1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * 64-bit file support on 64-bit platforms by Jakub Jelinek 16 * (jj@sunsite.ms.mff.cuni.cz) 17 * 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 19 */ 20 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/highuid.h> 24 #include <linux/pagemap.h> 25 #include <linux/dax.h> 26 #include <linux/quotaops.h> 27 #include <linux/string.h> 28 #include <linux/buffer_head.h> 29 #include <linux/writeback.h> 30 #include <linux/pagevec.h> 31 #include <linux/mpage.h> 32 #include <linux/namei.h> 33 #include <linux/uio.h> 34 #include <linux/bio.h> 35 #include <linux/workqueue.h> 36 #include <linux/kernel.h> 37 #include <linux/printk.h> 38 #include <linux/slab.h> 39 #include <linux/bitops.h> 40 41 #include "ext4_jbd2.h" 42 #include "xattr.h" 43 #include "acl.h" 44 #include "truncate.h" 45 46 #include <trace/events/ext4.h> 47 48 #define MPAGE_DA_EXTENT_TAIL 0x01 49 50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 51 struct ext4_inode_info *ei) 52 { 53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 54 __u16 csum_lo; 55 __u16 csum_hi = 0; 56 __u32 csum; 57 58 csum_lo = le16_to_cpu(raw->i_checksum_lo); 59 raw->i_checksum_lo = 0; 60 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 61 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 62 csum_hi = le16_to_cpu(raw->i_checksum_hi); 63 raw->i_checksum_hi = 0; 64 } 65 66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, 67 EXT4_INODE_SIZE(inode->i_sb)); 68 69 raw->i_checksum_lo = cpu_to_le16(csum_lo); 70 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 71 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 72 raw->i_checksum_hi = cpu_to_le16(csum_hi); 73 74 return csum; 75 } 76 77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 78 struct ext4_inode_info *ei) 79 { 80 __u32 provided, calculated; 81 82 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 83 cpu_to_le32(EXT4_OS_LINUX) || 84 !ext4_has_metadata_csum(inode->i_sb)) 85 return 1; 86 87 provided = le16_to_cpu(raw->i_checksum_lo); 88 calculated = ext4_inode_csum(inode, raw, ei); 89 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 90 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 91 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 92 else 93 calculated &= 0xFFFF; 94 95 return provided == calculated; 96 } 97 98 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 99 struct ext4_inode_info *ei) 100 { 101 __u32 csum; 102 103 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 104 cpu_to_le32(EXT4_OS_LINUX) || 105 !ext4_has_metadata_csum(inode->i_sb)) 106 return; 107 108 csum = ext4_inode_csum(inode, raw, ei); 109 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 110 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 111 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 112 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 113 } 114 115 static inline int ext4_begin_ordered_truncate(struct inode *inode, 116 loff_t new_size) 117 { 118 trace_ext4_begin_ordered_truncate(inode, new_size); 119 /* 120 * If jinode is zero, then we never opened the file for 121 * writing, so there's no need to call 122 * jbd2_journal_begin_ordered_truncate() since there's no 123 * outstanding writes we need to flush. 124 */ 125 if (!EXT4_I(inode)->jinode) 126 return 0; 127 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 128 EXT4_I(inode)->jinode, 129 new_size); 130 } 131 132 static void ext4_invalidatepage(struct page *page, unsigned int offset, 133 unsigned int length); 134 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 135 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 136 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 137 int pextents); 138 139 /* 140 * Test whether an inode is a fast symlink. 141 */ 142 int ext4_inode_is_fast_symlink(struct inode *inode) 143 { 144 int ea_blocks = EXT4_I(inode)->i_file_acl ? 145 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 146 147 if (ext4_has_inline_data(inode)) 148 return 0; 149 150 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 151 } 152 153 /* 154 * Restart the transaction associated with *handle. This does a commit, 155 * so before we call here everything must be consistently dirtied against 156 * this transaction. 157 */ 158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 159 int nblocks) 160 { 161 int ret; 162 163 /* 164 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 165 * moment, get_block can be called only for blocks inside i_size since 166 * page cache has been already dropped and writes are blocked by 167 * i_mutex. So we can safely drop the i_data_sem here. 168 */ 169 BUG_ON(EXT4_JOURNAL(inode) == NULL); 170 jbd_debug(2, "restarting handle %p\n", handle); 171 up_write(&EXT4_I(inode)->i_data_sem); 172 ret = ext4_journal_restart(handle, nblocks); 173 down_write(&EXT4_I(inode)->i_data_sem); 174 ext4_discard_preallocations(inode); 175 176 return ret; 177 } 178 179 /* 180 * Called at the last iput() if i_nlink is zero. 181 */ 182 void ext4_evict_inode(struct inode *inode) 183 { 184 handle_t *handle; 185 int err; 186 187 trace_ext4_evict_inode(inode); 188 189 if (inode->i_nlink) { 190 /* 191 * When journalling data dirty buffers are tracked only in the 192 * journal. So although mm thinks everything is clean and 193 * ready for reaping the inode might still have some pages to 194 * write in the running transaction or waiting to be 195 * checkpointed. Thus calling jbd2_journal_invalidatepage() 196 * (via truncate_inode_pages()) to discard these buffers can 197 * cause data loss. Also even if we did not discard these 198 * buffers, we would have no way to find them after the inode 199 * is reaped and thus user could see stale data if he tries to 200 * read them before the transaction is checkpointed. So be 201 * careful and force everything to disk here... We use 202 * ei->i_datasync_tid to store the newest transaction 203 * containing inode's data. 204 * 205 * Note that directories do not have this problem because they 206 * don't use page cache. 207 */ 208 if (ext4_should_journal_data(inode) && 209 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 210 inode->i_ino != EXT4_JOURNAL_INO) { 211 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 212 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 213 214 jbd2_complete_transaction(journal, commit_tid); 215 filemap_write_and_wait(&inode->i_data); 216 } 217 truncate_inode_pages_final(&inode->i_data); 218 219 goto no_delete; 220 } 221 222 if (is_bad_inode(inode)) 223 goto no_delete; 224 dquot_initialize(inode); 225 226 if (ext4_should_order_data(inode)) 227 ext4_begin_ordered_truncate(inode, 0); 228 truncate_inode_pages_final(&inode->i_data); 229 230 /* 231 * Protect us against freezing - iput() caller didn't have to have any 232 * protection against it 233 */ 234 sb_start_intwrite(inode->i_sb); 235 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 236 ext4_blocks_for_truncate(inode)+3); 237 if (IS_ERR(handle)) { 238 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 239 /* 240 * If we're going to skip the normal cleanup, we still need to 241 * make sure that the in-core orphan linked list is properly 242 * cleaned up. 243 */ 244 ext4_orphan_del(NULL, inode); 245 sb_end_intwrite(inode->i_sb); 246 goto no_delete; 247 } 248 249 if (IS_SYNC(inode)) 250 ext4_handle_sync(handle); 251 inode->i_size = 0; 252 err = ext4_mark_inode_dirty(handle, inode); 253 if (err) { 254 ext4_warning(inode->i_sb, 255 "couldn't mark inode dirty (err %d)", err); 256 goto stop_handle; 257 } 258 if (inode->i_blocks) 259 ext4_truncate(inode); 260 261 /* 262 * ext4_ext_truncate() doesn't reserve any slop when it 263 * restarts journal transactions; therefore there may not be 264 * enough credits left in the handle to remove the inode from 265 * the orphan list and set the dtime field. 266 */ 267 if (!ext4_handle_has_enough_credits(handle, 3)) { 268 err = ext4_journal_extend(handle, 3); 269 if (err > 0) 270 err = ext4_journal_restart(handle, 3); 271 if (err != 0) { 272 ext4_warning(inode->i_sb, 273 "couldn't extend journal (err %d)", err); 274 stop_handle: 275 ext4_journal_stop(handle); 276 ext4_orphan_del(NULL, inode); 277 sb_end_intwrite(inode->i_sb); 278 goto no_delete; 279 } 280 } 281 282 /* 283 * Kill off the orphan record which ext4_truncate created. 284 * AKPM: I think this can be inside the above `if'. 285 * Note that ext4_orphan_del() has to be able to cope with the 286 * deletion of a non-existent orphan - this is because we don't 287 * know if ext4_truncate() actually created an orphan record. 288 * (Well, we could do this if we need to, but heck - it works) 289 */ 290 ext4_orphan_del(handle, inode); 291 EXT4_I(inode)->i_dtime = get_seconds(); 292 293 /* 294 * One subtle ordering requirement: if anything has gone wrong 295 * (transaction abort, IO errors, whatever), then we can still 296 * do these next steps (the fs will already have been marked as 297 * having errors), but we can't free the inode if the mark_dirty 298 * fails. 299 */ 300 if (ext4_mark_inode_dirty(handle, inode)) 301 /* If that failed, just do the required in-core inode clear. */ 302 ext4_clear_inode(inode); 303 else 304 ext4_free_inode(handle, inode); 305 ext4_journal_stop(handle); 306 sb_end_intwrite(inode->i_sb); 307 return; 308 no_delete: 309 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 310 } 311 312 #ifdef CONFIG_QUOTA 313 qsize_t *ext4_get_reserved_space(struct inode *inode) 314 { 315 return &EXT4_I(inode)->i_reserved_quota; 316 } 317 #endif 318 319 /* 320 * Called with i_data_sem down, which is important since we can call 321 * ext4_discard_preallocations() from here. 322 */ 323 void ext4_da_update_reserve_space(struct inode *inode, 324 int used, int quota_claim) 325 { 326 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 327 struct ext4_inode_info *ei = EXT4_I(inode); 328 329 spin_lock(&ei->i_block_reservation_lock); 330 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 331 if (unlikely(used > ei->i_reserved_data_blocks)) { 332 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 333 "with only %d reserved data blocks", 334 __func__, inode->i_ino, used, 335 ei->i_reserved_data_blocks); 336 WARN_ON(1); 337 used = ei->i_reserved_data_blocks; 338 } 339 340 /* Update per-inode reservations */ 341 ei->i_reserved_data_blocks -= used; 342 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 343 344 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 345 346 /* Update quota subsystem for data blocks */ 347 if (quota_claim) 348 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 349 else { 350 /* 351 * We did fallocate with an offset that is already delayed 352 * allocated. So on delayed allocated writeback we should 353 * not re-claim the quota for fallocated blocks. 354 */ 355 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 356 } 357 358 /* 359 * If we have done all the pending block allocations and if 360 * there aren't any writers on the inode, we can discard the 361 * inode's preallocations. 362 */ 363 if ((ei->i_reserved_data_blocks == 0) && 364 (atomic_read(&inode->i_writecount) == 0)) 365 ext4_discard_preallocations(inode); 366 } 367 368 static int __check_block_validity(struct inode *inode, const char *func, 369 unsigned int line, 370 struct ext4_map_blocks *map) 371 { 372 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 373 map->m_len)) { 374 ext4_error_inode(inode, func, line, map->m_pblk, 375 "lblock %lu mapped to illegal pblock " 376 "(length %d)", (unsigned long) map->m_lblk, 377 map->m_len); 378 return -EFSCORRUPTED; 379 } 380 return 0; 381 } 382 383 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 384 ext4_lblk_t len) 385 { 386 int ret; 387 388 if (ext4_encrypted_inode(inode)) 389 return ext4_encrypted_zeroout(inode, lblk, pblk, len); 390 391 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 392 if (ret > 0) 393 ret = 0; 394 395 return ret; 396 } 397 398 #define check_block_validity(inode, map) \ 399 __check_block_validity((inode), __func__, __LINE__, (map)) 400 401 #ifdef ES_AGGRESSIVE_TEST 402 static void ext4_map_blocks_es_recheck(handle_t *handle, 403 struct inode *inode, 404 struct ext4_map_blocks *es_map, 405 struct ext4_map_blocks *map, 406 int flags) 407 { 408 int retval; 409 410 map->m_flags = 0; 411 /* 412 * There is a race window that the result is not the same. 413 * e.g. xfstests #223 when dioread_nolock enables. The reason 414 * is that we lookup a block mapping in extent status tree with 415 * out taking i_data_sem. So at the time the unwritten extent 416 * could be converted. 417 */ 418 down_read(&EXT4_I(inode)->i_data_sem); 419 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 420 retval = ext4_ext_map_blocks(handle, inode, map, flags & 421 EXT4_GET_BLOCKS_KEEP_SIZE); 422 } else { 423 retval = ext4_ind_map_blocks(handle, inode, map, flags & 424 EXT4_GET_BLOCKS_KEEP_SIZE); 425 } 426 up_read((&EXT4_I(inode)->i_data_sem)); 427 428 /* 429 * We don't check m_len because extent will be collpased in status 430 * tree. So the m_len might not equal. 431 */ 432 if (es_map->m_lblk != map->m_lblk || 433 es_map->m_flags != map->m_flags || 434 es_map->m_pblk != map->m_pblk) { 435 printk("ES cache assertion failed for inode: %lu " 436 "es_cached ex [%d/%d/%llu/%x] != " 437 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 438 inode->i_ino, es_map->m_lblk, es_map->m_len, 439 es_map->m_pblk, es_map->m_flags, map->m_lblk, 440 map->m_len, map->m_pblk, map->m_flags, 441 retval, flags); 442 } 443 } 444 #endif /* ES_AGGRESSIVE_TEST */ 445 446 /* 447 * The ext4_map_blocks() function tries to look up the requested blocks, 448 * and returns if the blocks are already mapped. 449 * 450 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 451 * and store the allocated blocks in the result buffer head and mark it 452 * mapped. 453 * 454 * If file type is extents based, it will call ext4_ext_map_blocks(), 455 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 456 * based files 457 * 458 * On success, it returns the number of blocks being mapped or allocated. if 459 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map 460 * is marked as unwritten. If the create == 1, it will mark @map as mapped. 461 * 462 * It returns 0 if plain look up failed (blocks have not been allocated), in 463 * that case, @map is returned as unmapped but we still do fill map->m_len to 464 * indicate the length of a hole starting at map->m_lblk. 465 * 466 * It returns the error in case of allocation failure. 467 */ 468 int ext4_map_blocks(handle_t *handle, struct inode *inode, 469 struct ext4_map_blocks *map, int flags) 470 { 471 struct extent_status es; 472 int retval; 473 int ret = 0; 474 #ifdef ES_AGGRESSIVE_TEST 475 struct ext4_map_blocks orig_map; 476 477 memcpy(&orig_map, map, sizeof(*map)); 478 #endif 479 480 map->m_flags = 0; 481 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 482 "logical block %lu\n", inode->i_ino, flags, map->m_len, 483 (unsigned long) map->m_lblk); 484 485 /* 486 * ext4_map_blocks returns an int, and m_len is an unsigned int 487 */ 488 if (unlikely(map->m_len > INT_MAX)) 489 map->m_len = INT_MAX; 490 491 /* We can handle the block number less than EXT_MAX_BLOCKS */ 492 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 493 return -EFSCORRUPTED; 494 495 /* Lookup extent status tree firstly */ 496 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 497 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 498 map->m_pblk = ext4_es_pblock(&es) + 499 map->m_lblk - es.es_lblk; 500 map->m_flags |= ext4_es_is_written(&es) ? 501 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 502 retval = es.es_len - (map->m_lblk - es.es_lblk); 503 if (retval > map->m_len) 504 retval = map->m_len; 505 map->m_len = retval; 506 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 507 map->m_pblk = 0; 508 retval = es.es_len - (map->m_lblk - es.es_lblk); 509 if (retval > map->m_len) 510 retval = map->m_len; 511 map->m_len = retval; 512 retval = 0; 513 } else { 514 BUG_ON(1); 515 } 516 #ifdef ES_AGGRESSIVE_TEST 517 ext4_map_blocks_es_recheck(handle, inode, map, 518 &orig_map, flags); 519 #endif 520 goto found; 521 } 522 523 /* 524 * Try to see if we can get the block without requesting a new 525 * file system block. 526 */ 527 down_read(&EXT4_I(inode)->i_data_sem); 528 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 529 retval = ext4_ext_map_blocks(handle, inode, map, flags & 530 EXT4_GET_BLOCKS_KEEP_SIZE); 531 } else { 532 retval = ext4_ind_map_blocks(handle, inode, map, flags & 533 EXT4_GET_BLOCKS_KEEP_SIZE); 534 } 535 if (retval > 0) { 536 unsigned int status; 537 538 if (unlikely(retval != map->m_len)) { 539 ext4_warning(inode->i_sb, 540 "ES len assertion failed for inode " 541 "%lu: retval %d != map->m_len %d", 542 inode->i_ino, retval, map->m_len); 543 WARN_ON(1); 544 } 545 546 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 547 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 548 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 549 !(status & EXTENT_STATUS_WRITTEN) && 550 ext4_find_delalloc_range(inode, map->m_lblk, 551 map->m_lblk + map->m_len - 1)) 552 status |= EXTENT_STATUS_DELAYED; 553 ret = ext4_es_insert_extent(inode, map->m_lblk, 554 map->m_len, map->m_pblk, status); 555 if (ret < 0) 556 retval = ret; 557 } 558 up_read((&EXT4_I(inode)->i_data_sem)); 559 560 found: 561 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 562 ret = check_block_validity(inode, map); 563 if (ret != 0) 564 return ret; 565 } 566 567 /* If it is only a block(s) look up */ 568 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 569 return retval; 570 571 /* 572 * Returns if the blocks have already allocated 573 * 574 * Note that if blocks have been preallocated 575 * ext4_ext_get_block() returns the create = 0 576 * with buffer head unmapped. 577 */ 578 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 579 /* 580 * If we need to convert extent to unwritten 581 * we continue and do the actual work in 582 * ext4_ext_map_blocks() 583 */ 584 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 585 return retval; 586 587 /* 588 * Here we clear m_flags because after allocating an new extent, 589 * it will be set again. 590 */ 591 map->m_flags &= ~EXT4_MAP_FLAGS; 592 593 /* 594 * New blocks allocate and/or writing to unwritten extent 595 * will possibly result in updating i_data, so we take 596 * the write lock of i_data_sem, and call get_block() 597 * with create == 1 flag. 598 */ 599 down_write(&EXT4_I(inode)->i_data_sem); 600 601 /* 602 * We need to check for EXT4 here because migrate 603 * could have changed the inode type in between 604 */ 605 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 606 retval = ext4_ext_map_blocks(handle, inode, map, flags); 607 } else { 608 retval = ext4_ind_map_blocks(handle, inode, map, flags); 609 610 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 611 /* 612 * We allocated new blocks which will result in 613 * i_data's format changing. Force the migrate 614 * to fail by clearing migrate flags 615 */ 616 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 617 } 618 619 /* 620 * Update reserved blocks/metadata blocks after successful 621 * block allocation which had been deferred till now. We don't 622 * support fallocate for non extent files. So we can update 623 * reserve space here. 624 */ 625 if ((retval > 0) && 626 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 627 ext4_da_update_reserve_space(inode, retval, 1); 628 } 629 630 if (retval > 0) { 631 unsigned int status; 632 633 if (unlikely(retval != map->m_len)) { 634 ext4_warning(inode->i_sb, 635 "ES len assertion failed for inode " 636 "%lu: retval %d != map->m_len %d", 637 inode->i_ino, retval, map->m_len); 638 WARN_ON(1); 639 } 640 641 /* 642 * We have to zeroout blocks before inserting them into extent 643 * status tree. Otherwise someone could look them up there and 644 * use them before they are really zeroed. 645 */ 646 if (flags & EXT4_GET_BLOCKS_ZERO && 647 map->m_flags & EXT4_MAP_MAPPED && 648 map->m_flags & EXT4_MAP_NEW) { 649 ret = ext4_issue_zeroout(inode, map->m_lblk, 650 map->m_pblk, map->m_len); 651 if (ret) { 652 retval = ret; 653 goto out_sem; 654 } 655 } 656 657 /* 658 * If the extent has been zeroed out, we don't need to update 659 * extent status tree. 660 */ 661 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 662 ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 663 if (ext4_es_is_written(&es)) 664 goto out_sem; 665 } 666 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 667 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 668 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 669 !(status & EXTENT_STATUS_WRITTEN) && 670 ext4_find_delalloc_range(inode, map->m_lblk, 671 map->m_lblk + map->m_len - 1)) 672 status |= EXTENT_STATUS_DELAYED; 673 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 674 map->m_pblk, status); 675 if (ret < 0) { 676 retval = ret; 677 goto out_sem; 678 } 679 } 680 681 out_sem: 682 up_write((&EXT4_I(inode)->i_data_sem)); 683 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 684 ret = check_block_validity(inode, map); 685 if (ret != 0) 686 return ret; 687 } 688 return retval; 689 } 690 691 /* 692 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 693 * we have to be careful as someone else may be manipulating b_state as well. 694 */ 695 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 696 { 697 unsigned long old_state; 698 unsigned long new_state; 699 700 flags &= EXT4_MAP_FLAGS; 701 702 /* Dummy buffer_head? Set non-atomically. */ 703 if (!bh->b_page) { 704 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 705 return; 706 } 707 /* 708 * Someone else may be modifying b_state. Be careful! This is ugly but 709 * once we get rid of using bh as a container for mapping information 710 * to pass to / from get_block functions, this can go away. 711 */ 712 do { 713 old_state = READ_ONCE(bh->b_state); 714 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 715 } while (unlikely( 716 cmpxchg(&bh->b_state, old_state, new_state) != old_state)); 717 } 718 719 static int _ext4_get_block(struct inode *inode, sector_t iblock, 720 struct buffer_head *bh, int flags) 721 { 722 struct ext4_map_blocks map; 723 int ret = 0; 724 725 if (ext4_has_inline_data(inode)) 726 return -ERANGE; 727 728 map.m_lblk = iblock; 729 map.m_len = bh->b_size >> inode->i_blkbits; 730 731 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 732 flags); 733 if (ret > 0) { 734 map_bh(bh, inode->i_sb, map.m_pblk); 735 ext4_update_bh_state(bh, map.m_flags); 736 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 737 ret = 0; 738 } 739 return ret; 740 } 741 742 int ext4_get_block(struct inode *inode, sector_t iblock, 743 struct buffer_head *bh, int create) 744 { 745 return _ext4_get_block(inode, iblock, bh, 746 create ? EXT4_GET_BLOCKS_CREATE : 0); 747 } 748 749 /* 750 * Get block function used when preparing for buffered write if we require 751 * creating an unwritten extent if blocks haven't been allocated. The extent 752 * will be converted to written after the IO is complete. 753 */ 754 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 755 struct buffer_head *bh_result, int create) 756 { 757 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 758 inode->i_ino, create); 759 return _ext4_get_block(inode, iblock, bh_result, 760 EXT4_GET_BLOCKS_IO_CREATE_EXT); 761 } 762 763 /* Maximum number of blocks we map for direct IO at once. */ 764 #define DIO_MAX_BLOCKS 4096 765 766 static handle_t *start_dio_trans(struct inode *inode, 767 struct buffer_head *bh_result) 768 { 769 int dio_credits; 770 771 /* Trim mapping request to maximum we can map at once for DIO */ 772 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS) 773 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits; 774 dio_credits = ext4_chunk_trans_blocks(inode, 775 bh_result->b_size >> inode->i_blkbits); 776 return ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 777 } 778 779 /* Get block function for DIO reads and writes to inodes without extents */ 780 int ext4_dio_get_block(struct inode *inode, sector_t iblock, 781 struct buffer_head *bh, int create) 782 { 783 handle_t *handle; 784 int ret; 785 786 /* We don't expect handle for direct IO */ 787 WARN_ON_ONCE(ext4_journal_current_handle()); 788 789 if (create) { 790 handle = start_dio_trans(inode, bh); 791 if (IS_ERR(handle)) 792 return PTR_ERR(handle); 793 } 794 ret = _ext4_get_block(inode, iblock, bh, 795 create ? EXT4_GET_BLOCKS_CREATE : 0); 796 if (create) 797 ext4_journal_stop(handle); 798 return ret; 799 } 800 801 /* 802 * Get block function for AIO DIO writes when we create unwritten extent if 803 * blocks are not allocated yet. The extent will be converted to written 804 * after IO is complete. 805 */ 806 static int ext4_dio_get_block_unwritten_async(struct inode *inode, 807 sector_t iblock, struct buffer_head *bh_result, int create) 808 { 809 handle_t *handle; 810 int ret; 811 812 /* We don't expect handle for direct IO */ 813 WARN_ON_ONCE(ext4_journal_current_handle()); 814 815 handle = start_dio_trans(inode, bh_result); 816 if (IS_ERR(handle)) 817 return PTR_ERR(handle); 818 ret = _ext4_get_block(inode, iblock, bh_result, 819 EXT4_GET_BLOCKS_IO_CREATE_EXT); 820 ext4_journal_stop(handle); 821 822 /* 823 * When doing DIO using unwritten extents, we need io_end to convert 824 * unwritten extents to written on IO completion. We allocate io_end 825 * once we spot unwritten extent and store it in b_private. Generic 826 * DIO code keeps b_private set and furthermore passes the value to 827 * our completion callback in 'private' argument. 828 */ 829 if (!ret && buffer_unwritten(bh_result)) { 830 if (!bh_result->b_private) { 831 ext4_io_end_t *io_end; 832 833 io_end = ext4_init_io_end(inode, GFP_KERNEL); 834 if (!io_end) 835 return -ENOMEM; 836 bh_result->b_private = io_end; 837 ext4_set_io_unwritten_flag(inode, io_end); 838 } 839 set_buffer_defer_completion(bh_result); 840 } 841 842 return ret; 843 } 844 845 /* 846 * Get block function for non-AIO DIO writes when we create unwritten extent if 847 * blocks are not allocated yet. The extent will be converted to written 848 * after IO is complete from ext4_ext_direct_IO() function. 849 */ 850 static int ext4_dio_get_block_unwritten_sync(struct inode *inode, 851 sector_t iblock, struct buffer_head *bh_result, int create) 852 { 853 handle_t *handle; 854 int ret; 855 856 /* We don't expect handle for direct IO */ 857 WARN_ON_ONCE(ext4_journal_current_handle()); 858 859 handle = start_dio_trans(inode, bh_result); 860 if (IS_ERR(handle)) 861 return PTR_ERR(handle); 862 ret = _ext4_get_block(inode, iblock, bh_result, 863 EXT4_GET_BLOCKS_IO_CREATE_EXT); 864 ext4_journal_stop(handle); 865 866 /* 867 * Mark inode as having pending DIO writes to unwritten extents. 868 * ext4_ext_direct_IO() checks this flag and converts extents to 869 * written. 870 */ 871 if (!ret && buffer_unwritten(bh_result)) 872 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 873 874 return ret; 875 } 876 877 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock, 878 struct buffer_head *bh_result, int create) 879 { 880 int ret; 881 882 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n", 883 inode->i_ino, create); 884 /* We don't expect handle for direct IO */ 885 WARN_ON_ONCE(ext4_journal_current_handle()); 886 887 ret = _ext4_get_block(inode, iblock, bh_result, 0); 888 /* 889 * Blocks should have been preallocated! ext4_file_write_iter() checks 890 * that. 891 */ 892 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result)); 893 894 return ret; 895 } 896 897 898 /* 899 * `handle' can be NULL if create is zero 900 */ 901 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 902 ext4_lblk_t block, int map_flags) 903 { 904 struct ext4_map_blocks map; 905 struct buffer_head *bh; 906 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 907 int err; 908 909 J_ASSERT(handle != NULL || create == 0); 910 911 map.m_lblk = block; 912 map.m_len = 1; 913 err = ext4_map_blocks(handle, inode, &map, map_flags); 914 915 if (err == 0) 916 return create ? ERR_PTR(-ENOSPC) : NULL; 917 if (err < 0) 918 return ERR_PTR(err); 919 920 bh = sb_getblk(inode->i_sb, map.m_pblk); 921 if (unlikely(!bh)) 922 return ERR_PTR(-ENOMEM); 923 if (map.m_flags & EXT4_MAP_NEW) { 924 J_ASSERT(create != 0); 925 J_ASSERT(handle != NULL); 926 927 /* 928 * Now that we do not always journal data, we should 929 * keep in mind whether this should always journal the 930 * new buffer as metadata. For now, regular file 931 * writes use ext4_get_block instead, so it's not a 932 * problem. 933 */ 934 lock_buffer(bh); 935 BUFFER_TRACE(bh, "call get_create_access"); 936 err = ext4_journal_get_create_access(handle, bh); 937 if (unlikely(err)) { 938 unlock_buffer(bh); 939 goto errout; 940 } 941 if (!buffer_uptodate(bh)) { 942 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 943 set_buffer_uptodate(bh); 944 } 945 unlock_buffer(bh); 946 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 947 err = ext4_handle_dirty_metadata(handle, inode, bh); 948 if (unlikely(err)) 949 goto errout; 950 } else 951 BUFFER_TRACE(bh, "not a new buffer"); 952 return bh; 953 errout: 954 brelse(bh); 955 return ERR_PTR(err); 956 } 957 958 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 959 ext4_lblk_t block, int map_flags) 960 { 961 struct buffer_head *bh; 962 963 bh = ext4_getblk(handle, inode, block, map_flags); 964 if (IS_ERR(bh)) 965 return bh; 966 if (!bh || buffer_uptodate(bh)) 967 return bh; 968 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh); 969 wait_on_buffer(bh); 970 if (buffer_uptodate(bh)) 971 return bh; 972 put_bh(bh); 973 return ERR_PTR(-EIO); 974 } 975 976 int ext4_walk_page_buffers(handle_t *handle, 977 struct buffer_head *head, 978 unsigned from, 979 unsigned to, 980 int *partial, 981 int (*fn)(handle_t *handle, 982 struct buffer_head *bh)) 983 { 984 struct buffer_head *bh; 985 unsigned block_start, block_end; 986 unsigned blocksize = head->b_size; 987 int err, ret = 0; 988 struct buffer_head *next; 989 990 for (bh = head, block_start = 0; 991 ret == 0 && (bh != head || !block_start); 992 block_start = block_end, bh = next) { 993 next = bh->b_this_page; 994 block_end = block_start + blocksize; 995 if (block_end <= from || block_start >= to) { 996 if (partial && !buffer_uptodate(bh)) 997 *partial = 1; 998 continue; 999 } 1000 err = (*fn)(handle, bh); 1001 if (!ret) 1002 ret = err; 1003 } 1004 return ret; 1005 } 1006 1007 /* 1008 * To preserve ordering, it is essential that the hole instantiation and 1009 * the data write be encapsulated in a single transaction. We cannot 1010 * close off a transaction and start a new one between the ext4_get_block() 1011 * and the commit_write(). So doing the jbd2_journal_start at the start of 1012 * prepare_write() is the right place. 1013 * 1014 * Also, this function can nest inside ext4_writepage(). In that case, we 1015 * *know* that ext4_writepage() has generated enough buffer credits to do the 1016 * whole page. So we won't block on the journal in that case, which is good, 1017 * because the caller may be PF_MEMALLOC. 1018 * 1019 * By accident, ext4 can be reentered when a transaction is open via 1020 * quota file writes. If we were to commit the transaction while thus 1021 * reentered, there can be a deadlock - we would be holding a quota 1022 * lock, and the commit would never complete if another thread had a 1023 * transaction open and was blocking on the quota lock - a ranking 1024 * violation. 1025 * 1026 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1027 * will _not_ run commit under these circumstances because handle->h_ref 1028 * is elevated. We'll still have enough credits for the tiny quotafile 1029 * write. 1030 */ 1031 int do_journal_get_write_access(handle_t *handle, 1032 struct buffer_head *bh) 1033 { 1034 int dirty = buffer_dirty(bh); 1035 int ret; 1036 1037 if (!buffer_mapped(bh) || buffer_freed(bh)) 1038 return 0; 1039 /* 1040 * __block_write_begin() could have dirtied some buffers. Clean 1041 * the dirty bit as jbd2_journal_get_write_access() could complain 1042 * otherwise about fs integrity issues. Setting of the dirty bit 1043 * by __block_write_begin() isn't a real problem here as we clear 1044 * the bit before releasing a page lock and thus writeback cannot 1045 * ever write the buffer. 1046 */ 1047 if (dirty) 1048 clear_buffer_dirty(bh); 1049 BUFFER_TRACE(bh, "get write access"); 1050 ret = ext4_journal_get_write_access(handle, bh); 1051 if (!ret && dirty) 1052 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1053 return ret; 1054 } 1055 1056 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1057 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len, 1058 get_block_t *get_block) 1059 { 1060 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 1061 unsigned to = from + len; 1062 struct inode *inode = page->mapping->host; 1063 unsigned block_start, block_end; 1064 sector_t block; 1065 int err = 0; 1066 unsigned blocksize = inode->i_sb->s_blocksize; 1067 unsigned bbits; 1068 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait; 1069 bool decrypt = false; 1070 1071 BUG_ON(!PageLocked(page)); 1072 BUG_ON(from > PAGE_CACHE_SIZE); 1073 BUG_ON(to > PAGE_CACHE_SIZE); 1074 BUG_ON(from > to); 1075 1076 if (!page_has_buffers(page)) 1077 create_empty_buffers(page, blocksize, 0); 1078 head = page_buffers(page); 1079 bbits = ilog2(blocksize); 1080 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 1081 1082 for (bh = head, block_start = 0; bh != head || !block_start; 1083 block++, block_start = block_end, bh = bh->b_this_page) { 1084 block_end = block_start + blocksize; 1085 if (block_end <= from || block_start >= to) { 1086 if (PageUptodate(page)) { 1087 if (!buffer_uptodate(bh)) 1088 set_buffer_uptodate(bh); 1089 } 1090 continue; 1091 } 1092 if (buffer_new(bh)) 1093 clear_buffer_new(bh); 1094 if (!buffer_mapped(bh)) { 1095 WARN_ON(bh->b_size != blocksize); 1096 err = get_block(inode, block, bh, 1); 1097 if (err) 1098 break; 1099 if (buffer_new(bh)) { 1100 unmap_underlying_metadata(bh->b_bdev, 1101 bh->b_blocknr); 1102 if (PageUptodate(page)) { 1103 clear_buffer_new(bh); 1104 set_buffer_uptodate(bh); 1105 mark_buffer_dirty(bh); 1106 continue; 1107 } 1108 if (block_end > to || block_start < from) 1109 zero_user_segments(page, to, block_end, 1110 block_start, from); 1111 continue; 1112 } 1113 } 1114 if (PageUptodate(page)) { 1115 if (!buffer_uptodate(bh)) 1116 set_buffer_uptodate(bh); 1117 continue; 1118 } 1119 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1120 !buffer_unwritten(bh) && 1121 (block_start < from || block_end > to)) { 1122 ll_rw_block(READ, 1, &bh); 1123 *wait_bh++ = bh; 1124 decrypt = ext4_encrypted_inode(inode) && 1125 S_ISREG(inode->i_mode); 1126 } 1127 } 1128 /* 1129 * If we issued read requests, let them complete. 1130 */ 1131 while (wait_bh > wait) { 1132 wait_on_buffer(*--wait_bh); 1133 if (!buffer_uptodate(*wait_bh)) 1134 err = -EIO; 1135 } 1136 if (unlikely(err)) 1137 page_zero_new_buffers(page, from, to); 1138 else if (decrypt) 1139 err = ext4_decrypt(page); 1140 return err; 1141 } 1142 #endif 1143 1144 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1145 loff_t pos, unsigned len, unsigned flags, 1146 struct page **pagep, void **fsdata) 1147 { 1148 struct inode *inode = mapping->host; 1149 int ret, needed_blocks; 1150 handle_t *handle; 1151 int retries = 0; 1152 struct page *page; 1153 pgoff_t index; 1154 unsigned from, to; 1155 1156 trace_ext4_write_begin(inode, pos, len, flags); 1157 /* 1158 * Reserve one block more for addition to orphan list in case 1159 * we allocate blocks but write fails for some reason 1160 */ 1161 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1162 index = pos >> PAGE_CACHE_SHIFT; 1163 from = pos & (PAGE_CACHE_SIZE - 1); 1164 to = from + len; 1165 1166 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1167 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1168 flags, pagep); 1169 if (ret < 0) 1170 return ret; 1171 if (ret == 1) 1172 return 0; 1173 } 1174 1175 /* 1176 * grab_cache_page_write_begin() can take a long time if the 1177 * system is thrashing due to memory pressure, or if the page 1178 * is being written back. So grab it first before we start 1179 * the transaction handle. This also allows us to allocate 1180 * the page (if needed) without using GFP_NOFS. 1181 */ 1182 retry_grab: 1183 page = grab_cache_page_write_begin(mapping, index, flags); 1184 if (!page) 1185 return -ENOMEM; 1186 unlock_page(page); 1187 1188 retry_journal: 1189 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1190 if (IS_ERR(handle)) { 1191 page_cache_release(page); 1192 return PTR_ERR(handle); 1193 } 1194 1195 lock_page(page); 1196 if (page->mapping != mapping) { 1197 /* The page got truncated from under us */ 1198 unlock_page(page); 1199 page_cache_release(page); 1200 ext4_journal_stop(handle); 1201 goto retry_grab; 1202 } 1203 /* In case writeback began while the page was unlocked */ 1204 wait_for_stable_page(page); 1205 1206 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1207 if (ext4_should_dioread_nolock(inode)) 1208 ret = ext4_block_write_begin(page, pos, len, 1209 ext4_get_block_unwritten); 1210 else 1211 ret = ext4_block_write_begin(page, pos, len, 1212 ext4_get_block); 1213 #else 1214 if (ext4_should_dioread_nolock(inode)) 1215 ret = __block_write_begin(page, pos, len, 1216 ext4_get_block_unwritten); 1217 else 1218 ret = __block_write_begin(page, pos, len, ext4_get_block); 1219 #endif 1220 if (!ret && ext4_should_journal_data(inode)) { 1221 ret = ext4_walk_page_buffers(handle, page_buffers(page), 1222 from, to, NULL, 1223 do_journal_get_write_access); 1224 } 1225 1226 if (ret) { 1227 unlock_page(page); 1228 /* 1229 * __block_write_begin may have instantiated a few blocks 1230 * outside i_size. Trim these off again. Don't need 1231 * i_size_read because we hold i_mutex. 1232 * 1233 * Add inode to orphan list in case we crash before 1234 * truncate finishes 1235 */ 1236 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1237 ext4_orphan_add(handle, inode); 1238 1239 ext4_journal_stop(handle); 1240 if (pos + len > inode->i_size) { 1241 ext4_truncate_failed_write(inode); 1242 /* 1243 * If truncate failed early the inode might 1244 * still be on the orphan list; we need to 1245 * make sure the inode is removed from the 1246 * orphan list in that case. 1247 */ 1248 if (inode->i_nlink) 1249 ext4_orphan_del(NULL, inode); 1250 } 1251 1252 if (ret == -ENOSPC && 1253 ext4_should_retry_alloc(inode->i_sb, &retries)) 1254 goto retry_journal; 1255 page_cache_release(page); 1256 return ret; 1257 } 1258 *pagep = page; 1259 return ret; 1260 } 1261 1262 /* For write_end() in data=journal mode */ 1263 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1264 { 1265 int ret; 1266 if (!buffer_mapped(bh) || buffer_freed(bh)) 1267 return 0; 1268 set_buffer_uptodate(bh); 1269 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1270 clear_buffer_meta(bh); 1271 clear_buffer_prio(bh); 1272 return ret; 1273 } 1274 1275 /* 1276 * We need to pick up the new inode size which generic_commit_write gave us 1277 * `file' can be NULL - eg, when called from page_symlink(). 1278 * 1279 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1280 * buffers are managed internally. 1281 */ 1282 static int ext4_write_end(struct file *file, 1283 struct address_space *mapping, 1284 loff_t pos, unsigned len, unsigned copied, 1285 struct page *page, void *fsdata) 1286 { 1287 handle_t *handle = ext4_journal_current_handle(); 1288 struct inode *inode = mapping->host; 1289 loff_t old_size = inode->i_size; 1290 int ret = 0, ret2; 1291 int i_size_changed = 0; 1292 1293 trace_ext4_write_end(inode, pos, len, copied); 1294 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) { 1295 ret = ext4_jbd2_file_inode(handle, inode); 1296 if (ret) { 1297 unlock_page(page); 1298 page_cache_release(page); 1299 goto errout; 1300 } 1301 } 1302 1303 if (ext4_has_inline_data(inode)) { 1304 ret = ext4_write_inline_data_end(inode, pos, len, 1305 copied, page); 1306 if (ret < 0) 1307 goto errout; 1308 copied = ret; 1309 } else 1310 copied = block_write_end(file, mapping, pos, 1311 len, copied, page, fsdata); 1312 /* 1313 * it's important to update i_size while still holding page lock: 1314 * page writeout could otherwise come in and zero beyond i_size. 1315 */ 1316 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1317 unlock_page(page); 1318 page_cache_release(page); 1319 1320 if (old_size < pos) 1321 pagecache_isize_extended(inode, old_size, pos); 1322 /* 1323 * Don't mark the inode dirty under page lock. First, it unnecessarily 1324 * makes the holding time of page lock longer. Second, it forces lock 1325 * ordering of page lock and transaction start for journaling 1326 * filesystems. 1327 */ 1328 if (i_size_changed) 1329 ext4_mark_inode_dirty(handle, inode); 1330 1331 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1332 /* if we have allocated more blocks and copied 1333 * less. We will have blocks allocated outside 1334 * inode->i_size. So truncate them 1335 */ 1336 ext4_orphan_add(handle, inode); 1337 errout: 1338 ret2 = ext4_journal_stop(handle); 1339 if (!ret) 1340 ret = ret2; 1341 1342 if (pos + len > inode->i_size) { 1343 ext4_truncate_failed_write(inode); 1344 /* 1345 * If truncate failed early the inode might still be 1346 * on the orphan list; we need to make sure the inode 1347 * is removed from the orphan list in that case. 1348 */ 1349 if (inode->i_nlink) 1350 ext4_orphan_del(NULL, inode); 1351 } 1352 1353 return ret ? ret : copied; 1354 } 1355 1356 /* 1357 * This is a private version of page_zero_new_buffers() which doesn't 1358 * set the buffer to be dirty, since in data=journalled mode we need 1359 * to call ext4_handle_dirty_metadata() instead. 1360 */ 1361 static void zero_new_buffers(struct page *page, unsigned from, unsigned to) 1362 { 1363 unsigned int block_start = 0, block_end; 1364 struct buffer_head *head, *bh; 1365 1366 bh = head = page_buffers(page); 1367 do { 1368 block_end = block_start + bh->b_size; 1369 if (buffer_new(bh)) { 1370 if (block_end > from && block_start < to) { 1371 if (!PageUptodate(page)) { 1372 unsigned start, size; 1373 1374 start = max(from, block_start); 1375 size = min(to, block_end) - start; 1376 1377 zero_user(page, start, size); 1378 set_buffer_uptodate(bh); 1379 } 1380 clear_buffer_new(bh); 1381 } 1382 } 1383 block_start = block_end; 1384 bh = bh->b_this_page; 1385 } while (bh != head); 1386 } 1387 1388 static int ext4_journalled_write_end(struct file *file, 1389 struct address_space *mapping, 1390 loff_t pos, unsigned len, unsigned copied, 1391 struct page *page, void *fsdata) 1392 { 1393 handle_t *handle = ext4_journal_current_handle(); 1394 struct inode *inode = mapping->host; 1395 loff_t old_size = inode->i_size; 1396 int ret = 0, ret2; 1397 int partial = 0; 1398 unsigned from, to; 1399 int size_changed = 0; 1400 1401 trace_ext4_journalled_write_end(inode, pos, len, copied); 1402 from = pos & (PAGE_CACHE_SIZE - 1); 1403 to = from + len; 1404 1405 BUG_ON(!ext4_handle_valid(handle)); 1406 1407 if (ext4_has_inline_data(inode)) 1408 copied = ext4_write_inline_data_end(inode, pos, len, 1409 copied, page); 1410 else { 1411 if (copied < len) { 1412 if (!PageUptodate(page)) 1413 copied = 0; 1414 zero_new_buffers(page, from+copied, to); 1415 } 1416 1417 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1418 to, &partial, write_end_fn); 1419 if (!partial) 1420 SetPageUptodate(page); 1421 } 1422 size_changed = ext4_update_inode_size(inode, pos + copied); 1423 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1424 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1425 unlock_page(page); 1426 page_cache_release(page); 1427 1428 if (old_size < pos) 1429 pagecache_isize_extended(inode, old_size, pos); 1430 1431 if (size_changed) { 1432 ret2 = ext4_mark_inode_dirty(handle, inode); 1433 if (!ret) 1434 ret = ret2; 1435 } 1436 1437 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1438 /* if we have allocated more blocks and copied 1439 * less. We will have blocks allocated outside 1440 * inode->i_size. So truncate them 1441 */ 1442 ext4_orphan_add(handle, inode); 1443 1444 ret2 = ext4_journal_stop(handle); 1445 if (!ret) 1446 ret = ret2; 1447 if (pos + len > inode->i_size) { 1448 ext4_truncate_failed_write(inode); 1449 /* 1450 * If truncate failed early the inode might still be 1451 * on the orphan list; we need to make sure the inode 1452 * is removed from the orphan list in that case. 1453 */ 1454 if (inode->i_nlink) 1455 ext4_orphan_del(NULL, inode); 1456 } 1457 1458 return ret ? ret : copied; 1459 } 1460 1461 /* 1462 * Reserve space for a single cluster 1463 */ 1464 static int ext4_da_reserve_space(struct inode *inode) 1465 { 1466 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1467 struct ext4_inode_info *ei = EXT4_I(inode); 1468 int ret; 1469 1470 /* 1471 * We will charge metadata quota at writeout time; this saves 1472 * us from metadata over-estimation, though we may go over by 1473 * a small amount in the end. Here we just reserve for data. 1474 */ 1475 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1476 if (ret) 1477 return ret; 1478 1479 spin_lock(&ei->i_block_reservation_lock); 1480 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1481 spin_unlock(&ei->i_block_reservation_lock); 1482 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1483 return -ENOSPC; 1484 } 1485 ei->i_reserved_data_blocks++; 1486 trace_ext4_da_reserve_space(inode); 1487 spin_unlock(&ei->i_block_reservation_lock); 1488 1489 return 0; /* success */ 1490 } 1491 1492 static void ext4_da_release_space(struct inode *inode, int to_free) 1493 { 1494 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1495 struct ext4_inode_info *ei = EXT4_I(inode); 1496 1497 if (!to_free) 1498 return; /* Nothing to release, exit */ 1499 1500 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1501 1502 trace_ext4_da_release_space(inode, to_free); 1503 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1504 /* 1505 * if there aren't enough reserved blocks, then the 1506 * counter is messed up somewhere. Since this 1507 * function is called from invalidate page, it's 1508 * harmless to return without any action. 1509 */ 1510 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1511 "ino %lu, to_free %d with only %d reserved " 1512 "data blocks", inode->i_ino, to_free, 1513 ei->i_reserved_data_blocks); 1514 WARN_ON(1); 1515 to_free = ei->i_reserved_data_blocks; 1516 } 1517 ei->i_reserved_data_blocks -= to_free; 1518 1519 /* update fs dirty data blocks counter */ 1520 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1521 1522 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1523 1524 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1525 } 1526 1527 static void ext4_da_page_release_reservation(struct page *page, 1528 unsigned int offset, 1529 unsigned int length) 1530 { 1531 int to_release = 0, contiguous_blks = 0; 1532 struct buffer_head *head, *bh; 1533 unsigned int curr_off = 0; 1534 struct inode *inode = page->mapping->host; 1535 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1536 unsigned int stop = offset + length; 1537 int num_clusters; 1538 ext4_fsblk_t lblk; 1539 1540 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length); 1541 1542 head = page_buffers(page); 1543 bh = head; 1544 do { 1545 unsigned int next_off = curr_off + bh->b_size; 1546 1547 if (next_off > stop) 1548 break; 1549 1550 if ((offset <= curr_off) && (buffer_delay(bh))) { 1551 to_release++; 1552 contiguous_blks++; 1553 clear_buffer_delay(bh); 1554 } else if (contiguous_blks) { 1555 lblk = page->index << 1556 (PAGE_CACHE_SHIFT - inode->i_blkbits); 1557 lblk += (curr_off >> inode->i_blkbits) - 1558 contiguous_blks; 1559 ext4_es_remove_extent(inode, lblk, contiguous_blks); 1560 contiguous_blks = 0; 1561 } 1562 curr_off = next_off; 1563 } while ((bh = bh->b_this_page) != head); 1564 1565 if (contiguous_blks) { 1566 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1567 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks; 1568 ext4_es_remove_extent(inode, lblk, contiguous_blks); 1569 } 1570 1571 /* If we have released all the blocks belonging to a cluster, then we 1572 * need to release the reserved space for that cluster. */ 1573 num_clusters = EXT4_NUM_B2C(sbi, to_release); 1574 while (num_clusters > 0) { 1575 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) + 1576 ((num_clusters - 1) << sbi->s_cluster_bits); 1577 if (sbi->s_cluster_ratio == 1 || 1578 !ext4_find_delalloc_cluster(inode, lblk)) 1579 ext4_da_release_space(inode, 1); 1580 1581 num_clusters--; 1582 } 1583 } 1584 1585 /* 1586 * Delayed allocation stuff 1587 */ 1588 1589 struct mpage_da_data { 1590 struct inode *inode; 1591 struct writeback_control *wbc; 1592 1593 pgoff_t first_page; /* The first page to write */ 1594 pgoff_t next_page; /* Current page to examine */ 1595 pgoff_t last_page; /* Last page to examine */ 1596 /* 1597 * Extent to map - this can be after first_page because that can be 1598 * fully mapped. We somewhat abuse m_flags to store whether the extent 1599 * is delalloc or unwritten. 1600 */ 1601 struct ext4_map_blocks map; 1602 struct ext4_io_submit io_submit; /* IO submission data */ 1603 }; 1604 1605 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1606 bool invalidate) 1607 { 1608 int nr_pages, i; 1609 pgoff_t index, end; 1610 struct pagevec pvec; 1611 struct inode *inode = mpd->inode; 1612 struct address_space *mapping = inode->i_mapping; 1613 1614 /* This is necessary when next_page == 0. */ 1615 if (mpd->first_page >= mpd->next_page) 1616 return; 1617 1618 index = mpd->first_page; 1619 end = mpd->next_page - 1; 1620 if (invalidate) { 1621 ext4_lblk_t start, last; 1622 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1623 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1624 ext4_es_remove_extent(inode, start, last - start + 1); 1625 } 1626 1627 pagevec_init(&pvec, 0); 1628 while (index <= end) { 1629 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1630 if (nr_pages == 0) 1631 break; 1632 for (i = 0; i < nr_pages; i++) { 1633 struct page *page = pvec.pages[i]; 1634 if (page->index > end) 1635 break; 1636 BUG_ON(!PageLocked(page)); 1637 BUG_ON(PageWriteback(page)); 1638 if (invalidate) { 1639 block_invalidatepage(page, 0, PAGE_CACHE_SIZE); 1640 ClearPageUptodate(page); 1641 } 1642 unlock_page(page); 1643 } 1644 index = pvec.pages[nr_pages - 1]->index + 1; 1645 pagevec_release(&pvec); 1646 } 1647 } 1648 1649 static void ext4_print_free_blocks(struct inode *inode) 1650 { 1651 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1652 struct super_block *sb = inode->i_sb; 1653 struct ext4_inode_info *ei = EXT4_I(inode); 1654 1655 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1656 EXT4_C2B(EXT4_SB(inode->i_sb), 1657 ext4_count_free_clusters(sb))); 1658 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1659 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1660 (long long) EXT4_C2B(EXT4_SB(sb), 1661 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1662 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1663 (long long) EXT4_C2B(EXT4_SB(sb), 1664 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1665 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1666 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1667 ei->i_reserved_data_blocks); 1668 return; 1669 } 1670 1671 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1672 { 1673 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1674 } 1675 1676 /* 1677 * This function is grabs code from the very beginning of 1678 * ext4_map_blocks, but assumes that the caller is from delayed write 1679 * time. This function looks up the requested blocks and sets the 1680 * buffer delay bit under the protection of i_data_sem. 1681 */ 1682 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1683 struct ext4_map_blocks *map, 1684 struct buffer_head *bh) 1685 { 1686 struct extent_status es; 1687 int retval; 1688 sector_t invalid_block = ~((sector_t) 0xffff); 1689 #ifdef ES_AGGRESSIVE_TEST 1690 struct ext4_map_blocks orig_map; 1691 1692 memcpy(&orig_map, map, sizeof(*map)); 1693 #endif 1694 1695 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1696 invalid_block = ~0; 1697 1698 map->m_flags = 0; 1699 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1700 "logical block %lu\n", inode->i_ino, map->m_len, 1701 (unsigned long) map->m_lblk); 1702 1703 /* Lookup extent status tree firstly */ 1704 if (ext4_es_lookup_extent(inode, iblock, &es)) { 1705 if (ext4_es_is_hole(&es)) { 1706 retval = 0; 1707 down_read(&EXT4_I(inode)->i_data_sem); 1708 goto add_delayed; 1709 } 1710 1711 /* 1712 * Delayed extent could be allocated by fallocate. 1713 * So we need to check it. 1714 */ 1715 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1716 map_bh(bh, inode->i_sb, invalid_block); 1717 set_buffer_new(bh); 1718 set_buffer_delay(bh); 1719 return 0; 1720 } 1721 1722 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1723 retval = es.es_len - (iblock - es.es_lblk); 1724 if (retval > map->m_len) 1725 retval = map->m_len; 1726 map->m_len = retval; 1727 if (ext4_es_is_written(&es)) 1728 map->m_flags |= EXT4_MAP_MAPPED; 1729 else if (ext4_es_is_unwritten(&es)) 1730 map->m_flags |= EXT4_MAP_UNWRITTEN; 1731 else 1732 BUG_ON(1); 1733 1734 #ifdef ES_AGGRESSIVE_TEST 1735 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1736 #endif 1737 return retval; 1738 } 1739 1740 /* 1741 * Try to see if we can get the block without requesting a new 1742 * file system block. 1743 */ 1744 down_read(&EXT4_I(inode)->i_data_sem); 1745 if (ext4_has_inline_data(inode)) 1746 retval = 0; 1747 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1748 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1749 else 1750 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1751 1752 add_delayed: 1753 if (retval == 0) { 1754 int ret; 1755 /* 1756 * XXX: __block_prepare_write() unmaps passed block, 1757 * is it OK? 1758 */ 1759 /* 1760 * If the block was allocated from previously allocated cluster, 1761 * then we don't need to reserve it again. However we still need 1762 * to reserve metadata for every block we're going to write. 1763 */ 1764 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 || 1765 !ext4_find_delalloc_cluster(inode, map->m_lblk)) { 1766 ret = ext4_da_reserve_space(inode); 1767 if (ret) { 1768 /* not enough space to reserve */ 1769 retval = ret; 1770 goto out_unlock; 1771 } 1772 } 1773 1774 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1775 ~0, EXTENT_STATUS_DELAYED); 1776 if (ret) { 1777 retval = ret; 1778 goto out_unlock; 1779 } 1780 1781 map_bh(bh, inode->i_sb, invalid_block); 1782 set_buffer_new(bh); 1783 set_buffer_delay(bh); 1784 } else if (retval > 0) { 1785 int ret; 1786 unsigned int status; 1787 1788 if (unlikely(retval != map->m_len)) { 1789 ext4_warning(inode->i_sb, 1790 "ES len assertion failed for inode " 1791 "%lu: retval %d != map->m_len %d", 1792 inode->i_ino, retval, map->m_len); 1793 WARN_ON(1); 1794 } 1795 1796 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1797 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1798 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1799 map->m_pblk, status); 1800 if (ret != 0) 1801 retval = ret; 1802 } 1803 1804 out_unlock: 1805 up_read((&EXT4_I(inode)->i_data_sem)); 1806 1807 return retval; 1808 } 1809 1810 /* 1811 * This is a special get_block_t callback which is used by 1812 * ext4_da_write_begin(). It will either return mapped block or 1813 * reserve space for a single block. 1814 * 1815 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1816 * We also have b_blocknr = -1 and b_bdev initialized properly 1817 * 1818 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1819 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1820 * initialized properly. 1821 */ 1822 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1823 struct buffer_head *bh, int create) 1824 { 1825 struct ext4_map_blocks map; 1826 int ret = 0; 1827 1828 BUG_ON(create == 0); 1829 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1830 1831 map.m_lblk = iblock; 1832 map.m_len = 1; 1833 1834 /* 1835 * first, we need to know whether the block is allocated already 1836 * preallocated blocks are unmapped but should treated 1837 * the same as allocated blocks. 1838 */ 1839 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1840 if (ret <= 0) 1841 return ret; 1842 1843 map_bh(bh, inode->i_sb, map.m_pblk); 1844 ext4_update_bh_state(bh, map.m_flags); 1845 1846 if (buffer_unwritten(bh)) { 1847 /* A delayed write to unwritten bh should be marked 1848 * new and mapped. Mapped ensures that we don't do 1849 * get_block multiple times when we write to the same 1850 * offset and new ensures that we do proper zero out 1851 * for partial write. 1852 */ 1853 set_buffer_new(bh); 1854 set_buffer_mapped(bh); 1855 } 1856 return 0; 1857 } 1858 1859 static int bget_one(handle_t *handle, struct buffer_head *bh) 1860 { 1861 get_bh(bh); 1862 return 0; 1863 } 1864 1865 static int bput_one(handle_t *handle, struct buffer_head *bh) 1866 { 1867 put_bh(bh); 1868 return 0; 1869 } 1870 1871 static int __ext4_journalled_writepage(struct page *page, 1872 unsigned int len) 1873 { 1874 struct address_space *mapping = page->mapping; 1875 struct inode *inode = mapping->host; 1876 struct buffer_head *page_bufs = NULL; 1877 handle_t *handle = NULL; 1878 int ret = 0, err = 0; 1879 int inline_data = ext4_has_inline_data(inode); 1880 struct buffer_head *inode_bh = NULL; 1881 1882 ClearPageChecked(page); 1883 1884 if (inline_data) { 1885 BUG_ON(page->index != 0); 1886 BUG_ON(len > ext4_get_max_inline_size(inode)); 1887 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1888 if (inode_bh == NULL) 1889 goto out; 1890 } else { 1891 page_bufs = page_buffers(page); 1892 if (!page_bufs) { 1893 BUG(); 1894 goto out; 1895 } 1896 ext4_walk_page_buffers(handle, page_bufs, 0, len, 1897 NULL, bget_one); 1898 } 1899 /* 1900 * We need to release the page lock before we start the 1901 * journal, so grab a reference so the page won't disappear 1902 * out from under us. 1903 */ 1904 get_page(page); 1905 unlock_page(page); 1906 1907 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1908 ext4_writepage_trans_blocks(inode)); 1909 if (IS_ERR(handle)) { 1910 ret = PTR_ERR(handle); 1911 put_page(page); 1912 goto out_no_pagelock; 1913 } 1914 BUG_ON(!ext4_handle_valid(handle)); 1915 1916 lock_page(page); 1917 put_page(page); 1918 if (page->mapping != mapping) { 1919 /* The page got truncated from under us */ 1920 ext4_journal_stop(handle); 1921 ret = 0; 1922 goto out; 1923 } 1924 1925 if (inline_data) { 1926 BUFFER_TRACE(inode_bh, "get write access"); 1927 ret = ext4_journal_get_write_access(handle, inode_bh); 1928 1929 err = ext4_handle_dirty_metadata(handle, inode, inode_bh); 1930 1931 } else { 1932 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1933 do_journal_get_write_access); 1934 1935 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1936 write_end_fn); 1937 } 1938 if (ret == 0) 1939 ret = err; 1940 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1941 err = ext4_journal_stop(handle); 1942 if (!ret) 1943 ret = err; 1944 1945 if (!ext4_has_inline_data(inode)) 1946 ext4_walk_page_buffers(NULL, page_bufs, 0, len, 1947 NULL, bput_one); 1948 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1949 out: 1950 unlock_page(page); 1951 out_no_pagelock: 1952 brelse(inode_bh); 1953 return ret; 1954 } 1955 1956 /* 1957 * Note that we don't need to start a transaction unless we're journaling data 1958 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1959 * need to file the inode to the transaction's list in ordered mode because if 1960 * we are writing back data added by write(), the inode is already there and if 1961 * we are writing back data modified via mmap(), no one guarantees in which 1962 * transaction the data will hit the disk. In case we are journaling data, we 1963 * cannot start transaction directly because transaction start ranks above page 1964 * lock so we have to do some magic. 1965 * 1966 * This function can get called via... 1967 * - ext4_writepages after taking page lock (have journal handle) 1968 * - journal_submit_inode_data_buffers (no journal handle) 1969 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 1970 * - grab_page_cache when doing write_begin (have journal handle) 1971 * 1972 * We don't do any block allocation in this function. If we have page with 1973 * multiple blocks we need to write those buffer_heads that are mapped. This 1974 * is important for mmaped based write. So if we do with blocksize 1K 1975 * truncate(f, 1024); 1976 * a = mmap(f, 0, 4096); 1977 * a[0] = 'a'; 1978 * truncate(f, 4096); 1979 * we have in the page first buffer_head mapped via page_mkwrite call back 1980 * but other buffer_heads would be unmapped but dirty (dirty done via the 1981 * do_wp_page). So writepage should write the first block. If we modify 1982 * the mmap area beyond 1024 we will again get a page_fault and the 1983 * page_mkwrite callback will do the block allocation and mark the 1984 * buffer_heads mapped. 1985 * 1986 * We redirty the page if we have any buffer_heads that is either delay or 1987 * unwritten in the page. 1988 * 1989 * We can get recursively called as show below. 1990 * 1991 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1992 * ext4_writepage() 1993 * 1994 * But since we don't do any block allocation we should not deadlock. 1995 * Page also have the dirty flag cleared so we don't get recurive page_lock. 1996 */ 1997 static int ext4_writepage(struct page *page, 1998 struct writeback_control *wbc) 1999 { 2000 int ret = 0; 2001 loff_t size; 2002 unsigned int len; 2003 struct buffer_head *page_bufs = NULL; 2004 struct inode *inode = page->mapping->host; 2005 struct ext4_io_submit io_submit; 2006 bool keep_towrite = false; 2007 2008 trace_ext4_writepage(page); 2009 size = i_size_read(inode); 2010 if (page->index == size >> PAGE_CACHE_SHIFT) 2011 len = size & ~PAGE_CACHE_MASK; 2012 else 2013 len = PAGE_CACHE_SIZE; 2014 2015 page_bufs = page_buffers(page); 2016 /* 2017 * We cannot do block allocation or other extent handling in this 2018 * function. If there are buffers needing that, we have to redirty 2019 * the page. But we may reach here when we do a journal commit via 2020 * journal_submit_inode_data_buffers() and in that case we must write 2021 * allocated buffers to achieve data=ordered mode guarantees. 2022 * 2023 * Also, if there is only one buffer per page (the fs block 2024 * size == the page size), if one buffer needs block 2025 * allocation or needs to modify the extent tree to clear the 2026 * unwritten flag, we know that the page can't be written at 2027 * all, so we might as well refuse the write immediately. 2028 * Unfortunately if the block size != page size, we can't as 2029 * easily detect this case using ext4_walk_page_buffers(), but 2030 * for the extremely common case, this is an optimization that 2031 * skips a useless round trip through ext4_bio_write_page(). 2032 */ 2033 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2034 ext4_bh_delay_or_unwritten)) { 2035 redirty_page_for_writepage(wbc, page); 2036 if ((current->flags & PF_MEMALLOC) || 2037 (inode->i_sb->s_blocksize == PAGE_CACHE_SIZE)) { 2038 /* 2039 * For memory cleaning there's no point in writing only 2040 * some buffers. So just bail out. Warn if we came here 2041 * from direct reclaim. 2042 */ 2043 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 2044 == PF_MEMALLOC); 2045 unlock_page(page); 2046 return 0; 2047 } 2048 keep_towrite = true; 2049 } 2050 2051 if (PageChecked(page) && ext4_should_journal_data(inode)) 2052 /* 2053 * It's mmapped pagecache. Add buffers and journal it. There 2054 * doesn't seem much point in redirtying the page here. 2055 */ 2056 return __ext4_journalled_writepage(page, len); 2057 2058 ext4_io_submit_init(&io_submit, wbc); 2059 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 2060 if (!io_submit.io_end) { 2061 redirty_page_for_writepage(wbc, page); 2062 unlock_page(page); 2063 return -ENOMEM; 2064 } 2065 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite); 2066 ext4_io_submit(&io_submit); 2067 /* Drop io_end reference we got from init */ 2068 ext4_put_io_end_defer(io_submit.io_end); 2069 return ret; 2070 } 2071 2072 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 2073 { 2074 int len; 2075 loff_t size = i_size_read(mpd->inode); 2076 int err; 2077 2078 BUG_ON(page->index != mpd->first_page); 2079 if (page->index == size >> PAGE_CACHE_SHIFT) 2080 len = size & ~PAGE_CACHE_MASK; 2081 else 2082 len = PAGE_CACHE_SIZE; 2083 clear_page_dirty_for_io(page); 2084 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false); 2085 if (!err) 2086 mpd->wbc->nr_to_write--; 2087 mpd->first_page++; 2088 2089 return err; 2090 } 2091 2092 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay)) 2093 2094 /* 2095 * mballoc gives us at most this number of blocks... 2096 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 2097 * The rest of mballoc seems to handle chunks up to full group size. 2098 */ 2099 #define MAX_WRITEPAGES_EXTENT_LEN 2048 2100 2101 /* 2102 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 2103 * 2104 * @mpd - extent of blocks 2105 * @lblk - logical number of the block in the file 2106 * @bh - buffer head we want to add to the extent 2107 * 2108 * The function is used to collect contig. blocks in the same state. If the 2109 * buffer doesn't require mapping for writeback and we haven't started the 2110 * extent of buffers to map yet, the function returns 'true' immediately - the 2111 * caller can write the buffer right away. Otherwise the function returns true 2112 * if the block has been added to the extent, false if the block couldn't be 2113 * added. 2114 */ 2115 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 2116 struct buffer_head *bh) 2117 { 2118 struct ext4_map_blocks *map = &mpd->map; 2119 2120 /* Buffer that doesn't need mapping for writeback? */ 2121 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 2122 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 2123 /* So far no extent to map => we write the buffer right away */ 2124 if (map->m_len == 0) 2125 return true; 2126 return false; 2127 } 2128 2129 /* First block in the extent? */ 2130 if (map->m_len == 0) { 2131 map->m_lblk = lblk; 2132 map->m_len = 1; 2133 map->m_flags = bh->b_state & BH_FLAGS; 2134 return true; 2135 } 2136 2137 /* Don't go larger than mballoc is willing to allocate */ 2138 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 2139 return false; 2140 2141 /* Can we merge the block to our big extent? */ 2142 if (lblk == map->m_lblk + map->m_len && 2143 (bh->b_state & BH_FLAGS) == map->m_flags) { 2144 map->m_len++; 2145 return true; 2146 } 2147 return false; 2148 } 2149 2150 /* 2151 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 2152 * 2153 * @mpd - extent of blocks for mapping 2154 * @head - the first buffer in the page 2155 * @bh - buffer we should start processing from 2156 * @lblk - logical number of the block in the file corresponding to @bh 2157 * 2158 * Walk through page buffers from @bh upto @head (exclusive) and either submit 2159 * the page for IO if all buffers in this page were mapped and there's no 2160 * accumulated extent of buffers to map or add buffers in the page to the 2161 * extent of buffers to map. The function returns 1 if the caller can continue 2162 * by processing the next page, 0 if it should stop adding buffers to the 2163 * extent to map because we cannot extend it anymore. It can also return value 2164 * < 0 in case of error during IO submission. 2165 */ 2166 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 2167 struct buffer_head *head, 2168 struct buffer_head *bh, 2169 ext4_lblk_t lblk) 2170 { 2171 struct inode *inode = mpd->inode; 2172 int err; 2173 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1) 2174 >> inode->i_blkbits; 2175 2176 do { 2177 BUG_ON(buffer_locked(bh)); 2178 2179 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2180 /* Found extent to map? */ 2181 if (mpd->map.m_len) 2182 return 0; 2183 /* Everything mapped so far and we hit EOF */ 2184 break; 2185 } 2186 } while (lblk++, (bh = bh->b_this_page) != head); 2187 /* So far everything mapped? Submit the page for IO. */ 2188 if (mpd->map.m_len == 0) { 2189 err = mpage_submit_page(mpd, head->b_page); 2190 if (err < 0) 2191 return err; 2192 } 2193 return lblk < blocks; 2194 } 2195 2196 /* 2197 * mpage_map_buffers - update buffers corresponding to changed extent and 2198 * submit fully mapped pages for IO 2199 * 2200 * @mpd - description of extent to map, on return next extent to map 2201 * 2202 * Scan buffers corresponding to changed extent (we expect corresponding pages 2203 * to be already locked) and update buffer state according to new extent state. 2204 * We map delalloc buffers to their physical location, clear unwritten bits, 2205 * and mark buffers as uninit when we perform writes to unwritten extents 2206 * and do extent conversion after IO is finished. If the last page is not fully 2207 * mapped, we update @map to the next extent in the last page that needs 2208 * mapping. Otherwise we submit the page for IO. 2209 */ 2210 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2211 { 2212 struct pagevec pvec; 2213 int nr_pages, i; 2214 struct inode *inode = mpd->inode; 2215 struct buffer_head *head, *bh; 2216 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits; 2217 pgoff_t start, end; 2218 ext4_lblk_t lblk; 2219 sector_t pblock; 2220 int err; 2221 2222 start = mpd->map.m_lblk >> bpp_bits; 2223 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2224 lblk = start << bpp_bits; 2225 pblock = mpd->map.m_pblk; 2226 2227 pagevec_init(&pvec, 0); 2228 while (start <= end) { 2229 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start, 2230 PAGEVEC_SIZE); 2231 if (nr_pages == 0) 2232 break; 2233 for (i = 0; i < nr_pages; i++) { 2234 struct page *page = pvec.pages[i]; 2235 2236 if (page->index > end) 2237 break; 2238 /* Up to 'end' pages must be contiguous */ 2239 BUG_ON(page->index != start); 2240 bh = head = page_buffers(page); 2241 do { 2242 if (lblk < mpd->map.m_lblk) 2243 continue; 2244 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2245 /* 2246 * Buffer after end of mapped extent. 2247 * Find next buffer in the page to map. 2248 */ 2249 mpd->map.m_len = 0; 2250 mpd->map.m_flags = 0; 2251 /* 2252 * FIXME: If dioread_nolock supports 2253 * blocksize < pagesize, we need to make 2254 * sure we add size mapped so far to 2255 * io_end->size as the following call 2256 * can submit the page for IO. 2257 */ 2258 err = mpage_process_page_bufs(mpd, head, 2259 bh, lblk); 2260 pagevec_release(&pvec); 2261 if (err > 0) 2262 err = 0; 2263 return err; 2264 } 2265 if (buffer_delay(bh)) { 2266 clear_buffer_delay(bh); 2267 bh->b_blocknr = pblock++; 2268 } 2269 clear_buffer_unwritten(bh); 2270 } while (lblk++, (bh = bh->b_this_page) != head); 2271 2272 /* 2273 * FIXME: This is going to break if dioread_nolock 2274 * supports blocksize < pagesize as we will try to 2275 * convert potentially unmapped parts of inode. 2276 */ 2277 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE; 2278 /* Page fully mapped - let IO run! */ 2279 err = mpage_submit_page(mpd, page); 2280 if (err < 0) { 2281 pagevec_release(&pvec); 2282 return err; 2283 } 2284 start++; 2285 } 2286 pagevec_release(&pvec); 2287 } 2288 /* Extent fully mapped and matches with page boundary. We are done. */ 2289 mpd->map.m_len = 0; 2290 mpd->map.m_flags = 0; 2291 return 0; 2292 } 2293 2294 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2295 { 2296 struct inode *inode = mpd->inode; 2297 struct ext4_map_blocks *map = &mpd->map; 2298 int get_blocks_flags; 2299 int err, dioread_nolock; 2300 2301 trace_ext4_da_write_pages_extent(inode, map); 2302 /* 2303 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2304 * to convert an unwritten extent to be initialized (in the case 2305 * where we have written into one or more preallocated blocks). It is 2306 * possible that we're going to need more metadata blocks than 2307 * previously reserved. However we must not fail because we're in 2308 * writeback and there is nothing we can do about it so it might result 2309 * in data loss. So use reserved blocks to allocate metadata if 2310 * possible. 2311 * 2312 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2313 * the blocks in question are delalloc blocks. This indicates 2314 * that the blocks and quotas has already been checked when 2315 * the data was copied into the page cache. 2316 */ 2317 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2318 EXT4_GET_BLOCKS_METADATA_NOFAIL; 2319 dioread_nolock = ext4_should_dioread_nolock(inode); 2320 if (dioread_nolock) 2321 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2322 if (map->m_flags & (1 << BH_Delay)) 2323 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2324 2325 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2326 if (err < 0) 2327 return err; 2328 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2329 if (!mpd->io_submit.io_end->handle && 2330 ext4_handle_valid(handle)) { 2331 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2332 handle->h_rsv_handle = NULL; 2333 } 2334 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2335 } 2336 2337 BUG_ON(map->m_len == 0); 2338 if (map->m_flags & EXT4_MAP_NEW) { 2339 struct block_device *bdev = inode->i_sb->s_bdev; 2340 int i; 2341 2342 for (i = 0; i < map->m_len; i++) 2343 unmap_underlying_metadata(bdev, map->m_pblk + i); 2344 } 2345 return 0; 2346 } 2347 2348 /* 2349 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2350 * mpd->len and submit pages underlying it for IO 2351 * 2352 * @handle - handle for journal operations 2353 * @mpd - extent to map 2354 * @give_up_on_write - we set this to true iff there is a fatal error and there 2355 * is no hope of writing the data. The caller should discard 2356 * dirty pages to avoid infinite loops. 2357 * 2358 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2359 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2360 * them to initialized or split the described range from larger unwritten 2361 * extent. Note that we need not map all the described range since allocation 2362 * can return less blocks or the range is covered by more unwritten extents. We 2363 * cannot map more because we are limited by reserved transaction credits. On 2364 * the other hand we always make sure that the last touched page is fully 2365 * mapped so that it can be written out (and thus forward progress is 2366 * guaranteed). After mapping we submit all mapped pages for IO. 2367 */ 2368 static int mpage_map_and_submit_extent(handle_t *handle, 2369 struct mpage_da_data *mpd, 2370 bool *give_up_on_write) 2371 { 2372 struct inode *inode = mpd->inode; 2373 struct ext4_map_blocks *map = &mpd->map; 2374 int err; 2375 loff_t disksize; 2376 int progress = 0; 2377 2378 mpd->io_submit.io_end->offset = 2379 ((loff_t)map->m_lblk) << inode->i_blkbits; 2380 do { 2381 err = mpage_map_one_extent(handle, mpd); 2382 if (err < 0) { 2383 struct super_block *sb = inode->i_sb; 2384 2385 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 2386 goto invalidate_dirty_pages; 2387 /* 2388 * Let the uper layers retry transient errors. 2389 * In the case of ENOSPC, if ext4_count_free_blocks() 2390 * is non-zero, a commit should free up blocks. 2391 */ 2392 if ((err == -ENOMEM) || 2393 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2394 if (progress) 2395 goto update_disksize; 2396 return err; 2397 } 2398 ext4_msg(sb, KERN_CRIT, 2399 "Delayed block allocation failed for " 2400 "inode %lu at logical offset %llu with" 2401 " max blocks %u with error %d", 2402 inode->i_ino, 2403 (unsigned long long)map->m_lblk, 2404 (unsigned)map->m_len, -err); 2405 ext4_msg(sb, KERN_CRIT, 2406 "This should not happen!! Data will " 2407 "be lost\n"); 2408 if (err == -ENOSPC) 2409 ext4_print_free_blocks(inode); 2410 invalidate_dirty_pages: 2411 *give_up_on_write = true; 2412 return err; 2413 } 2414 progress = 1; 2415 /* 2416 * Update buffer state, submit mapped pages, and get us new 2417 * extent to map 2418 */ 2419 err = mpage_map_and_submit_buffers(mpd); 2420 if (err < 0) 2421 goto update_disksize; 2422 } while (map->m_len); 2423 2424 update_disksize: 2425 /* 2426 * Update on-disk size after IO is submitted. Races with 2427 * truncate are avoided by checking i_size under i_data_sem. 2428 */ 2429 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT; 2430 if (disksize > EXT4_I(inode)->i_disksize) { 2431 int err2; 2432 loff_t i_size; 2433 2434 down_write(&EXT4_I(inode)->i_data_sem); 2435 i_size = i_size_read(inode); 2436 if (disksize > i_size) 2437 disksize = i_size; 2438 if (disksize > EXT4_I(inode)->i_disksize) 2439 EXT4_I(inode)->i_disksize = disksize; 2440 err2 = ext4_mark_inode_dirty(handle, inode); 2441 up_write(&EXT4_I(inode)->i_data_sem); 2442 if (err2) 2443 ext4_error(inode->i_sb, 2444 "Failed to mark inode %lu dirty", 2445 inode->i_ino); 2446 if (!err) 2447 err = err2; 2448 } 2449 return err; 2450 } 2451 2452 /* 2453 * Calculate the total number of credits to reserve for one writepages 2454 * iteration. This is called from ext4_writepages(). We map an extent of 2455 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2456 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2457 * bpp - 1 blocks in bpp different extents. 2458 */ 2459 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2460 { 2461 int bpp = ext4_journal_blocks_per_page(inode); 2462 2463 return ext4_meta_trans_blocks(inode, 2464 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2465 } 2466 2467 /* 2468 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2469 * and underlying extent to map 2470 * 2471 * @mpd - where to look for pages 2472 * 2473 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2474 * IO immediately. When we find a page which isn't mapped we start accumulating 2475 * extent of buffers underlying these pages that needs mapping (formed by 2476 * either delayed or unwritten buffers). We also lock the pages containing 2477 * these buffers. The extent found is returned in @mpd structure (starting at 2478 * mpd->lblk with length mpd->len blocks). 2479 * 2480 * Note that this function can attach bios to one io_end structure which are 2481 * neither logically nor physically contiguous. Although it may seem as an 2482 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2483 * case as we need to track IO to all buffers underlying a page in one io_end. 2484 */ 2485 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2486 { 2487 struct address_space *mapping = mpd->inode->i_mapping; 2488 struct pagevec pvec; 2489 unsigned int nr_pages; 2490 long left = mpd->wbc->nr_to_write; 2491 pgoff_t index = mpd->first_page; 2492 pgoff_t end = mpd->last_page; 2493 int tag; 2494 int i, err = 0; 2495 int blkbits = mpd->inode->i_blkbits; 2496 ext4_lblk_t lblk; 2497 struct buffer_head *head; 2498 2499 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2500 tag = PAGECACHE_TAG_TOWRITE; 2501 else 2502 tag = PAGECACHE_TAG_DIRTY; 2503 2504 pagevec_init(&pvec, 0); 2505 mpd->map.m_len = 0; 2506 mpd->next_page = index; 2507 while (index <= end) { 2508 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2509 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2510 if (nr_pages == 0) 2511 goto out; 2512 2513 for (i = 0; i < nr_pages; i++) { 2514 struct page *page = pvec.pages[i]; 2515 2516 /* 2517 * At this point, the page may be truncated or 2518 * invalidated (changing page->mapping to NULL), or 2519 * even swizzled back from swapper_space to tmpfs file 2520 * mapping. However, page->index will not change 2521 * because we have a reference on the page. 2522 */ 2523 if (page->index > end) 2524 goto out; 2525 2526 /* 2527 * Accumulated enough dirty pages? This doesn't apply 2528 * to WB_SYNC_ALL mode. For integrity sync we have to 2529 * keep going because someone may be concurrently 2530 * dirtying pages, and we might have synced a lot of 2531 * newly appeared dirty pages, but have not synced all 2532 * of the old dirty pages. 2533 */ 2534 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2535 goto out; 2536 2537 /* If we can't merge this page, we are done. */ 2538 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2539 goto out; 2540 2541 lock_page(page); 2542 /* 2543 * If the page is no longer dirty, or its mapping no 2544 * longer corresponds to inode we are writing (which 2545 * means it has been truncated or invalidated), or the 2546 * page is already under writeback and we are not doing 2547 * a data integrity writeback, skip the page 2548 */ 2549 if (!PageDirty(page) || 2550 (PageWriteback(page) && 2551 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2552 unlikely(page->mapping != mapping)) { 2553 unlock_page(page); 2554 continue; 2555 } 2556 2557 wait_on_page_writeback(page); 2558 BUG_ON(PageWriteback(page)); 2559 2560 if (mpd->map.m_len == 0) 2561 mpd->first_page = page->index; 2562 mpd->next_page = page->index + 1; 2563 /* Add all dirty buffers to mpd */ 2564 lblk = ((ext4_lblk_t)page->index) << 2565 (PAGE_CACHE_SHIFT - blkbits); 2566 head = page_buffers(page); 2567 err = mpage_process_page_bufs(mpd, head, head, lblk); 2568 if (err <= 0) 2569 goto out; 2570 err = 0; 2571 left--; 2572 } 2573 pagevec_release(&pvec); 2574 cond_resched(); 2575 } 2576 return 0; 2577 out: 2578 pagevec_release(&pvec); 2579 return err; 2580 } 2581 2582 static int __writepage(struct page *page, struct writeback_control *wbc, 2583 void *data) 2584 { 2585 struct address_space *mapping = data; 2586 int ret = ext4_writepage(page, wbc); 2587 mapping_set_error(mapping, ret); 2588 return ret; 2589 } 2590 2591 static int ext4_writepages(struct address_space *mapping, 2592 struct writeback_control *wbc) 2593 { 2594 pgoff_t writeback_index = 0; 2595 long nr_to_write = wbc->nr_to_write; 2596 int range_whole = 0; 2597 int cycled = 1; 2598 handle_t *handle = NULL; 2599 struct mpage_da_data mpd; 2600 struct inode *inode = mapping->host; 2601 int needed_blocks, rsv_blocks = 0, ret = 0; 2602 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2603 bool done; 2604 struct blk_plug plug; 2605 bool give_up_on_write = false; 2606 2607 trace_ext4_writepages(inode, wbc); 2608 2609 if (dax_mapping(mapping)) 2610 return dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, 2611 wbc); 2612 2613 /* 2614 * No pages to write? This is mainly a kludge to avoid starting 2615 * a transaction for special inodes like journal inode on last iput() 2616 * because that could violate lock ordering on umount 2617 */ 2618 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2619 goto out_writepages; 2620 2621 if (ext4_should_journal_data(inode)) { 2622 struct blk_plug plug; 2623 2624 blk_start_plug(&plug); 2625 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 2626 blk_finish_plug(&plug); 2627 goto out_writepages; 2628 } 2629 2630 /* 2631 * If the filesystem has aborted, it is read-only, so return 2632 * right away instead of dumping stack traces later on that 2633 * will obscure the real source of the problem. We test 2634 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2635 * the latter could be true if the filesystem is mounted 2636 * read-only, and in that case, ext4_writepages should 2637 * *never* be called, so if that ever happens, we would want 2638 * the stack trace. 2639 */ 2640 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) { 2641 ret = -EROFS; 2642 goto out_writepages; 2643 } 2644 2645 if (ext4_should_dioread_nolock(inode)) { 2646 /* 2647 * We may need to convert up to one extent per block in 2648 * the page and we may dirty the inode. 2649 */ 2650 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits); 2651 } 2652 2653 /* 2654 * If we have inline data and arrive here, it means that 2655 * we will soon create the block for the 1st page, so 2656 * we'd better clear the inline data here. 2657 */ 2658 if (ext4_has_inline_data(inode)) { 2659 /* Just inode will be modified... */ 2660 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2661 if (IS_ERR(handle)) { 2662 ret = PTR_ERR(handle); 2663 goto out_writepages; 2664 } 2665 BUG_ON(ext4_test_inode_state(inode, 2666 EXT4_STATE_MAY_INLINE_DATA)); 2667 ext4_destroy_inline_data(handle, inode); 2668 ext4_journal_stop(handle); 2669 } 2670 2671 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2672 range_whole = 1; 2673 2674 if (wbc->range_cyclic) { 2675 writeback_index = mapping->writeback_index; 2676 if (writeback_index) 2677 cycled = 0; 2678 mpd.first_page = writeback_index; 2679 mpd.last_page = -1; 2680 } else { 2681 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT; 2682 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT; 2683 } 2684 2685 mpd.inode = inode; 2686 mpd.wbc = wbc; 2687 ext4_io_submit_init(&mpd.io_submit, wbc); 2688 retry: 2689 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2690 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2691 done = false; 2692 blk_start_plug(&plug); 2693 while (!done && mpd.first_page <= mpd.last_page) { 2694 /* For each extent of pages we use new io_end */ 2695 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2696 if (!mpd.io_submit.io_end) { 2697 ret = -ENOMEM; 2698 break; 2699 } 2700 2701 /* 2702 * We have two constraints: We find one extent to map and we 2703 * must always write out whole page (makes a difference when 2704 * blocksize < pagesize) so that we don't block on IO when we 2705 * try to write out the rest of the page. Journalled mode is 2706 * not supported by delalloc. 2707 */ 2708 BUG_ON(ext4_should_journal_data(inode)); 2709 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2710 2711 /* start a new transaction */ 2712 handle = ext4_journal_start_with_reserve(inode, 2713 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2714 if (IS_ERR(handle)) { 2715 ret = PTR_ERR(handle); 2716 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2717 "%ld pages, ino %lu; err %d", __func__, 2718 wbc->nr_to_write, inode->i_ino, ret); 2719 /* Release allocated io_end */ 2720 ext4_put_io_end(mpd.io_submit.io_end); 2721 break; 2722 } 2723 2724 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2725 ret = mpage_prepare_extent_to_map(&mpd); 2726 if (!ret) { 2727 if (mpd.map.m_len) 2728 ret = mpage_map_and_submit_extent(handle, &mpd, 2729 &give_up_on_write); 2730 else { 2731 /* 2732 * We scanned the whole range (or exhausted 2733 * nr_to_write), submitted what was mapped and 2734 * didn't find anything needing mapping. We are 2735 * done. 2736 */ 2737 done = true; 2738 } 2739 } 2740 ext4_journal_stop(handle); 2741 /* Submit prepared bio */ 2742 ext4_io_submit(&mpd.io_submit); 2743 /* Unlock pages we didn't use */ 2744 mpage_release_unused_pages(&mpd, give_up_on_write); 2745 /* Drop our io_end reference we got from init */ 2746 ext4_put_io_end(mpd.io_submit.io_end); 2747 2748 if (ret == -ENOSPC && sbi->s_journal) { 2749 /* 2750 * Commit the transaction which would 2751 * free blocks released in the transaction 2752 * and try again 2753 */ 2754 jbd2_journal_force_commit_nested(sbi->s_journal); 2755 ret = 0; 2756 continue; 2757 } 2758 /* Fatal error - ENOMEM, EIO... */ 2759 if (ret) 2760 break; 2761 } 2762 blk_finish_plug(&plug); 2763 if (!ret && !cycled && wbc->nr_to_write > 0) { 2764 cycled = 1; 2765 mpd.last_page = writeback_index - 1; 2766 mpd.first_page = 0; 2767 goto retry; 2768 } 2769 2770 /* Update index */ 2771 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2772 /* 2773 * Set the writeback_index so that range_cyclic 2774 * mode will write it back later 2775 */ 2776 mapping->writeback_index = mpd.first_page; 2777 2778 out_writepages: 2779 trace_ext4_writepages_result(inode, wbc, ret, 2780 nr_to_write - wbc->nr_to_write); 2781 return ret; 2782 } 2783 2784 static int ext4_nonda_switch(struct super_block *sb) 2785 { 2786 s64 free_clusters, dirty_clusters; 2787 struct ext4_sb_info *sbi = EXT4_SB(sb); 2788 2789 /* 2790 * switch to non delalloc mode if we are running low 2791 * on free block. The free block accounting via percpu 2792 * counters can get slightly wrong with percpu_counter_batch getting 2793 * accumulated on each CPU without updating global counters 2794 * Delalloc need an accurate free block accounting. So switch 2795 * to non delalloc when we are near to error range. 2796 */ 2797 free_clusters = 2798 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2799 dirty_clusters = 2800 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2801 /* 2802 * Start pushing delalloc when 1/2 of free blocks are dirty. 2803 */ 2804 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2805 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2806 2807 if (2 * free_clusters < 3 * dirty_clusters || 2808 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2809 /* 2810 * free block count is less than 150% of dirty blocks 2811 * or free blocks is less than watermark 2812 */ 2813 return 1; 2814 } 2815 return 0; 2816 } 2817 2818 /* We always reserve for an inode update; the superblock could be there too */ 2819 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len) 2820 { 2821 if (likely(ext4_has_feature_large_file(inode->i_sb))) 2822 return 1; 2823 2824 if (pos + len <= 0x7fffffffULL) 2825 return 1; 2826 2827 /* We might need to update the superblock to set LARGE_FILE */ 2828 return 2; 2829 } 2830 2831 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2832 loff_t pos, unsigned len, unsigned flags, 2833 struct page **pagep, void **fsdata) 2834 { 2835 int ret, retries = 0; 2836 struct page *page; 2837 pgoff_t index; 2838 struct inode *inode = mapping->host; 2839 handle_t *handle; 2840 2841 index = pos >> PAGE_CACHE_SHIFT; 2842 2843 if (ext4_nonda_switch(inode->i_sb)) { 2844 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2845 return ext4_write_begin(file, mapping, pos, 2846 len, flags, pagep, fsdata); 2847 } 2848 *fsdata = (void *)0; 2849 trace_ext4_da_write_begin(inode, pos, len, flags); 2850 2851 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2852 ret = ext4_da_write_inline_data_begin(mapping, inode, 2853 pos, len, flags, 2854 pagep, fsdata); 2855 if (ret < 0) 2856 return ret; 2857 if (ret == 1) 2858 return 0; 2859 } 2860 2861 /* 2862 * grab_cache_page_write_begin() can take a long time if the 2863 * system is thrashing due to memory pressure, or if the page 2864 * is being written back. So grab it first before we start 2865 * the transaction handle. This also allows us to allocate 2866 * the page (if needed) without using GFP_NOFS. 2867 */ 2868 retry_grab: 2869 page = grab_cache_page_write_begin(mapping, index, flags); 2870 if (!page) 2871 return -ENOMEM; 2872 unlock_page(page); 2873 2874 /* 2875 * With delayed allocation, we don't log the i_disksize update 2876 * if there is delayed block allocation. But we still need 2877 * to journalling the i_disksize update if writes to the end 2878 * of file which has an already mapped buffer. 2879 */ 2880 retry_journal: 2881 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 2882 ext4_da_write_credits(inode, pos, len)); 2883 if (IS_ERR(handle)) { 2884 page_cache_release(page); 2885 return PTR_ERR(handle); 2886 } 2887 2888 lock_page(page); 2889 if (page->mapping != mapping) { 2890 /* The page got truncated from under us */ 2891 unlock_page(page); 2892 page_cache_release(page); 2893 ext4_journal_stop(handle); 2894 goto retry_grab; 2895 } 2896 /* In case writeback began while the page was unlocked */ 2897 wait_for_stable_page(page); 2898 2899 #ifdef CONFIG_EXT4_FS_ENCRYPTION 2900 ret = ext4_block_write_begin(page, pos, len, 2901 ext4_da_get_block_prep); 2902 #else 2903 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 2904 #endif 2905 if (ret < 0) { 2906 unlock_page(page); 2907 ext4_journal_stop(handle); 2908 /* 2909 * block_write_begin may have instantiated a few blocks 2910 * outside i_size. Trim these off again. Don't need 2911 * i_size_read because we hold i_mutex. 2912 */ 2913 if (pos + len > inode->i_size) 2914 ext4_truncate_failed_write(inode); 2915 2916 if (ret == -ENOSPC && 2917 ext4_should_retry_alloc(inode->i_sb, &retries)) 2918 goto retry_journal; 2919 2920 page_cache_release(page); 2921 return ret; 2922 } 2923 2924 *pagep = page; 2925 return ret; 2926 } 2927 2928 /* 2929 * Check if we should update i_disksize 2930 * when write to the end of file but not require block allocation 2931 */ 2932 static int ext4_da_should_update_i_disksize(struct page *page, 2933 unsigned long offset) 2934 { 2935 struct buffer_head *bh; 2936 struct inode *inode = page->mapping->host; 2937 unsigned int idx; 2938 int i; 2939 2940 bh = page_buffers(page); 2941 idx = offset >> inode->i_blkbits; 2942 2943 for (i = 0; i < idx; i++) 2944 bh = bh->b_this_page; 2945 2946 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2947 return 0; 2948 return 1; 2949 } 2950 2951 static int ext4_da_write_end(struct file *file, 2952 struct address_space *mapping, 2953 loff_t pos, unsigned len, unsigned copied, 2954 struct page *page, void *fsdata) 2955 { 2956 struct inode *inode = mapping->host; 2957 int ret = 0, ret2; 2958 handle_t *handle = ext4_journal_current_handle(); 2959 loff_t new_i_size; 2960 unsigned long start, end; 2961 int write_mode = (int)(unsigned long)fsdata; 2962 2963 if (write_mode == FALL_BACK_TO_NONDELALLOC) 2964 return ext4_write_end(file, mapping, pos, 2965 len, copied, page, fsdata); 2966 2967 trace_ext4_da_write_end(inode, pos, len, copied); 2968 start = pos & (PAGE_CACHE_SIZE - 1); 2969 end = start + copied - 1; 2970 2971 /* 2972 * generic_write_end() will run mark_inode_dirty() if i_size 2973 * changes. So let's piggyback the i_disksize mark_inode_dirty 2974 * into that. 2975 */ 2976 new_i_size = pos + copied; 2977 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 2978 if (ext4_has_inline_data(inode) || 2979 ext4_da_should_update_i_disksize(page, end)) { 2980 ext4_update_i_disksize(inode, new_i_size); 2981 /* We need to mark inode dirty even if 2982 * new_i_size is less that inode->i_size 2983 * bu greater than i_disksize.(hint delalloc) 2984 */ 2985 ext4_mark_inode_dirty(handle, inode); 2986 } 2987 } 2988 2989 if (write_mode != CONVERT_INLINE_DATA && 2990 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 2991 ext4_has_inline_data(inode)) 2992 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 2993 page); 2994 else 2995 ret2 = generic_write_end(file, mapping, pos, len, copied, 2996 page, fsdata); 2997 2998 copied = ret2; 2999 if (ret2 < 0) 3000 ret = ret2; 3001 ret2 = ext4_journal_stop(handle); 3002 if (!ret) 3003 ret = ret2; 3004 3005 return ret ? ret : copied; 3006 } 3007 3008 static void ext4_da_invalidatepage(struct page *page, unsigned int offset, 3009 unsigned int length) 3010 { 3011 /* 3012 * Drop reserved blocks 3013 */ 3014 BUG_ON(!PageLocked(page)); 3015 if (!page_has_buffers(page)) 3016 goto out; 3017 3018 ext4_da_page_release_reservation(page, offset, length); 3019 3020 out: 3021 ext4_invalidatepage(page, offset, length); 3022 3023 return; 3024 } 3025 3026 /* 3027 * Force all delayed allocation blocks to be allocated for a given inode. 3028 */ 3029 int ext4_alloc_da_blocks(struct inode *inode) 3030 { 3031 trace_ext4_alloc_da_blocks(inode); 3032 3033 if (!EXT4_I(inode)->i_reserved_data_blocks) 3034 return 0; 3035 3036 /* 3037 * We do something simple for now. The filemap_flush() will 3038 * also start triggering a write of the data blocks, which is 3039 * not strictly speaking necessary (and for users of 3040 * laptop_mode, not even desirable). However, to do otherwise 3041 * would require replicating code paths in: 3042 * 3043 * ext4_writepages() -> 3044 * write_cache_pages() ---> (via passed in callback function) 3045 * __mpage_da_writepage() --> 3046 * mpage_add_bh_to_extent() 3047 * mpage_da_map_blocks() 3048 * 3049 * The problem is that write_cache_pages(), located in 3050 * mm/page-writeback.c, marks pages clean in preparation for 3051 * doing I/O, which is not desirable if we're not planning on 3052 * doing I/O at all. 3053 * 3054 * We could call write_cache_pages(), and then redirty all of 3055 * the pages by calling redirty_page_for_writepage() but that 3056 * would be ugly in the extreme. So instead we would need to 3057 * replicate parts of the code in the above functions, 3058 * simplifying them because we wouldn't actually intend to 3059 * write out the pages, but rather only collect contiguous 3060 * logical block extents, call the multi-block allocator, and 3061 * then update the buffer heads with the block allocations. 3062 * 3063 * For now, though, we'll cheat by calling filemap_flush(), 3064 * which will map the blocks, and start the I/O, but not 3065 * actually wait for the I/O to complete. 3066 */ 3067 return filemap_flush(inode->i_mapping); 3068 } 3069 3070 /* 3071 * bmap() is special. It gets used by applications such as lilo and by 3072 * the swapper to find the on-disk block of a specific piece of data. 3073 * 3074 * Naturally, this is dangerous if the block concerned is still in the 3075 * journal. If somebody makes a swapfile on an ext4 data-journaling 3076 * filesystem and enables swap, then they may get a nasty shock when the 3077 * data getting swapped to that swapfile suddenly gets overwritten by 3078 * the original zero's written out previously to the journal and 3079 * awaiting writeback in the kernel's buffer cache. 3080 * 3081 * So, if we see any bmap calls here on a modified, data-journaled file, 3082 * take extra steps to flush any blocks which might be in the cache. 3083 */ 3084 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3085 { 3086 struct inode *inode = mapping->host; 3087 journal_t *journal; 3088 int err; 3089 3090 /* 3091 * We can get here for an inline file via the FIBMAP ioctl 3092 */ 3093 if (ext4_has_inline_data(inode)) 3094 return 0; 3095 3096 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3097 test_opt(inode->i_sb, DELALLOC)) { 3098 /* 3099 * With delalloc we want to sync the file 3100 * so that we can make sure we allocate 3101 * blocks for file 3102 */ 3103 filemap_write_and_wait(mapping); 3104 } 3105 3106 if (EXT4_JOURNAL(inode) && 3107 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 3108 /* 3109 * This is a REALLY heavyweight approach, but the use of 3110 * bmap on dirty files is expected to be extremely rare: 3111 * only if we run lilo or swapon on a freshly made file 3112 * do we expect this to happen. 3113 * 3114 * (bmap requires CAP_SYS_RAWIO so this does not 3115 * represent an unprivileged user DOS attack --- we'd be 3116 * in trouble if mortal users could trigger this path at 3117 * will.) 3118 * 3119 * NB. EXT4_STATE_JDATA is not set on files other than 3120 * regular files. If somebody wants to bmap a directory 3121 * or symlink and gets confused because the buffer 3122 * hasn't yet been flushed to disk, they deserve 3123 * everything they get. 3124 */ 3125 3126 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 3127 journal = EXT4_JOURNAL(inode); 3128 jbd2_journal_lock_updates(journal); 3129 err = jbd2_journal_flush(journal); 3130 jbd2_journal_unlock_updates(journal); 3131 3132 if (err) 3133 return 0; 3134 } 3135 3136 return generic_block_bmap(mapping, block, ext4_get_block); 3137 } 3138 3139 static int ext4_readpage(struct file *file, struct page *page) 3140 { 3141 int ret = -EAGAIN; 3142 struct inode *inode = page->mapping->host; 3143 3144 trace_ext4_readpage(page); 3145 3146 if (ext4_has_inline_data(inode)) 3147 ret = ext4_readpage_inline(inode, page); 3148 3149 if (ret == -EAGAIN) 3150 return ext4_mpage_readpages(page->mapping, NULL, page, 1); 3151 3152 return ret; 3153 } 3154 3155 static int 3156 ext4_readpages(struct file *file, struct address_space *mapping, 3157 struct list_head *pages, unsigned nr_pages) 3158 { 3159 struct inode *inode = mapping->host; 3160 3161 /* If the file has inline data, no need to do readpages. */ 3162 if (ext4_has_inline_data(inode)) 3163 return 0; 3164 3165 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages); 3166 } 3167 3168 static void ext4_invalidatepage(struct page *page, unsigned int offset, 3169 unsigned int length) 3170 { 3171 trace_ext4_invalidatepage(page, offset, length); 3172 3173 /* No journalling happens on data buffers when this function is used */ 3174 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 3175 3176 block_invalidatepage(page, offset, length); 3177 } 3178 3179 static int __ext4_journalled_invalidatepage(struct page *page, 3180 unsigned int offset, 3181 unsigned int length) 3182 { 3183 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3184 3185 trace_ext4_journalled_invalidatepage(page, offset, length); 3186 3187 /* 3188 * If it's a full truncate we just forget about the pending dirtying 3189 */ 3190 if (offset == 0 && length == PAGE_CACHE_SIZE) 3191 ClearPageChecked(page); 3192 3193 return jbd2_journal_invalidatepage(journal, page, offset, length); 3194 } 3195 3196 /* Wrapper for aops... */ 3197 static void ext4_journalled_invalidatepage(struct page *page, 3198 unsigned int offset, 3199 unsigned int length) 3200 { 3201 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 3202 } 3203 3204 static int ext4_releasepage(struct page *page, gfp_t wait) 3205 { 3206 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3207 3208 trace_ext4_releasepage(page); 3209 3210 /* Page has dirty journalled data -> cannot release */ 3211 if (PageChecked(page)) 3212 return 0; 3213 if (journal) 3214 return jbd2_journal_try_to_free_buffers(journal, page, wait); 3215 else 3216 return try_to_free_buffers(page); 3217 } 3218 3219 #ifdef CONFIG_FS_DAX 3220 int ext4_dax_mmap_get_block(struct inode *inode, sector_t iblock, 3221 struct buffer_head *bh_result, int create) 3222 { 3223 int ret, err; 3224 int credits; 3225 struct ext4_map_blocks map; 3226 handle_t *handle = NULL; 3227 int flags = 0; 3228 3229 ext4_debug("ext4_dax_mmap_get_block: inode %lu, create flag %d\n", 3230 inode->i_ino, create); 3231 map.m_lblk = iblock; 3232 map.m_len = bh_result->b_size >> inode->i_blkbits; 3233 credits = ext4_chunk_trans_blocks(inode, map.m_len); 3234 if (create) { 3235 flags |= EXT4_GET_BLOCKS_PRE_IO | EXT4_GET_BLOCKS_CREATE_ZERO; 3236 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits); 3237 if (IS_ERR(handle)) { 3238 ret = PTR_ERR(handle); 3239 return ret; 3240 } 3241 } 3242 3243 ret = ext4_map_blocks(handle, inode, &map, flags); 3244 if (create) { 3245 err = ext4_journal_stop(handle); 3246 if (ret >= 0 && err < 0) 3247 ret = err; 3248 } 3249 if (ret <= 0) 3250 goto out; 3251 if (map.m_flags & EXT4_MAP_UNWRITTEN) { 3252 int err2; 3253 3254 /* 3255 * We are protected by i_mmap_sem so we know block cannot go 3256 * away from under us even though we dropped i_data_sem. 3257 * Convert extent to written and write zeros there. 3258 * 3259 * Note: We may get here even when create == 0. 3260 */ 3261 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits); 3262 if (IS_ERR(handle)) { 3263 ret = PTR_ERR(handle); 3264 goto out; 3265 } 3266 3267 err = ext4_map_blocks(handle, inode, &map, 3268 EXT4_GET_BLOCKS_CONVERT | EXT4_GET_BLOCKS_CREATE_ZERO); 3269 if (err < 0) 3270 ret = err; 3271 err2 = ext4_journal_stop(handle); 3272 if (err2 < 0 && ret > 0) 3273 ret = err2; 3274 } 3275 out: 3276 WARN_ON_ONCE(ret == 0 && create); 3277 if (ret > 0) { 3278 map_bh(bh_result, inode->i_sb, map.m_pblk); 3279 /* 3280 * At least for now we have to clear BH_New so that DAX code 3281 * doesn't attempt to zero blocks again in a racy way. 3282 */ 3283 map.m_flags &= ~EXT4_MAP_NEW; 3284 ext4_update_bh_state(bh_result, map.m_flags); 3285 bh_result->b_size = map.m_len << inode->i_blkbits; 3286 ret = 0; 3287 } 3288 return ret; 3289 } 3290 #endif 3291 3292 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 3293 ssize_t size, void *private) 3294 { 3295 ext4_io_end_t *io_end = private; 3296 3297 /* if not async direct IO just return */ 3298 if (!io_end) 3299 return 0; 3300 3301 ext_debug("ext4_end_io_dio(): io_end 0x%p " 3302 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", 3303 io_end, io_end->inode->i_ino, iocb, offset, size); 3304 3305 /* 3306 * Error during AIO DIO. We cannot convert unwritten extents as the 3307 * data was not written. Just clear the unwritten flag and drop io_end. 3308 */ 3309 if (size <= 0) { 3310 ext4_clear_io_unwritten_flag(io_end); 3311 size = 0; 3312 } 3313 io_end->offset = offset; 3314 io_end->size = size; 3315 ext4_put_io_end(io_end); 3316 3317 return 0; 3318 } 3319 3320 /* 3321 * For ext4 extent files, ext4 will do direct-io write to holes, 3322 * preallocated extents, and those write extend the file, no need to 3323 * fall back to buffered IO. 3324 * 3325 * For holes, we fallocate those blocks, mark them as unwritten 3326 * If those blocks were preallocated, we mark sure they are split, but 3327 * still keep the range to write as unwritten. 3328 * 3329 * The unwritten extents will be converted to written when DIO is completed. 3330 * For async direct IO, since the IO may still pending when return, we 3331 * set up an end_io call back function, which will do the conversion 3332 * when async direct IO completed. 3333 * 3334 * If the O_DIRECT write will extend the file then add this inode to the 3335 * orphan list. So recovery will truncate it back to the original size 3336 * if the machine crashes during the write. 3337 * 3338 */ 3339 static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter, 3340 loff_t offset) 3341 { 3342 struct file *file = iocb->ki_filp; 3343 struct inode *inode = file->f_mapping->host; 3344 ssize_t ret; 3345 size_t count = iov_iter_count(iter); 3346 int overwrite = 0; 3347 get_block_t *get_block_func = NULL; 3348 int dio_flags = 0; 3349 loff_t final_size = offset + count; 3350 3351 /* Use the old path for reads and writes beyond i_size. */ 3352 if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size) 3353 return ext4_ind_direct_IO(iocb, iter, offset); 3354 3355 BUG_ON(iocb->private == NULL); 3356 3357 /* 3358 * Make all waiters for direct IO properly wait also for extent 3359 * conversion. This also disallows race between truncate() and 3360 * overwrite DIO as i_dio_count needs to be incremented under i_mutex. 3361 */ 3362 if (iov_iter_rw(iter) == WRITE) 3363 inode_dio_begin(inode); 3364 3365 /* If we do a overwrite dio, i_mutex locking can be released */ 3366 overwrite = *((int *)iocb->private); 3367 3368 if (overwrite) 3369 inode_unlock(inode); 3370 3371 /* 3372 * We could direct write to holes and fallocate. 3373 * 3374 * Allocated blocks to fill the hole are marked as unwritten to prevent 3375 * parallel buffered read to expose the stale data before DIO complete 3376 * the data IO. 3377 * 3378 * As to previously fallocated extents, ext4 get_block will just simply 3379 * mark the buffer mapped but still keep the extents unwritten. 3380 * 3381 * For non AIO case, we will convert those unwritten extents to written 3382 * after return back from blockdev_direct_IO. That way we save us from 3383 * allocating io_end structure and also the overhead of offloading 3384 * the extent convertion to a workqueue. 3385 * 3386 * For async DIO, the conversion needs to be deferred when the 3387 * IO is completed. The ext4 end_io callback function will be 3388 * called to take care of the conversion work. Here for async 3389 * case, we allocate an io_end structure to hook to the iocb. 3390 */ 3391 iocb->private = NULL; 3392 if (overwrite) 3393 get_block_func = ext4_dio_get_block_overwrite; 3394 else if (is_sync_kiocb(iocb)) { 3395 get_block_func = ext4_dio_get_block_unwritten_sync; 3396 dio_flags = DIO_LOCKING; 3397 } else { 3398 get_block_func = ext4_dio_get_block_unwritten_async; 3399 dio_flags = DIO_LOCKING; 3400 } 3401 #ifdef CONFIG_EXT4_FS_ENCRYPTION 3402 BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode)); 3403 #endif 3404 if (IS_DAX(inode)) 3405 ret = dax_do_io(iocb, inode, iter, offset, get_block_func, 3406 ext4_end_io_dio, dio_flags); 3407 else 3408 ret = __blockdev_direct_IO(iocb, inode, 3409 inode->i_sb->s_bdev, iter, offset, 3410 get_block_func, 3411 ext4_end_io_dio, NULL, dio_flags); 3412 3413 if (ret > 0 && !overwrite && ext4_test_inode_state(inode, 3414 EXT4_STATE_DIO_UNWRITTEN)) { 3415 int err; 3416 /* 3417 * for non AIO case, since the IO is already 3418 * completed, we could do the conversion right here 3419 */ 3420 err = ext4_convert_unwritten_extents(NULL, inode, 3421 offset, ret); 3422 if (err < 0) 3423 ret = err; 3424 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3425 } 3426 3427 if (iov_iter_rw(iter) == WRITE) 3428 inode_dio_end(inode); 3429 /* take i_mutex locking again if we do a ovewrite dio */ 3430 if (overwrite) 3431 inode_lock(inode); 3432 3433 return ret; 3434 } 3435 3436 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter, 3437 loff_t offset) 3438 { 3439 struct file *file = iocb->ki_filp; 3440 struct inode *inode = file->f_mapping->host; 3441 size_t count = iov_iter_count(iter); 3442 ssize_t ret; 3443 3444 #ifdef CONFIG_EXT4_FS_ENCRYPTION 3445 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode)) 3446 return 0; 3447 #endif 3448 3449 /* 3450 * If we are doing data journalling we don't support O_DIRECT 3451 */ 3452 if (ext4_should_journal_data(inode)) 3453 return 0; 3454 3455 /* Let buffer I/O handle the inline data case. */ 3456 if (ext4_has_inline_data(inode)) 3457 return 0; 3458 3459 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter)); 3460 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3461 ret = ext4_ext_direct_IO(iocb, iter, offset); 3462 else 3463 ret = ext4_ind_direct_IO(iocb, iter, offset); 3464 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret); 3465 return ret; 3466 } 3467 3468 /* 3469 * Pages can be marked dirty completely asynchronously from ext4's journalling 3470 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3471 * much here because ->set_page_dirty is called under VFS locks. The page is 3472 * not necessarily locked. 3473 * 3474 * We cannot just dirty the page and leave attached buffers clean, because the 3475 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3476 * or jbddirty because all the journalling code will explode. 3477 * 3478 * So what we do is to mark the page "pending dirty" and next time writepage 3479 * is called, propagate that into the buffers appropriately. 3480 */ 3481 static int ext4_journalled_set_page_dirty(struct page *page) 3482 { 3483 SetPageChecked(page); 3484 return __set_page_dirty_nobuffers(page); 3485 } 3486 3487 static const struct address_space_operations ext4_aops = { 3488 .readpage = ext4_readpage, 3489 .readpages = ext4_readpages, 3490 .writepage = ext4_writepage, 3491 .writepages = ext4_writepages, 3492 .write_begin = ext4_write_begin, 3493 .write_end = ext4_write_end, 3494 .bmap = ext4_bmap, 3495 .invalidatepage = ext4_invalidatepage, 3496 .releasepage = ext4_releasepage, 3497 .direct_IO = ext4_direct_IO, 3498 .migratepage = buffer_migrate_page, 3499 .is_partially_uptodate = block_is_partially_uptodate, 3500 .error_remove_page = generic_error_remove_page, 3501 }; 3502 3503 static const struct address_space_operations ext4_journalled_aops = { 3504 .readpage = ext4_readpage, 3505 .readpages = ext4_readpages, 3506 .writepage = ext4_writepage, 3507 .writepages = ext4_writepages, 3508 .write_begin = ext4_write_begin, 3509 .write_end = ext4_journalled_write_end, 3510 .set_page_dirty = ext4_journalled_set_page_dirty, 3511 .bmap = ext4_bmap, 3512 .invalidatepage = ext4_journalled_invalidatepage, 3513 .releasepage = ext4_releasepage, 3514 .direct_IO = ext4_direct_IO, 3515 .is_partially_uptodate = block_is_partially_uptodate, 3516 .error_remove_page = generic_error_remove_page, 3517 }; 3518 3519 static const struct address_space_operations ext4_da_aops = { 3520 .readpage = ext4_readpage, 3521 .readpages = ext4_readpages, 3522 .writepage = ext4_writepage, 3523 .writepages = ext4_writepages, 3524 .write_begin = ext4_da_write_begin, 3525 .write_end = ext4_da_write_end, 3526 .bmap = ext4_bmap, 3527 .invalidatepage = ext4_da_invalidatepage, 3528 .releasepage = ext4_releasepage, 3529 .direct_IO = ext4_direct_IO, 3530 .migratepage = buffer_migrate_page, 3531 .is_partially_uptodate = block_is_partially_uptodate, 3532 .error_remove_page = generic_error_remove_page, 3533 }; 3534 3535 void ext4_set_aops(struct inode *inode) 3536 { 3537 switch (ext4_inode_journal_mode(inode)) { 3538 case EXT4_INODE_ORDERED_DATA_MODE: 3539 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3540 break; 3541 case EXT4_INODE_WRITEBACK_DATA_MODE: 3542 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3543 break; 3544 case EXT4_INODE_JOURNAL_DATA_MODE: 3545 inode->i_mapping->a_ops = &ext4_journalled_aops; 3546 return; 3547 default: 3548 BUG(); 3549 } 3550 if (test_opt(inode->i_sb, DELALLOC)) 3551 inode->i_mapping->a_ops = &ext4_da_aops; 3552 else 3553 inode->i_mapping->a_ops = &ext4_aops; 3554 } 3555 3556 static int __ext4_block_zero_page_range(handle_t *handle, 3557 struct address_space *mapping, loff_t from, loff_t length) 3558 { 3559 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3560 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3561 unsigned blocksize, pos; 3562 ext4_lblk_t iblock; 3563 struct inode *inode = mapping->host; 3564 struct buffer_head *bh; 3565 struct page *page; 3566 int err = 0; 3567 3568 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 3569 mapping_gfp_constraint(mapping, ~__GFP_FS)); 3570 if (!page) 3571 return -ENOMEM; 3572 3573 blocksize = inode->i_sb->s_blocksize; 3574 3575 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3576 3577 if (!page_has_buffers(page)) 3578 create_empty_buffers(page, blocksize, 0); 3579 3580 /* Find the buffer that contains "offset" */ 3581 bh = page_buffers(page); 3582 pos = blocksize; 3583 while (offset >= pos) { 3584 bh = bh->b_this_page; 3585 iblock++; 3586 pos += blocksize; 3587 } 3588 if (buffer_freed(bh)) { 3589 BUFFER_TRACE(bh, "freed: skip"); 3590 goto unlock; 3591 } 3592 if (!buffer_mapped(bh)) { 3593 BUFFER_TRACE(bh, "unmapped"); 3594 ext4_get_block(inode, iblock, bh, 0); 3595 /* unmapped? It's a hole - nothing to do */ 3596 if (!buffer_mapped(bh)) { 3597 BUFFER_TRACE(bh, "still unmapped"); 3598 goto unlock; 3599 } 3600 } 3601 3602 /* Ok, it's mapped. Make sure it's up-to-date */ 3603 if (PageUptodate(page)) 3604 set_buffer_uptodate(bh); 3605 3606 if (!buffer_uptodate(bh)) { 3607 err = -EIO; 3608 ll_rw_block(READ, 1, &bh); 3609 wait_on_buffer(bh); 3610 /* Uhhuh. Read error. Complain and punt. */ 3611 if (!buffer_uptodate(bh)) 3612 goto unlock; 3613 if (S_ISREG(inode->i_mode) && 3614 ext4_encrypted_inode(inode)) { 3615 /* We expect the key to be set. */ 3616 BUG_ON(!ext4_has_encryption_key(inode)); 3617 BUG_ON(blocksize != PAGE_CACHE_SIZE); 3618 WARN_ON_ONCE(ext4_decrypt(page)); 3619 } 3620 } 3621 if (ext4_should_journal_data(inode)) { 3622 BUFFER_TRACE(bh, "get write access"); 3623 err = ext4_journal_get_write_access(handle, bh); 3624 if (err) 3625 goto unlock; 3626 } 3627 zero_user(page, offset, length); 3628 BUFFER_TRACE(bh, "zeroed end of block"); 3629 3630 if (ext4_should_journal_data(inode)) { 3631 err = ext4_handle_dirty_metadata(handle, inode, bh); 3632 } else { 3633 err = 0; 3634 mark_buffer_dirty(bh); 3635 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) 3636 err = ext4_jbd2_file_inode(handle, inode); 3637 } 3638 3639 unlock: 3640 unlock_page(page); 3641 page_cache_release(page); 3642 return err; 3643 } 3644 3645 /* 3646 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3647 * starting from file offset 'from'. The range to be zero'd must 3648 * be contained with in one block. If the specified range exceeds 3649 * the end of the block it will be shortened to end of the block 3650 * that cooresponds to 'from' 3651 */ 3652 static int ext4_block_zero_page_range(handle_t *handle, 3653 struct address_space *mapping, loff_t from, loff_t length) 3654 { 3655 struct inode *inode = mapping->host; 3656 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3657 unsigned blocksize = inode->i_sb->s_blocksize; 3658 unsigned max = blocksize - (offset & (blocksize - 1)); 3659 3660 /* 3661 * correct length if it does not fall between 3662 * 'from' and the end of the block 3663 */ 3664 if (length > max || length < 0) 3665 length = max; 3666 3667 if (IS_DAX(inode)) 3668 return dax_zero_page_range(inode, from, length, ext4_get_block); 3669 return __ext4_block_zero_page_range(handle, mapping, from, length); 3670 } 3671 3672 /* 3673 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3674 * up to the end of the block which corresponds to `from'. 3675 * This required during truncate. We need to physically zero the tail end 3676 * of that block so it doesn't yield old data if the file is later grown. 3677 */ 3678 static int ext4_block_truncate_page(handle_t *handle, 3679 struct address_space *mapping, loff_t from) 3680 { 3681 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3682 unsigned length; 3683 unsigned blocksize; 3684 struct inode *inode = mapping->host; 3685 3686 blocksize = inode->i_sb->s_blocksize; 3687 length = blocksize - (offset & (blocksize - 1)); 3688 3689 return ext4_block_zero_page_range(handle, mapping, from, length); 3690 } 3691 3692 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3693 loff_t lstart, loff_t length) 3694 { 3695 struct super_block *sb = inode->i_sb; 3696 struct address_space *mapping = inode->i_mapping; 3697 unsigned partial_start, partial_end; 3698 ext4_fsblk_t start, end; 3699 loff_t byte_end = (lstart + length - 1); 3700 int err = 0; 3701 3702 partial_start = lstart & (sb->s_blocksize - 1); 3703 partial_end = byte_end & (sb->s_blocksize - 1); 3704 3705 start = lstart >> sb->s_blocksize_bits; 3706 end = byte_end >> sb->s_blocksize_bits; 3707 3708 /* Handle partial zero within the single block */ 3709 if (start == end && 3710 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3711 err = ext4_block_zero_page_range(handle, mapping, 3712 lstart, length); 3713 return err; 3714 } 3715 /* Handle partial zero out on the start of the range */ 3716 if (partial_start) { 3717 err = ext4_block_zero_page_range(handle, mapping, 3718 lstart, sb->s_blocksize); 3719 if (err) 3720 return err; 3721 } 3722 /* Handle partial zero out on the end of the range */ 3723 if (partial_end != sb->s_blocksize - 1) 3724 err = ext4_block_zero_page_range(handle, mapping, 3725 byte_end - partial_end, 3726 partial_end + 1); 3727 return err; 3728 } 3729 3730 int ext4_can_truncate(struct inode *inode) 3731 { 3732 if (S_ISREG(inode->i_mode)) 3733 return 1; 3734 if (S_ISDIR(inode->i_mode)) 3735 return 1; 3736 if (S_ISLNK(inode->i_mode)) 3737 return !ext4_inode_is_fast_symlink(inode); 3738 return 0; 3739 } 3740 3741 /* 3742 * We have to make sure i_disksize gets properly updated before we truncate 3743 * page cache due to hole punching or zero range. Otherwise i_disksize update 3744 * can get lost as it may have been postponed to submission of writeback but 3745 * that will never happen after we truncate page cache. 3746 */ 3747 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 3748 loff_t len) 3749 { 3750 handle_t *handle; 3751 loff_t size = i_size_read(inode); 3752 3753 WARN_ON(!inode_is_locked(inode)); 3754 if (offset > size || offset + len < size) 3755 return 0; 3756 3757 if (EXT4_I(inode)->i_disksize >= size) 3758 return 0; 3759 3760 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 3761 if (IS_ERR(handle)) 3762 return PTR_ERR(handle); 3763 ext4_update_i_disksize(inode, size); 3764 ext4_mark_inode_dirty(handle, inode); 3765 ext4_journal_stop(handle); 3766 3767 return 0; 3768 } 3769 3770 /* 3771 * ext4_punch_hole: punches a hole in a file by releaseing the blocks 3772 * associated with the given offset and length 3773 * 3774 * @inode: File inode 3775 * @offset: The offset where the hole will begin 3776 * @len: The length of the hole 3777 * 3778 * Returns: 0 on success or negative on failure 3779 */ 3780 3781 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 3782 { 3783 struct super_block *sb = inode->i_sb; 3784 ext4_lblk_t first_block, stop_block; 3785 struct address_space *mapping = inode->i_mapping; 3786 loff_t first_block_offset, last_block_offset; 3787 handle_t *handle; 3788 unsigned int credits; 3789 int ret = 0; 3790 3791 if (!S_ISREG(inode->i_mode)) 3792 return -EOPNOTSUPP; 3793 3794 trace_ext4_punch_hole(inode, offset, length, 0); 3795 3796 /* 3797 * Write out all dirty pages to avoid race conditions 3798 * Then release them. 3799 */ 3800 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 3801 ret = filemap_write_and_wait_range(mapping, offset, 3802 offset + length - 1); 3803 if (ret) 3804 return ret; 3805 } 3806 3807 inode_lock(inode); 3808 3809 /* No need to punch hole beyond i_size */ 3810 if (offset >= inode->i_size) 3811 goto out_mutex; 3812 3813 /* 3814 * If the hole extends beyond i_size, set the hole 3815 * to end after the page that contains i_size 3816 */ 3817 if (offset + length > inode->i_size) { 3818 length = inode->i_size + 3819 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) - 3820 offset; 3821 } 3822 3823 if (offset & (sb->s_blocksize - 1) || 3824 (offset + length) & (sb->s_blocksize - 1)) { 3825 /* 3826 * Attach jinode to inode for jbd2 if we do any zeroing of 3827 * partial block 3828 */ 3829 ret = ext4_inode_attach_jinode(inode); 3830 if (ret < 0) 3831 goto out_mutex; 3832 3833 } 3834 3835 /* Wait all existing dio workers, newcomers will block on i_mutex */ 3836 ext4_inode_block_unlocked_dio(inode); 3837 inode_dio_wait(inode); 3838 3839 /* 3840 * Prevent page faults from reinstantiating pages we have released from 3841 * page cache. 3842 */ 3843 down_write(&EXT4_I(inode)->i_mmap_sem); 3844 first_block_offset = round_up(offset, sb->s_blocksize); 3845 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 3846 3847 /* Now release the pages and zero block aligned part of pages*/ 3848 if (last_block_offset > first_block_offset) { 3849 ret = ext4_update_disksize_before_punch(inode, offset, length); 3850 if (ret) 3851 goto out_dio; 3852 truncate_pagecache_range(inode, first_block_offset, 3853 last_block_offset); 3854 } 3855 3856 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3857 credits = ext4_writepage_trans_blocks(inode); 3858 else 3859 credits = ext4_blocks_for_truncate(inode); 3860 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3861 if (IS_ERR(handle)) { 3862 ret = PTR_ERR(handle); 3863 ext4_std_error(sb, ret); 3864 goto out_dio; 3865 } 3866 3867 ret = ext4_zero_partial_blocks(handle, inode, offset, 3868 length); 3869 if (ret) 3870 goto out_stop; 3871 3872 first_block = (offset + sb->s_blocksize - 1) >> 3873 EXT4_BLOCK_SIZE_BITS(sb); 3874 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 3875 3876 /* If there are no blocks to remove, return now */ 3877 if (first_block >= stop_block) 3878 goto out_stop; 3879 3880 down_write(&EXT4_I(inode)->i_data_sem); 3881 ext4_discard_preallocations(inode); 3882 3883 ret = ext4_es_remove_extent(inode, first_block, 3884 stop_block - first_block); 3885 if (ret) { 3886 up_write(&EXT4_I(inode)->i_data_sem); 3887 goto out_stop; 3888 } 3889 3890 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3891 ret = ext4_ext_remove_space(inode, first_block, 3892 stop_block - 1); 3893 else 3894 ret = ext4_ind_remove_space(handle, inode, first_block, 3895 stop_block); 3896 3897 up_write(&EXT4_I(inode)->i_data_sem); 3898 if (IS_SYNC(inode)) 3899 ext4_handle_sync(handle); 3900 3901 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3902 ext4_mark_inode_dirty(handle, inode); 3903 out_stop: 3904 ext4_journal_stop(handle); 3905 out_dio: 3906 up_write(&EXT4_I(inode)->i_mmap_sem); 3907 ext4_inode_resume_unlocked_dio(inode); 3908 out_mutex: 3909 inode_unlock(inode); 3910 return ret; 3911 } 3912 3913 int ext4_inode_attach_jinode(struct inode *inode) 3914 { 3915 struct ext4_inode_info *ei = EXT4_I(inode); 3916 struct jbd2_inode *jinode; 3917 3918 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 3919 return 0; 3920 3921 jinode = jbd2_alloc_inode(GFP_KERNEL); 3922 spin_lock(&inode->i_lock); 3923 if (!ei->jinode) { 3924 if (!jinode) { 3925 spin_unlock(&inode->i_lock); 3926 return -ENOMEM; 3927 } 3928 ei->jinode = jinode; 3929 jbd2_journal_init_jbd_inode(ei->jinode, inode); 3930 jinode = NULL; 3931 } 3932 spin_unlock(&inode->i_lock); 3933 if (unlikely(jinode != NULL)) 3934 jbd2_free_inode(jinode); 3935 return 0; 3936 } 3937 3938 /* 3939 * ext4_truncate() 3940 * 3941 * We block out ext4_get_block() block instantiations across the entire 3942 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 3943 * simultaneously on behalf of the same inode. 3944 * 3945 * As we work through the truncate and commit bits of it to the journal there 3946 * is one core, guiding principle: the file's tree must always be consistent on 3947 * disk. We must be able to restart the truncate after a crash. 3948 * 3949 * The file's tree may be transiently inconsistent in memory (although it 3950 * probably isn't), but whenever we close off and commit a journal transaction, 3951 * the contents of (the filesystem + the journal) must be consistent and 3952 * restartable. It's pretty simple, really: bottom up, right to left (although 3953 * left-to-right works OK too). 3954 * 3955 * Note that at recovery time, journal replay occurs *before* the restart of 3956 * truncate against the orphan inode list. 3957 * 3958 * The committed inode has the new, desired i_size (which is the same as 3959 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 3960 * that this inode's truncate did not complete and it will again call 3961 * ext4_truncate() to have another go. So there will be instantiated blocks 3962 * to the right of the truncation point in a crashed ext4 filesystem. But 3963 * that's fine - as long as they are linked from the inode, the post-crash 3964 * ext4_truncate() run will find them and release them. 3965 */ 3966 void ext4_truncate(struct inode *inode) 3967 { 3968 struct ext4_inode_info *ei = EXT4_I(inode); 3969 unsigned int credits; 3970 handle_t *handle; 3971 struct address_space *mapping = inode->i_mapping; 3972 3973 /* 3974 * There is a possibility that we're either freeing the inode 3975 * or it's a completely new inode. In those cases we might not 3976 * have i_mutex locked because it's not necessary. 3977 */ 3978 if (!(inode->i_state & (I_NEW|I_FREEING))) 3979 WARN_ON(!inode_is_locked(inode)); 3980 trace_ext4_truncate_enter(inode); 3981 3982 if (!ext4_can_truncate(inode)) 3983 return; 3984 3985 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3986 3987 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 3988 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 3989 3990 if (ext4_has_inline_data(inode)) { 3991 int has_inline = 1; 3992 3993 ext4_inline_data_truncate(inode, &has_inline); 3994 if (has_inline) 3995 return; 3996 } 3997 3998 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 3999 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4000 if (ext4_inode_attach_jinode(inode) < 0) 4001 return; 4002 } 4003 4004 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4005 credits = ext4_writepage_trans_blocks(inode); 4006 else 4007 credits = ext4_blocks_for_truncate(inode); 4008 4009 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4010 if (IS_ERR(handle)) { 4011 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 4012 return; 4013 } 4014 4015 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4016 ext4_block_truncate_page(handle, mapping, inode->i_size); 4017 4018 /* 4019 * We add the inode to the orphan list, so that if this 4020 * truncate spans multiple transactions, and we crash, we will 4021 * resume the truncate when the filesystem recovers. It also 4022 * marks the inode dirty, to catch the new size. 4023 * 4024 * Implication: the file must always be in a sane, consistent 4025 * truncatable state while each transaction commits. 4026 */ 4027 if (ext4_orphan_add(handle, inode)) 4028 goto out_stop; 4029 4030 down_write(&EXT4_I(inode)->i_data_sem); 4031 4032 ext4_discard_preallocations(inode); 4033 4034 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4035 ext4_ext_truncate(handle, inode); 4036 else 4037 ext4_ind_truncate(handle, inode); 4038 4039 up_write(&ei->i_data_sem); 4040 4041 if (IS_SYNC(inode)) 4042 ext4_handle_sync(handle); 4043 4044 out_stop: 4045 /* 4046 * If this was a simple ftruncate() and the file will remain alive, 4047 * then we need to clear up the orphan record which we created above. 4048 * However, if this was a real unlink then we were called by 4049 * ext4_evict_inode(), and we allow that function to clean up the 4050 * orphan info for us. 4051 */ 4052 if (inode->i_nlink) 4053 ext4_orphan_del(handle, inode); 4054 4055 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 4056 ext4_mark_inode_dirty(handle, inode); 4057 ext4_journal_stop(handle); 4058 4059 trace_ext4_truncate_exit(inode); 4060 } 4061 4062 /* 4063 * ext4_get_inode_loc returns with an extra refcount against the inode's 4064 * underlying buffer_head on success. If 'in_mem' is true, we have all 4065 * data in memory that is needed to recreate the on-disk version of this 4066 * inode. 4067 */ 4068 static int __ext4_get_inode_loc(struct inode *inode, 4069 struct ext4_iloc *iloc, int in_mem) 4070 { 4071 struct ext4_group_desc *gdp; 4072 struct buffer_head *bh; 4073 struct super_block *sb = inode->i_sb; 4074 ext4_fsblk_t block; 4075 int inodes_per_block, inode_offset; 4076 4077 iloc->bh = NULL; 4078 if (!ext4_valid_inum(sb, inode->i_ino)) 4079 return -EFSCORRUPTED; 4080 4081 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 4082 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4083 if (!gdp) 4084 return -EIO; 4085 4086 /* 4087 * Figure out the offset within the block group inode table 4088 */ 4089 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4090 inode_offset = ((inode->i_ino - 1) % 4091 EXT4_INODES_PER_GROUP(sb)); 4092 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 4093 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4094 4095 bh = sb_getblk(sb, block); 4096 if (unlikely(!bh)) 4097 return -ENOMEM; 4098 if (!buffer_uptodate(bh)) { 4099 lock_buffer(bh); 4100 4101 /* 4102 * If the buffer has the write error flag, we have failed 4103 * to write out another inode in the same block. In this 4104 * case, we don't have to read the block because we may 4105 * read the old inode data successfully. 4106 */ 4107 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 4108 set_buffer_uptodate(bh); 4109 4110 if (buffer_uptodate(bh)) { 4111 /* someone brought it uptodate while we waited */ 4112 unlock_buffer(bh); 4113 goto has_buffer; 4114 } 4115 4116 /* 4117 * If we have all information of the inode in memory and this 4118 * is the only valid inode in the block, we need not read the 4119 * block. 4120 */ 4121 if (in_mem) { 4122 struct buffer_head *bitmap_bh; 4123 int i, start; 4124 4125 start = inode_offset & ~(inodes_per_block - 1); 4126 4127 /* Is the inode bitmap in cache? */ 4128 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4129 if (unlikely(!bitmap_bh)) 4130 goto make_io; 4131 4132 /* 4133 * If the inode bitmap isn't in cache then the 4134 * optimisation may end up performing two reads instead 4135 * of one, so skip it. 4136 */ 4137 if (!buffer_uptodate(bitmap_bh)) { 4138 brelse(bitmap_bh); 4139 goto make_io; 4140 } 4141 for (i = start; i < start + inodes_per_block; i++) { 4142 if (i == inode_offset) 4143 continue; 4144 if (ext4_test_bit(i, bitmap_bh->b_data)) 4145 break; 4146 } 4147 brelse(bitmap_bh); 4148 if (i == start + inodes_per_block) { 4149 /* all other inodes are free, so skip I/O */ 4150 memset(bh->b_data, 0, bh->b_size); 4151 set_buffer_uptodate(bh); 4152 unlock_buffer(bh); 4153 goto has_buffer; 4154 } 4155 } 4156 4157 make_io: 4158 /* 4159 * If we need to do any I/O, try to pre-readahead extra 4160 * blocks from the inode table. 4161 */ 4162 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4163 ext4_fsblk_t b, end, table; 4164 unsigned num; 4165 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4166 4167 table = ext4_inode_table(sb, gdp); 4168 /* s_inode_readahead_blks is always a power of 2 */ 4169 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4170 if (table > b) 4171 b = table; 4172 end = b + ra_blks; 4173 num = EXT4_INODES_PER_GROUP(sb); 4174 if (ext4_has_group_desc_csum(sb)) 4175 num -= ext4_itable_unused_count(sb, gdp); 4176 table += num / inodes_per_block; 4177 if (end > table) 4178 end = table; 4179 while (b <= end) 4180 sb_breadahead(sb, b++); 4181 } 4182 4183 /* 4184 * There are other valid inodes in the buffer, this inode 4185 * has in-inode xattrs, or we don't have this inode in memory. 4186 * Read the block from disk. 4187 */ 4188 trace_ext4_load_inode(inode); 4189 get_bh(bh); 4190 bh->b_end_io = end_buffer_read_sync; 4191 submit_bh(READ | REQ_META | REQ_PRIO, bh); 4192 wait_on_buffer(bh); 4193 if (!buffer_uptodate(bh)) { 4194 EXT4_ERROR_INODE_BLOCK(inode, block, 4195 "unable to read itable block"); 4196 brelse(bh); 4197 return -EIO; 4198 } 4199 } 4200 has_buffer: 4201 iloc->bh = bh; 4202 return 0; 4203 } 4204 4205 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4206 { 4207 /* We have all inode data except xattrs in memory here. */ 4208 return __ext4_get_inode_loc(inode, iloc, 4209 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 4210 } 4211 4212 void ext4_set_inode_flags(struct inode *inode) 4213 { 4214 unsigned int flags = EXT4_I(inode)->i_flags; 4215 unsigned int new_fl = 0; 4216 4217 if (flags & EXT4_SYNC_FL) 4218 new_fl |= S_SYNC; 4219 if (flags & EXT4_APPEND_FL) 4220 new_fl |= S_APPEND; 4221 if (flags & EXT4_IMMUTABLE_FL) 4222 new_fl |= S_IMMUTABLE; 4223 if (flags & EXT4_NOATIME_FL) 4224 new_fl |= S_NOATIME; 4225 if (flags & EXT4_DIRSYNC_FL) 4226 new_fl |= S_DIRSYNC; 4227 if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode)) 4228 new_fl |= S_DAX; 4229 inode_set_flags(inode, new_fl, 4230 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX); 4231 } 4232 4233 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 4234 void ext4_get_inode_flags(struct ext4_inode_info *ei) 4235 { 4236 unsigned int vfs_fl; 4237 unsigned long old_fl, new_fl; 4238 4239 do { 4240 vfs_fl = ei->vfs_inode.i_flags; 4241 old_fl = ei->i_flags; 4242 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 4243 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL| 4244 EXT4_DIRSYNC_FL); 4245 if (vfs_fl & S_SYNC) 4246 new_fl |= EXT4_SYNC_FL; 4247 if (vfs_fl & S_APPEND) 4248 new_fl |= EXT4_APPEND_FL; 4249 if (vfs_fl & S_IMMUTABLE) 4250 new_fl |= EXT4_IMMUTABLE_FL; 4251 if (vfs_fl & S_NOATIME) 4252 new_fl |= EXT4_NOATIME_FL; 4253 if (vfs_fl & S_DIRSYNC) 4254 new_fl |= EXT4_DIRSYNC_FL; 4255 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl); 4256 } 4257 4258 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4259 struct ext4_inode_info *ei) 4260 { 4261 blkcnt_t i_blocks ; 4262 struct inode *inode = &(ei->vfs_inode); 4263 struct super_block *sb = inode->i_sb; 4264 4265 if (ext4_has_feature_huge_file(sb)) { 4266 /* we are using combined 48 bit field */ 4267 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4268 le32_to_cpu(raw_inode->i_blocks_lo); 4269 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4270 /* i_blocks represent file system block size */ 4271 return i_blocks << (inode->i_blkbits - 9); 4272 } else { 4273 return i_blocks; 4274 } 4275 } else { 4276 return le32_to_cpu(raw_inode->i_blocks_lo); 4277 } 4278 } 4279 4280 static inline void ext4_iget_extra_inode(struct inode *inode, 4281 struct ext4_inode *raw_inode, 4282 struct ext4_inode_info *ei) 4283 { 4284 __le32 *magic = (void *)raw_inode + 4285 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4286 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4287 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4288 ext4_find_inline_data_nolock(inode); 4289 } else 4290 EXT4_I(inode)->i_inline_off = 0; 4291 } 4292 4293 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4294 { 4295 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, EXT4_FEATURE_RO_COMPAT_PROJECT)) 4296 return -EOPNOTSUPP; 4297 *projid = EXT4_I(inode)->i_projid; 4298 return 0; 4299 } 4300 4301 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 4302 { 4303 struct ext4_iloc iloc; 4304 struct ext4_inode *raw_inode; 4305 struct ext4_inode_info *ei; 4306 struct inode *inode; 4307 journal_t *journal = EXT4_SB(sb)->s_journal; 4308 long ret; 4309 int block; 4310 uid_t i_uid; 4311 gid_t i_gid; 4312 projid_t i_projid; 4313 4314 inode = iget_locked(sb, ino); 4315 if (!inode) 4316 return ERR_PTR(-ENOMEM); 4317 if (!(inode->i_state & I_NEW)) 4318 return inode; 4319 4320 ei = EXT4_I(inode); 4321 iloc.bh = NULL; 4322 4323 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4324 if (ret < 0) 4325 goto bad_inode; 4326 raw_inode = ext4_raw_inode(&iloc); 4327 4328 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4329 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4330 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4331 EXT4_INODE_SIZE(inode->i_sb)) { 4332 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)", 4333 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize, 4334 EXT4_INODE_SIZE(inode->i_sb)); 4335 ret = -EFSCORRUPTED; 4336 goto bad_inode; 4337 } 4338 } else 4339 ei->i_extra_isize = 0; 4340 4341 /* Precompute checksum seed for inode metadata */ 4342 if (ext4_has_metadata_csum(sb)) { 4343 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4344 __u32 csum; 4345 __le32 inum = cpu_to_le32(inode->i_ino); 4346 __le32 gen = raw_inode->i_generation; 4347 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4348 sizeof(inum)); 4349 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4350 sizeof(gen)); 4351 } 4352 4353 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 4354 EXT4_ERROR_INODE(inode, "checksum invalid"); 4355 ret = -EFSBADCRC; 4356 goto bad_inode; 4357 } 4358 4359 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4360 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4361 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4362 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_PROJECT) && 4363 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4364 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4365 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4366 else 4367 i_projid = EXT4_DEF_PROJID; 4368 4369 if (!(test_opt(inode->i_sb, NO_UID32))) { 4370 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4371 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4372 } 4373 i_uid_write(inode, i_uid); 4374 i_gid_write(inode, i_gid); 4375 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4376 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4377 4378 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4379 ei->i_inline_off = 0; 4380 ei->i_dir_start_lookup = 0; 4381 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4382 /* We now have enough fields to check if the inode was active or not. 4383 * This is needed because nfsd might try to access dead inodes 4384 * the test is that same one that e2fsck uses 4385 * NeilBrown 1999oct15 4386 */ 4387 if (inode->i_nlink == 0) { 4388 if ((inode->i_mode == 0 || 4389 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4390 ino != EXT4_BOOT_LOADER_INO) { 4391 /* this inode is deleted */ 4392 ret = -ESTALE; 4393 goto bad_inode; 4394 } 4395 /* The only unlinked inodes we let through here have 4396 * valid i_mode and are being read by the orphan 4397 * recovery code: that's fine, we're about to complete 4398 * the process of deleting those. 4399 * OR it is the EXT4_BOOT_LOADER_INO which is 4400 * not initialized on a new filesystem. */ 4401 } 4402 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4403 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4404 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4405 if (ext4_has_feature_64bit(sb)) 4406 ei->i_file_acl |= 4407 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4408 inode->i_size = ext4_isize(raw_inode); 4409 ei->i_disksize = inode->i_size; 4410 #ifdef CONFIG_QUOTA 4411 ei->i_reserved_quota = 0; 4412 #endif 4413 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4414 ei->i_block_group = iloc.block_group; 4415 ei->i_last_alloc_group = ~0; 4416 /* 4417 * NOTE! The in-memory inode i_data array is in little-endian order 4418 * even on big-endian machines: we do NOT byteswap the block numbers! 4419 */ 4420 for (block = 0; block < EXT4_N_BLOCKS; block++) 4421 ei->i_data[block] = raw_inode->i_block[block]; 4422 INIT_LIST_HEAD(&ei->i_orphan); 4423 4424 /* 4425 * Set transaction id's of transactions that have to be committed 4426 * to finish f[data]sync. We set them to currently running transaction 4427 * as we cannot be sure that the inode or some of its metadata isn't 4428 * part of the transaction - the inode could have been reclaimed and 4429 * now it is reread from disk. 4430 */ 4431 if (journal) { 4432 transaction_t *transaction; 4433 tid_t tid; 4434 4435 read_lock(&journal->j_state_lock); 4436 if (journal->j_running_transaction) 4437 transaction = journal->j_running_transaction; 4438 else 4439 transaction = journal->j_committing_transaction; 4440 if (transaction) 4441 tid = transaction->t_tid; 4442 else 4443 tid = journal->j_commit_sequence; 4444 read_unlock(&journal->j_state_lock); 4445 ei->i_sync_tid = tid; 4446 ei->i_datasync_tid = tid; 4447 } 4448 4449 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4450 if (ei->i_extra_isize == 0) { 4451 /* The extra space is currently unused. Use it. */ 4452 ei->i_extra_isize = sizeof(struct ext4_inode) - 4453 EXT4_GOOD_OLD_INODE_SIZE; 4454 } else { 4455 ext4_iget_extra_inode(inode, raw_inode, ei); 4456 } 4457 } 4458 4459 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4460 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4461 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4462 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4463 4464 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4465 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4466 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4467 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4468 inode->i_version |= 4469 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4470 } 4471 } 4472 4473 ret = 0; 4474 if (ei->i_file_acl && 4475 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 4476 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 4477 ei->i_file_acl); 4478 ret = -EFSCORRUPTED; 4479 goto bad_inode; 4480 } else if (!ext4_has_inline_data(inode)) { 4481 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 4482 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4483 (S_ISLNK(inode->i_mode) && 4484 !ext4_inode_is_fast_symlink(inode)))) 4485 /* Validate extent which is part of inode */ 4486 ret = ext4_ext_check_inode(inode); 4487 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4488 (S_ISLNK(inode->i_mode) && 4489 !ext4_inode_is_fast_symlink(inode))) { 4490 /* Validate block references which are part of inode */ 4491 ret = ext4_ind_check_inode(inode); 4492 } 4493 } 4494 if (ret) 4495 goto bad_inode; 4496 4497 if (S_ISREG(inode->i_mode)) { 4498 inode->i_op = &ext4_file_inode_operations; 4499 inode->i_fop = &ext4_file_operations; 4500 ext4_set_aops(inode); 4501 } else if (S_ISDIR(inode->i_mode)) { 4502 inode->i_op = &ext4_dir_inode_operations; 4503 inode->i_fop = &ext4_dir_operations; 4504 } else if (S_ISLNK(inode->i_mode)) { 4505 if (ext4_encrypted_inode(inode)) { 4506 inode->i_op = &ext4_encrypted_symlink_inode_operations; 4507 ext4_set_aops(inode); 4508 } else if (ext4_inode_is_fast_symlink(inode)) { 4509 inode->i_link = (char *)ei->i_data; 4510 inode->i_op = &ext4_fast_symlink_inode_operations; 4511 nd_terminate_link(ei->i_data, inode->i_size, 4512 sizeof(ei->i_data) - 1); 4513 } else { 4514 inode->i_op = &ext4_symlink_inode_operations; 4515 ext4_set_aops(inode); 4516 } 4517 inode_nohighmem(inode); 4518 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4519 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4520 inode->i_op = &ext4_special_inode_operations; 4521 if (raw_inode->i_block[0]) 4522 init_special_inode(inode, inode->i_mode, 4523 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4524 else 4525 init_special_inode(inode, inode->i_mode, 4526 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4527 } else if (ino == EXT4_BOOT_LOADER_INO) { 4528 make_bad_inode(inode); 4529 } else { 4530 ret = -EFSCORRUPTED; 4531 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 4532 goto bad_inode; 4533 } 4534 brelse(iloc.bh); 4535 ext4_set_inode_flags(inode); 4536 unlock_new_inode(inode); 4537 return inode; 4538 4539 bad_inode: 4540 brelse(iloc.bh); 4541 iget_failed(inode); 4542 return ERR_PTR(ret); 4543 } 4544 4545 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino) 4546 { 4547 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 4548 return ERR_PTR(-EFSCORRUPTED); 4549 return ext4_iget(sb, ino); 4550 } 4551 4552 static int ext4_inode_blocks_set(handle_t *handle, 4553 struct ext4_inode *raw_inode, 4554 struct ext4_inode_info *ei) 4555 { 4556 struct inode *inode = &(ei->vfs_inode); 4557 u64 i_blocks = inode->i_blocks; 4558 struct super_block *sb = inode->i_sb; 4559 4560 if (i_blocks <= ~0U) { 4561 /* 4562 * i_blocks can be represented in a 32 bit variable 4563 * as multiple of 512 bytes 4564 */ 4565 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4566 raw_inode->i_blocks_high = 0; 4567 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4568 return 0; 4569 } 4570 if (!ext4_has_feature_huge_file(sb)) 4571 return -EFBIG; 4572 4573 if (i_blocks <= 0xffffffffffffULL) { 4574 /* 4575 * i_blocks can be represented in a 48 bit variable 4576 * as multiple of 512 bytes 4577 */ 4578 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4579 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4580 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4581 } else { 4582 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4583 /* i_block is stored in file system block size */ 4584 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4585 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4586 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4587 } 4588 return 0; 4589 } 4590 4591 struct other_inode { 4592 unsigned long orig_ino; 4593 struct ext4_inode *raw_inode; 4594 }; 4595 4596 static int other_inode_match(struct inode * inode, unsigned long ino, 4597 void *data) 4598 { 4599 struct other_inode *oi = (struct other_inode *) data; 4600 4601 if ((inode->i_ino != ino) || 4602 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4603 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) || 4604 ((inode->i_state & I_DIRTY_TIME) == 0)) 4605 return 0; 4606 spin_lock(&inode->i_lock); 4607 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4608 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) && 4609 (inode->i_state & I_DIRTY_TIME)) { 4610 struct ext4_inode_info *ei = EXT4_I(inode); 4611 4612 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED); 4613 spin_unlock(&inode->i_lock); 4614 4615 spin_lock(&ei->i_raw_lock); 4616 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode); 4617 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode); 4618 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode); 4619 ext4_inode_csum_set(inode, oi->raw_inode, ei); 4620 spin_unlock(&ei->i_raw_lock); 4621 trace_ext4_other_inode_update_time(inode, oi->orig_ino); 4622 return -1; 4623 } 4624 spin_unlock(&inode->i_lock); 4625 return -1; 4626 } 4627 4628 /* 4629 * Opportunistically update the other time fields for other inodes in 4630 * the same inode table block. 4631 */ 4632 static void ext4_update_other_inodes_time(struct super_block *sb, 4633 unsigned long orig_ino, char *buf) 4634 { 4635 struct other_inode oi; 4636 unsigned long ino; 4637 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4638 int inode_size = EXT4_INODE_SIZE(sb); 4639 4640 oi.orig_ino = orig_ino; 4641 /* 4642 * Calculate the first inode in the inode table block. Inode 4643 * numbers are one-based. That is, the first inode in a block 4644 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 4645 */ 4646 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 4647 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 4648 if (ino == orig_ino) 4649 continue; 4650 oi.raw_inode = (struct ext4_inode *) buf; 4651 (void) find_inode_nowait(sb, ino, other_inode_match, &oi); 4652 } 4653 } 4654 4655 /* 4656 * Post the struct inode info into an on-disk inode location in the 4657 * buffer-cache. This gobbles the caller's reference to the 4658 * buffer_head in the inode location struct. 4659 * 4660 * The caller must have write access to iloc->bh. 4661 */ 4662 static int ext4_do_update_inode(handle_t *handle, 4663 struct inode *inode, 4664 struct ext4_iloc *iloc) 4665 { 4666 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4667 struct ext4_inode_info *ei = EXT4_I(inode); 4668 struct buffer_head *bh = iloc->bh; 4669 struct super_block *sb = inode->i_sb; 4670 int err = 0, rc, block; 4671 int need_datasync = 0, set_large_file = 0; 4672 uid_t i_uid; 4673 gid_t i_gid; 4674 projid_t i_projid; 4675 4676 spin_lock(&ei->i_raw_lock); 4677 4678 /* For fields not tracked in the in-memory inode, 4679 * initialise them to zero for new inodes. */ 4680 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4681 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4682 4683 ext4_get_inode_flags(ei); 4684 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4685 i_uid = i_uid_read(inode); 4686 i_gid = i_gid_read(inode); 4687 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 4688 if (!(test_opt(inode->i_sb, NO_UID32))) { 4689 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4690 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4691 /* 4692 * Fix up interoperability with old kernels. Otherwise, old inodes get 4693 * re-used with the upper 16 bits of the uid/gid intact 4694 */ 4695 if (!ei->i_dtime) { 4696 raw_inode->i_uid_high = 4697 cpu_to_le16(high_16_bits(i_uid)); 4698 raw_inode->i_gid_high = 4699 cpu_to_le16(high_16_bits(i_gid)); 4700 } else { 4701 raw_inode->i_uid_high = 0; 4702 raw_inode->i_gid_high = 0; 4703 } 4704 } else { 4705 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4706 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4707 raw_inode->i_uid_high = 0; 4708 raw_inode->i_gid_high = 0; 4709 } 4710 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4711 4712 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4713 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4714 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4715 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4716 4717 err = ext4_inode_blocks_set(handle, raw_inode, ei); 4718 if (err) { 4719 spin_unlock(&ei->i_raw_lock); 4720 goto out_brelse; 4721 } 4722 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4723 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4724 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 4725 raw_inode->i_file_acl_high = 4726 cpu_to_le16(ei->i_file_acl >> 32); 4727 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4728 if (ei->i_disksize != ext4_isize(raw_inode)) { 4729 ext4_isize_set(raw_inode, ei->i_disksize); 4730 need_datasync = 1; 4731 } 4732 if (ei->i_disksize > 0x7fffffffULL) { 4733 if (!ext4_has_feature_large_file(sb) || 4734 EXT4_SB(sb)->s_es->s_rev_level == 4735 cpu_to_le32(EXT4_GOOD_OLD_REV)) 4736 set_large_file = 1; 4737 } 4738 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4739 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4740 if (old_valid_dev(inode->i_rdev)) { 4741 raw_inode->i_block[0] = 4742 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4743 raw_inode->i_block[1] = 0; 4744 } else { 4745 raw_inode->i_block[0] = 0; 4746 raw_inode->i_block[1] = 4747 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4748 raw_inode->i_block[2] = 0; 4749 } 4750 } else if (!ext4_has_inline_data(inode)) { 4751 for (block = 0; block < EXT4_N_BLOCKS; block++) 4752 raw_inode->i_block[block] = ei->i_data[block]; 4753 } 4754 4755 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4756 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 4757 if (ei->i_extra_isize) { 4758 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4759 raw_inode->i_version_hi = 4760 cpu_to_le32(inode->i_version >> 32); 4761 raw_inode->i_extra_isize = 4762 cpu_to_le16(ei->i_extra_isize); 4763 } 4764 } 4765 4766 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 4767 EXT4_FEATURE_RO_COMPAT_PROJECT) && 4768 i_projid != EXT4_DEF_PROJID); 4769 4770 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 4771 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4772 raw_inode->i_projid = cpu_to_le32(i_projid); 4773 4774 ext4_inode_csum_set(inode, raw_inode, ei); 4775 spin_unlock(&ei->i_raw_lock); 4776 if (inode->i_sb->s_flags & MS_LAZYTIME) 4777 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 4778 bh->b_data); 4779 4780 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4781 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 4782 if (!err) 4783 err = rc; 4784 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 4785 if (set_large_file) { 4786 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 4787 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh); 4788 if (err) 4789 goto out_brelse; 4790 ext4_update_dynamic_rev(sb); 4791 ext4_set_feature_large_file(sb); 4792 ext4_handle_sync(handle); 4793 err = ext4_handle_dirty_super(handle, sb); 4794 } 4795 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 4796 out_brelse: 4797 brelse(bh); 4798 ext4_std_error(inode->i_sb, err); 4799 return err; 4800 } 4801 4802 /* 4803 * ext4_write_inode() 4804 * 4805 * We are called from a few places: 4806 * 4807 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 4808 * Here, there will be no transaction running. We wait for any running 4809 * transaction to commit. 4810 * 4811 * - Within flush work (sys_sync(), kupdate and such). 4812 * We wait on commit, if told to. 4813 * 4814 * - Within iput_final() -> write_inode_now() 4815 * We wait on commit, if told to. 4816 * 4817 * In all cases it is actually safe for us to return without doing anything, 4818 * because the inode has been copied into a raw inode buffer in 4819 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 4820 * writeback. 4821 * 4822 * Note that we are absolutely dependent upon all inode dirtiers doing the 4823 * right thing: they *must* call mark_inode_dirty() after dirtying info in 4824 * which we are interested. 4825 * 4826 * It would be a bug for them to not do this. The code: 4827 * 4828 * mark_inode_dirty(inode) 4829 * stuff(); 4830 * inode->i_size = expr; 4831 * 4832 * is in error because write_inode() could occur while `stuff()' is running, 4833 * and the new i_size will be lost. Plus the inode will no longer be on the 4834 * superblock's dirty inode list. 4835 */ 4836 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 4837 { 4838 int err; 4839 4840 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC)) 4841 return 0; 4842 4843 if (EXT4_SB(inode->i_sb)->s_journal) { 4844 if (ext4_journal_current_handle()) { 4845 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 4846 dump_stack(); 4847 return -EIO; 4848 } 4849 4850 /* 4851 * No need to force transaction in WB_SYNC_NONE mode. Also 4852 * ext4_sync_fs() will force the commit after everything is 4853 * written. 4854 */ 4855 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 4856 return 0; 4857 4858 err = ext4_force_commit(inode->i_sb); 4859 } else { 4860 struct ext4_iloc iloc; 4861 4862 err = __ext4_get_inode_loc(inode, &iloc, 0); 4863 if (err) 4864 return err; 4865 /* 4866 * sync(2) will flush the whole buffer cache. No need to do 4867 * it here separately for each inode. 4868 */ 4869 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 4870 sync_dirty_buffer(iloc.bh); 4871 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 4872 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 4873 "IO error syncing inode"); 4874 err = -EIO; 4875 } 4876 brelse(iloc.bh); 4877 } 4878 return err; 4879 } 4880 4881 /* 4882 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 4883 * buffers that are attached to a page stradding i_size and are undergoing 4884 * commit. In that case we have to wait for commit to finish and try again. 4885 */ 4886 static void ext4_wait_for_tail_page_commit(struct inode *inode) 4887 { 4888 struct page *page; 4889 unsigned offset; 4890 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 4891 tid_t commit_tid = 0; 4892 int ret; 4893 4894 offset = inode->i_size & (PAGE_CACHE_SIZE - 1); 4895 /* 4896 * All buffers in the last page remain valid? Then there's nothing to 4897 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE == 4898 * blocksize case 4899 */ 4900 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits)) 4901 return; 4902 while (1) { 4903 page = find_lock_page(inode->i_mapping, 4904 inode->i_size >> PAGE_CACHE_SHIFT); 4905 if (!page) 4906 return; 4907 ret = __ext4_journalled_invalidatepage(page, offset, 4908 PAGE_CACHE_SIZE - offset); 4909 unlock_page(page); 4910 page_cache_release(page); 4911 if (ret != -EBUSY) 4912 return; 4913 commit_tid = 0; 4914 read_lock(&journal->j_state_lock); 4915 if (journal->j_committing_transaction) 4916 commit_tid = journal->j_committing_transaction->t_tid; 4917 read_unlock(&journal->j_state_lock); 4918 if (commit_tid) 4919 jbd2_log_wait_commit(journal, commit_tid); 4920 } 4921 } 4922 4923 /* 4924 * ext4_setattr() 4925 * 4926 * Called from notify_change. 4927 * 4928 * We want to trap VFS attempts to truncate the file as soon as 4929 * possible. In particular, we want to make sure that when the VFS 4930 * shrinks i_size, we put the inode on the orphan list and modify 4931 * i_disksize immediately, so that during the subsequent flushing of 4932 * dirty pages and freeing of disk blocks, we can guarantee that any 4933 * commit will leave the blocks being flushed in an unused state on 4934 * disk. (On recovery, the inode will get truncated and the blocks will 4935 * be freed, so we have a strong guarantee that no future commit will 4936 * leave these blocks visible to the user.) 4937 * 4938 * Another thing we have to assure is that if we are in ordered mode 4939 * and inode is still attached to the committing transaction, we must 4940 * we start writeout of all the dirty pages which are being truncated. 4941 * This way we are sure that all the data written in the previous 4942 * transaction are already on disk (truncate waits for pages under 4943 * writeback). 4944 * 4945 * Called with inode->i_mutex down. 4946 */ 4947 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 4948 { 4949 struct inode *inode = d_inode(dentry); 4950 int error, rc = 0; 4951 int orphan = 0; 4952 const unsigned int ia_valid = attr->ia_valid; 4953 4954 error = inode_change_ok(inode, attr); 4955 if (error) 4956 return error; 4957 4958 if (is_quota_modification(inode, attr)) { 4959 error = dquot_initialize(inode); 4960 if (error) 4961 return error; 4962 } 4963 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 4964 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 4965 handle_t *handle; 4966 4967 /* (user+group)*(old+new) structure, inode write (sb, 4968 * inode block, ? - but truncate inode update has it) */ 4969 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 4970 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 4971 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 4972 if (IS_ERR(handle)) { 4973 error = PTR_ERR(handle); 4974 goto err_out; 4975 } 4976 error = dquot_transfer(inode, attr); 4977 if (error) { 4978 ext4_journal_stop(handle); 4979 return error; 4980 } 4981 /* Update corresponding info in inode so that everything is in 4982 * one transaction */ 4983 if (attr->ia_valid & ATTR_UID) 4984 inode->i_uid = attr->ia_uid; 4985 if (attr->ia_valid & ATTR_GID) 4986 inode->i_gid = attr->ia_gid; 4987 error = ext4_mark_inode_dirty(handle, inode); 4988 ext4_journal_stop(handle); 4989 } 4990 4991 if (attr->ia_valid & ATTR_SIZE) { 4992 handle_t *handle; 4993 loff_t oldsize = inode->i_size; 4994 int shrink = (attr->ia_size <= inode->i_size); 4995 4996 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4997 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4998 4999 if (attr->ia_size > sbi->s_bitmap_maxbytes) 5000 return -EFBIG; 5001 } 5002 if (!S_ISREG(inode->i_mode)) 5003 return -EINVAL; 5004 5005 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size) 5006 inode_inc_iversion(inode); 5007 5008 if (ext4_should_order_data(inode) && 5009 (attr->ia_size < inode->i_size)) { 5010 error = ext4_begin_ordered_truncate(inode, 5011 attr->ia_size); 5012 if (error) 5013 goto err_out; 5014 } 5015 if (attr->ia_size != inode->i_size) { 5016 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5017 if (IS_ERR(handle)) { 5018 error = PTR_ERR(handle); 5019 goto err_out; 5020 } 5021 if (ext4_handle_valid(handle) && shrink) { 5022 error = ext4_orphan_add(handle, inode); 5023 orphan = 1; 5024 } 5025 /* 5026 * Update c/mtime on truncate up, ext4_truncate() will 5027 * update c/mtime in shrink case below 5028 */ 5029 if (!shrink) { 5030 inode->i_mtime = ext4_current_time(inode); 5031 inode->i_ctime = inode->i_mtime; 5032 } 5033 down_write(&EXT4_I(inode)->i_data_sem); 5034 EXT4_I(inode)->i_disksize = attr->ia_size; 5035 rc = ext4_mark_inode_dirty(handle, inode); 5036 if (!error) 5037 error = rc; 5038 /* 5039 * We have to update i_size under i_data_sem together 5040 * with i_disksize to avoid races with writeback code 5041 * running ext4_wb_update_i_disksize(). 5042 */ 5043 if (!error) 5044 i_size_write(inode, attr->ia_size); 5045 up_write(&EXT4_I(inode)->i_data_sem); 5046 ext4_journal_stop(handle); 5047 if (error) { 5048 if (orphan) 5049 ext4_orphan_del(NULL, inode); 5050 goto err_out; 5051 } 5052 } 5053 if (!shrink) 5054 pagecache_isize_extended(inode, oldsize, inode->i_size); 5055 5056 /* 5057 * Blocks are going to be removed from the inode. Wait 5058 * for dio in flight. Temporarily disable 5059 * dioread_nolock to prevent livelock. 5060 */ 5061 if (orphan) { 5062 if (!ext4_should_journal_data(inode)) { 5063 ext4_inode_block_unlocked_dio(inode); 5064 inode_dio_wait(inode); 5065 ext4_inode_resume_unlocked_dio(inode); 5066 } else 5067 ext4_wait_for_tail_page_commit(inode); 5068 } 5069 down_write(&EXT4_I(inode)->i_mmap_sem); 5070 /* 5071 * Truncate pagecache after we've waited for commit 5072 * in data=journal mode to make pages freeable. 5073 */ 5074 truncate_pagecache(inode, inode->i_size); 5075 if (shrink) 5076 ext4_truncate(inode); 5077 up_write(&EXT4_I(inode)->i_mmap_sem); 5078 } 5079 5080 if (!rc) { 5081 setattr_copy(inode, attr); 5082 mark_inode_dirty(inode); 5083 } 5084 5085 /* 5086 * If the call to ext4_truncate failed to get a transaction handle at 5087 * all, we need to clean up the in-core orphan list manually. 5088 */ 5089 if (orphan && inode->i_nlink) 5090 ext4_orphan_del(NULL, inode); 5091 5092 if (!rc && (ia_valid & ATTR_MODE)) 5093 rc = posix_acl_chmod(inode, inode->i_mode); 5094 5095 err_out: 5096 ext4_std_error(inode->i_sb, error); 5097 if (!error) 5098 error = rc; 5099 return error; 5100 } 5101 5102 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 5103 struct kstat *stat) 5104 { 5105 struct inode *inode; 5106 unsigned long long delalloc_blocks; 5107 5108 inode = d_inode(dentry); 5109 generic_fillattr(inode, stat); 5110 5111 /* 5112 * If there is inline data in the inode, the inode will normally not 5113 * have data blocks allocated (it may have an external xattr block). 5114 * Report at least one sector for such files, so tools like tar, rsync, 5115 * others doen't incorrectly think the file is completely sparse. 5116 */ 5117 if (unlikely(ext4_has_inline_data(inode))) 5118 stat->blocks += (stat->size + 511) >> 9; 5119 5120 /* 5121 * We can't update i_blocks if the block allocation is delayed 5122 * otherwise in the case of system crash before the real block 5123 * allocation is done, we will have i_blocks inconsistent with 5124 * on-disk file blocks. 5125 * We always keep i_blocks updated together with real 5126 * allocation. But to not confuse with user, stat 5127 * will return the blocks that include the delayed allocation 5128 * blocks for this file. 5129 */ 5130 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5131 EXT4_I(inode)->i_reserved_data_blocks); 5132 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5133 return 0; 5134 } 5135 5136 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5137 int pextents) 5138 { 5139 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5140 return ext4_ind_trans_blocks(inode, lblocks); 5141 return ext4_ext_index_trans_blocks(inode, pextents); 5142 } 5143 5144 /* 5145 * Account for index blocks, block groups bitmaps and block group 5146 * descriptor blocks if modify datablocks and index blocks 5147 * worse case, the indexs blocks spread over different block groups 5148 * 5149 * If datablocks are discontiguous, they are possible to spread over 5150 * different block groups too. If they are contiguous, with flexbg, 5151 * they could still across block group boundary. 5152 * 5153 * Also account for superblock, inode, quota and xattr blocks 5154 */ 5155 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5156 int pextents) 5157 { 5158 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5159 int gdpblocks; 5160 int idxblocks; 5161 int ret = 0; 5162 5163 /* 5164 * How many index blocks need to touch to map @lblocks logical blocks 5165 * to @pextents physical extents? 5166 */ 5167 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5168 5169 ret = idxblocks; 5170 5171 /* 5172 * Now let's see how many group bitmaps and group descriptors need 5173 * to account 5174 */ 5175 groups = idxblocks + pextents; 5176 gdpblocks = groups; 5177 if (groups > ngroups) 5178 groups = ngroups; 5179 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5180 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5181 5182 /* bitmaps and block group descriptor blocks */ 5183 ret += groups + gdpblocks; 5184 5185 /* Blocks for super block, inode, quota and xattr blocks */ 5186 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5187 5188 return ret; 5189 } 5190 5191 /* 5192 * Calculate the total number of credits to reserve to fit 5193 * the modification of a single pages into a single transaction, 5194 * which may include multiple chunks of block allocations. 5195 * 5196 * This could be called via ext4_write_begin() 5197 * 5198 * We need to consider the worse case, when 5199 * one new block per extent. 5200 */ 5201 int ext4_writepage_trans_blocks(struct inode *inode) 5202 { 5203 int bpp = ext4_journal_blocks_per_page(inode); 5204 int ret; 5205 5206 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5207 5208 /* Account for data blocks for journalled mode */ 5209 if (ext4_should_journal_data(inode)) 5210 ret += bpp; 5211 return ret; 5212 } 5213 5214 /* 5215 * Calculate the journal credits for a chunk of data modification. 5216 * 5217 * This is called from DIO, fallocate or whoever calling 5218 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5219 * 5220 * journal buffers for data blocks are not included here, as DIO 5221 * and fallocate do no need to journal data buffers. 5222 */ 5223 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5224 { 5225 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5226 } 5227 5228 /* 5229 * The caller must have previously called ext4_reserve_inode_write(). 5230 * Give this, we know that the caller already has write access to iloc->bh. 5231 */ 5232 int ext4_mark_iloc_dirty(handle_t *handle, 5233 struct inode *inode, struct ext4_iloc *iloc) 5234 { 5235 int err = 0; 5236 5237 if (IS_I_VERSION(inode)) 5238 inode_inc_iversion(inode); 5239 5240 /* the do_update_inode consumes one bh->b_count */ 5241 get_bh(iloc->bh); 5242 5243 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5244 err = ext4_do_update_inode(handle, inode, iloc); 5245 put_bh(iloc->bh); 5246 return err; 5247 } 5248 5249 /* 5250 * On success, We end up with an outstanding reference count against 5251 * iloc->bh. This _must_ be cleaned up later. 5252 */ 5253 5254 int 5255 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5256 struct ext4_iloc *iloc) 5257 { 5258 int err; 5259 5260 err = ext4_get_inode_loc(inode, iloc); 5261 if (!err) { 5262 BUFFER_TRACE(iloc->bh, "get_write_access"); 5263 err = ext4_journal_get_write_access(handle, iloc->bh); 5264 if (err) { 5265 brelse(iloc->bh); 5266 iloc->bh = NULL; 5267 } 5268 } 5269 ext4_std_error(inode->i_sb, err); 5270 return err; 5271 } 5272 5273 /* 5274 * Expand an inode by new_extra_isize bytes. 5275 * Returns 0 on success or negative error number on failure. 5276 */ 5277 static int ext4_expand_extra_isize(struct inode *inode, 5278 unsigned int new_extra_isize, 5279 struct ext4_iloc iloc, 5280 handle_t *handle) 5281 { 5282 struct ext4_inode *raw_inode; 5283 struct ext4_xattr_ibody_header *header; 5284 5285 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 5286 return 0; 5287 5288 raw_inode = ext4_raw_inode(&iloc); 5289 5290 header = IHDR(inode, raw_inode); 5291 5292 /* No extended attributes present */ 5293 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5294 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5295 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 5296 new_extra_isize); 5297 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5298 return 0; 5299 } 5300 5301 /* try to expand with EAs present */ 5302 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 5303 raw_inode, handle); 5304 } 5305 5306 /* 5307 * What we do here is to mark the in-core inode as clean with respect to inode 5308 * dirtiness (it may still be data-dirty). 5309 * This means that the in-core inode may be reaped by prune_icache 5310 * without having to perform any I/O. This is a very good thing, 5311 * because *any* task may call prune_icache - even ones which 5312 * have a transaction open against a different journal. 5313 * 5314 * Is this cheating? Not really. Sure, we haven't written the 5315 * inode out, but prune_icache isn't a user-visible syncing function. 5316 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5317 * we start and wait on commits. 5318 */ 5319 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 5320 { 5321 struct ext4_iloc iloc; 5322 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5323 static unsigned int mnt_count; 5324 int err, ret; 5325 5326 might_sleep(); 5327 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5328 err = ext4_reserve_inode_write(handle, inode, &iloc); 5329 if (err) 5330 return err; 5331 if (ext4_handle_valid(handle) && 5332 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 5333 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5334 /* 5335 * We need extra buffer credits since we may write into EA block 5336 * with this same handle. If journal_extend fails, then it will 5337 * only result in a minor loss of functionality for that inode. 5338 * If this is felt to be critical, then e2fsck should be run to 5339 * force a large enough s_min_extra_isize. 5340 */ 5341 if ((jbd2_journal_extend(handle, 5342 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 5343 ret = ext4_expand_extra_isize(inode, 5344 sbi->s_want_extra_isize, 5345 iloc, handle); 5346 if (ret) { 5347 ext4_set_inode_state(inode, 5348 EXT4_STATE_NO_EXPAND); 5349 if (mnt_count != 5350 le16_to_cpu(sbi->s_es->s_mnt_count)) { 5351 ext4_warning(inode->i_sb, 5352 "Unable to expand inode %lu. Delete" 5353 " some EAs or run e2fsck.", 5354 inode->i_ino); 5355 mnt_count = 5356 le16_to_cpu(sbi->s_es->s_mnt_count); 5357 } 5358 } 5359 } 5360 } 5361 return ext4_mark_iloc_dirty(handle, inode, &iloc); 5362 } 5363 5364 /* 5365 * ext4_dirty_inode() is called from __mark_inode_dirty() 5366 * 5367 * We're really interested in the case where a file is being extended. 5368 * i_size has been changed by generic_commit_write() and we thus need 5369 * to include the updated inode in the current transaction. 5370 * 5371 * Also, dquot_alloc_block() will always dirty the inode when blocks 5372 * are allocated to the file. 5373 * 5374 * If the inode is marked synchronous, we don't honour that here - doing 5375 * so would cause a commit on atime updates, which we don't bother doing. 5376 * We handle synchronous inodes at the highest possible level. 5377 * 5378 * If only the I_DIRTY_TIME flag is set, we can skip everything. If 5379 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need 5380 * to copy into the on-disk inode structure are the timestamp files. 5381 */ 5382 void ext4_dirty_inode(struct inode *inode, int flags) 5383 { 5384 handle_t *handle; 5385 5386 if (flags == I_DIRTY_TIME) 5387 return; 5388 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 5389 if (IS_ERR(handle)) 5390 goto out; 5391 5392 ext4_mark_inode_dirty(handle, inode); 5393 5394 ext4_journal_stop(handle); 5395 out: 5396 return; 5397 } 5398 5399 #if 0 5400 /* 5401 * Bind an inode's backing buffer_head into this transaction, to prevent 5402 * it from being flushed to disk early. Unlike 5403 * ext4_reserve_inode_write, this leaves behind no bh reference and 5404 * returns no iloc structure, so the caller needs to repeat the iloc 5405 * lookup to mark the inode dirty later. 5406 */ 5407 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 5408 { 5409 struct ext4_iloc iloc; 5410 5411 int err = 0; 5412 if (handle) { 5413 err = ext4_get_inode_loc(inode, &iloc); 5414 if (!err) { 5415 BUFFER_TRACE(iloc.bh, "get_write_access"); 5416 err = jbd2_journal_get_write_access(handle, iloc.bh); 5417 if (!err) 5418 err = ext4_handle_dirty_metadata(handle, 5419 NULL, 5420 iloc.bh); 5421 brelse(iloc.bh); 5422 } 5423 } 5424 ext4_std_error(inode->i_sb, err); 5425 return err; 5426 } 5427 #endif 5428 5429 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5430 { 5431 journal_t *journal; 5432 handle_t *handle; 5433 int err; 5434 5435 /* 5436 * We have to be very careful here: changing a data block's 5437 * journaling status dynamically is dangerous. If we write a 5438 * data block to the journal, change the status and then delete 5439 * that block, we risk forgetting to revoke the old log record 5440 * from the journal and so a subsequent replay can corrupt data. 5441 * So, first we make sure that the journal is empty and that 5442 * nobody is changing anything. 5443 */ 5444 5445 journal = EXT4_JOURNAL(inode); 5446 if (!journal) 5447 return 0; 5448 if (is_journal_aborted(journal)) 5449 return -EROFS; 5450 /* We have to allocate physical blocks for delalloc blocks 5451 * before flushing journal. otherwise delalloc blocks can not 5452 * be allocated any more. even more truncate on delalloc blocks 5453 * could trigger BUG by flushing delalloc blocks in journal. 5454 * There is no delalloc block in non-journal data mode. 5455 */ 5456 if (val && test_opt(inode->i_sb, DELALLOC)) { 5457 err = ext4_alloc_da_blocks(inode); 5458 if (err < 0) 5459 return err; 5460 } 5461 5462 /* Wait for all existing dio workers */ 5463 ext4_inode_block_unlocked_dio(inode); 5464 inode_dio_wait(inode); 5465 5466 jbd2_journal_lock_updates(journal); 5467 5468 /* 5469 * OK, there are no updates running now, and all cached data is 5470 * synced to disk. We are now in a completely consistent state 5471 * which doesn't have anything in the journal, and we know that 5472 * no filesystem updates are running, so it is safe to modify 5473 * the inode's in-core data-journaling state flag now. 5474 */ 5475 5476 if (val) 5477 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5478 else { 5479 err = jbd2_journal_flush(journal); 5480 if (err < 0) { 5481 jbd2_journal_unlock_updates(journal); 5482 ext4_inode_resume_unlocked_dio(inode); 5483 return err; 5484 } 5485 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5486 } 5487 ext4_set_aops(inode); 5488 5489 jbd2_journal_unlock_updates(journal); 5490 ext4_inode_resume_unlocked_dio(inode); 5491 5492 /* Finally we can mark the inode as dirty. */ 5493 5494 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 5495 if (IS_ERR(handle)) 5496 return PTR_ERR(handle); 5497 5498 err = ext4_mark_inode_dirty(handle, inode); 5499 ext4_handle_sync(handle); 5500 ext4_journal_stop(handle); 5501 ext4_std_error(inode->i_sb, err); 5502 5503 return err; 5504 } 5505 5506 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 5507 { 5508 return !buffer_mapped(bh); 5509 } 5510 5511 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 5512 { 5513 struct page *page = vmf->page; 5514 loff_t size; 5515 unsigned long len; 5516 int ret; 5517 struct file *file = vma->vm_file; 5518 struct inode *inode = file_inode(file); 5519 struct address_space *mapping = inode->i_mapping; 5520 handle_t *handle; 5521 get_block_t *get_block; 5522 int retries = 0; 5523 5524 sb_start_pagefault(inode->i_sb); 5525 file_update_time(vma->vm_file); 5526 5527 down_read(&EXT4_I(inode)->i_mmap_sem); 5528 /* Delalloc case is easy... */ 5529 if (test_opt(inode->i_sb, DELALLOC) && 5530 !ext4_should_journal_data(inode) && 5531 !ext4_nonda_switch(inode->i_sb)) { 5532 do { 5533 ret = block_page_mkwrite(vma, vmf, 5534 ext4_da_get_block_prep); 5535 } while (ret == -ENOSPC && 5536 ext4_should_retry_alloc(inode->i_sb, &retries)); 5537 goto out_ret; 5538 } 5539 5540 lock_page(page); 5541 size = i_size_read(inode); 5542 /* Page got truncated from under us? */ 5543 if (page->mapping != mapping || page_offset(page) > size) { 5544 unlock_page(page); 5545 ret = VM_FAULT_NOPAGE; 5546 goto out; 5547 } 5548 5549 if (page->index == size >> PAGE_CACHE_SHIFT) 5550 len = size & ~PAGE_CACHE_MASK; 5551 else 5552 len = PAGE_CACHE_SIZE; 5553 /* 5554 * Return if we have all the buffers mapped. This avoids the need to do 5555 * journal_start/journal_stop which can block and take a long time 5556 */ 5557 if (page_has_buffers(page)) { 5558 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 5559 0, len, NULL, 5560 ext4_bh_unmapped)) { 5561 /* Wait so that we don't change page under IO */ 5562 wait_for_stable_page(page); 5563 ret = VM_FAULT_LOCKED; 5564 goto out; 5565 } 5566 } 5567 unlock_page(page); 5568 /* OK, we need to fill the hole... */ 5569 if (ext4_should_dioread_nolock(inode)) 5570 get_block = ext4_get_block_unwritten; 5571 else 5572 get_block = ext4_get_block; 5573 retry_alloc: 5574 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 5575 ext4_writepage_trans_blocks(inode)); 5576 if (IS_ERR(handle)) { 5577 ret = VM_FAULT_SIGBUS; 5578 goto out; 5579 } 5580 ret = block_page_mkwrite(vma, vmf, get_block); 5581 if (!ret && ext4_should_journal_data(inode)) { 5582 if (ext4_walk_page_buffers(handle, page_buffers(page), 0, 5583 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) { 5584 unlock_page(page); 5585 ret = VM_FAULT_SIGBUS; 5586 ext4_journal_stop(handle); 5587 goto out; 5588 } 5589 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 5590 } 5591 ext4_journal_stop(handle); 5592 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 5593 goto retry_alloc; 5594 out_ret: 5595 ret = block_page_mkwrite_return(ret); 5596 out: 5597 up_read(&EXT4_I(inode)->i_mmap_sem); 5598 sb_end_pagefault(inode->i_sb); 5599 return ret; 5600 } 5601 5602 int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 5603 { 5604 struct inode *inode = file_inode(vma->vm_file); 5605 int err; 5606 5607 down_read(&EXT4_I(inode)->i_mmap_sem); 5608 err = filemap_fault(vma, vmf); 5609 up_read(&EXT4_I(inode)->i_mmap_sem); 5610 5611 return err; 5612 } 5613 5614 /* 5615 * Find the first extent at or after @lblk in an inode that is not a hole. 5616 * Search for @map_len blocks at most. The extent is returned in @result. 5617 * 5618 * The function returns 1 if we found an extent. The function returns 0 in 5619 * case there is no extent at or after @lblk and in that case also sets 5620 * @result->es_len to 0. In case of error, the error code is returned. 5621 */ 5622 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk, 5623 unsigned int map_len, struct extent_status *result) 5624 { 5625 struct ext4_map_blocks map; 5626 struct extent_status es = {}; 5627 int ret; 5628 5629 map.m_lblk = lblk; 5630 map.m_len = map_len; 5631 5632 /* 5633 * For non-extent based files this loop may iterate several times since 5634 * we do not determine full hole size. 5635 */ 5636 while (map.m_len > 0) { 5637 ret = ext4_map_blocks(NULL, inode, &map, 0); 5638 if (ret < 0) 5639 return ret; 5640 /* There's extent covering m_lblk? Just return it. */ 5641 if (ret > 0) { 5642 int status; 5643 5644 ext4_es_store_pblock(result, map.m_pblk); 5645 result->es_lblk = map.m_lblk; 5646 result->es_len = map.m_len; 5647 if (map.m_flags & EXT4_MAP_UNWRITTEN) 5648 status = EXTENT_STATUS_UNWRITTEN; 5649 else 5650 status = EXTENT_STATUS_WRITTEN; 5651 ext4_es_store_status(result, status); 5652 return 1; 5653 } 5654 ext4_es_find_delayed_extent_range(inode, map.m_lblk, 5655 map.m_lblk + map.m_len - 1, 5656 &es); 5657 /* Is delalloc data before next block in extent tree? */ 5658 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) { 5659 ext4_lblk_t offset = 0; 5660 5661 if (es.es_lblk < lblk) 5662 offset = lblk - es.es_lblk; 5663 result->es_lblk = es.es_lblk + offset; 5664 ext4_es_store_pblock(result, 5665 ext4_es_pblock(&es) + offset); 5666 result->es_len = es.es_len - offset; 5667 ext4_es_store_status(result, ext4_es_status(&es)); 5668 5669 return 1; 5670 } 5671 /* There's a hole at m_lblk, advance us after it */ 5672 map.m_lblk += map.m_len; 5673 map_len -= map.m_len; 5674 map.m_len = map_len; 5675 cond_resched(); 5676 } 5677 result->es_len = 0; 5678 return 0; 5679 } 5680