reserve one block more for addition to orphan list in case
1004 	 * we allocate blocks but write fails for some reason
1005 	 */
1006 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1007 	index = pos >> PAGE_CACHE_SHIFT;
1008 	from = pos & (PAGE_CACHE_SIZE - 1);
1009 	to = from + len;
1010 
1011 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1012 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1013 						    flags, pagep);
1014 		if (ret < 0)
1015 			return ret;
1016 		if (ret == 1)
1017 			return 0;
1018 	}
1019 
1020 	/*
1021 	 * grab_cache_page_write_begin() can take a long time if the
1022 	 * system is thrashing due to memory pressure, or if the page
1023 	 * is being written back.  So grab it first before we start
1024 	 * the transaction handle.  This also allows us to allocate
1025 	 * the page (if needed) without using GFP_NOFS.
1026 	 */
1027 retry_grab:
1028 	page = grab_cache_page_write_begin(mapping, index, flags);
1029 	if (!page)
1030 		return -ENOMEM;
1031 	unlock_page(page);
1032 
1033 retry_journal:
1034 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1035 	if (IS_ERR(handle)) {
1036 		page_cache_release(page);
1037 		return PTR_ERR(handle);
1038 	}
1039 
1040 	lock_page(page);
1041 	if (page->mapping != mapping) {
1042 		/* The page got truncated from under us */
1043 		unlock_page(page);
1044 		page_cache_release(page);
1045 		ext4_journal_stop(handle);
1046 		goto retry_grab;
1047 	}
1048 	/* In case writeback began while the page was unlocked */
1049 	wait_for_stable_page(page);
1050 
1051 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1052 	if (ext4_should_dioread_nolock(inode))
1053 		ret = ext4_block_write_begin(page, pos, len,
1054 					     ext4_get_block_write);
1055 	else
1056 		ret = ext4_block_write_begin(page, pos, len,
1057 					     ext4_get_block);
1058 #else
1059 	if (ext4_should_dioread_nolock(inode))
1060 		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1061 	else
1062 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1063 #endif
1064 	if (!ret && ext4_should_journal_data(inode)) {
1065 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1066 					     from, to, NULL,
1067 					     do_journal_get_write_access);
1068 	}
1069 
1070 	if (ret) {
1071 		unlock_page(page);
1072 		/*
1073 		 * __block_write_begin may have instantiated a few blocks
1074 		 * outside i_size.  Trim these off again. Don't need
1075 		 * i_size_read because we hold i_mutex.
1076 		 *
1077 		 * Add inode to orphan list in case we crash before
1078 		 * truncate finishes
1079 		 */
1080 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1081 			ext4_orphan_add(handle, inode);
1082 
1083 		ext4_journal_stop(handle);
1084 		if (pos + len > inode->i_size) {
1085 			ext4_truncate_failed_write(inode);
1086 			/*
1087 			 * If truncate failed early the inode might
1088 			 * still be on the orphan list; we need to
1089 			 * make sure the inode is removed from the
1090 			 * orphan list in that case.
1091 			 */
1092 			if (inode->i_nlink)
1093 				ext4_orphan_del(NULL, inode);
1094 		}
1095 
1096 		if (ret == -ENOSPC &&
1097 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1098 			goto retry_journal;
1099 		page_cache_release(page);
1100 		return ret;
1101 	}
1102 	*pagep = page;
1103 	return ret;
1104 }
1105 
1106 /* For write_end() in data=journal mode */
1107 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1108 {
1109 	int ret;
1110 	if (!buffer_mapped(bh) || buffer_freed(bh))
1111 		return 0;
1112 	set_buffer_uptodate(bh);
1113 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1114 	clear_buffer_meta(bh);
1115 	clear_buffer_prio(bh);
1116 	return ret;
1117 }
1118 
1119 /*
1120  * We need to pick up the new inode size which generic_commit_write gave us
1121  * `file' can be NULL - eg, when called from page_symlink().
1122  *
1123  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1124  * buffers are managed internally.
1125  */
1126 static int ext4_write_end(struct file *file,
1127 			  struct address_space *mapping,
1128 			  loff_t pos, unsigned len, unsigned copied,
1129 			  struct page *page, void *fsdata)
1130 {
1131 	handle_t *handle = ext4_journal_current_handle();
1132 	struct inode *inode = mapping->host;
1133 	loff_t old_size = inode->i_size;
1134 	int ret = 0, ret2;
1135 	int i_size_changed = 0;
1136 
1137 	trace_ext4_write_end(inode, pos, len, copied);
1138 	if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1139 		ret = ext4_jbd2_file_inode(handle, inode);
1140 		if (ret) {
1141 			unlock_page(page);
1142 			page_cache_release(page);
1143 			goto errout;
1144 		}
1145 	}
1146 
1147 	if (ext4_has_inline_data(inode)) {
1148 		ret = ext4_write_inline_data_end(inode, pos, len,
1149 						 copied, page);
1150 		if (ret < 0)
1151 			goto errout;
1152 		copied = ret;
1153 	} else
1154 		copied = block_write_end(file, mapping, pos,
1155 					 len, copied, page, fsdata);
1156 	/*
1157 	 * it's important to update i_size while still holding page lock:
1158 	 * page writeout could otherwise come in and zero beyond i_size.
1159 	 */
1160 	i_size_changed = ext4_update_inode_size(inode, pos + copied);
1161 	unlock_page(page);
1162 	page_cache_release(page);
1163 
1164 	if (old_size < pos)
1165 		pagecache_isize_extended(inode, old_size, pos);
1166 	/*
1167 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1168 	 * makes the holding time of page lock longer. Second, it forces lock
1169 	 * ordering of page lock and transaction start for journaling
1170 	 * filesystems.
1171 	 */
1172 	if (i_size_changed)
1173 		ext4_mark_inode_dirty(handle, inode);
1174 
1175 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1176 		/* if we have allocated more blocks and copied
1177 		 * less. We will have blocks allocated outside
1178 		 * inode->i_size. So truncate them
1179 		 */
1180 		ext4_orphan_add(handle, inode);
1181 errout:
1182 	ret2 = ext4_journal_stop(handle);
1183 	if (!ret)
1184 		ret = ret2;
1185 
1186 	if (pos + len > inode->i_size) {
1187 		ext4_truncate_failed_write(inode);
1188 		/*
1189 		 * If truncate failed early the inode might still be
1190 		 * on the orphan list; we need to make sure the inode
1191 		 * is removed from the orphan list in that case.
1192 		 */
1193 		if (inode->i_nlink)
1194 			ext4_orphan_del(NULL, inode);
1195 	}
1196 
1197 	return ret ? ret : copied;
1198 }
1199 
1200 /*
1201  * This is a private version of page_zero_new_buffers() which doesn't
1202  * set the buffer to be dirty, since in data=journalled mode we need
1203  * to call ext4_handle_dirty_metadata() instead.
1204  */
1205 static void zero_new_buffers(struct page *page, unsigned from, unsigned to)
1206 {
1207 	unsigned int block_start = 0, block_end;
1208 	struct buffer_head *head, *bh;
1209 
1210 	bh = head = page_buffers(page);
1211 	do {
1212 		block_end = block_start + bh->b_size;
1213 		if (buffer_new(bh)) {
1214 			if (block_end > from && block_start < to) {
1215 				if (!PageUptodate(page)) {
1216 					unsigned start, size;
1217 
1218 					start = max(from, block_start);
1219 					size = min(to, block_end) - start;
1220 
1221 					zero_user(page, start, size);
1222 					set_buffer_uptodate(bh);
1223 				}
1224 				clear_buffer_new(bh);
1225 			}
1226 		}
1227 		block_start = block_end;
1228 		bh = bh->b_this_page;
1229 	} while (bh != head);
1230 }
1231 
1232 static int ext4_journalled_write_end(struct file *file,
1233 				     struct address_space *mapping,
1234 				     loff_t pos, unsigned len, unsigned copied,
1235 				     struct page *page, void *fsdata)
1236 {
1237 	handle_t *handle = ext4_journal_current_handle();
1238 	struct inode *inode = mapping->host;
1239 	loff_t old_size = inode->i_size;
1240 	int ret = 0, ret2;
1241 	int partial = 0;
1242 	unsigned from, to;
1243 	int size_changed = 0;
1244 
1245 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1246 	from = pos & (PAGE_CACHE_SIZE - 1);
1247 	to = from + len;
1248 
1249 	BUG_ON(!ext4_handle_valid(handle));
1250 
1251 	if (ext4_has_inline_data(inode))
1252 		copied = ext4_write_inline_data_end(inode, pos, len,
1253 						    copied, page);
1254 	else {
1255 		if (copied < len) {
1256 			if (!PageUptodate(page))
1257 				copied = 0;
1258 			zero_new_buffers(page, from+copied, to);
1259 		}
1260 
1261 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1262 					     to, &partial, write_end_fn);
1263 		if (!partial)
1264 			SetPageUptodate(page);
1265 	}
1266 	size_changed = ext4_update_inode_size(inode, pos + copied);
1267 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1268 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1269 	unlock_page(page);
1270 	page_cache_release(page);
1271 
1272 	if (old_size < pos)
1273 		pagecache_isize_extended(inode, old_size, pos);
1274 
1275 	if (size_changed) {
1276 		ret2 = ext4_mark_inode_dirty(handle, inode);
1277 		if (!ret)
1278 			ret = ret2;
1279 	}
1280 
1281 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1282 		/* if we have allocated more blocks and copied
1283 		 * less. We will have blocks allocated outside
1284 		 * inode->i_size. So truncate them
1285 		 */
1286 		ext4_orphan_add(handle, inode);
1287 
1288 	ret2 = ext4_journal_stop(handle);
1289 	if (!ret)
1290 		ret = ret2;
1291 	if (pos + len > inode->i_size) {
1292 		ext4_truncate_failed_write(inode);
1293 		/*
1294 		 * If truncate failed early the inode might still be
1295 		 * on the orphan list; we need to make sure the inode
1296 		 * is removed from the orphan list in that case.
1297 		 */
1298 		if (inode->i_nlink)
1299 			ext4_orphan_del(NULL, inode);
1300 	}
1301 
1302 	return ret ? ret : copied;
1303 }
1304 
1305 /*
1306  * Reserve space for a single cluster
1307  */
1308 static int ext4_da_reserve_space(struct inode *inode)
1309 {
1310 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1311 	struct ext4_inode_info *ei = EXT4_I(inode);
1312 	int ret;
1313 
1314 	/*
1315 	 * We will charge metadata quota at writeout time; this saves
1316 	 * us from metadata over-estimation, though we may go over by
1317 	 * a small amount in the end.  Here we just reserve for data.
1318 	 */
1319 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1320 	if (ret)
1321 		return ret;
1322 
1323 	spin_lock(&ei->i_block_reservation_lock);
1324 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1325 		spin_unlock(&ei->i_block_reservation_lock);
1326 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1327 		return -ENOSPC;
1328 	}
1329 	ei->i_reserved_data_blocks++;
1330 	trace_ext4_da_reserve_space(inode);
1331 	spin_unlock(&ei->i_block_reservation_lock);
1332 
1333 	return 0;       /* success */
1334 }
1335 
1336 static void ext4_da_release_space(struct inode *inode, int to_free)
1337 {
1338 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1339 	struct ext4_inode_info *ei = EXT4_I(inode);
1340 
1341 	if (!to_free)
1342 		return;		/* Nothing to release, exit */
1343 
1344 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1345 
1346 	trace_ext4_da_release_space(inode, to_free);
1347 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1348 		/*
1349 		 * if there aren't enough reserved blocks, then the
1350 		 * counter is messed up somewhere.  Since this
1351 		 * function is called from invalidate page, it's
1352 		 * harmless to return without any action.
1353 		 */
1354 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1355 			 "ino %lu, to_free %d with only %d reserved "
1356 			 "data blocks", inode->i_ino, to_free,
1357 			 ei->i_reserved_data_blocks);
1358 		WARN_ON(1);
1359 		to_free = ei->i_reserved_data_blocks;
1360 	}
1361 	ei->i_reserved_data_blocks -= to_free;
1362 
1363 	/* update fs dirty data blocks counter */
1364 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1365 
1366 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1367 
1368 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1369 }
1370 
1371 static void ext4_da_page_release_reservation(struct page *page,
1372 					     unsigned int offset,
1373 					     unsigned int length)
1374 {
1375 	int to_release = 0, contiguous_blks = 0;
1376 	struct buffer_head *head, *bh;
1377 	unsigned int curr_off = 0;
1378 	struct inode *inode = page->mapping->host;
1379 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1380 	unsigned int stop = offset + length;
1381 	int num_clusters;
1382 	ext4_fsblk_t lblk;
1383 
1384 	BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1385 
1386 	head = page_buffers(page);
1387 	bh = head;
1388 	do {
1389 		unsigned int next_off = curr_off + bh->b_size;
1390 
1391 		if (next_off > stop)
1392 			break;
1393 
1394 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1395 			to_release++;
1396 			contiguous_blks++;
1397 			clear_buffer_delay(bh);
1398 		} else if (contiguous_blks) {
1399 			lblk = page->index <<
1400 			       (PAGE_CACHE_SHIFT - inode->i_blkbits);
1401 			lblk += (curr_off >> inode->i_blkbits) -
1402 				contiguous_blks;
1403 			ext4_es_remove_extent(inode, lblk, contiguous_blks);
1404 			contiguous_blks = 0;
1405 		}
1406 		curr_off = next_off;
1407 	} while ((bh = bh->b_this_page) != head);
1408 
1409 	if (contiguous_blks) {
1410 		lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1411 		lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1412 		ext4_es_remove_extent(inode, lblk, contiguous_blks);
1413 	}
1414 
1415 	/* If we have released all the blocks belonging to a cluster, then we
1416 	 * need to release the reserved space for that cluster. */
1417 	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1418 	while (num_clusters > 0) {
1419 		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1420 			((num_clusters - 1) << sbi->s_cluster_bits);
1421 		if (sbi->s_cluster_ratio == 1 ||
1422 		    !ext4_find_delalloc_cluster(inode, lblk))
1423 			ext4_da_release_space(inode, 1);
1424 
1425 		num_clusters--;
1426 	}
1427 }
1428 
1429 /*
1430  * Delayed allocation stuff
1431  */
1432 
1433 struct mpage_da_data {
1434 	struct inode *inode;
1435 	struct writeback_control *wbc;
1436 
1437 	pgoff_t first_page;	/* The first page to write */
1438 	pgoff_t next_page;	/* Current page to examine */
1439 	pgoff_t last_page;	/* Last page to examine */
1440 	/*
1441 	 * Extent to map - this can be after first_page because that can be
1442 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1443 	 * is delalloc or unwritten.
1444 	 */
1445 	struct ext4_map_blocks map;
1446 	struct ext4_io_submit io_submit;	/* IO submission data */
1447 };
1448 
1449 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1450 				       bool invalidate)
1451 {
1452 	int nr_pages, i;
1453 	pgoff_t index, end;
1454 	struct pagevec pvec;
1455 	struct inode *inode = mpd->inode;
1456 	struct address_space *mapping = inode->i_mapping;
1457 
1458 	/* This is necessary when next_page == 0. */
1459 	if (mpd->first_page >= mpd->next_page)
1460 		return;
1461 
1462 	index = mpd->first_page;
1463 	end   = mpd->next_page - 1;
1464 	if (invalidate) {
1465 		ext4_lblk_t start, last;
1466 		start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1467 		last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1468 		ext4_es_remove_extent(inode, start, last - start + 1);
1469 	}
1470 
1471 	pagevec_init(&pvec, 0);
1472 	while (index <= end) {
1473 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1474 		if (nr_pages == 0)
1475 			break;
1476 		for (i = 0; i < nr_pages; i++) {
1477 			struct page *page = pvec.pages[i];
1478 			if (page->index > end)
1479 				break;
1480 			BUG_ON(!PageLocked(page));
1481 			BUG_ON(PageWriteback(page));
1482 			if (invalidate) {
1483 				block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1484 				ClearPageUptodate(page);
1485 			}
1486 			unlock_page(page);
1487 		}
1488 		index = pvec.pages[nr_pages - 1]->index + 1;
1489 		pagevec_release(&pvec);
1490 	}
1491 }
1492 
1493 static void ext4_print_free_blocks(struct inode *inode)
1494 {
1495 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1496 	struct super_block *sb = inode->i_sb;
1497 	struct ext4_inode_info *ei = EXT4_I(inode);
1498 
1499 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1500 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1501 			ext4_count_free_clusters(sb)));
1502 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1503 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1504 	       (long long) EXT4_C2B(EXT4_SB(sb),
1505 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1506 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1507 	       (long long) EXT4_C2B(EXT4_SB(sb),
1508 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1509 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1510 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1511 		 ei->i_reserved_data_blocks);
1512 	return;
1513 }
1514 
1515 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1516 {
1517 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1518 }
1519 
1520 /*
1521  * This function is grabs code from the very beginning of
1522  * ext4_map_blocks, but assumes that the caller is from delayed write
1523  * time. This function looks up the requested blocks and sets the
1524  * buffer delay bit under the protection of i_data_sem.
1525  */
1526 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1527 			      struct ext4_map_blocks *map,
1528 			      struct buffer_head *bh)
1529 {
1530 	struct extent_status es;
1531 	int retval;
1532 	sector_t invalid_block = ~((sector_t) 0xffff);
1533 #ifdef ES_AGGRESSIVE_TEST
1534 	struct ext4_map_blocks orig_map;
1535 
1536 	memcpy(&orig_map, map, sizeof(*map));
1537 #endif
1538 
1539 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1540 		invalid_block = ~0;
1541 
1542 	map->m_flags = 0;
1543 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1544 		  "logical block %lu\n", inode->i_ino, map->m_len,
1545 		  (unsigned long) map->m_lblk);
1546 
1547 	/* Lookup extent status tree firstly */
1548 	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1549 		if (ext4_es_is_hole(&es)) {
1550 			retval = 0;
1551 			down_read(&EXT4_I(inode)->i_data_sem);
1552 			goto add_delayed;
1553 		}
1554 
1555 		/*
1556 		 * Delayed extent could be allocated by fallocate.
1557 		 * So we need to check it.
1558 		 */
1559 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1560 			map_bh(bh, inode->i_sb, invalid_block);
1561 			set_buffer_new(bh);
1562 			set_buffer_delay(bh);
1563 			return 0;
1564 		}
1565 
1566 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1567 		retval = es.es_len - (iblock - es.es_lblk);
1568 		if (retval > map->m_len)
1569 			retval = map->m_len;
1570 		map->m_len = retval;
1571 		if (ext4_es_is_written(&es))
1572 			map->m_flags |= EXT4_MAP_MAPPED;
1573 		else if (ext4_es_is_unwritten(&es))
1574 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1575 		else
1576 			BUG_ON(1);
1577 
1578 #ifdef ES_AGGRESSIVE_TEST
1579 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1580 #endif
1581 		return retval;
1582 	}
1583 
1584 	/*
1585 	 * Try to see if we can get the block without requesting a new
1586 	 * file system block.
1587 	 */
1588 	down_read(&EXT4_I(inode)->i_data_sem);
1589 	if (ext4_has_inline_data(inode))
1590 		retval = 0;
1591 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1592 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1593 	else
1594 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1595 
1596 add_delayed:
1597 	if (retval == 0) {
1598 		int ret;
1599 		/*
1600 		 * XXX: __block_prepare_write() unmaps passed block,
1601 		 * is it OK?
1602 		 */
1603 		/*
1604 		 * If the block was allocated from previously allocated cluster,
1605 		 * then we don't need to reserve it again. However we still need
1606 		 * to reserve metadata for every block we're going to write.
1607 		 */
1608 		if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1609 		    !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1610 			ret = ext4_da_reserve_space(inode);
1611 			if (ret) {
1612 				/* not enough space to reserve */
1613 				retval = ret;
1614 				goto out_unlock;
1615 			}
1616 		}
1617 
1618 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1619 					    ~0, EXTENT_STATUS_DELAYED);
1620 		if (ret) {
1621 			retval = ret;
1622 			goto out_unlock;
1623 		}
1624 
1625 		map_bh(bh, inode->i_sb, invalid_block);
1626 		set_buffer_new(bh);
1627 		set_buffer_delay(bh);
1628 	} else if (retval > 0) {
1629 		int ret;
1630 		unsigned int status;
1631 
1632 		if (unlikely(retval != map->m_len)) {
1633 			ext4_warning(inode->i_sb,
1634 				     "ES len assertion failed for inode "
1635 				     "%lu: retval %d != map->m_len %d",
1636 				     inode->i_ino, retval, map->m_len);
1637 			WARN_ON(1);
1638 		}
1639 
1640 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1641 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1642 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1643 					    map->m_pblk, status);
1644 		if (ret != 0)
1645 			retval = ret;
1646 	}
1647 
1648 out_unlock:
1649 	up_read((&EXT4_I(inode)->i_data_sem));
1650 
1651 	return retval;
1652 }
1653 
1654 /*
1655  * This is a special get_block_t callback which is used by
1656  * ext4_da_write_begin().  It will either return mapped block or
1657  * reserve space for a single block.
1658  *
1659  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1660  * We also have b_blocknr = -1 and b_bdev initialized properly
1661  *
1662  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1663  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1664  * initialized properly.
1665  */
1666 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1667 			   struct buffer_head *bh, int create)
1668 {
1669 	struct ext4_map_blocks map;
1670 	int ret = 0;
1671 
1672 	BUG_ON(create == 0);
1673 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1674 
1675 	map.m_lblk = iblock;
1676 	map.m_len = 1;
1677 
1678 	/*
1679 	 * first, we need to know whether the block is allocated already
1680 	 * preallocated blocks are unmapped but should treated
1681 	 * the same as allocated blocks.
1682 	 */
1683 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1684 	if (ret <= 0)
1685 		return ret;
1686 
1687 	map_bh(bh, inode->i_sb, map.m_pblk);
1688 	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1689 
1690 	if (buffer_unwritten(bh)) {
1691 		/* A delayed write to unwritten bh should be marked
1692 		 * new and mapped.  Mapped ensures that we don't do
1693 		 * get_block multiple times when we write to the same
1694 		 * offset and new ensures that we do proper zero out
1695 		 * for partial write.
1696 		 */
1697 		set_buffer_new(bh);
1698 		set_buffer_mapped(bh);
1699 	}
1700 	return 0;
1701 }
1702 
1703 static int bget_one(handle_t *handle, struct buffer_head *bh)
1704 {
1705 	get_bh(bh);
1706 	return 0;
1707 }
1708 
1709 static int bput_one(handle_t *handle, struct buffer_head *bh)
1710 {
1711 	put_bh(bh);
1712 	return 0;
1713 }
1714 
1715 static int __ext4_journalled_writepage(struct page *page,
1716 				       unsigned int len)
1717 {
1718 	struct address_space *mapping = page->mapping;
1719 	struct inode *inode = mapping->host;
1720 	struct buffer_head *page_bufs = NULL;
1721 	handle_t *handle = NULL;
1722 	int ret = 0, err = 0;
1723 	int inline_data = ext4_has_inline_data(inode);
1724 	struct buffer_head *inode_bh = NULL;
1725 
1726 	ClearPageChecked(page);
1727 
1728 	if (inline_data) {
1729 		BUG_ON(page->index != 0);
1730 		BUG_ON(len > ext4_get_max_inline_size(inode));
1731 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1732 		if (inode_bh == NULL)
1733 			goto out;
1734 	} else {
1735 		page_bufs = page_buffers(page);
1736 		if (!page_bufs) {
1737 			BUG();
1738 			goto out;
1739 		}
1740 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1741 				       NULL, bget_one);
1742 	}
1743 	/*
1744 	 * We need to release the page lock before we start the
1745 	 * journal, so grab a reference so the page won't disappear
1746 	 * out from under us.
1747 	 */
1748 	get_page(page);
1749 	unlock_page(page);
1750 
1751 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1752 				    ext4_writepage_trans_blocks(inode));
1753 	if (IS_ERR(handle)) {
1754 		ret = PTR_ERR(handle);
1755 		put_page(page);
1756 		goto out_no_pagelock;
1757 	}
1758 	BUG_ON(!ext4_handle_valid(handle));
1759 
1760 	lock_page(page);
1761 	put_page(page);
1762 	if (page->mapping != mapping) {
1763 		/* The page got truncated from under us */
1764 		ext4_journal_stop(handle);
1765 		ret = 0;
1766 		goto out;
1767 	}
1768 
1769 	if (inline_data) {
1770 		BUFFER_TRACE(inode_bh, "get write access");
1771 		ret = ext4_journal_get_write_access(handle, inode_bh);
1772 
1773 		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1774 
1775 	} else {
1776 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1777 					     do_journal_get_write_access);
1778 
1779 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1780 					     write_end_fn);
1781 	}
1782 	if (ret == 0)
1783 		ret = err;
1784 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1785 	err = ext4_journal_stop(handle);
1786 	if (!ret)
1787 		ret = err;
1788 
1789 	if (!ext4_has_inline_data(inode))
1790 		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1791 				       NULL, bput_one);
1792 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1793 out:
1794 	unlock_page(page);
1795 out_no_pagelock:
1796 	brelse(inode_bh);
1797 	return ret;
1798 }
1799 
1800 /*
1801  * Note that we don't need to start a transaction unless we're journaling data
1802  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1803  * need to file the inode to the transaction's list in ordered mode because if
1804  * we are writing back data added by write(), the inode is already there and if
1805  * we are writing back data modified via mmap(), no one guarantees in which
1806  * transaction the data will hit the disk. In case we are journaling data, we
1807  * cannot start transaction directly because transaction start ranks above page
1808  * lock so we have to do some magic.
1809  *
1810  * This function can get called via...
1811  *   - ext4_writepages after taking page lock (have journal handle)
1812  *   - journal_submit_inode_data_buffers (no journal handle)
1813  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1814  *   - grab_page_cache when doing write_begin (have journal handle)
1815  *
1816  * We don't do any block allocation in this function. If we have page with
1817  * multiple blocks we need to write those buffer_heads that are mapped. This
1818  * is important for mmaped based write. So if we do with blocksize 1K
1819  * truncate(f, 1024);
1820  * a = mmap(f, 0, 4096);
1821  * a[0] = 'a';
1822  * truncate(f, 4096);
1823  * we have in the page first buffer_head mapped via page_mkwrite call back
1824  * but other buffer_heads would be unmapped but dirty (dirty done via the
1825  * do_wp_page). So writepage should write the first block. If we modify
1826  * the mmap area beyond 1024 we will again get a page_fault and the
1827  * page_mkwrite callback will do the block allocation and mark the
1828  * buffer_heads mapped.
1829  *
1830  * We redirty the page if we have any buffer_heads that is either delay or
1831  * unwritten in the page.
1832  *
1833  * We can get recursively called as show below.
1834  *
1835  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1836  *		ext4_writepage()
1837  *
1838  * But since we don't do any block allocation we should not deadlock.
1839  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1840  */
1841 static int ext4_writepage(struct page *page,
1842 			  struct writeback_control *wbc)
1843 {
1844 	int ret = 0;
1845 	loff_t size;
1846 	unsigned int len;
1847 	struct buffer_head *page_bufs = NULL;
1848 	struct inode *inode = page->mapping->host;
1849 	struct ext4_io_submit io_submit;
1850 	bool keep_towrite = false;
1851 
1852 	trace_ext4_writepage(page);
1853 	size = i_size_read(inode);
1854 	if (page->index == size >> PAGE_CACHE_SHIFT)
1855 		len = size & ~PAGE_CACHE_MASK;
1856 	else
1857 		len = PAGE_CACHE_SIZE;
1858 
1859 	page_bufs = page_buffers(page);
1860 	/*
1861 	 * We cannot do block allocation or other extent handling in this
1862 	 * function. If there are buffers needing that, we have to redirty
1863 	 * the page. But we may reach here when we do a journal commit via
1864 	 * journal_submit_inode_data_buffers() and in that case we must write
1865 	 * allocated buffers to achieve data=ordered mode guarantees.
1866 	 *
1867 	 * Also, if there is only one buffer per page (the fs block
1868 	 * size == the page size), if one buffer needs block
1869 	 * allocation or needs to modify the extent tree to clear the
1870 	 * unwritten flag, we know that the page can't be written at
1871 	 * all, so we might as well refuse the write immediately.
1872 	 * Unfortunately if the block size != page size, we can't as
1873 	 * easily detect this case using ext4_walk_page_buffers(), but
1874 	 * for the extremely common case, this is an optimization that
1875 	 * skips a useless round trip through ext4_bio_write_page().
1876 	 */
1877 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1878 				   ext4_bh_delay_or_unwritten)) {
1879 		redirty_page_for_writepage(wbc, page);
1880 		if ((current->flags & PF_MEMALLOC) ||
1881 		    (inode->i_sb->s_blocksize == PAGE_CACHE_SIZE)) {
1882 			/*
1883 			 * For memory cleaning there's no point in writing only
1884 			 * some buffers. So just bail out. Warn if we came here
1885 			 * from direct reclaim.
1886 			 */
1887 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1888 							== PF_MEMALLOC);
1889 			unlock_page(page);
1890 			return 0;
1891 		}
1892 		keep_towrite = true;
1893 	}
1894 
1895 	if (PageChecked(page) && ext4_should_journal_data(inode))
1896 		/*
1897 		 * It's mmapped pagecache.  Add buffers and journal it.  There
1898 		 * doesn't seem much point in redirtying the page here.
1899 		 */
1900 		return __ext4_journalled_writepage(page, len);
1901 
1902 	ext4_io_submit_init(&io_submit, wbc);
1903 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1904 	if (!io_submit.io_end) {
1905 		redirty_page_for_writepage(wbc, page);
1906 		unlock_page(page);
1907 		return -ENOMEM;
1908 	}
1909 	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1910 	ext4_io_submit(&io_submit);
1911 	/* Drop io_end reference we got from init */
1912 	ext4_put_io_end_defer(io_submit.io_end);
1913 	return ret;
1914 }
1915 
1916 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1917 {
1918 	int len;
1919 	loff_t size = i_size_read(mpd->inode);
1920 	int err;
1921 
1922 	BUG_ON(page->index != mpd->first_page);
1923 	if (page->index == size >> PAGE_CACHE_SHIFT)
1924 		len = size & ~PAGE_CACHE_MASK;
1925 	else
1926 		len = PAGE_CACHE_SIZE;
1927 	clear_page_dirty_for_io(page);
1928 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1929 	if (!err)
1930 		mpd->wbc->nr_to_write--;
1931 	mpd->first_page++;
1932 
1933 	return err;
1934 }
1935 
1936 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1937 
1938 /*
1939  * mballoc gives us at most this number of blocks...
1940  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1941  * The rest of mballoc seems to handle chunks up to full group size.
1942  */
1943 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1944 
1945 /*
1946  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1947  *
1948  * @mpd - extent of blocks
1949  * @lblk - logical number of the block in the file
1950  * @bh - buffer head we want to add to the extent
1951  *
1952  * The function is used to collect contig. blocks in the same state. If the
1953  * buffer doesn't require mapping for writeback and we haven't started the
1954  * extent of buffers to map yet, the function returns 'true' immediately - the
1955  * caller can write the buffer right away. Otherwise the function returns true
1956  * if the block has been added to the extent, false if the block couldn't be
1957  * added.
1958  */
1959 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1960 				   struct buffer_head *bh)
1961 {
1962 	struct ext4_map_blocks *map = &mpd->map;
1963 
1964 	/* Buffer that doesn't need mapping for writeback? */
1965 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1966 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1967 		/* So far no extent to map => we write the buffer right away */
1968 		if (map->m_len == 0)
1969 			return true;
1970 		return false;
1971 	}
1972 
1973 	/* First block in the extent? */
1974 	if (map->m_len == 0) {
1975 		map->m_lblk = lblk;
1976 		map->m_len = 1;
1977 		map->m_flags = bh->b_state & BH_FLAGS;
1978 		return true;
1979 	}
1980 
1981 	/* Don't go larger than mballoc is willing to allocate */
1982 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1983 		return false;
1984 
1985 	/* Can we merge the block to our big extent? */
1986 	if (lblk == map->m_lblk + map->m_len &&
1987 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
1988 		map->m_len++;
1989 		return true;
1990 	}
1991 	return false;
1992 }
1993 
1994 /*
1995  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1996  *
1997  * @mpd - extent of blocks for mapping
1998  * @head - the first buffer in the page
1999  * @bh - buffer we should start processing from
2000  * @lblk - logical number of the block in the file corresponding to @bh
2001  *
2002  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2003  * the page for IO if all buffers in this page were mapped and there's no
2004  * accumulated extent of buffers to map or add buffers in the page to the
2005  * extent of buffers to map. The function returns 1 if the caller can continue
2006  * by processing the next page, 0 if it should stop adding buffers to the
2007  * extent to map because we cannot extend it anymore. It can also return value
2008  * < 0 in case of error during IO submission.
2009  */
2010 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2011 				   struct buffer_head *head,
2012 				   struct buffer_head *bh,
2013 				   ext4_lblk_t lblk)
2014 {
2015 	struct inode *inode = mpd->inode;
2016 	int err;
2017 	ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2018 							>> inode->i_blkbits;
2019 
2020 	do {
2021 		BUG_ON(buffer_locked(bh));
2022 
2023 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2024 			/* Found extent to map? */
2025 			if (mpd->map.m_len)
2026 				return 0;
2027 			/* Everything mapped so far and we hit EOF */
2028 			break;
2029 		}
2030 	} while (lblk++, (bh = bh->b_this_page) != head);
2031 	/* So far everything mapped? Submit the page for IO. */
2032 	if (mpd->map.m_len == 0) {
2033 		err = mpage_submit_page(mpd, head->b_page);
2034 		if (err < 0)
2035 			return err;
2036 	}
2037 	return lblk < blocks;
2038 }
2039 
2040 /*
2041  * mpage_map_buffers - update buffers corresponding to changed extent and
2042  *		       submit fully mapped pages for IO
2043  *
2044  * @mpd - description of extent to map, on return next extent to map
2045  *
2046  * Scan buffers corresponding to changed extent (we expect corresponding pages
2047  * to be already locked) and update buffer state according to new extent state.
2048  * We map delalloc buffers to their physical location, clear unwritten bits,
2049  * and mark buffers as uninit when we perform writes to unwritten extents
2050  * and do extent conversion after IO is finished. If the last page is not fully
2051  * mapped, we update @map to the next extent in the last page that needs
2052  * mapping. Otherwise we submit the page for IO.
2053  */
2054 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2055 {
2056 	struct pagevec pvec;
2057 	int nr_pages, i;
2058 	struct inode *inode = mpd->inode;
2059 	struct buffer_head *head, *bh;
2060 	int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2061 	pgoff_t start, end;
2062 	ext4_lblk_t lblk;
2063 	sector_t pblock;
2064 	int err;
2065 
2066 	start = mpd->map.m_lblk >> bpp_bits;
2067 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2068 	lblk = start << bpp_bits;
2069 	pblock = mpd->map.m_pblk;
2070 
2071 	pagevec_init(&pvec, 0);
2072 	while (start <= end) {
2073 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2074 					  PAGEVEC_SIZE);
2075 		if (nr_pages == 0)
2076 			break;
2077 		for (i = 0; i < nr_pages; i++) {
2078 			struct page *page = pvec.pages[i];
2079 
2080 			if (page->index > end)
2081 				break;
2082 			/* Up to 'end' pages must be contiguous */
2083 			BUG_ON(page->index != start);
2084 			bh = head = page_buffers(page);
2085 			do {
2086 				if (lblk < mpd->map.m_lblk)
2087 					continue;
2088 				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2089 					/*
2090 					 * Buffer after end of mapped extent.
2091 					 * Find next buffer in the page to map.
2092 					 */
2093 					mpd->map.m_len = 0;
2094 					mpd->map.m_flags = 0;
2095 					/*
2096 					 * FIXME: If dioread_nolock supports
2097 					 * blocksize < pagesize, we need to make
2098 					 * sure we add size mapped so far to
2099 					 * io_end->size as the following call
2100 					 * can submit the page for IO.
2101 					 */
2102 					err = mpage_process_page_bufs(mpd, head,
2103 								      bh, lblk);
2104 					pagevec_release(&pvec);
2105 					if (err > 0)
2106 						err = 0;
2107 					return err;
2108 				}
2109 				if (buffer_delay(bh)) {
2110 					clear_buffer_delay(bh);
2111 					bh->b_blocknr = pblock++;
2112 				}
2113 				clear_buffer_unwritten(bh);
2114 			} while (lblk++, (bh = bh->b_this_page) != head);
2115 
2116 			/*
2117 			 * FIXME: This is going to break if dioread_nolock
2118 			 * supports blocksize < pagesize as we will try to
2119 			 * convert potentially unmapped parts of inode.
2120 			 */
2121 			mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2122 			/* Page fully mapped - let IO run! */
2123 			err = mpage_submit_page(mpd, page);
2124 			if (err < 0) {
2125 				pagevec_release(&pvec);
2126 				return err;
2127 			}
2128 			start++;
2129 		}
2130 		pagevec_release(&pvec);
2131 	}
2132 	/* Extent fully mapped and matches with page boundary. We are done. */
2133 	mpd->map.m_len = 0;
2134 	mpd->map.m_flags = 0;
2135 	return 0;
2136 }
2137 
2138 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2139 {
2140 	struct inode *inode = mpd->inode;
2141 	struct ext4_map_blocks *map = &mpd->map;
2142 	int get_blocks_flags;
2143 	int err, dioread_nolock;
2144 
2145 	trace_ext4_da_write_pages_extent(inode, map);
2146 	/*
2147 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2148 	 * to convert an unwritten extent to be initialized (in the case
2149 	 * where we have written into one or more preallocated blocks).  It is
2150 	 * possible that we're going to need more metadata blocks than
2151 	 * previously reserved. However we must not fail because we're in
2152 	 * writeback and there is nothing we can do about it so it might result
2153 	 * in data loss.  So use reserved blocks to allocate metadata if
2154 	 * possible.
2155 	 *
2156 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2157 	 * the blocks in question are delalloc blocks.  This indicates
2158 	 * that the blocks and quotas has already been checked when
2159 	 * the data was copied into the page cache.
2160 	 */
2161 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2162 			   EXT4_GET_BLOCKS_METADATA_NOFAIL;
2163 	dioread_nolock = ext4_should_dioread_nolock(inode);
2164 	if (dioread_nolock)
2165 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2166 	if (map->m_flags & (1 << BH_Delay))
2167 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2168 
2169 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2170 	if (err < 0)
2171 		return err;
2172 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2173 		if (!mpd->io_submit.io_end->handle &&
2174 		    ext4_handle_valid(handle)) {
2175 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2176 			handle->h_rsv_handle = NULL;
2177 		}
2178 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2179 	}
2180 
2181 	BUG_ON(map->m_len == 0);
2182 	if (map->m_flags & EXT4_MAP_NEW) {
2183 		struct block_device *bdev = inode->i_sb->s_bdev;
2184 		int i;
2185 
2186 		for (i = 0; i < map->m_len; i++)
2187 			unmap_underlying_metadata(bdev, map->m_pblk + i);
2188 	}
2189 	return 0;
2190 }
2191 
2192 /*
2193  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2194  *				 mpd->len and submit pages underlying it for IO
2195  *
2196  * @handle - handle for journal operations
2197  * @mpd - extent to map
2198  * @give_up_on_write - we set this to true iff there is a fatal error and there
2199  *                     is no hope of writing the data. The caller should discard
2200  *                     dirty pages to avoid infinite loops.
2201  *
2202  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2203  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2204  * them to initialized or split the described range from larger unwritten
2205  * extent. Note that we need not map all the described range since allocation
2206  * can return less blocks or the range is covered by more unwritten extents. We
2207  * cannot map more because we are limited by reserved transaction credits. On
2208  * the other hand we always make sure that the last touched page is fully
2209  * mapped so that it can be written out (and thus forward progress is
2210  * guaranteed). After mapping we submit all mapped pages for IO.
2211  */
2212 static int mpage_map_and_submit_extent(handle_t *handle,
2213 				       struct mpage_da_data *mpd,
2214 				       bool *give_up_on_write)
2215 {
2216 	struct inode *inode = mpd->inode;
2217 	struct ext4_map_blocks *map = &mpd->map;
2218 	int err;
2219 	loff_t disksize;
2220 	int progress = 0;
2221 
2222 	mpd->io_submit.io_end->offset =
2223 				((loff_t)map->m_lblk) << inode->i_blkbits;
2224 	do {
2225 		err = mpage_map_one_extent(handle, mpd);
2226 		if (err < 0) {
2227 			struct super_block *sb = inode->i_sb;
2228 
2229 			if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2230 				goto invalidate_dirty_pages;
2231 			/*
2232 			 * Let the uper layers retry transient errors.
2233 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2234 			 * is non-zero, a commit should free up blocks.
2235 			 */
2236 			if ((err == -ENOMEM) ||
2237 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2238 				if (progress)
2239 					goto update_disksize;
2240 				return err;
2241 			}
2242 			ext4_msg(sb, KERN_CRIT,
2243 				 "Delayed block allocation failed for "
2244 				 "inode %lu at logical offset %llu with"
2245 				 " max blocks %u with error %d",
2246 				 inode->i_ino,
2247 				 (unsigned long long)map->m_lblk,
2248 				 (unsigned)map->m_len, -err);
2249 			ext4_msg(sb, KERN_CRIT,
2250 				 "This should not happen!! Data will "
2251 				 "be lost\n");
2252 			if (err == -ENOSPC)
2253 				ext4_print_free_blocks(inode);
2254 		invalidate_dirty_pages:
2255 			*give_up_on_write = true;
2256 			return err;
2257 		}
2258 		progress = 1;
2259 		/*
2260 		 * Update buffer state, submit mapped pages, and get us new
2261 		 * extent to map
2262 		 */
2263 		err = mpage_map_and_submit_buffers(mpd);
2264 		if (err < 0)
2265 			goto update_disksize;
2266 	} while (map->m_len);
2267 
2268 update_disksize:
2269 	/*
2270 	 * Update on-disk size after IO is submitted.  Races with
2271 	 * truncate are avoided by checking i_size under i_data_sem.
2272 	 */
2273 	disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2274 	if (disksize > EXT4_I(inode)->i_disksize) {
2275 		int err2;
2276 		loff_t i_size;
2277 
2278 		down_write(&EXT4_I(inode)->i_data_sem);
2279 		i_size = i_size_read(inode);
2280 		if (disksize > i_size)
2281 			disksize = i_size;
2282 		if (disksize > EXT4_I(inode)->i_disksize)
2283 			EXT4_I(inode)->i_disksize = disksize;
2284 		err2 = ext4_mark_inode_dirty(handle, inode);
2285 		up_write(&EXT4_I(inode)->i_data_sem);
2286 		if (err2)
2287 			ext4_error(inode->i_sb,
2288 				   "Failed to mark inode %lu dirty",
2289 				   inode->i_ino);
2290 		if (!err)
2291 			err = err2;
2292 	}
2293 	return err;
2294 }
2295 
2296 /*
2297  * Calculate the total number of credits to reserve for one writepages
2298  * iteration. This is called from ext4_writepages(). We map an extent of
2299  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2300  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2301  * bpp - 1 blocks in bpp different extents.
2302  */
2303 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2304 {
2305 	int bpp = ext4_journal_blocks_per_page(inode);
2306 
2307 	return ext4_meta_trans_blocks(inode,
2308 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2309 }
2310 
2311 /*
2312  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2313  * 				 and underlying extent to map
2314  *
2315  * @mpd - where to look for pages
2316  *
2317  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2318  * IO immediately. When we find a page which isn't mapped we start accumulating
2319  * extent of buffers underlying these pages that needs mapping (formed by
2320  * either delayed or unwritten buffers). We also lock the pages containing
2321  * these buffers. The extent found is returned in @mpd structure (starting at
2322  * mpd->lblk with length mpd->len blocks).
2323  *
2324  * Note that this function can attach bios to one io_end structure which are
2325  * neither logically nor physically contiguous. Although it may seem as an
2326  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2327  * case as we need to track IO to all buffers underlying a page in one io_end.
2328  */
2329 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2330 {
2331 	struct address_space *mapping = mpd->inode->i_mapping;
2332 	struct pagevec pvec;
2333 	unsigned int nr_pages;
2334 	long left = mpd->wbc->nr_to_write;
2335 	pgoff_t index = mpd->first_page;
2336 	pgoff_t end = mpd->last_page;
2337 	int tag;
2338 	int i, err = 0;
2339 	int blkbits = mpd->inode->i_blkbits;
2340 	ext4_lblk_t lblk;
2341 	struct buffer_head *head;
2342 
2343 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2344 		tag = PAGECACHE_TAG_TOWRITE;
2345 	else
2346 		tag = PAGECACHE_TAG_DIRTY;
2347 
2348 	pagevec_init(&pvec, 0);
2349 	mpd->map.m_len = 0;
2350 	mpd->next_page = index;
2351 	while (index <= end) {
2352 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2353 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2354 		if (nr_pages == 0)
2355 			goto out;
2356 
2357 		for (i = 0; i < nr_pages; i++) {
2358 			struct page *page = pvec.pages[i];
2359 
2360 			/*
2361 			 * At this point, the page may be truncated or
2362 			 * invalidated (changing page->mapping to NULL), or
2363 			 * even swizzled back from swapper_space to tmpfs file
2364 			 * mapping. However, page->index will not change
2365 			 * because we have a reference on the page.
2366 			 */
2367 			if (page->index > end)
2368 				goto out;
2369 
2370 			/*
2371 			 * Accumulated enough dirty pages? This doesn't apply
2372 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2373 			 * keep going because someone may be concurrently
2374 			 * dirtying pages, and we might have synced a lot of
2375 			 * newly appeared dirty pages, but have not synced all
2376 			 * of the old dirty pages.
2377 			 */
2378 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2379 				goto out;
2380 
2381 			/* If we can't merge this page, we are done. */
2382 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2383 				goto out;
2384 
2385 			lock_page(page);
2386 			/*
2387 			 * If the page is no longer dirty, or its mapping no
2388 			 * longer corresponds to inode we are writing (which
2389 			 * means it has been truncated or invalidated), or the
2390 			 * page is already under writeback and we are not doing
2391 			 * a data integrity writeback, skip the page
2392 			 */
2393 			if (!PageDirty(page) ||
2394 			    (PageWriteback(page) &&
2395 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2396 			    unlikely(page->mapping != mapping)) {
2397 				unlock_page(page);
2398 				continue;
2399 			}
2400 
2401 			wait_on_page_writeback(page);
2402 			BUG_ON(PageWriteback(page));
2403 
2404 			if (mpd->map.m_len == 0)
2405 				mpd->first_page = page->index;
2406 			mpd->next_page = page->index + 1;
2407 			/* Add all dirty buffers to mpd */
2408 			lblk = ((ext4_lblk_t)page->index) <<
2409 				(PAGE_CACHE_SHIFT - blkbits);
2410 			head = page_buffers(page);
2411 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2412 			if (err <= 0)
2413 				goto out;
2414 			err = 0;
2415 			left--;
2416 		}
2417 		pagevec_release(&pvec);
2418 		cond_resched();
2419 	}
2420 	return 0;
2421 out:
2422 	pagevec_release(&pvec);
2423 	return err;
2424 }
2425 
2426 static int __writepage(struct page *page, struct writeback_control *wbc,
2427 		       void *data)
2428 {
2429 	struct address_space *mapping = data;
2430 	int ret = ext4_writepage(page, wbc);
2431 	mapping_set_error(mapping, ret);
2432 	return ret;
2433 }
2434 
2435 static int ext4_writepages(struct address_space *mapping,
2436 			   struct writeback_control *wbc)
2437 {
2438 	pgoff_t	writeback_index = 0;
2439 	long nr_to_write = wbc->nr_to_write;
2440 	int range_whole = 0;
2441 	int cycled = 1;
2442 	handle_t *handle = NULL;
2443 	struct mpage_da_data mpd;
2444 	struct inode *inode = mapping->host;
2445 	int needed_blocks, rsv_blocks = 0, ret = 0;
2446 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2447 	bool done;
2448 	struct blk_plug plug;
2449 	bool give_up_on_write = false;
2450 
2451 	trace_ext4_writepages(inode, wbc);
2452 
2453 	/*
2454 	 * No pages to write? This is mainly a kludge to avoid starting
2455 	 * a transaction for special inodes like journal inode on last iput()
2456 	 * because that could violate lock ordering on umount
2457 	 */
2458 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2459 		goto out_writepages;
2460 
2461 	if (ext4_should_journal_data(inode)) {
2462 		struct blk_plug plug;
2463 
2464 		blk_start_plug(&plug);
2465 		ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2466 		blk_finish_plug(&plug);
2467 		goto out_writepages;
2468 	}
2469 
2470 	/*
2471 	 * If the filesystem has aborted, it is read-only, so return
2472 	 * right away instead of dumping stack traces later on that
2473 	 * will obscure the real source of the problem.  We test
2474 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2475 	 * the latter could be true if the filesystem is mounted
2476 	 * read-only, and in that case, ext4_writepages should
2477 	 * *never* be called, so if that ever happens, we would want
2478 	 * the stack trace.
2479 	 */
2480 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2481 		ret = -EROFS;
2482 		goto out_writepages;
2483 	}
2484 
2485 	if (ext4_should_dioread_nolock(inode)) {
2486 		/*
2487 		 * We may need to convert up to one extent per block in
2488 		 * the page and we may dirty the inode.
2489 		 */
2490 		rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2491 	}
2492 
2493 	/*
2494 	 * If we have inline data and arrive here, it means that
2495 	 * we will soon create the block for the 1st page, so
2496 	 * we'd better clear the inline data here.
2497 	 */
2498 	if (ext4_has_inline_data(inode)) {
2499 		/* Just inode will be modified... */
2500 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2501 		if (IS_ERR(handle)) {
2502 			ret = PTR_ERR(handle);
2503 			goto out_writepages;
2504 		}
2505 		BUG_ON(ext4_test_inode_state(inode,
2506 				EXT4_STATE_MAY_INLINE_DATA));
2507 		ext4_destroy_inline_data(handle, inode);
2508 		ext4_journal_stop(handle);
2509 	}
2510 
2511 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2512 		range_whole = 1;
2513 
2514 	if (wbc->range_cyclic) {
2515 		writeback_index = mapping->writeback_index;
2516 		if (writeback_index)
2517 			cycled = 0;
2518 		mpd.first_page = writeback_index;
2519 		mpd.last_page = -1;
2520 	} else {
2521 		mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2522 		mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2523 	}
2524 
2525 	mpd.inode = inode;
2526 	mpd.wbc = wbc;
2527 	ext4_io_submit_init(&mpd.io_submit, wbc);
2528 retry:
2529 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2530 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2531 	done = false;
2532 	blk_start_plug(&plug);
2533 	while (!done && mpd.first_page <= mpd.last_page) {
2534 		/* For each extent of pages we use new io_end */
2535 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2536 		if (!mpd.io_submit.io_end) {
2537 			ret = -ENOMEM;
2538 			break;
2539 		}
2540 
2541 		/*
2542 		 * We have two constraints: We find one extent to map and we
2543 		 * must always write out whole page (makes a difference when
2544 		 * blocksize < pagesize) so that we don't block on IO when we
2545 		 * try to write out the rest of the page. Journalled mode is
2546 		 * not supported by delalloc.
2547 		 */
2548 		BUG_ON(ext4_should_journal_data(inode));
2549 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2550 
2551 		/* start a new transaction */
2552 		handle = ext4_journal_start_with_reserve(inode,
2553 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2554 		if (IS_ERR(handle)) {
2555 			ret = PTR_ERR(handle);
2556 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2557 			       "%ld pages, ino %lu; err %d", __func__,
2558 				wbc->nr_to_write, inode->i_ino, ret);
2559 			/* Release allocated io_end */
2560 			ext4_put_io_end(mpd.io_submit.io_end);
2561 			break;
2562 		}
2563 
2564 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2565 		ret = mpage_prepare_extent_to_map(&mpd);
2566 		if (!ret) {
2567 			if (mpd.map.m_len)
2568 				ret = mpage_map_and_submit_extent(handle, &mpd,
2569 					&give_up_on_write);
2570 			else {
2571 				/*
2572 				 * We scanned the whole range (or exhausted
2573 				 * nr_to_write), submitted what was mapped and
2574 				 * didn't find anything needing mapping. We are
2575 				 * done.
2576 				 */
2577 				done = true;
2578 			}
2579 		}
2580 		ext4_journal_stop(handle);
2581 		/* Submit prepared bio */
2582 		ext4_io_submit(&mpd.io_submit);
2583 		/* Unlock pages we didn't use */
2584 		mpage_release_unused_pages(&mpd, give_up_on_write);
2585 		/* Drop our io_end reference we got from init */
2586 		ext4_put_io_end(mpd.io_submit.io_end);
2587 
2588 		if (ret == -ENOSPC && sbi->s_journal) {
2589 			/*
2590 			 * Commit the transaction which would
2591 			 * free blocks released in the transaction
2592 			 * and try again
2593 			 */
2594 			jbd2_journal_force_commit_nested(sbi->s_journal);
2595 			ret = 0;
2596 			continue;
2597 		}
2598 		/* Fatal error - ENOMEM, EIO... */
2599 		if (ret)
2600 			break;
2601 	}
2602 	blk_finish_plug(&plug);
2603 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2604 		cycled = 1;
2605 		mpd.last_page = writeback_index - 1;
2606 		mpd.first_page = 0;
2607 		goto retry;
2608 	}
2609 
2610 	/* Update index */
2611 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2612 		/*
2613 		 * Set the writeback_index so that range_cyclic
2614 		 * mode will write it back later
2615 		 */
2616 		mapping->writeback_index = mpd.first_page;
2617 
2618 out_writepages:
2619 	trace_ext4_writepages_result(inode, wbc, ret,
2620 				     nr_to_write - wbc->nr_to_write);
2621 	return ret;
2622 }
2623 
2624 static int ext4_nonda_switch(struct super_block *sb)
2625 {
2626 	s64 free_clusters, dirty_clusters;
2627 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2628 
2629 	/*
2630 	 * switch to non delalloc mode if we are running low
2631 	 * on free block. The free block accounting via percpu
2632 	 * counters can get slightly wrong with percpu_counter_batch getting
2633 	 * accumulated on each CPU without updating global counters
2634 	 * Delalloc need an accurate free block accounting. So switch
2635 	 * to non delalloc when we are near to error range.
2636 	 */
2637 	free_clusters =
2638 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2639 	dirty_clusters =
2640 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2641 	/*
2642 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2643 	 */
2644 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2645 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2646 
2647 	if (2 * free_clusters < 3 * dirty_clusters ||
2648 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2649 		/*
2650 		 * free block count is less than 150% of dirty blocks
2651 		 * or free blocks is less than watermark
2652 		 */
2653 		return 1;
2654 	}
2655 	return 0;
2656 }
2657 
2658 /* We always reserve for an inode update; the superblock could be there too */
2659 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2660 {
2661 	if (likely(ext4_has_feature_large_file(inode->i_sb)))
2662 		return 1;
2663 
2664 	if (pos + len <= 0x7fffffffULL)
2665 		return 1;
2666 
2667 	/* We might need to update the superblock to set LARGE_FILE */
2668 	return 2;
2669 }
2670 
2671 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2672 			       loff_t pos, unsigned len, unsigned flags,
2673 			       struct page **pagep, void **fsdata)
2674 {
2675 	int ret, retries = 0;
2676 	struct page *page;
2677 	pgoff_t index;
2678 	struct inode *inode = mapping->host;
2679 	handle_t *handle;
2680 
2681 	index = pos >> PAGE_CACHE_SHIFT;
2682 
2683 	if (ext4_nonda_switch(inode->i_sb)) {
2684 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2685 		return ext4_write_begin(file, mapping, pos,
2686 					len, flags, pagep, fsdata);
2687 	}
2688 	*fsdata = (void *)0;
2689 	trace_ext4_da_write_begin(inode, pos, len, flags);
2690 
2691 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2692 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2693 						      pos, len, flags,
2694 						      pagep, fsdata);
2695 		if (ret < 0)
2696 			return ret;
2697 		if (ret == 1)
2698 			return 0;
2699 	}
2700 
2701 	/*
2702 	 * grab_cache_page_write_begin() can take a long time if the
2703 	 * system is thrashing due to memory pressure, or if the page
2704 	 * is being written back.  So grab it first before we start
2705 	 * the transaction handle.  This also allows us to allocate
2706 	 * the page (if needed) without using GFP_NOFS.
2707 	 */
2708 retry_grab:
2709 	page = grab_cache_page_write_begin(mapping, index, flags);
2710 	if (!page)
2711 		return -ENOMEM;
2712 	unlock_page(page);
2713 
2714 	/*
2715 	 * With delayed allocation, we don't log the i_disksize update
2716 	 * if there is delayed block allocation. But we still need
2717 	 * to journalling the i_disksize update if writes to the end
2718 	 * of file which has an already mapped buffer.
2719 	 */
2720 retry_journal:
2721 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2722 				ext4_da_write_credits(inode, pos, len));
2723 	if (IS_ERR(handle)) {
2724 		page_cache_release(page);
2725 		return PTR_ERR(handle);
2726 	}
2727 
2728 	lock_page(page);
2729 	if (page->mapping != mapping) {
2730 		/* The page got truncated from under us */
2731 		unlock_page(page);
2732 		page_cache_release(page);
2733 		ext4_journal_stop(handle);
2734 		goto retry_grab;
2735 	}
2736 	/* In case writeback began while the page was unlocked */
2737 	wait_for_stable_page(page);
2738 
2739 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2740 	ret = ext4_block_write_begin(page, pos, len,
2741 				     ext4_da_get_block_prep);
2742 #else
2743 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2744 #endif
2745 	if (ret < 0) {
2746 		unlock_page(page);
2747 		ext4_journal_stop(handle);
2748 		/*
2749 		 * block_write_begin may have instantiated a few blocks
2750 		 * outside i_size.  Trim these off again. Don't need
2751 		 * i_size_read because we hold i_mutex.
2752 		 */
2753 		if (pos + len > inode->i_size)
2754 			ext4_truncate_failed_write(inode);
2755 
2756 		if (ret == -ENOSPC &&
2757 		    ext4_should_retry_alloc(inode->i_sb, &retries))
2758 			goto retry_journal;
2759 
2760 		page_cache_release(page);
2761 		return ret;
2762 	}
2763 
2764 	*pagep = page;
2765 	return ret;
2766 }
2767 
2768 /*
2769  * Check if we should update i_disksize
2770  * when write to the end of file but not require block allocation
2771  */
2772 static int ext4_da_should_update_i_disksize(struct page *page,
2773 					    unsigned long offset)
2774 {
2775 	struct buffer_head *bh;
2776 	struct inode *inode = page->mapping->host;
2777 	unsigned int idx;
2778 	int i;
2779 
2780 	bh = page_buffers(page);
2781 	idx = offset >> inode->i_blkbits;
2782 
2783 	for (i = 0; i < idx; i++)
2784 		bh = bh->b_this_page;
2785 
2786 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2787 		return 0;
2788 	return 1;
2789 }
2790 
2791 static int ext4_da_write_end(struct file *file,
2792 			     struct address_space *mapping,
2793 			     loff_t pos, unsigned len, unsigned copied,
2794 			     struct page *page, void *fsdata)
2795 {
2796 	struct inode *inode = mapping->host;
2797 	int ret = 0, ret2;
2798 	handle_t *handle = ext4_journal_current_handle();
2799 	loff_t new_i_size;
2800 	unsigned long start, end;
2801 	int write_mode = (int)(unsigned long)fsdata;
2802 
2803 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
2804 		return ext4_write_end(file, mapping, pos,
2805 				      len, copied, page, fsdata);
2806 
2807 	trace_ext4_da_write_end(inode, pos, len, copied);
2808 	start = pos & (PAGE_CACHE_SIZE - 1);
2809 	end = start + copied - 1;
2810 
2811 	/*
2812 	 * generic_write_end() will run mark_inode_dirty() if i_size
2813 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2814 	 * into that.
2815 	 */
2816 	new_i_size = pos + copied;
2817 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2818 		if (ext4_has_inline_data(inode) ||
2819 		    ext4_da_should_update_i_disksize(page, end)) {
2820 			ext4_update_i_disksize(inode, new_i_size);
2821 			/* We need to mark inode dirty even if
2822 			 * new_i_size is less that inode->i_size
2823 			 * bu greater than i_disksize.(hint delalloc)
2824 			 */
2825 			ext4_mark_inode_dirty(handle, inode);
2826 		}
2827 	}
2828 
2829 	if (write_mode != CONVERT_INLINE_DATA &&
2830 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2831 	    ext4_has_inline_data(inode))
2832 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2833 						     page);
2834 	else
2835 		ret2 = generic_write_end(file, mapping, pos, len, copied,
2836 							page, fsdata);
2837 
2838 	copied = ret2;
2839 	if (ret2 < 0)
2840 		ret = ret2;
2841 	ret2 = ext4_journal_stop(handle);
2842 	if (!ret)
2843 		ret = ret2;
2844 
2845 	return ret ? ret : copied;
2846 }
2847 
2848 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2849 				   unsigned int length)
2850 {
2851 	/*
2852 	 * Drop reserved blocks
2853 	 */
2854 	BUG_ON(!PageLocked(page));
2855 	if (!page_has_buffers(page))
2856 		goto out;
2857 
2858 	ext4_da_page_release_reservation(page, offset, length);
2859 
2860 out:
2861 	ext4_invalidatepage(page, offset, length);
2862 
2863 	return;
2864 }
2865 
2866 /*
2867  * Force all delayed allocation blocks to be allocated for a given inode.
2868  */
2869 int ext4_alloc_da_blocks(struct inode *inode)
2870 {
2871 	trace_ext4_alloc_da_blocks(inode);
2872 
2873 	if (!EXT4_I(inode)->i_reserved_data_blocks)
2874 		return 0;
2875 
2876 	/*
2877 	 * We do something simple for now.  The filemap_flush() will
2878 	 * also start triggering a write of the data blocks, which is
2879 	 * not strictly speaking necessary (and for users of
2880 	 * laptop_mode, not even desirable).  However, to do otherwise
2881 	 * would require replicating code paths in:
2882 	 *
2883 	 * ext4_writepages() ->
2884 	 *    write_cache_pages() ---> (via passed in callback function)
2885 	 *        __mpage_da_writepage() -->
2886 	 *           mpage_add_bh_to_extent()
2887 	 *           mpage_da_map_blocks()
2888 	 *
2889 	 * The problem is that write_cache_pages(), located in
2890 	 * mm/page-writeback.c, marks pages clean in preparation for
2891 	 * doing I/O, which is not desirable if we're not planning on
2892 	 * doing I/O at all.
2893 	 *
2894 	 * We could call write_cache_pages(), and then redirty all of
2895 	 * the pages by calling redirty_page_for_writepage() but that
2896 	 * would be ugly in the extreme.  So instead we would need to
2897 	 * replicate parts of the code in the above functions,
2898 	 * simplifying them because we wouldn't actually intend to
2899 	 * write out the pages, but rather only collect contiguous
2900 	 * logical block extents, call the multi-block allocator, and
2901 	 * then update the buffer heads with the block allocations.
2902 	 *
2903 	 * For now, though, we'll cheat by calling filemap_flush(),
2904 	 * which will map the blocks, and start the I/O, but not
2905 	 * actually wait for the I/O to complete.
2906 	 */
2907 	return filemap_flush(inode->i_mapping);
2908 }
2909 
2910 /*
2911  * bmap() is special.  It gets used by applications such as lilo and by
2912  * the swapper to find the on-disk block of a specific piece of data.
2913  *
2914  * Naturally, this is dangerous if the block concerned is still in the
2915  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2916  * filesystem and enables swap, then they may get a nasty shock when the
2917  * data getting swapped to that swapfile suddenly gets overwritten by
2918  * the original zero's written out previously to the journal and
2919  * awaiting writeback in the kernel's buffer cache.
2920  *
2921  * So, if we see any bmap calls here on a modified, data-journaled file,
2922  * take extra steps to flush any blocks which might be in the cache.
2923  */
2924 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2925 {
2926 	struct inode *inode = mapping->host;
2927 	journal_t *journal;
2928 	int err;
2929 
2930 	/*
2931 	 * We can get here for an inline file via the FIBMAP ioctl
2932 	 */
2933 	if (ext4_has_inline_data(inode))
2934 		return 0;
2935 
2936 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2937 			test_opt(inode->i_sb, DELALLOC)) {
2938 		/*
2939 		 * With delalloc we want to sync the file
2940 		 * so that we can make sure we allocate
2941 		 * blocks for file
2942 		 */
2943 		filemap_write_and_wait(mapping);
2944 	}
2945 
2946 	if (EXT4_JOURNAL(inode) &&
2947 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2948 		/*
2949 		 * This is a REALLY heavyweight approach, but the use of
2950 		 * bmap on dirty files is expected to be extremely rare:
2951 		 * only if we run lilo or swapon on a freshly made file
2952 		 * do we expect this to happen.
2953 		 *
2954 		 * (bmap requires CAP_SYS_RAWIO so this does not
2955 		 * represent an unprivileged user DOS attack --- we'd be
2956 		 * in trouble if mortal users could trigger this path at
2957 		 * will.)
2958 		 *
2959 		 * NB. EXT4_STATE_JDATA is not set on files other than
2960 		 * regular files.  If somebody wants to bmap a directory
2961 		 * or symlink and gets confused because the buffer
2962 		 * hasn't yet been flushed to disk, they deserve
2963 		 * everything they get.
2964 		 */
2965 
2966 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2967 		journal = EXT4_JOURNAL(inode);
2968 		jbd2_journal_lock_updates(journal);
2969 		err = jbd2_journal_flush(journal);
2970 		jbd2_journal_unlock_updates(journal);
2971 
2972 		if (err)
2973 			return 0;
2974 	}
2975 
2976 	return generic_block_bmap(mapping, block, ext4_get_block);
2977 }
2978 
2979 static int ext4_readpage(struct file *file, struct page *page)
2980 {
2981 	int ret = -EAGAIN;
2982 	struct inode *inode = page->mapping->host;
2983 
2984 	trace_ext4_readpage(page);
2985 
2986 	if (ext4_has_inline_data(inode))
2987 		ret = ext4_readpage_inline(inode, page);
2988 
2989 	if (ret == -EAGAIN)
2990 		return ext4_mpage_readpages(page->mapping, NULL, page, 1);
2991 
2992 	return ret;
2993 }
2994 
2995 static int
2996 ext4_readpages(struct file *file, struct address_space *mapping,
2997 		struct list_head *pages, unsigned nr_pages)
2998 {
2999 	struct inode *inode = mapping->host;
3000 
3001 	/* If the file has inline data, no need to do readpages. */
3002 	if (ext4_has_inline_data(inode))
3003 		return 0;
3004 
3005 	return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3006 }
3007 
3008 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3009 				unsigned int length)
3010 {
3011 	trace_ext4_invalidatepage(page, offset, length);
3012 
3013 	/* No journalling happens on data buffers when this function is used */
3014 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3015 
3016 	block_invalidatepage(page, offset, length);
3017 }
3018 
3019 static int __ext4_journalled_invalidatepage(struct page *page,
3020 					    unsigned int offset,
3021 					    unsigned int length)
3022 {
3023 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3024 
3025 	trace_ext4_journalled_invalidatepage(page, offset, length);
3026 
3027 	/*
3028 	 * If it's a full truncate we just forget about the pending dirtying
3029 	 */
3030 	if (offset == 0 && length == PAGE_CACHE_SIZE)
3031 		ClearPageChecked(page);
3032 
3033 	return jbd2_journal_invalidatepage(journal, page, offset, length);
3034 }
3035 
3036 /* Wrapper for aops... */
3037 static void ext4_journalled_invalidatepage(struct page *page,
3038 					   unsigned int offset,
3039 					   unsigned int length)
3040 {
3041 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3042 }
3043 
3044 static int ext4_releasepage(struct page *page, gfp_t wait)
3045 {
3046 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3047 
3048 	trace_ext4_releasepage(page);
3049 
3050 	/* Page has dirty journalled data -> cannot release */
3051 	if (PageChecked(page))
3052 		return 0;
3053 	if (journal)
3054 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3055 	else
3056 		return try_to_free_buffers(page);
3057 }
3058 
3059 /*
3060  * ext4_get_block used when preparing for a DIO write or buffer write.
3061  * We allocate an uinitialized extent if blocks haven't been allocated.
3062  * The extent will be converted to initialized after the IO is complete.
3063  */
3064 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3065 		   struct buffer_head *bh_result, int create)
3066 {
3067 	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3068 		   inode->i_ino, create);
3069 	return _ext4_get_block(inode, iblock, bh_result,
3070 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
3071 }
3072 
3073 static int ext4_get_block_overwrite(struct inode *inode, sector_t iblock,
3074 		   struct buffer_head *bh_result, int create)
3075 {
3076 	int ret;
3077 
3078 	ext4_debug("ext4_get_block_overwrite: inode %lu, create flag %d\n",
3079 		   inode->i_ino, create);
3080 	ret = _ext4_get_block(inode, iblock, bh_result, 0);
3081 	/*
3082 	 * Blocks should have been preallocated! ext4_file_write_iter() checks
3083 	 * that.
3084 	 */
3085 	WARN_ON_ONCE(!buffer_mapped(bh_result));
3086 
3087 	return ret;
3088 }
3089 
3090 #ifdef CONFIG_FS_DAX
3091 int ext4_dax_mmap_get_block(struct inode *inode, sector_t iblock,
3092 			    struct buffer_head *bh_result, int create)
3093 {
3094 	int ret, err;
3095 	int credits;
3096 	struct ext4_map_blocks map;
3097 	handle_t *handle = NULL;
3098 	int flags = 0;
3099 
3100 	ext4_debug("ext4_dax_mmap_get_block: inode %lu, create flag %d\n",
3101 		   inode->i_ino, create);
3102 	map.m_lblk = iblock;
3103 	map.m_len = bh_result->b_size >> inode->i_blkbits;
3104 	credits = ext4_chunk_trans_blocks(inode, map.m_len);
3105 	if (create) {
3106 		flags |= EXT4_GET_BLOCKS_PRE_IO | EXT4_GET_BLOCKS_CREATE_ZERO;
3107 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits);
3108 		if (IS_ERR(handle)) {
3109 			ret = PTR_ERR(handle);
3110 			return ret;
3111 		}
3112 	}
3113 
3114 	ret = ext4_map_blocks(handle, inode, &map, flags);
3115 	if (create) {
3116 		err = ext4_journal_stop(handle);
3117 		if (ret >= 0 && err < 0)
3118 			ret = err;
3119 	}
3120 	if (ret <= 0)
3121 		goto out;
3122 	if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3123 		int err2;
3124 
3125 		/*
3126 		 * We are protected by i_mmap_sem so we know block cannot go
3127 		 * away from under us even though we dropped i_data_sem.
3128 		 * Convert extent to written and write zeros there.
3129 		 *
3130 		 * Note: We may get here even when create == 0.
3131 		 */
3132 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits);
3133 		if (IS_ERR(handle)) {
3134 			ret = PTR_ERR(handle);
3135 			goto out;
3136 		}
3137 
3138 		err = ext4_map_blocks(handle, inode, &map,
3139 		      EXT4_GET_BLOCKS_CONVERT | EXT4_GET_BLOCKS_CREATE_ZERO);
3140 		if (err < 0)
3141 			ret = err;
3142 		err2 = ext4_journal_stop(handle);
3143 		if (err2 < 0 && ret > 0)
3144 			ret = err2;
3145 	}
3146 out:
3147 	WARN_ON_ONCE(ret == 0 && create);
3148 	if (ret > 0) {
3149 		map_bh(bh_result, inode->i_sb, map.m_pblk);
3150 		bh_result->b_state = (bh_result->b_state & ~EXT4_MAP_FLAGS) |
3151 					map.m_flags;
3152 		/*
3153 		 * At least for now we have to clear BH_New so that DAX code
3154 		 * doesn't attempt to zero blocks again in a racy way.
3155 		 */
3156 		bh_result->b_state &= ~(1 << BH_New);
3157 		bh_result->b_size = map.m_len << inode->i_blkbits;
3158 		ret = 0;
3159 	}
3160 	return ret;
3161 }
3162 #endif
3163 
3164 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3165 			    ssize_t size, void *private)
3166 {
3167         ext4_io_end_t *io_end = iocb->private;
3168 
3169 	/* if not async direct IO just return */
3170 	if (!io_end)
3171 		return;
3172 
3173 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3174 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3175  		  iocb->private, io_end->inode->i_ino, iocb, offset,
3176 		  size);
3177 
3178 	iocb->private = NULL;
3179 	io_end->offset = offset;
3180 	io_end->size = size;
3181 	ext4_put_io_end(io_end);
3182 }
3183 
3184 /*
3185  * For ext4 extent files, ext4 will do direct-io write to holes,
3186  * preallocated extents, and those write extend the file, no need to
3187  * fall back to buffered IO.
3188  *
3189  * For holes, we fallocate those blocks, mark them as unwritten
3190  * If those blocks were preallocated, we mark sure they are split, but
3191  * still keep the range to write as unwritten.
3192  *
3193  * The unwritten extents will be converted to written when DIO is completed.
3194  * For async direct IO, since the IO may still pending when return, we
3195  * set up an end_io call back function, which will do the conversion
3196  * when async direct IO completed.
3197  *
3198  * If the O_DIRECT write will extend the file then add this inode to the
3199  * orphan list.  So recovery will truncate it back to the original size
3200  * if the machine crashes during the write.
3201  *
3202  */
3203 static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3204 				  loff_t offset)
3205 {
3206 	struct file *file = iocb->ki_filp;
3207 	struct inode *inode = file->f_mapping->host;
3208 	ssize_t ret;
3209 	size_t count = iov_iter_count(iter);
3210 	int overwrite = 0;
3211 	get_block_t *get_block_func = NULL;
3212 	int dio_flags = 0;
3213 	loff_t final_size = offset + count;
3214 	ext4_io_end_t *io_end = NULL;
3215 
3216 	/* Use the old path for reads and writes beyond i_size. */
3217 	if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size)
3218 		return ext4_ind_direct_IO(iocb, iter, offset);
3219 
3220 	BUG_ON(iocb->private == NULL);
3221 
3222 	/*
3223 	 * Make all waiters for direct IO properly wait also for extent
3224 	 * conversion. This also disallows race between truncate() and
3225 	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3226 	 */
3227 	if (iov_iter_rw(iter) == WRITE)
3228 		inode_dio_begin(inode);
3229 
3230 	/* If we do a overwrite dio, i_mutex locking can be released */
3231 	overwrite = *((int *)iocb->private);
3232 
3233 	if (overwrite)
3234 		inode_unlock(inode);
3235 
3236 	/*
3237 	 * We could direct write to holes and fallocate.
3238 	 *
3239 	 * Allocated blocks to fill the hole are marked as
3240 	 * unwritten to prevent parallel buffered read to expose
3241 	 * the stale data before DIO complete the data IO.
3242 	 *
3243 	 * As to previously fallocated extents, ext4 get_block will
3244 	 * just simply mark the buffer mapped but still keep the
3245 	 * extents unwritten.
3246 	 *
3247 	 * For non AIO case, we will convert those unwritten extents
3248 	 * to written after return back from blockdev_direct_IO.
3249 	 *
3250 	 * For async DIO, the conversion needs to be deferred when the
3251 	 * IO is completed. The ext4 end_io callback function will be
3252 	 * called to take care of the conversion work.  Here for async
3253 	 * case, we allocate an io_end structure to hook to the iocb.
3254 	 */
3255 	iocb->private = NULL;
3256 	ext4_inode_aio_set(inode, NULL);
3257 	if (!is_sync_kiocb(iocb)) {
3258 		io_end = ext4_init_io_end(inode, GFP_NOFS);
3259 		if (!io_end) {
3260 			ret = -ENOMEM;
3261 			goto retake_lock;
3262 		}
3263 		/*
3264 		 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3265 		 */
3266 		iocb->private = ext4_get_io_end(io_end);
3267 		/*
3268 		 * we save the io structure for current async direct
3269 		 * IO, so that later ext4_map_blocks() could flag the
3270 		 * io structure whether there is a unwritten extents
3271 		 * needs to be converted when IO is completed.
3272 		 */
3273 		ext4_inode_aio_set(inode, io_end);
3274 	}
3275 
3276 	if (overwrite) {
3277 		get_block_func = ext4_get_block_overwrite;
3278 	} else {
3279 		get_block_func = ext4_get_block_write;
3280 		dio_flags = DIO_LOCKING;
3281 	}
3282 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3283 	BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3284 #endif
3285 	if (IS_DAX(inode))
3286 		ret = dax_do_io(iocb, inode, iter, offset, get_block_func,
3287 				ext4_end_io_dio, dio_flags);
3288 	else
3289 		ret = __blockdev_direct_IO(iocb, inode,
3290 					   inode->i_sb->s_bdev, iter, offset,
3291 					   get_block_func,
3292 					   ext4_end_io_dio, NULL, dio_flags);
3293 
3294 	/*
3295 	 * Put our reference to io_end. This can free the io_end structure e.g.
3296 	 * in sync IO case or in case of error. It can even perform extent
3297 	 * conversion if all bios we submitted finished before we got here.
3298 	 * Note that in that case iocb->private can be already set to NULL
3299 	 * here.
3300 	 */
3301 	if (io_end) {
3302 		ext4_inode_aio_set(inode, NULL);
3303 		ext4_put_io_end(io_end);
3304 		/*
3305 		 * When no IO was submitted ext4_end_io_dio() was not
3306 		 * called so we have to put iocb's reference.
3307 		 */
3308 		if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3309 			WARN_ON(iocb->private != io_end);
3310 			WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3311 			ext4_put_io_end(io_end);
3312 			iocb->private = NULL;
3313 		}
3314 	}
3315 	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3316 						EXT4_STATE_DIO_UNWRITTEN)) {
3317 		int err;
3318 		/*
3319 		 * for non AIO case, since the IO is already
3320 		 * completed, we could do the conversion right here
3321 		 */
3322 		err = ext4_convert_unwritten_extents(NULL, inode,
3323 						     offset, ret);
3324 		if (err < 0)
3325 			ret = err;
3326 		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3327 	}
3328 
3329 retake_lock:
3330 	if (iov_iter_rw(iter) == WRITE)
3331 		inode_dio_end(inode);
3332 	/* take i_mutex locking again if we do a ovewrite dio */
3333 	if (overwrite)
3334 		inode_lock(inode);
3335 
3336 	return ret;
3337 }
3338 
3339 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3340 			      loff_t offset)
3341 {
3342 	struct file *file = iocb->ki_filp;
3343 	struct inode *inode = file->f_mapping->host;
3344 	size_t count = iov_iter_count(iter);
3345 	ssize_t ret;
3346 
3347 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3348 	if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3349 		return 0;
3350 #endif
3351 
3352 	/*
3353 	 * If we are doing data journalling we don't support O_DIRECT
3354 	 */
3355 	if (ext4_should_journal_data(inode))
3356 		return 0;
3357 
3358 	/* Let buffer I/O handle the inline data case. */
3359 	if (ext4_has_inline_data(inode))
3360 		return 0;
3361 
3362 	trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3363 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3364 		ret = ext4_ext_direct_IO(iocb, iter, offset);
3365 	else
3366 		ret = ext4_ind_direct_IO(iocb, iter, offset);
3367 	trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3368 	return ret;
3369 }
3370 
3371 /*
3372  * Pages can be marked dirty completely asynchronously from ext4's journalling
3373  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3374  * much here because ->set_page_dirty is called under VFS locks.  The page is
3375  * not necessarily locked.
3376  *
3377  * We cannot just dirty the page and leave attached buffers clean, because the
3378  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3379  * or jbddirty because all the journalling code will explode.
3380  *
3381  * So what we do is to mark the page "pending dirty" and next time writepage
3382  * is called, propagate that into the buffers appropriately.
3383  */
3384 static int ext4_journalled_set_page_dirty(struct page *page)
3385 {
3386 	SetPageChecked(page);
3387 	return __set_page_dirty_nobuffers(page);
3388 }
3389 
3390 static const struct address_space_operations ext4_aops = {
3391 	.readpage		= ext4_readpage,
3392 	.readpages		= ext4_readpages,
3393 	.writepage		= ext4_writepage,
3394 	.writepages		= ext4_writepages,
3395 	.write_begin		= ext4_write_begin,
3396 	.write_end		= ext4_write_end,
3397 	.bmap			= ext4_bmap,
3398 	.invalidatepage		= ext4_invalidatepage,
3399 	.releasepage		= ext4_releasepage,
3400 	.direct_IO		= ext4_direct_IO,
3401 	.migratepage		= buffer_migrate_page,
3402 	.is_partially_uptodate  = block_is_partially_uptodate,
3403 	.error_remove_page	= generic_error_remove_page,
3404 };
3405 
3406 static const struct address_space_operations ext4_journalled_aops = {
3407 	.readpage		= ext4_readpage,
3408 	.readpages		= ext4_readpages,
3409 	.writepage		= ext4_writepage,
3410 	.writepages		= ext4_writepages,
3411 	.write_begin		= ext4_write_begin,
3412 	.write_end		= ext4_journalled_write_end,
3413 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3414 	.bmap			= ext4_bmap,
3415 	.invalidatepage		= ext4_journalled_invalidatepage,
3416 	.releasepage		= ext4_releasepage,
3417 	.direct_IO		= ext4_direct_IO,
3418 	.is_partially_uptodate  = block_is_partially_uptodate,
3419 	.error_remove_page	= generic_error_remove_page,
3420 };
3421 
3422 static const struct address_space_operations ext4_da_aops = {
3423 	.readpage		= ext4_readpage,
3424 	.readpages		= ext4_readpages,
3425 	.writepage		= ext4_writepage,
3426 	.writepages		= ext4_writepages,
3427 	.write_begin		= ext4_da_write_begin,
3428 	.write_end		= ext4_da_write_end,
3429 	.bmap			= ext4_bmap,
3430 	.invalidatepage		= ext4_da_invalidatepage,
3431 	.releasepage		= ext4_releasepage,
3432 	.direct_IO		= ext4_direct_IO,
3433 	.migratepage		= buffer_migrate_page,
3434 	.is_partially_uptodate  = block_is_partially_uptodate,
3435 	.error_remove_page	= generic_error_remove_page,
3436 };
3437 
3438 void ext4_set_aops(struct inode *inode)
3439 {
3440 	switch (ext4_inode_journal_mode(inode)) {
3441 	case EXT4_INODE_ORDERED_DATA_MODE:
3442 		ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3443 		break;
3444 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3445 		ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3446 		break;
3447 	case EXT4_INODE_JOURNAL_DATA_MODE:
3448 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3449 		return;
3450 	default:
3451 		BUG();
3452 	}
3453 	if (test_opt(inode->i_sb, DELALLOC))
3454 		inode->i_mapping->a_ops = &ext4_da_aops;
3455 	else
3456 		inode->i_mapping->a_ops = &ext4_aops;
3457 }
3458 
3459 static int __ext4_block_zero_page_range(handle_t *handle,
3460 		struct address_space *mapping, loff_t from, loff_t length)
3461 {
3462 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3463 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3464 	unsigned blocksize, pos;
3465 	ext4_lblk_t iblock;
3466 	struct inode *inode = mapping->host;
3467 	struct buffer_head *bh;
3468 	struct page *page;
3469 	int err = 0;
3470 
3471 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3472 				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3473 	if (!page)
3474 		return -ENOMEM;
3475 
3476 	blocksize = inode->i_sb->s_blocksize;
3477 
3478 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3479 
3480 	if (!page_has_buffers(page))
3481 		create_empty_buffers(page, blocksize, 0);
3482 
3483 	/* Find the buffer that contains "offset" */
3484 	bh = page_buffers(page);
3485 	pos = blocksize;
3486 	while (offset >= pos) {
3487 		bh = bh->b_this_page;
3488 		iblock++;
3489 		pos += blocksize;
3490 	}
3491 	if (buffer_freed(bh)) {
3492 		BUFFER_TRACE(bh, "freed: skip");
3493 		goto unlock;
3494 	}
3495 	if (!buffer_mapped(bh)) {
3496 		BUFFER_TRACE(bh, "unmapped");
3497 		ext4_get_block(inode, iblock, bh, 0);
3498 		/* unmapped? It's a hole - nothing to do */
3499 		if (!buffer_mapped(bh)) {
3500 			BUFFER_TRACE(bh, "still unmapped");
3501 			goto unlock;
3502 		}
3503 	}
3504 
3505 	/* Ok, it's mapped. Make sure it's up-to-date */
3506 	if (PageUptodate(page))
3507 		set_buffer_uptodate(bh);
3508 
3509 	if (!buffer_uptodate(bh)) {
3510 		err = -EIO;
3511 		ll_rw_block(READ, 1, &bh);
3512 		wait_on_buffer(bh);
3513 		/* Uhhuh. Read error. Complain and punt. */
3514 		if (!buffer_uptodate(bh))
3515 			goto unlock;
3516 		if (S_ISREG(inode->i_mode) &&
3517 		    ext4_encrypted_inode(inode)) {
3518 			/* We expect the key to be set. */
3519 			BUG_ON(!ext4_has_encryption_key(inode));
3520 			BUG_ON(blocksize != PAGE_CACHE_SIZE);
3521 			WARN_ON_ONCE(ext4_decrypt(page));
3522 		}
3523 	}
3524 	if (ext4_should_journal_data(inode)) {
3525 		BUFFER_TRACE(bh, "get write access");
3526 		err = ext4_journal_get_write_access(handle, bh);
3527 		if (err)
3528 			goto unlock;
3529 	}
3530 	zero_user(page, offset, length);
3531 	BUFFER_TRACE(bh, "zeroed end of block");
3532 
3533 	if (ext4_should_journal_data(inode)) {
3534 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3535 	} else {
3536 		err = 0;
3537 		mark_buffer_dirty(bh);
3538 		if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3539 			err = ext4_jbd2_file_inode(handle, inode);
3540 	}
3541 
3542 unlock:
3543 	unlock_page(page);
3544 	page_cache_release(page);
3545 	return err;
3546 }
3547 
3548 /*
3549  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3550  * starting from file offset 'from'.  The range to be zero'd must
3551  * be contained with in one block.  If the specified range exceeds
3552  * the end of the block it will be shortened to end of the block
3553  * that cooresponds to 'from'
3554  */
3555 static int ext4_block_zero_page_range(handle_t *handle,
3556 		struct address_space *mapping, loff_t from, loff_t length)
3557 {
3558 	struct inode *inode = mapping->host;
3559 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3560 	unsigned blocksize = inode->i_sb->s_blocksize;
3561 	unsigned max = blocksize - (offset & (blocksize - 1));
3562 
3563 	/*
3564 	 * correct length if it does not fall between
3565 	 * 'from' and the end of the block
3566 	 */
3567 	if (length > max || length < 0)
3568 		length = max;
3569 
3570 	if (IS_DAX(inode))
3571 		return dax_zero_page_range(inode, from, length, ext4_get_block);
3572 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3573 }
3574 
3575 /*
3576  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3577  * up to the end of the block which corresponds to `from'.
3578  * This required during truncate. We need to physically zero the tail end
3579  * of that block so it doesn't yield old data if the file is later grown.
3580  */
3581 static int ext4_block_truncate_page(handle_t *handle,
3582 		struct address_space *mapping, loff_t from)
3583 {
3584 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3585 	unsigned length;
3586 	unsigned blocksize;
3587 	struct inode *inode = mapping->host;
3588 
3589 	blocksize = inode->i_sb->s_blocksize;
3590 	length = blocksize - (offset & (blocksize - 1));
3591 
3592 	return ext4_block_zero_page_range(handle, mapping, from, length);
3593 }
3594 
3595 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3596 			     loff_t lstart, loff_t length)
3597 {
3598 	struct super_block *sb = inode->i_sb;
3599 	struct address_space *mapping = inode->i_mapping;
3600 	unsigned partial_start, partial_end;
3601 	ext4_fsblk_t start, end;
3602 	loff_t byte_end = (lstart + length - 1);
3603 	int err = 0;
3604 
3605 	partial_start = lstart & (sb->s_blocksize - 1);
3606 	partial_end = byte_end & (sb->s_blocksize - 1);
3607 
3608 	start = lstart >> sb->s_blocksize_bits;
3609 	end = byte_end >> sb->s_blocksize_bits;
3610 
3611 	/* Handle partial zero within the single block */
3612 	if (start == end &&
3613 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3614 		err = ext4_block_zero_page_range(handle, mapping,
3615 						 lstart, length);
3616 		return err;
3617 	}
3618 	/* Handle partial zero out on the start of the range */
3619 	if (partial_start) {
3620 		err = ext4_block_zero_page_range(handle, mapping,
3621 						 lstart, sb->s_blocksize);
3622 		if (err)
3623 			return err;
3624 	}
3625 	/* Handle partial zero out on the end of the range */
3626 	if (partial_end != sb->s_blocksize - 1)
3627 		err = ext4_block_zero_page_range(handle, mapping,
3628 						 byte_end - partial_end,
3629 						 partial_end + 1);
3630 	return err;
3631 }
3632 
3633 int ext4_can_truncate(struct inode *inode)
3634 {
3635 	if (S_ISREG(inode->i_mode))
3636 		return 1;
3637 	if (S_ISDIR(inode->i_mode))
3638 		return 1;
3639 	if (S_ISLNK(inode->i_mode))
3640 		return !ext4_inode_is_fast_symlink(inode);
3641 	return 0;
3642 }
3643 
3644 /*
3645  * We have to make sure i_disksize gets properly updated before we truncate
3646  * page cache due to hole punching or zero range. Otherwise i_disksize update
3647  * can get lost as it may have been postponed to submission of writeback but
3648  * that will never happen after we truncate page cache.
3649  */
3650 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3651 				      loff_t len)
3652 {
3653 	handle_t *handle;
3654 	loff_t size = i_size_read(inode);
3655 
3656 	WARN_ON(!inode_is_locked(inode));
3657 	if (offset > size || offset + len < size)
3658 		return 0;
3659 
3660 	if (EXT4_I(inode)->i_disksize >= size)
3661 		return 0;
3662 
3663 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3664 	if (IS_ERR(handle))
3665 		return PTR_ERR(handle);
3666 	ext4_update_i_disksize(inode, size);
3667 	ext4_mark_inode_dirty(handle, inode);
3668 	ext4_journal_stop(handle);
3669 
3670 	return 0;
3671 }
3672 
3673 /*
3674  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3675  * associated with the given offset and length
3676  *
3677  * @inode:  File inode
3678  * @offset: The offset where the hole will begin
3679  * @len:    The length of the hole
3680  *
3681  * Returns: 0 on success or negative on failure
3682  */
3683 
3684 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3685 {
3686 	struct super_block *sb = inode->i_sb;
3687 	ext4_lblk_t first_block, stop_block;
3688 	struct address_space *mapping = inode->i_mapping;
3689 	loff_t first_block_offset, last_block_offset;
3690 	handle_t *handle;
3691 	unsigned int credits;
3692 	int ret = 0;
3693 
3694 	if (!S_ISREG(inode->i_mode))
3695 		return -EOPNOTSUPP;
3696 
3697 	trace_ext4_punch_hole(inode, offset, length, 0);
3698 
3699 	/*
3700 	 * Write out all dirty pages to avoid race conditions
3701 	 * Then release them.
3702 	 */
3703 	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3704 		ret = filemap_write_and_wait_range(mapping, offset,
3705 						   offset + length - 1);
3706 		if (ret)
3707 			return ret;
3708 	}
3709 
3710 	inode_lock(inode);
3711 
3712 	/* No need to punch hole beyond i_size */
3713 	if (offset >= inode->i_size)
3714 		goto out_mutex;
3715 
3716 	/*
3717 	 * If the hole extends beyond i_size, set the hole
3718 	 * to end after the page that contains i_size
3719 	 */
3720 	if (offset + length > inode->i_size) {
3721 		length = inode->i_size +
3722 		   PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3723 		   offset;
3724 	}
3725 
3726 	if (offset & (sb->s_blocksize - 1) ||
3727 	    (offset + length) & (sb->s_blocksize - 1)) {
3728 		/*
3729 		 * Attach jinode to inode for jbd2 if we do any zeroing of
3730 		 * partial block
3731 		 */
3732 		ret = ext4_inode_attach_jinode(inode);
3733 		if (ret < 0)
3734 			goto out_mutex;
3735 
3736 	}
3737 
3738 	/* Wait all existing dio workers, newcomers will block on i_mutex */
3739 	ext4_inode_block_unlocked_dio(inode);
3740 	inode_dio_wait(inode);
3741 
3742 	/*
3743 	 * Prevent page faults from reinstantiating pages we have released from
3744 	 * page cache.
3745 	 */
3746 	down_write(&EXT4_I(inode)->i_mmap_sem);
3747 	first_block_offset = round_up(offset, sb->s_blocksize);
3748 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3749 
3750 	/* Now release the pages and zero block aligned part of pages*/
3751 	if (last_block_offset > first_block_offset) {
3752 		ret = ext4_update_disksize_before_punch(inode, offset, length);
3753 		if (ret)
3754 			goto out_dio;
3755 		truncate_pagecache_range(inode, first_block_offset,
3756 					 last_block_offset);
3757 	}
3758 
3759 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3760 		credits = ext4_writepage_trans_blocks(inode);
3761 	else
3762 		credits = ext4_blocks_for_truncate(inode);
3763 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3764 	if (IS_ERR(handle)) {
3765 		ret = PTR_ERR(handle);
3766 		ext4_std_error(sb, ret);
3767 		goto out_dio;
3768 	}
3769 
3770 	ret = ext4_zero_partial_blocks(handle, inode, offset,
3771 				       length);
3772 	if (ret)
3773 		goto out_stop;
3774 
3775 	first_block = (offset + sb->s_blocksize - 1) >>
3776 		EXT4_BLOCK_SIZE_BITS(sb);
3777 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3778 
3779 	/* If there are no blocks to remove, return now */
3780 	if (first_block >= stop_block)
3781 		goto out_stop;
3782 
3783 	down_write(&EXT4_I(inode)->i_data_sem);
3784 	ext4_discard_preallocations(inode);
3785 
3786 	ret = ext4_es_remove_extent(inode, first_block,
3787 				    stop_block - first_block);
3788 	if (ret) {
3789 		up_write(&EXT4_I(inode)->i_data_sem);
3790 		goto out_stop;
3791 	}
3792 
3793 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3794 		ret = ext4_ext_remove_space(inode, first_block,
3795 					    stop_block - 1);
3796 	else
3797 		ret = ext4_ind_remove_space(handle, inode, first_block,
3798 					    stop_block);
3799 
3800 	up_write(&EXT4_I(inode)->i_data_sem);
3801 	if (IS_SYNC(inode))
3802 		ext4_handle_sync(handle);
3803 
3804 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3805 	ext4_mark_inode_dirty(handle, inode);
3806 out_stop:
3807 	ext4_journal_stop(handle);
3808 out_dio:
3809 	up_write(&EXT4_I(inode)->i_mmap_sem);
3810 	ext4_inode_resume_unlocked_dio(inode);
3811 out_mutex:
3812 	inode_unlock(inode);
3813 	return ret;
3814 }
3815 
3816 int ext4_inode_attach_jinode(struct inode *inode)
3817 {
3818 	struct ext4_inode_info *ei = EXT4_I(inode);
3819 	struct jbd2_inode *jinode;
3820 
3821 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3822 		return 0;
3823 
3824 	jinode = jbd2_alloc_inode(GFP_KERNEL);
3825 	spin_lock(&inode->i_lock);
3826 	if (!ei->jinode) {
3827 		if (!jinode) {
3828 			spin_unlock(&inode->i_lock);
3829 			return -ENOMEM;
3830 		}
3831 		ei->jinode = jinode;
3832 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
3833 		jinode = NULL;
3834 	}
3835 	spin_unlock(&inode->i_lock);
3836 	if (unlikely(jinode != NULL))
3837 		jbd2_free_inode(jinode);
3838 	return 0;
3839 }
3840 
3841 /*
3842  * ext4_truncate()
3843  *
3844  * We block out ext4_get_block() block instantiations across the entire
3845  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3846  * simultaneously on behalf of the same inode.
3847  *
3848  * As we work through the truncate and commit bits of it to the journal there
3849  * is one core, guiding principle: the file's tree must always be consistent on
3850  * disk.  We must be able to restart the truncate after a crash.
3851  *
3852  * The file's tree may be transiently inconsistent in memory (although it
3853  * probably isn't), but whenever we close off and commit a journal transaction,
3854  * the contents of (the filesystem + the journal) must be consistent and
3855  * restartable.  It's pretty simple, really: bottom up, right to left (although
3856  * left-to-right works OK too).
3857  *
3858  * Note that at recovery time, journal replay occurs *before* the restart of
3859  * truncate against the orphan inode list.
3860  *
3861  * The committed inode has the new, desired i_size (which is the same as
3862  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3863  * that this inode's truncate did not complete and it will again call
3864  * ext4_truncate() to have another go.  So there will be instantiated blocks
3865  * to the right of the truncation point in a crashed ext4 filesystem.  But
3866  * that's fine - as long as they are linked from the inode, the post-crash
3867  * ext4_truncate() run will find them and release them.
3868  */
3869 void ext4_truncate(struct inode *inode)
3870 {
3871 	struct ext4_inode_info *ei = EXT4_I(inode);
3872 	unsigned int credits;
3873 	handle_t *handle;
3874 	struct address_space *mapping = inode->i_mapping;
3875 
3876 	/*
3877 	 * There is a possibility that we're either freeing the inode
3878 	 * or it's a completely new inode. In those cases we might not
3879 	 * have i_mutex locked because it's not necessary.
3880 	 */
3881 	if (!(inode->i_state & (I_NEW|I_FREEING)))
3882 		WARN_ON(!inode_is_locked(inode));
3883 	trace_ext4_truncate_enter(inode);
3884 
3885 	if (!ext4_can_truncate(inode))
3886 		return;
3887 
3888 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3889 
3890 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3891 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3892 
3893 	if (ext4_has_inline_data(inode)) {
3894 		int has_inline = 1;
3895 
3896 		ext4_inline_data_truncate(inode, &has_inline);
3897 		if (has_inline)
3898 			return;
3899 	}
3900 
3901 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
3902 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3903 		if (ext4_inode_attach_jinode(inode) < 0)
3904 			return;
3905 	}
3906 
3907 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3908 		credits = ext4_writepage_trans_blocks(inode);
3909 	else
3910 		credits = ext4_blocks_for_truncate(inode);
3911 
3912 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3913 	if (IS_ERR(handle)) {
3914 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
3915 		return;
3916 	}
3917 
3918 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3919 		ext4_block_truncate_page(handle, mapping, inode->i_size);
3920 
3921 	/*
3922 	 * We add the inode to the orphan list, so that if this
3923 	 * truncate spans multiple transactions, and we crash, we will
3924 	 * resume the truncate when the filesystem recovers.  It also
3925 	 * marks the inode dirty, to catch the new size.
3926 	 *
3927 	 * Implication: the file must always be in a sane, consistent
3928 	 * truncatable state while each transaction commits.
3929 	 */
3930 	if (ext4_orphan_add(handle, inode))
3931 		goto out_stop;
3932 
3933 	down_write(&EXT4_I(inode)->i_data_sem);
3934 
3935 	ext4_discard_preallocations(inode);
3936 
3937 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3938 		ext4_ext_truncate(handle, inode);
3939 	else
3940 		ext4_ind_truncate(handle, inode);
3941 
3942 	up_write(&ei->i_data_sem);
3943 
3944 	if (IS_SYNC(inode))
3945 		ext4_handle_sync(handle);
3946 
3947 out_stop:
3948 	/*
3949 	 * If this was a simple ftruncate() and the file will remain alive,
3950 	 * then we need to clear up the orphan record which we created above.
3951 	 * However, if this was a real unlink then we were called by
3952 	 * ext4_evict_inode(), and we allow that function to clean up the
3953 	 * orphan info for us.
3954 	 */
3955 	if (inode->i_nlink)
3956 		ext4_orphan_del(handle, inode);
3957 
3958 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3959 	ext4_mark_inode_dirty(handle, inode);
3960 	ext4_journal_stop(handle);
3961 
3962 	trace_ext4_truncate_exit(inode);
3963 }
3964 
3965 /*
3966  * ext4_get_inode_loc returns with an extra refcount against the inode's
3967  * underlying buffer_head on success. If 'in_mem' is true, we have all
3968  * data in memory that is needed to recreate the on-disk version of this
3969  * inode.
3970  */
3971 static int __ext4_get_inode_loc(struct inode *inode,
3972 				struct ext4_iloc *iloc, int in_mem)
3973 {
3974 	struct ext4_group_desc	*gdp;
3975 	struct buffer_head	*bh;
3976 	struct super_block	*sb = inode->i_sb;
3977 	ext4_fsblk_t		block;
3978 	int			inodes_per_block, inode_offset;
3979 
3980 	iloc->bh = NULL;
3981 	if (!ext4_valid_inum(sb, inode->i_ino))
3982 		return -EFSCORRUPTED;
3983 
3984 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3985 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3986 	if (!gdp)
3987 		return -EIO;
3988 
3989 	/*
3990 	 * Figure out the offset within the block group inode table
3991 	 */
3992 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3993 	inode_offset = ((inode->i_ino - 1) %
3994 			EXT4_INODES_PER_GROUP(sb));
3995 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3996 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3997 
3998 	bh = sb_getblk(sb, block);
3999 	if (unlikely(!bh))
4000 		return -ENOMEM;
4001 	if (!buffer_uptodate(bh)) {
4002 		lock_buffer(bh);
4003 
4004 		/*
4005 		 * If the buffer has the write error flag, we have failed
4006 		 * to write out another inode in the same block.  In this
4007 		 * case, we don't have to read the block because we may
4008 		 * read the old inode data successfully.
4009 		 */
4010 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4011 			set_buffer_uptodate(bh);
4012 
4013 		if (buffer_uptodate(bh)) {
4014 			/* someone brought it uptodate while we waited */
4015 			unlock_buffer(bh);
4016 			goto has_buffer;
4017 		}
4018 
4019 		/*
4020 		 * If we have all information of the inode in memory and this
4021 		 * is the only valid inode in the block, we need not read the
4022 		 * block.
4023 		 */
4024 		if (in_mem) {
4025 			struct buffer_head *bitmap_bh;
4026 			int i, start;
4027 
4028 			start = inode_offset & ~(inodes_per_block - 1);
4029 
4030 			/* Is the inode bitmap in cache? */
4031 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4032 			if (unlikely(!bitmap_bh))
4033 				goto make_io;
4034 
4035 			/*
4036 			 * If the inode bitmap isn't in cache then the
4037 			 * optimisation may end up performing two reads instead
4038 			 * of one, so skip it.
4039 			 */
4040 			if (!buffer_uptodate(bitmap_bh)) {
4041 				brelse(bitmap_bh);
4042 				goto make_io;
4043 			}
4044 			for (i = start; i < start + inodes_per_block; i++) {
4045 				if (i == inode_offset)
4046 					continue;
4047 				if (ext4_test_bit(i, bitmap_bh->b_data))
4048 					break;
4049 			}
4050 			brelse(bitmap_bh);
4051 			if (i == start + inodes_per_block) {
4052 				/* all other inodes are free, so skip I/O */
4053 				memset(bh->b_data, 0, bh->b_size);
4054 				set_buffer_uptodate(bh);
4055 				unlock_buffer(bh);
4056 				goto has_buffer;
4057 			}
4058 		}
4059 
4060 make_io:
4061 		/*
4062 		 * If we need to do any I/O, try to pre-readahead extra
4063 		 * blocks from the inode table.
4064 		 */
4065 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4066 			ext4_fsblk_t b, end, table;
4067 			unsigned num;
4068 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4069 
4070 			table = ext4_inode_table(sb, gdp);
4071 			/* s_inode_readahead_blks is always a power of 2 */
4072 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4073 			if (table > b)
4074 				b = table;
4075 			end = b + ra_blks;
4076 			num = EXT4_INODES_PER_GROUP(sb);
4077 			if (ext4_has_group_desc_csum(sb))
4078 				num -= ext4_itable_unused_count(sb, gdp);
4079 			table += num / inodes_per_block;
4080 			if (end > table)
4081 				end = table;
4082 			while (b <= end)
4083 				sb_breadahead(sb, b++);
4084 		}
4085 
4086 		/*
4087 		 * There are other valid inodes in the buffer, this inode
4088 		 * has in-inode xattrs, or we don't have this inode in memory.
4089 		 * Read the block from disk.
4090 		 */
4091 		trace_ext4_load_inode(inode);
4092 		get_bh(bh);
4093 		bh->b_end_io = end_buffer_read_sync;
4094 		submit_bh(READ | REQ_META | REQ_PRIO, bh);
4095 		wait_on_buffer(bh);
4096 		if (!buffer_uptodate(bh)) {
4097 			EXT4_ERROR_INODE_BLOCK(inode, block,
4098 					       "unable to read itable block");
4099 			brelse(bh);
4100 			return -EIO;
4101 		}
4102 	}
4103 has_buffer:
4104 	iloc->bh = bh;
4105 	return 0;
4106 }
4107 
4108 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4109 {
4110 	/* We have all inode data except xattrs in memory here. */
4111 	return __ext4_get_inode_loc(inode, iloc,
4112 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4113 }
4114 
4115 void ext4_set_inode_flags(struct inode *inode)
4116 {
4117 	unsigned int flags = EXT4_I(inode)->i_flags;
4118 	unsigned int new_fl = 0;
4119 
4120 	if (flags & EXT4_SYNC_FL)
4121 		new_fl |= S_SYNC;
4122 	if (flags & EXT4_APPEND_FL)
4123 		new_fl |= S_APPEND;
4124 	if (flags & EXT4_IMMUTABLE_FL)
4125 		new_fl |= S_IMMUTABLE;
4126 	if (flags & EXT4_NOATIME_FL)
4127 		new_fl |= S_NOATIME;
4128 	if (flags & EXT4_DIRSYNC_FL)
4129 		new_fl |= S_DIRSYNC;
4130 	if (test_opt(inode->i_sb, DAX))
4131 		new_fl |= S_DAX;
4132 	inode_set_flags(inode, new_fl,
4133 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4134 }
4135 
4136 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4137 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4138 {
4139 	unsigned int vfs_fl;
4140 	unsigned long old_fl, new_fl;
4141 
4142 	do {
4143 		vfs_fl = ei->vfs_inode.i_flags;
4144 		old_fl = ei->i_flags;
4145 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4146 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4147 				EXT4_DIRSYNC_FL);
4148 		if (vfs_fl & S_SYNC)
4149 			new_fl |= EXT4_SYNC_FL;
4150 		if (vfs_fl & S_APPEND)
4151 			new_fl |= EXT4_APPEND_FL;
4152 		if (vfs_fl & S_IMMUTABLE)
4153 			new_fl |= EXT4_IMMUTABLE_FL;
4154 		if (vfs_fl & S_NOATIME)
4155 			new_fl |= EXT4_NOATIME_FL;
4156 		if (vfs_fl & S_DIRSYNC)
4157 			new_fl |= EXT4_DIRSYNC_FL;
4158 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4159 }
4160 
4161 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4162 				  struct ext4_inode_info *ei)
4163 {
4164 	blkcnt_t i_blocks ;
4165 	struct inode *inode = &(ei->vfs_inode);
4166 	struct super_block *sb = inode->i_sb;
4167 
4168 	if (ext4_has_feature_huge_file(sb)) {
4169 		/* we are using combined 48 bit field */
4170 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4171 					le32_to_cpu(raw_inode->i_blocks_lo);
4172 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4173 			/* i_blocks represent file system block size */
4174 			return i_blocks  << (inode->i_blkbits - 9);
4175 		} else {
4176 			return i_blocks;
4177 		}
4178 	} else {
4179 		return le32_to_cpu(raw_inode->i_blocks_lo);
4180 	}
4181 }
4182 
4183 static inline void ext4_iget_extra_inode(struct inode *inode,
4184 					 struct ext4_inode *raw_inode,
4185 					 struct ext4_inode_info *ei)
4186 {
4187 	__le32 *magic = (void *)raw_inode +
4188 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4189 	if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4190 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4191 		ext4_find_inline_data_nolock(inode);
4192 	} else
4193 		EXT4_I(inode)->i_inline_off = 0;
4194 }
4195 
4196 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4197 {
4198 	if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, EXT4_FEATURE_RO_COMPAT_PROJECT))
4199 		return -EOPNOTSUPP;
4200 	*projid = EXT4_I(inode)->i_projid;
4201 	return 0;
4202 }
4203 
4204 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4205 {
4206 	struct ext4_iloc iloc;
4207 	struct ext4_inode *raw_inode;
4208 	struct ext4_inode_info *ei;
4209 	struct inode *inode;
4210 	journal_t *journal = EXT4_SB(sb)->s_journal;
4211 	long ret;
4212 	int block;
4213 	uid_t i_uid;
4214 	gid_t i_gid;
4215 	projid_t i_projid;
4216 
4217 	inode = iget_locked(sb, ino);
4218 	if (!inode)
4219 		return ERR_PTR(-ENOMEM);
4220 	if (!(inode->i_state & I_NEW))
4221 		return inode;
4222 
4223 	ei = EXT4_I(inode);
4224 	iloc.bh = NULL;
4225 
4226 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4227 	if (ret < 0)
4228 		goto bad_inode;
4229 	raw_inode = ext4_raw_inode(&iloc);
4230 
4231 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4232 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4233 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4234 		    EXT4_INODE_SIZE(inode->i_sb)) {
4235 			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4236 				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4237 				EXT4_INODE_SIZE(inode->i_sb));
4238 			ret = -EFSCORRUPTED;
4239 			goto bad_inode;
4240 		}
4241 	} else
4242 		ei->i_extra_isize = 0;
4243 
4244 	/* Precompute checksum seed for inode metadata */
4245 	if (ext4_has_metadata_csum(sb)) {
4246 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4247 		__u32 csum;
4248 		__le32 inum = cpu_to_le32(inode->i_ino);
4249 		__le32 gen = raw_inode->i_generation;
4250 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4251 				   sizeof(inum));
4252 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4253 					      sizeof(gen));
4254 	}
4255 
4256 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4257 		EXT4_ERROR_INODE(inode, "checksum invalid");
4258 		ret = -EFSBADCRC;
4259 		goto bad_inode;
4260 	}
4261 
4262 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4263 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4264 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4265 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_PROJECT) &&
4266 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4267 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4268 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4269 	else
4270 		i_projid = EXT4_DEF_PROJID;
4271 
4272 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4273 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4274 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4275 	}
4276 	i_uid_write(inode, i_uid);
4277 	i_gid_write(inode, i_gid);
4278 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4279 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4280 
4281 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4282 	ei->i_inline_off = 0;
4283 	ei->i_dir_start_lookup = 0;
4284 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4285 	/* We now have enough fields to check if the inode was active or not.
4286 	 * This is needed because nfsd might try to access dead inodes
4287 	 * the test is that same one that e2fsck uses
4288 	 * NeilBrown 1999oct15
4289 	 */
4290 	if (inode->i_nlink == 0) {
4291 		if ((inode->i_mode == 0 ||
4292 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4293 		    ino != EXT4_BOOT_LOADER_INO) {
4294 			/* this inode is deleted */
4295 			ret = -ESTALE;
4296 			goto bad_inode;
4297 		}
4298 		/* The only unlinked inodes we let through here have
4299 		 * valid i_mode and are being read by the orphan
4300 		 * recovery code: that's fine, we're about to complete
4301 		 * the process of deleting those.
4302 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4303 		 * not initialized on a new filesystem. */
4304 	}
4305 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4306 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4307 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4308 	if (ext4_has_feature_64bit(sb))
4309 		ei->i_file_acl |=
4310 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4311 	inode->i_size = ext4_isize(raw_inode);
4312 	ei->i_disksize = inode->i_size;
4313 #ifdef CONFIG_QUOTA
4314 	ei->i_reserved_quota = 0;
4315 #endif
4316 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4317 	ei->i_block_group = iloc.block_group;
4318 	ei->i_last_alloc_group = ~0;
4319 	/*
4320 	 * NOTE! The in-memory inode i_data array is in little-endian order
4321 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4322 	 */
4323 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4324 		ei->i_data[block] = raw_inode->i_block[block];
4325 	INIT_LIST_HEAD(&ei->i_orphan);
4326 
4327 	/*
4328 	 * Set transaction id's of transactions that have to be committed
4329 	 * to finish f[data]sync. We set them to currently running transaction
4330 	 * as we cannot be sure that the inode or some of its metadata isn't
4331 	 * part of the transaction - the inode could have been reclaimed and
4332 	 * now it is reread from disk.
4333 	 */
4334 	if (journal) {
4335 		transaction_t *transaction;
4336 		tid_t tid;
4337 
4338 		read_lock(&journal->j_state_lock);
4339 		if (journal->j_running_transaction)
4340 			transaction = journal->j_running_transaction;
4341 		else
4342 			transaction = journal->j_committing_transaction;
4343 		if (transaction)
4344 			tid = transaction->t_tid;
4345 		else
4346 			tid = journal->j_commit_sequence;
4347 		read_unlock(&journal->j_state_lock);
4348 		ei->i_sync_tid = tid;
4349 		ei->i_datasync_tid = tid;
4350 	}
4351 
4352 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4353 		if (ei->i_extra_isize == 0) {
4354 			/* The extra space is currently unused. Use it. */
4355 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4356 					    EXT4_GOOD_OLD_INODE_SIZE;
4357 		} else {
4358 			ext4_iget_extra_inode(inode, raw_inode, ei);
4359 		}
4360 	}
4361 
4362 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4363 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4364 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4365 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4366 
4367 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4368 		inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4369 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4370 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4371 				inode->i_version |=
4372 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4373 		}
4374 	}
4375 
4376 	ret = 0;
4377 	if (ei->i_file_acl &&
4378 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4379 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4380 				 ei->i_file_acl);
4381 		ret = -EFSCORRUPTED;
4382 		goto bad_inode;
4383 	} else if (!ext4_has_inline_data(inode)) {
4384 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4385 			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4386 			    (S_ISLNK(inode->i_mode) &&
4387 			     !ext4_inode_is_fast_symlink(inode))))
4388 				/* Validate extent which is part of inode */
4389 				ret = ext4_ext_check_inode(inode);
4390 		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4391 			   (S_ISLNK(inode->i_mode) &&
4392 			    !ext4_inode_is_fast_symlink(inode))) {
4393 			/* Validate block references which are part of inode */
4394 			ret = ext4_ind_check_inode(inode);
4395 		}
4396 	}
4397 	if (ret)
4398 		goto bad_inode;
4399 
4400 	if (S_ISREG(inode->i_mode)) {
4401 		inode->i_op = &ext4_file_inode_operations;
4402 		inode->i_fop = &ext4_file_operations;
4403 		ext4_set_aops(inode);
4404 	} else if (S_ISDIR(inode->i_mode)) {
4405 		inode->i_op = &ext4_dir_inode_operations;
4406 		inode->i_fop = &ext4_dir_operations;
4407 	} else if (S_ISLNK(inode->i_mode)) {
4408 		if (ext4_encrypted_inode(inode)) {
4409 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4410 			ext4_set_aops(inode);
4411 		} else if (ext4_inode_is_fast_symlink(inode)) {
4412 			inode->i_link = (char *)ei->i_data;
4413 			inode->i_op = &ext4_fast_symlink_inode_operations;
4414 			nd_terminate_link(ei->i_data, inode->i_size,
4415 				sizeof(ei->i_data) - 1);
4416 		} else {
4417 			inode->i_op = &ext4_symlink_inode_operations;
4418 			ext4_set_aops(inode);
4419 		}
4420 		inode_nohighmem(inode);
4421 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4422 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4423 		inode->i_op = &ext4_special_inode_operations;
4424 		if (raw_inode->i_block[0])
4425 			init_special_inode(inode, inode->i_mode,
4426 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4427 		else
4428 			init_special_inode(inode, inode->i_mode,
4429 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4430 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4431 		make_bad_inode(inode);
4432 	} else {
4433 		ret = -EFSCORRUPTED;
4434 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4435 		goto bad_inode;
4436 	}
4437 	brelse(iloc.bh);
4438 	ext4_set_inode_flags(inode);
4439 	unlock_new_inode(inode);
4440 	return inode;
4441 
4442 bad_inode:
4443 	brelse(iloc.bh);
4444 	iget_failed(inode);
4445 	return ERR_PTR(ret);
4446 }
4447 
4448 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4449 {
4450 	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4451 		return ERR_PTR(-EFSCORRUPTED);
4452 	return ext4_iget(sb, ino);
4453 }
4454 
4455 static int ext4_inode_blocks_set(handle_t *handle,
4456 				struct ext4_inode *raw_inode,
4457 				struct ext4_inode_info *ei)
4458 {
4459 	struct inode *inode = &(ei->vfs_inode);
4460 	u64 i_blocks = inode->i_blocks;
4461 	struct super_block *sb = inode->i_sb;
4462 
4463 	if (i_blocks <= ~0U) {
4464 		/*
4465 		 * i_blocks can be represented in a 32 bit variable
4466 		 * as multiple of 512 bytes
4467 		 */
4468 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4469 		raw_inode->i_blocks_high = 0;
4470 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4471 		return 0;
4472 	}
4473 	if (!ext4_has_feature_huge_file(sb))
4474 		return -EFBIG;
4475 
4476 	if (i_blocks <= 0xffffffffffffULL) {
4477 		/*
4478 		 * i_blocks can be represented in a 48 bit variable
4479 		 * as multiple of 512 bytes
4480 		 */
4481 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4482 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4483 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4484 	} else {
4485 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4486 		/* i_block is stored in file system block size */
4487 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4488 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4489 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4490 	}
4491 	return 0;
4492 }
4493 
4494 struct other_inode {
4495 	unsigned long		orig_ino;
4496 	struct ext4_inode	*raw_inode;
4497 };
4498 
4499 static int other_inode_match(struct inode * inode, unsigned long ino,
4500 			     void *data)
4501 {
4502 	struct other_inode *oi = (struct other_inode *) data;
4503 
4504 	if ((inode->i_ino != ino) ||
4505 	    (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4506 			       I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4507 	    ((inode->i_state & I_DIRTY_TIME) == 0))
4508 		return 0;
4509 	spin_lock(&inode->i_lock);
4510 	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4511 				I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4512 	    (inode->i_state & I_DIRTY_TIME)) {
4513 		struct ext4_inode_info	*ei = EXT4_I(inode);
4514 
4515 		inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4516 		spin_unlock(&inode->i_lock);
4517 
4518 		spin_lock(&ei->i_raw_lock);
4519 		EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4520 		EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4521 		EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4522 		ext4_inode_csum_set(inode, oi->raw_inode, ei);
4523 		spin_unlock(&ei->i_raw_lock);
4524 		trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4525 		return -1;
4526 	}
4527 	spin_unlock(&inode->i_lock);
4528 	return -1;
4529 }
4530 
4531 /*
4532  * Opportunistically update the other time fields for other inodes in
4533  * the same inode table block.
4534  */
4535 static void ext4_update_other_inodes_time(struct super_block *sb,
4536 					  unsigned long orig_ino, char *buf)
4537 {
4538 	struct other_inode oi;
4539 	unsigned long ino;
4540 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4541 	int inode_size = EXT4_INODE_SIZE(sb);
4542 
4543 	oi.orig_ino = orig_ino;
4544 	/*
4545 	 * Calculate the first inode in the inode table block.  Inode
4546 	 * numbers are one-based.  That is, the first inode in a block
4547 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4548 	 */
4549 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4550 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4551 		if (ino == orig_ino)
4552 			continue;
4553 		oi.raw_inode = (struct ext4_inode *) buf;
4554 		(void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4555 	}
4556 }
4557 
4558 /*
4559  * Post the struct inode info into an on-disk inode location in the
4560  * buffer-cache.  This gobbles the caller's reference to the
4561  * buffer_head in the inode location struct.
4562  *
4563  * The caller must have write access to iloc->bh.
4564  */
4565 static int ext4_do_update_inode(handle_t *handle,
4566 				struct inode *inode,
4567 				struct ext4_iloc *iloc)
4568 {
4569 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4570 	struct ext4_inode_info *ei = EXT4_I(inode);
4571 	struct buffer_head *bh = iloc->bh;
4572 	struct super_block *sb = inode->i_sb;
4573 	int err = 0, rc, block;
4574 	int need_datasync = 0, set_large_file = 0;
4575 	uid_t i_uid;
4576 	gid_t i_gid;
4577 	projid_t i_projid;
4578 
4579 	spin_lock(&ei->i_raw_lock);
4580 
4581 	/* For fields not tracked in the in-memory inode,
4582 	 * initialise them to zero for new inodes. */
4583 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4584 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4585 
4586 	ext4_get_inode_flags(ei);
4587 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4588 	i_uid = i_uid_read(inode);
4589 	i_gid = i_gid_read(inode);
4590 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4591 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4592 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4593 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4594 /*
4595  * Fix up interoperability with old kernels. Otherwise, old inodes get
4596  * re-used with the upper 16 bits of the uid/gid intact
4597  */
4598 		if (!ei->i_dtime) {
4599 			raw_inode->i_uid_high =
4600 				cpu_to_le16(high_16_bits(i_uid));
4601 			raw_inode->i_gid_high =
4602 				cpu_to_le16(high_16_bits(i_gid));
4603 		} else {
4604 			raw_inode->i_uid_high = 0;
4605 			raw_inode->i_gid_high = 0;
4606 		}
4607 	} else {
4608 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4609 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4610 		raw_inode->i_uid_high = 0;
4611 		raw_inode->i_gid_high = 0;
4612 	}
4613 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4614 
4615 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4616 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4617 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4618 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4619 
4620 	err = ext4_inode_blocks_set(handle, raw_inode, ei);
4621 	if (err) {
4622 		spin_unlock(&ei->i_raw_lock);
4623 		goto out_brelse;
4624 	}
4625 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4626 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4627 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4628 		raw_inode->i_file_acl_high =
4629 			cpu_to_le16(ei->i_file_acl >> 32);
4630 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4631 	if (ei->i_disksize != ext4_isize(raw_inode)) {
4632 		ext4_isize_set(raw_inode, ei->i_disksize);
4633 		need_datasync = 1;
4634 	}
4635 	if (ei->i_disksize > 0x7fffffffULL) {
4636 		if (!ext4_has_feature_large_file(sb) ||
4637 				EXT4_SB(sb)->s_es->s_rev_level ==
4638 		    cpu_to_le32(EXT4_GOOD_OLD_REV))
4639 			set_large_file = 1;
4640 	}
4641 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4642 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4643 		if (old_valid_dev(inode->i_rdev)) {
4644 			raw_inode->i_block[0] =
4645 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4646 			raw_inode->i_block[1] = 0;
4647 		} else {
4648 			raw_inode->i_block[0] = 0;
4649 			raw_inode->i_block[1] =
4650 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4651 			raw_inode->i_block[2] = 0;
4652 		}
4653 	} else if (!ext4_has_inline_data(inode)) {
4654 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4655 			raw_inode->i_block[block] = ei->i_data[block];
4656 	}
4657 
4658 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4659 		raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4660 		if (ei->i_extra_isize) {
4661 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4662 				raw_inode->i_version_hi =
4663 					cpu_to_le32(inode->i_version >> 32);
4664 			raw_inode->i_extra_isize =
4665 				cpu_to_le16(ei->i_extra_isize);
4666 		}
4667 	}
4668 
4669 	BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
4670 			EXT4_FEATURE_RO_COMPAT_PROJECT) &&
4671 	       i_projid != EXT4_DEF_PROJID);
4672 
4673 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4674 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4675 		raw_inode->i_projid = cpu_to_le32(i_projid);
4676 
4677 	ext4_inode_csum_set(inode, raw_inode, ei);
4678 	spin_unlock(&ei->i_raw_lock);
4679 	if (inode->i_sb->s_flags & MS_LAZYTIME)
4680 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4681 					      bh->b_data);
4682 
4683 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4684 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4685 	if (!err)
4686 		err = rc;
4687 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4688 	if (set_large_file) {
4689 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4690 		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4691 		if (err)
4692 			goto out_brelse;
4693 		ext4_update_dynamic_rev(sb);
4694 		ext4_set_feature_large_file(sb);
4695 		ext4_handle_sync(handle);
4696 		err = ext4_handle_dirty_super(handle, sb);
4697 	}
4698 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4699 out_brelse:
4700 	brelse(bh);
4701 	ext4_std_error(inode->i_sb, err);
4702 	return err;
4703 }
4704 
4705 /*
4706  * ext4_write_inode()
4707  *
4708  * We are called from a few places:
4709  *
4710  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4711  *   Here, there will be no transaction running. We wait for any running
4712  *   transaction to commit.
4713  *
4714  * - Within flush work (sys_sync(), kupdate and such).
4715  *   We wait on commit, if told to.
4716  *
4717  * - Within iput_final() -> write_inode_now()
4718  *   We wait on commit, if told to.
4719  *
4720  * In all cases it is actually safe for us to return without doing anything,
4721  * because the inode has been copied into a raw inode buffer in
4722  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4723  * writeback.
4724  *
4725  * Note that we are absolutely dependent upon all inode dirtiers doing the
4726  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4727  * which we are interested.
4728  *
4729  * It would be a bug for them to not do this.  The code:
4730  *
4731  *	mark_inode_dirty(inode)
4732  *	stuff();
4733  *	inode->i_size = expr;
4734  *
4735  * is in error because write_inode() could occur while `stuff()' is running,
4736  * and the new i_size will be lost.  Plus the inode will no longer be on the
4737  * superblock's dirty inode list.
4738  */
4739 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4740 {
4741 	int err;
4742 
4743 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4744 		return 0;
4745 
4746 	if (EXT4_SB(inode->i_sb)->s_journal) {
4747 		if (ext4_journal_current_handle()) {
4748 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4749 			dump_stack();
4750 			return -EIO;
4751 		}
4752 
4753 		/*
4754 		 * No need to force transaction in WB_SYNC_NONE mode. Also
4755 		 * ext4_sync_fs() will force the commit after everything is
4756 		 * written.
4757 		 */
4758 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4759 			return 0;
4760 
4761 		err = ext4_force_commit(inode->i_sb);
4762 	} else {
4763 		struct ext4_iloc iloc;
4764 
4765 		err = __ext4_get_inode_loc(inode, &iloc, 0);
4766 		if (err)
4767 			return err;
4768 		/*
4769 		 * sync(2) will flush the whole buffer cache. No need to do
4770 		 * it here separately for each inode.
4771 		 */
4772 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4773 			sync_dirty_buffer(iloc.bh);
4774 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4775 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4776 					 "IO error syncing inode");
4777 			err = -EIO;
4778 		}
4779 		brelse(iloc.bh);
4780 	}
4781 	return err;
4782 }
4783 
4784 /*
4785  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4786  * buffers that are attached to a page stradding i_size and are undergoing
4787  * commit. In that case we have to wait for commit to finish and try again.
4788  */
4789 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4790 {
4791 	struct page *page;
4792 	unsigned offset;
4793 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4794 	tid_t commit_tid = 0;
4795 	int ret;
4796 
4797 	offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4798 	/*
4799 	 * All buffers in the last page remain valid? Then there's nothing to
4800 	 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4801 	 * blocksize case
4802 	 */
4803 	if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4804 		return;
4805 	while (1) {
4806 		page = find_lock_page(inode->i_mapping,
4807 				      inode->i_size >> PAGE_CACHE_SHIFT);
4808 		if (!page)
4809 			return;
4810 		ret = __ext4_journalled_invalidatepage(page, offset,
4811 						PAGE_CACHE_SIZE - offset);
4812 		unlock_page(page);
4813 		page_cache_release(page);
4814 		if (ret != -EBUSY)
4815 			return;
4816 		commit_tid = 0;
4817 		read_lock(&journal->j_state_lock);
4818 		if (journal->j_committing_transaction)
4819 			commit_tid = journal->j_committing_transaction->t_tid;
4820 		read_unlock(&journal->j_state_lock);
4821 		if (commit_tid)
4822 			jbd2_log_wait_commit(journal, commit_tid);
4823 	}
4824 }
4825 
4826 /*
4827  * ext4_setattr()
4828  *
4829  * Called from notify_change.
4830  *
4831  * We want to trap VFS attempts to truncate the file as soon as
4832  * possible.  In particular, we want to make sure that when the VFS
4833  * shrinks i_size, we put the inode on the orphan list and modify
4834  * i_disksize immediately, so that during the subsequent flushing of
4835  * dirty pages and freeing of disk blocks, we can guarantee that any
4836  * commit will leave the blocks being flushed in an unused state on
4837  * disk.  (On recovery, the inode will get truncated and the blocks will
4838  * be freed, so we have a strong guarantee that no future commit will
4839  * leave these blocks visible to the user.)
4840  *
4841  * Another thing we have to assure is that if we are in ordered mode
4842  * and inode is still attached to the committing transaction, we must
4843  * we start writeout of all the dirty pages which are being truncated.
4844  * This way we are sure that all the data written in the previous
4845  * transaction are already on disk (truncate waits for pages under
4846  * writeback).
4847  *
4848  * Called with inode->i_mutex down.
4849  */
4850 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4851 {
4852 	struct inode *inode = d_inode(dentry);
4853 	int error, rc = 0;
4854 	int orphan = 0;
4855 	const unsigned int ia_valid = attr->ia_valid;
4856 
4857 	error = inode_change_ok(inode, attr);
4858 	if (error)
4859 		return error;
4860 
4861 	if (is_quota_modification(inode, attr)) {
4862 		error = dquot_initialize(inode);
4863 		if (error)
4864 			return error;
4865 	}
4866 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4867 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4868 		handle_t *handle;
4869 
4870 		/* (user+group)*(old+new) structure, inode write (sb,
4871 		 * inode block, ? - but truncate inode update has it) */
4872 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4873 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4874 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4875 		if (IS_ERR(handle)) {
4876 			error = PTR_ERR(handle);
4877 			goto err_out;
4878 		}
4879 		error = dquot_transfer(inode, attr);
4880 		if (error) {
4881 			ext4_journal_stop(handle);
4882 			return error;
4883 		}
4884 		/* Update corresponding info in inode so that everything is in
4885 		 * one transaction */
4886 		if (attr->ia_valid & ATTR_UID)
4887 			inode->i_uid = attr->ia_uid;
4888 		if (attr->ia_valid & ATTR_GID)
4889 			inode->i_gid = attr->ia_gid;
4890 		error = ext4_mark_inode_dirty(handle, inode);
4891 		ext4_journal_stop(handle);
4892 	}
4893 
4894 	if (attr->ia_valid & ATTR_SIZE) {
4895 		handle_t *handle;
4896 		loff_t oldsize = inode->i_size;
4897 		int shrink = (attr->ia_size <= inode->i_size);
4898 
4899 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4900 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4901 
4902 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
4903 				return -EFBIG;
4904 		}
4905 		if (!S_ISREG(inode->i_mode))
4906 			return -EINVAL;
4907 
4908 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4909 			inode_inc_iversion(inode);
4910 
4911 		if (ext4_should_order_data(inode) &&
4912 		    (attr->ia_size < inode->i_size)) {
4913 			error = ext4_begin_ordered_truncate(inode,
4914 							    attr->ia_size);
4915 			if (error)
4916 				goto err_out;
4917 		}
4918 		if (attr->ia_size != inode->i_size) {
4919 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4920 			if (IS_ERR(handle)) {
4921 				error = PTR_ERR(handle);
4922 				goto err_out;
4923 			}
4924 			if (ext4_handle_valid(handle) && shrink) {
4925 				error = ext4_orphan_add(handle, inode);
4926 				orphan = 1;
4927 			}
4928 			/*
4929 			 * Update c/mtime on truncate up, ext4_truncate() will
4930 			 * update c/mtime in shrink case below
4931 			 */
4932 			if (!shrink) {
4933 				inode->i_mtime = ext4_current_time(inode);
4934 				inode->i_ctime = inode->i_mtime;
4935 			}
4936 			down_write(&EXT4_I(inode)->i_data_sem);
4937 			EXT4_I(inode)->i_disksize = attr->ia_size;
4938 			rc = ext4_mark_inode_dirty(handle, inode);
4939 			if (!error)
4940 				error = rc;
4941 			/*
4942 			 * We have to update i_size under i_data_sem together
4943 			 * with i_disksize to avoid races with writeback code
4944 			 * running ext4_wb_update_i_disksize().
4945 			 */
4946 			if (!error)
4947 				i_size_write(inode, attr->ia_size);
4948 			up_write(&EXT4_I(inode)->i_data_sem);
4949 			ext4_journal_stop(handle);
4950 			if (error) {
4951 				if (orphan)
4952 					ext4_orphan_del(NULL, inode);
4953 				goto err_out;
4954 			}
4955 		}
4956 		if (!shrink)
4957 			pagecache_isize_extended(inode, oldsize, inode->i_size);
4958 
4959 		/*
4960 		 * Blocks are going to be removed from the inode. Wait
4961 		 * for dio in flight.  Temporarily disable
4962 		 * dioread_nolock to prevent livelock.
4963 		 */
4964 		if (orphan) {
4965 			if (!ext4_should_journal_data(inode)) {
4966 				ext4_inode_block_unlocked_dio(inode);
4967 				inode_dio_wait(inode);
4968 				ext4_inode_resume_unlocked_dio(inode);
4969 			} else
4970 				ext4_wait_for_tail_page_commit(inode);
4971 		}
4972 		down_write(&EXT4_I(inode)->i_mmap_sem);
4973 		/*
4974 		 * Truncate pagecache after we've waited for commit
4975 		 * in data=journal mode to make pages freeable.
4976 		 */
4977 		truncate_pagecache(inode, inode->i_size);
4978 		if (shrink)
4979 			ext4_truncate(inode);
4980 		up_write(&EXT4_I(inode)->i_mmap_sem);
4981 	}
4982 
4983 	if (!rc) {
4984 		setattr_copy(inode, attr);
4985 		mark_inode_dirty(inode);
4986 	}
4987 
4988 	/*
4989 	 * If the call to ext4_truncate failed to get a transaction handle at
4990 	 * all, we need to clean up the in-core orphan list manually.
4991 	 */
4992 	if (orphan && inode->i_nlink)
4993 		ext4_orphan_del(NULL, inode);
4994 
4995 	if (!rc && (ia_valid & ATTR_MODE))
4996 		rc = posix_acl_chmod(inode, inode->i_mode);
4997 
4998 err_out:
4999 	ext4_std_error(inode->i_sb, error);
5000 	if (!error)
5001 		error = rc;
5002 	return error;
5003 }
5004 
5005 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5006 		 struct kstat *stat)
5007 {
5008 	struct inode *inode;
5009 	unsigned long long delalloc_blocks;
5010 
5011 	inode = d_inode(dentry);
5012 	generic_fillattr(inode, stat);
5013 
5014 	/*
5015 	 * If there is inline data in the inode, the inode will normally not
5016 	 * have data blocks allocated (it may have an external xattr block).
5017 	 * Report at least one sector for such files, so tools like tar, rsync,
5018 	 * others doen't incorrectly think the file is completely sparse.
5019 	 */
5020 	if (unlikely(ext4_has_inline_data(inode)))
5021 		stat->blocks += (stat->size + 511) >> 9;
5022 
5023 	/*
5024 	 * We can't update i_blocks if the block allocation is delayed
5025 	 * otherwise in the case of system crash before the real block
5026 	 * allocation is done, we will have i_blocks inconsistent with
5027 	 * on-disk file blocks.
5028 	 * We always keep i_blocks updated together with real
5029 	 * allocation. But to not confuse with user, stat
5030 	 * will return the blocks that include the delayed allocation
5031 	 * blocks for this file.
5032 	 */
5033 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5034 				   EXT4_I(inode)->i_reserved_data_blocks);
5035 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5036 	return 0;
5037 }
5038 
5039 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5040 				   int pextents)
5041 {
5042 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5043 		return ext4_ind_trans_blocks(inode, lblocks);
5044 	return ext4_ext_index_trans_blocks(inode, pextents);
5045 }
5046 
5047 /*
5048  * Account for index blocks, block groups bitmaps and block group
5049  * descriptor blocks if modify datablocks and index blocks
5050  * worse case, the indexs blocks spread over different block groups
5051  *
5052  * If datablocks are discontiguous, they are possible to spread over
5053  * different block groups too. If they are contiguous, with flexbg,
5054  * they could still across block group boundary.
5055  *
5056  * Also account for superblock, inode, quota and xattr blocks
5057  */
5058 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5059 				  int pextents)
5060 {
5061 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5062 	int gdpblocks;
5063 	int idxblocks;
5064 	int ret = 0;
5065 
5066 	/*
5067 	 * How many index blocks need to touch to map @lblocks logical blocks
5068 	 * to @pextents physical extents?
5069 	 */
5070 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5071 
5072 	ret = idxblocks;
5073 
5074 	/*
5075 	 * Now let's see how many group bitmaps and group descriptors need
5076 	 * to account
5077 	 */
5078 	groups = idxblocks + pextents;
5079 	gdpblocks = groups;
5080 	if (groups > ngroups)
5081 		groups = ngroups;
5082 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5083 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5084 
5085 	/* bitmaps and block group descriptor blocks */
5086 	ret += groups + gdpblocks;
5087 
5088 	/* Blocks for super block, inode, quota and xattr blocks */
5089 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5090 
5091 	return ret;
5092 }
5093 
5094 /*
5095  * Calculate the total number of credits to reserve to fit
5096  * the modification of a single pages into a single transaction,
5097  * which may include multiple chunks of block allocations.
5098  *
5099  * This could be called via ext4_write_begin()
5100  *
5101  * We need to consider the worse case, when
5102  * one new block per extent.
5103  */
5104 int ext4_writepage_trans_blocks(struct inode *inode)
5105 {
5106 	int bpp = ext4_journal_blocks_per_page(inode);
5107 	int ret;
5108 
5109 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5110 
5111 	/* Account for data blocks for journalled mode */
5112 	if (ext4_should_journal_data(inode))
5113 		ret += bpp;
5114 	return ret;
5115 }
5116 
5117 /*
5118  * Calculate the journal credits for a chunk of data modification.
5119  *
5120  * This is called from DIO, fallocate or whoever calling
5121  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5122  *
5123  * journal buffers for data blocks are not included here, as DIO
5124  * and fallocate do no need to journal data buffers.
5125  */
5126 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5127 {
5128 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5129 }
5130 
5131 /*
5132  * The caller must have previously called ext4_reserve_inode_write().
5133  * Give this, we know that the caller already has write access to iloc->bh.
5134  */
5135 int ext4_mark_iloc_dirty(handle_t *handle,
5136 			 struct inode *inode, struct ext4_iloc *iloc)
5137 {
5138 	int err = 0;
5139 
5140 	if (IS_I_VERSION(inode))
5141 		inode_inc_iversion(inode);
5142 
5143 	/* the do_update_inode consumes one bh->b_count */
5144 	get_bh(iloc->bh);
5145 
5146 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5147 	err = ext4_do_update_inode(handle, inode, iloc);
5148 	put_bh(iloc->bh);
5149 	return err;
5150 }
5151 
5152 /*
5153  * On success, We end up with an outstanding reference count against
5154  * iloc->bh.  This _must_ be cleaned up later.
5155  */
5156 
5157 int
5158 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5159 			 struct ext4_iloc *iloc)
5160 {
5161 	int err;
5162 
5163 	err = ext4_get_inode_loc(inode, iloc);
5164 	if (!err) {
5165 		BUFFER_TRACE(iloc->bh, "get_write_access");
5166 		err = ext4_journal_get_write_access(handle, iloc->bh);
5167 		if (err) {
5168 			brelse(iloc->bh);
5169 			iloc->bh = NULL;
5170 		}
5171 	}
5172 	ext4_std_error(inode->i_sb, err);
5173 	return err;
5174 }
5175 
5176 /*
5177  * Expand an inode by new_extra_isize bytes.
5178  * Returns 0 on success or negative error number on failure.
5179  */
5180 static int ext4_expand_extra_isize(struct inode *inode,
5181 				   unsigned int new_extra_isize,
5182 				   struct ext4_iloc iloc,
5183 				   handle_t *handle)
5184 {
5185 	struct ext4_inode *raw_inode;
5186 	struct ext4_xattr_ibody_header *header;
5187 
5188 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5189 		return 0;
5190 
5191 	raw_inode = ext4_raw_inode(&iloc);
5192 
5193 	header = IHDR(inode, raw_inode);
5194 
5195 	/* No extended attributes present */
5196 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5197 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5198 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5199 			new_extra_isize);
5200 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5201 		return 0;
5202 	}
5203 
5204 	/* try to expand with EAs present */
5205 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5206 					  raw_inode, handle);
5207 }
5208 
5209 /*
5210  * What we do here is to mark the in-core inode as clean with respect to inode
5211  * dirtiness (it may still be data-dirty).
5212  * This means that the in-core inode may be reaped by prune_icache
5213  * without having to perform any I/O.  This is a very good thing,
5214  * because *any* task may call prune_icache - even ones which
5215  * have a transaction open against a different journal.
5216  *
5217  * Is this cheating?  Not really.  Sure, we haven't written the
5218  * inode out, but prune_icache isn't a user-visible syncing function.
5219  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5220  * we start and wait on commits.
5221  */
5222 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5223 {
5224 	struct ext4_iloc iloc;
5225 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5226 	static unsigned int mnt_count;
5227 	int err, ret;
5228 
5229 	might_sleep();
5230 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5231 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5232 	if (ext4_handle_valid(handle) &&
5233 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5234 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5235 		/*
5236 		 * We need extra buffer credits since we may write into EA block
5237 		 * with this same handle. If journal_extend fails, then it will
5238 		 * only result in a minor loss of functionality for that inode.
5239 		 * If this is felt to be critical, then e2fsck should be run to
5240 		 * force a large enough s_min_extra_isize.
5241 		 */
5242 		if ((jbd2_journal_extend(handle,
5243 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5244 			ret = ext4_expand_extra_isize(inode,
5245 						      sbi->s_want_extra_isize,
5246 						      iloc, handle);
5247 			if (ret) {
5248 				ext4_set_inode_state(inode,
5249 						     EXT4_STATE_NO_EXPAND);
5250 				if (mnt_count !=
5251 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5252 					ext4_warning(inode->i_sb,
5253 					"Unable to expand inode %lu. Delete"
5254 					" some EAs or run e2fsck.",
5255 					inode->i_ino);
5256 					mnt_count =
5257 					  le16_to_cpu(sbi->s_es->s_mnt_count);
5258 				}
5259 			}
5260 		}
5261 	}
5262 	if (!err)
5263 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5264 	return err;
5265 }
5266 
5267 /*
5268  * ext4_dirty_inode() is called from __mark_inode_dirty()
5269  *
5270  * We're really interested in the case where a file is being extended.
5271  * i_size has been changed by generic_commit_write() and we thus need
5272  * to include the updated inode in the current transaction.
5273  *
5274  * Also, dquot_alloc_block() will always dirty the inode when blocks
5275  * are allocated to the file.
5276  *
5277  * If the inode is marked synchronous, we don't honour that here - doing
5278  * so would cause a commit on atime updates, which we don't bother doing.
5279  * We handle synchronous inodes at the highest possible level.
5280  *
5281  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5282  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5283  * to copy into the on-disk inode structure are the timestamp files.
5284  */
5285 void ext4_dirty_inode(struct inode *inode, int flags)
5286 {
5287 	handle_t *handle;
5288 
5289 	if (flags == I_DIRTY_TIME)
5290 		return;
5291 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5292 	if (IS_ERR(handle))
5293 		goto out;
5294 
5295 	ext4_mark_inode_dirty(handle, inode);
5296 
5297 	ext4_journal_stop(handle);
5298 out:
5299 	return;
5300 }
5301 
5302 #if 0
5303 /*
5304  * Bind an inode's backing buffer_head into this transaction, to prevent
5305  * it from being flushed to disk early.  Unlike
5306  * ext4_reserve_inode_write, this leaves behind no bh reference and
5307  * returns no iloc structure, so the caller needs to repeat the iloc
5308  * lookup to mark the inode dirty later.
5309  */
5310 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5311 {
5312 	struct ext4_iloc iloc;
5313 
5314 	int err = 0;
5315 	if (handle) {
5316 		err = ext4_get_inode_loc(inode, &iloc);
5317 		if (!err) {
5318 			BUFFER_TRACE(iloc.bh, "get_write_access");
5319 			err = jbd2_journal_get_write_access(handle, iloc.bh);
5320 			if (!err)
5321 				err = ext4_handle_dirty_metadata(handle,
5322 								 NULL,
5323 								 iloc.bh);
5324 			brelse(iloc.bh);
5325 		}
5326 	}
5327 	ext4_std_error(inode->i_sb, err);
5328 	return err;
5329 }
5330 #endif
5331 
5332 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5333 {
5334 	journal_t *journal;
5335 	handle_t *handle;
5336 	int err;
5337 
5338 	/*
5339 	 * We have to be very careful here: changing a data block's
5340 	 * journaling status dynamically is dangerous.  If we write a
5341 	 * data block to the journal, change the status and then delete
5342 	 * that block, we risk forgetting to revoke the old log record
5343 	 * from the journal and so a subsequent replay can corrupt data.
5344 	 * So, first we make sure that the journal is empty and that
5345 	 * nobody is changing anything.
5346 	 */
5347 
5348 	journal = EXT4_JOURNAL(inode);
5349 	if (!journal)
5350 		return 0;
5351 	if (is_journal_aborted(journal))
5352 		return -EROFS;
5353 	/* We have to allocate physical blocks for delalloc blocks
5354 	 * before flushing journal. otherwise delalloc blocks can not
5355 	 * be allocated any more. even more truncate on delalloc blocks
5356 	 * could trigger BUG by flushing delalloc blocks in journal.
5357 	 * There is no delalloc block in non-journal data mode.
5358 	 */
5359 	if (val && test_opt(inode->i_sb, DELALLOC)) {
5360 		err = ext4_alloc_da_blocks(inode);
5361 		if (err < 0)
5362 			return err;
5363 	}
5364 
5365 	/* Wait for all existing dio workers */
5366 	ext4_inode_block_unlocked_dio(inode);
5367 	inode_dio_wait(inode);
5368 
5369 	jbd2_journal_lock_updates(journal);
5370 
5371 	/*
5372 	 * OK, there are no updates running now, and all cached data is
5373 	 * synced to disk.  We are now in a completely consistent state
5374 	 * which doesn't have anything in the journal, and we know that
5375 	 * no filesystem updates are running, so it is safe to modify
5376 	 * the inode's in-core data-journaling state flag now.
5377 	 */
5378 
5379 	if (val)
5380 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5381 	else {
5382 		err = jbd2_journal_flush(journal);
5383 		if (err < 0) {
5384 			jbd2_journal_unlock_updates(journal);
5385 			ext4_inode_resume_unlocked_dio(inode);
5386 			return err;
5387 		}
5388 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5389 	}
5390 	ext4_set_aops(inode);
5391 
5392 	jbd2_journal_unlock_updates(journal);
5393 	ext4_inode_resume_unlocked_dio(inode);
5394 
5395 	/* Finally we can mark the inode as dirty. */
5396 
5397 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5398 	if (IS_ERR(handle))
5399 		return PTR_ERR(handle);
5400 
5401 	err = ext4_mark_inode_dirty(handle, inode);
5402 	ext4_handle_sync(handle);
5403 	ext4_journal_stop(handle);
5404 	ext4_std_error(inode->i_sb, err);
5405 
5406 	return err;
5407 }
5408 
5409 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5410 {
5411 	return !buffer_mapped(bh);
5412 }
5413 
5414 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5415 {
5416 	struct page *page = vmf->page;
5417 	loff_t size;
5418 	unsigned long len;
5419 	int ret;
5420 	struct file *file = vma->vm_file;
5421 	struct inode *inode = file_inode(file);
5422 	struct address_space *mapping = inode->i_mapping;
5423 	handle_t *handle;
5424 	get_block_t *get_block;
5425 	int retries = 0;
5426 
5427 	sb_start_pagefault(inode->i_sb);
5428 	file_update_time(vma->vm_file);
5429 
5430 	down_read(&EXT4_I(inode)->i_mmap_sem);
5431 	/* Delalloc case is easy... */
5432 	if (test_opt(inode->i_sb, DELALLOC) &&
5433 	    !ext4_should_journal_data(inode) &&
5434 	    !ext4_nonda_switch(inode->i_sb)) {
5435 		do {
5436 			ret = block_page_mkwrite(vma, vmf,
5437 						   ext4_da_get_block_prep);
5438 		} while (ret == -ENOSPC &&
5439 		       ext4_should_retry_alloc(inode->i_sb, &retries));
5440 		goto out_ret;
5441 	}
5442 
5443 	lock_page(page);
5444 	size = i_size_read(inode);
5445 	/* Page got truncated from under us? */
5446 	if (page->mapping != mapping || page_offset(page) > size) {
5447 		unlock_page(page);
5448 		ret = VM_FAULT_NOPAGE;
5449 		goto out;
5450 	}
5451 
5452 	if (page->index == size >> PAGE_CACHE_SHIFT)
5453 		len = size & ~PAGE_CACHE_MASK;
5454 	else
5455 		len = PAGE_CACHE_SIZE;
5456 	/*
5457 	 * Return if we have all the buffers mapped. This avoids the need to do
5458 	 * journal_start/journal_stop which can block and take a long time
5459 	 */
5460 	if (page_has_buffers(page)) {
5461 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5462 					    0, len, NULL,
5463 					    ext4_bh_unmapped)) {
5464 			/* Wait so that we don't change page under IO */
5465 			wait_for_stable_page(page);
5466 			ret = VM_FAULT_LOCKED;
5467 			goto out;
5468 		}
5469 	}
5470 	unlock_page(page);
5471 	/* OK, we need to fill the hole... */
5472 	if (ext4_should_dioread_nolock(inode))
5473 		get_block = ext4_get_block_write;
5474 	else
5475 		get_block = ext4_get_block;
5476 retry_alloc:
5477 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5478 				    ext4_writepage_trans_blocks(inode));
5479 	if (IS_ERR(handle)) {
5480 		ret = VM_FAULT_SIGBUS;
5481 		goto out;
5482 	}
5483 	ret = block_page_mkwrite(vma, vmf, get_block);
5484 	if (!ret && ext4_should_journal_data(inode)) {
5485 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5486 			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5487 			unlock_page(page);
5488 			ret = VM_FAULT_SIGBUS;
5489 			ext4_journal_stop(handle);
5490 			goto out;
5491 		}
5492 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5493 	}
5494 	ext4_journal_stop(handle);
5495 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5496 		goto retry_alloc;
5497 out_ret:
5498 	ret = block_page_mkwrite_return(ret);
5499 out:
5500 	up_read(&EXT4_I(inode)->i_mmap_sem);
5501 	sb_end_pagefault(inode->i_sb);
5502 	return ret;
5503 }
5504 
5505 int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5506 {
5507 	struct inode *inode = file_inode(vma->vm_file);
5508 	int err;
5509 
5510 	down_read(&EXT4_I(inode)->i_mmap_sem);
5511 	err = filemap_fault(vma, vmf);
5512 	up_read(&EXT4_I(inode)->i_mmap_sem);
5513 
5514 	return err;
5515 }
5516