1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * 64-bit file support on 64-bit platforms by Jakub Jelinek 16 * (jj@sunsite.ms.mff.cuni.cz) 17 * 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 19 */ 20 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/jbd2.h> 24 #include <linux/highuid.h> 25 #include <linux/pagemap.h> 26 #include <linux/quotaops.h> 27 #include <linux/string.h> 28 #include <linux/buffer_head.h> 29 #include <linux/writeback.h> 30 #include <linux/pagevec.h> 31 #include <linux/mpage.h> 32 #include <linux/namei.h> 33 #include <linux/uio.h> 34 #include <linux/bio.h> 35 #include <linux/workqueue.h> 36 #include <linux/kernel.h> 37 #include <linux/printk.h> 38 #include <linux/slab.h> 39 #include <linux/ratelimit.h> 40 #include <linux/aio.h> 41 42 #include "ext4_jbd2.h" 43 #include "xattr.h" 44 #include "acl.h" 45 #include "truncate.h" 46 47 #include <trace/events/ext4.h> 48 49 #define MPAGE_DA_EXTENT_TAIL 0x01 50 51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 52 struct ext4_inode_info *ei) 53 { 54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 55 __u16 csum_lo; 56 __u16 csum_hi = 0; 57 __u32 csum; 58 59 csum_lo = le16_to_cpu(raw->i_checksum_lo); 60 raw->i_checksum_lo = 0; 61 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 62 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 63 csum_hi = le16_to_cpu(raw->i_checksum_hi); 64 raw->i_checksum_hi = 0; 65 } 66 67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, 68 EXT4_INODE_SIZE(inode->i_sb)); 69 70 raw->i_checksum_lo = cpu_to_le16(csum_lo); 71 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 72 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 73 raw->i_checksum_hi = cpu_to_le16(csum_hi); 74 75 return csum; 76 } 77 78 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 79 struct ext4_inode_info *ei) 80 { 81 __u32 provided, calculated; 82 83 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 84 cpu_to_le32(EXT4_OS_LINUX) || 85 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 86 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 87 return 1; 88 89 provided = le16_to_cpu(raw->i_checksum_lo); 90 calculated = ext4_inode_csum(inode, raw, ei); 91 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 92 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 93 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 94 else 95 calculated &= 0xFFFF; 96 97 return provided == calculated; 98 } 99 100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 101 struct ext4_inode_info *ei) 102 { 103 __u32 csum; 104 105 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 106 cpu_to_le32(EXT4_OS_LINUX) || 107 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 108 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 109 return; 110 111 csum = ext4_inode_csum(inode, raw, ei); 112 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 113 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 114 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 115 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 116 } 117 118 static inline int ext4_begin_ordered_truncate(struct inode *inode, 119 loff_t new_size) 120 { 121 trace_ext4_begin_ordered_truncate(inode, new_size); 122 /* 123 * If jinode is zero, then we never opened the file for 124 * writing, so there's no need to call 125 * jbd2_journal_begin_ordered_truncate() since there's no 126 * outstanding writes we need to flush. 127 */ 128 if (!EXT4_I(inode)->jinode) 129 return 0; 130 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 131 EXT4_I(inode)->jinode, 132 new_size); 133 } 134 135 static void ext4_invalidatepage(struct page *page, unsigned int offset, 136 unsigned int length); 137 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 138 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 139 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 140 int pextents); 141 142 /* 143 * Test whether an inode is a fast symlink. 144 */ 145 static int ext4_inode_is_fast_symlink(struct inode *inode) 146 { 147 int ea_blocks = EXT4_I(inode)->i_file_acl ? 148 (inode->i_sb->s_blocksize >> 9) : 0; 149 150 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 151 } 152 153 /* 154 * Restart the transaction associated with *handle. This does a commit, 155 * so before we call here everything must be consistently dirtied against 156 * this transaction. 157 */ 158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 159 int nblocks) 160 { 161 int ret; 162 163 /* 164 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 165 * moment, get_block can be called only for blocks inside i_size since 166 * page cache has been already dropped and writes are blocked by 167 * i_mutex. So we can safely drop the i_data_sem here. 168 */ 169 BUG_ON(EXT4_JOURNAL(inode) == NULL); 170 jbd_debug(2, "restarting handle %p\n", handle); 171 up_write(&EXT4_I(inode)->i_data_sem); 172 ret = ext4_journal_restart(handle, nblocks); 173 down_write(&EXT4_I(inode)->i_data_sem); 174 ext4_discard_preallocations(inode); 175 176 return ret; 177 } 178 179 /* 180 * Called at the last iput() if i_nlink is zero. 181 */ 182 void ext4_evict_inode(struct inode *inode) 183 { 184 handle_t *handle; 185 int err; 186 187 trace_ext4_evict_inode(inode); 188 189 if (inode->i_nlink) { 190 /* 191 * When journalling data dirty buffers are tracked only in the 192 * journal. So although mm thinks everything is clean and 193 * ready for reaping the inode might still have some pages to 194 * write in the running transaction or waiting to be 195 * checkpointed. Thus calling jbd2_journal_invalidatepage() 196 * (via truncate_inode_pages()) to discard these buffers can 197 * cause data loss. Also even if we did not discard these 198 * buffers, we would have no way to find them after the inode 199 * is reaped and thus user could see stale data if he tries to 200 * read them before the transaction is checkpointed. So be 201 * careful and force everything to disk here... We use 202 * ei->i_datasync_tid to store the newest transaction 203 * containing inode's data. 204 * 205 * Note that directories do not have this problem because they 206 * don't use page cache. 207 */ 208 if (ext4_should_journal_data(inode) && 209 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 210 inode->i_ino != EXT4_JOURNAL_INO) { 211 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 212 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 213 214 jbd2_complete_transaction(journal, commit_tid); 215 filemap_write_and_wait(&inode->i_data); 216 } 217 truncate_inode_pages(&inode->i_data, 0); 218 219 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count)); 220 goto no_delete; 221 } 222 223 if (!is_bad_inode(inode)) 224 dquot_initialize(inode); 225 226 if (ext4_should_order_data(inode)) 227 ext4_begin_ordered_truncate(inode, 0); 228 truncate_inode_pages(&inode->i_data, 0); 229 230 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count)); 231 if (is_bad_inode(inode)) 232 goto no_delete; 233 234 /* 235 * Protect us against freezing - iput() caller didn't have to have any 236 * protection against it 237 */ 238 sb_start_intwrite(inode->i_sb); 239 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 240 ext4_blocks_for_truncate(inode)+3); 241 if (IS_ERR(handle)) { 242 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 243 /* 244 * If we're going to skip the normal cleanup, we still need to 245 * make sure that the in-core orphan linked list is properly 246 * cleaned up. 247 */ 248 ext4_orphan_del(NULL, inode); 249 sb_end_intwrite(inode->i_sb); 250 goto no_delete; 251 } 252 253 if (IS_SYNC(inode)) 254 ext4_handle_sync(handle); 255 inode->i_size = 0; 256 err = ext4_mark_inode_dirty(handle, inode); 257 if (err) { 258 ext4_warning(inode->i_sb, 259 "couldn't mark inode dirty (err %d)", err); 260 goto stop_handle; 261 } 262 if (inode->i_blocks) 263 ext4_truncate(inode); 264 265 /* 266 * ext4_ext_truncate() doesn't reserve any slop when it 267 * restarts journal transactions; therefore there may not be 268 * enough credits left in the handle to remove the inode from 269 * the orphan list and set the dtime field. 270 */ 271 if (!ext4_handle_has_enough_credits(handle, 3)) { 272 err = ext4_journal_extend(handle, 3); 273 if (err > 0) 274 err = ext4_journal_restart(handle, 3); 275 if (err != 0) { 276 ext4_warning(inode->i_sb, 277 "couldn't extend journal (err %d)", err); 278 stop_handle: 279 ext4_journal_stop(handle); 280 ext4_orphan_del(NULL, inode); 281 sb_end_intwrite(inode->i_sb); 282 goto no_delete; 283 } 284 } 285 286 /* 287 * Kill off the orphan record which ext4_truncate created. 288 * AKPM: I think this can be inside the above `if'. 289 * Note that ext4_orphan_del() has to be able to cope with the 290 * deletion of a non-existent orphan - this is because we don't 291 * know if ext4_truncate() actually created an orphan record. 292 * (Well, we could do this if we need to, but heck - it works) 293 */ 294 ext4_orphan_del(handle, inode); 295 EXT4_I(inode)->i_dtime = get_seconds(); 296 297 /* 298 * One subtle ordering requirement: if anything has gone wrong 299 * (transaction abort, IO errors, whatever), then we can still 300 * do these next steps (the fs will already have been marked as 301 * having errors), but we can't free the inode if the mark_dirty 302 * fails. 303 */ 304 if (ext4_mark_inode_dirty(handle, inode)) 305 /* If that failed, just do the required in-core inode clear. */ 306 ext4_clear_inode(inode); 307 else 308 ext4_free_inode(handle, inode); 309 ext4_journal_stop(handle); 310 sb_end_intwrite(inode->i_sb); 311 return; 312 no_delete: 313 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 314 } 315 316 #ifdef CONFIG_QUOTA 317 qsize_t *ext4_get_reserved_space(struct inode *inode) 318 { 319 return &EXT4_I(inode)->i_reserved_quota; 320 } 321 #endif 322 323 /* 324 * Calculate the number of metadata blocks need to reserve 325 * to allocate a block located at @lblock 326 */ 327 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 328 { 329 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 330 return ext4_ext_calc_metadata_amount(inode, lblock); 331 332 return ext4_ind_calc_metadata_amount(inode, lblock); 333 } 334 335 /* 336 * Called with i_data_sem down, which is important since we can call 337 * ext4_discard_preallocations() from here. 338 */ 339 void ext4_da_update_reserve_space(struct inode *inode, 340 int used, int quota_claim) 341 { 342 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 343 struct ext4_inode_info *ei = EXT4_I(inode); 344 345 spin_lock(&ei->i_block_reservation_lock); 346 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 347 if (unlikely(used > ei->i_reserved_data_blocks)) { 348 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 349 "with only %d reserved data blocks", 350 __func__, inode->i_ino, used, 351 ei->i_reserved_data_blocks); 352 WARN_ON(1); 353 used = ei->i_reserved_data_blocks; 354 } 355 356 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) { 357 ext4_warning(inode->i_sb, "ino %lu, allocated %d " 358 "with only %d reserved metadata blocks " 359 "(releasing %d blocks with reserved %d data blocks)", 360 inode->i_ino, ei->i_allocated_meta_blocks, 361 ei->i_reserved_meta_blocks, used, 362 ei->i_reserved_data_blocks); 363 WARN_ON(1); 364 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks; 365 } 366 367 /* Update per-inode reservations */ 368 ei->i_reserved_data_blocks -= used; 369 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks; 370 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 371 used + ei->i_allocated_meta_blocks); 372 ei->i_allocated_meta_blocks = 0; 373 374 if (ei->i_reserved_data_blocks == 0) { 375 /* 376 * We can release all of the reserved metadata blocks 377 * only when we have written all of the delayed 378 * allocation blocks. 379 */ 380 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 381 ei->i_reserved_meta_blocks); 382 ei->i_reserved_meta_blocks = 0; 383 ei->i_da_metadata_calc_len = 0; 384 } 385 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 386 387 /* Update quota subsystem for data blocks */ 388 if (quota_claim) 389 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 390 else { 391 /* 392 * We did fallocate with an offset that is already delayed 393 * allocated. So on delayed allocated writeback we should 394 * not re-claim the quota for fallocated blocks. 395 */ 396 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 397 } 398 399 /* 400 * If we have done all the pending block allocations and if 401 * there aren't any writers on the inode, we can discard the 402 * inode's preallocations. 403 */ 404 if ((ei->i_reserved_data_blocks == 0) && 405 (atomic_read(&inode->i_writecount) == 0)) 406 ext4_discard_preallocations(inode); 407 } 408 409 static int __check_block_validity(struct inode *inode, const char *func, 410 unsigned int line, 411 struct ext4_map_blocks *map) 412 { 413 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 414 map->m_len)) { 415 ext4_error_inode(inode, func, line, map->m_pblk, 416 "lblock %lu mapped to illegal pblock " 417 "(length %d)", (unsigned long) map->m_lblk, 418 map->m_len); 419 return -EIO; 420 } 421 return 0; 422 } 423 424 #define check_block_validity(inode, map) \ 425 __check_block_validity((inode), __func__, __LINE__, (map)) 426 427 #ifdef ES_AGGRESSIVE_TEST 428 static void ext4_map_blocks_es_recheck(handle_t *handle, 429 struct inode *inode, 430 struct ext4_map_blocks *es_map, 431 struct ext4_map_blocks *map, 432 int flags) 433 { 434 int retval; 435 436 map->m_flags = 0; 437 /* 438 * There is a race window that the result is not the same. 439 * e.g. xfstests #223 when dioread_nolock enables. The reason 440 * is that we lookup a block mapping in extent status tree with 441 * out taking i_data_sem. So at the time the unwritten extent 442 * could be converted. 443 */ 444 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 445 down_read((&EXT4_I(inode)->i_data_sem)); 446 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 447 retval = ext4_ext_map_blocks(handle, inode, map, flags & 448 EXT4_GET_BLOCKS_KEEP_SIZE); 449 } else { 450 retval = ext4_ind_map_blocks(handle, inode, map, flags & 451 EXT4_GET_BLOCKS_KEEP_SIZE); 452 } 453 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 454 up_read((&EXT4_I(inode)->i_data_sem)); 455 /* 456 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag 457 * because it shouldn't be marked in es_map->m_flags. 458 */ 459 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY); 460 461 /* 462 * We don't check m_len because extent will be collpased in status 463 * tree. So the m_len might not equal. 464 */ 465 if (es_map->m_lblk != map->m_lblk || 466 es_map->m_flags != map->m_flags || 467 es_map->m_pblk != map->m_pblk) { 468 printk("ES cache assertion failed for inode: %lu " 469 "es_cached ex [%d/%d/%llu/%x] != " 470 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 471 inode->i_ino, es_map->m_lblk, es_map->m_len, 472 es_map->m_pblk, es_map->m_flags, map->m_lblk, 473 map->m_len, map->m_pblk, map->m_flags, 474 retval, flags); 475 } 476 } 477 #endif /* ES_AGGRESSIVE_TEST */ 478 479 /* 480 * The ext4_map_blocks() function tries to look up the requested blocks, 481 * and returns if the blocks are already mapped. 482 * 483 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 484 * and store the allocated blocks in the result buffer head and mark it 485 * mapped. 486 * 487 * If file type is extents based, it will call ext4_ext_map_blocks(), 488 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 489 * based files 490 * 491 * On success, it returns the number of blocks being mapped or allocate. 492 * if create==0 and the blocks are pre-allocated and uninitialized block, 493 * the result buffer head is unmapped. If the create ==1, it will make sure 494 * the buffer head is mapped. 495 * 496 * It returns 0 if plain look up failed (blocks have not been allocated), in 497 * that case, buffer head is unmapped 498 * 499 * It returns the error in case of allocation failure. 500 */ 501 int ext4_map_blocks(handle_t *handle, struct inode *inode, 502 struct ext4_map_blocks *map, int flags) 503 { 504 struct extent_status es; 505 int retval; 506 #ifdef ES_AGGRESSIVE_TEST 507 struct ext4_map_blocks orig_map; 508 509 memcpy(&orig_map, map, sizeof(*map)); 510 #endif 511 512 map->m_flags = 0; 513 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 514 "logical block %lu\n", inode->i_ino, flags, map->m_len, 515 (unsigned long) map->m_lblk); 516 517 /* Lookup extent status tree firstly */ 518 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 519 ext4_es_lru_add(inode); 520 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 521 map->m_pblk = ext4_es_pblock(&es) + 522 map->m_lblk - es.es_lblk; 523 map->m_flags |= ext4_es_is_written(&es) ? 524 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 525 retval = es.es_len - (map->m_lblk - es.es_lblk); 526 if (retval > map->m_len) 527 retval = map->m_len; 528 map->m_len = retval; 529 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 530 retval = 0; 531 } else { 532 BUG_ON(1); 533 } 534 #ifdef ES_AGGRESSIVE_TEST 535 ext4_map_blocks_es_recheck(handle, inode, map, 536 &orig_map, flags); 537 #endif 538 goto found; 539 } 540 541 /* 542 * Try to see if we can get the block without requesting a new 543 * file system block. 544 */ 545 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 546 down_read((&EXT4_I(inode)->i_data_sem)); 547 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 548 retval = ext4_ext_map_blocks(handle, inode, map, flags & 549 EXT4_GET_BLOCKS_KEEP_SIZE); 550 } else { 551 retval = ext4_ind_map_blocks(handle, inode, map, flags & 552 EXT4_GET_BLOCKS_KEEP_SIZE); 553 } 554 if (retval > 0) { 555 int ret; 556 unsigned long long status; 557 558 #ifdef ES_AGGRESSIVE_TEST 559 if (retval != map->m_len) { 560 printk("ES len assertion failed for inode: %lu " 561 "retval %d != map->m_len %d " 562 "in %s (lookup)\n", inode->i_ino, retval, 563 map->m_len, __func__); 564 } 565 #endif 566 567 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 568 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 569 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 570 ext4_find_delalloc_range(inode, map->m_lblk, 571 map->m_lblk + map->m_len - 1)) 572 status |= EXTENT_STATUS_DELAYED; 573 ret = ext4_es_insert_extent(inode, map->m_lblk, 574 map->m_len, map->m_pblk, status); 575 if (ret < 0) 576 retval = ret; 577 } 578 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 579 up_read((&EXT4_I(inode)->i_data_sem)); 580 581 found: 582 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 583 int ret = check_block_validity(inode, map); 584 if (ret != 0) 585 return ret; 586 } 587 588 /* If it is only a block(s) look up */ 589 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 590 return retval; 591 592 /* 593 * Returns if the blocks have already allocated 594 * 595 * Note that if blocks have been preallocated 596 * ext4_ext_get_block() returns the create = 0 597 * with buffer head unmapped. 598 */ 599 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 600 return retval; 601 602 /* 603 * Here we clear m_flags because after allocating an new extent, 604 * it will be set again. 605 */ 606 map->m_flags &= ~EXT4_MAP_FLAGS; 607 608 /* 609 * New blocks allocate and/or writing to uninitialized extent 610 * will possibly result in updating i_data, so we take 611 * the write lock of i_data_sem, and call get_blocks() 612 * with create == 1 flag. 613 */ 614 down_write((&EXT4_I(inode)->i_data_sem)); 615 616 /* 617 * if the caller is from delayed allocation writeout path 618 * we have already reserved fs blocks for allocation 619 * let the underlying get_block() function know to 620 * avoid double accounting 621 */ 622 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 623 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 624 /* 625 * We need to check for EXT4 here because migrate 626 * could have changed the inode type in between 627 */ 628 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 629 retval = ext4_ext_map_blocks(handle, inode, map, flags); 630 } else { 631 retval = ext4_ind_map_blocks(handle, inode, map, flags); 632 633 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 634 /* 635 * We allocated new blocks which will result in 636 * i_data's format changing. Force the migrate 637 * to fail by clearing migrate flags 638 */ 639 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 640 } 641 642 /* 643 * Update reserved blocks/metadata blocks after successful 644 * block allocation which had been deferred till now. We don't 645 * support fallocate for non extent files. So we can update 646 * reserve space here. 647 */ 648 if ((retval > 0) && 649 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 650 ext4_da_update_reserve_space(inode, retval, 1); 651 } 652 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 653 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 654 655 if (retval > 0) { 656 int ret; 657 unsigned long long status; 658 659 #ifdef ES_AGGRESSIVE_TEST 660 if (retval != map->m_len) { 661 printk("ES len assertion failed for inode: %lu " 662 "retval %d != map->m_len %d " 663 "in %s (allocation)\n", inode->i_ino, retval, 664 map->m_len, __func__); 665 } 666 #endif 667 668 /* 669 * If the extent has been zeroed out, we don't need to update 670 * extent status tree. 671 */ 672 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 673 ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 674 if (ext4_es_is_written(&es)) 675 goto has_zeroout; 676 } 677 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 678 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 679 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 680 ext4_find_delalloc_range(inode, map->m_lblk, 681 map->m_lblk + map->m_len - 1)) 682 status |= EXTENT_STATUS_DELAYED; 683 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 684 map->m_pblk, status); 685 if (ret < 0) 686 retval = ret; 687 } 688 689 has_zeroout: 690 up_write((&EXT4_I(inode)->i_data_sem)); 691 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 692 int ret = check_block_validity(inode, map); 693 if (ret != 0) 694 return ret; 695 } 696 return retval; 697 } 698 699 /* Maximum number of blocks we map for direct IO at once. */ 700 #define DIO_MAX_BLOCKS 4096 701 702 static int _ext4_get_block(struct inode *inode, sector_t iblock, 703 struct buffer_head *bh, int flags) 704 { 705 handle_t *handle = ext4_journal_current_handle(); 706 struct ext4_map_blocks map; 707 int ret = 0, started = 0; 708 int dio_credits; 709 710 if (ext4_has_inline_data(inode)) 711 return -ERANGE; 712 713 map.m_lblk = iblock; 714 map.m_len = bh->b_size >> inode->i_blkbits; 715 716 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) { 717 /* Direct IO write... */ 718 if (map.m_len > DIO_MAX_BLOCKS) 719 map.m_len = DIO_MAX_BLOCKS; 720 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 721 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 722 dio_credits); 723 if (IS_ERR(handle)) { 724 ret = PTR_ERR(handle); 725 return ret; 726 } 727 started = 1; 728 } 729 730 ret = ext4_map_blocks(handle, inode, &map, flags); 731 if (ret > 0) { 732 map_bh(bh, inode->i_sb, map.m_pblk); 733 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 734 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 735 ret = 0; 736 } 737 if (started) 738 ext4_journal_stop(handle); 739 return ret; 740 } 741 742 int ext4_get_block(struct inode *inode, sector_t iblock, 743 struct buffer_head *bh, int create) 744 { 745 return _ext4_get_block(inode, iblock, bh, 746 create ? EXT4_GET_BLOCKS_CREATE : 0); 747 } 748 749 /* 750 * `handle' can be NULL if create is zero 751 */ 752 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 753 ext4_lblk_t block, int create, int *errp) 754 { 755 struct ext4_map_blocks map; 756 struct buffer_head *bh; 757 int fatal = 0, err; 758 759 J_ASSERT(handle != NULL || create == 0); 760 761 map.m_lblk = block; 762 map.m_len = 1; 763 err = ext4_map_blocks(handle, inode, &map, 764 create ? EXT4_GET_BLOCKS_CREATE : 0); 765 766 /* ensure we send some value back into *errp */ 767 *errp = 0; 768 769 if (create && err == 0) 770 err = -ENOSPC; /* should never happen */ 771 if (err < 0) 772 *errp = err; 773 if (err <= 0) 774 return NULL; 775 776 bh = sb_getblk(inode->i_sb, map.m_pblk); 777 if (unlikely(!bh)) { 778 *errp = -ENOMEM; 779 return NULL; 780 } 781 if (map.m_flags & EXT4_MAP_NEW) { 782 J_ASSERT(create != 0); 783 J_ASSERT(handle != NULL); 784 785 /* 786 * Now that we do not always journal data, we should 787 * keep in mind whether this should always journal the 788 * new buffer as metadata. For now, regular file 789 * writes use ext4_get_block instead, so it's not a 790 * problem. 791 */ 792 lock_buffer(bh); 793 BUFFER_TRACE(bh, "call get_create_access"); 794 fatal = ext4_journal_get_create_access(handle, bh); 795 if (!fatal && !buffer_uptodate(bh)) { 796 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 797 set_buffer_uptodate(bh); 798 } 799 unlock_buffer(bh); 800 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 801 err = ext4_handle_dirty_metadata(handle, inode, bh); 802 if (!fatal) 803 fatal = err; 804 } else { 805 BUFFER_TRACE(bh, "not a new buffer"); 806 } 807 if (fatal) { 808 *errp = fatal; 809 brelse(bh); 810 bh = NULL; 811 } 812 return bh; 813 } 814 815 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 816 ext4_lblk_t block, int create, int *err) 817 { 818 struct buffer_head *bh; 819 820 bh = ext4_getblk(handle, inode, block, create, err); 821 if (!bh) 822 return bh; 823 if (buffer_uptodate(bh)) 824 return bh; 825 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh); 826 wait_on_buffer(bh); 827 if (buffer_uptodate(bh)) 828 return bh; 829 put_bh(bh); 830 *err = -EIO; 831 return NULL; 832 } 833 834 int ext4_walk_page_buffers(handle_t *handle, 835 struct buffer_head *head, 836 unsigned from, 837 unsigned to, 838 int *partial, 839 int (*fn)(handle_t *handle, 840 struct buffer_head *bh)) 841 { 842 struct buffer_head *bh; 843 unsigned block_start, block_end; 844 unsigned blocksize = head->b_size; 845 int err, ret = 0; 846 struct buffer_head *next; 847 848 for (bh = head, block_start = 0; 849 ret == 0 && (bh != head || !block_start); 850 block_start = block_end, bh = next) { 851 next = bh->b_this_page; 852 block_end = block_start + blocksize; 853 if (block_end <= from || block_start >= to) { 854 if (partial && !buffer_uptodate(bh)) 855 *partial = 1; 856 continue; 857 } 858 err = (*fn)(handle, bh); 859 if (!ret) 860 ret = err; 861 } 862 return ret; 863 } 864 865 /* 866 * To preserve ordering, it is essential that the hole instantiation and 867 * the data write be encapsulated in a single transaction. We cannot 868 * close off a transaction and start a new one between the ext4_get_block() 869 * and the commit_write(). So doing the jbd2_journal_start at the start of 870 * prepare_write() is the right place. 871 * 872 * Also, this function can nest inside ext4_writepage(). In that case, we 873 * *know* that ext4_writepage() has generated enough buffer credits to do the 874 * whole page. So we won't block on the journal in that case, which is good, 875 * because the caller may be PF_MEMALLOC. 876 * 877 * By accident, ext4 can be reentered when a transaction is open via 878 * quota file writes. If we were to commit the transaction while thus 879 * reentered, there can be a deadlock - we would be holding a quota 880 * lock, and the commit would never complete if another thread had a 881 * transaction open and was blocking on the quota lock - a ranking 882 * violation. 883 * 884 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 885 * will _not_ run commit under these circumstances because handle->h_ref 886 * is elevated. We'll still have enough credits for the tiny quotafile 887 * write. 888 */ 889 int do_journal_get_write_access(handle_t *handle, 890 struct buffer_head *bh) 891 { 892 int dirty = buffer_dirty(bh); 893 int ret; 894 895 if (!buffer_mapped(bh) || buffer_freed(bh)) 896 return 0; 897 /* 898 * __block_write_begin() could have dirtied some buffers. Clean 899 * the dirty bit as jbd2_journal_get_write_access() could complain 900 * otherwise about fs integrity issues. Setting of the dirty bit 901 * by __block_write_begin() isn't a real problem here as we clear 902 * the bit before releasing a page lock and thus writeback cannot 903 * ever write the buffer. 904 */ 905 if (dirty) 906 clear_buffer_dirty(bh); 907 ret = ext4_journal_get_write_access(handle, bh); 908 if (!ret && dirty) 909 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 910 return ret; 911 } 912 913 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 914 struct buffer_head *bh_result, int create); 915 static int ext4_write_begin(struct file *file, struct address_space *mapping, 916 loff_t pos, unsigned len, unsigned flags, 917 struct page **pagep, void **fsdata) 918 { 919 struct inode *inode = mapping->host; 920 int ret, needed_blocks; 921 handle_t *handle; 922 int retries = 0; 923 struct page *page; 924 pgoff_t index; 925 unsigned from, to; 926 927 trace_ext4_write_begin(inode, pos, len, flags); 928 /* 929 * Reserve one block more for addition to orphan list in case 930 * we allocate blocks but write fails for some reason 931 */ 932 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 933 index = pos >> PAGE_CACHE_SHIFT; 934 from = pos & (PAGE_CACHE_SIZE - 1); 935 to = from + len; 936 937 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 938 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 939 flags, pagep); 940 if (ret < 0) 941 return ret; 942 if (ret == 1) 943 return 0; 944 } 945 946 /* 947 * grab_cache_page_write_begin() can take a long time if the 948 * system is thrashing due to memory pressure, or if the page 949 * is being written back. So grab it first before we start 950 * the transaction handle. This also allows us to allocate 951 * the page (if needed) without using GFP_NOFS. 952 */ 953 retry_grab: 954 page = grab_cache_page_write_begin(mapping, index, flags); 955 if (!page) 956 return -ENOMEM; 957 unlock_page(page); 958 959 retry_journal: 960 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 961 if (IS_ERR(handle)) { 962 page_cache_release(page); 963 return PTR_ERR(handle); 964 } 965 966 lock_page(page); 967 if (page->mapping != mapping) { 968 /* The page got truncated from under us */ 969 unlock_page(page); 970 page_cache_release(page); 971 ext4_journal_stop(handle); 972 goto retry_grab; 973 } 974 wait_on_page_writeback(page); 975 976 if (ext4_should_dioread_nolock(inode)) 977 ret = __block_write_begin(page, pos, len, ext4_get_block_write); 978 else 979 ret = __block_write_begin(page, pos, len, ext4_get_block); 980 981 if (!ret && ext4_should_journal_data(inode)) { 982 ret = ext4_walk_page_buffers(handle, page_buffers(page), 983 from, to, NULL, 984 do_journal_get_write_access); 985 } 986 987 if (ret) { 988 unlock_page(page); 989 /* 990 * __block_write_begin may have instantiated a few blocks 991 * outside i_size. Trim these off again. Don't need 992 * i_size_read because we hold i_mutex. 993 * 994 * Add inode to orphan list in case we crash before 995 * truncate finishes 996 */ 997 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 998 ext4_orphan_add(handle, inode); 999 1000 ext4_journal_stop(handle); 1001 if (pos + len > inode->i_size) { 1002 ext4_truncate_failed_write(inode); 1003 /* 1004 * If truncate failed early the inode might 1005 * still be on the orphan list; we need to 1006 * make sure the inode is removed from the 1007 * orphan list in that case. 1008 */ 1009 if (inode->i_nlink) 1010 ext4_orphan_del(NULL, inode); 1011 } 1012 1013 if (ret == -ENOSPC && 1014 ext4_should_retry_alloc(inode->i_sb, &retries)) 1015 goto retry_journal; 1016 page_cache_release(page); 1017 return ret; 1018 } 1019 *pagep = page; 1020 return ret; 1021 } 1022 1023 /* For write_end() in data=journal mode */ 1024 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1025 { 1026 int ret; 1027 if (!buffer_mapped(bh) || buffer_freed(bh)) 1028 return 0; 1029 set_buffer_uptodate(bh); 1030 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1031 clear_buffer_meta(bh); 1032 clear_buffer_prio(bh); 1033 return ret; 1034 } 1035 1036 /* 1037 * We need to pick up the new inode size which generic_commit_write gave us 1038 * `file' can be NULL - eg, when called from page_symlink(). 1039 * 1040 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1041 * buffers are managed internally. 1042 */ 1043 static int ext4_write_end(struct file *file, 1044 struct address_space *mapping, 1045 loff_t pos, unsigned len, unsigned copied, 1046 struct page *page, void *fsdata) 1047 { 1048 handle_t *handle = ext4_journal_current_handle(); 1049 struct inode *inode = mapping->host; 1050 int ret = 0, ret2; 1051 int i_size_changed = 0; 1052 1053 trace_ext4_write_end(inode, pos, len, copied); 1054 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) { 1055 ret = ext4_jbd2_file_inode(handle, inode); 1056 if (ret) { 1057 unlock_page(page); 1058 page_cache_release(page); 1059 goto errout; 1060 } 1061 } 1062 1063 if (ext4_has_inline_data(inode)) { 1064 ret = ext4_write_inline_data_end(inode, pos, len, 1065 copied, page); 1066 if (ret < 0) 1067 goto errout; 1068 copied = ret; 1069 } else 1070 copied = block_write_end(file, mapping, pos, 1071 len, copied, page, fsdata); 1072 1073 /* 1074 * No need to use i_size_read() here, the i_size 1075 * cannot change under us because we hole i_mutex. 1076 * 1077 * But it's important to update i_size while still holding page lock: 1078 * page writeout could otherwise come in and zero beyond i_size. 1079 */ 1080 if (pos + copied > inode->i_size) { 1081 i_size_write(inode, pos + copied); 1082 i_size_changed = 1; 1083 } 1084 1085 if (pos + copied > EXT4_I(inode)->i_disksize) { 1086 /* We need to mark inode dirty even if 1087 * new_i_size is less that inode->i_size 1088 * but greater than i_disksize. (hint delalloc) 1089 */ 1090 ext4_update_i_disksize(inode, (pos + copied)); 1091 i_size_changed = 1; 1092 } 1093 unlock_page(page); 1094 page_cache_release(page); 1095 1096 /* 1097 * Don't mark the inode dirty under page lock. First, it unnecessarily 1098 * makes the holding time of page lock longer. Second, it forces lock 1099 * ordering of page lock and transaction start for journaling 1100 * filesystems. 1101 */ 1102 if (i_size_changed) 1103 ext4_mark_inode_dirty(handle, inode); 1104 1105 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1106 /* if we have allocated more blocks and copied 1107 * less. We will have blocks allocated outside 1108 * inode->i_size. So truncate them 1109 */ 1110 ext4_orphan_add(handle, inode); 1111 errout: 1112 ret2 = ext4_journal_stop(handle); 1113 if (!ret) 1114 ret = ret2; 1115 1116 if (pos + len > inode->i_size) { 1117 ext4_truncate_failed_write(inode); 1118 /* 1119 * If truncate failed early the inode might still be 1120 * on the orphan list; we need to make sure the inode 1121 * is removed from the orphan list in that case. 1122 */ 1123 if (inode->i_nlink) 1124 ext4_orphan_del(NULL, inode); 1125 } 1126 1127 return ret ? ret : copied; 1128 } 1129 1130 static int ext4_journalled_write_end(struct file *file, 1131 struct address_space *mapping, 1132 loff_t pos, unsigned len, unsigned copied, 1133 struct page *page, void *fsdata) 1134 { 1135 handle_t *handle = ext4_journal_current_handle(); 1136 struct inode *inode = mapping->host; 1137 int ret = 0, ret2; 1138 int partial = 0; 1139 unsigned from, to; 1140 loff_t new_i_size; 1141 1142 trace_ext4_journalled_write_end(inode, pos, len, copied); 1143 from = pos & (PAGE_CACHE_SIZE - 1); 1144 to = from + len; 1145 1146 BUG_ON(!ext4_handle_valid(handle)); 1147 1148 if (ext4_has_inline_data(inode)) 1149 copied = ext4_write_inline_data_end(inode, pos, len, 1150 copied, page); 1151 else { 1152 if (copied < len) { 1153 if (!PageUptodate(page)) 1154 copied = 0; 1155 page_zero_new_buffers(page, from+copied, to); 1156 } 1157 1158 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1159 to, &partial, write_end_fn); 1160 if (!partial) 1161 SetPageUptodate(page); 1162 } 1163 new_i_size = pos + copied; 1164 if (new_i_size > inode->i_size) 1165 i_size_write(inode, pos+copied); 1166 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1167 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1168 if (new_i_size > EXT4_I(inode)->i_disksize) { 1169 ext4_update_i_disksize(inode, new_i_size); 1170 ret2 = ext4_mark_inode_dirty(handle, inode); 1171 if (!ret) 1172 ret = ret2; 1173 } 1174 1175 unlock_page(page); 1176 page_cache_release(page); 1177 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1178 /* if we have allocated more blocks and copied 1179 * less. We will have blocks allocated outside 1180 * inode->i_size. So truncate them 1181 */ 1182 ext4_orphan_add(handle, inode); 1183 1184 ret2 = ext4_journal_stop(handle); 1185 if (!ret) 1186 ret = ret2; 1187 if (pos + len > inode->i_size) { 1188 ext4_truncate_failed_write(inode); 1189 /* 1190 * If truncate failed early the inode might still be 1191 * on the orphan list; we need to make sure the inode 1192 * is removed from the orphan list in that case. 1193 */ 1194 if (inode->i_nlink) 1195 ext4_orphan_del(NULL, inode); 1196 } 1197 1198 return ret ? ret : copied; 1199 } 1200 1201 /* 1202 * Reserve a metadata for a single block located at lblock 1203 */ 1204 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock) 1205 { 1206 int retries = 0; 1207 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1208 struct ext4_inode_info *ei = EXT4_I(inode); 1209 unsigned int md_needed; 1210 ext4_lblk_t save_last_lblock; 1211 int save_len; 1212 1213 /* 1214 * recalculate the amount of metadata blocks to reserve 1215 * in order to allocate nrblocks 1216 * worse case is one extent per block 1217 */ 1218 repeat: 1219 spin_lock(&ei->i_block_reservation_lock); 1220 /* 1221 * ext4_calc_metadata_amount() has side effects, which we have 1222 * to be prepared undo if we fail to claim space. 1223 */ 1224 save_len = ei->i_da_metadata_calc_len; 1225 save_last_lblock = ei->i_da_metadata_calc_last_lblock; 1226 md_needed = EXT4_NUM_B2C(sbi, 1227 ext4_calc_metadata_amount(inode, lblock)); 1228 trace_ext4_da_reserve_space(inode, md_needed); 1229 1230 /* 1231 * We do still charge estimated metadata to the sb though; 1232 * we cannot afford to run out of free blocks. 1233 */ 1234 if (ext4_claim_free_clusters(sbi, md_needed, 0)) { 1235 ei->i_da_metadata_calc_len = save_len; 1236 ei->i_da_metadata_calc_last_lblock = save_last_lblock; 1237 spin_unlock(&ei->i_block_reservation_lock); 1238 if (ext4_should_retry_alloc(inode->i_sb, &retries)) { 1239 cond_resched(); 1240 goto repeat; 1241 } 1242 return -ENOSPC; 1243 } 1244 ei->i_reserved_meta_blocks += md_needed; 1245 spin_unlock(&ei->i_block_reservation_lock); 1246 1247 return 0; /* success */ 1248 } 1249 1250 /* 1251 * Reserve a single cluster located at lblock 1252 */ 1253 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock) 1254 { 1255 int retries = 0; 1256 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1257 struct ext4_inode_info *ei = EXT4_I(inode); 1258 unsigned int md_needed; 1259 int ret; 1260 ext4_lblk_t save_last_lblock; 1261 int save_len; 1262 1263 /* 1264 * We will charge metadata quota at writeout time; this saves 1265 * us from metadata over-estimation, though we may go over by 1266 * a small amount in the end. Here we just reserve for data. 1267 */ 1268 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1269 if (ret) 1270 return ret; 1271 1272 /* 1273 * recalculate the amount of metadata blocks to reserve 1274 * in order to allocate nrblocks 1275 * worse case is one extent per block 1276 */ 1277 repeat: 1278 spin_lock(&ei->i_block_reservation_lock); 1279 /* 1280 * ext4_calc_metadata_amount() has side effects, which we have 1281 * to be prepared undo if we fail to claim space. 1282 */ 1283 save_len = ei->i_da_metadata_calc_len; 1284 save_last_lblock = ei->i_da_metadata_calc_last_lblock; 1285 md_needed = EXT4_NUM_B2C(sbi, 1286 ext4_calc_metadata_amount(inode, lblock)); 1287 trace_ext4_da_reserve_space(inode, md_needed); 1288 1289 /* 1290 * We do still charge estimated metadata to the sb though; 1291 * we cannot afford to run out of free blocks. 1292 */ 1293 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) { 1294 ei->i_da_metadata_calc_len = save_len; 1295 ei->i_da_metadata_calc_last_lblock = save_last_lblock; 1296 spin_unlock(&ei->i_block_reservation_lock); 1297 if (ext4_should_retry_alloc(inode->i_sb, &retries)) { 1298 cond_resched(); 1299 goto repeat; 1300 } 1301 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1302 return -ENOSPC; 1303 } 1304 ei->i_reserved_data_blocks++; 1305 ei->i_reserved_meta_blocks += md_needed; 1306 spin_unlock(&ei->i_block_reservation_lock); 1307 1308 return 0; /* success */ 1309 } 1310 1311 static void ext4_da_release_space(struct inode *inode, int to_free) 1312 { 1313 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1314 struct ext4_inode_info *ei = EXT4_I(inode); 1315 1316 if (!to_free) 1317 return; /* Nothing to release, exit */ 1318 1319 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1320 1321 trace_ext4_da_release_space(inode, to_free); 1322 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1323 /* 1324 * if there aren't enough reserved blocks, then the 1325 * counter is messed up somewhere. Since this 1326 * function is called from invalidate page, it's 1327 * harmless to return without any action. 1328 */ 1329 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1330 "ino %lu, to_free %d with only %d reserved " 1331 "data blocks", inode->i_ino, to_free, 1332 ei->i_reserved_data_blocks); 1333 WARN_ON(1); 1334 to_free = ei->i_reserved_data_blocks; 1335 } 1336 ei->i_reserved_data_blocks -= to_free; 1337 1338 if (ei->i_reserved_data_blocks == 0) { 1339 /* 1340 * We can release all of the reserved metadata blocks 1341 * only when we have written all of the delayed 1342 * allocation blocks. 1343 * Note that in case of bigalloc, i_reserved_meta_blocks, 1344 * i_reserved_data_blocks, etc. refer to number of clusters. 1345 */ 1346 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 1347 ei->i_reserved_meta_blocks); 1348 ei->i_reserved_meta_blocks = 0; 1349 ei->i_da_metadata_calc_len = 0; 1350 } 1351 1352 /* update fs dirty data blocks counter */ 1353 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1354 1355 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1356 1357 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1358 } 1359 1360 static void ext4_da_page_release_reservation(struct page *page, 1361 unsigned int offset, 1362 unsigned int length) 1363 { 1364 int to_release = 0; 1365 struct buffer_head *head, *bh; 1366 unsigned int curr_off = 0; 1367 struct inode *inode = page->mapping->host; 1368 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1369 unsigned int stop = offset + length; 1370 int num_clusters; 1371 ext4_fsblk_t lblk; 1372 1373 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length); 1374 1375 head = page_buffers(page); 1376 bh = head; 1377 do { 1378 unsigned int next_off = curr_off + bh->b_size; 1379 1380 if (next_off > stop) 1381 break; 1382 1383 if ((offset <= curr_off) && (buffer_delay(bh))) { 1384 to_release++; 1385 clear_buffer_delay(bh); 1386 } 1387 curr_off = next_off; 1388 } while ((bh = bh->b_this_page) != head); 1389 1390 if (to_release) { 1391 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1392 ext4_es_remove_extent(inode, lblk, to_release); 1393 } 1394 1395 /* If we have released all the blocks belonging to a cluster, then we 1396 * need to release the reserved space for that cluster. */ 1397 num_clusters = EXT4_NUM_B2C(sbi, to_release); 1398 while (num_clusters > 0) { 1399 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) + 1400 ((num_clusters - 1) << sbi->s_cluster_bits); 1401 if (sbi->s_cluster_ratio == 1 || 1402 !ext4_find_delalloc_cluster(inode, lblk)) 1403 ext4_da_release_space(inode, 1); 1404 1405 num_clusters--; 1406 } 1407 } 1408 1409 /* 1410 * Delayed allocation stuff 1411 */ 1412 1413 struct mpage_da_data { 1414 struct inode *inode; 1415 struct writeback_control *wbc; 1416 1417 pgoff_t first_page; /* The first page to write */ 1418 pgoff_t next_page; /* Current page to examine */ 1419 pgoff_t last_page; /* Last page to examine */ 1420 /* 1421 * Extent to map - this can be after first_page because that can be 1422 * fully mapped. We somewhat abuse m_flags to store whether the extent 1423 * is delalloc or unwritten. 1424 */ 1425 struct ext4_map_blocks map; 1426 struct ext4_io_submit io_submit; /* IO submission data */ 1427 }; 1428 1429 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1430 bool invalidate) 1431 { 1432 int nr_pages, i; 1433 pgoff_t index, end; 1434 struct pagevec pvec; 1435 struct inode *inode = mpd->inode; 1436 struct address_space *mapping = inode->i_mapping; 1437 1438 /* This is necessary when next_page == 0. */ 1439 if (mpd->first_page >= mpd->next_page) 1440 return; 1441 1442 index = mpd->first_page; 1443 end = mpd->next_page - 1; 1444 if (invalidate) { 1445 ext4_lblk_t start, last; 1446 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1447 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1448 ext4_es_remove_extent(inode, start, last - start + 1); 1449 } 1450 1451 pagevec_init(&pvec, 0); 1452 while (index <= end) { 1453 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1454 if (nr_pages == 0) 1455 break; 1456 for (i = 0; i < nr_pages; i++) { 1457 struct page *page = pvec.pages[i]; 1458 if (page->index > end) 1459 break; 1460 BUG_ON(!PageLocked(page)); 1461 BUG_ON(PageWriteback(page)); 1462 if (invalidate) { 1463 block_invalidatepage(page, 0, PAGE_CACHE_SIZE); 1464 ClearPageUptodate(page); 1465 } 1466 unlock_page(page); 1467 } 1468 index = pvec.pages[nr_pages - 1]->index + 1; 1469 pagevec_release(&pvec); 1470 } 1471 } 1472 1473 static void ext4_print_free_blocks(struct inode *inode) 1474 { 1475 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1476 struct super_block *sb = inode->i_sb; 1477 struct ext4_inode_info *ei = EXT4_I(inode); 1478 1479 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1480 EXT4_C2B(EXT4_SB(inode->i_sb), 1481 ext4_count_free_clusters(sb))); 1482 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1483 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1484 (long long) EXT4_C2B(EXT4_SB(sb), 1485 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1486 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1487 (long long) EXT4_C2B(EXT4_SB(sb), 1488 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1489 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1490 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1491 ei->i_reserved_data_blocks); 1492 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u", 1493 ei->i_reserved_meta_blocks); 1494 ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u", 1495 ei->i_allocated_meta_blocks); 1496 return; 1497 } 1498 1499 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1500 { 1501 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1502 } 1503 1504 /* 1505 * This function is grabs code from the very beginning of 1506 * ext4_map_blocks, but assumes that the caller is from delayed write 1507 * time. This function looks up the requested blocks and sets the 1508 * buffer delay bit under the protection of i_data_sem. 1509 */ 1510 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1511 struct ext4_map_blocks *map, 1512 struct buffer_head *bh) 1513 { 1514 struct extent_status es; 1515 int retval; 1516 sector_t invalid_block = ~((sector_t) 0xffff); 1517 #ifdef ES_AGGRESSIVE_TEST 1518 struct ext4_map_blocks orig_map; 1519 1520 memcpy(&orig_map, map, sizeof(*map)); 1521 #endif 1522 1523 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1524 invalid_block = ~0; 1525 1526 map->m_flags = 0; 1527 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1528 "logical block %lu\n", inode->i_ino, map->m_len, 1529 (unsigned long) map->m_lblk); 1530 1531 /* Lookup extent status tree firstly */ 1532 if (ext4_es_lookup_extent(inode, iblock, &es)) { 1533 ext4_es_lru_add(inode); 1534 if (ext4_es_is_hole(&es)) { 1535 retval = 0; 1536 down_read((&EXT4_I(inode)->i_data_sem)); 1537 goto add_delayed; 1538 } 1539 1540 /* 1541 * Delayed extent could be allocated by fallocate. 1542 * So we need to check it. 1543 */ 1544 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1545 map_bh(bh, inode->i_sb, invalid_block); 1546 set_buffer_new(bh); 1547 set_buffer_delay(bh); 1548 return 0; 1549 } 1550 1551 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1552 retval = es.es_len - (iblock - es.es_lblk); 1553 if (retval > map->m_len) 1554 retval = map->m_len; 1555 map->m_len = retval; 1556 if (ext4_es_is_written(&es)) 1557 map->m_flags |= EXT4_MAP_MAPPED; 1558 else if (ext4_es_is_unwritten(&es)) 1559 map->m_flags |= EXT4_MAP_UNWRITTEN; 1560 else 1561 BUG_ON(1); 1562 1563 #ifdef ES_AGGRESSIVE_TEST 1564 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1565 #endif 1566 return retval; 1567 } 1568 1569 /* 1570 * Try to see if we can get the block without requesting a new 1571 * file system block. 1572 */ 1573 down_read((&EXT4_I(inode)->i_data_sem)); 1574 if (ext4_has_inline_data(inode)) { 1575 /* 1576 * We will soon create blocks for this page, and let 1577 * us pretend as if the blocks aren't allocated yet. 1578 * In case of clusters, we have to handle the work 1579 * of mapping from cluster so that the reserved space 1580 * is calculated properly. 1581 */ 1582 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) && 1583 ext4_find_delalloc_cluster(inode, map->m_lblk)) 1584 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 1585 retval = 0; 1586 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1587 retval = ext4_ext_map_blocks(NULL, inode, map, 1588 EXT4_GET_BLOCKS_NO_PUT_HOLE); 1589 else 1590 retval = ext4_ind_map_blocks(NULL, inode, map, 1591 EXT4_GET_BLOCKS_NO_PUT_HOLE); 1592 1593 add_delayed: 1594 if (retval == 0) { 1595 int ret; 1596 /* 1597 * XXX: __block_prepare_write() unmaps passed block, 1598 * is it OK? 1599 */ 1600 /* 1601 * If the block was allocated from previously allocated cluster, 1602 * then we don't need to reserve it again. However we still need 1603 * to reserve metadata for every block we're going to write. 1604 */ 1605 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) { 1606 ret = ext4_da_reserve_space(inode, iblock); 1607 if (ret) { 1608 /* not enough space to reserve */ 1609 retval = ret; 1610 goto out_unlock; 1611 } 1612 } else { 1613 ret = ext4_da_reserve_metadata(inode, iblock); 1614 if (ret) { 1615 /* not enough space to reserve */ 1616 retval = ret; 1617 goto out_unlock; 1618 } 1619 } 1620 1621 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1622 ~0, EXTENT_STATUS_DELAYED); 1623 if (ret) { 1624 retval = ret; 1625 goto out_unlock; 1626 } 1627 1628 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served 1629 * and it should not appear on the bh->b_state. 1630 */ 1631 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER; 1632 1633 map_bh(bh, inode->i_sb, invalid_block); 1634 set_buffer_new(bh); 1635 set_buffer_delay(bh); 1636 } else if (retval > 0) { 1637 int ret; 1638 unsigned long long status; 1639 1640 #ifdef ES_AGGRESSIVE_TEST 1641 if (retval != map->m_len) { 1642 printk("ES len assertion failed for inode: %lu " 1643 "retval %d != map->m_len %d " 1644 "in %s (lookup)\n", inode->i_ino, retval, 1645 map->m_len, __func__); 1646 } 1647 #endif 1648 1649 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1650 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1651 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1652 map->m_pblk, status); 1653 if (ret != 0) 1654 retval = ret; 1655 } 1656 1657 out_unlock: 1658 up_read((&EXT4_I(inode)->i_data_sem)); 1659 1660 return retval; 1661 } 1662 1663 /* 1664 * This is a special get_blocks_t callback which is used by 1665 * ext4_da_write_begin(). It will either return mapped block or 1666 * reserve space for a single block. 1667 * 1668 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1669 * We also have b_blocknr = -1 and b_bdev initialized properly 1670 * 1671 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1672 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1673 * initialized properly. 1674 */ 1675 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1676 struct buffer_head *bh, int create) 1677 { 1678 struct ext4_map_blocks map; 1679 int ret = 0; 1680 1681 BUG_ON(create == 0); 1682 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1683 1684 map.m_lblk = iblock; 1685 map.m_len = 1; 1686 1687 /* 1688 * first, we need to know whether the block is allocated already 1689 * preallocated blocks are unmapped but should treated 1690 * the same as allocated blocks. 1691 */ 1692 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1693 if (ret <= 0) 1694 return ret; 1695 1696 map_bh(bh, inode->i_sb, map.m_pblk); 1697 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 1698 1699 if (buffer_unwritten(bh)) { 1700 /* A delayed write to unwritten bh should be marked 1701 * new and mapped. Mapped ensures that we don't do 1702 * get_block multiple times when we write to the same 1703 * offset and new ensures that we do proper zero out 1704 * for partial write. 1705 */ 1706 set_buffer_new(bh); 1707 set_buffer_mapped(bh); 1708 } 1709 return 0; 1710 } 1711 1712 static int bget_one(handle_t *handle, struct buffer_head *bh) 1713 { 1714 get_bh(bh); 1715 return 0; 1716 } 1717 1718 static int bput_one(handle_t *handle, struct buffer_head *bh) 1719 { 1720 put_bh(bh); 1721 return 0; 1722 } 1723 1724 static int __ext4_journalled_writepage(struct page *page, 1725 unsigned int len) 1726 { 1727 struct address_space *mapping = page->mapping; 1728 struct inode *inode = mapping->host; 1729 struct buffer_head *page_bufs = NULL; 1730 handle_t *handle = NULL; 1731 int ret = 0, err = 0; 1732 int inline_data = ext4_has_inline_data(inode); 1733 struct buffer_head *inode_bh = NULL; 1734 1735 ClearPageChecked(page); 1736 1737 if (inline_data) { 1738 BUG_ON(page->index != 0); 1739 BUG_ON(len > ext4_get_max_inline_size(inode)); 1740 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1741 if (inode_bh == NULL) 1742 goto out; 1743 } else { 1744 page_bufs = page_buffers(page); 1745 if (!page_bufs) { 1746 BUG(); 1747 goto out; 1748 } 1749 ext4_walk_page_buffers(handle, page_bufs, 0, len, 1750 NULL, bget_one); 1751 } 1752 /* As soon as we unlock the page, it can go away, but we have 1753 * references to buffers so we are safe */ 1754 unlock_page(page); 1755 1756 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1757 ext4_writepage_trans_blocks(inode)); 1758 if (IS_ERR(handle)) { 1759 ret = PTR_ERR(handle); 1760 goto out; 1761 } 1762 1763 BUG_ON(!ext4_handle_valid(handle)); 1764 1765 if (inline_data) { 1766 ret = ext4_journal_get_write_access(handle, inode_bh); 1767 1768 err = ext4_handle_dirty_metadata(handle, inode, inode_bh); 1769 1770 } else { 1771 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1772 do_journal_get_write_access); 1773 1774 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1775 write_end_fn); 1776 } 1777 if (ret == 0) 1778 ret = err; 1779 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1780 err = ext4_journal_stop(handle); 1781 if (!ret) 1782 ret = err; 1783 1784 if (!ext4_has_inline_data(inode)) 1785 ext4_walk_page_buffers(handle, page_bufs, 0, len, 1786 NULL, bput_one); 1787 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1788 out: 1789 brelse(inode_bh); 1790 return ret; 1791 } 1792 1793 /* 1794 * Note that we don't need to start a transaction unless we're journaling data 1795 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1796 * need to file the inode to the transaction's list in ordered mode because if 1797 * we are writing back data added by write(), the inode is already there and if 1798 * we are writing back data modified via mmap(), no one guarantees in which 1799 * transaction the data will hit the disk. In case we are journaling data, we 1800 * cannot start transaction directly because transaction start ranks above page 1801 * lock so we have to do some magic. 1802 * 1803 * This function can get called via... 1804 * - ext4_writepages after taking page lock (have journal handle) 1805 * - journal_submit_inode_data_buffers (no journal handle) 1806 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 1807 * - grab_page_cache when doing write_begin (have journal handle) 1808 * 1809 * We don't do any block allocation in this function. If we have page with 1810 * multiple blocks we need to write those buffer_heads that are mapped. This 1811 * is important for mmaped based write. So if we do with blocksize 1K 1812 * truncate(f, 1024); 1813 * a = mmap(f, 0, 4096); 1814 * a[0] = 'a'; 1815 * truncate(f, 4096); 1816 * we have in the page first buffer_head mapped via page_mkwrite call back 1817 * but other buffer_heads would be unmapped but dirty (dirty done via the 1818 * do_wp_page). So writepage should write the first block. If we modify 1819 * the mmap area beyond 1024 we will again get a page_fault and the 1820 * page_mkwrite callback will do the block allocation and mark the 1821 * buffer_heads mapped. 1822 * 1823 * We redirty the page if we have any buffer_heads that is either delay or 1824 * unwritten in the page. 1825 * 1826 * We can get recursively called as show below. 1827 * 1828 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1829 * ext4_writepage() 1830 * 1831 * But since we don't do any block allocation we should not deadlock. 1832 * Page also have the dirty flag cleared so we don't get recurive page_lock. 1833 */ 1834 static int ext4_writepage(struct page *page, 1835 struct writeback_control *wbc) 1836 { 1837 int ret = 0; 1838 loff_t size; 1839 unsigned int len; 1840 struct buffer_head *page_bufs = NULL; 1841 struct inode *inode = page->mapping->host; 1842 struct ext4_io_submit io_submit; 1843 1844 trace_ext4_writepage(page); 1845 size = i_size_read(inode); 1846 if (page->index == size >> PAGE_CACHE_SHIFT) 1847 len = size & ~PAGE_CACHE_MASK; 1848 else 1849 len = PAGE_CACHE_SIZE; 1850 1851 page_bufs = page_buffers(page); 1852 /* 1853 * We cannot do block allocation or other extent handling in this 1854 * function. If there are buffers needing that, we have to redirty 1855 * the page. But we may reach here when we do a journal commit via 1856 * journal_submit_inode_data_buffers() and in that case we must write 1857 * allocated buffers to achieve data=ordered mode guarantees. 1858 */ 1859 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 1860 ext4_bh_delay_or_unwritten)) { 1861 redirty_page_for_writepage(wbc, page); 1862 if (current->flags & PF_MEMALLOC) { 1863 /* 1864 * For memory cleaning there's no point in writing only 1865 * some buffers. So just bail out. Warn if we came here 1866 * from direct reclaim. 1867 */ 1868 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 1869 == PF_MEMALLOC); 1870 unlock_page(page); 1871 return 0; 1872 } 1873 } 1874 1875 if (PageChecked(page) && ext4_should_journal_data(inode)) 1876 /* 1877 * It's mmapped pagecache. Add buffers and journal it. There 1878 * doesn't seem much point in redirtying the page here. 1879 */ 1880 return __ext4_journalled_writepage(page, len); 1881 1882 ext4_io_submit_init(&io_submit, wbc); 1883 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 1884 if (!io_submit.io_end) { 1885 redirty_page_for_writepage(wbc, page); 1886 unlock_page(page); 1887 return -ENOMEM; 1888 } 1889 ret = ext4_bio_write_page(&io_submit, page, len, wbc); 1890 ext4_io_submit(&io_submit); 1891 /* Drop io_end reference we got from init */ 1892 ext4_put_io_end_defer(io_submit.io_end); 1893 return ret; 1894 } 1895 1896 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay)) 1897 1898 /* 1899 * mballoc gives us at most this number of blocks... 1900 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 1901 * The rest of mballoc seems to handle chunks upto full group size. 1902 */ 1903 #define MAX_WRITEPAGES_EXTENT_LEN 2048 1904 1905 /* 1906 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 1907 * 1908 * @mpd - extent of blocks 1909 * @lblk - logical number of the block in the file 1910 * @b_state - b_state of the buffer head added 1911 * 1912 * the function is used to collect contig. blocks in same state 1913 */ 1914 static int mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 1915 unsigned long b_state) 1916 { 1917 struct ext4_map_blocks *map = &mpd->map; 1918 1919 /* Don't go larger than mballoc is willing to allocate */ 1920 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 1921 return 0; 1922 1923 /* First block in the extent? */ 1924 if (map->m_len == 0) { 1925 map->m_lblk = lblk; 1926 map->m_len = 1; 1927 map->m_flags = b_state & BH_FLAGS; 1928 return 1; 1929 } 1930 1931 /* Can we merge the block to our big extent? */ 1932 if (lblk == map->m_lblk + map->m_len && 1933 (b_state & BH_FLAGS) == map->m_flags) { 1934 map->m_len++; 1935 return 1; 1936 } 1937 return 0; 1938 } 1939 1940 static bool add_page_bufs_to_extent(struct mpage_da_data *mpd, 1941 struct buffer_head *head, 1942 struct buffer_head *bh, 1943 ext4_lblk_t lblk) 1944 { 1945 struct inode *inode = mpd->inode; 1946 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1) 1947 >> inode->i_blkbits; 1948 1949 do { 1950 BUG_ON(buffer_locked(bh)); 1951 1952 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 1953 (!buffer_delay(bh) && !buffer_unwritten(bh)) || 1954 lblk >= blocks) { 1955 /* Found extent to map? */ 1956 if (mpd->map.m_len) 1957 return false; 1958 if (lblk >= blocks) 1959 return true; 1960 continue; 1961 } 1962 if (!mpage_add_bh_to_extent(mpd, lblk, bh->b_state)) 1963 return false; 1964 } while (lblk++, (bh = bh->b_this_page) != head); 1965 return true; 1966 } 1967 1968 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 1969 { 1970 int len; 1971 loff_t size = i_size_read(mpd->inode); 1972 int err; 1973 1974 BUG_ON(page->index != mpd->first_page); 1975 if (page->index == size >> PAGE_CACHE_SHIFT) 1976 len = size & ~PAGE_CACHE_MASK; 1977 else 1978 len = PAGE_CACHE_SIZE; 1979 clear_page_dirty_for_io(page); 1980 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc); 1981 if (!err) 1982 mpd->wbc->nr_to_write--; 1983 mpd->first_page++; 1984 1985 return err; 1986 } 1987 1988 /* 1989 * mpage_map_buffers - update buffers corresponding to changed extent and 1990 * submit fully mapped pages for IO 1991 * 1992 * @mpd - description of extent to map, on return next extent to map 1993 * 1994 * Scan buffers corresponding to changed extent (we expect corresponding pages 1995 * to be already locked) and update buffer state according to new extent state. 1996 * We map delalloc buffers to their physical location, clear unwritten bits, 1997 * and mark buffers as uninit when we perform writes to uninitialized extents 1998 * and do extent conversion after IO is finished. If the last page is not fully 1999 * mapped, we update @map to the next extent in the last page that needs 2000 * mapping. Otherwise we submit the page for IO. 2001 */ 2002 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2003 { 2004 struct pagevec pvec; 2005 int nr_pages, i; 2006 struct inode *inode = mpd->inode; 2007 struct buffer_head *head, *bh; 2008 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits; 2009 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1) 2010 >> inode->i_blkbits; 2011 pgoff_t start, end; 2012 ext4_lblk_t lblk; 2013 sector_t pblock; 2014 int err; 2015 2016 start = mpd->map.m_lblk >> bpp_bits; 2017 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2018 lblk = start << bpp_bits; 2019 pblock = mpd->map.m_pblk; 2020 2021 pagevec_init(&pvec, 0); 2022 while (start <= end) { 2023 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start, 2024 PAGEVEC_SIZE); 2025 if (nr_pages == 0) 2026 break; 2027 for (i = 0; i < nr_pages; i++) { 2028 struct page *page = pvec.pages[i]; 2029 2030 if (page->index > end) 2031 break; 2032 /* Upto 'end' pages must be contiguous */ 2033 BUG_ON(page->index != start); 2034 bh = head = page_buffers(page); 2035 do { 2036 if (lblk < mpd->map.m_lblk) 2037 continue; 2038 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2039 /* 2040 * Buffer after end of mapped extent. 2041 * Find next buffer in the page to map. 2042 */ 2043 mpd->map.m_len = 0; 2044 mpd->map.m_flags = 0; 2045 add_page_bufs_to_extent(mpd, head, bh, 2046 lblk); 2047 pagevec_release(&pvec); 2048 return 0; 2049 } 2050 if (buffer_delay(bh)) { 2051 clear_buffer_delay(bh); 2052 bh->b_blocknr = pblock++; 2053 } 2054 clear_buffer_unwritten(bh); 2055 } while (++lblk < blocks && 2056 (bh = bh->b_this_page) != head); 2057 2058 /* 2059 * FIXME: This is going to break if dioread_nolock 2060 * supports blocksize < pagesize as we will try to 2061 * convert potentially unmapped parts of inode. 2062 */ 2063 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE; 2064 /* Page fully mapped - let IO run! */ 2065 err = mpage_submit_page(mpd, page); 2066 if (err < 0) { 2067 pagevec_release(&pvec); 2068 return err; 2069 } 2070 start++; 2071 } 2072 pagevec_release(&pvec); 2073 } 2074 /* Extent fully mapped and matches with page boundary. We are done. */ 2075 mpd->map.m_len = 0; 2076 mpd->map.m_flags = 0; 2077 return 0; 2078 } 2079 2080 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2081 { 2082 struct inode *inode = mpd->inode; 2083 struct ext4_map_blocks *map = &mpd->map; 2084 int get_blocks_flags; 2085 int err; 2086 2087 trace_ext4_da_write_pages_extent(inode, map); 2088 /* 2089 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2090 * to convert an uninitialized extent to be initialized (in the case 2091 * where we have written into one or more preallocated blocks). It is 2092 * possible that we're going to need more metadata blocks than 2093 * previously reserved. However we must not fail because we're in 2094 * writeback and there is nothing we can do about it so it might result 2095 * in data loss. So use reserved blocks to allocate metadata if 2096 * possible. 2097 * 2098 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks 2099 * in question are delalloc blocks. This affects functions in many 2100 * different parts of the allocation call path. This flag exists 2101 * primarily because we don't want to change *many* call functions, so 2102 * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag 2103 * once the inode's allocation semaphore is taken. 2104 */ 2105 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2106 EXT4_GET_BLOCKS_METADATA_NOFAIL; 2107 if (ext4_should_dioread_nolock(inode)) 2108 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2109 if (map->m_flags & (1 << BH_Delay)) 2110 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2111 2112 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2113 if (err < 0) 2114 return err; 2115 if (map->m_flags & EXT4_MAP_UNINIT) { 2116 if (!mpd->io_submit.io_end->handle && 2117 ext4_handle_valid(handle)) { 2118 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2119 handle->h_rsv_handle = NULL; 2120 } 2121 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2122 } 2123 2124 BUG_ON(map->m_len == 0); 2125 if (map->m_flags & EXT4_MAP_NEW) { 2126 struct block_device *bdev = inode->i_sb->s_bdev; 2127 int i; 2128 2129 for (i = 0; i < map->m_len; i++) 2130 unmap_underlying_metadata(bdev, map->m_pblk + i); 2131 } 2132 return 0; 2133 } 2134 2135 /* 2136 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2137 * mpd->len and submit pages underlying it for IO 2138 * 2139 * @handle - handle for journal operations 2140 * @mpd - extent to map 2141 * 2142 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2143 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2144 * them to initialized or split the described range from larger unwritten 2145 * extent. Note that we need not map all the described range since allocation 2146 * can return less blocks or the range is covered by more unwritten extents. We 2147 * cannot map more because we are limited by reserved transaction credits. On 2148 * the other hand we always make sure that the last touched page is fully 2149 * mapped so that it can be written out (and thus forward progress is 2150 * guaranteed). After mapping we submit all mapped pages for IO. 2151 */ 2152 static int mpage_map_and_submit_extent(handle_t *handle, 2153 struct mpage_da_data *mpd, 2154 bool *give_up_on_write) 2155 { 2156 struct inode *inode = mpd->inode; 2157 struct ext4_map_blocks *map = &mpd->map; 2158 int err; 2159 loff_t disksize; 2160 2161 mpd->io_submit.io_end->offset = 2162 ((loff_t)map->m_lblk) << inode->i_blkbits; 2163 do { 2164 err = mpage_map_one_extent(handle, mpd); 2165 if (err < 0) { 2166 struct super_block *sb = inode->i_sb; 2167 2168 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 2169 goto invalidate_dirty_pages; 2170 /* 2171 * Let the uper layers retry transient errors. 2172 * In the case of ENOSPC, if ext4_count_free_blocks() 2173 * is non-zero, a commit should free up blocks. 2174 */ 2175 if ((err == -ENOMEM) || 2176 (err == -ENOSPC && ext4_count_free_clusters(sb))) 2177 return err; 2178 ext4_msg(sb, KERN_CRIT, 2179 "Delayed block allocation failed for " 2180 "inode %lu at logical offset %llu with" 2181 " max blocks %u with error %d", 2182 inode->i_ino, 2183 (unsigned long long)map->m_lblk, 2184 (unsigned)map->m_len, -err); 2185 ext4_msg(sb, KERN_CRIT, 2186 "This should not happen!! Data will " 2187 "be lost\n"); 2188 if (err == -ENOSPC) 2189 ext4_print_free_blocks(inode); 2190 invalidate_dirty_pages: 2191 *give_up_on_write = true; 2192 return err; 2193 } 2194 /* 2195 * Update buffer state, submit mapped pages, and get us new 2196 * extent to map 2197 */ 2198 err = mpage_map_and_submit_buffers(mpd); 2199 if (err < 0) 2200 return err; 2201 } while (map->m_len); 2202 2203 /* Update on-disk size after IO is submitted */ 2204 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT; 2205 if (disksize > i_size_read(inode)) 2206 disksize = i_size_read(inode); 2207 if (disksize > EXT4_I(inode)->i_disksize) { 2208 int err2; 2209 2210 ext4_update_i_disksize(inode, disksize); 2211 err2 = ext4_mark_inode_dirty(handle, inode); 2212 if (err2) 2213 ext4_error(inode->i_sb, 2214 "Failed to mark inode %lu dirty", 2215 inode->i_ino); 2216 if (!err) 2217 err = err2; 2218 } 2219 return err; 2220 } 2221 2222 /* 2223 * Calculate the total number of credits to reserve for one writepages 2224 * iteration. This is called from ext4_writepages(). We map an extent of 2225 * upto MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2226 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2227 * bpp - 1 blocks in bpp different extents. 2228 */ 2229 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2230 { 2231 int bpp = ext4_journal_blocks_per_page(inode); 2232 2233 return ext4_meta_trans_blocks(inode, 2234 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2235 } 2236 2237 /* 2238 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2239 * and underlying extent to map 2240 * 2241 * @mpd - where to look for pages 2242 * 2243 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2244 * IO immediately. When we find a page which isn't mapped we start accumulating 2245 * extent of buffers underlying these pages that needs mapping (formed by 2246 * either delayed or unwritten buffers). We also lock the pages containing 2247 * these buffers. The extent found is returned in @mpd structure (starting at 2248 * mpd->lblk with length mpd->len blocks). 2249 * 2250 * Note that this function can attach bios to one io_end structure which are 2251 * neither logically nor physically contiguous. Although it may seem as an 2252 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2253 * case as we need to track IO to all buffers underlying a page in one io_end. 2254 */ 2255 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2256 { 2257 struct address_space *mapping = mpd->inode->i_mapping; 2258 struct pagevec pvec; 2259 unsigned int nr_pages; 2260 pgoff_t index = mpd->first_page; 2261 pgoff_t end = mpd->last_page; 2262 int tag; 2263 int i, err = 0; 2264 int blkbits = mpd->inode->i_blkbits; 2265 ext4_lblk_t lblk; 2266 struct buffer_head *head; 2267 2268 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2269 tag = PAGECACHE_TAG_TOWRITE; 2270 else 2271 tag = PAGECACHE_TAG_DIRTY; 2272 2273 pagevec_init(&pvec, 0); 2274 mpd->map.m_len = 0; 2275 mpd->next_page = index; 2276 while (index <= end) { 2277 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2278 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2279 if (nr_pages == 0) 2280 goto out; 2281 2282 for (i = 0; i < nr_pages; i++) { 2283 struct page *page = pvec.pages[i]; 2284 2285 /* 2286 * At this point, the page may be truncated or 2287 * invalidated (changing page->mapping to NULL), or 2288 * even swizzled back from swapper_space to tmpfs file 2289 * mapping. However, page->index will not change 2290 * because we have a reference on the page. 2291 */ 2292 if (page->index > end) 2293 goto out; 2294 2295 /* If we can't merge this page, we are done. */ 2296 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2297 goto out; 2298 2299 lock_page(page); 2300 /* 2301 * If the page is no longer dirty, or its mapping no 2302 * longer corresponds to inode we are writing (which 2303 * means it has been truncated or invalidated), or the 2304 * page is already under writeback and we are not doing 2305 * a data integrity writeback, skip the page 2306 */ 2307 if (!PageDirty(page) || 2308 (PageWriteback(page) && 2309 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2310 unlikely(page->mapping != mapping)) { 2311 unlock_page(page); 2312 continue; 2313 } 2314 2315 wait_on_page_writeback(page); 2316 BUG_ON(PageWriteback(page)); 2317 2318 if (mpd->map.m_len == 0) 2319 mpd->first_page = page->index; 2320 mpd->next_page = page->index + 1; 2321 /* Add all dirty buffers to mpd */ 2322 lblk = ((ext4_lblk_t)page->index) << 2323 (PAGE_CACHE_SHIFT - blkbits); 2324 head = page_buffers(page); 2325 if (!add_page_bufs_to_extent(mpd, head, head, lblk)) 2326 goto out; 2327 /* So far everything mapped? Submit the page for IO. */ 2328 if (mpd->map.m_len == 0) { 2329 err = mpage_submit_page(mpd, page); 2330 if (err < 0) 2331 goto out; 2332 } 2333 2334 /* 2335 * Accumulated enough dirty pages? This doesn't apply 2336 * to WB_SYNC_ALL mode. For integrity sync we have to 2337 * keep going because someone may be concurrently 2338 * dirtying pages, and we might have synced a lot of 2339 * newly appeared dirty pages, but have not synced all 2340 * of the old dirty pages. 2341 */ 2342 if (mpd->wbc->sync_mode == WB_SYNC_NONE && 2343 mpd->next_page - mpd->first_page >= 2344 mpd->wbc->nr_to_write) 2345 goto out; 2346 } 2347 pagevec_release(&pvec); 2348 cond_resched(); 2349 } 2350 return 0; 2351 out: 2352 pagevec_release(&pvec); 2353 return err; 2354 } 2355 2356 static int __writepage(struct page *page, struct writeback_control *wbc, 2357 void *data) 2358 { 2359 struct address_space *mapping = data; 2360 int ret = ext4_writepage(page, wbc); 2361 mapping_set_error(mapping, ret); 2362 return ret; 2363 } 2364 2365 static int ext4_writepages(struct address_space *mapping, 2366 struct writeback_control *wbc) 2367 { 2368 pgoff_t writeback_index = 0; 2369 long nr_to_write = wbc->nr_to_write; 2370 int range_whole = 0; 2371 int cycled = 1; 2372 handle_t *handle = NULL; 2373 struct mpage_da_data mpd; 2374 struct inode *inode = mapping->host; 2375 int needed_blocks, rsv_blocks = 0, ret = 0; 2376 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2377 bool done; 2378 struct blk_plug plug; 2379 bool give_up_on_write = false; 2380 2381 trace_ext4_writepages(inode, wbc); 2382 2383 /* 2384 * No pages to write? This is mainly a kludge to avoid starting 2385 * a transaction for special inodes like journal inode on last iput() 2386 * because that could violate lock ordering on umount 2387 */ 2388 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2389 return 0; 2390 2391 if (ext4_should_journal_data(inode)) { 2392 struct blk_plug plug; 2393 int ret; 2394 2395 blk_start_plug(&plug); 2396 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 2397 blk_finish_plug(&plug); 2398 return ret; 2399 } 2400 2401 /* 2402 * If the filesystem has aborted, it is read-only, so return 2403 * right away instead of dumping stack traces later on that 2404 * will obscure the real source of the problem. We test 2405 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2406 * the latter could be true if the filesystem is mounted 2407 * read-only, and in that case, ext4_writepages should 2408 * *never* be called, so if that ever happens, we would want 2409 * the stack trace. 2410 */ 2411 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) 2412 return -EROFS; 2413 2414 if (ext4_should_dioread_nolock(inode)) { 2415 /* 2416 * We may need to convert upto one extent per block in 2417 * the page and we may dirty the inode. 2418 */ 2419 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits); 2420 } 2421 2422 /* 2423 * If we have inline data and arrive here, it means that 2424 * we will soon create the block for the 1st page, so 2425 * we'd better clear the inline data here. 2426 */ 2427 if (ext4_has_inline_data(inode)) { 2428 /* Just inode will be modified... */ 2429 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2430 if (IS_ERR(handle)) { 2431 ret = PTR_ERR(handle); 2432 goto out_writepages; 2433 } 2434 BUG_ON(ext4_test_inode_state(inode, 2435 EXT4_STATE_MAY_INLINE_DATA)); 2436 ext4_destroy_inline_data(handle, inode); 2437 ext4_journal_stop(handle); 2438 } 2439 2440 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2441 range_whole = 1; 2442 2443 if (wbc->range_cyclic) { 2444 writeback_index = mapping->writeback_index; 2445 if (writeback_index) 2446 cycled = 0; 2447 mpd.first_page = writeback_index; 2448 mpd.last_page = -1; 2449 } else { 2450 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT; 2451 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT; 2452 } 2453 2454 mpd.inode = inode; 2455 mpd.wbc = wbc; 2456 ext4_io_submit_init(&mpd.io_submit, wbc); 2457 retry: 2458 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2459 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2460 done = false; 2461 blk_start_plug(&plug); 2462 while (!done && mpd.first_page <= mpd.last_page) { 2463 /* For each extent of pages we use new io_end */ 2464 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2465 if (!mpd.io_submit.io_end) { 2466 ret = -ENOMEM; 2467 break; 2468 } 2469 2470 /* 2471 * We have two constraints: We find one extent to map and we 2472 * must always write out whole page (makes a difference when 2473 * blocksize < pagesize) so that we don't block on IO when we 2474 * try to write out the rest of the page. Journalled mode is 2475 * not supported by delalloc. 2476 */ 2477 BUG_ON(ext4_should_journal_data(inode)); 2478 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2479 2480 /* start a new transaction */ 2481 handle = ext4_journal_start_with_reserve(inode, 2482 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2483 if (IS_ERR(handle)) { 2484 ret = PTR_ERR(handle); 2485 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2486 "%ld pages, ino %lu; err %d", __func__, 2487 wbc->nr_to_write, inode->i_ino, ret); 2488 /* Release allocated io_end */ 2489 ext4_put_io_end(mpd.io_submit.io_end); 2490 break; 2491 } 2492 2493 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2494 ret = mpage_prepare_extent_to_map(&mpd); 2495 if (!ret) { 2496 if (mpd.map.m_len) 2497 ret = mpage_map_and_submit_extent(handle, &mpd, 2498 &give_up_on_write); 2499 else { 2500 /* 2501 * We scanned the whole range (or exhausted 2502 * nr_to_write), submitted what was mapped and 2503 * didn't find anything needing mapping. We are 2504 * done. 2505 */ 2506 done = true; 2507 } 2508 } 2509 ext4_journal_stop(handle); 2510 /* Submit prepared bio */ 2511 ext4_io_submit(&mpd.io_submit); 2512 /* Unlock pages we didn't use */ 2513 mpage_release_unused_pages(&mpd, give_up_on_write); 2514 /* Drop our io_end reference we got from init */ 2515 ext4_put_io_end(mpd.io_submit.io_end); 2516 2517 if (ret == -ENOSPC && sbi->s_journal) { 2518 /* 2519 * Commit the transaction which would 2520 * free blocks released in the transaction 2521 * and try again 2522 */ 2523 jbd2_journal_force_commit_nested(sbi->s_journal); 2524 ret = 0; 2525 continue; 2526 } 2527 /* Fatal error - ENOMEM, EIO... */ 2528 if (ret) 2529 break; 2530 } 2531 blk_finish_plug(&plug); 2532 if (!ret && !cycled) { 2533 cycled = 1; 2534 mpd.last_page = writeback_index - 1; 2535 mpd.first_page = 0; 2536 goto retry; 2537 } 2538 2539 /* Update index */ 2540 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2541 /* 2542 * Set the writeback_index so that range_cyclic 2543 * mode will write it back later 2544 */ 2545 mapping->writeback_index = mpd.first_page; 2546 2547 out_writepages: 2548 trace_ext4_writepages_result(inode, wbc, ret, 2549 nr_to_write - wbc->nr_to_write); 2550 return ret; 2551 } 2552 2553 static int ext4_nonda_switch(struct super_block *sb) 2554 { 2555 s64 free_clusters, dirty_clusters; 2556 struct ext4_sb_info *sbi = EXT4_SB(sb); 2557 2558 /* 2559 * switch to non delalloc mode if we are running low 2560 * on free block. The free block accounting via percpu 2561 * counters can get slightly wrong with percpu_counter_batch getting 2562 * accumulated on each CPU without updating global counters 2563 * Delalloc need an accurate free block accounting. So switch 2564 * to non delalloc when we are near to error range. 2565 */ 2566 free_clusters = 2567 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2568 dirty_clusters = 2569 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2570 /* 2571 * Start pushing delalloc when 1/2 of free blocks are dirty. 2572 */ 2573 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2574 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2575 2576 if (2 * free_clusters < 3 * dirty_clusters || 2577 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2578 /* 2579 * free block count is less than 150% of dirty blocks 2580 * or free blocks is less than watermark 2581 */ 2582 return 1; 2583 } 2584 return 0; 2585 } 2586 2587 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2588 loff_t pos, unsigned len, unsigned flags, 2589 struct page **pagep, void **fsdata) 2590 { 2591 int ret, retries = 0; 2592 struct page *page; 2593 pgoff_t index; 2594 struct inode *inode = mapping->host; 2595 handle_t *handle; 2596 2597 index = pos >> PAGE_CACHE_SHIFT; 2598 2599 if (ext4_nonda_switch(inode->i_sb)) { 2600 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2601 return ext4_write_begin(file, mapping, pos, 2602 len, flags, pagep, fsdata); 2603 } 2604 *fsdata = (void *)0; 2605 trace_ext4_da_write_begin(inode, pos, len, flags); 2606 2607 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2608 ret = ext4_da_write_inline_data_begin(mapping, inode, 2609 pos, len, flags, 2610 pagep, fsdata); 2611 if (ret < 0) 2612 return ret; 2613 if (ret == 1) 2614 return 0; 2615 } 2616 2617 /* 2618 * grab_cache_page_write_begin() can take a long time if the 2619 * system is thrashing due to memory pressure, or if the page 2620 * is being written back. So grab it first before we start 2621 * the transaction handle. This also allows us to allocate 2622 * the page (if needed) without using GFP_NOFS. 2623 */ 2624 retry_grab: 2625 page = grab_cache_page_write_begin(mapping, index, flags); 2626 if (!page) 2627 return -ENOMEM; 2628 unlock_page(page); 2629 2630 /* 2631 * With delayed allocation, we don't log the i_disksize update 2632 * if there is delayed block allocation. But we still need 2633 * to journalling the i_disksize update if writes to the end 2634 * of file which has an already mapped buffer. 2635 */ 2636 retry_journal: 2637 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1); 2638 if (IS_ERR(handle)) { 2639 page_cache_release(page); 2640 return PTR_ERR(handle); 2641 } 2642 2643 lock_page(page); 2644 if (page->mapping != mapping) { 2645 /* The page got truncated from under us */ 2646 unlock_page(page); 2647 page_cache_release(page); 2648 ext4_journal_stop(handle); 2649 goto retry_grab; 2650 } 2651 /* In case writeback began while the page was unlocked */ 2652 wait_on_page_writeback(page); 2653 2654 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 2655 if (ret < 0) { 2656 unlock_page(page); 2657 ext4_journal_stop(handle); 2658 /* 2659 * block_write_begin may have instantiated a few blocks 2660 * outside i_size. Trim these off again. Don't need 2661 * i_size_read because we hold i_mutex. 2662 */ 2663 if (pos + len > inode->i_size) 2664 ext4_truncate_failed_write(inode); 2665 2666 if (ret == -ENOSPC && 2667 ext4_should_retry_alloc(inode->i_sb, &retries)) 2668 goto retry_journal; 2669 2670 page_cache_release(page); 2671 return ret; 2672 } 2673 2674 *pagep = page; 2675 return ret; 2676 } 2677 2678 /* 2679 * Check if we should update i_disksize 2680 * when write to the end of file but not require block allocation 2681 */ 2682 static int ext4_da_should_update_i_disksize(struct page *page, 2683 unsigned long offset) 2684 { 2685 struct buffer_head *bh; 2686 struct inode *inode = page->mapping->host; 2687 unsigned int idx; 2688 int i; 2689 2690 bh = page_buffers(page); 2691 idx = offset >> inode->i_blkbits; 2692 2693 for (i = 0; i < idx; i++) 2694 bh = bh->b_this_page; 2695 2696 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2697 return 0; 2698 return 1; 2699 } 2700 2701 static int ext4_da_write_end(struct file *file, 2702 struct address_space *mapping, 2703 loff_t pos, unsigned len, unsigned copied, 2704 struct page *page, void *fsdata) 2705 { 2706 struct inode *inode = mapping->host; 2707 int ret = 0, ret2; 2708 handle_t *handle = ext4_journal_current_handle(); 2709 loff_t new_i_size; 2710 unsigned long start, end; 2711 int write_mode = (int)(unsigned long)fsdata; 2712 2713 if (write_mode == FALL_BACK_TO_NONDELALLOC) 2714 return ext4_write_end(file, mapping, pos, 2715 len, copied, page, fsdata); 2716 2717 trace_ext4_da_write_end(inode, pos, len, copied); 2718 start = pos & (PAGE_CACHE_SIZE - 1); 2719 end = start + copied - 1; 2720 2721 /* 2722 * generic_write_end() will run mark_inode_dirty() if i_size 2723 * changes. So let's piggyback the i_disksize mark_inode_dirty 2724 * into that. 2725 */ 2726 new_i_size = pos + copied; 2727 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 2728 if (ext4_has_inline_data(inode) || 2729 ext4_da_should_update_i_disksize(page, end)) { 2730 down_write(&EXT4_I(inode)->i_data_sem); 2731 if (new_i_size > EXT4_I(inode)->i_disksize) 2732 EXT4_I(inode)->i_disksize = new_i_size; 2733 up_write(&EXT4_I(inode)->i_data_sem); 2734 /* We need to mark inode dirty even if 2735 * new_i_size is less that inode->i_size 2736 * bu greater than i_disksize.(hint delalloc) 2737 */ 2738 ext4_mark_inode_dirty(handle, inode); 2739 } 2740 } 2741 2742 if (write_mode != CONVERT_INLINE_DATA && 2743 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 2744 ext4_has_inline_data(inode)) 2745 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 2746 page); 2747 else 2748 ret2 = generic_write_end(file, mapping, pos, len, copied, 2749 page, fsdata); 2750 2751 copied = ret2; 2752 if (ret2 < 0) 2753 ret = ret2; 2754 ret2 = ext4_journal_stop(handle); 2755 if (!ret) 2756 ret = ret2; 2757 2758 return ret ? ret : copied; 2759 } 2760 2761 static void ext4_da_invalidatepage(struct page *page, unsigned int offset, 2762 unsigned int length) 2763 { 2764 /* 2765 * Drop reserved blocks 2766 */ 2767 BUG_ON(!PageLocked(page)); 2768 if (!page_has_buffers(page)) 2769 goto out; 2770 2771 ext4_da_page_release_reservation(page, offset, length); 2772 2773 out: 2774 ext4_invalidatepage(page, offset, length); 2775 2776 return; 2777 } 2778 2779 /* 2780 * Force all delayed allocation blocks to be allocated for a given inode. 2781 */ 2782 int ext4_alloc_da_blocks(struct inode *inode) 2783 { 2784 trace_ext4_alloc_da_blocks(inode); 2785 2786 if (!EXT4_I(inode)->i_reserved_data_blocks && 2787 !EXT4_I(inode)->i_reserved_meta_blocks) 2788 return 0; 2789 2790 /* 2791 * We do something simple for now. The filemap_flush() will 2792 * also start triggering a write of the data blocks, which is 2793 * not strictly speaking necessary (and for users of 2794 * laptop_mode, not even desirable). However, to do otherwise 2795 * would require replicating code paths in: 2796 * 2797 * ext4_writepages() -> 2798 * write_cache_pages() ---> (via passed in callback function) 2799 * __mpage_da_writepage() --> 2800 * mpage_add_bh_to_extent() 2801 * mpage_da_map_blocks() 2802 * 2803 * The problem is that write_cache_pages(), located in 2804 * mm/page-writeback.c, marks pages clean in preparation for 2805 * doing I/O, which is not desirable if we're not planning on 2806 * doing I/O at all. 2807 * 2808 * We could call write_cache_pages(), and then redirty all of 2809 * the pages by calling redirty_page_for_writepage() but that 2810 * would be ugly in the extreme. So instead we would need to 2811 * replicate parts of the code in the above functions, 2812 * simplifying them because we wouldn't actually intend to 2813 * write out the pages, but rather only collect contiguous 2814 * logical block extents, call the multi-block allocator, and 2815 * then update the buffer heads with the block allocations. 2816 * 2817 * For now, though, we'll cheat by calling filemap_flush(), 2818 * which will map the blocks, and start the I/O, but not 2819 * actually wait for the I/O to complete. 2820 */ 2821 return filemap_flush(inode->i_mapping); 2822 } 2823 2824 /* 2825 * bmap() is special. It gets used by applications such as lilo and by 2826 * the swapper to find the on-disk block of a specific piece of data. 2827 * 2828 * Naturally, this is dangerous if the block concerned is still in the 2829 * journal. If somebody makes a swapfile on an ext4 data-journaling 2830 * filesystem and enables swap, then they may get a nasty shock when the 2831 * data getting swapped to that swapfile suddenly gets overwritten by 2832 * the original zero's written out previously to the journal and 2833 * awaiting writeback in the kernel's buffer cache. 2834 * 2835 * So, if we see any bmap calls here on a modified, data-journaled file, 2836 * take extra steps to flush any blocks which might be in the cache. 2837 */ 2838 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 2839 { 2840 struct inode *inode = mapping->host; 2841 journal_t *journal; 2842 int err; 2843 2844 /* 2845 * We can get here for an inline file via the FIBMAP ioctl 2846 */ 2847 if (ext4_has_inline_data(inode)) 2848 return 0; 2849 2850 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 2851 test_opt(inode->i_sb, DELALLOC)) { 2852 /* 2853 * With delalloc we want to sync the file 2854 * so that we can make sure we allocate 2855 * blocks for file 2856 */ 2857 filemap_write_and_wait(mapping); 2858 } 2859 2860 if (EXT4_JOURNAL(inode) && 2861 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 2862 /* 2863 * This is a REALLY heavyweight approach, but the use of 2864 * bmap on dirty files is expected to be extremely rare: 2865 * only if we run lilo or swapon on a freshly made file 2866 * do we expect this to happen. 2867 * 2868 * (bmap requires CAP_SYS_RAWIO so this does not 2869 * represent an unprivileged user DOS attack --- we'd be 2870 * in trouble if mortal users could trigger this path at 2871 * will.) 2872 * 2873 * NB. EXT4_STATE_JDATA is not set on files other than 2874 * regular files. If somebody wants to bmap a directory 2875 * or symlink and gets confused because the buffer 2876 * hasn't yet been flushed to disk, they deserve 2877 * everything they get. 2878 */ 2879 2880 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 2881 journal = EXT4_JOURNAL(inode); 2882 jbd2_journal_lock_updates(journal); 2883 err = jbd2_journal_flush(journal); 2884 jbd2_journal_unlock_updates(journal); 2885 2886 if (err) 2887 return 0; 2888 } 2889 2890 return generic_block_bmap(mapping, block, ext4_get_block); 2891 } 2892 2893 static int ext4_readpage(struct file *file, struct page *page) 2894 { 2895 int ret = -EAGAIN; 2896 struct inode *inode = page->mapping->host; 2897 2898 trace_ext4_readpage(page); 2899 2900 if (ext4_has_inline_data(inode)) 2901 ret = ext4_readpage_inline(inode, page); 2902 2903 if (ret == -EAGAIN) 2904 return mpage_readpage(page, ext4_get_block); 2905 2906 return ret; 2907 } 2908 2909 static int 2910 ext4_readpages(struct file *file, struct address_space *mapping, 2911 struct list_head *pages, unsigned nr_pages) 2912 { 2913 struct inode *inode = mapping->host; 2914 2915 /* If the file has inline data, no need to do readpages. */ 2916 if (ext4_has_inline_data(inode)) 2917 return 0; 2918 2919 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 2920 } 2921 2922 static void ext4_invalidatepage(struct page *page, unsigned int offset, 2923 unsigned int length) 2924 { 2925 trace_ext4_invalidatepage(page, offset, length); 2926 2927 /* No journalling happens on data buffers when this function is used */ 2928 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 2929 2930 block_invalidatepage(page, offset, length); 2931 } 2932 2933 static int __ext4_journalled_invalidatepage(struct page *page, 2934 unsigned int offset, 2935 unsigned int length) 2936 { 2937 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2938 2939 trace_ext4_journalled_invalidatepage(page, offset, length); 2940 2941 /* 2942 * If it's a full truncate we just forget about the pending dirtying 2943 */ 2944 if (offset == 0 && length == PAGE_CACHE_SIZE) 2945 ClearPageChecked(page); 2946 2947 return jbd2_journal_invalidatepage(journal, page, offset, length); 2948 } 2949 2950 /* Wrapper for aops... */ 2951 static void ext4_journalled_invalidatepage(struct page *page, 2952 unsigned int offset, 2953 unsigned int length) 2954 { 2955 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 2956 } 2957 2958 static int ext4_releasepage(struct page *page, gfp_t wait) 2959 { 2960 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2961 2962 trace_ext4_releasepage(page); 2963 2964 /* Page has dirty journalled data -> cannot release */ 2965 if (PageChecked(page)) 2966 return 0; 2967 if (journal) 2968 return jbd2_journal_try_to_free_buffers(journal, page, wait); 2969 else 2970 return try_to_free_buffers(page); 2971 } 2972 2973 /* 2974 * ext4_get_block used when preparing for a DIO write or buffer write. 2975 * We allocate an uinitialized extent if blocks haven't been allocated. 2976 * The extent will be converted to initialized after the IO is complete. 2977 */ 2978 int ext4_get_block_write(struct inode *inode, sector_t iblock, 2979 struct buffer_head *bh_result, int create) 2980 { 2981 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n", 2982 inode->i_ino, create); 2983 return _ext4_get_block(inode, iblock, bh_result, 2984 EXT4_GET_BLOCKS_IO_CREATE_EXT); 2985 } 2986 2987 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 2988 struct buffer_head *bh_result, int create) 2989 { 2990 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n", 2991 inode->i_ino, create); 2992 return _ext4_get_block(inode, iblock, bh_result, 2993 EXT4_GET_BLOCKS_NO_LOCK); 2994 } 2995 2996 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 2997 ssize_t size, void *private, int ret, 2998 bool is_async) 2999 { 3000 struct inode *inode = file_inode(iocb->ki_filp); 3001 ext4_io_end_t *io_end = iocb->private; 3002 3003 /* if not async direct IO just return */ 3004 if (!io_end) { 3005 inode_dio_done(inode); 3006 if (is_async) 3007 aio_complete(iocb, ret, 0); 3008 return; 3009 } 3010 3011 ext_debug("ext4_end_io_dio(): io_end 0x%p " 3012 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", 3013 iocb->private, io_end->inode->i_ino, iocb, offset, 3014 size); 3015 3016 iocb->private = NULL; 3017 io_end->offset = offset; 3018 io_end->size = size; 3019 if (is_async) { 3020 io_end->iocb = iocb; 3021 io_end->result = ret; 3022 } 3023 ext4_put_io_end_defer(io_end); 3024 } 3025 3026 /* 3027 * For ext4 extent files, ext4 will do direct-io write to holes, 3028 * preallocated extents, and those write extend the file, no need to 3029 * fall back to buffered IO. 3030 * 3031 * For holes, we fallocate those blocks, mark them as uninitialized 3032 * If those blocks were preallocated, we mark sure they are split, but 3033 * still keep the range to write as uninitialized. 3034 * 3035 * The unwritten extents will be converted to written when DIO is completed. 3036 * For async direct IO, since the IO may still pending when return, we 3037 * set up an end_io call back function, which will do the conversion 3038 * when async direct IO completed. 3039 * 3040 * If the O_DIRECT write will extend the file then add this inode to the 3041 * orphan list. So recovery will truncate it back to the original size 3042 * if the machine crashes during the write. 3043 * 3044 */ 3045 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb, 3046 const struct iovec *iov, loff_t offset, 3047 unsigned long nr_segs) 3048 { 3049 struct file *file = iocb->ki_filp; 3050 struct inode *inode = file->f_mapping->host; 3051 ssize_t ret; 3052 size_t count = iov_length(iov, nr_segs); 3053 int overwrite = 0; 3054 get_block_t *get_block_func = NULL; 3055 int dio_flags = 0; 3056 loff_t final_size = offset + count; 3057 ext4_io_end_t *io_end = NULL; 3058 3059 /* Use the old path for reads and writes beyond i_size. */ 3060 if (rw != WRITE || final_size > inode->i_size) 3061 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3062 3063 BUG_ON(iocb->private == NULL); 3064 3065 /* 3066 * Make all waiters for direct IO properly wait also for extent 3067 * conversion. This also disallows race between truncate() and 3068 * overwrite DIO as i_dio_count needs to be incremented under i_mutex. 3069 */ 3070 if (rw == WRITE) 3071 atomic_inc(&inode->i_dio_count); 3072 3073 /* If we do a overwrite dio, i_mutex locking can be released */ 3074 overwrite = *((int *)iocb->private); 3075 3076 if (overwrite) { 3077 down_read(&EXT4_I(inode)->i_data_sem); 3078 mutex_unlock(&inode->i_mutex); 3079 } 3080 3081 /* 3082 * We could direct write to holes and fallocate. 3083 * 3084 * Allocated blocks to fill the hole are marked as 3085 * uninitialized to prevent parallel buffered read to expose 3086 * the stale data before DIO complete the data IO. 3087 * 3088 * As to previously fallocated extents, ext4 get_block will 3089 * just simply mark the buffer mapped but still keep the 3090 * extents uninitialized. 3091 * 3092 * For non AIO case, we will convert those unwritten extents 3093 * to written after return back from blockdev_direct_IO. 3094 * 3095 * For async DIO, the conversion needs to be deferred when the 3096 * IO is completed. The ext4 end_io callback function will be 3097 * called to take care of the conversion work. Here for async 3098 * case, we allocate an io_end structure to hook to the iocb. 3099 */ 3100 iocb->private = NULL; 3101 ext4_inode_aio_set(inode, NULL); 3102 if (!is_sync_kiocb(iocb)) { 3103 io_end = ext4_init_io_end(inode, GFP_NOFS); 3104 if (!io_end) { 3105 ret = -ENOMEM; 3106 goto retake_lock; 3107 } 3108 io_end->flag |= EXT4_IO_END_DIRECT; 3109 /* 3110 * Grab reference for DIO. Will be dropped in ext4_end_io_dio() 3111 */ 3112 iocb->private = ext4_get_io_end(io_end); 3113 /* 3114 * we save the io structure for current async direct 3115 * IO, so that later ext4_map_blocks() could flag the 3116 * io structure whether there is a unwritten extents 3117 * needs to be converted when IO is completed. 3118 */ 3119 ext4_inode_aio_set(inode, io_end); 3120 } 3121 3122 if (overwrite) { 3123 get_block_func = ext4_get_block_write_nolock; 3124 } else { 3125 get_block_func = ext4_get_block_write; 3126 dio_flags = DIO_LOCKING; 3127 } 3128 ret = __blockdev_direct_IO(rw, iocb, inode, 3129 inode->i_sb->s_bdev, iov, 3130 offset, nr_segs, 3131 get_block_func, 3132 ext4_end_io_dio, 3133 NULL, 3134 dio_flags); 3135 3136 /* 3137 * Put our reference to io_end. This can free the io_end structure e.g. 3138 * in sync IO case or in case of error. It can even perform extent 3139 * conversion if all bios we submitted finished before we got here. 3140 * Note that in that case iocb->private can be already set to NULL 3141 * here. 3142 */ 3143 if (io_end) { 3144 ext4_inode_aio_set(inode, NULL); 3145 ext4_put_io_end(io_end); 3146 /* 3147 * When no IO was submitted ext4_end_io_dio() was not 3148 * called so we have to put iocb's reference. 3149 */ 3150 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) { 3151 WARN_ON(iocb->private != io_end); 3152 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN); 3153 WARN_ON(io_end->iocb); 3154 /* 3155 * Generic code already did inode_dio_done() so we 3156 * have to clear EXT4_IO_END_DIRECT to not do it for 3157 * the second time. 3158 */ 3159 io_end->flag = 0; 3160 ext4_put_io_end(io_end); 3161 iocb->private = NULL; 3162 } 3163 } 3164 if (ret > 0 && !overwrite && ext4_test_inode_state(inode, 3165 EXT4_STATE_DIO_UNWRITTEN)) { 3166 int err; 3167 /* 3168 * for non AIO case, since the IO is already 3169 * completed, we could do the conversion right here 3170 */ 3171 err = ext4_convert_unwritten_extents(NULL, inode, 3172 offset, ret); 3173 if (err < 0) 3174 ret = err; 3175 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3176 } 3177 3178 retake_lock: 3179 if (rw == WRITE) 3180 inode_dio_done(inode); 3181 /* take i_mutex locking again if we do a ovewrite dio */ 3182 if (overwrite) { 3183 up_read(&EXT4_I(inode)->i_data_sem); 3184 mutex_lock(&inode->i_mutex); 3185 } 3186 3187 return ret; 3188 } 3189 3190 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 3191 const struct iovec *iov, loff_t offset, 3192 unsigned long nr_segs) 3193 { 3194 struct file *file = iocb->ki_filp; 3195 struct inode *inode = file->f_mapping->host; 3196 ssize_t ret; 3197 3198 /* 3199 * If we are doing data journalling we don't support O_DIRECT 3200 */ 3201 if (ext4_should_journal_data(inode)) 3202 return 0; 3203 3204 /* Let buffer I/O handle the inline data case. */ 3205 if (ext4_has_inline_data(inode)) 3206 return 0; 3207 3208 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw); 3209 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3210 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs); 3211 else 3212 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3213 trace_ext4_direct_IO_exit(inode, offset, 3214 iov_length(iov, nr_segs), rw, ret); 3215 return ret; 3216 } 3217 3218 /* 3219 * Pages can be marked dirty completely asynchronously from ext4's journalling 3220 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3221 * much here because ->set_page_dirty is called under VFS locks. The page is 3222 * not necessarily locked. 3223 * 3224 * We cannot just dirty the page and leave attached buffers clean, because the 3225 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3226 * or jbddirty because all the journalling code will explode. 3227 * 3228 * So what we do is to mark the page "pending dirty" and next time writepage 3229 * is called, propagate that into the buffers appropriately. 3230 */ 3231 static int ext4_journalled_set_page_dirty(struct page *page) 3232 { 3233 SetPageChecked(page); 3234 return __set_page_dirty_nobuffers(page); 3235 } 3236 3237 static const struct address_space_operations ext4_aops = { 3238 .readpage = ext4_readpage, 3239 .readpages = ext4_readpages, 3240 .writepage = ext4_writepage, 3241 .writepages = ext4_writepages, 3242 .write_begin = ext4_write_begin, 3243 .write_end = ext4_write_end, 3244 .bmap = ext4_bmap, 3245 .invalidatepage = ext4_invalidatepage, 3246 .releasepage = ext4_releasepage, 3247 .direct_IO = ext4_direct_IO, 3248 .migratepage = buffer_migrate_page, 3249 .is_partially_uptodate = block_is_partially_uptodate, 3250 .error_remove_page = generic_error_remove_page, 3251 }; 3252 3253 static const struct address_space_operations ext4_journalled_aops = { 3254 .readpage = ext4_readpage, 3255 .readpages = ext4_readpages, 3256 .writepage = ext4_writepage, 3257 .writepages = ext4_writepages, 3258 .write_begin = ext4_write_begin, 3259 .write_end = ext4_journalled_write_end, 3260 .set_page_dirty = ext4_journalled_set_page_dirty, 3261 .bmap = ext4_bmap, 3262 .invalidatepage = ext4_journalled_invalidatepage, 3263 .releasepage = ext4_releasepage, 3264 .direct_IO = ext4_direct_IO, 3265 .is_partially_uptodate = block_is_partially_uptodate, 3266 .error_remove_page = generic_error_remove_page, 3267 }; 3268 3269 static const struct address_space_operations ext4_da_aops = { 3270 .readpage = ext4_readpage, 3271 .readpages = ext4_readpages, 3272 .writepage = ext4_writepage, 3273 .writepages = ext4_writepages, 3274 .write_begin = ext4_da_write_begin, 3275 .write_end = ext4_da_write_end, 3276 .bmap = ext4_bmap, 3277 .invalidatepage = ext4_da_invalidatepage, 3278 .releasepage = ext4_releasepage, 3279 .direct_IO = ext4_direct_IO, 3280 .migratepage = buffer_migrate_page, 3281 .is_partially_uptodate = block_is_partially_uptodate, 3282 .error_remove_page = generic_error_remove_page, 3283 }; 3284 3285 void ext4_set_aops(struct inode *inode) 3286 { 3287 switch (ext4_inode_journal_mode(inode)) { 3288 case EXT4_INODE_ORDERED_DATA_MODE: 3289 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3290 break; 3291 case EXT4_INODE_WRITEBACK_DATA_MODE: 3292 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3293 break; 3294 case EXT4_INODE_JOURNAL_DATA_MODE: 3295 inode->i_mapping->a_ops = &ext4_journalled_aops; 3296 return; 3297 default: 3298 BUG(); 3299 } 3300 if (test_opt(inode->i_sb, DELALLOC)) 3301 inode->i_mapping->a_ops = &ext4_da_aops; 3302 else 3303 inode->i_mapping->a_ops = &ext4_aops; 3304 } 3305 3306 /* 3307 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3308 * up to the end of the block which corresponds to `from'. 3309 * This required during truncate. We need to physically zero the tail end 3310 * of that block so it doesn't yield old data if the file is later grown. 3311 */ 3312 int ext4_block_truncate_page(handle_t *handle, 3313 struct address_space *mapping, loff_t from) 3314 { 3315 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3316 unsigned length; 3317 unsigned blocksize; 3318 struct inode *inode = mapping->host; 3319 3320 blocksize = inode->i_sb->s_blocksize; 3321 length = blocksize - (offset & (blocksize - 1)); 3322 3323 return ext4_block_zero_page_range(handle, mapping, from, length); 3324 } 3325 3326 /* 3327 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3328 * starting from file offset 'from'. The range to be zero'd must 3329 * be contained with in one block. If the specified range exceeds 3330 * the end of the block it will be shortened to end of the block 3331 * that cooresponds to 'from' 3332 */ 3333 int ext4_block_zero_page_range(handle_t *handle, 3334 struct address_space *mapping, loff_t from, loff_t length) 3335 { 3336 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3337 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3338 unsigned blocksize, max, pos; 3339 ext4_lblk_t iblock; 3340 struct inode *inode = mapping->host; 3341 struct buffer_head *bh; 3342 struct page *page; 3343 int err = 0; 3344 3345 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 3346 mapping_gfp_mask(mapping) & ~__GFP_FS); 3347 if (!page) 3348 return -ENOMEM; 3349 3350 blocksize = inode->i_sb->s_blocksize; 3351 max = blocksize - (offset & (blocksize - 1)); 3352 3353 /* 3354 * correct length if it does not fall between 3355 * 'from' and the end of the block 3356 */ 3357 if (length > max || length < 0) 3358 length = max; 3359 3360 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3361 3362 if (!page_has_buffers(page)) 3363 create_empty_buffers(page, blocksize, 0); 3364 3365 /* Find the buffer that contains "offset" */ 3366 bh = page_buffers(page); 3367 pos = blocksize; 3368 while (offset >= pos) { 3369 bh = bh->b_this_page; 3370 iblock++; 3371 pos += blocksize; 3372 } 3373 if (buffer_freed(bh)) { 3374 BUFFER_TRACE(bh, "freed: skip"); 3375 goto unlock; 3376 } 3377 if (!buffer_mapped(bh)) { 3378 BUFFER_TRACE(bh, "unmapped"); 3379 ext4_get_block(inode, iblock, bh, 0); 3380 /* unmapped? It's a hole - nothing to do */ 3381 if (!buffer_mapped(bh)) { 3382 BUFFER_TRACE(bh, "still unmapped"); 3383 goto unlock; 3384 } 3385 } 3386 3387 /* Ok, it's mapped. Make sure it's up-to-date */ 3388 if (PageUptodate(page)) 3389 set_buffer_uptodate(bh); 3390 3391 if (!buffer_uptodate(bh)) { 3392 err = -EIO; 3393 ll_rw_block(READ, 1, &bh); 3394 wait_on_buffer(bh); 3395 /* Uhhuh. Read error. Complain and punt. */ 3396 if (!buffer_uptodate(bh)) 3397 goto unlock; 3398 } 3399 if (ext4_should_journal_data(inode)) { 3400 BUFFER_TRACE(bh, "get write access"); 3401 err = ext4_journal_get_write_access(handle, bh); 3402 if (err) 3403 goto unlock; 3404 } 3405 zero_user(page, offset, length); 3406 BUFFER_TRACE(bh, "zeroed end of block"); 3407 3408 if (ext4_should_journal_data(inode)) { 3409 err = ext4_handle_dirty_metadata(handle, inode, bh); 3410 } else { 3411 err = 0; 3412 mark_buffer_dirty(bh); 3413 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) 3414 err = ext4_jbd2_file_inode(handle, inode); 3415 } 3416 3417 unlock: 3418 unlock_page(page); 3419 page_cache_release(page); 3420 return err; 3421 } 3422 3423 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3424 loff_t lstart, loff_t length) 3425 { 3426 struct super_block *sb = inode->i_sb; 3427 struct address_space *mapping = inode->i_mapping; 3428 unsigned partial_start, partial_end; 3429 ext4_fsblk_t start, end; 3430 loff_t byte_end = (lstart + length - 1); 3431 int err = 0; 3432 3433 partial_start = lstart & (sb->s_blocksize - 1); 3434 partial_end = byte_end & (sb->s_blocksize - 1); 3435 3436 start = lstart >> sb->s_blocksize_bits; 3437 end = byte_end >> sb->s_blocksize_bits; 3438 3439 /* Handle partial zero within the single block */ 3440 if (start == end && 3441 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3442 err = ext4_block_zero_page_range(handle, mapping, 3443 lstart, length); 3444 return err; 3445 } 3446 /* Handle partial zero out on the start of the range */ 3447 if (partial_start) { 3448 err = ext4_block_zero_page_range(handle, mapping, 3449 lstart, sb->s_blocksize); 3450 if (err) 3451 return err; 3452 } 3453 /* Handle partial zero out on the end of the range */ 3454 if (partial_end != sb->s_blocksize - 1) 3455 err = ext4_block_zero_page_range(handle, mapping, 3456 byte_end - partial_end, 3457 partial_end + 1); 3458 return err; 3459 } 3460 3461 int ext4_can_truncate(struct inode *inode) 3462 { 3463 if (S_ISREG(inode->i_mode)) 3464 return 1; 3465 if (S_ISDIR(inode->i_mode)) 3466 return 1; 3467 if (S_ISLNK(inode->i_mode)) 3468 return !ext4_inode_is_fast_symlink(inode); 3469 return 0; 3470 } 3471 3472 /* 3473 * ext4_punch_hole: punches a hole in a file by releaseing the blocks 3474 * associated with the given offset and length 3475 * 3476 * @inode: File inode 3477 * @offset: The offset where the hole will begin 3478 * @len: The length of the hole 3479 * 3480 * Returns: 0 on success or negative on failure 3481 */ 3482 3483 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 3484 { 3485 struct super_block *sb = inode->i_sb; 3486 ext4_lblk_t first_block, stop_block; 3487 struct address_space *mapping = inode->i_mapping; 3488 loff_t first_block_offset, last_block_offset; 3489 handle_t *handle; 3490 unsigned int credits; 3491 int ret = 0; 3492 3493 if (!S_ISREG(inode->i_mode)) 3494 return -EOPNOTSUPP; 3495 3496 if (EXT4_SB(sb)->s_cluster_ratio > 1) { 3497 /* TODO: Add support for bigalloc file systems */ 3498 return -EOPNOTSUPP; 3499 } 3500 3501 trace_ext4_punch_hole(inode, offset, length); 3502 3503 /* 3504 * Write out all dirty pages to avoid race conditions 3505 * Then release them. 3506 */ 3507 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 3508 ret = filemap_write_and_wait_range(mapping, offset, 3509 offset + length - 1); 3510 if (ret) 3511 return ret; 3512 } 3513 3514 mutex_lock(&inode->i_mutex); 3515 /* It's not possible punch hole on append only file */ 3516 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 3517 ret = -EPERM; 3518 goto out_mutex; 3519 } 3520 if (IS_SWAPFILE(inode)) { 3521 ret = -ETXTBSY; 3522 goto out_mutex; 3523 } 3524 3525 /* No need to punch hole beyond i_size */ 3526 if (offset >= inode->i_size) 3527 goto out_mutex; 3528 3529 /* 3530 * If the hole extends beyond i_size, set the hole 3531 * to end after the page that contains i_size 3532 */ 3533 if (offset + length > inode->i_size) { 3534 length = inode->i_size + 3535 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) - 3536 offset; 3537 } 3538 3539 first_block_offset = round_up(offset, sb->s_blocksize); 3540 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 3541 3542 /* Now release the pages and zero block aligned part of pages*/ 3543 if (last_block_offset > first_block_offset) 3544 truncate_pagecache_range(inode, first_block_offset, 3545 last_block_offset); 3546 3547 /* Wait all existing dio workers, newcomers will block on i_mutex */ 3548 ext4_inode_block_unlocked_dio(inode); 3549 inode_dio_wait(inode); 3550 3551 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3552 credits = ext4_writepage_trans_blocks(inode); 3553 else 3554 credits = ext4_blocks_for_truncate(inode); 3555 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3556 if (IS_ERR(handle)) { 3557 ret = PTR_ERR(handle); 3558 ext4_std_error(sb, ret); 3559 goto out_dio; 3560 } 3561 3562 ret = ext4_zero_partial_blocks(handle, inode, offset, 3563 length); 3564 if (ret) 3565 goto out_stop; 3566 3567 first_block = (offset + sb->s_blocksize - 1) >> 3568 EXT4_BLOCK_SIZE_BITS(sb); 3569 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 3570 3571 /* If there are no blocks to remove, return now */ 3572 if (first_block >= stop_block) 3573 goto out_stop; 3574 3575 down_write(&EXT4_I(inode)->i_data_sem); 3576 ext4_discard_preallocations(inode); 3577 3578 ret = ext4_es_remove_extent(inode, first_block, 3579 stop_block - first_block); 3580 if (ret) { 3581 up_write(&EXT4_I(inode)->i_data_sem); 3582 goto out_stop; 3583 } 3584 3585 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3586 ret = ext4_ext_remove_space(inode, first_block, 3587 stop_block - 1); 3588 else 3589 ret = ext4_free_hole_blocks(handle, inode, first_block, 3590 stop_block); 3591 3592 ext4_discard_preallocations(inode); 3593 up_write(&EXT4_I(inode)->i_data_sem); 3594 if (IS_SYNC(inode)) 3595 ext4_handle_sync(handle); 3596 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3597 ext4_mark_inode_dirty(handle, inode); 3598 out_stop: 3599 ext4_journal_stop(handle); 3600 out_dio: 3601 ext4_inode_resume_unlocked_dio(inode); 3602 out_mutex: 3603 mutex_unlock(&inode->i_mutex); 3604 return ret; 3605 } 3606 3607 /* 3608 * ext4_truncate() 3609 * 3610 * We block out ext4_get_block() block instantiations across the entire 3611 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 3612 * simultaneously on behalf of the same inode. 3613 * 3614 * As we work through the truncate and commit bits of it to the journal there 3615 * is one core, guiding principle: the file's tree must always be consistent on 3616 * disk. We must be able to restart the truncate after a crash. 3617 * 3618 * The file's tree may be transiently inconsistent in memory (although it 3619 * probably isn't), but whenever we close off and commit a journal transaction, 3620 * the contents of (the filesystem + the journal) must be consistent and 3621 * restartable. It's pretty simple, really: bottom up, right to left (although 3622 * left-to-right works OK too). 3623 * 3624 * Note that at recovery time, journal replay occurs *before* the restart of 3625 * truncate against the orphan inode list. 3626 * 3627 * The committed inode has the new, desired i_size (which is the same as 3628 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 3629 * that this inode's truncate did not complete and it will again call 3630 * ext4_truncate() to have another go. So there will be instantiated blocks 3631 * to the right of the truncation point in a crashed ext4 filesystem. But 3632 * that's fine - as long as they are linked from the inode, the post-crash 3633 * ext4_truncate() run will find them and release them. 3634 */ 3635 void ext4_truncate(struct inode *inode) 3636 { 3637 struct ext4_inode_info *ei = EXT4_I(inode); 3638 unsigned int credits; 3639 handle_t *handle; 3640 struct address_space *mapping = inode->i_mapping; 3641 3642 /* 3643 * There is a possibility that we're either freeing the inode 3644 * or it completely new indode. In those cases we might not 3645 * have i_mutex locked because it's not necessary. 3646 */ 3647 if (!(inode->i_state & (I_NEW|I_FREEING))) 3648 WARN_ON(!mutex_is_locked(&inode->i_mutex)); 3649 trace_ext4_truncate_enter(inode); 3650 3651 if (!ext4_can_truncate(inode)) 3652 return; 3653 3654 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3655 3656 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 3657 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 3658 3659 if (ext4_has_inline_data(inode)) { 3660 int has_inline = 1; 3661 3662 ext4_inline_data_truncate(inode, &has_inline); 3663 if (has_inline) 3664 return; 3665 } 3666 3667 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3668 credits = ext4_writepage_trans_blocks(inode); 3669 else 3670 credits = ext4_blocks_for_truncate(inode); 3671 3672 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3673 if (IS_ERR(handle)) { 3674 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 3675 return; 3676 } 3677 3678 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 3679 ext4_block_truncate_page(handle, mapping, inode->i_size); 3680 3681 /* 3682 * We add the inode to the orphan list, so that if this 3683 * truncate spans multiple transactions, and we crash, we will 3684 * resume the truncate when the filesystem recovers. It also 3685 * marks the inode dirty, to catch the new size. 3686 * 3687 * Implication: the file must always be in a sane, consistent 3688 * truncatable state while each transaction commits. 3689 */ 3690 if (ext4_orphan_add(handle, inode)) 3691 goto out_stop; 3692 3693 down_write(&EXT4_I(inode)->i_data_sem); 3694 3695 ext4_discard_preallocations(inode); 3696 3697 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3698 ext4_ext_truncate(handle, inode); 3699 else 3700 ext4_ind_truncate(handle, inode); 3701 3702 up_write(&ei->i_data_sem); 3703 3704 if (IS_SYNC(inode)) 3705 ext4_handle_sync(handle); 3706 3707 out_stop: 3708 /* 3709 * If this was a simple ftruncate() and the file will remain alive, 3710 * then we need to clear up the orphan record which we created above. 3711 * However, if this was a real unlink then we were called by 3712 * ext4_delete_inode(), and we allow that function to clean up the 3713 * orphan info for us. 3714 */ 3715 if (inode->i_nlink) 3716 ext4_orphan_del(handle, inode); 3717 3718 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3719 ext4_mark_inode_dirty(handle, inode); 3720 ext4_journal_stop(handle); 3721 3722 trace_ext4_truncate_exit(inode); 3723 } 3724 3725 /* 3726 * ext4_get_inode_loc returns with an extra refcount against the inode's 3727 * underlying buffer_head on success. If 'in_mem' is true, we have all 3728 * data in memory that is needed to recreate the on-disk version of this 3729 * inode. 3730 */ 3731 static int __ext4_get_inode_loc(struct inode *inode, 3732 struct ext4_iloc *iloc, int in_mem) 3733 { 3734 struct ext4_group_desc *gdp; 3735 struct buffer_head *bh; 3736 struct super_block *sb = inode->i_sb; 3737 ext4_fsblk_t block; 3738 int inodes_per_block, inode_offset; 3739 3740 iloc->bh = NULL; 3741 if (!ext4_valid_inum(sb, inode->i_ino)) 3742 return -EIO; 3743 3744 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 3745 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 3746 if (!gdp) 3747 return -EIO; 3748 3749 /* 3750 * Figure out the offset within the block group inode table 3751 */ 3752 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 3753 inode_offset = ((inode->i_ino - 1) % 3754 EXT4_INODES_PER_GROUP(sb)); 3755 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 3756 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 3757 3758 bh = sb_getblk(sb, block); 3759 if (unlikely(!bh)) 3760 return -ENOMEM; 3761 if (!buffer_uptodate(bh)) { 3762 lock_buffer(bh); 3763 3764 /* 3765 * If the buffer has the write error flag, we have failed 3766 * to write out another inode in the same block. In this 3767 * case, we don't have to read the block because we may 3768 * read the old inode data successfully. 3769 */ 3770 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 3771 set_buffer_uptodate(bh); 3772 3773 if (buffer_uptodate(bh)) { 3774 /* someone brought it uptodate while we waited */ 3775 unlock_buffer(bh); 3776 goto has_buffer; 3777 } 3778 3779 /* 3780 * If we have all information of the inode in memory and this 3781 * is the only valid inode in the block, we need not read the 3782 * block. 3783 */ 3784 if (in_mem) { 3785 struct buffer_head *bitmap_bh; 3786 int i, start; 3787 3788 start = inode_offset & ~(inodes_per_block - 1); 3789 3790 /* Is the inode bitmap in cache? */ 3791 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 3792 if (unlikely(!bitmap_bh)) 3793 goto make_io; 3794 3795 /* 3796 * If the inode bitmap isn't in cache then the 3797 * optimisation may end up performing two reads instead 3798 * of one, so skip it. 3799 */ 3800 if (!buffer_uptodate(bitmap_bh)) { 3801 brelse(bitmap_bh); 3802 goto make_io; 3803 } 3804 for (i = start; i < start + inodes_per_block; i++) { 3805 if (i == inode_offset) 3806 continue; 3807 if (ext4_test_bit(i, bitmap_bh->b_data)) 3808 break; 3809 } 3810 brelse(bitmap_bh); 3811 if (i == start + inodes_per_block) { 3812 /* all other inodes are free, so skip I/O */ 3813 memset(bh->b_data, 0, bh->b_size); 3814 set_buffer_uptodate(bh); 3815 unlock_buffer(bh); 3816 goto has_buffer; 3817 } 3818 } 3819 3820 make_io: 3821 /* 3822 * If we need to do any I/O, try to pre-readahead extra 3823 * blocks from the inode table. 3824 */ 3825 if (EXT4_SB(sb)->s_inode_readahead_blks) { 3826 ext4_fsblk_t b, end, table; 3827 unsigned num; 3828 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 3829 3830 table = ext4_inode_table(sb, gdp); 3831 /* s_inode_readahead_blks is always a power of 2 */ 3832 b = block & ~((ext4_fsblk_t) ra_blks - 1); 3833 if (table > b) 3834 b = table; 3835 end = b + ra_blks; 3836 num = EXT4_INODES_PER_GROUP(sb); 3837 if (ext4_has_group_desc_csum(sb)) 3838 num -= ext4_itable_unused_count(sb, gdp); 3839 table += num / inodes_per_block; 3840 if (end > table) 3841 end = table; 3842 while (b <= end) 3843 sb_breadahead(sb, b++); 3844 } 3845 3846 /* 3847 * There are other valid inodes in the buffer, this inode 3848 * has in-inode xattrs, or we don't have this inode in memory. 3849 * Read the block from disk. 3850 */ 3851 trace_ext4_load_inode(inode); 3852 get_bh(bh); 3853 bh->b_end_io = end_buffer_read_sync; 3854 submit_bh(READ | REQ_META | REQ_PRIO, bh); 3855 wait_on_buffer(bh); 3856 if (!buffer_uptodate(bh)) { 3857 EXT4_ERROR_INODE_BLOCK(inode, block, 3858 "unable to read itable block"); 3859 brelse(bh); 3860 return -EIO; 3861 } 3862 } 3863 has_buffer: 3864 iloc->bh = bh; 3865 return 0; 3866 } 3867 3868 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 3869 { 3870 /* We have all inode data except xattrs in memory here. */ 3871 return __ext4_get_inode_loc(inode, iloc, 3872 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 3873 } 3874 3875 void ext4_set_inode_flags(struct inode *inode) 3876 { 3877 unsigned int flags = EXT4_I(inode)->i_flags; 3878 3879 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 3880 if (flags & EXT4_SYNC_FL) 3881 inode->i_flags |= S_SYNC; 3882 if (flags & EXT4_APPEND_FL) 3883 inode->i_flags |= S_APPEND; 3884 if (flags & EXT4_IMMUTABLE_FL) 3885 inode->i_flags |= S_IMMUTABLE; 3886 if (flags & EXT4_NOATIME_FL) 3887 inode->i_flags |= S_NOATIME; 3888 if (flags & EXT4_DIRSYNC_FL) 3889 inode->i_flags |= S_DIRSYNC; 3890 } 3891 3892 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 3893 void ext4_get_inode_flags(struct ext4_inode_info *ei) 3894 { 3895 unsigned int vfs_fl; 3896 unsigned long old_fl, new_fl; 3897 3898 do { 3899 vfs_fl = ei->vfs_inode.i_flags; 3900 old_fl = ei->i_flags; 3901 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 3902 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL| 3903 EXT4_DIRSYNC_FL); 3904 if (vfs_fl & S_SYNC) 3905 new_fl |= EXT4_SYNC_FL; 3906 if (vfs_fl & S_APPEND) 3907 new_fl |= EXT4_APPEND_FL; 3908 if (vfs_fl & S_IMMUTABLE) 3909 new_fl |= EXT4_IMMUTABLE_FL; 3910 if (vfs_fl & S_NOATIME) 3911 new_fl |= EXT4_NOATIME_FL; 3912 if (vfs_fl & S_DIRSYNC) 3913 new_fl |= EXT4_DIRSYNC_FL; 3914 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl); 3915 } 3916 3917 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 3918 struct ext4_inode_info *ei) 3919 { 3920 blkcnt_t i_blocks ; 3921 struct inode *inode = &(ei->vfs_inode); 3922 struct super_block *sb = inode->i_sb; 3923 3924 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3925 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 3926 /* we are using combined 48 bit field */ 3927 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 3928 le32_to_cpu(raw_inode->i_blocks_lo); 3929 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 3930 /* i_blocks represent file system block size */ 3931 return i_blocks << (inode->i_blkbits - 9); 3932 } else { 3933 return i_blocks; 3934 } 3935 } else { 3936 return le32_to_cpu(raw_inode->i_blocks_lo); 3937 } 3938 } 3939 3940 static inline void ext4_iget_extra_inode(struct inode *inode, 3941 struct ext4_inode *raw_inode, 3942 struct ext4_inode_info *ei) 3943 { 3944 __le32 *magic = (void *)raw_inode + 3945 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 3946 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 3947 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 3948 ext4_find_inline_data_nolock(inode); 3949 } else 3950 EXT4_I(inode)->i_inline_off = 0; 3951 } 3952 3953 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 3954 { 3955 struct ext4_iloc iloc; 3956 struct ext4_inode *raw_inode; 3957 struct ext4_inode_info *ei; 3958 struct inode *inode; 3959 journal_t *journal = EXT4_SB(sb)->s_journal; 3960 long ret; 3961 int block; 3962 uid_t i_uid; 3963 gid_t i_gid; 3964 3965 inode = iget_locked(sb, ino); 3966 if (!inode) 3967 return ERR_PTR(-ENOMEM); 3968 if (!(inode->i_state & I_NEW)) 3969 return inode; 3970 3971 ei = EXT4_I(inode); 3972 iloc.bh = NULL; 3973 3974 ret = __ext4_get_inode_loc(inode, &iloc, 0); 3975 if (ret < 0) 3976 goto bad_inode; 3977 raw_inode = ext4_raw_inode(&iloc); 3978 3979 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 3980 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 3981 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 3982 EXT4_INODE_SIZE(inode->i_sb)) { 3983 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)", 3984 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize, 3985 EXT4_INODE_SIZE(inode->i_sb)); 3986 ret = -EIO; 3987 goto bad_inode; 3988 } 3989 } else 3990 ei->i_extra_isize = 0; 3991 3992 /* Precompute checksum seed for inode metadata */ 3993 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3994 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 3995 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3996 __u32 csum; 3997 __le32 inum = cpu_to_le32(inode->i_ino); 3998 __le32 gen = raw_inode->i_generation; 3999 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4000 sizeof(inum)); 4001 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4002 sizeof(gen)); 4003 } 4004 4005 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 4006 EXT4_ERROR_INODE(inode, "checksum invalid"); 4007 ret = -EIO; 4008 goto bad_inode; 4009 } 4010 4011 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4012 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4013 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4014 if (!(test_opt(inode->i_sb, NO_UID32))) { 4015 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4016 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4017 } 4018 i_uid_write(inode, i_uid); 4019 i_gid_write(inode, i_gid); 4020 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4021 4022 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4023 ei->i_inline_off = 0; 4024 ei->i_dir_start_lookup = 0; 4025 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4026 /* We now have enough fields to check if the inode was active or not. 4027 * This is needed because nfsd might try to access dead inodes 4028 * the test is that same one that e2fsck uses 4029 * NeilBrown 1999oct15 4030 */ 4031 if (inode->i_nlink == 0) { 4032 if ((inode->i_mode == 0 || 4033 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4034 ino != EXT4_BOOT_LOADER_INO) { 4035 /* this inode is deleted */ 4036 ret = -ESTALE; 4037 goto bad_inode; 4038 } 4039 /* The only unlinked inodes we let through here have 4040 * valid i_mode and are being read by the orphan 4041 * recovery code: that's fine, we're about to complete 4042 * the process of deleting those. 4043 * OR it is the EXT4_BOOT_LOADER_INO which is 4044 * not initialized on a new filesystem. */ 4045 } 4046 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4047 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4048 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4049 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) 4050 ei->i_file_acl |= 4051 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4052 inode->i_size = ext4_isize(raw_inode); 4053 ei->i_disksize = inode->i_size; 4054 #ifdef CONFIG_QUOTA 4055 ei->i_reserved_quota = 0; 4056 #endif 4057 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4058 ei->i_block_group = iloc.block_group; 4059 ei->i_last_alloc_group = ~0; 4060 /* 4061 * NOTE! The in-memory inode i_data array is in little-endian order 4062 * even on big-endian machines: we do NOT byteswap the block numbers! 4063 */ 4064 for (block = 0; block < EXT4_N_BLOCKS; block++) 4065 ei->i_data[block] = raw_inode->i_block[block]; 4066 INIT_LIST_HEAD(&ei->i_orphan); 4067 4068 /* 4069 * Set transaction id's of transactions that have to be committed 4070 * to finish f[data]sync. We set them to currently running transaction 4071 * as we cannot be sure that the inode or some of its metadata isn't 4072 * part of the transaction - the inode could have been reclaimed and 4073 * now it is reread from disk. 4074 */ 4075 if (journal) { 4076 transaction_t *transaction; 4077 tid_t tid; 4078 4079 read_lock(&journal->j_state_lock); 4080 if (journal->j_running_transaction) 4081 transaction = journal->j_running_transaction; 4082 else 4083 transaction = journal->j_committing_transaction; 4084 if (transaction) 4085 tid = transaction->t_tid; 4086 else 4087 tid = journal->j_commit_sequence; 4088 read_unlock(&journal->j_state_lock); 4089 ei->i_sync_tid = tid; 4090 ei->i_datasync_tid = tid; 4091 } 4092 4093 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4094 if (ei->i_extra_isize == 0) { 4095 /* The extra space is currently unused. Use it. */ 4096 ei->i_extra_isize = sizeof(struct ext4_inode) - 4097 EXT4_GOOD_OLD_INODE_SIZE; 4098 } else { 4099 ext4_iget_extra_inode(inode, raw_inode, ei); 4100 } 4101 } 4102 4103 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4104 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4105 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4106 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4107 4108 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4109 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4110 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4111 inode->i_version |= 4112 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4113 } 4114 4115 ret = 0; 4116 if (ei->i_file_acl && 4117 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 4118 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 4119 ei->i_file_acl); 4120 ret = -EIO; 4121 goto bad_inode; 4122 } else if (!ext4_has_inline_data(inode)) { 4123 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 4124 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4125 (S_ISLNK(inode->i_mode) && 4126 !ext4_inode_is_fast_symlink(inode)))) 4127 /* Validate extent which is part of inode */ 4128 ret = ext4_ext_check_inode(inode); 4129 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4130 (S_ISLNK(inode->i_mode) && 4131 !ext4_inode_is_fast_symlink(inode))) { 4132 /* Validate block references which are part of inode */ 4133 ret = ext4_ind_check_inode(inode); 4134 } 4135 } 4136 if (ret) 4137 goto bad_inode; 4138 4139 if (S_ISREG(inode->i_mode)) { 4140 inode->i_op = &ext4_file_inode_operations; 4141 inode->i_fop = &ext4_file_operations; 4142 ext4_set_aops(inode); 4143 } else if (S_ISDIR(inode->i_mode)) { 4144 inode->i_op = &ext4_dir_inode_operations; 4145 inode->i_fop = &ext4_dir_operations; 4146 } else if (S_ISLNK(inode->i_mode)) { 4147 if (ext4_inode_is_fast_symlink(inode)) { 4148 inode->i_op = &ext4_fast_symlink_inode_operations; 4149 nd_terminate_link(ei->i_data, inode->i_size, 4150 sizeof(ei->i_data) - 1); 4151 } else { 4152 inode->i_op = &ext4_symlink_inode_operations; 4153 ext4_set_aops(inode); 4154 } 4155 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4156 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4157 inode->i_op = &ext4_special_inode_operations; 4158 if (raw_inode->i_block[0]) 4159 init_special_inode(inode, inode->i_mode, 4160 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4161 else 4162 init_special_inode(inode, inode->i_mode, 4163 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4164 } else if (ino == EXT4_BOOT_LOADER_INO) { 4165 make_bad_inode(inode); 4166 } else { 4167 ret = -EIO; 4168 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 4169 goto bad_inode; 4170 } 4171 brelse(iloc.bh); 4172 ext4_set_inode_flags(inode); 4173 unlock_new_inode(inode); 4174 return inode; 4175 4176 bad_inode: 4177 brelse(iloc.bh); 4178 iget_failed(inode); 4179 return ERR_PTR(ret); 4180 } 4181 4182 static int ext4_inode_blocks_set(handle_t *handle, 4183 struct ext4_inode *raw_inode, 4184 struct ext4_inode_info *ei) 4185 { 4186 struct inode *inode = &(ei->vfs_inode); 4187 u64 i_blocks = inode->i_blocks; 4188 struct super_block *sb = inode->i_sb; 4189 4190 if (i_blocks <= ~0U) { 4191 /* 4192 * i_blocks can be represented in a 32 bit variable 4193 * as multiple of 512 bytes 4194 */ 4195 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4196 raw_inode->i_blocks_high = 0; 4197 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4198 return 0; 4199 } 4200 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) 4201 return -EFBIG; 4202 4203 if (i_blocks <= 0xffffffffffffULL) { 4204 /* 4205 * i_blocks can be represented in a 48 bit variable 4206 * as multiple of 512 bytes 4207 */ 4208 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4209 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4210 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4211 } else { 4212 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4213 /* i_block is stored in file system block size */ 4214 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4215 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4216 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4217 } 4218 return 0; 4219 } 4220 4221 /* 4222 * Post the struct inode info into an on-disk inode location in the 4223 * buffer-cache. This gobbles the caller's reference to the 4224 * buffer_head in the inode location struct. 4225 * 4226 * The caller must have write access to iloc->bh. 4227 */ 4228 static int ext4_do_update_inode(handle_t *handle, 4229 struct inode *inode, 4230 struct ext4_iloc *iloc) 4231 { 4232 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4233 struct ext4_inode_info *ei = EXT4_I(inode); 4234 struct buffer_head *bh = iloc->bh; 4235 int err = 0, rc, block; 4236 int need_datasync = 0; 4237 uid_t i_uid; 4238 gid_t i_gid; 4239 4240 /* For fields not not tracking in the in-memory inode, 4241 * initialise them to zero for new inodes. */ 4242 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4243 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4244 4245 ext4_get_inode_flags(ei); 4246 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4247 i_uid = i_uid_read(inode); 4248 i_gid = i_gid_read(inode); 4249 if (!(test_opt(inode->i_sb, NO_UID32))) { 4250 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4251 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4252 /* 4253 * Fix up interoperability with old kernels. Otherwise, old inodes get 4254 * re-used with the upper 16 bits of the uid/gid intact 4255 */ 4256 if (!ei->i_dtime) { 4257 raw_inode->i_uid_high = 4258 cpu_to_le16(high_16_bits(i_uid)); 4259 raw_inode->i_gid_high = 4260 cpu_to_le16(high_16_bits(i_gid)); 4261 } else { 4262 raw_inode->i_uid_high = 0; 4263 raw_inode->i_gid_high = 0; 4264 } 4265 } else { 4266 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4267 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4268 raw_inode->i_uid_high = 0; 4269 raw_inode->i_gid_high = 0; 4270 } 4271 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4272 4273 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4274 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4275 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4276 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4277 4278 if (ext4_inode_blocks_set(handle, raw_inode, ei)) 4279 goto out_brelse; 4280 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4281 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4282 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 4283 cpu_to_le32(EXT4_OS_HURD)) 4284 raw_inode->i_file_acl_high = 4285 cpu_to_le16(ei->i_file_acl >> 32); 4286 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4287 if (ei->i_disksize != ext4_isize(raw_inode)) { 4288 ext4_isize_set(raw_inode, ei->i_disksize); 4289 need_datasync = 1; 4290 } 4291 if (ei->i_disksize > 0x7fffffffULL) { 4292 struct super_block *sb = inode->i_sb; 4293 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 4294 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 4295 EXT4_SB(sb)->s_es->s_rev_level == 4296 cpu_to_le32(EXT4_GOOD_OLD_REV)) { 4297 /* If this is the first large file 4298 * created, add a flag to the superblock. 4299 */ 4300 err = ext4_journal_get_write_access(handle, 4301 EXT4_SB(sb)->s_sbh); 4302 if (err) 4303 goto out_brelse; 4304 ext4_update_dynamic_rev(sb); 4305 EXT4_SET_RO_COMPAT_FEATURE(sb, 4306 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 4307 ext4_handle_sync(handle); 4308 err = ext4_handle_dirty_super(handle, sb); 4309 } 4310 } 4311 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4312 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4313 if (old_valid_dev(inode->i_rdev)) { 4314 raw_inode->i_block[0] = 4315 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4316 raw_inode->i_block[1] = 0; 4317 } else { 4318 raw_inode->i_block[0] = 0; 4319 raw_inode->i_block[1] = 4320 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4321 raw_inode->i_block[2] = 0; 4322 } 4323 } else if (!ext4_has_inline_data(inode)) { 4324 for (block = 0; block < EXT4_N_BLOCKS; block++) 4325 raw_inode->i_block[block] = ei->i_data[block]; 4326 } 4327 4328 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 4329 if (ei->i_extra_isize) { 4330 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4331 raw_inode->i_version_hi = 4332 cpu_to_le32(inode->i_version >> 32); 4333 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); 4334 } 4335 4336 ext4_inode_csum_set(inode, raw_inode, ei); 4337 4338 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4339 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 4340 if (!err) 4341 err = rc; 4342 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 4343 4344 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 4345 out_brelse: 4346 brelse(bh); 4347 ext4_std_error(inode->i_sb, err); 4348 return err; 4349 } 4350 4351 /* 4352 * ext4_write_inode() 4353 * 4354 * We are called from a few places: 4355 * 4356 * - Within generic_file_write() for O_SYNC files. 4357 * Here, there will be no transaction running. We wait for any running 4358 * transaction to commit. 4359 * 4360 * - Within sys_sync(), kupdate and such. 4361 * We wait on commit, if tol to. 4362 * 4363 * - Within prune_icache() (PF_MEMALLOC == true) 4364 * Here we simply return. We can't afford to block kswapd on the 4365 * journal commit. 4366 * 4367 * In all cases it is actually safe for us to return without doing anything, 4368 * because the inode has been copied into a raw inode buffer in 4369 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for 4370 * knfsd. 4371 * 4372 * Note that we are absolutely dependent upon all inode dirtiers doing the 4373 * right thing: they *must* call mark_inode_dirty() after dirtying info in 4374 * which we are interested. 4375 * 4376 * It would be a bug for them to not do this. The code: 4377 * 4378 * mark_inode_dirty(inode) 4379 * stuff(); 4380 * inode->i_size = expr; 4381 * 4382 * is in error because a kswapd-driven write_inode() could occur while 4383 * `stuff()' is running, and the new i_size will be lost. Plus the inode 4384 * will no longer be on the superblock's dirty inode list. 4385 */ 4386 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 4387 { 4388 int err; 4389 4390 if (current->flags & PF_MEMALLOC) 4391 return 0; 4392 4393 if (EXT4_SB(inode->i_sb)->s_journal) { 4394 if (ext4_journal_current_handle()) { 4395 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 4396 dump_stack(); 4397 return -EIO; 4398 } 4399 4400 if (wbc->sync_mode != WB_SYNC_ALL) 4401 return 0; 4402 4403 err = ext4_force_commit(inode->i_sb); 4404 } else { 4405 struct ext4_iloc iloc; 4406 4407 err = __ext4_get_inode_loc(inode, &iloc, 0); 4408 if (err) 4409 return err; 4410 if (wbc->sync_mode == WB_SYNC_ALL) 4411 sync_dirty_buffer(iloc.bh); 4412 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 4413 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 4414 "IO error syncing inode"); 4415 err = -EIO; 4416 } 4417 brelse(iloc.bh); 4418 } 4419 return err; 4420 } 4421 4422 /* 4423 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 4424 * buffers that are attached to a page stradding i_size and are undergoing 4425 * commit. In that case we have to wait for commit to finish and try again. 4426 */ 4427 static void ext4_wait_for_tail_page_commit(struct inode *inode) 4428 { 4429 struct page *page; 4430 unsigned offset; 4431 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 4432 tid_t commit_tid = 0; 4433 int ret; 4434 4435 offset = inode->i_size & (PAGE_CACHE_SIZE - 1); 4436 /* 4437 * All buffers in the last page remain valid? Then there's nothing to 4438 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE == 4439 * blocksize case 4440 */ 4441 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits)) 4442 return; 4443 while (1) { 4444 page = find_lock_page(inode->i_mapping, 4445 inode->i_size >> PAGE_CACHE_SHIFT); 4446 if (!page) 4447 return; 4448 ret = __ext4_journalled_invalidatepage(page, offset, 4449 PAGE_CACHE_SIZE - offset); 4450 unlock_page(page); 4451 page_cache_release(page); 4452 if (ret != -EBUSY) 4453 return; 4454 commit_tid = 0; 4455 read_lock(&journal->j_state_lock); 4456 if (journal->j_committing_transaction) 4457 commit_tid = journal->j_committing_transaction->t_tid; 4458 read_unlock(&journal->j_state_lock); 4459 if (commit_tid) 4460 jbd2_log_wait_commit(journal, commit_tid); 4461 } 4462 } 4463 4464 /* 4465 * ext4_setattr() 4466 * 4467 * Called from notify_change. 4468 * 4469 * We want to trap VFS attempts to truncate the file as soon as 4470 * possible. In particular, we want to make sure that when the VFS 4471 * shrinks i_size, we put the inode on the orphan list and modify 4472 * i_disksize immediately, so that during the subsequent flushing of 4473 * dirty pages and freeing of disk blocks, we can guarantee that any 4474 * commit will leave the blocks being flushed in an unused state on 4475 * disk. (On recovery, the inode will get truncated and the blocks will 4476 * be freed, so we have a strong guarantee that no future commit will 4477 * leave these blocks visible to the user.) 4478 * 4479 * Another thing we have to assure is that if we are in ordered mode 4480 * and inode is still attached to the committing transaction, we must 4481 * we start writeout of all the dirty pages which are being truncated. 4482 * This way we are sure that all the data written in the previous 4483 * transaction are already on disk (truncate waits for pages under 4484 * writeback). 4485 * 4486 * Called with inode->i_mutex down. 4487 */ 4488 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 4489 { 4490 struct inode *inode = dentry->d_inode; 4491 int error, rc = 0; 4492 int orphan = 0; 4493 const unsigned int ia_valid = attr->ia_valid; 4494 4495 error = inode_change_ok(inode, attr); 4496 if (error) 4497 return error; 4498 4499 if (is_quota_modification(inode, attr)) 4500 dquot_initialize(inode); 4501 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 4502 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 4503 handle_t *handle; 4504 4505 /* (user+group)*(old+new) structure, inode write (sb, 4506 * inode block, ? - but truncate inode update has it) */ 4507 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 4508 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 4509 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 4510 if (IS_ERR(handle)) { 4511 error = PTR_ERR(handle); 4512 goto err_out; 4513 } 4514 error = dquot_transfer(inode, attr); 4515 if (error) { 4516 ext4_journal_stop(handle); 4517 return error; 4518 } 4519 /* Update corresponding info in inode so that everything is in 4520 * one transaction */ 4521 if (attr->ia_valid & ATTR_UID) 4522 inode->i_uid = attr->ia_uid; 4523 if (attr->ia_valid & ATTR_GID) 4524 inode->i_gid = attr->ia_gid; 4525 error = ext4_mark_inode_dirty(handle, inode); 4526 ext4_journal_stop(handle); 4527 } 4528 4529 if (attr->ia_valid & ATTR_SIZE) { 4530 4531 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4532 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4533 4534 if (attr->ia_size > sbi->s_bitmap_maxbytes) 4535 return -EFBIG; 4536 } 4537 } 4538 4539 if (S_ISREG(inode->i_mode) && 4540 attr->ia_valid & ATTR_SIZE && 4541 (attr->ia_size < inode->i_size)) { 4542 handle_t *handle; 4543 4544 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 4545 if (IS_ERR(handle)) { 4546 error = PTR_ERR(handle); 4547 goto err_out; 4548 } 4549 if (ext4_handle_valid(handle)) { 4550 error = ext4_orphan_add(handle, inode); 4551 orphan = 1; 4552 } 4553 EXT4_I(inode)->i_disksize = attr->ia_size; 4554 rc = ext4_mark_inode_dirty(handle, inode); 4555 if (!error) 4556 error = rc; 4557 ext4_journal_stop(handle); 4558 4559 if (ext4_should_order_data(inode)) { 4560 error = ext4_begin_ordered_truncate(inode, 4561 attr->ia_size); 4562 if (error) { 4563 /* Do as much error cleanup as possible */ 4564 handle = ext4_journal_start(inode, 4565 EXT4_HT_INODE, 3); 4566 if (IS_ERR(handle)) { 4567 ext4_orphan_del(NULL, inode); 4568 goto err_out; 4569 } 4570 ext4_orphan_del(handle, inode); 4571 orphan = 0; 4572 ext4_journal_stop(handle); 4573 goto err_out; 4574 } 4575 } 4576 } 4577 4578 if (attr->ia_valid & ATTR_SIZE) { 4579 if (attr->ia_size != inode->i_size) { 4580 loff_t oldsize = inode->i_size; 4581 4582 i_size_write(inode, attr->ia_size); 4583 /* 4584 * Blocks are going to be removed from the inode. Wait 4585 * for dio in flight. Temporarily disable 4586 * dioread_nolock to prevent livelock. 4587 */ 4588 if (orphan) { 4589 if (!ext4_should_journal_data(inode)) { 4590 ext4_inode_block_unlocked_dio(inode); 4591 inode_dio_wait(inode); 4592 ext4_inode_resume_unlocked_dio(inode); 4593 } else 4594 ext4_wait_for_tail_page_commit(inode); 4595 } 4596 /* 4597 * Truncate pagecache after we've waited for commit 4598 * in data=journal mode to make pages freeable. 4599 */ 4600 truncate_pagecache(inode, oldsize, inode->i_size); 4601 } 4602 ext4_truncate(inode); 4603 } 4604 4605 if (!rc) { 4606 setattr_copy(inode, attr); 4607 mark_inode_dirty(inode); 4608 } 4609 4610 /* 4611 * If the call to ext4_truncate failed to get a transaction handle at 4612 * all, we need to clean up the in-core orphan list manually. 4613 */ 4614 if (orphan && inode->i_nlink) 4615 ext4_orphan_del(NULL, inode); 4616 4617 if (!rc && (ia_valid & ATTR_MODE)) 4618 rc = ext4_acl_chmod(inode); 4619 4620 err_out: 4621 ext4_std_error(inode->i_sb, error); 4622 if (!error) 4623 error = rc; 4624 return error; 4625 } 4626 4627 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 4628 struct kstat *stat) 4629 { 4630 struct inode *inode; 4631 unsigned long long delalloc_blocks; 4632 4633 inode = dentry->d_inode; 4634 generic_fillattr(inode, stat); 4635 4636 /* 4637 * We can't update i_blocks if the block allocation is delayed 4638 * otherwise in the case of system crash before the real block 4639 * allocation is done, we will have i_blocks inconsistent with 4640 * on-disk file blocks. 4641 * We always keep i_blocks updated together with real 4642 * allocation. But to not confuse with user, stat 4643 * will return the blocks that include the delayed allocation 4644 * blocks for this file. 4645 */ 4646 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 4647 EXT4_I(inode)->i_reserved_data_blocks); 4648 4649 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits-9); 4650 return 0; 4651 } 4652 4653 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 4654 int pextents) 4655 { 4656 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4657 return ext4_ind_trans_blocks(inode, lblocks); 4658 return ext4_ext_index_trans_blocks(inode, pextents); 4659 } 4660 4661 /* 4662 * Account for index blocks, block groups bitmaps and block group 4663 * descriptor blocks if modify datablocks and index blocks 4664 * worse case, the indexs blocks spread over different block groups 4665 * 4666 * If datablocks are discontiguous, they are possible to spread over 4667 * different block groups too. If they are contiguous, with flexbg, 4668 * they could still across block group boundary. 4669 * 4670 * Also account for superblock, inode, quota and xattr blocks 4671 */ 4672 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 4673 int pextents) 4674 { 4675 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 4676 int gdpblocks; 4677 int idxblocks; 4678 int ret = 0; 4679 4680 /* 4681 * How many index blocks need to touch to map @lblocks logical blocks 4682 * to @pextents physical extents? 4683 */ 4684 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 4685 4686 ret = idxblocks; 4687 4688 /* 4689 * Now let's see how many group bitmaps and group descriptors need 4690 * to account 4691 */ 4692 groups = idxblocks + pextents; 4693 gdpblocks = groups; 4694 if (groups > ngroups) 4695 groups = ngroups; 4696 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 4697 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 4698 4699 /* bitmaps and block group descriptor blocks */ 4700 ret += groups + gdpblocks; 4701 4702 /* Blocks for super block, inode, quota and xattr blocks */ 4703 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 4704 4705 return ret; 4706 } 4707 4708 /* 4709 * Calculate the total number of credits to reserve to fit 4710 * the modification of a single pages into a single transaction, 4711 * which may include multiple chunks of block allocations. 4712 * 4713 * This could be called via ext4_write_begin() 4714 * 4715 * We need to consider the worse case, when 4716 * one new block per extent. 4717 */ 4718 int ext4_writepage_trans_blocks(struct inode *inode) 4719 { 4720 int bpp = ext4_journal_blocks_per_page(inode); 4721 int ret; 4722 4723 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 4724 4725 /* Account for data blocks for journalled mode */ 4726 if (ext4_should_journal_data(inode)) 4727 ret += bpp; 4728 return ret; 4729 } 4730 4731 /* 4732 * Calculate the journal credits for a chunk of data modification. 4733 * 4734 * This is called from DIO, fallocate or whoever calling 4735 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 4736 * 4737 * journal buffers for data blocks are not included here, as DIO 4738 * and fallocate do no need to journal data buffers. 4739 */ 4740 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 4741 { 4742 return ext4_meta_trans_blocks(inode, nrblocks, 1); 4743 } 4744 4745 /* 4746 * The caller must have previously called ext4_reserve_inode_write(). 4747 * Give this, we know that the caller already has write access to iloc->bh. 4748 */ 4749 int ext4_mark_iloc_dirty(handle_t *handle, 4750 struct inode *inode, struct ext4_iloc *iloc) 4751 { 4752 int err = 0; 4753 4754 if (IS_I_VERSION(inode)) 4755 inode_inc_iversion(inode); 4756 4757 /* the do_update_inode consumes one bh->b_count */ 4758 get_bh(iloc->bh); 4759 4760 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 4761 err = ext4_do_update_inode(handle, inode, iloc); 4762 put_bh(iloc->bh); 4763 return err; 4764 } 4765 4766 /* 4767 * On success, We end up with an outstanding reference count against 4768 * iloc->bh. This _must_ be cleaned up later. 4769 */ 4770 4771 int 4772 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 4773 struct ext4_iloc *iloc) 4774 { 4775 int err; 4776 4777 err = ext4_get_inode_loc(inode, iloc); 4778 if (!err) { 4779 BUFFER_TRACE(iloc->bh, "get_write_access"); 4780 err = ext4_journal_get_write_access(handle, iloc->bh); 4781 if (err) { 4782 brelse(iloc->bh); 4783 iloc->bh = NULL; 4784 } 4785 } 4786 ext4_std_error(inode->i_sb, err); 4787 return err; 4788 } 4789 4790 /* 4791 * Expand an inode by new_extra_isize bytes. 4792 * Returns 0 on success or negative error number on failure. 4793 */ 4794 static int ext4_expand_extra_isize(struct inode *inode, 4795 unsigned int new_extra_isize, 4796 struct ext4_iloc iloc, 4797 handle_t *handle) 4798 { 4799 struct ext4_inode *raw_inode; 4800 struct ext4_xattr_ibody_header *header; 4801 4802 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 4803 return 0; 4804 4805 raw_inode = ext4_raw_inode(&iloc); 4806 4807 header = IHDR(inode, raw_inode); 4808 4809 /* No extended attributes present */ 4810 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 4811 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 4812 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 4813 new_extra_isize); 4814 EXT4_I(inode)->i_extra_isize = new_extra_isize; 4815 return 0; 4816 } 4817 4818 /* try to expand with EAs present */ 4819 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 4820 raw_inode, handle); 4821 } 4822 4823 /* 4824 * What we do here is to mark the in-core inode as clean with respect to inode 4825 * dirtiness (it may still be data-dirty). 4826 * This means that the in-core inode may be reaped by prune_icache 4827 * without having to perform any I/O. This is a very good thing, 4828 * because *any* task may call prune_icache - even ones which 4829 * have a transaction open against a different journal. 4830 * 4831 * Is this cheating? Not really. Sure, we haven't written the 4832 * inode out, but prune_icache isn't a user-visible syncing function. 4833 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 4834 * we start and wait on commits. 4835 */ 4836 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 4837 { 4838 struct ext4_iloc iloc; 4839 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4840 static unsigned int mnt_count; 4841 int err, ret; 4842 4843 might_sleep(); 4844 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 4845 err = ext4_reserve_inode_write(handle, inode, &iloc); 4846 if (ext4_handle_valid(handle) && 4847 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 4848 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 4849 /* 4850 * We need extra buffer credits since we may write into EA block 4851 * with this same handle. If journal_extend fails, then it will 4852 * only result in a minor loss of functionality for that inode. 4853 * If this is felt to be critical, then e2fsck should be run to 4854 * force a large enough s_min_extra_isize. 4855 */ 4856 if ((jbd2_journal_extend(handle, 4857 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 4858 ret = ext4_expand_extra_isize(inode, 4859 sbi->s_want_extra_isize, 4860 iloc, handle); 4861 if (ret) { 4862 ext4_set_inode_state(inode, 4863 EXT4_STATE_NO_EXPAND); 4864 if (mnt_count != 4865 le16_to_cpu(sbi->s_es->s_mnt_count)) { 4866 ext4_warning(inode->i_sb, 4867 "Unable to expand inode %lu. Delete" 4868 " some EAs or run e2fsck.", 4869 inode->i_ino); 4870 mnt_count = 4871 le16_to_cpu(sbi->s_es->s_mnt_count); 4872 } 4873 } 4874 } 4875 } 4876 if (!err) 4877 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 4878 return err; 4879 } 4880 4881 /* 4882 * ext4_dirty_inode() is called from __mark_inode_dirty() 4883 * 4884 * We're really interested in the case where a file is being extended. 4885 * i_size has been changed by generic_commit_write() and we thus need 4886 * to include the updated inode in the current transaction. 4887 * 4888 * Also, dquot_alloc_block() will always dirty the inode when blocks 4889 * are allocated to the file. 4890 * 4891 * If the inode is marked synchronous, we don't honour that here - doing 4892 * so would cause a commit on atime updates, which we don't bother doing. 4893 * We handle synchronous inodes at the highest possible level. 4894 */ 4895 void ext4_dirty_inode(struct inode *inode, int flags) 4896 { 4897 handle_t *handle; 4898 4899 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 4900 if (IS_ERR(handle)) 4901 goto out; 4902 4903 ext4_mark_inode_dirty(handle, inode); 4904 4905 ext4_journal_stop(handle); 4906 out: 4907 return; 4908 } 4909 4910 #if 0 4911 /* 4912 * Bind an inode's backing buffer_head into this transaction, to prevent 4913 * it from being flushed to disk early. Unlike 4914 * ext4_reserve_inode_write, this leaves behind no bh reference and 4915 * returns no iloc structure, so the caller needs to repeat the iloc 4916 * lookup to mark the inode dirty later. 4917 */ 4918 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 4919 { 4920 struct ext4_iloc iloc; 4921 4922 int err = 0; 4923 if (handle) { 4924 err = ext4_get_inode_loc(inode, &iloc); 4925 if (!err) { 4926 BUFFER_TRACE(iloc.bh, "get_write_access"); 4927 err = jbd2_journal_get_write_access(handle, iloc.bh); 4928 if (!err) 4929 err = ext4_handle_dirty_metadata(handle, 4930 NULL, 4931 iloc.bh); 4932 brelse(iloc.bh); 4933 } 4934 } 4935 ext4_std_error(inode->i_sb, err); 4936 return err; 4937 } 4938 #endif 4939 4940 int ext4_change_inode_journal_flag(struct inode *inode, int val) 4941 { 4942 journal_t *journal; 4943 handle_t *handle; 4944 int err; 4945 4946 /* 4947 * We have to be very careful here: changing a data block's 4948 * journaling status dynamically is dangerous. If we write a 4949 * data block to the journal, change the status and then delete 4950 * that block, we risk forgetting to revoke the old log record 4951 * from the journal and so a subsequent replay can corrupt data. 4952 * So, first we make sure that the journal is empty and that 4953 * nobody is changing anything. 4954 */ 4955 4956 journal = EXT4_JOURNAL(inode); 4957 if (!journal) 4958 return 0; 4959 if (is_journal_aborted(journal)) 4960 return -EROFS; 4961 /* We have to allocate physical blocks for delalloc blocks 4962 * before flushing journal. otherwise delalloc blocks can not 4963 * be allocated any more. even more truncate on delalloc blocks 4964 * could trigger BUG by flushing delalloc blocks in journal. 4965 * There is no delalloc block in non-journal data mode. 4966 */ 4967 if (val && test_opt(inode->i_sb, DELALLOC)) { 4968 err = ext4_alloc_da_blocks(inode); 4969 if (err < 0) 4970 return err; 4971 } 4972 4973 /* Wait for all existing dio workers */ 4974 ext4_inode_block_unlocked_dio(inode); 4975 inode_dio_wait(inode); 4976 4977 jbd2_journal_lock_updates(journal); 4978 4979 /* 4980 * OK, there are no updates running now, and all cached data is 4981 * synced to disk. We are now in a completely consistent state 4982 * which doesn't have anything in the journal, and we know that 4983 * no filesystem updates are running, so it is safe to modify 4984 * the inode's in-core data-journaling state flag now. 4985 */ 4986 4987 if (val) 4988 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 4989 else { 4990 jbd2_journal_flush(journal); 4991 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 4992 } 4993 ext4_set_aops(inode); 4994 4995 jbd2_journal_unlock_updates(journal); 4996 ext4_inode_resume_unlocked_dio(inode); 4997 4998 /* Finally we can mark the inode as dirty. */ 4999 5000 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 5001 if (IS_ERR(handle)) 5002 return PTR_ERR(handle); 5003 5004 err = ext4_mark_inode_dirty(handle, inode); 5005 ext4_handle_sync(handle); 5006 ext4_journal_stop(handle); 5007 ext4_std_error(inode->i_sb, err); 5008 5009 return err; 5010 } 5011 5012 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 5013 { 5014 return !buffer_mapped(bh); 5015 } 5016 5017 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 5018 { 5019 struct page *page = vmf->page; 5020 loff_t size; 5021 unsigned long len; 5022 int ret; 5023 struct file *file = vma->vm_file; 5024 struct inode *inode = file_inode(file); 5025 struct address_space *mapping = inode->i_mapping; 5026 handle_t *handle; 5027 get_block_t *get_block; 5028 int retries = 0; 5029 5030 sb_start_pagefault(inode->i_sb); 5031 file_update_time(vma->vm_file); 5032 /* Delalloc case is easy... */ 5033 if (test_opt(inode->i_sb, DELALLOC) && 5034 !ext4_should_journal_data(inode) && 5035 !ext4_nonda_switch(inode->i_sb)) { 5036 do { 5037 ret = __block_page_mkwrite(vma, vmf, 5038 ext4_da_get_block_prep); 5039 } while (ret == -ENOSPC && 5040 ext4_should_retry_alloc(inode->i_sb, &retries)); 5041 goto out_ret; 5042 } 5043 5044 lock_page(page); 5045 size = i_size_read(inode); 5046 /* Page got truncated from under us? */ 5047 if (page->mapping != mapping || page_offset(page) > size) { 5048 unlock_page(page); 5049 ret = VM_FAULT_NOPAGE; 5050 goto out; 5051 } 5052 5053 if (page->index == size >> PAGE_CACHE_SHIFT) 5054 len = size & ~PAGE_CACHE_MASK; 5055 else 5056 len = PAGE_CACHE_SIZE; 5057 /* 5058 * Return if we have all the buffers mapped. This avoids the need to do 5059 * journal_start/journal_stop which can block and take a long time 5060 */ 5061 if (page_has_buffers(page)) { 5062 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 5063 0, len, NULL, 5064 ext4_bh_unmapped)) { 5065 /* Wait so that we don't change page under IO */ 5066 wait_for_stable_page(page); 5067 ret = VM_FAULT_LOCKED; 5068 goto out; 5069 } 5070 } 5071 unlock_page(page); 5072 /* OK, we need to fill the hole... */ 5073 if (ext4_should_dioread_nolock(inode)) 5074 get_block = ext4_get_block_write; 5075 else 5076 get_block = ext4_get_block; 5077 retry_alloc: 5078 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 5079 ext4_writepage_trans_blocks(inode)); 5080 if (IS_ERR(handle)) { 5081 ret = VM_FAULT_SIGBUS; 5082 goto out; 5083 } 5084 ret = __block_page_mkwrite(vma, vmf, get_block); 5085 if (!ret && ext4_should_journal_data(inode)) { 5086 if (ext4_walk_page_buffers(handle, page_buffers(page), 0, 5087 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) { 5088 unlock_page(page); 5089 ret = VM_FAULT_SIGBUS; 5090 ext4_journal_stop(handle); 5091 goto out; 5092 } 5093 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 5094 } 5095 ext4_journal_stop(handle); 5096 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 5097 goto retry_alloc; 5098 out_ret: 5099 ret = block_page_mkwrite_return(ret); 5100 out: 5101 sb_end_pagefault(inode->i_sb); 5102 return ret; 5103 } 5104