xref: /openbmc/linux/fs/ext4/inode.c (revision 5104d265)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *	(jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20 
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41 
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46 
47 #include <trace/events/ext4.h>
48 
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50 
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 			      struct ext4_inode_info *ei)
53 {
54 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 	__u16 csum_lo;
56 	__u16 csum_hi = 0;
57 	__u32 csum;
58 
59 	csum_lo = le16_to_cpu(raw->i_checksum_lo);
60 	raw->i_checksum_lo = 0;
61 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
62 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
63 		csum_hi = le16_to_cpu(raw->i_checksum_hi);
64 		raw->i_checksum_hi = 0;
65 	}
66 
67 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
68 			   EXT4_INODE_SIZE(inode->i_sb));
69 
70 	raw->i_checksum_lo = cpu_to_le16(csum_lo);
71 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
72 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
73 		raw->i_checksum_hi = cpu_to_le16(csum_hi);
74 
75 	return csum;
76 }
77 
78 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
79 				  struct ext4_inode_info *ei)
80 {
81 	__u32 provided, calculated;
82 
83 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
84 	    cpu_to_le32(EXT4_OS_LINUX) ||
85 	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
86 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
87 		return 1;
88 
89 	provided = le16_to_cpu(raw->i_checksum_lo);
90 	calculated = ext4_inode_csum(inode, raw, ei);
91 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94 	else
95 		calculated &= 0xFFFF;
96 
97 	return provided == calculated;
98 }
99 
100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101 				struct ext4_inode_info *ei)
102 {
103 	__u32 csum;
104 
105 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106 	    cpu_to_le32(EXT4_OS_LINUX) ||
107 	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
108 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
109 		return;
110 
111 	csum = ext4_inode_csum(inode, raw, ei);
112 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
113 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
114 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
115 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
116 }
117 
118 static inline int ext4_begin_ordered_truncate(struct inode *inode,
119 					      loff_t new_size)
120 {
121 	trace_ext4_begin_ordered_truncate(inode, new_size);
122 	/*
123 	 * If jinode is zero, then we never opened the file for
124 	 * writing, so there's no need to call
125 	 * jbd2_journal_begin_ordered_truncate() since there's no
126 	 * outstanding writes we need to flush.
127 	 */
128 	if (!EXT4_I(inode)->jinode)
129 		return 0;
130 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
131 						   EXT4_I(inode)->jinode,
132 						   new_size);
133 }
134 
135 static void ext4_invalidatepage(struct page *page, unsigned int offset,
136 				unsigned int length);
137 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
138 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
139 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
140 				  int pextents);
141 
142 /*
143  * Test whether an inode is a fast symlink.
144  */
145 static int ext4_inode_is_fast_symlink(struct inode *inode)
146 {
147 	int ea_blocks = EXT4_I(inode)->i_file_acl ?
148 		(inode->i_sb->s_blocksize >> 9) : 0;
149 
150 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151 }
152 
153 /*
154  * Restart the transaction associated with *handle.  This does a commit,
155  * so before we call here everything must be consistently dirtied against
156  * this transaction.
157  */
158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
159 				 int nblocks)
160 {
161 	int ret;
162 
163 	/*
164 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
165 	 * moment, get_block can be called only for blocks inside i_size since
166 	 * page cache has been already dropped and writes are blocked by
167 	 * i_mutex. So we can safely drop the i_data_sem here.
168 	 */
169 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
170 	jbd_debug(2, "restarting handle %p\n", handle);
171 	up_write(&EXT4_I(inode)->i_data_sem);
172 	ret = ext4_journal_restart(handle, nblocks);
173 	down_write(&EXT4_I(inode)->i_data_sem);
174 	ext4_discard_preallocations(inode);
175 
176 	return ret;
177 }
178 
179 /*
180  * Called at the last iput() if i_nlink is zero.
181  */
182 void ext4_evict_inode(struct inode *inode)
183 {
184 	handle_t *handle;
185 	int err;
186 
187 	trace_ext4_evict_inode(inode);
188 
189 	if (inode->i_nlink) {
190 		/*
191 		 * When journalling data dirty buffers are tracked only in the
192 		 * journal. So although mm thinks everything is clean and
193 		 * ready for reaping the inode might still have some pages to
194 		 * write in the running transaction or waiting to be
195 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
196 		 * (via truncate_inode_pages()) to discard these buffers can
197 		 * cause data loss. Also even if we did not discard these
198 		 * buffers, we would have no way to find them after the inode
199 		 * is reaped and thus user could see stale data if he tries to
200 		 * read them before the transaction is checkpointed. So be
201 		 * careful and force everything to disk here... We use
202 		 * ei->i_datasync_tid to store the newest transaction
203 		 * containing inode's data.
204 		 *
205 		 * Note that directories do not have this problem because they
206 		 * don't use page cache.
207 		 */
208 		if (ext4_should_journal_data(inode) &&
209 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210 		    inode->i_ino != EXT4_JOURNAL_INO) {
211 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213 
214 			jbd2_complete_transaction(journal, commit_tid);
215 			filemap_write_and_wait(&inode->i_data);
216 		}
217 		truncate_inode_pages(&inode->i_data, 0);
218 
219 		WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
220 		goto no_delete;
221 	}
222 
223 	if (!is_bad_inode(inode))
224 		dquot_initialize(inode);
225 
226 	if (ext4_should_order_data(inode))
227 		ext4_begin_ordered_truncate(inode, 0);
228 	truncate_inode_pages(&inode->i_data, 0);
229 
230 	WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
231 	if (is_bad_inode(inode))
232 		goto no_delete;
233 
234 	/*
235 	 * Protect us against freezing - iput() caller didn't have to have any
236 	 * protection against it
237 	 */
238 	sb_start_intwrite(inode->i_sb);
239 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
240 				    ext4_blocks_for_truncate(inode)+3);
241 	if (IS_ERR(handle)) {
242 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
243 		/*
244 		 * If we're going to skip the normal cleanup, we still need to
245 		 * make sure that the in-core orphan linked list is properly
246 		 * cleaned up.
247 		 */
248 		ext4_orphan_del(NULL, inode);
249 		sb_end_intwrite(inode->i_sb);
250 		goto no_delete;
251 	}
252 
253 	if (IS_SYNC(inode))
254 		ext4_handle_sync(handle);
255 	inode->i_size = 0;
256 	err = ext4_mark_inode_dirty(handle, inode);
257 	if (err) {
258 		ext4_warning(inode->i_sb,
259 			     "couldn't mark inode dirty (err %d)", err);
260 		goto stop_handle;
261 	}
262 	if (inode->i_blocks)
263 		ext4_truncate(inode);
264 
265 	/*
266 	 * ext4_ext_truncate() doesn't reserve any slop when it
267 	 * restarts journal transactions; therefore there may not be
268 	 * enough credits left in the handle to remove the inode from
269 	 * the orphan list and set the dtime field.
270 	 */
271 	if (!ext4_handle_has_enough_credits(handle, 3)) {
272 		err = ext4_journal_extend(handle, 3);
273 		if (err > 0)
274 			err = ext4_journal_restart(handle, 3);
275 		if (err != 0) {
276 			ext4_warning(inode->i_sb,
277 				     "couldn't extend journal (err %d)", err);
278 		stop_handle:
279 			ext4_journal_stop(handle);
280 			ext4_orphan_del(NULL, inode);
281 			sb_end_intwrite(inode->i_sb);
282 			goto no_delete;
283 		}
284 	}
285 
286 	/*
287 	 * Kill off the orphan record which ext4_truncate created.
288 	 * AKPM: I think this can be inside the above `if'.
289 	 * Note that ext4_orphan_del() has to be able to cope with the
290 	 * deletion of a non-existent orphan - this is because we don't
291 	 * know if ext4_truncate() actually created an orphan record.
292 	 * (Well, we could do this if we need to, but heck - it works)
293 	 */
294 	ext4_orphan_del(handle, inode);
295 	EXT4_I(inode)->i_dtime	= get_seconds();
296 
297 	/*
298 	 * One subtle ordering requirement: if anything has gone wrong
299 	 * (transaction abort, IO errors, whatever), then we can still
300 	 * do these next steps (the fs will already have been marked as
301 	 * having errors), but we can't free the inode if the mark_dirty
302 	 * fails.
303 	 */
304 	if (ext4_mark_inode_dirty(handle, inode))
305 		/* If that failed, just do the required in-core inode clear. */
306 		ext4_clear_inode(inode);
307 	else
308 		ext4_free_inode(handle, inode);
309 	ext4_journal_stop(handle);
310 	sb_end_intwrite(inode->i_sb);
311 	return;
312 no_delete:
313 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
314 }
315 
316 #ifdef CONFIG_QUOTA
317 qsize_t *ext4_get_reserved_space(struct inode *inode)
318 {
319 	return &EXT4_I(inode)->i_reserved_quota;
320 }
321 #endif
322 
323 /*
324  * Calculate the number of metadata blocks need to reserve
325  * to allocate a block located at @lblock
326  */
327 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
328 {
329 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
330 		return ext4_ext_calc_metadata_amount(inode, lblock);
331 
332 	return ext4_ind_calc_metadata_amount(inode, lblock);
333 }
334 
335 /*
336  * Called with i_data_sem down, which is important since we can call
337  * ext4_discard_preallocations() from here.
338  */
339 void ext4_da_update_reserve_space(struct inode *inode,
340 					int used, int quota_claim)
341 {
342 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
343 	struct ext4_inode_info *ei = EXT4_I(inode);
344 
345 	spin_lock(&ei->i_block_reservation_lock);
346 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
347 	if (unlikely(used > ei->i_reserved_data_blocks)) {
348 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
349 			 "with only %d reserved data blocks",
350 			 __func__, inode->i_ino, used,
351 			 ei->i_reserved_data_blocks);
352 		WARN_ON(1);
353 		used = ei->i_reserved_data_blocks;
354 	}
355 
356 	if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
357 		ext4_warning(inode->i_sb, "ino %lu, allocated %d "
358 			"with only %d reserved metadata blocks "
359 			"(releasing %d blocks with reserved %d data blocks)",
360 			inode->i_ino, ei->i_allocated_meta_blocks,
361 			     ei->i_reserved_meta_blocks, used,
362 			     ei->i_reserved_data_blocks);
363 		WARN_ON(1);
364 		ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
365 	}
366 
367 	/* Update per-inode reservations */
368 	ei->i_reserved_data_blocks -= used;
369 	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
370 	percpu_counter_sub(&sbi->s_dirtyclusters_counter,
371 			   used + ei->i_allocated_meta_blocks);
372 	ei->i_allocated_meta_blocks = 0;
373 
374 	if (ei->i_reserved_data_blocks == 0) {
375 		/*
376 		 * We can release all of the reserved metadata blocks
377 		 * only when we have written all of the delayed
378 		 * allocation blocks.
379 		 */
380 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
381 				   ei->i_reserved_meta_blocks);
382 		ei->i_reserved_meta_blocks = 0;
383 		ei->i_da_metadata_calc_len = 0;
384 	}
385 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
386 
387 	/* Update quota subsystem for data blocks */
388 	if (quota_claim)
389 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
390 	else {
391 		/*
392 		 * We did fallocate with an offset that is already delayed
393 		 * allocated. So on delayed allocated writeback we should
394 		 * not re-claim the quota for fallocated blocks.
395 		 */
396 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
397 	}
398 
399 	/*
400 	 * If we have done all the pending block allocations and if
401 	 * there aren't any writers on the inode, we can discard the
402 	 * inode's preallocations.
403 	 */
404 	if ((ei->i_reserved_data_blocks == 0) &&
405 	    (atomic_read(&inode->i_writecount) == 0))
406 		ext4_discard_preallocations(inode);
407 }
408 
409 static int __check_block_validity(struct inode *inode, const char *func,
410 				unsigned int line,
411 				struct ext4_map_blocks *map)
412 {
413 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
414 				   map->m_len)) {
415 		ext4_error_inode(inode, func, line, map->m_pblk,
416 				 "lblock %lu mapped to illegal pblock "
417 				 "(length %d)", (unsigned long) map->m_lblk,
418 				 map->m_len);
419 		return -EIO;
420 	}
421 	return 0;
422 }
423 
424 #define check_block_validity(inode, map)	\
425 	__check_block_validity((inode), __func__, __LINE__, (map))
426 
427 #ifdef ES_AGGRESSIVE_TEST
428 static void ext4_map_blocks_es_recheck(handle_t *handle,
429 				       struct inode *inode,
430 				       struct ext4_map_blocks *es_map,
431 				       struct ext4_map_blocks *map,
432 				       int flags)
433 {
434 	int retval;
435 
436 	map->m_flags = 0;
437 	/*
438 	 * There is a race window that the result is not the same.
439 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
440 	 * is that we lookup a block mapping in extent status tree with
441 	 * out taking i_data_sem.  So at the time the unwritten extent
442 	 * could be converted.
443 	 */
444 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
445 		down_read((&EXT4_I(inode)->i_data_sem));
446 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
447 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
448 					     EXT4_GET_BLOCKS_KEEP_SIZE);
449 	} else {
450 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
451 					     EXT4_GET_BLOCKS_KEEP_SIZE);
452 	}
453 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
454 		up_read((&EXT4_I(inode)->i_data_sem));
455 	/*
456 	 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
457 	 * because it shouldn't be marked in es_map->m_flags.
458 	 */
459 	map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
460 
461 	/*
462 	 * We don't check m_len because extent will be collpased in status
463 	 * tree.  So the m_len might not equal.
464 	 */
465 	if (es_map->m_lblk != map->m_lblk ||
466 	    es_map->m_flags != map->m_flags ||
467 	    es_map->m_pblk != map->m_pblk) {
468 		printk("ES cache assertion failed for inode: %lu "
469 		       "es_cached ex [%d/%d/%llu/%x] != "
470 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
471 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
472 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
473 		       map->m_len, map->m_pblk, map->m_flags,
474 		       retval, flags);
475 	}
476 }
477 #endif /* ES_AGGRESSIVE_TEST */
478 
479 /*
480  * The ext4_map_blocks() function tries to look up the requested blocks,
481  * and returns if the blocks are already mapped.
482  *
483  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
484  * and store the allocated blocks in the result buffer head and mark it
485  * mapped.
486  *
487  * If file type is extents based, it will call ext4_ext_map_blocks(),
488  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
489  * based files
490  *
491  * On success, it returns the number of blocks being mapped or allocate.
492  * if create==0 and the blocks are pre-allocated and uninitialized block,
493  * the result buffer head is unmapped. If the create ==1, it will make sure
494  * the buffer head is mapped.
495  *
496  * It returns 0 if plain look up failed (blocks have not been allocated), in
497  * that case, buffer head is unmapped
498  *
499  * It returns the error in case of allocation failure.
500  */
501 int ext4_map_blocks(handle_t *handle, struct inode *inode,
502 		    struct ext4_map_blocks *map, int flags)
503 {
504 	struct extent_status es;
505 	int retval;
506 #ifdef ES_AGGRESSIVE_TEST
507 	struct ext4_map_blocks orig_map;
508 
509 	memcpy(&orig_map, map, sizeof(*map));
510 #endif
511 
512 	map->m_flags = 0;
513 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
514 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
515 		  (unsigned long) map->m_lblk);
516 
517 	/* Lookup extent status tree firstly */
518 	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
519 		ext4_es_lru_add(inode);
520 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
521 			map->m_pblk = ext4_es_pblock(&es) +
522 					map->m_lblk - es.es_lblk;
523 			map->m_flags |= ext4_es_is_written(&es) ?
524 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
525 			retval = es.es_len - (map->m_lblk - es.es_lblk);
526 			if (retval > map->m_len)
527 				retval = map->m_len;
528 			map->m_len = retval;
529 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
530 			retval = 0;
531 		} else {
532 			BUG_ON(1);
533 		}
534 #ifdef ES_AGGRESSIVE_TEST
535 		ext4_map_blocks_es_recheck(handle, inode, map,
536 					   &orig_map, flags);
537 #endif
538 		goto found;
539 	}
540 
541 	/*
542 	 * Try to see if we can get the block without requesting a new
543 	 * file system block.
544 	 */
545 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
546 		down_read((&EXT4_I(inode)->i_data_sem));
547 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
548 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
549 					     EXT4_GET_BLOCKS_KEEP_SIZE);
550 	} else {
551 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
552 					     EXT4_GET_BLOCKS_KEEP_SIZE);
553 	}
554 	if (retval > 0) {
555 		int ret;
556 		unsigned long long status;
557 
558 #ifdef ES_AGGRESSIVE_TEST
559 		if (retval != map->m_len) {
560 			printk("ES len assertion failed for inode: %lu "
561 			       "retval %d != map->m_len %d "
562 			       "in %s (lookup)\n", inode->i_ino, retval,
563 			       map->m_len, __func__);
564 		}
565 #endif
566 
567 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
568 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
569 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
570 		    ext4_find_delalloc_range(inode, map->m_lblk,
571 					     map->m_lblk + map->m_len - 1))
572 			status |= EXTENT_STATUS_DELAYED;
573 		ret = ext4_es_insert_extent(inode, map->m_lblk,
574 					    map->m_len, map->m_pblk, status);
575 		if (ret < 0)
576 			retval = ret;
577 	}
578 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
579 		up_read((&EXT4_I(inode)->i_data_sem));
580 
581 found:
582 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
583 		int ret = check_block_validity(inode, map);
584 		if (ret != 0)
585 			return ret;
586 	}
587 
588 	/* If it is only a block(s) look up */
589 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
590 		return retval;
591 
592 	/*
593 	 * Returns if the blocks have already allocated
594 	 *
595 	 * Note that if blocks have been preallocated
596 	 * ext4_ext_get_block() returns the create = 0
597 	 * with buffer head unmapped.
598 	 */
599 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
600 		return retval;
601 
602 	/*
603 	 * Here we clear m_flags because after allocating an new extent,
604 	 * it will be set again.
605 	 */
606 	map->m_flags &= ~EXT4_MAP_FLAGS;
607 
608 	/*
609 	 * New blocks allocate and/or writing to uninitialized extent
610 	 * will possibly result in updating i_data, so we take
611 	 * the write lock of i_data_sem, and call get_blocks()
612 	 * with create == 1 flag.
613 	 */
614 	down_write((&EXT4_I(inode)->i_data_sem));
615 
616 	/*
617 	 * if the caller is from delayed allocation writeout path
618 	 * we have already reserved fs blocks for allocation
619 	 * let the underlying get_block() function know to
620 	 * avoid double accounting
621 	 */
622 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
623 		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
624 	/*
625 	 * We need to check for EXT4 here because migrate
626 	 * could have changed the inode type in between
627 	 */
628 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
629 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
630 	} else {
631 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
632 
633 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
634 			/*
635 			 * We allocated new blocks which will result in
636 			 * i_data's format changing.  Force the migrate
637 			 * to fail by clearing migrate flags
638 			 */
639 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
640 		}
641 
642 		/*
643 		 * Update reserved blocks/metadata blocks after successful
644 		 * block allocation which had been deferred till now. We don't
645 		 * support fallocate for non extent files. So we can update
646 		 * reserve space here.
647 		 */
648 		if ((retval > 0) &&
649 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
650 			ext4_da_update_reserve_space(inode, retval, 1);
651 	}
652 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
653 		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
654 
655 	if (retval > 0) {
656 		int ret;
657 		unsigned long long status;
658 
659 #ifdef ES_AGGRESSIVE_TEST
660 		if (retval != map->m_len) {
661 			printk("ES len assertion failed for inode: %lu "
662 			       "retval %d != map->m_len %d "
663 			       "in %s (allocation)\n", inode->i_ino, retval,
664 			       map->m_len, __func__);
665 		}
666 #endif
667 
668 		/*
669 		 * If the extent has been zeroed out, we don't need to update
670 		 * extent status tree.
671 		 */
672 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
673 		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
674 			if (ext4_es_is_written(&es))
675 				goto has_zeroout;
676 		}
677 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
678 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
679 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
680 		    ext4_find_delalloc_range(inode, map->m_lblk,
681 					     map->m_lblk + map->m_len - 1))
682 			status |= EXTENT_STATUS_DELAYED;
683 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
684 					    map->m_pblk, status);
685 		if (ret < 0)
686 			retval = ret;
687 	}
688 
689 has_zeroout:
690 	up_write((&EXT4_I(inode)->i_data_sem));
691 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
692 		int ret = check_block_validity(inode, map);
693 		if (ret != 0)
694 			return ret;
695 	}
696 	return retval;
697 }
698 
699 /* Maximum number of blocks we map for direct IO at once. */
700 #define DIO_MAX_BLOCKS 4096
701 
702 static int _ext4_get_block(struct inode *inode, sector_t iblock,
703 			   struct buffer_head *bh, int flags)
704 {
705 	handle_t *handle = ext4_journal_current_handle();
706 	struct ext4_map_blocks map;
707 	int ret = 0, started = 0;
708 	int dio_credits;
709 
710 	if (ext4_has_inline_data(inode))
711 		return -ERANGE;
712 
713 	map.m_lblk = iblock;
714 	map.m_len = bh->b_size >> inode->i_blkbits;
715 
716 	if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
717 		/* Direct IO write... */
718 		if (map.m_len > DIO_MAX_BLOCKS)
719 			map.m_len = DIO_MAX_BLOCKS;
720 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
721 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
722 					    dio_credits);
723 		if (IS_ERR(handle)) {
724 			ret = PTR_ERR(handle);
725 			return ret;
726 		}
727 		started = 1;
728 	}
729 
730 	ret = ext4_map_blocks(handle, inode, &map, flags);
731 	if (ret > 0) {
732 		map_bh(bh, inode->i_sb, map.m_pblk);
733 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
734 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
735 		ret = 0;
736 	}
737 	if (started)
738 		ext4_journal_stop(handle);
739 	return ret;
740 }
741 
742 int ext4_get_block(struct inode *inode, sector_t iblock,
743 		   struct buffer_head *bh, int create)
744 {
745 	return _ext4_get_block(inode, iblock, bh,
746 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
747 }
748 
749 /*
750  * `handle' can be NULL if create is zero
751  */
752 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
753 				ext4_lblk_t block, int create, int *errp)
754 {
755 	struct ext4_map_blocks map;
756 	struct buffer_head *bh;
757 	int fatal = 0, err;
758 
759 	J_ASSERT(handle != NULL || create == 0);
760 
761 	map.m_lblk = block;
762 	map.m_len = 1;
763 	err = ext4_map_blocks(handle, inode, &map,
764 			      create ? EXT4_GET_BLOCKS_CREATE : 0);
765 
766 	/* ensure we send some value back into *errp */
767 	*errp = 0;
768 
769 	if (create && err == 0)
770 		err = -ENOSPC;	/* should never happen */
771 	if (err < 0)
772 		*errp = err;
773 	if (err <= 0)
774 		return NULL;
775 
776 	bh = sb_getblk(inode->i_sb, map.m_pblk);
777 	if (unlikely(!bh)) {
778 		*errp = -ENOMEM;
779 		return NULL;
780 	}
781 	if (map.m_flags & EXT4_MAP_NEW) {
782 		J_ASSERT(create != 0);
783 		J_ASSERT(handle != NULL);
784 
785 		/*
786 		 * Now that we do not always journal data, we should
787 		 * keep in mind whether this should always journal the
788 		 * new buffer as metadata.  For now, regular file
789 		 * writes use ext4_get_block instead, so it's not a
790 		 * problem.
791 		 */
792 		lock_buffer(bh);
793 		BUFFER_TRACE(bh, "call get_create_access");
794 		fatal = ext4_journal_get_create_access(handle, bh);
795 		if (!fatal && !buffer_uptodate(bh)) {
796 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
797 			set_buffer_uptodate(bh);
798 		}
799 		unlock_buffer(bh);
800 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
801 		err = ext4_handle_dirty_metadata(handle, inode, bh);
802 		if (!fatal)
803 			fatal = err;
804 	} else {
805 		BUFFER_TRACE(bh, "not a new buffer");
806 	}
807 	if (fatal) {
808 		*errp = fatal;
809 		brelse(bh);
810 		bh = NULL;
811 	}
812 	return bh;
813 }
814 
815 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
816 			       ext4_lblk_t block, int create, int *err)
817 {
818 	struct buffer_head *bh;
819 
820 	bh = ext4_getblk(handle, inode, block, create, err);
821 	if (!bh)
822 		return bh;
823 	if (buffer_uptodate(bh))
824 		return bh;
825 	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
826 	wait_on_buffer(bh);
827 	if (buffer_uptodate(bh))
828 		return bh;
829 	put_bh(bh);
830 	*err = -EIO;
831 	return NULL;
832 }
833 
834 int ext4_walk_page_buffers(handle_t *handle,
835 			   struct buffer_head *head,
836 			   unsigned from,
837 			   unsigned to,
838 			   int *partial,
839 			   int (*fn)(handle_t *handle,
840 				     struct buffer_head *bh))
841 {
842 	struct buffer_head *bh;
843 	unsigned block_start, block_end;
844 	unsigned blocksize = head->b_size;
845 	int err, ret = 0;
846 	struct buffer_head *next;
847 
848 	for (bh = head, block_start = 0;
849 	     ret == 0 && (bh != head || !block_start);
850 	     block_start = block_end, bh = next) {
851 		next = bh->b_this_page;
852 		block_end = block_start + blocksize;
853 		if (block_end <= from || block_start >= to) {
854 			if (partial && !buffer_uptodate(bh))
855 				*partial = 1;
856 			continue;
857 		}
858 		err = (*fn)(handle, bh);
859 		if (!ret)
860 			ret = err;
861 	}
862 	return ret;
863 }
864 
865 /*
866  * To preserve ordering, it is essential that the hole instantiation and
867  * the data write be encapsulated in a single transaction.  We cannot
868  * close off a transaction and start a new one between the ext4_get_block()
869  * and the commit_write().  So doing the jbd2_journal_start at the start of
870  * prepare_write() is the right place.
871  *
872  * Also, this function can nest inside ext4_writepage().  In that case, we
873  * *know* that ext4_writepage() has generated enough buffer credits to do the
874  * whole page.  So we won't block on the journal in that case, which is good,
875  * because the caller may be PF_MEMALLOC.
876  *
877  * By accident, ext4 can be reentered when a transaction is open via
878  * quota file writes.  If we were to commit the transaction while thus
879  * reentered, there can be a deadlock - we would be holding a quota
880  * lock, and the commit would never complete if another thread had a
881  * transaction open and was blocking on the quota lock - a ranking
882  * violation.
883  *
884  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
885  * will _not_ run commit under these circumstances because handle->h_ref
886  * is elevated.  We'll still have enough credits for the tiny quotafile
887  * write.
888  */
889 int do_journal_get_write_access(handle_t *handle,
890 				struct buffer_head *bh)
891 {
892 	int dirty = buffer_dirty(bh);
893 	int ret;
894 
895 	if (!buffer_mapped(bh) || buffer_freed(bh))
896 		return 0;
897 	/*
898 	 * __block_write_begin() could have dirtied some buffers. Clean
899 	 * the dirty bit as jbd2_journal_get_write_access() could complain
900 	 * otherwise about fs integrity issues. Setting of the dirty bit
901 	 * by __block_write_begin() isn't a real problem here as we clear
902 	 * the bit before releasing a page lock and thus writeback cannot
903 	 * ever write the buffer.
904 	 */
905 	if (dirty)
906 		clear_buffer_dirty(bh);
907 	ret = ext4_journal_get_write_access(handle, bh);
908 	if (!ret && dirty)
909 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
910 	return ret;
911 }
912 
913 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
914 		   struct buffer_head *bh_result, int create);
915 static int ext4_write_begin(struct file *file, struct address_space *mapping,
916 			    loff_t pos, unsigned len, unsigned flags,
917 			    struct page **pagep, void **fsdata)
918 {
919 	struct inode *inode = mapping->host;
920 	int ret, needed_blocks;
921 	handle_t *handle;
922 	int retries = 0;
923 	struct page *page;
924 	pgoff_t index;
925 	unsigned from, to;
926 
927 	trace_ext4_write_begin(inode, pos, len, flags);
928 	/*
929 	 * Reserve one block more for addition to orphan list in case
930 	 * we allocate blocks but write fails for some reason
931 	 */
932 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
933 	index = pos >> PAGE_CACHE_SHIFT;
934 	from = pos & (PAGE_CACHE_SIZE - 1);
935 	to = from + len;
936 
937 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
938 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
939 						    flags, pagep);
940 		if (ret < 0)
941 			return ret;
942 		if (ret == 1)
943 			return 0;
944 	}
945 
946 	/*
947 	 * grab_cache_page_write_begin() can take a long time if the
948 	 * system is thrashing due to memory pressure, or if the page
949 	 * is being written back.  So grab it first before we start
950 	 * the transaction handle.  This also allows us to allocate
951 	 * the page (if needed) without using GFP_NOFS.
952 	 */
953 retry_grab:
954 	page = grab_cache_page_write_begin(mapping, index, flags);
955 	if (!page)
956 		return -ENOMEM;
957 	unlock_page(page);
958 
959 retry_journal:
960 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
961 	if (IS_ERR(handle)) {
962 		page_cache_release(page);
963 		return PTR_ERR(handle);
964 	}
965 
966 	lock_page(page);
967 	if (page->mapping != mapping) {
968 		/* The page got truncated from under us */
969 		unlock_page(page);
970 		page_cache_release(page);
971 		ext4_journal_stop(handle);
972 		goto retry_grab;
973 	}
974 	wait_on_page_writeback(page);
975 
976 	if (ext4_should_dioread_nolock(inode))
977 		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
978 	else
979 		ret = __block_write_begin(page, pos, len, ext4_get_block);
980 
981 	if (!ret && ext4_should_journal_data(inode)) {
982 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
983 					     from, to, NULL,
984 					     do_journal_get_write_access);
985 	}
986 
987 	if (ret) {
988 		unlock_page(page);
989 		/*
990 		 * __block_write_begin may have instantiated a few blocks
991 		 * outside i_size.  Trim these off again. Don't need
992 		 * i_size_read because we hold i_mutex.
993 		 *
994 		 * Add inode to orphan list in case we crash before
995 		 * truncate finishes
996 		 */
997 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
998 			ext4_orphan_add(handle, inode);
999 
1000 		ext4_journal_stop(handle);
1001 		if (pos + len > inode->i_size) {
1002 			ext4_truncate_failed_write(inode);
1003 			/*
1004 			 * If truncate failed early the inode might
1005 			 * still be on the orphan list; we need to
1006 			 * make sure the inode is removed from the
1007 			 * orphan list in that case.
1008 			 */
1009 			if (inode->i_nlink)
1010 				ext4_orphan_del(NULL, inode);
1011 		}
1012 
1013 		if (ret == -ENOSPC &&
1014 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1015 			goto retry_journal;
1016 		page_cache_release(page);
1017 		return ret;
1018 	}
1019 	*pagep = page;
1020 	return ret;
1021 }
1022 
1023 /* For write_end() in data=journal mode */
1024 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1025 {
1026 	int ret;
1027 	if (!buffer_mapped(bh) || buffer_freed(bh))
1028 		return 0;
1029 	set_buffer_uptodate(bh);
1030 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1031 	clear_buffer_meta(bh);
1032 	clear_buffer_prio(bh);
1033 	return ret;
1034 }
1035 
1036 /*
1037  * We need to pick up the new inode size which generic_commit_write gave us
1038  * `file' can be NULL - eg, when called from page_symlink().
1039  *
1040  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1041  * buffers are managed internally.
1042  */
1043 static int ext4_write_end(struct file *file,
1044 			  struct address_space *mapping,
1045 			  loff_t pos, unsigned len, unsigned copied,
1046 			  struct page *page, void *fsdata)
1047 {
1048 	handle_t *handle = ext4_journal_current_handle();
1049 	struct inode *inode = mapping->host;
1050 	int ret = 0, ret2;
1051 	int i_size_changed = 0;
1052 
1053 	trace_ext4_write_end(inode, pos, len, copied);
1054 	if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1055 		ret = ext4_jbd2_file_inode(handle, inode);
1056 		if (ret) {
1057 			unlock_page(page);
1058 			page_cache_release(page);
1059 			goto errout;
1060 		}
1061 	}
1062 
1063 	if (ext4_has_inline_data(inode)) {
1064 		ret = ext4_write_inline_data_end(inode, pos, len,
1065 						 copied, page);
1066 		if (ret < 0)
1067 			goto errout;
1068 		copied = ret;
1069 	} else
1070 		copied = block_write_end(file, mapping, pos,
1071 					 len, copied, page, fsdata);
1072 
1073 	/*
1074 	 * No need to use i_size_read() here, the i_size
1075 	 * cannot change under us because we hole i_mutex.
1076 	 *
1077 	 * But it's important to update i_size while still holding page lock:
1078 	 * page writeout could otherwise come in and zero beyond i_size.
1079 	 */
1080 	if (pos + copied > inode->i_size) {
1081 		i_size_write(inode, pos + copied);
1082 		i_size_changed = 1;
1083 	}
1084 
1085 	if (pos + copied > EXT4_I(inode)->i_disksize) {
1086 		/* We need to mark inode dirty even if
1087 		 * new_i_size is less that inode->i_size
1088 		 * but greater than i_disksize. (hint delalloc)
1089 		 */
1090 		ext4_update_i_disksize(inode, (pos + copied));
1091 		i_size_changed = 1;
1092 	}
1093 	unlock_page(page);
1094 	page_cache_release(page);
1095 
1096 	/*
1097 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1098 	 * makes the holding time of page lock longer. Second, it forces lock
1099 	 * ordering of page lock and transaction start for journaling
1100 	 * filesystems.
1101 	 */
1102 	if (i_size_changed)
1103 		ext4_mark_inode_dirty(handle, inode);
1104 
1105 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1106 		/* if we have allocated more blocks and copied
1107 		 * less. We will have blocks allocated outside
1108 		 * inode->i_size. So truncate them
1109 		 */
1110 		ext4_orphan_add(handle, inode);
1111 errout:
1112 	ret2 = ext4_journal_stop(handle);
1113 	if (!ret)
1114 		ret = ret2;
1115 
1116 	if (pos + len > inode->i_size) {
1117 		ext4_truncate_failed_write(inode);
1118 		/*
1119 		 * If truncate failed early the inode might still be
1120 		 * on the orphan list; we need to make sure the inode
1121 		 * is removed from the orphan list in that case.
1122 		 */
1123 		if (inode->i_nlink)
1124 			ext4_orphan_del(NULL, inode);
1125 	}
1126 
1127 	return ret ? ret : copied;
1128 }
1129 
1130 static int ext4_journalled_write_end(struct file *file,
1131 				     struct address_space *mapping,
1132 				     loff_t pos, unsigned len, unsigned copied,
1133 				     struct page *page, void *fsdata)
1134 {
1135 	handle_t *handle = ext4_journal_current_handle();
1136 	struct inode *inode = mapping->host;
1137 	int ret = 0, ret2;
1138 	int partial = 0;
1139 	unsigned from, to;
1140 	loff_t new_i_size;
1141 
1142 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1143 	from = pos & (PAGE_CACHE_SIZE - 1);
1144 	to = from + len;
1145 
1146 	BUG_ON(!ext4_handle_valid(handle));
1147 
1148 	if (ext4_has_inline_data(inode))
1149 		copied = ext4_write_inline_data_end(inode, pos, len,
1150 						    copied, page);
1151 	else {
1152 		if (copied < len) {
1153 			if (!PageUptodate(page))
1154 				copied = 0;
1155 			page_zero_new_buffers(page, from+copied, to);
1156 		}
1157 
1158 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1159 					     to, &partial, write_end_fn);
1160 		if (!partial)
1161 			SetPageUptodate(page);
1162 	}
1163 	new_i_size = pos + copied;
1164 	if (new_i_size > inode->i_size)
1165 		i_size_write(inode, pos+copied);
1166 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1167 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1168 	if (new_i_size > EXT4_I(inode)->i_disksize) {
1169 		ext4_update_i_disksize(inode, new_i_size);
1170 		ret2 = ext4_mark_inode_dirty(handle, inode);
1171 		if (!ret)
1172 			ret = ret2;
1173 	}
1174 
1175 	unlock_page(page);
1176 	page_cache_release(page);
1177 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1178 		/* if we have allocated more blocks and copied
1179 		 * less. We will have blocks allocated outside
1180 		 * inode->i_size. So truncate them
1181 		 */
1182 		ext4_orphan_add(handle, inode);
1183 
1184 	ret2 = ext4_journal_stop(handle);
1185 	if (!ret)
1186 		ret = ret2;
1187 	if (pos + len > inode->i_size) {
1188 		ext4_truncate_failed_write(inode);
1189 		/*
1190 		 * If truncate failed early the inode might still be
1191 		 * on the orphan list; we need to make sure the inode
1192 		 * is removed from the orphan list in that case.
1193 		 */
1194 		if (inode->i_nlink)
1195 			ext4_orphan_del(NULL, inode);
1196 	}
1197 
1198 	return ret ? ret : copied;
1199 }
1200 
1201 /*
1202  * Reserve a metadata for a single block located at lblock
1203  */
1204 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1205 {
1206 	int retries = 0;
1207 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1208 	struct ext4_inode_info *ei = EXT4_I(inode);
1209 	unsigned int md_needed;
1210 	ext4_lblk_t save_last_lblock;
1211 	int save_len;
1212 
1213 	/*
1214 	 * recalculate the amount of metadata blocks to reserve
1215 	 * in order to allocate nrblocks
1216 	 * worse case is one extent per block
1217 	 */
1218 repeat:
1219 	spin_lock(&ei->i_block_reservation_lock);
1220 	/*
1221 	 * ext4_calc_metadata_amount() has side effects, which we have
1222 	 * to be prepared undo if we fail to claim space.
1223 	 */
1224 	save_len = ei->i_da_metadata_calc_len;
1225 	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1226 	md_needed = EXT4_NUM_B2C(sbi,
1227 				 ext4_calc_metadata_amount(inode, lblock));
1228 	trace_ext4_da_reserve_space(inode, md_needed);
1229 
1230 	/*
1231 	 * We do still charge estimated metadata to the sb though;
1232 	 * we cannot afford to run out of free blocks.
1233 	 */
1234 	if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1235 		ei->i_da_metadata_calc_len = save_len;
1236 		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1237 		spin_unlock(&ei->i_block_reservation_lock);
1238 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1239 			cond_resched();
1240 			goto repeat;
1241 		}
1242 		return -ENOSPC;
1243 	}
1244 	ei->i_reserved_meta_blocks += md_needed;
1245 	spin_unlock(&ei->i_block_reservation_lock);
1246 
1247 	return 0;       /* success */
1248 }
1249 
1250 /*
1251  * Reserve a single cluster located at lblock
1252  */
1253 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1254 {
1255 	int retries = 0;
1256 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1257 	struct ext4_inode_info *ei = EXT4_I(inode);
1258 	unsigned int md_needed;
1259 	int ret;
1260 	ext4_lblk_t save_last_lblock;
1261 	int save_len;
1262 
1263 	/*
1264 	 * We will charge metadata quota at writeout time; this saves
1265 	 * us from metadata over-estimation, though we may go over by
1266 	 * a small amount in the end.  Here we just reserve for data.
1267 	 */
1268 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1269 	if (ret)
1270 		return ret;
1271 
1272 	/*
1273 	 * recalculate the amount of metadata blocks to reserve
1274 	 * in order to allocate nrblocks
1275 	 * worse case is one extent per block
1276 	 */
1277 repeat:
1278 	spin_lock(&ei->i_block_reservation_lock);
1279 	/*
1280 	 * ext4_calc_metadata_amount() has side effects, which we have
1281 	 * to be prepared undo if we fail to claim space.
1282 	 */
1283 	save_len = ei->i_da_metadata_calc_len;
1284 	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1285 	md_needed = EXT4_NUM_B2C(sbi,
1286 				 ext4_calc_metadata_amount(inode, lblock));
1287 	trace_ext4_da_reserve_space(inode, md_needed);
1288 
1289 	/*
1290 	 * We do still charge estimated metadata to the sb though;
1291 	 * we cannot afford to run out of free blocks.
1292 	 */
1293 	if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1294 		ei->i_da_metadata_calc_len = save_len;
1295 		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1296 		spin_unlock(&ei->i_block_reservation_lock);
1297 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1298 			cond_resched();
1299 			goto repeat;
1300 		}
1301 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1302 		return -ENOSPC;
1303 	}
1304 	ei->i_reserved_data_blocks++;
1305 	ei->i_reserved_meta_blocks += md_needed;
1306 	spin_unlock(&ei->i_block_reservation_lock);
1307 
1308 	return 0;       /* success */
1309 }
1310 
1311 static void ext4_da_release_space(struct inode *inode, int to_free)
1312 {
1313 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1314 	struct ext4_inode_info *ei = EXT4_I(inode);
1315 
1316 	if (!to_free)
1317 		return;		/* Nothing to release, exit */
1318 
1319 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1320 
1321 	trace_ext4_da_release_space(inode, to_free);
1322 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1323 		/*
1324 		 * if there aren't enough reserved blocks, then the
1325 		 * counter is messed up somewhere.  Since this
1326 		 * function is called from invalidate page, it's
1327 		 * harmless to return without any action.
1328 		 */
1329 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1330 			 "ino %lu, to_free %d with only %d reserved "
1331 			 "data blocks", inode->i_ino, to_free,
1332 			 ei->i_reserved_data_blocks);
1333 		WARN_ON(1);
1334 		to_free = ei->i_reserved_data_blocks;
1335 	}
1336 	ei->i_reserved_data_blocks -= to_free;
1337 
1338 	if (ei->i_reserved_data_blocks == 0) {
1339 		/*
1340 		 * We can release all of the reserved metadata blocks
1341 		 * only when we have written all of the delayed
1342 		 * allocation blocks.
1343 		 * Note that in case of bigalloc, i_reserved_meta_blocks,
1344 		 * i_reserved_data_blocks, etc. refer to number of clusters.
1345 		 */
1346 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1347 				   ei->i_reserved_meta_blocks);
1348 		ei->i_reserved_meta_blocks = 0;
1349 		ei->i_da_metadata_calc_len = 0;
1350 	}
1351 
1352 	/* update fs dirty data blocks counter */
1353 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1354 
1355 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1356 
1357 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1358 }
1359 
1360 static void ext4_da_page_release_reservation(struct page *page,
1361 					     unsigned int offset,
1362 					     unsigned int length)
1363 {
1364 	int to_release = 0;
1365 	struct buffer_head *head, *bh;
1366 	unsigned int curr_off = 0;
1367 	struct inode *inode = page->mapping->host;
1368 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1369 	unsigned int stop = offset + length;
1370 	int num_clusters;
1371 	ext4_fsblk_t lblk;
1372 
1373 	BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1374 
1375 	head = page_buffers(page);
1376 	bh = head;
1377 	do {
1378 		unsigned int next_off = curr_off + bh->b_size;
1379 
1380 		if (next_off > stop)
1381 			break;
1382 
1383 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1384 			to_release++;
1385 			clear_buffer_delay(bh);
1386 		}
1387 		curr_off = next_off;
1388 	} while ((bh = bh->b_this_page) != head);
1389 
1390 	if (to_release) {
1391 		lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1392 		ext4_es_remove_extent(inode, lblk, to_release);
1393 	}
1394 
1395 	/* If we have released all the blocks belonging to a cluster, then we
1396 	 * need to release the reserved space for that cluster. */
1397 	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1398 	while (num_clusters > 0) {
1399 		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1400 			((num_clusters - 1) << sbi->s_cluster_bits);
1401 		if (sbi->s_cluster_ratio == 1 ||
1402 		    !ext4_find_delalloc_cluster(inode, lblk))
1403 			ext4_da_release_space(inode, 1);
1404 
1405 		num_clusters--;
1406 	}
1407 }
1408 
1409 /*
1410  * Delayed allocation stuff
1411  */
1412 
1413 struct mpage_da_data {
1414 	struct inode *inode;
1415 	struct writeback_control *wbc;
1416 
1417 	pgoff_t first_page;	/* The first page to write */
1418 	pgoff_t next_page;	/* Current page to examine */
1419 	pgoff_t last_page;	/* Last page to examine */
1420 	/*
1421 	 * Extent to map - this can be after first_page because that can be
1422 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1423 	 * is delalloc or unwritten.
1424 	 */
1425 	struct ext4_map_blocks map;
1426 	struct ext4_io_submit io_submit;	/* IO submission data */
1427 };
1428 
1429 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1430 				       bool invalidate)
1431 {
1432 	int nr_pages, i;
1433 	pgoff_t index, end;
1434 	struct pagevec pvec;
1435 	struct inode *inode = mpd->inode;
1436 	struct address_space *mapping = inode->i_mapping;
1437 
1438 	/* This is necessary when next_page == 0. */
1439 	if (mpd->first_page >= mpd->next_page)
1440 		return;
1441 
1442 	index = mpd->first_page;
1443 	end   = mpd->next_page - 1;
1444 	if (invalidate) {
1445 		ext4_lblk_t start, last;
1446 		start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1447 		last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1448 		ext4_es_remove_extent(inode, start, last - start + 1);
1449 	}
1450 
1451 	pagevec_init(&pvec, 0);
1452 	while (index <= end) {
1453 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1454 		if (nr_pages == 0)
1455 			break;
1456 		for (i = 0; i < nr_pages; i++) {
1457 			struct page *page = pvec.pages[i];
1458 			if (page->index > end)
1459 				break;
1460 			BUG_ON(!PageLocked(page));
1461 			BUG_ON(PageWriteback(page));
1462 			if (invalidate) {
1463 				block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1464 				ClearPageUptodate(page);
1465 			}
1466 			unlock_page(page);
1467 		}
1468 		index = pvec.pages[nr_pages - 1]->index + 1;
1469 		pagevec_release(&pvec);
1470 	}
1471 }
1472 
1473 static void ext4_print_free_blocks(struct inode *inode)
1474 {
1475 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1476 	struct super_block *sb = inode->i_sb;
1477 	struct ext4_inode_info *ei = EXT4_I(inode);
1478 
1479 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1480 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1481 			ext4_count_free_clusters(sb)));
1482 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1483 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1484 	       (long long) EXT4_C2B(EXT4_SB(sb),
1485 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1486 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1487 	       (long long) EXT4_C2B(EXT4_SB(sb),
1488 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1489 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1490 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1491 		 ei->i_reserved_data_blocks);
1492 	ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1493 	       ei->i_reserved_meta_blocks);
1494 	ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1495 	       ei->i_allocated_meta_blocks);
1496 	return;
1497 }
1498 
1499 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1500 {
1501 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1502 }
1503 
1504 /*
1505  * This function is grabs code from the very beginning of
1506  * ext4_map_blocks, but assumes that the caller is from delayed write
1507  * time. This function looks up the requested blocks and sets the
1508  * buffer delay bit under the protection of i_data_sem.
1509  */
1510 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1511 			      struct ext4_map_blocks *map,
1512 			      struct buffer_head *bh)
1513 {
1514 	struct extent_status es;
1515 	int retval;
1516 	sector_t invalid_block = ~((sector_t) 0xffff);
1517 #ifdef ES_AGGRESSIVE_TEST
1518 	struct ext4_map_blocks orig_map;
1519 
1520 	memcpy(&orig_map, map, sizeof(*map));
1521 #endif
1522 
1523 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1524 		invalid_block = ~0;
1525 
1526 	map->m_flags = 0;
1527 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1528 		  "logical block %lu\n", inode->i_ino, map->m_len,
1529 		  (unsigned long) map->m_lblk);
1530 
1531 	/* Lookup extent status tree firstly */
1532 	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1533 		ext4_es_lru_add(inode);
1534 		if (ext4_es_is_hole(&es)) {
1535 			retval = 0;
1536 			down_read((&EXT4_I(inode)->i_data_sem));
1537 			goto add_delayed;
1538 		}
1539 
1540 		/*
1541 		 * Delayed extent could be allocated by fallocate.
1542 		 * So we need to check it.
1543 		 */
1544 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1545 			map_bh(bh, inode->i_sb, invalid_block);
1546 			set_buffer_new(bh);
1547 			set_buffer_delay(bh);
1548 			return 0;
1549 		}
1550 
1551 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1552 		retval = es.es_len - (iblock - es.es_lblk);
1553 		if (retval > map->m_len)
1554 			retval = map->m_len;
1555 		map->m_len = retval;
1556 		if (ext4_es_is_written(&es))
1557 			map->m_flags |= EXT4_MAP_MAPPED;
1558 		else if (ext4_es_is_unwritten(&es))
1559 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1560 		else
1561 			BUG_ON(1);
1562 
1563 #ifdef ES_AGGRESSIVE_TEST
1564 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1565 #endif
1566 		return retval;
1567 	}
1568 
1569 	/*
1570 	 * Try to see if we can get the block without requesting a new
1571 	 * file system block.
1572 	 */
1573 	down_read((&EXT4_I(inode)->i_data_sem));
1574 	if (ext4_has_inline_data(inode)) {
1575 		/*
1576 		 * We will soon create blocks for this page, and let
1577 		 * us pretend as if the blocks aren't allocated yet.
1578 		 * In case of clusters, we have to handle the work
1579 		 * of mapping from cluster so that the reserved space
1580 		 * is calculated properly.
1581 		 */
1582 		if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1583 		    ext4_find_delalloc_cluster(inode, map->m_lblk))
1584 			map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1585 		retval = 0;
1586 	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1587 		retval = ext4_ext_map_blocks(NULL, inode, map,
1588 					     EXT4_GET_BLOCKS_NO_PUT_HOLE);
1589 	else
1590 		retval = ext4_ind_map_blocks(NULL, inode, map,
1591 					     EXT4_GET_BLOCKS_NO_PUT_HOLE);
1592 
1593 add_delayed:
1594 	if (retval == 0) {
1595 		int ret;
1596 		/*
1597 		 * XXX: __block_prepare_write() unmaps passed block,
1598 		 * is it OK?
1599 		 */
1600 		/*
1601 		 * If the block was allocated from previously allocated cluster,
1602 		 * then we don't need to reserve it again. However we still need
1603 		 * to reserve metadata for every block we're going to write.
1604 		 */
1605 		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1606 			ret = ext4_da_reserve_space(inode, iblock);
1607 			if (ret) {
1608 				/* not enough space to reserve */
1609 				retval = ret;
1610 				goto out_unlock;
1611 			}
1612 		} else {
1613 			ret = ext4_da_reserve_metadata(inode, iblock);
1614 			if (ret) {
1615 				/* not enough space to reserve */
1616 				retval = ret;
1617 				goto out_unlock;
1618 			}
1619 		}
1620 
1621 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1622 					    ~0, EXTENT_STATUS_DELAYED);
1623 		if (ret) {
1624 			retval = ret;
1625 			goto out_unlock;
1626 		}
1627 
1628 		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1629 		 * and it should not appear on the bh->b_state.
1630 		 */
1631 		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1632 
1633 		map_bh(bh, inode->i_sb, invalid_block);
1634 		set_buffer_new(bh);
1635 		set_buffer_delay(bh);
1636 	} else if (retval > 0) {
1637 		int ret;
1638 		unsigned long long status;
1639 
1640 #ifdef ES_AGGRESSIVE_TEST
1641 		if (retval != map->m_len) {
1642 			printk("ES len assertion failed for inode: %lu "
1643 			       "retval %d != map->m_len %d "
1644 			       "in %s (lookup)\n", inode->i_ino, retval,
1645 			       map->m_len, __func__);
1646 		}
1647 #endif
1648 
1649 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1650 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1651 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1652 					    map->m_pblk, status);
1653 		if (ret != 0)
1654 			retval = ret;
1655 	}
1656 
1657 out_unlock:
1658 	up_read((&EXT4_I(inode)->i_data_sem));
1659 
1660 	return retval;
1661 }
1662 
1663 /*
1664  * This is a special get_blocks_t callback which is used by
1665  * ext4_da_write_begin().  It will either return mapped block or
1666  * reserve space for a single block.
1667  *
1668  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1669  * We also have b_blocknr = -1 and b_bdev initialized properly
1670  *
1671  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1672  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1673  * initialized properly.
1674  */
1675 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1676 			   struct buffer_head *bh, int create)
1677 {
1678 	struct ext4_map_blocks map;
1679 	int ret = 0;
1680 
1681 	BUG_ON(create == 0);
1682 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1683 
1684 	map.m_lblk = iblock;
1685 	map.m_len = 1;
1686 
1687 	/*
1688 	 * first, we need to know whether the block is allocated already
1689 	 * preallocated blocks are unmapped but should treated
1690 	 * the same as allocated blocks.
1691 	 */
1692 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1693 	if (ret <= 0)
1694 		return ret;
1695 
1696 	map_bh(bh, inode->i_sb, map.m_pblk);
1697 	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1698 
1699 	if (buffer_unwritten(bh)) {
1700 		/* A delayed write to unwritten bh should be marked
1701 		 * new and mapped.  Mapped ensures that we don't do
1702 		 * get_block multiple times when we write to the same
1703 		 * offset and new ensures that we do proper zero out
1704 		 * for partial write.
1705 		 */
1706 		set_buffer_new(bh);
1707 		set_buffer_mapped(bh);
1708 	}
1709 	return 0;
1710 }
1711 
1712 static int bget_one(handle_t *handle, struct buffer_head *bh)
1713 {
1714 	get_bh(bh);
1715 	return 0;
1716 }
1717 
1718 static int bput_one(handle_t *handle, struct buffer_head *bh)
1719 {
1720 	put_bh(bh);
1721 	return 0;
1722 }
1723 
1724 static int __ext4_journalled_writepage(struct page *page,
1725 				       unsigned int len)
1726 {
1727 	struct address_space *mapping = page->mapping;
1728 	struct inode *inode = mapping->host;
1729 	struct buffer_head *page_bufs = NULL;
1730 	handle_t *handle = NULL;
1731 	int ret = 0, err = 0;
1732 	int inline_data = ext4_has_inline_data(inode);
1733 	struct buffer_head *inode_bh = NULL;
1734 
1735 	ClearPageChecked(page);
1736 
1737 	if (inline_data) {
1738 		BUG_ON(page->index != 0);
1739 		BUG_ON(len > ext4_get_max_inline_size(inode));
1740 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1741 		if (inode_bh == NULL)
1742 			goto out;
1743 	} else {
1744 		page_bufs = page_buffers(page);
1745 		if (!page_bufs) {
1746 			BUG();
1747 			goto out;
1748 		}
1749 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1750 				       NULL, bget_one);
1751 	}
1752 	/* As soon as we unlock the page, it can go away, but we have
1753 	 * references to buffers so we are safe */
1754 	unlock_page(page);
1755 
1756 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1757 				    ext4_writepage_trans_blocks(inode));
1758 	if (IS_ERR(handle)) {
1759 		ret = PTR_ERR(handle);
1760 		goto out;
1761 	}
1762 
1763 	BUG_ON(!ext4_handle_valid(handle));
1764 
1765 	if (inline_data) {
1766 		ret = ext4_journal_get_write_access(handle, inode_bh);
1767 
1768 		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1769 
1770 	} else {
1771 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1772 					     do_journal_get_write_access);
1773 
1774 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1775 					     write_end_fn);
1776 	}
1777 	if (ret == 0)
1778 		ret = err;
1779 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1780 	err = ext4_journal_stop(handle);
1781 	if (!ret)
1782 		ret = err;
1783 
1784 	if (!ext4_has_inline_data(inode))
1785 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1786 				       NULL, bput_one);
1787 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1788 out:
1789 	brelse(inode_bh);
1790 	return ret;
1791 }
1792 
1793 /*
1794  * Note that we don't need to start a transaction unless we're journaling data
1795  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1796  * need to file the inode to the transaction's list in ordered mode because if
1797  * we are writing back data added by write(), the inode is already there and if
1798  * we are writing back data modified via mmap(), no one guarantees in which
1799  * transaction the data will hit the disk. In case we are journaling data, we
1800  * cannot start transaction directly because transaction start ranks above page
1801  * lock so we have to do some magic.
1802  *
1803  * This function can get called via...
1804  *   - ext4_writepages after taking page lock (have journal handle)
1805  *   - journal_submit_inode_data_buffers (no journal handle)
1806  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1807  *   - grab_page_cache when doing write_begin (have journal handle)
1808  *
1809  * We don't do any block allocation in this function. If we have page with
1810  * multiple blocks we need to write those buffer_heads that are mapped. This
1811  * is important for mmaped based write. So if we do with blocksize 1K
1812  * truncate(f, 1024);
1813  * a = mmap(f, 0, 4096);
1814  * a[0] = 'a';
1815  * truncate(f, 4096);
1816  * we have in the page first buffer_head mapped via page_mkwrite call back
1817  * but other buffer_heads would be unmapped but dirty (dirty done via the
1818  * do_wp_page). So writepage should write the first block. If we modify
1819  * the mmap area beyond 1024 we will again get a page_fault and the
1820  * page_mkwrite callback will do the block allocation and mark the
1821  * buffer_heads mapped.
1822  *
1823  * We redirty the page if we have any buffer_heads that is either delay or
1824  * unwritten in the page.
1825  *
1826  * We can get recursively called as show below.
1827  *
1828  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1829  *		ext4_writepage()
1830  *
1831  * But since we don't do any block allocation we should not deadlock.
1832  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1833  */
1834 static int ext4_writepage(struct page *page,
1835 			  struct writeback_control *wbc)
1836 {
1837 	int ret = 0;
1838 	loff_t size;
1839 	unsigned int len;
1840 	struct buffer_head *page_bufs = NULL;
1841 	struct inode *inode = page->mapping->host;
1842 	struct ext4_io_submit io_submit;
1843 
1844 	trace_ext4_writepage(page);
1845 	size = i_size_read(inode);
1846 	if (page->index == size >> PAGE_CACHE_SHIFT)
1847 		len = size & ~PAGE_CACHE_MASK;
1848 	else
1849 		len = PAGE_CACHE_SIZE;
1850 
1851 	page_bufs = page_buffers(page);
1852 	/*
1853 	 * We cannot do block allocation or other extent handling in this
1854 	 * function. If there are buffers needing that, we have to redirty
1855 	 * the page. But we may reach here when we do a journal commit via
1856 	 * journal_submit_inode_data_buffers() and in that case we must write
1857 	 * allocated buffers to achieve data=ordered mode guarantees.
1858 	 */
1859 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1860 				   ext4_bh_delay_or_unwritten)) {
1861 		redirty_page_for_writepage(wbc, page);
1862 		if (current->flags & PF_MEMALLOC) {
1863 			/*
1864 			 * For memory cleaning there's no point in writing only
1865 			 * some buffers. So just bail out. Warn if we came here
1866 			 * from direct reclaim.
1867 			 */
1868 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1869 							== PF_MEMALLOC);
1870 			unlock_page(page);
1871 			return 0;
1872 		}
1873 	}
1874 
1875 	if (PageChecked(page) && ext4_should_journal_data(inode))
1876 		/*
1877 		 * It's mmapped pagecache.  Add buffers and journal it.  There
1878 		 * doesn't seem much point in redirtying the page here.
1879 		 */
1880 		return __ext4_journalled_writepage(page, len);
1881 
1882 	ext4_io_submit_init(&io_submit, wbc);
1883 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1884 	if (!io_submit.io_end) {
1885 		redirty_page_for_writepage(wbc, page);
1886 		unlock_page(page);
1887 		return -ENOMEM;
1888 	}
1889 	ret = ext4_bio_write_page(&io_submit, page, len, wbc);
1890 	ext4_io_submit(&io_submit);
1891 	/* Drop io_end reference we got from init */
1892 	ext4_put_io_end_defer(io_submit.io_end);
1893 	return ret;
1894 }
1895 
1896 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1897 
1898 /*
1899  * mballoc gives us at most this number of blocks...
1900  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1901  * The rest of mballoc seems to handle chunks upto full group size.
1902  */
1903 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1904 
1905 /*
1906  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1907  *
1908  * @mpd - extent of blocks
1909  * @lblk - logical number of the block in the file
1910  * @b_state - b_state of the buffer head added
1911  *
1912  * the function is used to collect contig. blocks in same state
1913  */
1914 static int mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1915 				  unsigned long b_state)
1916 {
1917 	struct ext4_map_blocks *map = &mpd->map;
1918 
1919 	/* Don't go larger than mballoc is willing to allocate */
1920 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1921 		return 0;
1922 
1923 	/* First block in the extent? */
1924 	if (map->m_len == 0) {
1925 		map->m_lblk = lblk;
1926 		map->m_len = 1;
1927 		map->m_flags = b_state & BH_FLAGS;
1928 		return 1;
1929 	}
1930 
1931 	/* Can we merge the block to our big extent? */
1932 	if (lblk == map->m_lblk + map->m_len &&
1933 	    (b_state & BH_FLAGS) == map->m_flags) {
1934 		map->m_len++;
1935 		return 1;
1936 	}
1937 	return 0;
1938 }
1939 
1940 static bool add_page_bufs_to_extent(struct mpage_da_data *mpd,
1941 				    struct buffer_head *head,
1942 				    struct buffer_head *bh,
1943 				    ext4_lblk_t lblk)
1944 {
1945 	struct inode *inode = mpd->inode;
1946 	ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1947 							>> inode->i_blkbits;
1948 
1949 	do {
1950 		BUG_ON(buffer_locked(bh));
1951 
1952 		if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1953 		    (!buffer_delay(bh) && !buffer_unwritten(bh)) ||
1954 		    lblk >= blocks) {
1955 			/* Found extent to map? */
1956 			if (mpd->map.m_len)
1957 				return false;
1958 			if (lblk >= blocks)
1959 				return true;
1960 			continue;
1961 		}
1962 		if (!mpage_add_bh_to_extent(mpd, lblk, bh->b_state))
1963 			return false;
1964 	} while (lblk++, (bh = bh->b_this_page) != head);
1965 	return true;
1966 }
1967 
1968 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1969 {
1970 	int len;
1971 	loff_t size = i_size_read(mpd->inode);
1972 	int err;
1973 
1974 	BUG_ON(page->index != mpd->first_page);
1975 	if (page->index == size >> PAGE_CACHE_SHIFT)
1976 		len = size & ~PAGE_CACHE_MASK;
1977 	else
1978 		len = PAGE_CACHE_SIZE;
1979 	clear_page_dirty_for_io(page);
1980 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc);
1981 	if (!err)
1982 		mpd->wbc->nr_to_write--;
1983 	mpd->first_page++;
1984 
1985 	return err;
1986 }
1987 
1988 /*
1989  * mpage_map_buffers - update buffers corresponding to changed extent and
1990  *		       submit fully mapped pages for IO
1991  *
1992  * @mpd - description of extent to map, on return next extent to map
1993  *
1994  * Scan buffers corresponding to changed extent (we expect corresponding pages
1995  * to be already locked) and update buffer state according to new extent state.
1996  * We map delalloc buffers to their physical location, clear unwritten bits,
1997  * and mark buffers as uninit when we perform writes to uninitialized extents
1998  * and do extent conversion after IO is finished. If the last page is not fully
1999  * mapped, we update @map to the next extent in the last page that needs
2000  * mapping. Otherwise we submit the page for IO.
2001  */
2002 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2003 {
2004 	struct pagevec pvec;
2005 	int nr_pages, i;
2006 	struct inode *inode = mpd->inode;
2007 	struct buffer_head *head, *bh;
2008 	int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2009 	ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2010 							>> inode->i_blkbits;
2011 	pgoff_t start, end;
2012 	ext4_lblk_t lblk;
2013 	sector_t pblock;
2014 	int err;
2015 
2016 	start = mpd->map.m_lblk >> bpp_bits;
2017 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2018 	lblk = start << bpp_bits;
2019 	pblock = mpd->map.m_pblk;
2020 
2021 	pagevec_init(&pvec, 0);
2022 	while (start <= end) {
2023 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2024 					  PAGEVEC_SIZE);
2025 		if (nr_pages == 0)
2026 			break;
2027 		for (i = 0; i < nr_pages; i++) {
2028 			struct page *page = pvec.pages[i];
2029 
2030 			if (page->index > end)
2031 				break;
2032 			/* Upto 'end' pages must be contiguous */
2033 			BUG_ON(page->index != start);
2034 			bh = head = page_buffers(page);
2035 			do {
2036 				if (lblk < mpd->map.m_lblk)
2037 					continue;
2038 				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2039 					/*
2040 					 * Buffer after end of mapped extent.
2041 					 * Find next buffer in the page to map.
2042 					 */
2043 					mpd->map.m_len = 0;
2044 					mpd->map.m_flags = 0;
2045 					add_page_bufs_to_extent(mpd, head, bh,
2046 								lblk);
2047 					pagevec_release(&pvec);
2048 					return 0;
2049 				}
2050 				if (buffer_delay(bh)) {
2051 					clear_buffer_delay(bh);
2052 					bh->b_blocknr = pblock++;
2053 				}
2054 				clear_buffer_unwritten(bh);
2055 			} while (++lblk < blocks &&
2056 				 (bh = bh->b_this_page) != head);
2057 
2058 			/*
2059 			 * FIXME: This is going to break if dioread_nolock
2060 			 * supports blocksize < pagesize as we will try to
2061 			 * convert potentially unmapped parts of inode.
2062 			 */
2063 			mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2064 			/* Page fully mapped - let IO run! */
2065 			err = mpage_submit_page(mpd, page);
2066 			if (err < 0) {
2067 				pagevec_release(&pvec);
2068 				return err;
2069 			}
2070 			start++;
2071 		}
2072 		pagevec_release(&pvec);
2073 	}
2074 	/* Extent fully mapped and matches with page boundary. We are done. */
2075 	mpd->map.m_len = 0;
2076 	mpd->map.m_flags = 0;
2077 	return 0;
2078 }
2079 
2080 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2081 {
2082 	struct inode *inode = mpd->inode;
2083 	struct ext4_map_blocks *map = &mpd->map;
2084 	int get_blocks_flags;
2085 	int err;
2086 
2087 	trace_ext4_da_write_pages_extent(inode, map);
2088 	/*
2089 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2090 	 * to convert an uninitialized extent to be initialized (in the case
2091 	 * where we have written into one or more preallocated blocks).  It is
2092 	 * possible that we're going to need more metadata blocks than
2093 	 * previously reserved. However we must not fail because we're in
2094 	 * writeback and there is nothing we can do about it so it might result
2095 	 * in data loss.  So use reserved blocks to allocate metadata if
2096 	 * possible.
2097 	 *
2098 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2099 	 * in question are delalloc blocks.  This affects functions in many
2100 	 * different parts of the allocation call path.  This flag exists
2101 	 * primarily because we don't want to change *many* call functions, so
2102 	 * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2103 	 * once the inode's allocation semaphore is taken.
2104 	 */
2105 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2106 			   EXT4_GET_BLOCKS_METADATA_NOFAIL;
2107 	if (ext4_should_dioread_nolock(inode))
2108 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2109 	if (map->m_flags & (1 << BH_Delay))
2110 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2111 
2112 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2113 	if (err < 0)
2114 		return err;
2115 	if (map->m_flags & EXT4_MAP_UNINIT) {
2116 		if (!mpd->io_submit.io_end->handle &&
2117 		    ext4_handle_valid(handle)) {
2118 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2119 			handle->h_rsv_handle = NULL;
2120 		}
2121 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2122 	}
2123 
2124 	BUG_ON(map->m_len == 0);
2125 	if (map->m_flags & EXT4_MAP_NEW) {
2126 		struct block_device *bdev = inode->i_sb->s_bdev;
2127 		int i;
2128 
2129 		for (i = 0; i < map->m_len; i++)
2130 			unmap_underlying_metadata(bdev, map->m_pblk + i);
2131 	}
2132 	return 0;
2133 }
2134 
2135 /*
2136  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2137  *				 mpd->len and submit pages underlying it for IO
2138  *
2139  * @handle - handle for journal operations
2140  * @mpd - extent to map
2141  *
2142  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2143  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2144  * them to initialized or split the described range from larger unwritten
2145  * extent. Note that we need not map all the described range since allocation
2146  * can return less blocks or the range is covered by more unwritten extents. We
2147  * cannot map more because we are limited by reserved transaction credits. On
2148  * the other hand we always make sure that the last touched page is fully
2149  * mapped so that it can be written out (and thus forward progress is
2150  * guaranteed). After mapping we submit all mapped pages for IO.
2151  */
2152 static int mpage_map_and_submit_extent(handle_t *handle,
2153 				       struct mpage_da_data *mpd,
2154 				       bool *give_up_on_write)
2155 {
2156 	struct inode *inode = mpd->inode;
2157 	struct ext4_map_blocks *map = &mpd->map;
2158 	int err;
2159 	loff_t disksize;
2160 
2161 	mpd->io_submit.io_end->offset =
2162 				((loff_t)map->m_lblk) << inode->i_blkbits;
2163 	do {
2164 		err = mpage_map_one_extent(handle, mpd);
2165 		if (err < 0) {
2166 			struct super_block *sb = inode->i_sb;
2167 
2168 			if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2169 				goto invalidate_dirty_pages;
2170 			/*
2171 			 * Let the uper layers retry transient errors.
2172 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2173 			 * is non-zero, a commit should free up blocks.
2174 			 */
2175 			if ((err == -ENOMEM) ||
2176 			    (err == -ENOSPC && ext4_count_free_clusters(sb)))
2177 				return err;
2178 			ext4_msg(sb, KERN_CRIT,
2179 				 "Delayed block allocation failed for "
2180 				 "inode %lu at logical offset %llu with"
2181 				 " max blocks %u with error %d",
2182 				 inode->i_ino,
2183 				 (unsigned long long)map->m_lblk,
2184 				 (unsigned)map->m_len, -err);
2185 			ext4_msg(sb, KERN_CRIT,
2186 				 "This should not happen!! Data will "
2187 				 "be lost\n");
2188 			if (err == -ENOSPC)
2189 				ext4_print_free_blocks(inode);
2190 		invalidate_dirty_pages:
2191 			*give_up_on_write = true;
2192 			return err;
2193 		}
2194 		/*
2195 		 * Update buffer state, submit mapped pages, and get us new
2196 		 * extent to map
2197 		 */
2198 		err = mpage_map_and_submit_buffers(mpd);
2199 		if (err < 0)
2200 			return err;
2201 	} while (map->m_len);
2202 
2203 	/* Update on-disk size after IO is submitted */
2204 	disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2205 	if (disksize > i_size_read(inode))
2206 		disksize = i_size_read(inode);
2207 	if (disksize > EXT4_I(inode)->i_disksize) {
2208 		int err2;
2209 
2210 		ext4_update_i_disksize(inode, disksize);
2211 		err2 = ext4_mark_inode_dirty(handle, inode);
2212 		if (err2)
2213 			ext4_error(inode->i_sb,
2214 				   "Failed to mark inode %lu dirty",
2215 				   inode->i_ino);
2216 		if (!err)
2217 			err = err2;
2218 	}
2219 	return err;
2220 }
2221 
2222 /*
2223  * Calculate the total number of credits to reserve for one writepages
2224  * iteration. This is called from ext4_writepages(). We map an extent of
2225  * upto MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2226  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2227  * bpp - 1 blocks in bpp different extents.
2228  */
2229 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2230 {
2231 	int bpp = ext4_journal_blocks_per_page(inode);
2232 
2233 	return ext4_meta_trans_blocks(inode,
2234 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2235 }
2236 
2237 /*
2238  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2239  * 				 and underlying extent to map
2240  *
2241  * @mpd - where to look for pages
2242  *
2243  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2244  * IO immediately. When we find a page which isn't mapped we start accumulating
2245  * extent of buffers underlying these pages that needs mapping (formed by
2246  * either delayed or unwritten buffers). We also lock the pages containing
2247  * these buffers. The extent found is returned in @mpd structure (starting at
2248  * mpd->lblk with length mpd->len blocks).
2249  *
2250  * Note that this function can attach bios to one io_end structure which are
2251  * neither logically nor physically contiguous. Although it may seem as an
2252  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2253  * case as we need to track IO to all buffers underlying a page in one io_end.
2254  */
2255 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2256 {
2257 	struct address_space *mapping = mpd->inode->i_mapping;
2258 	struct pagevec pvec;
2259 	unsigned int nr_pages;
2260 	pgoff_t index = mpd->first_page;
2261 	pgoff_t end = mpd->last_page;
2262 	int tag;
2263 	int i, err = 0;
2264 	int blkbits = mpd->inode->i_blkbits;
2265 	ext4_lblk_t lblk;
2266 	struct buffer_head *head;
2267 
2268 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2269 		tag = PAGECACHE_TAG_TOWRITE;
2270 	else
2271 		tag = PAGECACHE_TAG_DIRTY;
2272 
2273 	pagevec_init(&pvec, 0);
2274 	mpd->map.m_len = 0;
2275 	mpd->next_page = index;
2276 	while (index <= end) {
2277 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2278 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2279 		if (nr_pages == 0)
2280 			goto out;
2281 
2282 		for (i = 0; i < nr_pages; i++) {
2283 			struct page *page = pvec.pages[i];
2284 
2285 			/*
2286 			 * At this point, the page may be truncated or
2287 			 * invalidated (changing page->mapping to NULL), or
2288 			 * even swizzled back from swapper_space to tmpfs file
2289 			 * mapping. However, page->index will not change
2290 			 * because we have a reference on the page.
2291 			 */
2292 			if (page->index > end)
2293 				goto out;
2294 
2295 			/* If we can't merge this page, we are done. */
2296 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2297 				goto out;
2298 
2299 			lock_page(page);
2300 			/*
2301 			 * If the page is no longer dirty, or its mapping no
2302 			 * longer corresponds to inode we are writing (which
2303 			 * means it has been truncated or invalidated), or the
2304 			 * page is already under writeback and we are not doing
2305 			 * a data integrity writeback, skip the page
2306 			 */
2307 			if (!PageDirty(page) ||
2308 			    (PageWriteback(page) &&
2309 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2310 			    unlikely(page->mapping != mapping)) {
2311 				unlock_page(page);
2312 				continue;
2313 			}
2314 
2315 			wait_on_page_writeback(page);
2316 			BUG_ON(PageWriteback(page));
2317 
2318 			if (mpd->map.m_len == 0)
2319 				mpd->first_page = page->index;
2320 			mpd->next_page = page->index + 1;
2321 			/* Add all dirty buffers to mpd */
2322 			lblk = ((ext4_lblk_t)page->index) <<
2323 				(PAGE_CACHE_SHIFT - blkbits);
2324 			head = page_buffers(page);
2325 			if (!add_page_bufs_to_extent(mpd, head, head, lblk))
2326 				goto out;
2327 			/* So far everything mapped? Submit the page for IO. */
2328 			if (mpd->map.m_len == 0) {
2329 				err = mpage_submit_page(mpd, page);
2330 				if (err < 0)
2331 					goto out;
2332 			}
2333 
2334 			/*
2335 			 * Accumulated enough dirty pages? This doesn't apply
2336 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2337 			 * keep going because someone may be concurrently
2338 			 * dirtying pages, and we might have synced a lot of
2339 			 * newly appeared dirty pages, but have not synced all
2340 			 * of the old dirty pages.
2341 			 */
2342 			if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2343 			    mpd->next_page - mpd->first_page >=
2344 							mpd->wbc->nr_to_write)
2345 				goto out;
2346 		}
2347 		pagevec_release(&pvec);
2348 		cond_resched();
2349 	}
2350 	return 0;
2351 out:
2352 	pagevec_release(&pvec);
2353 	return err;
2354 }
2355 
2356 static int __writepage(struct page *page, struct writeback_control *wbc,
2357 		       void *data)
2358 {
2359 	struct address_space *mapping = data;
2360 	int ret = ext4_writepage(page, wbc);
2361 	mapping_set_error(mapping, ret);
2362 	return ret;
2363 }
2364 
2365 static int ext4_writepages(struct address_space *mapping,
2366 			   struct writeback_control *wbc)
2367 {
2368 	pgoff_t	writeback_index = 0;
2369 	long nr_to_write = wbc->nr_to_write;
2370 	int range_whole = 0;
2371 	int cycled = 1;
2372 	handle_t *handle = NULL;
2373 	struct mpage_da_data mpd;
2374 	struct inode *inode = mapping->host;
2375 	int needed_blocks, rsv_blocks = 0, ret = 0;
2376 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2377 	bool done;
2378 	struct blk_plug plug;
2379 	bool give_up_on_write = false;
2380 
2381 	trace_ext4_writepages(inode, wbc);
2382 
2383 	/*
2384 	 * No pages to write? This is mainly a kludge to avoid starting
2385 	 * a transaction for special inodes like journal inode on last iput()
2386 	 * because that could violate lock ordering on umount
2387 	 */
2388 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2389 		return 0;
2390 
2391 	if (ext4_should_journal_data(inode)) {
2392 		struct blk_plug plug;
2393 		int ret;
2394 
2395 		blk_start_plug(&plug);
2396 		ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2397 		blk_finish_plug(&plug);
2398 		return ret;
2399 	}
2400 
2401 	/*
2402 	 * If the filesystem has aborted, it is read-only, so return
2403 	 * right away instead of dumping stack traces later on that
2404 	 * will obscure the real source of the problem.  We test
2405 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2406 	 * the latter could be true if the filesystem is mounted
2407 	 * read-only, and in that case, ext4_writepages should
2408 	 * *never* be called, so if that ever happens, we would want
2409 	 * the stack trace.
2410 	 */
2411 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2412 		return -EROFS;
2413 
2414 	if (ext4_should_dioread_nolock(inode)) {
2415 		/*
2416 		 * We may need to convert upto one extent per block in
2417 		 * the page and we may dirty the inode.
2418 		 */
2419 		rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2420 	}
2421 
2422 	/*
2423 	 * If we have inline data and arrive here, it means that
2424 	 * we will soon create the block for the 1st page, so
2425 	 * we'd better clear the inline data here.
2426 	 */
2427 	if (ext4_has_inline_data(inode)) {
2428 		/* Just inode will be modified... */
2429 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2430 		if (IS_ERR(handle)) {
2431 			ret = PTR_ERR(handle);
2432 			goto out_writepages;
2433 		}
2434 		BUG_ON(ext4_test_inode_state(inode,
2435 				EXT4_STATE_MAY_INLINE_DATA));
2436 		ext4_destroy_inline_data(handle, inode);
2437 		ext4_journal_stop(handle);
2438 	}
2439 
2440 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2441 		range_whole = 1;
2442 
2443 	if (wbc->range_cyclic) {
2444 		writeback_index = mapping->writeback_index;
2445 		if (writeback_index)
2446 			cycled = 0;
2447 		mpd.first_page = writeback_index;
2448 		mpd.last_page = -1;
2449 	} else {
2450 		mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2451 		mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2452 	}
2453 
2454 	mpd.inode = inode;
2455 	mpd.wbc = wbc;
2456 	ext4_io_submit_init(&mpd.io_submit, wbc);
2457 retry:
2458 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2459 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2460 	done = false;
2461 	blk_start_plug(&plug);
2462 	while (!done && mpd.first_page <= mpd.last_page) {
2463 		/* For each extent of pages we use new io_end */
2464 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2465 		if (!mpd.io_submit.io_end) {
2466 			ret = -ENOMEM;
2467 			break;
2468 		}
2469 
2470 		/*
2471 		 * We have two constraints: We find one extent to map and we
2472 		 * must always write out whole page (makes a difference when
2473 		 * blocksize < pagesize) so that we don't block on IO when we
2474 		 * try to write out the rest of the page. Journalled mode is
2475 		 * not supported by delalloc.
2476 		 */
2477 		BUG_ON(ext4_should_journal_data(inode));
2478 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2479 
2480 		/* start a new transaction */
2481 		handle = ext4_journal_start_with_reserve(inode,
2482 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2483 		if (IS_ERR(handle)) {
2484 			ret = PTR_ERR(handle);
2485 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2486 			       "%ld pages, ino %lu; err %d", __func__,
2487 				wbc->nr_to_write, inode->i_ino, ret);
2488 			/* Release allocated io_end */
2489 			ext4_put_io_end(mpd.io_submit.io_end);
2490 			break;
2491 		}
2492 
2493 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2494 		ret = mpage_prepare_extent_to_map(&mpd);
2495 		if (!ret) {
2496 			if (mpd.map.m_len)
2497 				ret = mpage_map_and_submit_extent(handle, &mpd,
2498 					&give_up_on_write);
2499 			else {
2500 				/*
2501 				 * We scanned the whole range (or exhausted
2502 				 * nr_to_write), submitted what was mapped and
2503 				 * didn't find anything needing mapping. We are
2504 				 * done.
2505 				 */
2506 				done = true;
2507 			}
2508 		}
2509 		ext4_journal_stop(handle);
2510 		/* Submit prepared bio */
2511 		ext4_io_submit(&mpd.io_submit);
2512 		/* Unlock pages we didn't use */
2513 		mpage_release_unused_pages(&mpd, give_up_on_write);
2514 		/* Drop our io_end reference we got from init */
2515 		ext4_put_io_end(mpd.io_submit.io_end);
2516 
2517 		if (ret == -ENOSPC && sbi->s_journal) {
2518 			/*
2519 			 * Commit the transaction which would
2520 			 * free blocks released in the transaction
2521 			 * and try again
2522 			 */
2523 			jbd2_journal_force_commit_nested(sbi->s_journal);
2524 			ret = 0;
2525 			continue;
2526 		}
2527 		/* Fatal error - ENOMEM, EIO... */
2528 		if (ret)
2529 			break;
2530 	}
2531 	blk_finish_plug(&plug);
2532 	if (!ret && !cycled) {
2533 		cycled = 1;
2534 		mpd.last_page = writeback_index - 1;
2535 		mpd.first_page = 0;
2536 		goto retry;
2537 	}
2538 
2539 	/* Update index */
2540 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2541 		/*
2542 		 * Set the writeback_index so that range_cyclic
2543 		 * mode will write it back later
2544 		 */
2545 		mapping->writeback_index = mpd.first_page;
2546 
2547 out_writepages:
2548 	trace_ext4_writepages_result(inode, wbc, ret,
2549 				     nr_to_write - wbc->nr_to_write);
2550 	return ret;
2551 }
2552 
2553 static int ext4_nonda_switch(struct super_block *sb)
2554 {
2555 	s64 free_clusters, dirty_clusters;
2556 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2557 
2558 	/*
2559 	 * switch to non delalloc mode if we are running low
2560 	 * on free block. The free block accounting via percpu
2561 	 * counters can get slightly wrong with percpu_counter_batch getting
2562 	 * accumulated on each CPU without updating global counters
2563 	 * Delalloc need an accurate free block accounting. So switch
2564 	 * to non delalloc when we are near to error range.
2565 	 */
2566 	free_clusters =
2567 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2568 	dirty_clusters =
2569 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2570 	/*
2571 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2572 	 */
2573 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2574 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2575 
2576 	if (2 * free_clusters < 3 * dirty_clusters ||
2577 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2578 		/*
2579 		 * free block count is less than 150% of dirty blocks
2580 		 * or free blocks is less than watermark
2581 		 */
2582 		return 1;
2583 	}
2584 	return 0;
2585 }
2586 
2587 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2588 			       loff_t pos, unsigned len, unsigned flags,
2589 			       struct page **pagep, void **fsdata)
2590 {
2591 	int ret, retries = 0;
2592 	struct page *page;
2593 	pgoff_t index;
2594 	struct inode *inode = mapping->host;
2595 	handle_t *handle;
2596 
2597 	index = pos >> PAGE_CACHE_SHIFT;
2598 
2599 	if (ext4_nonda_switch(inode->i_sb)) {
2600 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2601 		return ext4_write_begin(file, mapping, pos,
2602 					len, flags, pagep, fsdata);
2603 	}
2604 	*fsdata = (void *)0;
2605 	trace_ext4_da_write_begin(inode, pos, len, flags);
2606 
2607 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2608 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2609 						      pos, len, flags,
2610 						      pagep, fsdata);
2611 		if (ret < 0)
2612 			return ret;
2613 		if (ret == 1)
2614 			return 0;
2615 	}
2616 
2617 	/*
2618 	 * grab_cache_page_write_begin() can take a long time if the
2619 	 * system is thrashing due to memory pressure, or if the page
2620 	 * is being written back.  So grab it first before we start
2621 	 * the transaction handle.  This also allows us to allocate
2622 	 * the page (if needed) without using GFP_NOFS.
2623 	 */
2624 retry_grab:
2625 	page = grab_cache_page_write_begin(mapping, index, flags);
2626 	if (!page)
2627 		return -ENOMEM;
2628 	unlock_page(page);
2629 
2630 	/*
2631 	 * With delayed allocation, we don't log the i_disksize update
2632 	 * if there is delayed block allocation. But we still need
2633 	 * to journalling the i_disksize update if writes to the end
2634 	 * of file which has an already mapped buffer.
2635 	 */
2636 retry_journal:
2637 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2638 	if (IS_ERR(handle)) {
2639 		page_cache_release(page);
2640 		return PTR_ERR(handle);
2641 	}
2642 
2643 	lock_page(page);
2644 	if (page->mapping != mapping) {
2645 		/* The page got truncated from under us */
2646 		unlock_page(page);
2647 		page_cache_release(page);
2648 		ext4_journal_stop(handle);
2649 		goto retry_grab;
2650 	}
2651 	/* In case writeback began while the page was unlocked */
2652 	wait_on_page_writeback(page);
2653 
2654 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2655 	if (ret < 0) {
2656 		unlock_page(page);
2657 		ext4_journal_stop(handle);
2658 		/*
2659 		 * block_write_begin may have instantiated a few blocks
2660 		 * outside i_size.  Trim these off again. Don't need
2661 		 * i_size_read because we hold i_mutex.
2662 		 */
2663 		if (pos + len > inode->i_size)
2664 			ext4_truncate_failed_write(inode);
2665 
2666 		if (ret == -ENOSPC &&
2667 		    ext4_should_retry_alloc(inode->i_sb, &retries))
2668 			goto retry_journal;
2669 
2670 		page_cache_release(page);
2671 		return ret;
2672 	}
2673 
2674 	*pagep = page;
2675 	return ret;
2676 }
2677 
2678 /*
2679  * Check if we should update i_disksize
2680  * when write to the end of file but not require block allocation
2681  */
2682 static int ext4_da_should_update_i_disksize(struct page *page,
2683 					    unsigned long offset)
2684 {
2685 	struct buffer_head *bh;
2686 	struct inode *inode = page->mapping->host;
2687 	unsigned int idx;
2688 	int i;
2689 
2690 	bh = page_buffers(page);
2691 	idx = offset >> inode->i_blkbits;
2692 
2693 	for (i = 0; i < idx; i++)
2694 		bh = bh->b_this_page;
2695 
2696 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2697 		return 0;
2698 	return 1;
2699 }
2700 
2701 static int ext4_da_write_end(struct file *file,
2702 			     struct address_space *mapping,
2703 			     loff_t pos, unsigned len, unsigned copied,
2704 			     struct page *page, void *fsdata)
2705 {
2706 	struct inode *inode = mapping->host;
2707 	int ret = 0, ret2;
2708 	handle_t *handle = ext4_journal_current_handle();
2709 	loff_t new_i_size;
2710 	unsigned long start, end;
2711 	int write_mode = (int)(unsigned long)fsdata;
2712 
2713 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
2714 		return ext4_write_end(file, mapping, pos,
2715 				      len, copied, page, fsdata);
2716 
2717 	trace_ext4_da_write_end(inode, pos, len, copied);
2718 	start = pos & (PAGE_CACHE_SIZE - 1);
2719 	end = start + copied - 1;
2720 
2721 	/*
2722 	 * generic_write_end() will run mark_inode_dirty() if i_size
2723 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2724 	 * into that.
2725 	 */
2726 	new_i_size = pos + copied;
2727 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2728 		if (ext4_has_inline_data(inode) ||
2729 		    ext4_da_should_update_i_disksize(page, end)) {
2730 			down_write(&EXT4_I(inode)->i_data_sem);
2731 			if (new_i_size > EXT4_I(inode)->i_disksize)
2732 				EXT4_I(inode)->i_disksize = new_i_size;
2733 			up_write(&EXT4_I(inode)->i_data_sem);
2734 			/* We need to mark inode dirty even if
2735 			 * new_i_size is less that inode->i_size
2736 			 * bu greater than i_disksize.(hint delalloc)
2737 			 */
2738 			ext4_mark_inode_dirty(handle, inode);
2739 		}
2740 	}
2741 
2742 	if (write_mode != CONVERT_INLINE_DATA &&
2743 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2744 	    ext4_has_inline_data(inode))
2745 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2746 						     page);
2747 	else
2748 		ret2 = generic_write_end(file, mapping, pos, len, copied,
2749 							page, fsdata);
2750 
2751 	copied = ret2;
2752 	if (ret2 < 0)
2753 		ret = ret2;
2754 	ret2 = ext4_journal_stop(handle);
2755 	if (!ret)
2756 		ret = ret2;
2757 
2758 	return ret ? ret : copied;
2759 }
2760 
2761 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2762 				   unsigned int length)
2763 {
2764 	/*
2765 	 * Drop reserved blocks
2766 	 */
2767 	BUG_ON(!PageLocked(page));
2768 	if (!page_has_buffers(page))
2769 		goto out;
2770 
2771 	ext4_da_page_release_reservation(page, offset, length);
2772 
2773 out:
2774 	ext4_invalidatepage(page, offset, length);
2775 
2776 	return;
2777 }
2778 
2779 /*
2780  * Force all delayed allocation blocks to be allocated for a given inode.
2781  */
2782 int ext4_alloc_da_blocks(struct inode *inode)
2783 {
2784 	trace_ext4_alloc_da_blocks(inode);
2785 
2786 	if (!EXT4_I(inode)->i_reserved_data_blocks &&
2787 	    !EXT4_I(inode)->i_reserved_meta_blocks)
2788 		return 0;
2789 
2790 	/*
2791 	 * We do something simple for now.  The filemap_flush() will
2792 	 * also start triggering a write of the data blocks, which is
2793 	 * not strictly speaking necessary (and for users of
2794 	 * laptop_mode, not even desirable).  However, to do otherwise
2795 	 * would require replicating code paths in:
2796 	 *
2797 	 * ext4_writepages() ->
2798 	 *    write_cache_pages() ---> (via passed in callback function)
2799 	 *        __mpage_da_writepage() -->
2800 	 *           mpage_add_bh_to_extent()
2801 	 *           mpage_da_map_blocks()
2802 	 *
2803 	 * The problem is that write_cache_pages(), located in
2804 	 * mm/page-writeback.c, marks pages clean in preparation for
2805 	 * doing I/O, which is not desirable if we're not planning on
2806 	 * doing I/O at all.
2807 	 *
2808 	 * We could call write_cache_pages(), and then redirty all of
2809 	 * the pages by calling redirty_page_for_writepage() but that
2810 	 * would be ugly in the extreme.  So instead we would need to
2811 	 * replicate parts of the code in the above functions,
2812 	 * simplifying them because we wouldn't actually intend to
2813 	 * write out the pages, but rather only collect contiguous
2814 	 * logical block extents, call the multi-block allocator, and
2815 	 * then update the buffer heads with the block allocations.
2816 	 *
2817 	 * For now, though, we'll cheat by calling filemap_flush(),
2818 	 * which will map the blocks, and start the I/O, but not
2819 	 * actually wait for the I/O to complete.
2820 	 */
2821 	return filemap_flush(inode->i_mapping);
2822 }
2823 
2824 /*
2825  * bmap() is special.  It gets used by applications such as lilo and by
2826  * the swapper to find the on-disk block of a specific piece of data.
2827  *
2828  * Naturally, this is dangerous if the block concerned is still in the
2829  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2830  * filesystem and enables swap, then they may get a nasty shock when the
2831  * data getting swapped to that swapfile suddenly gets overwritten by
2832  * the original zero's written out previously to the journal and
2833  * awaiting writeback in the kernel's buffer cache.
2834  *
2835  * So, if we see any bmap calls here on a modified, data-journaled file,
2836  * take extra steps to flush any blocks which might be in the cache.
2837  */
2838 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2839 {
2840 	struct inode *inode = mapping->host;
2841 	journal_t *journal;
2842 	int err;
2843 
2844 	/*
2845 	 * We can get here for an inline file via the FIBMAP ioctl
2846 	 */
2847 	if (ext4_has_inline_data(inode))
2848 		return 0;
2849 
2850 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2851 			test_opt(inode->i_sb, DELALLOC)) {
2852 		/*
2853 		 * With delalloc we want to sync the file
2854 		 * so that we can make sure we allocate
2855 		 * blocks for file
2856 		 */
2857 		filemap_write_and_wait(mapping);
2858 	}
2859 
2860 	if (EXT4_JOURNAL(inode) &&
2861 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2862 		/*
2863 		 * This is a REALLY heavyweight approach, but the use of
2864 		 * bmap on dirty files is expected to be extremely rare:
2865 		 * only if we run lilo or swapon on a freshly made file
2866 		 * do we expect this to happen.
2867 		 *
2868 		 * (bmap requires CAP_SYS_RAWIO so this does not
2869 		 * represent an unprivileged user DOS attack --- we'd be
2870 		 * in trouble if mortal users could trigger this path at
2871 		 * will.)
2872 		 *
2873 		 * NB. EXT4_STATE_JDATA is not set on files other than
2874 		 * regular files.  If somebody wants to bmap a directory
2875 		 * or symlink and gets confused because the buffer
2876 		 * hasn't yet been flushed to disk, they deserve
2877 		 * everything they get.
2878 		 */
2879 
2880 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2881 		journal = EXT4_JOURNAL(inode);
2882 		jbd2_journal_lock_updates(journal);
2883 		err = jbd2_journal_flush(journal);
2884 		jbd2_journal_unlock_updates(journal);
2885 
2886 		if (err)
2887 			return 0;
2888 	}
2889 
2890 	return generic_block_bmap(mapping, block, ext4_get_block);
2891 }
2892 
2893 static int ext4_readpage(struct file *file, struct page *page)
2894 {
2895 	int ret = -EAGAIN;
2896 	struct inode *inode = page->mapping->host;
2897 
2898 	trace_ext4_readpage(page);
2899 
2900 	if (ext4_has_inline_data(inode))
2901 		ret = ext4_readpage_inline(inode, page);
2902 
2903 	if (ret == -EAGAIN)
2904 		return mpage_readpage(page, ext4_get_block);
2905 
2906 	return ret;
2907 }
2908 
2909 static int
2910 ext4_readpages(struct file *file, struct address_space *mapping,
2911 		struct list_head *pages, unsigned nr_pages)
2912 {
2913 	struct inode *inode = mapping->host;
2914 
2915 	/* If the file has inline data, no need to do readpages. */
2916 	if (ext4_has_inline_data(inode))
2917 		return 0;
2918 
2919 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2920 }
2921 
2922 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2923 				unsigned int length)
2924 {
2925 	trace_ext4_invalidatepage(page, offset, length);
2926 
2927 	/* No journalling happens on data buffers when this function is used */
2928 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2929 
2930 	block_invalidatepage(page, offset, length);
2931 }
2932 
2933 static int __ext4_journalled_invalidatepage(struct page *page,
2934 					    unsigned int offset,
2935 					    unsigned int length)
2936 {
2937 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2938 
2939 	trace_ext4_journalled_invalidatepage(page, offset, length);
2940 
2941 	/*
2942 	 * If it's a full truncate we just forget about the pending dirtying
2943 	 */
2944 	if (offset == 0 && length == PAGE_CACHE_SIZE)
2945 		ClearPageChecked(page);
2946 
2947 	return jbd2_journal_invalidatepage(journal, page, offset, length);
2948 }
2949 
2950 /* Wrapper for aops... */
2951 static void ext4_journalled_invalidatepage(struct page *page,
2952 					   unsigned int offset,
2953 					   unsigned int length)
2954 {
2955 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2956 }
2957 
2958 static int ext4_releasepage(struct page *page, gfp_t wait)
2959 {
2960 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2961 
2962 	trace_ext4_releasepage(page);
2963 
2964 	/* Page has dirty journalled data -> cannot release */
2965 	if (PageChecked(page))
2966 		return 0;
2967 	if (journal)
2968 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
2969 	else
2970 		return try_to_free_buffers(page);
2971 }
2972 
2973 /*
2974  * ext4_get_block used when preparing for a DIO write or buffer write.
2975  * We allocate an uinitialized extent if blocks haven't been allocated.
2976  * The extent will be converted to initialized after the IO is complete.
2977  */
2978 int ext4_get_block_write(struct inode *inode, sector_t iblock,
2979 		   struct buffer_head *bh_result, int create)
2980 {
2981 	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2982 		   inode->i_ino, create);
2983 	return _ext4_get_block(inode, iblock, bh_result,
2984 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
2985 }
2986 
2987 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2988 		   struct buffer_head *bh_result, int create)
2989 {
2990 	ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2991 		   inode->i_ino, create);
2992 	return _ext4_get_block(inode, iblock, bh_result,
2993 			       EXT4_GET_BLOCKS_NO_LOCK);
2994 }
2995 
2996 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2997 			    ssize_t size, void *private, int ret,
2998 			    bool is_async)
2999 {
3000 	struct inode *inode = file_inode(iocb->ki_filp);
3001         ext4_io_end_t *io_end = iocb->private;
3002 
3003 	/* if not async direct IO just return */
3004 	if (!io_end) {
3005 		inode_dio_done(inode);
3006 		if (is_async)
3007 			aio_complete(iocb, ret, 0);
3008 		return;
3009 	}
3010 
3011 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3012 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3013  		  iocb->private, io_end->inode->i_ino, iocb, offset,
3014 		  size);
3015 
3016 	iocb->private = NULL;
3017 	io_end->offset = offset;
3018 	io_end->size = size;
3019 	if (is_async) {
3020 		io_end->iocb = iocb;
3021 		io_end->result = ret;
3022 	}
3023 	ext4_put_io_end_defer(io_end);
3024 }
3025 
3026 /*
3027  * For ext4 extent files, ext4 will do direct-io write to holes,
3028  * preallocated extents, and those write extend the file, no need to
3029  * fall back to buffered IO.
3030  *
3031  * For holes, we fallocate those blocks, mark them as uninitialized
3032  * If those blocks were preallocated, we mark sure they are split, but
3033  * still keep the range to write as uninitialized.
3034  *
3035  * The unwritten extents will be converted to written when DIO is completed.
3036  * For async direct IO, since the IO may still pending when return, we
3037  * set up an end_io call back function, which will do the conversion
3038  * when async direct IO completed.
3039  *
3040  * If the O_DIRECT write will extend the file then add this inode to the
3041  * orphan list.  So recovery will truncate it back to the original size
3042  * if the machine crashes during the write.
3043  *
3044  */
3045 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3046 			      const struct iovec *iov, loff_t offset,
3047 			      unsigned long nr_segs)
3048 {
3049 	struct file *file = iocb->ki_filp;
3050 	struct inode *inode = file->f_mapping->host;
3051 	ssize_t ret;
3052 	size_t count = iov_length(iov, nr_segs);
3053 	int overwrite = 0;
3054 	get_block_t *get_block_func = NULL;
3055 	int dio_flags = 0;
3056 	loff_t final_size = offset + count;
3057 	ext4_io_end_t *io_end = NULL;
3058 
3059 	/* Use the old path for reads and writes beyond i_size. */
3060 	if (rw != WRITE || final_size > inode->i_size)
3061 		return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3062 
3063 	BUG_ON(iocb->private == NULL);
3064 
3065 	/*
3066 	 * Make all waiters for direct IO properly wait also for extent
3067 	 * conversion. This also disallows race between truncate() and
3068 	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3069 	 */
3070 	if (rw == WRITE)
3071 		atomic_inc(&inode->i_dio_count);
3072 
3073 	/* If we do a overwrite dio, i_mutex locking can be released */
3074 	overwrite = *((int *)iocb->private);
3075 
3076 	if (overwrite) {
3077 		down_read(&EXT4_I(inode)->i_data_sem);
3078 		mutex_unlock(&inode->i_mutex);
3079 	}
3080 
3081 	/*
3082 	 * We could direct write to holes and fallocate.
3083 	 *
3084 	 * Allocated blocks to fill the hole are marked as
3085 	 * uninitialized to prevent parallel buffered read to expose
3086 	 * the stale data before DIO complete the data IO.
3087 	 *
3088 	 * As to previously fallocated extents, ext4 get_block will
3089 	 * just simply mark the buffer mapped but still keep the
3090 	 * extents uninitialized.
3091 	 *
3092 	 * For non AIO case, we will convert those unwritten extents
3093 	 * to written after return back from blockdev_direct_IO.
3094 	 *
3095 	 * For async DIO, the conversion needs to be deferred when the
3096 	 * IO is completed. The ext4 end_io callback function will be
3097 	 * called to take care of the conversion work.  Here for async
3098 	 * case, we allocate an io_end structure to hook to the iocb.
3099 	 */
3100 	iocb->private = NULL;
3101 	ext4_inode_aio_set(inode, NULL);
3102 	if (!is_sync_kiocb(iocb)) {
3103 		io_end = ext4_init_io_end(inode, GFP_NOFS);
3104 		if (!io_end) {
3105 			ret = -ENOMEM;
3106 			goto retake_lock;
3107 		}
3108 		io_end->flag |= EXT4_IO_END_DIRECT;
3109 		/*
3110 		 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3111 		 */
3112 		iocb->private = ext4_get_io_end(io_end);
3113 		/*
3114 		 * we save the io structure for current async direct
3115 		 * IO, so that later ext4_map_blocks() could flag the
3116 		 * io structure whether there is a unwritten extents
3117 		 * needs to be converted when IO is completed.
3118 		 */
3119 		ext4_inode_aio_set(inode, io_end);
3120 	}
3121 
3122 	if (overwrite) {
3123 		get_block_func = ext4_get_block_write_nolock;
3124 	} else {
3125 		get_block_func = ext4_get_block_write;
3126 		dio_flags = DIO_LOCKING;
3127 	}
3128 	ret = __blockdev_direct_IO(rw, iocb, inode,
3129 				   inode->i_sb->s_bdev, iov,
3130 				   offset, nr_segs,
3131 				   get_block_func,
3132 				   ext4_end_io_dio,
3133 				   NULL,
3134 				   dio_flags);
3135 
3136 	/*
3137 	 * Put our reference to io_end. This can free the io_end structure e.g.
3138 	 * in sync IO case or in case of error. It can even perform extent
3139 	 * conversion if all bios we submitted finished before we got here.
3140 	 * Note that in that case iocb->private can be already set to NULL
3141 	 * here.
3142 	 */
3143 	if (io_end) {
3144 		ext4_inode_aio_set(inode, NULL);
3145 		ext4_put_io_end(io_end);
3146 		/*
3147 		 * When no IO was submitted ext4_end_io_dio() was not
3148 		 * called so we have to put iocb's reference.
3149 		 */
3150 		if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3151 			WARN_ON(iocb->private != io_end);
3152 			WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3153 			WARN_ON(io_end->iocb);
3154 			/*
3155 			 * Generic code already did inode_dio_done() so we
3156 			 * have to clear EXT4_IO_END_DIRECT to not do it for
3157 			 * the second time.
3158 			 */
3159 			io_end->flag = 0;
3160 			ext4_put_io_end(io_end);
3161 			iocb->private = NULL;
3162 		}
3163 	}
3164 	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3165 						EXT4_STATE_DIO_UNWRITTEN)) {
3166 		int err;
3167 		/*
3168 		 * for non AIO case, since the IO is already
3169 		 * completed, we could do the conversion right here
3170 		 */
3171 		err = ext4_convert_unwritten_extents(NULL, inode,
3172 						     offset, ret);
3173 		if (err < 0)
3174 			ret = err;
3175 		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3176 	}
3177 
3178 retake_lock:
3179 	if (rw == WRITE)
3180 		inode_dio_done(inode);
3181 	/* take i_mutex locking again if we do a ovewrite dio */
3182 	if (overwrite) {
3183 		up_read(&EXT4_I(inode)->i_data_sem);
3184 		mutex_lock(&inode->i_mutex);
3185 	}
3186 
3187 	return ret;
3188 }
3189 
3190 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3191 			      const struct iovec *iov, loff_t offset,
3192 			      unsigned long nr_segs)
3193 {
3194 	struct file *file = iocb->ki_filp;
3195 	struct inode *inode = file->f_mapping->host;
3196 	ssize_t ret;
3197 
3198 	/*
3199 	 * If we are doing data journalling we don't support O_DIRECT
3200 	 */
3201 	if (ext4_should_journal_data(inode))
3202 		return 0;
3203 
3204 	/* Let buffer I/O handle the inline data case. */
3205 	if (ext4_has_inline_data(inode))
3206 		return 0;
3207 
3208 	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3209 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3210 		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3211 	else
3212 		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3213 	trace_ext4_direct_IO_exit(inode, offset,
3214 				iov_length(iov, nr_segs), rw, ret);
3215 	return ret;
3216 }
3217 
3218 /*
3219  * Pages can be marked dirty completely asynchronously from ext4's journalling
3220  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3221  * much here because ->set_page_dirty is called under VFS locks.  The page is
3222  * not necessarily locked.
3223  *
3224  * We cannot just dirty the page and leave attached buffers clean, because the
3225  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3226  * or jbddirty because all the journalling code will explode.
3227  *
3228  * So what we do is to mark the page "pending dirty" and next time writepage
3229  * is called, propagate that into the buffers appropriately.
3230  */
3231 static int ext4_journalled_set_page_dirty(struct page *page)
3232 {
3233 	SetPageChecked(page);
3234 	return __set_page_dirty_nobuffers(page);
3235 }
3236 
3237 static const struct address_space_operations ext4_aops = {
3238 	.readpage		= ext4_readpage,
3239 	.readpages		= ext4_readpages,
3240 	.writepage		= ext4_writepage,
3241 	.writepages		= ext4_writepages,
3242 	.write_begin		= ext4_write_begin,
3243 	.write_end		= ext4_write_end,
3244 	.bmap			= ext4_bmap,
3245 	.invalidatepage		= ext4_invalidatepage,
3246 	.releasepage		= ext4_releasepage,
3247 	.direct_IO		= ext4_direct_IO,
3248 	.migratepage		= buffer_migrate_page,
3249 	.is_partially_uptodate  = block_is_partially_uptodate,
3250 	.error_remove_page	= generic_error_remove_page,
3251 };
3252 
3253 static const struct address_space_operations ext4_journalled_aops = {
3254 	.readpage		= ext4_readpage,
3255 	.readpages		= ext4_readpages,
3256 	.writepage		= ext4_writepage,
3257 	.writepages		= ext4_writepages,
3258 	.write_begin		= ext4_write_begin,
3259 	.write_end		= ext4_journalled_write_end,
3260 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3261 	.bmap			= ext4_bmap,
3262 	.invalidatepage		= ext4_journalled_invalidatepage,
3263 	.releasepage		= ext4_releasepage,
3264 	.direct_IO		= ext4_direct_IO,
3265 	.is_partially_uptodate  = block_is_partially_uptodate,
3266 	.error_remove_page	= generic_error_remove_page,
3267 };
3268 
3269 static const struct address_space_operations ext4_da_aops = {
3270 	.readpage		= ext4_readpage,
3271 	.readpages		= ext4_readpages,
3272 	.writepage		= ext4_writepage,
3273 	.writepages		= ext4_writepages,
3274 	.write_begin		= ext4_da_write_begin,
3275 	.write_end		= ext4_da_write_end,
3276 	.bmap			= ext4_bmap,
3277 	.invalidatepage		= ext4_da_invalidatepage,
3278 	.releasepage		= ext4_releasepage,
3279 	.direct_IO		= ext4_direct_IO,
3280 	.migratepage		= buffer_migrate_page,
3281 	.is_partially_uptodate  = block_is_partially_uptodate,
3282 	.error_remove_page	= generic_error_remove_page,
3283 };
3284 
3285 void ext4_set_aops(struct inode *inode)
3286 {
3287 	switch (ext4_inode_journal_mode(inode)) {
3288 	case EXT4_INODE_ORDERED_DATA_MODE:
3289 		ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3290 		break;
3291 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3292 		ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3293 		break;
3294 	case EXT4_INODE_JOURNAL_DATA_MODE:
3295 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3296 		return;
3297 	default:
3298 		BUG();
3299 	}
3300 	if (test_opt(inode->i_sb, DELALLOC))
3301 		inode->i_mapping->a_ops = &ext4_da_aops;
3302 	else
3303 		inode->i_mapping->a_ops = &ext4_aops;
3304 }
3305 
3306 /*
3307  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3308  * up to the end of the block which corresponds to `from'.
3309  * This required during truncate. We need to physically zero the tail end
3310  * of that block so it doesn't yield old data if the file is later grown.
3311  */
3312 int ext4_block_truncate_page(handle_t *handle,
3313 		struct address_space *mapping, loff_t from)
3314 {
3315 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3316 	unsigned length;
3317 	unsigned blocksize;
3318 	struct inode *inode = mapping->host;
3319 
3320 	blocksize = inode->i_sb->s_blocksize;
3321 	length = blocksize - (offset & (blocksize - 1));
3322 
3323 	return ext4_block_zero_page_range(handle, mapping, from, length);
3324 }
3325 
3326 /*
3327  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3328  * starting from file offset 'from'.  The range to be zero'd must
3329  * be contained with in one block.  If the specified range exceeds
3330  * the end of the block it will be shortened to end of the block
3331  * that cooresponds to 'from'
3332  */
3333 int ext4_block_zero_page_range(handle_t *handle,
3334 		struct address_space *mapping, loff_t from, loff_t length)
3335 {
3336 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3337 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3338 	unsigned blocksize, max, pos;
3339 	ext4_lblk_t iblock;
3340 	struct inode *inode = mapping->host;
3341 	struct buffer_head *bh;
3342 	struct page *page;
3343 	int err = 0;
3344 
3345 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3346 				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3347 	if (!page)
3348 		return -ENOMEM;
3349 
3350 	blocksize = inode->i_sb->s_blocksize;
3351 	max = blocksize - (offset & (blocksize - 1));
3352 
3353 	/*
3354 	 * correct length if it does not fall between
3355 	 * 'from' and the end of the block
3356 	 */
3357 	if (length > max || length < 0)
3358 		length = max;
3359 
3360 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3361 
3362 	if (!page_has_buffers(page))
3363 		create_empty_buffers(page, blocksize, 0);
3364 
3365 	/* Find the buffer that contains "offset" */
3366 	bh = page_buffers(page);
3367 	pos = blocksize;
3368 	while (offset >= pos) {
3369 		bh = bh->b_this_page;
3370 		iblock++;
3371 		pos += blocksize;
3372 	}
3373 	if (buffer_freed(bh)) {
3374 		BUFFER_TRACE(bh, "freed: skip");
3375 		goto unlock;
3376 	}
3377 	if (!buffer_mapped(bh)) {
3378 		BUFFER_TRACE(bh, "unmapped");
3379 		ext4_get_block(inode, iblock, bh, 0);
3380 		/* unmapped? It's a hole - nothing to do */
3381 		if (!buffer_mapped(bh)) {
3382 			BUFFER_TRACE(bh, "still unmapped");
3383 			goto unlock;
3384 		}
3385 	}
3386 
3387 	/* Ok, it's mapped. Make sure it's up-to-date */
3388 	if (PageUptodate(page))
3389 		set_buffer_uptodate(bh);
3390 
3391 	if (!buffer_uptodate(bh)) {
3392 		err = -EIO;
3393 		ll_rw_block(READ, 1, &bh);
3394 		wait_on_buffer(bh);
3395 		/* Uhhuh. Read error. Complain and punt. */
3396 		if (!buffer_uptodate(bh))
3397 			goto unlock;
3398 	}
3399 	if (ext4_should_journal_data(inode)) {
3400 		BUFFER_TRACE(bh, "get write access");
3401 		err = ext4_journal_get_write_access(handle, bh);
3402 		if (err)
3403 			goto unlock;
3404 	}
3405 	zero_user(page, offset, length);
3406 	BUFFER_TRACE(bh, "zeroed end of block");
3407 
3408 	if (ext4_should_journal_data(inode)) {
3409 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3410 	} else {
3411 		err = 0;
3412 		mark_buffer_dirty(bh);
3413 		if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3414 			err = ext4_jbd2_file_inode(handle, inode);
3415 	}
3416 
3417 unlock:
3418 	unlock_page(page);
3419 	page_cache_release(page);
3420 	return err;
3421 }
3422 
3423 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3424 			     loff_t lstart, loff_t length)
3425 {
3426 	struct super_block *sb = inode->i_sb;
3427 	struct address_space *mapping = inode->i_mapping;
3428 	unsigned partial_start, partial_end;
3429 	ext4_fsblk_t start, end;
3430 	loff_t byte_end = (lstart + length - 1);
3431 	int err = 0;
3432 
3433 	partial_start = lstart & (sb->s_blocksize - 1);
3434 	partial_end = byte_end & (sb->s_blocksize - 1);
3435 
3436 	start = lstart >> sb->s_blocksize_bits;
3437 	end = byte_end >> sb->s_blocksize_bits;
3438 
3439 	/* Handle partial zero within the single block */
3440 	if (start == end &&
3441 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3442 		err = ext4_block_zero_page_range(handle, mapping,
3443 						 lstart, length);
3444 		return err;
3445 	}
3446 	/* Handle partial zero out on the start of the range */
3447 	if (partial_start) {
3448 		err = ext4_block_zero_page_range(handle, mapping,
3449 						 lstart, sb->s_blocksize);
3450 		if (err)
3451 			return err;
3452 	}
3453 	/* Handle partial zero out on the end of the range */
3454 	if (partial_end != sb->s_blocksize - 1)
3455 		err = ext4_block_zero_page_range(handle, mapping,
3456 						 byte_end - partial_end,
3457 						 partial_end + 1);
3458 	return err;
3459 }
3460 
3461 int ext4_can_truncate(struct inode *inode)
3462 {
3463 	if (S_ISREG(inode->i_mode))
3464 		return 1;
3465 	if (S_ISDIR(inode->i_mode))
3466 		return 1;
3467 	if (S_ISLNK(inode->i_mode))
3468 		return !ext4_inode_is_fast_symlink(inode);
3469 	return 0;
3470 }
3471 
3472 /*
3473  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3474  * associated with the given offset and length
3475  *
3476  * @inode:  File inode
3477  * @offset: The offset where the hole will begin
3478  * @len:    The length of the hole
3479  *
3480  * Returns: 0 on success or negative on failure
3481  */
3482 
3483 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3484 {
3485 	struct super_block *sb = inode->i_sb;
3486 	ext4_lblk_t first_block, stop_block;
3487 	struct address_space *mapping = inode->i_mapping;
3488 	loff_t first_block_offset, last_block_offset;
3489 	handle_t *handle;
3490 	unsigned int credits;
3491 	int ret = 0;
3492 
3493 	if (!S_ISREG(inode->i_mode))
3494 		return -EOPNOTSUPP;
3495 
3496 	if (EXT4_SB(sb)->s_cluster_ratio > 1) {
3497 		/* TODO: Add support for bigalloc file systems */
3498 		return -EOPNOTSUPP;
3499 	}
3500 
3501 	trace_ext4_punch_hole(inode, offset, length);
3502 
3503 	/*
3504 	 * Write out all dirty pages to avoid race conditions
3505 	 * Then release them.
3506 	 */
3507 	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3508 		ret = filemap_write_and_wait_range(mapping, offset,
3509 						   offset + length - 1);
3510 		if (ret)
3511 			return ret;
3512 	}
3513 
3514 	mutex_lock(&inode->i_mutex);
3515 	/* It's not possible punch hole on append only file */
3516 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3517 		ret = -EPERM;
3518 		goto out_mutex;
3519 	}
3520 	if (IS_SWAPFILE(inode)) {
3521 		ret = -ETXTBSY;
3522 		goto out_mutex;
3523 	}
3524 
3525 	/* No need to punch hole beyond i_size */
3526 	if (offset >= inode->i_size)
3527 		goto out_mutex;
3528 
3529 	/*
3530 	 * If the hole extends beyond i_size, set the hole
3531 	 * to end after the page that contains i_size
3532 	 */
3533 	if (offset + length > inode->i_size) {
3534 		length = inode->i_size +
3535 		   PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3536 		   offset;
3537 	}
3538 
3539 	first_block_offset = round_up(offset, sb->s_blocksize);
3540 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3541 
3542 	/* Now release the pages and zero block aligned part of pages*/
3543 	if (last_block_offset > first_block_offset)
3544 		truncate_pagecache_range(inode, first_block_offset,
3545 					 last_block_offset);
3546 
3547 	/* Wait all existing dio workers, newcomers will block on i_mutex */
3548 	ext4_inode_block_unlocked_dio(inode);
3549 	inode_dio_wait(inode);
3550 
3551 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3552 		credits = ext4_writepage_trans_blocks(inode);
3553 	else
3554 		credits = ext4_blocks_for_truncate(inode);
3555 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3556 	if (IS_ERR(handle)) {
3557 		ret = PTR_ERR(handle);
3558 		ext4_std_error(sb, ret);
3559 		goto out_dio;
3560 	}
3561 
3562 	ret = ext4_zero_partial_blocks(handle, inode, offset,
3563 				       length);
3564 	if (ret)
3565 		goto out_stop;
3566 
3567 	first_block = (offset + sb->s_blocksize - 1) >>
3568 		EXT4_BLOCK_SIZE_BITS(sb);
3569 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3570 
3571 	/* If there are no blocks to remove, return now */
3572 	if (first_block >= stop_block)
3573 		goto out_stop;
3574 
3575 	down_write(&EXT4_I(inode)->i_data_sem);
3576 	ext4_discard_preallocations(inode);
3577 
3578 	ret = ext4_es_remove_extent(inode, first_block,
3579 				    stop_block - first_block);
3580 	if (ret) {
3581 		up_write(&EXT4_I(inode)->i_data_sem);
3582 		goto out_stop;
3583 	}
3584 
3585 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3586 		ret = ext4_ext_remove_space(inode, first_block,
3587 					    stop_block - 1);
3588 	else
3589 		ret = ext4_free_hole_blocks(handle, inode, first_block,
3590 					    stop_block);
3591 
3592 	ext4_discard_preallocations(inode);
3593 	up_write(&EXT4_I(inode)->i_data_sem);
3594 	if (IS_SYNC(inode))
3595 		ext4_handle_sync(handle);
3596 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3597 	ext4_mark_inode_dirty(handle, inode);
3598 out_stop:
3599 	ext4_journal_stop(handle);
3600 out_dio:
3601 	ext4_inode_resume_unlocked_dio(inode);
3602 out_mutex:
3603 	mutex_unlock(&inode->i_mutex);
3604 	return ret;
3605 }
3606 
3607 /*
3608  * ext4_truncate()
3609  *
3610  * We block out ext4_get_block() block instantiations across the entire
3611  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3612  * simultaneously on behalf of the same inode.
3613  *
3614  * As we work through the truncate and commit bits of it to the journal there
3615  * is one core, guiding principle: the file's tree must always be consistent on
3616  * disk.  We must be able to restart the truncate after a crash.
3617  *
3618  * The file's tree may be transiently inconsistent in memory (although it
3619  * probably isn't), but whenever we close off and commit a journal transaction,
3620  * the contents of (the filesystem + the journal) must be consistent and
3621  * restartable.  It's pretty simple, really: bottom up, right to left (although
3622  * left-to-right works OK too).
3623  *
3624  * Note that at recovery time, journal replay occurs *before* the restart of
3625  * truncate against the orphan inode list.
3626  *
3627  * The committed inode has the new, desired i_size (which is the same as
3628  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3629  * that this inode's truncate did not complete and it will again call
3630  * ext4_truncate() to have another go.  So there will be instantiated blocks
3631  * to the right of the truncation point in a crashed ext4 filesystem.  But
3632  * that's fine - as long as they are linked from the inode, the post-crash
3633  * ext4_truncate() run will find them and release them.
3634  */
3635 void ext4_truncate(struct inode *inode)
3636 {
3637 	struct ext4_inode_info *ei = EXT4_I(inode);
3638 	unsigned int credits;
3639 	handle_t *handle;
3640 	struct address_space *mapping = inode->i_mapping;
3641 
3642 	/*
3643 	 * There is a possibility that we're either freeing the inode
3644 	 * or it completely new indode. In those cases we might not
3645 	 * have i_mutex locked because it's not necessary.
3646 	 */
3647 	if (!(inode->i_state & (I_NEW|I_FREEING)))
3648 		WARN_ON(!mutex_is_locked(&inode->i_mutex));
3649 	trace_ext4_truncate_enter(inode);
3650 
3651 	if (!ext4_can_truncate(inode))
3652 		return;
3653 
3654 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3655 
3656 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3657 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3658 
3659 	if (ext4_has_inline_data(inode)) {
3660 		int has_inline = 1;
3661 
3662 		ext4_inline_data_truncate(inode, &has_inline);
3663 		if (has_inline)
3664 			return;
3665 	}
3666 
3667 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3668 		credits = ext4_writepage_trans_blocks(inode);
3669 	else
3670 		credits = ext4_blocks_for_truncate(inode);
3671 
3672 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3673 	if (IS_ERR(handle)) {
3674 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
3675 		return;
3676 	}
3677 
3678 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3679 		ext4_block_truncate_page(handle, mapping, inode->i_size);
3680 
3681 	/*
3682 	 * We add the inode to the orphan list, so that if this
3683 	 * truncate spans multiple transactions, and we crash, we will
3684 	 * resume the truncate when the filesystem recovers.  It also
3685 	 * marks the inode dirty, to catch the new size.
3686 	 *
3687 	 * Implication: the file must always be in a sane, consistent
3688 	 * truncatable state while each transaction commits.
3689 	 */
3690 	if (ext4_orphan_add(handle, inode))
3691 		goto out_stop;
3692 
3693 	down_write(&EXT4_I(inode)->i_data_sem);
3694 
3695 	ext4_discard_preallocations(inode);
3696 
3697 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3698 		ext4_ext_truncate(handle, inode);
3699 	else
3700 		ext4_ind_truncate(handle, inode);
3701 
3702 	up_write(&ei->i_data_sem);
3703 
3704 	if (IS_SYNC(inode))
3705 		ext4_handle_sync(handle);
3706 
3707 out_stop:
3708 	/*
3709 	 * If this was a simple ftruncate() and the file will remain alive,
3710 	 * then we need to clear up the orphan record which we created above.
3711 	 * However, if this was a real unlink then we were called by
3712 	 * ext4_delete_inode(), and we allow that function to clean up the
3713 	 * orphan info for us.
3714 	 */
3715 	if (inode->i_nlink)
3716 		ext4_orphan_del(handle, inode);
3717 
3718 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3719 	ext4_mark_inode_dirty(handle, inode);
3720 	ext4_journal_stop(handle);
3721 
3722 	trace_ext4_truncate_exit(inode);
3723 }
3724 
3725 /*
3726  * ext4_get_inode_loc returns with an extra refcount against the inode's
3727  * underlying buffer_head on success. If 'in_mem' is true, we have all
3728  * data in memory that is needed to recreate the on-disk version of this
3729  * inode.
3730  */
3731 static int __ext4_get_inode_loc(struct inode *inode,
3732 				struct ext4_iloc *iloc, int in_mem)
3733 {
3734 	struct ext4_group_desc	*gdp;
3735 	struct buffer_head	*bh;
3736 	struct super_block	*sb = inode->i_sb;
3737 	ext4_fsblk_t		block;
3738 	int			inodes_per_block, inode_offset;
3739 
3740 	iloc->bh = NULL;
3741 	if (!ext4_valid_inum(sb, inode->i_ino))
3742 		return -EIO;
3743 
3744 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3745 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3746 	if (!gdp)
3747 		return -EIO;
3748 
3749 	/*
3750 	 * Figure out the offset within the block group inode table
3751 	 */
3752 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3753 	inode_offset = ((inode->i_ino - 1) %
3754 			EXT4_INODES_PER_GROUP(sb));
3755 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3756 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3757 
3758 	bh = sb_getblk(sb, block);
3759 	if (unlikely(!bh))
3760 		return -ENOMEM;
3761 	if (!buffer_uptodate(bh)) {
3762 		lock_buffer(bh);
3763 
3764 		/*
3765 		 * If the buffer has the write error flag, we have failed
3766 		 * to write out another inode in the same block.  In this
3767 		 * case, we don't have to read the block because we may
3768 		 * read the old inode data successfully.
3769 		 */
3770 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3771 			set_buffer_uptodate(bh);
3772 
3773 		if (buffer_uptodate(bh)) {
3774 			/* someone brought it uptodate while we waited */
3775 			unlock_buffer(bh);
3776 			goto has_buffer;
3777 		}
3778 
3779 		/*
3780 		 * If we have all information of the inode in memory and this
3781 		 * is the only valid inode in the block, we need not read the
3782 		 * block.
3783 		 */
3784 		if (in_mem) {
3785 			struct buffer_head *bitmap_bh;
3786 			int i, start;
3787 
3788 			start = inode_offset & ~(inodes_per_block - 1);
3789 
3790 			/* Is the inode bitmap in cache? */
3791 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3792 			if (unlikely(!bitmap_bh))
3793 				goto make_io;
3794 
3795 			/*
3796 			 * If the inode bitmap isn't in cache then the
3797 			 * optimisation may end up performing two reads instead
3798 			 * of one, so skip it.
3799 			 */
3800 			if (!buffer_uptodate(bitmap_bh)) {
3801 				brelse(bitmap_bh);
3802 				goto make_io;
3803 			}
3804 			for (i = start; i < start + inodes_per_block; i++) {
3805 				if (i == inode_offset)
3806 					continue;
3807 				if (ext4_test_bit(i, bitmap_bh->b_data))
3808 					break;
3809 			}
3810 			brelse(bitmap_bh);
3811 			if (i == start + inodes_per_block) {
3812 				/* all other inodes are free, so skip I/O */
3813 				memset(bh->b_data, 0, bh->b_size);
3814 				set_buffer_uptodate(bh);
3815 				unlock_buffer(bh);
3816 				goto has_buffer;
3817 			}
3818 		}
3819 
3820 make_io:
3821 		/*
3822 		 * If we need to do any I/O, try to pre-readahead extra
3823 		 * blocks from the inode table.
3824 		 */
3825 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
3826 			ext4_fsblk_t b, end, table;
3827 			unsigned num;
3828 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3829 
3830 			table = ext4_inode_table(sb, gdp);
3831 			/* s_inode_readahead_blks is always a power of 2 */
3832 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
3833 			if (table > b)
3834 				b = table;
3835 			end = b + ra_blks;
3836 			num = EXT4_INODES_PER_GROUP(sb);
3837 			if (ext4_has_group_desc_csum(sb))
3838 				num -= ext4_itable_unused_count(sb, gdp);
3839 			table += num / inodes_per_block;
3840 			if (end > table)
3841 				end = table;
3842 			while (b <= end)
3843 				sb_breadahead(sb, b++);
3844 		}
3845 
3846 		/*
3847 		 * There are other valid inodes in the buffer, this inode
3848 		 * has in-inode xattrs, or we don't have this inode in memory.
3849 		 * Read the block from disk.
3850 		 */
3851 		trace_ext4_load_inode(inode);
3852 		get_bh(bh);
3853 		bh->b_end_io = end_buffer_read_sync;
3854 		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3855 		wait_on_buffer(bh);
3856 		if (!buffer_uptodate(bh)) {
3857 			EXT4_ERROR_INODE_BLOCK(inode, block,
3858 					       "unable to read itable block");
3859 			brelse(bh);
3860 			return -EIO;
3861 		}
3862 	}
3863 has_buffer:
3864 	iloc->bh = bh;
3865 	return 0;
3866 }
3867 
3868 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3869 {
3870 	/* We have all inode data except xattrs in memory here. */
3871 	return __ext4_get_inode_loc(inode, iloc,
3872 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3873 }
3874 
3875 void ext4_set_inode_flags(struct inode *inode)
3876 {
3877 	unsigned int flags = EXT4_I(inode)->i_flags;
3878 
3879 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3880 	if (flags & EXT4_SYNC_FL)
3881 		inode->i_flags |= S_SYNC;
3882 	if (flags & EXT4_APPEND_FL)
3883 		inode->i_flags |= S_APPEND;
3884 	if (flags & EXT4_IMMUTABLE_FL)
3885 		inode->i_flags |= S_IMMUTABLE;
3886 	if (flags & EXT4_NOATIME_FL)
3887 		inode->i_flags |= S_NOATIME;
3888 	if (flags & EXT4_DIRSYNC_FL)
3889 		inode->i_flags |= S_DIRSYNC;
3890 }
3891 
3892 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3893 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3894 {
3895 	unsigned int vfs_fl;
3896 	unsigned long old_fl, new_fl;
3897 
3898 	do {
3899 		vfs_fl = ei->vfs_inode.i_flags;
3900 		old_fl = ei->i_flags;
3901 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3902 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3903 				EXT4_DIRSYNC_FL);
3904 		if (vfs_fl & S_SYNC)
3905 			new_fl |= EXT4_SYNC_FL;
3906 		if (vfs_fl & S_APPEND)
3907 			new_fl |= EXT4_APPEND_FL;
3908 		if (vfs_fl & S_IMMUTABLE)
3909 			new_fl |= EXT4_IMMUTABLE_FL;
3910 		if (vfs_fl & S_NOATIME)
3911 			new_fl |= EXT4_NOATIME_FL;
3912 		if (vfs_fl & S_DIRSYNC)
3913 			new_fl |= EXT4_DIRSYNC_FL;
3914 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3915 }
3916 
3917 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3918 				  struct ext4_inode_info *ei)
3919 {
3920 	blkcnt_t i_blocks ;
3921 	struct inode *inode = &(ei->vfs_inode);
3922 	struct super_block *sb = inode->i_sb;
3923 
3924 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3925 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3926 		/* we are using combined 48 bit field */
3927 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3928 					le32_to_cpu(raw_inode->i_blocks_lo);
3929 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3930 			/* i_blocks represent file system block size */
3931 			return i_blocks  << (inode->i_blkbits - 9);
3932 		} else {
3933 			return i_blocks;
3934 		}
3935 	} else {
3936 		return le32_to_cpu(raw_inode->i_blocks_lo);
3937 	}
3938 }
3939 
3940 static inline void ext4_iget_extra_inode(struct inode *inode,
3941 					 struct ext4_inode *raw_inode,
3942 					 struct ext4_inode_info *ei)
3943 {
3944 	__le32 *magic = (void *)raw_inode +
3945 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3946 	if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3947 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3948 		ext4_find_inline_data_nolock(inode);
3949 	} else
3950 		EXT4_I(inode)->i_inline_off = 0;
3951 }
3952 
3953 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3954 {
3955 	struct ext4_iloc iloc;
3956 	struct ext4_inode *raw_inode;
3957 	struct ext4_inode_info *ei;
3958 	struct inode *inode;
3959 	journal_t *journal = EXT4_SB(sb)->s_journal;
3960 	long ret;
3961 	int block;
3962 	uid_t i_uid;
3963 	gid_t i_gid;
3964 
3965 	inode = iget_locked(sb, ino);
3966 	if (!inode)
3967 		return ERR_PTR(-ENOMEM);
3968 	if (!(inode->i_state & I_NEW))
3969 		return inode;
3970 
3971 	ei = EXT4_I(inode);
3972 	iloc.bh = NULL;
3973 
3974 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
3975 	if (ret < 0)
3976 		goto bad_inode;
3977 	raw_inode = ext4_raw_inode(&iloc);
3978 
3979 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3980 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3981 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3982 		    EXT4_INODE_SIZE(inode->i_sb)) {
3983 			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3984 				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3985 				EXT4_INODE_SIZE(inode->i_sb));
3986 			ret = -EIO;
3987 			goto bad_inode;
3988 		}
3989 	} else
3990 		ei->i_extra_isize = 0;
3991 
3992 	/* Precompute checksum seed for inode metadata */
3993 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3994 			EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3995 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3996 		__u32 csum;
3997 		__le32 inum = cpu_to_le32(inode->i_ino);
3998 		__le32 gen = raw_inode->i_generation;
3999 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4000 				   sizeof(inum));
4001 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4002 					      sizeof(gen));
4003 	}
4004 
4005 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4006 		EXT4_ERROR_INODE(inode, "checksum invalid");
4007 		ret = -EIO;
4008 		goto bad_inode;
4009 	}
4010 
4011 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4012 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4013 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4014 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4015 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4016 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4017 	}
4018 	i_uid_write(inode, i_uid);
4019 	i_gid_write(inode, i_gid);
4020 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4021 
4022 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4023 	ei->i_inline_off = 0;
4024 	ei->i_dir_start_lookup = 0;
4025 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4026 	/* We now have enough fields to check if the inode was active or not.
4027 	 * This is needed because nfsd might try to access dead inodes
4028 	 * the test is that same one that e2fsck uses
4029 	 * NeilBrown 1999oct15
4030 	 */
4031 	if (inode->i_nlink == 0) {
4032 		if ((inode->i_mode == 0 ||
4033 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4034 		    ino != EXT4_BOOT_LOADER_INO) {
4035 			/* this inode is deleted */
4036 			ret = -ESTALE;
4037 			goto bad_inode;
4038 		}
4039 		/* The only unlinked inodes we let through here have
4040 		 * valid i_mode and are being read by the orphan
4041 		 * recovery code: that's fine, we're about to complete
4042 		 * the process of deleting those.
4043 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4044 		 * not initialized on a new filesystem. */
4045 	}
4046 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4047 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4048 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4049 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4050 		ei->i_file_acl |=
4051 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4052 	inode->i_size = ext4_isize(raw_inode);
4053 	ei->i_disksize = inode->i_size;
4054 #ifdef CONFIG_QUOTA
4055 	ei->i_reserved_quota = 0;
4056 #endif
4057 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4058 	ei->i_block_group = iloc.block_group;
4059 	ei->i_last_alloc_group = ~0;
4060 	/*
4061 	 * NOTE! The in-memory inode i_data array is in little-endian order
4062 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4063 	 */
4064 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4065 		ei->i_data[block] = raw_inode->i_block[block];
4066 	INIT_LIST_HEAD(&ei->i_orphan);
4067 
4068 	/*
4069 	 * Set transaction id's of transactions that have to be committed
4070 	 * to finish f[data]sync. We set them to currently running transaction
4071 	 * as we cannot be sure that the inode or some of its metadata isn't
4072 	 * part of the transaction - the inode could have been reclaimed and
4073 	 * now it is reread from disk.
4074 	 */
4075 	if (journal) {
4076 		transaction_t *transaction;
4077 		tid_t tid;
4078 
4079 		read_lock(&journal->j_state_lock);
4080 		if (journal->j_running_transaction)
4081 			transaction = journal->j_running_transaction;
4082 		else
4083 			transaction = journal->j_committing_transaction;
4084 		if (transaction)
4085 			tid = transaction->t_tid;
4086 		else
4087 			tid = journal->j_commit_sequence;
4088 		read_unlock(&journal->j_state_lock);
4089 		ei->i_sync_tid = tid;
4090 		ei->i_datasync_tid = tid;
4091 	}
4092 
4093 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4094 		if (ei->i_extra_isize == 0) {
4095 			/* The extra space is currently unused. Use it. */
4096 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4097 					    EXT4_GOOD_OLD_INODE_SIZE;
4098 		} else {
4099 			ext4_iget_extra_inode(inode, raw_inode, ei);
4100 		}
4101 	}
4102 
4103 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4104 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4105 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4106 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4107 
4108 	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4109 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4110 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4111 			inode->i_version |=
4112 			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4113 	}
4114 
4115 	ret = 0;
4116 	if (ei->i_file_acl &&
4117 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4118 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4119 				 ei->i_file_acl);
4120 		ret = -EIO;
4121 		goto bad_inode;
4122 	} else if (!ext4_has_inline_data(inode)) {
4123 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4124 			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4125 			    (S_ISLNK(inode->i_mode) &&
4126 			     !ext4_inode_is_fast_symlink(inode))))
4127 				/* Validate extent which is part of inode */
4128 				ret = ext4_ext_check_inode(inode);
4129 		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4130 			   (S_ISLNK(inode->i_mode) &&
4131 			    !ext4_inode_is_fast_symlink(inode))) {
4132 			/* Validate block references which are part of inode */
4133 			ret = ext4_ind_check_inode(inode);
4134 		}
4135 	}
4136 	if (ret)
4137 		goto bad_inode;
4138 
4139 	if (S_ISREG(inode->i_mode)) {
4140 		inode->i_op = &ext4_file_inode_operations;
4141 		inode->i_fop = &ext4_file_operations;
4142 		ext4_set_aops(inode);
4143 	} else if (S_ISDIR(inode->i_mode)) {
4144 		inode->i_op = &ext4_dir_inode_operations;
4145 		inode->i_fop = &ext4_dir_operations;
4146 	} else if (S_ISLNK(inode->i_mode)) {
4147 		if (ext4_inode_is_fast_symlink(inode)) {
4148 			inode->i_op = &ext4_fast_symlink_inode_operations;
4149 			nd_terminate_link(ei->i_data, inode->i_size,
4150 				sizeof(ei->i_data) - 1);
4151 		} else {
4152 			inode->i_op = &ext4_symlink_inode_operations;
4153 			ext4_set_aops(inode);
4154 		}
4155 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4156 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4157 		inode->i_op = &ext4_special_inode_operations;
4158 		if (raw_inode->i_block[0])
4159 			init_special_inode(inode, inode->i_mode,
4160 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4161 		else
4162 			init_special_inode(inode, inode->i_mode,
4163 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4164 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4165 		make_bad_inode(inode);
4166 	} else {
4167 		ret = -EIO;
4168 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4169 		goto bad_inode;
4170 	}
4171 	brelse(iloc.bh);
4172 	ext4_set_inode_flags(inode);
4173 	unlock_new_inode(inode);
4174 	return inode;
4175 
4176 bad_inode:
4177 	brelse(iloc.bh);
4178 	iget_failed(inode);
4179 	return ERR_PTR(ret);
4180 }
4181 
4182 static int ext4_inode_blocks_set(handle_t *handle,
4183 				struct ext4_inode *raw_inode,
4184 				struct ext4_inode_info *ei)
4185 {
4186 	struct inode *inode = &(ei->vfs_inode);
4187 	u64 i_blocks = inode->i_blocks;
4188 	struct super_block *sb = inode->i_sb;
4189 
4190 	if (i_blocks <= ~0U) {
4191 		/*
4192 		 * i_blocks can be represented in a 32 bit variable
4193 		 * as multiple of 512 bytes
4194 		 */
4195 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4196 		raw_inode->i_blocks_high = 0;
4197 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4198 		return 0;
4199 	}
4200 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4201 		return -EFBIG;
4202 
4203 	if (i_blocks <= 0xffffffffffffULL) {
4204 		/*
4205 		 * i_blocks can be represented in a 48 bit variable
4206 		 * as multiple of 512 bytes
4207 		 */
4208 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4209 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4210 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4211 	} else {
4212 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4213 		/* i_block is stored in file system block size */
4214 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4215 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4216 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4217 	}
4218 	return 0;
4219 }
4220 
4221 /*
4222  * Post the struct inode info into an on-disk inode location in the
4223  * buffer-cache.  This gobbles the caller's reference to the
4224  * buffer_head in the inode location struct.
4225  *
4226  * The caller must have write access to iloc->bh.
4227  */
4228 static int ext4_do_update_inode(handle_t *handle,
4229 				struct inode *inode,
4230 				struct ext4_iloc *iloc)
4231 {
4232 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4233 	struct ext4_inode_info *ei = EXT4_I(inode);
4234 	struct buffer_head *bh = iloc->bh;
4235 	int err = 0, rc, block;
4236 	int need_datasync = 0;
4237 	uid_t i_uid;
4238 	gid_t i_gid;
4239 
4240 	/* For fields not not tracking in the in-memory inode,
4241 	 * initialise them to zero for new inodes. */
4242 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4243 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4244 
4245 	ext4_get_inode_flags(ei);
4246 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4247 	i_uid = i_uid_read(inode);
4248 	i_gid = i_gid_read(inode);
4249 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4250 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4251 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4252 /*
4253  * Fix up interoperability with old kernels. Otherwise, old inodes get
4254  * re-used with the upper 16 bits of the uid/gid intact
4255  */
4256 		if (!ei->i_dtime) {
4257 			raw_inode->i_uid_high =
4258 				cpu_to_le16(high_16_bits(i_uid));
4259 			raw_inode->i_gid_high =
4260 				cpu_to_le16(high_16_bits(i_gid));
4261 		} else {
4262 			raw_inode->i_uid_high = 0;
4263 			raw_inode->i_gid_high = 0;
4264 		}
4265 	} else {
4266 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4267 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4268 		raw_inode->i_uid_high = 0;
4269 		raw_inode->i_gid_high = 0;
4270 	}
4271 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4272 
4273 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4274 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4275 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4276 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4277 
4278 	if (ext4_inode_blocks_set(handle, raw_inode, ei))
4279 		goto out_brelse;
4280 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4281 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4282 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4283 	    cpu_to_le32(EXT4_OS_HURD))
4284 		raw_inode->i_file_acl_high =
4285 			cpu_to_le16(ei->i_file_acl >> 32);
4286 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4287 	if (ei->i_disksize != ext4_isize(raw_inode)) {
4288 		ext4_isize_set(raw_inode, ei->i_disksize);
4289 		need_datasync = 1;
4290 	}
4291 	if (ei->i_disksize > 0x7fffffffULL) {
4292 		struct super_block *sb = inode->i_sb;
4293 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4294 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4295 				EXT4_SB(sb)->s_es->s_rev_level ==
4296 				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4297 			/* If this is the first large file
4298 			 * created, add a flag to the superblock.
4299 			 */
4300 			err = ext4_journal_get_write_access(handle,
4301 					EXT4_SB(sb)->s_sbh);
4302 			if (err)
4303 				goto out_brelse;
4304 			ext4_update_dynamic_rev(sb);
4305 			EXT4_SET_RO_COMPAT_FEATURE(sb,
4306 					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4307 			ext4_handle_sync(handle);
4308 			err = ext4_handle_dirty_super(handle, sb);
4309 		}
4310 	}
4311 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4312 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4313 		if (old_valid_dev(inode->i_rdev)) {
4314 			raw_inode->i_block[0] =
4315 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4316 			raw_inode->i_block[1] = 0;
4317 		} else {
4318 			raw_inode->i_block[0] = 0;
4319 			raw_inode->i_block[1] =
4320 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4321 			raw_inode->i_block[2] = 0;
4322 		}
4323 	} else if (!ext4_has_inline_data(inode)) {
4324 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4325 			raw_inode->i_block[block] = ei->i_data[block];
4326 	}
4327 
4328 	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4329 	if (ei->i_extra_isize) {
4330 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4331 			raw_inode->i_version_hi =
4332 			cpu_to_le32(inode->i_version >> 32);
4333 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4334 	}
4335 
4336 	ext4_inode_csum_set(inode, raw_inode, ei);
4337 
4338 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4339 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4340 	if (!err)
4341 		err = rc;
4342 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4343 
4344 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4345 out_brelse:
4346 	brelse(bh);
4347 	ext4_std_error(inode->i_sb, err);
4348 	return err;
4349 }
4350 
4351 /*
4352  * ext4_write_inode()
4353  *
4354  * We are called from a few places:
4355  *
4356  * - Within generic_file_write() for O_SYNC files.
4357  *   Here, there will be no transaction running. We wait for any running
4358  *   transaction to commit.
4359  *
4360  * - Within sys_sync(), kupdate and such.
4361  *   We wait on commit, if tol to.
4362  *
4363  * - Within prune_icache() (PF_MEMALLOC == true)
4364  *   Here we simply return.  We can't afford to block kswapd on the
4365  *   journal commit.
4366  *
4367  * In all cases it is actually safe for us to return without doing anything,
4368  * because the inode has been copied into a raw inode buffer in
4369  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4370  * knfsd.
4371  *
4372  * Note that we are absolutely dependent upon all inode dirtiers doing the
4373  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4374  * which we are interested.
4375  *
4376  * It would be a bug for them to not do this.  The code:
4377  *
4378  *	mark_inode_dirty(inode)
4379  *	stuff();
4380  *	inode->i_size = expr;
4381  *
4382  * is in error because a kswapd-driven write_inode() could occur while
4383  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4384  * will no longer be on the superblock's dirty inode list.
4385  */
4386 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4387 {
4388 	int err;
4389 
4390 	if (current->flags & PF_MEMALLOC)
4391 		return 0;
4392 
4393 	if (EXT4_SB(inode->i_sb)->s_journal) {
4394 		if (ext4_journal_current_handle()) {
4395 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4396 			dump_stack();
4397 			return -EIO;
4398 		}
4399 
4400 		if (wbc->sync_mode != WB_SYNC_ALL)
4401 			return 0;
4402 
4403 		err = ext4_force_commit(inode->i_sb);
4404 	} else {
4405 		struct ext4_iloc iloc;
4406 
4407 		err = __ext4_get_inode_loc(inode, &iloc, 0);
4408 		if (err)
4409 			return err;
4410 		if (wbc->sync_mode == WB_SYNC_ALL)
4411 			sync_dirty_buffer(iloc.bh);
4412 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4413 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4414 					 "IO error syncing inode");
4415 			err = -EIO;
4416 		}
4417 		brelse(iloc.bh);
4418 	}
4419 	return err;
4420 }
4421 
4422 /*
4423  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4424  * buffers that are attached to a page stradding i_size and are undergoing
4425  * commit. In that case we have to wait for commit to finish and try again.
4426  */
4427 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4428 {
4429 	struct page *page;
4430 	unsigned offset;
4431 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4432 	tid_t commit_tid = 0;
4433 	int ret;
4434 
4435 	offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4436 	/*
4437 	 * All buffers in the last page remain valid? Then there's nothing to
4438 	 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4439 	 * blocksize case
4440 	 */
4441 	if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4442 		return;
4443 	while (1) {
4444 		page = find_lock_page(inode->i_mapping,
4445 				      inode->i_size >> PAGE_CACHE_SHIFT);
4446 		if (!page)
4447 			return;
4448 		ret = __ext4_journalled_invalidatepage(page, offset,
4449 						PAGE_CACHE_SIZE - offset);
4450 		unlock_page(page);
4451 		page_cache_release(page);
4452 		if (ret != -EBUSY)
4453 			return;
4454 		commit_tid = 0;
4455 		read_lock(&journal->j_state_lock);
4456 		if (journal->j_committing_transaction)
4457 			commit_tid = journal->j_committing_transaction->t_tid;
4458 		read_unlock(&journal->j_state_lock);
4459 		if (commit_tid)
4460 			jbd2_log_wait_commit(journal, commit_tid);
4461 	}
4462 }
4463 
4464 /*
4465  * ext4_setattr()
4466  *
4467  * Called from notify_change.
4468  *
4469  * We want to trap VFS attempts to truncate the file as soon as
4470  * possible.  In particular, we want to make sure that when the VFS
4471  * shrinks i_size, we put the inode on the orphan list and modify
4472  * i_disksize immediately, so that during the subsequent flushing of
4473  * dirty pages and freeing of disk blocks, we can guarantee that any
4474  * commit will leave the blocks being flushed in an unused state on
4475  * disk.  (On recovery, the inode will get truncated and the blocks will
4476  * be freed, so we have a strong guarantee that no future commit will
4477  * leave these blocks visible to the user.)
4478  *
4479  * Another thing we have to assure is that if we are in ordered mode
4480  * and inode is still attached to the committing transaction, we must
4481  * we start writeout of all the dirty pages which are being truncated.
4482  * This way we are sure that all the data written in the previous
4483  * transaction are already on disk (truncate waits for pages under
4484  * writeback).
4485  *
4486  * Called with inode->i_mutex down.
4487  */
4488 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4489 {
4490 	struct inode *inode = dentry->d_inode;
4491 	int error, rc = 0;
4492 	int orphan = 0;
4493 	const unsigned int ia_valid = attr->ia_valid;
4494 
4495 	error = inode_change_ok(inode, attr);
4496 	if (error)
4497 		return error;
4498 
4499 	if (is_quota_modification(inode, attr))
4500 		dquot_initialize(inode);
4501 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4502 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4503 		handle_t *handle;
4504 
4505 		/* (user+group)*(old+new) structure, inode write (sb,
4506 		 * inode block, ? - but truncate inode update has it) */
4507 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4508 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4509 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4510 		if (IS_ERR(handle)) {
4511 			error = PTR_ERR(handle);
4512 			goto err_out;
4513 		}
4514 		error = dquot_transfer(inode, attr);
4515 		if (error) {
4516 			ext4_journal_stop(handle);
4517 			return error;
4518 		}
4519 		/* Update corresponding info in inode so that everything is in
4520 		 * one transaction */
4521 		if (attr->ia_valid & ATTR_UID)
4522 			inode->i_uid = attr->ia_uid;
4523 		if (attr->ia_valid & ATTR_GID)
4524 			inode->i_gid = attr->ia_gid;
4525 		error = ext4_mark_inode_dirty(handle, inode);
4526 		ext4_journal_stop(handle);
4527 	}
4528 
4529 	if (attr->ia_valid & ATTR_SIZE) {
4530 
4531 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4532 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4533 
4534 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
4535 				return -EFBIG;
4536 		}
4537 	}
4538 
4539 	if (S_ISREG(inode->i_mode) &&
4540 	    attr->ia_valid & ATTR_SIZE &&
4541 	    (attr->ia_size < inode->i_size)) {
4542 		handle_t *handle;
4543 
4544 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4545 		if (IS_ERR(handle)) {
4546 			error = PTR_ERR(handle);
4547 			goto err_out;
4548 		}
4549 		if (ext4_handle_valid(handle)) {
4550 			error = ext4_orphan_add(handle, inode);
4551 			orphan = 1;
4552 		}
4553 		EXT4_I(inode)->i_disksize = attr->ia_size;
4554 		rc = ext4_mark_inode_dirty(handle, inode);
4555 		if (!error)
4556 			error = rc;
4557 		ext4_journal_stop(handle);
4558 
4559 		if (ext4_should_order_data(inode)) {
4560 			error = ext4_begin_ordered_truncate(inode,
4561 							    attr->ia_size);
4562 			if (error) {
4563 				/* Do as much error cleanup as possible */
4564 				handle = ext4_journal_start(inode,
4565 							    EXT4_HT_INODE, 3);
4566 				if (IS_ERR(handle)) {
4567 					ext4_orphan_del(NULL, inode);
4568 					goto err_out;
4569 				}
4570 				ext4_orphan_del(handle, inode);
4571 				orphan = 0;
4572 				ext4_journal_stop(handle);
4573 				goto err_out;
4574 			}
4575 		}
4576 	}
4577 
4578 	if (attr->ia_valid & ATTR_SIZE) {
4579 		if (attr->ia_size != inode->i_size) {
4580 			loff_t oldsize = inode->i_size;
4581 
4582 			i_size_write(inode, attr->ia_size);
4583 			/*
4584 			 * Blocks are going to be removed from the inode. Wait
4585 			 * for dio in flight.  Temporarily disable
4586 			 * dioread_nolock to prevent livelock.
4587 			 */
4588 			if (orphan) {
4589 				if (!ext4_should_journal_data(inode)) {
4590 					ext4_inode_block_unlocked_dio(inode);
4591 					inode_dio_wait(inode);
4592 					ext4_inode_resume_unlocked_dio(inode);
4593 				} else
4594 					ext4_wait_for_tail_page_commit(inode);
4595 			}
4596 			/*
4597 			 * Truncate pagecache after we've waited for commit
4598 			 * in data=journal mode to make pages freeable.
4599 			 */
4600 			truncate_pagecache(inode, oldsize, inode->i_size);
4601 		}
4602 		ext4_truncate(inode);
4603 	}
4604 
4605 	if (!rc) {
4606 		setattr_copy(inode, attr);
4607 		mark_inode_dirty(inode);
4608 	}
4609 
4610 	/*
4611 	 * If the call to ext4_truncate failed to get a transaction handle at
4612 	 * all, we need to clean up the in-core orphan list manually.
4613 	 */
4614 	if (orphan && inode->i_nlink)
4615 		ext4_orphan_del(NULL, inode);
4616 
4617 	if (!rc && (ia_valid & ATTR_MODE))
4618 		rc = ext4_acl_chmod(inode);
4619 
4620 err_out:
4621 	ext4_std_error(inode->i_sb, error);
4622 	if (!error)
4623 		error = rc;
4624 	return error;
4625 }
4626 
4627 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4628 		 struct kstat *stat)
4629 {
4630 	struct inode *inode;
4631 	unsigned long long delalloc_blocks;
4632 
4633 	inode = dentry->d_inode;
4634 	generic_fillattr(inode, stat);
4635 
4636 	/*
4637 	 * We can't update i_blocks if the block allocation is delayed
4638 	 * otherwise in the case of system crash before the real block
4639 	 * allocation is done, we will have i_blocks inconsistent with
4640 	 * on-disk file blocks.
4641 	 * We always keep i_blocks updated together with real
4642 	 * allocation. But to not confuse with user, stat
4643 	 * will return the blocks that include the delayed allocation
4644 	 * blocks for this file.
4645 	 */
4646 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4647 				EXT4_I(inode)->i_reserved_data_blocks);
4648 
4649 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits-9);
4650 	return 0;
4651 }
4652 
4653 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4654 				   int pextents)
4655 {
4656 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4657 		return ext4_ind_trans_blocks(inode, lblocks);
4658 	return ext4_ext_index_trans_blocks(inode, pextents);
4659 }
4660 
4661 /*
4662  * Account for index blocks, block groups bitmaps and block group
4663  * descriptor blocks if modify datablocks and index blocks
4664  * worse case, the indexs blocks spread over different block groups
4665  *
4666  * If datablocks are discontiguous, they are possible to spread over
4667  * different block groups too. If they are contiguous, with flexbg,
4668  * they could still across block group boundary.
4669  *
4670  * Also account for superblock, inode, quota and xattr blocks
4671  */
4672 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4673 				  int pextents)
4674 {
4675 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4676 	int gdpblocks;
4677 	int idxblocks;
4678 	int ret = 0;
4679 
4680 	/*
4681 	 * How many index blocks need to touch to map @lblocks logical blocks
4682 	 * to @pextents physical extents?
4683 	 */
4684 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4685 
4686 	ret = idxblocks;
4687 
4688 	/*
4689 	 * Now let's see how many group bitmaps and group descriptors need
4690 	 * to account
4691 	 */
4692 	groups = idxblocks + pextents;
4693 	gdpblocks = groups;
4694 	if (groups > ngroups)
4695 		groups = ngroups;
4696 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4697 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4698 
4699 	/* bitmaps and block group descriptor blocks */
4700 	ret += groups + gdpblocks;
4701 
4702 	/* Blocks for super block, inode, quota and xattr blocks */
4703 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4704 
4705 	return ret;
4706 }
4707 
4708 /*
4709  * Calculate the total number of credits to reserve to fit
4710  * the modification of a single pages into a single transaction,
4711  * which may include multiple chunks of block allocations.
4712  *
4713  * This could be called via ext4_write_begin()
4714  *
4715  * We need to consider the worse case, when
4716  * one new block per extent.
4717  */
4718 int ext4_writepage_trans_blocks(struct inode *inode)
4719 {
4720 	int bpp = ext4_journal_blocks_per_page(inode);
4721 	int ret;
4722 
4723 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4724 
4725 	/* Account for data blocks for journalled mode */
4726 	if (ext4_should_journal_data(inode))
4727 		ret += bpp;
4728 	return ret;
4729 }
4730 
4731 /*
4732  * Calculate the journal credits for a chunk of data modification.
4733  *
4734  * This is called from DIO, fallocate or whoever calling
4735  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4736  *
4737  * journal buffers for data blocks are not included here, as DIO
4738  * and fallocate do no need to journal data buffers.
4739  */
4740 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4741 {
4742 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
4743 }
4744 
4745 /*
4746  * The caller must have previously called ext4_reserve_inode_write().
4747  * Give this, we know that the caller already has write access to iloc->bh.
4748  */
4749 int ext4_mark_iloc_dirty(handle_t *handle,
4750 			 struct inode *inode, struct ext4_iloc *iloc)
4751 {
4752 	int err = 0;
4753 
4754 	if (IS_I_VERSION(inode))
4755 		inode_inc_iversion(inode);
4756 
4757 	/* the do_update_inode consumes one bh->b_count */
4758 	get_bh(iloc->bh);
4759 
4760 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4761 	err = ext4_do_update_inode(handle, inode, iloc);
4762 	put_bh(iloc->bh);
4763 	return err;
4764 }
4765 
4766 /*
4767  * On success, We end up with an outstanding reference count against
4768  * iloc->bh.  This _must_ be cleaned up later.
4769  */
4770 
4771 int
4772 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4773 			 struct ext4_iloc *iloc)
4774 {
4775 	int err;
4776 
4777 	err = ext4_get_inode_loc(inode, iloc);
4778 	if (!err) {
4779 		BUFFER_TRACE(iloc->bh, "get_write_access");
4780 		err = ext4_journal_get_write_access(handle, iloc->bh);
4781 		if (err) {
4782 			brelse(iloc->bh);
4783 			iloc->bh = NULL;
4784 		}
4785 	}
4786 	ext4_std_error(inode->i_sb, err);
4787 	return err;
4788 }
4789 
4790 /*
4791  * Expand an inode by new_extra_isize bytes.
4792  * Returns 0 on success or negative error number on failure.
4793  */
4794 static int ext4_expand_extra_isize(struct inode *inode,
4795 				   unsigned int new_extra_isize,
4796 				   struct ext4_iloc iloc,
4797 				   handle_t *handle)
4798 {
4799 	struct ext4_inode *raw_inode;
4800 	struct ext4_xattr_ibody_header *header;
4801 
4802 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4803 		return 0;
4804 
4805 	raw_inode = ext4_raw_inode(&iloc);
4806 
4807 	header = IHDR(inode, raw_inode);
4808 
4809 	/* No extended attributes present */
4810 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4811 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4812 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4813 			new_extra_isize);
4814 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
4815 		return 0;
4816 	}
4817 
4818 	/* try to expand with EAs present */
4819 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4820 					  raw_inode, handle);
4821 }
4822 
4823 /*
4824  * What we do here is to mark the in-core inode as clean with respect to inode
4825  * dirtiness (it may still be data-dirty).
4826  * This means that the in-core inode may be reaped by prune_icache
4827  * without having to perform any I/O.  This is a very good thing,
4828  * because *any* task may call prune_icache - even ones which
4829  * have a transaction open against a different journal.
4830  *
4831  * Is this cheating?  Not really.  Sure, we haven't written the
4832  * inode out, but prune_icache isn't a user-visible syncing function.
4833  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4834  * we start and wait on commits.
4835  */
4836 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4837 {
4838 	struct ext4_iloc iloc;
4839 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4840 	static unsigned int mnt_count;
4841 	int err, ret;
4842 
4843 	might_sleep();
4844 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4845 	err = ext4_reserve_inode_write(handle, inode, &iloc);
4846 	if (ext4_handle_valid(handle) &&
4847 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4848 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4849 		/*
4850 		 * We need extra buffer credits since we may write into EA block
4851 		 * with this same handle. If journal_extend fails, then it will
4852 		 * only result in a minor loss of functionality for that inode.
4853 		 * If this is felt to be critical, then e2fsck should be run to
4854 		 * force a large enough s_min_extra_isize.
4855 		 */
4856 		if ((jbd2_journal_extend(handle,
4857 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4858 			ret = ext4_expand_extra_isize(inode,
4859 						      sbi->s_want_extra_isize,
4860 						      iloc, handle);
4861 			if (ret) {
4862 				ext4_set_inode_state(inode,
4863 						     EXT4_STATE_NO_EXPAND);
4864 				if (mnt_count !=
4865 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4866 					ext4_warning(inode->i_sb,
4867 					"Unable to expand inode %lu. Delete"
4868 					" some EAs or run e2fsck.",
4869 					inode->i_ino);
4870 					mnt_count =
4871 					  le16_to_cpu(sbi->s_es->s_mnt_count);
4872 				}
4873 			}
4874 		}
4875 	}
4876 	if (!err)
4877 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4878 	return err;
4879 }
4880 
4881 /*
4882  * ext4_dirty_inode() is called from __mark_inode_dirty()
4883  *
4884  * We're really interested in the case where a file is being extended.
4885  * i_size has been changed by generic_commit_write() and we thus need
4886  * to include the updated inode in the current transaction.
4887  *
4888  * Also, dquot_alloc_block() will always dirty the inode when blocks
4889  * are allocated to the file.
4890  *
4891  * If the inode is marked synchronous, we don't honour that here - doing
4892  * so would cause a commit on atime updates, which we don't bother doing.
4893  * We handle synchronous inodes at the highest possible level.
4894  */
4895 void ext4_dirty_inode(struct inode *inode, int flags)
4896 {
4897 	handle_t *handle;
4898 
4899 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4900 	if (IS_ERR(handle))
4901 		goto out;
4902 
4903 	ext4_mark_inode_dirty(handle, inode);
4904 
4905 	ext4_journal_stop(handle);
4906 out:
4907 	return;
4908 }
4909 
4910 #if 0
4911 /*
4912  * Bind an inode's backing buffer_head into this transaction, to prevent
4913  * it from being flushed to disk early.  Unlike
4914  * ext4_reserve_inode_write, this leaves behind no bh reference and
4915  * returns no iloc structure, so the caller needs to repeat the iloc
4916  * lookup to mark the inode dirty later.
4917  */
4918 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4919 {
4920 	struct ext4_iloc iloc;
4921 
4922 	int err = 0;
4923 	if (handle) {
4924 		err = ext4_get_inode_loc(inode, &iloc);
4925 		if (!err) {
4926 			BUFFER_TRACE(iloc.bh, "get_write_access");
4927 			err = jbd2_journal_get_write_access(handle, iloc.bh);
4928 			if (!err)
4929 				err = ext4_handle_dirty_metadata(handle,
4930 								 NULL,
4931 								 iloc.bh);
4932 			brelse(iloc.bh);
4933 		}
4934 	}
4935 	ext4_std_error(inode->i_sb, err);
4936 	return err;
4937 }
4938 #endif
4939 
4940 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4941 {
4942 	journal_t *journal;
4943 	handle_t *handle;
4944 	int err;
4945 
4946 	/*
4947 	 * We have to be very careful here: changing a data block's
4948 	 * journaling status dynamically is dangerous.  If we write a
4949 	 * data block to the journal, change the status and then delete
4950 	 * that block, we risk forgetting to revoke the old log record
4951 	 * from the journal and so a subsequent replay can corrupt data.
4952 	 * So, first we make sure that the journal is empty and that
4953 	 * nobody is changing anything.
4954 	 */
4955 
4956 	journal = EXT4_JOURNAL(inode);
4957 	if (!journal)
4958 		return 0;
4959 	if (is_journal_aborted(journal))
4960 		return -EROFS;
4961 	/* We have to allocate physical blocks for delalloc blocks
4962 	 * before flushing journal. otherwise delalloc blocks can not
4963 	 * be allocated any more. even more truncate on delalloc blocks
4964 	 * could trigger BUG by flushing delalloc blocks in journal.
4965 	 * There is no delalloc block in non-journal data mode.
4966 	 */
4967 	if (val && test_opt(inode->i_sb, DELALLOC)) {
4968 		err = ext4_alloc_da_blocks(inode);
4969 		if (err < 0)
4970 			return err;
4971 	}
4972 
4973 	/* Wait for all existing dio workers */
4974 	ext4_inode_block_unlocked_dio(inode);
4975 	inode_dio_wait(inode);
4976 
4977 	jbd2_journal_lock_updates(journal);
4978 
4979 	/*
4980 	 * OK, there are no updates running now, and all cached data is
4981 	 * synced to disk.  We are now in a completely consistent state
4982 	 * which doesn't have anything in the journal, and we know that
4983 	 * no filesystem updates are running, so it is safe to modify
4984 	 * the inode's in-core data-journaling state flag now.
4985 	 */
4986 
4987 	if (val)
4988 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4989 	else {
4990 		jbd2_journal_flush(journal);
4991 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4992 	}
4993 	ext4_set_aops(inode);
4994 
4995 	jbd2_journal_unlock_updates(journal);
4996 	ext4_inode_resume_unlocked_dio(inode);
4997 
4998 	/* Finally we can mark the inode as dirty. */
4999 
5000 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5001 	if (IS_ERR(handle))
5002 		return PTR_ERR(handle);
5003 
5004 	err = ext4_mark_inode_dirty(handle, inode);
5005 	ext4_handle_sync(handle);
5006 	ext4_journal_stop(handle);
5007 	ext4_std_error(inode->i_sb, err);
5008 
5009 	return err;
5010 }
5011 
5012 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5013 {
5014 	return !buffer_mapped(bh);
5015 }
5016 
5017 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5018 {
5019 	struct page *page = vmf->page;
5020 	loff_t size;
5021 	unsigned long len;
5022 	int ret;
5023 	struct file *file = vma->vm_file;
5024 	struct inode *inode = file_inode(file);
5025 	struct address_space *mapping = inode->i_mapping;
5026 	handle_t *handle;
5027 	get_block_t *get_block;
5028 	int retries = 0;
5029 
5030 	sb_start_pagefault(inode->i_sb);
5031 	file_update_time(vma->vm_file);
5032 	/* Delalloc case is easy... */
5033 	if (test_opt(inode->i_sb, DELALLOC) &&
5034 	    !ext4_should_journal_data(inode) &&
5035 	    !ext4_nonda_switch(inode->i_sb)) {
5036 		do {
5037 			ret = __block_page_mkwrite(vma, vmf,
5038 						   ext4_da_get_block_prep);
5039 		} while (ret == -ENOSPC &&
5040 		       ext4_should_retry_alloc(inode->i_sb, &retries));
5041 		goto out_ret;
5042 	}
5043 
5044 	lock_page(page);
5045 	size = i_size_read(inode);
5046 	/* Page got truncated from under us? */
5047 	if (page->mapping != mapping || page_offset(page) > size) {
5048 		unlock_page(page);
5049 		ret = VM_FAULT_NOPAGE;
5050 		goto out;
5051 	}
5052 
5053 	if (page->index == size >> PAGE_CACHE_SHIFT)
5054 		len = size & ~PAGE_CACHE_MASK;
5055 	else
5056 		len = PAGE_CACHE_SIZE;
5057 	/*
5058 	 * Return if we have all the buffers mapped. This avoids the need to do
5059 	 * journal_start/journal_stop which can block and take a long time
5060 	 */
5061 	if (page_has_buffers(page)) {
5062 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5063 					    0, len, NULL,
5064 					    ext4_bh_unmapped)) {
5065 			/* Wait so that we don't change page under IO */
5066 			wait_for_stable_page(page);
5067 			ret = VM_FAULT_LOCKED;
5068 			goto out;
5069 		}
5070 	}
5071 	unlock_page(page);
5072 	/* OK, we need to fill the hole... */
5073 	if (ext4_should_dioread_nolock(inode))
5074 		get_block = ext4_get_block_write;
5075 	else
5076 		get_block = ext4_get_block;
5077 retry_alloc:
5078 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5079 				    ext4_writepage_trans_blocks(inode));
5080 	if (IS_ERR(handle)) {
5081 		ret = VM_FAULT_SIGBUS;
5082 		goto out;
5083 	}
5084 	ret = __block_page_mkwrite(vma, vmf, get_block);
5085 	if (!ret && ext4_should_journal_data(inode)) {
5086 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5087 			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5088 			unlock_page(page);
5089 			ret = VM_FAULT_SIGBUS;
5090 			ext4_journal_stop(handle);
5091 			goto out;
5092 		}
5093 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5094 	}
5095 	ext4_journal_stop(handle);
5096 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5097 		goto retry_alloc;
5098 out_ret:
5099 	ret = block_page_mkwrite_return(ret);
5100 out:
5101 	sb_end_pagefault(inode->i_sb);
5102 	return ret;
5103 }
5104