xref: /openbmc/linux/fs/ext4/inode.c (revision 55fd7e02)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *	(jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
43 
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "truncate.h"
48 
49 #include <trace/events/ext4.h>
50 
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 			      struct ext4_inode_info *ei)
53 {
54 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 	__u32 csum;
56 	__u16 dummy_csum = 0;
57 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
58 	unsigned int csum_size = sizeof(dummy_csum);
59 
60 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62 	offset += csum_size;
63 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
65 
66 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67 		offset = offsetof(struct ext4_inode, i_checksum_hi);
68 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69 				   EXT4_GOOD_OLD_INODE_SIZE,
70 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
71 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73 					   csum_size);
74 			offset += csum_size;
75 		}
76 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
78 	}
79 
80 	return csum;
81 }
82 
83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84 				  struct ext4_inode_info *ei)
85 {
86 	__u32 provided, calculated;
87 
88 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89 	    cpu_to_le32(EXT4_OS_LINUX) ||
90 	    !ext4_has_metadata_csum(inode->i_sb))
91 		return 1;
92 
93 	provided = le16_to_cpu(raw->i_checksum_lo);
94 	calculated = ext4_inode_csum(inode, raw, ei);
95 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98 	else
99 		calculated &= 0xFFFF;
100 
101 	return provided == calculated;
102 }
103 
104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105 				struct ext4_inode_info *ei)
106 {
107 	__u32 csum;
108 
109 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110 	    cpu_to_le32(EXT4_OS_LINUX) ||
111 	    !ext4_has_metadata_csum(inode->i_sb))
112 		return;
113 
114 	csum = ext4_inode_csum(inode, raw, ei);
115 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119 }
120 
121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122 					      loff_t new_size)
123 {
124 	trace_ext4_begin_ordered_truncate(inode, new_size);
125 	/*
126 	 * If jinode is zero, then we never opened the file for
127 	 * writing, so there's no need to call
128 	 * jbd2_journal_begin_ordered_truncate() since there's no
129 	 * outstanding writes we need to flush.
130 	 */
131 	if (!EXT4_I(inode)->jinode)
132 		return 0;
133 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134 						   EXT4_I(inode)->jinode,
135 						   new_size);
136 }
137 
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139 				unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143 				  int pextents);
144 
145 /*
146  * Test whether an inode is a fast symlink.
147  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
148  */
149 int ext4_inode_is_fast_symlink(struct inode *inode)
150 {
151 	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
152 		int ea_blocks = EXT4_I(inode)->i_file_acl ?
153 				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
154 
155 		if (ext4_has_inline_data(inode))
156 			return 0;
157 
158 		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
159 	}
160 	return S_ISLNK(inode->i_mode) && inode->i_size &&
161 	       (inode->i_size < EXT4_N_BLOCKS * 4);
162 }
163 
164 /*
165  * Called at the last iput() if i_nlink is zero.
166  */
167 void ext4_evict_inode(struct inode *inode)
168 {
169 	handle_t *handle;
170 	int err;
171 	/*
172 	 * Credits for final inode cleanup and freeing:
173 	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
174 	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
175 	 */
176 	int extra_credits = 6;
177 	struct ext4_xattr_inode_array *ea_inode_array = NULL;
178 
179 	trace_ext4_evict_inode(inode);
180 
181 	if (inode->i_nlink) {
182 		/*
183 		 * When journalling data dirty buffers are tracked only in the
184 		 * journal. So although mm thinks everything is clean and
185 		 * ready for reaping the inode might still have some pages to
186 		 * write in the running transaction or waiting to be
187 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
188 		 * (via truncate_inode_pages()) to discard these buffers can
189 		 * cause data loss. Also even if we did not discard these
190 		 * buffers, we would have no way to find them after the inode
191 		 * is reaped and thus user could see stale data if he tries to
192 		 * read them before the transaction is checkpointed. So be
193 		 * careful and force everything to disk here... We use
194 		 * ei->i_datasync_tid to store the newest transaction
195 		 * containing inode's data.
196 		 *
197 		 * Note that directories do not have this problem because they
198 		 * don't use page cache.
199 		 */
200 		if (inode->i_ino != EXT4_JOURNAL_INO &&
201 		    ext4_should_journal_data(inode) &&
202 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
203 		    inode->i_data.nrpages) {
204 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
205 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
206 
207 			jbd2_complete_transaction(journal, commit_tid);
208 			filemap_write_and_wait(&inode->i_data);
209 		}
210 		truncate_inode_pages_final(&inode->i_data);
211 
212 		goto no_delete;
213 	}
214 
215 	if (is_bad_inode(inode))
216 		goto no_delete;
217 	dquot_initialize(inode);
218 
219 	if (ext4_should_order_data(inode))
220 		ext4_begin_ordered_truncate(inode, 0);
221 	truncate_inode_pages_final(&inode->i_data);
222 
223 	/*
224 	 * For inodes with journalled data, transaction commit could have
225 	 * dirtied the inode. Flush worker is ignoring it because of I_FREEING
226 	 * flag but we still need to remove the inode from the writeback lists.
227 	 */
228 	if (!list_empty_careful(&inode->i_io_list)) {
229 		WARN_ON_ONCE(!ext4_should_journal_data(inode));
230 		inode_io_list_del(inode);
231 	}
232 
233 	/*
234 	 * Protect us against freezing - iput() caller didn't have to have any
235 	 * protection against it
236 	 */
237 	sb_start_intwrite(inode->i_sb);
238 
239 	if (!IS_NOQUOTA(inode))
240 		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
241 
242 	/*
243 	 * Block bitmap, group descriptor, and inode are accounted in both
244 	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
245 	 */
246 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
247 			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
248 	if (IS_ERR(handle)) {
249 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
250 		/*
251 		 * If we're going to skip the normal cleanup, we still need to
252 		 * make sure that the in-core orphan linked list is properly
253 		 * cleaned up.
254 		 */
255 		ext4_orphan_del(NULL, inode);
256 		sb_end_intwrite(inode->i_sb);
257 		goto no_delete;
258 	}
259 
260 	if (IS_SYNC(inode))
261 		ext4_handle_sync(handle);
262 
263 	/*
264 	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
265 	 * special handling of symlinks here because i_size is used to
266 	 * determine whether ext4_inode_info->i_data contains symlink data or
267 	 * block mappings. Setting i_size to 0 will remove its fast symlink
268 	 * status. Erase i_data so that it becomes a valid empty block map.
269 	 */
270 	if (ext4_inode_is_fast_symlink(inode))
271 		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
272 	inode->i_size = 0;
273 	err = ext4_mark_inode_dirty(handle, inode);
274 	if (err) {
275 		ext4_warning(inode->i_sb,
276 			     "couldn't mark inode dirty (err %d)", err);
277 		goto stop_handle;
278 	}
279 	if (inode->i_blocks) {
280 		err = ext4_truncate(inode);
281 		if (err) {
282 			ext4_error_err(inode->i_sb, -err,
283 				       "couldn't truncate inode %lu (err %d)",
284 				       inode->i_ino, err);
285 			goto stop_handle;
286 		}
287 	}
288 
289 	/* Remove xattr references. */
290 	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
291 				      extra_credits);
292 	if (err) {
293 		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
294 stop_handle:
295 		ext4_journal_stop(handle);
296 		ext4_orphan_del(NULL, inode);
297 		sb_end_intwrite(inode->i_sb);
298 		ext4_xattr_inode_array_free(ea_inode_array);
299 		goto no_delete;
300 	}
301 
302 	/*
303 	 * Kill off the orphan record which ext4_truncate created.
304 	 * AKPM: I think this can be inside the above `if'.
305 	 * Note that ext4_orphan_del() has to be able to cope with the
306 	 * deletion of a non-existent orphan - this is because we don't
307 	 * know if ext4_truncate() actually created an orphan record.
308 	 * (Well, we could do this if we need to, but heck - it works)
309 	 */
310 	ext4_orphan_del(handle, inode);
311 	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
312 
313 	/*
314 	 * One subtle ordering requirement: if anything has gone wrong
315 	 * (transaction abort, IO errors, whatever), then we can still
316 	 * do these next steps (the fs will already have been marked as
317 	 * having errors), but we can't free the inode if the mark_dirty
318 	 * fails.
319 	 */
320 	if (ext4_mark_inode_dirty(handle, inode))
321 		/* If that failed, just do the required in-core inode clear. */
322 		ext4_clear_inode(inode);
323 	else
324 		ext4_free_inode(handle, inode);
325 	ext4_journal_stop(handle);
326 	sb_end_intwrite(inode->i_sb);
327 	ext4_xattr_inode_array_free(ea_inode_array);
328 	return;
329 no_delete:
330 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
331 }
332 
333 #ifdef CONFIG_QUOTA
334 qsize_t *ext4_get_reserved_space(struct inode *inode)
335 {
336 	return &EXT4_I(inode)->i_reserved_quota;
337 }
338 #endif
339 
340 /*
341  * Called with i_data_sem down, which is important since we can call
342  * ext4_discard_preallocations() from here.
343  */
344 void ext4_da_update_reserve_space(struct inode *inode,
345 					int used, int quota_claim)
346 {
347 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
348 	struct ext4_inode_info *ei = EXT4_I(inode);
349 
350 	spin_lock(&ei->i_block_reservation_lock);
351 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
352 	if (unlikely(used > ei->i_reserved_data_blocks)) {
353 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
354 			 "with only %d reserved data blocks",
355 			 __func__, inode->i_ino, used,
356 			 ei->i_reserved_data_blocks);
357 		WARN_ON(1);
358 		used = ei->i_reserved_data_blocks;
359 	}
360 
361 	/* Update per-inode reservations */
362 	ei->i_reserved_data_blocks -= used;
363 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
364 
365 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
366 
367 	/* Update quota subsystem for data blocks */
368 	if (quota_claim)
369 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
370 	else {
371 		/*
372 		 * We did fallocate with an offset that is already delayed
373 		 * allocated. So on delayed allocated writeback we should
374 		 * not re-claim the quota for fallocated blocks.
375 		 */
376 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
377 	}
378 
379 	/*
380 	 * If we have done all the pending block allocations and if
381 	 * there aren't any writers on the inode, we can discard the
382 	 * inode's preallocations.
383 	 */
384 	if ((ei->i_reserved_data_blocks == 0) &&
385 	    !inode_is_open_for_write(inode))
386 		ext4_discard_preallocations(inode);
387 }
388 
389 static int __check_block_validity(struct inode *inode, const char *func,
390 				unsigned int line,
391 				struct ext4_map_blocks *map)
392 {
393 	if (ext4_has_feature_journal(inode->i_sb) &&
394 	    (inode->i_ino ==
395 	     le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
396 		return 0;
397 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
398 				   map->m_len)) {
399 		ext4_error_inode(inode, func, line, map->m_pblk,
400 				 "lblock %lu mapped to illegal pblock %llu "
401 				 "(length %d)", (unsigned long) map->m_lblk,
402 				 map->m_pblk, map->m_len);
403 		return -EFSCORRUPTED;
404 	}
405 	return 0;
406 }
407 
408 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
409 		       ext4_lblk_t len)
410 {
411 	int ret;
412 
413 	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
414 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
415 
416 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
417 	if (ret > 0)
418 		ret = 0;
419 
420 	return ret;
421 }
422 
423 #define check_block_validity(inode, map)	\
424 	__check_block_validity((inode), __func__, __LINE__, (map))
425 
426 #ifdef ES_AGGRESSIVE_TEST
427 static void ext4_map_blocks_es_recheck(handle_t *handle,
428 				       struct inode *inode,
429 				       struct ext4_map_blocks *es_map,
430 				       struct ext4_map_blocks *map,
431 				       int flags)
432 {
433 	int retval;
434 
435 	map->m_flags = 0;
436 	/*
437 	 * There is a race window that the result is not the same.
438 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
439 	 * is that we lookup a block mapping in extent status tree with
440 	 * out taking i_data_sem.  So at the time the unwritten extent
441 	 * could be converted.
442 	 */
443 	down_read(&EXT4_I(inode)->i_data_sem);
444 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
445 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
446 	} else {
447 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
448 	}
449 	up_read((&EXT4_I(inode)->i_data_sem));
450 
451 	/*
452 	 * We don't check m_len because extent will be collpased in status
453 	 * tree.  So the m_len might not equal.
454 	 */
455 	if (es_map->m_lblk != map->m_lblk ||
456 	    es_map->m_flags != map->m_flags ||
457 	    es_map->m_pblk != map->m_pblk) {
458 		printk("ES cache assertion failed for inode: %lu "
459 		       "es_cached ex [%d/%d/%llu/%x] != "
460 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
461 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
462 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
463 		       map->m_len, map->m_pblk, map->m_flags,
464 		       retval, flags);
465 	}
466 }
467 #endif /* ES_AGGRESSIVE_TEST */
468 
469 /*
470  * The ext4_map_blocks() function tries to look up the requested blocks,
471  * and returns if the blocks are already mapped.
472  *
473  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
474  * and store the allocated blocks in the result buffer head and mark it
475  * mapped.
476  *
477  * If file type is extents based, it will call ext4_ext_map_blocks(),
478  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
479  * based files
480  *
481  * On success, it returns the number of blocks being mapped or allocated.  if
482  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
483  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
484  *
485  * It returns 0 if plain look up failed (blocks have not been allocated), in
486  * that case, @map is returned as unmapped but we still do fill map->m_len to
487  * indicate the length of a hole starting at map->m_lblk.
488  *
489  * It returns the error in case of allocation failure.
490  */
491 int ext4_map_blocks(handle_t *handle, struct inode *inode,
492 		    struct ext4_map_blocks *map, int flags)
493 {
494 	struct extent_status es;
495 	int retval;
496 	int ret = 0;
497 #ifdef ES_AGGRESSIVE_TEST
498 	struct ext4_map_blocks orig_map;
499 
500 	memcpy(&orig_map, map, sizeof(*map));
501 #endif
502 
503 	map->m_flags = 0;
504 	ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
505 		  flags, map->m_len, (unsigned long) map->m_lblk);
506 
507 	/*
508 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
509 	 */
510 	if (unlikely(map->m_len > INT_MAX))
511 		map->m_len = INT_MAX;
512 
513 	/* We can handle the block number less than EXT_MAX_BLOCKS */
514 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
515 		return -EFSCORRUPTED;
516 
517 	/* Lookup extent status tree firstly */
518 	if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
519 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
520 			map->m_pblk = ext4_es_pblock(&es) +
521 					map->m_lblk - es.es_lblk;
522 			map->m_flags |= ext4_es_is_written(&es) ?
523 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
524 			retval = es.es_len - (map->m_lblk - es.es_lblk);
525 			if (retval > map->m_len)
526 				retval = map->m_len;
527 			map->m_len = retval;
528 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
529 			map->m_pblk = 0;
530 			retval = es.es_len - (map->m_lblk - es.es_lblk);
531 			if (retval > map->m_len)
532 				retval = map->m_len;
533 			map->m_len = retval;
534 			retval = 0;
535 		} else {
536 			BUG();
537 		}
538 #ifdef ES_AGGRESSIVE_TEST
539 		ext4_map_blocks_es_recheck(handle, inode, map,
540 					   &orig_map, flags);
541 #endif
542 		goto found;
543 	}
544 
545 	/*
546 	 * Try to see if we can get the block without requesting a new
547 	 * file system block.
548 	 */
549 	down_read(&EXT4_I(inode)->i_data_sem);
550 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
551 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
552 	} else {
553 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
554 	}
555 	if (retval > 0) {
556 		unsigned int status;
557 
558 		if (unlikely(retval != map->m_len)) {
559 			ext4_warning(inode->i_sb,
560 				     "ES len assertion failed for inode "
561 				     "%lu: retval %d != map->m_len %d",
562 				     inode->i_ino, retval, map->m_len);
563 			WARN_ON(1);
564 		}
565 
566 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
567 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
568 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
569 		    !(status & EXTENT_STATUS_WRITTEN) &&
570 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
571 				       map->m_lblk + map->m_len - 1))
572 			status |= EXTENT_STATUS_DELAYED;
573 		ret = ext4_es_insert_extent(inode, map->m_lblk,
574 					    map->m_len, map->m_pblk, status);
575 		if (ret < 0)
576 			retval = ret;
577 	}
578 	up_read((&EXT4_I(inode)->i_data_sem));
579 
580 found:
581 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
582 		ret = check_block_validity(inode, map);
583 		if (ret != 0)
584 			return ret;
585 	}
586 
587 	/* If it is only a block(s) look up */
588 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
589 		return retval;
590 
591 	/*
592 	 * Returns if the blocks have already allocated
593 	 *
594 	 * Note that if blocks have been preallocated
595 	 * ext4_ext_get_block() returns the create = 0
596 	 * with buffer head unmapped.
597 	 */
598 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
599 		/*
600 		 * If we need to convert extent to unwritten
601 		 * we continue and do the actual work in
602 		 * ext4_ext_map_blocks()
603 		 */
604 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
605 			return retval;
606 
607 	/*
608 	 * Here we clear m_flags because after allocating an new extent,
609 	 * it will be set again.
610 	 */
611 	map->m_flags &= ~EXT4_MAP_FLAGS;
612 
613 	/*
614 	 * New blocks allocate and/or writing to unwritten extent
615 	 * will possibly result in updating i_data, so we take
616 	 * the write lock of i_data_sem, and call get_block()
617 	 * with create == 1 flag.
618 	 */
619 	down_write(&EXT4_I(inode)->i_data_sem);
620 
621 	/*
622 	 * We need to check for EXT4 here because migrate
623 	 * could have changed the inode type in between
624 	 */
625 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
626 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
627 	} else {
628 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
629 
630 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
631 			/*
632 			 * We allocated new blocks which will result in
633 			 * i_data's format changing.  Force the migrate
634 			 * to fail by clearing migrate flags
635 			 */
636 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
637 		}
638 
639 		/*
640 		 * Update reserved blocks/metadata blocks after successful
641 		 * block allocation which had been deferred till now. We don't
642 		 * support fallocate for non extent files. So we can update
643 		 * reserve space here.
644 		 */
645 		if ((retval > 0) &&
646 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
647 			ext4_da_update_reserve_space(inode, retval, 1);
648 	}
649 
650 	if (retval > 0) {
651 		unsigned int status;
652 
653 		if (unlikely(retval != map->m_len)) {
654 			ext4_warning(inode->i_sb,
655 				     "ES len assertion failed for inode "
656 				     "%lu: retval %d != map->m_len %d",
657 				     inode->i_ino, retval, map->m_len);
658 			WARN_ON(1);
659 		}
660 
661 		/*
662 		 * We have to zeroout blocks before inserting them into extent
663 		 * status tree. Otherwise someone could look them up there and
664 		 * use them before they are really zeroed. We also have to
665 		 * unmap metadata before zeroing as otherwise writeback can
666 		 * overwrite zeros with stale data from block device.
667 		 */
668 		if (flags & EXT4_GET_BLOCKS_ZERO &&
669 		    map->m_flags & EXT4_MAP_MAPPED &&
670 		    map->m_flags & EXT4_MAP_NEW) {
671 			ret = ext4_issue_zeroout(inode, map->m_lblk,
672 						 map->m_pblk, map->m_len);
673 			if (ret) {
674 				retval = ret;
675 				goto out_sem;
676 			}
677 		}
678 
679 		/*
680 		 * If the extent has been zeroed out, we don't need to update
681 		 * extent status tree.
682 		 */
683 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
684 		    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
685 			if (ext4_es_is_written(&es))
686 				goto out_sem;
687 		}
688 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
689 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
690 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
691 		    !(status & EXTENT_STATUS_WRITTEN) &&
692 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
693 				       map->m_lblk + map->m_len - 1))
694 			status |= EXTENT_STATUS_DELAYED;
695 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
696 					    map->m_pblk, status);
697 		if (ret < 0) {
698 			retval = ret;
699 			goto out_sem;
700 		}
701 	}
702 
703 out_sem:
704 	up_write((&EXT4_I(inode)->i_data_sem));
705 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
706 		ret = check_block_validity(inode, map);
707 		if (ret != 0)
708 			return ret;
709 
710 		/*
711 		 * Inodes with freshly allocated blocks where contents will be
712 		 * visible after transaction commit must be on transaction's
713 		 * ordered data list.
714 		 */
715 		if (map->m_flags & EXT4_MAP_NEW &&
716 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
717 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
718 		    !ext4_is_quota_file(inode) &&
719 		    ext4_should_order_data(inode)) {
720 			loff_t start_byte =
721 				(loff_t)map->m_lblk << inode->i_blkbits;
722 			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
723 
724 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
725 				ret = ext4_jbd2_inode_add_wait(handle, inode,
726 						start_byte, length);
727 			else
728 				ret = ext4_jbd2_inode_add_write(handle, inode,
729 						start_byte, length);
730 			if (ret)
731 				return ret;
732 		}
733 	}
734 
735 	if (retval < 0)
736 		ext_debug(inode, "failed with err %d\n", retval);
737 	return retval;
738 }
739 
740 /*
741  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
742  * we have to be careful as someone else may be manipulating b_state as well.
743  */
744 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
745 {
746 	unsigned long old_state;
747 	unsigned long new_state;
748 
749 	flags &= EXT4_MAP_FLAGS;
750 
751 	/* Dummy buffer_head? Set non-atomically. */
752 	if (!bh->b_page) {
753 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
754 		return;
755 	}
756 	/*
757 	 * Someone else may be modifying b_state. Be careful! This is ugly but
758 	 * once we get rid of using bh as a container for mapping information
759 	 * to pass to / from get_block functions, this can go away.
760 	 */
761 	do {
762 		old_state = READ_ONCE(bh->b_state);
763 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
764 	} while (unlikely(
765 		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
766 }
767 
768 static int _ext4_get_block(struct inode *inode, sector_t iblock,
769 			   struct buffer_head *bh, int flags)
770 {
771 	struct ext4_map_blocks map;
772 	int ret = 0;
773 
774 	if (ext4_has_inline_data(inode))
775 		return -ERANGE;
776 
777 	map.m_lblk = iblock;
778 	map.m_len = bh->b_size >> inode->i_blkbits;
779 
780 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
781 			      flags);
782 	if (ret > 0) {
783 		map_bh(bh, inode->i_sb, map.m_pblk);
784 		ext4_update_bh_state(bh, map.m_flags);
785 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
786 		ret = 0;
787 	} else if (ret == 0) {
788 		/* hole case, need to fill in bh->b_size */
789 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
790 	}
791 	return ret;
792 }
793 
794 int ext4_get_block(struct inode *inode, sector_t iblock,
795 		   struct buffer_head *bh, int create)
796 {
797 	return _ext4_get_block(inode, iblock, bh,
798 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
799 }
800 
801 /*
802  * Get block function used when preparing for buffered write if we require
803  * creating an unwritten extent if blocks haven't been allocated.  The extent
804  * will be converted to written after the IO is complete.
805  */
806 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
807 			     struct buffer_head *bh_result, int create)
808 {
809 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
810 		   inode->i_ino, create);
811 	return _ext4_get_block(inode, iblock, bh_result,
812 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
813 }
814 
815 /* Maximum number of blocks we map for direct IO at once. */
816 #define DIO_MAX_BLOCKS 4096
817 
818 /*
819  * `handle' can be NULL if create is zero
820  */
821 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
822 				ext4_lblk_t block, int map_flags)
823 {
824 	struct ext4_map_blocks map;
825 	struct buffer_head *bh;
826 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
827 	int err;
828 
829 	J_ASSERT(handle != NULL || create == 0);
830 
831 	map.m_lblk = block;
832 	map.m_len = 1;
833 	err = ext4_map_blocks(handle, inode, &map, map_flags);
834 
835 	if (err == 0)
836 		return create ? ERR_PTR(-ENOSPC) : NULL;
837 	if (err < 0)
838 		return ERR_PTR(err);
839 
840 	bh = sb_getblk(inode->i_sb, map.m_pblk);
841 	if (unlikely(!bh))
842 		return ERR_PTR(-ENOMEM);
843 	if (map.m_flags & EXT4_MAP_NEW) {
844 		J_ASSERT(create != 0);
845 		J_ASSERT(handle != NULL);
846 
847 		/*
848 		 * Now that we do not always journal data, we should
849 		 * keep in mind whether this should always journal the
850 		 * new buffer as metadata.  For now, regular file
851 		 * writes use ext4_get_block instead, so it's not a
852 		 * problem.
853 		 */
854 		lock_buffer(bh);
855 		BUFFER_TRACE(bh, "call get_create_access");
856 		err = ext4_journal_get_create_access(handle, bh);
857 		if (unlikely(err)) {
858 			unlock_buffer(bh);
859 			goto errout;
860 		}
861 		if (!buffer_uptodate(bh)) {
862 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
863 			set_buffer_uptodate(bh);
864 		}
865 		unlock_buffer(bh);
866 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
867 		err = ext4_handle_dirty_metadata(handle, inode, bh);
868 		if (unlikely(err))
869 			goto errout;
870 	} else
871 		BUFFER_TRACE(bh, "not a new buffer");
872 	return bh;
873 errout:
874 	brelse(bh);
875 	return ERR_PTR(err);
876 }
877 
878 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
879 			       ext4_lblk_t block, int map_flags)
880 {
881 	struct buffer_head *bh;
882 
883 	bh = ext4_getblk(handle, inode, block, map_flags);
884 	if (IS_ERR(bh))
885 		return bh;
886 	if (!bh || ext4_buffer_uptodate(bh))
887 		return bh;
888 	ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
889 	wait_on_buffer(bh);
890 	if (buffer_uptodate(bh))
891 		return bh;
892 	put_bh(bh);
893 	return ERR_PTR(-EIO);
894 }
895 
896 /* Read a contiguous batch of blocks. */
897 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
898 		     bool wait, struct buffer_head **bhs)
899 {
900 	int i, err;
901 
902 	for (i = 0; i < bh_count; i++) {
903 		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
904 		if (IS_ERR(bhs[i])) {
905 			err = PTR_ERR(bhs[i]);
906 			bh_count = i;
907 			goto out_brelse;
908 		}
909 	}
910 
911 	for (i = 0; i < bh_count; i++)
912 		/* Note that NULL bhs[i] is valid because of holes. */
913 		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
914 			ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
915 				    &bhs[i]);
916 
917 	if (!wait)
918 		return 0;
919 
920 	for (i = 0; i < bh_count; i++)
921 		if (bhs[i])
922 			wait_on_buffer(bhs[i]);
923 
924 	for (i = 0; i < bh_count; i++) {
925 		if (bhs[i] && !buffer_uptodate(bhs[i])) {
926 			err = -EIO;
927 			goto out_brelse;
928 		}
929 	}
930 	return 0;
931 
932 out_brelse:
933 	for (i = 0; i < bh_count; i++) {
934 		brelse(bhs[i]);
935 		bhs[i] = NULL;
936 	}
937 	return err;
938 }
939 
940 int ext4_walk_page_buffers(handle_t *handle,
941 			   struct buffer_head *head,
942 			   unsigned from,
943 			   unsigned to,
944 			   int *partial,
945 			   int (*fn)(handle_t *handle,
946 				     struct buffer_head *bh))
947 {
948 	struct buffer_head *bh;
949 	unsigned block_start, block_end;
950 	unsigned blocksize = head->b_size;
951 	int err, ret = 0;
952 	struct buffer_head *next;
953 
954 	for (bh = head, block_start = 0;
955 	     ret == 0 && (bh != head || !block_start);
956 	     block_start = block_end, bh = next) {
957 		next = bh->b_this_page;
958 		block_end = block_start + blocksize;
959 		if (block_end <= from || block_start >= to) {
960 			if (partial && !buffer_uptodate(bh))
961 				*partial = 1;
962 			continue;
963 		}
964 		err = (*fn)(handle, bh);
965 		if (!ret)
966 			ret = err;
967 	}
968 	return ret;
969 }
970 
971 /*
972  * To preserve ordering, it is essential that the hole instantiation and
973  * the data write be encapsulated in a single transaction.  We cannot
974  * close off a transaction and start a new one between the ext4_get_block()
975  * and the commit_write().  So doing the jbd2_journal_start at the start of
976  * prepare_write() is the right place.
977  *
978  * Also, this function can nest inside ext4_writepage().  In that case, we
979  * *know* that ext4_writepage() has generated enough buffer credits to do the
980  * whole page.  So we won't block on the journal in that case, which is good,
981  * because the caller may be PF_MEMALLOC.
982  *
983  * By accident, ext4 can be reentered when a transaction is open via
984  * quota file writes.  If we were to commit the transaction while thus
985  * reentered, there can be a deadlock - we would be holding a quota
986  * lock, and the commit would never complete if another thread had a
987  * transaction open and was blocking on the quota lock - a ranking
988  * violation.
989  *
990  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
991  * will _not_ run commit under these circumstances because handle->h_ref
992  * is elevated.  We'll still have enough credits for the tiny quotafile
993  * write.
994  */
995 int do_journal_get_write_access(handle_t *handle,
996 				struct buffer_head *bh)
997 {
998 	int dirty = buffer_dirty(bh);
999 	int ret;
1000 
1001 	if (!buffer_mapped(bh) || buffer_freed(bh))
1002 		return 0;
1003 	/*
1004 	 * __block_write_begin() could have dirtied some buffers. Clean
1005 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1006 	 * otherwise about fs integrity issues. Setting of the dirty bit
1007 	 * by __block_write_begin() isn't a real problem here as we clear
1008 	 * the bit before releasing a page lock and thus writeback cannot
1009 	 * ever write the buffer.
1010 	 */
1011 	if (dirty)
1012 		clear_buffer_dirty(bh);
1013 	BUFFER_TRACE(bh, "get write access");
1014 	ret = ext4_journal_get_write_access(handle, bh);
1015 	if (!ret && dirty)
1016 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1017 	return ret;
1018 }
1019 
1020 #ifdef CONFIG_FS_ENCRYPTION
1021 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1022 				  get_block_t *get_block)
1023 {
1024 	unsigned from = pos & (PAGE_SIZE - 1);
1025 	unsigned to = from + len;
1026 	struct inode *inode = page->mapping->host;
1027 	unsigned block_start, block_end;
1028 	sector_t block;
1029 	int err = 0;
1030 	unsigned blocksize = inode->i_sb->s_blocksize;
1031 	unsigned bbits;
1032 	struct buffer_head *bh, *head, *wait[2];
1033 	int nr_wait = 0;
1034 	int i;
1035 
1036 	BUG_ON(!PageLocked(page));
1037 	BUG_ON(from > PAGE_SIZE);
1038 	BUG_ON(to > PAGE_SIZE);
1039 	BUG_ON(from > to);
1040 
1041 	if (!page_has_buffers(page))
1042 		create_empty_buffers(page, blocksize, 0);
1043 	head = page_buffers(page);
1044 	bbits = ilog2(blocksize);
1045 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1046 
1047 	for (bh = head, block_start = 0; bh != head || !block_start;
1048 	    block++, block_start = block_end, bh = bh->b_this_page) {
1049 		block_end = block_start + blocksize;
1050 		if (block_end <= from || block_start >= to) {
1051 			if (PageUptodate(page)) {
1052 				if (!buffer_uptodate(bh))
1053 					set_buffer_uptodate(bh);
1054 			}
1055 			continue;
1056 		}
1057 		if (buffer_new(bh))
1058 			clear_buffer_new(bh);
1059 		if (!buffer_mapped(bh)) {
1060 			WARN_ON(bh->b_size != blocksize);
1061 			err = get_block(inode, block, bh, 1);
1062 			if (err)
1063 				break;
1064 			if (buffer_new(bh)) {
1065 				if (PageUptodate(page)) {
1066 					clear_buffer_new(bh);
1067 					set_buffer_uptodate(bh);
1068 					mark_buffer_dirty(bh);
1069 					continue;
1070 				}
1071 				if (block_end > to || block_start < from)
1072 					zero_user_segments(page, to, block_end,
1073 							   block_start, from);
1074 				continue;
1075 			}
1076 		}
1077 		if (PageUptodate(page)) {
1078 			if (!buffer_uptodate(bh))
1079 				set_buffer_uptodate(bh);
1080 			continue;
1081 		}
1082 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1083 		    !buffer_unwritten(bh) &&
1084 		    (block_start < from || block_end > to)) {
1085 			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1086 			wait[nr_wait++] = bh;
1087 		}
1088 	}
1089 	/*
1090 	 * If we issued read requests, let them complete.
1091 	 */
1092 	for (i = 0; i < nr_wait; i++) {
1093 		wait_on_buffer(wait[i]);
1094 		if (!buffer_uptodate(wait[i]))
1095 			err = -EIO;
1096 	}
1097 	if (unlikely(err)) {
1098 		page_zero_new_buffers(page, from, to);
1099 	} else if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) {
1100 		for (i = 0; i < nr_wait; i++) {
1101 			int err2;
1102 
1103 			err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1104 								bh_offset(wait[i]));
1105 			if (err2) {
1106 				clear_buffer_uptodate(wait[i]);
1107 				err = err2;
1108 			}
1109 		}
1110 	}
1111 
1112 	return err;
1113 }
1114 #endif
1115 
1116 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1117 			    loff_t pos, unsigned len, unsigned flags,
1118 			    struct page **pagep, void **fsdata)
1119 {
1120 	struct inode *inode = mapping->host;
1121 	int ret, needed_blocks;
1122 	handle_t *handle;
1123 	int retries = 0;
1124 	struct page *page;
1125 	pgoff_t index;
1126 	unsigned from, to;
1127 
1128 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1129 		return -EIO;
1130 
1131 	trace_ext4_write_begin(inode, pos, len, flags);
1132 	/*
1133 	 * Reserve one block more for addition to orphan list in case
1134 	 * we allocate blocks but write fails for some reason
1135 	 */
1136 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1137 	index = pos >> PAGE_SHIFT;
1138 	from = pos & (PAGE_SIZE - 1);
1139 	to = from + len;
1140 
1141 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1142 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1143 						    flags, pagep);
1144 		if (ret < 0)
1145 			return ret;
1146 		if (ret == 1)
1147 			return 0;
1148 	}
1149 
1150 	/*
1151 	 * grab_cache_page_write_begin() can take a long time if the
1152 	 * system is thrashing due to memory pressure, or if the page
1153 	 * is being written back.  So grab it first before we start
1154 	 * the transaction handle.  This also allows us to allocate
1155 	 * the page (if needed) without using GFP_NOFS.
1156 	 */
1157 retry_grab:
1158 	page = grab_cache_page_write_begin(mapping, index, flags);
1159 	if (!page)
1160 		return -ENOMEM;
1161 	unlock_page(page);
1162 
1163 retry_journal:
1164 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1165 	if (IS_ERR(handle)) {
1166 		put_page(page);
1167 		return PTR_ERR(handle);
1168 	}
1169 
1170 	lock_page(page);
1171 	if (page->mapping != mapping) {
1172 		/* The page got truncated from under us */
1173 		unlock_page(page);
1174 		put_page(page);
1175 		ext4_journal_stop(handle);
1176 		goto retry_grab;
1177 	}
1178 	/* In case writeback began while the page was unlocked */
1179 	wait_for_stable_page(page);
1180 
1181 #ifdef CONFIG_FS_ENCRYPTION
1182 	if (ext4_should_dioread_nolock(inode))
1183 		ret = ext4_block_write_begin(page, pos, len,
1184 					     ext4_get_block_unwritten);
1185 	else
1186 		ret = ext4_block_write_begin(page, pos, len,
1187 					     ext4_get_block);
1188 #else
1189 	if (ext4_should_dioread_nolock(inode))
1190 		ret = __block_write_begin(page, pos, len,
1191 					  ext4_get_block_unwritten);
1192 	else
1193 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1194 #endif
1195 	if (!ret && ext4_should_journal_data(inode)) {
1196 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1197 					     from, to, NULL,
1198 					     do_journal_get_write_access);
1199 	}
1200 
1201 	if (ret) {
1202 		bool extended = (pos + len > inode->i_size) &&
1203 				!ext4_verity_in_progress(inode);
1204 
1205 		unlock_page(page);
1206 		/*
1207 		 * __block_write_begin may have instantiated a few blocks
1208 		 * outside i_size.  Trim these off again. Don't need
1209 		 * i_size_read because we hold i_mutex.
1210 		 *
1211 		 * Add inode to orphan list in case we crash before
1212 		 * truncate finishes
1213 		 */
1214 		if (extended && ext4_can_truncate(inode))
1215 			ext4_orphan_add(handle, inode);
1216 
1217 		ext4_journal_stop(handle);
1218 		if (extended) {
1219 			ext4_truncate_failed_write(inode);
1220 			/*
1221 			 * If truncate failed early the inode might
1222 			 * still be on the orphan list; we need to
1223 			 * make sure the inode is removed from the
1224 			 * orphan list in that case.
1225 			 */
1226 			if (inode->i_nlink)
1227 				ext4_orphan_del(NULL, inode);
1228 		}
1229 
1230 		if (ret == -ENOSPC &&
1231 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1232 			goto retry_journal;
1233 		put_page(page);
1234 		return ret;
1235 	}
1236 	*pagep = page;
1237 	return ret;
1238 }
1239 
1240 /* For write_end() in data=journal mode */
1241 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1242 {
1243 	int ret;
1244 	if (!buffer_mapped(bh) || buffer_freed(bh))
1245 		return 0;
1246 	set_buffer_uptodate(bh);
1247 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1248 	clear_buffer_meta(bh);
1249 	clear_buffer_prio(bh);
1250 	return ret;
1251 }
1252 
1253 /*
1254  * We need to pick up the new inode size which generic_commit_write gave us
1255  * `file' can be NULL - eg, when called from page_symlink().
1256  *
1257  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1258  * buffers are managed internally.
1259  */
1260 static int ext4_write_end(struct file *file,
1261 			  struct address_space *mapping,
1262 			  loff_t pos, unsigned len, unsigned copied,
1263 			  struct page *page, void *fsdata)
1264 {
1265 	handle_t *handle = ext4_journal_current_handle();
1266 	struct inode *inode = mapping->host;
1267 	loff_t old_size = inode->i_size;
1268 	int ret = 0, ret2;
1269 	int i_size_changed = 0;
1270 	int inline_data = ext4_has_inline_data(inode);
1271 	bool verity = ext4_verity_in_progress(inode);
1272 
1273 	trace_ext4_write_end(inode, pos, len, copied);
1274 	if (inline_data) {
1275 		ret = ext4_write_inline_data_end(inode, pos, len,
1276 						 copied, page);
1277 		if (ret < 0) {
1278 			unlock_page(page);
1279 			put_page(page);
1280 			goto errout;
1281 		}
1282 		copied = ret;
1283 	} else
1284 		copied = block_write_end(file, mapping, pos,
1285 					 len, copied, page, fsdata);
1286 	/*
1287 	 * it's important to update i_size while still holding page lock:
1288 	 * page writeout could otherwise come in and zero beyond i_size.
1289 	 *
1290 	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1291 	 * blocks are being written past EOF, so skip the i_size update.
1292 	 */
1293 	if (!verity)
1294 		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1295 	unlock_page(page);
1296 	put_page(page);
1297 
1298 	if (old_size < pos && !verity)
1299 		pagecache_isize_extended(inode, old_size, pos);
1300 	/*
1301 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1302 	 * makes the holding time of page lock longer. Second, it forces lock
1303 	 * ordering of page lock and transaction start for journaling
1304 	 * filesystems.
1305 	 */
1306 	if (i_size_changed || inline_data)
1307 		ret = ext4_mark_inode_dirty(handle, inode);
1308 
1309 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1310 		/* if we have allocated more blocks and copied
1311 		 * less. We will have blocks allocated outside
1312 		 * inode->i_size. So truncate them
1313 		 */
1314 		ext4_orphan_add(handle, inode);
1315 errout:
1316 	ret2 = ext4_journal_stop(handle);
1317 	if (!ret)
1318 		ret = ret2;
1319 
1320 	if (pos + len > inode->i_size && !verity) {
1321 		ext4_truncate_failed_write(inode);
1322 		/*
1323 		 * If truncate failed early the inode might still be
1324 		 * on the orphan list; we need to make sure the inode
1325 		 * is removed from the orphan list in that case.
1326 		 */
1327 		if (inode->i_nlink)
1328 			ext4_orphan_del(NULL, inode);
1329 	}
1330 
1331 	return ret ? ret : copied;
1332 }
1333 
1334 /*
1335  * This is a private version of page_zero_new_buffers() which doesn't
1336  * set the buffer to be dirty, since in data=journalled mode we need
1337  * to call ext4_handle_dirty_metadata() instead.
1338  */
1339 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1340 					    struct page *page,
1341 					    unsigned from, unsigned to)
1342 {
1343 	unsigned int block_start = 0, block_end;
1344 	struct buffer_head *head, *bh;
1345 
1346 	bh = head = page_buffers(page);
1347 	do {
1348 		block_end = block_start + bh->b_size;
1349 		if (buffer_new(bh)) {
1350 			if (block_end > from && block_start < to) {
1351 				if (!PageUptodate(page)) {
1352 					unsigned start, size;
1353 
1354 					start = max(from, block_start);
1355 					size = min(to, block_end) - start;
1356 
1357 					zero_user(page, start, size);
1358 					write_end_fn(handle, bh);
1359 				}
1360 				clear_buffer_new(bh);
1361 			}
1362 		}
1363 		block_start = block_end;
1364 		bh = bh->b_this_page;
1365 	} while (bh != head);
1366 }
1367 
1368 static int ext4_journalled_write_end(struct file *file,
1369 				     struct address_space *mapping,
1370 				     loff_t pos, unsigned len, unsigned copied,
1371 				     struct page *page, void *fsdata)
1372 {
1373 	handle_t *handle = ext4_journal_current_handle();
1374 	struct inode *inode = mapping->host;
1375 	loff_t old_size = inode->i_size;
1376 	int ret = 0, ret2;
1377 	int partial = 0;
1378 	unsigned from, to;
1379 	int size_changed = 0;
1380 	int inline_data = ext4_has_inline_data(inode);
1381 	bool verity = ext4_verity_in_progress(inode);
1382 
1383 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1384 	from = pos & (PAGE_SIZE - 1);
1385 	to = from + len;
1386 
1387 	BUG_ON(!ext4_handle_valid(handle));
1388 
1389 	if (inline_data) {
1390 		ret = ext4_write_inline_data_end(inode, pos, len,
1391 						 copied, page);
1392 		if (ret < 0) {
1393 			unlock_page(page);
1394 			put_page(page);
1395 			goto errout;
1396 		}
1397 		copied = ret;
1398 	} else if (unlikely(copied < len) && !PageUptodate(page)) {
1399 		copied = 0;
1400 		ext4_journalled_zero_new_buffers(handle, page, from, to);
1401 	} else {
1402 		if (unlikely(copied < len))
1403 			ext4_journalled_zero_new_buffers(handle, page,
1404 							 from + copied, to);
1405 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1406 					     from + copied, &partial,
1407 					     write_end_fn);
1408 		if (!partial)
1409 			SetPageUptodate(page);
1410 	}
1411 	if (!verity)
1412 		size_changed = ext4_update_inode_size(inode, pos + copied);
1413 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1414 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1415 	unlock_page(page);
1416 	put_page(page);
1417 
1418 	if (old_size < pos && !verity)
1419 		pagecache_isize_extended(inode, old_size, pos);
1420 
1421 	if (size_changed || inline_data) {
1422 		ret2 = ext4_mark_inode_dirty(handle, inode);
1423 		if (!ret)
1424 			ret = ret2;
1425 	}
1426 
1427 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1428 		/* if we have allocated more blocks and copied
1429 		 * less. We will have blocks allocated outside
1430 		 * inode->i_size. So truncate them
1431 		 */
1432 		ext4_orphan_add(handle, inode);
1433 
1434 errout:
1435 	ret2 = ext4_journal_stop(handle);
1436 	if (!ret)
1437 		ret = ret2;
1438 	if (pos + len > inode->i_size && !verity) {
1439 		ext4_truncate_failed_write(inode);
1440 		/*
1441 		 * If truncate failed early the inode might still be
1442 		 * on the orphan list; we need to make sure the inode
1443 		 * is removed from the orphan list in that case.
1444 		 */
1445 		if (inode->i_nlink)
1446 			ext4_orphan_del(NULL, inode);
1447 	}
1448 
1449 	return ret ? ret : copied;
1450 }
1451 
1452 /*
1453  * Reserve space for a single cluster
1454  */
1455 static int ext4_da_reserve_space(struct inode *inode)
1456 {
1457 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1458 	struct ext4_inode_info *ei = EXT4_I(inode);
1459 	int ret;
1460 
1461 	/*
1462 	 * We will charge metadata quota at writeout time; this saves
1463 	 * us from metadata over-estimation, though we may go over by
1464 	 * a small amount in the end.  Here we just reserve for data.
1465 	 */
1466 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1467 	if (ret)
1468 		return ret;
1469 
1470 	spin_lock(&ei->i_block_reservation_lock);
1471 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1472 		spin_unlock(&ei->i_block_reservation_lock);
1473 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1474 		return -ENOSPC;
1475 	}
1476 	ei->i_reserved_data_blocks++;
1477 	trace_ext4_da_reserve_space(inode);
1478 	spin_unlock(&ei->i_block_reservation_lock);
1479 
1480 	return 0;       /* success */
1481 }
1482 
1483 void ext4_da_release_space(struct inode *inode, int to_free)
1484 {
1485 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1486 	struct ext4_inode_info *ei = EXT4_I(inode);
1487 
1488 	if (!to_free)
1489 		return;		/* Nothing to release, exit */
1490 
1491 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1492 
1493 	trace_ext4_da_release_space(inode, to_free);
1494 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1495 		/*
1496 		 * if there aren't enough reserved blocks, then the
1497 		 * counter is messed up somewhere.  Since this
1498 		 * function is called from invalidate page, it's
1499 		 * harmless to return without any action.
1500 		 */
1501 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1502 			 "ino %lu, to_free %d with only %d reserved "
1503 			 "data blocks", inode->i_ino, to_free,
1504 			 ei->i_reserved_data_blocks);
1505 		WARN_ON(1);
1506 		to_free = ei->i_reserved_data_blocks;
1507 	}
1508 	ei->i_reserved_data_blocks -= to_free;
1509 
1510 	/* update fs dirty data blocks counter */
1511 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1512 
1513 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1514 
1515 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1516 }
1517 
1518 /*
1519  * Delayed allocation stuff
1520  */
1521 
1522 struct mpage_da_data {
1523 	struct inode *inode;
1524 	struct writeback_control *wbc;
1525 
1526 	pgoff_t first_page;	/* The first page to write */
1527 	pgoff_t next_page;	/* Current page to examine */
1528 	pgoff_t last_page;	/* Last page to examine */
1529 	/*
1530 	 * Extent to map - this can be after first_page because that can be
1531 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1532 	 * is delalloc or unwritten.
1533 	 */
1534 	struct ext4_map_blocks map;
1535 	struct ext4_io_submit io_submit;	/* IO submission data */
1536 	unsigned int do_map:1;
1537 	unsigned int scanned_until_end:1;
1538 };
1539 
1540 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1541 				       bool invalidate)
1542 {
1543 	int nr_pages, i;
1544 	pgoff_t index, end;
1545 	struct pagevec pvec;
1546 	struct inode *inode = mpd->inode;
1547 	struct address_space *mapping = inode->i_mapping;
1548 
1549 	/* This is necessary when next_page == 0. */
1550 	if (mpd->first_page >= mpd->next_page)
1551 		return;
1552 
1553 	mpd->scanned_until_end = 0;
1554 	index = mpd->first_page;
1555 	end   = mpd->next_page - 1;
1556 	if (invalidate) {
1557 		ext4_lblk_t start, last;
1558 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1559 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1560 		ext4_es_remove_extent(inode, start, last - start + 1);
1561 	}
1562 
1563 	pagevec_init(&pvec);
1564 	while (index <= end) {
1565 		nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1566 		if (nr_pages == 0)
1567 			break;
1568 		for (i = 0; i < nr_pages; i++) {
1569 			struct page *page = pvec.pages[i];
1570 
1571 			BUG_ON(!PageLocked(page));
1572 			BUG_ON(PageWriteback(page));
1573 			if (invalidate) {
1574 				if (page_mapped(page))
1575 					clear_page_dirty_for_io(page);
1576 				block_invalidatepage(page, 0, PAGE_SIZE);
1577 				ClearPageUptodate(page);
1578 			}
1579 			unlock_page(page);
1580 		}
1581 		pagevec_release(&pvec);
1582 	}
1583 }
1584 
1585 static void ext4_print_free_blocks(struct inode *inode)
1586 {
1587 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1588 	struct super_block *sb = inode->i_sb;
1589 	struct ext4_inode_info *ei = EXT4_I(inode);
1590 
1591 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1592 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1593 			ext4_count_free_clusters(sb)));
1594 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1595 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1596 	       (long long) EXT4_C2B(EXT4_SB(sb),
1597 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1598 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1599 	       (long long) EXT4_C2B(EXT4_SB(sb),
1600 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1601 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1602 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1603 		 ei->i_reserved_data_blocks);
1604 	return;
1605 }
1606 
1607 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1608 {
1609 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1610 }
1611 
1612 /*
1613  * ext4_insert_delayed_block - adds a delayed block to the extents status
1614  *                             tree, incrementing the reserved cluster/block
1615  *                             count or making a pending reservation
1616  *                             where needed
1617  *
1618  * @inode - file containing the newly added block
1619  * @lblk - logical block to be added
1620  *
1621  * Returns 0 on success, negative error code on failure.
1622  */
1623 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1624 {
1625 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1626 	int ret;
1627 	bool allocated = false;
1628 
1629 	/*
1630 	 * If the cluster containing lblk is shared with a delayed,
1631 	 * written, or unwritten extent in a bigalloc file system, it's
1632 	 * already been accounted for and does not need to be reserved.
1633 	 * A pending reservation must be made for the cluster if it's
1634 	 * shared with a written or unwritten extent and doesn't already
1635 	 * have one.  Written and unwritten extents can be purged from the
1636 	 * extents status tree if the system is under memory pressure, so
1637 	 * it's necessary to examine the extent tree if a search of the
1638 	 * extents status tree doesn't get a match.
1639 	 */
1640 	if (sbi->s_cluster_ratio == 1) {
1641 		ret = ext4_da_reserve_space(inode);
1642 		if (ret != 0)   /* ENOSPC */
1643 			goto errout;
1644 	} else {   /* bigalloc */
1645 		if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1646 			if (!ext4_es_scan_clu(inode,
1647 					      &ext4_es_is_mapped, lblk)) {
1648 				ret = ext4_clu_mapped(inode,
1649 						      EXT4_B2C(sbi, lblk));
1650 				if (ret < 0)
1651 					goto errout;
1652 				if (ret == 0) {
1653 					ret = ext4_da_reserve_space(inode);
1654 					if (ret != 0)   /* ENOSPC */
1655 						goto errout;
1656 				} else {
1657 					allocated = true;
1658 				}
1659 			} else {
1660 				allocated = true;
1661 			}
1662 		}
1663 	}
1664 
1665 	ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1666 
1667 errout:
1668 	return ret;
1669 }
1670 
1671 /*
1672  * This function is grabs code from the very beginning of
1673  * ext4_map_blocks, but assumes that the caller is from delayed write
1674  * time. This function looks up the requested blocks and sets the
1675  * buffer delay bit under the protection of i_data_sem.
1676  */
1677 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1678 			      struct ext4_map_blocks *map,
1679 			      struct buffer_head *bh)
1680 {
1681 	struct extent_status es;
1682 	int retval;
1683 	sector_t invalid_block = ~((sector_t) 0xffff);
1684 #ifdef ES_AGGRESSIVE_TEST
1685 	struct ext4_map_blocks orig_map;
1686 
1687 	memcpy(&orig_map, map, sizeof(*map));
1688 #endif
1689 
1690 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1691 		invalid_block = ~0;
1692 
1693 	map->m_flags = 0;
1694 	ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1695 		  (unsigned long) map->m_lblk);
1696 
1697 	/* Lookup extent status tree firstly */
1698 	if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1699 		if (ext4_es_is_hole(&es)) {
1700 			retval = 0;
1701 			down_read(&EXT4_I(inode)->i_data_sem);
1702 			goto add_delayed;
1703 		}
1704 
1705 		/*
1706 		 * Delayed extent could be allocated by fallocate.
1707 		 * So we need to check it.
1708 		 */
1709 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1710 			map_bh(bh, inode->i_sb, invalid_block);
1711 			set_buffer_new(bh);
1712 			set_buffer_delay(bh);
1713 			return 0;
1714 		}
1715 
1716 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1717 		retval = es.es_len - (iblock - es.es_lblk);
1718 		if (retval > map->m_len)
1719 			retval = map->m_len;
1720 		map->m_len = retval;
1721 		if (ext4_es_is_written(&es))
1722 			map->m_flags |= EXT4_MAP_MAPPED;
1723 		else if (ext4_es_is_unwritten(&es))
1724 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1725 		else
1726 			BUG();
1727 
1728 #ifdef ES_AGGRESSIVE_TEST
1729 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1730 #endif
1731 		return retval;
1732 	}
1733 
1734 	/*
1735 	 * Try to see if we can get the block without requesting a new
1736 	 * file system block.
1737 	 */
1738 	down_read(&EXT4_I(inode)->i_data_sem);
1739 	if (ext4_has_inline_data(inode))
1740 		retval = 0;
1741 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1742 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1743 	else
1744 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1745 
1746 add_delayed:
1747 	if (retval == 0) {
1748 		int ret;
1749 
1750 		/*
1751 		 * XXX: __block_prepare_write() unmaps passed block,
1752 		 * is it OK?
1753 		 */
1754 
1755 		ret = ext4_insert_delayed_block(inode, map->m_lblk);
1756 		if (ret != 0) {
1757 			retval = ret;
1758 			goto out_unlock;
1759 		}
1760 
1761 		map_bh(bh, inode->i_sb, invalid_block);
1762 		set_buffer_new(bh);
1763 		set_buffer_delay(bh);
1764 	} else if (retval > 0) {
1765 		int ret;
1766 		unsigned int status;
1767 
1768 		if (unlikely(retval != map->m_len)) {
1769 			ext4_warning(inode->i_sb,
1770 				     "ES len assertion failed for inode "
1771 				     "%lu: retval %d != map->m_len %d",
1772 				     inode->i_ino, retval, map->m_len);
1773 			WARN_ON(1);
1774 		}
1775 
1776 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1777 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1778 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1779 					    map->m_pblk, status);
1780 		if (ret != 0)
1781 			retval = ret;
1782 	}
1783 
1784 out_unlock:
1785 	up_read((&EXT4_I(inode)->i_data_sem));
1786 
1787 	return retval;
1788 }
1789 
1790 /*
1791  * This is a special get_block_t callback which is used by
1792  * ext4_da_write_begin().  It will either return mapped block or
1793  * reserve space for a single block.
1794  *
1795  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1796  * We also have b_blocknr = -1 and b_bdev initialized properly
1797  *
1798  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1799  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1800  * initialized properly.
1801  */
1802 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1803 			   struct buffer_head *bh, int create)
1804 {
1805 	struct ext4_map_blocks map;
1806 	int ret = 0;
1807 
1808 	BUG_ON(create == 0);
1809 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1810 
1811 	map.m_lblk = iblock;
1812 	map.m_len = 1;
1813 
1814 	/*
1815 	 * first, we need to know whether the block is allocated already
1816 	 * preallocated blocks are unmapped but should treated
1817 	 * the same as allocated blocks.
1818 	 */
1819 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1820 	if (ret <= 0)
1821 		return ret;
1822 
1823 	map_bh(bh, inode->i_sb, map.m_pblk);
1824 	ext4_update_bh_state(bh, map.m_flags);
1825 
1826 	if (buffer_unwritten(bh)) {
1827 		/* A delayed write to unwritten bh should be marked
1828 		 * new and mapped.  Mapped ensures that we don't do
1829 		 * get_block multiple times when we write to the same
1830 		 * offset and new ensures that we do proper zero out
1831 		 * for partial write.
1832 		 */
1833 		set_buffer_new(bh);
1834 		set_buffer_mapped(bh);
1835 	}
1836 	return 0;
1837 }
1838 
1839 static int bget_one(handle_t *handle, struct buffer_head *bh)
1840 {
1841 	get_bh(bh);
1842 	return 0;
1843 }
1844 
1845 static int bput_one(handle_t *handle, struct buffer_head *bh)
1846 {
1847 	put_bh(bh);
1848 	return 0;
1849 }
1850 
1851 static int __ext4_journalled_writepage(struct page *page,
1852 				       unsigned int len)
1853 {
1854 	struct address_space *mapping = page->mapping;
1855 	struct inode *inode = mapping->host;
1856 	struct buffer_head *page_bufs = NULL;
1857 	handle_t *handle = NULL;
1858 	int ret = 0, err = 0;
1859 	int inline_data = ext4_has_inline_data(inode);
1860 	struct buffer_head *inode_bh = NULL;
1861 
1862 	ClearPageChecked(page);
1863 
1864 	if (inline_data) {
1865 		BUG_ON(page->index != 0);
1866 		BUG_ON(len > ext4_get_max_inline_size(inode));
1867 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1868 		if (inode_bh == NULL)
1869 			goto out;
1870 	} else {
1871 		page_bufs = page_buffers(page);
1872 		if (!page_bufs) {
1873 			BUG();
1874 			goto out;
1875 		}
1876 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1877 				       NULL, bget_one);
1878 	}
1879 	/*
1880 	 * We need to release the page lock before we start the
1881 	 * journal, so grab a reference so the page won't disappear
1882 	 * out from under us.
1883 	 */
1884 	get_page(page);
1885 	unlock_page(page);
1886 
1887 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1888 				    ext4_writepage_trans_blocks(inode));
1889 	if (IS_ERR(handle)) {
1890 		ret = PTR_ERR(handle);
1891 		put_page(page);
1892 		goto out_no_pagelock;
1893 	}
1894 	BUG_ON(!ext4_handle_valid(handle));
1895 
1896 	lock_page(page);
1897 	put_page(page);
1898 	if (page->mapping != mapping) {
1899 		/* The page got truncated from under us */
1900 		ext4_journal_stop(handle);
1901 		ret = 0;
1902 		goto out;
1903 	}
1904 
1905 	if (inline_data) {
1906 		ret = ext4_mark_inode_dirty(handle, inode);
1907 	} else {
1908 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1909 					     do_journal_get_write_access);
1910 
1911 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1912 					     write_end_fn);
1913 	}
1914 	if (ret == 0)
1915 		ret = err;
1916 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1917 	err = ext4_journal_stop(handle);
1918 	if (!ret)
1919 		ret = err;
1920 
1921 	if (!ext4_has_inline_data(inode))
1922 		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1923 				       NULL, bput_one);
1924 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1925 out:
1926 	unlock_page(page);
1927 out_no_pagelock:
1928 	brelse(inode_bh);
1929 	return ret;
1930 }
1931 
1932 /*
1933  * Note that we don't need to start a transaction unless we're journaling data
1934  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1935  * need to file the inode to the transaction's list in ordered mode because if
1936  * we are writing back data added by write(), the inode is already there and if
1937  * we are writing back data modified via mmap(), no one guarantees in which
1938  * transaction the data will hit the disk. In case we are journaling data, we
1939  * cannot start transaction directly because transaction start ranks above page
1940  * lock so we have to do some magic.
1941  *
1942  * This function can get called via...
1943  *   - ext4_writepages after taking page lock (have journal handle)
1944  *   - journal_submit_inode_data_buffers (no journal handle)
1945  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1946  *   - grab_page_cache when doing write_begin (have journal handle)
1947  *
1948  * We don't do any block allocation in this function. If we have page with
1949  * multiple blocks we need to write those buffer_heads that are mapped. This
1950  * is important for mmaped based write. So if we do with blocksize 1K
1951  * truncate(f, 1024);
1952  * a = mmap(f, 0, 4096);
1953  * a[0] = 'a';
1954  * truncate(f, 4096);
1955  * we have in the page first buffer_head mapped via page_mkwrite call back
1956  * but other buffer_heads would be unmapped but dirty (dirty done via the
1957  * do_wp_page). So writepage should write the first block. If we modify
1958  * the mmap area beyond 1024 we will again get a page_fault and the
1959  * page_mkwrite callback will do the block allocation and mark the
1960  * buffer_heads mapped.
1961  *
1962  * We redirty the page if we have any buffer_heads that is either delay or
1963  * unwritten in the page.
1964  *
1965  * We can get recursively called as show below.
1966  *
1967  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1968  *		ext4_writepage()
1969  *
1970  * But since we don't do any block allocation we should not deadlock.
1971  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1972  */
1973 static int ext4_writepage(struct page *page,
1974 			  struct writeback_control *wbc)
1975 {
1976 	int ret = 0;
1977 	loff_t size;
1978 	unsigned int len;
1979 	struct buffer_head *page_bufs = NULL;
1980 	struct inode *inode = page->mapping->host;
1981 	struct ext4_io_submit io_submit;
1982 	bool keep_towrite = false;
1983 
1984 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
1985 		inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
1986 		unlock_page(page);
1987 		return -EIO;
1988 	}
1989 
1990 	trace_ext4_writepage(page);
1991 	size = i_size_read(inode);
1992 	if (page->index == size >> PAGE_SHIFT &&
1993 	    !ext4_verity_in_progress(inode))
1994 		len = size & ~PAGE_MASK;
1995 	else
1996 		len = PAGE_SIZE;
1997 
1998 	page_bufs = page_buffers(page);
1999 	/*
2000 	 * We cannot do block allocation or other extent handling in this
2001 	 * function. If there are buffers needing that, we have to redirty
2002 	 * the page. But we may reach here when we do a journal commit via
2003 	 * journal_submit_inode_data_buffers() and in that case we must write
2004 	 * allocated buffers to achieve data=ordered mode guarantees.
2005 	 *
2006 	 * Also, if there is only one buffer per page (the fs block
2007 	 * size == the page size), if one buffer needs block
2008 	 * allocation or needs to modify the extent tree to clear the
2009 	 * unwritten flag, we know that the page can't be written at
2010 	 * all, so we might as well refuse the write immediately.
2011 	 * Unfortunately if the block size != page size, we can't as
2012 	 * easily detect this case using ext4_walk_page_buffers(), but
2013 	 * for the extremely common case, this is an optimization that
2014 	 * skips a useless round trip through ext4_bio_write_page().
2015 	 */
2016 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2017 				   ext4_bh_delay_or_unwritten)) {
2018 		redirty_page_for_writepage(wbc, page);
2019 		if ((current->flags & PF_MEMALLOC) ||
2020 		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2021 			/*
2022 			 * For memory cleaning there's no point in writing only
2023 			 * some buffers. So just bail out. Warn if we came here
2024 			 * from direct reclaim.
2025 			 */
2026 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2027 							== PF_MEMALLOC);
2028 			unlock_page(page);
2029 			return 0;
2030 		}
2031 		keep_towrite = true;
2032 	}
2033 
2034 	if (PageChecked(page) && ext4_should_journal_data(inode))
2035 		/*
2036 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2037 		 * doesn't seem much point in redirtying the page here.
2038 		 */
2039 		return __ext4_journalled_writepage(page, len);
2040 
2041 	ext4_io_submit_init(&io_submit, wbc);
2042 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2043 	if (!io_submit.io_end) {
2044 		redirty_page_for_writepage(wbc, page);
2045 		unlock_page(page);
2046 		return -ENOMEM;
2047 	}
2048 	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2049 	ext4_io_submit(&io_submit);
2050 	/* Drop io_end reference we got from init */
2051 	ext4_put_io_end_defer(io_submit.io_end);
2052 	return ret;
2053 }
2054 
2055 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2056 {
2057 	int len;
2058 	loff_t size;
2059 	int err;
2060 
2061 	BUG_ON(page->index != mpd->first_page);
2062 	clear_page_dirty_for_io(page);
2063 	/*
2064 	 * We have to be very careful here!  Nothing protects writeback path
2065 	 * against i_size changes and the page can be writeably mapped into
2066 	 * page tables. So an application can be growing i_size and writing
2067 	 * data through mmap while writeback runs. clear_page_dirty_for_io()
2068 	 * write-protects our page in page tables and the page cannot get
2069 	 * written to again until we release page lock. So only after
2070 	 * clear_page_dirty_for_io() we are safe to sample i_size for
2071 	 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2072 	 * on the barrier provided by TestClearPageDirty in
2073 	 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2074 	 * after page tables are updated.
2075 	 */
2076 	size = i_size_read(mpd->inode);
2077 	if (page->index == size >> PAGE_SHIFT &&
2078 	    !ext4_verity_in_progress(mpd->inode))
2079 		len = size & ~PAGE_MASK;
2080 	else
2081 		len = PAGE_SIZE;
2082 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2083 	if (!err)
2084 		mpd->wbc->nr_to_write--;
2085 	mpd->first_page++;
2086 
2087 	return err;
2088 }
2089 
2090 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2091 
2092 /*
2093  * mballoc gives us at most this number of blocks...
2094  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2095  * The rest of mballoc seems to handle chunks up to full group size.
2096  */
2097 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2098 
2099 /*
2100  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2101  *
2102  * @mpd - extent of blocks
2103  * @lblk - logical number of the block in the file
2104  * @bh - buffer head we want to add to the extent
2105  *
2106  * The function is used to collect contig. blocks in the same state. If the
2107  * buffer doesn't require mapping for writeback and we haven't started the
2108  * extent of buffers to map yet, the function returns 'true' immediately - the
2109  * caller can write the buffer right away. Otherwise the function returns true
2110  * if the block has been added to the extent, false if the block couldn't be
2111  * added.
2112  */
2113 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2114 				   struct buffer_head *bh)
2115 {
2116 	struct ext4_map_blocks *map = &mpd->map;
2117 
2118 	/* Buffer that doesn't need mapping for writeback? */
2119 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2120 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2121 		/* So far no extent to map => we write the buffer right away */
2122 		if (map->m_len == 0)
2123 			return true;
2124 		return false;
2125 	}
2126 
2127 	/* First block in the extent? */
2128 	if (map->m_len == 0) {
2129 		/* We cannot map unless handle is started... */
2130 		if (!mpd->do_map)
2131 			return false;
2132 		map->m_lblk = lblk;
2133 		map->m_len = 1;
2134 		map->m_flags = bh->b_state & BH_FLAGS;
2135 		return true;
2136 	}
2137 
2138 	/* Don't go larger than mballoc is willing to allocate */
2139 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2140 		return false;
2141 
2142 	/* Can we merge the block to our big extent? */
2143 	if (lblk == map->m_lblk + map->m_len &&
2144 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2145 		map->m_len++;
2146 		return true;
2147 	}
2148 	return false;
2149 }
2150 
2151 /*
2152  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2153  *
2154  * @mpd - extent of blocks for mapping
2155  * @head - the first buffer in the page
2156  * @bh - buffer we should start processing from
2157  * @lblk - logical number of the block in the file corresponding to @bh
2158  *
2159  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2160  * the page for IO if all buffers in this page were mapped and there's no
2161  * accumulated extent of buffers to map or add buffers in the page to the
2162  * extent of buffers to map. The function returns 1 if the caller can continue
2163  * by processing the next page, 0 if it should stop adding buffers to the
2164  * extent to map because we cannot extend it anymore. It can also return value
2165  * < 0 in case of error during IO submission.
2166  */
2167 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2168 				   struct buffer_head *head,
2169 				   struct buffer_head *bh,
2170 				   ext4_lblk_t lblk)
2171 {
2172 	struct inode *inode = mpd->inode;
2173 	int err;
2174 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2175 							>> inode->i_blkbits;
2176 
2177 	if (ext4_verity_in_progress(inode))
2178 		blocks = EXT_MAX_BLOCKS;
2179 
2180 	do {
2181 		BUG_ON(buffer_locked(bh));
2182 
2183 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2184 			/* Found extent to map? */
2185 			if (mpd->map.m_len)
2186 				return 0;
2187 			/* Buffer needs mapping and handle is not started? */
2188 			if (!mpd->do_map)
2189 				return 0;
2190 			/* Everything mapped so far and we hit EOF */
2191 			break;
2192 		}
2193 	} while (lblk++, (bh = bh->b_this_page) != head);
2194 	/* So far everything mapped? Submit the page for IO. */
2195 	if (mpd->map.m_len == 0) {
2196 		err = mpage_submit_page(mpd, head->b_page);
2197 		if (err < 0)
2198 			return err;
2199 	}
2200 	if (lblk >= blocks) {
2201 		mpd->scanned_until_end = 1;
2202 		return 0;
2203 	}
2204 	return 1;
2205 }
2206 
2207 /*
2208  * mpage_process_page - update page buffers corresponding to changed extent and
2209  *		       may submit fully mapped page for IO
2210  *
2211  * @mpd		- description of extent to map, on return next extent to map
2212  * @m_lblk	- logical block mapping.
2213  * @m_pblk	- corresponding physical mapping.
2214  * @map_bh	- determines on return whether this page requires any further
2215  *		  mapping or not.
2216  * Scan given page buffers corresponding to changed extent and update buffer
2217  * state according to new extent state.
2218  * We map delalloc buffers to their physical location, clear unwritten bits.
2219  * If the given page is not fully mapped, we update @map to the next extent in
2220  * the given page that needs mapping & return @map_bh as true.
2221  */
2222 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2223 			      ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2224 			      bool *map_bh)
2225 {
2226 	struct buffer_head *head, *bh;
2227 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2228 	ext4_lblk_t lblk = *m_lblk;
2229 	ext4_fsblk_t pblock = *m_pblk;
2230 	int err = 0;
2231 	int blkbits = mpd->inode->i_blkbits;
2232 	ssize_t io_end_size = 0;
2233 	struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2234 
2235 	bh = head = page_buffers(page);
2236 	do {
2237 		if (lblk < mpd->map.m_lblk)
2238 			continue;
2239 		if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2240 			/*
2241 			 * Buffer after end of mapped extent.
2242 			 * Find next buffer in the page to map.
2243 			 */
2244 			mpd->map.m_len = 0;
2245 			mpd->map.m_flags = 0;
2246 			io_end_vec->size += io_end_size;
2247 			io_end_size = 0;
2248 
2249 			err = mpage_process_page_bufs(mpd, head, bh, lblk);
2250 			if (err > 0)
2251 				err = 0;
2252 			if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2253 				io_end_vec = ext4_alloc_io_end_vec(io_end);
2254 				if (IS_ERR(io_end_vec)) {
2255 					err = PTR_ERR(io_end_vec);
2256 					goto out;
2257 				}
2258 				io_end_vec->offset = mpd->map.m_lblk << blkbits;
2259 			}
2260 			*map_bh = true;
2261 			goto out;
2262 		}
2263 		if (buffer_delay(bh)) {
2264 			clear_buffer_delay(bh);
2265 			bh->b_blocknr = pblock++;
2266 		}
2267 		clear_buffer_unwritten(bh);
2268 		io_end_size += (1 << blkbits);
2269 	} while (lblk++, (bh = bh->b_this_page) != head);
2270 
2271 	io_end_vec->size += io_end_size;
2272 	io_end_size = 0;
2273 	*map_bh = false;
2274 out:
2275 	*m_lblk = lblk;
2276 	*m_pblk = pblock;
2277 	return err;
2278 }
2279 
2280 /*
2281  * mpage_map_buffers - update buffers corresponding to changed extent and
2282  *		       submit fully mapped pages for IO
2283  *
2284  * @mpd - description of extent to map, on return next extent to map
2285  *
2286  * Scan buffers corresponding to changed extent (we expect corresponding pages
2287  * to be already locked) and update buffer state according to new extent state.
2288  * We map delalloc buffers to their physical location, clear unwritten bits,
2289  * and mark buffers as uninit when we perform writes to unwritten extents
2290  * and do extent conversion after IO is finished. If the last page is not fully
2291  * mapped, we update @map to the next extent in the last page that needs
2292  * mapping. Otherwise we submit the page for IO.
2293  */
2294 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2295 {
2296 	struct pagevec pvec;
2297 	int nr_pages, i;
2298 	struct inode *inode = mpd->inode;
2299 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2300 	pgoff_t start, end;
2301 	ext4_lblk_t lblk;
2302 	ext4_fsblk_t pblock;
2303 	int err;
2304 	bool map_bh = false;
2305 
2306 	start = mpd->map.m_lblk >> bpp_bits;
2307 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2308 	lblk = start << bpp_bits;
2309 	pblock = mpd->map.m_pblk;
2310 
2311 	pagevec_init(&pvec);
2312 	while (start <= end) {
2313 		nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2314 						&start, end);
2315 		if (nr_pages == 0)
2316 			break;
2317 		for (i = 0; i < nr_pages; i++) {
2318 			struct page *page = pvec.pages[i];
2319 
2320 			err = mpage_process_page(mpd, page, &lblk, &pblock,
2321 						 &map_bh);
2322 			/*
2323 			 * If map_bh is true, means page may require further bh
2324 			 * mapping, or maybe the page was submitted for IO.
2325 			 * So we return to call further extent mapping.
2326 			 */
2327 			if (err < 0 || map_bh)
2328 				goto out;
2329 			/* Page fully mapped - let IO run! */
2330 			err = mpage_submit_page(mpd, page);
2331 			if (err < 0)
2332 				goto out;
2333 		}
2334 		pagevec_release(&pvec);
2335 	}
2336 	/* Extent fully mapped and matches with page boundary. We are done. */
2337 	mpd->map.m_len = 0;
2338 	mpd->map.m_flags = 0;
2339 	return 0;
2340 out:
2341 	pagevec_release(&pvec);
2342 	return err;
2343 }
2344 
2345 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2346 {
2347 	struct inode *inode = mpd->inode;
2348 	struct ext4_map_blocks *map = &mpd->map;
2349 	int get_blocks_flags;
2350 	int err, dioread_nolock;
2351 
2352 	trace_ext4_da_write_pages_extent(inode, map);
2353 	/*
2354 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2355 	 * to convert an unwritten extent to be initialized (in the case
2356 	 * where we have written into one or more preallocated blocks).  It is
2357 	 * possible that we're going to need more metadata blocks than
2358 	 * previously reserved. However we must not fail because we're in
2359 	 * writeback and there is nothing we can do about it so it might result
2360 	 * in data loss.  So use reserved blocks to allocate metadata if
2361 	 * possible.
2362 	 *
2363 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2364 	 * the blocks in question are delalloc blocks.  This indicates
2365 	 * that the blocks and quotas has already been checked when
2366 	 * the data was copied into the page cache.
2367 	 */
2368 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2369 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2370 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2371 	dioread_nolock = ext4_should_dioread_nolock(inode);
2372 	if (dioread_nolock)
2373 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2374 	if (map->m_flags & BIT(BH_Delay))
2375 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2376 
2377 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2378 	if (err < 0)
2379 		return err;
2380 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2381 		if (!mpd->io_submit.io_end->handle &&
2382 		    ext4_handle_valid(handle)) {
2383 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2384 			handle->h_rsv_handle = NULL;
2385 		}
2386 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2387 	}
2388 
2389 	BUG_ON(map->m_len == 0);
2390 	return 0;
2391 }
2392 
2393 /*
2394  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2395  *				 mpd->len and submit pages underlying it for IO
2396  *
2397  * @handle - handle for journal operations
2398  * @mpd - extent to map
2399  * @give_up_on_write - we set this to true iff there is a fatal error and there
2400  *                     is no hope of writing the data. The caller should discard
2401  *                     dirty pages to avoid infinite loops.
2402  *
2403  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2404  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2405  * them to initialized or split the described range from larger unwritten
2406  * extent. Note that we need not map all the described range since allocation
2407  * can return less blocks or the range is covered by more unwritten extents. We
2408  * cannot map more because we are limited by reserved transaction credits. On
2409  * the other hand we always make sure that the last touched page is fully
2410  * mapped so that it can be written out (and thus forward progress is
2411  * guaranteed). After mapping we submit all mapped pages for IO.
2412  */
2413 static int mpage_map_and_submit_extent(handle_t *handle,
2414 				       struct mpage_da_data *mpd,
2415 				       bool *give_up_on_write)
2416 {
2417 	struct inode *inode = mpd->inode;
2418 	struct ext4_map_blocks *map = &mpd->map;
2419 	int err;
2420 	loff_t disksize;
2421 	int progress = 0;
2422 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2423 	struct ext4_io_end_vec *io_end_vec;
2424 
2425 	io_end_vec = ext4_alloc_io_end_vec(io_end);
2426 	if (IS_ERR(io_end_vec))
2427 		return PTR_ERR(io_end_vec);
2428 	io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2429 	do {
2430 		err = mpage_map_one_extent(handle, mpd);
2431 		if (err < 0) {
2432 			struct super_block *sb = inode->i_sb;
2433 
2434 			if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2435 			    EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2436 				goto invalidate_dirty_pages;
2437 			/*
2438 			 * Let the uper layers retry transient errors.
2439 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2440 			 * is non-zero, a commit should free up blocks.
2441 			 */
2442 			if ((err == -ENOMEM) ||
2443 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2444 				if (progress)
2445 					goto update_disksize;
2446 				return err;
2447 			}
2448 			ext4_msg(sb, KERN_CRIT,
2449 				 "Delayed block allocation failed for "
2450 				 "inode %lu at logical offset %llu with"
2451 				 " max blocks %u with error %d",
2452 				 inode->i_ino,
2453 				 (unsigned long long)map->m_lblk,
2454 				 (unsigned)map->m_len, -err);
2455 			ext4_msg(sb, KERN_CRIT,
2456 				 "This should not happen!! Data will "
2457 				 "be lost\n");
2458 			if (err == -ENOSPC)
2459 				ext4_print_free_blocks(inode);
2460 		invalidate_dirty_pages:
2461 			*give_up_on_write = true;
2462 			return err;
2463 		}
2464 		progress = 1;
2465 		/*
2466 		 * Update buffer state, submit mapped pages, and get us new
2467 		 * extent to map
2468 		 */
2469 		err = mpage_map_and_submit_buffers(mpd);
2470 		if (err < 0)
2471 			goto update_disksize;
2472 	} while (map->m_len);
2473 
2474 update_disksize:
2475 	/*
2476 	 * Update on-disk size after IO is submitted.  Races with
2477 	 * truncate are avoided by checking i_size under i_data_sem.
2478 	 */
2479 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2480 	if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2481 		int err2;
2482 		loff_t i_size;
2483 
2484 		down_write(&EXT4_I(inode)->i_data_sem);
2485 		i_size = i_size_read(inode);
2486 		if (disksize > i_size)
2487 			disksize = i_size;
2488 		if (disksize > EXT4_I(inode)->i_disksize)
2489 			EXT4_I(inode)->i_disksize = disksize;
2490 		up_write(&EXT4_I(inode)->i_data_sem);
2491 		err2 = ext4_mark_inode_dirty(handle, inode);
2492 		if (err2) {
2493 			ext4_error_err(inode->i_sb, -err2,
2494 				       "Failed to mark inode %lu dirty",
2495 				       inode->i_ino);
2496 		}
2497 		if (!err)
2498 			err = err2;
2499 	}
2500 	return err;
2501 }
2502 
2503 /*
2504  * Calculate the total number of credits to reserve for one writepages
2505  * iteration. This is called from ext4_writepages(). We map an extent of
2506  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2507  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2508  * bpp - 1 blocks in bpp different extents.
2509  */
2510 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2511 {
2512 	int bpp = ext4_journal_blocks_per_page(inode);
2513 
2514 	return ext4_meta_trans_blocks(inode,
2515 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2516 }
2517 
2518 /*
2519  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2520  * 				 and underlying extent to map
2521  *
2522  * @mpd - where to look for pages
2523  *
2524  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2525  * IO immediately. When we find a page which isn't mapped we start accumulating
2526  * extent of buffers underlying these pages that needs mapping (formed by
2527  * either delayed or unwritten buffers). We also lock the pages containing
2528  * these buffers. The extent found is returned in @mpd structure (starting at
2529  * mpd->lblk with length mpd->len blocks).
2530  *
2531  * Note that this function can attach bios to one io_end structure which are
2532  * neither logically nor physically contiguous. Although it may seem as an
2533  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2534  * case as we need to track IO to all buffers underlying a page in one io_end.
2535  */
2536 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2537 {
2538 	struct address_space *mapping = mpd->inode->i_mapping;
2539 	struct pagevec pvec;
2540 	unsigned int nr_pages;
2541 	long left = mpd->wbc->nr_to_write;
2542 	pgoff_t index = mpd->first_page;
2543 	pgoff_t end = mpd->last_page;
2544 	xa_mark_t tag;
2545 	int i, err = 0;
2546 	int blkbits = mpd->inode->i_blkbits;
2547 	ext4_lblk_t lblk;
2548 	struct buffer_head *head;
2549 
2550 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2551 		tag = PAGECACHE_TAG_TOWRITE;
2552 	else
2553 		tag = PAGECACHE_TAG_DIRTY;
2554 
2555 	pagevec_init(&pvec);
2556 	mpd->map.m_len = 0;
2557 	mpd->next_page = index;
2558 	while (index <= end) {
2559 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2560 				tag);
2561 		if (nr_pages == 0)
2562 			break;
2563 
2564 		for (i = 0; i < nr_pages; i++) {
2565 			struct page *page = pvec.pages[i];
2566 
2567 			/*
2568 			 * Accumulated enough dirty pages? This doesn't apply
2569 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2570 			 * keep going because someone may be concurrently
2571 			 * dirtying pages, and we might have synced a lot of
2572 			 * newly appeared dirty pages, but have not synced all
2573 			 * of the old dirty pages.
2574 			 */
2575 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2576 				goto out;
2577 
2578 			/* If we can't merge this page, we are done. */
2579 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2580 				goto out;
2581 
2582 			lock_page(page);
2583 			/*
2584 			 * If the page is no longer dirty, or its mapping no
2585 			 * longer corresponds to inode we are writing (which
2586 			 * means it has been truncated or invalidated), or the
2587 			 * page is already under writeback and we are not doing
2588 			 * a data integrity writeback, skip the page
2589 			 */
2590 			if (!PageDirty(page) ||
2591 			    (PageWriteback(page) &&
2592 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2593 			    unlikely(page->mapping != mapping)) {
2594 				unlock_page(page);
2595 				continue;
2596 			}
2597 
2598 			wait_on_page_writeback(page);
2599 			BUG_ON(PageWriteback(page));
2600 
2601 			if (mpd->map.m_len == 0)
2602 				mpd->first_page = page->index;
2603 			mpd->next_page = page->index + 1;
2604 			/* Add all dirty buffers to mpd */
2605 			lblk = ((ext4_lblk_t)page->index) <<
2606 				(PAGE_SHIFT - blkbits);
2607 			head = page_buffers(page);
2608 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2609 			if (err <= 0)
2610 				goto out;
2611 			err = 0;
2612 			left--;
2613 		}
2614 		pagevec_release(&pvec);
2615 		cond_resched();
2616 	}
2617 	mpd->scanned_until_end = 1;
2618 	return 0;
2619 out:
2620 	pagevec_release(&pvec);
2621 	return err;
2622 }
2623 
2624 static int ext4_writepages(struct address_space *mapping,
2625 			   struct writeback_control *wbc)
2626 {
2627 	pgoff_t	writeback_index = 0;
2628 	long nr_to_write = wbc->nr_to_write;
2629 	int range_whole = 0;
2630 	int cycled = 1;
2631 	handle_t *handle = NULL;
2632 	struct mpage_da_data mpd;
2633 	struct inode *inode = mapping->host;
2634 	int needed_blocks, rsv_blocks = 0, ret = 0;
2635 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2636 	struct blk_plug plug;
2637 	bool give_up_on_write = false;
2638 
2639 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2640 		return -EIO;
2641 
2642 	percpu_down_read(&sbi->s_writepages_rwsem);
2643 	trace_ext4_writepages(inode, wbc);
2644 
2645 	/*
2646 	 * No pages to write? This is mainly a kludge to avoid starting
2647 	 * a transaction for special inodes like journal inode on last iput()
2648 	 * because that could violate lock ordering on umount
2649 	 */
2650 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2651 		goto out_writepages;
2652 
2653 	if (ext4_should_journal_data(inode)) {
2654 		ret = generic_writepages(mapping, wbc);
2655 		goto out_writepages;
2656 	}
2657 
2658 	/*
2659 	 * If the filesystem has aborted, it is read-only, so return
2660 	 * right away instead of dumping stack traces later on that
2661 	 * will obscure the real source of the problem.  We test
2662 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2663 	 * the latter could be true if the filesystem is mounted
2664 	 * read-only, and in that case, ext4_writepages should
2665 	 * *never* be called, so if that ever happens, we would want
2666 	 * the stack trace.
2667 	 */
2668 	if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2669 		     sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2670 		ret = -EROFS;
2671 		goto out_writepages;
2672 	}
2673 
2674 	/*
2675 	 * If we have inline data and arrive here, it means that
2676 	 * we will soon create the block for the 1st page, so
2677 	 * we'd better clear the inline data here.
2678 	 */
2679 	if (ext4_has_inline_data(inode)) {
2680 		/* Just inode will be modified... */
2681 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2682 		if (IS_ERR(handle)) {
2683 			ret = PTR_ERR(handle);
2684 			goto out_writepages;
2685 		}
2686 		BUG_ON(ext4_test_inode_state(inode,
2687 				EXT4_STATE_MAY_INLINE_DATA));
2688 		ext4_destroy_inline_data(handle, inode);
2689 		ext4_journal_stop(handle);
2690 	}
2691 
2692 	if (ext4_should_dioread_nolock(inode)) {
2693 		/*
2694 		 * We may need to convert up to one extent per block in
2695 		 * the page and we may dirty the inode.
2696 		 */
2697 		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2698 						PAGE_SIZE >> inode->i_blkbits);
2699 	}
2700 
2701 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2702 		range_whole = 1;
2703 
2704 	if (wbc->range_cyclic) {
2705 		writeback_index = mapping->writeback_index;
2706 		if (writeback_index)
2707 			cycled = 0;
2708 		mpd.first_page = writeback_index;
2709 		mpd.last_page = -1;
2710 	} else {
2711 		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2712 		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2713 	}
2714 
2715 	mpd.inode = inode;
2716 	mpd.wbc = wbc;
2717 	ext4_io_submit_init(&mpd.io_submit, wbc);
2718 retry:
2719 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2720 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2721 	blk_start_plug(&plug);
2722 
2723 	/*
2724 	 * First writeback pages that don't need mapping - we can avoid
2725 	 * starting a transaction unnecessarily and also avoid being blocked
2726 	 * in the block layer on device congestion while having transaction
2727 	 * started.
2728 	 */
2729 	mpd.do_map = 0;
2730 	mpd.scanned_until_end = 0;
2731 	mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2732 	if (!mpd.io_submit.io_end) {
2733 		ret = -ENOMEM;
2734 		goto unplug;
2735 	}
2736 	ret = mpage_prepare_extent_to_map(&mpd);
2737 	/* Unlock pages we didn't use */
2738 	mpage_release_unused_pages(&mpd, false);
2739 	/* Submit prepared bio */
2740 	ext4_io_submit(&mpd.io_submit);
2741 	ext4_put_io_end_defer(mpd.io_submit.io_end);
2742 	mpd.io_submit.io_end = NULL;
2743 	if (ret < 0)
2744 		goto unplug;
2745 
2746 	while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2747 		/* For each extent of pages we use new io_end */
2748 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2749 		if (!mpd.io_submit.io_end) {
2750 			ret = -ENOMEM;
2751 			break;
2752 		}
2753 
2754 		/*
2755 		 * We have two constraints: We find one extent to map and we
2756 		 * must always write out whole page (makes a difference when
2757 		 * blocksize < pagesize) so that we don't block on IO when we
2758 		 * try to write out the rest of the page. Journalled mode is
2759 		 * not supported by delalloc.
2760 		 */
2761 		BUG_ON(ext4_should_journal_data(inode));
2762 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2763 
2764 		/* start a new transaction */
2765 		handle = ext4_journal_start_with_reserve(inode,
2766 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2767 		if (IS_ERR(handle)) {
2768 			ret = PTR_ERR(handle);
2769 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2770 			       "%ld pages, ino %lu; err %d", __func__,
2771 				wbc->nr_to_write, inode->i_ino, ret);
2772 			/* Release allocated io_end */
2773 			ext4_put_io_end(mpd.io_submit.io_end);
2774 			mpd.io_submit.io_end = NULL;
2775 			break;
2776 		}
2777 		mpd.do_map = 1;
2778 
2779 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2780 		ret = mpage_prepare_extent_to_map(&mpd);
2781 		if (!ret && mpd.map.m_len)
2782 			ret = mpage_map_and_submit_extent(handle, &mpd,
2783 					&give_up_on_write);
2784 		/*
2785 		 * Caution: If the handle is synchronous,
2786 		 * ext4_journal_stop() can wait for transaction commit
2787 		 * to finish which may depend on writeback of pages to
2788 		 * complete or on page lock to be released.  In that
2789 		 * case, we have to wait until after after we have
2790 		 * submitted all the IO, released page locks we hold,
2791 		 * and dropped io_end reference (for extent conversion
2792 		 * to be able to complete) before stopping the handle.
2793 		 */
2794 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2795 			ext4_journal_stop(handle);
2796 			handle = NULL;
2797 			mpd.do_map = 0;
2798 		}
2799 		/* Unlock pages we didn't use */
2800 		mpage_release_unused_pages(&mpd, give_up_on_write);
2801 		/* Submit prepared bio */
2802 		ext4_io_submit(&mpd.io_submit);
2803 
2804 		/*
2805 		 * Drop our io_end reference we got from init. We have
2806 		 * to be careful and use deferred io_end finishing if
2807 		 * we are still holding the transaction as we can
2808 		 * release the last reference to io_end which may end
2809 		 * up doing unwritten extent conversion.
2810 		 */
2811 		if (handle) {
2812 			ext4_put_io_end_defer(mpd.io_submit.io_end);
2813 			ext4_journal_stop(handle);
2814 		} else
2815 			ext4_put_io_end(mpd.io_submit.io_end);
2816 		mpd.io_submit.io_end = NULL;
2817 
2818 		if (ret == -ENOSPC && sbi->s_journal) {
2819 			/*
2820 			 * Commit the transaction which would
2821 			 * free blocks released in the transaction
2822 			 * and try again
2823 			 */
2824 			jbd2_journal_force_commit_nested(sbi->s_journal);
2825 			ret = 0;
2826 			continue;
2827 		}
2828 		/* Fatal error - ENOMEM, EIO... */
2829 		if (ret)
2830 			break;
2831 	}
2832 unplug:
2833 	blk_finish_plug(&plug);
2834 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2835 		cycled = 1;
2836 		mpd.last_page = writeback_index - 1;
2837 		mpd.first_page = 0;
2838 		goto retry;
2839 	}
2840 
2841 	/* Update index */
2842 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2843 		/*
2844 		 * Set the writeback_index so that range_cyclic
2845 		 * mode will write it back later
2846 		 */
2847 		mapping->writeback_index = mpd.first_page;
2848 
2849 out_writepages:
2850 	trace_ext4_writepages_result(inode, wbc, ret,
2851 				     nr_to_write - wbc->nr_to_write);
2852 	percpu_up_read(&sbi->s_writepages_rwsem);
2853 	return ret;
2854 }
2855 
2856 static int ext4_dax_writepages(struct address_space *mapping,
2857 			       struct writeback_control *wbc)
2858 {
2859 	int ret;
2860 	long nr_to_write = wbc->nr_to_write;
2861 	struct inode *inode = mapping->host;
2862 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2863 
2864 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2865 		return -EIO;
2866 
2867 	percpu_down_read(&sbi->s_writepages_rwsem);
2868 	trace_ext4_writepages(inode, wbc);
2869 
2870 	ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2871 	trace_ext4_writepages_result(inode, wbc, ret,
2872 				     nr_to_write - wbc->nr_to_write);
2873 	percpu_up_read(&sbi->s_writepages_rwsem);
2874 	return ret;
2875 }
2876 
2877 static int ext4_nonda_switch(struct super_block *sb)
2878 {
2879 	s64 free_clusters, dirty_clusters;
2880 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2881 
2882 	/*
2883 	 * switch to non delalloc mode if we are running low
2884 	 * on free block. The free block accounting via percpu
2885 	 * counters can get slightly wrong with percpu_counter_batch getting
2886 	 * accumulated on each CPU without updating global counters
2887 	 * Delalloc need an accurate free block accounting. So switch
2888 	 * to non delalloc when we are near to error range.
2889 	 */
2890 	free_clusters =
2891 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2892 	dirty_clusters =
2893 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2894 	/*
2895 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2896 	 */
2897 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2898 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2899 
2900 	if (2 * free_clusters < 3 * dirty_clusters ||
2901 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2902 		/*
2903 		 * free block count is less than 150% of dirty blocks
2904 		 * or free blocks is less than watermark
2905 		 */
2906 		return 1;
2907 	}
2908 	return 0;
2909 }
2910 
2911 /* We always reserve for an inode update; the superblock could be there too */
2912 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2913 {
2914 	if (likely(ext4_has_feature_large_file(inode->i_sb)))
2915 		return 1;
2916 
2917 	if (pos + len <= 0x7fffffffULL)
2918 		return 1;
2919 
2920 	/* We might need to update the superblock to set LARGE_FILE */
2921 	return 2;
2922 }
2923 
2924 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2925 			       loff_t pos, unsigned len, unsigned flags,
2926 			       struct page **pagep, void **fsdata)
2927 {
2928 	int ret, retries = 0;
2929 	struct page *page;
2930 	pgoff_t index;
2931 	struct inode *inode = mapping->host;
2932 	handle_t *handle;
2933 
2934 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2935 		return -EIO;
2936 
2937 	index = pos >> PAGE_SHIFT;
2938 
2939 	if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2940 	    ext4_verity_in_progress(inode)) {
2941 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2942 		return ext4_write_begin(file, mapping, pos,
2943 					len, flags, pagep, fsdata);
2944 	}
2945 	*fsdata = (void *)0;
2946 	trace_ext4_da_write_begin(inode, pos, len, flags);
2947 
2948 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2949 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2950 						      pos, len, flags,
2951 						      pagep, fsdata);
2952 		if (ret < 0)
2953 			return ret;
2954 		if (ret == 1)
2955 			return 0;
2956 	}
2957 
2958 	/*
2959 	 * grab_cache_page_write_begin() can take a long time if the
2960 	 * system is thrashing due to memory pressure, or if the page
2961 	 * is being written back.  So grab it first before we start
2962 	 * the transaction handle.  This also allows us to allocate
2963 	 * the page (if needed) without using GFP_NOFS.
2964 	 */
2965 retry_grab:
2966 	page = grab_cache_page_write_begin(mapping, index, flags);
2967 	if (!page)
2968 		return -ENOMEM;
2969 	unlock_page(page);
2970 
2971 	/*
2972 	 * With delayed allocation, we don't log the i_disksize update
2973 	 * if there is delayed block allocation. But we still need
2974 	 * to journalling the i_disksize update if writes to the end
2975 	 * of file which has an already mapped buffer.
2976 	 */
2977 retry_journal:
2978 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2979 				ext4_da_write_credits(inode, pos, len));
2980 	if (IS_ERR(handle)) {
2981 		put_page(page);
2982 		return PTR_ERR(handle);
2983 	}
2984 
2985 	lock_page(page);
2986 	if (page->mapping != mapping) {
2987 		/* The page got truncated from under us */
2988 		unlock_page(page);
2989 		put_page(page);
2990 		ext4_journal_stop(handle);
2991 		goto retry_grab;
2992 	}
2993 	/* In case writeback began while the page was unlocked */
2994 	wait_for_stable_page(page);
2995 
2996 #ifdef CONFIG_FS_ENCRYPTION
2997 	ret = ext4_block_write_begin(page, pos, len,
2998 				     ext4_da_get_block_prep);
2999 #else
3000 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3001 #endif
3002 	if (ret < 0) {
3003 		unlock_page(page);
3004 		ext4_journal_stop(handle);
3005 		/*
3006 		 * block_write_begin may have instantiated a few blocks
3007 		 * outside i_size.  Trim these off again. Don't need
3008 		 * i_size_read because we hold i_mutex.
3009 		 */
3010 		if (pos + len > inode->i_size)
3011 			ext4_truncate_failed_write(inode);
3012 
3013 		if (ret == -ENOSPC &&
3014 		    ext4_should_retry_alloc(inode->i_sb, &retries))
3015 			goto retry_journal;
3016 
3017 		put_page(page);
3018 		return ret;
3019 	}
3020 
3021 	*pagep = page;
3022 	return ret;
3023 }
3024 
3025 /*
3026  * Check if we should update i_disksize
3027  * when write to the end of file but not require block allocation
3028  */
3029 static int ext4_da_should_update_i_disksize(struct page *page,
3030 					    unsigned long offset)
3031 {
3032 	struct buffer_head *bh;
3033 	struct inode *inode = page->mapping->host;
3034 	unsigned int idx;
3035 	int i;
3036 
3037 	bh = page_buffers(page);
3038 	idx = offset >> inode->i_blkbits;
3039 
3040 	for (i = 0; i < idx; i++)
3041 		bh = bh->b_this_page;
3042 
3043 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3044 		return 0;
3045 	return 1;
3046 }
3047 
3048 static int ext4_da_write_end(struct file *file,
3049 			     struct address_space *mapping,
3050 			     loff_t pos, unsigned len, unsigned copied,
3051 			     struct page *page, void *fsdata)
3052 {
3053 	struct inode *inode = mapping->host;
3054 	int ret = 0, ret2;
3055 	handle_t *handle = ext4_journal_current_handle();
3056 	loff_t new_i_size;
3057 	unsigned long start, end;
3058 	int write_mode = (int)(unsigned long)fsdata;
3059 
3060 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3061 		return ext4_write_end(file, mapping, pos,
3062 				      len, copied, page, fsdata);
3063 
3064 	trace_ext4_da_write_end(inode, pos, len, copied);
3065 	start = pos & (PAGE_SIZE - 1);
3066 	end = start + copied - 1;
3067 
3068 	/*
3069 	 * generic_write_end() will run mark_inode_dirty() if i_size
3070 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
3071 	 * into that.
3072 	 */
3073 	new_i_size = pos + copied;
3074 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3075 		if (ext4_has_inline_data(inode) ||
3076 		    ext4_da_should_update_i_disksize(page, end)) {
3077 			ext4_update_i_disksize(inode, new_i_size);
3078 			/* We need to mark inode dirty even if
3079 			 * new_i_size is less that inode->i_size
3080 			 * bu greater than i_disksize.(hint delalloc)
3081 			 */
3082 			ret = ext4_mark_inode_dirty(handle, inode);
3083 		}
3084 	}
3085 
3086 	if (write_mode != CONVERT_INLINE_DATA &&
3087 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3088 	    ext4_has_inline_data(inode))
3089 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3090 						     page);
3091 	else
3092 		ret2 = generic_write_end(file, mapping, pos, len, copied,
3093 							page, fsdata);
3094 
3095 	copied = ret2;
3096 	if (ret2 < 0)
3097 		ret = ret2;
3098 	ret2 = ext4_journal_stop(handle);
3099 	if (unlikely(ret2 && !ret))
3100 		ret = ret2;
3101 
3102 	return ret ? ret : copied;
3103 }
3104 
3105 /*
3106  * Force all delayed allocation blocks to be allocated for a given inode.
3107  */
3108 int ext4_alloc_da_blocks(struct inode *inode)
3109 {
3110 	trace_ext4_alloc_da_blocks(inode);
3111 
3112 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3113 		return 0;
3114 
3115 	/*
3116 	 * We do something simple for now.  The filemap_flush() will
3117 	 * also start triggering a write of the data blocks, which is
3118 	 * not strictly speaking necessary (and for users of
3119 	 * laptop_mode, not even desirable).  However, to do otherwise
3120 	 * would require replicating code paths in:
3121 	 *
3122 	 * ext4_writepages() ->
3123 	 *    write_cache_pages() ---> (via passed in callback function)
3124 	 *        __mpage_da_writepage() -->
3125 	 *           mpage_add_bh_to_extent()
3126 	 *           mpage_da_map_blocks()
3127 	 *
3128 	 * The problem is that write_cache_pages(), located in
3129 	 * mm/page-writeback.c, marks pages clean in preparation for
3130 	 * doing I/O, which is not desirable if we're not planning on
3131 	 * doing I/O at all.
3132 	 *
3133 	 * We could call write_cache_pages(), and then redirty all of
3134 	 * the pages by calling redirty_page_for_writepage() but that
3135 	 * would be ugly in the extreme.  So instead we would need to
3136 	 * replicate parts of the code in the above functions,
3137 	 * simplifying them because we wouldn't actually intend to
3138 	 * write out the pages, but rather only collect contiguous
3139 	 * logical block extents, call the multi-block allocator, and
3140 	 * then update the buffer heads with the block allocations.
3141 	 *
3142 	 * For now, though, we'll cheat by calling filemap_flush(),
3143 	 * which will map the blocks, and start the I/O, but not
3144 	 * actually wait for the I/O to complete.
3145 	 */
3146 	return filemap_flush(inode->i_mapping);
3147 }
3148 
3149 /*
3150  * bmap() is special.  It gets used by applications such as lilo and by
3151  * the swapper to find the on-disk block of a specific piece of data.
3152  *
3153  * Naturally, this is dangerous if the block concerned is still in the
3154  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3155  * filesystem and enables swap, then they may get a nasty shock when the
3156  * data getting swapped to that swapfile suddenly gets overwritten by
3157  * the original zero's written out previously to the journal and
3158  * awaiting writeback in the kernel's buffer cache.
3159  *
3160  * So, if we see any bmap calls here on a modified, data-journaled file,
3161  * take extra steps to flush any blocks which might be in the cache.
3162  */
3163 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3164 {
3165 	struct inode *inode = mapping->host;
3166 	journal_t *journal;
3167 	int err;
3168 
3169 	/*
3170 	 * We can get here for an inline file via the FIBMAP ioctl
3171 	 */
3172 	if (ext4_has_inline_data(inode))
3173 		return 0;
3174 
3175 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3176 			test_opt(inode->i_sb, DELALLOC)) {
3177 		/*
3178 		 * With delalloc we want to sync the file
3179 		 * so that we can make sure we allocate
3180 		 * blocks for file
3181 		 */
3182 		filemap_write_and_wait(mapping);
3183 	}
3184 
3185 	if (EXT4_JOURNAL(inode) &&
3186 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3187 		/*
3188 		 * This is a REALLY heavyweight approach, but the use of
3189 		 * bmap on dirty files is expected to be extremely rare:
3190 		 * only if we run lilo or swapon on a freshly made file
3191 		 * do we expect this to happen.
3192 		 *
3193 		 * (bmap requires CAP_SYS_RAWIO so this does not
3194 		 * represent an unprivileged user DOS attack --- we'd be
3195 		 * in trouble if mortal users could trigger this path at
3196 		 * will.)
3197 		 *
3198 		 * NB. EXT4_STATE_JDATA is not set on files other than
3199 		 * regular files.  If somebody wants to bmap a directory
3200 		 * or symlink and gets confused because the buffer
3201 		 * hasn't yet been flushed to disk, they deserve
3202 		 * everything they get.
3203 		 */
3204 
3205 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3206 		journal = EXT4_JOURNAL(inode);
3207 		jbd2_journal_lock_updates(journal);
3208 		err = jbd2_journal_flush(journal);
3209 		jbd2_journal_unlock_updates(journal);
3210 
3211 		if (err)
3212 			return 0;
3213 	}
3214 
3215 	return iomap_bmap(mapping, block, &ext4_iomap_ops);
3216 }
3217 
3218 static int ext4_readpage(struct file *file, struct page *page)
3219 {
3220 	int ret = -EAGAIN;
3221 	struct inode *inode = page->mapping->host;
3222 
3223 	trace_ext4_readpage(page);
3224 
3225 	if (ext4_has_inline_data(inode))
3226 		ret = ext4_readpage_inline(inode, page);
3227 
3228 	if (ret == -EAGAIN)
3229 		return ext4_mpage_readpages(inode, NULL, page);
3230 
3231 	return ret;
3232 }
3233 
3234 static void ext4_readahead(struct readahead_control *rac)
3235 {
3236 	struct inode *inode = rac->mapping->host;
3237 
3238 	/* If the file has inline data, no need to do readahead. */
3239 	if (ext4_has_inline_data(inode))
3240 		return;
3241 
3242 	ext4_mpage_readpages(inode, rac, NULL);
3243 }
3244 
3245 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3246 				unsigned int length)
3247 {
3248 	trace_ext4_invalidatepage(page, offset, length);
3249 
3250 	/* No journalling happens on data buffers when this function is used */
3251 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3252 
3253 	block_invalidatepage(page, offset, length);
3254 }
3255 
3256 static int __ext4_journalled_invalidatepage(struct page *page,
3257 					    unsigned int offset,
3258 					    unsigned int length)
3259 {
3260 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3261 
3262 	trace_ext4_journalled_invalidatepage(page, offset, length);
3263 
3264 	/*
3265 	 * If it's a full truncate we just forget about the pending dirtying
3266 	 */
3267 	if (offset == 0 && length == PAGE_SIZE)
3268 		ClearPageChecked(page);
3269 
3270 	return jbd2_journal_invalidatepage(journal, page, offset, length);
3271 }
3272 
3273 /* Wrapper for aops... */
3274 static void ext4_journalled_invalidatepage(struct page *page,
3275 					   unsigned int offset,
3276 					   unsigned int length)
3277 {
3278 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3279 }
3280 
3281 static int ext4_releasepage(struct page *page, gfp_t wait)
3282 {
3283 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3284 
3285 	trace_ext4_releasepage(page);
3286 
3287 	/* Page has dirty journalled data -> cannot release */
3288 	if (PageChecked(page))
3289 		return 0;
3290 	if (journal)
3291 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3292 	else
3293 		return try_to_free_buffers(page);
3294 }
3295 
3296 static bool ext4_inode_datasync_dirty(struct inode *inode)
3297 {
3298 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3299 
3300 	if (journal)
3301 		return !jbd2_transaction_committed(journal,
3302 					EXT4_I(inode)->i_datasync_tid);
3303 	/* Any metadata buffers to write? */
3304 	if (!list_empty(&inode->i_mapping->private_list))
3305 		return true;
3306 	return inode->i_state & I_DIRTY_DATASYNC;
3307 }
3308 
3309 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3310 			   struct ext4_map_blocks *map, loff_t offset,
3311 			   loff_t length)
3312 {
3313 	u8 blkbits = inode->i_blkbits;
3314 
3315 	/*
3316 	 * Writes that span EOF might trigger an I/O size update on completion,
3317 	 * so consider them to be dirty for the purpose of O_DSYNC, even if
3318 	 * there is no other metadata changes being made or are pending.
3319 	 */
3320 	iomap->flags = 0;
3321 	if (ext4_inode_datasync_dirty(inode) ||
3322 	    offset + length > i_size_read(inode))
3323 		iomap->flags |= IOMAP_F_DIRTY;
3324 
3325 	if (map->m_flags & EXT4_MAP_NEW)
3326 		iomap->flags |= IOMAP_F_NEW;
3327 
3328 	iomap->bdev = inode->i_sb->s_bdev;
3329 	iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3330 	iomap->offset = (u64) map->m_lblk << blkbits;
3331 	iomap->length = (u64) map->m_len << blkbits;
3332 
3333 	if ((map->m_flags & EXT4_MAP_MAPPED) &&
3334 	    !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3335 		iomap->flags |= IOMAP_F_MERGED;
3336 
3337 	/*
3338 	 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3339 	 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3340 	 * set. In order for any allocated unwritten extents to be converted
3341 	 * into written extents correctly within the ->end_io() handler, we
3342 	 * need to ensure that the iomap->type is set appropriately. Hence, the
3343 	 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3344 	 * been set first.
3345 	 */
3346 	if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3347 		iomap->type = IOMAP_UNWRITTEN;
3348 		iomap->addr = (u64) map->m_pblk << blkbits;
3349 	} else if (map->m_flags & EXT4_MAP_MAPPED) {
3350 		iomap->type = IOMAP_MAPPED;
3351 		iomap->addr = (u64) map->m_pblk << blkbits;
3352 	} else {
3353 		iomap->type = IOMAP_HOLE;
3354 		iomap->addr = IOMAP_NULL_ADDR;
3355 	}
3356 }
3357 
3358 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3359 			    unsigned int flags)
3360 {
3361 	handle_t *handle;
3362 	u8 blkbits = inode->i_blkbits;
3363 	int ret, dio_credits, m_flags = 0, retries = 0;
3364 
3365 	/*
3366 	 * Trim the mapping request to the maximum value that we can map at
3367 	 * once for direct I/O.
3368 	 */
3369 	if (map->m_len > DIO_MAX_BLOCKS)
3370 		map->m_len = DIO_MAX_BLOCKS;
3371 	dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3372 
3373 retry:
3374 	/*
3375 	 * Either we allocate blocks and then don't get an unwritten extent, so
3376 	 * in that case we have reserved enough credits. Or, the blocks are
3377 	 * already allocated and unwritten. In that case, the extent conversion
3378 	 * fits into the credits as well.
3379 	 */
3380 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3381 	if (IS_ERR(handle))
3382 		return PTR_ERR(handle);
3383 
3384 	/*
3385 	 * DAX and direct I/O are the only two operations that are currently
3386 	 * supported with IOMAP_WRITE.
3387 	 */
3388 	WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT));
3389 	if (IS_DAX(inode))
3390 		m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3391 	/*
3392 	 * We use i_size instead of i_disksize here because delalloc writeback
3393 	 * can complete at any point during the I/O and subsequently push the
3394 	 * i_disksize out to i_size. This could be beyond where direct I/O is
3395 	 * happening and thus expose allocated blocks to direct I/O reads.
3396 	 */
3397 	else if ((map->m_lblk * (1 << blkbits)) >= i_size_read(inode))
3398 		m_flags = EXT4_GET_BLOCKS_CREATE;
3399 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3400 		m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3401 
3402 	ret = ext4_map_blocks(handle, inode, map, m_flags);
3403 
3404 	/*
3405 	 * We cannot fill holes in indirect tree based inodes as that could
3406 	 * expose stale data in the case of a crash. Use the magic error code
3407 	 * to fallback to buffered I/O.
3408 	 */
3409 	if (!m_flags && !ret)
3410 		ret = -ENOTBLK;
3411 
3412 	ext4_journal_stop(handle);
3413 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3414 		goto retry;
3415 
3416 	return ret;
3417 }
3418 
3419 
3420 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3421 		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3422 {
3423 	int ret;
3424 	struct ext4_map_blocks map;
3425 	u8 blkbits = inode->i_blkbits;
3426 
3427 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3428 		return -EINVAL;
3429 
3430 	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3431 		return -ERANGE;
3432 
3433 	/*
3434 	 * Calculate the first and last logical blocks respectively.
3435 	 */
3436 	map.m_lblk = offset >> blkbits;
3437 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3438 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3439 
3440 	if (flags & IOMAP_WRITE)
3441 		ret = ext4_iomap_alloc(inode, &map, flags);
3442 	else
3443 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3444 
3445 	if (ret < 0)
3446 		return ret;
3447 
3448 	ext4_set_iomap(inode, iomap, &map, offset, length);
3449 
3450 	return 0;
3451 }
3452 
3453 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3454 		loff_t length, unsigned flags, struct iomap *iomap,
3455 		struct iomap *srcmap)
3456 {
3457 	int ret;
3458 
3459 	/*
3460 	 * Even for writes we don't need to allocate blocks, so just pretend
3461 	 * we are reading to save overhead of starting a transaction.
3462 	 */
3463 	flags &= ~IOMAP_WRITE;
3464 	ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3465 	WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3466 	return ret;
3467 }
3468 
3469 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3470 			  ssize_t written, unsigned flags, struct iomap *iomap)
3471 {
3472 	/*
3473 	 * Check to see whether an error occurred while writing out the data to
3474 	 * the allocated blocks. If so, return the magic error code so that we
3475 	 * fallback to buffered I/O and attempt to complete the remainder of
3476 	 * the I/O. Any blocks that may have been allocated in preparation for
3477 	 * the direct I/O will be reused during buffered I/O.
3478 	 */
3479 	if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3480 		return -ENOTBLK;
3481 
3482 	return 0;
3483 }
3484 
3485 const struct iomap_ops ext4_iomap_ops = {
3486 	.iomap_begin		= ext4_iomap_begin,
3487 	.iomap_end		= ext4_iomap_end,
3488 };
3489 
3490 const struct iomap_ops ext4_iomap_overwrite_ops = {
3491 	.iomap_begin		= ext4_iomap_overwrite_begin,
3492 	.iomap_end		= ext4_iomap_end,
3493 };
3494 
3495 static bool ext4_iomap_is_delalloc(struct inode *inode,
3496 				   struct ext4_map_blocks *map)
3497 {
3498 	struct extent_status es;
3499 	ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3500 
3501 	ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3502 				  map->m_lblk, end, &es);
3503 
3504 	if (!es.es_len || es.es_lblk > end)
3505 		return false;
3506 
3507 	if (es.es_lblk > map->m_lblk) {
3508 		map->m_len = es.es_lblk - map->m_lblk;
3509 		return false;
3510 	}
3511 
3512 	offset = map->m_lblk - es.es_lblk;
3513 	map->m_len = es.es_len - offset;
3514 
3515 	return true;
3516 }
3517 
3518 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3519 				   loff_t length, unsigned int flags,
3520 				   struct iomap *iomap, struct iomap *srcmap)
3521 {
3522 	int ret;
3523 	bool delalloc = false;
3524 	struct ext4_map_blocks map;
3525 	u8 blkbits = inode->i_blkbits;
3526 
3527 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3528 		return -EINVAL;
3529 
3530 	if (ext4_has_inline_data(inode)) {
3531 		ret = ext4_inline_data_iomap(inode, iomap);
3532 		if (ret != -EAGAIN) {
3533 			if (ret == 0 && offset >= iomap->length)
3534 				ret = -ENOENT;
3535 			return ret;
3536 		}
3537 	}
3538 
3539 	/*
3540 	 * Calculate the first and last logical block respectively.
3541 	 */
3542 	map.m_lblk = offset >> blkbits;
3543 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3544 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3545 
3546 	/*
3547 	 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3548 	 * So handle it here itself instead of querying ext4_map_blocks().
3549 	 * Since ext4_map_blocks() will warn about it and will return
3550 	 * -EIO error.
3551 	 */
3552 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3553 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3554 
3555 		if (offset >= sbi->s_bitmap_maxbytes) {
3556 			map.m_flags = 0;
3557 			goto set_iomap;
3558 		}
3559 	}
3560 
3561 	ret = ext4_map_blocks(NULL, inode, &map, 0);
3562 	if (ret < 0)
3563 		return ret;
3564 	if (ret == 0)
3565 		delalloc = ext4_iomap_is_delalloc(inode, &map);
3566 
3567 set_iomap:
3568 	ext4_set_iomap(inode, iomap, &map, offset, length);
3569 	if (delalloc && iomap->type == IOMAP_HOLE)
3570 		iomap->type = IOMAP_DELALLOC;
3571 
3572 	return 0;
3573 }
3574 
3575 const struct iomap_ops ext4_iomap_report_ops = {
3576 	.iomap_begin = ext4_iomap_begin_report,
3577 };
3578 
3579 /*
3580  * Pages can be marked dirty completely asynchronously from ext4's journalling
3581  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3582  * much here because ->set_page_dirty is called under VFS locks.  The page is
3583  * not necessarily locked.
3584  *
3585  * We cannot just dirty the page and leave attached buffers clean, because the
3586  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3587  * or jbddirty because all the journalling code will explode.
3588  *
3589  * So what we do is to mark the page "pending dirty" and next time writepage
3590  * is called, propagate that into the buffers appropriately.
3591  */
3592 static int ext4_journalled_set_page_dirty(struct page *page)
3593 {
3594 	SetPageChecked(page);
3595 	return __set_page_dirty_nobuffers(page);
3596 }
3597 
3598 static int ext4_set_page_dirty(struct page *page)
3599 {
3600 	WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3601 	WARN_ON_ONCE(!page_has_buffers(page));
3602 	return __set_page_dirty_buffers(page);
3603 }
3604 
3605 static const struct address_space_operations ext4_aops = {
3606 	.readpage		= ext4_readpage,
3607 	.readahead		= ext4_readahead,
3608 	.writepage		= ext4_writepage,
3609 	.writepages		= ext4_writepages,
3610 	.write_begin		= ext4_write_begin,
3611 	.write_end		= ext4_write_end,
3612 	.set_page_dirty		= ext4_set_page_dirty,
3613 	.bmap			= ext4_bmap,
3614 	.invalidatepage		= ext4_invalidatepage,
3615 	.releasepage		= ext4_releasepage,
3616 	.direct_IO		= noop_direct_IO,
3617 	.migratepage		= buffer_migrate_page,
3618 	.is_partially_uptodate  = block_is_partially_uptodate,
3619 	.error_remove_page	= generic_error_remove_page,
3620 };
3621 
3622 static const struct address_space_operations ext4_journalled_aops = {
3623 	.readpage		= ext4_readpage,
3624 	.readahead		= ext4_readahead,
3625 	.writepage		= ext4_writepage,
3626 	.writepages		= ext4_writepages,
3627 	.write_begin		= ext4_write_begin,
3628 	.write_end		= ext4_journalled_write_end,
3629 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3630 	.bmap			= ext4_bmap,
3631 	.invalidatepage		= ext4_journalled_invalidatepage,
3632 	.releasepage		= ext4_releasepage,
3633 	.direct_IO		= noop_direct_IO,
3634 	.is_partially_uptodate  = block_is_partially_uptodate,
3635 	.error_remove_page	= generic_error_remove_page,
3636 };
3637 
3638 static const struct address_space_operations ext4_da_aops = {
3639 	.readpage		= ext4_readpage,
3640 	.readahead		= ext4_readahead,
3641 	.writepage		= ext4_writepage,
3642 	.writepages		= ext4_writepages,
3643 	.write_begin		= ext4_da_write_begin,
3644 	.write_end		= ext4_da_write_end,
3645 	.set_page_dirty		= ext4_set_page_dirty,
3646 	.bmap			= ext4_bmap,
3647 	.invalidatepage		= ext4_invalidatepage,
3648 	.releasepage		= ext4_releasepage,
3649 	.direct_IO		= noop_direct_IO,
3650 	.migratepage		= buffer_migrate_page,
3651 	.is_partially_uptodate  = block_is_partially_uptodate,
3652 	.error_remove_page	= generic_error_remove_page,
3653 };
3654 
3655 static const struct address_space_operations ext4_dax_aops = {
3656 	.writepages		= ext4_dax_writepages,
3657 	.direct_IO		= noop_direct_IO,
3658 	.set_page_dirty		= noop_set_page_dirty,
3659 	.bmap			= ext4_bmap,
3660 	.invalidatepage		= noop_invalidatepage,
3661 };
3662 
3663 void ext4_set_aops(struct inode *inode)
3664 {
3665 	switch (ext4_inode_journal_mode(inode)) {
3666 	case EXT4_INODE_ORDERED_DATA_MODE:
3667 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3668 		break;
3669 	case EXT4_INODE_JOURNAL_DATA_MODE:
3670 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3671 		return;
3672 	default:
3673 		BUG();
3674 	}
3675 	if (IS_DAX(inode))
3676 		inode->i_mapping->a_ops = &ext4_dax_aops;
3677 	else if (test_opt(inode->i_sb, DELALLOC))
3678 		inode->i_mapping->a_ops = &ext4_da_aops;
3679 	else
3680 		inode->i_mapping->a_ops = &ext4_aops;
3681 }
3682 
3683 static int __ext4_block_zero_page_range(handle_t *handle,
3684 		struct address_space *mapping, loff_t from, loff_t length)
3685 {
3686 	ext4_fsblk_t index = from >> PAGE_SHIFT;
3687 	unsigned offset = from & (PAGE_SIZE-1);
3688 	unsigned blocksize, pos;
3689 	ext4_lblk_t iblock;
3690 	struct inode *inode = mapping->host;
3691 	struct buffer_head *bh;
3692 	struct page *page;
3693 	int err = 0;
3694 
3695 	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3696 				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3697 	if (!page)
3698 		return -ENOMEM;
3699 
3700 	blocksize = inode->i_sb->s_blocksize;
3701 
3702 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3703 
3704 	if (!page_has_buffers(page))
3705 		create_empty_buffers(page, blocksize, 0);
3706 
3707 	/* Find the buffer that contains "offset" */
3708 	bh = page_buffers(page);
3709 	pos = blocksize;
3710 	while (offset >= pos) {
3711 		bh = bh->b_this_page;
3712 		iblock++;
3713 		pos += blocksize;
3714 	}
3715 	if (buffer_freed(bh)) {
3716 		BUFFER_TRACE(bh, "freed: skip");
3717 		goto unlock;
3718 	}
3719 	if (!buffer_mapped(bh)) {
3720 		BUFFER_TRACE(bh, "unmapped");
3721 		ext4_get_block(inode, iblock, bh, 0);
3722 		/* unmapped? It's a hole - nothing to do */
3723 		if (!buffer_mapped(bh)) {
3724 			BUFFER_TRACE(bh, "still unmapped");
3725 			goto unlock;
3726 		}
3727 	}
3728 
3729 	/* Ok, it's mapped. Make sure it's up-to-date */
3730 	if (PageUptodate(page))
3731 		set_buffer_uptodate(bh);
3732 
3733 	if (!buffer_uptodate(bh)) {
3734 		err = -EIO;
3735 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3736 		wait_on_buffer(bh);
3737 		/* Uhhuh. Read error. Complain and punt. */
3738 		if (!buffer_uptodate(bh))
3739 			goto unlock;
3740 		if (S_ISREG(inode->i_mode) && IS_ENCRYPTED(inode)) {
3741 			/* We expect the key to be set. */
3742 			BUG_ON(!fscrypt_has_encryption_key(inode));
3743 			err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3744 							       bh_offset(bh));
3745 			if (err) {
3746 				clear_buffer_uptodate(bh);
3747 				goto unlock;
3748 			}
3749 		}
3750 	}
3751 	if (ext4_should_journal_data(inode)) {
3752 		BUFFER_TRACE(bh, "get write access");
3753 		err = ext4_journal_get_write_access(handle, bh);
3754 		if (err)
3755 			goto unlock;
3756 	}
3757 	zero_user(page, offset, length);
3758 	BUFFER_TRACE(bh, "zeroed end of block");
3759 
3760 	if (ext4_should_journal_data(inode)) {
3761 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3762 	} else {
3763 		err = 0;
3764 		mark_buffer_dirty(bh);
3765 		if (ext4_should_order_data(inode))
3766 			err = ext4_jbd2_inode_add_write(handle, inode, from,
3767 					length);
3768 	}
3769 
3770 unlock:
3771 	unlock_page(page);
3772 	put_page(page);
3773 	return err;
3774 }
3775 
3776 /*
3777  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3778  * starting from file offset 'from'.  The range to be zero'd must
3779  * be contained with in one block.  If the specified range exceeds
3780  * the end of the block it will be shortened to end of the block
3781  * that cooresponds to 'from'
3782  */
3783 static int ext4_block_zero_page_range(handle_t *handle,
3784 		struct address_space *mapping, loff_t from, loff_t length)
3785 {
3786 	struct inode *inode = mapping->host;
3787 	unsigned offset = from & (PAGE_SIZE-1);
3788 	unsigned blocksize = inode->i_sb->s_blocksize;
3789 	unsigned max = blocksize - (offset & (blocksize - 1));
3790 
3791 	/*
3792 	 * correct length if it does not fall between
3793 	 * 'from' and the end of the block
3794 	 */
3795 	if (length > max || length < 0)
3796 		length = max;
3797 
3798 	if (IS_DAX(inode)) {
3799 		return iomap_zero_range(inode, from, length, NULL,
3800 					&ext4_iomap_ops);
3801 	}
3802 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3803 }
3804 
3805 /*
3806  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3807  * up to the end of the block which corresponds to `from'.
3808  * This required during truncate. We need to physically zero the tail end
3809  * of that block so it doesn't yield old data if the file is later grown.
3810  */
3811 static int ext4_block_truncate_page(handle_t *handle,
3812 		struct address_space *mapping, loff_t from)
3813 {
3814 	unsigned offset = from & (PAGE_SIZE-1);
3815 	unsigned length;
3816 	unsigned blocksize;
3817 	struct inode *inode = mapping->host;
3818 
3819 	/* If we are processing an encrypted inode during orphan list handling */
3820 	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3821 		return 0;
3822 
3823 	blocksize = inode->i_sb->s_blocksize;
3824 	length = blocksize - (offset & (blocksize - 1));
3825 
3826 	return ext4_block_zero_page_range(handle, mapping, from, length);
3827 }
3828 
3829 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3830 			     loff_t lstart, loff_t length)
3831 {
3832 	struct super_block *sb = inode->i_sb;
3833 	struct address_space *mapping = inode->i_mapping;
3834 	unsigned partial_start, partial_end;
3835 	ext4_fsblk_t start, end;
3836 	loff_t byte_end = (lstart + length - 1);
3837 	int err = 0;
3838 
3839 	partial_start = lstart & (sb->s_blocksize - 1);
3840 	partial_end = byte_end & (sb->s_blocksize - 1);
3841 
3842 	start = lstart >> sb->s_blocksize_bits;
3843 	end = byte_end >> sb->s_blocksize_bits;
3844 
3845 	/* Handle partial zero within the single block */
3846 	if (start == end &&
3847 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3848 		err = ext4_block_zero_page_range(handle, mapping,
3849 						 lstart, length);
3850 		return err;
3851 	}
3852 	/* Handle partial zero out on the start of the range */
3853 	if (partial_start) {
3854 		err = ext4_block_zero_page_range(handle, mapping,
3855 						 lstart, sb->s_blocksize);
3856 		if (err)
3857 			return err;
3858 	}
3859 	/* Handle partial zero out on the end of the range */
3860 	if (partial_end != sb->s_blocksize - 1)
3861 		err = ext4_block_zero_page_range(handle, mapping,
3862 						 byte_end - partial_end,
3863 						 partial_end + 1);
3864 	return err;
3865 }
3866 
3867 int ext4_can_truncate(struct inode *inode)
3868 {
3869 	if (S_ISREG(inode->i_mode))
3870 		return 1;
3871 	if (S_ISDIR(inode->i_mode))
3872 		return 1;
3873 	if (S_ISLNK(inode->i_mode))
3874 		return !ext4_inode_is_fast_symlink(inode);
3875 	return 0;
3876 }
3877 
3878 /*
3879  * We have to make sure i_disksize gets properly updated before we truncate
3880  * page cache due to hole punching or zero range. Otherwise i_disksize update
3881  * can get lost as it may have been postponed to submission of writeback but
3882  * that will never happen after we truncate page cache.
3883  */
3884 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3885 				      loff_t len)
3886 {
3887 	handle_t *handle;
3888 	int ret;
3889 
3890 	loff_t size = i_size_read(inode);
3891 
3892 	WARN_ON(!inode_is_locked(inode));
3893 	if (offset > size || offset + len < size)
3894 		return 0;
3895 
3896 	if (EXT4_I(inode)->i_disksize >= size)
3897 		return 0;
3898 
3899 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3900 	if (IS_ERR(handle))
3901 		return PTR_ERR(handle);
3902 	ext4_update_i_disksize(inode, size);
3903 	ret = ext4_mark_inode_dirty(handle, inode);
3904 	ext4_journal_stop(handle);
3905 
3906 	return ret;
3907 }
3908 
3909 static void ext4_wait_dax_page(struct ext4_inode_info *ei)
3910 {
3911 	up_write(&ei->i_mmap_sem);
3912 	schedule();
3913 	down_write(&ei->i_mmap_sem);
3914 }
3915 
3916 int ext4_break_layouts(struct inode *inode)
3917 {
3918 	struct ext4_inode_info *ei = EXT4_I(inode);
3919 	struct page *page;
3920 	int error;
3921 
3922 	if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
3923 		return -EINVAL;
3924 
3925 	do {
3926 		page = dax_layout_busy_page(inode->i_mapping);
3927 		if (!page)
3928 			return 0;
3929 
3930 		error = ___wait_var_event(&page->_refcount,
3931 				atomic_read(&page->_refcount) == 1,
3932 				TASK_INTERRUPTIBLE, 0, 0,
3933 				ext4_wait_dax_page(ei));
3934 	} while (error == 0);
3935 
3936 	return error;
3937 }
3938 
3939 /*
3940  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3941  * associated with the given offset and length
3942  *
3943  * @inode:  File inode
3944  * @offset: The offset where the hole will begin
3945  * @len:    The length of the hole
3946  *
3947  * Returns: 0 on success or negative on failure
3948  */
3949 
3950 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3951 {
3952 	struct super_block *sb = inode->i_sb;
3953 	ext4_lblk_t first_block, stop_block;
3954 	struct address_space *mapping = inode->i_mapping;
3955 	loff_t first_block_offset, last_block_offset;
3956 	handle_t *handle;
3957 	unsigned int credits;
3958 	int ret = 0, ret2 = 0;
3959 
3960 	trace_ext4_punch_hole(inode, offset, length, 0);
3961 
3962 	ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
3963 	if (ext4_has_inline_data(inode)) {
3964 		down_write(&EXT4_I(inode)->i_mmap_sem);
3965 		ret = ext4_convert_inline_data(inode);
3966 		up_write(&EXT4_I(inode)->i_mmap_sem);
3967 		if (ret)
3968 			return ret;
3969 	}
3970 
3971 	/*
3972 	 * Write out all dirty pages to avoid race conditions
3973 	 * Then release them.
3974 	 */
3975 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3976 		ret = filemap_write_and_wait_range(mapping, offset,
3977 						   offset + length - 1);
3978 		if (ret)
3979 			return ret;
3980 	}
3981 
3982 	inode_lock(inode);
3983 
3984 	/* No need to punch hole beyond i_size */
3985 	if (offset >= inode->i_size)
3986 		goto out_mutex;
3987 
3988 	/*
3989 	 * If the hole extends beyond i_size, set the hole
3990 	 * to end after the page that contains i_size
3991 	 */
3992 	if (offset + length > inode->i_size) {
3993 		length = inode->i_size +
3994 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3995 		   offset;
3996 	}
3997 
3998 	if (offset & (sb->s_blocksize - 1) ||
3999 	    (offset + length) & (sb->s_blocksize - 1)) {
4000 		/*
4001 		 * Attach jinode to inode for jbd2 if we do any zeroing of
4002 		 * partial block
4003 		 */
4004 		ret = ext4_inode_attach_jinode(inode);
4005 		if (ret < 0)
4006 			goto out_mutex;
4007 
4008 	}
4009 
4010 	/* Wait all existing dio workers, newcomers will block on i_mutex */
4011 	inode_dio_wait(inode);
4012 
4013 	/*
4014 	 * Prevent page faults from reinstantiating pages we have released from
4015 	 * page cache.
4016 	 */
4017 	down_write(&EXT4_I(inode)->i_mmap_sem);
4018 
4019 	ret = ext4_break_layouts(inode);
4020 	if (ret)
4021 		goto out_dio;
4022 
4023 	first_block_offset = round_up(offset, sb->s_blocksize);
4024 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4025 
4026 	/* Now release the pages and zero block aligned part of pages*/
4027 	if (last_block_offset > first_block_offset) {
4028 		ret = ext4_update_disksize_before_punch(inode, offset, length);
4029 		if (ret)
4030 			goto out_dio;
4031 		truncate_pagecache_range(inode, first_block_offset,
4032 					 last_block_offset);
4033 	}
4034 
4035 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4036 		credits = ext4_writepage_trans_blocks(inode);
4037 	else
4038 		credits = ext4_blocks_for_truncate(inode);
4039 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4040 	if (IS_ERR(handle)) {
4041 		ret = PTR_ERR(handle);
4042 		ext4_std_error(sb, ret);
4043 		goto out_dio;
4044 	}
4045 
4046 	ret = ext4_zero_partial_blocks(handle, inode, offset,
4047 				       length);
4048 	if (ret)
4049 		goto out_stop;
4050 
4051 	first_block = (offset + sb->s_blocksize - 1) >>
4052 		EXT4_BLOCK_SIZE_BITS(sb);
4053 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4054 
4055 	/* If there are blocks to remove, do it */
4056 	if (stop_block > first_block) {
4057 
4058 		down_write(&EXT4_I(inode)->i_data_sem);
4059 		ext4_discard_preallocations(inode);
4060 
4061 		ret = ext4_es_remove_extent(inode, first_block,
4062 					    stop_block - first_block);
4063 		if (ret) {
4064 			up_write(&EXT4_I(inode)->i_data_sem);
4065 			goto out_stop;
4066 		}
4067 
4068 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4069 			ret = ext4_ext_remove_space(inode, first_block,
4070 						    stop_block - 1);
4071 		else
4072 			ret = ext4_ind_remove_space(handle, inode, first_block,
4073 						    stop_block);
4074 
4075 		up_write(&EXT4_I(inode)->i_data_sem);
4076 	}
4077 	if (IS_SYNC(inode))
4078 		ext4_handle_sync(handle);
4079 
4080 	inode->i_mtime = inode->i_ctime = current_time(inode);
4081 	ret2 = ext4_mark_inode_dirty(handle, inode);
4082 	if (unlikely(ret2))
4083 		ret = ret2;
4084 	if (ret >= 0)
4085 		ext4_update_inode_fsync_trans(handle, inode, 1);
4086 out_stop:
4087 	ext4_journal_stop(handle);
4088 out_dio:
4089 	up_write(&EXT4_I(inode)->i_mmap_sem);
4090 out_mutex:
4091 	inode_unlock(inode);
4092 	return ret;
4093 }
4094 
4095 int ext4_inode_attach_jinode(struct inode *inode)
4096 {
4097 	struct ext4_inode_info *ei = EXT4_I(inode);
4098 	struct jbd2_inode *jinode;
4099 
4100 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4101 		return 0;
4102 
4103 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4104 	spin_lock(&inode->i_lock);
4105 	if (!ei->jinode) {
4106 		if (!jinode) {
4107 			spin_unlock(&inode->i_lock);
4108 			return -ENOMEM;
4109 		}
4110 		ei->jinode = jinode;
4111 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4112 		jinode = NULL;
4113 	}
4114 	spin_unlock(&inode->i_lock);
4115 	if (unlikely(jinode != NULL))
4116 		jbd2_free_inode(jinode);
4117 	return 0;
4118 }
4119 
4120 /*
4121  * ext4_truncate()
4122  *
4123  * We block out ext4_get_block() block instantiations across the entire
4124  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4125  * simultaneously on behalf of the same inode.
4126  *
4127  * As we work through the truncate and commit bits of it to the journal there
4128  * is one core, guiding principle: the file's tree must always be consistent on
4129  * disk.  We must be able to restart the truncate after a crash.
4130  *
4131  * The file's tree may be transiently inconsistent in memory (although it
4132  * probably isn't), but whenever we close off and commit a journal transaction,
4133  * the contents of (the filesystem + the journal) must be consistent and
4134  * restartable.  It's pretty simple, really: bottom up, right to left (although
4135  * left-to-right works OK too).
4136  *
4137  * Note that at recovery time, journal replay occurs *before* the restart of
4138  * truncate against the orphan inode list.
4139  *
4140  * The committed inode has the new, desired i_size (which is the same as
4141  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4142  * that this inode's truncate did not complete and it will again call
4143  * ext4_truncate() to have another go.  So there will be instantiated blocks
4144  * to the right of the truncation point in a crashed ext4 filesystem.  But
4145  * that's fine - as long as they are linked from the inode, the post-crash
4146  * ext4_truncate() run will find them and release them.
4147  */
4148 int ext4_truncate(struct inode *inode)
4149 {
4150 	struct ext4_inode_info *ei = EXT4_I(inode);
4151 	unsigned int credits;
4152 	int err = 0, err2;
4153 	handle_t *handle;
4154 	struct address_space *mapping = inode->i_mapping;
4155 
4156 	/*
4157 	 * There is a possibility that we're either freeing the inode
4158 	 * or it's a completely new inode. In those cases we might not
4159 	 * have i_mutex locked because it's not necessary.
4160 	 */
4161 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4162 		WARN_ON(!inode_is_locked(inode));
4163 	trace_ext4_truncate_enter(inode);
4164 
4165 	if (!ext4_can_truncate(inode))
4166 		return 0;
4167 
4168 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4169 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4170 
4171 	if (ext4_has_inline_data(inode)) {
4172 		int has_inline = 1;
4173 
4174 		err = ext4_inline_data_truncate(inode, &has_inline);
4175 		if (err)
4176 			return err;
4177 		if (has_inline)
4178 			return 0;
4179 	}
4180 
4181 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4182 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4183 		if (ext4_inode_attach_jinode(inode) < 0)
4184 			return 0;
4185 	}
4186 
4187 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4188 		credits = ext4_writepage_trans_blocks(inode);
4189 	else
4190 		credits = ext4_blocks_for_truncate(inode);
4191 
4192 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4193 	if (IS_ERR(handle))
4194 		return PTR_ERR(handle);
4195 
4196 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4197 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4198 
4199 	/*
4200 	 * We add the inode to the orphan list, so that if this
4201 	 * truncate spans multiple transactions, and we crash, we will
4202 	 * resume the truncate when the filesystem recovers.  It also
4203 	 * marks the inode dirty, to catch the new size.
4204 	 *
4205 	 * Implication: the file must always be in a sane, consistent
4206 	 * truncatable state while each transaction commits.
4207 	 */
4208 	err = ext4_orphan_add(handle, inode);
4209 	if (err)
4210 		goto out_stop;
4211 
4212 	down_write(&EXT4_I(inode)->i_data_sem);
4213 
4214 	ext4_discard_preallocations(inode);
4215 
4216 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4217 		err = ext4_ext_truncate(handle, inode);
4218 	else
4219 		ext4_ind_truncate(handle, inode);
4220 
4221 	up_write(&ei->i_data_sem);
4222 	if (err)
4223 		goto out_stop;
4224 
4225 	if (IS_SYNC(inode))
4226 		ext4_handle_sync(handle);
4227 
4228 out_stop:
4229 	/*
4230 	 * If this was a simple ftruncate() and the file will remain alive,
4231 	 * then we need to clear up the orphan record which we created above.
4232 	 * However, if this was a real unlink then we were called by
4233 	 * ext4_evict_inode(), and we allow that function to clean up the
4234 	 * orphan info for us.
4235 	 */
4236 	if (inode->i_nlink)
4237 		ext4_orphan_del(handle, inode);
4238 
4239 	inode->i_mtime = inode->i_ctime = current_time(inode);
4240 	err2 = ext4_mark_inode_dirty(handle, inode);
4241 	if (unlikely(err2 && !err))
4242 		err = err2;
4243 	ext4_journal_stop(handle);
4244 
4245 	trace_ext4_truncate_exit(inode);
4246 	return err;
4247 }
4248 
4249 /*
4250  * ext4_get_inode_loc returns with an extra refcount against the inode's
4251  * underlying buffer_head on success. If 'in_mem' is true, we have all
4252  * data in memory that is needed to recreate the on-disk version of this
4253  * inode.
4254  */
4255 static int __ext4_get_inode_loc(struct inode *inode,
4256 				struct ext4_iloc *iloc, int in_mem)
4257 {
4258 	struct ext4_group_desc	*gdp;
4259 	struct buffer_head	*bh;
4260 	struct super_block	*sb = inode->i_sb;
4261 	ext4_fsblk_t		block;
4262 	struct blk_plug		plug;
4263 	int			inodes_per_block, inode_offset;
4264 
4265 	iloc->bh = NULL;
4266 	if (inode->i_ino < EXT4_ROOT_INO ||
4267 	    inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4268 		return -EFSCORRUPTED;
4269 
4270 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4271 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4272 	if (!gdp)
4273 		return -EIO;
4274 
4275 	/*
4276 	 * Figure out the offset within the block group inode table
4277 	 */
4278 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4279 	inode_offset = ((inode->i_ino - 1) %
4280 			EXT4_INODES_PER_GROUP(sb));
4281 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4282 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4283 
4284 	bh = sb_getblk(sb, block);
4285 	if (unlikely(!bh))
4286 		return -ENOMEM;
4287 	if (ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO))
4288 		goto simulate_eio;
4289 	if (!buffer_uptodate(bh)) {
4290 		lock_buffer(bh);
4291 
4292 		/*
4293 		 * If the buffer has the write error flag, we have failed
4294 		 * to write out another inode in the same block.  In this
4295 		 * case, we don't have to read the block because we may
4296 		 * read the old inode data successfully.
4297 		 */
4298 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4299 			set_buffer_uptodate(bh);
4300 
4301 		if (buffer_uptodate(bh)) {
4302 			/* someone brought it uptodate while we waited */
4303 			unlock_buffer(bh);
4304 			goto has_buffer;
4305 		}
4306 
4307 		/*
4308 		 * If we have all information of the inode in memory and this
4309 		 * is the only valid inode in the block, we need not read the
4310 		 * block.
4311 		 */
4312 		if (in_mem) {
4313 			struct buffer_head *bitmap_bh;
4314 			int i, start;
4315 
4316 			start = inode_offset & ~(inodes_per_block - 1);
4317 
4318 			/* Is the inode bitmap in cache? */
4319 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4320 			if (unlikely(!bitmap_bh))
4321 				goto make_io;
4322 
4323 			/*
4324 			 * If the inode bitmap isn't in cache then the
4325 			 * optimisation may end up performing two reads instead
4326 			 * of one, so skip it.
4327 			 */
4328 			if (!buffer_uptodate(bitmap_bh)) {
4329 				brelse(bitmap_bh);
4330 				goto make_io;
4331 			}
4332 			for (i = start; i < start + inodes_per_block; i++) {
4333 				if (i == inode_offset)
4334 					continue;
4335 				if (ext4_test_bit(i, bitmap_bh->b_data))
4336 					break;
4337 			}
4338 			brelse(bitmap_bh);
4339 			if (i == start + inodes_per_block) {
4340 				/* all other inodes are free, so skip I/O */
4341 				memset(bh->b_data, 0, bh->b_size);
4342 				set_buffer_uptodate(bh);
4343 				unlock_buffer(bh);
4344 				goto has_buffer;
4345 			}
4346 		}
4347 
4348 make_io:
4349 		/*
4350 		 * If we need to do any I/O, try to pre-readahead extra
4351 		 * blocks from the inode table.
4352 		 */
4353 		blk_start_plug(&plug);
4354 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4355 			ext4_fsblk_t b, end, table;
4356 			unsigned num;
4357 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4358 
4359 			table = ext4_inode_table(sb, gdp);
4360 			/* s_inode_readahead_blks is always a power of 2 */
4361 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4362 			if (table > b)
4363 				b = table;
4364 			end = b + ra_blks;
4365 			num = EXT4_INODES_PER_GROUP(sb);
4366 			if (ext4_has_group_desc_csum(sb))
4367 				num -= ext4_itable_unused_count(sb, gdp);
4368 			table += num / inodes_per_block;
4369 			if (end > table)
4370 				end = table;
4371 			while (b <= end)
4372 				sb_breadahead_unmovable(sb, b++);
4373 		}
4374 
4375 		/*
4376 		 * There are other valid inodes in the buffer, this inode
4377 		 * has in-inode xattrs, or we don't have this inode in memory.
4378 		 * Read the block from disk.
4379 		 */
4380 		trace_ext4_load_inode(inode);
4381 		get_bh(bh);
4382 		bh->b_end_io = end_buffer_read_sync;
4383 		submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4384 		blk_finish_plug(&plug);
4385 		wait_on_buffer(bh);
4386 		if (!buffer_uptodate(bh)) {
4387 		simulate_eio:
4388 			ext4_error_inode_block(inode, block, EIO,
4389 					       "unable to read itable block");
4390 			brelse(bh);
4391 			return -EIO;
4392 		}
4393 	}
4394 has_buffer:
4395 	iloc->bh = bh;
4396 	return 0;
4397 }
4398 
4399 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4400 {
4401 	/* We have all inode data except xattrs in memory here. */
4402 	return __ext4_get_inode_loc(inode, iloc,
4403 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4404 }
4405 
4406 static bool ext4_should_enable_dax(struct inode *inode)
4407 {
4408 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4409 
4410 	if (test_opt2(inode->i_sb, DAX_NEVER))
4411 		return false;
4412 	if (!S_ISREG(inode->i_mode))
4413 		return false;
4414 	if (ext4_should_journal_data(inode))
4415 		return false;
4416 	if (ext4_has_inline_data(inode))
4417 		return false;
4418 	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4419 		return false;
4420 	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4421 		return false;
4422 	if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4423 		return false;
4424 	if (test_opt(inode->i_sb, DAX_ALWAYS))
4425 		return true;
4426 
4427 	return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4428 }
4429 
4430 void ext4_set_inode_flags(struct inode *inode, bool init)
4431 {
4432 	unsigned int flags = EXT4_I(inode)->i_flags;
4433 	unsigned int new_fl = 0;
4434 
4435 	WARN_ON_ONCE(IS_DAX(inode) && init);
4436 
4437 	if (flags & EXT4_SYNC_FL)
4438 		new_fl |= S_SYNC;
4439 	if (flags & EXT4_APPEND_FL)
4440 		new_fl |= S_APPEND;
4441 	if (flags & EXT4_IMMUTABLE_FL)
4442 		new_fl |= S_IMMUTABLE;
4443 	if (flags & EXT4_NOATIME_FL)
4444 		new_fl |= S_NOATIME;
4445 	if (flags & EXT4_DIRSYNC_FL)
4446 		new_fl |= S_DIRSYNC;
4447 
4448 	/* Because of the way inode_set_flags() works we must preserve S_DAX
4449 	 * here if already set. */
4450 	new_fl |= (inode->i_flags & S_DAX);
4451 	if (init && ext4_should_enable_dax(inode))
4452 		new_fl |= S_DAX;
4453 
4454 	if (flags & EXT4_ENCRYPT_FL)
4455 		new_fl |= S_ENCRYPTED;
4456 	if (flags & EXT4_CASEFOLD_FL)
4457 		new_fl |= S_CASEFOLD;
4458 	if (flags & EXT4_VERITY_FL)
4459 		new_fl |= S_VERITY;
4460 	inode_set_flags(inode, new_fl,
4461 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4462 			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4463 }
4464 
4465 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4466 				  struct ext4_inode_info *ei)
4467 {
4468 	blkcnt_t i_blocks ;
4469 	struct inode *inode = &(ei->vfs_inode);
4470 	struct super_block *sb = inode->i_sb;
4471 
4472 	if (ext4_has_feature_huge_file(sb)) {
4473 		/* we are using combined 48 bit field */
4474 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4475 					le32_to_cpu(raw_inode->i_blocks_lo);
4476 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4477 			/* i_blocks represent file system block size */
4478 			return i_blocks  << (inode->i_blkbits - 9);
4479 		} else {
4480 			return i_blocks;
4481 		}
4482 	} else {
4483 		return le32_to_cpu(raw_inode->i_blocks_lo);
4484 	}
4485 }
4486 
4487 static inline int ext4_iget_extra_inode(struct inode *inode,
4488 					 struct ext4_inode *raw_inode,
4489 					 struct ext4_inode_info *ei)
4490 {
4491 	__le32 *magic = (void *)raw_inode +
4492 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4493 
4494 	if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4495 	    EXT4_INODE_SIZE(inode->i_sb) &&
4496 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4497 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4498 		return ext4_find_inline_data_nolock(inode);
4499 	} else
4500 		EXT4_I(inode)->i_inline_off = 0;
4501 	return 0;
4502 }
4503 
4504 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4505 {
4506 	if (!ext4_has_feature_project(inode->i_sb))
4507 		return -EOPNOTSUPP;
4508 	*projid = EXT4_I(inode)->i_projid;
4509 	return 0;
4510 }
4511 
4512 /*
4513  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4514  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4515  * set.
4516  */
4517 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4518 {
4519 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4520 		inode_set_iversion_raw(inode, val);
4521 	else
4522 		inode_set_iversion_queried(inode, val);
4523 }
4524 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4525 {
4526 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4527 		return inode_peek_iversion_raw(inode);
4528 	else
4529 		return inode_peek_iversion(inode);
4530 }
4531 
4532 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4533 			  ext4_iget_flags flags, const char *function,
4534 			  unsigned int line)
4535 {
4536 	struct ext4_iloc iloc;
4537 	struct ext4_inode *raw_inode;
4538 	struct ext4_inode_info *ei;
4539 	struct inode *inode;
4540 	journal_t *journal = EXT4_SB(sb)->s_journal;
4541 	long ret;
4542 	loff_t size;
4543 	int block;
4544 	uid_t i_uid;
4545 	gid_t i_gid;
4546 	projid_t i_projid;
4547 
4548 	if ((!(flags & EXT4_IGET_SPECIAL) &&
4549 	     (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4550 	    (ino < EXT4_ROOT_INO) ||
4551 	    (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4552 		if (flags & EXT4_IGET_HANDLE)
4553 			return ERR_PTR(-ESTALE);
4554 		__ext4_error(sb, function, line, EFSCORRUPTED, 0,
4555 			     "inode #%lu: comm %s: iget: illegal inode #",
4556 			     ino, current->comm);
4557 		return ERR_PTR(-EFSCORRUPTED);
4558 	}
4559 
4560 	inode = iget_locked(sb, ino);
4561 	if (!inode)
4562 		return ERR_PTR(-ENOMEM);
4563 	if (!(inode->i_state & I_NEW))
4564 		return inode;
4565 
4566 	ei = EXT4_I(inode);
4567 	iloc.bh = NULL;
4568 
4569 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4570 	if (ret < 0)
4571 		goto bad_inode;
4572 	raw_inode = ext4_raw_inode(&iloc);
4573 
4574 	if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4575 		ext4_error_inode(inode, function, line, 0,
4576 				 "iget: root inode unallocated");
4577 		ret = -EFSCORRUPTED;
4578 		goto bad_inode;
4579 	}
4580 
4581 	if ((flags & EXT4_IGET_HANDLE) &&
4582 	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4583 		ret = -ESTALE;
4584 		goto bad_inode;
4585 	}
4586 
4587 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4588 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4589 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4590 			EXT4_INODE_SIZE(inode->i_sb) ||
4591 		    (ei->i_extra_isize & 3)) {
4592 			ext4_error_inode(inode, function, line, 0,
4593 					 "iget: bad extra_isize %u "
4594 					 "(inode size %u)",
4595 					 ei->i_extra_isize,
4596 					 EXT4_INODE_SIZE(inode->i_sb));
4597 			ret = -EFSCORRUPTED;
4598 			goto bad_inode;
4599 		}
4600 	} else
4601 		ei->i_extra_isize = 0;
4602 
4603 	/* Precompute checksum seed for inode metadata */
4604 	if (ext4_has_metadata_csum(sb)) {
4605 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4606 		__u32 csum;
4607 		__le32 inum = cpu_to_le32(inode->i_ino);
4608 		__le32 gen = raw_inode->i_generation;
4609 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4610 				   sizeof(inum));
4611 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4612 					      sizeof(gen));
4613 	}
4614 
4615 	if (!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4616 	    ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) {
4617 		ext4_error_inode_err(inode, function, line, 0, EFSBADCRC,
4618 				     "iget: checksum invalid");
4619 		ret = -EFSBADCRC;
4620 		goto bad_inode;
4621 	}
4622 
4623 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4624 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4625 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4626 	if (ext4_has_feature_project(sb) &&
4627 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4628 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4629 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4630 	else
4631 		i_projid = EXT4_DEF_PROJID;
4632 
4633 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4634 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4635 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4636 	}
4637 	i_uid_write(inode, i_uid);
4638 	i_gid_write(inode, i_gid);
4639 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4640 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4641 
4642 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4643 	ei->i_inline_off = 0;
4644 	ei->i_dir_start_lookup = 0;
4645 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4646 	/* We now have enough fields to check if the inode was active or not.
4647 	 * This is needed because nfsd might try to access dead inodes
4648 	 * the test is that same one that e2fsck uses
4649 	 * NeilBrown 1999oct15
4650 	 */
4651 	if (inode->i_nlink == 0) {
4652 		if ((inode->i_mode == 0 ||
4653 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4654 		    ino != EXT4_BOOT_LOADER_INO) {
4655 			/* this inode is deleted */
4656 			ret = -ESTALE;
4657 			goto bad_inode;
4658 		}
4659 		/* The only unlinked inodes we let through here have
4660 		 * valid i_mode and are being read by the orphan
4661 		 * recovery code: that's fine, we're about to complete
4662 		 * the process of deleting those.
4663 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4664 		 * not initialized on a new filesystem. */
4665 	}
4666 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4667 	ext4_set_inode_flags(inode, true);
4668 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4669 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4670 	if (ext4_has_feature_64bit(sb))
4671 		ei->i_file_acl |=
4672 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4673 	inode->i_size = ext4_isize(sb, raw_inode);
4674 	if ((size = i_size_read(inode)) < 0) {
4675 		ext4_error_inode(inode, function, line, 0,
4676 				 "iget: bad i_size value: %lld", size);
4677 		ret = -EFSCORRUPTED;
4678 		goto bad_inode;
4679 	}
4680 	/*
4681 	 * If dir_index is not enabled but there's dir with INDEX flag set,
4682 	 * we'd normally treat htree data as empty space. But with metadata
4683 	 * checksumming that corrupts checksums so forbid that.
4684 	 */
4685 	if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4686 	    ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4687 		ext4_error_inode(inode, function, line, 0,
4688 			 "iget: Dir with htree data on filesystem without dir_index feature.");
4689 		ret = -EFSCORRUPTED;
4690 		goto bad_inode;
4691 	}
4692 	ei->i_disksize = inode->i_size;
4693 #ifdef CONFIG_QUOTA
4694 	ei->i_reserved_quota = 0;
4695 #endif
4696 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4697 	ei->i_block_group = iloc.block_group;
4698 	ei->i_last_alloc_group = ~0;
4699 	/*
4700 	 * NOTE! The in-memory inode i_data array is in little-endian order
4701 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4702 	 */
4703 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4704 		ei->i_data[block] = raw_inode->i_block[block];
4705 	INIT_LIST_HEAD(&ei->i_orphan);
4706 
4707 	/*
4708 	 * Set transaction id's of transactions that have to be committed
4709 	 * to finish f[data]sync. We set them to currently running transaction
4710 	 * as we cannot be sure that the inode or some of its metadata isn't
4711 	 * part of the transaction - the inode could have been reclaimed and
4712 	 * now it is reread from disk.
4713 	 */
4714 	if (journal) {
4715 		transaction_t *transaction;
4716 		tid_t tid;
4717 
4718 		read_lock(&journal->j_state_lock);
4719 		if (journal->j_running_transaction)
4720 			transaction = journal->j_running_transaction;
4721 		else
4722 			transaction = journal->j_committing_transaction;
4723 		if (transaction)
4724 			tid = transaction->t_tid;
4725 		else
4726 			tid = journal->j_commit_sequence;
4727 		read_unlock(&journal->j_state_lock);
4728 		ei->i_sync_tid = tid;
4729 		ei->i_datasync_tid = tid;
4730 	}
4731 
4732 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4733 		if (ei->i_extra_isize == 0) {
4734 			/* The extra space is currently unused. Use it. */
4735 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4736 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4737 					    EXT4_GOOD_OLD_INODE_SIZE;
4738 		} else {
4739 			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4740 			if (ret)
4741 				goto bad_inode;
4742 		}
4743 	}
4744 
4745 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4746 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4747 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4748 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4749 
4750 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4751 		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4752 
4753 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4754 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4755 				ivers |=
4756 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4757 		}
4758 		ext4_inode_set_iversion_queried(inode, ivers);
4759 	}
4760 
4761 	ret = 0;
4762 	if (ei->i_file_acl &&
4763 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4764 		ext4_error_inode(inode, function, line, 0,
4765 				 "iget: bad extended attribute block %llu",
4766 				 ei->i_file_acl);
4767 		ret = -EFSCORRUPTED;
4768 		goto bad_inode;
4769 	} else if (!ext4_has_inline_data(inode)) {
4770 		/* validate the block references in the inode */
4771 		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4772 		   (S_ISLNK(inode->i_mode) &&
4773 		    !ext4_inode_is_fast_symlink(inode))) {
4774 			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4775 				ret = ext4_ext_check_inode(inode);
4776 			else
4777 				ret = ext4_ind_check_inode(inode);
4778 		}
4779 	}
4780 	if (ret)
4781 		goto bad_inode;
4782 
4783 	if (S_ISREG(inode->i_mode)) {
4784 		inode->i_op = &ext4_file_inode_operations;
4785 		inode->i_fop = &ext4_file_operations;
4786 		ext4_set_aops(inode);
4787 	} else if (S_ISDIR(inode->i_mode)) {
4788 		inode->i_op = &ext4_dir_inode_operations;
4789 		inode->i_fop = &ext4_dir_operations;
4790 	} else if (S_ISLNK(inode->i_mode)) {
4791 		/* VFS does not allow setting these so must be corruption */
4792 		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4793 			ext4_error_inode(inode, function, line, 0,
4794 					 "iget: immutable or append flags "
4795 					 "not allowed on symlinks");
4796 			ret = -EFSCORRUPTED;
4797 			goto bad_inode;
4798 		}
4799 		if (IS_ENCRYPTED(inode)) {
4800 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4801 			ext4_set_aops(inode);
4802 		} else if (ext4_inode_is_fast_symlink(inode)) {
4803 			inode->i_link = (char *)ei->i_data;
4804 			inode->i_op = &ext4_fast_symlink_inode_operations;
4805 			nd_terminate_link(ei->i_data, inode->i_size,
4806 				sizeof(ei->i_data) - 1);
4807 		} else {
4808 			inode->i_op = &ext4_symlink_inode_operations;
4809 			ext4_set_aops(inode);
4810 		}
4811 		inode_nohighmem(inode);
4812 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4813 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4814 		inode->i_op = &ext4_special_inode_operations;
4815 		if (raw_inode->i_block[0])
4816 			init_special_inode(inode, inode->i_mode,
4817 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4818 		else
4819 			init_special_inode(inode, inode->i_mode,
4820 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4821 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4822 		make_bad_inode(inode);
4823 	} else {
4824 		ret = -EFSCORRUPTED;
4825 		ext4_error_inode(inode, function, line, 0,
4826 				 "iget: bogus i_mode (%o)", inode->i_mode);
4827 		goto bad_inode;
4828 	}
4829 	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
4830 		ext4_error_inode(inode, function, line, 0,
4831 				 "casefold flag without casefold feature");
4832 	brelse(iloc.bh);
4833 
4834 	unlock_new_inode(inode);
4835 	return inode;
4836 
4837 bad_inode:
4838 	brelse(iloc.bh);
4839 	iget_failed(inode);
4840 	return ERR_PTR(ret);
4841 }
4842 
4843 static int ext4_inode_blocks_set(handle_t *handle,
4844 				struct ext4_inode *raw_inode,
4845 				struct ext4_inode_info *ei)
4846 {
4847 	struct inode *inode = &(ei->vfs_inode);
4848 	u64 i_blocks = READ_ONCE(inode->i_blocks);
4849 	struct super_block *sb = inode->i_sb;
4850 
4851 	if (i_blocks <= ~0U) {
4852 		/*
4853 		 * i_blocks can be represented in a 32 bit variable
4854 		 * as multiple of 512 bytes
4855 		 */
4856 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4857 		raw_inode->i_blocks_high = 0;
4858 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4859 		return 0;
4860 	}
4861 	if (!ext4_has_feature_huge_file(sb))
4862 		return -EFBIG;
4863 
4864 	if (i_blocks <= 0xffffffffffffULL) {
4865 		/*
4866 		 * i_blocks can be represented in a 48 bit variable
4867 		 * as multiple of 512 bytes
4868 		 */
4869 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4870 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4871 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4872 	} else {
4873 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4874 		/* i_block is stored in file system block size */
4875 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4876 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4877 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4878 	}
4879 	return 0;
4880 }
4881 
4882 static void __ext4_update_other_inode_time(struct super_block *sb,
4883 					   unsigned long orig_ino,
4884 					   unsigned long ino,
4885 					   struct ext4_inode *raw_inode)
4886 {
4887 	struct inode *inode;
4888 
4889 	inode = find_inode_by_ino_rcu(sb, ino);
4890 	if (!inode)
4891 		return;
4892 
4893 	if ((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4894 			       I_DIRTY_INODE)) ||
4895 	    ((inode->i_state & I_DIRTY_TIME) == 0))
4896 		return;
4897 
4898 	spin_lock(&inode->i_lock);
4899 	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4900 				I_DIRTY_INODE)) == 0) &&
4901 	    (inode->i_state & I_DIRTY_TIME)) {
4902 		struct ext4_inode_info	*ei = EXT4_I(inode);
4903 
4904 		inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4905 		spin_unlock(&inode->i_lock);
4906 
4907 		spin_lock(&ei->i_raw_lock);
4908 		EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4909 		EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4910 		EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4911 		ext4_inode_csum_set(inode, raw_inode, ei);
4912 		spin_unlock(&ei->i_raw_lock);
4913 		trace_ext4_other_inode_update_time(inode, orig_ino);
4914 		return;
4915 	}
4916 	spin_unlock(&inode->i_lock);
4917 }
4918 
4919 /*
4920  * Opportunistically update the other time fields for other inodes in
4921  * the same inode table block.
4922  */
4923 static void ext4_update_other_inodes_time(struct super_block *sb,
4924 					  unsigned long orig_ino, char *buf)
4925 {
4926 	unsigned long ino;
4927 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4928 	int inode_size = EXT4_INODE_SIZE(sb);
4929 
4930 	/*
4931 	 * Calculate the first inode in the inode table block.  Inode
4932 	 * numbers are one-based.  That is, the first inode in a block
4933 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4934 	 */
4935 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4936 	rcu_read_lock();
4937 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4938 		if (ino == orig_ino)
4939 			continue;
4940 		__ext4_update_other_inode_time(sb, orig_ino, ino,
4941 					       (struct ext4_inode *)buf);
4942 	}
4943 	rcu_read_unlock();
4944 }
4945 
4946 /*
4947  * Post the struct inode info into an on-disk inode location in the
4948  * buffer-cache.  This gobbles the caller's reference to the
4949  * buffer_head in the inode location struct.
4950  *
4951  * The caller must have write access to iloc->bh.
4952  */
4953 static int ext4_do_update_inode(handle_t *handle,
4954 				struct inode *inode,
4955 				struct ext4_iloc *iloc)
4956 {
4957 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4958 	struct ext4_inode_info *ei = EXT4_I(inode);
4959 	struct buffer_head *bh = iloc->bh;
4960 	struct super_block *sb = inode->i_sb;
4961 	int err = 0, rc, block;
4962 	int need_datasync = 0, set_large_file = 0;
4963 	uid_t i_uid;
4964 	gid_t i_gid;
4965 	projid_t i_projid;
4966 
4967 	spin_lock(&ei->i_raw_lock);
4968 
4969 	/* For fields not tracked in the in-memory inode,
4970 	 * initialise them to zero for new inodes. */
4971 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4972 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4973 
4974 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4975 	i_uid = i_uid_read(inode);
4976 	i_gid = i_gid_read(inode);
4977 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4978 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4979 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4980 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4981 /*
4982  * Fix up interoperability with old kernels. Otherwise, old inodes get
4983  * re-used with the upper 16 bits of the uid/gid intact
4984  */
4985 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4986 			raw_inode->i_uid_high = 0;
4987 			raw_inode->i_gid_high = 0;
4988 		} else {
4989 			raw_inode->i_uid_high =
4990 				cpu_to_le16(high_16_bits(i_uid));
4991 			raw_inode->i_gid_high =
4992 				cpu_to_le16(high_16_bits(i_gid));
4993 		}
4994 	} else {
4995 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4996 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4997 		raw_inode->i_uid_high = 0;
4998 		raw_inode->i_gid_high = 0;
4999 	}
5000 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5001 
5002 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5003 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5004 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5005 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5006 
5007 	err = ext4_inode_blocks_set(handle, raw_inode, ei);
5008 	if (err) {
5009 		spin_unlock(&ei->i_raw_lock);
5010 		goto out_brelse;
5011 	}
5012 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5013 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5014 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5015 		raw_inode->i_file_acl_high =
5016 			cpu_to_le16(ei->i_file_acl >> 32);
5017 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5018 	if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) {
5019 		ext4_isize_set(raw_inode, ei->i_disksize);
5020 		need_datasync = 1;
5021 	}
5022 	if (ei->i_disksize > 0x7fffffffULL) {
5023 		if (!ext4_has_feature_large_file(sb) ||
5024 				EXT4_SB(sb)->s_es->s_rev_level ==
5025 		    cpu_to_le32(EXT4_GOOD_OLD_REV))
5026 			set_large_file = 1;
5027 	}
5028 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5029 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5030 		if (old_valid_dev(inode->i_rdev)) {
5031 			raw_inode->i_block[0] =
5032 				cpu_to_le32(old_encode_dev(inode->i_rdev));
5033 			raw_inode->i_block[1] = 0;
5034 		} else {
5035 			raw_inode->i_block[0] = 0;
5036 			raw_inode->i_block[1] =
5037 				cpu_to_le32(new_encode_dev(inode->i_rdev));
5038 			raw_inode->i_block[2] = 0;
5039 		}
5040 	} else if (!ext4_has_inline_data(inode)) {
5041 		for (block = 0; block < EXT4_N_BLOCKS; block++)
5042 			raw_inode->i_block[block] = ei->i_data[block];
5043 	}
5044 
5045 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5046 		u64 ivers = ext4_inode_peek_iversion(inode);
5047 
5048 		raw_inode->i_disk_version = cpu_to_le32(ivers);
5049 		if (ei->i_extra_isize) {
5050 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5051 				raw_inode->i_version_hi =
5052 					cpu_to_le32(ivers >> 32);
5053 			raw_inode->i_extra_isize =
5054 				cpu_to_le16(ei->i_extra_isize);
5055 		}
5056 	}
5057 
5058 	BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5059 	       i_projid != EXT4_DEF_PROJID);
5060 
5061 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5062 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5063 		raw_inode->i_projid = cpu_to_le32(i_projid);
5064 
5065 	ext4_inode_csum_set(inode, raw_inode, ei);
5066 	spin_unlock(&ei->i_raw_lock);
5067 	if (inode->i_sb->s_flags & SB_LAZYTIME)
5068 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5069 					      bh->b_data);
5070 
5071 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5072 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5073 	if (!err)
5074 		err = rc;
5075 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5076 	if (set_large_file) {
5077 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5078 		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5079 		if (err)
5080 			goto out_brelse;
5081 		ext4_set_feature_large_file(sb);
5082 		ext4_handle_sync(handle);
5083 		err = ext4_handle_dirty_super(handle, sb);
5084 	}
5085 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5086 out_brelse:
5087 	brelse(bh);
5088 	ext4_std_error(inode->i_sb, err);
5089 	return err;
5090 }
5091 
5092 /*
5093  * ext4_write_inode()
5094  *
5095  * We are called from a few places:
5096  *
5097  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5098  *   Here, there will be no transaction running. We wait for any running
5099  *   transaction to commit.
5100  *
5101  * - Within flush work (sys_sync(), kupdate and such).
5102  *   We wait on commit, if told to.
5103  *
5104  * - Within iput_final() -> write_inode_now()
5105  *   We wait on commit, if told to.
5106  *
5107  * In all cases it is actually safe for us to return without doing anything,
5108  * because the inode has been copied into a raw inode buffer in
5109  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5110  * writeback.
5111  *
5112  * Note that we are absolutely dependent upon all inode dirtiers doing the
5113  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5114  * which we are interested.
5115  *
5116  * It would be a bug for them to not do this.  The code:
5117  *
5118  *	mark_inode_dirty(inode)
5119  *	stuff();
5120  *	inode->i_size = expr;
5121  *
5122  * is in error because write_inode() could occur while `stuff()' is running,
5123  * and the new i_size will be lost.  Plus the inode will no longer be on the
5124  * superblock's dirty inode list.
5125  */
5126 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5127 {
5128 	int err;
5129 
5130 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5131 	    sb_rdonly(inode->i_sb))
5132 		return 0;
5133 
5134 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5135 		return -EIO;
5136 
5137 	if (EXT4_SB(inode->i_sb)->s_journal) {
5138 		if (ext4_journal_current_handle()) {
5139 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5140 			dump_stack();
5141 			return -EIO;
5142 		}
5143 
5144 		/*
5145 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5146 		 * ext4_sync_fs() will force the commit after everything is
5147 		 * written.
5148 		 */
5149 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5150 			return 0;
5151 
5152 		err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
5153 						EXT4_I(inode)->i_sync_tid);
5154 	} else {
5155 		struct ext4_iloc iloc;
5156 
5157 		err = __ext4_get_inode_loc(inode, &iloc, 0);
5158 		if (err)
5159 			return err;
5160 		/*
5161 		 * sync(2) will flush the whole buffer cache. No need to do
5162 		 * it here separately for each inode.
5163 		 */
5164 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5165 			sync_dirty_buffer(iloc.bh);
5166 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5167 			ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5168 					       "IO error syncing inode");
5169 			err = -EIO;
5170 		}
5171 		brelse(iloc.bh);
5172 	}
5173 	return err;
5174 }
5175 
5176 /*
5177  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5178  * buffers that are attached to a page stradding i_size and are undergoing
5179  * commit. In that case we have to wait for commit to finish and try again.
5180  */
5181 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5182 {
5183 	struct page *page;
5184 	unsigned offset;
5185 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5186 	tid_t commit_tid = 0;
5187 	int ret;
5188 
5189 	offset = inode->i_size & (PAGE_SIZE - 1);
5190 	/*
5191 	 * If the page is fully truncated, we don't need to wait for any commit
5192 	 * (and we even should not as __ext4_journalled_invalidatepage() may
5193 	 * strip all buffers from the page but keep the page dirty which can then
5194 	 * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5195 	 * buffers). Also we don't need to wait for any commit if all buffers in
5196 	 * the page remain valid. This is most beneficial for the common case of
5197 	 * blocksize == PAGESIZE.
5198 	 */
5199 	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5200 		return;
5201 	while (1) {
5202 		page = find_lock_page(inode->i_mapping,
5203 				      inode->i_size >> PAGE_SHIFT);
5204 		if (!page)
5205 			return;
5206 		ret = __ext4_journalled_invalidatepage(page, offset,
5207 						PAGE_SIZE - offset);
5208 		unlock_page(page);
5209 		put_page(page);
5210 		if (ret != -EBUSY)
5211 			return;
5212 		commit_tid = 0;
5213 		read_lock(&journal->j_state_lock);
5214 		if (journal->j_committing_transaction)
5215 			commit_tid = journal->j_committing_transaction->t_tid;
5216 		read_unlock(&journal->j_state_lock);
5217 		if (commit_tid)
5218 			jbd2_log_wait_commit(journal, commit_tid);
5219 	}
5220 }
5221 
5222 /*
5223  * ext4_setattr()
5224  *
5225  * Called from notify_change.
5226  *
5227  * We want to trap VFS attempts to truncate the file as soon as
5228  * possible.  In particular, we want to make sure that when the VFS
5229  * shrinks i_size, we put the inode on the orphan list and modify
5230  * i_disksize immediately, so that during the subsequent flushing of
5231  * dirty pages and freeing of disk blocks, we can guarantee that any
5232  * commit will leave the blocks being flushed in an unused state on
5233  * disk.  (On recovery, the inode will get truncated and the blocks will
5234  * be freed, so we have a strong guarantee that no future commit will
5235  * leave these blocks visible to the user.)
5236  *
5237  * Another thing we have to assure is that if we are in ordered mode
5238  * and inode is still attached to the committing transaction, we must
5239  * we start writeout of all the dirty pages which are being truncated.
5240  * This way we are sure that all the data written in the previous
5241  * transaction are already on disk (truncate waits for pages under
5242  * writeback).
5243  *
5244  * Called with inode->i_mutex down.
5245  */
5246 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5247 {
5248 	struct inode *inode = d_inode(dentry);
5249 	int error, rc = 0;
5250 	int orphan = 0;
5251 	const unsigned int ia_valid = attr->ia_valid;
5252 
5253 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5254 		return -EIO;
5255 
5256 	if (unlikely(IS_IMMUTABLE(inode)))
5257 		return -EPERM;
5258 
5259 	if (unlikely(IS_APPEND(inode) &&
5260 		     (ia_valid & (ATTR_MODE | ATTR_UID |
5261 				  ATTR_GID | ATTR_TIMES_SET))))
5262 		return -EPERM;
5263 
5264 	error = setattr_prepare(dentry, attr);
5265 	if (error)
5266 		return error;
5267 
5268 	error = fscrypt_prepare_setattr(dentry, attr);
5269 	if (error)
5270 		return error;
5271 
5272 	error = fsverity_prepare_setattr(dentry, attr);
5273 	if (error)
5274 		return error;
5275 
5276 	if (is_quota_modification(inode, attr)) {
5277 		error = dquot_initialize(inode);
5278 		if (error)
5279 			return error;
5280 	}
5281 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5282 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5283 		handle_t *handle;
5284 
5285 		/* (user+group)*(old+new) structure, inode write (sb,
5286 		 * inode block, ? - but truncate inode update has it) */
5287 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5288 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5289 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5290 		if (IS_ERR(handle)) {
5291 			error = PTR_ERR(handle);
5292 			goto err_out;
5293 		}
5294 
5295 		/* dquot_transfer() calls back ext4_get_inode_usage() which
5296 		 * counts xattr inode references.
5297 		 */
5298 		down_read(&EXT4_I(inode)->xattr_sem);
5299 		error = dquot_transfer(inode, attr);
5300 		up_read(&EXT4_I(inode)->xattr_sem);
5301 
5302 		if (error) {
5303 			ext4_journal_stop(handle);
5304 			return error;
5305 		}
5306 		/* Update corresponding info in inode so that everything is in
5307 		 * one transaction */
5308 		if (attr->ia_valid & ATTR_UID)
5309 			inode->i_uid = attr->ia_uid;
5310 		if (attr->ia_valid & ATTR_GID)
5311 			inode->i_gid = attr->ia_gid;
5312 		error = ext4_mark_inode_dirty(handle, inode);
5313 		ext4_journal_stop(handle);
5314 		if (unlikely(error))
5315 			return error;
5316 	}
5317 
5318 	if (attr->ia_valid & ATTR_SIZE) {
5319 		handle_t *handle;
5320 		loff_t oldsize = inode->i_size;
5321 		int shrink = (attr->ia_size < inode->i_size);
5322 
5323 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5324 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5325 
5326 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
5327 				return -EFBIG;
5328 		}
5329 		if (!S_ISREG(inode->i_mode))
5330 			return -EINVAL;
5331 
5332 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5333 			inode_inc_iversion(inode);
5334 
5335 		if (shrink) {
5336 			if (ext4_should_order_data(inode)) {
5337 				error = ext4_begin_ordered_truncate(inode,
5338 							    attr->ia_size);
5339 				if (error)
5340 					goto err_out;
5341 			}
5342 			/*
5343 			 * Blocks are going to be removed from the inode. Wait
5344 			 * for dio in flight.
5345 			 */
5346 			inode_dio_wait(inode);
5347 		}
5348 
5349 		down_write(&EXT4_I(inode)->i_mmap_sem);
5350 
5351 		rc = ext4_break_layouts(inode);
5352 		if (rc) {
5353 			up_write(&EXT4_I(inode)->i_mmap_sem);
5354 			return rc;
5355 		}
5356 
5357 		if (attr->ia_size != inode->i_size) {
5358 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5359 			if (IS_ERR(handle)) {
5360 				error = PTR_ERR(handle);
5361 				goto out_mmap_sem;
5362 			}
5363 			if (ext4_handle_valid(handle) && shrink) {
5364 				error = ext4_orphan_add(handle, inode);
5365 				orphan = 1;
5366 			}
5367 			/*
5368 			 * Update c/mtime on truncate up, ext4_truncate() will
5369 			 * update c/mtime in shrink case below
5370 			 */
5371 			if (!shrink) {
5372 				inode->i_mtime = current_time(inode);
5373 				inode->i_ctime = inode->i_mtime;
5374 			}
5375 			down_write(&EXT4_I(inode)->i_data_sem);
5376 			EXT4_I(inode)->i_disksize = attr->ia_size;
5377 			rc = ext4_mark_inode_dirty(handle, inode);
5378 			if (!error)
5379 				error = rc;
5380 			/*
5381 			 * We have to update i_size under i_data_sem together
5382 			 * with i_disksize to avoid races with writeback code
5383 			 * running ext4_wb_update_i_disksize().
5384 			 */
5385 			if (!error)
5386 				i_size_write(inode, attr->ia_size);
5387 			up_write(&EXT4_I(inode)->i_data_sem);
5388 			ext4_journal_stop(handle);
5389 			if (error)
5390 				goto out_mmap_sem;
5391 			if (!shrink) {
5392 				pagecache_isize_extended(inode, oldsize,
5393 							 inode->i_size);
5394 			} else if (ext4_should_journal_data(inode)) {
5395 				ext4_wait_for_tail_page_commit(inode);
5396 			}
5397 		}
5398 
5399 		/*
5400 		 * Truncate pagecache after we've waited for commit
5401 		 * in data=journal mode to make pages freeable.
5402 		 */
5403 		truncate_pagecache(inode, inode->i_size);
5404 		/*
5405 		 * Call ext4_truncate() even if i_size didn't change to
5406 		 * truncate possible preallocated blocks.
5407 		 */
5408 		if (attr->ia_size <= oldsize) {
5409 			rc = ext4_truncate(inode);
5410 			if (rc)
5411 				error = rc;
5412 		}
5413 out_mmap_sem:
5414 		up_write(&EXT4_I(inode)->i_mmap_sem);
5415 	}
5416 
5417 	if (!error) {
5418 		setattr_copy(inode, attr);
5419 		mark_inode_dirty(inode);
5420 	}
5421 
5422 	/*
5423 	 * If the call to ext4_truncate failed to get a transaction handle at
5424 	 * all, we need to clean up the in-core orphan list manually.
5425 	 */
5426 	if (orphan && inode->i_nlink)
5427 		ext4_orphan_del(NULL, inode);
5428 
5429 	if (!error && (ia_valid & ATTR_MODE))
5430 		rc = posix_acl_chmod(inode, inode->i_mode);
5431 
5432 err_out:
5433 	ext4_std_error(inode->i_sb, error);
5434 	if (!error)
5435 		error = rc;
5436 	return error;
5437 }
5438 
5439 int ext4_getattr(const struct path *path, struct kstat *stat,
5440 		 u32 request_mask, unsigned int query_flags)
5441 {
5442 	struct inode *inode = d_inode(path->dentry);
5443 	struct ext4_inode *raw_inode;
5444 	struct ext4_inode_info *ei = EXT4_I(inode);
5445 	unsigned int flags;
5446 
5447 	if ((request_mask & STATX_BTIME) &&
5448 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5449 		stat->result_mask |= STATX_BTIME;
5450 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5451 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5452 	}
5453 
5454 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5455 	if (flags & EXT4_APPEND_FL)
5456 		stat->attributes |= STATX_ATTR_APPEND;
5457 	if (flags & EXT4_COMPR_FL)
5458 		stat->attributes |= STATX_ATTR_COMPRESSED;
5459 	if (flags & EXT4_ENCRYPT_FL)
5460 		stat->attributes |= STATX_ATTR_ENCRYPTED;
5461 	if (flags & EXT4_IMMUTABLE_FL)
5462 		stat->attributes |= STATX_ATTR_IMMUTABLE;
5463 	if (flags & EXT4_NODUMP_FL)
5464 		stat->attributes |= STATX_ATTR_NODUMP;
5465 	if (flags & EXT4_VERITY_FL)
5466 		stat->attributes |= STATX_ATTR_VERITY;
5467 
5468 	stat->attributes_mask |= (STATX_ATTR_APPEND |
5469 				  STATX_ATTR_COMPRESSED |
5470 				  STATX_ATTR_ENCRYPTED |
5471 				  STATX_ATTR_IMMUTABLE |
5472 				  STATX_ATTR_NODUMP |
5473 				  STATX_ATTR_VERITY);
5474 
5475 	generic_fillattr(inode, stat);
5476 	return 0;
5477 }
5478 
5479 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5480 		      u32 request_mask, unsigned int query_flags)
5481 {
5482 	struct inode *inode = d_inode(path->dentry);
5483 	u64 delalloc_blocks;
5484 
5485 	ext4_getattr(path, stat, request_mask, query_flags);
5486 
5487 	/*
5488 	 * If there is inline data in the inode, the inode will normally not
5489 	 * have data blocks allocated (it may have an external xattr block).
5490 	 * Report at least one sector for such files, so tools like tar, rsync,
5491 	 * others don't incorrectly think the file is completely sparse.
5492 	 */
5493 	if (unlikely(ext4_has_inline_data(inode)))
5494 		stat->blocks += (stat->size + 511) >> 9;
5495 
5496 	/*
5497 	 * We can't update i_blocks if the block allocation is delayed
5498 	 * otherwise in the case of system crash before the real block
5499 	 * allocation is done, we will have i_blocks inconsistent with
5500 	 * on-disk file blocks.
5501 	 * We always keep i_blocks updated together with real
5502 	 * allocation. But to not confuse with user, stat
5503 	 * will return the blocks that include the delayed allocation
5504 	 * blocks for this file.
5505 	 */
5506 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5507 				   EXT4_I(inode)->i_reserved_data_blocks);
5508 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5509 	return 0;
5510 }
5511 
5512 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5513 				   int pextents)
5514 {
5515 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5516 		return ext4_ind_trans_blocks(inode, lblocks);
5517 	return ext4_ext_index_trans_blocks(inode, pextents);
5518 }
5519 
5520 /*
5521  * Account for index blocks, block groups bitmaps and block group
5522  * descriptor blocks if modify datablocks and index blocks
5523  * worse case, the indexs blocks spread over different block groups
5524  *
5525  * If datablocks are discontiguous, they are possible to spread over
5526  * different block groups too. If they are contiguous, with flexbg,
5527  * they could still across block group boundary.
5528  *
5529  * Also account for superblock, inode, quota and xattr blocks
5530  */
5531 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5532 				  int pextents)
5533 {
5534 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5535 	int gdpblocks;
5536 	int idxblocks;
5537 	int ret = 0;
5538 
5539 	/*
5540 	 * How many index blocks need to touch to map @lblocks logical blocks
5541 	 * to @pextents physical extents?
5542 	 */
5543 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5544 
5545 	ret = idxblocks;
5546 
5547 	/*
5548 	 * Now let's see how many group bitmaps and group descriptors need
5549 	 * to account
5550 	 */
5551 	groups = idxblocks + pextents;
5552 	gdpblocks = groups;
5553 	if (groups > ngroups)
5554 		groups = ngroups;
5555 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5556 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5557 
5558 	/* bitmaps and block group descriptor blocks */
5559 	ret += groups + gdpblocks;
5560 
5561 	/* Blocks for super block, inode, quota and xattr blocks */
5562 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5563 
5564 	return ret;
5565 }
5566 
5567 /*
5568  * Calculate the total number of credits to reserve to fit
5569  * the modification of a single pages into a single transaction,
5570  * which may include multiple chunks of block allocations.
5571  *
5572  * This could be called via ext4_write_begin()
5573  *
5574  * We need to consider the worse case, when
5575  * one new block per extent.
5576  */
5577 int ext4_writepage_trans_blocks(struct inode *inode)
5578 {
5579 	int bpp = ext4_journal_blocks_per_page(inode);
5580 	int ret;
5581 
5582 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5583 
5584 	/* Account for data blocks for journalled mode */
5585 	if (ext4_should_journal_data(inode))
5586 		ret += bpp;
5587 	return ret;
5588 }
5589 
5590 /*
5591  * Calculate the journal credits for a chunk of data modification.
5592  *
5593  * This is called from DIO, fallocate or whoever calling
5594  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5595  *
5596  * journal buffers for data blocks are not included here, as DIO
5597  * and fallocate do no need to journal data buffers.
5598  */
5599 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5600 {
5601 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5602 }
5603 
5604 /*
5605  * The caller must have previously called ext4_reserve_inode_write().
5606  * Give this, we know that the caller already has write access to iloc->bh.
5607  */
5608 int ext4_mark_iloc_dirty(handle_t *handle,
5609 			 struct inode *inode, struct ext4_iloc *iloc)
5610 {
5611 	int err = 0;
5612 
5613 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5614 		put_bh(iloc->bh);
5615 		return -EIO;
5616 	}
5617 	if (IS_I_VERSION(inode))
5618 		inode_inc_iversion(inode);
5619 
5620 	/* the do_update_inode consumes one bh->b_count */
5621 	get_bh(iloc->bh);
5622 
5623 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5624 	err = ext4_do_update_inode(handle, inode, iloc);
5625 	put_bh(iloc->bh);
5626 	return err;
5627 }
5628 
5629 /*
5630  * On success, We end up with an outstanding reference count against
5631  * iloc->bh.  This _must_ be cleaned up later.
5632  */
5633 
5634 int
5635 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5636 			 struct ext4_iloc *iloc)
5637 {
5638 	int err;
5639 
5640 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5641 		return -EIO;
5642 
5643 	err = ext4_get_inode_loc(inode, iloc);
5644 	if (!err) {
5645 		BUFFER_TRACE(iloc->bh, "get_write_access");
5646 		err = ext4_journal_get_write_access(handle, iloc->bh);
5647 		if (err) {
5648 			brelse(iloc->bh);
5649 			iloc->bh = NULL;
5650 		}
5651 	}
5652 	ext4_std_error(inode->i_sb, err);
5653 	return err;
5654 }
5655 
5656 static int __ext4_expand_extra_isize(struct inode *inode,
5657 				     unsigned int new_extra_isize,
5658 				     struct ext4_iloc *iloc,
5659 				     handle_t *handle, int *no_expand)
5660 {
5661 	struct ext4_inode *raw_inode;
5662 	struct ext4_xattr_ibody_header *header;
5663 	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5664 	struct ext4_inode_info *ei = EXT4_I(inode);
5665 	int error;
5666 
5667 	/* this was checked at iget time, but double check for good measure */
5668 	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5669 	    (ei->i_extra_isize & 3)) {
5670 		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5671 				 ei->i_extra_isize,
5672 				 EXT4_INODE_SIZE(inode->i_sb));
5673 		return -EFSCORRUPTED;
5674 	}
5675 	if ((new_extra_isize < ei->i_extra_isize) ||
5676 	    (new_extra_isize < 4) ||
5677 	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5678 		return -EINVAL;	/* Should never happen */
5679 
5680 	raw_inode = ext4_raw_inode(iloc);
5681 
5682 	header = IHDR(inode, raw_inode);
5683 
5684 	/* No extended attributes present */
5685 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5686 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5687 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5688 		       EXT4_I(inode)->i_extra_isize, 0,
5689 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5690 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5691 		return 0;
5692 	}
5693 
5694 	/* try to expand with EAs present */
5695 	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5696 					   raw_inode, handle);
5697 	if (error) {
5698 		/*
5699 		 * Inode size expansion failed; don't try again
5700 		 */
5701 		*no_expand = 1;
5702 	}
5703 
5704 	return error;
5705 }
5706 
5707 /*
5708  * Expand an inode by new_extra_isize bytes.
5709  * Returns 0 on success or negative error number on failure.
5710  */
5711 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5712 					  unsigned int new_extra_isize,
5713 					  struct ext4_iloc iloc,
5714 					  handle_t *handle)
5715 {
5716 	int no_expand;
5717 	int error;
5718 
5719 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5720 		return -EOVERFLOW;
5721 
5722 	/*
5723 	 * In nojournal mode, we can immediately attempt to expand
5724 	 * the inode.  When journaled, we first need to obtain extra
5725 	 * buffer credits since we may write into the EA block
5726 	 * with this same handle. If journal_extend fails, then it will
5727 	 * only result in a minor loss of functionality for that inode.
5728 	 * If this is felt to be critical, then e2fsck should be run to
5729 	 * force a large enough s_min_extra_isize.
5730 	 */
5731 	if (ext4_journal_extend(handle,
5732 				EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5733 		return -ENOSPC;
5734 
5735 	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5736 		return -EBUSY;
5737 
5738 	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5739 					  handle, &no_expand);
5740 	ext4_write_unlock_xattr(inode, &no_expand);
5741 
5742 	return error;
5743 }
5744 
5745 int ext4_expand_extra_isize(struct inode *inode,
5746 			    unsigned int new_extra_isize,
5747 			    struct ext4_iloc *iloc)
5748 {
5749 	handle_t *handle;
5750 	int no_expand;
5751 	int error, rc;
5752 
5753 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5754 		brelse(iloc->bh);
5755 		return -EOVERFLOW;
5756 	}
5757 
5758 	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5759 				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5760 	if (IS_ERR(handle)) {
5761 		error = PTR_ERR(handle);
5762 		brelse(iloc->bh);
5763 		return error;
5764 	}
5765 
5766 	ext4_write_lock_xattr(inode, &no_expand);
5767 
5768 	BUFFER_TRACE(iloc->bh, "get_write_access");
5769 	error = ext4_journal_get_write_access(handle, iloc->bh);
5770 	if (error) {
5771 		brelse(iloc->bh);
5772 		goto out_unlock;
5773 	}
5774 
5775 	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5776 					  handle, &no_expand);
5777 
5778 	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5779 	if (!error)
5780 		error = rc;
5781 
5782 out_unlock:
5783 	ext4_write_unlock_xattr(inode, &no_expand);
5784 	ext4_journal_stop(handle);
5785 	return error;
5786 }
5787 
5788 /*
5789  * What we do here is to mark the in-core inode as clean with respect to inode
5790  * dirtiness (it may still be data-dirty).
5791  * This means that the in-core inode may be reaped by prune_icache
5792  * without having to perform any I/O.  This is a very good thing,
5793  * because *any* task may call prune_icache - even ones which
5794  * have a transaction open against a different journal.
5795  *
5796  * Is this cheating?  Not really.  Sure, we haven't written the
5797  * inode out, but prune_icache isn't a user-visible syncing function.
5798  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5799  * we start and wait on commits.
5800  */
5801 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5802 				const char *func, unsigned int line)
5803 {
5804 	struct ext4_iloc iloc;
5805 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5806 	int err;
5807 
5808 	might_sleep();
5809 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5810 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5811 	if (err)
5812 		goto out;
5813 
5814 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5815 		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5816 					       iloc, handle);
5817 
5818 	err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5819 out:
5820 	if (unlikely(err))
5821 		ext4_error_inode_err(inode, func, line, 0, err,
5822 					"mark_inode_dirty error");
5823 	return err;
5824 }
5825 
5826 /*
5827  * ext4_dirty_inode() is called from __mark_inode_dirty()
5828  *
5829  * We're really interested in the case where a file is being extended.
5830  * i_size has been changed by generic_commit_write() and we thus need
5831  * to include the updated inode in the current transaction.
5832  *
5833  * Also, dquot_alloc_block() will always dirty the inode when blocks
5834  * are allocated to the file.
5835  *
5836  * If the inode is marked synchronous, we don't honour that here - doing
5837  * so would cause a commit on atime updates, which we don't bother doing.
5838  * We handle synchronous inodes at the highest possible level.
5839  *
5840  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5841  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5842  * to copy into the on-disk inode structure are the timestamp files.
5843  */
5844 void ext4_dirty_inode(struct inode *inode, int flags)
5845 {
5846 	handle_t *handle;
5847 
5848 	if (flags == I_DIRTY_TIME)
5849 		return;
5850 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5851 	if (IS_ERR(handle))
5852 		goto out;
5853 
5854 	ext4_mark_inode_dirty(handle, inode);
5855 
5856 	ext4_journal_stop(handle);
5857 out:
5858 	return;
5859 }
5860 
5861 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5862 {
5863 	journal_t *journal;
5864 	handle_t *handle;
5865 	int err;
5866 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5867 
5868 	/*
5869 	 * We have to be very careful here: changing a data block's
5870 	 * journaling status dynamically is dangerous.  If we write a
5871 	 * data block to the journal, change the status and then delete
5872 	 * that block, we risk forgetting to revoke the old log record
5873 	 * from the journal and so a subsequent replay can corrupt data.
5874 	 * So, first we make sure that the journal is empty and that
5875 	 * nobody is changing anything.
5876 	 */
5877 
5878 	journal = EXT4_JOURNAL(inode);
5879 	if (!journal)
5880 		return 0;
5881 	if (is_journal_aborted(journal))
5882 		return -EROFS;
5883 
5884 	/* Wait for all existing dio workers */
5885 	inode_dio_wait(inode);
5886 
5887 	/*
5888 	 * Before flushing the journal and switching inode's aops, we have
5889 	 * to flush all dirty data the inode has. There can be outstanding
5890 	 * delayed allocations, there can be unwritten extents created by
5891 	 * fallocate or buffered writes in dioread_nolock mode covered by
5892 	 * dirty data which can be converted only after flushing the dirty
5893 	 * data (and journalled aops don't know how to handle these cases).
5894 	 */
5895 	if (val) {
5896 		down_write(&EXT4_I(inode)->i_mmap_sem);
5897 		err = filemap_write_and_wait(inode->i_mapping);
5898 		if (err < 0) {
5899 			up_write(&EXT4_I(inode)->i_mmap_sem);
5900 			return err;
5901 		}
5902 	}
5903 
5904 	percpu_down_write(&sbi->s_writepages_rwsem);
5905 	jbd2_journal_lock_updates(journal);
5906 
5907 	/*
5908 	 * OK, there are no updates running now, and all cached data is
5909 	 * synced to disk.  We are now in a completely consistent state
5910 	 * which doesn't have anything in the journal, and we know that
5911 	 * no filesystem updates are running, so it is safe to modify
5912 	 * the inode's in-core data-journaling state flag now.
5913 	 */
5914 
5915 	if (val)
5916 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5917 	else {
5918 		err = jbd2_journal_flush(journal);
5919 		if (err < 0) {
5920 			jbd2_journal_unlock_updates(journal);
5921 			percpu_up_write(&sbi->s_writepages_rwsem);
5922 			return err;
5923 		}
5924 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5925 	}
5926 	ext4_set_aops(inode);
5927 
5928 	jbd2_journal_unlock_updates(journal);
5929 	percpu_up_write(&sbi->s_writepages_rwsem);
5930 
5931 	if (val)
5932 		up_write(&EXT4_I(inode)->i_mmap_sem);
5933 
5934 	/* Finally we can mark the inode as dirty. */
5935 
5936 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5937 	if (IS_ERR(handle))
5938 		return PTR_ERR(handle);
5939 
5940 	err = ext4_mark_inode_dirty(handle, inode);
5941 	ext4_handle_sync(handle);
5942 	ext4_journal_stop(handle);
5943 	ext4_std_error(inode->i_sb, err);
5944 
5945 	return err;
5946 }
5947 
5948 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5949 {
5950 	return !buffer_mapped(bh);
5951 }
5952 
5953 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
5954 {
5955 	struct vm_area_struct *vma = vmf->vma;
5956 	struct page *page = vmf->page;
5957 	loff_t size;
5958 	unsigned long len;
5959 	int err;
5960 	vm_fault_t ret;
5961 	struct file *file = vma->vm_file;
5962 	struct inode *inode = file_inode(file);
5963 	struct address_space *mapping = inode->i_mapping;
5964 	handle_t *handle;
5965 	get_block_t *get_block;
5966 	int retries = 0;
5967 
5968 	if (unlikely(IS_IMMUTABLE(inode)))
5969 		return VM_FAULT_SIGBUS;
5970 
5971 	sb_start_pagefault(inode->i_sb);
5972 	file_update_time(vma->vm_file);
5973 
5974 	down_read(&EXT4_I(inode)->i_mmap_sem);
5975 
5976 	err = ext4_convert_inline_data(inode);
5977 	if (err)
5978 		goto out_ret;
5979 
5980 	/* Delalloc case is easy... */
5981 	if (test_opt(inode->i_sb, DELALLOC) &&
5982 	    !ext4_should_journal_data(inode) &&
5983 	    !ext4_nonda_switch(inode->i_sb)) {
5984 		do {
5985 			err = block_page_mkwrite(vma, vmf,
5986 						   ext4_da_get_block_prep);
5987 		} while (err == -ENOSPC &&
5988 		       ext4_should_retry_alloc(inode->i_sb, &retries));
5989 		goto out_ret;
5990 	}
5991 
5992 	lock_page(page);
5993 	size = i_size_read(inode);
5994 	/* Page got truncated from under us? */
5995 	if (page->mapping != mapping || page_offset(page) > size) {
5996 		unlock_page(page);
5997 		ret = VM_FAULT_NOPAGE;
5998 		goto out;
5999 	}
6000 
6001 	if (page->index == size >> PAGE_SHIFT)
6002 		len = size & ~PAGE_MASK;
6003 	else
6004 		len = PAGE_SIZE;
6005 	/*
6006 	 * Return if we have all the buffers mapped. This avoids the need to do
6007 	 * journal_start/journal_stop which can block and take a long time
6008 	 */
6009 	if (page_has_buffers(page)) {
6010 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6011 					    0, len, NULL,
6012 					    ext4_bh_unmapped)) {
6013 			/* Wait so that we don't change page under IO */
6014 			wait_for_stable_page(page);
6015 			ret = VM_FAULT_LOCKED;
6016 			goto out;
6017 		}
6018 	}
6019 	unlock_page(page);
6020 	/* OK, we need to fill the hole... */
6021 	if (ext4_should_dioread_nolock(inode))
6022 		get_block = ext4_get_block_unwritten;
6023 	else
6024 		get_block = ext4_get_block;
6025 retry_alloc:
6026 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6027 				    ext4_writepage_trans_blocks(inode));
6028 	if (IS_ERR(handle)) {
6029 		ret = VM_FAULT_SIGBUS;
6030 		goto out;
6031 	}
6032 	err = block_page_mkwrite(vma, vmf, get_block);
6033 	if (!err && ext4_should_journal_data(inode)) {
6034 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6035 			  PAGE_SIZE, NULL, do_journal_get_write_access)) {
6036 			unlock_page(page);
6037 			ret = VM_FAULT_SIGBUS;
6038 			ext4_journal_stop(handle);
6039 			goto out;
6040 		}
6041 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6042 	}
6043 	ext4_journal_stop(handle);
6044 	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6045 		goto retry_alloc;
6046 out_ret:
6047 	ret = block_page_mkwrite_return(err);
6048 out:
6049 	up_read(&EXT4_I(inode)->i_mmap_sem);
6050 	sb_end_pagefault(inode->i_sb);
6051 	return ret;
6052 }
6053 
6054 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6055 {
6056 	struct inode *inode = file_inode(vmf->vma->vm_file);
6057 	vm_fault_t ret;
6058 
6059 	down_read(&EXT4_I(inode)->i_mmap_sem);
6060 	ret = filemap_fault(vmf);
6061 	up_read(&EXT4_I(inode)->i_mmap_sem);
6062 
6063 	return ret;
6064 }
6065