xref: /openbmc/linux/fs/ext4/inode.c (revision 56896ef5b990a3822da45f92e548c4c8ac301bb4)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *	(jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20 
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40 
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45 
46 #include <trace/events/ext4.h>
47 
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49 
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 			      struct ext4_inode_info *ei)
52 {
53 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 	__u16 csum_lo;
55 	__u16 csum_hi = 0;
56 	__u32 csum;
57 
58 	csum_lo = le16_to_cpu(raw->i_checksum_lo);
59 	raw->i_checksum_lo = 0;
60 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62 		csum_hi = le16_to_cpu(raw->i_checksum_hi);
63 		raw->i_checksum_hi = 0;
64 	}
65 
66 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67 			   EXT4_INODE_SIZE(inode->i_sb));
68 
69 	raw->i_checksum_lo = cpu_to_le16(csum_lo);
70 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72 		raw->i_checksum_hi = cpu_to_le16(csum_hi);
73 
74 	return csum;
75 }
76 
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78 				  struct ext4_inode_info *ei)
79 {
80 	__u32 provided, calculated;
81 
82 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83 	    cpu_to_le32(EXT4_OS_LINUX) ||
84 	    !ext4_has_metadata_csum(inode->i_sb))
85 		return 1;
86 
87 	provided = le16_to_cpu(raw->i_checksum_lo);
88 	calculated = ext4_inode_csum(inode, raw, ei);
89 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
90 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
91 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
92 	else
93 		calculated &= 0xFFFF;
94 
95 	return provided == calculated;
96 }
97 
98 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
99 				struct ext4_inode_info *ei)
100 {
101 	__u32 csum;
102 
103 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
104 	    cpu_to_le32(EXT4_OS_LINUX) ||
105 	    !ext4_has_metadata_csum(inode->i_sb))
106 		return;
107 
108 	csum = ext4_inode_csum(inode, raw, ei);
109 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
110 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
111 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
112 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
113 }
114 
115 static inline int ext4_begin_ordered_truncate(struct inode *inode,
116 					      loff_t new_size)
117 {
118 	trace_ext4_begin_ordered_truncate(inode, new_size);
119 	/*
120 	 * If jinode is zero, then we never opened the file for
121 	 * writing, so there's no need to call
122 	 * jbd2_journal_begin_ordered_truncate() since there's no
123 	 * outstanding writes we need to flush.
124 	 */
125 	if (!EXT4_I(inode)->jinode)
126 		return 0;
127 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
128 						   EXT4_I(inode)->jinode,
129 						   new_size);
130 }
131 
132 static void ext4_invalidatepage(struct page *page, unsigned int offset,
133 				unsigned int length);
134 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
135 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
136 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
137 				  int pextents);
138 
139 /*
140  * Test whether an inode is a fast symlink.
141  */
142 int ext4_inode_is_fast_symlink(struct inode *inode)
143 {
144         int ea_blocks = EXT4_I(inode)->i_file_acl ?
145 		EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
146 
147 	if (ext4_has_inline_data(inode))
148 		return 0;
149 
150 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151 }
152 
153 /*
154  * Restart the transaction associated with *handle.  This does a commit,
155  * so before we call here everything must be consistently dirtied against
156  * this transaction.
157  */
158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
159 				 int nblocks)
160 {
161 	int ret;
162 
163 	/*
164 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
165 	 * moment, get_block can be called only for blocks inside i_size since
166 	 * page cache has been already dropped and writes are blocked by
167 	 * i_mutex. So we can safely drop the i_data_sem here.
168 	 */
169 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
170 	jbd_debug(2, "restarting handle %p\n", handle);
171 	up_write(&EXT4_I(inode)->i_data_sem);
172 	ret = ext4_journal_restart(handle, nblocks);
173 	down_write(&EXT4_I(inode)->i_data_sem);
174 	ext4_discard_preallocations(inode);
175 
176 	return ret;
177 }
178 
179 /*
180  * Called at the last iput() if i_nlink is zero.
181  */
182 void ext4_evict_inode(struct inode *inode)
183 {
184 	handle_t *handle;
185 	int err;
186 
187 	trace_ext4_evict_inode(inode);
188 
189 	if (inode->i_nlink) {
190 		/*
191 		 * When journalling data dirty buffers are tracked only in the
192 		 * journal. So although mm thinks everything is clean and
193 		 * ready for reaping the inode might still have some pages to
194 		 * write in the running transaction or waiting to be
195 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
196 		 * (via truncate_inode_pages()) to discard these buffers can
197 		 * cause data loss. Also even if we did not discard these
198 		 * buffers, we would have no way to find them after the inode
199 		 * is reaped and thus user could see stale data if he tries to
200 		 * read them before the transaction is checkpointed. So be
201 		 * careful and force everything to disk here... We use
202 		 * ei->i_datasync_tid to store the newest transaction
203 		 * containing inode's data.
204 		 *
205 		 * Note that directories do not have this problem because they
206 		 * don't use page cache.
207 		 */
208 		if (ext4_should_journal_data(inode) &&
209 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210 		    inode->i_ino != EXT4_JOURNAL_INO) {
211 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213 
214 			jbd2_complete_transaction(journal, commit_tid);
215 			filemap_write_and_wait(&inode->i_data);
216 		}
217 		truncate_inode_pages_final(&inode->i_data);
218 
219 		goto no_delete;
220 	}
221 
222 	if (is_bad_inode(inode))
223 		goto no_delete;
224 	dquot_initialize(inode);
225 
226 	if (ext4_should_order_data(inode))
227 		ext4_begin_ordered_truncate(inode, 0);
228 	truncate_inode_pages_final(&inode->i_data);
229 
230 	/*
231 	 * Protect us against freezing - iput() caller didn't have to have any
232 	 * protection against it
233 	 */
234 	sb_start_intwrite(inode->i_sb);
235 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
236 				    ext4_blocks_for_truncate(inode)+3);
237 	if (IS_ERR(handle)) {
238 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
239 		/*
240 		 * If we're going to skip the normal cleanup, we still need to
241 		 * make sure that the in-core orphan linked list is properly
242 		 * cleaned up.
243 		 */
244 		ext4_orphan_del(NULL, inode);
245 		sb_end_intwrite(inode->i_sb);
246 		goto no_delete;
247 	}
248 
249 	if (IS_SYNC(inode))
250 		ext4_handle_sync(handle);
251 	inode->i_size = 0;
252 	err = ext4_mark_inode_dirty(handle, inode);
253 	if (err) {
254 		ext4_warning(inode->i_sb,
255 			     "couldn't mark inode dirty (err %d)", err);
256 		goto stop_handle;
257 	}
258 	if (inode->i_blocks)
259 		ext4_truncate(inode);
260 
261 	/*
262 	 * ext4_ext_truncate() doesn't reserve any slop when it
263 	 * restarts journal transactions; therefore there may not be
264 	 * enough credits left in the handle to remove the inode from
265 	 * the orphan list and set the dtime field.
266 	 */
267 	if (!ext4_handle_has_enough_credits(handle, 3)) {
268 		err = ext4_journal_extend(handle, 3);
269 		if (err > 0)
270 			err = ext4_journal_restart(handle, 3);
271 		if (err != 0) {
272 			ext4_warning(inode->i_sb,
273 				     "couldn't extend journal (err %d)", err);
274 		stop_handle:
275 			ext4_journal_stop(handle);
276 			ext4_orphan_del(NULL, inode);
277 			sb_end_intwrite(inode->i_sb);
278 			goto no_delete;
279 		}
280 	}
281 
282 	/*
283 	 * Kill off the orphan record which ext4_truncate created.
284 	 * AKPM: I think this can be inside the above `if'.
285 	 * Note that ext4_orphan_del() has to be able to cope with the
286 	 * deletion of a non-existent orphan - this is because we don't
287 	 * know if ext4_truncate() actually created an orphan record.
288 	 * (Well, we could do this if we need to, but heck - it works)
289 	 */
290 	ext4_orphan_del(handle, inode);
291 	EXT4_I(inode)->i_dtime	= get_seconds();
292 
293 	/*
294 	 * One subtle ordering requirement: if anything has gone wrong
295 	 * (transaction abort, IO errors, whatever), then we can still
296 	 * do these next steps (the fs will already have been marked as
297 	 * having errors), but we can't free the inode if the mark_dirty
298 	 * fails.
299 	 */
300 	if (ext4_mark_inode_dirty(handle, inode))
301 		/* If that failed, just do the required in-core inode clear. */
302 		ext4_clear_inode(inode);
303 	else
304 		ext4_free_inode(handle, inode);
305 	ext4_journal_stop(handle);
306 	sb_end_intwrite(inode->i_sb);
307 	return;
308 no_delete:
309 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
310 }
311 
312 #ifdef CONFIG_QUOTA
313 qsize_t *ext4_get_reserved_space(struct inode *inode)
314 {
315 	return &EXT4_I(inode)->i_reserved_quota;
316 }
317 #endif
318 
319 /*
320  * Called with i_data_sem down, which is important since we can call
321  * ext4_discard_preallocations() from here.
322  */
323 void ext4_da_update_reserve_space(struct inode *inode,
324 					int used, int quota_claim)
325 {
326 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
327 	struct ext4_inode_info *ei = EXT4_I(inode);
328 
329 	spin_lock(&ei->i_block_reservation_lock);
330 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
331 	if (unlikely(used > ei->i_reserved_data_blocks)) {
332 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
333 			 "with only %d reserved data blocks",
334 			 __func__, inode->i_ino, used,
335 			 ei->i_reserved_data_blocks);
336 		WARN_ON(1);
337 		used = ei->i_reserved_data_blocks;
338 	}
339 
340 	/* Update per-inode reservations */
341 	ei->i_reserved_data_blocks -= used;
342 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
343 
344 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
345 
346 	/* Update quota subsystem for data blocks */
347 	if (quota_claim)
348 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
349 	else {
350 		/*
351 		 * We did fallocate with an offset that is already delayed
352 		 * allocated. So on delayed allocated writeback we should
353 		 * not re-claim the quota for fallocated blocks.
354 		 */
355 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
356 	}
357 
358 	/*
359 	 * If we have done all the pending block allocations and if
360 	 * there aren't any writers on the inode, we can discard the
361 	 * inode's preallocations.
362 	 */
363 	if ((ei->i_reserved_data_blocks == 0) &&
364 	    (atomic_read(&inode->i_writecount) == 0))
365 		ext4_discard_preallocations(inode);
366 }
367 
368 static int __check_block_validity(struct inode *inode, const char *func,
369 				unsigned int line,
370 				struct ext4_map_blocks *map)
371 {
372 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
373 				   map->m_len)) {
374 		ext4_error_inode(inode, func, line, map->m_pblk,
375 				 "lblock %lu mapped to illegal pblock "
376 				 "(length %d)", (unsigned long) map->m_lblk,
377 				 map->m_len);
378 		return -EFSCORRUPTED;
379 	}
380 	return 0;
381 }
382 
383 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
384 		       ext4_lblk_t len)
385 {
386 	int ret;
387 
388 	if (ext4_encrypted_inode(inode))
389 		return ext4_encrypted_zeroout(inode, lblk, pblk, len);
390 
391 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
392 	if (ret > 0)
393 		ret = 0;
394 
395 	return ret;
396 }
397 
398 #define check_block_validity(inode, map)	\
399 	__check_block_validity((inode), __func__, __LINE__, (map))
400 
401 #ifdef ES_AGGRESSIVE_TEST
402 static void ext4_map_blocks_es_recheck(handle_t *handle,
403 				       struct inode *inode,
404 				       struct ext4_map_blocks *es_map,
405 				       struct ext4_map_blocks *map,
406 				       int flags)
407 {
408 	int retval;
409 
410 	map->m_flags = 0;
411 	/*
412 	 * There is a race window that the result is not the same.
413 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
414 	 * is that we lookup a block mapping in extent status tree with
415 	 * out taking i_data_sem.  So at the time the unwritten extent
416 	 * could be converted.
417 	 */
418 	down_read(&EXT4_I(inode)->i_data_sem);
419 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
420 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
421 					     EXT4_GET_BLOCKS_KEEP_SIZE);
422 	} else {
423 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
424 					     EXT4_GET_BLOCKS_KEEP_SIZE);
425 	}
426 	up_read((&EXT4_I(inode)->i_data_sem));
427 
428 	/*
429 	 * We don't check m_len because extent will be collpased in status
430 	 * tree.  So the m_len might not equal.
431 	 */
432 	if (es_map->m_lblk != map->m_lblk ||
433 	    es_map->m_flags != map->m_flags ||
434 	    es_map->m_pblk != map->m_pblk) {
435 		printk("ES cache assertion failed for inode: %lu "
436 		       "es_cached ex [%d/%d/%llu/%x] != "
437 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
438 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
439 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
440 		       map->m_len, map->m_pblk, map->m_flags,
441 		       retval, flags);
442 	}
443 }
444 #endif /* ES_AGGRESSIVE_TEST */
445 
446 /*
447  * The ext4_map_blocks() function tries to look up the requested blocks,
448  * and returns if the blocks are already mapped.
449  *
450  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
451  * and store the allocated blocks in the result buffer head and mark it
452  * mapped.
453  *
454  * If file type is extents based, it will call ext4_ext_map_blocks(),
455  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
456  * based files
457  *
458  * On success, it returns the number of blocks being mapped or allocated.  if
459  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
460  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
461  *
462  * It returns 0 if plain look up failed (blocks have not been allocated), in
463  * that case, @map is returned as unmapped but we still do fill map->m_len to
464  * indicate the length of a hole starting at map->m_lblk.
465  *
466  * It returns the error in case of allocation failure.
467  */
468 int ext4_map_blocks(handle_t *handle, struct inode *inode,
469 		    struct ext4_map_blocks *map, int flags)
470 {
471 	struct extent_status es;
472 	int retval;
473 	int ret = 0;
474 #ifdef ES_AGGRESSIVE_TEST
475 	struct ext4_map_blocks orig_map;
476 
477 	memcpy(&orig_map, map, sizeof(*map));
478 #endif
479 
480 	map->m_flags = 0;
481 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
482 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
483 		  (unsigned long) map->m_lblk);
484 
485 	/*
486 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
487 	 */
488 	if (unlikely(map->m_len > INT_MAX))
489 		map->m_len = INT_MAX;
490 
491 	/* We can handle the block number less than EXT_MAX_BLOCKS */
492 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
493 		return -EFSCORRUPTED;
494 
495 	/* Lookup extent status tree firstly */
496 	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
497 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
498 			map->m_pblk = ext4_es_pblock(&es) +
499 					map->m_lblk - es.es_lblk;
500 			map->m_flags |= ext4_es_is_written(&es) ?
501 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
502 			retval = es.es_len - (map->m_lblk - es.es_lblk);
503 			if (retval > map->m_len)
504 				retval = map->m_len;
505 			map->m_len = retval;
506 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
507 			map->m_pblk = 0;
508 			retval = es.es_len - (map->m_lblk - es.es_lblk);
509 			if (retval > map->m_len)
510 				retval = map->m_len;
511 			map->m_len = retval;
512 			retval = 0;
513 		} else {
514 			BUG_ON(1);
515 		}
516 #ifdef ES_AGGRESSIVE_TEST
517 		ext4_map_blocks_es_recheck(handle, inode, map,
518 					   &orig_map, flags);
519 #endif
520 		goto found;
521 	}
522 
523 	/*
524 	 * Try to see if we can get the block without requesting a new
525 	 * file system block.
526 	 */
527 	down_read(&EXT4_I(inode)->i_data_sem);
528 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
529 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
530 					     EXT4_GET_BLOCKS_KEEP_SIZE);
531 	} else {
532 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
533 					     EXT4_GET_BLOCKS_KEEP_SIZE);
534 	}
535 	if (retval > 0) {
536 		unsigned int status;
537 
538 		if (unlikely(retval != map->m_len)) {
539 			ext4_warning(inode->i_sb,
540 				     "ES len assertion failed for inode "
541 				     "%lu: retval %d != map->m_len %d",
542 				     inode->i_ino, retval, map->m_len);
543 			WARN_ON(1);
544 		}
545 
546 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
547 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
548 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
549 		    !(status & EXTENT_STATUS_WRITTEN) &&
550 		    ext4_find_delalloc_range(inode, map->m_lblk,
551 					     map->m_lblk + map->m_len - 1))
552 			status |= EXTENT_STATUS_DELAYED;
553 		ret = ext4_es_insert_extent(inode, map->m_lblk,
554 					    map->m_len, map->m_pblk, status);
555 		if (ret < 0)
556 			retval = ret;
557 	}
558 	up_read((&EXT4_I(inode)->i_data_sem));
559 
560 found:
561 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
562 		ret = check_block_validity(inode, map);
563 		if (ret != 0)
564 			return ret;
565 	}
566 
567 	/* If it is only a block(s) look up */
568 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
569 		return retval;
570 
571 	/*
572 	 * Returns if the blocks have already allocated
573 	 *
574 	 * Note that if blocks have been preallocated
575 	 * ext4_ext_get_block() returns the create = 0
576 	 * with buffer head unmapped.
577 	 */
578 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
579 		/*
580 		 * If we need to convert extent to unwritten
581 		 * we continue and do the actual work in
582 		 * ext4_ext_map_blocks()
583 		 */
584 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
585 			return retval;
586 
587 	/*
588 	 * Here we clear m_flags because after allocating an new extent,
589 	 * it will be set again.
590 	 */
591 	map->m_flags &= ~EXT4_MAP_FLAGS;
592 
593 	/*
594 	 * New blocks allocate and/or writing to unwritten extent
595 	 * will possibly result in updating i_data, so we take
596 	 * the write lock of i_data_sem, and call get_block()
597 	 * with create == 1 flag.
598 	 */
599 	down_write(&EXT4_I(inode)->i_data_sem);
600 
601 	/*
602 	 * We need to check for EXT4 here because migrate
603 	 * could have changed the inode type in between
604 	 */
605 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
606 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
607 	} else {
608 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
609 
610 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
611 			/*
612 			 * We allocated new blocks which will result in
613 			 * i_data's format changing.  Force the migrate
614 			 * to fail by clearing migrate flags
615 			 */
616 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
617 		}
618 
619 		/*
620 		 * Update reserved blocks/metadata blocks after successful
621 		 * block allocation which had been deferred till now. We don't
622 		 * support fallocate for non extent files. So we can update
623 		 * reserve space here.
624 		 */
625 		if ((retval > 0) &&
626 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
627 			ext4_da_update_reserve_space(inode, retval, 1);
628 	}
629 
630 	if (retval > 0) {
631 		unsigned int status;
632 
633 		if (unlikely(retval != map->m_len)) {
634 			ext4_warning(inode->i_sb,
635 				     "ES len assertion failed for inode "
636 				     "%lu: retval %d != map->m_len %d",
637 				     inode->i_ino, retval, map->m_len);
638 			WARN_ON(1);
639 		}
640 
641 		/*
642 		 * We have to zeroout blocks before inserting them into extent
643 		 * status tree. Otherwise someone could look them up there and
644 		 * use them before they are really zeroed.
645 		 */
646 		if (flags & EXT4_GET_BLOCKS_ZERO &&
647 		    map->m_flags & EXT4_MAP_MAPPED &&
648 		    map->m_flags & EXT4_MAP_NEW) {
649 			ret = ext4_issue_zeroout(inode, map->m_lblk,
650 						 map->m_pblk, map->m_len);
651 			if (ret) {
652 				retval = ret;
653 				goto out_sem;
654 			}
655 		}
656 
657 		/*
658 		 * If the extent has been zeroed out, we don't need to update
659 		 * extent status tree.
660 		 */
661 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
662 		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
663 			if (ext4_es_is_written(&es))
664 				goto out_sem;
665 		}
666 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
667 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
668 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
669 		    !(status & EXTENT_STATUS_WRITTEN) &&
670 		    ext4_find_delalloc_range(inode, map->m_lblk,
671 					     map->m_lblk + map->m_len - 1))
672 			status |= EXTENT_STATUS_DELAYED;
673 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
674 					    map->m_pblk, status);
675 		if (ret < 0) {
676 			retval = ret;
677 			goto out_sem;
678 		}
679 	}
680 
681 out_sem:
682 	up_write((&EXT4_I(inode)->i_data_sem));
683 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
684 		ret = check_block_validity(inode, map);
685 		if (ret != 0)
686 			return ret;
687 	}
688 	return retval;
689 }
690 
691 /*
692  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
693  * we have to be careful as someone else may be manipulating b_state as well.
694  */
695 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
696 {
697 	unsigned long old_state;
698 	unsigned long new_state;
699 
700 	flags &= EXT4_MAP_FLAGS;
701 
702 	/* Dummy buffer_head? Set non-atomically. */
703 	if (!bh->b_page) {
704 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
705 		return;
706 	}
707 	/*
708 	 * Someone else may be modifying b_state. Be careful! This is ugly but
709 	 * once we get rid of using bh as a container for mapping information
710 	 * to pass to / from get_block functions, this can go away.
711 	 */
712 	do {
713 		old_state = READ_ONCE(bh->b_state);
714 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
715 	} while (unlikely(
716 		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
717 }
718 
719 static int _ext4_get_block(struct inode *inode, sector_t iblock,
720 			   struct buffer_head *bh, int flags)
721 {
722 	struct ext4_map_blocks map;
723 	int ret = 0;
724 
725 	if (ext4_has_inline_data(inode))
726 		return -ERANGE;
727 
728 	map.m_lblk = iblock;
729 	map.m_len = bh->b_size >> inode->i_blkbits;
730 
731 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
732 			      flags);
733 	if (ret > 0) {
734 		map_bh(bh, inode->i_sb, map.m_pblk);
735 		ext4_update_bh_state(bh, map.m_flags);
736 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
737 		ret = 0;
738 	}
739 	return ret;
740 }
741 
742 int ext4_get_block(struct inode *inode, sector_t iblock,
743 		   struct buffer_head *bh, int create)
744 {
745 	return _ext4_get_block(inode, iblock, bh,
746 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
747 }
748 
749 /*
750  * Get block function used when preparing for buffered write if we require
751  * creating an unwritten extent if blocks haven't been allocated.  The extent
752  * will be converted to written after the IO is complete.
753  */
754 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
755 			     struct buffer_head *bh_result, int create)
756 {
757 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
758 		   inode->i_ino, create);
759 	return _ext4_get_block(inode, iblock, bh_result,
760 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
761 }
762 
763 /* Maximum number of blocks we map for direct IO at once. */
764 #define DIO_MAX_BLOCKS 4096
765 
766 static handle_t *start_dio_trans(struct inode *inode,
767 				 struct buffer_head *bh_result)
768 {
769 	int dio_credits;
770 
771 	/* Trim mapping request to maximum we can map at once for DIO */
772 	if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
773 		bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
774 	dio_credits = ext4_chunk_trans_blocks(inode,
775 				      bh_result->b_size >> inode->i_blkbits);
776 	return ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
777 }
778 
779 /* Get block function for DIO reads and writes to inodes without extents */
780 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
781 		       struct buffer_head *bh, int create)
782 {
783 	handle_t *handle;
784 	int ret;
785 
786 	/* We don't expect handle for direct IO */
787 	WARN_ON_ONCE(ext4_journal_current_handle());
788 
789 	if (create) {
790 		handle = start_dio_trans(inode, bh);
791 		if (IS_ERR(handle))
792 			return PTR_ERR(handle);
793 	}
794 	ret = _ext4_get_block(inode, iblock, bh,
795 			      create ? EXT4_GET_BLOCKS_CREATE : 0);
796 	if (create)
797 		ext4_journal_stop(handle);
798 	return ret;
799 }
800 
801 /*
802  * Get block function for AIO DIO writes when we create unwritten extent if
803  * blocks are not allocated yet. The extent will be converted to written
804  * after IO is complete.
805  */
806 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
807 		sector_t iblock, struct buffer_head *bh_result,	int create)
808 {
809 	handle_t *handle;
810 	int ret;
811 
812 	/* We don't expect handle for direct IO */
813 	WARN_ON_ONCE(ext4_journal_current_handle());
814 
815 	handle = start_dio_trans(inode, bh_result);
816 	if (IS_ERR(handle))
817 		return PTR_ERR(handle);
818 	ret = _ext4_get_block(inode, iblock, bh_result,
819 			      EXT4_GET_BLOCKS_IO_CREATE_EXT);
820 	ext4_journal_stop(handle);
821 
822 	/*
823 	 * When doing DIO using unwritten extents, we need io_end to convert
824 	 * unwritten extents to written on IO completion. We allocate io_end
825 	 * once we spot unwritten extent and store it in b_private. Generic
826 	 * DIO code keeps b_private set and furthermore passes the value to
827 	 * our completion callback in 'private' argument.
828 	 */
829 	if (!ret && buffer_unwritten(bh_result)) {
830 		if (!bh_result->b_private) {
831 			ext4_io_end_t *io_end;
832 
833 			io_end = ext4_init_io_end(inode, GFP_KERNEL);
834 			if (!io_end)
835 				return -ENOMEM;
836 			bh_result->b_private = io_end;
837 			ext4_set_io_unwritten_flag(inode, io_end);
838 		}
839 		set_buffer_defer_completion(bh_result);
840 	}
841 
842 	return ret;
843 }
844 
845 /*
846  * Get block function for non-AIO DIO writes when we create unwritten extent if
847  * blocks are not allocated yet. The extent will be converted to written
848  * after IO is complete from ext4_ext_direct_IO() function.
849  */
850 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
851 		sector_t iblock, struct buffer_head *bh_result,	int create)
852 {
853 	handle_t *handle;
854 	int ret;
855 
856 	/* We don't expect handle for direct IO */
857 	WARN_ON_ONCE(ext4_journal_current_handle());
858 
859 	handle = start_dio_trans(inode, bh_result);
860 	if (IS_ERR(handle))
861 		return PTR_ERR(handle);
862 	ret = _ext4_get_block(inode, iblock, bh_result,
863 			      EXT4_GET_BLOCKS_IO_CREATE_EXT);
864 	ext4_journal_stop(handle);
865 
866 	/*
867 	 * Mark inode as having pending DIO writes to unwritten extents.
868 	 * ext4_ext_direct_IO() checks this flag and converts extents to
869 	 * written.
870 	 */
871 	if (!ret && buffer_unwritten(bh_result))
872 		ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
873 
874 	return ret;
875 }
876 
877 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
878 		   struct buffer_head *bh_result, int create)
879 {
880 	int ret;
881 
882 	ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
883 		   inode->i_ino, create);
884 	/* We don't expect handle for direct IO */
885 	WARN_ON_ONCE(ext4_journal_current_handle());
886 
887 	ret = _ext4_get_block(inode, iblock, bh_result, 0);
888 	/*
889 	 * Blocks should have been preallocated! ext4_file_write_iter() checks
890 	 * that.
891 	 */
892 	WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
893 
894 	return ret;
895 }
896 
897 
898 /*
899  * `handle' can be NULL if create is zero
900  */
901 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
902 				ext4_lblk_t block, int map_flags)
903 {
904 	struct ext4_map_blocks map;
905 	struct buffer_head *bh;
906 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
907 	int err;
908 
909 	J_ASSERT(handle != NULL || create == 0);
910 
911 	map.m_lblk = block;
912 	map.m_len = 1;
913 	err = ext4_map_blocks(handle, inode, &map, map_flags);
914 
915 	if (err == 0)
916 		return create ? ERR_PTR(-ENOSPC) : NULL;
917 	if (err < 0)
918 		return ERR_PTR(err);
919 
920 	bh = sb_getblk(inode->i_sb, map.m_pblk);
921 	if (unlikely(!bh))
922 		return ERR_PTR(-ENOMEM);
923 	if (map.m_flags & EXT4_MAP_NEW) {
924 		J_ASSERT(create != 0);
925 		J_ASSERT(handle != NULL);
926 
927 		/*
928 		 * Now that we do not always journal data, we should
929 		 * keep in mind whether this should always journal the
930 		 * new buffer as metadata.  For now, regular file
931 		 * writes use ext4_get_block instead, so it's not a
932 		 * problem.
933 		 */
934 		lock_buffer(bh);
935 		BUFFER_TRACE(bh, "call get_create_access");
936 		err = ext4_journal_get_create_access(handle, bh);
937 		if (unlikely(err)) {
938 			unlock_buffer(bh);
939 			goto errout;
940 		}
941 		if (!buffer_uptodate(bh)) {
942 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
943 			set_buffer_uptodate(bh);
944 		}
945 		unlock_buffer(bh);
946 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
947 		err = ext4_handle_dirty_metadata(handle, inode, bh);
948 		if (unlikely(err))
949 			goto errout;
950 	} else
951 		BUFFER_TRACE(bh, "not a new buffer");
952 	return bh;
953 errout:
954 	brelse(bh);
955 	return ERR_PTR(err);
956 }
957 
958 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
959 			       ext4_lblk_t block, int map_flags)
960 {
961 	struct buffer_head *bh;
962 
963 	bh = ext4_getblk(handle, inode, block, map_flags);
964 	if (IS_ERR(bh))
965 		return bh;
966 	if (!bh || buffer_uptodate(bh))
967 		return bh;
968 	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
969 	wait_on_buffer(bh);
970 	if (buffer_uptodate(bh))
971 		return bh;
972 	put_bh(bh);
973 	return ERR_PTR(-EIO);
974 }
975 
976 int ext4_walk_page_buffers(handle_t *handle,
977 			   struct buffer_head *head,
978 			   unsigned from,
979 			   unsigned to,
980 			   int *partial,
981 			   int (*fn)(handle_t *handle,
982 				     struct buffer_head *bh))
983 {
984 	struct buffer_head *bh;
985 	unsigned block_start, block_end;
986 	unsigned blocksize = head->b_size;
987 	int err, ret = 0;
988 	struct buffer_head *next;
989 
990 	for (bh = head, block_start = 0;
991 	     ret == 0 && (bh != head || !block_start);
992 	     block_start = block_end, bh = next) {
993 		next = bh->b_this_page;
994 		block_end = block_start + blocksize;
995 		if (block_end <= from || block_start >= to) {
996 			if (partial && !buffer_uptodate(bh))
997 				*partial = 1;
998 			continue;
999 		}
1000 		err = (*fn)(handle, bh);
1001 		if (!ret)
1002 			ret = err;
1003 	}
1004 	return ret;
1005 }
1006 
1007 /*
1008  * To preserve ordering, it is essential that the hole instantiation and
1009  * the data write be encapsulated in a single transaction.  We cannot
1010  * close off a transaction and start a new one between the ext4_get_block()
1011  * and the commit_write().  So doing the jbd2_journal_start at the start of
1012  * prepare_write() is the right place.
1013  *
1014  * Also, this function can nest inside ext4_writepage().  In that case, we
1015  * *know* that ext4_writepage() has generated enough buffer credits to do the
1016  * whole page.  So we won't block on the journal in that case, which is good,
1017  * because the caller may be PF_MEMALLOC.
1018  *
1019  * By accident, ext4 can be reentered when a transaction is open via
1020  * quota file writes.  If we were to commit the transaction while thus
1021  * reentered, there can be a deadlock - we would be holding a quota
1022  * lock, and the commit would never complete if another thread had a
1023  * transaction open and was blocking on the quota lock - a ranking
1024  * violation.
1025  *
1026  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1027  * will _not_ run commit under these circumstances because handle->h_ref
1028  * is elevated.  We'll still have enough credits for the tiny quotafile
1029  * write.
1030  */
1031 int do_journal_get_write_access(handle_t *handle,
1032 				struct buffer_head *bh)
1033 {
1034 	int dirty = buffer_dirty(bh);
1035 	int ret;
1036 
1037 	if (!buffer_mapped(bh) || buffer_freed(bh))
1038 		return 0;
1039 	/*
1040 	 * __block_write_begin() could have dirtied some buffers. Clean
1041 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1042 	 * otherwise about fs integrity issues. Setting of the dirty bit
1043 	 * by __block_write_begin() isn't a real problem here as we clear
1044 	 * the bit before releasing a page lock and thus writeback cannot
1045 	 * ever write the buffer.
1046 	 */
1047 	if (dirty)
1048 		clear_buffer_dirty(bh);
1049 	BUFFER_TRACE(bh, "get write access");
1050 	ret = ext4_journal_get_write_access(handle, bh);
1051 	if (!ret && dirty)
1052 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1053 	return ret;
1054 }
1055 
1056 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1057 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1058 				  get_block_t *get_block)
1059 {
1060 	unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1061 	unsigned to = from + len;
1062 	struct inode *inode = page->mapping->host;
1063 	unsigned block_start, block_end;
1064 	sector_t block;
1065 	int err = 0;
1066 	unsigned blocksize = inode->i_sb->s_blocksize;
1067 	unsigned bbits;
1068 	struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1069 	bool decrypt = false;
1070 
1071 	BUG_ON(!PageLocked(page));
1072 	BUG_ON(from > PAGE_CACHE_SIZE);
1073 	BUG_ON(to > PAGE_CACHE_SIZE);
1074 	BUG_ON(from > to);
1075 
1076 	if (!page_has_buffers(page))
1077 		create_empty_buffers(page, blocksize, 0);
1078 	head = page_buffers(page);
1079 	bbits = ilog2(blocksize);
1080 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1081 
1082 	for (bh = head, block_start = 0; bh != head || !block_start;
1083 	    block++, block_start = block_end, bh = bh->b_this_page) {
1084 		block_end = block_start + blocksize;
1085 		if (block_end <= from || block_start >= to) {
1086 			if (PageUptodate(page)) {
1087 				if (!buffer_uptodate(bh))
1088 					set_buffer_uptodate(bh);
1089 			}
1090 			continue;
1091 		}
1092 		if (buffer_new(bh))
1093 			clear_buffer_new(bh);
1094 		if (!buffer_mapped(bh)) {
1095 			WARN_ON(bh->b_size != blocksize);
1096 			err = get_block(inode, block, bh, 1);
1097 			if (err)
1098 				break;
1099 			if (buffer_new(bh)) {
1100 				unmap_underlying_metadata(bh->b_bdev,
1101 							  bh->b_blocknr);
1102 				if (PageUptodate(page)) {
1103 					clear_buffer_new(bh);
1104 					set_buffer_uptodate(bh);
1105 					mark_buffer_dirty(bh);
1106 					continue;
1107 				}
1108 				if (block_end > to || block_start < from)
1109 					zero_user_segments(page, to, block_end,
1110 							   block_start, from);
1111 				continue;
1112 			}
1113 		}
1114 		if (PageUptodate(page)) {
1115 			if (!buffer_uptodate(bh))
1116 				set_buffer_uptodate(bh);
1117 			continue;
1118 		}
1119 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1120 		    !buffer_unwritten(bh) &&
1121 		    (block_start < from || block_end > to)) {
1122 			ll_rw_block(READ, 1, &bh);
1123 			*wait_bh++ = bh;
1124 			decrypt = ext4_encrypted_inode(inode) &&
1125 				S_ISREG(inode->i_mode);
1126 		}
1127 	}
1128 	/*
1129 	 * If we issued read requests, let them complete.
1130 	 */
1131 	while (wait_bh > wait) {
1132 		wait_on_buffer(*--wait_bh);
1133 		if (!buffer_uptodate(*wait_bh))
1134 			err = -EIO;
1135 	}
1136 	if (unlikely(err))
1137 		page_zero_new_buffers(page, from, to);
1138 	else if (decrypt)
1139 		err = ext4_decrypt(page);
1140 	return err;
1141 }
1142 #endif
1143 
1144 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1145 			    loff_t pos, unsigned len, unsigned flags,
1146 			    struct page **pagep, void **fsdata)
1147 {
1148 	struct inode *inode = mapping->host;
1149 	int ret, needed_blocks;
1150 	handle_t *handle;
1151 	int retries = 0;
1152 	struct page *page;
1153 	pgoff_t index;
1154 	unsigned from, to;
1155 
1156 	trace_ext4_write_begin(inode, pos, len, flags);
1157 	/*
1158 	 * Reserve one block more for addition to orphan list in case
1159 	 * we allocate blocks but write fails for some reason
1160 	 */
1161 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1162 	index = pos >> PAGE_CACHE_SHIFT;
1163 	from = pos & (PAGE_CACHE_SIZE - 1);
1164 	to = from + len;
1165 
1166 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1167 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1168 						    flags, pagep);
1169 		if (ret < 0)
1170 			return ret;
1171 		if (ret == 1)
1172 			return 0;
1173 	}
1174 
1175 	/*
1176 	 * grab_cache_page_write_begin() can take a long time if the
1177 	 * system is thrashing due to memory pressure, or if the page
1178 	 * is being written back.  So grab it first before we start
1179 	 * the transaction handle.  This also allows us to allocate
1180 	 * the page (if needed) without using GFP_NOFS.
1181 	 */
1182 retry_grab:
1183 	page = grab_cache_page_write_begin(mapping, index, flags);
1184 	if (!page)
1185 		return -ENOMEM;
1186 	unlock_page(page);
1187 
1188 retry_journal:
1189 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1190 	if (IS_ERR(handle)) {
1191 		page_cache_release(page);
1192 		return PTR_ERR(handle);
1193 	}
1194 
1195 	lock_page(page);
1196 	if (page->mapping != mapping) {
1197 		/* The page got truncated from under us */
1198 		unlock_page(page);
1199 		page_cache_release(page);
1200 		ext4_journal_stop(handle);
1201 		goto retry_grab;
1202 	}
1203 	/* In case writeback began while the page was unlocked */
1204 	wait_for_stable_page(page);
1205 
1206 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1207 	if (ext4_should_dioread_nolock(inode))
1208 		ret = ext4_block_write_begin(page, pos, len,
1209 					     ext4_get_block_unwritten);
1210 	else
1211 		ret = ext4_block_write_begin(page, pos, len,
1212 					     ext4_get_block);
1213 #else
1214 	if (ext4_should_dioread_nolock(inode))
1215 		ret = __block_write_begin(page, pos, len,
1216 					  ext4_get_block_unwritten);
1217 	else
1218 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1219 #endif
1220 	if (!ret && ext4_should_journal_data(inode)) {
1221 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1222 					     from, to, NULL,
1223 					     do_journal_get_write_access);
1224 	}
1225 
1226 	if (ret) {
1227 		unlock_page(page);
1228 		/*
1229 		 * __block_write_begin may have instantiated a few blocks
1230 		 * outside i_size.  Trim these off again. Don't need
1231 		 * i_size_read because we hold i_mutex.
1232 		 *
1233 		 * Add inode to orphan list in case we crash before
1234 		 * truncate finishes
1235 		 */
1236 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1237 			ext4_orphan_add(handle, inode);
1238 
1239 		ext4_journal_stop(handle);
1240 		if (pos + len > inode->i_size) {
1241 			ext4_truncate_failed_write(inode);
1242 			/*
1243 			 * If truncate failed early the inode might
1244 			 * still be on the orphan list; we need to
1245 			 * make sure the inode is removed from the
1246 			 * orphan list in that case.
1247 			 */
1248 			if (inode->i_nlink)
1249 				ext4_orphan_del(NULL, inode);
1250 		}
1251 
1252 		if (ret == -ENOSPC &&
1253 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1254 			goto retry_journal;
1255 		page_cache_release(page);
1256 		return ret;
1257 	}
1258 	*pagep = page;
1259 	return ret;
1260 }
1261 
1262 /* For write_end() in data=journal mode */
1263 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1264 {
1265 	int ret;
1266 	if (!buffer_mapped(bh) || buffer_freed(bh))
1267 		return 0;
1268 	set_buffer_uptodate(bh);
1269 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1270 	clear_buffer_meta(bh);
1271 	clear_buffer_prio(bh);
1272 	return ret;
1273 }
1274 
1275 /*
1276  * We need to pick up the new inode size which generic_commit_write gave us
1277  * `file' can be NULL - eg, when called from page_symlink().
1278  *
1279  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1280  * buffers are managed internally.
1281  */
1282 static int ext4_write_end(struct file *file,
1283 			  struct address_space *mapping,
1284 			  loff_t pos, unsigned len, unsigned copied,
1285 			  struct page *page, void *fsdata)
1286 {
1287 	handle_t *handle = ext4_journal_current_handle();
1288 	struct inode *inode = mapping->host;
1289 	loff_t old_size = inode->i_size;
1290 	int ret = 0, ret2;
1291 	int i_size_changed = 0;
1292 
1293 	trace_ext4_write_end(inode, pos, len, copied);
1294 	if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1295 		ret = ext4_jbd2_file_inode(handle, inode);
1296 		if (ret) {
1297 			unlock_page(page);
1298 			page_cache_release(page);
1299 			goto errout;
1300 		}
1301 	}
1302 
1303 	if (ext4_has_inline_data(inode)) {
1304 		ret = ext4_write_inline_data_end(inode, pos, len,
1305 						 copied, page);
1306 		if (ret < 0)
1307 			goto errout;
1308 		copied = ret;
1309 	} else
1310 		copied = block_write_end(file, mapping, pos,
1311 					 len, copied, page, fsdata);
1312 	/*
1313 	 * it's important to update i_size while still holding page lock:
1314 	 * page writeout could otherwise come in and zero beyond i_size.
1315 	 */
1316 	i_size_changed = ext4_update_inode_size(inode, pos + copied);
1317 	unlock_page(page);
1318 	page_cache_release(page);
1319 
1320 	if (old_size < pos)
1321 		pagecache_isize_extended(inode, old_size, pos);
1322 	/*
1323 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1324 	 * makes the holding time of page lock longer. Second, it forces lock
1325 	 * ordering of page lock and transaction start for journaling
1326 	 * filesystems.
1327 	 */
1328 	if (i_size_changed)
1329 		ext4_mark_inode_dirty(handle, inode);
1330 
1331 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1332 		/* if we have allocated more blocks and copied
1333 		 * less. We will have blocks allocated outside
1334 		 * inode->i_size. So truncate them
1335 		 */
1336 		ext4_orphan_add(handle, inode);
1337 errout:
1338 	ret2 = ext4_journal_stop(handle);
1339 	if (!ret)
1340 		ret = ret2;
1341 
1342 	if (pos + len > inode->i_size) {
1343 		ext4_truncate_failed_write(inode);
1344 		/*
1345 		 * If truncate failed early the inode might still be
1346 		 * on the orphan list; we need to make sure the inode
1347 		 * is removed from the orphan list in that case.
1348 		 */
1349 		if (inode->i_nlink)
1350 			ext4_orphan_del(NULL, inode);
1351 	}
1352 
1353 	return ret ? ret : copied;
1354 }
1355 
1356 /*
1357  * This is a private version of page_zero_new_buffers() which doesn't
1358  * set the buffer to be dirty, since in data=journalled mode we need
1359  * to call ext4_handle_dirty_metadata() instead.
1360  */
1361 static void zero_new_buffers(struct page *page, unsigned from, unsigned to)
1362 {
1363 	unsigned int block_start = 0, block_end;
1364 	struct buffer_head *head, *bh;
1365 
1366 	bh = head = page_buffers(page);
1367 	do {
1368 		block_end = block_start + bh->b_size;
1369 		if (buffer_new(bh)) {
1370 			if (block_end > from && block_start < to) {
1371 				if (!PageUptodate(page)) {
1372 					unsigned start, size;
1373 
1374 					start = max(from, block_start);
1375 					size = min(to, block_end) - start;
1376 
1377 					zero_user(page, start, size);
1378 					set_buffer_uptodate(bh);
1379 				}
1380 				clear_buffer_new(bh);
1381 			}
1382 		}
1383 		block_start = block_end;
1384 		bh = bh->b_this_page;
1385 	} while (bh != head);
1386 }
1387 
1388 static int ext4_journalled_write_end(struct file *file,
1389 				     struct address_space *mapping,
1390 				     loff_t pos, unsigned len, unsigned copied,
1391 				     struct page *page, void *fsdata)
1392 {
1393 	handle_t *handle = ext4_journal_current_handle();
1394 	struct inode *inode = mapping->host;
1395 	loff_t old_size = inode->i_size;
1396 	int ret = 0, ret2;
1397 	int partial = 0;
1398 	unsigned from, to;
1399 	int size_changed = 0;
1400 
1401 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1402 	from = pos & (PAGE_CACHE_SIZE - 1);
1403 	to = from + len;
1404 
1405 	BUG_ON(!ext4_handle_valid(handle));
1406 
1407 	if (ext4_has_inline_data(inode))
1408 		copied = ext4_write_inline_data_end(inode, pos, len,
1409 						    copied, page);
1410 	else {
1411 		if (copied < len) {
1412 			if (!PageUptodate(page))
1413 				copied = 0;
1414 			zero_new_buffers(page, from+copied, to);
1415 		}
1416 
1417 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1418 					     to, &partial, write_end_fn);
1419 		if (!partial)
1420 			SetPageUptodate(page);
1421 	}
1422 	size_changed = ext4_update_inode_size(inode, pos + copied);
1423 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1424 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1425 	unlock_page(page);
1426 	page_cache_release(page);
1427 
1428 	if (old_size < pos)
1429 		pagecache_isize_extended(inode, old_size, pos);
1430 
1431 	if (size_changed) {
1432 		ret2 = ext4_mark_inode_dirty(handle, inode);
1433 		if (!ret)
1434 			ret = ret2;
1435 	}
1436 
1437 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1438 		/* if we have allocated more blocks and copied
1439 		 * less. We will have blocks allocated outside
1440 		 * inode->i_size. So truncate them
1441 		 */
1442 		ext4_orphan_add(handle, inode);
1443 
1444 	ret2 = ext4_journal_stop(handle);
1445 	if (!ret)
1446 		ret = ret2;
1447 	if (pos + len > inode->i_size) {
1448 		ext4_truncate_failed_write(inode);
1449 		/*
1450 		 * If truncate failed early the inode might still be
1451 		 * on the orphan list; we need to make sure the inode
1452 		 * is removed from the orphan list in that case.
1453 		 */
1454 		if (inode->i_nlink)
1455 			ext4_orphan_del(NULL, inode);
1456 	}
1457 
1458 	return ret ? ret : copied;
1459 }
1460 
1461 /*
1462  * Reserve space for a single cluster
1463  */
1464 static int ext4_da_reserve_space(struct inode *inode)
1465 {
1466 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1467 	struct ext4_inode_info *ei = EXT4_I(inode);
1468 	int ret;
1469 
1470 	/*
1471 	 * We will charge metadata quota at writeout time; this saves
1472 	 * us from metadata over-estimation, though we may go over by
1473 	 * a small amount in the end.  Here we just reserve for data.
1474 	 */
1475 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1476 	if (ret)
1477 		return ret;
1478 
1479 	spin_lock(&ei->i_block_reservation_lock);
1480 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1481 		spin_unlock(&ei->i_block_reservation_lock);
1482 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1483 		return -ENOSPC;
1484 	}
1485 	ei->i_reserved_data_blocks++;
1486 	trace_ext4_da_reserve_space(inode);
1487 	spin_unlock(&ei->i_block_reservation_lock);
1488 
1489 	return 0;       /* success */
1490 }
1491 
1492 static void ext4_da_release_space(struct inode *inode, int to_free)
1493 {
1494 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1495 	struct ext4_inode_info *ei = EXT4_I(inode);
1496 
1497 	if (!to_free)
1498 		return;		/* Nothing to release, exit */
1499 
1500 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1501 
1502 	trace_ext4_da_release_space(inode, to_free);
1503 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1504 		/*
1505 		 * if there aren't enough reserved blocks, then the
1506 		 * counter is messed up somewhere.  Since this
1507 		 * function is called from invalidate page, it's
1508 		 * harmless to return without any action.
1509 		 */
1510 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1511 			 "ino %lu, to_free %d with only %d reserved "
1512 			 "data blocks", inode->i_ino, to_free,
1513 			 ei->i_reserved_data_blocks);
1514 		WARN_ON(1);
1515 		to_free = ei->i_reserved_data_blocks;
1516 	}
1517 	ei->i_reserved_data_blocks -= to_free;
1518 
1519 	/* update fs dirty data blocks counter */
1520 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1521 
1522 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1523 
1524 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1525 }
1526 
1527 static void ext4_da_page_release_reservation(struct page *page,
1528 					     unsigned int offset,
1529 					     unsigned int length)
1530 {
1531 	int to_release = 0, contiguous_blks = 0;
1532 	struct buffer_head *head, *bh;
1533 	unsigned int curr_off = 0;
1534 	struct inode *inode = page->mapping->host;
1535 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1536 	unsigned int stop = offset + length;
1537 	int num_clusters;
1538 	ext4_fsblk_t lblk;
1539 
1540 	BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1541 
1542 	head = page_buffers(page);
1543 	bh = head;
1544 	do {
1545 		unsigned int next_off = curr_off + bh->b_size;
1546 
1547 		if (next_off > stop)
1548 			break;
1549 
1550 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1551 			to_release++;
1552 			contiguous_blks++;
1553 			clear_buffer_delay(bh);
1554 		} else if (contiguous_blks) {
1555 			lblk = page->index <<
1556 			       (PAGE_CACHE_SHIFT - inode->i_blkbits);
1557 			lblk += (curr_off >> inode->i_blkbits) -
1558 				contiguous_blks;
1559 			ext4_es_remove_extent(inode, lblk, contiguous_blks);
1560 			contiguous_blks = 0;
1561 		}
1562 		curr_off = next_off;
1563 	} while ((bh = bh->b_this_page) != head);
1564 
1565 	if (contiguous_blks) {
1566 		lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1567 		lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1568 		ext4_es_remove_extent(inode, lblk, contiguous_blks);
1569 	}
1570 
1571 	/* If we have released all the blocks belonging to a cluster, then we
1572 	 * need to release the reserved space for that cluster. */
1573 	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1574 	while (num_clusters > 0) {
1575 		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1576 			((num_clusters - 1) << sbi->s_cluster_bits);
1577 		if (sbi->s_cluster_ratio == 1 ||
1578 		    !ext4_find_delalloc_cluster(inode, lblk))
1579 			ext4_da_release_space(inode, 1);
1580 
1581 		num_clusters--;
1582 	}
1583 }
1584 
1585 /*
1586  * Delayed allocation stuff
1587  */
1588 
1589 struct mpage_da_data {
1590 	struct inode *inode;
1591 	struct writeback_control *wbc;
1592 
1593 	pgoff_t first_page;	/* The first page to write */
1594 	pgoff_t next_page;	/* Current page to examine */
1595 	pgoff_t last_page;	/* Last page to examine */
1596 	/*
1597 	 * Extent to map - this can be after first_page because that can be
1598 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1599 	 * is delalloc or unwritten.
1600 	 */
1601 	struct ext4_map_blocks map;
1602 	struct ext4_io_submit io_submit;	/* IO submission data */
1603 };
1604 
1605 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1606 				       bool invalidate)
1607 {
1608 	int nr_pages, i;
1609 	pgoff_t index, end;
1610 	struct pagevec pvec;
1611 	struct inode *inode = mpd->inode;
1612 	struct address_space *mapping = inode->i_mapping;
1613 
1614 	/* This is necessary when next_page == 0. */
1615 	if (mpd->first_page >= mpd->next_page)
1616 		return;
1617 
1618 	index = mpd->first_page;
1619 	end   = mpd->next_page - 1;
1620 	if (invalidate) {
1621 		ext4_lblk_t start, last;
1622 		start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1623 		last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1624 		ext4_es_remove_extent(inode, start, last - start + 1);
1625 	}
1626 
1627 	pagevec_init(&pvec, 0);
1628 	while (index <= end) {
1629 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1630 		if (nr_pages == 0)
1631 			break;
1632 		for (i = 0; i < nr_pages; i++) {
1633 			struct page *page = pvec.pages[i];
1634 			if (page->index > end)
1635 				break;
1636 			BUG_ON(!PageLocked(page));
1637 			BUG_ON(PageWriteback(page));
1638 			if (invalidate) {
1639 				block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1640 				ClearPageUptodate(page);
1641 			}
1642 			unlock_page(page);
1643 		}
1644 		index = pvec.pages[nr_pages - 1]->index + 1;
1645 		pagevec_release(&pvec);
1646 	}
1647 }
1648 
1649 static void ext4_print_free_blocks(struct inode *inode)
1650 {
1651 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1652 	struct super_block *sb = inode->i_sb;
1653 	struct ext4_inode_info *ei = EXT4_I(inode);
1654 
1655 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1656 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1657 			ext4_count_free_clusters(sb)));
1658 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1659 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1660 	       (long long) EXT4_C2B(EXT4_SB(sb),
1661 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1662 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1663 	       (long long) EXT4_C2B(EXT4_SB(sb),
1664 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1665 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1666 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1667 		 ei->i_reserved_data_blocks);
1668 	return;
1669 }
1670 
1671 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1672 {
1673 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1674 }
1675 
1676 /*
1677  * This function is grabs code from the very beginning of
1678  * ext4_map_blocks, but assumes that the caller is from delayed write
1679  * time. This function looks up the requested blocks and sets the
1680  * buffer delay bit under the protection of i_data_sem.
1681  */
1682 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1683 			      struct ext4_map_blocks *map,
1684 			      struct buffer_head *bh)
1685 {
1686 	struct extent_status es;
1687 	int retval;
1688 	sector_t invalid_block = ~((sector_t) 0xffff);
1689 #ifdef ES_AGGRESSIVE_TEST
1690 	struct ext4_map_blocks orig_map;
1691 
1692 	memcpy(&orig_map, map, sizeof(*map));
1693 #endif
1694 
1695 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1696 		invalid_block = ~0;
1697 
1698 	map->m_flags = 0;
1699 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1700 		  "logical block %lu\n", inode->i_ino, map->m_len,
1701 		  (unsigned long) map->m_lblk);
1702 
1703 	/* Lookup extent status tree firstly */
1704 	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1705 		if (ext4_es_is_hole(&es)) {
1706 			retval = 0;
1707 			down_read(&EXT4_I(inode)->i_data_sem);
1708 			goto add_delayed;
1709 		}
1710 
1711 		/*
1712 		 * Delayed extent could be allocated by fallocate.
1713 		 * So we need to check it.
1714 		 */
1715 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1716 			map_bh(bh, inode->i_sb, invalid_block);
1717 			set_buffer_new(bh);
1718 			set_buffer_delay(bh);
1719 			return 0;
1720 		}
1721 
1722 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1723 		retval = es.es_len - (iblock - es.es_lblk);
1724 		if (retval > map->m_len)
1725 			retval = map->m_len;
1726 		map->m_len = retval;
1727 		if (ext4_es_is_written(&es))
1728 			map->m_flags |= EXT4_MAP_MAPPED;
1729 		else if (ext4_es_is_unwritten(&es))
1730 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1731 		else
1732 			BUG_ON(1);
1733 
1734 #ifdef ES_AGGRESSIVE_TEST
1735 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1736 #endif
1737 		return retval;
1738 	}
1739 
1740 	/*
1741 	 * Try to see if we can get the block without requesting a new
1742 	 * file system block.
1743 	 */
1744 	down_read(&EXT4_I(inode)->i_data_sem);
1745 	if (ext4_has_inline_data(inode))
1746 		retval = 0;
1747 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1748 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1749 	else
1750 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1751 
1752 add_delayed:
1753 	if (retval == 0) {
1754 		int ret;
1755 		/*
1756 		 * XXX: __block_prepare_write() unmaps passed block,
1757 		 * is it OK?
1758 		 */
1759 		/*
1760 		 * If the block was allocated from previously allocated cluster,
1761 		 * then we don't need to reserve it again. However we still need
1762 		 * to reserve metadata for every block we're going to write.
1763 		 */
1764 		if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1765 		    !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1766 			ret = ext4_da_reserve_space(inode);
1767 			if (ret) {
1768 				/* not enough space to reserve */
1769 				retval = ret;
1770 				goto out_unlock;
1771 			}
1772 		}
1773 
1774 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1775 					    ~0, EXTENT_STATUS_DELAYED);
1776 		if (ret) {
1777 			retval = ret;
1778 			goto out_unlock;
1779 		}
1780 
1781 		map_bh(bh, inode->i_sb, invalid_block);
1782 		set_buffer_new(bh);
1783 		set_buffer_delay(bh);
1784 	} else if (retval > 0) {
1785 		int ret;
1786 		unsigned int status;
1787 
1788 		if (unlikely(retval != map->m_len)) {
1789 			ext4_warning(inode->i_sb,
1790 				     "ES len assertion failed for inode "
1791 				     "%lu: retval %d != map->m_len %d",
1792 				     inode->i_ino, retval, map->m_len);
1793 			WARN_ON(1);
1794 		}
1795 
1796 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1797 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1798 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1799 					    map->m_pblk, status);
1800 		if (ret != 0)
1801 			retval = ret;
1802 	}
1803 
1804 out_unlock:
1805 	up_read((&EXT4_I(inode)->i_data_sem));
1806 
1807 	return retval;
1808 }
1809 
1810 /*
1811  * This is a special get_block_t callback which is used by
1812  * ext4_da_write_begin().  It will either return mapped block or
1813  * reserve space for a single block.
1814  *
1815  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1816  * We also have b_blocknr = -1 and b_bdev initialized properly
1817  *
1818  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1819  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1820  * initialized properly.
1821  */
1822 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1823 			   struct buffer_head *bh, int create)
1824 {
1825 	struct ext4_map_blocks map;
1826 	int ret = 0;
1827 
1828 	BUG_ON(create == 0);
1829 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1830 
1831 	map.m_lblk = iblock;
1832 	map.m_len = 1;
1833 
1834 	/*
1835 	 * first, we need to know whether the block is allocated already
1836 	 * preallocated blocks are unmapped but should treated
1837 	 * the same as allocated blocks.
1838 	 */
1839 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1840 	if (ret <= 0)
1841 		return ret;
1842 
1843 	map_bh(bh, inode->i_sb, map.m_pblk);
1844 	ext4_update_bh_state(bh, map.m_flags);
1845 
1846 	if (buffer_unwritten(bh)) {
1847 		/* A delayed write to unwritten bh should be marked
1848 		 * new and mapped.  Mapped ensures that we don't do
1849 		 * get_block multiple times when we write to the same
1850 		 * offset and new ensures that we do proper zero out
1851 		 * for partial write.
1852 		 */
1853 		set_buffer_new(bh);
1854 		set_buffer_mapped(bh);
1855 	}
1856 	return 0;
1857 }
1858 
1859 static int bget_one(handle_t *handle, struct buffer_head *bh)
1860 {
1861 	get_bh(bh);
1862 	return 0;
1863 }
1864 
1865 static int bput_one(handle_t *handle, struct buffer_head *bh)
1866 {
1867 	put_bh(bh);
1868 	return 0;
1869 }
1870 
1871 static int __ext4_journalled_writepage(struct page *page,
1872 				       unsigned int len)
1873 {
1874 	struct address_space *mapping = page->mapping;
1875 	struct inode *inode = mapping->host;
1876 	struct buffer_head *page_bufs = NULL;
1877 	handle_t *handle = NULL;
1878 	int ret = 0, err = 0;
1879 	int inline_data = ext4_has_inline_data(inode);
1880 	struct buffer_head *inode_bh = NULL;
1881 
1882 	ClearPageChecked(page);
1883 
1884 	if (inline_data) {
1885 		BUG_ON(page->index != 0);
1886 		BUG_ON(len > ext4_get_max_inline_size(inode));
1887 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1888 		if (inode_bh == NULL)
1889 			goto out;
1890 	} else {
1891 		page_bufs = page_buffers(page);
1892 		if (!page_bufs) {
1893 			BUG();
1894 			goto out;
1895 		}
1896 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1897 				       NULL, bget_one);
1898 	}
1899 	/*
1900 	 * We need to release the page lock before we start the
1901 	 * journal, so grab a reference so the page won't disappear
1902 	 * out from under us.
1903 	 */
1904 	get_page(page);
1905 	unlock_page(page);
1906 
1907 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1908 				    ext4_writepage_trans_blocks(inode));
1909 	if (IS_ERR(handle)) {
1910 		ret = PTR_ERR(handle);
1911 		put_page(page);
1912 		goto out_no_pagelock;
1913 	}
1914 	BUG_ON(!ext4_handle_valid(handle));
1915 
1916 	lock_page(page);
1917 	put_page(page);
1918 	if (page->mapping != mapping) {
1919 		/* The page got truncated from under us */
1920 		ext4_journal_stop(handle);
1921 		ret = 0;
1922 		goto out;
1923 	}
1924 
1925 	if (inline_data) {
1926 		BUFFER_TRACE(inode_bh, "get write access");
1927 		ret = ext4_journal_get_write_access(handle, inode_bh);
1928 
1929 		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1930 
1931 	} else {
1932 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1933 					     do_journal_get_write_access);
1934 
1935 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1936 					     write_end_fn);
1937 	}
1938 	if (ret == 0)
1939 		ret = err;
1940 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1941 	err = ext4_journal_stop(handle);
1942 	if (!ret)
1943 		ret = err;
1944 
1945 	if (!ext4_has_inline_data(inode))
1946 		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1947 				       NULL, bput_one);
1948 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1949 out:
1950 	unlock_page(page);
1951 out_no_pagelock:
1952 	brelse(inode_bh);
1953 	return ret;
1954 }
1955 
1956 /*
1957  * Note that we don't need to start a transaction unless we're journaling data
1958  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1959  * need to file the inode to the transaction's list in ordered mode because if
1960  * we are writing back data added by write(), the inode is already there and if
1961  * we are writing back data modified via mmap(), no one guarantees in which
1962  * transaction the data will hit the disk. In case we are journaling data, we
1963  * cannot start transaction directly because transaction start ranks above page
1964  * lock so we have to do some magic.
1965  *
1966  * This function can get called via...
1967  *   - ext4_writepages after taking page lock (have journal handle)
1968  *   - journal_submit_inode_data_buffers (no journal handle)
1969  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1970  *   - grab_page_cache when doing write_begin (have journal handle)
1971  *
1972  * We don't do any block allocation in this function. If we have page with
1973  * multiple blocks we need to write those buffer_heads that are mapped. This
1974  * is important for mmaped based write. So if we do with blocksize 1K
1975  * truncate(f, 1024);
1976  * a = mmap(f, 0, 4096);
1977  * a[0] = 'a';
1978  * truncate(f, 4096);
1979  * we have in the page first buffer_head mapped via page_mkwrite call back
1980  * but other buffer_heads would be unmapped but dirty (dirty done via the
1981  * do_wp_page). So writepage should write the first block. If we modify
1982  * the mmap area beyond 1024 we will again get a page_fault and the
1983  * page_mkwrite callback will do the block allocation and mark the
1984  * buffer_heads mapped.
1985  *
1986  * We redirty the page if we have any buffer_heads that is either delay or
1987  * unwritten in the page.
1988  *
1989  * We can get recursively called as show below.
1990  *
1991  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1992  *		ext4_writepage()
1993  *
1994  * But since we don't do any block allocation we should not deadlock.
1995  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1996  */
1997 static int ext4_writepage(struct page *page,
1998 			  struct writeback_control *wbc)
1999 {
2000 	int ret = 0;
2001 	loff_t size;
2002 	unsigned int len;
2003 	struct buffer_head *page_bufs = NULL;
2004 	struct inode *inode = page->mapping->host;
2005 	struct ext4_io_submit io_submit;
2006 	bool keep_towrite = false;
2007 
2008 	trace_ext4_writepage(page);
2009 	size = i_size_read(inode);
2010 	if (page->index == size >> PAGE_CACHE_SHIFT)
2011 		len = size & ~PAGE_CACHE_MASK;
2012 	else
2013 		len = PAGE_CACHE_SIZE;
2014 
2015 	page_bufs = page_buffers(page);
2016 	/*
2017 	 * We cannot do block allocation or other extent handling in this
2018 	 * function. If there are buffers needing that, we have to redirty
2019 	 * the page. But we may reach here when we do a journal commit via
2020 	 * journal_submit_inode_data_buffers() and in that case we must write
2021 	 * allocated buffers to achieve data=ordered mode guarantees.
2022 	 *
2023 	 * Also, if there is only one buffer per page (the fs block
2024 	 * size == the page size), if one buffer needs block
2025 	 * allocation or needs to modify the extent tree to clear the
2026 	 * unwritten flag, we know that the page can't be written at
2027 	 * all, so we might as well refuse the write immediately.
2028 	 * Unfortunately if the block size != page size, we can't as
2029 	 * easily detect this case using ext4_walk_page_buffers(), but
2030 	 * for the extremely common case, this is an optimization that
2031 	 * skips a useless round trip through ext4_bio_write_page().
2032 	 */
2033 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2034 				   ext4_bh_delay_or_unwritten)) {
2035 		redirty_page_for_writepage(wbc, page);
2036 		if ((current->flags & PF_MEMALLOC) ||
2037 		    (inode->i_sb->s_blocksize == PAGE_CACHE_SIZE)) {
2038 			/*
2039 			 * For memory cleaning there's no point in writing only
2040 			 * some buffers. So just bail out. Warn if we came here
2041 			 * from direct reclaim.
2042 			 */
2043 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2044 							== PF_MEMALLOC);
2045 			unlock_page(page);
2046 			return 0;
2047 		}
2048 		keep_towrite = true;
2049 	}
2050 
2051 	if (PageChecked(page) && ext4_should_journal_data(inode))
2052 		/*
2053 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2054 		 * doesn't seem much point in redirtying the page here.
2055 		 */
2056 		return __ext4_journalled_writepage(page, len);
2057 
2058 	ext4_io_submit_init(&io_submit, wbc);
2059 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2060 	if (!io_submit.io_end) {
2061 		redirty_page_for_writepage(wbc, page);
2062 		unlock_page(page);
2063 		return -ENOMEM;
2064 	}
2065 	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2066 	ext4_io_submit(&io_submit);
2067 	/* Drop io_end reference we got from init */
2068 	ext4_put_io_end_defer(io_submit.io_end);
2069 	return ret;
2070 }
2071 
2072 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2073 {
2074 	int len;
2075 	loff_t size = i_size_read(mpd->inode);
2076 	int err;
2077 
2078 	BUG_ON(page->index != mpd->first_page);
2079 	if (page->index == size >> PAGE_CACHE_SHIFT)
2080 		len = size & ~PAGE_CACHE_MASK;
2081 	else
2082 		len = PAGE_CACHE_SIZE;
2083 	clear_page_dirty_for_io(page);
2084 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2085 	if (!err)
2086 		mpd->wbc->nr_to_write--;
2087 	mpd->first_page++;
2088 
2089 	return err;
2090 }
2091 
2092 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2093 
2094 /*
2095  * mballoc gives us at most this number of blocks...
2096  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2097  * The rest of mballoc seems to handle chunks up to full group size.
2098  */
2099 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2100 
2101 /*
2102  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2103  *
2104  * @mpd - extent of blocks
2105  * @lblk - logical number of the block in the file
2106  * @bh - buffer head we want to add to the extent
2107  *
2108  * The function is used to collect contig. blocks in the same state. If the
2109  * buffer doesn't require mapping for writeback and we haven't started the
2110  * extent of buffers to map yet, the function returns 'true' immediately - the
2111  * caller can write the buffer right away. Otherwise the function returns true
2112  * if the block has been added to the extent, false if the block couldn't be
2113  * added.
2114  */
2115 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2116 				   struct buffer_head *bh)
2117 {
2118 	struct ext4_map_blocks *map = &mpd->map;
2119 
2120 	/* Buffer that doesn't need mapping for writeback? */
2121 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2122 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2123 		/* So far no extent to map => we write the buffer right away */
2124 		if (map->m_len == 0)
2125 			return true;
2126 		return false;
2127 	}
2128 
2129 	/* First block in the extent? */
2130 	if (map->m_len == 0) {
2131 		map->m_lblk = lblk;
2132 		map->m_len = 1;
2133 		map->m_flags = bh->b_state & BH_FLAGS;
2134 		return true;
2135 	}
2136 
2137 	/* Don't go larger than mballoc is willing to allocate */
2138 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2139 		return false;
2140 
2141 	/* Can we merge the block to our big extent? */
2142 	if (lblk == map->m_lblk + map->m_len &&
2143 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2144 		map->m_len++;
2145 		return true;
2146 	}
2147 	return false;
2148 }
2149 
2150 /*
2151  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2152  *
2153  * @mpd - extent of blocks for mapping
2154  * @head - the first buffer in the page
2155  * @bh - buffer we should start processing from
2156  * @lblk - logical number of the block in the file corresponding to @bh
2157  *
2158  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2159  * the page for IO if all buffers in this page were mapped and there's no
2160  * accumulated extent of buffers to map or add buffers in the page to the
2161  * extent of buffers to map. The function returns 1 if the caller can continue
2162  * by processing the next page, 0 if it should stop adding buffers to the
2163  * extent to map because we cannot extend it anymore. It can also return value
2164  * < 0 in case of error during IO submission.
2165  */
2166 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2167 				   struct buffer_head *head,
2168 				   struct buffer_head *bh,
2169 				   ext4_lblk_t lblk)
2170 {
2171 	struct inode *inode = mpd->inode;
2172 	int err;
2173 	ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2174 							>> inode->i_blkbits;
2175 
2176 	do {
2177 		BUG_ON(buffer_locked(bh));
2178 
2179 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2180 			/* Found extent to map? */
2181 			if (mpd->map.m_len)
2182 				return 0;
2183 			/* Everything mapped so far and we hit EOF */
2184 			break;
2185 		}
2186 	} while (lblk++, (bh = bh->b_this_page) != head);
2187 	/* So far everything mapped? Submit the page for IO. */
2188 	if (mpd->map.m_len == 0) {
2189 		err = mpage_submit_page(mpd, head->b_page);
2190 		if (err < 0)
2191 			return err;
2192 	}
2193 	return lblk < blocks;
2194 }
2195 
2196 /*
2197  * mpage_map_buffers - update buffers corresponding to changed extent and
2198  *		       submit fully mapped pages for IO
2199  *
2200  * @mpd - description of extent to map, on return next extent to map
2201  *
2202  * Scan buffers corresponding to changed extent (we expect corresponding pages
2203  * to be already locked) and update buffer state according to new extent state.
2204  * We map delalloc buffers to their physical location, clear unwritten bits,
2205  * and mark buffers as uninit when we perform writes to unwritten extents
2206  * and do extent conversion after IO is finished. If the last page is not fully
2207  * mapped, we update @map to the next extent in the last page that needs
2208  * mapping. Otherwise we submit the page for IO.
2209  */
2210 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2211 {
2212 	struct pagevec pvec;
2213 	int nr_pages, i;
2214 	struct inode *inode = mpd->inode;
2215 	struct buffer_head *head, *bh;
2216 	int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2217 	pgoff_t start, end;
2218 	ext4_lblk_t lblk;
2219 	sector_t pblock;
2220 	int err;
2221 
2222 	start = mpd->map.m_lblk >> bpp_bits;
2223 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2224 	lblk = start << bpp_bits;
2225 	pblock = mpd->map.m_pblk;
2226 
2227 	pagevec_init(&pvec, 0);
2228 	while (start <= end) {
2229 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2230 					  PAGEVEC_SIZE);
2231 		if (nr_pages == 0)
2232 			break;
2233 		for (i = 0; i < nr_pages; i++) {
2234 			struct page *page = pvec.pages[i];
2235 
2236 			if (page->index > end)
2237 				break;
2238 			/* Up to 'end' pages must be contiguous */
2239 			BUG_ON(page->index != start);
2240 			bh = head = page_buffers(page);
2241 			do {
2242 				if (lblk < mpd->map.m_lblk)
2243 					continue;
2244 				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2245 					/*
2246 					 * Buffer after end of mapped extent.
2247 					 * Find next buffer in the page to map.
2248 					 */
2249 					mpd->map.m_len = 0;
2250 					mpd->map.m_flags = 0;
2251 					/*
2252 					 * FIXME: If dioread_nolock supports
2253 					 * blocksize < pagesize, we need to make
2254 					 * sure we add size mapped so far to
2255 					 * io_end->size as the following call
2256 					 * can submit the page for IO.
2257 					 */
2258 					err = mpage_process_page_bufs(mpd, head,
2259 								      bh, lblk);
2260 					pagevec_release(&pvec);
2261 					if (err > 0)
2262 						err = 0;
2263 					return err;
2264 				}
2265 				if (buffer_delay(bh)) {
2266 					clear_buffer_delay(bh);
2267 					bh->b_blocknr = pblock++;
2268 				}
2269 				clear_buffer_unwritten(bh);
2270 			} while (lblk++, (bh = bh->b_this_page) != head);
2271 
2272 			/*
2273 			 * FIXME: This is going to break if dioread_nolock
2274 			 * supports blocksize < pagesize as we will try to
2275 			 * convert potentially unmapped parts of inode.
2276 			 */
2277 			mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2278 			/* Page fully mapped - let IO run! */
2279 			err = mpage_submit_page(mpd, page);
2280 			if (err < 0) {
2281 				pagevec_release(&pvec);
2282 				return err;
2283 			}
2284 			start++;
2285 		}
2286 		pagevec_release(&pvec);
2287 	}
2288 	/* Extent fully mapped and matches with page boundary. We are done. */
2289 	mpd->map.m_len = 0;
2290 	mpd->map.m_flags = 0;
2291 	return 0;
2292 }
2293 
2294 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2295 {
2296 	struct inode *inode = mpd->inode;
2297 	struct ext4_map_blocks *map = &mpd->map;
2298 	int get_blocks_flags;
2299 	int err, dioread_nolock;
2300 
2301 	trace_ext4_da_write_pages_extent(inode, map);
2302 	/*
2303 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2304 	 * to convert an unwritten extent to be initialized (in the case
2305 	 * where we have written into one or more preallocated blocks).  It is
2306 	 * possible that we're going to need more metadata blocks than
2307 	 * previously reserved. However we must not fail because we're in
2308 	 * writeback and there is nothing we can do about it so it might result
2309 	 * in data loss.  So use reserved blocks to allocate metadata if
2310 	 * possible.
2311 	 *
2312 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2313 	 * the blocks in question are delalloc blocks.  This indicates
2314 	 * that the blocks and quotas has already been checked when
2315 	 * the data was copied into the page cache.
2316 	 */
2317 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2318 			   EXT4_GET_BLOCKS_METADATA_NOFAIL;
2319 	dioread_nolock = ext4_should_dioread_nolock(inode);
2320 	if (dioread_nolock)
2321 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2322 	if (map->m_flags & (1 << BH_Delay))
2323 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2324 
2325 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2326 	if (err < 0)
2327 		return err;
2328 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2329 		if (!mpd->io_submit.io_end->handle &&
2330 		    ext4_handle_valid(handle)) {
2331 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2332 			handle->h_rsv_handle = NULL;
2333 		}
2334 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2335 	}
2336 
2337 	BUG_ON(map->m_len == 0);
2338 	if (map->m_flags & EXT4_MAP_NEW) {
2339 		struct block_device *bdev = inode->i_sb->s_bdev;
2340 		int i;
2341 
2342 		for (i = 0; i < map->m_len; i++)
2343 			unmap_underlying_metadata(bdev, map->m_pblk + i);
2344 	}
2345 	return 0;
2346 }
2347 
2348 /*
2349  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2350  *				 mpd->len and submit pages underlying it for IO
2351  *
2352  * @handle - handle for journal operations
2353  * @mpd - extent to map
2354  * @give_up_on_write - we set this to true iff there is a fatal error and there
2355  *                     is no hope of writing the data. The caller should discard
2356  *                     dirty pages to avoid infinite loops.
2357  *
2358  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2359  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2360  * them to initialized or split the described range from larger unwritten
2361  * extent. Note that we need not map all the described range since allocation
2362  * can return less blocks or the range is covered by more unwritten extents. We
2363  * cannot map more because we are limited by reserved transaction credits. On
2364  * the other hand we always make sure that the last touched page is fully
2365  * mapped so that it can be written out (and thus forward progress is
2366  * guaranteed). After mapping we submit all mapped pages for IO.
2367  */
2368 static int mpage_map_and_submit_extent(handle_t *handle,
2369 				       struct mpage_da_data *mpd,
2370 				       bool *give_up_on_write)
2371 {
2372 	struct inode *inode = mpd->inode;
2373 	struct ext4_map_blocks *map = &mpd->map;
2374 	int err;
2375 	loff_t disksize;
2376 	int progress = 0;
2377 
2378 	mpd->io_submit.io_end->offset =
2379 				((loff_t)map->m_lblk) << inode->i_blkbits;
2380 	do {
2381 		err = mpage_map_one_extent(handle, mpd);
2382 		if (err < 0) {
2383 			struct super_block *sb = inode->i_sb;
2384 
2385 			if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2386 				goto invalidate_dirty_pages;
2387 			/*
2388 			 * Let the uper layers retry transient errors.
2389 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2390 			 * is non-zero, a commit should free up blocks.
2391 			 */
2392 			if ((err == -ENOMEM) ||
2393 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2394 				if (progress)
2395 					goto update_disksize;
2396 				return err;
2397 			}
2398 			ext4_msg(sb, KERN_CRIT,
2399 				 "Delayed block allocation failed for "
2400 				 "inode %lu at logical offset %llu with"
2401 				 " max blocks %u with error %d",
2402 				 inode->i_ino,
2403 				 (unsigned long long)map->m_lblk,
2404 				 (unsigned)map->m_len, -err);
2405 			ext4_msg(sb, KERN_CRIT,
2406 				 "This should not happen!! Data will "
2407 				 "be lost\n");
2408 			if (err == -ENOSPC)
2409 				ext4_print_free_blocks(inode);
2410 		invalidate_dirty_pages:
2411 			*give_up_on_write = true;
2412 			return err;
2413 		}
2414 		progress = 1;
2415 		/*
2416 		 * Update buffer state, submit mapped pages, and get us new
2417 		 * extent to map
2418 		 */
2419 		err = mpage_map_and_submit_buffers(mpd);
2420 		if (err < 0)
2421 			goto update_disksize;
2422 	} while (map->m_len);
2423 
2424 update_disksize:
2425 	/*
2426 	 * Update on-disk size after IO is submitted.  Races with
2427 	 * truncate are avoided by checking i_size under i_data_sem.
2428 	 */
2429 	disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2430 	if (disksize > EXT4_I(inode)->i_disksize) {
2431 		int err2;
2432 		loff_t i_size;
2433 
2434 		down_write(&EXT4_I(inode)->i_data_sem);
2435 		i_size = i_size_read(inode);
2436 		if (disksize > i_size)
2437 			disksize = i_size;
2438 		if (disksize > EXT4_I(inode)->i_disksize)
2439 			EXT4_I(inode)->i_disksize = disksize;
2440 		err2 = ext4_mark_inode_dirty(handle, inode);
2441 		up_write(&EXT4_I(inode)->i_data_sem);
2442 		if (err2)
2443 			ext4_error(inode->i_sb,
2444 				   "Failed to mark inode %lu dirty",
2445 				   inode->i_ino);
2446 		if (!err)
2447 			err = err2;
2448 	}
2449 	return err;
2450 }
2451 
2452 /*
2453  * Calculate the total number of credits to reserve for one writepages
2454  * iteration. This is called from ext4_writepages(). We map an extent of
2455  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2456  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2457  * bpp - 1 blocks in bpp different extents.
2458  */
2459 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2460 {
2461 	int bpp = ext4_journal_blocks_per_page(inode);
2462 
2463 	return ext4_meta_trans_blocks(inode,
2464 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2465 }
2466 
2467 /*
2468  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2469  * 				 and underlying extent to map
2470  *
2471  * @mpd - where to look for pages
2472  *
2473  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2474  * IO immediately. When we find a page which isn't mapped we start accumulating
2475  * extent of buffers underlying these pages that needs mapping (formed by
2476  * either delayed or unwritten buffers). We also lock the pages containing
2477  * these buffers. The extent found is returned in @mpd structure (starting at
2478  * mpd->lblk with length mpd->len blocks).
2479  *
2480  * Note that this function can attach bios to one io_end structure which are
2481  * neither logically nor physically contiguous. Although it may seem as an
2482  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2483  * case as we need to track IO to all buffers underlying a page in one io_end.
2484  */
2485 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2486 {
2487 	struct address_space *mapping = mpd->inode->i_mapping;
2488 	struct pagevec pvec;
2489 	unsigned int nr_pages;
2490 	long left = mpd->wbc->nr_to_write;
2491 	pgoff_t index = mpd->first_page;
2492 	pgoff_t end = mpd->last_page;
2493 	int tag;
2494 	int i, err = 0;
2495 	int blkbits = mpd->inode->i_blkbits;
2496 	ext4_lblk_t lblk;
2497 	struct buffer_head *head;
2498 
2499 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2500 		tag = PAGECACHE_TAG_TOWRITE;
2501 	else
2502 		tag = PAGECACHE_TAG_DIRTY;
2503 
2504 	pagevec_init(&pvec, 0);
2505 	mpd->map.m_len = 0;
2506 	mpd->next_page = index;
2507 	while (index <= end) {
2508 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2509 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2510 		if (nr_pages == 0)
2511 			goto out;
2512 
2513 		for (i = 0; i < nr_pages; i++) {
2514 			struct page *page = pvec.pages[i];
2515 
2516 			/*
2517 			 * At this point, the page may be truncated or
2518 			 * invalidated (changing page->mapping to NULL), or
2519 			 * even swizzled back from swapper_space to tmpfs file
2520 			 * mapping. However, page->index will not change
2521 			 * because we have a reference on the page.
2522 			 */
2523 			if (page->index > end)
2524 				goto out;
2525 
2526 			/*
2527 			 * Accumulated enough dirty pages? This doesn't apply
2528 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2529 			 * keep going because someone may be concurrently
2530 			 * dirtying pages, and we might have synced a lot of
2531 			 * newly appeared dirty pages, but have not synced all
2532 			 * of the old dirty pages.
2533 			 */
2534 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2535 				goto out;
2536 
2537 			/* If we can't merge this page, we are done. */
2538 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2539 				goto out;
2540 
2541 			lock_page(page);
2542 			/*
2543 			 * If the page is no longer dirty, or its mapping no
2544 			 * longer corresponds to inode we are writing (which
2545 			 * means it has been truncated or invalidated), or the
2546 			 * page is already under writeback and we are not doing
2547 			 * a data integrity writeback, skip the page
2548 			 */
2549 			if (!PageDirty(page) ||
2550 			    (PageWriteback(page) &&
2551 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2552 			    unlikely(page->mapping != mapping)) {
2553 				unlock_page(page);
2554 				continue;
2555 			}
2556 
2557 			wait_on_page_writeback(page);
2558 			BUG_ON(PageWriteback(page));
2559 
2560 			if (mpd->map.m_len == 0)
2561 				mpd->first_page = page->index;
2562 			mpd->next_page = page->index + 1;
2563 			/* Add all dirty buffers to mpd */
2564 			lblk = ((ext4_lblk_t)page->index) <<
2565 				(PAGE_CACHE_SHIFT - blkbits);
2566 			head = page_buffers(page);
2567 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2568 			if (err <= 0)
2569 				goto out;
2570 			err = 0;
2571 			left--;
2572 		}
2573 		pagevec_release(&pvec);
2574 		cond_resched();
2575 	}
2576 	return 0;
2577 out:
2578 	pagevec_release(&pvec);
2579 	return err;
2580 }
2581 
2582 static int __writepage(struct page *page, struct writeback_control *wbc,
2583 		       void *data)
2584 {
2585 	struct address_space *mapping = data;
2586 	int ret = ext4_writepage(page, wbc);
2587 	mapping_set_error(mapping, ret);
2588 	return ret;
2589 }
2590 
2591 static int ext4_writepages(struct address_space *mapping,
2592 			   struct writeback_control *wbc)
2593 {
2594 	pgoff_t	writeback_index = 0;
2595 	long nr_to_write = wbc->nr_to_write;
2596 	int range_whole = 0;
2597 	int cycled = 1;
2598 	handle_t *handle = NULL;
2599 	struct mpage_da_data mpd;
2600 	struct inode *inode = mapping->host;
2601 	int needed_blocks, rsv_blocks = 0, ret = 0;
2602 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2603 	bool done;
2604 	struct blk_plug plug;
2605 	bool give_up_on_write = false;
2606 
2607 	trace_ext4_writepages(inode, wbc);
2608 
2609 	if (dax_mapping(mapping))
2610 		return dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2611 						   wbc);
2612 
2613 	/*
2614 	 * No pages to write? This is mainly a kludge to avoid starting
2615 	 * a transaction for special inodes like journal inode on last iput()
2616 	 * because that could violate lock ordering on umount
2617 	 */
2618 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2619 		goto out_writepages;
2620 
2621 	if (ext4_should_journal_data(inode)) {
2622 		struct blk_plug plug;
2623 
2624 		blk_start_plug(&plug);
2625 		ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2626 		blk_finish_plug(&plug);
2627 		goto out_writepages;
2628 	}
2629 
2630 	/*
2631 	 * If the filesystem has aborted, it is read-only, so return
2632 	 * right away instead of dumping stack traces later on that
2633 	 * will obscure the real source of the problem.  We test
2634 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2635 	 * the latter could be true if the filesystem is mounted
2636 	 * read-only, and in that case, ext4_writepages should
2637 	 * *never* be called, so if that ever happens, we would want
2638 	 * the stack trace.
2639 	 */
2640 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2641 		ret = -EROFS;
2642 		goto out_writepages;
2643 	}
2644 
2645 	if (ext4_should_dioread_nolock(inode)) {
2646 		/*
2647 		 * We may need to convert up to one extent per block in
2648 		 * the page and we may dirty the inode.
2649 		 */
2650 		rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2651 	}
2652 
2653 	/*
2654 	 * If we have inline data and arrive here, it means that
2655 	 * we will soon create the block for the 1st page, so
2656 	 * we'd better clear the inline data here.
2657 	 */
2658 	if (ext4_has_inline_data(inode)) {
2659 		/* Just inode will be modified... */
2660 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2661 		if (IS_ERR(handle)) {
2662 			ret = PTR_ERR(handle);
2663 			goto out_writepages;
2664 		}
2665 		BUG_ON(ext4_test_inode_state(inode,
2666 				EXT4_STATE_MAY_INLINE_DATA));
2667 		ext4_destroy_inline_data(handle, inode);
2668 		ext4_journal_stop(handle);
2669 	}
2670 
2671 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2672 		range_whole = 1;
2673 
2674 	if (wbc->range_cyclic) {
2675 		writeback_index = mapping->writeback_index;
2676 		if (writeback_index)
2677 			cycled = 0;
2678 		mpd.first_page = writeback_index;
2679 		mpd.last_page = -1;
2680 	} else {
2681 		mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2682 		mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2683 	}
2684 
2685 	mpd.inode = inode;
2686 	mpd.wbc = wbc;
2687 	ext4_io_submit_init(&mpd.io_submit, wbc);
2688 retry:
2689 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2690 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2691 	done = false;
2692 	blk_start_plug(&plug);
2693 	while (!done && mpd.first_page <= mpd.last_page) {
2694 		/* For each extent of pages we use new io_end */
2695 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2696 		if (!mpd.io_submit.io_end) {
2697 			ret = -ENOMEM;
2698 			break;
2699 		}
2700 
2701 		/*
2702 		 * We have two constraints: We find one extent to map and we
2703 		 * must always write out whole page (makes a difference when
2704 		 * blocksize < pagesize) so that we don't block on IO when we
2705 		 * try to write out the rest of the page. Journalled mode is
2706 		 * not supported by delalloc.
2707 		 */
2708 		BUG_ON(ext4_should_journal_data(inode));
2709 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2710 
2711 		/* start a new transaction */
2712 		handle = ext4_journal_start_with_reserve(inode,
2713 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2714 		if (IS_ERR(handle)) {
2715 			ret = PTR_ERR(handle);
2716 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2717 			       "%ld pages, ino %lu; err %d", __func__,
2718 				wbc->nr_to_write, inode->i_ino, ret);
2719 			/* Release allocated io_end */
2720 			ext4_put_io_end(mpd.io_submit.io_end);
2721 			break;
2722 		}
2723 
2724 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2725 		ret = mpage_prepare_extent_to_map(&mpd);
2726 		if (!ret) {
2727 			if (mpd.map.m_len)
2728 				ret = mpage_map_and_submit_extent(handle, &mpd,
2729 					&give_up_on_write);
2730 			else {
2731 				/*
2732 				 * We scanned the whole range (or exhausted
2733 				 * nr_to_write), submitted what was mapped and
2734 				 * didn't find anything needing mapping. We are
2735 				 * done.
2736 				 */
2737 				done = true;
2738 			}
2739 		}
2740 		ext4_journal_stop(handle);
2741 		/* Submit prepared bio */
2742 		ext4_io_submit(&mpd.io_submit);
2743 		/* Unlock pages we didn't use */
2744 		mpage_release_unused_pages(&mpd, give_up_on_write);
2745 		/* Drop our io_end reference we got from init */
2746 		ext4_put_io_end(mpd.io_submit.io_end);
2747 
2748 		if (ret == -ENOSPC && sbi->s_journal) {
2749 			/*
2750 			 * Commit the transaction which would
2751 			 * free blocks released in the transaction
2752 			 * and try again
2753 			 */
2754 			jbd2_journal_force_commit_nested(sbi->s_journal);
2755 			ret = 0;
2756 			continue;
2757 		}
2758 		/* Fatal error - ENOMEM, EIO... */
2759 		if (ret)
2760 			break;
2761 	}
2762 	blk_finish_plug(&plug);
2763 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2764 		cycled = 1;
2765 		mpd.last_page = writeback_index - 1;
2766 		mpd.first_page = 0;
2767 		goto retry;
2768 	}
2769 
2770 	/* Update index */
2771 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2772 		/*
2773 		 * Set the writeback_index so that range_cyclic
2774 		 * mode will write it back later
2775 		 */
2776 		mapping->writeback_index = mpd.first_page;
2777 
2778 out_writepages:
2779 	trace_ext4_writepages_result(inode, wbc, ret,
2780 				     nr_to_write - wbc->nr_to_write);
2781 	return ret;
2782 }
2783 
2784 static int ext4_nonda_switch(struct super_block *sb)
2785 {
2786 	s64 free_clusters, dirty_clusters;
2787 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2788 
2789 	/*
2790 	 * switch to non delalloc mode if we are running low
2791 	 * on free block. The free block accounting via percpu
2792 	 * counters can get slightly wrong with percpu_counter_batch getting
2793 	 * accumulated on each CPU without updating global counters
2794 	 * Delalloc need an accurate free block accounting. So switch
2795 	 * to non delalloc when we are near to error range.
2796 	 */
2797 	free_clusters =
2798 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2799 	dirty_clusters =
2800 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2801 	/*
2802 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2803 	 */
2804 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2805 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2806 
2807 	if (2 * free_clusters < 3 * dirty_clusters ||
2808 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2809 		/*
2810 		 * free block count is less than 150% of dirty blocks
2811 		 * or free blocks is less than watermark
2812 		 */
2813 		return 1;
2814 	}
2815 	return 0;
2816 }
2817 
2818 /* We always reserve for an inode update; the superblock could be there too */
2819 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2820 {
2821 	if (likely(ext4_has_feature_large_file(inode->i_sb)))
2822 		return 1;
2823 
2824 	if (pos + len <= 0x7fffffffULL)
2825 		return 1;
2826 
2827 	/* We might need to update the superblock to set LARGE_FILE */
2828 	return 2;
2829 }
2830 
2831 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2832 			       loff_t pos, unsigned len, unsigned flags,
2833 			       struct page **pagep, void **fsdata)
2834 {
2835 	int ret, retries = 0;
2836 	struct page *page;
2837 	pgoff_t index;
2838 	struct inode *inode = mapping->host;
2839 	handle_t *handle;
2840 
2841 	index = pos >> PAGE_CACHE_SHIFT;
2842 
2843 	if (ext4_nonda_switch(inode->i_sb)) {
2844 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2845 		return ext4_write_begin(file, mapping, pos,
2846 					len, flags, pagep, fsdata);
2847 	}
2848 	*fsdata = (void *)0;
2849 	trace_ext4_da_write_begin(inode, pos, len, flags);
2850 
2851 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2852 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2853 						      pos, len, flags,
2854 						      pagep, fsdata);
2855 		if (ret < 0)
2856 			return ret;
2857 		if (ret == 1)
2858 			return 0;
2859 	}
2860 
2861 	/*
2862 	 * grab_cache_page_write_begin() can take a long time if the
2863 	 * system is thrashing due to memory pressure, or if the page
2864 	 * is being written back.  So grab it first before we start
2865 	 * the transaction handle.  This also allows us to allocate
2866 	 * the page (if needed) without using GFP_NOFS.
2867 	 */
2868 retry_grab:
2869 	page = grab_cache_page_write_begin(mapping, index, flags);
2870 	if (!page)
2871 		return -ENOMEM;
2872 	unlock_page(page);
2873 
2874 	/*
2875 	 * With delayed allocation, we don't log the i_disksize update
2876 	 * if there is delayed block allocation. But we still need
2877 	 * to journalling the i_disksize update if writes to the end
2878 	 * of file which has an already mapped buffer.
2879 	 */
2880 retry_journal:
2881 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2882 				ext4_da_write_credits(inode, pos, len));
2883 	if (IS_ERR(handle)) {
2884 		page_cache_release(page);
2885 		return PTR_ERR(handle);
2886 	}
2887 
2888 	lock_page(page);
2889 	if (page->mapping != mapping) {
2890 		/* The page got truncated from under us */
2891 		unlock_page(page);
2892 		page_cache_release(page);
2893 		ext4_journal_stop(handle);
2894 		goto retry_grab;
2895 	}
2896 	/* In case writeback began while the page was unlocked */
2897 	wait_for_stable_page(page);
2898 
2899 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2900 	ret = ext4_block_write_begin(page, pos, len,
2901 				     ext4_da_get_block_prep);
2902 #else
2903 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2904 #endif
2905 	if (ret < 0) {
2906 		unlock_page(page);
2907 		ext4_journal_stop(handle);
2908 		/*
2909 		 * block_write_begin may have instantiated a few blocks
2910 		 * outside i_size.  Trim these off again. Don't need
2911 		 * i_size_read because we hold i_mutex.
2912 		 */
2913 		if (pos + len > inode->i_size)
2914 			ext4_truncate_failed_write(inode);
2915 
2916 		if (ret == -ENOSPC &&
2917 		    ext4_should_retry_alloc(inode->i_sb, &retries))
2918 			goto retry_journal;
2919 
2920 		page_cache_release(page);
2921 		return ret;
2922 	}
2923 
2924 	*pagep = page;
2925 	return ret;
2926 }
2927 
2928 /*
2929  * Check if we should update i_disksize
2930  * when write to the end of file but not require block allocation
2931  */
2932 static int ext4_da_should_update_i_disksize(struct page *page,
2933 					    unsigned long offset)
2934 {
2935 	struct buffer_head *bh;
2936 	struct inode *inode = page->mapping->host;
2937 	unsigned int idx;
2938 	int i;
2939 
2940 	bh = page_buffers(page);
2941 	idx = offset >> inode->i_blkbits;
2942 
2943 	for (i = 0; i < idx; i++)
2944 		bh = bh->b_this_page;
2945 
2946 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2947 		return 0;
2948 	return 1;
2949 }
2950 
2951 static int ext4_da_write_end(struct file *file,
2952 			     struct address_space *mapping,
2953 			     loff_t pos, unsigned len, unsigned copied,
2954 			     struct page *page, void *fsdata)
2955 {
2956 	struct inode *inode = mapping->host;
2957 	int ret = 0, ret2;
2958 	handle_t *handle = ext4_journal_current_handle();
2959 	loff_t new_i_size;
2960 	unsigned long start, end;
2961 	int write_mode = (int)(unsigned long)fsdata;
2962 
2963 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
2964 		return ext4_write_end(file, mapping, pos,
2965 				      len, copied, page, fsdata);
2966 
2967 	trace_ext4_da_write_end(inode, pos, len, copied);
2968 	start = pos & (PAGE_CACHE_SIZE - 1);
2969 	end = start + copied - 1;
2970 
2971 	/*
2972 	 * generic_write_end() will run mark_inode_dirty() if i_size
2973 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2974 	 * into that.
2975 	 */
2976 	new_i_size = pos + copied;
2977 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2978 		if (ext4_has_inline_data(inode) ||
2979 		    ext4_da_should_update_i_disksize(page, end)) {
2980 			ext4_update_i_disksize(inode, new_i_size);
2981 			/* We need to mark inode dirty even if
2982 			 * new_i_size is less that inode->i_size
2983 			 * bu greater than i_disksize.(hint delalloc)
2984 			 */
2985 			ext4_mark_inode_dirty(handle, inode);
2986 		}
2987 	}
2988 
2989 	if (write_mode != CONVERT_INLINE_DATA &&
2990 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2991 	    ext4_has_inline_data(inode))
2992 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2993 						     page);
2994 	else
2995 		ret2 = generic_write_end(file, mapping, pos, len, copied,
2996 							page, fsdata);
2997 
2998 	copied = ret2;
2999 	if (ret2 < 0)
3000 		ret = ret2;
3001 	ret2 = ext4_journal_stop(handle);
3002 	if (!ret)
3003 		ret = ret2;
3004 
3005 	return ret ? ret : copied;
3006 }
3007 
3008 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3009 				   unsigned int length)
3010 {
3011 	/*
3012 	 * Drop reserved blocks
3013 	 */
3014 	BUG_ON(!PageLocked(page));
3015 	if (!page_has_buffers(page))
3016 		goto out;
3017 
3018 	ext4_da_page_release_reservation(page, offset, length);
3019 
3020 out:
3021 	ext4_invalidatepage(page, offset, length);
3022 
3023 	return;
3024 }
3025 
3026 /*
3027  * Force all delayed allocation blocks to be allocated for a given inode.
3028  */
3029 int ext4_alloc_da_blocks(struct inode *inode)
3030 {
3031 	trace_ext4_alloc_da_blocks(inode);
3032 
3033 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3034 		return 0;
3035 
3036 	/*
3037 	 * We do something simple for now.  The filemap_flush() will
3038 	 * also start triggering a write of the data blocks, which is
3039 	 * not strictly speaking necessary (and for users of
3040 	 * laptop_mode, not even desirable).  However, to do otherwise
3041 	 * would require replicating code paths in:
3042 	 *
3043 	 * ext4_writepages() ->
3044 	 *    write_cache_pages() ---> (via passed in callback function)
3045 	 *        __mpage_da_writepage() -->
3046 	 *           mpage_add_bh_to_extent()
3047 	 *           mpage_da_map_blocks()
3048 	 *
3049 	 * The problem is that write_cache_pages(), located in
3050 	 * mm/page-writeback.c, marks pages clean in preparation for
3051 	 * doing I/O, which is not desirable if we're not planning on
3052 	 * doing I/O at all.
3053 	 *
3054 	 * We could call write_cache_pages(), and then redirty all of
3055 	 * the pages by calling redirty_page_for_writepage() but that
3056 	 * would be ugly in the extreme.  So instead we would need to
3057 	 * replicate parts of the code in the above functions,
3058 	 * simplifying them because we wouldn't actually intend to
3059 	 * write out the pages, but rather only collect contiguous
3060 	 * logical block extents, call the multi-block allocator, and
3061 	 * then update the buffer heads with the block allocations.
3062 	 *
3063 	 * For now, though, we'll cheat by calling filemap_flush(),
3064 	 * which will map the blocks, and start the I/O, but not
3065 	 * actually wait for the I/O to complete.
3066 	 */
3067 	return filemap_flush(inode->i_mapping);
3068 }
3069 
3070 /*
3071  * bmap() is special.  It gets used by applications such as lilo and by
3072  * the swapper to find the on-disk block of a specific piece of data.
3073  *
3074  * Naturally, this is dangerous if the block concerned is still in the
3075  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3076  * filesystem and enables swap, then they may get a nasty shock when the
3077  * data getting swapped to that swapfile suddenly gets overwritten by
3078  * the original zero's written out previously to the journal and
3079  * awaiting writeback in the kernel's buffer cache.
3080  *
3081  * So, if we see any bmap calls here on a modified, data-journaled file,
3082  * take extra steps to flush any blocks which might be in the cache.
3083  */
3084 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3085 {
3086 	struct inode *inode = mapping->host;
3087 	journal_t *journal;
3088 	int err;
3089 
3090 	/*
3091 	 * We can get here for an inline file via the FIBMAP ioctl
3092 	 */
3093 	if (ext4_has_inline_data(inode))
3094 		return 0;
3095 
3096 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3097 			test_opt(inode->i_sb, DELALLOC)) {
3098 		/*
3099 		 * With delalloc we want to sync the file
3100 		 * so that we can make sure we allocate
3101 		 * blocks for file
3102 		 */
3103 		filemap_write_and_wait(mapping);
3104 	}
3105 
3106 	if (EXT4_JOURNAL(inode) &&
3107 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3108 		/*
3109 		 * This is a REALLY heavyweight approach, but the use of
3110 		 * bmap on dirty files is expected to be extremely rare:
3111 		 * only if we run lilo or swapon on a freshly made file
3112 		 * do we expect this to happen.
3113 		 *
3114 		 * (bmap requires CAP_SYS_RAWIO so this does not
3115 		 * represent an unprivileged user DOS attack --- we'd be
3116 		 * in trouble if mortal users could trigger this path at
3117 		 * will.)
3118 		 *
3119 		 * NB. EXT4_STATE_JDATA is not set on files other than
3120 		 * regular files.  If somebody wants to bmap a directory
3121 		 * or symlink and gets confused because the buffer
3122 		 * hasn't yet been flushed to disk, they deserve
3123 		 * everything they get.
3124 		 */
3125 
3126 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3127 		journal = EXT4_JOURNAL(inode);
3128 		jbd2_journal_lock_updates(journal);
3129 		err = jbd2_journal_flush(journal);
3130 		jbd2_journal_unlock_updates(journal);
3131 
3132 		if (err)
3133 			return 0;
3134 	}
3135 
3136 	return generic_block_bmap(mapping, block, ext4_get_block);
3137 }
3138 
3139 static int ext4_readpage(struct file *file, struct page *page)
3140 {
3141 	int ret = -EAGAIN;
3142 	struct inode *inode = page->mapping->host;
3143 
3144 	trace_ext4_readpage(page);
3145 
3146 	if (ext4_has_inline_data(inode))
3147 		ret = ext4_readpage_inline(inode, page);
3148 
3149 	if (ret == -EAGAIN)
3150 		return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3151 
3152 	return ret;
3153 }
3154 
3155 static int
3156 ext4_readpages(struct file *file, struct address_space *mapping,
3157 		struct list_head *pages, unsigned nr_pages)
3158 {
3159 	struct inode *inode = mapping->host;
3160 
3161 	/* If the file has inline data, no need to do readpages. */
3162 	if (ext4_has_inline_data(inode))
3163 		return 0;
3164 
3165 	return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3166 }
3167 
3168 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3169 				unsigned int length)
3170 {
3171 	trace_ext4_invalidatepage(page, offset, length);
3172 
3173 	/* No journalling happens on data buffers when this function is used */
3174 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3175 
3176 	block_invalidatepage(page, offset, length);
3177 }
3178 
3179 static int __ext4_journalled_invalidatepage(struct page *page,
3180 					    unsigned int offset,
3181 					    unsigned int length)
3182 {
3183 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3184 
3185 	trace_ext4_journalled_invalidatepage(page, offset, length);
3186 
3187 	/*
3188 	 * If it's a full truncate we just forget about the pending dirtying
3189 	 */
3190 	if (offset == 0 && length == PAGE_CACHE_SIZE)
3191 		ClearPageChecked(page);
3192 
3193 	return jbd2_journal_invalidatepage(journal, page, offset, length);
3194 }
3195 
3196 /* Wrapper for aops... */
3197 static void ext4_journalled_invalidatepage(struct page *page,
3198 					   unsigned int offset,
3199 					   unsigned int length)
3200 {
3201 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3202 }
3203 
3204 static int ext4_releasepage(struct page *page, gfp_t wait)
3205 {
3206 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3207 
3208 	trace_ext4_releasepage(page);
3209 
3210 	/* Page has dirty journalled data -> cannot release */
3211 	if (PageChecked(page))
3212 		return 0;
3213 	if (journal)
3214 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3215 	else
3216 		return try_to_free_buffers(page);
3217 }
3218 
3219 #ifdef CONFIG_FS_DAX
3220 int ext4_dax_mmap_get_block(struct inode *inode, sector_t iblock,
3221 			    struct buffer_head *bh_result, int create)
3222 {
3223 	int ret, err;
3224 	int credits;
3225 	struct ext4_map_blocks map;
3226 	handle_t *handle = NULL;
3227 	int flags = 0;
3228 
3229 	ext4_debug("ext4_dax_mmap_get_block: inode %lu, create flag %d\n",
3230 		   inode->i_ino, create);
3231 	map.m_lblk = iblock;
3232 	map.m_len = bh_result->b_size >> inode->i_blkbits;
3233 	credits = ext4_chunk_trans_blocks(inode, map.m_len);
3234 	if (create) {
3235 		flags |= EXT4_GET_BLOCKS_PRE_IO | EXT4_GET_BLOCKS_CREATE_ZERO;
3236 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits);
3237 		if (IS_ERR(handle)) {
3238 			ret = PTR_ERR(handle);
3239 			return ret;
3240 		}
3241 	}
3242 
3243 	ret = ext4_map_blocks(handle, inode, &map, flags);
3244 	if (create) {
3245 		err = ext4_journal_stop(handle);
3246 		if (ret >= 0 && err < 0)
3247 			ret = err;
3248 	}
3249 	if (ret <= 0)
3250 		goto out;
3251 	if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3252 		int err2;
3253 
3254 		/*
3255 		 * We are protected by i_mmap_sem so we know block cannot go
3256 		 * away from under us even though we dropped i_data_sem.
3257 		 * Convert extent to written and write zeros there.
3258 		 *
3259 		 * Note: We may get here even when create == 0.
3260 		 */
3261 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits);
3262 		if (IS_ERR(handle)) {
3263 			ret = PTR_ERR(handle);
3264 			goto out;
3265 		}
3266 
3267 		err = ext4_map_blocks(handle, inode, &map,
3268 		      EXT4_GET_BLOCKS_CONVERT | EXT4_GET_BLOCKS_CREATE_ZERO);
3269 		if (err < 0)
3270 			ret = err;
3271 		err2 = ext4_journal_stop(handle);
3272 		if (err2 < 0 && ret > 0)
3273 			ret = err2;
3274 	}
3275 out:
3276 	WARN_ON_ONCE(ret == 0 && create);
3277 	if (ret > 0) {
3278 		map_bh(bh_result, inode->i_sb, map.m_pblk);
3279 		/*
3280 		 * At least for now we have to clear BH_New so that DAX code
3281 		 * doesn't attempt to zero blocks again in a racy way.
3282 		 */
3283 		map.m_flags &= ~EXT4_MAP_NEW;
3284 		ext4_update_bh_state(bh_result, map.m_flags);
3285 		bh_result->b_size = map.m_len << inode->i_blkbits;
3286 		ret = 0;
3287 	}
3288 	return ret;
3289 }
3290 #endif
3291 
3292 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3293 			    ssize_t size, void *private)
3294 {
3295         ext4_io_end_t *io_end = private;
3296 
3297 	/* if not async direct IO just return */
3298 	if (!io_end)
3299 		return 0;
3300 
3301 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3302 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3303 		  io_end, io_end->inode->i_ino, iocb, offset, size);
3304 
3305 	/*
3306 	 * Error during AIO DIO. We cannot convert unwritten extents as the
3307 	 * data was not written. Just clear the unwritten flag and drop io_end.
3308 	 */
3309 	if (size <= 0) {
3310 		ext4_clear_io_unwritten_flag(io_end);
3311 		size = 0;
3312 	}
3313 	io_end->offset = offset;
3314 	io_end->size = size;
3315 	ext4_put_io_end(io_end);
3316 
3317 	return 0;
3318 }
3319 
3320 /*
3321  * For ext4 extent files, ext4 will do direct-io write to holes,
3322  * preallocated extents, and those write extend the file, no need to
3323  * fall back to buffered IO.
3324  *
3325  * For holes, we fallocate those blocks, mark them as unwritten
3326  * If those blocks were preallocated, we mark sure they are split, but
3327  * still keep the range to write as unwritten.
3328  *
3329  * The unwritten extents will be converted to written when DIO is completed.
3330  * For async direct IO, since the IO may still pending when return, we
3331  * set up an end_io call back function, which will do the conversion
3332  * when async direct IO completed.
3333  *
3334  * If the O_DIRECT write will extend the file then add this inode to the
3335  * orphan list.  So recovery will truncate it back to the original size
3336  * if the machine crashes during the write.
3337  *
3338  */
3339 static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3340 				  loff_t offset)
3341 {
3342 	struct file *file = iocb->ki_filp;
3343 	struct inode *inode = file->f_mapping->host;
3344 	ssize_t ret;
3345 	size_t count = iov_iter_count(iter);
3346 	int overwrite = 0;
3347 	get_block_t *get_block_func = NULL;
3348 	int dio_flags = 0;
3349 	loff_t final_size = offset + count;
3350 
3351 	/* Use the old path for reads and writes beyond i_size. */
3352 	if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size)
3353 		return ext4_ind_direct_IO(iocb, iter, offset);
3354 
3355 	BUG_ON(iocb->private == NULL);
3356 
3357 	/*
3358 	 * Make all waiters for direct IO properly wait also for extent
3359 	 * conversion. This also disallows race between truncate() and
3360 	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3361 	 */
3362 	if (iov_iter_rw(iter) == WRITE)
3363 		inode_dio_begin(inode);
3364 
3365 	/* If we do a overwrite dio, i_mutex locking can be released */
3366 	overwrite = *((int *)iocb->private);
3367 
3368 	if (overwrite)
3369 		inode_unlock(inode);
3370 
3371 	/*
3372 	 * We could direct write to holes and fallocate.
3373 	 *
3374 	 * Allocated blocks to fill the hole are marked as unwritten to prevent
3375 	 * parallel buffered read to expose the stale data before DIO complete
3376 	 * the data IO.
3377 	 *
3378 	 * As to previously fallocated extents, ext4 get_block will just simply
3379 	 * mark the buffer mapped but still keep the extents unwritten.
3380 	 *
3381 	 * For non AIO case, we will convert those unwritten extents to written
3382 	 * after return back from blockdev_direct_IO. That way we save us from
3383 	 * allocating io_end structure and also the overhead of offloading
3384 	 * the extent convertion to a workqueue.
3385 	 *
3386 	 * For async DIO, the conversion needs to be deferred when the
3387 	 * IO is completed. The ext4 end_io callback function will be
3388 	 * called to take care of the conversion work.  Here for async
3389 	 * case, we allocate an io_end structure to hook to the iocb.
3390 	 */
3391 	iocb->private = NULL;
3392 	if (overwrite)
3393 		get_block_func = ext4_dio_get_block_overwrite;
3394 	else if (is_sync_kiocb(iocb)) {
3395 		get_block_func = ext4_dio_get_block_unwritten_sync;
3396 		dio_flags = DIO_LOCKING;
3397 	} else {
3398 		get_block_func = ext4_dio_get_block_unwritten_async;
3399 		dio_flags = DIO_LOCKING;
3400 	}
3401 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3402 	BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3403 #endif
3404 	if (IS_DAX(inode))
3405 		ret = dax_do_io(iocb, inode, iter, offset, get_block_func,
3406 				ext4_end_io_dio, dio_flags);
3407 	else
3408 		ret = __blockdev_direct_IO(iocb, inode,
3409 					   inode->i_sb->s_bdev, iter, offset,
3410 					   get_block_func,
3411 					   ext4_end_io_dio, NULL, dio_flags);
3412 
3413 	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3414 						EXT4_STATE_DIO_UNWRITTEN)) {
3415 		int err;
3416 		/*
3417 		 * for non AIO case, since the IO is already
3418 		 * completed, we could do the conversion right here
3419 		 */
3420 		err = ext4_convert_unwritten_extents(NULL, inode,
3421 						     offset, ret);
3422 		if (err < 0)
3423 			ret = err;
3424 		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3425 	}
3426 
3427 	if (iov_iter_rw(iter) == WRITE)
3428 		inode_dio_end(inode);
3429 	/* take i_mutex locking again if we do a ovewrite dio */
3430 	if (overwrite)
3431 		inode_lock(inode);
3432 
3433 	return ret;
3434 }
3435 
3436 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3437 			      loff_t offset)
3438 {
3439 	struct file *file = iocb->ki_filp;
3440 	struct inode *inode = file->f_mapping->host;
3441 	size_t count = iov_iter_count(iter);
3442 	ssize_t ret;
3443 
3444 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3445 	if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3446 		return 0;
3447 #endif
3448 
3449 	/*
3450 	 * If we are doing data journalling we don't support O_DIRECT
3451 	 */
3452 	if (ext4_should_journal_data(inode))
3453 		return 0;
3454 
3455 	/* Let buffer I/O handle the inline data case. */
3456 	if (ext4_has_inline_data(inode))
3457 		return 0;
3458 
3459 	trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3460 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3461 		ret = ext4_ext_direct_IO(iocb, iter, offset);
3462 	else
3463 		ret = ext4_ind_direct_IO(iocb, iter, offset);
3464 	trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3465 	return ret;
3466 }
3467 
3468 /*
3469  * Pages can be marked dirty completely asynchronously from ext4's journalling
3470  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3471  * much here because ->set_page_dirty is called under VFS locks.  The page is
3472  * not necessarily locked.
3473  *
3474  * We cannot just dirty the page and leave attached buffers clean, because the
3475  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3476  * or jbddirty because all the journalling code will explode.
3477  *
3478  * So what we do is to mark the page "pending dirty" and next time writepage
3479  * is called, propagate that into the buffers appropriately.
3480  */
3481 static int ext4_journalled_set_page_dirty(struct page *page)
3482 {
3483 	SetPageChecked(page);
3484 	return __set_page_dirty_nobuffers(page);
3485 }
3486 
3487 static const struct address_space_operations ext4_aops = {
3488 	.readpage		= ext4_readpage,
3489 	.readpages		= ext4_readpages,
3490 	.writepage		= ext4_writepage,
3491 	.writepages		= ext4_writepages,
3492 	.write_begin		= ext4_write_begin,
3493 	.write_end		= ext4_write_end,
3494 	.bmap			= ext4_bmap,
3495 	.invalidatepage		= ext4_invalidatepage,
3496 	.releasepage		= ext4_releasepage,
3497 	.direct_IO		= ext4_direct_IO,
3498 	.migratepage		= buffer_migrate_page,
3499 	.is_partially_uptodate  = block_is_partially_uptodate,
3500 	.error_remove_page	= generic_error_remove_page,
3501 };
3502 
3503 static const struct address_space_operations ext4_journalled_aops = {
3504 	.readpage		= ext4_readpage,
3505 	.readpages		= ext4_readpages,
3506 	.writepage		= ext4_writepage,
3507 	.writepages		= ext4_writepages,
3508 	.write_begin		= ext4_write_begin,
3509 	.write_end		= ext4_journalled_write_end,
3510 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3511 	.bmap			= ext4_bmap,
3512 	.invalidatepage		= ext4_journalled_invalidatepage,
3513 	.releasepage		= ext4_releasepage,
3514 	.direct_IO		= ext4_direct_IO,
3515 	.is_partially_uptodate  = block_is_partially_uptodate,
3516 	.error_remove_page	= generic_error_remove_page,
3517 };
3518 
3519 static const struct address_space_operations ext4_da_aops = {
3520 	.readpage		= ext4_readpage,
3521 	.readpages		= ext4_readpages,
3522 	.writepage		= ext4_writepage,
3523 	.writepages		= ext4_writepages,
3524 	.write_begin		= ext4_da_write_begin,
3525 	.write_end		= ext4_da_write_end,
3526 	.bmap			= ext4_bmap,
3527 	.invalidatepage		= ext4_da_invalidatepage,
3528 	.releasepage		= ext4_releasepage,
3529 	.direct_IO		= ext4_direct_IO,
3530 	.migratepage		= buffer_migrate_page,
3531 	.is_partially_uptodate  = block_is_partially_uptodate,
3532 	.error_remove_page	= generic_error_remove_page,
3533 };
3534 
3535 void ext4_set_aops(struct inode *inode)
3536 {
3537 	switch (ext4_inode_journal_mode(inode)) {
3538 	case EXT4_INODE_ORDERED_DATA_MODE:
3539 		ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3540 		break;
3541 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3542 		ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3543 		break;
3544 	case EXT4_INODE_JOURNAL_DATA_MODE:
3545 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3546 		return;
3547 	default:
3548 		BUG();
3549 	}
3550 	if (test_opt(inode->i_sb, DELALLOC))
3551 		inode->i_mapping->a_ops = &ext4_da_aops;
3552 	else
3553 		inode->i_mapping->a_ops = &ext4_aops;
3554 }
3555 
3556 static int __ext4_block_zero_page_range(handle_t *handle,
3557 		struct address_space *mapping, loff_t from, loff_t length)
3558 {
3559 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3560 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3561 	unsigned blocksize, pos;
3562 	ext4_lblk_t iblock;
3563 	struct inode *inode = mapping->host;
3564 	struct buffer_head *bh;
3565 	struct page *page;
3566 	int err = 0;
3567 
3568 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3569 				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3570 	if (!page)
3571 		return -ENOMEM;
3572 
3573 	blocksize = inode->i_sb->s_blocksize;
3574 
3575 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3576 
3577 	if (!page_has_buffers(page))
3578 		create_empty_buffers(page, blocksize, 0);
3579 
3580 	/* Find the buffer that contains "offset" */
3581 	bh = page_buffers(page);
3582 	pos = blocksize;
3583 	while (offset >= pos) {
3584 		bh = bh->b_this_page;
3585 		iblock++;
3586 		pos += blocksize;
3587 	}
3588 	if (buffer_freed(bh)) {
3589 		BUFFER_TRACE(bh, "freed: skip");
3590 		goto unlock;
3591 	}
3592 	if (!buffer_mapped(bh)) {
3593 		BUFFER_TRACE(bh, "unmapped");
3594 		ext4_get_block(inode, iblock, bh, 0);
3595 		/* unmapped? It's a hole - nothing to do */
3596 		if (!buffer_mapped(bh)) {
3597 			BUFFER_TRACE(bh, "still unmapped");
3598 			goto unlock;
3599 		}
3600 	}
3601 
3602 	/* Ok, it's mapped. Make sure it's up-to-date */
3603 	if (PageUptodate(page))
3604 		set_buffer_uptodate(bh);
3605 
3606 	if (!buffer_uptodate(bh)) {
3607 		err = -EIO;
3608 		ll_rw_block(READ, 1, &bh);
3609 		wait_on_buffer(bh);
3610 		/* Uhhuh. Read error. Complain and punt. */
3611 		if (!buffer_uptodate(bh))
3612 			goto unlock;
3613 		if (S_ISREG(inode->i_mode) &&
3614 		    ext4_encrypted_inode(inode)) {
3615 			/* We expect the key to be set. */
3616 			BUG_ON(!ext4_has_encryption_key(inode));
3617 			BUG_ON(blocksize != PAGE_CACHE_SIZE);
3618 			WARN_ON_ONCE(ext4_decrypt(page));
3619 		}
3620 	}
3621 	if (ext4_should_journal_data(inode)) {
3622 		BUFFER_TRACE(bh, "get write access");
3623 		err = ext4_journal_get_write_access(handle, bh);
3624 		if (err)
3625 			goto unlock;
3626 	}
3627 	zero_user(page, offset, length);
3628 	BUFFER_TRACE(bh, "zeroed end of block");
3629 
3630 	if (ext4_should_journal_data(inode)) {
3631 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3632 	} else {
3633 		err = 0;
3634 		mark_buffer_dirty(bh);
3635 		if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3636 			err = ext4_jbd2_file_inode(handle, inode);
3637 	}
3638 
3639 unlock:
3640 	unlock_page(page);
3641 	page_cache_release(page);
3642 	return err;
3643 }
3644 
3645 /*
3646  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3647  * starting from file offset 'from'.  The range to be zero'd must
3648  * be contained with in one block.  If the specified range exceeds
3649  * the end of the block it will be shortened to end of the block
3650  * that cooresponds to 'from'
3651  */
3652 static int ext4_block_zero_page_range(handle_t *handle,
3653 		struct address_space *mapping, loff_t from, loff_t length)
3654 {
3655 	struct inode *inode = mapping->host;
3656 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3657 	unsigned blocksize = inode->i_sb->s_blocksize;
3658 	unsigned max = blocksize - (offset & (blocksize - 1));
3659 
3660 	/*
3661 	 * correct length if it does not fall between
3662 	 * 'from' and the end of the block
3663 	 */
3664 	if (length > max || length < 0)
3665 		length = max;
3666 
3667 	if (IS_DAX(inode))
3668 		return dax_zero_page_range(inode, from, length, ext4_get_block);
3669 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3670 }
3671 
3672 /*
3673  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3674  * up to the end of the block which corresponds to `from'.
3675  * This required during truncate. We need to physically zero the tail end
3676  * of that block so it doesn't yield old data if the file is later grown.
3677  */
3678 static int ext4_block_truncate_page(handle_t *handle,
3679 		struct address_space *mapping, loff_t from)
3680 {
3681 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3682 	unsigned length;
3683 	unsigned blocksize;
3684 	struct inode *inode = mapping->host;
3685 
3686 	blocksize = inode->i_sb->s_blocksize;
3687 	length = blocksize - (offset & (blocksize - 1));
3688 
3689 	return ext4_block_zero_page_range(handle, mapping, from, length);
3690 }
3691 
3692 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3693 			     loff_t lstart, loff_t length)
3694 {
3695 	struct super_block *sb = inode->i_sb;
3696 	struct address_space *mapping = inode->i_mapping;
3697 	unsigned partial_start, partial_end;
3698 	ext4_fsblk_t start, end;
3699 	loff_t byte_end = (lstart + length - 1);
3700 	int err = 0;
3701 
3702 	partial_start = lstart & (sb->s_blocksize - 1);
3703 	partial_end = byte_end & (sb->s_blocksize - 1);
3704 
3705 	start = lstart >> sb->s_blocksize_bits;
3706 	end = byte_end >> sb->s_blocksize_bits;
3707 
3708 	/* Handle partial zero within the single block */
3709 	if (start == end &&
3710 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3711 		err = ext4_block_zero_page_range(handle, mapping,
3712 						 lstart, length);
3713 		return err;
3714 	}
3715 	/* Handle partial zero out on the start of the range */
3716 	if (partial_start) {
3717 		err = ext4_block_zero_page_range(handle, mapping,
3718 						 lstart, sb->s_blocksize);
3719 		if (err)
3720 			return err;
3721 	}
3722 	/* Handle partial zero out on the end of the range */
3723 	if (partial_end != sb->s_blocksize - 1)
3724 		err = ext4_block_zero_page_range(handle, mapping,
3725 						 byte_end - partial_end,
3726 						 partial_end + 1);
3727 	return err;
3728 }
3729 
3730 int ext4_can_truncate(struct inode *inode)
3731 {
3732 	if (S_ISREG(inode->i_mode))
3733 		return 1;
3734 	if (S_ISDIR(inode->i_mode))
3735 		return 1;
3736 	if (S_ISLNK(inode->i_mode))
3737 		return !ext4_inode_is_fast_symlink(inode);
3738 	return 0;
3739 }
3740 
3741 /*
3742  * We have to make sure i_disksize gets properly updated before we truncate
3743  * page cache due to hole punching or zero range. Otherwise i_disksize update
3744  * can get lost as it may have been postponed to submission of writeback but
3745  * that will never happen after we truncate page cache.
3746  */
3747 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3748 				      loff_t len)
3749 {
3750 	handle_t *handle;
3751 	loff_t size = i_size_read(inode);
3752 
3753 	WARN_ON(!inode_is_locked(inode));
3754 	if (offset > size || offset + len < size)
3755 		return 0;
3756 
3757 	if (EXT4_I(inode)->i_disksize >= size)
3758 		return 0;
3759 
3760 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3761 	if (IS_ERR(handle))
3762 		return PTR_ERR(handle);
3763 	ext4_update_i_disksize(inode, size);
3764 	ext4_mark_inode_dirty(handle, inode);
3765 	ext4_journal_stop(handle);
3766 
3767 	return 0;
3768 }
3769 
3770 /*
3771  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3772  * associated with the given offset and length
3773  *
3774  * @inode:  File inode
3775  * @offset: The offset where the hole will begin
3776  * @len:    The length of the hole
3777  *
3778  * Returns: 0 on success or negative on failure
3779  */
3780 
3781 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3782 {
3783 	struct super_block *sb = inode->i_sb;
3784 	ext4_lblk_t first_block, stop_block;
3785 	struct address_space *mapping = inode->i_mapping;
3786 	loff_t first_block_offset, last_block_offset;
3787 	handle_t *handle;
3788 	unsigned int credits;
3789 	int ret = 0;
3790 
3791 	if (!S_ISREG(inode->i_mode))
3792 		return -EOPNOTSUPP;
3793 
3794 	trace_ext4_punch_hole(inode, offset, length, 0);
3795 
3796 	/*
3797 	 * Write out all dirty pages to avoid race conditions
3798 	 * Then release them.
3799 	 */
3800 	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3801 		ret = filemap_write_and_wait_range(mapping, offset,
3802 						   offset + length - 1);
3803 		if (ret)
3804 			return ret;
3805 	}
3806 
3807 	inode_lock(inode);
3808 
3809 	/* No need to punch hole beyond i_size */
3810 	if (offset >= inode->i_size)
3811 		goto out_mutex;
3812 
3813 	/*
3814 	 * If the hole extends beyond i_size, set the hole
3815 	 * to end after the page that contains i_size
3816 	 */
3817 	if (offset + length > inode->i_size) {
3818 		length = inode->i_size +
3819 		   PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3820 		   offset;
3821 	}
3822 
3823 	if (offset & (sb->s_blocksize - 1) ||
3824 	    (offset + length) & (sb->s_blocksize - 1)) {
3825 		/*
3826 		 * Attach jinode to inode for jbd2 if we do any zeroing of
3827 		 * partial block
3828 		 */
3829 		ret = ext4_inode_attach_jinode(inode);
3830 		if (ret < 0)
3831 			goto out_mutex;
3832 
3833 	}
3834 
3835 	/* Wait all existing dio workers, newcomers will block on i_mutex */
3836 	ext4_inode_block_unlocked_dio(inode);
3837 	inode_dio_wait(inode);
3838 
3839 	/*
3840 	 * Prevent page faults from reinstantiating pages we have released from
3841 	 * page cache.
3842 	 */
3843 	down_write(&EXT4_I(inode)->i_mmap_sem);
3844 	first_block_offset = round_up(offset, sb->s_blocksize);
3845 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3846 
3847 	/* Now release the pages and zero block aligned part of pages*/
3848 	if (last_block_offset > first_block_offset) {
3849 		ret = ext4_update_disksize_before_punch(inode, offset, length);
3850 		if (ret)
3851 			goto out_dio;
3852 		truncate_pagecache_range(inode, first_block_offset,
3853 					 last_block_offset);
3854 	}
3855 
3856 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3857 		credits = ext4_writepage_trans_blocks(inode);
3858 	else
3859 		credits = ext4_blocks_for_truncate(inode);
3860 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3861 	if (IS_ERR(handle)) {
3862 		ret = PTR_ERR(handle);
3863 		ext4_std_error(sb, ret);
3864 		goto out_dio;
3865 	}
3866 
3867 	ret = ext4_zero_partial_blocks(handle, inode, offset,
3868 				       length);
3869 	if (ret)
3870 		goto out_stop;
3871 
3872 	first_block = (offset + sb->s_blocksize - 1) >>
3873 		EXT4_BLOCK_SIZE_BITS(sb);
3874 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3875 
3876 	/* If there are no blocks to remove, return now */
3877 	if (first_block >= stop_block)
3878 		goto out_stop;
3879 
3880 	down_write(&EXT4_I(inode)->i_data_sem);
3881 	ext4_discard_preallocations(inode);
3882 
3883 	ret = ext4_es_remove_extent(inode, first_block,
3884 				    stop_block - first_block);
3885 	if (ret) {
3886 		up_write(&EXT4_I(inode)->i_data_sem);
3887 		goto out_stop;
3888 	}
3889 
3890 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3891 		ret = ext4_ext_remove_space(inode, first_block,
3892 					    stop_block - 1);
3893 	else
3894 		ret = ext4_ind_remove_space(handle, inode, first_block,
3895 					    stop_block);
3896 
3897 	up_write(&EXT4_I(inode)->i_data_sem);
3898 	if (IS_SYNC(inode))
3899 		ext4_handle_sync(handle);
3900 
3901 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3902 	ext4_mark_inode_dirty(handle, inode);
3903 out_stop:
3904 	ext4_journal_stop(handle);
3905 out_dio:
3906 	up_write(&EXT4_I(inode)->i_mmap_sem);
3907 	ext4_inode_resume_unlocked_dio(inode);
3908 out_mutex:
3909 	inode_unlock(inode);
3910 	return ret;
3911 }
3912 
3913 int ext4_inode_attach_jinode(struct inode *inode)
3914 {
3915 	struct ext4_inode_info *ei = EXT4_I(inode);
3916 	struct jbd2_inode *jinode;
3917 
3918 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3919 		return 0;
3920 
3921 	jinode = jbd2_alloc_inode(GFP_KERNEL);
3922 	spin_lock(&inode->i_lock);
3923 	if (!ei->jinode) {
3924 		if (!jinode) {
3925 			spin_unlock(&inode->i_lock);
3926 			return -ENOMEM;
3927 		}
3928 		ei->jinode = jinode;
3929 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
3930 		jinode = NULL;
3931 	}
3932 	spin_unlock(&inode->i_lock);
3933 	if (unlikely(jinode != NULL))
3934 		jbd2_free_inode(jinode);
3935 	return 0;
3936 }
3937 
3938 /*
3939  * ext4_truncate()
3940  *
3941  * We block out ext4_get_block() block instantiations across the entire
3942  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3943  * simultaneously on behalf of the same inode.
3944  *
3945  * As we work through the truncate and commit bits of it to the journal there
3946  * is one core, guiding principle: the file's tree must always be consistent on
3947  * disk.  We must be able to restart the truncate after a crash.
3948  *
3949  * The file's tree may be transiently inconsistent in memory (although it
3950  * probably isn't), but whenever we close off and commit a journal transaction,
3951  * the contents of (the filesystem + the journal) must be consistent and
3952  * restartable.  It's pretty simple, really: bottom up, right to left (although
3953  * left-to-right works OK too).
3954  *
3955  * Note that at recovery time, journal replay occurs *before* the restart of
3956  * truncate against the orphan inode list.
3957  *
3958  * The committed inode has the new, desired i_size (which is the same as
3959  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3960  * that this inode's truncate did not complete and it will again call
3961  * ext4_truncate() to have another go.  So there will be instantiated blocks
3962  * to the right of the truncation point in a crashed ext4 filesystem.  But
3963  * that's fine - as long as they are linked from the inode, the post-crash
3964  * ext4_truncate() run will find them and release them.
3965  */
3966 void ext4_truncate(struct inode *inode)
3967 {
3968 	struct ext4_inode_info *ei = EXT4_I(inode);
3969 	unsigned int credits;
3970 	handle_t *handle;
3971 	struct address_space *mapping = inode->i_mapping;
3972 
3973 	/*
3974 	 * There is a possibility that we're either freeing the inode
3975 	 * or it's a completely new inode. In those cases we might not
3976 	 * have i_mutex locked because it's not necessary.
3977 	 */
3978 	if (!(inode->i_state & (I_NEW|I_FREEING)))
3979 		WARN_ON(!inode_is_locked(inode));
3980 	trace_ext4_truncate_enter(inode);
3981 
3982 	if (!ext4_can_truncate(inode))
3983 		return;
3984 
3985 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3986 
3987 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3988 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3989 
3990 	if (ext4_has_inline_data(inode)) {
3991 		int has_inline = 1;
3992 
3993 		ext4_inline_data_truncate(inode, &has_inline);
3994 		if (has_inline)
3995 			return;
3996 	}
3997 
3998 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
3999 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4000 		if (ext4_inode_attach_jinode(inode) < 0)
4001 			return;
4002 	}
4003 
4004 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4005 		credits = ext4_writepage_trans_blocks(inode);
4006 	else
4007 		credits = ext4_blocks_for_truncate(inode);
4008 
4009 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4010 	if (IS_ERR(handle)) {
4011 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
4012 		return;
4013 	}
4014 
4015 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4016 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4017 
4018 	/*
4019 	 * We add the inode to the orphan list, so that if this
4020 	 * truncate spans multiple transactions, and we crash, we will
4021 	 * resume the truncate when the filesystem recovers.  It also
4022 	 * marks the inode dirty, to catch the new size.
4023 	 *
4024 	 * Implication: the file must always be in a sane, consistent
4025 	 * truncatable state while each transaction commits.
4026 	 */
4027 	if (ext4_orphan_add(handle, inode))
4028 		goto out_stop;
4029 
4030 	down_write(&EXT4_I(inode)->i_data_sem);
4031 
4032 	ext4_discard_preallocations(inode);
4033 
4034 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4035 		ext4_ext_truncate(handle, inode);
4036 	else
4037 		ext4_ind_truncate(handle, inode);
4038 
4039 	up_write(&ei->i_data_sem);
4040 
4041 	if (IS_SYNC(inode))
4042 		ext4_handle_sync(handle);
4043 
4044 out_stop:
4045 	/*
4046 	 * If this was a simple ftruncate() and the file will remain alive,
4047 	 * then we need to clear up the orphan record which we created above.
4048 	 * However, if this was a real unlink then we were called by
4049 	 * ext4_evict_inode(), and we allow that function to clean up the
4050 	 * orphan info for us.
4051 	 */
4052 	if (inode->i_nlink)
4053 		ext4_orphan_del(handle, inode);
4054 
4055 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4056 	ext4_mark_inode_dirty(handle, inode);
4057 	ext4_journal_stop(handle);
4058 
4059 	trace_ext4_truncate_exit(inode);
4060 }
4061 
4062 /*
4063  * ext4_get_inode_loc returns with an extra refcount against the inode's
4064  * underlying buffer_head on success. If 'in_mem' is true, we have all
4065  * data in memory that is needed to recreate the on-disk version of this
4066  * inode.
4067  */
4068 static int __ext4_get_inode_loc(struct inode *inode,
4069 				struct ext4_iloc *iloc, int in_mem)
4070 {
4071 	struct ext4_group_desc	*gdp;
4072 	struct buffer_head	*bh;
4073 	struct super_block	*sb = inode->i_sb;
4074 	ext4_fsblk_t		block;
4075 	int			inodes_per_block, inode_offset;
4076 
4077 	iloc->bh = NULL;
4078 	if (!ext4_valid_inum(sb, inode->i_ino))
4079 		return -EFSCORRUPTED;
4080 
4081 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4082 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4083 	if (!gdp)
4084 		return -EIO;
4085 
4086 	/*
4087 	 * Figure out the offset within the block group inode table
4088 	 */
4089 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4090 	inode_offset = ((inode->i_ino - 1) %
4091 			EXT4_INODES_PER_GROUP(sb));
4092 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4093 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4094 
4095 	bh = sb_getblk(sb, block);
4096 	if (unlikely(!bh))
4097 		return -ENOMEM;
4098 	if (!buffer_uptodate(bh)) {
4099 		lock_buffer(bh);
4100 
4101 		/*
4102 		 * If the buffer has the write error flag, we have failed
4103 		 * to write out another inode in the same block.  In this
4104 		 * case, we don't have to read the block because we may
4105 		 * read the old inode data successfully.
4106 		 */
4107 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4108 			set_buffer_uptodate(bh);
4109 
4110 		if (buffer_uptodate(bh)) {
4111 			/* someone brought it uptodate while we waited */
4112 			unlock_buffer(bh);
4113 			goto has_buffer;
4114 		}
4115 
4116 		/*
4117 		 * If we have all information of the inode in memory and this
4118 		 * is the only valid inode in the block, we need not read the
4119 		 * block.
4120 		 */
4121 		if (in_mem) {
4122 			struct buffer_head *bitmap_bh;
4123 			int i, start;
4124 
4125 			start = inode_offset & ~(inodes_per_block - 1);
4126 
4127 			/* Is the inode bitmap in cache? */
4128 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4129 			if (unlikely(!bitmap_bh))
4130 				goto make_io;
4131 
4132 			/*
4133 			 * If the inode bitmap isn't in cache then the
4134 			 * optimisation may end up performing two reads instead
4135 			 * of one, so skip it.
4136 			 */
4137 			if (!buffer_uptodate(bitmap_bh)) {
4138 				brelse(bitmap_bh);
4139 				goto make_io;
4140 			}
4141 			for (i = start; i < start + inodes_per_block; i++) {
4142 				if (i == inode_offset)
4143 					continue;
4144 				if (ext4_test_bit(i, bitmap_bh->b_data))
4145 					break;
4146 			}
4147 			brelse(bitmap_bh);
4148 			if (i == start + inodes_per_block) {
4149 				/* all other inodes are free, so skip I/O */
4150 				memset(bh->b_data, 0, bh->b_size);
4151 				set_buffer_uptodate(bh);
4152 				unlock_buffer(bh);
4153 				goto has_buffer;
4154 			}
4155 		}
4156 
4157 make_io:
4158 		/*
4159 		 * If we need to do any I/O, try to pre-readahead extra
4160 		 * blocks from the inode table.
4161 		 */
4162 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4163 			ext4_fsblk_t b, end, table;
4164 			unsigned num;
4165 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4166 
4167 			table = ext4_inode_table(sb, gdp);
4168 			/* s_inode_readahead_blks is always a power of 2 */
4169 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4170 			if (table > b)
4171 				b = table;
4172 			end = b + ra_blks;
4173 			num = EXT4_INODES_PER_GROUP(sb);
4174 			if (ext4_has_group_desc_csum(sb))
4175 				num -= ext4_itable_unused_count(sb, gdp);
4176 			table += num / inodes_per_block;
4177 			if (end > table)
4178 				end = table;
4179 			while (b <= end)
4180 				sb_breadahead(sb, b++);
4181 		}
4182 
4183 		/*
4184 		 * There are other valid inodes in the buffer, this inode
4185 		 * has in-inode xattrs, or we don't have this inode in memory.
4186 		 * Read the block from disk.
4187 		 */
4188 		trace_ext4_load_inode(inode);
4189 		get_bh(bh);
4190 		bh->b_end_io = end_buffer_read_sync;
4191 		submit_bh(READ | REQ_META | REQ_PRIO, bh);
4192 		wait_on_buffer(bh);
4193 		if (!buffer_uptodate(bh)) {
4194 			EXT4_ERROR_INODE_BLOCK(inode, block,
4195 					       "unable to read itable block");
4196 			brelse(bh);
4197 			return -EIO;
4198 		}
4199 	}
4200 has_buffer:
4201 	iloc->bh = bh;
4202 	return 0;
4203 }
4204 
4205 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4206 {
4207 	/* We have all inode data except xattrs in memory here. */
4208 	return __ext4_get_inode_loc(inode, iloc,
4209 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4210 }
4211 
4212 void ext4_set_inode_flags(struct inode *inode)
4213 {
4214 	unsigned int flags = EXT4_I(inode)->i_flags;
4215 	unsigned int new_fl = 0;
4216 
4217 	if (flags & EXT4_SYNC_FL)
4218 		new_fl |= S_SYNC;
4219 	if (flags & EXT4_APPEND_FL)
4220 		new_fl |= S_APPEND;
4221 	if (flags & EXT4_IMMUTABLE_FL)
4222 		new_fl |= S_IMMUTABLE;
4223 	if (flags & EXT4_NOATIME_FL)
4224 		new_fl |= S_NOATIME;
4225 	if (flags & EXT4_DIRSYNC_FL)
4226 		new_fl |= S_DIRSYNC;
4227 	if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode))
4228 		new_fl |= S_DAX;
4229 	inode_set_flags(inode, new_fl,
4230 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4231 }
4232 
4233 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4234 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4235 {
4236 	unsigned int vfs_fl;
4237 	unsigned long old_fl, new_fl;
4238 
4239 	do {
4240 		vfs_fl = ei->vfs_inode.i_flags;
4241 		old_fl = ei->i_flags;
4242 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4243 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4244 				EXT4_DIRSYNC_FL);
4245 		if (vfs_fl & S_SYNC)
4246 			new_fl |= EXT4_SYNC_FL;
4247 		if (vfs_fl & S_APPEND)
4248 			new_fl |= EXT4_APPEND_FL;
4249 		if (vfs_fl & S_IMMUTABLE)
4250 			new_fl |= EXT4_IMMUTABLE_FL;
4251 		if (vfs_fl & S_NOATIME)
4252 			new_fl |= EXT4_NOATIME_FL;
4253 		if (vfs_fl & S_DIRSYNC)
4254 			new_fl |= EXT4_DIRSYNC_FL;
4255 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4256 }
4257 
4258 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4259 				  struct ext4_inode_info *ei)
4260 {
4261 	blkcnt_t i_blocks ;
4262 	struct inode *inode = &(ei->vfs_inode);
4263 	struct super_block *sb = inode->i_sb;
4264 
4265 	if (ext4_has_feature_huge_file(sb)) {
4266 		/* we are using combined 48 bit field */
4267 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4268 					le32_to_cpu(raw_inode->i_blocks_lo);
4269 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4270 			/* i_blocks represent file system block size */
4271 			return i_blocks  << (inode->i_blkbits - 9);
4272 		} else {
4273 			return i_blocks;
4274 		}
4275 	} else {
4276 		return le32_to_cpu(raw_inode->i_blocks_lo);
4277 	}
4278 }
4279 
4280 static inline void ext4_iget_extra_inode(struct inode *inode,
4281 					 struct ext4_inode *raw_inode,
4282 					 struct ext4_inode_info *ei)
4283 {
4284 	__le32 *magic = (void *)raw_inode +
4285 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4286 	if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4287 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4288 		ext4_find_inline_data_nolock(inode);
4289 	} else
4290 		EXT4_I(inode)->i_inline_off = 0;
4291 }
4292 
4293 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4294 {
4295 	if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, EXT4_FEATURE_RO_COMPAT_PROJECT))
4296 		return -EOPNOTSUPP;
4297 	*projid = EXT4_I(inode)->i_projid;
4298 	return 0;
4299 }
4300 
4301 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4302 {
4303 	struct ext4_iloc iloc;
4304 	struct ext4_inode *raw_inode;
4305 	struct ext4_inode_info *ei;
4306 	struct inode *inode;
4307 	journal_t *journal = EXT4_SB(sb)->s_journal;
4308 	long ret;
4309 	int block;
4310 	uid_t i_uid;
4311 	gid_t i_gid;
4312 	projid_t i_projid;
4313 
4314 	inode = iget_locked(sb, ino);
4315 	if (!inode)
4316 		return ERR_PTR(-ENOMEM);
4317 	if (!(inode->i_state & I_NEW))
4318 		return inode;
4319 
4320 	ei = EXT4_I(inode);
4321 	iloc.bh = NULL;
4322 
4323 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4324 	if (ret < 0)
4325 		goto bad_inode;
4326 	raw_inode = ext4_raw_inode(&iloc);
4327 
4328 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4329 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4330 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4331 		    EXT4_INODE_SIZE(inode->i_sb)) {
4332 			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4333 				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4334 				EXT4_INODE_SIZE(inode->i_sb));
4335 			ret = -EFSCORRUPTED;
4336 			goto bad_inode;
4337 		}
4338 	} else
4339 		ei->i_extra_isize = 0;
4340 
4341 	/* Precompute checksum seed for inode metadata */
4342 	if (ext4_has_metadata_csum(sb)) {
4343 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4344 		__u32 csum;
4345 		__le32 inum = cpu_to_le32(inode->i_ino);
4346 		__le32 gen = raw_inode->i_generation;
4347 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4348 				   sizeof(inum));
4349 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4350 					      sizeof(gen));
4351 	}
4352 
4353 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4354 		EXT4_ERROR_INODE(inode, "checksum invalid");
4355 		ret = -EFSBADCRC;
4356 		goto bad_inode;
4357 	}
4358 
4359 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4360 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4361 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4362 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_PROJECT) &&
4363 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4364 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4365 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4366 	else
4367 		i_projid = EXT4_DEF_PROJID;
4368 
4369 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4370 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4371 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4372 	}
4373 	i_uid_write(inode, i_uid);
4374 	i_gid_write(inode, i_gid);
4375 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4376 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4377 
4378 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4379 	ei->i_inline_off = 0;
4380 	ei->i_dir_start_lookup = 0;
4381 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4382 	/* We now have enough fields to check if the inode was active or not.
4383 	 * This is needed because nfsd might try to access dead inodes
4384 	 * the test is that same one that e2fsck uses
4385 	 * NeilBrown 1999oct15
4386 	 */
4387 	if (inode->i_nlink == 0) {
4388 		if ((inode->i_mode == 0 ||
4389 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4390 		    ino != EXT4_BOOT_LOADER_INO) {
4391 			/* this inode is deleted */
4392 			ret = -ESTALE;
4393 			goto bad_inode;
4394 		}
4395 		/* The only unlinked inodes we let through here have
4396 		 * valid i_mode and are being read by the orphan
4397 		 * recovery code: that's fine, we're about to complete
4398 		 * the process of deleting those.
4399 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4400 		 * not initialized on a new filesystem. */
4401 	}
4402 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4403 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4404 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4405 	if (ext4_has_feature_64bit(sb))
4406 		ei->i_file_acl |=
4407 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4408 	inode->i_size = ext4_isize(raw_inode);
4409 	ei->i_disksize = inode->i_size;
4410 #ifdef CONFIG_QUOTA
4411 	ei->i_reserved_quota = 0;
4412 #endif
4413 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4414 	ei->i_block_group = iloc.block_group;
4415 	ei->i_last_alloc_group = ~0;
4416 	/*
4417 	 * NOTE! The in-memory inode i_data array is in little-endian order
4418 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4419 	 */
4420 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4421 		ei->i_data[block] = raw_inode->i_block[block];
4422 	INIT_LIST_HEAD(&ei->i_orphan);
4423 
4424 	/*
4425 	 * Set transaction id's of transactions that have to be committed
4426 	 * to finish f[data]sync. We set them to currently running transaction
4427 	 * as we cannot be sure that the inode or some of its metadata isn't
4428 	 * part of the transaction - the inode could have been reclaimed and
4429 	 * now it is reread from disk.
4430 	 */
4431 	if (journal) {
4432 		transaction_t *transaction;
4433 		tid_t tid;
4434 
4435 		read_lock(&journal->j_state_lock);
4436 		if (journal->j_running_transaction)
4437 			transaction = journal->j_running_transaction;
4438 		else
4439 			transaction = journal->j_committing_transaction;
4440 		if (transaction)
4441 			tid = transaction->t_tid;
4442 		else
4443 			tid = journal->j_commit_sequence;
4444 		read_unlock(&journal->j_state_lock);
4445 		ei->i_sync_tid = tid;
4446 		ei->i_datasync_tid = tid;
4447 	}
4448 
4449 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4450 		if (ei->i_extra_isize == 0) {
4451 			/* The extra space is currently unused. Use it. */
4452 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4453 					    EXT4_GOOD_OLD_INODE_SIZE;
4454 		} else {
4455 			ext4_iget_extra_inode(inode, raw_inode, ei);
4456 		}
4457 	}
4458 
4459 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4460 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4461 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4462 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4463 
4464 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4465 		inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4466 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4467 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4468 				inode->i_version |=
4469 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4470 		}
4471 	}
4472 
4473 	ret = 0;
4474 	if (ei->i_file_acl &&
4475 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4476 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4477 				 ei->i_file_acl);
4478 		ret = -EFSCORRUPTED;
4479 		goto bad_inode;
4480 	} else if (!ext4_has_inline_data(inode)) {
4481 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4482 			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4483 			    (S_ISLNK(inode->i_mode) &&
4484 			     !ext4_inode_is_fast_symlink(inode))))
4485 				/* Validate extent which is part of inode */
4486 				ret = ext4_ext_check_inode(inode);
4487 		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4488 			   (S_ISLNK(inode->i_mode) &&
4489 			    !ext4_inode_is_fast_symlink(inode))) {
4490 			/* Validate block references which are part of inode */
4491 			ret = ext4_ind_check_inode(inode);
4492 		}
4493 	}
4494 	if (ret)
4495 		goto bad_inode;
4496 
4497 	if (S_ISREG(inode->i_mode)) {
4498 		inode->i_op = &ext4_file_inode_operations;
4499 		inode->i_fop = &ext4_file_operations;
4500 		ext4_set_aops(inode);
4501 	} else if (S_ISDIR(inode->i_mode)) {
4502 		inode->i_op = &ext4_dir_inode_operations;
4503 		inode->i_fop = &ext4_dir_operations;
4504 	} else if (S_ISLNK(inode->i_mode)) {
4505 		if (ext4_encrypted_inode(inode)) {
4506 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4507 			ext4_set_aops(inode);
4508 		} else if (ext4_inode_is_fast_symlink(inode)) {
4509 			inode->i_link = (char *)ei->i_data;
4510 			inode->i_op = &ext4_fast_symlink_inode_operations;
4511 			nd_terminate_link(ei->i_data, inode->i_size,
4512 				sizeof(ei->i_data) - 1);
4513 		} else {
4514 			inode->i_op = &ext4_symlink_inode_operations;
4515 			ext4_set_aops(inode);
4516 		}
4517 		inode_nohighmem(inode);
4518 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4519 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4520 		inode->i_op = &ext4_special_inode_operations;
4521 		if (raw_inode->i_block[0])
4522 			init_special_inode(inode, inode->i_mode,
4523 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4524 		else
4525 			init_special_inode(inode, inode->i_mode,
4526 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4527 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4528 		make_bad_inode(inode);
4529 	} else {
4530 		ret = -EFSCORRUPTED;
4531 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4532 		goto bad_inode;
4533 	}
4534 	brelse(iloc.bh);
4535 	ext4_set_inode_flags(inode);
4536 	unlock_new_inode(inode);
4537 	return inode;
4538 
4539 bad_inode:
4540 	brelse(iloc.bh);
4541 	iget_failed(inode);
4542 	return ERR_PTR(ret);
4543 }
4544 
4545 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4546 {
4547 	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4548 		return ERR_PTR(-EFSCORRUPTED);
4549 	return ext4_iget(sb, ino);
4550 }
4551 
4552 static int ext4_inode_blocks_set(handle_t *handle,
4553 				struct ext4_inode *raw_inode,
4554 				struct ext4_inode_info *ei)
4555 {
4556 	struct inode *inode = &(ei->vfs_inode);
4557 	u64 i_blocks = inode->i_blocks;
4558 	struct super_block *sb = inode->i_sb;
4559 
4560 	if (i_blocks <= ~0U) {
4561 		/*
4562 		 * i_blocks can be represented in a 32 bit variable
4563 		 * as multiple of 512 bytes
4564 		 */
4565 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4566 		raw_inode->i_blocks_high = 0;
4567 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4568 		return 0;
4569 	}
4570 	if (!ext4_has_feature_huge_file(sb))
4571 		return -EFBIG;
4572 
4573 	if (i_blocks <= 0xffffffffffffULL) {
4574 		/*
4575 		 * i_blocks can be represented in a 48 bit variable
4576 		 * as multiple of 512 bytes
4577 		 */
4578 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4579 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4580 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4581 	} else {
4582 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4583 		/* i_block is stored in file system block size */
4584 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4585 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4586 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4587 	}
4588 	return 0;
4589 }
4590 
4591 struct other_inode {
4592 	unsigned long		orig_ino;
4593 	struct ext4_inode	*raw_inode;
4594 };
4595 
4596 static int other_inode_match(struct inode * inode, unsigned long ino,
4597 			     void *data)
4598 {
4599 	struct other_inode *oi = (struct other_inode *) data;
4600 
4601 	if ((inode->i_ino != ino) ||
4602 	    (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4603 			       I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4604 	    ((inode->i_state & I_DIRTY_TIME) == 0))
4605 		return 0;
4606 	spin_lock(&inode->i_lock);
4607 	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4608 				I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4609 	    (inode->i_state & I_DIRTY_TIME)) {
4610 		struct ext4_inode_info	*ei = EXT4_I(inode);
4611 
4612 		inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4613 		spin_unlock(&inode->i_lock);
4614 
4615 		spin_lock(&ei->i_raw_lock);
4616 		EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4617 		EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4618 		EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4619 		ext4_inode_csum_set(inode, oi->raw_inode, ei);
4620 		spin_unlock(&ei->i_raw_lock);
4621 		trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4622 		return -1;
4623 	}
4624 	spin_unlock(&inode->i_lock);
4625 	return -1;
4626 }
4627 
4628 /*
4629  * Opportunistically update the other time fields for other inodes in
4630  * the same inode table block.
4631  */
4632 static void ext4_update_other_inodes_time(struct super_block *sb,
4633 					  unsigned long orig_ino, char *buf)
4634 {
4635 	struct other_inode oi;
4636 	unsigned long ino;
4637 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4638 	int inode_size = EXT4_INODE_SIZE(sb);
4639 
4640 	oi.orig_ino = orig_ino;
4641 	/*
4642 	 * Calculate the first inode in the inode table block.  Inode
4643 	 * numbers are one-based.  That is, the first inode in a block
4644 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4645 	 */
4646 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4647 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4648 		if (ino == orig_ino)
4649 			continue;
4650 		oi.raw_inode = (struct ext4_inode *) buf;
4651 		(void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4652 	}
4653 }
4654 
4655 /*
4656  * Post the struct inode info into an on-disk inode location in the
4657  * buffer-cache.  This gobbles the caller's reference to the
4658  * buffer_head in the inode location struct.
4659  *
4660  * The caller must have write access to iloc->bh.
4661  */
4662 static int ext4_do_update_inode(handle_t *handle,
4663 				struct inode *inode,
4664 				struct ext4_iloc *iloc)
4665 {
4666 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4667 	struct ext4_inode_info *ei = EXT4_I(inode);
4668 	struct buffer_head *bh = iloc->bh;
4669 	struct super_block *sb = inode->i_sb;
4670 	int err = 0, rc, block;
4671 	int need_datasync = 0, set_large_file = 0;
4672 	uid_t i_uid;
4673 	gid_t i_gid;
4674 	projid_t i_projid;
4675 
4676 	spin_lock(&ei->i_raw_lock);
4677 
4678 	/* For fields not tracked in the in-memory inode,
4679 	 * initialise them to zero for new inodes. */
4680 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4681 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4682 
4683 	ext4_get_inode_flags(ei);
4684 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4685 	i_uid = i_uid_read(inode);
4686 	i_gid = i_gid_read(inode);
4687 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4688 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4689 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4690 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4691 /*
4692  * Fix up interoperability with old kernels. Otherwise, old inodes get
4693  * re-used with the upper 16 bits of the uid/gid intact
4694  */
4695 		if (!ei->i_dtime) {
4696 			raw_inode->i_uid_high =
4697 				cpu_to_le16(high_16_bits(i_uid));
4698 			raw_inode->i_gid_high =
4699 				cpu_to_le16(high_16_bits(i_gid));
4700 		} else {
4701 			raw_inode->i_uid_high = 0;
4702 			raw_inode->i_gid_high = 0;
4703 		}
4704 	} else {
4705 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4706 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4707 		raw_inode->i_uid_high = 0;
4708 		raw_inode->i_gid_high = 0;
4709 	}
4710 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4711 
4712 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4713 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4714 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4715 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4716 
4717 	err = ext4_inode_blocks_set(handle, raw_inode, ei);
4718 	if (err) {
4719 		spin_unlock(&ei->i_raw_lock);
4720 		goto out_brelse;
4721 	}
4722 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4723 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4724 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4725 		raw_inode->i_file_acl_high =
4726 			cpu_to_le16(ei->i_file_acl >> 32);
4727 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4728 	if (ei->i_disksize != ext4_isize(raw_inode)) {
4729 		ext4_isize_set(raw_inode, ei->i_disksize);
4730 		need_datasync = 1;
4731 	}
4732 	if (ei->i_disksize > 0x7fffffffULL) {
4733 		if (!ext4_has_feature_large_file(sb) ||
4734 				EXT4_SB(sb)->s_es->s_rev_level ==
4735 		    cpu_to_le32(EXT4_GOOD_OLD_REV))
4736 			set_large_file = 1;
4737 	}
4738 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4739 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4740 		if (old_valid_dev(inode->i_rdev)) {
4741 			raw_inode->i_block[0] =
4742 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4743 			raw_inode->i_block[1] = 0;
4744 		} else {
4745 			raw_inode->i_block[0] = 0;
4746 			raw_inode->i_block[1] =
4747 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4748 			raw_inode->i_block[2] = 0;
4749 		}
4750 	} else if (!ext4_has_inline_data(inode)) {
4751 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4752 			raw_inode->i_block[block] = ei->i_data[block];
4753 	}
4754 
4755 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4756 		raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4757 		if (ei->i_extra_isize) {
4758 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4759 				raw_inode->i_version_hi =
4760 					cpu_to_le32(inode->i_version >> 32);
4761 			raw_inode->i_extra_isize =
4762 				cpu_to_le16(ei->i_extra_isize);
4763 		}
4764 	}
4765 
4766 	BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
4767 			EXT4_FEATURE_RO_COMPAT_PROJECT) &&
4768 	       i_projid != EXT4_DEF_PROJID);
4769 
4770 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4771 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4772 		raw_inode->i_projid = cpu_to_le32(i_projid);
4773 
4774 	ext4_inode_csum_set(inode, raw_inode, ei);
4775 	spin_unlock(&ei->i_raw_lock);
4776 	if (inode->i_sb->s_flags & MS_LAZYTIME)
4777 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4778 					      bh->b_data);
4779 
4780 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4781 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4782 	if (!err)
4783 		err = rc;
4784 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4785 	if (set_large_file) {
4786 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4787 		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4788 		if (err)
4789 			goto out_brelse;
4790 		ext4_update_dynamic_rev(sb);
4791 		ext4_set_feature_large_file(sb);
4792 		ext4_handle_sync(handle);
4793 		err = ext4_handle_dirty_super(handle, sb);
4794 	}
4795 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4796 out_brelse:
4797 	brelse(bh);
4798 	ext4_std_error(inode->i_sb, err);
4799 	return err;
4800 }
4801 
4802 /*
4803  * ext4_write_inode()
4804  *
4805  * We are called from a few places:
4806  *
4807  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4808  *   Here, there will be no transaction running. We wait for any running
4809  *   transaction to commit.
4810  *
4811  * - Within flush work (sys_sync(), kupdate and such).
4812  *   We wait on commit, if told to.
4813  *
4814  * - Within iput_final() -> write_inode_now()
4815  *   We wait on commit, if told to.
4816  *
4817  * In all cases it is actually safe for us to return without doing anything,
4818  * because the inode has been copied into a raw inode buffer in
4819  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4820  * writeback.
4821  *
4822  * Note that we are absolutely dependent upon all inode dirtiers doing the
4823  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4824  * which we are interested.
4825  *
4826  * It would be a bug for them to not do this.  The code:
4827  *
4828  *	mark_inode_dirty(inode)
4829  *	stuff();
4830  *	inode->i_size = expr;
4831  *
4832  * is in error because write_inode() could occur while `stuff()' is running,
4833  * and the new i_size will be lost.  Plus the inode will no longer be on the
4834  * superblock's dirty inode list.
4835  */
4836 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4837 {
4838 	int err;
4839 
4840 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4841 		return 0;
4842 
4843 	if (EXT4_SB(inode->i_sb)->s_journal) {
4844 		if (ext4_journal_current_handle()) {
4845 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4846 			dump_stack();
4847 			return -EIO;
4848 		}
4849 
4850 		/*
4851 		 * No need to force transaction in WB_SYNC_NONE mode. Also
4852 		 * ext4_sync_fs() will force the commit after everything is
4853 		 * written.
4854 		 */
4855 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4856 			return 0;
4857 
4858 		err = ext4_force_commit(inode->i_sb);
4859 	} else {
4860 		struct ext4_iloc iloc;
4861 
4862 		err = __ext4_get_inode_loc(inode, &iloc, 0);
4863 		if (err)
4864 			return err;
4865 		/*
4866 		 * sync(2) will flush the whole buffer cache. No need to do
4867 		 * it here separately for each inode.
4868 		 */
4869 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4870 			sync_dirty_buffer(iloc.bh);
4871 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4872 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4873 					 "IO error syncing inode");
4874 			err = -EIO;
4875 		}
4876 		brelse(iloc.bh);
4877 	}
4878 	return err;
4879 }
4880 
4881 /*
4882  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4883  * buffers that are attached to a page stradding i_size and are undergoing
4884  * commit. In that case we have to wait for commit to finish and try again.
4885  */
4886 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4887 {
4888 	struct page *page;
4889 	unsigned offset;
4890 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4891 	tid_t commit_tid = 0;
4892 	int ret;
4893 
4894 	offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4895 	/*
4896 	 * All buffers in the last page remain valid? Then there's nothing to
4897 	 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4898 	 * blocksize case
4899 	 */
4900 	if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4901 		return;
4902 	while (1) {
4903 		page = find_lock_page(inode->i_mapping,
4904 				      inode->i_size >> PAGE_CACHE_SHIFT);
4905 		if (!page)
4906 			return;
4907 		ret = __ext4_journalled_invalidatepage(page, offset,
4908 						PAGE_CACHE_SIZE - offset);
4909 		unlock_page(page);
4910 		page_cache_release(page);
4911 		if (ret != -EBUSY)
4912 			return;
4913 		commit_tid = 0;
4914 		read_lock(&journal->j_state_lock);
4915 		if (journal->j_committing_transaction)
4916 			commit_tid = journal->j_committing_transaction->t_tid;
4917 		read_unlock(&journal->j_state_lock);
4918 		if (commit_tid)
4919 			jbd2_log_wait_commit(journal, commit_tid);
4920 	}
4921 }
4922 
4923 /*
4924  * ext4_setattr()
4925  *
4926  * Called from notify_change.
4927  *
4928  * We want to trap VFS attempts to truncate the file as soon as
4929  * possible.  In particular, we want to make sure that when the VFS
4930  * shrinks i_size, we put the inode on the orphan list and modify
4931  * i_disksize immediately, so that during the subsequent flushing of
4932  * dirty pages and freeing of disk blocks, we can guarantee that any
4933  * commit will leave the blocks being flushed in an unused state on
4934  * disk.  (On recovery, the inode will get truncated and the blocks will
4935  * be freed, so we have a strong guarantee that no future commit will
4936  * leave these blocks visible to the user.)
4937  *
4938  * Another thing we have to assure is that if we are in ordered mode
4939  * and inode is still attached to the committing transaction, we must
4940  * we start writeout of all the dirty pages which are being truncated.
4941  * This way we are sure that all the data written in the previous
4942  * transaction are already on disk (truncate waits for pages under
4943  * writeback).
4944  *
4945  * Called with inode->i_mutex down.
4946  */
4947 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4948 {
4949 	struct inode *inode = d_inode(dentry);
4950 	int error, rc = 0;
4951 	int orphan = 0;
4952 	const unsigned int ia_valid = attr->ia_valid;
4953 
4954 	error = inode_change_ok(inode, attr);
4955 	if (error)
4956 		return error;
4957 
4958 	if (is_quota_modification(inode, attr)) {
4959 		error = dquot_initialize(inode);
4960 		if (error)
4961 			return error;
4962 	}
4963 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4964 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4965 		handle_t *handle;
4966 
4967 		/* (user+group)*(old+new) structure, inode write (sb,
4968 		 * inode block, ? - but truncate inode update has it) */
4969 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4970 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4971 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4972 		if (IS_ERR(handle)) {
4973 			error = PTR_ERR(handle);
4974 			goto err_out;
4975 		}
4976 		error = dquot_transfer(inode, attr);
4977 		if (error) {
4978 			ext4_journal_stop(handle);
4979 			return error;
4980 		}
4981 		/* Update corresponding info in inode so that everything is in
4982 		 * one transaction */
4983 		if (attr->ia_valid & ATTR_UID)
4984 			inode->i_uid = attr->ia_uid;
4985 		if (attr->ia_valid & ATTR_GID)
4986 			inode->i_gid = attr->ia_gid;
4987 		error = ext4_mark_inode_dirty(handle, inode);
4988 		ext4_journal_stop(handle);
4989 	}
4990 
4991 	if (attr->ia_valid & ATTR_SIZE) {
4992 		handle_t *handle;
4993 		loff_t oldsize = inode->i_size;
4994 		int shrink = (attr->ia_size <= inode->i_size);
4995 
4996 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4997 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4998 
4999 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
5000 				return -EFBIG;
5001 		}
5002 		if (!S_ISREG(inode->i_mode))
5003 			return -EINVAL;
5004 
5005 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5006 			inode_inc_iversion(inode);
5007 
5008 		if (ext4_should_order_data(inode) &&
5009 		    (attr->ia_size < inode->i_size)) {
5010 			error = ext4_begin_ordered_truncate(inode,
5011 							    attr->ia_size);
5012 			if (error)
5013 				goto err_out;
5014 		}
5015 		if (attr->ia_size != inode->i_size) {
5016 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5017 			if (IS_ERR(handle)) {
5018 				error = PTR_ERR(handle);
5019 				goto err_out;
5020 			}
5021 			if (ext4_handle_valid(handle) && shrink) {
5022 				error = ext4_orphan_add(handle, inode);
5023 				orphan = 1;
5024 			}
5025 			/*
5026 			 * Update c/mtime on truncate up, ext4_truncate() will
5027 			 * update c/mtime in shrink case below
5028 			 */
5029 			if (!shrink) {
5030 				inode->i_mtime = ext4_current_time(inode);
5031 				inode->i_ctime = inode->i_mtime;
5032 			}
5033 			down_write(&EXT4_I(inode)->i_data_sem);
5034 			EXT4_I(inode)->i_disksize = attr->ia_size;
5035 			rc = ext4_mark_inode_dirty(handle, inode);
5036 			if (!error)
5037 				error = rc;
5038 			/*
5039 			 * We have to update i_size under i_data_sem together
5040 			 * with i_disksize to avoid races with writeback code
5041 			 * running ext4_wb_update_i_disksize().
5042 			 */
5043 			if (!error)
5044 				i_size_write(inode, attr->ia_size);
5045 			up_write(&EXT4_I(inode)->i_data_sem);
5046 			ext4_journal_stop(handle);
5047 			if (error) {
5048 				if (orphan)
5049 					ext4_orphan_del(NULL, inode);
5050 				goto err_out;
5051 			}
5052 		}
5053 		if (!shrink)
5054 			pagecache_isize_extended(inode, oldsize, inode->i_size);
5055 
5056 		/*
5057 		 * Blocks are going to be removed from the inode. Wait
5058 		 * for dio in flight.  Temporarily disable
5059 		 * dioread_nolock to prevent livelock.
5060 		 */
5061 		if (orphan) {
5062 			if (!ext4_should_journal_data(inode)) {
5063 				ext4_inode_block_unlocked_dio(inode);
5064 				inode_dio_wait(inode);
5065 				ext4_inode_resume_unlocked_dio(inode);
5066 			} else
5067 				ext4_wait_for_tail_page_commit(inode);
5068 		}
5069 		down_write(&EXT4_I(inode)->i_mmap_sem);
5070 		/*
5071 		 * Truncate pagecache after we've waited for commit
5072 		 * in data=journal mode to make pages freeable.
5073 		 */
5074 		truncate_pagecache(inode, inode->i_size);
5075 		if (shrink)
5076 			ext4_truncate(inode);
5077 		up_write(&EXT4_I(inode)->i_mmap_sem);
5078 	}
5079 
5080 	if (!rc) {
5081 		setattr_copy(inode, attr);
5082 		mark_inode_dirty(inode);
5083 	}
5084 
5085 	/*
5086 	 * If the call to ext4_truncate failed to get a transaction handle at
5087 	 * all, we need to clean up the in-core orphan list manually.
5088 	 */
5089 	if (orphan && inode->i_nlink)
5090 		ext4_orphan_del(NULL, inode);
5091 
5092 	if (!rc && (ia_valid & ATTR_MODE))
5093 		rc = posix_acl_chmod(inode, inode->i_mode);
5094 
5095 err_out:
5096 	ext4_std_error(inode->i_sb, error);
5097 	if (!error)
5098 		error = rc;
5099 	return error;
5100 }
5101 
5102 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5103 		 struct kstat *stat)
5104 {
5105 	struct inode *inode;
5106 	unsigned long long delalloc_blocks;
5107 
5108 	inode = d_inode(dentry);
5109 	generic_fillattr(inode, stat);
5110 
5111 	/*
5112 	 * If there is inline data in the inode, the inode will normally not
5113 	 * have data blocks allocated (it may have an external xattr block).
5114 	 * Report at least one sector for such files, so tools like tar, rsync,
5115 	 * others doen't incorrectly think the file is completely sparse.
5116 	 */
5117 	if (unlikely(ext4_has_inline_data(inode)))
5118 		stat->blocks += (stat->size + 511) >> 9;
5119 
5120 	/*
5121 	 * We can't update i_blocks if the block allocation is delayed
5122 	 * otherwise in the case of system crash before the real block
5123 	 * allocation is done, we will have i_blocks inconsistent with
5124 	 * on-disk file blocks.
5125 	 * We always keep i_blocks updated together with real
5126 	 * allocation. But to not confuse with user, stat
5127 	 * will return the blocks that include the delayed allocation
5128 	 * blocks for this file.
5129 	 */
5130 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5131 				   EXT4_I(inode)->i_reserved_data_blocks);
5132 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5133 	return 0;
5134 }
5135 
5136 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5137 				   int pextents)
5138 {
5139 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5140 		return ext4_ind_trans_blocks(inode, lblocks);
5141 	return ext4_ext_index_trans_blocks(inode, pextents);
5142 }
5143 
5144 /*
5145  * Account for index blocks, block groups bitmaps and block group
5146  * descriptor blocks if modify datablocks and index blocks
5147  * worse case, the indexs blocks spread over different block groups
5148  *
5149  * If datablocks are discontiguous, they are possible to spread over
5150  * different block groups too. If they are contiguous, with flexbg,
5151  * they could still across block group boundary.
5152  *
5153  * Also account for superblock, inode, quota and xattr blocks
5154  */
5155 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5156 				  int pextents)
5157 {
5158 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5159 	int gdpblocks;
5160 	int idxblocks;
5161 	int ret = 0;
5162 
5163 	/*
5164 	 * How many index blocks need to touch to map @lblocks logical blocks
5165 	 * to @pextents physical extents?
5166 	 */
5167 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5168 
5169 	ret = idxblocks;
5170 
5171 	/*
5172 	 * Now let's see how many group bitmaps and group descriptors need
5173 	 * to account
5174 	 */
5175 	groups = idxblocks + pextents;
5176 	gdpblocks = groups;
5177 	if (groups > ngroups)
5178 		groups = ngroups;
5179 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5180 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5181 
5182 	/* bitmaps and block group descriptor blocks */
5183 	ret += groups + gdpblocks;
5184 
5185 	/* Blocks for super block, inode, quota and xattr blocks */
5186 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5187 
5188 	return ret;
5189 }
5190 
5191 /*
5192  * Calculate the total number of credits to reserve to fit
5193  * the modification of a single pages into a single transaction,
5194  * which may include multiple chunks of block allocations.
5195  *
5196  * This could be called via ext4_write_begin()
5197  *
5198  * We need to consider the worse case, when
5199  * one new block per extent.
5200  */
5201 int ext4_writepage_trans_blocks(struct inode *inode)
5202 {
5203 	int bpp = ext4_journal_blocks_per_page(inode);
5204 	int ret;
5205 
5206 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5207 
5208 	/* Account for data blocks for journalled mode */
5209 	if (ext4_should_journal_data(inode))
5210 		ret += bpp;
5211 	return ret;
5212 }
5213 
5214 /*
5215  * Calculate the journal credits for a chunk of data modification.
5216  *
5217  * This is called from DIO, fallocate or whoever calling
5218  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5219  *
5220  * journal buffers for data blocks are not included here, as DIO
5221  * and fallocate do no need to journal data buffers.
5222  */
5223 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5224 {
5225 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5226 }
5227 
5228 /*
5229  * The caller must have previously called ext4_reserve_inode_write().
5230  * Give this, we know that the caller already has write access to iloc->bh.
5231  */
5232 int ext4_mark_iloc_dirty(handle_t *handle,
5233 			 struct inode *inode, struct ext4_iloc *iloc)
5234 {
5235 	int err = 0;
5236 
5237 	if (IS_I_VERSION(inode))
5238 		inode_inc_iversion(inode);
5239 
5240 	/* the do_update_inode consumes one bh->b_count */
5241 	get_bh(iloc->bh);
5242 
5243 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5244 	err = ext4_do_update_inode(handle, inode, iloc);
5245 	put_bh(iloc->bh);
5246 	return err;
5247 }
5248 
5249 /*
5250  * On success, We end up with an outstanding reference count against
5251  * iloc->bh.  This _must_ be cleaned up later.
5252  */
5253 
5254 int
5255 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5256 			 struct ext4_iloc *iloc)
5257 {
5258 	int err;
5259 
5260 	err = ext4_get_inode_loc(inode, iloc);
5261 	if (!err) {
5262 		BUFFER_TRACE(iloc->bh, "get_write_access");
5263 		err = ext4_journal_get_write_access(handle, iloc->bh);
5264 		if (err) {
5265 			brelse(iloc->bh);
5266 			iloc->bh = NULL;
5267 		}
5268 	}
5269 	ext4_std_error(inode->i_sb, err);
5270 	return err;
5271 }
5272 
5273 /*
5274  * Expand an inode by new_extra_isize bytes.
5275  * Returns 0 on success or negative error number on failure.
5276  */
5277 static int ext4_expand_extra_isize(struct inode *inode,
5278 				   unsigned int new_extra_isize,
5279 				   struct ext4_iloc iloc,
5280 				   handle_t *handle)
5281 {
5282 	struct ext4_inode *raw_inode;
5283 	struct ext4_xattr_ibody_header *header;
5284 
5285 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5286 		return 0;
5287 
5288 	raw_inode = ext4_raw_inode(&iloc);
5289 
5290 	header = IHDR(inode, raw_inode);
5291 
5292 	/* No extended attributes present */
5293 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5294 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5295 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5296 			new_extra_isize);
5297 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5298 		return 0;
5299 	}
5300 
5301 	/* try to expand with EAs present */
5302 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5303 					  raw_inode, handle);
5304 }
5305 
5306 /*
5307  * What we do here is to mark the in-core inode as clean with respect to inode
5308  * dirtiness (it may still be data-dirty).
5309  * This means that the in-core inode may be reaped by prune_icache
5310  * without having to perform any I/O.  This is a very good thing,
5311  * because *any* task may call prune_icache - even ones which
5312  * have a transaction open against a different journal.
5313  *
5314  * Is this cheating?  Not really.  Sure, we haven't written the
5315  * inode out, but prune_icache isn't a user-visible syncing function.
5316  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5317  * we start and wait on commits.
5318  */
5319 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5320 {
5321 	struct ext4_iloc iloc;
5322 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5323 	static unsigned int mnt_count;
5324 	int err, ret;
5325 
5326 	might_sleep();
5327 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5328 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5329 	if (err)
5330 		return err;
5331 	if (ext4_handle_valid(handle) &&
5332 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5333 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5334 		/*
5335 		 * We need extra buffer credits since we may write into EA block
5336 		 * with this same handle. If journal_extend fails, then it will
5337 		 * only result in a minor loss of functionality for that inode.
5338 		 * If this is felt to be critical, then e2fsck should be run to
5339 		 * force a large enough s_min_extra_isize.
5340 		 */
5341 		if ((jbd2_journal_extend(handle,
5342 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5343 			ret = ext4_expand_extra_isize(inode,
5344 						      sbi->s_want_extra_isize,
5345 						      iloc, handle);
5346 			if (ret) {
5347 				ext4_set_inode_state(inode,
5348 						     EXT4_STATE_NO_EXPAND);
5349 				if (mnt_count !=
5350 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5351 					ext4_warning(inode->i_sb,
5352 					"Unable to expand inode %lu. Delete"
5353 					" some EAs or run e2fsck.",
5354 					inode->i_ino);
5355 					mnt_count =
5356 					  le16_to_cpu(sbi->s_es->s_mnt_count);
5357 				}
5358 			}
5359 		}
5360 	}
5361 	return ext4_mark_iloc_dirty(handle, inode, &iloc);
5362 }
5363 
5364 /*
5365  * ext4_dirty_inode() is called from __mark_inode_dirty()
5366  *
5367  * We're really interested in the case where a file is being extended.
5368  * i_size has been changed by generic_commit_write() and we thus need
5369  * to include the updated inode in the current transaction.
5370  *
5371  * Also, dquot_alloc_block() will always dirty the inode when blocks
5372  * are allocated to the file.
5373  *
5374  * If the inode is marked synchronous, we don't honour that here - doing
5375  * so would cause a commit on atime updates, which we don't bother doing.
5376  * We handle synchronous inodes at the highest possible level.
5377  *
5378  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5379  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5380  * to copy into the on-disk inode structure are the timestamp files.
5381  */
5382 void ext4_dirty_inode(struct inode *inode, int flags)
5383 {
5384 	handle_t *handle;
5385 
5386 	if (flags == I_DIRTY_TIME)
5387 		return;
5388 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5389 	if (IS_ERR(handle))
5390 		goto out;
5391 
5392 	ext4_mark_inode_dirty(handle, inode);
5393 
5394 	ext4_journal_stop(handle);
5395 out:
5396 	return;
5397 }
5398 
5399 #if 0
5400 /*
5401  * Bind an inode's backing buffer_head into this transaction, to prevent
5402  * it from being flushed to disk early.  Unlike
5403  * ext4_reserve_inode_write, this leaves behind no bh reference and
5404  * returns no iloc structure, so the caller needs to repeat the iloc
5405  * lookup to mark the inode dirty later.
5406  */
5407 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5408 {
5409 	struct ext4_iloc iloc;
5410 
5411 	int err = 0;
5412 	if (handle) {
5413 		err = ext4_get_inode_loc(inode, &iloc);
5414 		if (!err) {
5415 			BUFFER_TRACE(iloc.bh, "get_write_access");
5416 			err = jbd2_journal_get_write_access(handle, iloc.bh);
5417 			if (!err)
5418 				err = ext4_handle_dirty_metadata(handle,
5419 								 NULL,
5420 								 iloc.bh);
5421 			brelse(iloc.bh);
5422 		}
5423 	}
5424 	ext4_std_error(inode->i_sb, err);
5425 	return err;
5426 }
5427 #endif
5428 
5429 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5430 {
5431 	journal_t *journal;
5432 	handle_t *handle;
5433 	int err;
5434 
5435 	/*
5436 	 * We have to be very careful here: changing a data block's
5437 	 * journaling status dynamically is dangerous.  If we write a
5438 	 * data block to the journal, change the status and then delete
5439 	 * that block, we risk forgetting to revoke the old log record
5440 	 * from the journal and so a subsequent replay can corrupt data.
5441 	 * So, first we make sure that the journal is empty and that
5442 	 * nobody is changing anything.
5443 	 */
5444 
5445 	journal = EXT4_JOURNAL(inode);
5446 	if (!journal)
5447 		return 0;
5448 	if (is_journal_aborted(journal))
5449 		return -EROFS;
5450 	/* We have to allocate physical blocks for delalloc blocks
5451 	 * before flushing journal. otherwise delalloc blocks can not
5452 	 * be allocated any more. even more truncate on delalloc blocks
5453 	 * could trigger BUG by flushing delalloc blocks in journal.
5454 	 * There is no delalloc block in non-journal data mode.
5455 	 */
5456 	if (val && test_opt(inode->i_sb, DELALLOC)) {
5457 		err = ext4_alloc_da_blocks(inode);
5458 		if (err < 0)
5459 			return err;
5460 	}
5461 
5462 	/* Wait for all existing dio workers */
5463 	ext4_inode_block_unlocked_dio(inode);
5464 	inode_dio_wait(inode);
5465 
5466 	jbd2_journal_lock_updates(journal);
5467 
5468 	/*
5469 	 * OK, there are no updates running now, and all cached data is
5470 	 * synced to disk.  We are now in a completely consistent state
5471 	 * which doesn't have anything in the journal, and we know that
5472 	 * no filesystem updates are running, so it is safe to modify
5473 	 * the inode's in-core data-journaling state flag now.
5474 	 */
5475 
5476 	if (val)
5477 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5478 	else {
5479 		err = jbd2_journal_flush(journal);
5480 		if (err < 0) {
5481 			jbd2_journal_unlock_updates(journal);
5482 			ext4_inode_resume_unlocked_dio(inode);
5483 			return err;
5484 		}
5485 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5486 	}
5487 	ext4_set_aops(inode);
5488 
5489 	jbd2_journal_unlock_updates(journal);
5490 	ext4_inode_resume_unlocked_dio(inode);
5491 
5492 	/* Finally we can mark the inode as dirty. */
5493 
5494 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5495 	if (IS_ERR(handle))
5496 		return PTR_ERR(handle);
5497 
5498 	err = ext4_mark_inode_dirty(handle, inode);
5499 	ext4_handle_sync(handle);
5500 	ext4_journal_stop(handle);
5501 	ext4_std_error(inode->i_sb, err);
5502 
5503 	return err;
5504 }
5505 
5506 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5507 {
5508 	return !buffer_mapped(bh);
5509 }
5510 
5511 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5512 {
5513 	struct page *page = vmf->page;
5514 	loff_t size;
5515 	unsigned long len;
5516 	int ret;
5517 	struct file *file = vma->vm_file;
5518 	struct inode *inode = file_inode(file);
5519 	struct address_space *mapping = inode->i_mapping;
5520 	handle_t *handle;
5521 	get_block_t *get_block;
5522 	int retries = 0;
5523 
5524 	sb_start_pagefault(inode->i_sb);
5525 	file_update_time(vma->vm_file);
5526 
5527 	down_read(&EXT4_I(inode)->i_mmap_sem);
5528 	/* Delalloc case is easy... */
5529 	if (test_opt(inode->i_sb, DELALLOC) &&
5530 	    !ext4_should_journal_data(inode) &&
5531 	    !ext4_nonda_switch(inode->i_sb)) {
5532 		do {
5533 			ret = block_page_mkwrite(vma, vmf,
5534 						   ext4_da_get_block_prep);
5535 		} while (ret == -ENOSPC &&
5536 		       ext4_should_retry_alloc(inode->i_sb, &retries));
5537 		goto out_ret;
5538 	}
5539 
5540 	lock_page(page);
5541 	size = i_size_read(inode);
5542 	/* Page got truncated from under us? */
5543 	if (page->mapping != mapping || page_offset(page) > size) {
5544 		unlock_page(page);
5545 		ret = VM_FAULT_NOPAGE;
5546 		goto out;
5547 	}
5548 
5549 	if (page->index == size >> PAGE_CACHE_SHIFT)
5550 		len = size & ~PAGE_CACHE_MASK;
5551 	else
5552 		len = PAGE_CACHE_SIZE;
5553 	/*
5554 	 * Return if we have all the buffers mapped. This avoids the need to do
5555 	 * journal_start/journal_stop which can block and take a long time
5556 	 */
5557 	if (page_has_buffers(page)) {
5558 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5559 					    0, len, NULL,
5560 					    ext4_bh_unmapped)) {
5561 			/* Wait so that we don't change page under IO */
5562 			wait_for_stable_page(page);
5563 			ret = VM_FAULT_LOCKED;
5564 			goto out;
5565 		}
5566 	}
5567 	unlock_page(page);
5568 	/* OK, we need to fill the hole... */
5569 	if (ext4_should_dioread_nolock(inode))
5570 		get_block = ext4_get_block_unwritten;
5571 	else
5572 		get_block = ext4_get_block;
5573 retry_alloc:
5574 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5575 				    ext4_writepage_trans_blocks(inode));
5576 	if (IS_ERR(handle)) {
5577 		ret = VM_FAULT_SIGBUS;
5578 		goto out;
5579 	}
5580 	ret = block_page_mkwrite(vma, vmf, get_block);
5581 	if (!ret && ext4_should_journal_data(inode)) {
5582 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5583 			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5584 			unlock_page(page);
5585 			ret = VM_FAULT_SIGBUS;
5586 			ext4_journal_stop(handle);
5587 			goto out;
5588 		}
5589 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5590 	}
5591 	ext4_journal_stop(handle);
5592 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5593 		goto retry_alloc;
5594 out_ret:
5595 	ret = block_page_mkwrite_return(ret);
5596 out:
5597 	up_read(&EXT4_I(inode)->i_mmap_sem);
5598 	sb_end_pagefault(inode->i_sb);
5599 	return ret;
5600 }
5601 
5602 int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5603 {
5604 	struct inode *inode = file_inode(vma->vm_file);
5605 	int err;
5606 
5607 	down_read(&EXT4_I(inode)->i_mmap_sem);
5608 	err = filemap_fault(vma, vmf);
5609 	up_read(&EXT4_I(inode)->i_mmap_sem);
5610 
5611 	return err;
5612 }
5613 
5614 /*
5615  * Find the first extent at or after @lblk in an inode that is not a hole.
5616  * Search for @map_len blocks at most. The extent is returned in @result.
5617  *
5618  * The function returns 1 if we found an extent. The function returns 0 in
5619  * case there is no extent at or after @lblk and in that case also sets
5620  * @result->es_len to 0. In case of error, the error code is returned.
5621  */
5622 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
5623 			 unsigned int map_len, struct extent_status *result)
5624 {
5625 	struct ext4_map_blocks map;
5626 	struct extent_status es = {};
5627 	int ret;
5628 
5629 	map.m_lblk = lblk;
5630 	map.m_len = map_len;
5631 
5632 	/*
5633 	 * For non-extent based files this loop may iterate several times since
5634 	 * we do not determine full hole size.
5635 	 */
5636 	while (map.m_len > 0) {
5637 		ret = ext4_map_blocks(NULL, inode, &map, 0);
5638 		if (ret < 0)
5639 			return ret;
5640 		/* There's extent covering m_lblk? Just return it. */
5641 		if (ret > 0) {
5642 			int status;
5643 
5644 			ext4_es_store_pblock(result, map.m_pblk);
5645 			result->es_lblk = map.m_lblk;
5646 			result->es_len = map.m_len;
5647 			if (map.m_flags & EXT4_MAP_UNWRITTEN)
5648 				status = EXTENT_STATUS_UNWRITTEN;
5649 			else
5650 				status = EXTENT_STATUS_WRITTEN;
5651 			ext4_es_store_status(result, status);
5652 			return 1;
5653 		}
5654 		ext4_es_find_delayed_extent_range(inode, map.m_lblk,
5655 						  map.m_lblk + map.m_len - 1,
5656 						  &es);
5657 		/* Is delalloc data before next block in extent tree? */
5658 		if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
5659 			ext4_lblk_t offset = 0;
5660 
5661 			if (es.es_lblk < lblk)
5662 				offset = lblk - es.es_lblk;
5663 			result->es_lblk = es.es_lblk + offset;
5664 			ext4_es_store_pblock(result,
5665 					     ext4_es_pblock(&es) + offset);
5666 			result->es_len = es.es_len - offset;
5667 			ext4_es_store_status(result, ext4_es_status(&es));
5668 
5669 			return 1;
5670 		}
5671 		/* There's a hole at m_lblk, advance us after it */
5672 		map.m_lblk += map.m_len;
5673 		map_len -= map.m_len;
5674 		map.m_len = map_len;
5675 		cond_resched();
5676 	}
5677 	result->es_len = 0;
5678 	return 0;
5679 }
5680