xref: /openbmc/linux/fs/ext4/inode.c (revision 547840bd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *	(jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
43 
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "truncate.h"
48 
49 #include <trace/events/ext4.h>
50 
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 			      struct ext4_inode_info *ei)
53 {
54 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 	__u32 csum;
56 	__u16 dummy_csum = 0;
57 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
58 	unsigned int csum_size = sizeof(dummy_csum);
59 
60 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62 	offset += csum_size;
63 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
65 
66 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67 		offset = offsetof(struct ext4_inode, i_checksum_hi);
68 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69 				   EXT4_GOOD_OLD_INODE_SIZE,
70 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
71 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73 					   csum_size);
74 			offset += csum_size;
75 		}
76 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
78 	}
79 
80 	return csum;
81 }
82 
83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84 				  struct ext4_inode_info *ei)
85 {
86 	__u32 provided, calculated;
87 
88 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89 	    cpu_to_le32(EXT4_OS_LINUX) ||
90 	    !ext4_has_metadata_csum(inode->i_sb))
91 		return 1;
92 
93 	provided = le16_to_cpu(raw->i_checksum_lo);
94 	calculated = ext4_inode_csum(inode, raw, ei);
95 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98 	else
99 		calculated &= 0xFFFF;
100 
101 	return provided == calculated;
102 }
103 
104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105 				struct ext4_inode_info *ei)
106 {
107 	__u32 csum;
108 
109 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110 	    cpu_to_le32(EXT4_OS_LINUX) ||
111 	    !ext4_has_metadata_csum(inode->i_sb))
112 		return;
113 
114 	csum = ext4_inode_csum(inode, raw, ei);
115 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119 }
120 
121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122 					      loff_t new_size)
123 {
124 	trace_ext4_begin_ordered_truncate(inode, new_size);
125 	/*
126 	 * If jinode is zero, then we never opened the file for
127 	 * writing, so there's no need to call
128 	 * jbd2_journal_begin_ordered_truncate() since there's no
129 	 * outstanding writes we need to flush.
130 	 */
131 	if (!EXT4_I(inode)->jinode)
132 		return 0;
133 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134 						   EXT4_I(inode)->jinode,
135 						   new_size);
136 }
137 
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139 				unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143 				  int pextents);
144 
145 /*
146  * Test whether an inode is a fast symlink.
147  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
148  */
149 int ext4_inode_is_fast_symlink(struct inode *inode)
150 {
151 	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
152 		int ea_blocks = EXT4_I(inode)->i_file_acl ?
153 				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
154 
155 		if (ext4_has_inline_data(inode))
156 			return 0;
157 
158 		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
159 	}
160 	return S_ISLNK(inode->i_mode) && inode->i_size &&
161 	       (inode->i_size < EXT4_N_BLOCKS * 4);
162 }
163 
164 /*
165  * Called at the last iput() if i_nlink is zero.
166  */
167 void ext4_evict_inode(struct inode *inode)
168 {
169 	handle_t *handle;
170 	int err;
171 	/*
172 	 * Credits for final inode cleanup and freeing:
173 	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
174 	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
175 	 */
176 	int extra_credits = 6;
177 	struct ext4_xattr_inode_array *ea_inode_array = NULL;
178 
179 	trace_ext4_evict_inode(inode);
180 
181 	if (inode->i_nlink) {
182 		/*
183 		 * When journalling data dirty buffers are tracked only in the
184 		 * journal. So although mm thinks everything is clean and
185 		 * ready for reaping the inode might still have some pages to
186 		 * write in the running transaction or waiting to be
187 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
188 		 * (via truncate_inode_pages()) to discard these buffers can
189 		 * cause data loss. Also even if we did not discard these
190 		 * buffers, we would have no way to find them after the inode
191 		 * is reaped and thus user could see stale data if he tries to
192 		 * read them before the transaction is checkpointed. So be
193 		 * careful and force everything to disk here... We use
194 		 * ei->i_datasync_tid to store the newest transaction
195 		 * containing inode's data.
196 		 *
197 		 * Note that directories do not have this problem because they
198 		 * don't use page cache.
199 		 */
200 		if (inode->i_ino != EXT4_JOURNAL_INO &&
201 		    ext4_should_journal_data(inode) &&
202 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
203 		    inode->i_data.nrpages) {
204 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
205 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
206 
207 			jbd2_complete_transaction(journal, commit_tid);
208 			filemap_write_and_wait(&inode->i_data);
209 		}
210 		truncate_inode_pages_final(&inode->i_data);
211 
212 		goto no_delete;
213 	}
214 
215 	if (is_bad_inode(inode))
216 		goto no_delete;
217 	dquot_initialize(inode);
218 
219 	if (ext4_should_order_data(inode))
220 		ext4_begin_ordered_truncate(inode, 0);
221 	truncate_inode_pages_final(&inode->i_data);
222 
223 	/*
224 	 * Protect us against freezing - iput() caller didn't have to have any
225 	 * protection against it
226 	 */
227 	sb_start_intwrite(inode->i_sb);
228 
229 	if (!IS_NOQUOTA(inode))
230 		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
231 
232 	/*
233 	 * Block bitmap, group descriptor, and inode are accounted in both
234 	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
235 	 */
236 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
237 			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
238 	if (IS_ERR(handle)) {
239 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
240 		/*
241 		 * If we're going to skip the normal cleanup, we still need to
242 		 * make sure that the in-core orphan linked list is properly
243 		 * cleaned up.
244 		 */
245 		ext4_orphan_del(NULL, inode);
246 		sb_end_intwrite(inode->i_sb);
247 		goto no_delete;
248 	}
249 
250 	if (IS_SYNC(inode))
251 		ext4_handle_sync(handle);
252 
253 	/*
254 	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
255 	 * special handling of symlinks here because i_size is used to
256 	 * determine whether ext4_inode_info->i_data contains symlink data or
257 	 * block mappings. Setting i_size to 0 will remove its fast symlink
258 	 * status. Erase i_data so that it becomes a valid empty block map.
259 	 */
260 	if (ext4_inode_is_fast_symlink(inode))
261 		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
262 	inode->i_size = 0;
263 	err = ext4_mark_inode_dirty(handle, inode);
264 	if (err) {
265 		ext4_warning(inode->i_sb,
266 			     "couldn't mark inode dirty (err %d)", err);
267 		goto stop_handle;
268 	}
269 	if (inode->i_blocks) {
270 		err = ext4_truncate(inode);
271 		if (err) {
272 			ext4_error_err(inode->i_sb, -err,
273 				       "couldn't truncate inode %lu (err %d)",
274 				       inode->i_ino, err);
275 			goto stop_handle;
276 		}
277 	}
278 
279 	/* Remove xattr references. */
280 	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
281 				      extra_credits);
282 	if (err) {
283 		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
284 stop_handle:
285 		ext4_journal_stop(handle);
286 		ext4_orphan_del(NULL, inode);
287 		sb_end_intwrite(inode->i_sb);
288 		ext4_xattr_inode_array_free(ea_inode_array);
289 		goto no_delete;
290 	}
291 
292 	/*
293 	 * Kill off the orphan record which ext4_truncate created.
294 	 * AKPM: I think this can be inside the above `if'.
295 	 * Note that ext4_orphan_del() has to be able to cope with the
296 	 * deletion of a non-existent orphan - this is because we don't
297 	 * know if ext4_truncate() actually created an orphan record.
298 	 * (Well, we could do this if we need to, but heck - it works)
299 	 */
300 	ext4_orphan_del(handle, inode);
301 	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
302 
303 	/*
304 	 * One subtle ordering requirement: if anything has gone wrong
305 	 * (transaction abort, IO errors, whatever), then we can still
306 	 * do these next steps (the fs will already have been marked as
307 	 * having errors), but we can't free the inode if the mark_dirty
308 	 * fails.
309 	 */
310 	if (ext4_mark_inode_dirty(handle, inode))
311 		/* If that failed, just do the required in-core inode clear. */
312 		ext4_clear_inode(inode);
313 	else
314 		ext4_free_inode(handle, inode);
315 	ext4_journal_stop(handle);
316 	sb_end_intwrite(inode->i_sb);
317 	ext4_xattr_inode_array_free(ea_inode_array);
318 	return;
319 no_delete:
320 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
321 }
322 
323 #ifdef CONFIG_QUOTA
324 qsize_t *ext4_get_reserved_space(struct inode *inode)
325 {
326 	return &EXT4_I(inode)->i_reserved_quota;
327 }
328 #endif
329 
330 /*
331  * Called with i_data_sem down, which is important since we can call
332  * ext4_discard_preallocations() from here.
333  */
334 void ext4_da_update_reserve_space(struct inode *inode,
335 					int used, int quota_claim)
336 {
337 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
338 	struct ext4_inode_info *ei = EXT4_I(inode);
339 
340 	spin_lock(&ei->i_block_reservation_lock);
341 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
342 	if (unlikely(used > ei->i_reserved_data_blocks)) {
343 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
344 			 "with only %d reserved data blocks",
345 			 __func__, inode->i_ino, used,
346 			 ei->i_reserved_data_blocks);
347 		WARN_ON(1);
348 		used = ei->i_reserved_data_blocks;
349 	}
350 
351 	/* Update per-inode reservations */
352 	ei->i_reserved_data_blocks -= used;
353 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
354 
355 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
356 
357 	/* Update quota subsystem for data blocks */
358 	if (quota_claim)
359 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
360 	else {
361 		/*
362 		 * We did fallocate with an offset that is already delayed
363 		 * allocated. So on delayed allocated writeback we should
364 		 * not re-claim the quota for fallocated blocks.
365 		 */
366 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
367 	}
368 
369 	/*
370 	 * If we have done all the pending block allocations and if
371 	 * there aren't any writers on the inode, we can discard the
372 	 * inode's preallocations.
373 	 */
374 	if ((ei->i_reserved_data_blocks == 0) &&
375 	    !inode_is_open_for_write(inode))
376 		ext4_discard_preallocations(inode);
377 }
378 
379 static int __check_block_validity(struct inode *inode, const char *func,
380 				unsigned int line,
381 				struct ext4_map_blocks *map)
382 {
383 	if (ext4_has_feature_journal(inode->i_sb) &&
384 	    (inode->i_ino ==
385 	     le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
386 		return 0;
387 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
388 				   map->m_len)) {
389 		ext4_error_inode(inode, func, line, map->m_pblk,
390 				 "lblock %lu mapped to illegal pblock %llu "
391 				 "(length %d)", (unsigned long) map->m_lblk,
392 				 map->m_pblk, map->m_len);
393 		return -EFSCORRUPTED;
394 	}
395 	return 0;
396 }
397 
398 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
399 		       ext4_lblk_t len)
400 {
401 	int ret;
402 
403 	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
404 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
405 
406 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
407 	if (ret > 0)
408 		ret = 0;
409 
410 	return ret;
411 }
412 
413 #define check_block_validity(inode, map)	\
414 	__check_block_validity((inode), __func__, __LINE__, (map))
415 
416 #ifdef ES_AGGRESSIVE_TEST
417 static void ext4_map_blocks_es_recheck(handle_t *handle,
418 				       struct inode *inode,
419 				       struct ext4_map_blocks *es_map,
420 				       struct ext4_map_blocks *map,
421 				       int flags)
422 {
423 	int retval;
424 
425 	map->m_flags = 0;
426 	/*
427 	 * There is a race window that the result is not the same.
428 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
429 	 * is that we lookup a block mapping in extent status tree with
430 	 * out taking i_data_sem.  So at the time the unwritten extent
431 	 * could be converted.
432 	 */
433 	down_read(&EXT4_I(inode)->i_data_sem);
434 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
435 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
436 					     EXT4_GET_BLOCKS_KEEP_SIZE);
437 	} else {
438 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
439 					     EXT4_GET_BLOCKS_KEEP_SIZE);
440 	}
441 	up_read((&EXT4_I(inode)->i_data_sem));
442 
443 	/*
444 	 * We don't check m_len because extent will be collpased in status
445 	 * tree.  So the m_len might not equal.
446 	 */
447 	if (es_map->m_lblk != map->m_lblk ||
448 	    es_map->m_flags != map->m_flags ||
449 	    es_map->m_pblk != map->m_pblk) {
450 		printk("ES cache assertion failed for inode: %lu "
451 		       "es_cached ex [%d/%d/%llu/%x] != "
452 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
453 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
454 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
455 		       map->m_len, map->m_pblk, map->m_flags,
456 		       retval, flags);
457 	}
458 }
459 #endif /* ES_AGGRESSIVE_TEST */
460 
461 /*
462  * The ext4_map_blocks() function tries to look up the requested blocks,
463  * and returns if the blocks are already mapped.
464  *
465  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
466  * and store the allocated blocks in the result buffer head and mark it
467  * mapped.
468  *
469  * If file type is extents based, it will call ext4_ext_map_blocks(),
470  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
471  * based files
472  *
473  * On success, it returns the number of blocks being mapped or allocated.  if
474  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
475  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
476  *
477  * It returns 0 if plain look up failed (blocks have not been allocated), in
478  * that case, @map is returned as unmapped but we still do fill map->m_len to
479  * indicate the length of a hole starting at map->m_lblk.
480  *
481  * It returns the error in case of allocation failure.
482  */
483 int ext4_map_blocks(handle_t *handle, struct inode *inode,
484 		    struct ext4_map_blocks *map, int flags)
485 {
486 	struct extent_status es;
487 	int retval;
488 	int ret = 0;
489 #ifdef ES_AGGRESSIVE_TEST
490 	struct ext4_map_blocks orig_map;
491 
492 	memcpy(&orig_map, map, sizeof(*map));
493 #endif
494 
495 	map->m_flags = 0;
496 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
497 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
498 		  (unsigned long) map->m_lblk);
499 
500 	/*
501 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
502 	 */
503 	if (unlikely(map->m_len > INT_MAX))
504 		map->m_len = INT_MAX;
505 
506 	/* We can handle the block number less than EXT_MAX_BLOCKS */
507 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
508 		return -EFSCORRUPTED;
509 
510 	/* Lookup extent status tree firstly */
511 	if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
512 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
513 			map->m_pblk = ext4_es_pblock(&es) +
514 					map->m_lblk - es.es_lblk;
515 			map->m_flags |= ext4_es_is_written(&es) ?
516 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
517 			retval = es.es_len - (map->m_lblk - es.es_lblk);
518 			if (retval > map->m_len)
519 				retval = map->m_len;
520 			map->m_len = retval;
521 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
522 			map->m_pblk = 0;
523 			retval = es.es_len - (map->m_lblk - es.es_lblk);
524 			if (retval > map->m_len)
525 				retval = map->m_len;
526 			map->m_len = retval;
527 			retval = 0;
528 		} else {
529 			BUG();
530 		}
531 #ifdef ES_AGGRESSIVE_TEST
532 		ext4_map_blocks_es_recheck(handle, inode, map,
533 					   &orig_map, flags);
534 #endif
535 		goto found;
536 	}
537 
538 	/*
539 	 * Try to see if we can get the block without requesting a new
540 	 * file system block.
541 	 */
542 	down_read(&EXT4_I(inode)->i_data_sem);
543 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
544 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
545 					     EXT4_GET_BLOCKS_KEEP_SIZE);
546 	} else {
547 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
548 					     EXT4_GET_BLOCKS_KEEP_SIZE);
549 	}
550 	if (retval > 0) {
551 		unsigned int status;
552 
553 		if (unlikely(retval != map->m_len)) {
554 			ext4_warning(inode->i_sb,
555 				     "ES len assertion failed for inode "
556 				     "%lu: retval %d != map->m_len %d",
557 				     inode->i_ino, retval, map->m_len);
558 			WARN_ON(1);
559 		}
560 
561 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
562 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
563 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
564 		    !(status & EXTENT_STATUS_WRITTEN) &&
565 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
566 				       map->m_lblk + map->m_len - 1))
567 			status |= EXTENT_STATUS_DELAYED;
568 		ret = ext4_es_insert_extent(inode, map->m_lblk,
569 					    map->m_len, map->m_pblk, status);
570 		if (ret < 0)
571 			retval = ret;
572 	}
573 	up_read((&EXT4_I(inode)->i_data_sem));
574 
575 found:
576 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
577 		ret = check_block_validity(inode, map);
578 		if (ret != 0)
579 			return ret;
580 	}
581 
582 	/* If it is only a block(s) look up */
583 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
584 		return retval;
585 
586 	/*
587 	 * Returns if the blocks have already allocated
588 	 *
589 	 * Note that if blocks have been preallocated
590 	 * ext4_ext_get_block() returns the create = 0
591 	 * with buffer head unmapped.
592 	 */
593 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
594 		/*
595 		 * If we need to convert extent to unwritten
596 		 * we continue and do the actual work in
597 		 * ext4_ext_map_blocks()
598 		 */
599 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
600 			return retval;
601 
602 	/*
603 	 * Here we clear m_flags because after allocating an new extent,
604 	 * it will be set again.
605 	 */
606 	map->m_flags &= ~EXT4_MAP_FLAGS;
607 
608 	/*
609 	 * New blocks allocate and/or writing to unwritten extent
610 	 * will possibly result in updating i_data, so we take
611 	 * the write lock of i_data_sem, and call get_block()
612 	 * with create == 1 flag.
613 	 */
614 	down_write(&EXT4_I(inode)->i_data_sem);
615 
616 	/*
617 	 * We need to check for EXT4 here because migrate
618 	 * could have changed the inode type in between
619 	 */
620 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
621 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
622 	} else {
623 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
624 
625 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
626 			/*
627 			 * We allocated new blocks which will result in
628 			 * i_data's format changing.  Force the migrate
629 			 * to fail by clearing migrate flags
630 			 */
631 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
632 		}
633 
634 		/*
635 		 * Update reserved blocks/metadata blocks after successful
636 		 * block allocation which had been deferred till now. We don't
637 		 * support fallocate for non extent files. So we can update
638 		 * reserve space here.
639 		 */
640 		if ((retval > 0) &&
641 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
642 			ext4_da_update_reserve_space(inode, retval, 1);
643 	}
644 
645 	if (retval > 0) {
646 		unsigned int status;
647 
648 		if (unlikely(retval != map->m_len)) {
649 			ext4_warning(inode->i_sb,
650 				     "ES len assertion failed for inode "
651 				     "%lu: retval %d != map->m_len %d",
652 				     inode->i_ino, retval, map->m_len);
653 			WARN_ON(1);
654 		}
655 
656 		/*
657 		 * We have to zeroout blocks before inserting them into extent
658 		 * status tree. Otherwise someone could look them up there and
659 		 * use them before they are really zeroed. We also have to
660 		 * unmap metadata before zeroing as otherwise writeback can
661 		 * overwrite zeros with stale data from block device.
662 		 */
663 		if (flags & EXT4_GET_BLOCKS_ZERO &&
664 		    map->m_flags & EXT4_MAP_MAPPED &&
665 		    map->m_flags & EXT4_MAP_NEW) {
666 			ret = ext4_issue_zeroout(inode, map->m_lblk,
667 						 map->m_pblk, map->m_len);
668 			if (ret) {
669 				retval = ret;
670 				goto out_sem;
671 			}
672 		}
673 
674 		/*
675 		 * If the extent has been zeroed out, we don't need to update
676 		 * extent status tree.
677 		 */
678 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
679 		    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
680 			if (ext4_es_is_written(&es))
681 				goto out_sem;
682 		}
683 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
684 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
685 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
686 		    !(status & EXTENT_STATUS_WRITTEN) &&
687 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
688 				       map->m_lblk + map->m_len - 1))
689 			status |= EXTENT_STATUS_DELAYED;
690 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
691 					    map->m_pblk, status);
692 		if (ret < 0) {
693 			retval = ret;
694 			goto out_sem;
695 		}
696 	}
697 
698 out_sem:
699 	up_write((&EXT4_I(inode)->i_data_sem));
700 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
701 		ret = check_block_validity(inode, map);
702 		if (ret != 0)
703 			return ret;
704 
705 		/*
706 		 * Inodes with freshly allocated blocks where contents will be
707 		 * visible after transaction commit must be on transaction's
708 		 * ordered data list.
709 		 */
710 		if (map->m_flags & EXT4_MAP_NEW &&
711 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
712 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
713 		    !ext4_is_quota_file(inode) &&
714 		    ext4_should_order_data(inode)) {
715 			loff_t start_byte =
716 				(loff_t)map->m_lblk << inode->i_blkbits;
717 			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
718 
719 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
720 				ret = ext4_jbd2_inode_add_wait(handle, inode,
721 						start_byte, length);
722 			else
723 				ret = ext4_jbd2_inode_add_write(handle, inode,
724 						start_byte, length);
725 			if (ret)
726 				return ret;
727 		}
728 	}
729 	return retval;
730 }
731 
732 /*
733  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
734  * we have to be careful as someone else may be manipulating b_state as well.
735  */
736 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
737 {
738 	unsigned long old_state;
739 	unsigned long new_state;
740 
741 	flags &= EXT4_MAP_FLAGS;
742 
743 	/* Dummy buffer_head? Set non-atomically. */
744 	if (!bh->b_page) {
745 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
746 		return;
747 	}
748 	/*
749 	 * Someone else may be modifying b_state. Be careful! This is ugly but
750 	 * once we get rid of using bh as a container for mapping information
751 	 * to pass to / from get_block functions, this can go away.
752 	 */
753 	do {
754 		old_state = READ_ONCE(bh->b_state);
755 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
756 	} while (unlikely(
757 		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
758 }
759 
760 static int _ext4_get_block(struct inode *inode, sector_t iblock,
761 			   struct buffer_head *bh, int flags)
762 {
763 	struct ext4_map_blocks map;
764 	int ret = 0;
765 
766 	if (ext4_has_inline_data(inode))
767 		return -ERANGE;
768 
769 	map.m_lblk = iblock;
770 	map.m_len = bh->b_size >> inode->i_blkbits;
771 
772 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
773 			      flags);
774 	if (ret > 0) {
775 		map_bh(bh, inode->i_sb, map.m_pblk);
776 		ext4_update_bh_state(bh, map.m_flags);
777 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
778 		ret = 0;
779 	} else if (ret == 0) {
780 		/* hole case, need to fill in bh->b_size */
781 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
782 	}
783 	return ret;
784 }
785 
786 int ext4_get_block(struct inode *inode, sector_t iblock,
787 		   struct buffer_head *bh, int create)
788 {
789 	return _ext4_get_block(inode, iblock, bh,
790 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
791 }
792 
793 /*
794  * Get block function used when preparing for buffered write if we require
795  * creating an unwritten extent if blocks haven't been allocated.  The extent
796  * will be converted to written after the IO is complete.
797  */
798 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
799 			     struct buffer_head *bh_result, int create)
800 {
801 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
802 		   inode->i_ino, create);
803 	return _ext4_get_block(inode, iblock, bh_result,
804 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
805 }
806 
807 /* Maximum number of blocks we map for direct IO at once. */
808 #define DIO_MAX_BLOCKS 4096
809 
810 /*
811  * `handle' can be NULL if create is zero
812  */
813 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
814 				ext4_lblk_t block, int map_flags)
815 {
816 	struct ext4_map_blocks map;
817 	struct buffer_head *bh;
818 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
819 	int err;
820 
821 	J_ASSERT(handle != NULL || create == 0);
822 
823 	map.m_lblk = block;
824 	map.m_len = 1;
825 	err = ext4_map_blocks(handle, inode, &map, map_flags);
826 
827 	if (err == 0)
828 		return create ? ERR_PTR(-ENOSPC) : NULL;
829 	if (err < 0)
830 		return ERR_PTR(err);
831 
832 	bh = sb_getblk(inode->i_sb, map.m_pblk);
833 	if (unlikely(!bh))
834 		return ERR_PTR(-ENOMEM);
835 	if (map.m_flags & EXT4_MAP_NEW) {
836 		J_ASSERT(create != 0);
837 		J_ASSERT(handle != NULL);
838 
839 		/*
840 		 * Now that we do not always journal data, we should
841 		 * keep in mind whether this should always journal the
842 		 * new buffer as metadata.  For now, regular file
843 		 * writes use ext4_get_block instead, so it's not a
844 		 * problem.
845 		 */
846 		lock_buffer(bh);
847 		BUFFER_TRACE(bh, "call get_create_access");
848 		err = ext4_journal_get_create_access(handle, bh);
849 		if (unlikely(err)) {
850 			unlock_buffer(bh);
851 			goto errout;
852 		}
853 		if (!buffer_uptodate(bh)) {
854 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
855 			set_buffer_uptodate(bh);
856 		}
857 		unlock_buffer(bh);
858 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
859 		err = ext4_handle_dirty_metadata(handle, inode, bh);
860 		if (unlikely(err))
861 			goto errout;
862 	} else
863 		BUFFER_TRACE(bh, "not a new buffer");
864 	return bh;
865 errout:
866 	brelse(bh);
867 	return ERR_PTR(err);
868 }
869 
870 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
871 			       ext4_lblk_t block, int map_flags)
872 {
873 	struct buffer_head *bh;
874 
875 	bh = ext4_getblk(handle, inode, block, map_flags);
876 	if (IS_ERR(bh))
877 		return bh;
878 	if (!bh || ext4_buffer_uptodate(bh))
879 		return bh;
880 	ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
881 	wait_on_buffer(bh);
882 	if (buffer_uptodate(bh))
883 		return bh;
884 	put_bh(bh);
885 	return ERR_PTR(-EIO);
886 }
887 
888 /* Read a contiguous batch of blocks. */
889 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
890 		     bool wait, struct buffer_head **bhs)
891 {
892 	int i, err;
893 
894 	for (i = 0; i < bh_count; i++) {
895 		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
896 		if (IS_ERR(bhs[i])) {
897 			err = PTR_ERR(bhs[i]);
898 			bh_count = i;
899 			goto out_brelse;
900 		}
901 	}
902 
903 	for (i = 0; i < bh_count; i++)
904 		/* Note that NULL bhs[i] is valid because of holes. */
905 		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
906 			ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
907 				    &bhs[i]);
908 
909 	if (!wait)
910 		return 0;
911 
912 	for (i = 0; i < bh_count; i++)
913 		if (bhs[i])
914 			wait_on_buffer(bhs[i]);
915 
916 	for (i = 0; i < bh_count; i++) {
917 		if (bhs[i] && !buffer_uptodate(bhs[i])) {
918 			err = -EIO;
919 			goto out_brelse;
920 		}
921 	}
922 	return 0;
923 
924 out_brelse:
925 	for (i = 0; i < bh_count; i++) {
926 		brelse(bhs[i]);
927 		bhs[i] = NULL;
928 	}
929 	return err;
930 }
931 
932 int ext4_walk_page_buffers(handle_t *handle,
933 			   struct buffer_head *head,
934 			   unsigned from,
935 			   unsigned to,
936 			   int *partial,
937 			   int (*fn)(handle_t *handle,
938 				     struct buffer_head *bh))
939 {
940 	struct buffer_head *bh;
941 	unsigned block_start, block_end;
942 	unsigned blocksize = head->b_size;
943 	int err, ret = 0;
944 	struct buffer_head *next;
945 
946 	for (bh = head, block_start = 0;
947 	     ret == 0 && (bh != head || !block_start);
948 	     block_start = block_end, bh = next) {
949 		next = bh->b_this_page;
950 		block_end = block_start + blocksize;
951 		if (block_end <= from || block_start >= to) {
952 			if (partial && !buffer_uptodate(bh))
953 				*partial = 1;
954 			continue;
955 		}
956 		err = (*fn)(handle, bh);
957 		if (!ret)
958 			ret = err;
959 	}
960 	return ret;
961 }
962 
963 /*
964  * To preserve ordering, it is essential that the hole instantiation and
965  * the data write be encapsulated in a single transaction.  We cannot
966  * close off a transaction and start a new one between the ext4_get_block()
967  * and the commit_write().  So doing the jbd2_journal_start at the start of
968  * prepare_write() is the right place.
969  *
970  * Also, this function can nest inside ext4_writepage().  In that case, we
971  * *know* that ext4_writepage() has generated enough buffer credits to do the
972  * whole page.  So we won't block on the journal in that case, which is good,
973  * because the caller may be PF_MEMALLOC.
974  *
975  * By accident, ext4 can be reentered when a transaction is open via
976  * quota file writes.  If we were to commit the transaction while thus
977  * reentered, there can be a deadlock - we would be holding a quota
978  * lock, and the commit would never complete if another thread had a
979  * transaction open and was blocking on the quota lock - a ranking
980  * violation.
981  *
982  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
983  * will _not_ run commit under these circumstances because handle->h_ref
984  * is elevated.  We'll still have enough credits for the tiny quotafile
985  * write.
986  */
987 int do_journal_get_write_access(handle_t *handle,
988 				struct buffer_head *bh)
989 {
990 	int dirty = buffer_dirty(bh);
991 	int ret;
992 
993 	if (!buffer_mapped(bh) || buffer_freed(bh))
994 		return 0;
995 	/*
996 	 * __block_write_begin() could have dirtied some buffers. Clean
997 	 * the dirty bit as jbd2_journal_get_write_access() could complain
998 	 * otherwise about fs integrity issues. Setting of the dirty bit
999 	 * by __block_write_begin() isn't a real problem here as we clear
1000 	 * the bit before releasing a page lock and thus writeback cannot
1001 	 * ever write the buffer.
1002 	 */
1003 	if (dirty)
1004 		clear_buffer_dirty(bh);
1005 	BUFFER_TRACE(bh, "get write access");
1006 	ret = ext4_journal_get_write_access(handle, bh);
1007 	if (!ret && dirty)
1008 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1009 	return ret;
1010 }
1011 
1012 #ifdef CONFIG_FS_ENCRYPTION
1013 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1014 				  get_block_t *get_block)
1015 {
1016 	unsigned from = pos & (PAGE_SIZE - 1);
1017 	unsigned to = from + len;
1018 	struct inode *inode = page->mapping->host;
1019 	unsigned block_start, block_end;
1020 	sector_t block;
1021 	int err = 0;
1022 	unsigned blocksize = inode->i_sb->s_blocksize;
1023 	unsigned bbits;
1024 	struct buffer_head *bh, *head, *wait[2];
1025 	int nr_wait = 0;
1026 	int i;
1027 
1028 	BUG_ON(!PageLocked(page));
1029 	BUG_ON(from > PAGE_SIZE);
1030 	BUG_ON(to > PAGE_SIZE);
1031 	BUG_ON(from > to);
1032 
1033 	if (!page_has_buffers(page))
1034 		create_empty_buffers(page, blocksize, 0);
1035 	head = page_buffers(page);
1036 	bbits = ilog2(blocksize);
1037 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1038 
1039 	for (bh = head, block_start = 0; bh != head || !block_start;
1040 	    block++, block_start = block_end, bh = bh->b_this_page) {
1041 		block_end = block_start + blocksize;
1042 		if (block_end <= from || block_start >= to) {
1043 			if (PageUptodate(page)) {
1044 				if (!buffer_uptodate(bh))
1045 					set_buffer_uptodate(bh);
1046 			}
1047 			continue;
1048 		}
1049 		if (buffer_new(bh))
1050 			clear_buffer_new(bh);
1051 		if (!buffer_mapped(bh)) {
1052 			WARN_ON(bh->b_size != blocksize);
1053 			err = get_block(inode, block, bh, 1);
1054 			if (err)
1055 				break;
1056 			if (buffer_new(bh)) {
1057 				if (PageUptodate(page)) {
1058 					clear_buffer_new(bh);
1059 					set_buffer_uptodate(bh);
1060 					mark_buffer_dirty(bh);
1061 					continue;
1062 				}
1063 				if (block_end > to || block_start < from)
1064 					zero_user_segments(page, to, block_end,
1065 							   block_start, from);
1066 				continue;
1067 			}
1068 		}
1069 		if (PageUptodate(page)) {
1070 			if (!buffer_uptodate(bh))
1071 				set_buffer_uptodate(bh);
1072 			continue;
1073 		}
1074 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1075 		    !buffer_unwritten(bh) &&
1076 		    (block_start < from || block_end > to)) {
1077 			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1078 			wait[nr_wait++] = bh;
1079 		}
1080 	}
1081 	/*
1082 	 * If we issued read requests, let them complete.
1083 	 */
1084 	for (i = 0; i < nr_wait; i++) {
1085 		wait_on_buffer(wait[i]);
1086 		if (!buffer_uptodate(wait[i]))
1087 			err = -EIO;
1088 	}
1089 	if (unlikely(err)) {
1090 		page_zero_new_buffers(page, from, to);
1091 	} else if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) {
1092 		for (i = 0; i < nr_wait; i++) {
1093 			int err2;
1094 
1095 			err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1096 								bh_offset(wait[i]));
1097 			if (err2) {
1098 				clear_buffer_uptodate(wait[i]);
1099 				err = err2;
1100 			}
1101 		}
1102 	}
1103 
1104 	return err;
1105 }
1106 #endif
1107 
1108 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1109 			    loff_t pos, unsigned len, unsigned flags,
1110 			    struct page **pagep, void **fsdata)
1111 {
1112 	struct inode *inode = mapping->host;
1113 	int ret, needed_blocks;
1114 	handle_t *handle;
1115 	int retries = 0;
1116 	struct page *page;
1117 	pgoff_t index;
1118 	unsigned from, to;
1119 
1120 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1121 		return -EIO;
1122 
1123 	trace_ext4_write_begin(inode, pos, len, flags);
1124 	/*
1125 	 * Reserve one block more for addition to orphan list in case
1126 	 * we allocate blocks but write fails for some reason
1127 	 */
1128 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1129 	index = pos >> PAGE_SHIFT;
1130 	from = pos & (PAGE_SIZE - 1);
1131 	to = from + len;
1132 
1133 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1134 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1135 						    flags, pagep);
1136 		if (ret < 0)
1137 			return ret;
1138 		if (ret == 1)
1139 			return 0;
1140 	}
1141 
1142 	/*
1143 	 * grab_cache_page_write_begin() can take a long time if the
1144 	 * system is thrashing due to memory pressure, or if the page
1145 	 * is being written back.  So grab it first before we start
1146 	 * the transaction handle.  This also allows us to allocate
1147 	 * the page (if needed) without using GFP_NOFS.
1148 	 */
1149 retry_grab:
1150 	page = grab_cache_page_write_begin(mapping, index, flags);
1151 	if (!page)
1152 		return -ENOMEM;
1153 	unlock_page(page);
1154 
1155 retry_journal:
1156 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1157 	if (IS_ERR(handle)) {
1158 		put_page(page);
1159 		return PTR_ERR(handle);
1160 	}
1161 
1162 	lock_page(page);
1163 	if (page->mapping != mapping) {
1164 		/* The page got truncated from under us */
1165 		unlock_page(page);
1166 		put_page(page);
1167 		ext4_journal_stop(handle);
1168 		goto retry_grab;
1169 	}
1170 	/* In case writeback began while the page was unlocked */
1171 	wait_for_stable_page(page);
1172 
1173 #ifdef CONFIG_FS_ENCRYPTION
1174 	if (ext4_should_dioread_nolock(inode))
1175 		ret = ext4_block_write_begin(page, pos, len,
1176 					     ext4_get_block_unwritten);
1177 	else
1178 		ret = ext4_block_write_begin(page, pos, len,
1179 					     ext4_get_block);
1180 #else
1181 	if (ext4_should_dioread_nolock(inode))
1182 		ret = __block_write_begin(page, pos, len,
1183 					  ext4_get_block_unwritten);
1184 	else
1185 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1186 #endif
1187 	if (!ret && ext4_should_journal_data(inode)) {
1188 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1189 					     from, to, NULL,
1190 					     do_journal_get_write_access);
1191 	}
1192 
1193 	if (ret) {
1194 		bool extended = (pos + len > inode->i_size) &&
1195 				!ext4_verity_in_progress(inode);
1196 
1197 		unlock_page(page);
1198 		/*
1199 		 * __block_write_begin may have instantiated a few blocks
1200 		 * outside i_size.  Trim these off again. Don't need
1201 		 * i_size_read because we hold i_mutex.
1202 		 *
1203 		 * Add inode to orphan list in case we crash before
1204 		 * truncate finishes
1205 		 */
1206 		if (extended && ext4_can_truncate(inode))
1207 			ext4_orphan_add(handle, inode);
1208 
1209 		ext4_journal_stop(handle);
1210 		if (extended) {
1211 			ext4_truncate_failed_write(inode);
1212 			/*
1213 			 * If truncate failed early the inode might
1214 			 * still be on the orphan list; we need to
1215 			 * make sure the inode is removed from the
1216 			 * orphan list in that case.
1217 			 */
1218 			if (inode->i_nlink)
1219 				ext4_orphan_del(NULL, inode);
1220 		}
1221 
1222 		if (ret == -ENOSPC &&
1223 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1224 			goto retry_journal;
1225 		put_page(page);
1226 		return ret;
1227 	}
1228 	*pagep = page;
1229 	return ret;
1230 }
1231 
1232 /* For write_end() in data=journal mode */
1233 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1234 {
1235 	int ret;
1236 	if (!buffer_mapped(bh) || buffer_freed(bh))
1237 		return 0;
1238 	set_buffer_uptodate(bh);
1239 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1240 	clear_buffer_meta(bh);
1241 	clear_buffer_prio(bh);
1242 	return ret;
1243 }
1244 
1245 /*
1246  * We need to pick up the new inode size which generic_commit_write gave us
1247  * `file' can be NULL - eg, when called from page_symlink().
1248  *
1249  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1250  * buffers are managed internally.
1251  */
1252 static int ext4_write_end(struct file *file,
1253 			  struct address_space *mapping,
1254 			  loff_t pos, unsigned len, unsigned copied,
1255 			  struct page *page, void *fsdata)
1256 {
1257 	handle_t *handle = ext4_journal_current_handle();
1258 	struct inode *inode = mapping->host;
1259 	loff_t old_size = inode->i_size;
1260 	int ret = 0, ret2;
1261 	int i_size_changed = 0;
1262 	int inline_data = ext4_has_inline_data(inode);
1263 	bool verity = ext4_verity_in_progress(inode);
1264 
1265 	trace_ext4_write_end(inode, pos, len, copied);
1266 	if (inline_data) {
1267 		ret = ext4_write_inline_data_end(inode, pos, len,
1268 						 copied, page);
1269 		if (ret < 0) {
1270 			unlock_page(page);
1271 			put_page(page);
1272 			goto errout;
1273 		}
1274 		copied = ret;
1275 	} else
1276 		copied = block_write_end(file, mapping, pos,
1277 					 len, copied, page, fsdata);
1278 	/*
1279 	 * it's important to update i_size while still holding page lock:
1280 	 * page writeout could otherwise come in and zero beyond i_size.
1281 	 *
1282 	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1283 	 * blocks are being written past EOF, so skip the i_size update.
1284 	 */
1285 	if (!verity)
1286 		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1287 	unlock_page(page);
1288 	put_page(page);
1289 
1290 	if (old_size < pos && !verity)
1291 		pagecache_isize_extended(inode, old_size, pos);
1292 	/*
1293 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1294 	 * makes the holding time of page lock longer. Second, it forces lock
1295 	 * ordering of page lock and transaction start for journaling
1296 	 * filesystems.
1297 	 */
1298 	if (i_size_changed || inline_data)
1299 		ext4_mark_inode_dirty(handle, inode);
1300 
1301 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1302 		/* if we have allocated more blocks and copied
1303 		 * less. We will have blocks allocated outside
1304 		 * inode->i_size. So truncate them
1305 		 */
1306 		ext4_orphan_add(handle, inode);
1307 errout:
1308 	ret2 = ext4_journal_stop(handle);
1309 	if (!ret)
1310 		ret = ret2;
1311 
1312 	if (pos + len > inode->i_size && !verity) {
1313 		ext4_truncate_failed_write(inode);
1314 		/*
1315 		 * If truncate failed early the inode might still be
1316 		 * on the orphan list; we need to make sure the inode
1317 		 * is removed from the orphan list in that case.
1318 		 */
1319 		if (inode->i_nlink)
1320 			ext4_orphan_del(NULL, inode);
1321 	}
1322 
1323 	return ret ? ret : copied;
1324 }
1325 
1326 /*
1327  * This is a private version of page_zero_new_buffers() which doesn't
1328  * set the buffer to be dirty, since in data=journalled mode we need
1329  * to call ext4_handle_dirty_metadata() instead.
1330  */
1331 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1332 					    struct page *page,
1333 					    unsigned from, unsigned to)
1334 {
1335 	unsigned int block_start = 0, block_end;
1336 	struct buffer_head *head, *bh;
1337 
1338 	bh = head = page_buffers(page);
1339 	do {
1340 		block_end = block_start + bh->b_size;
1341 		if (buffer_new(bh)) {
1342 			if (block_end > from && block_start < to) {
1343 				if (!PageUptodate(page)) {
1344 					unsigned start, size;
1345 
1346 					start = max(from, block_start);
1347 					size = min(to, block_end) - start;
1348 
1349 					zero_user(page, start, size);
1350 					write_end_fn(handle, bh);
1351 				}
1352 				clear_buffer_new(bh);
1353 			}
1354 		}
1355 		block_start = block_end;
1356 		bh = bh->b_this_page;
1357 	} while (bh != head);
1358 }
1359 
1360 static int ext4_journalled_write_end(struct file *file,
1361 				     struct address_space *mapping,
1362 				     loff_t pos, unsigned len, unsigned copied,
1363 				     struct page *page, void *fsdata)
1364 {
1365 	handle_t *handle = ext4_journal_current_handle();
1366 	struct inode *inode = mapping->host;
1367 	loff_t old_size = inode->i_size;
1368 	int ret = 0, ret2;
1369 	int partial = 0;
1370 	unsigned from, to;
1371 	int size_changed = 0;
1372 	int inline_data = ext4_has_inline_data(inode);
1373 	bool verity = ext4_verity_in_progress(inode);
1374 
1375 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1376 	from = pos & (PAGE_SIZE - 1);
1377 	to = from + len;
1378 
1379 	BUG_ON(!ext4_handle_valid(handle));
1380 
1381 	if (inline_data) {
1382 		ret = ext4_write_inline_data_end(inode, pos, len,
1383 						 copied, page);
1384 		if (ret < 0) {
1385 			unlock_page(page);
1386 			put_page(page);
1387 			goto errout;
1388 		}
1389 		copied = ret;
1390 	} else if (unlikely(copied < len) && !PageUptodate(page)) {
1391 		copied = 0;
1392 		ext4_journalled_zero_new_buffers(handle, page, from, to);
1393 	} else {
1394 		if (unlikely(copied < len))
1395 			ext4_journalled_zero_new_buffers(handle, page,
1396 							 from + copied, to);
1397 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1398 					     from + copied, &partial,
1399 					     write_end_fn);
1400 		if (!partial)
1401 			SetPageUptodate(page);
1402 	}
1403 	if (!verity)
1404 		size_changed = ext4_update_inode_size(inode, pos + copied);
1405 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1406 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1407 	unlock_page(page);
1408 	put_page(page);
1409 
1410 	if (old_size < pos && !verity)
1411 		pagecache_isize_extended(inode, old_size, pos);
1412 
1413 	if (size_changed || inline_data) {
1414 		ret2 = ext4_mark_inode_dirty(handle, inode);
1415 		if (!ret)
1416 			ret = ret2;
1417 	}
1418 
1419 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1420 		/* if we have allocated more blocks and copied
1421 		 * less. We will have blocks allocated outside
1422 		 * inode->i_size. So truncate them
1423 		 */
1424 		ext4_orphan_add(handle, inode);
1425 
1426 errout:
1427 	ret2 = ext4_journal_stop(handle);
1428 	if (!ret)
1429 		ret = ret2;
1430 	if (pos + len > inode->i_size && !verity) {
1431 		ext4_truncate_failed_write(inode);
1432 		/*
1433 		 * If truncate failed early the inode might still be
1434 		 * on the orphan list; we need to make sure the inode
1435 		 * is removed from the orphan list in that case.
1436 		 */
1437 		if (inode->i_nlink)
1438 			ext4_orphan_del(NULL, inode);
1439 	}
1440 
1441 	return ret ? ret : copied;
1442 }
1443 
1444 /*
1445  * Reserve space for a single cluster
1446  */
1447 static int ext4_da_reserve_space(struct inode *inode)
1448 {
1449 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1450 	struct ext4_inode_info *ei = EXT4_I(inode);
1451 	int ret;
1452 
1453 	/*
1454 	 * We will charge metadata quota at writeout time; this saves
1455 	 * us from metadata over-estimation, though we may go over by
1456 	 * a small amount in the end.  Here we just reserve for data.
1457 	 */
1458 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1459 	if (ret)
1460 		return ret;
1461 
1462 	spin_lock(&ei->i_block_reservation_lock);
1463 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1464 		spin_unlock(&ei->i_block_reservation_lock);
1465 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1466 		return -ENOSPC;
1467 	}
1468 	ei->i_reserved_data_blocks++;
1469 	trace_ext4_da_reserve_space(inode);
1470 	spin_unlock(&ei->i_block_reservation_lock);
1471 
1472 	return 0;       /* success */
1473 }
1474 
1475 void ext4_da_release_space(struct inode *inode, int to_free)
1476 {
1477 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1478 	struct ext4_inode_info *ei = EXT4_I(inode);
1479 
1480 	if (!to_free)
1481 		return;		/* Nothing to release, exit */
1482 
1483 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1484 
1485 	trace_ext4_da_release_space(inode, to_free);
1486 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1487 		/*
1488 		 * if there aren't enough reserved blocks, then the
1489 		 * counter is messed up somewhere.  Since this
1490 		 * function is called from invalidate page, it's
1491 		 * harmless to return without any action.
1492 		 */
1493 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1494 			 "ino %lu, to_free %d with only %d reserved "
1495 			 "data blocks", inode->i_ino, to_free,
1496 			 ei->i_reserved_data_blocks);
1497 		WARN_ON(1);
1498 		to_free = ei->i_reserved_data_blocks;
1499 	}
1500 	ei->i_reserved_data_blocks -= to_free;
1501 
1502 	/* update fs dirty data blocks counter */
1503 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1504 
1505 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1506 
1507 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1508 }
1509 
1510 /*
1511  * Delayed allocation stuff
1512  */
1513 
1514 struct mpage_da_data {
1515 	struct inode *inode;
1516 	struct writeback_control *wbc;
1517 
1518 	pgoff_t first_page;	/* The first page to write */
1519 	pgoff_t next_page;	/* Current page to examine */
1520 	pgoff_t last_page;	/* Last page to examine */
1521 	/*
1522 	 * Extent to map - this can be after first_page because that can be
1523 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1524 	 * is delalloc or unwritten.
1525 	 */
1526 	struct ext4_map_blocks map;
1527 	struct ext4_io_submit io_submit;	/* IO submission data */
1528 	unsigned int do_map:1;
1529 };
1530 
1531 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1532 				       bool invalidate)
1533 {
1534 	int nr_pages, i;
1535 	pgoff_t index, end;
1536 	struct pagevec pvec;
1537 	struct inode *inode = mpd->inode;
1538 	struct address_space *mapping = inode->i_mapping;
1539 
1540 	/* This is necessary when next_page == 0. */
1541 	if (mpd->first_page >= mpd->next_page)
1542 		return;
1543 
1544 	index = mpd->first_page;
1545 	end   = mpd->next_page - 1;
1546 	if (invalidate) {
1547 		ext4_lblk_t start, last;
1548 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1549 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1550 		ext4_es_remove_extent(inode, start, last - start + 1);
1551 	}
1552 
1553 	pagevec_init(&pvec);
1554 	while (index <= end) {
1555 		nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1556 		if (nr_pages == 0)
1557 			break;
1558 		for (i = 0; i < nr_pages; i++) {
1559 			struct page *page = pvec.pages[i];
1560 
1561 			BUG_ON(!PageLocked(page));
1562 			BUG_ON(PageWriteback(page));
1563 			if (invalidate) {
1564 				if (page_mapped(page))
1565 					clear_page_dirty_for_io(page);
1566 				block_invalidatepage(page, 0, PAGE_SIZE);
1567 				ClearPageUptodate(page);
1568 			}
1569 			unlock_page(page);
1570 		}
1571 		pagevec_release(&pvec);
1572 	}
1573 }
1574 
1575 static void ext4_print_free_blocks(struct inode *inode)
1576 {
1577 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1578 	struct super_block *sb = inode->i_sb;
1579 	struct ext4_inode_info *ei = EXT4_I(inode);
1580 
1581 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1582 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1583 			ext4_count_free_clusters(sb)));
1584 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1585 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1586 	       (long long) EXT4_C2B(EXT4_SB(sb),
1587 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1588 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1589 	       (long long) EXT4_C2B(EXT4_SB(sb),
1590 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1591 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1592 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1593 		 ei->i_reserved_data_blocks);
1594 	return;
1595 }
1596 
1597 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1598 {
1599 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1600 }
1601 
1602 /*
1603  * ext4_insert_delayed_block - adds a delayed block to the extents status
1604  *                             tree, incrementing the reserved cluster/block
1605  *                             count or making a pending reservation
1606  *                             where needed
1607  *
1608  * @inode - file containing the newly added block
1609  * @lblk - logical block to be added
1610  *
1611  * Returns 0 on success, negative error code on failure.
1612  */
1613 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1614 {
1615 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1616 	int ret;
1617 	bool allocated = false;
1618 
1619 	/*
1620 	 * If the cluster containing lblk is shared with a delayed,
1621 	 * written, or unwritten extent in a bigalloc file system, it's
1622 	 * already been accounted for and does not need to be reserved.
1623 	 * A pending reservation must be made for the cluster if it's
1624 	 * shared with a written or unwritten extent and doesn't already
1625 	 * have one.  Written and unwritten extents can be purged from the
1626 	 * extents status tree if the system is under memory pressure, so
1627 	 * it's necessary to examine the extent tree if a search of the
1628 	 * extents status tree doesn't get a match.
1629 	 */
1630 	if (sbi->s_cluster_ratio == 1) {
1631 		ret = ext4_da_reserve_space(inode);
1632 		if (ret != 0)   /* ENOSPC */
1633 			goto errout;
1634 	} else {   /* bigalloc */
1635 		if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1636 			if (!ext4_es_scan_clu(inode,
1637 					      &ext4_es_is_mapped, lblk)) {
1638 				ret = ext4_clu_mapped(inode,
1639 						      EXT4_B2C(sbi, lblk));
1640 				if (ret < 0)
1641 					goto errout;
1642 				if (ret == 0) {
1643 					ret = ext4_da_reserve_space(inode);
1644 					if (ret != 0)   /* ENOSPC */
1645 						goto errout;
1646 				} else {
1647 					allocated = true;
1648 				}
1649 			} else {
1650 				allocated = true;
1651 			}
1652 		}
1653 	}
1654 
1655 	ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1656 
1657 errout:
1658 	return ret;
1659 }
1660 
1661 /*
1662  * This function is grabs code from the very beginning of
1663  * ext4_map_blocks, but assumes that the caller is from delayed write
1664  * time. This function looks up the requested blocks and sets the
1665  * buffer delay bit under the protection of i_data_sem.
1666  */
1667 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1668 			      struct ext4_map_blocks *map,
1669 			      struct buffer_head *bh)
1670 {
1671 	struct extent_status es;
1672 	int retval;
1673 	sector_t invalid_block = ~((sector_t) 0xffff);
1674 #ifdef ES_AGGRESSIVE_TEST
1675 	struct ext4_map_blocks orig_map;
1676 
1677 	memcpy(&orig_map, map, sizeof(*map));
1678 #endif
1679 
1680 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1681 		invalid_block = ~0;
1682 
1683 	map->m_flags = 0;
1684 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1685 		  "logical block %lu\n", inode->i_ino, map->m_len,
1686 		  (unsigned long) map->m_lblk);
1687 
1688 	/* Lookup extent status tree firstly */
1689 	if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1690 		if (ext4_es_is_hole(&es)) {
1691 			retval = 0;
1692 			down_read(&EXT4_I(inode)->i_data_sem);
1693 			goto add_delayed;
1694 		}
1695 
1696 		/*
1697 		 * Delayed extent could be allocated by fallocate.
1698 		 * So we need to check it.
1699 		 */
1700 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1701 			map_bh(bh, inode->i_sb, invalid_block);
1702 			set_buffer_new(bh);
1703 			set_buffer_delay(bh);
1704 			return 0;
1705 		}
1706 
1707 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1708 		retval = es.es_len - (iblock - es.es_lblk);
1709 		if (retval > map->m_len)
1710 			retval = map->m_len;
1711 		map->m_len = retval;
1712 		if (ext4_es_is_written(&es))
1713 			map->m_flags |= EXT4_MAP_MAPPED;
1714 		else if (ext4_es_is_unwritten(&es))
1715 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1716 		else
1717 			BUG();
1718 
1719 #ifdef ES_AGGRESSIVE_TEST
1720 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1721 #endif
1722 		return retval;
1723 	}
1724 
1725 	/*
1726 	 * Try to see if we can get the block without requesting a new
1727 	 * file system block.
1728 	 */
1729 	down_read(&EXT4_I(inode)->i_data_sem);
1730 	if (ext4_has_inline_data(inode))
1731 		retval = 0;
1732 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1733 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1734 	else
1735 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1736 
1737 add_delayed:
1738 	if (retval == 0) {
1739 		int ret;
1740 
1741 		/*
1742 		 * XXX: __block_prepare_write() unmaps passed block,
1743 		 * is it OK?
1744 		 */
1745 
1746 		ret = ext4_insert_delayed_block(inode, map->m_lblk);
1747 		if (ret != 0) {
1748 			retval = ret;
1749 			goto out_unlock;
1750 		}
1751 
1752 		map_bh(bh, inode->i_sb, invalid_block);
1753 		set_buffer_new(bh);
1754 		set_buffer_delay(bh);
1755 	} else if (retval > 0) {
1756 		int ret;
1757 		unsigned int status;
1758 
1759 		if (unlikely(retval != map->m_len)) {
1760 			ext4_warning(inode->i_sb,
1761 				     "ES len assertion failed for inode "
1762 				     "%lu: retval %d != map->m_len %d",
1763 				     inode->i_ino, retval, map->m_len);
1764 			WARN_ON(1);
1765 		}
1766 
1767 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1768 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1769 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1770 					    map->m_pblk, status);
1771 		if (ret != 0)
1772 			retval = ret;
1773 	}
1774 
1775 out_unlock:
1776 	up_read((&EXT4_I(inode)->i_data_sem));
1777 
1778 	return retval;
1779 }
1780 
1781 /*
1782  * This is a special get_block_t callback which is used by
1783  * ext4_da_write_begin().  It will either return mapped block or
1784  * reserve space for a single block.
1785  *
1786  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1787  * We also have b_blocknr = -1 and b_bdev initialized properly
1788  *
1789  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1790  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1791  * initialized properly.
1792  */
1793 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1794 			   struct buffer_head *bh, int create)
1795 {
1796 	struct ext4_map_blocks map;
1797 	int ret = 0;
1798 
1799 	BUG_ON(create == 0);
1800 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1801 
1802 	map.m_lblk = iblock;
1803 	map.m_len = 1;
1804 
1805 	/*
1806 	 * first, we need to know whether the block is allocated already
1807 	 * preallocated blocks are unmapped but should treated
1808 	 * the same as allocated blocks.
1809 	 */
1810 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1811 	if (ret <= 0)
1812 		return ret;
1813 
1814 	map_bh(bh, inode->i_sb, map.m_pblk);
1815 	ext4_update_bh_state(bh, map.m_flags);
1816 
1817 	if (buffer_unwritten(bh)) {
1818 		/* A delayed write to unwritten bh should be marked
1819 		 * new and mapped.  Mapped ensures that we don't do
1820 		 * get_block multiple times when we write to the same
1821 		 * offset and new ensures that we do proper zero out
1822 		 * for partial write.
1823 		 */
1824 		set_buffer_new(bh);
1825 		set_buffer_mapped(bh);
1826 	}
1827 	return 0;
1828 }
1829 
1830 static int bget_one(handle_t *handle, struct buffer_head *bh)
1831 {
1832 	get_bh(bh);
1833 	return 0;
1834 }
1835 
1836 static int bput_one(handle_t *handle, struct buffer_head *bh)
1837 {
1838 	put_bh(bh);
1839 	return 0;
1840 }
1841 
1842 static int __ext4_journalled_writepage(struct page *page,
1843 				       unsigned int len)
1844 {
1845 	struct address_space *mapping = page->mapping;
1846 	struct inode *inode = mapping->host;
1847 	struct buffer_head *page_bufs = NULL;
1848 	handle_t *handle = NULL;
1849 	int ret = 0, err = 0;
1850 	int inline_data = ext4_has_inline_data(inode);
1851 	struct buffer_head *inode_bh = NULL;
1852 
1853 	ClearPageChecked(page);
1854 
1855 	if (inline_data) {
1856 		BUG_ON(page->index != 0);
1857 		BUG_ON(len > ext4_get_max_inline_size(inode));
1858 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1859 		if (inode_bh == NULL)
1860 			goto out;
1861 	} else {
1862 		page_bufs = page_buffers(page);
1863 		if (!page_bufs) {
1864 			BUG();
1865 			goto out;
1866 		}
1867 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1868 				       NULL, bget_one);
1869 	}
1870 	/*
1871 	 * We need to release the page lock before we start the
1872 	 * journal, so grab a reference so the page won't disappear
1873 	 * out from under us.
1874 	 */
1875 	get_page(page);
1876 	unlock_page(page);
1877 
1878 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1879 				    ext4_writepage_trans_blocks(inode));
1880 	if (IS_ERR(handle)) {
1881 		ret = PTR_ERR(handle);
1882 		put_page(page);
1883 		goto out_no_pagelock;
1884 	}
1885 	BUG_ON(!ext4_handle_valid(handle));
1886 
1887 	lock_page(page);
1888 	put_page(page);
1889 	if (page->mapping != mapping) {
1890 		/* The page got truncated from under us */
1891 		ext4_journal_stop(handle);
1892 		ret = 0;
1893 		goto out;
1894 	}
1895 
1896 	if (inline_data) {
1897 		ret = ext4_mark_inode_dirty(handle, inode);
1898 	} else {
1899 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1900 					     do_journal_get_write_access);
1901 
1902 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1903 					     write_end_fn);
1904 	}
1905 	if (ret == 0)
1906 		ret = err;
1907 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1908 	err = ext4_journal_stop(handle);
1909 	if (!ret)
1910 		ret = err;
1911 
1912 	if (!ext4_has_inline_data(inode))
1913 		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1914 				       NULL, bput_one);
1915 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1916 out:
1917 	unlock_page(page);
1918 out_no_pagelock:
1919 	brelse(inode_bh);
1920 	return ret;
1921 }
1922 
1923 /*
1924  * Note that we don't need to start a transaction unless we're journaling data
1925  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1926  * need to file the inode to the transaction's list in ordered mode because if
1927  * we are writing back data added by write(), the inode is already there and if
1928  * we are writing back data modified via mmap(), no one guarantees in which
1929  * transaction the data will hit the disk. In case we are journaling data, we
1930  * cannot start transaction directly because transaction start ranks above page
1931  * lock so we have to do some magic.
1932  *
1933  * This function can get called via...
1934  *   - ext4_writepages after taking page lock (have journal handle)
1935  *   - journal_submit_inode_data_buffers (no journal handle)
1936  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1937  *   - grab_page_cache when doing write_begin (have journal handle)
1938  *
1939  * We don't do any block allocation in this function. If we have page with
1940  * multiple blocks we need to write those buffer_heads that are mapped. This
1941  * is important for mmaped based write. So if we do with blocksize 1K
1942  * truncate(f, 1024);
1943  * a = mmap(f, 0, 4096);
1944  * a[0] = 'a';
1945  * truncate(f, 4096);
1946  * we have in the page first buffer_head mapped via page_mkwrite call back
1947  * but other buffer_heads would be unmapped but dirty (dirty done via the
1948  * do_wp_page). So writepage should write the first block. If we modify
1949  * the mmap area beyond 1024 we will again get a page_fault and the
1950  * page_mkwrite callback will do the block allocation and mark the
1951  * buffer_heads mapped.
1952  *
1953  * We redirty the page if we have any buffer_heads that is either delay or
1954  * unwritten in the page.
1955  *
1956  * We can get recursively called as show below.
1957  *
1958  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1959  *		ext4_writepage()
1960  *
1961  * But since we don't do any block allocation we should not deadlock.
1962  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1963  */
1964 static int ext4_writepage(struct page *page,
1965 			  struct writeback_control *wbc)
1966 {
1967 	int ret = 0;
1968 	loff_t size;
1969 	unsigned int len;
1970 	struct buffer_head *page_bufs = NULL;
1971 	struct inode *inode = page->mapping->host;
1972 	struct ext4_io_submit io_submit;
1973 	bool keep_towrite = false;
1974 
1975 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
1976 		inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
1977 		unlock_page(page);
1978 		return -EIO;
1979 	}
1980 
1981 	trace_ext4_writepage(page);
1982 	size = i_size_read(inode);
1983 	if (page->index == size >> PAGE_SHIFT &&
1984 	    !ext4_verity_in_progress(inode))
1985 		len = size & ~PAGE_MASK;
1986 	else
1987 		len = PAGE_SIZE;
1988 
1989 	page_bufs = page_buffers(page);
1990 	/*
1991 	 * We cannot do block allocation or other extent handling in this
1992 	 * function. If there are buffers needing that, we have to redirty
1993 	 * the page. But we may reach here when we do a journal commit via
1994 	 * journal_submit_inode_data_buffers() and in that case we must write
1995 	 * allocated buffers to achieve data=ordered mode guarantees.
1996 	 *
1997 	 * Also, if there is only one buffer per page (the fs block
1998 	 * size == the page size), if one buffer needs block
1999 	 * allocation or needs to modify the extent tree to clear the
2000 	 * unwritten flag, we know that the page can't be written at
2001 	 * all, so we might as well refuse the write immediately.
2002 	 * Unfortunately if the block size != page size, we can't as
2003 	 * easily detect this case using ext4_walk_page_buffers(), but
2004 	 * for the extremely common case, this is an optimization that
2005 	 * skips a useless round trip through ext4_bio_write_page().
2006 	 */
2007 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2008 				   ext4_bh_delay_or_unwritten)) {
2009 		redirty_page_for_writepage(wbc, page);
2010 		if ((current->flags & PF_MEMALLOC) ||
2011 		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2012 			/*
2013 			 * For memory cleaning there's no point in writing only
2014 			 * some buffers. So just bail out. Warn if we came here
2015 			 * from direct reclaim.
2016 			 */
2017 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2018 							== PF_MEMALLOC);
2019 			unlock_page(page);
2020 			return 0;
2021 		}
2022 		keep_towrite = true;
2023 	}
2024 
2025 	if (PageChecked(page) && ext4_should_journal_data(inode))
2026 		/*
2027 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2028 		 * doesn't seem much point in redirtying the page here.
2029 		 */
2030 		return __ext4_journalled_writepage(page, len);
2031 
2032 	ext4_io_submit_init(&io_submit, wbc);
2033 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2034 	if (!io_submit.io_end) {
2035 		redirty_page_for_writepage(wbc, page);
2036 		unlock_page(page);
2037 		return -ENOMEM;
2038 	}
2039 	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2040 	ext4_io_submit(&io_submit);
2041 	/* Drop io_end reference we got from init */
2042 	ext4_put_io_end_defer(io_submit.io_end);
2043 	return ret;
2044 }
2045 
2046 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2047 {
2048 	int len;
2049 	loff_t size;
2050 	int err;
2051 
2052 	BUG_ON(page->index != mpd->first_page);
2053 	clear_page_dirty_for_io(page);
2054 	/*
2055 	 * We have to be very careful here!  Nothing protects writeback path
2056 	 * against i_size changes and the page can be writeably mapped into
2057 	 * page tables. So an application can be growing i_size and writing
2058 	 * data through mmap while writeback runs. clear_page_dirty_for_io()
2059 	 * write-protects our page in page tables and the page cannot get
2060 	 * written to again until we release page lock. So only after
2061 	 * clear_page_dirty_for_io() we are safe to sample i_size for
2062 	 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2063 	 * on the barrier provided by TestClearPageDirty in
2064 	 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2065 	 * after page tables are updated.
2066 	 */
2067 	size = i_size_read(mpd->inode);
2068 	if (page->index == size >> PAGE_SHIFT &&
2069 	    !ext4_verity_in_progress(mpd->inode))
2070 		len = size & ~PAGE_MASK;
2071 	else
2072 		len = PAGE_SIZE;
2073 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2074 	if (!err)
2075 		mpd->wbc->nr_to_write--;
2076 	mpd->first_page++;
2077 
2078 	return err;
2079 }
2080 
2081 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2082 
2083 /*
2084  * mballoc gives us at most this number of blocks...
2085  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2086  * The rest of mballoc seems to handle chunks up to full group size.
2087  */
2088 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2089 
2090 /*
2091  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2092  *
2093  * @mpd - extent of blocks
2094  * @lblk - logical number of the block in the file
2095  * @bh - buffer head we want to add to the extent
2096  *
2097  * The function is used to collect contig. blocks in the same state. If the
2098  * buffer doesn't require mapping for writeback and we haven't started the
2099  * extent of buffers to map yet, the function returns 'true' immediately - the
2100  * caller can write the buffer right away. Otherwise the function returns true
2101  * if the block has been added to the extent, false if the block couldn't be
2102  * added.
2103  */
2104 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2105 				   struct buffer_head *bh)
2106 {
2107 	struct ext4_map_blocks *map = &mpd->map;
2108 
2109 	/* Buffer that doesn't need mapping for writeback? */
2110 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2111 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2112 		/* So far no extent to map => we write the buffer right away */
2113 		if (map->m_len == 0)
2114 			return true;
2115 		return false;
2116 	}
2117 
2118 	/* First block in the extent? */
2119 	if (map->m_len == 0) {
2120 		/* We cannot map unless handle is started... */
2121 		if (!mpd->do_map)
2122 			return false;
2123 		map->m_lblk = lblk;
2124 		map->m_len = 1;
2125 		map->m_flags = bh->b_state & BH_FLAGS;
2126 		return true;
2127 	}
2128 
2129 	/* Don't go larger than mballoc is willing to allocate */
2130 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2131 		return false;
2132 
2133 	/* Can we merge the block to our big extent? */
2134 	if (lblk == map->m_lblk + map->m_len &&
2135 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2136 		map->m_len++;
2137 		return true;
2138 	}
2139 	return false;
2140 }
2141 
2142 /*
2143  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2144  *
2145  * @mpd - extent of blocks for mapping
2146  * @head - the first buffer in the page
2147  * @bh - buffer we should start processing from
2148  * @lblk - logical number of the block in the file corresponding to @bh
2149  *
2150  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2151  * the page for IO if all buffers in this page were mapped and there's no
2152  * accumulated extent of buffers to map or add buffers in the page to the
2153  * extent of buffers to map. The function returns 1 if the caller can continue
2154  * by processing the next page, 0 if it should stop adding buffers to the
2155  * extent to map because we cannot extend it anymore. It can also return value
2156  * < 0 in case of error during IO submission.
2157  */
2158 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2159 				   struct buffer_head *head,
2160 				   struct buffer_head *bh,
2161 				   ext4_lblk_t lblk)
2162 {
2163 	struct inode *inode = mpd->inode;
2164 	int err;
2165 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2166 							>> inode->i_blkbits;
2167 
2168 	if (ext4_verity_in_progress(inode))
2169 		blocks = EXT_MAX_BLOCKS;
2170 
2171 	do {
2172 		BUG_ON(buffer_locked(bh));
2173 
2174 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2175 			/* Found extent to map? */
2176 			if (mpd->map.m_len)
2177 				return 0;
2178 			/* Buffer needs mapping and handle is not started? */
2179 			if (!mpd->do_map)
2180 				return 0;
2181 			/* Everything mapped so far and we hit EOF */
2182 			break;
2183 		}
2184 	} while (lblk++, (bh = bh->b_this_page) != head);
2185 	/* So far everything mapped? Submit the page for IO. */
2186 	if (mpd->map.m_len == 0) {
2187 		err = mpage_submit_page(mpd, head->b_page);
2188 		if (err < 0)
2189 			return err;
2190 	}
2191 	return lblk < blocks;
2192 }
2193 
2194 /*
2195  * mpage_process_page - update page buffers corresponding to changed extent and
2196  *		       may submit fully mapped page for IO
2197  *
2198  * @mpd		- description of extent to map, on return next extent to map
2199  * @m_lblk	- logical block mapping.
2200  * @m_pblk	- corresponding physical mapping.
2201  * @map_bh	- determines on return whether this page requires any further
2202  *		  mapping or not.
2203  * Scan given page buffers corresponding to changed extent and update buffer
2204  * state according to new extent state.
2205  * We map delalloc buffers to their physical location, clear unwritten bits.
2206  * If the given page is not fully mapped, we update @map to the next extent in
2207  * the given page that needs mapping & return @map_bh as true.
2208  */
2209 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2210 			      ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2211 			      bool *map_bh)
2212 {
2213 	struct buffer_head *head, *bh;
2214 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2215 	ext4_lblk_t lblk = *m_lblk;
2216 	ext4_fsblk_t pblock = *m_pblk;
2217 	int err = 0;
2218 	int blkbits = mpd->inode->i_blkbits;
2219 	ssize_t io_end_size = 0;
2220 	struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2221 
2222 	bh = head = page_buffers(page);
2223 	do {
2224 		if (lblk < mpd->map.m_lblk)
2225 			continue;
2226 		if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2227 			/*
2228 			 * Buffer after end of mapped extent.
2229 			 * Find next buffer in the page to map.
2230 			 */
2231 			mpd->map.m_len = 0;
2232 			mpd->map.m_flags = 0;
2233 			io_end_vec->size += io_end_size;
2234 			io_end_size = 0;
2235 
2236 			err = mpage_process_page_bufs(mpd, head, bh, lblk);
2237 			if (err > 0)
2238 				err = 0;
2239 			if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2240 				io_end_vec = ext4_alloc_io_end_vec(io_end);
2241 				if (IS_ERR(io_end_vec)) {
2242 					err = PTR_ERR(io_end_vec);
2243 					goto out;
2244 				}
2245 				io_end_vec->offset = mpd->map.m_lblk << blkbits;
2246 			}
2247 			*map_bh = true;
2248 			goto out;
2249 		}
2250 		if (buffer_delay(bh)) {
2251 			clear_buffer_delay(bh);
2252 			bh->b_blocknr = pblock++;
2253 		}
2254 		clear_buffer_unwritten(bh);
2255 		io_end_size += (1 << blkbits);
2256 	} while (lblk++, (bh = bh->b_this_page) != head);
2257 
2258 	io_end_vec->size += io_end_size;
2259 	io_end_size = 0;
2260 	*map_bh = false;
2261 out:
2262 	*m_lblk = lblk;
2263 	*m_pblk = pblock;
2264 	return err;
2265 }
2266 
2267 /*
2268  * mpage_map_buffers - update buffers corresponding to changed extent and
2269  *		       submit fully mapped pages for IO
2270  *
2271  * @mpd - description of extent to map, on return next extent to map
2272  *
2273  * Scan buffers corresponding to changed extent (we expect corresponding pages
2274  * to be already locked) and update buffer state according to new extent state.
2275  * We map delalloc buffers to their physical location, clear unwritten bits,
2276  * and mark buffers as uninit when we perform writes to unwritten extents
2277  * and do extent conversion after IO is finished. If the last page is not fully
2278  * mapped, we update @map to the next extent in the last page that needs
2279  * mapping. Otherwise we submit the page for IO.
2280  */
2281 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2282 {
2283 	struct pagevec pvec;
2284 	int nr_pages, i;
2285 	struct inode *inode = mpd->inode;
2286 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2287 	pgoff_t start, end;
2288 	ext4_lblk_t lblk;
2289 	ext4_fsblk_t pblock;
2290 	int err;
2291 	bool map_bh = false;
2292 
2293 	start = mpd->map.m_lblk >> bpp_bits;
2294 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2295 	lblk = start << bpp_bits;
2296 	pblock = mpd->map.m_pblk;
2297 
2298 	pagevec_init(&pvec);
2299 	while (start <= end) {
2300 		nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2301 						&start, end);
2302 		if (nr_pages == 0)
2303 			break;
2304 		for (i = 0; i < nr_pages; i++) {
2305 			struct page *page = pvec.pages[i];
2306 
2307 			err = mpage_process_page(mpd, page, &lblk, &pblock,
2308 						 &map_bh);
2309 			/*
2310 			 * If map_bh is true, means page may require further bh
2311 			 * mapping, or maybe the page was submitted for IO.
2312 			 * So we return to call further extent mapping.
2313 			 */
2314 			if (err < 0 || map_bh == true)
2315 				goto out;
2316 			/* Page fully mapped - let IO run! */
2317 			err = mpage_submit_page(mpd, page);
2318 			if (err < 0)
2319 				goto out;
2320 		}
2321 		pagevec_release(&pvec);
2322 	}
2323 	/* Extent fully mapped and matches with page boundary. We are done. */
2324 	mpd->map.m_len = 0;
2325 	mpd->map.m_flags = 0;
2326 	return 0;
2327 out:
2328 	pagevec_release(&pvec);
2329 	return err;
2330 }
2331 
2332 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2333 {
2334 	struct inode *inode = mpd->inode;
2335 	struct ext4_map_blocks *map = &mpd->map;
2336 	int get_blocks_flags;
2337 	int err, dioread_nolock;
2338 
2339 	trace_ext4_da_write_pages_extent(inode, map);
2340 	/*
2341 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2342 	 * to convert an unwritten extent to be initialized (in the case
2343 	 * where we have written into one or more preallocated blocks).  It is
2344 	 * possible that we're going to need more metadata blocks than
2345 	 * previously reserved. However we must not fail because we're in
2346 	 * writeback and there is nothing we can do about it so it might result
2347 	 * in data loss.  So use reserved blocks to allocate metadata if
2348 	 * possible.
2349 	 *
2350 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2351 	 * the blocks in question are delalloc blocks.  This indicates
2352 	 * that the blocks and quotas has already been checked when
2353 	 * the data was copied into the page cache.
2354 	 */
2355 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2356 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2357 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2358 	dioread_nolock = ext4_should_dioread_nolock(inode);
2359 	if (dioread_nolock)
2360 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2361 	if (map->m_flags & (1 << BH_Delay))
2362 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2363 
2364 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2365 	if (err < 0)
2366 		return err;
2367 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2368 		if (!mpd->io_submit.io_end->handle &&
2369 		    ext4_handle_valid(handle)) {
2370 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2371 			handle->h_rsv_handle = NULL;
2372 		}
2373 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2374 	}
2375 
2376 	BUG_ON(map->m_len == 0);
2377 	return 0;
2378 }
2379 
2380 /*
2381  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2382  *				 mpd->len and submit pages underlying it for IO
2383  *
2384  * @handle - handle for journal operations
2385  * @mpd - extent to map
2386  * @give_up_on_write - we set this to true iff there is a fatal error and there
2387  *                     is no hope of writing the data. The caller should discard
2388  *                     dirty pages to avoid infinite loops.
2389  *
2390  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2391  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2392  * them to initialized or split the described range from larger unwritten
2393  * extent. Note that we need not map all the described range since allocation
2394  * can return less blocks or the range is covered by more unwritten extents. We
2395  * cannot map more because we are limited by reserved transaction credits. On
2396  * the other hand we always make sure that the last touched page is fully
2397  * mapped so that it can be written out (and thus forward progress is
2398  * guaranteed). After mapping we submit all mapped pages for IO.
2399  */
2400 static int mpage_map_and_submit_extent(handle_t *handle,
2401 				       struct mpage_da_data *mpd,
2402 				       bool *give_up_on_write)
2403 {
2404 	struct inode *inode = mpd->inode;
2405 	struct ext4_map_blocks *map = &mpd->map;
2406 	int err;
2407 	loff_t disksize;
2408 	int progress = 0;
2409 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2410 	struct ext4_io_end_vec *io_end_vec;
2411 
2412 	io_end_vec = ext4_alloc_io_end_vec(io_end);
2413 	if (IS_ERR(io_end_vec))
2414 		return PTR_ERR(io_end_vec);
2415 	io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2416 	do {
2417 		err = mpage_map_one_extent(handle, mpd);
2418 		if (err < 0) {
2419 			struct super_block *sb = inode->i_sb;
2420 
2421 			if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2422 			    EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2423 				goto invalidate_dirty_pages;
2424 			/*
2425 			 * Let the uper layers retry transient errors.
2426 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2427 			 * is non-zero, a commit should free up blocks.
2428 			 */
2429 			if ((err == -ENOMEM) ||
2430 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2431 				if (progress)
2432 					goto update_disksize;
2433 				return err;
2434 			}
2435 			ext4_msg(sb, KERN_CRIT,
2436 				 "Delayed block allocation failed for "
2437 				 "inode %lu at logical offset %llu with"
2438 				 " max blocks %u with error %d",
2439 				 inode->i_ino,
2440 				 (unsigned long long)map->m_lblk,
2441 				 (unsigned)map->m_len, -err);
2442 			ext4_msg(sb, KERN_CRIT,
2443 				 "This should not happen!! Data will "
2444 				 "be lost\n");
2445 			if (err == -ENOSPC)
2446 				ext4_print_free_blocks(inode);
2447 		invalidate_dirty_pages:
2448 			*give_up_on_write = true;
2449 			return err;
2450 		}
2451 		progress = 1;
2452 		/*
2453 		 * Update buffer state, submit mapped pages, and get us new
2454 		 * extent to map
2455 		 */
2456 		err = mpage_map_and_submit_buffers(mpd);
2457 		if (err < 0)
2458 			goto update_disksize;
2459 	} while (map->m_len);
2460 
2461 update_disksize:
2462 	/*
2463 	 * Update on-disk size after IO is submitted.  Races with
2464 	 * truncate are avoided by checking i_size under i_data_sem.
2465 	 */
2466 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2467 	if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2468 		int err2;
2469 		loff_t i_size;
2470 
2471 		down_write(&EXT4_I(inode)->i_data_sem);
2472 		i_size = i_size_read(inode);
2473 		if (disksize > i_size)
2474 			disksize = i_size;
2475 		if (disksize > EXT4_I(inode)->i_disksize)
2476 			EXT4_I(inode)->i_disksize = disksize;
2477 		up_write(&EXT4_I(inode)->i_data_sem);
2478 		err2 = ext4_mark_inode_dirty(handle, inode);
2479 		if (err2) {
2480 			ext4_error_err(inode->i_sb, -err2,
2481 				       "Failed to mark inode %lu dirty",
2482 				       inode->i_ino);
2483 		}
2484 		if (!err)
2485 			err = err2;
2486 	}
2487 	return err;
2488 }
2489 
2490 /*
2491  * Calculate the total number of credits to reserve for one writepages
2492  * iteration. This is called from ext4_writepages(). We map an extent of
2493  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2494  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2495  * bpp - 1 blocks in bpp different extents.
2496  */
2497 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2498 {
2499 	int bpp = ext4_journal_blocks_per_page(inode);
2500 
2501 	return ext4_meta_trans_blocks(inode,
2502 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2503 }
2504 
2505 /*
2506  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2507  * 				 and underlying extent to map
2508  *
2509  * @mpd - where to look for pages
2510  *
2511  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2512  * IO immediately. When we find a page which isn't mapped we start accumulating
2513  * extent of buffers underlying these pages that needs mapping (formed by
2514  * either delayed or unwritten buffers). We also lock the pages containing
2515  * these buffers. The extent found is returned in @mpd structure (starting at
2516  * mpd->lblk with length mpd->len blocks).
2517  *
2518  * Note that this function can attach bios to one io_end structure which are
2519  * neither logically nor physically contiguous. Although it may seem as an
2520  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2521  * case as we need to track IO to all buffers underlying a page in one io_end.
2522  */
2523 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2524 {
2525 	struct address_space *mapping = mpd->inode->i_mapping;
2526 	struct pagevec pvec;
2527 	unsigned int nr_pages;
2528 	long left = mpd->wbc->nr_to_write;
2529 	pgoff_t index = mpd->first_page;
2530 	pgoff_t end = mpd->last_page;
2531 	xa_mark_t tag;
2532 	int i, err = 0;
2533 	int blkbits = mpd->inode->i_blkbits;
2534 	ext4_lblk_t lblk;
2535 	struct buffer_head *head;
2536 
2537 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2538 		tag = PAGECACHE_TAG_TOWRITE;
2539 	else
2540 		tag = PAGECACHE_TAG_DIRTY;
2541 
2542 	pagevec_init(&pvec);
2543 	mpd->map.m_len = 0;
2544 	mpd->next_page = index;
2545 	while (index <= end) {
2546 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2547 				tag);
2548 		if (nr_pages == 0)
2549 			goto out;
2550 
2551 		for (i = 0; i < nr_pages; i++) {
2552 			struct page *page = pvec.pages[i];
2553 
2554 			/*
2555 			 * Accumulated enough dirty pages? This doesn't apply
2556 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2557 			 * keep going because someone may be concurrently
2558 			 * dirtying pages, and we might have synced a lot of
2559 			 * newly appeared dirty pages, but have not synced all
2560 			 * of the old dirty pages.
2561 			 */
2562 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2563 				goto out;
2564 
2565 			/* If we can't merge this page, we are done. */
2566 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2567 				goto out;
2568 
2569 			lock_page(page);
2570 			/*
2571 			 * If the page is no longer dirty, or its mapping no
2572 			 * longer corresponds to inode we are writing (which
2573 			 * means it has been truncated or invalidated), or the
2574 			 * page is already under writeback and we are not doing
2575 			 * a data integrity writeback, skip the page
2576 			 */
2577 			if (!PageDirty(page) ||
2578 			    (PageWriteback(page) &&
2579 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2580 			    unlikely(page->mapping != mapping)) {
2581 				unlock_page(page);
2582 				continue;
2583 			}
2584 
2585 			wait_on_page_writeback(page);
2586 			BUG_ON(PageWriteback(page));
2587 
2588 			if (mpd->map.m_len == 0)
2589 				mpd->first_page = page->index;
2590 			mpd->next_page = page->index + 1;
2591 			/* Add all dirty buffers to mpd */
2592 			lblk = ((ext4_lblk_t)page->index) <<
2593 				(PAGE_SHIFT - blkbits);
2594 			head = page_buffers(page);
2595 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2596 			if (err <= 0)
2597 				goto out;
2598 			err = 0;
2599 			left--;
2600 		}
2601 		pagevec_release(&pvec);
2602 		cond_resched();
2603 	}
2604 	return 0;
2605 out:
2606 	pagevec_release(&pvec);
2607 	return err;
2608 }
2609 
2610 static int ext4_writepages(struct address_space *mapping,
2611 			   struct writeback_control *wbc)
2612 {
2613 	pgoff_t	writeback_index = 0;
2614 	long nr_to_write = wbc->nr_to_write;
2615 	int range_whole = 0;
2616 	int cycled = 1;
2617 	handle_t *handle = NULL;
2618 	struct mpage_da_data mpd;
2619 	struct inode *inode = mapping->host;
2620 	int needed_blocks, rsv_blocks = 0, ret = 0;
2621 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2622 	bool done;
2623 	struct blk_plug plug;
2624 	bool give_up_on_write = false;
2625 
2626 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2627 		return -EIO;
2628 
2629 	percpu_down_read(&sbi->s_writepages_rwsem);
2630 	trace_ext4_writepages(inode, wbc);
2631 
2632 	/*
2633 	 * No pages to write? This is mainly a kludge to avoid starting
2634 	 * a transaction for special inodes like journal inode on last iput()
2635 	 * because that could violate lock ordering on umount
2636 	 */
2637 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2638 		goto out_writepages;
2639 
2640 	if (ext4_should_journal_data(inode)) {
2641 		ret = generic_writepages(mapping, wbc);
2642 		goto out_writepages;
2643 	}
2644 
2645 	/*
2646 	 * If the filesystem has aborted, it is read-only, so return
2647 	 * right away instead of dumping stack traces later on that
2648 	 * will obscure the real source of the problem.  We test
2649 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2650 	 * the latter could be true if the filesystem is mounted
2651 	 * read-only, and in that case, ext4_writepages should
2652 	 * *never* be called, so if that ever happens, we would want
2653 	 * the stack trace.
2654 	 */
2655 	if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2656 		     sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2657 		ret = -EROFS;
2658 		goto out_writepages;
2659 	}
2660 
2661 	/*
2662 	 * If we have inline data and arrive here, it means that
2663 	 * we will soon create the block for the 1st page, so
2664 	 * we'd better clear the inline data here.
2665 	 */
2666 	if (ext4_has_inline_data(inode)) {
2667 		/* Just inode will be modified... */
2668 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2669 		if (IS_ERR(handle)) {
2670 			ret = PTR_ERR(handle);
2671 			goto out_writepages;
2672 		}
2673 		BUG_ON(ext4_test_inode_state(inode,
2674 				EXT4_STATE_MAY_INLINE_DATA));
2675 		ext4_destroy_inline_data(handle, inode);
2676 		ext4_journal_stop(handle);
2677 	}
2678 
2679 	if (ext4_should_dioread_nolock(inode)) {
2680 		/*
2681 		 * We may need to convert up to one extent per block in
2682 		 * the page and we may dirty the inode.
2683 		 */
2684 		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2685 						PAGE_SIZE >> inode->i_blkbits);
2686 	}
2687 
2688 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2689 		range_whole = 1;
2690 
2691 	if (wbc->range_cyclic) {
2692 		writeback_index = mapping->writeback_index;
2693 		if (writeback_index)
2694 			cycled = 0;
2695 		mpd.first_page = writeback_index;
2696 		mpd.last_page = -1;
2697 	} else {
2698 		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2699 		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2700 	}
2701 
2702 	mpd.inode = inode;
2703 	mpd.wbc = wbc;
2704 	ext4_io_submit_init(&mpd.io_submit, wbc);
2705 retry:
2706 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2707 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2708 	done = false;
2709 	blk_start_plug(&plug);
2710 
2711 	/*
2712 	 * First writeback pages that don't need mapping - we can avoid
2713 	 * starting a transaction unnecessarily and also avoid being blocked
2714 	 * in the block layer on device congestion while having transaction
2715 	 * started.
2716 	 */
2717 	mpd.do_map = 0;
2718 	mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2719 	if (!mpd.io_submit.io_end) {
2720 		ret = -ENOMEM;
2721 		goto unplug;
2722 	}
2723 	ret = mpage_prepare_extent_to_map(&mpd);
2724 	/* Unlock pages we didn't use */
2725 	mpage_release_unused_pages(&mpd, false);
2726 	/* Submit prepared bio */
2727 	ext4_io_submit(&mpd.io_submit);
2728 	ext4_put_io_end_defer(mpd.io_submit.io_end);
2729 	mpd.io_submit.io_end = NULL;
2730 	if (ret < 0)
2731 		goto unplug;
2732 
2733 	while (!done && mpd.first_page <= mpd.last_page) {
2734 		/* For each extent of pages we use new io_end */
2735 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2736 		if (!mpd.io_submit.io_end) {
2737 			ret = -ENOMEM;
2738 			break;
2739 		}
2740 
2741 		/*
2742 		 * We have two constraints: We find one extent to map and we
2743 		 * must always write out whole page (makes a difference when
2744 		 * blocksize < pagesize) so that we don't block on IO when we
2745 		 * try to write out the rest of the page. Journalled mode is
2746 		 * not supported by delalloc.
2747 		 */
2748 		BUG_ON(ext4_should_journal_data(inode));
2749 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2750 
2751 		/* start a new transaction */
2752 		handle = ext4_journal_start_with_reserve(inode,
2753 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2754 		if (IS_ERR(handle)) {
2755 			ret = PTR_ERR(handle);
2756 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2757 			       "%ld pages, ino %lu; err %d", __func__,
2758 				wbc->nr_to_write, inode->i_ino, ret);
2759 			/* Release allocated io_end */
2760 			ext4_put_io_end(mpd.io_submit.io_end);
2761 			mpd.io_submit.io_end = NULL;
2762 			break;
2763 		}
2764 		mpd.do_map = 1;
2765 
2766 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2767 		ret = mpage_prepare_extent_to_map(&mpd);
2768 		if (!ret) {
2769 			if (mpd.map.m_len)
2770 				ret = mpage_map_and_submit_extent(handle, &mpd,
2771 					&give_up_on_write);
2772 			else {
2773 				/*
2774 				 * We scanned the whole range (or exhausted
2775 				 * nr_to_write), submitted what was mapped and
2776 				 * didn't find anything needing mapping. We are
2777 				 * done.
2778 				 */
2779 				done = true;
2780 			}
2781 		}
2782 		/*
2783 		 * Caution: If the handle is synchronous,
2784 		 * ext4_journal_stop() can wait for transaction commit
2785 		 * to finish which may depend on writeback of pages to
2786 		 * complete or on page lock to be released.  In that
2787 		 * case, we have to wait until after after we have
2788 		 * submitted all the IO, released page locks we hold,
2789 		 * and dropped io_end reference (for extent conversion
2790 		 * to be able to complete) before stopping the handle.
2791 		 */
2792 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2793 			ext4_journal_stop(handle);
2794 			handle = NULL;
2795 			mpd.do_map = 0;
2796 		}
2797 		/* Unlock pages we didn't use */
2798 		mpage_release_unused_pages(&mpd, give_up_on_write);
2799 		/* Submit prepared bio */
2800 		ext4_io_submit(&mpd.io_submit);
2801 
2802 		/*
2803 		 * Drop our io_end reference we got from init. We have
2804 		 * to be careful and use deferred io_end finishing if
2805 		 * we are still holding the transaction as we can
2806 		 * release the last reference to io_end which may end
2807 		 * up doing unwritten extent conversion.
2808 		 */
2809 		if (handle) {
2810 			ext4_put_io_end_defer(mpd.io_submit.io_end);
2811 			ext4_journal_stop(handle);
2812 		} else
2813 			ext4_put_io_end(mpd.io_submit.io_end);
2814 		mpd.io_submit.io_end = NULL;
2815 
2816 		if (ret == -ENOSPC && sbi->s_journal) {
2817 			/*
2818 			 * Commit the transaction which would
2819 			 * free blocks released in the transaction
2820 			 * and try again
2821 			 */
2822 			jbd2_journal_force_commit_nested(sbi->s_journal);
2823 			ret = 0;
2824 			continue;
2825 		}
2826 		/* Fatal error - ENOMEM, EIO... */
2827 		if (ret)
2828 			break;
2829 	}
2830 unplug:
2831 	blk_finish_plug(&plug);
2832 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2833 		cycled = 1;
2834 		mpd.last_page = writeback_index - 1;
2835 		mpd.first_page = 0;
2836 		goto retry;
2837 	}
2838 
2839 	/* Update index */
2840 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2841 		/*
2842 		 * Set the writeback_index so that range_cyclic
2843 		 * mode will write it back later
2844 		 */
2845 		mapping->writeback_index = mpd.first_page;
2846 
2847 out_writepages:
2848 	trace_ext4_writepages_result(inode, wbc, ret,
2849 				     nr_to_write - wbc->nr_to_write);
2850 	percpu_up_read(&sbi->s_writepages_rwsem);
2851 	return ret;
2852 }
2853 
2854 static int ext4_dax_writepages(struct address_space *mapping,
2855 			       struct writeback_control *wbc)
2856 {
2857 	int ret;
2858 	long nr_to_write = wbc->nr_to_write;
2859 	struct inode *inode = mapping->host;
2860 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2861 
2862 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2863 		return -EIO;
2864 
2865 	percpu_down_read(&sbi->s_writepages_rwsem);
2866 	trace_ext4_writepages(inode, wbc);
2867 
2868 	ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2869 	trace_ext4_writepages_result(inode, wbc, ret,
2870 				     nr_to_write - wbc->nr_to_write);
2871 	percpu_up_read(&sbi->s_writepages_rwsem);
2872 	return ret;
2873 }
2874 
2875 static int ext4_nonda_switch(struct super_block *sb)
2876 {
2877 	s64 free_clusters, dirty_clusters;
2878 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2879 
2880 	/*
2881 	 * switch to non delalloc mode if we are running low
2882 	 * on free block. The free block accounting via percpu
2883 	 * counters can get slightly wrong with percpu_counter_batch getting
2884 	 * accumulated on each CPU without updating global counters
2885 	 * Delalloc need an accurate free block accounting. So switch
2886 	 * to non delalloc when we are near to error range.
2887 	 */
2888 	free_clusters =
2889 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2890 	dirty_clusters =
2891 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2892 	/*
2893 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2894 	 */
2895 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2896 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2897 
2898 	if (2 * free_clusters < 3 * dirty_clusters ||
2899 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2900 		/*
2901 		 * free block count is less than 150% of dirty blocks
2902 		 * or free blocks is less than watermark
2903 		 */
2904 		return 1;
2905 	}
2906 	return 0;
2907 }
2908 
2909 /* We always reserve for an inode update; the superblock could be there too */
2910 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2911 {
2912 	if (likely(ext4_has_feature_large_file(inode->i_sb)))
2913 		return 1;
2914 
2915 	if (pos + len <= 0x7fffffffULL)
2916 		return 1;
2917 
2918 	/* We might need to update the superblock to set LARGE_FILE */
2919 	return 2;
2920 }
2921 
2922 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2923 			       loff_t pos, unsigned len, unsigned flags,
2924 			       struct page **pagep, void **fsdata)
2925 {
2926 	int ret, retries = 0;
2927 	struct page *page;
2928 	pgoff_t index;
2929 	struct inode *inode = mapping->host;
2930 	handle_t *handle;
2931 
2932 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2933 		return -EIO;
2934 
2935 	index = pos >> PAGE_SHIFT;
2936 
2937 	if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2938 	    ext4_verity_in_progress(inode)) {
2939 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2940 		return ext4_write_begin(file, mapping, pos,
2941 					len, flags, pagep, fsdata);
2942 	}
2943 	*fsdata = (void *)0;
2944 	trace_ext4_da_write_begin(inode, pos, len, flags);
2945 
2946 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2947 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2948 						      pos, len, flags,
2949 						      pagep, fsdata);
2950 		if (ret < 0)
2951 			return ret;
2952 		if (ret == 1)
2953 			return 0;
2954 	}
2955 
2956 	/*
2957 	 * grab_cache_page_write_begin() can take a long time if the
2958 	 * system is thrashing due to memory pressure, or if the page
2959 	 * is being written back.  So grab it first before we start
2960 	 * the transaction handle.  This also allows us to allocate
2961 	 * the page (if needed) without using GFP_NOFS.
2962 	 */
2963 retry_grab:
2964 	page = grab_cache_page_write_begin(mapping, index, flags);
2965 	if (!page)
2966 		return -ENOMEM;
2967 	unlock_page(page);
2968 
2969 	/*
2970 	 * With delayed allocation, we don't log the i_disksize update
2971 	 * if there is delayed block allocation. But we still need
2972 	 * to journalling the i_disksize update if writes to the end
2973 	 * of file which has an already mapped buffer.
2974 	 */
2975 retry_journal:
2976 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2977 				ext4_da_write_credits(inode, pos, len));
2978 	if (IS_ERR(handle)) {
2979 		put_page(page);
2980 		return PTR_ERR(handle);
2981 	}
2982 
2983 	lock_page(page);
2984 	if (page->mapping != mapping) {
2985 		/* The page got truncated from under us */
2986 		unlock_page(page);
2987 		put_page(page);
2988 		ext4_journal_stop(handle);
2989 		goto retry_grab;
2990 	}
2991 	/* In case writeback began while the page was unlocked */
2992 	wait_for_stable_page(page);
2993 
2994 #ifdef CONFIG_FS_ENCRYPTION
2995 	ret = ext4_block_write_begin(page, pos, len,
2996 				     ext4_da_get_block_prep);
2997 #else
2998 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2999 #endif
3000 	if (ret < 0) {
3001 		unlock_page(page);
3002 		ext4_journal_stop(handle);
3003 		/*
3004 		 * block_write_begin may have instantiated a few blocks
3005 		 * outside i_size.  Trim these off again. Don't need
3006 		 * i_size_read because we hold i_mutex.
3007 		 */
3008 		if (pos + len > inode->i_size)
3009 			ext4_truncate_failed_write(inode);
3010 
3011 		if (ret == -ENOSPC &&
3012 		    ext4_should_retry_alloc(inode->i_sb, &retries))
3013 			goto retry_journal;
3014 
3015 		put_page(page);
3016 		return ret;
3017 	}
3018 
3019 	*pagep = page;
3020 	return ret;
3021 }
3022 
3023 /*
3024  * Check if we should update i_disksize
3025  * when write to the end of file but not require block allocation
3026  */
3027 static int ext4_da_should_update_i_disksize(struct page *page,
3028 					    unsigned long offset)
3029 {
3030 	struct buffer_head *bh;
3031 	struct inode *inode = page->mapping->host;
3032 	unsigned int idx;
3033 	int i;
3034 
3035 	bh = page_buffers(page);
3036 	idx = offset >> inode->i_blkbits;
3037 
3038 	for (i = 0; i < idx; i++)
3039 		bh = bh->b_this_page;
3040 
3041 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3042 		return 0;
3043 	return 1;
3044 }
3045 
3046 static int ext4_da_write_end(struct file *file,
3047 			     struct address_space *mapping,
3048 			     loff_t pos, unsigned len, unsigned copied,
3049 			     struct page *page, void *fsdata)
3050 {
3051 	struct inode *inode = mapping->host;
3052 	int ret = 0, ret2;
3053 	handle_t *handle = ext4_journal_current_handle();
3054 	loff_t new_i_size;
3055 	unsigned long start, end;
3056 	int write_mode = (int)(unsigned long)fsdata;
3057 
3058 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3059 		return ext4_write_end(file, mapping, pos,
3060 				      len, copied, page, fsdata);
3061 
3062 	trace_ext4_da_write_end(inode, pos, len, copied);
3063 	start = pos & (PAGE_SIZE - 1);
3064 	end = start + copied - 1;
3065 
3066 	/*
3067 	 * generic_write_end() will run mark_inode_dirty() if i_size
3068 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
3069 	 * into that.
3070 	 */
3071 	new_i_size = pos + copied;
3072 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3073 		if (ext4_has_inline_data(inode) ||
3074 		    ext4_da_should_update_i_disksize(page, end)) {
3075 			ext4_update_i_disksize(inode, new_i_size);
3076 			/* We need to mark inode dirty even if
3077 			 * new_i_size is less that inode->i_size
3078 			 * bu greater than i_disksize.(hint delalloc)
3079 			 */
3080 			ext4_mark_inode_dirty(handle, inode);
3081 		}
3082 	}
3083 
3084 	if (write_mode != CONVERT_INLINE_DATA &&
3085 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3086 	    ext4_has_inline_data(inode))
3087 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3088 						     page);
3089 	else
3090 		ret2 = generic_write_end(file, mapping, pos, len, copied,
3091 							page, fsdata);
3092 
3093 	copied = ret2;
3094 	if (ret2 < 0)
3095 		ret = ret2;
3096 	ret2 = ext4_journal_stop(handle);
3097 	if (!ret)
3098 		ret = ret2;
3099 
3100 	return ret ? ret : copied;
3101 }
3102 
3103 /*
3104  * Force all delayed allocation blocks to be allocated for a given inode.
3105  */
3106 int ext4_alloc_da_blocks(struct inode *inode)
3107 {
3108 	trace_ext4_alloc_da_blocks(inode);
3109 
3110 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3111 		return 0;
3112 
3113 	/*
3114 	 * We do something simple for now.  The filemap_flush() will
3115 	 * also start triggering a write of the data blocks, which is
3116 	 * not strictly speaking necessary (and for users of
3117 	 * laptop_mode, not even desirable).  However, to do otherwise
3118 	 * would require replicating code paths in:
3119 	 *
3120 	 * ext4_writepages() ->
3121 	 *    write_cache_pages() ---> (via passed in callback function)
3122 	 *        __mpage_da_writepage() -->
3123 	 *           mpage_add_bh_to_extent()
3124 	 *           mpage_da_map_blocks()
3125 	 *
3126 	 * The problem is that write_cache_pages(), located in
3127 	 * mm/page-writeback.c, marks pages clean in preparation for
3128 	 * doing I/O, which is not desirable if we're not planning on
3129 	 * doing I/O at all.
3130 	 *
3131 	 * We could call write_cache_pages(), and then redirty all of
3132 	 * the pages by calling redirty_page_for_writepage() but that
3133 	 * would be ugly in the extreme.  So instead we would need to
3134 	 * replicate parts of the code in the above functions,
3135 	 * simplifying them because we wouldn't actually intend to
3136 	 * write out the pages, but rather only collect contiguous
3137 	 * logical block extents, call the multi-block allocator, and
3138 	 * then update the buffer heads with the block allocations.
3139 	 *
3140 	 * For now, though, we'll cheat by calling filemap_flush(),
3141 	 * which will map the blocks, and start the I/O, but not
3142 	 * actually wait for the I/O to complete.
3143 	 */
3144 	return filemap_flush(inode->i_mapping);
3145 }
3146 
3147 /*
3148  * bmap() is special.  It gets used by applications such as lilo and by
3149  * the swapper to find the on-disk block of a specific piece of data.
3150  *
3151  * Naturally, this is dangerous if the block concerned is still in the
3152  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3153  * filesystem and enables swap, then they may get a nasty shock when the
3154  * data getting swapped to that swapfile suddenly gets overwritten by
3155  * the original zero's written out previously to the journal and
3156  * awaiting writeback in the kernel's buffer cache.
3157  *
3158  * So, if we see any bmap calls here on a modified, data-journaled file,
3159  * take extra steps to flush any blocks which might be in the cache.
3160  */
3161 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3162 {
3163 	struct inode *inode = mapping->host;
3164 	journal_t *journal;
3165 	int err;
3166 
3167 	/*
3168 	 * We can get here for an inline file via the FIBMAP ioctl
3169 	 */
3170 	if (ext4_has_inline_data(inode))
3171 		return 0;
3172 
3173 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3174 			test_opt(inode->i_sb, DELALLOC)) {
3175 		/*
3176 		 * With delalloc we want to sync the file
3177 		 * so that we can make sure we allocate
3178 		 * blocks for file
3179 		 */
3180 		filemap_write_and_wait(mapping);
3181 	}
3182 
3183 	if (EXT4_JOURNAL(inode) &&
3184 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3185 		/*
3186 		 * This is a REALLY heavyweight approach, but the use of
3187 		 * bmap on dirty files is expected to be extremely rare:
3188 		 * only if we run lilo or swapon on a freshly made file
3189 		 * do we expect this to happen.
3190 		 *
3191 		 * (bmap requires CAP_SYS_RAWIO so this does not
3192 		 * represent an unprivileged user DOS attack --- we'd be
3193 		 * in trouble if mortal users could trigger this path at
3194 		 * will.)
3195 		 *
3196 		 * NB. EXT4_STATE_JDATA is not set on files other than
3197 		 * regular files.  If somebody wants to bmap a directory
3198 		 * or symlink and gets confused because the buffer
3199 		 * hasn't yet been flushed to disk, they deserve
3200 		 * everything they get.
3201 		 */
3202 
3203 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3204 		journal = EXT4_JOURNAL(inode);
3205 		jbd2_journal_lock_updates(journal);
3206 		err = jbd2_journal_flush(journal);
3207 		jbd2_journal_unlock_updates(journal);
3208 
3209 		if (err)
3210 			return 0;
3211 	}
3212 
3213 	return iomap_bmap(mapping, block, &ext4_iomap_ops);
3214 }
3215 
3216 static int ext4_readpage(struct file *file, struct page *page)
3217 {
3218 	int ret = -EAGAIN;
3219 	struct inode *inode = page->mapping->host;
3220 
3221 	trace_ext4_readpage(page);
3222 
3223 	if (ext4_has_inline_data(inode))
3224 		ret = ext4_readpage_inline(inode, page);
3225 
3226 	if (ret == -EAGAIN)
3227 		return ext4_mpage_readpages(inode, NULL, page);
3228 
3229 	return ret;
3230 }
3231 
3232 static void ext4_readahead(struct readahead_control *rac)
3233 {
3234 	struct inode *inode = rac->mapping->host;
3235 
3236 	/* If the file has inline data, no need to do readahead. */
3237 	if (ext4_has_inline_data(inode))
3238 		return;
3239 
3240 	ext4_mpage_readpages(inode, rac, NULL);
3241 }
3242 
3243 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3244 				unsigned int length)
3245 {
3246 	trace_ext4_invalidatepage(page, offset, length);
3247 
3248 	/* No journalling happens on data buffers when this function is used */
3249 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3250 
3251 	block_invalidatepage(page, offset, length);
3252 }
3253 
3254 static int __ext4_journalled_invalidatepage(struct page *page,
3255 					    unsigned int offset,
3256 					    unsigned int length)
3257 {
3258 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3259 
3260 	trace_ext4_journalled_invalidatepage(page, offset, length);
3261 
3262 	/*
3263 	 * If it's a full truncate we just forget about the pending dirtying
3264 	 */
3265 	if (offset == 0 && length == PAGE_SIZE)
3266 		ClearPageChecked(page);
3267 
3268 	return jbd2_journal_invalidatepage(journal, page, offset, length);
3269 }
3270 
3271 /* Wrapper for aops... */
3272 static void ext4_journalled_invalidatepage(struct page *page,
3273 					   unsigned int offset,
3274 					   unsigned int length)
3275 {
3276 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3277 }
3278 
3279 static int ext4_releasepage(struct page *page, gfp_t wait)
3280 {
3281 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3282 
3283 	trace_ext4_releasepage(page);
3284 
3285 	/* Page has dirty journalled data -> cannot release */
3286 	if (PageChecked(page))
3287 		return 0;
3288 	if (journal)
3289 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3290 	else
3291 		return try_to_free_buffers(page);
3292 }
3293 
3294 static bool ext4_inode_datasync_dirty(struct inode *inode)
3295 {
3296 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3297 
3298 	if (journal)
3299 		return !jbd2_transaction_committed(journal,
3300 					EXT4_I(inode)->i_datasync_tid);
3301 	/* Any metadata buffers to write? */
3302 	if (!list_empty(&inode->i_mapping->private_list))
3303 		return true;
3304 	return inode->i_state & I_DIRTY_DATASYNC;
3305 }
3306 
3307 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3308 			   struct ext4_map_blocks *map, loff_t offset,
3309 			   loff_t length)
3310 {
3311 	u8 blkbits = inode->i_blkbits;
3312 
3313 	/*
3314 	 * Writes that span EOF might trigger an I/O size update on completion,
3315 	 * so consider them to be dirty for the purpose of O_DSYNC, even if
3316 	 * there is no other metadata changes being made or are pending.
3317 	 */
3318 	iomap->flags = 0;
3319 	if (ext4_inode_datasync_dirty(inode) ||
3320 	    offset + length > i_size_read(inode))
3321 		iomap->flags |= IOMAP_F_DIRTY;
3322 
3323 	if (map->m_flags & EXT4_MAP_NEW)
3324 		iomap->flags |= IOMAP_F_NEW;
3325 
3326 	iomap->bdev = inode->i_sb->s_bdev;
3327 	iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3328 	iomap->offset = (u64) map->m_lblk << blkbits;
3329 	iomap->length = (u64) map->m_len << blkbits;
3330 
3331 	if ((map->m_flags & EXT4_MAP_MAPPED) &&
3332 	    !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3333 		iomap->flags |= IOMAP_F_MERGED;
3334 
3335 	/*
3336 	 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3337 	 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3338 	 * set. In order for any allocated unwritten extents to be converted
3339 	 * into written extents correctly within the ->end_io() handler, we
3340 	 * need to ensure that the iomap->type is set appropriately. Hence, the
3341 	 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3342 	 * been set first.
3343 	 */
3344 	if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3345 		iomap->type = IOMAP_UNWRITTEN;
3346 		iomap->addr = (u64) map->m_pblk << blkbits;
3347 	} else if (map->m_flags & EXT4_MAP_MAPPED) {
3348 		iomap->type = IOMAP_MAPPED;
3349 		iomap->addr = (u64) map->m_pblk << blkbits;
3350 	} else {
3351 		iomap->type = IOMAP_HOLE;
3352 		iomap->addr = IOMAP_NULL_ADDR;
3353 	}
3354 }
3355 
3356 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3357 			    unsigned int flags)
3358 {
3359 	handle_t *handle;
3360 	u8 blkbits = inode->i_blkbits;
3361 	int ret, dio_credits, m_flags = 0, retries = 0;
3362 
3363 	/*
3364 	 * Trim the mapping request to the maximum value that we can map at
3365 	 * once for direct I/O.
3366 	 */
3367 	if (map->m_len > DIO_MAX_BLOCKS)
3368 		map->m_len = DIO_MAX_BLOCKS;
3369 	dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3370 
3371 retry:
3372 	/*
3373 	 * Either we allocate blocks and then don't get an unwritten extent, so
3374 	 * in that case we have reserved enough credits. Or, the blocks are
3375 	 * already allocated and unwritten. In that case, the extent conversion
3376 	 * fits into the credits as well.
3377 	 */
3378 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3379 	if (IS_ERR(handle))
3380 		return PTR_ERR(handle);
3381 
3382 	/*
3383 	 * DAX and direct I/O are the only two operations that are currently
3384 	 * supported with IOMAP_WRITE.
3385 	 */
3386 	WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT));
3387 	if (IS_DAX(inode))
3388 		m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3389 	/*
3390 	 * We use i_size instead of i_disksize here because delalloc writeback
3391 	 * can complete at any point during the I/O and subsequently push the
3392 	 * i_disksize out to i_size. This could be beyond where direct I/O is
3393 	 * happening and thus expose allocated blocks to direct I/O reads.
3394 	 */
3395 	else if ((map->m_lblk * (1 << blkbits)) >= i_size_read(inode))
3396 		m_flags = EXT4_GET_BLOCKS_CREATE;
3397 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3398 		m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3399 
3400 	ret = ext4_map_blocks(handle, inode, map, m_flags);
3401 
3402 	/*
3403 	 * We cannot fill holes in indirect tree based inodes as that could
3404 	 * expose stale data in the case of a crash. Use the magic error code
3405 	 * to fallback to buffered I/O.
3406 	 */
3407 	if (!m_flags && !ret)
3408 		ret = -ENOTBLK;
3409 
3410 	ext4_journal_stop(handle);
3411 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3412 		goto retry;
3413 
3414 	return ret;
3415 }
3416 
3417 
3418 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3419 		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3420 {
3421 	int ret;
3422 	struct ext4_map_blocks map;
3423 	u8 blkbits = inode->i_blkbits;
3424 
3425 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3426 		return -EINVAL;
3427 
3428 	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3429 		return -ERANGE;
3430 
3431 	/*
3432 	 * Calculate the first and last logical blocks respectively.
3433 	 */
3434 	map.m_lblk = offset >> blkbits;
3435 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3436 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3437 
3438 	if (flags & IOMAP_WRITE)
3439 		ret = ext4_iomap_alloc(inode, &map, flags);
3440 	else
3441 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3442 
3443 	if (ret < 0)
3444 		return ret;
3445 
3446 	ext4_set_iomap(inode, iomap, &map, offset, length);
3447 
3448 	return 0;
3449 }
3450 
3451 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3452 		loff_t length, unsigned flags, struct iomap *iomap,
3453 		struct iomap *srcmap)
3454 {
3455 	int ret;
3456 
3457 	/*
3458 	 * Even for writes we don't need to allocate blocks, so just pretend
3459 	 * we are reading to save overhead of starting a transaction.
3460 	 */
3461 	flags &= ~IOMAP_WRITE;
3462 	ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3463 	WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3464 	return ret;
3465 }
3466 
3467 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3468 			  ssize_t written, unsigned flags, struct iomap *iomap)
3469 {
3470 	/*
3471 	 * Check to see whether an error occurred while writing out the data to
3472 	 * the allocated blocks. If so, return the magic error code so that we
3473 	 * fallback to buffered I/O and attempt to complete the remainder of
3474 	 * the I/O. Any blocks that may have been allocated in preparation for
3475 	 * the direct I/O will be reused during buffered I/O.
3476 	 */
3477 	if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3478 		return -ENOTBLK;
3479 
3480 	return 0;
3481 }
3482 
3483 const struct iomap_ops ext4_iomap_ops = {
3484 	.iomap_begin		= ext4_iomap_begin,
3485 	.iomap_end		= ext4_iomap_end,
3486 };
3487 
3488 const struct iomap_ops ext4_iomap_overwrite_ops = {
3489 	.iomap_begin		= ext4_iomap_overwrite_begin,
3490 	.iomap_end		= ext4_iomap_end,
3491 };
3492 
3493 static bool ext4_iomap_is_delalloc(struct inode *inode,
3494 				   struct ext4_map_blocks *map)
3495 {
3496 	struct extent_status es;
3497 	ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3498 
3499 	ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3500 				  map->m_lblk, end, &es);
3501 
3502 	if (!es.es_len || es.es_lblk > end)
3503 		return false;
3504 
3505 	if (es.es_lblk > map->m_lblk) {
3506 		map->m_len = es.es_lblk - map->m_lblk;
3507 		return false;
3508 	}
3509 
3510 	offset = map->m_lblk - es.es_lblk;
3511 	map->m_len = es.es_len - offset;
3512 
3513 	return true;
3514 }
3515 
3516 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3517 				   loff_t length, unsigned int flags,
3518 				   struct iomap *iomap, struct iomap *srcmap)
3519 {
3520 	int ret;
3521 	bool delalloc = false;
3522 	struct ext4_map_blocks map;
3523 	u8 blkbits = inode->i_blkbits;
3524 
3525 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3526 		return -EINVAL;
3527 
3528 	if (ext4_has_inline_data(inode)) {
3529 		ret = ext4_inline_data_iomap(inode, iomap);
3530 		if (ret != -EAGAIN) {
3531 			if (ret == 0 && offset >= iomap->length)
3532 				ret = -ENOENT;
3533 			return ret;
3534 		}
3535 	}
3536 
3537 	/*
3538 	 * Calculate the first and last logical block respectively.
3539 	 */
3540 	map.m_lblk = offset >> blkbits;
3541 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3542 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3543 
3544 	/*
3545 	 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3546 	 * So handle it here itself instead of querying ext4_map_blocks().
3547 	 * Since ext4_map_blocks() will warn about it and will return
3548 	 * -EIO error.
3549 	 */
3550 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3551 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3552 
3553 		if (offset >= sbi->s_bitmap_maxbytes) {
3554 			map.m_flags = 0;
3555 			goto set_iomap;
3556 		}
3557 	}
3558 
3559 	ret = ext4_map_blocks(NULL, inode, &map, 0);
3560 	if (ret < 0)
3561 		return ret;
3562 	if (ret == 0)
3563 		delalloc = ext4_iomap_is_delalloc(inode, &map);
3564 
3565 set_iomap:
3566 	ext4_set_iomap(inode, iomap, &map, offset, length);
3567 	if (delalloc && iomap->type == IOMAP_HOLE)
3568 		iomap->type = IOMAP_DELALLOC;
3569 
3570 	return 0;
3571 }
3572 
3573 const struct iomap_ops ext4_iomap_report_ops = {
3574 	.iomap_begin = ext4_iomap_begin_report,
3575 };
3576 
3577 /*
3578  * Pages can be marked dirty completely asynchronously from ext4's journalling
3579  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3580  * much here because ->set_page_dirty is called under VFS locks.  The page is
3581  * not necessarily locked.
3582  *
3583  * We cannot just dirty the page and leave attached buffers clean, because the
3584  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3585  * or jbddirty because all the journalling code will explode.
3586  *
3587  * So what we do is to mark the page "pending dirty" and next time writepage
3588  * is called, propagate that into the buffers appropriately.
3589  */
3590 static int ext4_journalled_set_page_dirty(struct page *page)
3591 {
3592 	SetPageChecked(page);
3593 	return __set_page_dirty_nobuffers(page);
3594 }
3595 
3596 static int ext4_set_page_dirty(struct page *page)
3597 {
3598 	WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3599 	WARN_ON_ONCE(!page_has_buffers(page));
3600 	return __set_page_dirty_buffers(page);
3601 }
3602 
3603 static const struct address_space_operations ext4_aops = {
3604 	.readpage		= ext4_readpage,
3605 	.readahead		= ext4_readahead,
3606 	.writepage		= ext4_writepage,
3607 	.writepages		= ext4_writepages,
3608 	.write_begin		= ext4_write_begin,
3609 	.write_end		= ext4_write_end,
3610 	.set_page_dirty		= ext4_set_page_dirty,
3611 	.bmap			= ext4_bmap,
3612 	.invalidatepage		= ext4_invalidatepage,
3613 	.releasepage		= ext4_releasepage,
3614 	.direct_IO		= noop_direct_IO,
3615 	.migratepage		= buffer_migrate_page,
3616 	.is_partially_uptodate  = block_is_partially_uptodate,
3617 	.error_remove_page	= generic_error_remove_page,
3618 };
3619 
3620 static const struct address_space_operations ext4_journalled_aops = {
3621 	.readpage		= ext4_readpage,
3622 	.readahead		= ext4_readahead,
3623 	.writepage		= ext4_writepage,
3624 	.writepages		= ext4_writepages,
3625 	.write_begin		= ext4_write_begin,
3626 	.write_end		= ext4_journalled_write_end,
3627 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3628 	.bmap			= ext4_bmap,
3629 	.invalidatepage		= ext4_journalled_invalidatepage,
3630 	.releasepage		= ext4_releasepage,
3631 	.direct_IO		= noop_direct_IO,
3632 	.is_partially_uptodate  = block_is_partially_uptodate,
3633 	.error_remove_page	= generic_error_remove_page,
3634 };
3635 
3636 static const struct address_space_operations ext4_da_aops = {
3637 	.readpage		= ext4_readpage,
3638 	.readahead		= ext4_readahead,
3639 	.writepage		= ext4_writepage,
3640 	.writepages		= ext4_writepages,
3641 	.write_begin		= ext4_da_write_begin,
3642 	.write_end		= ext4_da_write_end,
3643 	.set_page_dirty		= ext4_set_page_dirty,
3644 	.bmap			= ext4_bmap,
3645 	.invalidatepage		= ext4_invalidatepage,
3646 	.releasepage		= ext4_releasepage,
3647 	.direct_IO		= noop_direct_IO,
3648 	.migratepage		= buffer_migrate_page,
3649 	.is_partially_uptodate  = block_is_partially_uptodate,
3650 	.error_remove_page	= generic_error_remove_page,
3651 };
3652 
3653 static const struct address_space_operations ext4_dax_aops = {
3654 	.writepages		= ext4_dax_writepages,
3655 	.direct_IO		= noop_direct_IO,
3656 	.set_page_dirty		= noop_set_page_dirty,
3657 	.bmap			= ext4_bmap,
3658 	.invalidatepage		= noop_invalidatepage,
3659 };
3660 
3661 void ext4_set_aops(struct inode *inode)
3662 {
3663 	switch (ext4_inode_journal_mode(inode)) {
3664 	case EXT4_INODE_ORDERED_DATA_MODE:
3665 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3666 		break;
3667 	case EXT4_INODE_JOURNAL_DATA_MODE:
3668 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3669 		return;
3670 	default:
3671 		BUG();
3672 	}
3673 	if (IS_DAX(inode))
3674 		inode->i_mapping->a_ops = &ext4_dax_aops;
3675 	else if (test_opt(inode->i_sb, DELALLOC))
3676 		inode->i_mapping->a_ops = &ext4_da_aops;
3677 	else
3678 		inode->i_mapping->a_ops = &ext4_aops;
3679 }
3680 
3681 static int __ext4_block_zero_page_range(handle_t *handle,
3682 		struct address_space *mapping, loff_t from, loff_t length)
3683 {
3684 	ext4_fsblk_t index = from >> PAGE_SHIFT;
3685 	unsigned offset = from & (PAGE_SIZE-1);
3686 	unsigned blocksize, pos;
3687 	ext4_lblk_t iblock;
3688 	struct inode *inode = mapping->host;
3689 	struct buffer_head *bh;
3690 	struct page *page;
3691 	int err = 0;
3692 
3693 	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3694 				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3695 	if (!page)
3696 		return -ENOMEM;
3697 
3698 	blocksize = inode->i_sb->s_blocksize;
3699 
3700 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3701 
3702 	if (!page_has_buffers(page))
3703 		create_empty_buffers(page, blocksize, 0);
3704 
3705 	/* Find the buffer that contains "offset" */
3706 	bh = page_buffers(page);
3707 	pos = blocksize;
3708 	while (offset >= pos) {
3709 		bh = bh->b_this_page;
3710 		iblock++;
3711 		pos += blocksize;
3712 	}
3713 	if (buffer_freed(bh)) {
3714 		BUFFER_TRACE(bh, "freed: skip");
3715 		goto unlock;
3716 	}
3717 	if (!buffer_mapped(bh)) {
3718 		BUFFER_TRACE(bh, "unmapped");
3719 		ext4_get_block(inode, iblock, bh, 0);
3720 		/* unmapped? It's a hole - nothing to do */
3721 		if (!buffer_mapped(bh)) {
3722 			BUFFER_TRACE(bh, "still unmapped");
3723 			goto unlock;
3724 		}
3725 	}
3726 
3727 	/* Ok, it's mapped. Make sure it's up-to-date */
3728 	if (PageUptodate(page))
3729 		set_buffer_uptodate(bh);
3730 
3731 	if (!buffer_uptodate(bh)) {
3732 		err = -EIO;
3733 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3734 		wait_on_buffer(bh);
3735 		/* Uhhuh. Read error. Complain and punt. */
3736 		if (!buffer_uptodate(bh))
3737 			goto unlock;
3738 		if (S_ISREG(inode->i_mode) && IS_ENCRYPTED(inode)) {
3739 			/* We expect the key to be set. */
3740 			BUG_ON(!fscrypt_has_encryption_key(inode));
3741 			err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3742 							       bh_offset(bh));
3743 			if (err) {
3744 				clear_buffer_uptodate(bh);
3745 				goto unlock;
3746 			}
3747 		}
3748 	}
3749 	if (ext4_should_journal_data(inode)) {
3750 		BUFFER_TRACE(bh, "get write access");
3751 		err = ext4_journal_get_write_access(handle, bh);
3752 		if (err)
3753 			goto unlock;
3754 	}
3755 	zero_user(page, offset, length);
3756 	BUFFER_TRACE(bh, "zeroed end of block");
3757 
3758 	if (ext4_should_journal_data(inode)) {
3759 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3760 	} else {
3761 		err = 0;
3762 		mark_buffer_dirty(bh);
3763 		if (ext4_should_order_data(inode))
3764 			err = ext4_jbd2_inode_add_write(handle, inode, from,
3765 					length);
3766 	}
3767 
3768 unlock:
3769 	unlock_page(page);
3770 	put_page(page);
3771 	return err;
3772 }
3773 
3774 /*
3775  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3776  * starting from file offset 'from'.  The range to be zero'd must
3777  * be contained with in one block.  If the specified range exceeds
3778  * the end of the block it will be shortened to end of the block
3779  * that cooresponds to 'from'
3780  */
3781 static int ext4_block_zero_page_range(handle_t *handle,
3782 		struct address_space *mapping, loff_t from, loff_t length)
3783 {
3784 	struct inode *inode = mapping->host;
3785 	unsigned offset = from & (PAGE_SIZE-1);
3786 	unsigned blocksize = inode->i_sb->s_blocksize;
3787 	unsigned max = blocksize - (offset & (blocksize - 1));
3788 
3789 	/*
3790 	 * correct length if it does not fall between
3791 	 * 'from' and the end of the block
3792 	 */
3793 	if (length > max || length < 0)
3794 		length = max;
3795 
3796 	if (IS_DAX(inode)) {
3797 		return iomap_zero_range(inode, from, length, NULL,
3798 					&ext4_iomap_ops);
3799 	}
3800 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3801 }
3802 
3803 /*
3804  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3805  * up to the end of the block which corresponds to `from'.
3806  * This required during truncate. We need to physically zero the tail end
3807  * of that block so it doesn't yield old data if the file is later grown.
3808  */
3809 static int ext4_block_truncate_page(handle_t *handle,
3810 		struct address_space *mapping, loff_t from)
3811 {
3812 	unsigned offset = from & (PAGE_SIZE-1);
3813 	unsigned length;
3814 	unsigned blocksize;
3815 	struct inode *inode = mapping->host;
3816 
3817 	/* If we are processing an encrypted inode during orphan list handling */
3818 	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3819 		return 0;
3820 
3821 	blocksize = inode->i_sb->s_blocksize;
3822 	length = blocksize - (offset & (blocksize - 1));
3823 
3824 	return ext4_block_zero_page_range(handle, mapping, from, length);
3825 }
3826 
3827 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3828 			     loff_t lstart, loff_t length)
3829 {
3830 	struct super_block *sb = inode->i_sb;
3831 	struct address_space *mapping = inode->i_mapping;
3832 	unsigned partial_start, partial_end;
3833 	ext4_fsblk_t start, end;
3834 	loff_t byte_end = (lstart + length - 1);
3835 	int err = 0;
3836 
3837 	partial_start = lstart & (sb->s_blocksize - 1);
3838 	partial_end = byte_end & (sb->s_blocksize - 1);
3839 
3840 	start = lstart >> sb->s_blocksize_bits;
3841 	end = byte_end >> sb->s_blocksize_bits;
3842 
3843 	/* Handle partial zero within the single block */
3844 	if (start == end &&
3845 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3846 		err = ext4_block_zero_page_range(handle, mapping,
3847 						 lstart, length);
3848 		return err;
3849 	}
3850 	/* Handle partial zero out on the start of the range */
3851 	if (partial_start) {
3852 		err = ext4_block_zero_page_range(handle, mapping,
3853 						 lstart, sb->s_blocksize);
3854 		if (err)
3855 			return err;
3856 	}
3857 	/* Handle partial zero out on the end of the range */
3858 	if (partial_end != sb->s_blocksize - 1)
3859 		err = ext4_block_zero_page_range(handle, mapping,
3860 						 byte_end - partial_end,
3861 						 partial_end + 1);
3862 	return err;
3863 }
3864 
3865 int ext4_can_truncate(struct inode *inode)
3866 {
3867 	if (S_ISREG(inode->i_mode))
3868 		return 1;
3869 	if (S_ISDIR(inode->i_mode))
3870 		return 1;
3871 	if (S_ISLNK(inode->i_mode))
3872 		return !ext4_inode_is_fast_symlink(inode);
3873 	return 0;
3874 }
3875 
3876 /*
3877  * We have to make sure i_disksize gets properly updated before we truncate
3878  * page cache due to hole punching or zero range. Otherwise i_disksize update
3879  * can get lost as it may have been postponed to submission of writeback but
3880  * that will never happen after we truncate page cache.
3881  */
3882 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3883 				      loff_t len)
3884 {
3885 	handle_t *handle;
3886 	loff_t size = i_size_read(inode);
3887 
3888 	WARN_ON(!inode_is_locked(inode));
3889 	if (offset > size || offset + len < size)
3890 		return 0;
3891 
3892 	if (EXT4_I(inode)->i_disksize >= size)
3893 		return 0;
3894 
3895 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3896 	if (IS_ERR(handle))
3897 		return PTR_ERR(handle);
3898 	ext4_update_i_disksize(inode, size);
3899 	ext4_mark_inode_dirty(handle, inode);
3900 	ext4_journal_stop(handle);
3901 
3902 	return 0;
3903 }
3904 
3905 static void ext4_wait_dax_page(struct ext4_inode_info *ei)
3906 {
3907 	up_write(&ei->i_mmap_sem);
3908 	schedule();
3909 	down_write(&ei->i_mmap_sem);
3910 }
3911 
3912 int ext4_break_layouts(struct inode *inode)
3913 {
3914 	struct ext4_inode_info *ei = EXT4_I(inode);
3915 	struct page *page;
3916 	int error;
3917 
3918 	if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
3919 		return -EINVAL;
3920 
3921 	do {
3922 		page = dax_layout_busy_page(inode->i_mapping);
3923 		if (!page)
3924 			return 0;
3925 
3926 		error = ___wait_var_event(&page->_refcount,
3927 				atomic_read(&page->_refcount) == 1,
3928 				TASK_INTERRUPTIBLE, 0, 0,
3929 				ext4_wait_dax_page(ei));
3930 	} while (error == 0);
3931 
3932 	return error;
3933 }
3934 
3935 /*
3936  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3937  * associated with the given offset and length
3938  *
3939  * @inode:  File inode
3940  * @offset: The offset where the hole will begin
3941  * @len:    The length of the hole
3942  *
3943  * Returns: 0 on success or negative on failure
3944  */
3945 
3946 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3947 {
3948 	struct super_block *sb = inode->i_sb;
3949 	ext4_lblk_t first_block, stop_block;
3950 	struct address_space *mapping = inode->i_mapping;
3951 	loff_t first_block_offset, last_block_offset;
3952 	handle_t *handle;
3953 	unsigned int credits;
3954 	int ret = 0;
3955 
3956 	trace_ext4_punch_hole(inode, offset, length, 0);
3957 
3958 	ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
3959 	if (ext4_has_inline_data(inode)) {
3960 		down_write(&EXT4_I(inode)->i_mmap_sem);
3961 		ret = ext4_convert_inline_data(inode);
3962 		up_write(&EXT4_I(inode)->i_mmap_sem);
3963 		if (ret)
3964 			return ret;
3965 	}
3966 
3967 	/*
3968 	 * Write out all dirty pages to avoid race conditions
3969 	 * Then release them.
3970 	 */
3971 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3972 		ret = filemap_write_and_wait_range(mapping, offset,
3973 						   offset + length - 1);
3974 		if (ret)
3975 			return ret;
3976 	}
3977 
3978 	inode_lock(inode);
3979 
3980 	/* No need to punch hole beyond i_size */
3981 	if (offset >= inode->i_size)
3982 		goto out_mutex;
3983 
3984 	/*
3985 	 * If the hole extends beyond i_size, set the hole
3986 	 * to end after the page that contains i_size
3987 	 */
3988 	if (offset + length > inode->i_size) {
3989 		length = inode->i_size +
3990 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3991 		   offset;
3992 	}
3993 
3994 	if (offset & (sb->s_blocksize - 1) ||
3995 	    (offset + length) & (sb->s_blocksize - 1)) {
3996 		/*
3997 		 * Attach jinode to inode for jbd2 if we do any zeroing of
3998 		 * partial block
3999 		 */
4000 		ret = ext4_inode_attach_jinode(inode);
4001 		if (ret < 0)
4002 			goto out_mutex;
4003 
4004 	}
4005 
4006 	/* Wait all existing dio workers, newcomers will block on i_mutex */
4007 	inode_dio_wait(inode);
4008 
4009 	/*
4010 	 * Prevent page faults from reinstantiating pages we have released from
4011 	 * page cache.
4012 	 */
4013 	down_write(&EXT4_I(inode)->i_mmap_sem);
4014 
4015 	ret = ext4_break_layouts(inode);
4016 	if (ret)
4017 		goto out_dio;
4018 
4019 	first_block_offset = round_up(offset, sb->s_blocksize);
4020 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4021 
4022 	/* Now release the pages and zero block aligned part of pages*/
4023 	if (last_block_offset > first_block_offset) {
4024 		ret = ext4_update_disksize_before_punch(inode, offset, length);
4025 		if (ret)
4026 			goto out_dio;
4027 		truncate_pagecache_range(inode, first_block_offset,
4028 					 last_block_offset);
4029 	}
4030 
4031 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4032 		credits = ext4_writepage_trans_blocks(inode);
4033 	else
4034 		credits = ext4_blocks_for_truncate(inode);
4035 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4036 	if (IS_ERR(handle)) {
4037 		ret = PTR_ERR(handle);
4038 		ext4_std_error(sb, ret);
4039 		goto out_dio;
4040 	}
4041 
4042 	ret = ext4_zero_partial_blocks(handle, inode, offset,
4043 				       length);
4044 	if (ret)
4045 		goto out_stop;
4046 
4047 	first_block = (offset + sb->s_blocksize - 1) >>
4048 		EXT4_BLOCK_SIZE_BITS(sb);
4049 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4050 
4051 	/* If there are blocks to remove, do it */
4052 	if (stop_block > first_block) {
4053 
4054 		down_write(&EXT4_I(inode)->i_data_sem);
4055 		ext4_discard_preallocations(inode);
4056 
4057 		ret = ext4_es_remove_extent(inode, first_block,
4058 					    stop_block - first_block);
4059 		if (ret) {
4060 			up_write(&EXT4_I(inode)->i_data_sem);
4061 			goto out_stop;
4062 		}
4063 
4064 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4065 			ret = ext4_ext_remove_space(inode, first_block,
4066 						    stop_block - 1);
4067 		else
4068 			ret = ext4_ind_remove_space(handle, inode, first_block,
4069 						    stop_block);
4070 
4071 		up_write(&EXT4_I(inode)->i_data_sem);
4072 	}
4073 	if (IS_SYNC(inode))
4074 		ext4_handle_sync(handle);
4075 
4076 	inode->i_mtime = inode->i_ctime = current_time(inode);
4077 	ext4_mark_inode_dirty(handle, inode);
4078 	if (ret >= 0)
4079 		ext4_update_inode_fsync_trans(handle, inode, 1);
4080 out_stop:
4081 	ext4_journal_stop(handle);
4082 out_dio:
4083 	up_write(&EXT4_I(inode)->i_mmap_sem);
4084 out_mutex:
4085 	inode_unlock(inode);
4086 	return ret;
4087 }
4088 
4089 int ext4_inode_attach_jinode(struct inode *inode)
4090 {
4091 	struct ext4_inode_info *ei = EXT4_I(inode);
4092 	struct jbd2_inode *jinode;
4093 
4094 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4095 		return 0;
4096 
4097 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4098 	spin_lock(&inode->i_lock);
4099 	if (!ei->jinode) {
4100 		if (!jinode) {
4101 			spin_unlock(&inode->i_lock);
4102 			return -ENOMEM;
4103 		}
4104 		ei->jinode = jinode;
4105 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4106 		jinode = NULL;
4107 	}
4108 	spin_unlock(&inode->i_lock);
4109 	if (unlikely(jinode != NULL))
4110 		jbd2_free_inode(jinode);
4111 	return 0;
4112 }
4113 
4114 /*
4115  * ext4_truncate()
4116  *
4117  * We block out ext4_get_block() block instantiations across the entire
4118  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4119  * simultaneously on behalf of the same inode.
4120  *
4121  * As we work through the truncate and commit bits of it to the journal there
4122  * is one core, guiding principle: the file's tree must always be consistent on
4123  * disk.  We must be able to restart the truncate after a crash.
4124  *
4125  * The file's tree may be transiently inconsistent in memory (although it
4126  * probably isn't), but whenever we close off and commit a journal transaction,
4127  * the contents of (the filesystem + the journal) must be consistent and
4128  * restartable.  It's pretty simple, really: bottom up, right to left (although
4129  * left-to-right works OK too).
4130  *
4131  * Note that at recovery time, journal replay occurs *before* the restart of
4132  * truncate against the orphan inode list.
4133  *
4134  * The committed inode has the new, desired i_size (which is the same as
4135  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4136  * that this inode's truncate did not complete and it will again call
4137  * ext4_truncate() to have another go.  So there will be instantiated blocks
4138  * to the right of the truncation point in a crashed ext4 filesystem.  But
4139  * that's fine - as long as they are linked from the inode, the post-crash
4140  * ext4_truncate() run will find them and release them.
4141  */
4142 int ext4_truncate(struct inode *inode)
4143 {
4144 	struct ext4_inode_info *ei = EXT4_I(inode);
4145 	unsigned int credits;
4146 	int err = 0;
4147 	handle_t *handle;
4148 	struct address_space *mapping = inode->i_mapping;
4149 
4150 	/*
4151 	 * There is a possibility that we're either freeing the inode
4152 	 * or it's a completely new inode. In those cases we might not
4153 	 * have i_mutex locked because it's not necessary.
4154 	 */
4155 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4156 		WARN_ON(!inode_is_locked(inode));
4157 	trace_ext4_truncate_enter(inode);
4158 
4159 	if (!ext4_can_truncate(inode))
4160 		return 0;
4161 
4162 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4163 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4164 
4165 	if (ext4_has_inline_data(inode)) {
4166 		int has_inline = 1;
4167 
4168 		err = ext4_inline_data_truncate(inode, &has_inline);
4169 		if (err)
4170 			return err;
4171 		if (has_inline)
4172 			return 0;
4173 	}
4174 
4175 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4176 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4177 		if (ext4_inode_attach_jinode(inode) < 0)
4178 			return 0;
4179 	}
4180 
4181 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4182 		credits = ext4_writepage_trans_blocks(inode);
4183 	else
4184 		credits = ext4_blocks_for_truncate(inode);
4185 
4186 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4187 	if (IS_ERR(handle))
4188 		return PTR_ERR(handle);
4189 
4190 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4191 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4192 
4193 	/*
4194 	 * We add the inode to the orphan list, so that if this
4195 	 * truncate spans multiple transactions, and we crash, we will
4196 	 * resume the truncate when the filesystem recovers.  It also
4197 	 * marks the inode dirty, to catch the new size.
4198 	 *
4199 	 * Implication: the file must always be in a sane, consistent
4200 	 * truncatable state while each transaction commits.
4201 	 */
4202 	err = ext4_orphan_add(handle, inode);
4203 	if (err)
4204 		goto out_stop;
4205 
4206 	down_write(&EXT4_I(inode)->i_data_sem);
4207 
4208 	ext4_discard_preallocations(inode);
4209 
4210 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4211 		err = ext4_ext_truncate(handle, inode);
4212 	else
4213 		ext4_ind_truncate(handle, inode);
4214 
4215 	up_write(&ei->i_data_sem);
4216 	if (err)
4217 		goto out_stop;
4218 
4219 	if (IS_SYNC(inode))
4220 		ext4_handle_sync(handle);
4221 
4222 out_stop:
4223 	/*
4224 	 * If this was a simple ftruncate() and the file will remain alive,
4225 	 * then we need to clear up the orphan record which we created above.
4226 	 * However, if this was a real unlink then we were called by
4227 	 * ext4_evict_inode(), and we allow that function to clean up the
4228 	 * orphan info for us.
4229 	 */
4230 	if (inode->i_nlink)
4231 		ext4_orphan_del(handle, inode);
4232 
4233 	inode->i_mtime = inode->i_ctime = current_time(inode);
4234 	ext4_mark_inode_dirty(handle, inode);
4235 	ext4_journal_stop(handle);
4236 
4237 	trace_ext4_truncate_exit(inode);
4238 	return err;
4239 }
4240 
4241 /*
4242  * ext4_get_inode_loc returns with an extra refcount against the inode's
4243  * underlying buffer_head on success. If 'in_mem' is true, we have all
4244  * data in memory that is needed to recreate the on-disk version of this
4245  * inode.
4246  */
4247 static int __ext4_get_inode_loc(struct inode *inode,
4248 				struct ext4_iloc *iloc, int in_mem)
4249 {
4250 	struct ext4_group_desc	*gdp;
4251 	struct buffer_head	*bh;
4252 	struct super_block	*sb = inode->i_sb;
4253 	ext4_fsblk_t		block;
4254 	struct blk_plug		plug;
4255 	int			inodes_per_block, inode_offset;
4256 
4257 	iloc->bh = NULL;
4258 	if (inode->i_ino < EXT4_ROOT_INO ||
4259 	    inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4260 		return -EFSCORRUPTED;
4261 
4262 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4263 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4264 	if (!gdp)
4265 		return -EIO;
4266 
4267 	/*
4268 	 * Figure out the offset within the block group inode table
4269 	 */
4270 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4271 	inode_offset = ((inode->i_ino - 1) %
4272 			EXT4_INODES_PER_GROUP(sb));
4273 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4274 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4275 
4276 	bh = sb_getblk(sb, block);
4277 	if (unlikely(!bh))
4278 		return -ENOMEM;
4279 	if (ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO))
4280 		goto simulate_eio;
4281 	if (!buffer_uptodate(bh)) {
4282 		lock_buffer(bh);
4283 
4284 		/*
4285 		 * If the buffer has the write error flag, we have failed
4286 		 * to write out another inode in the same block.  In this
4287 		 * case, we don't have to read the block because we may
4288 		 * read the old inode data successfully.
4289 		 */
4290 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4291 			set_buffer_uptodate(bh);
4292 
4293 		if (buffer_uptodate(bh)) {
4294 			/* someone brought it uptodate while we waited */
4295 			unlock_buffer(bh);
4296 			goto has_buffer;
4297 		}
4298 
4299 		/*
4300 		 * If we have all information of the inode in memory and this
4301 		 * is the only valid inode in the block, we need not read the
4302 		 * block.
4303 		 */
4304 		if (in_mem) {
4305 			struct buffer_head *bitmap_bh;
4306 			int i, start;
4307 
4308 			start = inode_offset & ~(inodes_per_block - 1);
4309 
4310 			/* Is the inode bitmap in cache? */
4311 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4312 			if (unlikely(!bitmap_bh))
4313 				goto make_io;
4314 
4315 			/*
4316 			 * If the inode bitmap isn't in cache then the
4317 			 * optimisation may end up performing two reads instead
4318 			 * of one, so skip it.
4319 			 */
4320 			if (!buffer_uptodate(bitmap_bh)) {
4321 				brelse(bitmap_bh);
4322 				goto make_io;
4323 			}
4324 			for (i = start; i < start + inodes_per_block; i++) {
4325 				if (i == inode_offset)
4326 					continue;
4327 				if (ext4_test_bit(i, bitmap_bh->b_data))
4328 					break;
4329 			}
4330 			brelse(bitmap_bh);
4331 			if (i == start + inodes_per_block) {
4332 				/* all other inodes are free, so skip I/O */
4333 				memset(bh->b_data, 0, bh->b_size);
4334 				set_buffer_uptodate(bh);
4335 				unlock_buffer(bh);
4336 				goto has_buffer;
4337 			}
4338 		}
4339 
4340 make_io:
4341 		/*
4342 		 * If we need to do any I/O, try to pre-readahead extra
4343 		 * blocks from the inode table.
4344 		 */
4345 		blk_start_plug(&plug);
4346 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4347 			ext4_fsblk_t b, end, table;
4348 			unsigned num;
4349 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4350 
4351 			table = ext4_inode_table(sb, gdp);
4352 			/* s_inode_readahead_blks is always a power of 2 */
4353 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4354 			if (table > b)
4355 				b = table;
4356 			end = b + ra_blks;
4357 			num = EXT4_INODES_PER_GROUP(sb);
4358 			if (ext4_has_group_desc_csum(sb))
4359 				num -= ext4_itable_unused_count(sb, gdp);
4360 			table += num / inodes_per_block;
4361 			if (end > table)
4362 				end = table;
4363 			while (b <= end)
4364 				sb_breadahead_unmovable(sb, b++);
4365 		}
4366 
4367 		/*
4368 		 * There are other valid inodes in the buffer, this inode
4369 		 * has in-inode xattrs, or we don't have this inode in memory.
4370 		 * Read the block from disk.
4371 		 */
4372 		trace_ext4_load_inode(inode);
4373 		get_bh(bh);
4374 		bh->b_end_io = end_buffer_read_sync;
4375 		submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4376 		blk_finish_plug(&plug);
4377 		wait_on_buffer(bh);
4378 		if (!buffer_uptodate(bh)) {
4379 		simulate_eio:
4380 			ext4_error_inode_block(inode, block, EIO,
4381 					       "unable to read itable block");
4382 			brelse(bh);
4383 			return -EIO;
4384 		}
4385 	}
4386 has_buffer:
4387 	iloc->bh = bh;
4388 	return 0;
4389 }
4390 
4391 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4392 {
4393 	/* We have all inode data except xattrs in memory here. */
4394 	return __ext4_get_inode_loc(inode, iloc,
4395 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4396 }
4397 
4398 static bool ext4_should_use_dax(struct inode *inode)
4399 {
4400 	if (!test_opt(inode->i_sb, DAX))
4401 		return false;
4402 	if (!S_ISREG(inode->i_mode))
4403 		return false;
4404 	if (ext4_should_journal_data(inode))
4405 		return false;
4406 	if (ext4_has_inline_data(inode))
4407 		return false;
4408 	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4409 		return false;
4410 	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4411 		return false;
4412 	return true;
4413 }
4414 
4415 void ext4_set_inode_flags(struct inode *inode)
4416 {
4417 	unsigned int flags = EXT4_I(inode)->i_flags;
4418 	unsigned int new_fl = 0;
4419 
4420 	if (flags & EXT4_SYNC_FL)
4421 		new_fl |= S_SYNC;
4422 	if (flags & EXT4_APPEND_FL)
4423 		new_fl |= S_APPEND;
4424 	if (flags & EXT4_IMMUTABLE_FL)
4425 		new_fl |= S_IMMUTABLE;
4426 	if (flags & EXT4_NOATIME_FL)
4427 		new_fl |= S_NOATIME;
4428 	if (flags & EXT4_DIRSYNC_FL)
4429 		new_fl |= S_DIRSYNC;
4430 	if (ext4_should_use_dax(inode))
4431 		new_fl |= S_DAX;
4432 	if (flags & EXT4_ENCRYPT_FL)
4433 		new_fl |= S_ENCRYPTED;
4434 	if (flags & EXT4_CASEFOLD_FL)
4435 		new_fl |= S_CASEFOLD;
4436 	if (flags & EXT4_VERITY_FL)
4437 		new_fl |= S_VERITY;
4438 	inode_set_flags(inode, new_fl,
4439 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4440 			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4441 }
4442 
4443 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4444 				  struct ext4_inode_info *ei)
4445 {
4446 	blkcnt_t i_blocks ;
4447 	struct inode *inode = &(ei->vfs_inode);
4448 	struct super_block *sb = inode->i_sb;
4449 
4450 	if (ext4_has_feature_huge_file(sb)) {
4451 		/* we are using combined 48 bit field */
4452 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4453 					le32_to_cpu(raw_inode->i_blocks_lo);
4454 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4455 			/* i_blocks represent file system block size */
4456 			return i_blocks  << (inode->i_blkbits - 9);
4457 		} else {
4458 			return i_blocks;
4459 		}
4460 	} else {
4461 		return le32_to_cpu(raw_inode->i_blocks_lo);
4462 	}
4463 }
4464 
4465 static inline int ext4_iget_extra_inode(struct inode *inode,
4466 					 struct ext4_inode *raw_inode,
4467 					 struct ext4_inode_info *ei)
4468 {
4469 	__le32 *magic = (void *)raw_inode +
4470 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4471 
4472 	if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4473 	    EXT4_INODE_SIZE(inode->i_sb) &&
4474 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4475 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4476 		return ext4_find_inline_data_nolock(inode);
4477 	} else
4478 		EXT4_I(inode)->i_inline_off = 0;
4479 	return 0;
4480 }
4481 
4482 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4483 {
4484 	if (!ext4_has_feature_project(inode->i_sb))
4485 		return -EOPNOTSUPP;
4486 	*projid = EXT4_I(inode)->i_projid;
4487 	return 0;
4488 }
4489 
4490 /*
4491  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4492  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4493  * set.
4494  */
4495 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4496 {
4497 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4498 		inode_set_iversion_raw(inode, val);
4499 	else
4500 		inode_set_iversion_queried(inode, val);
4501 }
4502 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4503 {
4504 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4505 		return inode_peek_iversion_raw(inode);
4506 	else
4507 		return inode_peek_iversion(inode);
4508 }
4509 
4510 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4511 			  ext4_iget_flags flags, const char *function,
4512 			  unsigned int line)
4513 {
4514 	struct ext4_iloc iloc;
4515 	struct ext4_inode *raw_inode;
4516 	struct ext4_inode_info *ei;
4517 	struct inode *inode;
4518 	journal_t *journal = EXT4_SB(sb)->s_journal;
4519 	long ret;
4520 	loff_t size;
4521 	int block;
4522 	uid_t i_uid;
4523 	gid_t i_gid;
4524 	projid_t i_projid;
4525 
4526 	if ((!(flags & EXT4_IGET_SPECIAL) &&
4527 	     (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4528 	    (ino < EXT4_ROOT_INO) ||
4529 	    (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4530 		if (flags & EXT4_IGET_HANDLE)
4531 			return ERR_PTR(-ESTALE);
4532 		__ext4_error(sb, function, line, EFSCORRUPTED, 0,
4533 			     "inode #%lu: comm %s: iget: illegal inode #",
4534 			     ino, current->comm);
4535 		return ERR_PTR(-EFSCORRUPTED);
4536 	}
4537 
4538 	inode = iget_locked(sb, ino);
4539 	if (!inode)
4540 		return ERR_PTR(-ENOMEM);
4541 	if (!(inode->i_state & I_NEW))
4542 		return inode;
4543 
4544 	ei = EXT4_I(inode);
4545 	iloc.bh = NULL;
4546 
4547 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4548 	if (ret < 0)
4549 		goto bad_inode;
4550 	raw_inode = ext4_raw_inode(&iloc);
4551 
4552 	if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4553 		ext4_error_inode(inode, function, line, 0,
4554 				 "iget: root inode unallocated");
4555 		ret = -EFSCORRUPTED;
4556 		goto bad_inode;
4557 	}
4558 
4559 	if ((flags & EXT4_IGET_HANDLE) &&
4560 	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4561 		ret = -ESTALE;
4562 		goto bad_inode;
4563 	}
4564 
4565 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4566 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4567 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4568 			EXT4_INODE_SIZE(inode->i_sb) ||
4569 		    (ei->i_extra_isize & 3)) {
4570 			ext4_error_inode(inode, function, line, 0,
4571 					 "iget: bad extra_isize %u "
4572 					 "(inode size %u)",
4573 					 ei->i_extra_isize,
4574 					 EXT4_INODE_SIZE(inode->i_sb));
4575 			ret = -EFSCORRUPTED;
4576 			goto bad_inode;
4577 		}
4578 	} else
4579 		ei->i_extra_isize = 0;
4580 
4581 	/* Precompute checksum seed for inode metadata */
4582 	if (ext4_has_metadata_csum(sb)) {
4583 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4584 		__u32 csum;
4585 		__le32 inum = cpu_to_le32(inode->i_ino);
4586 		__le32 gen = raw_inode->i_generation;
4587 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4588 				   sizeof(inum));
4589 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4590 					      sizeof(gen));
4591 	}
4592 
4593 	if (!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4594 	    ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) {
4595 		ext4_error_inode_err(inode, function, line, 0, EFSBADCRC,
4596 				     "iget: checksum invalid");
4597 		ret = -EFSBADCRC;
4598 		goto bad_inode;
4599 	}
4600 
4601 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4602 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4603 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4604 	if (ext4_has_feature_project(sb) &&
4605 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4606 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4607 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4608 	else
4609 		i_projid = EXT4_DEF_PROJID;
4610 
4611 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4612 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4613 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4614 	}
4615 	i_uid_write(inode, i_uid);
4616 	i_gid_write(inode, i_gid);
4617 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4618 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4619 
4620 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4621 	ei->i_inline_off = 0;
4622 	ei->i_dir_start_lookup = 0;
4623 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4624 	/* We now have enough fields to check if the inode was active or not.
4625 	 * This is needed because nfsd might try to access dead inodes
4626 	 * the test is that same one that e2fsck uses
4627 	 * NeilBrown 1999oct15
4628 	 */
4629 	if (inode->i_nlink == 0) {
4630 		if ((inode->i_mode == 0 ||
4631 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4632 		    ino != EXT4_BOOT_LOADER_INO) {
4633 			/* this inode is deleted */
4634 			ret = -ESTALE;
4635 			goto bad_inode;
4636 		}
4637 		/* The only unlinked inodes we let through here have
4638 		 * valid i_mode and are being read by the orphan
4639 		 * recovery code: that's fine, we're about to complete
4640 		 * the process of deleting those.
4641 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4642 		 * not initialized on a new filesystem. */
4643 	}
4644 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4645 	ext4_set_inode_flags(inode);
4646 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4647 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4648 	if (ext4_has_feature_64bit(sb))
4649 		ei->i_file_acl |=
4650 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4651 	inode->i_size = ext4_isize(sb, raw_inode);
4652 	if ((size = i_size_read(inode)) < 0) {
4653 		ext4_error_inode(inode, function, line, 0,
4654 				 "iget: bad i_size value: %lld", size);
4655 		ret = -EFSCORRUPTED;
4656 		goto bad_inode;
4657 	}
4658 	/*
4659 	 * If dir_index is not enabled but there's dir with INDEX flag set,
4660 	 * we'd normally treat htree data as empty space. But with metadata
4661 	 * checksumming that corrupts checksums so forbid that.
4662 	 */
4663 	if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4664 	    ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4665 		ext4_error_inode(inode, function, line, 0,
4666 			 "iget: Dir with htree data on filesystem without dir_index feature.");
4667 		ret = -EFSCORRUPTED;
4668 		goto bad_inode;
4669 	}
4670 	ei->i_disksize = inode->i_size;
4671 #ifdef CONFIG_QUOTA
4672 	ei->i_reserved_quota = 0;
4673 #endif
4674 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4675 	ei->i_block_group = iloc.block_group;
4676 	ei->i_last_alloc_group = ~0;
4677 	/*
4678 	 * NOTE! The in-memory inode i_data array is in little-endian order
4679 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4680 	 */
4681 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4682 		ei->i_data[block] = raw_inode->i_block[block];
4683 	INIT_LIST_HEAD(&ei->i_orphan);
4684 
4685 	/*
4686 	 * Set transaction id's of transactions that have to be committed
4687 	 * to finish f[data]sync. We set them to currently running transaction
4688 	 * as we cannot be sure that the inode or some of its metadata isn't
4689 	 * part of the transaction - the inode could have been reclaimed and
4690 	 * now it is reread from disk.
4691 	 */
4692 	if (journal) {
4693 		transaction_t *transaction;
4694 		tid_t tid;
4695 
4696 		read_lock(&journal->j_state_lock);
4697 		if (journal->j_running_transaction)
4698 			transaction = journal->j_running_transaction;
4699 		else
4700 			transaction = journal->j_committing_transaction;
4701 		if (transaction)
4702 			tid = transaction->t_tid;
4703 		else
4704 			tid = journal->j_commit_sequence;
4705 		read_unlock(&journal->j_state_lock);
4706 		ei->i_sync_tid = tid;
4707 		ei->i_datasync_tid = tid;
4708 	}
4709 
4710 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4711 		if (ei->i_extra_isize == 0) {
4712 			/* The extra space is currently unused. Use it. */
4713 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4714 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4715 					    EXT4_GOOD_OLD_INODE_SIZE;
4716 		} else {
4717 			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4718 			if (ret)
4719 				goto bad_inode;
4720 		}
4721 	}
4722 
4723 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4724 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4725 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4726 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4727 
4728 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4729 		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4730 
4731 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4732 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4733 				ivers |=
4734 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4735 		}
4736 		ext4_inode_set_iversion_queried(inode, ivers);
4737 	}
4738 
4739 	ret = 0;
4740 	if (ei->i_file_acl &&
4741 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4742 		ext4_error_inode(inode, function, line, 0,
4743 				 "iget: bad extended attribute block %llu",
4744 				 ei->i_file_acl);
4745 		ret = -EFSCORRUPTED;
4746 		goto bad_inode;
4747 	} else if (!ext4_has_inline_data(inode)) {
4748 		/* validate the block references in the inode */
4749 		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4750 		   (S_ISLNK(inode->i_mode) &&
4751 		    !ext4_inode_is_fast_symlink(inode))) {
4752 			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4753 				ret = ext4_ext_check_inode(inode);
4754 			else
4755 				ret = ext4_ind_check_inode(inode);
4756 		}
4757 	}
4758 	if (ret)
4759 		goto bad_inode;
4760 
4761 	if (S_ISREG(inode->i_mode)) {
4762 		inode->i_op = &ext4_file_inode_operations;
4763 		inode->i_fop = &ext4_file_operations;
4764 		ext4_set_aops(inode);
4765 	} else if (S_ISDIR(inode->i_mode)) {
4766 		inode->i_op = &ext4_dir_inode_operations;
4767 		inode->i_fop = &ext4_dir_operations;
4768 	} else if (S_ISLNK(inode->i_mode)) {
4769 		/* VFS does not allow setting these so must be corruption */
4770 		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4771 			ext4_error_inode(inode, function, line, 0,
4772 					 "iget: immutable or append flags "
4773 					 "not allowed on symlinks");
4774 			ret = -EFSCORRUPTED;
4775 			goto bad_inode;
4776 		}
4777 		if (IS_ENCRYPTED(inode)) {
4778 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4779 			ext4_set_aops(inode);
4780 		} else if (ext4_inode_is_fast_symlink(inode)) {
4781 			inode->i_link = (char *)ei->i_data;
4782 			inode->i_op = &ext4_fast_symlink_inode_operations;
4783 			nd_terminate_link(ei->i_data, inode->i_size,
4784 				sizeof(ei->i_data) - 1);
4785 		} else {
4786 			inode->i_op = &ext4_symlink_inode_operations;
4787 			ext4_set_aops(inode);
4788 		}
4789 		inode_nohighmem(inode);
4790 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4791 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4792 		inode->i_op = &ext4_special_inode_operations;
4793 		if (raw_inode->i_block[0])
4794 			init_special_inode(inode, inode->i_mode,
4795 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4796 		else
4797 			init_special_inode(inode, inode->i_mode,
4798 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4799 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4800 		make_bad_inode(inode);
4801 	} else {
4802 		ret = -EFSCORRUPTED;
4803 		ext4_error_inode(inode, function, line, 0,
4804 				 "iget: bogus i_mode (%o)", inode->i_mode);
4805 		goto bad_inode;
4806 	}
4807 	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
4808 		ext4_error_inode(inode, function, line, 0,
4809 				 "casefold flag without casefold feature");
4810 	brelse(iloc.bh);
4811 
4812 	unlock_new_inode(inode);
4813 	return inode;
4814 
4815 bad_inode:
4816 	brelse(iloc.bh);
4817 	iget_failed(inode);
4818 	return ERR_PTR(ret);
4819 }
4820 
4821 static int ext4_inode_blocks_set(handle_t *handle,
4822 				struct ext4_inode *raw_inode,
4823 				struct ext4_inode_info *ei)
4824 {
4825 	struct inode *inode = &(ei->vfs_inode);
4826 	u64 i_blocks = READ_ONCE(inode->i_blocks);
4827 	struct super_block *sb = inode->i_sb;
4828 
4829 	if (i_blocks <= ~0U) {
4830 		/*
4831 		 * i_blocks can be represented in a 32 bit variable
4832 		 * as multiple of 512 bytes
4833 		 */
4834 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4835 		raw_inode->i_blocks_high = 0;
4836 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4837 		return 0;
4838 	}
4839 	if (!ext4_has_feature_huge_file(sb))
4840 		return -EFBIG;
4841 
4842 	if (i_blocks <= 0xffffffffffffULL) {
4843 		/*
4844 		 * i_blocks can be represented in a 48 bit variable
4845 		 * as multiple of 512 bytes
4846 		 */
4847 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4848 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4849 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4850 	} else {
4851 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4852 		/* i_block is stored in file system block size */
4853 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4854 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4855 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4856 	}
4857 	return 0;
4858 }
4859 
4860 struct other_inode {
4861 	unsigned long		orig_ino;
4862 	struct ext4_inode	*raw_inode;
4863 };
4864 
4865 static int other_inode_match(struct inode * inode, unsigned long ino,
4866 			     void *data)
4867 {
4868 	struct other_inode *oi = (struct other_inode *) data;
4869 
4870 	if ((inode->i_ino != ino) ||
4871 	    (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4872 			       I_DIRTY_INODE)) ||
4873 	    ((inode->i_state & I_DIRTY_TIME) == 0))
4874 		return 0;
4875 	spin_lock(&inode->i_lock);
4876 	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4877 				I_DIRTY_INODE)) == 0) &&
4878 	    (inode->i_state & I_DIRTY_TIME)) {
4879 		struct ext4_inode_info	*ei = EXT4_I(inode);
4880 
4881 		inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4882 		spin_unlock(&inode->i_lock);
4883 
4884 		spin_lock(&ei->i_raw_lock);
4885 		EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4886 		EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4887 		EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4888 		ext4_inode_csum_set(inode, oi->raw_inode, ei);
4889 		spin_unlock(&ei->i_raw_lock);
4890 		trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4891 		return -1;
4892 	}
4893 	spin_unlock(&inode->i_lock);
4894 	return -1;
4895 }
4896 
4897 /*
4898  * Opportunistically update the other time fields for other inodes in
4899  * the same inode table block.
4900  */
4901 static void ext4_update_other_inodes_time(struct super_block *sb,
4902 					  unsigned long orig_ino, char *buf)
4903 {
4904 	struct other_inode oi;
4905 	unsigned long ino;
4906 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4907 	int inode_size = EXT4_INODE_SIZE(sb);
4908 
4909 	oi.orig_ino = orig_ino;
4910 	/*
4911 	 * Calculate the first inode in the inode table block.  Inode
4912 	 * numbers are one-based.  That is, the first inode in a block
4913 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4914 	 */
4915 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4916 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4917 		if (ino == orig_ino)
4918 			continue;
4919 		oi.raw_inode = (struct ext4_inode *) buf;
4920 		(void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4921 	}
4922 }
4923 
4924 /*
4925  * Post the struct inode info into an on-disk inode location in the
4926  * buffer-cache.  This gobbles the caller's reference to the
4927  * buffer_head in the inode location struct.
4928  *
4929  * The caller must have write access to iloc->bh.
4930  */
4931 static int ext4_do_update_inode(handle_t *handle,
4932 				struct inode *inode,
4933 				struct ext4_iloc *iloc)
4934 {
4935 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4936 	struct ext4_inode_info *ei = EXT4_I(inode);
4937 	struct buffer_head *bh = iloc->bh;
4938 	struct super_block *sb = inode->i_sb;
4939 	int err = 0, rc, block;
4940 	int need_datasync = 0, set_large_file = 0;
4941 	uid_t i_uid;
4942 	gid_t i_gid;
4943 	projid_t i_projid;
4944 
4945 	spin_lock(&ei->i_raw_lock);
4946 
4947 	/* For fields not tracked in the in-memory inode,
4948 	 * initialise them to zero for new inodes. */
4949 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4950 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4951 
4952 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4953 	i_uid = i_uid_read(inode);
4954 	i_gid = i_gid_read(inode);
4955 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4956 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4957 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4958 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4959 /*
4960  * Fix up interoperability with old kernels. Otherwise, old inodes get
4961  * re-used with the upper 16 bits of the uid/gid intact
4962  */
4963 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4964 			raw_inode->i_uid_high = 0;
4965 			raw_inode->i_gid_high = 0;
4966 		} else {
4967 			raw_inode->i_uid_high =
4968 				cpu_to_le16(high_16_bits(i_uid));
4969 			raw_inode->i_gid_high =
4970 				cpu_to_le16(high_16_bits(i_gid));
4971 		}
4972 	} else {
4973 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4974 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4975 		raw_inode->i_uid_high = 0;
4976 		raw_inode->i_gid_high = 0;
4977 	}
4978 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4979 
4980 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4981 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4982 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4983 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4984 
4985 	err = ext4_inode_blocks_set(handle, raw_inode, ei);
4986 	if (err) {
4987 		spin_unlock(&ei->i_raw_lock);
4988 		goto out_brelse;
4989 	}
4990 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4991 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4992 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4993 		raw_inode->i_file_acl_high =
4994 			cpu_to_le16(ei->i_file_acl >> 32);
4995 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4996 	if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) {
4997 		ext4_isize_set(raw_inode, ei->i_disksize);
4998 		need_datasync = 1;
4999 	}
5000 	if (ei->i_disksize > 0x7fffffffULL) {
5001 		if (!ext4_has_feature_large_file(sb) ||
5002 				EXT4_SB(sb)->s_es->s_rev_level ==
5003 		    cpu_to_le32(EXT4_GOOD_OLD_REV))
5004 			set_large_file = 1;
5005 	}
5006 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5007 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5008 		if (old_valid_dev(inode->i_rdev)) {
5009 			raw_inode->i_block[0] =
5010 				cpu_to_le32(old_encode_dev(inode->i_rdev));
5011 			raw_inode->i_block[1] = 0;
5012 		} else {
5013 			raw_inode->i_block[0] = 0;
5014 			raw_inode->i_block[1] =
5015 				cpu_to_le32(new_encode_dev(inode->i_rdev));
5016 			raw_inode->i_block[2] = 0;
5017 		}
5018 	} else if (!ext4_has_inline_data(inode)) {
5019 		for (block = 0; block < EXT4_N_BLOCKS; block++)
5020 			raw_inode->i_block[block] = ei->i_data[block];
5021 	}
5022 
5023 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5024 		u64 ivers = ext4_inode_peek_iversion(inode);
5025 
5026 		raw_inode->i_disk_version = cpu_to_le32(ivers);
5027 		if (ei->i_extra_isize) {
5028 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5029 				raw_inode->i_version_hi =
5030 					cpu_to_le32(ivers >> 32);
5031 			raw_inode->i_extra_isize =
5032 				cpu_to_le16(ei->i_extra_isize);
5033 		}
5034 	}
5035 
5036 	BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5037 	       i_projid != EXT4_DEF_PROJID);
5038 
5039 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5040 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5041 		raw_inode->i_projid = cpu_to_le32(i_projid);
5042 
5043 	ext4_inode_csum_set(inode, raw_inode, ei);
5044 	spin_unlock(&ei->i_raw_lock);
5045 	if (inode->i_sb->s_flags & SB_LAZYTIME)
5046 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5047 					      bh->b_data);
5048 
5049 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5050 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5051 	if (!err)
5052 		err = rc;
5053 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5054 	if (set_large_file) {
5055 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5056 		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5057 		if (err)
5058 			goto out_brelse;
5059 		ext4_set_feature_large_file(sb);
5060 		ext4_handle_sync(handle);
5061 		err = ext4_handle_dirty_super(handle, sb);
5062 	}
5063 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5064 out_brelse:
5065 	brelse(bh);
5066 	ext4_std_error(inode->i_sb, err);
5067 	return err;
5068 }
5069 
5070 /*
5071  * ext4_write_inode()
5072  *
5073  * We are called from a few places:
5074  *
5075  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5076  *   Here, there will be no transaction running. We wait for any running
5077  *   transaction to commit.
5078  *
5079  * - Within flush work (sys_sync(), kupdate and such).
5080  *   We wait on commit, if told to.
5081  *
5082  * - Within iput_final() -> write_inode_now()
5083  *   We wait on commit, if told to.
5084  *
5085  * In all cases it is actually safe for us to return without doing anything,
5086  * because the inode has been copied into a raw inode buffer in
5087  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5088  * writeback.
5089  *
5090  * Note that we are absolutely dependent upon all inode dirtiers doing the
5091  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5092  * which we are interested.
5093  *
5094  * It would be a bug for them to not do this.  The code:
5095  *
5096  *	mark_inode_dirty(inode)
5097  *	stuff();
5098  *	inode->i_size = expr;
5099  *
5100  * is in error because write_inode() could occur while `stuff()' is running,
5101  * and the new i_size will be lost.  Plus the inode will no longer be on the
5102  * superblock's dirty inode list.
5103  */
5104 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5105 {
5106 	int err;
5107 
5108 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5109 	    sb_rdonly(inode->i_sb))
5110 		return 0;
5111 
5112 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5113 		return -EIO;
5114 
5115 	if (EXT4_SB(inode->i_sb)->s_journal) {
5116 		if (ext4_journal_current_handle()) {
5117 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5118 			dump_stack();
5119 			return -EIO;
5120 		}
5121 
5122 		/*
5123 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5124 		 * ext4_sync_fs() will force the commit after everything is
5125 		 * written.
5126 		 */
5127 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5128 			return 0;
5129 
5130 		err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
5131 						EXT4_I(inode)->i_sync_tid);
5132 	} else {
5133 		struct ext4_iloc iloc;
5134 
5135 		err = __ext4_get_inode_loc(inode, &iloc, 0);
5136 		if (err)
5137 			return err;
5138 		/*
5139 		 * sync(2) will flush the whole buffer cache. No need to do
5140 		 * it here separately for each inode.
5141 		 */
5142 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5143 			sync_dirty_buffer(iloc.bh);
5144 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5145 			ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5146 					       "IO error syncing inode");
5147 			err = -EIO;
5148 		}
5149 		brelse(iloc.bh);
5150 	}
5151 	return err;
5152 }
5153 
5154 /*
5155  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5156  * buffers that are attached to a page stradding i_size and are undergoing
5157  * commit. In that case we have to wait for commit to finish and try again.
5158  */
5159 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5160 {
5161 	struct page *page;
5162 	unsigned offset;
5163 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5164 	tid_t commit_tid = 0;
5165 	int ret;
5166 
5167 	offset = inode->i_size & (PAGE_SIZE - 1);
5168 	/*
5169 	 * If the page is fully truncated, we don't need to wait for any commit
5170 	 * (and we even should not as __ext4_journalled_invalidatepage() may
5171 	 * strip all buffers from the page but keep the page dirty which can then
5172 	 * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5173 	 * buffers). Also we don't need to wait for any commit if all buffers in
5174 	 * the page remain valid. This is most beneficial for the common case of
5175 	 * blocksize == PAGESIZE.
5176 	 */
5177 	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5178 		return;
5179 	while (1) {
5180 		page = find_lock_page(inode->i_mapping,
5181 				      inode->i_size >> PAGE_SHIFT);
5182 		if (!page)
5183 			return;
5184 		ret = __ext4_journalled_invalidatepage(page, offset,
5185 						PAGE_SIZE - offset);
5186 		unlock_page(page);
5187 		put_page(page);
5188 		if (ret != -EBUSY)
5189 			return;
5190 		commit_tid = 0;
5191 		read_lock(&journal->j_state_lock);
5192 		if (journal->j_committing_transaction)
5193 			commit_tid = journal->j_committing_transaction->t_tid;
5194 		read_unlock(&journal->j_state_lock);
5195 		if (commit_tid)
5196 			jbd2_log_wait_commit(journal, commit_tid);
5197 	}
5198 }
5199 
5200 /*
5201  * ext4_setattr()
5202  *
5203  * Called from notify_change.
5204  *
5205  * We want to trap VFS attempts to truncate the file as soon as
5206  * possible.  In particular, we want to make sure that when the VFS
5207  * shrinks i_size, we put the inode on the orphan list and modify
5208  * i_disksize immediately, so that during the subsequent flushing of
5209  * dirty pages and freeing of disk blocks, we can guarantee that any
5210  * commit will leave the blocks being flushed in an unused state on
5211  * disk.  (On recovery, the inode will get truncated and the blocks will
5212  * be freed, so we have a strong guarantee that no future commit will
5213  * leave these blocks visible to the user.)
5214  *
5215  * Another thing we have to assure is that if we are in ordered mode
5216  * and inode is still attached to the committing transaction, we must
5217  * we start writeout of all the dirty pages which are being truncated.
5218  * This way we are sure that all the data written in the previous
5219  * transaction are already on disk (truncate waits for pages under
5220  * writeback).
5221  *
5222  * Called with inode->i_mutex down.
5223  */
5224 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5225 {
5226 	struct inode *inode = d_inode(dentry);
5227 	int error, rc = 0;
5228 	int orphan = 0;
5229 	const unsigned int ia_valid = attr->ia_valid;
5230 
5231 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5232 		return -EIO;
5233 
5234 	if (unlikely(IS_IMMUTABLE(inode)))
5235 		return -EPERM;
5236 
5237 	if (unlikely(IS_APPEND(inode) &&
5238 		     (ia_valid & (ATTR_MODE | ATTR_UID |
5239 				  ATTR_GID | ATTR_TIMES_SET))))
5240 		return -EPERM;
5241 
5242 	error = setattr_prepare(dentry, attr);
5243 	if (error)
5244 		return error;
5245 
5246 	error = fscrypt_prepare_setattr(dentry, attr);
5247 	if (error)
5248 		return error;
5249 
5250 	error = fsverity_prepare_setattr(dentry, attr);
5251 	if (error)
5252 		return error;
5253 
5254 	if (is_quota_modification(inode, attr)) {
5255 		error = dquot_initialize(inode);
5256 		if (error)
5257 			return error;
5258 	}
5259 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5260 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5261 		handle_t *handle;
5262 
5263 		/* (user+group)*(old+new) structure, inode write (sb,
5264 		 * inode block, ? - but truncate inode update has it) */
5265 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5266 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5267 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5268 		if (IS_ERR(handle)) {
5269 			error = PTR_ERR(handle);
5270 			goto err_out;
5271 		}
5272 
5273 		/* dquot_transfer() calls back ext4_get_inode_usage() which
5274 		 * counts xattr inode references.
5275 		 */
5276 		down_read(&EXT4_I(inode)->xattr_sem);
5277 		error = dquot_transfer(inode, attr);
5278 		up_read(&EXT4_I(inode)->xattr_sem);
5279 
5280 		if (error) {
5281 			ext4_journal_stop(handle);
5282 			return error;
5283 		}
5284 		/* Update corresponding info in inode so that everything is in
5285 		 * one transaction */
5286 		if (attr->ia_valid & ATTR_UID)
5287 			inode->i_uid = attr->ia_uid;
5288 		if (attr->ia_valid & ATTR_GID)
5289 			inode->i_gid = attr->ia_gid;
5290 		error = ext4_mark_inode_dirty(handle, inode);
5291 		ext4_journal_stop(handle);
5292 	}
5293 
5294 	if (attr->ia_valid & ATTR_SIZE) {
5295 		handle_t *handle;
5296 		loff_t oldsize = inode->i_size;
5297 		int shrink = (attr->ia_size < inode->i_size);
5298 
5299 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5300 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5301 
5302 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
5303 				return -EFBIG;
5304 		}
5305 		if (!S_ISREG(inode->i_mode))
5306 			return -EINVAL;
5307 
5308 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5309 			inode_inc_iversion(inode);
5310 
5311 		if (shrink) {
5312 			if (ext4_should_order_data(inode)) {
5313 				error = ext4_begin_ordered_truncate(inode,
5314 							    attr->ia_size);
5315 				if (error)
5316 					goto err_out;
5317 			}
5318 			/*
5319 			 * Blocks are going to be removed from the inode. Wait
5320 			 * for dio in flight.
5321 			 */
5322 			inode_dio_wait(inode);
5323 		}
5324 
5325 		down_write(&EXT4_I(inode)->i_mmap_sem);
5326 
5327 		rc = ext4_break_layouts(inode);
5328 		if (rc) {
5329 			up_write(&EXT4_I(inode)->i_mmap_sem);
5330 			return rc;
5331 		}
5332 
5333 		if (attr->ia_size != inode->i_size) {
5334 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5335 			if (IS_ERR(handle)) {
5336 				error = PTR_ERR(handle);
5337 				goto out_mmap_sem;
5338 			}
5339 			if (ext4_handle_valid(handle) && shrink) {
5340 				error = ext4_orphan_add(handle, inode);
5341 				orphan = 1;
5342 			}
5343 			/*
5344 			 * Update c/mtime on truncate up, ext4_truncate() will
5345 			 * update c/mtime in shrink case below
5346 			 */
5347 			if (!shrink) {
5348 				inode->i_mtime = current_time(inode);
5349 				inode->i_ctime = inode->i_mtime;
5350 			}
5351 			down_write(&EXT4_I(inode)->i_data_sem);
5352 			EXT4_I(inode)->i_disksize = attr->ia_size;
5353 			rc = ext4_mark_inode_dirty(handle, inode);
5354 			if (!error)
5355 				error = rc;
5356 			/*
5357 			 * We have to update i_size under i_data_sem together
5358 			 * with i_disksize to avoid races with writeback code
5359 			 * running ext4_wb_update_i_disksize().
5360 			 */
5361 			if (!error)
5362 				i_size_write(inode, attr->ia_size);
5363 			up_write(&EXT4_I(inode)->i_data_sem);
5364 			ext4_journal_stop(handle);
5365 			if (error)
5366 				goto out_mmap_sem;
5367 			if (!shrink) {
5368 				pagecache_isize_extended(inode, oldsize,
5369 							 inode->i_size);
5370 			} else if (ext4_should_journal_data(inode)) {
5371 				ext4_wait_for_tail_page_commit(inode);
5372 			}
5373 		}
5374 
5375 		/*
5376 		 * Truncate pagecache after we've waited for commit
5377 		 * in data=journal mode to make pages freeable.
5378 		 */
5379 		truncate_pagecache(inode, inode->i_size);
5380 		/*
5381 		 * Call ext4_truncate() even if i_size didn't change to
5382 		 * truncate possible preallocated blocks.
5383 		 */
5384 		if (attr->ia_size <= oldsize) {
5385 			rc = ext4_truncate(inode);
5386 			if (rc)
5387 				error = rc;
5388 		}
5389 out_mmap_sem:
5390 		up_write(&EXT4_I(inode)->i_mmap_sem);
5391 	}
5392 
5393 	if (!error) {
5394 		setattr_copy(inode, attr);
5395 		mark_inode_dirty(inode);
5396 	}
5397 
5398 	/*
5399 	 * If the call to ext4_truncate failed to get a transaction handle at
5400 	 * all, we need to clean up the in-core orphan list manually.
5401 	 */
5402 	if (orphan && inode->i_nlink)
5403 		ext4_orphan_del(NULL, inode);
5404 
5405 	if (!error && (ia_valid & ATTR_MODE))
5406 		rc = posix_acl_chmod(inode, inode->i_mode);
5407 
5408 err_out:
5409 	ext4_std_error(inode->i_sb, error);
5410 	if (!error)
5411 		error = rc;
5412 	return error;
5413 }
5414 
5415 int ext4_getattr(const struct path *path, struct kstat *stat,
5416 		 u32 request_mask, unsigned int query_flags)
5417 {
5418 	struct inode *inode = d_inode(path->dentry);
5419 	struct ext4_inode *raw_inode;
5420 	struct ext4_inode_info *ei = EXT4_I(inode);
5421 	unsigned int flags;
5422 
5423 	if ((request_mask & STATX_BTIME) &&
5424 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5425 		stat->result_mask |= STATX_BTIME;
5426 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5427 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5428 	}
5429 
5430 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5431 	if (flags & EXT4_APPEND_FL)
5432 		stat->attributes |= STATX_ATTR_APPEND;
5433 	if (flags & EXT4_COMPR_FL)
5434 		stat->attributes |= STATX_ATTR_COMPRESSED;
5435 	if (flags & EXT4_ENCRYPT_FL)
5436 		stat->attributes |= STATX_ATTR_ENCRYPTED;
5437 	if (flags & EXT4_IMMUTABLE_FL)
5438 		stat->attributes |= STATX_ATTR_IMMUTABLE;
5439 	if (flags & EXT4_NODUMP_FL)
5440 		stat->attributes |= STATX_ATTR_NODUMP;
5441 	if (flags & EXT4_VERITY_FL)
5442 		stat->attributes |= STATX_ATTR_VERITY;
5443 
5444 	stat->attributes_mask |= (STATX_ATTR_APPEND |
5445 				  STATX_ATTR_COMPRESSED |
5446 				  STATX_ATTR_ENCRYPTED |
5447 				  STATX_ATTR_IMMUTABLE |
5448 				  STATX_ATTR_NODUMP |
5449 				  STATX_ATTR_VERITY);
5450 
5451 	generic_fillattr(inode, stat);
5452 	return 0;
5453 }
5454 
5455 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5456 		      u32 request_mask, unsigned int query_flags)
5457 {
5458 	struct inode *inode = d_inode(path->dentry);
5459 	u64 delalloc_blocks;
5460 
5461 	ext4_getattr(path, stat, request_mask, query_flags);
5462 
5463 	/*
5464 	 * If there is inline data in the inode, the inode will normally not
5465 	 * have data blocks allocated (it may have an external xattr block).
5466 	 * Report at least one sector for such files, so tools like tar, rsync,
5467 	 * others don't incorrectly think the file is completely sparse.
5468 	 */
5469 	if (unlikely(ext4_has_inline_data(inode)))
5470 		stat->blocks += (stat->size + 511) >> 9;
5471 
5472 	/*
5473 	 * We can't update i_blocks if the block allocation is delayed
5474 	 * otherwise in the case of system crash before the real block
5475 	 * allocation is done, we will have i_blocks inconsistent with
5476 	 * on-disk file blocks.
5477 	 * We always keep i_blocks updated together with real
5478 	 * allocation. But to not confuse with user, stat
5479 	 * will return the blocks that include the delayed allocation
5480 	 * blocks for this file.
5481 	 */
5482 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5483 				   EXT4_I(inode)->i_reserved_data_blocks);
5484 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5485 	return 0;
5486 }
5487 
5488 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5489 				   int pextents)
5490 {
5491 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5492 		return ext4_ind_trans_blocks(inode, lblocks);
5493 	return ext4_ext_index_trans_blocks(inode, pextents);
5494 }
5495 
5496 /*
5497  * Account for index blocks, block groups bitmaps and block group
5498  * descriptor blocks if modify datablocks and index blocks
5499  * worse case, the indexs blocks spread over different block groups
5500  *
5501  * If datablocks are discontiguous, they are possible to spread over
5502  * different block groups too. If they are contiguous, with flexbg,
5503  * they could still across block group boundary.
5504  *
5505  * Also account for superblock, inode, quota and xattr blocks
5506  */
5507 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5508 				  int pextents)
5509 {
5510 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5511 	int gdpblocks;
5512 	int idxblocks;
5513 	int ret = 0;
5514 
5515 	/*
5516 	 * How many index blocks need to touch to map @lblocks logical blocks
5517 	 * to @pextents physical extents?
5518 	 */
5519 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5520 
5521 	ret = idxblocks;
5522 
5523 	/*
5524 	 * Now let's see how many group bitmaps and group descriptors need
5525 	 * to account
5526 	 */
5527 	groups = idxblocks + pextents;
5528 	gdpblocks = groups;
5529 	if (groups > ngroups)
5530 		groups = ngroups;
5531 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5532 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5533 
5534 	/* bitmaps and block group descriptor blocks */
5535 	ret += groups + gdpblocks;
5536 
5537 	/* Blocks for super block, inode, quota and xattr blocks */
5538 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5539 
5540 	return ret;
5541 }
5542 
5543 /*
5544  * Calculate the total number of credits to reserve to fit
5545  * the modification of a single pages into a single transaction,
5546  * which may include multiple chunks of block allocations.
5547  *
5548  * This could be called via ext4_write_begin()
5549  *
5550  * We need to consider the worse case, when
5551  * one new block per extent.
5552  */
5553 int ext4_writepage_trans_blocks(struct inode *inode)
5554 {
5555 	int bpp = ext4_journal_blocks_per_page(inode);
5556 	int ret;
5557 
5558 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5559 
5560 	/* Account for data blocks for journalled mode */
5561 	if (ext4_should_journal_data(inode))
5562 		ret += bpp;
5563 	return ret;
5564 }
5565 
5566 /*
5567  * Calculate the journal credits for a chunk of data modification.
5568  *
5569  * This is called from DIO, fallocate or whoever calling
5570  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5571  *
5572  * journal buffers for data blocks are not included here, as DIO
5573  * and fallocate do no need to journal data buffers.
5574  */
5575 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5576 {
5577 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5578 }
5579 
5580 /*
5581  * The caller must have previously called ext4_reserve_inode_write().
5582  * Give this, we know that the caller already has write access to iloc->bh.
5583  */
5584 int ext4_mark_iloc_dirty(handle_t *handle,
5585 			 struct inode *inode, struct ext4_iloc *iloc)
5586 {
5587 	int err = 0;
5588 
5589 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5590 		put_bh(iloc->bh);
5591 		return -EIO;
5592 	}
5593 	if (IS_I_VERSION(inode))
5594 		inode_inc_iversion(inode);
5595 
5596 	/* the do_update_inode consumes one bh->b_count */
5597 	get_bh(iloc->bh);
5598 
5599 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5600 	err = ext4_do_update_inode(handle, inode, iloc);
5601 	put_bh(iloc->bh);
5602 	return err;
5603 }
5604 
5605 /*
5606  * On success, We end up with an outstanding reference count against
5607  * iloc->bh.  This _must_ be cleaned up later.
5608  */
5609 
5610 int
5611 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5612 			 struct ext4_iloc *iloc)
5613 {
5614 	int err;
5615 
5616 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5617 		return -EIO;
5618 
5619 	err = ext4_get_inode_loc(inode, iloc);
5620 	if (!err) {
5621 		BUFFER_TRACE(iloc->bh, "get_write_access");
5622 		err = ext4_journal_get_write_access(handle, iloc->bh);
5623 		if (err) {
5624 			brelse(iloc->bh);
5625 			iloc->bh = NULL;
5626 		}
5627 	}
5628 	ext4_std_error(inode->i_sb, err);
5629 	return err;
5630 }
5631 
5632 static int __ext4_expand_extra_isize(struct inode *inode,
5633 				     unsigned int new_extra_isize,
5634 				     struct ext4_iloc *iloc,
5635 				     handle_t *handle, int *no_expand)
5636 {
5637 	struct ext4_inode *raw_inode;
5638 	struct ext4_xattr_ibody_header *header;
5639 	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5640 	struct ext4_inode_info *ei = EXT4_I(inode);
5641 	int error;
5642 
5643 	/* this was checked at iget time, but double check for good measure */
5644 	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5645 	    (ei->i_extra_isize & 3)) {
5646 		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5647 				 ei->i_extra_isize,
5648 				 EXT4_INODE_SIZE(inode->i_sb));
5649 		return -EFSCORRUPTED;
5650 	}
5651 	if ((new_extra_isize < ei->i_extra_isize) ||
5652 	    (new_extra_isize < 4) ||
5653 	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5654 		return -EINVAL;	/* Should never happen */
5655 
5656 	raw_inode = ext4_raw_inode(iloc);
5657 
5658 	header = IHDR(inode, raw_inode);
5659 
5660 	/* No extended attributes present */
5661 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5662 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5663 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5664 		       EXT4_I(inode)->i_extra_isize, 0,
5665 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5666 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5667 		return 0;
5668 	}
5669 
5670 	/* try to expand with EAs present */
5671 	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5672 					   raw_inode, handle);
5673 	if (error) {
5674 		/*
5675 		 * Inode size expansion failed; don't try again
5676 		 */
5677 		*no_expand = 1;
5678 	}
5679 
5680 	return error;
5681 }
5682 
5683 /*
5684  * Expand an inode by new_extra_isize bytes.
5685  * Returns 0 on success or negative error number on failure.
5686  */
5687 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5688 					  unsigned int new_extra_isize,
5689 					  struct ext4_iloc iloc,
5690 					  handle_t *handle)
5691 {
5692 	int no_expand;
5693 	int error;
5694 
5695 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5696 		return -EOVERFLOW;
5697 
5698 	/*
5699 	 * In nojournal mode, we can immediately attempt to expand
5700 	 * the inode.  When journaled, we first need to obtain extra
5701 	 * buffer credits since we may write into the EA block
5702 	 * with this same handle. If journal_extend fails, then it will
5703 	 * only result in a minor loss of functionality for that inode.
5704 	 * If this is felt to be critical, then e2fsck should be run to
5705 	 * force a large enough s_min_extra_isize.
5706 	 */
5707 	if (ext4_journal_extend(handle,
5708 				EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5709 		return -ENOSPC;
5710 
5711 	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5712 		return -EBUSY;
5713 
5714 	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5715 					  handle, &no_expand);
5716 	ext4_write_unlock_xattr(inode, &no_expand);
5717 
5718 	return error;
5719 }
5720 
5721 int ext4_expand_extra_isize(struct inode *inode,
5722 			    unsigned int new_extra_isize,
5723 			    struct ext4_iloc *iloc)
5724 {
5725 	handle_t *handle;
5726 	int no_expand;
5727 	int error, rc;
5728 
5729 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5730 		brelse(iloc->bh);
5731 		return -EOVERFLOW;
5732 	}
5733 
5734 	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5735 				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5736 	if (IS_ERR(handle)) {
5737 		error = PTR_ERR(handle);
5738 		brelse(iloc->bh);
5739 		return error;
5740 	}
5741 
5742 	ext4_write_lock_xattr(inode, &no_expand);
5743 
5744 	BUFFER_TRACE(iloc->bh, "get_write_access");
5745 	error = ext4_journal_get_write_access(handle, iloc->bh);
5746 	if (error) {
5747 		brelse(iloc->bh);
5748 		goto out_unlock;
5749 	}
5750 
5751 	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5752 					  handle, &no_expand);
5753 
5754 	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5755 	if (!error)
5756 		error = rc;
5757 
5758 out_unlock:
5759 	ext4_write_unlock_xattr(inode, &no_expand);
5760 	ext4_journal_stop(handle);
5761 	return error;
5762 }
5763 
5764 /*
5765  * What we do here is to mark the in-core inode as clean with respect to inode
5766  * dirtiness (it may still be data-dirty).
5767  * This means that the in-core inode may be reaped by prune_icache
5768  * without having to perform any I/O.  This is a very good thing,
5769  * because *any* task may call prune_icache - even ones which
5770  * have a transaction open against a different journal.
5771  *
5772  * Is this cheating?  Not really.  Sure, we haven't written the
5773  * inode out, but prune_icache isn't a user-visible syncing function.
5774  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5775  * we start and wait on commits.
5776  */
5777 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5778 {
5779 	struct ext4_iloc iloc;
5780 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5781 	int err;
5782 
5783 	might_sleep();
5784 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5785 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5786 	if (err)
5787 		return err;
5788 
5789 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5790 		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5791 					       iloc, handle);
5792 
5793 	return ext4_mark_iloc_dirty(handle, inode, &iloc);
5794 }
5795 
5796 /*
5797  * ext4_dirty_inode() is called from __mark_inode_dirty()
5798  *
5799  * We're really interested in the case where a file is being extended.
5800  * i_size has been changed by generic_commit_write() and we thus need
5801  * to include the updated inode in the current transaction.
5802  *
5803  * Also, dquot_alloc_block() will always dirty the inode when blocks
5804  * are allocated to the file.
5805  *
5806  * If the inode is marked synchronous, we don't honour that here - doing
5807  * so would cause a commit on atime updates, which we don't bother doing.
5808  * We handle synchronous inodes at the highest possible level.
5809  *
5810  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5811  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5812  * to copy into the on-disk inode structure are the timestamp files.
5813  */
5814 void ext4_dirty_inode(struct inode *inode, int flags)
5815 {
5816 	handle_t *handle;
5817 
5818 	if (flags == I_DIRTY_TIME)
5819 		return;
5820 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5821 	if (IS_ERR(handle))
5822 		goto out;
5823 
5824 	ext4_mark_inode_dirty(handle, inode);
5825 
5826 	ext4_journal_stop(handle);
5827 out:
5828 	return;
5829 }
5830 
5831 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5832 {
5833 	journal_t *journal;
5834 	handle_t *handle;
5835 	int err;
5836 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5837 
5838 	/*
5839 	 * We have to be very careful here: changing a data block's
5840 	 * journaling status dynamically is dangerous.  If we write a
5841 	 * data block to the journal, change the status and then delete
5842 	 * that block, we risk forgetting to revoke the old log record
5843 	 * from the journal and so a subsequent replay can corrupt data.
5844 	 * So, first we make sure that the journal is empty and that
5845 	 * nobody is changing anything.
5846 	 */
5847 
5848 	journal = EXT4_JOURNAL(inode);
5849 	if (!journal)
5850 		return 0;
5851 	if (is_journal_aborted(journal))
5852 		return -EROFS;
5853 
5854 	/* Wait for all existing dio workers */
5855 	inode_dio_wait(inode);
5856 
5857 	/*
5858 	 * Before flushing the journal and switching inode's aops, we have
5859 	 * to flush all dirty data the inode has. There can be outstanding
5860 	 * delayed allocations, there can be unwritten extents created by
5861 	 * fallocate or buffered writes in dioread_nolock mode covered by
5862 	 * dirty data which can be converted only after flushing the dirty
5863 	 * data (and journalled aops don't know how to handle these cases).
5864 	 */
5865 	if (val) {
5866 		down_write(&EXT4_I(inode)->i_mmap_sem);
5867 		err = filemap_write_and_wait(inode->i_mapping);
5868 		if (err < 0) {
5869 			up_write(&EXT4_I(inode)->i_mmap_sem);
5870 			return err;
5871 		}
5872 	}
5873 
5874 	percpu_down_write(&sbi->s_writepages_rwsem);
5875 	jbd2_journal_lock_updates(journal);
5876 
5877 	/*
5878 	 * OK, there are no updates running now, and all cached data is
5879 	 * synced to disk.  We are now in a completely consistent state
5880 	 * which doesn't have anything in the journal, and we know that
5881 	 * no filesystem updates are running, so it is safe to modify
5882 	 * the inode's in-core data-journaling state flag now.
5883 	 */
5884 
5885 	if (val)
5886 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5887 	else {
5888 		err = jbd2_journal_flush(journal);
5889 		if (err < 0) {
5890 			jbd2_journal_unlock_updates(journal);
5891 			percpu_up_write(&sbi->s_writepages_rwsem);
5892 			return err;
5893 		}
5894 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5895 	}
5896 	ext4_set_aops(inode);
5897 
5898 	jbd2_journal_unlock_updates(journal);
5899 	percpu_up_write(&sbi->s_writepages_rwsem);
5900 
5901 	if (val)
5902 		up_write(&EXT4_I(inode)->i_mmap_sem);
5903 
5904 	/* Finally we can mark the inode as dirty. */
5905 
5906 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5907 	if (IS_ERR(handle))
5908 		return PTR_ERR(handle);
5909 
5910 	err = ext4_mark_inode_dirty(handle, inode);
5911 	ext4_handle_sync(handle);
5912 	ext4_journal_stop(handle);
5913 	ext4_std_error(inode->i_sb, err);
5914 
5915 	return err;
5916 }
5917 
5918 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5919 {
5920 	return !buffer_mapped(bh);
5921 }
5922 
5923 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
5924 {
5925 	struct vm_area_struct *vma = vmf->vma;
5926 	struct page *page = vmf->page;
5927 	loff_t size;
5928 	unsigned long len;
5929 	int err;
5930 	vm_fault_t ret;
5931 	struct file *file = vma->vm_file;
5932 	struct inode *inode = file_inode(file);
5933 	struct address_space *mapping = inode->i_mapping;
5934 	handle_t *handle;
5935 	get_block_t *get_block;
5936 	int retries = 0;
5937 
5938 	if (unlikely(IS_IMMUTABLE(inode)))
5939 		return VM_FAULT_SIGBUS;
5940 
5941 	sb_start_pagefault(inode->i_sb);
5942 	file_update_time(vma->vm_file);
5943 
5944 	down_read(&EXT4_I(inode)->i_mmap_sem);
5945 
5946 	err = ext4_convert_inline_data(inode);
5947 	if (err)
5948 		goto out_ret;
5949 
5950 	/* Delalloc case is easy... */
5951 	if (test_opt(inode->i_sb, DELALLOC) &&
5952 	    !ext4_should_journal_data(inode) &&
5953 	    !ext4_nonda_switch(inode->i_sb)) {
5954 		do {
5955 			err = block_page_mkwrite(vma, vmf,
5956 						   ext4_da_get_block_prep);
5957 		} while (err == -ENOSPC &&
5958 		       ext4_should_retry_alloc(inode->i_sb, &retries));
5959 		goto out_ret;
5960 	}
5961 
5962 	lock_page(page);
5963 	size = i_size_read(inode);
5964 	/* Page got truncated from under us? */
5965 	if (page->mapping != mapping || page_offset(page) > size) {
5966 		unlock_page(page);
5967 		ret = VM_FAULT_NOPAGE;
5968 		goto out;
5969 	}
5970 
5971 	if (page->index == size >> PAGE_SHIFT)
5972 		len = size & ~PAGE_MASK;
5973 	else
5974 		len = PAGE_SIZE;
5975 	/*
5976 	 * Return if we have all the buffers mapped. This avoids the need to do
5977 	 * journal_start/journal_stop which can block and take a long time
5978 	 */
5979 	if (page_has_buffers(page)) {
5980 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5981 					    0, len, NULL,
5982 					    ext4_bh_unmapped)) {
5983 			/* Wait so that we don't change page under IO */
5984 			wait_for_stable_page(page);
5985 			ret = VM_FAULT_LOCKED;
5986 			goto out;
5987 		}
5988 	}
5989 	unlock_page(page);
5990 	/* OK, we need to fill the hole... */
5991 	if (ext4_should_dioread_nolock(inode))
5992 		get_block = ext4_get_block_unwritten;
5993 	else
5994 		get_block = ext4_get_block;
5995 retry_alloc:
5996 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5997 				    ext4_writepage_trans_blocks(inode));
5998 	if (IS_ERR(handle)) {
5999 		ret = VM_FAULT_SIGBUS;
6000 		goto out;
6001 	}
6002 	err = block_page_mkwrite(vma, vmf, get_block);
6003 	if (!err && ext4_should_journal_data(inode)) {
6004 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6005 			  PAGE_SIZE, NULL, do_journal_get_write_access)) {
6006 			unlock_page(page);
6007 			ret = VM_FAULT_SIGBUS;
6008 			ext4_journal_stop(handle);
6009 			goto out;
6010 		}
6011 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6012 	}
6013 	ext4_journal_stop(handle);
6014 	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6015 		goto retry_alloc;
6016 out_ret:
6017 	ret = block_page_mkwrite_return(err);
6018 out:
6019 	up_read(&EXT4_I(inode)->i_mmap_sem);
6020 	sb_end_pagefault(inode->i_sb);
6021 	return ret;
6022 }
6023 
6024 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6025 {
6026 	struct inode *inode = file_inode(vmf->vma->vm_file);
6027 	vm_fault_t ret;
6028 
6029 	down_read(&EXT4_I(inode)->i_mmap_sem);
6030 	ret = filemap_fault(vmf);
6031 	up_read(&EXT4_I(inode)->i_mmap_sem);
6032 
6033 	return ret;
6034 }
6035