xref: /openbmc/linux/fs/ext4/inode.c (revision 4f6cce39)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *	(jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20 
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40 #include <linux/iomap.h>
41 
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46 
47 #include <trace/events/ext4.h>
48 
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50 
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 			      struct ext4_inode_info *ei)
53 {
54 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 	__u32 csum;
56 	__u16 dummy_csum = 0;
57 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
58 	unsigned int csum_size = sizeof(dummy_csum);
59 
60 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62 	offset += csum_size;
63 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
65 
66 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67 		offset = offsetof(struct ext4_inode, i_checksum_hi);
68 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69 				   EXT4_GOOD_OLD_INODE_SIZE,
70 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
71 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73 					   csum_size);
74 			offset += csum_size;
75 		}
76 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
78 	}
79 
80 	return csum;
81 }
82 
83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84 				  struct ext4_inode_info *ei)
85 {
86 	__u32 provided, calculated;
87 
88 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89 	    cpu_to_le32(EXT4_OS_LINUX) ||
90 	    !ext4_has_metadata_csum(inode->i_sb))
91 		return 1;
92 
93 	provided = le16_to_cpu(raw->i_checksum_lo);
94 	calculated = ext4_inode_csum(inode, raw, ei);
95 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98 	else
99 		calculated &= 0xFFFF;
100 
101 	return provided == calculated;
102 }
103 
104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105 				struct ext4_inode_info *ei)
106 {
107 	__u32 csum;
108 
109 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110 	    cpu_to_le32(EXT4_OS_LINUX) ||
111 	    !ext4_has_metadata_csum(inode->i_sb))
112 		return;
113 
114 	csum = ext4_inode_csum(inode, raw, ei);
115 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119 }
120 
121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122 					      loff_t new_size)
123 {
124 	trace_ext4_begin_ordered_truncate(inode, new_size);
125 	/*
126 	 * If jinode is zero, then we never opened the file for
127 	 * writing, so there's no need to call
128 	 * jbd2_journal_begin_ordered_truncate() since there's no
129 	 * outstanding writes we need to flush.
130 	 */
131 	if (!EXT4_I(inode)->jinode)
132 		return 0;
133 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134 						   EXT4_I(inode)->jinode,
135 						   new_size);
136 }
137 
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139 				unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143 				  int pextents);
144 
145 /*
146  * Test whether an inode is a fast symlink.
147  */
148 int ext4_inode_is_fast_symlink(struct inode *inode)
149 {
150         int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 		EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
152 
153 	if (ext4_has_inline_data(inode))
154 		return 0;
155 
156 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
157 }
158 
159 /*
160  * Restart the transaction associated with *handle.  This does a commit,
161  * so before we call here everything must be consistently dirtied against
162  * this transaction.
163  */
164 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
165 				 int nblocks)
166 {
167 	int ret;
168 
169 	/*
170 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
171 	 * moment, get_block can be called only for blocks inside i_size since
172 	 * page cache has been already dropped and writes are blocked by
173 	 * i_mutex. So we can safely drop the i_data_sem here.
174 	 */
175 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
176 	jbd_debug(2, "restarting handle %p\n", handle);
177 	up_write(&EXT4_I(inode)->i_data_sem);
178 	ret = ext4_journal_restart(handle, nblocks);
179 	down_write(&EXT4_I(inode)->i_data_sem);
180 	ext4_discard_preallocations(inode);
181 
182 	return ret;
183 }
184 
185 /*
186  * Called at the last iput() if i_nlink is zero.
187  */
188 void ext4_evict_inode(struct inode *inode)
189 {
190 	handle_t *handle;
191 	int err;
192 
193 	trace_ext4_evict_inode(inode);
194 
195 	if (inode->i_nlink) {
196 		/*
197 		 * When journalling data dirty buffers are tracked only in the
198 		 * journal. So although mm thinks everything is clean and
199 		 * ready for reaping the inode might still have some pages to
200 		 * write in the running transaction or waiting to be
201 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
202 		 * (via truncate_inode_pages()) to discard these buffers can
203 		 * cause data loss. Also even if we did not discard these
204 		 * buffers, we would have no way to find them after the inode
205 		 * is reaped and thus user could see stale data if he tries to
206 		 * read them before the transaction is checkpointed. So be
207 		 * careful and force everything to disk here... We use
208 		 * ei->i_datasync_tid to store the newest transaction
209 		 * containing inode's data.
210 		 *
211 		 * Note that directories do not have this problem because they
212 		 * don't use page cache.
213 		 */
214 		if (inode->i_ino != EXT4_JOURNAL_INO &&
215 		    ext4_should_journal_data(inode) &&
216 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
217 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
218 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
219 
220 			jbd2_complete_transaction(journal, commit_tid);
221 			filemap_write_and_wait(&inode->i_data);
222 		}
223 		truncate_inode_pages_final(&inode->i_data);
224 
225 		goto no_delete;
226 	}
227 
228 	if (is_bad_inode(inode))
229 		goto no_delete;
230 	dquot_initialize(inode);
231 
232 	if (ext4_should_order_data(inode))
233 		ext4_begin_ordered_truncate(inode, 0);
234 	truncate_inode_pages_final(&inode->i_data);
235 
236 	/*
237 	 * Protect us against freezing - iput() caller didn't have to have any
238 	 * protection against it
239 	 */
240 	sb_start_intwrite(inode->i_sb);
241 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
242 				    ext4_blocks_for_truncate(inode)+3);
243 	if (IS_ERR(handle)) {
244 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
245 		/*
246 		 * If we're going to skip the normal cleanup, we still need to
247 		 * make sure that the in-core orphan linked list is properly
248 		 * cleaned up.
249 		 */
250 		ext4_orphan_del(NULL, inode);
251 		sb_end_intwrite(inode->i_sb);
252 		goto no_delete;
253 	}
254 
255 	if (IS_SYNC(inode))
256 		ext4_handle_sync(handle);
257 	inode->i_size = 0;
258 	err = ext4_mark_inode_dirty(handle, inode);
259 	if (err) {
260 		ext4_warning(inode->i_sb,
261 			     "couldn't mark inode dirty (err %d)", err);
262 		goto stop_handle;
263 	}
264 	if (inode->i_blocks) {
265 		err = ext4_truncate(inode);
266 		if (err) {
267 			ext4_error(inode->i_sb,
268 				   "couldn't truncate inode %lu (err %d)",
269 				   inode->i_ino, err);
270 			goto stop_handle;
271 		}
272 	}
273 
274 	/*
275 	 * ext4_ext_truncate() doesn't reserve any slop when it
276 	 * restarts journal transactions; therefore there may not be
277 	 * enough credits left in the handle to remove the inode from
278 	 * the orphan list and set the dtime field.
279 	 */
280 	if (!ext4_handle_has_enough_credits(handle, 3)) {
281 		err = ext4_journal_extend(handle, 3);
282 		if (err > 0)
283 			err = ext4_journal_restart(handle, 3);
284 		if (err != 0) {
285 			ext4_warning(inode->i_sb,
286 				     "couldn't extend journal (err %d)", err);
287 		stop_handle:
288 			ext4_journal_stop(handle);
289 			ext4_orphan_del(NULL, inode);
290 			sb_end_intwrite(inode->i_sb);
291 			goto no_delete;
292 		}
293 	}
294 
295 	/*
296 	 * Kill off the orphan record which ext4_truncate created.
297 	 * AKPM: I think this can be inside the above `if'.
298 	 * Note that ext4_orphan_del() has to be able to cope with the
299 	 * deletion of a non-existent orphan - this is because we don't
300 	 * know if ext4_truncate() actually created an orphan record.
301 	 * (Well, we could do this if we need to, but heck - it works)
302 	 */
303 	ext4_orphan_del(handle, inode);
304 	EXT4_I(inode)->i_dtime	= get_seconds();
305 
306 	/*
307 	 * One subtle ordering requirement: if anything has gone wrong
308 	 * (transaction abort, IO errors, whatever), then we can still
309 	 * do these next steps (the fs will already have been marked as
310 	 * having errors), but we can't free the inode if the mark_dirty
311 	 * fails.
312 	 */
313 	if (ext4_mark_inode_dirty(handle, inode))
314 		/* If that failed, just do the required in-core inode clear. */
315 		ext4_clear_inode(inode);
316 	else
317 		ext4_free_inode(handle, inode);
318 	ext4_journal_stop(handle);
319 	sb_end_intwrite(inode->i_sb);
320 	return;
321 no_delete:
322 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
323 }
324 
325 #ifdef CONFIG_QUOTA
326 qsize_t *ext4_get_reserved_space(struct inode *inode)
327 {
328 	return &EXT4_I(inode)->i_reserved_quota;
329 }
330 #endif
331 
332 /*
333  * Called with i_data_sem down, which is important since we can call
334  * ext4_discard_preallocations() from here.
335  */
336 void ext4_da_update_reserve_space(struct inode *inode,
337 					int used, int quota_claim)
338 {
339 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
340 	struct ext4_inode_info *ei = EXT4_I(inode);
341 
342 	spin_lock(&ei->i_block_reservation_lock);
343 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
344 	if (unlikely(used > ei->i_reserved_data_blocks)) {
345 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
346 			 "with only %d reserved data blocks",
347 			 __func__, inode->i_ino, used,
348 			 ei->i_reserved_data_blocks);
349 		WARN_ON(1);
350 		used = ei->i_reserved_data_blocks;
351 	}
352 
353 	/* Update per-inode reservations */
354 	ei->i_reserved_data_blocks -= used;
355 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
356 
357 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
358 
359 	/* Update quota subsystem for data blocks */
360 	if (quota_claim)
361 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
362 	else {
363 		/*
364 		 * We did fallocate with an offset that is already delayed
365 		 * allocated. So on delayed allocated writeback we should
366 		 * not re-claim the quota for fallocated blocks.
367 		 */
368 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
369 	}
370 
371 	/*
372 	 * If we have done all the pending block allocations and if
373 	 * there aren't any writers on the inode, we can discard the
374 	 * inode's preallocations.
375 	 */
376 	if ((ei->i_reserved_data_blocks == 0) &&
377 	    (atomic_read(&inode->i_writecount) == 0))
378 		ext4_discard_preallocations(inode);
379 }
380 
381 static int __check_block_validity(struct inode *inode, const char *func,
382 				unsigned int line,
383 				struct ext4_map_blocks *map)
384 {
385 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
386 				   map->m_len)) {
387 		ext4_error_inode(inode, func, line, map->m_pblk,
388 				 "lblock %lu mapped to illegal pblock "
389 				 "(length %d)", (unsigned long) map->m_lblk,
390 				 map->m_len);
391 		return -EFSCORRUPTED;
392 	}
393 	return 0;
394 }
395 
396 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
397 		       ext4_lblk_t len)
398 {
399 	int ret;
400 
401 	if (ext4_encrypted_inode(inode))
402 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
403 
404 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
405 	if (ret > 0)
406 		ret = 0;
407 
408 	return ret;
409 }
410 
411 #define check_block_validity(inode, map)	\
412 	__check_block_validity((inode), __func__, __LINE__, (map))
413 
414 #ifdef ES_AGGRESSIVE_TEST
415 static void ext4_map_blocks_es_recheck(handle_t *handle,
416 				       struct inode *inode,
417 				       struct ext4_map_blocks *es_map,
418 				       struct ext4_map_blocks *map,
419 				       int flags)
420 {
421 	int retval;
422 
423 	map->m_flags = 0;
424 	/*
425 	 * There is a race window that the result is not the same.
426 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
427 	 * is that we lookup a block mapping in extent status tree with
428 	 * out taking i_data_sem.  So at the time the unwritten extent
429 	 * could be converted.
430 	 */
431 	down_read(&EXT4_I(inode)->i_data_sem);
432 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
433 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
434 					     EXT4_GET_BLOCKS_KEEP_SIZE);
435 	} else {
436 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
437 					     EXT4_GET_BLOCKS_KEEP_SIZE);
438 	}
439 	up_read((&EXT4_I(inode)->i_data_sem));
440 
441 	/*
442 	 * We don't check m_len because extent will be collpased in status
443 	 * tree.  So the m_len might not equal.
444 	 */
445 	if (es_map->m_lblk != map->m_lblk ||
446 	    es_map->m_flags != map->m_flags ||
447 	    es_map->m_pblk != map->m_pblk) {
448 		printk("ES cache assertion failed for inode: %lu "
449 		       "es_cached ex [%d/%d/%llu/%x] != "
450 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
451 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
452 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
453 		       map->m_len, map->m_pblk, map->m_flags,
454 		       retval, flags);
455 	}
456 }
457 #endif /* ES_AGGRESSIVE_TEST */
458 
459 /*
460  * The ext4_map_blocks() function tries to look up the requested blocks,
461  * and returns if the blocks are already mapped.
462  *
463  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
464  * and store the allocated blocks in the result buffer head and mark it
465  * mapped.
466  *
467  * If file type is extents based, it will call ext4_ext_map_blocks(),
468  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
469  * based files
470  *
471  * On success, it returns the number of blocks being mapped or allocated.  if
472  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
473  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
474  *
475  * It returns 0 if plain look up failed (blocks have not been allocated), in
476  * that case, @map is returned as unmapped but we still do fill map->m_len to
477  * indicate the length of a hole starting at map->m_lblk.
478  *
479  * It returns the error in case of allocation failure.
480  */
481 int ext4_map_blocks(handle_t *handle, struct inode *inode,
482 		    struct ext4_map_blocks *map, int flags)
483 {
484 	struct extent_status es;
485 	int retval;
486 	int ret = 0;
487 #ifdef ES_AGGRESSIVE_TEST
488 	struct ext4_map_blocks orig_map;
489 
490 	memcpy(&orig_map, map, sizeof(*map));
491 #endif
492 
493 	map->m_flags = 0;
494 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
495 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
496 		  (unsigned long) map->m_lblk);
497 
498 	/*
499 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
500 	 */
501 	if (unlikely(map->m_len > INT_MAX))
502 		map->m_len = INT_MAX;
503 
504 	/* We can handle the block number less than EXT_MAX_BLOCKS */
505 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
506 		return -EFSCORRUPTED;
507 
508 	/* Lookup extent status tree firstly */
509 	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
510 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
511 			map->m_pblk = ext4_es_pblock(&es) +
512 					map->m_lblk - es.es_lblk;
513 			map->m_flags |= ext4_es_is_written(&es) ?
514 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
515 			retval = es.es_len - (map->m_lblk - es.es_lblk);
516 			if (retval > map->m_len)
517 				retval = map->m_len;
518 			map->m_len = retval;
519 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
520 			map->m_pblk = 0;
521 			retval = es.es_len - (map->m_lblk - es.es_lblk);
522 			if (retval > map->m_len)
523 				retval = map->m_len;
524 			map->m_len = retval;
525 			retval = 0;
526 		} else {
527 			BUG_ON(1);
528 		}
529 #ifdef ES_AGGRESSIVE_TEST
530 		ext4_map_blocks_es_recheck(handle, inode, map,
531 					   &orig_map, flags);
532 #endif
533 		goto found;
534 	}
535 
536 	/*
537 	 * Try to see if we can get the block without requesting a new
538 	 * file system block.
539 	 */
540 	down_read(&EXT4_I(inode)->i_data_sem);
541 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
542 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
543 					     EXT4_GET_BLOCKS_KEEP_SIZE);
544 	} else {
545 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
546 					     EXT4_GET_BLOCKS_KEEP_SIZE);
547 	}
548 	if (retval > 0) {
549 		unsigned int status;
550 
551 		if (unlikely(retval != map->m_len)) {
552 			ext4_warning(inode->i_sb,
553 				     "ES len assertion failed for inode "
554 				     "%lu: retval %d != map->m_len %d",
555 				     inode->i_ino, retval, map->m_len);
556 			WARN_ON(1);
557 		}
558 
559 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
560 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
561 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
562 		    !(status & EXTENT_STATUS_WRITTEN) &&
563 		    ext4_find_delalloc_range(inode, map->m_lblk,
564 					     map->m_lblk + map->m_len - 1))
565 			status |= EXTENT_STATUS_DELAYED;
566 		ret = ext4_es_insert_extent(inode, map->m_lblk,
567 					    map->m_len, map->m_pblk, status);
568 		if (ret < 0)
569 			retval = ret;
570 	}
571 	up_read((&EXT4_I(inode)->i_data_sem));
572 
573 found:
574 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
575 		ret = check_block_validity(inode, map);
576 		if (ret != 0)
577 			return ret;
578 	}
579 
580 	/* If it is only a block(s) look up */
581 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
582 		return retval;
583 
584 	/*
585 	 * Returns if the blocks have already allocated
586 	 *
587 	 * Note that if blocks have been preallocated
588 	 * ext4_ext_get_block() returns the create = 0
589 	 * with buffer head unmapped.
590 	 */
591 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
592 		/*
593 		 * If we need to convert extent to unwritten
594 		 * we continue and do the actual work in
595 		 * ext4_ext_map_blocks()
596 		 */
597 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
598 			return retval;
599 
600 	/*
601 	 * Here we clear m_flags because after allocating an new extent,
602 	 * it will be set again.
603 	 */
604 	map->m_flags &= ~EXT4_MAP_FLAGS;
605 
606 	/*
607 	 * New blocks allocate and/or writing to unwritten extent
608 	 * will possibly result in updating i_data, so we take
609 	 * the write lock of i_data_sem, and call get_block()
610 	 * with create == 1 flag.
611 	 */
612 	down_write(&EXT4_I(inode)->i_data_sem);
613 
614 	/*
615 	 * We need to check for EXT4 here because migrate
616 	 * could have changed the inode type in between
617 	 */
618 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
619 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
620 	} else {
621 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
622 
623 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
624 			/*
625 			 * We allocated new blocks which will result in
626 			 * i_data's format changing.  Force the migrate
627 			 * to fail by clearing migrate flags
628 			 */
629 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
630 		}
631 
632 		/*
633 		 * Update reserved blocks/metadata blocks after successful
634 		 * block allocation which had been deferred till now. We don't
635 		 * support fallocate for non extent files. So we can update
636 		 * reserve space here.
637 		 */
638 		if ((retval > 0) &&
639 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
640 			ext4_da_update_reserve_space(inode, retval, 1);
641 	}
642 
643 	if (retval > 0) {
644 		unsigned int status;
645 
646 		if (unlikely(retval != map->m_len)) {
647 			ext4_warning(inode->i_sb,
648 				     "ES len assertion failed for inode "
649 				     "%lu: retval %d != map->m_len %d",
650 				     inode->i_ino, retval, map->m_len);
651 			WARN_ON(1);
652 		}
653 
654 		/*
655 		 * We have to zeroout blocks before inserting them into extent
656 		 * status tree. Otherwise someone could look them up there and
657 		 * use them before they are really zeroed. We also have to
658 		 * unmap metadata before zeroing as otherwise writeback can
659 		 * overwrite zeros with stale data from block device.
660 		 */
661 		if (flags & EXT4_GET_BLOCKS_ZERO &&
662 		    map->m_flags & EXT4_MAP_MAPPED &&
663 		    map->m_flags & EXT4_MAP_NEW) {
664 			clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
665 					   map->m_len);
666 			ret = ext4_issue_zeroout(inode, map->m_lblk,
667 						 map->m_pblk, map->m_len);
668 			if (ret) {
669 				retval = ret;
670 				goto out_sem;
671 			}
672 		}
673 
674 		/*
675 		 * If the extent has been zeroed out, we don't need to update
676 		 * extent status tree.
677 		 */
678 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
679 		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
680 			if (ext4_es_is_written(&es))
681 				goto out_sem;
682 		}
683 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
684 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
685 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
686 		    !(status & EXTENT_STATUS_WRITTEN) &&
687 		    ext4_find_delalloc_range(inode, map->m_lblk,
688 					     map->m_lblk + map->m_len - 1))
689 			status |= EXTENT_STATUS_DELAYED;
690 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
691 					    map->m_pblk, status);
692 		if (ret < 0) {
693 			retval = ret;
694 			goto out_sem;
695 		}
696 	}
697 
698 out_sem:
699 	up_write((&EXT4_I(inode)->i_data_sem));
700 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
701 		ret = check_block_validity(inode, map);
702 		if (ret != 0)
703 			return ret;
704 
705 		/*
706 		 * Inodes with freshly allocated blocks where contents will be
707 		 * visible after transaction commit must be on transaction's
708 		 * ordered data list.
709 		 */
710 		if (map->m_flags & EXT4_MAP_NEW &&
711 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
712 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
713 		    !IS_NOQUOTA(inode) &&
714 		    ext4_should_order_data(inode)) {
715 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
716 				ret = ext4_jbd2_inode_add_wait(handle, inode);
717 			else
718 				ret = ext4_jbd2_inode_add_write(handle, inode);
719 			if (ret)
720 				return ret;
721 		}
722 	}
723 	return retval;
724 }
725 
726 /*
727  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
728  * we have to be careful as someone else may be manipulating b_state as well.
729  */
730 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
731 {
732 	unsigned long old_state;
733 	unsigned long new_state;
734 
735 	flags &= EXT4_MAP_FLAGS;
736 
737 	/* Dummy buffer_head? Set non-atomically. */
738 	if (!bh->b_page) {
739 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
740 		return;
741 	}
742 	/*
743 	 * Someone else may be modifying b_state. Be careful! This is ugly but
744 	 * once we get rid of using bh as a container for mapping information
745 	 * to pass to / from get_block functions, this can go away.
746 	 */
747 	do {
748 		old_state = READ_ONCE(bh->b_state);
749 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
750 	} while (unlikely(
751 		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
752 }
753 
754 static int _ext4_get_block(struct inode *inode, sector_t iblock,
755 			   struct buffer_head *bh, int flags)
756 {
757 	struct ext4_map_blocks map;
758 	int ret = 0;
759 
760 	if (ext4_has_inline_data(inode))
761 		return -ERANGE;
762 
763 	map.m_lblk = iblock;
764 	map.m_len = bh->b_size >> inode->i_blkbits;
765 
766 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
767 			      flags);
768 	if (ret > 0) {
769 		map_bh(bh, inode->i_sb, map.m_pblk);
770 		ext4_update_bh_state(bh, map.m_flags);
771 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
772 		ret = 0;
773 	} else if (ret == 0) {
774 		/* hole case, need to fill in bh->b_size */
775 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
776 	}
777 	return ret;
778 }
779 
780 int ext4_get_block(struct inode *inode, sector_t iblock,
781 		   struct buffer_head *bh, int create)
782 {
783 	return _ext4_get_block(inode, iblock, bh,
784 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
785 }
786 
787 /*
788  * Get block function used when preparing for buffered write if we require
789  * creating an unwritten extent if blocks haven't been allocated.  The extent
790  * will be converted to written after the IO is complete.
791  */
792 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
793 			     struct buffer_head *bh_result, int create)
794 {
795 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
796 		   inode->i_ino, create);
797 	return _ext4_get_block(inode, iblock, bh_result,
798 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
799 }
800 
801 /* Maximum number of blocks we map for direct IO at once. */
802 #define DIO_MAX_BLOCKS 4096
803 
804 /*
805  * Get blocks function for the cases that need to start a transaction -
806  * generally difference cases of direct IO and DAX IO. It also handles retries
807  * in case of ENOSPC.
808  */
809 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
810 				struct buffer_head *bh_result, int flags)
811 {
812 	int dio_credits;
813 	handle_t *handle;
814 	int retries = 0;
815 	int ret;
816 
817 	/* Trim mapping request to maximum we can map at once for DIO */
818 	if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
819 		bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
820 	dio_credits = ext4_chunk_trans_blocks(inode,
821 				      bh_result->b_size >> inode->i_blkbits);
822 retry:
823 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
824 	if (IS_ERR(handle))
825 		return PTR_ERR(handle);
826 
827 	ret = _ext4_get_block(inode, iblock, bh_result, flags);
828 	ext4_journal_stop(handle);
829 
830 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
831 		goto retry;
832 	return ret;
833 }
834 
835 /* Get block function for DIO reads and writes to inodes without extents */
836 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
837 		       struct buffer_head *bh, int create)
838 {
839 	/* We don't expect handle for direct IO */
840 	WARN_ON_ONCE(ext4_journal_current_handle());
841 
842 	if (!create)
843 		return _ext4_get_block(inode, iblock, bh, 0);
844 	return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
845 }
846 
847 /*
848  * Get block function for AIO DIO writes when we create unwritten extent if
849  * blocks are not allocated yet. The extent will be converted to written
850  * after IO is complete.
851  */
852 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
853 		sector_t iblock, struct buffer_head *bh_result,	int create)
854 {
855 	int ret;
856 
857 	/* We don't expect handle for direct IO */
858 	WARN_ON_ONCE(ext4_journal_current_handle());
859 
860 	ret = ext4_get_block_trans(inode, iblock, bh_result,
861 				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
862 
863 	/*
864 	 * When doing DIO using unwritten extents, we need io_end to convert
865 	 * unwritten extents to written on IO completion. We allocate io_end
866 	 * once we spot unwritten extent and store it in b_private. Generic
867 	 * DIO code keeps b_private set and furthermore passes the value to
868 	 * our completion callback in 'private' argument.
869 	 */
870 	if (!ret && buffer_unwritten(bh_result)) {
871 		if (!bh_result->b_private) {
872 			ext4_io_end_t *io_end;
873 
874 			io_end = ext4_init_io_end(inode, GFP_KERNEL);
875 			if (!io_end)
876 				return -ENOMEM;
877 			bh_result->b_private = io_end;
878 			ext4_set_io_unwritten_flag(inode, io_end);
879 		}
880 		set_buffer_defer_completion(bh_result);
881 	}
882 
883 	return ret;
884 }
885 
886 /*
887  * Get block function for non-AIO DIO writes when we create unwritten extent if
888  * blocks are not allocated yet. The extent will be converted to written
889  * after IO is complete from ext4_ext_direct_IO() function.
890  */
891 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
892 		sector_t iblock, struct buffer_head *bh_result,	int create)
893 {
894 	int ret;
895 
896 	/* We don't expect handle for direct IO */
897 	WARN_ON_ONCE(ext4_journal_current_handle());
898 
899 	ret = ext4_get_block_trans(inode, iblock, bh_result,
900 				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
901 
902 	/*
903 	 * Mark inode as having pending DIO writes to unwritten extents.
904 	 * ext4_ext_direct_IO() checks this flag and converts extents to
905 	 * written.
906 	 */
907 	if (!ret && buffer_unwritten(bh_result))
908 		ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
909 
910 	return ret;
911 }
912 
913 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
914 		   struct buffer_head *bh_result, int create)
915 {
916 	int ret;
917 
918 	ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
919 		   inode->i_ino, create);
920 	/* We don't expect handle for direct IO */
921 	WARN_ON_ONCE(ext4_journal_current_handle());
922 
923 	ret = _ext4_get_block(inode, iblock, bh_result, 0);
924 	/*
925 	 * Blocks should have been preallocated! ext4_file_write_iter() checks
926 	 * that.
927 	 */
928 	WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
929 
930 	return ret;
931 }
932 
933 
934 /*
935  * `handle' can be NULL if create is zero
936  */
937 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
938 				ext4_lblk_t block, int map_flags)
939 {
940 	struct ext4_map_blocks map;
941 	struct buffer_head *bh;
942 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
943 	int err;
944 
945 	J_ASSERT(handle != NULL || create == 0);
946 
947 	map.m_lblk = block;
948 	map.m_len = 1;
949 	err = ext4_map_blocks(handle, inode, &map, map_flags);
950 
951 	if (err == 0)
952 		return create ? ERR_PTR(-ENOSPC) : NULL;
953 	if (err < 0)
954 		return ERR_PTR(err);
955 
956 	bh = sb_getblk(inode->i_sb, map.m_pblk);
957 	if (unlikely(!bh))
958 		return ERR_PTR(-ENOMEM);
959 	if (map.m_flags & EXT4_MAP_NEW) {
960 		J_ASSERT(create != 0);
961 		J_ASSERT(handle != NULL);
962 
963 		/*
964 		 * Now that we do not always journal data, we should
965 		 * keep in mind whether this should always journal the
966 		 * new buffer as metadata.  For now, regular file
967 		 * writes use ext4_get_block instead, so it's not a
968 		 * problem.
969 		 */
970 		lock_buffer(bh);
971 		BUFFER_TRACE(bh, "call get_create_access");
972 		err = ext4_journal_get_create_access(handle, bh);
973 		if (unlikely(err)) {
974 			unlock_buffer(bh);
975 			goto errout;
976 		}
977 		if (!buffer_uptodate(bh)) {
978 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
979 			set_buffer_uptodate(bh);
980 		}
981 		unlock_buffer(bh);
982 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
983 		err = ext4_handle_dirty_metadata(handle, inode, bh);
984 		if (unlikely(err))
985 			goto errout;
986 	} else
987 		BUFFER_TRACE(bh, "not a new buffer");
988 	return bh;
989 errout:
990 	brelse(bh);
991 	return ERR_PTR(err);
992 }
993 
994 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
995 			       ext4_lblk_t block, int map_flags)
996 {
997 	struct buffer_head *bh;
998 
999 	bh = ext4_getblk(handle, inode, block, map_flags);
1000 	if (IS_ERR(bh))
1001 		return bh;
1002 	if (!bh || buffer_uptodate(bh))
1003 		return bh;
1004 	ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1005 	wait_on_buffer(bh);
1006 	if (buffer_uptodate(bh))
1007 		return bh;
1008 	put_bh(bh);
1009 	return ERR_PTR(-EIO);
1010 }
1011 
1012 int ext4_walk_page_buffers(handle_t *handle,
1013 			   struct buffer_head *head,
1014 			   unsigned from,
1015 			   unsigned to,
1016 			   int *partial,
1017 			   int (*fn)(handle_t *handle,
1018 				     struct buffer_head *bh))
1019 {
1020 	struct buffer_head *bh;
1021 	unsigned block_start, block_end;
1022 	unsigned blocksize = head->b_size;
1023 	int err, ret = 0;
1024 	struct buffer_head *next;
1025 
1026 	for (bh = head, block_start = 0;
1027 	     ret == 0 && (bh != head || !block_start);
1028 	     block_start = block_end, bh = next) {
1029 		next = bh->b_this_page;
1030 		block_end = block_start + blocksize;
1031 		if (block_end <= from || block_start >= to) {
1032 			if (partial && !buffer_uptodate(bh))
1033 				*partial = 1;
1034 			continue;
1035 		}
1036 		err = (*fn)(handle, bh);
1037 		if (!ret)
1038 			ret = err;
1039 	}
1040 	return ret;
1041 }
1042 
1043 /*
1044  * To preserve ordering, it is essential that the hole instantiation and
1045  * the data write be encapsulated in a single transaction.  We cannot
1046  * close off a transaction and start a new one between the ext4_get_block()
1047  * and the commit_write().  So doing the jbd2_journal_start at the start of
1048  * prepare_write() is the right place.
1049  *
1050  * Also, this function can nest inside ext4_writepage().  In that case, we
1051  * *know* that ext4_writepage() has generated enough buffer credits to do the
1052  * whole page.  So we won't block on the journal in that case, which is good,
1053  * because the caller may be PF_MEMALLOC.
1054  *
1055  * By accident, ext4 can be reentered when a transaction is open via
1056  * quota file writes.  If we were to commit the transaction while thus
1057  * reentered, there can be a deadlock - we would be holding a quota
1058  * lock, and the commit would never complete if another thread had a
1059  * transaction open and was blocking on the quota lock - a ranking
1060  * violation.
1061  *
1062  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1063  * will _not_ run commit under these circumstances because handle->h_ref
1064  * is elevated.  We'll still have enough credits for the tiny quotafile
1065  * write.
1066  */
1067 int do_journal_get_write_access(handle_t *handle,
1068 				struct buffer_head *bh)
1069 {
1070 	int dirty = buffer_dirty(bh);
1071 	int ret;
1072 
1073 	if (!buffer_mapped(bh) || buffer_freed(bh))
1074 		return 0;
1075 	/*
1076 	 * __block_write_begin() could have dirtied some buffers. Clean
1077 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1078 	 * otherwise about fs integrity issues. Setting of the dirty bit
1079 	 * by __block_write_begin() isn't a real problem here as we clear
1080 	 * the bit before releasing a page lock and thus writeback cannot
1081 	 * ever write the buffer.
1082 	 */
1083 	if (dirty)
1084 		clear_buffer_dirty(bh);
1085 	BUFFER_TRACE(bh, "get write access");
1086 	ret = ext4_journal_get_write_access(handle, bh);
1087 	if (!ret && dirty)
1088 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1089 	return ret;
1090 }
1091 
1092 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1093 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1094 				  get_block_t *get_block)
1095 {
1096 	unsigned from = pos & (PAGE_SIZE - 1);
1097 	unsigned to = from + len;
1098 	struct inode *inode = page->mapping->host;
1099 	unsigned block_start, block_end;
1100 	sector_t block;
1101 	int err = 0;
1102 	unsigned blocksize = inode->i_sb->s_blocksize;
1103 	unsigned bbits;
1104 	struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1105 	bool decrypt = false;
1106 
1107 	BUG_ON(!PageLocked(page));
1108 	BUG_ON(from > PAGE_SIZE);
1109 	BUG_ON(to > PAGE_SIZE);
1110 	BUG_ON(from > to);
1111 
1112 	if (!page_has_buffers(page))
1113 		create_empty_buffers(page, blocksize, 0);
1114 	head = page_buffers(page);
1115 	bbits = ilog2(blocksize);
1116 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1117 
1118 	for (bh = head, block_start = 0; bh != head || !block_start;
1119 	    block++, block_start = block_end, bh = bh->b_this_page) {
1120 		block_end = block_start + blocksize;
1121 		if (block_end <= from || block_start >= to) {
1122 			if (PageUptodate(page)) {
1123 				if (!buffer_uptodate(bh))
1124 					set_buffer_uptodate(bh);
1125 			}
1126 			continue;
1127 		}
1128 		if (buffer_new(bh))
1129 			clear_buffer_new(bh);
1130 		if (!buffer_mapped(bh)) {
1131 			WARN_ON(bh->b_size != blocksize);
1132 			err = get_block(inode, block, bh, 1);
1133 			if (err)
1134 				break;
1135 			if (buffer_new(bh)) {
1136 				clean_bdev_bh_alias(bh);
1137 				if (PageUptodate(page)) {
1138 					clear_buffer_new(bh);
1139 					set_buffer_uptodate(bh);
1140 					mark_buffer_dirty(bh);
1141 					continue;
1142 				}
1143 				if (block_end > to || block_start < from)
1144 					zero_user_segments(page, to, block_end,
1145 							   block_start, from);
1146 				continue;
1147 			}
1148 		}
1149 		if (PageUptodate(page)) {
1150 			if (!buffer_uptodate(bh))
1151 				set_buffer_uptodate(bh);
1152 			continue;
1153 		}
1154 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1155 		    !buffer_unwritten(bh) &&
1156 		    (block_start < from || block_end > to)) {
1157 			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1158 			*wait_bh++ = bh;
1159 			decrypt = ext4_encrypted_inode(inode) &&
1160 				S_ISREG(inode->i_mode);
1161 		}
1162 	}
1163 	/*
1164 	 * If we issued read requests, let them complete.
1165 	 */
1166 	while (wait_bh > wait) {
1167 		wait_on_buffer(*--wait_bh);
1168 		if (!buffer_uptodate(*wait_bh))
1169 			err = -EIO;
1170 	}
1171 	if (unlikely(err))
1172 		page_zero_new_buffers(page, from, to);
1173 	else if (decrypt)
1174 		err = fscrypt_decrypt_page(page->mapping->host, page,
1175 				PAGE_SIZE, 0, page->index);
1176 	return err;
1177 }
1178 #endif
1179 
1180 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1181 			    loff_t pos, unsigned len, unsigned flags,
1182 			    struct page **pagep, void **fsdata)
1183 {
1184 	struct inode *inode = mapping->host;
1185 	int ret, needed_blocks;
1186 	handle_t *handle;
1187 	int retries = 0;
1188 	struct page *page;
1189 	pgoff_t index;
1190 	unsigned from, to;
1191 
1192 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1193 		return -EIO;
1194 
1195 	trace_ext4_write_begin(inode, pos, len, flags);
1196 	/*
1197 	 * Reserve one block more for addition to orphan list in case
1198 	 * we allocate blocks but write fails for some reason
1199 	 */
1200 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1201 	index = pos >> PAGE_SHIFT;
1202 	from = pos & (PAGE_SIZE - 1);
1203 	to = from + len;
1204 
1205 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1206 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1207 						    flags, pagep);
1208 		if (ret < 0)
1209 			return ret;
1210 		if (ret == 1)
1211 			return 0;
1212 	}
1213 
1214 	/*
1215 	 * grab_cache_page_write_begin() can take a long time if the
1216 	 * system is thrashing due to memory pressure, or if the page
1217 	 * is being written back.  So grab it first before we start
1218 	 * the transaction handle.  This also allows us to allocate
1219 	 * the page (if needed) without using GFP_NOFS.
1220 	 */
1221 retry_grab:
1222 	page = grab_cache_page_write_begin(mapping, index, flags);
1223 	if (!page)
1224 		return -ENOMEM;
1225 	unlock_page(page);
1226 
1227 retry_journal:
1228 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1229 	if (IS_ERR(handle)) {
1230 		put_page(page);
1231 		return PTR_ERR(handle);
1232 	}
1233 
1234 	lock_page(page);
1235 	if (page->mapping != mapping) {
1236 		/* The page got truncated from under us */
1237 		unlock_page(page);
1238 		put_page(page);
1239 		ext4_journal_stop(handle);
1240 		goto retry_grab;
1241 	}
1242 	/* In case writeback began while the page was unlocked */
1243 	wait_for_stable_page(page);
1244 
1245 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1246 	if (ext4_should_dioread_nolock(inode))
1247 		ret = ext4_block_write_begin(page, pos, len,
1248 					     ext4_get_block_unwritten);
1249 	else
1250 		ret = ext4_block_write_begin(page, pos, len,
1251 					     ext4_get_block);
1252 #else
1253 	if (ext4_should_dioread_nolock(inode))
1254 		ret = __block_write_begin(page, pos, len,
1255 					  ext4_get_block_unwritten);
1256 	else
1257 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1258 #endif
1259 	if (!ret && ext4_should_journal_data(inode)) {
1260 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1261 					     from, to, NULL,
1262 					     do_journal_get_write_access);
1263 	}
1264 
1265 	if (ret) {
1266 		unlock_page(page);
1267 		/*
1268 		 * __block_write_begin may have instantiated a few blocks
1269 		 * outside i_size.  Trim these off again. Don't need
1270 		 * i_size_read because we hold i_mutex.
1271 		 *
1272 		 * Add inode to orphan list in case we crash before
1273 		 * truncate finishes
1274 		 */
1275 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1276 			ext4_orphan_add(handle, inode);
1277 
1278 		ext4_journal_stop(handle);
1279 		if (pos + len > inode->i_size) {
1280 			ext4_truncate_failed_write(inode);
1281 			/*
1282 			 * If truncate failed early the inode might
1283 			 * still be on the orphan list; we need to
1284 			 * make sure the inode is removed from the
1285 			 * orphan list in that case.
1286 			 */
1287 			if (inode->i_nlink)
1288 				ext4_orphan_del(NULL, inode);
1289 		}
1290 
1291 		if (ret == -ENOSPC &&
1292 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1293 			goto retry_journal;
1294 		put_page(page);
1295 		return ret;
1296 	}
1297 	*pagep = page;
1298 	return ret;
1299 }
1300 
1301 /* For write_end() in data=journal mode */
1302 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1303 {
1304 	int ret;
1305 	if (!buffer_mapped(bh) || buffer_freed(bh))
1306 		return 0;
1307 	set_buffer_uptodate(bh);
1308 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1309 	clear_buffer_meta(bh);
1310 	clear_buffer_prio(bh);
1311 	return ret;
1312 }
1313 
1314 /*
1315  * We need to pick up the new inode size which generic_commit_write gave us
1316  * `file' can be NULL - eg, when called from page_symlink().
1317  *
1318  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1319  * buffers are managed internally.
1320  */
1321 static int ext4_write_end(struct file *file,
1322 			  struct address_space *mapping,
1323 			  loff_t pos, unsigned len, unsigned copied,
1324 			  struct page *page, void *fsdata)
1325 {
1326 	handle_t *handle = ext4_journal_current_handle();
1327 	struct inode *inode = mapping->host;
1328 	loff_t old_size = inode->i_size;
1329 	int ret = 0, ret2;
1330 	int i_size_changed = 0;
1331 
1332 	trace_ext4_write_end(inode, pos, len, copied);
1333 	if (ext4_has_inline_data(inode)) {
1334 		ret = ext4_write_inline_data_end(inode, pos, len,
1335 						 copied, page);
1336 		if (ret < 0) {
1337 			unlock_page(page);
1338 			put_page(page);
1339 			goto errout;
1340 		}
1341 		copied = ret;
1342 	} else
1343 		copied = block_write_end(file, mapping, pos,
1344 					 len, copied, page, fsdata);
1345 	/*
1346 	 * it's important to update i_size while still holding page lock:
1347 	 * page writeout could otherwise come in and zero beyond i_size.
1348 	 */
1349 	i_size_changed = ext4_update_inode_size(inode, pos + copied);
1350 	unlock_page(page);
1351 	put_page(page);
1352 
1353 	if (old_size < pos)
1354 		pagecache_isize_extended(inode, old_size, pos);
1355 	/*
1356 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1357 	 * makes the holding time of page lock longer. Second, it forces lock
1358 	 * ordering of page lock and transaction start for journaling
1359 	 * filesystems.
1360 	 */
1361 	if (i_size_changed)
1362 		ext4_mark_inode_dirty(handle, inode);
1363 
1364 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1365 		/* if we have allocated more blocks and copied
1366 		 * less. We will have blocks allocated outside
1367 		 * inode->i_size. So truncate them
1368 		 */
1369 		ext4_orphan_add(handle, inode);
1370 errout:
1371 	ret2 = ext4_journal_stop(handle);
1372 	if (!ret)
1373 		ret = ret2;
1374 
1375 	if (pos + len > inode->i_size) {
1376 		ext4_truncate_failed_write(inode);
1377 		/*
1378 		 * If truncate failed early the inode might still be
1379 		 * on the orphan list; we need to make sure the inode
1380 		 * is removed from the orphan list in that case.
1381 		 */
1382 		if (inode->i_nlink)
1383 			ext4_orphan_del(NULL, inode);
1384 	}
1385 
1386 	return ret ? ret : copied;
1387 }
1388 
1389 /*
1390  * This is a private version of page_zero_new_buffers() which doesn't
1391  * set the buffer to be dirty, since in data=journalled mode we need
1392  * to call ext4_handle_dirty_metadata() instead.
1393  */
1394 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1395 					    struct page *page,
1396 					    unsigned from, unsigned to)
1397 {
1398 	unsigned int block_start = 0, block_end;
1399 	struct buffer_head *head, *bh;
1400 
1401 	bh = head = page_buffers(page);
1402 	do {
1403 		block_end = block_start + bh->b_size;
1404 		if (buffer_new(bh)) {
1405 			if (block_end > from && block_start < to) {
1406 				if (!PageUptodate(page)) {
1407 					unsigned start, size;
1408 
1409 					start = max(from, block_start);
1410 					size = min(to, block_end) - start;
1411 
1412 					zero_user(page, start, size);
1413 					write_end_fn(handle, bh);
1414 				}
1415 				clear_buffer_new(bh);
1416 			}
1417 		}
1418 		block_start = block_end;
1419 		bh = bh->b_this_page;
1420 	} while (bh != head);
1421 }
1422 
1423 static int ext4_journalled_write_end(struct file *file,
1424 				     struct address_space *mapping,
1425 				     loff_t pos, unsigned len, unsigned copied,
1426 				     struct page *page, void *fsdata)
1427 {
1428 	handle_t *handle = ext4_journal_current_handle();
1429 	struct inode *inode = mapping->host;
1430 	loff_t old_size = inode->i_size;
1431 	int ret = 0, ret2;
1432 	int partial = 0;
1433 	unsigned from, to;
1434 	int size_changed = 0;
1435 
1436 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1437 	from = pos & (PAGE_SIZE - 1);
1438 	to = from + len;
1439 
1440 	BUG_ON(!ext4_handle_valid(handle));
1441 
1442 	if (ext4_has_inline_data(inode)) {
1443 		ret = ext4_write_inline_data_end(inode, pos, len,
1444 						 copied, page);
1445 		if (ret < 0) {
1446 			unlock_page(page);
1447 			put_page(page);
1448 			goto errout;
1449 		}
1450 		copied = ret;
1451 	} else if (unlikely(copied < len) && !PageUptodate(page)) {
1452 		copied = 0;
1453 		ext4_journalled_zero_new_buffers(handle, page, from, to);
1454 	} else {
1455 		if (unlikely(copied < len))
1456 			ext4_journalled_zero_new_buffers(handle, page,
1457 							 from + copied, to);
1458 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1459 					     from + copied, &partial,
1460 					     write_end_fn);
1461 		if (!partial)
1462 			SetPageUptodate(page);
1463 	}
1464 	size_changed = ext4_update_inode_size(inode, pos + copied);
1465 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1466 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1467 	unlock_page(page);
1468 	put_page(page);
1469 
1470 	if (old_size < pos)
1471 		pagecache_isize_extended(inode, old_size, pos);
1472 
1473 	if (size_changed) {
1474 		ret2 = ext4_mark_inode_dirty(handle, inode);
1475 		if (!ret)
1476 			ret = ret2;
1477 	}
1478 
1479 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1480 		/* if we have allocated more blocks and copied
1481 		 * less. We will have blocks allocated outside
1482 		 * inode->i_size. So truncate them
1483 		 */
1484 		ext4_orphan_add(handle, inode);
1485 
1486 errout:
1487 	ret2 = ext4_journal_stop(handle);
1488 	if (!ret)
1489 		ret = ret2;
1490 	if (pos + len > inode->i_size) {
1491 		ext4_truncate_failed_write(inode);
1492 		/*
1493 		 * If truncate failed early the inode might still be
1494 		 * on the orphan list; we need to make sure the inode
1495 		 * is removed from the orphan list in that case.
1496 		 */
1497 		if (inode->i_nlink)
1498 			ext4_orphan_del(NULL, inode);
1499 	}
1500 
1501 	return ret ? ret : copied;
1502 }
1503 
1504 /*
1505  * Reserve space for a single cluster
1506  */
1507 static int ext4_da_reserve_space(struct inode *inode)
1508 {
1509 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1510 	struct ext4_inode_info *ei = EXT4_I(inode);
1511 	int ret;
1512 
1513 	/*
1514 	 * We will charge metadata quota at writeout time; this saves
1515 	 * us from metadata over-estimation, though we may go over by
1516 	 * a small amount in the end.  Here we just reserve for data.
1517 	 */
1518 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1519 	if (ret)
1520 		return ret;
1521 
1522 	spin_lock(&ei->i_block_reservation_lock);
1523 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1524 		spin_unlock(&ei->i_block_reservation_lock);
1525 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1526 		return -ENOSPC;
1527 	}
1528 	ei->i_reserved_data_blocks++;
1529 	trace_ext4_da_reserve_space(inode);
1530 	spin_unlock(&ei->i_block_reservation_lock);
1531 
1532 	return 0;       /* success */
1533 }
1534 
1535 static void ext4_da_release_space(struct inode *inode, int to_free)
1536 {
1537 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1538 	struct ext4_inode_info *ei = EXT4_I(inode);
1539 
1540 	if (!to_free)
1541 		return;		/* Nothing to release, exit */
1542 
1543 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1544 
1545 	trace_ext4_da_release_space(inode, to_free);
1546 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1547 		/*
1548 		 * if there aren't enough reserved blocks, then the
1549 		 * counter is messed up somewhere.  Since this
1550 		 * function is called from invalidate page, it's
1551 		 * harmless to return without any action.
1552 		 */
1553 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1554 			 "ino %lu, to_free %d with only %d reserved "
1555 			 "data blocks", inode->i_ino, to_free,
1556 			 ei->i_reserved_data_blocks);
1557 		WARN_ON(1);
1558 		to_free = ei->i_reserved_data_blocks;
1559 	}
1560 	ei->i_reserved_data_blocks -= to_free;
1561 
1562 	/* update fs dirty data blocks counter */
1563 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1564 
1565 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1566 
1567 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1568 }
1569 
1570 static void ext4_da_page_release_reservation(struct page *page,
1571 					     unsigned int offset,
1572 					     unsigned int length)
1573 {
1574 	int to_release = 0, contiguous_blks = 0;
1575 	struct buffer_head *head, *bh;
1576 	unsigned int curr_off = 0;
1577 	struct inode *inode = page->mapping->host;
1578 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1579 	unsigned int stop = offset + length;
1580 	int num_clusters;
1581 	ext4_fsblk_t lblk;
1582 
1583 	BUG_ON(stop > PAGE_SIZE || stop < length);
1584 
1585 	head = page_buffers(page);
1586 	bh = head;
1587 	do {
1588 		unsigned int next_off = curr_off + bh->b_size;
1589 
1590 		if (next_off > stop)
1591 			break;
1592 
1593 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1594 			to_release++;
1595 			contiguous_blks++;
1596 			clear_buffer_delay(bh);
1597 		} else if (contiguous_blks) {
1598 			lblk = page->index <<
1599 			       (PAGE_SHIFT - inode->i_blkbits);
1600 			lblk += (curr_off >> inode->i_blkbits) -
1601 				contiguous_blks;
1602 			ext4_es_remove_extent(inode, lblk, contiguous_blks);
1603 			contiguous_blks = 0;
1604 		}
1605 		curr_off = next_off;
1606 	} while ((bh = bh->b_this_page) != head);
1607 
1608 	if (contiguous_blks) {
1609 		lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1610 		lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1611 		ext4_es_remove_extent(inode, lblk, contiguous_blks);
1612 	}
1613 
1614 	/* If we have released all the blocks belonging to a cluster, then we
1615 	 * need to release the reserved space for that cluster. */
1616 	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1617 	while (num_clusters > 0) {
1618 		lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1619 			((num_clusters - 1) << sbi->s_cluster_bits);
1620 		if (sbi->s_cluster_ratio == 1 ||
1621 		    !ext4_find_delalloc_cluster(inode, lblk))
1622 			ext4_da_release_space(inode, 1);
1623 
1624 		num_clusters--;
1625 	}
1626 }
1627 
1628 /*
1629  * Delayed allocation stuff
1630  */
1631 
1632 struct mpage_da_data {
1633 	struct inode *inode;
1634 	struct writeback_control *wbc;
1635 
1636 	pgoff_t first_page;	/* The first page to write */
1637 	pgoff_t next_page;	/* Current page to examine */
1638 	pgoff_t last_page;	/* Last page to examine */
1639 	/*
1640 	 * Extent to map - this can be after first_page because that can be
1641 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1642 	 * is delalloc or unwritten.
1643 	 */
1644 	struct ext4_map_blocks map;
1645 	struct ext4_io_submit io_submit;	/* IO submission data */
1646 };
1647 
1648 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1649 				       bool invalidate)
1650 {
1651 	int nr_pages, i;
1652 	pgoff_t index, end;
1653 	struct pagevec pvec;
1654 	struct inode *inode = mpd->inode;
1655 	struct address_space *mapping = inode->i_mapping;
1656 
1657 	/* This is necessary when next_page == 0. */
1658 	if (mpd->first_page >= mpd->next_page)
1659 		return;
1660 
1661 	index = mpd->first_page;
1662 	end   = mpd->next_page - 1;
1663 	if (invalidate) {
1664 		ext4_lblk_t start, last;
1665 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1666 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1667 		ext4_es_remove_extent(inode, start, last - start + 1);
1668 	}
1669 
1670 	pagevec_init(&pvec, 0);
1671 	while (index <= end) {
1672 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1673 		if (nr_pages == 0)
1674 			break;
1675 		for (i = 0; i < nr_pages; i++) {
1676 			struct page *page = pvec.pages[i];
1677 			if (page->index > end)
1678 				break;
1679 			BUG_ON(!PageLocked(page));
1680 			BUG_ON(PageWriteback(page));
1681 			if (invalidate) {
1682 				if (page_mapped(page))
1683 					clear_page_dirty_for_io(page);
1684 				block_invalidatepage(page, 0, PAGE_SIZE);
1685 				ClearPageUptodate(page);
1686 			}
1687 			unlock_page(page);
1688 		}
1689 		index = pvec.pages[nr_pages - 1]->index + 1;
1690 		pagevec_release(&pvec);
1691 	}
1692 }
1693 
1694 static void ext4_print_free_blocks(struct inode *inode)
1695 {
1696 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1697 	struct super_block *sb = inode->i_sb;
1698 	struct ext4_inode_info *ei = EXT4_I(inode);
1699 
1700 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1701 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1702 			ext4_count_free_clusters(sb)));
1703 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1704 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1705 	       (long long) EXT4_C2B(EXT4_SB(sb),
1706 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1707 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1708 	       (long long) EXT4_C2B(EXT4_SB(sb),
1709 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1710 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1711 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1712 		 ei->i_reserved_data_blocks);
1713 	return;
1714 }
1715 
1716 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1717 {
1718 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1719 }
1720 
1721 /*
1722  * This function is grabs code from the very beginning of
1723  * ext4_map_blocks, but assumes that the caller is from delayed write
1724  * time. This function looks up the requested blocks and sets the
1725  * buffer delay bit under the protection of i_data_sem.
1726  */
1727 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1728 			      struct ext4_map_blocks *map,
1729 			      struct buffer_head *bh)
1730 {
1731 	struct extent_status es;
1732 	int retval;
1733 	sector_t invalid_block = ~((sector_t) 0xffff);
1734 #ifdef ES_AGGRESSIVE_TEST
1735 	struct ext4_map_blocks orig_map;
1736 
1737 	memcpy(&orig_map, map, sizeof(*map));
1738 #endif
1739 
1740 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1741 		invalid_block = ~0;
1742 
1743 	map->m_flags = 0;
1744 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1745 		  "logical block %lu\n", inode->i_ino, map->m_len,
1746 		  (unsigned long) map->m_lblk);
1747 
1748 	/* Lookup extent status tree firstly */
1749 	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1750 		if (ext4_es_is_hole(&es)) {
1751 			retval = 0;
1752 			down_read(&EXT4_I(inode)->i_data_sem);
1753 			goto add_delayed;
1754 		}
1755 
1756 		/*
1757 		 * Delayed extent could be allocated by fallocate.
1758 		 * So we need to check it.
1759 		 */
1760 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1761 			map_bh(bh, inode->i_sb, invalid_block);
1762 			set_buffer_new(bh);
1763 			set_buffer_delay(bh);
1764 			return 0;
1765 		}
1766 
1767 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1768 		retval = es.es_len - (iblock - es.es_lblk);
1769 		if (retval > map->m_len)
1770 			retval = map->m_len;
1771 		map->m_len = retval;
1772 		if (ext4_es_is_written(&es))
1773 			map->m_flags |= EXT4_MAP_MAPPED;
1774 		else if (ext4_es_is_unwritten(&es))
1775 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1776 		else
1777 			BUG_ON(1);
1778 
1779 #ifdef ES_AGGRESSIVE_TEST
1780 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1781 #endif
1782 		return retval;
1783 	}
1784 
1785 	/*
1786 	 * Try to see if we can get the block without requesting a new
1787 	 * file system block.
1788 	 */
1789 	down_read(&EXT4_I(inode)->i_data_sem);
1790 	if (ext4_has_inline_data(inode))
1791 		retval = 0;
1792 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1793 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1794 	else
1795 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1796 
1797 add_delayed:
1798 	if (retval == 0) {
1799 		int ret;
1800 		/*
1801 		 * XXX: __block_prepare_write() unmaps passed block,
1802 		 * is it OK?
1803 		 */
1804 		/*
1805 		 * If the block was allocated from previously allocated cluster,
1806 		 * then we don't need to reserve it again. However we still need
1807 		 * to reserve metadata for every block we're going to write.
1808 		 */
1809 		if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1810 		    !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1811 			ret = ext4_da_reserve_space(inode);
1812 			if (ret) {
1813 				/* not enough space to reserve */
1814 				retval = ret;
1815 				goto out_unlock;
1816 			}
1817 		}
1818 
1819 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1820 					    ~0, EXTENT_STATUS_DELAYED);
1821 		if (ret) {
1822 			retval = ret;
1823 			goto out_unlock;
1824 		}
1825 
1826 		map_bh(bh, inode->i_sb, invalid_block);
1827 		set_buffer_new(bh);
1828 		set_buffer_delay(bh);
1829 	} else if (retval > 0) {
1830 		int ret;
1831 		unsigned int status;
1832 
1833 		if (unlikely(retval != map->m_len)) {
1834 			ext4_warning(inode->i_sb,
1835 				     "ES len assertion failed for inode "
1836 				     "%lu: retval %d != map->m_len %d",
1837 				     inode->i_ino, retval, map->m_len);
1838 			WARN_ON(1);
1839 		}
1840 
1841 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1842 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1843 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1844 					    map->m_pblk, status);
1845 		if (ret != 0)
1846 			retval = ret;
1847 	}
1848 
1849 out_unlock:
1850 	up_read((&EXT4_I(inode)->i_data_sem));
1851 
1852 	return retval;
1853 }
1854 
1855 /*
1856  * This is a special get_block_t callback which is used by
1857  * ext4_da_write_begin().  It will either return mapped block or
1858  * reserve space for a single block.
1859  *
1860  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1861  * We also have b_blocknr = -1 and b_bdev initialized properly
1862  *
1863  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1864  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1865  * initialized properly.
1866  */
1867 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1868 			   struct buffer_head *bh, int create)
1869 {
1870 	struct ext4_map_blocks map;
1871 	int ret = 0;
1872 
1873 	BUG_ON(create == 0);
1874 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1875 
1876 	map.m_lblk = iblock;
1877 	map.m_len = 1;
1878 
1879 	/*
1880 	 * first, we need to know whether the block is allocated already
1881 	 * preallocated blocks are unmapped but should treated
1882 	 * the same as allocated blocks.
1883 	 */
1884 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1885 	if (ret <= 0)
1886 		return ret;
1887 
1888 	map_bh(bh, inode->i_sb, map.m_pblk);
1889 	ext4_update_bh_state(bh, map.m_flags);
1890 
1891 	if (buffer_unwritten(bh)) {
1892 		/* A delayed write to unwritten bh should be marked
1893 		 * new and mapped.  Mapped ensures that we don't do
1894 		 * get_block multiple times when we write to the same
1895 		 * offset and new ensures that we do proper zero out
1896 		 * for partial write.
1897 		 */
1898 		set_buffer_new(bh);
1899 		set_buffer_mapped(bh);
1900 	}
1901 	return 0;
1902 }
1903 
1904 static int bget_one(handle_t *handle, struct buffer_head *bh)
1905 {
1906 	get_bh(bh);
1907 	return 0;
1908 }
1909 
1910 static int bput_one(handle_t *handle, struct buffer_head *bh)
1911 {
1912 	put_bh(bh);
1913 	return 0;
1914 }
1915 
1916 static int __ext4_journalled_writepage(struct page *page,
1917 				       unsigned int len)
1918 {
1919 	struct address_space *mapping = page->mapping;
1920 	struct inode *inode = mapping->host;
1921 	struct buffer_head *page_bufs = NULL;
1922 	handle_t *handle = NULL;
1923 	int ret = 0, err = 0;
1924 	int inline_data = ext4_has_inline_data(inode);
1925 	struct buffer_head *inode_bh = NULL;
1926 
1927 	ClearPageChecked(page);
1928 
1929 	if (inline_data) {
1930 		BUG_ON(page->index != 0);
1931 		BUG_ON(len > ext4_get_max_inline_size(inode));
1932 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1933 		if (inode_bh == NULL)
1934 			goto out;
1935 	} else {
1936 		page_bufs = page_buffers(page);
1937 		if (!page_bufs) {
1938 			BUG();
1939 			goto out;
1940 		}
1941 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1942 				       NULL, bget_one);
1943 	}
1944 	/*
1945 	 * We need to release the page lock before we start the
1946 	 * journal, so grab a reference so the page won't disappear
1947 	 * out from under us.
1948 	 */
1949 	get_page(page);
1950 	unlock_page(page);
1951 
1952 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1953 				    ext4_writepage_trans_blocks(inode));
1954 	if (IS_ERR(handle)) {
1955 		ret = PTR_ERR(handle);
1956 		put_page(page);
1957 		goto out_no_pagelock;
1958 	}
1959 	BUG_ON(!ext4_handle_valid(handle));
1960 
1961 	lock_page(page);
1962 	put_page(page);
1963 	if (page->mapping != mapping) {
1964 		/* The page got truncated from under us */
1965 		ext4_journal_stop(handle);
1966 		ret = 0;
1967 		goto out;
1968 	}
1969 
1970 	if (inline_data) {
1971 		BUFFER_TRACE(inode_bh, "get write access");
1972 		ret = ext4_journal_get_write_access(handle, inode_bh);
1973 
1974 		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1975 
1976 	} else {
1977 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1978 					     do_journal_get_write_access);
1979 
1980 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1981 					     write_end_fn);
1982 	}
1983 	if (ret == 0)
1984 		ret = err;
1985 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1986 	err = ext4_journal_stop(handle);
1987 	if (!ret)
1988 		ret = err;
1989 
1990 	if (!ext4_has_inline_data(inode))
1991 		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1992 				       NULL, bput_one);
1993 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1994 out:
1995 	unlock_page(page);
1996 out_no_pagelock:
1997 	brelse(inode_bh);
1998 	return ret;
1999 }
2000 
2001 /*
2002  * Note that we don't need to start a transaction unless we're journaling data
2003  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2004  * need to file the inode to the transaction's list in ordered mode because if
2005  * we are writing back data added by write(), the inode is already there and if
2006  * we are writing back data modified via mmap(), no one guarantees in which
2007  * transaction the data will hit the disk. In case we are journaling data, we
2008  * cannot start transaction directly because transaction start ranks above page
2009  * lock so we have to do some magic.
2010  *
2011  * This function can get called via...
2012  *   - ext4_writepages after taking page lock (have journal handle)
2013  *   - journal_submit_inode_data_buffers (no journal handle)
2014  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2015  *   - grab_page_cache when doing write_begin (have journal handle)
2016  *
2017  * We don't do any block allocation in this function. If we have page with
2018  * multiple blocks we need to write those buffer_heads that are mapped. This
2019  * is important for mmaped based write. So if we do with blocksize 1K
2020  * truncate(f, 1024);
2021  * a = mmap(f, 0, 4096);
2022  * a[0] = 'a';
2023  * truncate(f, 4096);
2024  * we have in the page first buffer_head mapped via page_mkwrite call back
2025  * but other buffer_heads would be unmapped but dirty (dirty done via the
2026  * do_wp_page). So writepage should write the first block. If we modify
2027  * the mmap area beyond 1024 we will again get a page_fault and the
2028  * page_mkwrite callback will do the block allocation and mark the
2029  * buffer_heads mapped.
2030  *
2031  * We redirty the page if we have any buffer_heads that is either delay or
2032  * unwritten in the page.
2033  *
2034  * We can get recursively called as show below.
2035  *
2036  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2037  *		ext4_writepage()
2038  *
2039  * But since we don't do any block allocation we should not deadlock.
2040  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2041  */
2042 static int ext4_writepage(struct page *page,
2043 			  struct writeback_control *wbc)
2044 {
2045 	int ret = 0;
2046 	loff_t size;
2047 	unsigned int len;
2048 	struct buffer_head *page_bufs = NULL;
2049 	struct inode *inode = page->mapping->host;
2050 	struct ext4_io_submit io_submit;
2051 	bool keep_towrite = false;
2052 
2053 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2054 		ext4_invalidatepage(page, 0, PAGE_SIZE);
2055 		unlock_page(page);
2056 		return -EIO;
2057 	}
2058 
2059 	trace_ext4_writepage(page);
2060 	size = i_size_read(inode);
2061 	if (page->index == size >> PAGE_SHIFT)
2062 		len = size & ~PAGE_MASK;
2063 	else
2064 		len = PAGE_SIZE;
2065 
2066 	page_bufs = page_buffers(page);
2067 	/*
2068 	 * We cannot do block allocation or other extent handling in this
2069 	 * function. If there are buffers needing that, we have to redirty
2070 	 * the page. But we may reach here when we do a journal commit via
2071 	 * journal_submit_inode_data_buffers() and in that case we must write
2072 	 * allocated buffers to achieve data=ordered mode guarantees.
2073 	 *
2074 	 * Also, if there is only one buffer per page (the fs block
2075 	 * size == the page size), if one buffer needs block
2076 	 * allocation or needs to modify the extent tree to clear the
2077 	 * unwritten flag, we know that the page can't be written at
2078 	 * all, so we might as well refuse the write immediately.
2079 	 * Unfortunately if the block size != page size, we can't as
2080 	 * easily detect this case using ext4_walk_page_buffers(), but
2081 	 * for the extremely common case, this is an optimization that
2082 	 * skips a useless round trip through ext4_bio_write_page().
2083 	 */
2084 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2085 				   ext4_bh_delay_or_unwritten)) {
2086 		redirty_page_for_writepage(wbc, page);
2087 		if ((current->flags & PF_MEMALLOC) ||
2088 		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2089 			/*
2090 			 * For memory cleaning there's no point in writing only
2091 			 * some buffers. So just bail out. Warn if we came here
2092 			 * from direct reclaim.
2093 			 */
2094 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2095 							== PF_MEMALLOC);
2096 			unlock_page(page);
2097 			return 0;
2098 		}
2099 		keep_towrite = true;
2100 	}
2101 
2102 	if (PageChecked(page) && ext4_should_journal_data(inode))
2103 		/*
2104 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2105 		 * doesn't seem much point in redirtying the page here.
2106 		 */
2107 		return __ext4_journalled_writepage(page, len);
2108 
2109 	ext4_io_submit_init(&io_submit, wbc);
2110 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2111 	if (!io_submit.io_end) {
2112 		redirty_page_for_writepage(wbc, page);
2113 		unlock_page(page);
2114 		return -ENOMEM;
2115 	}
2116 	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2117 	ext4_io_submit(&io_submit);
2118 	/* Drop io_end reference we got from init */
2119 	ext4_put_io_end_defer(io_submit.io_end);
2120 	return ret;
2121 }
2122 
2123 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2124 {
2125 	int len;
2126 	loff_t size = i_size_read(mpd->inode);
2127 	int err;
2128 
2129 	BUG_ON(page->index != mpd->first_page);
2130 	if (page->index == size >> PAGE_SHIFT)
2131 		len = size & ~PAGE_MASK;
2132 	else
2133 		len = PAGE_SIZE;
2134 	clear_page_dirty_for_io(page);
2135 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2136 	if (!err)
2137 		mpd->wbc->nr_to_write--;
2138 	mpd->first_page++;
2139 
2140 	return err;
2141 }
2142 
2143 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2144 
2145 /*
2146  * mballoc gives us at most this number of blocks...
2147  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2148  * The rest of mballoc seems to handle chunks up to full group size.
2149  */
2150 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2151 
2152 /*
2153  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2154  *
2155  * @mpd - extent of blocks
2156  * @lblk - logical number of the block in the file
2157  * @bh - buffer head we want to add to the extent
2158  *
2159  * The function is used to collect contig. blocks in the same state. If the
2160  * buffer doesn't require mapping for writeback and we haven't started the
2161  * extent of buffers to map yet, the function returns 'true' immediately - the
2162  * caller can write the buffer right away. Otherwise the function returns true
2163  * if the block has been added to the extent, false if the block couldn't be
2164  * added.
2165  */
2166 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2167 				   struct buffer_head *bh)
2168 {
2169 	struct ext4_map_blocks *map = &mpd->map;
2170 
2171 	/* Buffer that doesn't need mapping for writeback? */
2172 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2173 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2174 		/* So far no extent to map => we write the buffer right away */
2175 		if (map->m_len == 0)
2176 			return true;
2177 		return false;
2178 	}
2179 
2180 	/* First block in the extent? */
2181 	if (map->m_len == 0) {
2182 		map->m_lblk = lblk;
2183 		map->m_len = 1;
2184 		map->m_flags = bh->b_state & BH_FLAGS;
2185 		return true;
2186 	}
2187 
2188 	/* Don't go larger than mballoc is willing to allocate */
2189 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2190 		return false;
2191 
2192 	/* Can we merge the block to our big extent? */
2193 	if (lblk == map->m_lblk + map->m_len &&
2194 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2195 		map->m_len++;
2196 		return true;
2197 	}
2198 	return false;
2199 }
2200 
2201 /*
2202  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2203  *
2204  * @mpd - extent of blocks for mapping
2205  * @head - the first buffer in the page
2206  * @bh - buffer we should start processing from
2207  * @lblk - logical number of the block in the file corresponding to @bh
2208  *
2209  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2210  * the page for IO if all buffers in this page were mapped and there's no
2211  * accumulated extent of buffers to map or add buffers in the page to the
2212  * extent of buffers to map. The function returns 1 if the caller can continue
2213  * by processing the next page, 0 if it should stop adding buffers to the
2214  * extent to map because we cannot extend it anymore. It can also return value
2215  * < 0 in case of error during IO submission.
2216  */
2217 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2218 				   struct buffer_head *head,
2219 				   struct buffer_head *bh,
2220 				   ext4_lblk_t lblk)
2221 {
2222 	struct inode *inode = mpd->inode;
2223 	int err;
2224 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2225 							>> inode->i_blkbits;
2226 
2227 	do {
2228 		BUG_ON(buffer_locked(bh));
2229 
2230 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2231 			/* Found extent to map? */
2232 			if (mpd->map.m_len)
2233 				return 0;
2234 			/* Everything mapped so far and we hit EOF */
2235 			break;
2236 		}
2237 	} while (lblk++, (bh = bh->b_this_page) != head);
2238 	/* So far everything mapped? Submit the page for IO. */
2239 	if (mpd->map.m_len == 0) {
2240 		err = mpage_submit_page(mpd, head->b_page);
2241 		if (err < 0)
2242 			return err;
2243 	}
2244 	return lblk < blocks;
2245 }
2246 
2247 /*
2248  * mpage_map_buffers - update buffers corresponding to changed extent and
2249  *		       submit fully mapped pages for IO
2250  *
2251  * @mpd - description of extent to map, on return next extent to map
2252  *
2253  * Scan buffers corresponding to changed extent (we expect corresponding pages
2254  * to be already locked) and update buffer state according to new extent state.
2255  * We map delalloc buffers to their physical location, clear unwritten bits,
2256  * and mark buffers as uninit when we perform writes to unwritten extents
2257  * and do extent conversion after IO is finished. If the last page is not fully
2258  * mapped, we update @map to the next extent in the last page that needs
2259  * mapping. Otherwise we submit the page for IO.
2260  */
2261 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2262 {
2263 	struct pagevec pvec;
2264 	int nr_pages, i;
2265 	struct inode *inode = mpd->inode;
2266 	struct buffer_head *head, *bh;
2267 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2268 	pgoff_t start, end;
2269 	ext4_lblk_t lblk;
2270 	sector_t pblock;
2271 	int err;
2272 
2273 	start = mpd->map.m_lblk >> bpp_bits;
2274 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2275 	lblk = start << bpp_bits;
2276 	pblock = mpd->map.m_pblk;
2277 
2278 	pagevec_init(&pvec, 0);
2279 	while (start <= end) {
2280 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2281 					  PAGEVEC_SIZE);
2282 		if (nr_pages == 0)
2283 			break;
2284 		for (i = 0; i < nr_pages; i++) {
2285 			struct page *page = pvec.pages[i];
2286 
2287 			if (page->index > end)
2288 				break;
2289 			/* Up to 'end' pages must be contiguous */
2290 			BUG_ON(page->index != start);
2291 			bh = head = page_buffers(page);
2292 			do {
2293 				if (lblk < mpd->map.m_lblk)
2294 					continue;
2295 				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2296 					/*
2297 					 * Buffer after end of mapped extent.
2298 					 * Find next buffer in the page to map.
2299 					 */
2300 					mpd->map.m_len = 0;
2301 					mpd->map.m_flags = 0;
2302 					/*
2303 					 * FIXME: If dioread_nolock supports
2304 					 * blocksize < pagesize, we need to make
2305 					 * sure we add size mapped so far to
2306 					 * io_end->size as the following call
2307 					 * can submit the page for IO.
2308 					 */
2309 					err = mpage_process_page_bufs(mpd, head,
2310 								      bh, lblk);
2311 					pagevec_release(&pvec);
2312 					if (err > 0)
2313 						err = 0;
2314 					return err;
2315 				}
2316 				if (buffer_delay(bh)) {
2317 					clear_buffer_delay(bh);
2318 					bh->b_blocknr = pblock++;
2319 				}
2320 				clear_buffer_unwritten(bh);
2321 			} while (lblk++, (bh = bh->b_this_page) != head);
2322 
2323 			/*
2324 			 * FIXME: This is going to break if dioread_nolock
2325 			 * supports blocksize < pagesize as we will try to
2326 			 * convert potentially unmapped parts of inode.
2327 			 */
2328 			mpd->io_submit.io_end->size += PAGE_SIZE;
2329 			/* Page fully mapped - let IO run! */
2330 			err = mpage_submit_page(mpd, page);
2331 			if (err < 0) {
2332 				pagevec_release(&pvec);
2333 				return err;
2334 			}
2335 			start++;
2336 		}
2337 		pagevec_release(&pvec);
2338 	}
2339 	/* Extent fully mapped and matches with page boundary. We are done. */
2340 	mpd->map.m_len = 0;
2341 	mpd->map.m_flags = 0;
2342 	return 0;
2343 }
2344 
2345 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2346 {
2347 	struct inode *inode = mpd->inode;
2348 	struct ext4_map_blocks *map = &mpd->map;
2349 	int get_blocks_flags;
2350 	int err, dioread_nolock;
2351 
2352 	trace_ext4_da_write_pages_extent(inode, map);
2353 	/*
2354 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2355 	 * to convert an unwritten extent to be initialized (in the case
2356 	 * where we have written into one or more preallocated blocks).  It is
2357 	 * possible that we're going to need more metadata blocks than
2358 	 * previously reserved. However we must not fail because we're in
2359 	 * writeback and there is nothing we can do about it so it might result
2360 	 * in data loss.  So use reserved blocks to allocate metadata if
2361 	 * possible.
2362 	 *
2363 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2364 	 * the blocks in question are delalloc blocks.  This indicates
2365 	 * that the blocks and quotas has already been checked when
2366 	 * the data was copied into the page cache.
2367 	 */
2368 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2369 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2370 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2371 	dioread_nolock = ext4_should_dioread_nolock(inode);
2372 	if (dioread_nolock)
2373 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2374 	if (map->m_flags & (1 << BH_Delay))
2375 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2376 
2377 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2378 	if (err < 0)
2379 		return err;
2380 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2381 		if (!mpd->io_submit.io_end->handle &&
2382 		    ext4_handle_valid(handle)) {
2383 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2384 			handle->h_rsv_handle = NULL;
2385 		}
2386 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2387 	}
2388 
2389 	BUG_ON(map->m_len == 0);
2390 	if (map->m_flags & EXT4_MAP_NEW) {
2391 		clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2392 				   map->m_len);
2393 	}
2394 	return 0;
2395 }
2396 
2397 /*
2398  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2399  *				 mpd->len and submit pages underlying it for IO
2400  *
2401  * @handle - handle for journal operations
2402  * @mpd - extent to map
2403  * @give_up_on_write - we set this to true iff there is a fatal error and there
2404  *                     is no hope of writing the data. The caller should discard
2405  *                     dirty pages to avoid infinite loops.
2406  *
2407  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2408  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2409  * them to initialized or split the described range from larger unwritten
2410  * extent. Note that we need not map all the described range since allocation
2411  * can return less blocks or the range is covered by more unwritten extents. We
2412  * cannot map more because we are limited by reserved transaction credits. On
2413  * the other hand we always make sure that the last touched page is fully
2414  * mapped so that it can be written out (and thus forward progress is
2415  * guaranteed). After mapping we submit all mapped pages for IO.
2416  */
2417 static int mpage_map_and_submit_extent(handle_t *handle,
2418 				       struct mpage_da_data *mpd,
2419 				       bool *give_up_on_write)
2420 {
2421 	struct inode *inode = mpd->inode;
2422 	struct ext4_map_blocks *map = &mpd->map;
2423 	int err;
2424 	loff_t disksize;
2425 	int progress = 0;
2426 
2427 	mpd->io_submit.io_end->offset =
2428 				((loff_t)map->m_lblk) << inode->i_blkbits;
2429 	do {
2430 		err = mpage_map_one_extent(handle, mpd);
2431 		if (err < 0) {
2432 			struct super_block *sb = inode->i_sb;
2433 
2434 			if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2435 			    EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2436 				goto invalidate_dirty_pages;
2437 			/*
2438 			 * Let the uper layers retry transient errors.
2439 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2440 			 * is non-zero, a commit should free up blocks.
2441 			 */
2442 			if ((err == -ENOMEM) ||
2443 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2444 				if (progress)
2445 					goto update_disksize;
2446 				return err;
2447 			}
2448 			ext4_msg(sb, KERN_CRIT,
2449 				 "Delayed block allocation failed for "
2450 				 "inode %lu at logical offset %llu with"
2451 				 " max blocks %u with error %d",
2452 				 inode->i_ino,
2453 				 (unsigned long long)map->m_lblk,
2454 				 (unsigned)map->m_len, -err);
2455 			ext4_msg(sb, KERN_CRIT,
2456 				 "This should not happen!! Data will "
2457 				 "be lost\n");
2458 			if (err == -ENOSPC)
2459 				ext4_print_free_blocks(inode);
2460 		invalidate_dirty_pages:
2461 			*give_up_on_write = true;
2462 			return err;
2463 		}
2464 		progress = 1;
2465 		/*
2466 		 * Update buffer state, submit mapped pages, and get us new
2467 		 * extent to map
2468 		 */
2469 		err = mpage_map_and_submit_buffers(mpd);
2470 		if (err < 0)
2471 			goto update_disksize;
2472 	} while (map->m_len);
2473 
2474 update_disksize:
2475 	/*
2476 	 * Update on-disk size after IO is submitted.  Races with
2477 	 * truncate are avoided by checking i_size under i_data_sem.
2478 	 */
2479 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2480 	if (disksize > EXT4_I(inode)->i_disksize) {
2481 		int err2;
2482 		loff_t i_size;
2483 
2484 		down_write(&EXT4_I(inode)->i_data_sem);
2485 		i_size = i_size_read(inode);
2486 		if (disksize > i_size)
2487 			disksize = i_size;
2488 		if (disksize > EXT4_I(inode)->i_disksize)
2489 			EXT4_I(inode)->i_disksize = disksize;
2490 		up_write(&EXT4_I(inode)->i_data_sem);
2491 		err2 = ext4_mark_inode_dirty(handle, inode);
2492 		if (err2)
2493 			ext4_error(inode->i_sb,
2494 				   "Failed to mark inode %lu dirty",
2495 				   inode->i_ino);
2496 		if (!err)
2497 			err = err2;
2498 	}
2499 	return err;
2500 }
2501 
2502 /*
2503  * Calculate the total number of credits to reserve for one writepages
2504  * iteration. This is called from ext4_writepages(). We map an extent of
2505  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2506  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2507  * bpp - 1 blocks in bpp different extents.
2508  */
2509 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2510 {
2511 	int bpp = ext4_journal_blocks_per_page(inode);
2512 
2513 	return ext4_meta_trans_blocks(inode,
2514 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2515 }
2516 
2517 /*
2518  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2519  * 				 and underlying extent to map
2520  *
2521  * @mpd - where to look for pages
2522  *
2523  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2524  * IO immediately. When we find a page which isn't mapped we start accumulating
2525  * extent of buffers underlying these pages that needs mapping (formed by
2526  * either delayed or unwritten buffers). We also lock the pages containing
2527  * these buffers. The extent found is returned in @mpd structure (starting at
2528  * mpd->lblk with length mpd->len blocks).
2529  *
2530  * Note that this function can attach bios to one io_end structure which are
2531  * neither logically nor physically contiguous. Although it may seem as an
2532  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2533  * case as we need to track IO to all buffers underlying a page in one io_end.
2534  */
2535 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2536 {
2537 	struct address_space *mapping = mpd->inode->i_mapping;
2538 	struct pagevec pvec;
2539 	unsigned int nr_pages;
2540 	long left = mpd->wbc->nr_to_write;
2541 	pgoff_t index = mpd->first_page;
2542 	pgoff_t end = mpd->last_page;
2543 	int tag;
2544 	int i, err = 0;
2545 	int blkbits = mpd->inode->i_blkbits;
2546 	ext4_lblk_t lblk;
2547 	struct buffer_head *head;
2548 
2549 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2550 		tag = PAGECACHE_TAG_TOWRITE;
2551 	else
2552 		tag = PAGECACHE_TAG_DIRTY;
2553 
2554 	pagevec_init(&pvec, 0);
2555 	mpd->map.m_len = 0;
2556 	mpd->next_page = index;
2557 	while (index <= end) {
2558 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2559 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2560 		if (nr_pages == 0)
2561 			goto out;
2562 
2563 		for (i = 0; i < nr_pages; i++) {
2564 			struct page *page = pvec.pages[i];
2565 
2566 			/*
2567 			 * At this point, the page may be truncated or
2568 			 * invalidated (changing page->mapping to NULL), or
2569 			 * even swizzled back from swapper_space to tmpfs file
2570 			 * mapping. However, page->index will not change
2571 			 * because we have a reference on the page.
2572 			 */
2573 			if (page->index > end)
2574 				goto out;
2575 
2576 			/*
2577 			 * Accumulated enough dirty pages? This doesn't apply
2578 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2579 			 * keep going because someone may be concurrently
2580 			 * dirtying pages, and we might have synced a lot of
2581 			 * newly appeared dirty pages, but have not synced all
2582 			 * of the old dirty pages.
2583 			 */
2584 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2585 				goto out;
2586 
2587 			/* If we can't merge this page, we are done. */
2588 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2589 				goto out;
2590 
2591 			lock_page(page);
2592 			/*
2593 			 * If the page is no longer dirty, or its mapping no
2594 			 * longer corresponds to inode we are writing (which
2595 			 * means it has been truncated or invalidated), or the
2596 			 * page is already under writeback and we are not doing
2597 			 * a data integrity writeback, skip the page
2598 			 */
2599 			if (!PageDirty(page) ||
2600 			    (PageWriteback(page) &&
2601 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2602 			    unlikely(page->mapping != mapping)) {
2603 				unlock_page(page);
2604 				continue;
2605 			}
2606 
2607 			wait_on_page_writeback(page);
2608 			BUG_ON(PageWriteback(page));
2609 
2610 			if (mpd->map.m_len == 0)
2611 				mpd->first_page = page->index;
2612 			mpd->next_page = page->index + 1;
2613 			/* Add all dirty buffers to mpd */
2614 			lblk = ((ext4_lblk_t)page->index) <<
2615 				(PAGE_SHIFT - blkbits);
2616 			head = page_buffers(page);
2617 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2618 			if (err <= 0)
2619 				goto out;
2620 			err = 0;
2621 			left--;
2622 		}
2623 		pagevec_release(&pvec);
2624 		cond_resched();
2625 	}
2626 	return 0;
2627 out:
2628 	pagevec_release(&pvec);
2629 	return err;
2630 }
2631 
2632 static int __writepage(struct page *page, struct writeback_control *wbc,
2633 		       void *data)
2634 {
2635 	struct address_space *mapping = data;
2636 	int ret = ext4_writepage(page, wbc);
2637 	mapping_set_error(mapping, ret);
2638 	return ret;
2639 }
2640 
2641 static int ext4_writepages(struct address_space *mapping,
2642 			   struct writeback_control *wbc)
2643 {
2644 	pgoff_t	writeback_index = 0;
2645 	long nr_to_write = wbc->nr_to_write;
2646 	int range_whole = 0;
2647 	int cycled = 1;
2648 	handle_t *handle = NULL;
2649 	struct mpage_da_data mpd;
2650 	struct inode *inode = mapping->host;
2651 	int needed_blocks, rsv_blocks = 0, ret = 0;
2652 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2653 	bool done;
2654 	struct blk_plug plug;
2655 	bool give_up_on_write = false;
2656 
2657 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2658 		return -EIO;
2659 
2660 	percpu_down_read(&sbi->s_journal_flag_rwsem);
2661 	trace_ext4_writepages(inode, wbc);
2662 
2663 	if (dax_mapping(mapping)) {
2664 		ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2665 						  wbc);
2666 		goto out_writepages;
2667 	}
2668 
2669 	/*
2670 	 * No pages to write? This is mainly a kludge to avoid starting
2671 	 * a transaction for special inodes like journal inode on last iput()
2672 	 * because that could violate lock ordering on umount
2673 	 */
2674 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2675 		goto out_writepages;
2676 
2677 	if (ext4_should_journal_data(inode)) {
2678 		struct blk_plug plug;
2679 
2680 		blk_start_plug(&plug);
2681 		ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2682 		blk_finish_plug(&plug);
2683 		goto out_writepages;
2684 	}
2685 
2686 	/*
2687 	 * If the filesystem has aborted, it is read-only, so return
2688 	 * right away instead of dumping stack traces later on that
2689 	 * will obscure the real source of the problem.  We test
2690 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2691 	 * the latter could be true if the filesystem is mounted
2692 	 * read-only, and in that case, ext4_writepages should
2693 	 * *never* be called, so if that ever happens, we would want
2694 	 * the stack trace.
2695 	 */
2696 	if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2697 		     sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2698 		ret = -EROFS;
2699 		goto out_writepages;
2700 	}
2701 
2702 	if (ext4_should_dioread_nolock(inode)) {
2703 		/*
2704 		 * We may need to convert up to one extent per block in
2705 		 * the page and we may dirty the inode.
2706 		 */
2707 		rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2708 	}
2709 
2710 	/*
2711 	 * If we have inline data and arrive here, it means that
2712 	 * we will soon create the block for the 1st page, so
2713 	 * we'd better clear the inline data here.
2714 	 */
2715 	if (ext4_has_inline_data(inode)) {
2716 		/* Just inode will be modified... */
2717 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2718 		if (IS_ERR(handle)) {
2719 			ret = PTR_ERR(handle);
2720 			goto out_writepages;
2721 		}
2722 		BUG_ON(ext4_test_inode_state(inode,
2723 				EXT4_STATE_MAY_INLINE_DATA));
2724 		ext4_destroy_inline_data(handle, inode);
2725 		ext4_journal_stop(handle);
2726 	}
2727 
2728 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2729 		range_whole = 1;
2730 
2731 	if (wbc->range_cyclic) {
2732 		writeback_index = mapping->writeback_index;
2733 		if (writeback_index)
2734 			cycled = 0;
2735 		mpd.first_page = writeback_index;
2736 		mpd.last_page = -1;
2737 	} else {
2738 		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2739 		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2740 	}
2741 
2742 	mpd.inode = inode;
2743 	mpd.wbc = wbc;
2744 	ext4_io_submit_init(&mpd.io_submit, wbc);
2745 retry:
2746 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2747 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2748 	done = false;
2749 	blk_start_plug(&plug);
2750 	while (!done && mpd.first_page <= mpd.last_page) {
2751 		/* For each extent of pages we use new io_end */
2752 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2753 		if (!mpd.io_submit.io_end) {
2754 			ret = -ENOMEM;
2755 			break;
2756 		}
2757 
2758 		/*
2759 		 * We have two constraints: We find one extent to map and we
2760 		 * must always write out whole page (makes a difference when
2761 		 * blocksize < pagesize) so that we don't block on IO when we
2762 		 * try to write out the rest of the page. Journalled mode is
2763 		 * not supported by delalloc.
2764 		 */
2765 		BUG_ON(ext4_should_journal_data(inode));
2766 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2767 
2768 		/* start a new transaction */
2769 		handle = ext4_journal_start_with_reserve(inode,
2770 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2771 		if (IS_ERR(handle)) {
2772 			ret = PTR_ERR(handle);
2773 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2774 			       "%ld pages, ino %lu; err %d", __func__,
2775 				wbc->nr_to_write, inode->i_ino, ret);
2776 			/* Release allocated io_end */
2777 			ext4_put_io_end(mpd.io_submit.io_end);
2778 			break;
2779 		}
2780 
2781 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2782 		ret = mpage_prepare_extent_to_map(&mpd);
2783 		if (!ret) {
2784 			if (mpd.map.m_len)
2785 				ret = mpage_map_and_submit_extent(handle, &mpd,
2786 					&give_up_on_write);
2787 			else {
2788 				/*
2789 				 * We scanned the whole range (or exhausted
2790 				 * nr_to_write), submitted what was mapped and
2791 				 * didn't find anything needing mapping. We are
2792 				 * done.
2793 				 */
2794 				done = true;
2795 			}
2796 		}
2797 		/*
2798 		 * Caution: If the handle is synchronous,
2799 		 * ext4_journal_stop() can wait for transaction commit
2800 		 * to finish which may depend on writeback of pages to
2801 		 * complete or on page lock to be released.  In that
2802 		 * case, we have to wait until after after we have
2803 		 * submitted all the IO, released page locks we hold,
2804 		 * and dropped io_end reference (for extent conversion
2805 		 * to be able to complete) before stopping the handle.
2806 		 */
2807 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2808 			ext4_journal_stop(handle);
2809 			handle = NULL;
2810 		}
2811 		/* Submit prepared bio */
2812 		ext4_io_submit(&mpd.io_submit);
2813 		/* Unlock pages we didn't use */
2814 		mpage_release_unused_pages(&mpd, give_up_on_write);
2815 		/*
2816 		 * Drop our io_end reference we got from init. We have
2817 		 * to be careful and use deferred io_end finishing if
2818 		 * we are still holding the transaction as we can
2819 		 * release the last reference to io_end which may end
2820 		 * up doing unwritten extent conversion.
2821 		 */
2822 		if (handle) {
2823 			ext4_put_io_end_defer(mpd.io_submit.io_end);
2824 			ext4_journal_stop(handle);
2825 		} else
2826 			ext4_put_io_end(mpd.io_submit.io_end);
2827 
2828 		if (ret == -ENOSPC && sbi->s_journal) {
2829 			/*
2830 			 * Commit the transaction which would
2831 			 * free blocks released in the transaction
2832 			 * and try again
2833 			 */
2834 			jbd2_journal_force_commit_nested(sbi->s_journal);
2835 			ret = 0;
2836 			continue;
2837 		}
2838 		/* Fatal error - ENOMEM, EIO... */
2839 		if (ret)
2840 			break;
2841 	}
2842 	blk_finish_plug(&plug);
2843 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2844 		cycled = 1;
2845 		mpd.last_page = writeback_index - 1;
2846 		mpd.first_page = 0;
2847 		goto retry;
2848 	}
2849 
2850 	/* Update index */
2851 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2852 		/*
2853 		 * Set the writeback_index so that range_cyclic
2854 		 * mode will write it back later
2855 		 */
2856 		mapping->writeback_index = mpd.first_page;
2857 
2858 out_writepages:
2859 	trace_ext4_writepages_result(inode, wbc, ret,
2860 				     nr_to_write - wbc->nr_to_write);
2861 	percpu_up_read(&sbi->s_journal_flag_rwsem);
2862 	return ret;
2863 }
2864 
2865 static int ext4_nonda_switch(struct super_block *sb)
2866 {
2867 	s64 free_clusters, dirty_clusters;
2868 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2869 
2870 	/*
2871 	 * switch to non delalloc mode if we are running low
2872 	 * on free block. The free block accounting via percpu
2873 	 * counters can get slightly wrong with percpu_counter_batch getting
2874 	 * accumulated on each CPU without updating global counters
2875 	 * Delalloc need an accurate free block accounting. So switch
2876 	 * to non delalloc when we are near to error range.
2877 	 */
2878 	free_clusters =
2879 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2880 	dirty_clusters =
2881 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2882 	/*
2883 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2884 	 */
2885 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2886 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2887 
2888 	if (2 * free_clusters < 3 * dirty_clusters ||
2889 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2890 		/*
2891 		 * free block count is less than 150% of dirty blocks
2892 		 * or free blocks is less than watermark
2893 		 */
2894 		return 1;
2895 	}
2896 	return 0;
2897 }
2898 
2899 /* We always reserve for an inode update; the superblock could be there too */
2900 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2901 {
2902 	if (likely(ext4_has_feature_large_file(inode->i_sb)))
2903 		return 1;
2904 
2905 	if (pos + len <= 0x7fffffffULL)
2906 		return 1;
2907 
2908 	/* We might need to update the superblock to set LARGE_FILE */
2909 	return 2;
2910 }
2911 
2912 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2913 			       loff_t pos, unsigned len, unsigned flags,
2914 			       struct page **pagep, void **fsdata)
2915 {
2916 	int ret, retries = 0;
2917 	struct page *page;
2918 	pgoff_t index;
2919 	struct inode *inode = mapping->host;
2920 	handle_t *handle;
2921 
2922 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2923 		return -EIO;
2924 
2925 	index = pos >> PAGE_SHIFT;
2926 
2927 	if (ext4_nonda_switch(inode->i_sb) ||
2928 	    S_ISLNK(inode->i_mode)) {
2929 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2930 		return ext4_write_begin(file, mapping, pos,
2931 					len, flags, pagep, fsdata);
2932 	}
2933 	*fsdata = (void *)0;
2934 	trace_ext4_da_write_begin(inode, pos, len, flags);
2935 
2936 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2937 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2938 						      pos, len, flags,
2939 						      pagep, fsdata);
2940 		if (ret < 0)
2941 			return ret;
2942 		if (ret == 1)
2943 			return 0;
2944 	}
2945 
2946 	/*
2947 	 * grab_cache_page_write_begin() can take a long time if the
2948 	 * system is thrashing due to memory pressure, or if the page
2949 	 * is being written back.  So grab it first before we start
2950 	 * the transaction handle.  This also allows us to allocate
2951 	 * the page (if needed) without using GFP_NOFS.
2952 	 */
2953 retry_grab:
2954 	page = grab_cache_page_write_begin(mapping, index, flags);
2955 	if (!page)
2956 		return -ENOMEM;
2957 	unlock_page(page);
2958 
2959 	/*
2960 	 * With delayed allocation, we don't log the i_disksize update
2961 	 * if there is delayed block allocation. But we still need
2962 	 * to journalling the i_disksize update if writes to the end
2963 	 * of file which has an already mapped buffer.
2964 	 */
2965 retry_journal:
2966 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2967 				ext4_da_write_credits(inode, pos, len));
2968 	if (IS_ERR(handle)) {
2969 		put_page(page);
2970 		return PTR_ERR(handle);
2971 	}
2972 
2973 	lock_page(page);
2974 	if (page->mapping != mapping) {
2975 		/* The page got truncated from under us */
2976 		unlock_page(page);
2977 		put_page(page);
2978 		ext4_journal_stop(handle);
2979 		goto retry_grab;
2980 	}
2981 	/* In case writeback began while the page was unlocked */
2982 	wait_for_stable_page(page);
2983 
2984 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2985 	ret = ext4_block_write_begin(page, pos, len,
2986 				     ext4_da_get_block_prep);
2987 #else
2988 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2989 #endif
2990 	if (ret < 0) {
2991 		unlock_page(page);
2992 		ext4_journal_stop(handle);
2993 		/*
2994 		 * block_write_begin may have instantiated a few blocks
2995 		 * outside i_size.  Trim these off again. Don't need
2996 		 * i_size_read because we hold i_mutex.
2997 		 */
2998 		if (pos + len > inode->i_size)
2999 			ext4_truncate_failed_write(inode);
3000 
3001 		if (ret == -ENOSPC &&
3002 		    ext4_should_retry_alloc(inode->i_sb, &retries))
3003 			goto retry_journal;
3004 
3005 		put_page(page);
3006 		return ret;
3007 	}
3008 
3009 	*pagep = page;
3010 	return ret;
3011 }
3012 
3013 /*
3014  * Check if we should update i_disksize
3015  * when write to the end of file but not require block allocation
3016  */
3017 static int ext4_da_should_update_i_disksize(struct page *page,
3018 					    unsigned long offset)
3019 {
3020 	struct buffer_head *bh;
3021 	struct inode *inode = page->mapping->host;
3022 	unsigned int idx;
3023 	int i;
3024 
3025 	bh = page_buffers(page);
3026 	idx = offset >> inode->i_blkbits;
3027 
3028 	for (i = 0; i < idx; i++)
3029 		bh = bh->b_this_page;
3030 
3031 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3032 		return 0;
3033 	return 1;
3034 }
3035 
3036 static int ext4_da_write_end(struct file *file,
3037 			     struct address_space *mapping,
3038 			     loff_t pos, unsigned len, unsigned copied,
3039 			     struct page *page, void *fsdata)
3040 {
3041 	struct inode *inode = mapping->host;
3042 	int ret = 0, ret2;
3043 	handle_t *handle = ext4_journal_current_handle();
3044 	loff_t new_i_size;
3045 	unsigned long start, end;
3046 	int write_mode = (int)(unsigned long)fsdata;
3047 
3048 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3049 		return ext4_write_end(file, mapping, pos,
3050 				      len, copied, page, fsdata);
3051 
3052 	trace_ext4_da_write_end(inode, pos, len, copied);
3053 	start = pos & (PAGE_SIZE - 1);
3054 	end = start + copied - 1;
3055 
3056 	/*
3057 	 * generic_write_end() will run mark_inode_dirty() if i_size
3058 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
3059 	 * into that.
3060 	 */
3061 	new_i_size = pos + copied;
3062 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3063 		if (ext4_has_inline_data(inode) ||
3064 		    ext4_da_should_update_i_disksize(page, end)) {
3065 			ext4_update_i_disksize(inode, new_i_size);
3066 			/* We need to mark inode dirty even if
3067 			 * new_i_size is less that inode->i_size
3068 			 * bu greater than i_disksize.(hint delalloc)
3069 			 */
3070 			ext4_mark_inode_dirty(handle, inode);
3071 		}
3072 	}
3073 
3074 	if (write_mode != CONVERT_INLINE_DATA &&
3075 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3076 	    ext4_has_inline_data(inode))
3077 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3078 						     page);
3079 	else
3080 		ret2 = generic_write_end(file, mapping, pos, len, copied,
3081 							page, fsdata);
3082 
3083 	copied = ret2;
3084 	if (ret2 < 0)
3085 		ret = ret2;
3086 	ret2 = ext4_journal_stop(handle);
3087 	if (!ret)
3088 		ret = ret2;
3089 
3090 	return ret ? ret : copied;
3091 }
3092 
3093 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3094 				   unsigned int length)
3095 {
3096 	/*
3097 	 * Drop reserved blocks
3098 	 */
3099 	BUG_ON(!PageLocked(page));
3100 	if (!page_has_buffers(page))
3101 		goto out;
3102 
3103 	ext4_da_page_release_reservation(page, offset, length);
3104 
3105 out:
3106 	ext4_invalidatepage(page, offset, length);
3107 
3108 	return;
3109 }
3110 
3111 /*
3112  * Force all delayed allocation blocks to be allocated for a given inode.
3113  */
3114 int ext4_alloc_da_blocks(struct inode *inode)
3115 {
3116 	trace_ext4_alloc_da_blocks(inode);
3117 
3118 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3119 		return 0;
3120 
3121 	/*
3122 	 * We do something simple for now.  The filemap_flush() will
3123 	 * also start triggering a write of the data blocks, which is
3124 	 * not strictly speaking necessary (and for users of
3125 	 * laptop_mode, not even desirable).  However, to do otherwise
3126 	 * would require replicating code paths in:
3127 	 *
3128 	 * ext4_writepages() ->
3129 	 *    write_cache_pages() ---> (via passed in callback function)
3130 	 *        __mpage_da_writepage() -->
3131 	 *           mpage_add_bh_to_extent()
3132 	 *           mpage_da_map_blocks()
3133 	 *
3134 	 * The problem is that write_cache_pages(), located in
3135 	 * mm/page-writeback.c, marks pages clean in preparation for
3136 	 * doing I/O, which is not desirable if we're not planning on
3137 	 * doing I/O at all.
3138 	 *
3139 	 * We could call write_cache_pages(), and then redirty all of
3140 	 * the pages by calling redirty_page_for_writepage() but that
3141 	 * would be ugly in the extreme.  So instead we would need to
3142 	 * replicate parts of the code in the above functions,
3143 	 * simplifying them because we wouldn't actually intend to
3144 	 * write out the pages, but rather only collect contiguous
3145 	 * logical block extents, call the multi-block allocator, and
3146 	 * then update the buffer heads with the block allocations.
3147 	 *
3148 	 * For now, though, we'll cheat by calling filemap_flush(),
3149 	 * which will map the blocks, and start the I/O, but not
3150 	 * actually wait for the I/O to complete.
3151 	 */
3152 	return filemap_flush(inode->i_mapping);
3153 }
3154 
3155 /*
3156  * bmap() is special.  It gets used by applications such as lilo and by
3157  * the swapper to find the on-disk block of a specific piece of data.
3158  *
3159  * Naturally, this is dangerous if the block concerned is still in the
3160  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3161  * filesystem and enables swap, then they may get a nasty shock when the
3162  * data getting swapped to that swapfile suddenly gets overwritten by
3163  * the original zero's written out previously to the journal and
3164  * awaiting writeback in the kernel's buffer cache.
3165  *
3166  * So, if we see any bmap calls here on a modified, data-journaled file,
3167  * take extra steps to flush any blocks which might be in the cache.
3168  */
3169 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3170 {
3171 	struct inode *inode = mapping->host;
3172 	journal_t *journal;
3173 	int err;
3174 
3175 	/*
3176 	 * We can get here for an inline file via the FIBMAP ioctl
3177 	 */
3178 	if (ext4_has_inline_data(inode))
3179 		return 0;
3180 
3181 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3182 			test_opt(inode->i_sb, DELALLOC)) {
3183 		/*
3184 		 * With delalloc we want to sync the file
3185 		 * so that we can make sure we allocate
3186 		 * blocks for file
3187 		 */
3188 		filemap_write_and_wait(mapping);
3189 	}
3190 
3191 	if (EXT4_JOURNAL(inode) &&
3192 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3193 		/*
3194 		 * This is a REALLY heavyweight approach, but the use of
3195 		 * bmap on dirty files is expected to be extremely rare:
3196 		 * only if we run lilo or swapon on a freshly made file
3197 		 * do we expect this to happen.
3198 		 *
3199 		 * (bmap requires CAP_SYS_RAWIO so this does not
3200 		 * represent an unprivileged user DOS attack --- we'd be
3201 		 * in trouble if mortal users could trigger this path at
3202 		 * will.)
3203 		 *
3204 		 * NB. EXT4_STATE_JDATA is not set on files other than
3205 		 * regular files.  If somebody wants to bmap a directory
3206 		 * or symlink and gets confused because the buffer
3207 		 * hasn't yet been flushed to disk, they deserve
3208 		 * everything they get.
3209 		 */
3210 
3211 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3212 		journal = EXT4_JOURNAL(inode);
3213 		jbd2_journal_lock_updates(journal);
3214 		err = jbd2_journal_flush(journal);
3215 		jbd2_journal_unlock_updates(journal);
3216 
3217 		if (err)
3218 			return 0;
3219 	}
3220 
3221 	return generic_block_bmap(mapping, block, ext4_get_block);
3222 }
3223 
3224 static int ext4_readpage(struct file *file, struct page *page)
3225 {
3226 	int ret = -EAGAIN;
3227 	struct inode *inode = page->mapping->host;
3228 
3229 	trace_ext4_readpage(page);
3230 
3231 	if (ext4_has_inline_data(inode))
3232 		ret = ext4_readpage_inline(inode, page);
3233 
3234 	if (ret == -EAGAIN)
3235 		return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3236 
3237 	return ret;
3238 }
3239 
3240 static int
3241 ext4_readpages(struct file *file, struct address_space *mapping,
3242 		struct list_head *pages, unsigned nr_pages)
3243 {
3244 	struct inode *inode = mapping->host;
3245 
3246 	/* If the file has inline data, no need to do readpages. */
3247 	if (ext4_has_inline_data(inode))
3248 		return 0;
3249 
3250 	return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3251 }
3252 
3253 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3254 				unsigned int length)
3255 {
3256 	trace_ext4_invalidatepage(page, offset, length);
3257 
3258 	/* No journalling happens on data buffers when this function is used */
3259 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3260 
3261 	block_invalidatepage(page, offset, length);
3262 }
3263 
3264 static int __ext4_journalled_invalidatepage(struct page *page,
3265 					    unsigned int offset,
3266 					    unsigned int length)
3267 {
3268 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3269 
3270 	trace_ext4_journalled_invalidatepage(page, offset, length);
3271 
3272 	/*
3273 	 * If it's a full truncate we just forget about the pending dirtying
3274 	 */
3275 	if (offset == 0 && length == PAGE_SIZE)
3276 		ClearPageChecked(page);
3277 
3278 	return jbd2_journal_invalidatepage(journal, page, offset, length);
3279 }
3280 
3281 /* Wrapper for aops... */
3282 static void ext4_journalled_invalidatepage(struct page *page,
3283 					   unsigned int offset,
3284 					   unsigned int length)
3285 {
3286 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3287 }
3288 
3289 static int ext4_releasepage(struct page *page, gfp_t wait)
3290 {
3291 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3292 
3293 	trace_ext4_releasepage(page);
3294 
3295 	/* Page has dirty journalled data -> cannot release */
3296 	if (PageChecked(page))
3297 		return 0;
3298 	if (journal)
3299 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3300 	else
3301 		return try_to_free_buffers(page);
3302 }
3303 
3304 #ifdef CONFIG_FS_DAX
3305 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3306 			    unsigned flags, struct iomap *iomap)
3307 {
3308 	unsigned int blkbits = inode->i_blkbits;
3309 	unsigned long first_block = offset >> blkbits;
3310 	unsigned long last_block = (offset + length - 1) >> blkbits;
3311 	struct ext4_map_blocks map;
3312 	int ret;
3313 
3314 	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3315 		return -ERANGE;
3316 
3317 	map.m_lblk = first_block;
3318 	map.m_len = last_block - first_block + 1;
3319 
3320 	if (!(flags & IOMAP_WRITE)) {
3321 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3322 	} else {
3323 		int dio_credits;
3324 		handle_t *handle;
3325 		int retries = 0;
3326 
3327 		/* Trim mapping request to maximum we can map at once for DIO */
3328 		if (map.m_len > DIO_MAX_BLOCKS)
3329 			map.m_len = DIO_MAX_BLOCKS;
3330 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3331 retry:
3332 		/*
3333 		 * Either we allocate blocks and then we don't get unwritten
3334 		 * extent so we have reserved enough credits, or the blocks
3335 		 * are already allocated and unwritten and in that case
3336 		 * extent conversion fits in the credits as well.
3337 		 */
3338 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3339 					    dio_credits);
3340 		if (IS_ERR(handle))
3341 			return PTR_ERR(handle);
3342 
3343 		ret = ext4_map_blocks(handle, inode, &map,
3344 				      EXT4_GET_BLOCKS_CREATE_ZERO);
3345 		if (ret < 0) {
3346 			ext4_journal_stop(handle);
3347 			if (ret == -ENOSPC &&
3348 			    ext4_should_retry_alloc(inode->i_sb, &retries))
3349 				goto retry;
3350 			return ret;
3351 		}
3352 
3353 		/*
3354 		 * If we added blocks beyond i_size, we need to make sure they
3355 		 * will get truncated if we crash before updating i_size in
3356 		 * ext4_iomap_end(). For faults we don't need to do that (and
3357 		 * even cannot because for orphan list operations inode_lock is
3358 		 * required) - if we happen to instantiate block beyond i_size,
3359 		 * it is because we race with truncate which has already added
3360 		 * the inode to the orphan list.
3361 		 */
3362 		if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3363 		    (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3364 			int err;
3365 
3366 			err = ext4_orphan_add(handle, inode);
3367 			if (err < 0) {
3368 				ext4_journal_stop(handle);
3369 				return err;
3370 			}
3371 		}
3372 		ext4_journal_stop(handle);
3373 	}
3374 
3375 	iomap->flags = 0;
3376 	iomap->bdev = inode->i_sb->s_bdev;
3377 	iomap->offset = first_block << blkbits;
3378 
3379 	if (ret == 0) {
3380 		iomap->type = IOMAP_HOLE;
3381 		iomap->blkno = IOMAP_NULL_BLOCK;
3382 		iomap->length = (u64)map.m_len << blkbits;
3383 	} else {
3384 		if (map.m_flags & EXT4_MAP_MAPPED) {
3385 			iomap->type = IOMAP_MAPPED;
3386 		} else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3387 			iomap->type = IOMAP_UNWRITTEN;
3388 		} else {
3389 			WARN_ON_ONCE(1);
3390 			return -EIO;
3391 		}
3392 		iomap->blkno = (sector_t)map.m_pblk << (blkbits - 9);
3393 		iomap->length = (u64)map.m_len << blkbits;
3394 	}
3395 
3396 	if (map.m_flags & EXT4_MAP_NEW)
3397 		iomap->flags |= IOMAP_F_NEW;
3398 	return 0;
3399 }
3400 
3401 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3402 			  ssize_t written, unsigned flags, struct iomap *iomap)
3403 {
3404 	int ret = 0;
3405 	handle_t *handle;
3406 	int blkbits = inode->i_blkbits;
3407 	bool truncate = false;
3408 
3409 	if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3410 		return 0;
3411 
3412 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3413 	if (IS_ERR(handle)) {
3414 		ret = PTR_ERR(handle);
3415 		goto orphan_del;
3416 	}
3417 	if (ext4_update_inode_size(inode, offset + written))
3418 		ext4_mark_inode_dirty(handle, inode);
3419 	/*
3420 	 * We may need to truncate allocated but not written blocks beyond EOF.
3421 	 */
3422 	if (iomap->offset + iomap->length >
3423 	    ALIGN(inode->i_size, 1 << blkbits)) {
3424 		ext4_lblk_t written_blk, end_blk;
3425 
3426 		written_blk = (offset + written) >> blkbits;
3427 		end_blk = (offset + length) >> blkbits;
3428 		if (written_blk < end_blk && ext4_can_truncate(inode))
3429 			truncate = true;
3430 	}
3431 	/*
3432 	 * Remove inode from orphan list if we were extending a inode and
3433 	 * everything went fine.
3434 	 */
3435 	if (!truncate && inode->i_nlink &&
3436 	    !list_empty(&EXT4_I(inode)->i_orphan))
3437 		ext4_orphan_del(handle, inode);
3438 	ext4_journal_stop(handle);
3439 	if (truncate) {
3440 		ext4_truncate_failed_write(inode);
3441 orphan_del:
3442 		/*
3443 		 * If truncate failed early the inode might still be on the
3444 		 * orphan list; we need to make sure the inode is removed from
3445 		 * the orphan list in that case.
3446 		 */
3447 		if (inode->i_nlink)
3448 			ext4_orphan_del(NULL, inode);
3449 	}
3450 	return ret;
3451 }
3452 
3453 const struct iomap_ops ext4_iomap_ops = {
3454 	.iomap_begin		= ext4_iomap_begin,
3455 	.iomap_end		= ext4_iomap_end,
3456 };
3457 
3458 #endif
3459 
3460 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3461 			    ssize_t size, void *private)
3462 {
3463         ext4_io_end_t *io_end = private;
3464 
3465 	/* if not async direct IO just return */
3466 	if (!io_end)
3467 		return 0;
3468 
3469 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3470 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3471 		  io_end, io_end->inode->i_ino, iocb, offset, size);
3472 
3473 	/*
3474 	 * Error during AIO DIO. We cannot convert unwritten extents as the
3475 	 * data was not written. Just clear the unwritten flag and drop io_end.
3476 	 */
3477 	if (size <= 0) {
3478 		ext4_clear_io_unwritten_flag(io_end);
3479 		size = 0;
3480 	}
3481 	io_end->offset = offset;
3482 	io_end->size = size;
3483 	ext4_put_io_end(io_end);
3484 
3485 	return 0;
3486 }
3487 
3488 /*
3489  * Handling of direct IO writes.
3490  *
3491  * For ext4 extent files, ext4 will do direct-io write even to holes,
3492  * preallocated extents, and those write extend the file, no need to
3493  * fall back to buffered IO.
3494  *
3495  * For holes, we fallocate those blocks, mark them as unwritten
3496  * If those blocks were preallocated, we mark sure they are split, but
3497  * still keep the range to write as unwritten.
3498  *
3499  * The unwritten extents will be converted to written when DIO is completed.
3500  * For async direct IO, since the IO may still pending when return, we
3501  * set up an end_io call back function, which will do the conversion
3502  * when async direct IO completed.
3503  *
3504  * If the O_DIRECT write will extend the file then add this inode to the
3505  * orphan list.  So recovery will truncate it back to the original size
3506  * if the machine crashes during the write.
3507  *
3508  */
3509 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3510 {
3511 	struct file *file = iocb->ki_filp;
3512 	struct inode *inode = file->f_mapping->host;
3513 	struct ext4_inode_info *ei = EXT4_I(inode);
3514 	ssize_t ret;
3515 	loff_t offset = iocb->ki_pos;
3516 	size_t count = iov_iter_count(iter);
3517 	int overwrite = 0;
3518 	get_block_t *get_block_func = NULL;
3519 	int dio_flags = 0;
3520 	loff_t final_size = offset + count;
3521 	int orphan = 0;
3522 	handle_t *handle;
3523 
3524 	if (final_size > inode->i_size) {
3525 		/* Credits for sb + inode write */
3526 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3527 		if (IS_ERR(handle)) {
3528 			ret = PTR_ERR(handle);
3529 			goto out;
3530 		}
3531 		ret = ext4_orphan_add(handle, inode);
3532 		if (ret) {
3533 			ext4_journal_stop(handle);
3534 			goto out;
3535 		}
3536 		orphan = 1;
3537 		ei->i_disksize = inode->i_size;
3538 		ext4_journal_stop(handle);
3539 	}
3540 
3541 	BUG_ON(iocb->private == NULL);
3542 
3543 	/*
3544 	 * Make all waiters for direct IO properly wait also for extent
3545 	 * conversion. This also disallows race between truncate() and
3546 	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3547 	 */
3548 	inode_dio_begin(inode);
3549 
3550 	/* If we do a overwrite dio, i_mutex locking can be released */
3551 	overwrite = *((int *)iocb->private);
3552 
3553 	if (overwrite)
3554 		inode_unlock(inode);
3555 
3556 	/*
3557 	 * For extent mapped files we could direct write to holes and fallocate.
3558 	 *
3559 	 * Allocated blocks to fill the hole are marked as unwritten to prevent
3560 	 * parallel buffered read to expose the stale data before DIO complete
3561 	 * the data IO.
3562 	 *
3563 	 * As to previously fallocated extents, ext4 get_block will just simply
3564 	 * mark the buffer mapped but still keep the extents unwritten.
3565 	 *
3566 	 * For non AIO case, we will convert those unwritten extents to written
3567 	 * after return back from blockdev_direct_IO. That way we save us from
3568 	 * allocating io_end structure and also the overhead of offloading
3569 	 * the extent convertion to a workqueue.
3570 	 *
3571 	 * For async DIO, the conversion needs to be deferred when the
3572 	 * IO is completed. The ext4 end_io callback function will be
3573 	 * called to take care of the conversion work.  Here for async
3574 	 * case, we allocate an io_end structure to hook to the iocb.
3575 	 */
3576 	iocb->private = NULL;
3577 	if (overwrite)
3578 		get_block_func = ext4_dio_get_block_overwrite;
3579 	else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3580 		   round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3581 		get_block_func = ext4_dio_get_block;
3582 		dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3583 	} else if (is_sync_kiocb(iocb)) {
3584 		get_block_func = ext4_dio_get_block_unwritten_sync;
3585 		dio_flags = DIO_LOCKING;
3586 	} else {
3587 		get_block_func = ext4_dio_get_block_unwritten_async;
3588 		dio_flags = DIO_LOCKING;
3589 	}
3590 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3591 	BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3592 #endif
3593 	ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3594 				   get_block_func, ext4_end_io_dio, NULL,
3595 				   dio_flags);
3596 
3597 	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3598 						EXT4_STATE_DIO_UNWRITTEN)) {
3599 		int err;
3600 		/*
3601 		 * for non AIO case, since the IO is already
3602 		 * completed, we could do the conversion right here
3603 		 */
3604 		err = ext4_convert_unwritten_extents(NULL, inode,
3605 						     offset, ret);
3606 		if (err < 0)
3607 			ret = err;
3608 		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3609 	}
3610 
3611 	inode_dio_end(inode);
3612 	/* take i_mutex locking again if we do a ovewrite dio */
3613 	if (overwrite)
3614 		inode_lock(inode);
3615 
3616 	if (ret < 0 && final_size > inode->i_size)
3617 		ext4_truncate_failed_write(inode);
3618 
3619 	/* Handle extending of i_size after direct IO write */
3620 	if (orphan) {
3621 		int err;
3622 
3623 		/* Credits for sb + inode write */
3624 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3625 		if (IS_ERR(handle)) {
3626 			/* This is really bad luck. We've written the data
3627 			 * but cannot extend i_size. Bail out and pretend
3628 			 * the write failed... */
3629 			ret = PTR_ERR(handle);
3630 			if (inode->i_nlink)
3631 				ext4_orphan_del(NULL, inode);
3632 
3633 			goto out;
3634 		}
3635 		if (inode->i_nlink)
3636 			ext4_orphan_del(handle, inode);
3637 		if (ret > 0) {
3638 			loff_t end = offset + ret;
3639 			if (end > inode->i_size) {
3640 				ei->i_disksize = end;
3641 				i_size_write(inode, end);
3642 				/*
3643 				 * We're going to return a positive `ret'
3644 				 * here due to non-zero-length I/O, so there's
3645 				 * no way of reporting error returns from
3646 				 * ext4_mark_inode_dirty() to userspace.  So
3647 				 * ignore it.
3648 				 */
3649 				ext4_mark_inode_dirty(handle, inode);
3650 			}
3651 		}
3652 		err = ext4_journal_stop(handle);
3653 		if (ret == 0)
3654 			ret = err;
3655 	}
3656 out:
3657 	return ret;
3658 }
3659 
3660 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3661 {
3662 	struct address_space *mapping = iocb->ki_filp->f_mapping;
3663 	struct inode *inode = mapping->host;
3664 	size_t count = iov_iter_count(iter);
3665 	ssize_t ret;
3666 
3667 	/*
3668 	 * Shared inode_lock is enough for us - it protects against concurrent
3669 	 * writes & truncates and since we take care of writing back page cache,
3670 	 * we are protected against page writeback as well.
3671 	 */
3672 	inode_lock_shared(inode);
3673 	ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3674 					   iocb->ki_pos + count);
3675 	if (ret)
3676 		goto out_unlock;
3677 	ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3678 				   iter, ext4_dio_get_block, NULL, NULL, 0);
3679 out_unlock:
3680 	inode_unlock_shared(inode);
3681 	return ret;
3682 }
3683 
3684 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3685 {
3686 	struct file *file = iocb->ki_filp;
3687 	struct inode *inode = file->f_mapping->host;
3688 	size_t count = iov_iter_count(iter);
3689 	loff_t offset = iocb->ki_pos;
3690 	ssize_t ret;
3691 
3692 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3693 	if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3694 		return 0;
3695 #endif
3696 
3697 	/*
3698 	 * If we are doing data journalling we don't support O_DIRECT
3699 	 */
3700 	if (ext4_should_journal_data(inode))
3701 		return 0;
3702 
3703 	/* Let buffer I/O handle the inline data case. */
3704 	if (ext4_has_inline_data(inode))
3705 		return 0;
3706 
3707 	/* DAX uses iomap path now */
3708 	if (WARN_ON_ONCE(IS_DAX(inode)))
3709 		return 0;
3710 
3711 	trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3712 	if (iov_iter_rw(iter) == READ)
3713 		ret = ext4_direct_IO_read(iocb, iter);
3714 	else
3715 		ret = ext4_direct_IO_write(iocb, iter);
3716 	trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3717 	return ret;
3718 }
3719 
3720 /*
3721  * Pages can be marked dirty completely asynchronously from ext4's journalling
3722  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3723  * much here because ->set_page_dirty is called under VFS locks.  The page is
3724  * not necessarily locked.
3725  *
3726  * We cannot just dirty the page and leave attached buffers clean, because the
3727  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3728  * or jbddirty because all the journalling code will explode.
3729  *
3730  * So what we do is to mark the page "pending dirty" and next time writepage
3731  * is called, propagate that into the buffers appropriately.
3732  */
3733 static int ext4_journalled_set_page_dirty(struct page *page)
3734 {
3735 	SetPageChecked(page);
3736 	return __set_page_dirty_nobuffers(page);
3737 }
3738 
3739 static int ext4_set_page_dirty(struct page *page)
3740 {
3741 	WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3742 	WARN_ON_ONCE(!page_has_buffers(page));
3743 	return __set_page_dirty_buffers(page);
3744 }
3745 
3746 static const struct address_space_operations ext4_aops = {
3747 	.readpage		= ext4_readpage,
3748 	.readpages		= ext4_readpages,
3749 	.writepage		= ext4_writepage,
3750 	.writepages		= ext4_writepages,
3751 	.write_begin		= ext4_write_begin,
3752 	.write_end		= ext4_write_end,
3753 	.set_page_dirty		= ext4_set_page_dirty,
3754 	.bmap			= ext4_bmap,
3755 	.invalidatepage		= ext4_invalidatepage,
3756 	.releasepage		= ext4_releasepage,
3757 	.direct_IO		= ext4_direct_IO,
3758 	.migratepage		= buffer_migrate_page,
3759 	.is_partially_uptodate  = block_is_partially_uptodate,
3760 	.error_remove_page	= generic_error_remove_page,
3761 };
3762 
3763 static const struct address_space_operations ext4_journalled_aops = {
3764 	.readpage		= ext4_readpage,
3765 	.readpages		= ext4_readpages,
3766 	.writepage		= ext4_writepage,
3767 	.writepages		= ext4_writepages,
3768 	.write_begin		= ext4_write_begin,
3769 	.write_end		= ext4_journalled_write_end,
3770 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3771 	.bmap			= ext4_bmap,
3772 	.invalidatepage		= ext4_journalled_invalidatepage,
3773 	.releasepage		= ext4_releasepage,
3774 	.direct_IO		= ext4_direct_IO,
3775 	.is_partially_uptodate  = block_is_partially_uptodate,
3776 	.error_remove_page	= generic_error_remove_page,
3777 };
3778 
3779 static const struct address_space_operations ext4_da_aops = {
3780 	.readpage		= ext4_readpage,
3781 	.readpages		= ext4_readpages,
3782 	.writepage		= ext4_writepage,
3783 	.writepages		= ext4_writepages,
3784 	.write_begin		= ext4_da_write_begin,
3785 	.write_end		= ext4_da_write_end,
3786 	.set_page_dirty		= ext4_set_page_dirty,
3787 	.bmap			= ext4_bmap,
3788 	.invalidatepage		= ext4_da_invalidatepage,
3789 	.releasepage		= ext4_releasepage,
3790 	.direct_IO		= ext4_direct_IO,
3791 	.migratepage		= buffer_migrate_page,
3792 	.is_partially_uptodate  = block_is_partially_uptodate,
3793 	.error_remove_page	= generic_error_remove_page,
3794 };
3795 
3796 void ext4_set_aops(struct inode *inode)
3797 {
3798 	switch (ext4_inode_journal_mode(inode)) {
3799 	case EXT4_INODE_ORDERED_DATA_MODE:
3800 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3801 		break;
3802 	case EXT4_INODE_JOURNAL_DATA_MODE:
3803 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3804 		return;
3805 	default:
3806 		BUG();
3807 	}
3808 	if (test_opt(inode->i_sb, DELALLOC))
3809 		inode->i_mapping->a_ops = &ext4_da_aops;
3810 	else
3811 		inode->i_mapping->a_ops = &ext4_aops;
3812 }
3813 
3814 static int __ext4_block_zero_page_range(handle_t *handle,
3815 		struct address_space *mapping, loff_t from, loff_t length)
3816 {
3817 	ext4_fsblk_t index = from >> PAGE_SHIFT;
3818 	unsigned offset = from & (PAGE_SIZE-1);
3819 	unsigned blocksize, pos;
3820 	ext4_lblk_t iblock;
3821 	struct inode *inode = mapping->host;
3822 	struct buffer_head *bh;
3823 	struct page *page;
3824 	int err = 0;
3825 
3826 	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3827 				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3828 	if (!page)
3829 		return -ENOMEM;
3830 
3831 	blocksize = inode->i_sb->s_blocksize;
3832 
3833 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3834 
3835 	if (!page_has_buffers(page))
3836 		create_empty_buffers(page, blocksize, 0);
3837 
3838 	/* Find the buffer that contains "offset" */
3839 	bh = page_buffers(page);
3840 	pos = blocksize;
3841 	while (offset >= pos) {
3842 		bh = bh->b_this_page;
3843 		iblock++;
3844 		pos += blocksize;
3845 	}
3846 	if (buffer_freed(bh)) {
3847 		BUFFER_TRACE(bh, "freed: skip");
3848 		goto unlock;
3849 	}
3850 	if (!buffer_mapped(bh)) {
3851 		BUFFER_TRACE(bh, "unmapped");
3852 		ext4_get_block(inode, iblock, bh, 0);
3853 		/* unmapped? It's a hole - nothing to do */
3854 		if (!buffer_mapped(bh)) {
3855 			BUFFER_TRACE(bh, "still unmapped");
3856 			goto unlock;
3857 		}
3858 	}
3859 
3860 	/* Ok, it's mapped. Make sure it's up-to-date */
3861 	if (PageUptodate(page))
3862 		set_buffer_uptodate(bh);
3863 
3864 	if (!buffer_uptodate(bh)) {
3865 		err = -EIO;
3866 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3867 		wait_on_buffer(bh);
3868 		/* Uhhuh. Read error. Complain and punt. */
3869 		if (!buffer_uptodate(bh))
3870 			goto unlock;
3871 		if (S_ISREG(inode->i_mode) &&
3872 		    ext4_encrypted_inode(inode)) {
3873 			/* We expect the key to be set. */
3874 			BUG_ON(!fscrypt_has_encryption_key(inode));
3875 			BUG_ON(blocksize != PAGE_SIZE);
3876 			WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
3877 						page, PAGE_SIZE, 0, page->index));
3878 		}
3879 	}
3880 	if (ext4_should_journal_data(inode)) {
3881 		BUFFER_TRACE(bh, "get write access");
3882 		err = ext4_journal_get_write_access(handle, bh);
3883 		if (err)
3884 			goto unlock;
3885 	}
3886 	zero_user(page, offset, length);
3887 	BUFFER_TRACE(bh, "zeroed end of block");
3888 
3889 	if (ext4_should_journal_data(inode)) {
3890 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3891 	} else {
3892 		err = 0;
3893 		mark_buffer_dirty(bh);
3894 		if (ext4_should_order_data(inode))
3895 			err = ext4_jbd2_inode_add_write(handle, inode);
3896 	}
3897 
3898 unlock:
3899 	unlock_page(page);
3900 	put_page(page);
3901 	return err;
3902 }
3903 
3904 /*
3905  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3906  * starting from file offset 'from'.  The range to be zero'd must
3907  * be contained with in one block.  If the specified range exceeds
3908  * the end of the block it will be shortened to end of the block
3909  * that cooresponds to 'from'
3910  */
3911 static int ext4_block_zero_page_range(handle_t *handle,
3912 		struct address_space *mapping, loff_t from, loff_t length)
3913 {
3914 	struct inode *inode = mapping->host;
3915 	unsigned offset = from & (PAGE_SIZE-1);
3916 	unsigned blocksize = inode->i_sb->s_blocksize;
3917 	unsigned max = blocksize - (offset & (blocksize - 1));
3918 
3919 	/*
3920 	 * correct length if it does not fall between
3921 	 * 'from' and the end of the block
3922 	 */
3923 	if (length > max || length < 0)
3924 		length = max;
3925 
3926 	if (IS_DAX(inode)) {
3927 		return iomap_zero_range(inode, from, length, NULL,
3928 					&ext4_iomap_ops);
3929 	}
3930 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3931 }
3932 
3933 /*
3934  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3935  * up to the end of the block which corresponds to `from'.
3936  * This required during truncate. We need to physically zero the tail end
3937  * of that block so it doesn't yield old data if the file is later grown.
3938  */
3939 static int ext4_block_truncate_page(handle_t *handle,
3940 		struct address_space *mapping, loff_t from)
3941 {
3942 	unsigned offset = from & (PAGE_SIZE-1);
3943 	unsigned length;
3944 	unsigned blocksize;
3945 	struct inode *inode = mapping->host;
3946 
3947 	/* If we are processing an encrypted inode during orphan list handling */
3948 	if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
3949 		return 0;
3950 
3951 	blocksize = inode->i_sb->s_blocksize;
3952 	length = blocksize - (offset & (blocksize - 1));
3953 
3954 	return ext4_block_zero_page_range(handle, mapping, from, length);
3955 }
3956 
3957 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3958 			     loff_t lstart, loff_t length)
3959 {
3960 	struct super_block *sb = inode->i_sb;
3961 	struct address_space *mapping = inode->i_mapping;
3962 	unsigned partial_start, partial_end;
3963 	ext4_fsblk_t start, end;
3964 	loff_t byte_end = (lstart + length - 1);
3965 	int err = 0;
3966 
3967 	partial_start = lstart & (sb->s_blocksize - 1);
3968 	partial_end = byte_end & (sb->s_blocksize - 1);
3969 
3970 	start = lstart >> sb->s_blocksize_bits;
3971 	end = byte_end >> sb->s_blocksize_bits;
3972 
3973 	/* Handle partial zero within the single block */
3974 	if (start == end &&
3975 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3976 		err = ext4_block_zero_page_range(handle, mapping,
3977 						 lstart, length);
3978 		return err;
3979 	}
3980 	/* Handle partial zero out on the start of the range */
3981 	if (partial_start) {
3982 		err = ext4_block_zero_page_range(handle, mapping,
3983 						 lstart, sb->s_blocksize);
3984 		if (err)
3985 			return err;
3986 	}
3987 	/* Handle partial zero out on the end of the range */
3988 	if (partial_end != sb->s_blocksize - 1)
3989 		err = ext4_block_zero_page_range(handle, mapping,
3990 						 byte_end - partial_end,
3991 						 partial_end + 1);
3992 	return err;
3993 }
3994 
3995 int ext4_can_truncate(struct inode *inode)
3996 {
3997 	if (S_ISREG(inode->i_mode))
3998 		return 1;
3999 	if (S_ISDIR(inode->i_mode))
4000 		return 1;
4001 	if (S_ISLNK(inode->i_mode))
4002 		return !ext4_inode_is_fast_symlink(inode);
4003 	return 0;
4004 }
4005 
4006 /*
4007  * We have to make sure i_disksize gets properly updated before we truncate
4008  * page cache due to hole punching or zero range. Otherwise i_disksize update
4009  * can get lost as it may have been postponed to submission of writeback but
4010  * that will never happen after we truncate page cache.
4011  */
4012 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4013 				      loff_t len)
4014 {
4015 	handle_t *handle;
4016 	loff_t size = i_size_read(inode);
4017 
4018 	WARN_ON(!inode_is_locked(inode));
4019 	if (offset > size || offset + len < size)
4020 		return 0;
4021 
4022 	if (EXT4_I(inode)->i_disksize >= size)
4023 		return 0;
4024 
4025 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4026 	if (IS_ERR(handle))
4027 		return PTR_ERR(handle);
4028 	ext4_update_i_disksize(inode, size);
4029 	ext4_mark_inode_dirty(handle, inode);
4030 	ext4_journal_stop(handle);
4031 
4032 	return 0;
4033 }
4034 
4035 /*
4036  * ext4_punch_hole: punches a hole in a file by releasing the blocks
4037  * associated with the given offset and length
4038  *
4039  * @inode:  File inode
4040  * @offset: The offset where the hole will begin
4041  * @len:    The length of the hole
4042  *
4043  * Returns: 0 on success or negative on failure
4044  */
4045 
4046 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4047 {
4048 	struct super_block *sb = inode->i_sb;
4049 	ext4_lblk_t first_block, stop_block;
4050 	struct address_space *mapping = inode->i_mapping;
4051 	loff_t first_block_offset, last_block_offset;
4052 	handle_t *handle;
4053 	unsigned int credits;
4054 	int ret = 0;
4055 
4056 	if (!S_ISREG(inode->i_mode))
4057 		return -EOPNOTSUPP;
4058 
4059 	trace_ext4_punch_hole(inode, offset, length, 0);
4060 
4061 	/*
4062 	 * Write out all dirty pages to avoid race conditions
4063 	 * Then release them.
4064 	 */
4065 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4066 		ret = filemap_write_and_wait_range(mapping, offset,
4067 						   offset + length - 1);
4068 		if (ret)
4069 			return ret;
4070 	}
4071 
4072 	inode_lock(inode);
4073 
4074 	/* No need to punch hole beyond i_size */
4075 	if (offset >= inode->i_size)
4076 		goto out_mutex;
4077 
4078 	/*
4079 	 * If the hole extends beyond i_size, set the hole
4080 	 * to end after the page that contains i_size
4081 	 */
4082 	if (offset + length > inode->i_size) {
4083 		length = inode->i_size +
4084 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4085 		   offset;
4086 	}
4087 
4088 	if (offset & (sb->s_blocksize - 1) ||
4089 	    (offset + length) & (sb->s_blocksize - 1)) {
4090 		/*
4091 		 * Attach jinode to inode for jbd2 if we do any zeroing of
4092 		 * partial block
4093 		 */
4094 		ret = ext4_inode_attach_jinode(inode);
4095 		if (ret < 0)
4096 			goto out_mutex;
4097 
4098 	}
4099 
4100 	/* Wait all existing dio workers, newcomers will block on i_mutex */
4101 	ext4_inode_block_unlocked_dio(inode);
4102 	inode_dio_wait(inode);
4103 
4104 	/*
4105 	 * Prevent page faults from reinstantiating pages we have released from
4106 	 * page cache.
4107 	 */
4108 	down_write(&EXT4_I(inode)->i_mmap_sem);
4109 	first_block_offset = round_up(offset, sb->s_blocksize);
4110 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4111 
4112 	/* Now release the pages and zero block aligned part of pages*/
4113 	if (last_block_offset > first_block_offset) {
4114 		ret = ext4_update_disksize_before_punch(inode, offset, length);
4115 		if (ret)
4116 			goto out_dio;
4117 		truncate_pagecache_range(inode, first_block_offset,
4118 					 last_block_offset);
4119 	}
4120 
4121 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4122 		credits = ext4_writepage_trans_blocks(inode);
4123 	else
4124 		credits = ext4_blocks_for_truncate(inode);
4125 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4126 	if (IS_ERR(handle)) {
4127 		ret = PTR_ERR(handle);
4128 		ext4_std_error(sb, ret);
4129 		goto out_dio;
4130 	}
4131 
4132 	ret = ext4_zero_partial_blocks(handle, inode, offset,
4133 				       length);
4134 	if (ret)
4135 		goto out_stop;
4136 
4137 	first_block = (offset + sb->s_blocksize - 1) >>
4138 		EXT4_BLOCK_SIZE_BITS(sb);
4139 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4140 
4141 	/* If there are no blocks to remove, return now */
4142 	if (first_block >= stop_block)
4143 		goto out_stop;
4144 
4145 	down_write(&EXT4_I(inode)->i_data_sem);
4146 	ext4_discard_preallocations(inode);
4147 
4148 	ret = ext4_es_remove_extent(inode, first_block,
4149 				    stop_block - first_block);
4150 	if (ret) {
4151 		up_write(&EXT4_I(inode)->i_data_sem);
4152 		goto out_stop;
4153 	}
4154 
4155 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4156 		ret = ext4_ext_remove_space(inode, first_block,
4157 					    stop_block - 1);
4158 	else
4159 		ret = ext4_ind_remove_space(handle, inode, first_block,
4160 					    stop_block);
4161 
4162 	up_write(&EXT4_I(inode)->i_data_sem);
4163 	if (IS_SYNC(inode))
4164 		ext4_handle_sync(handle);
4165 
4166 	inode->i_mtime = inode->i_ctime = current_time(inode);
4167 	ext4_mark_inode_dirty(handle, inode);
4168 out_stop:
4169 	ext4_journal_stop(handle);
4170 out_dio:
4171 	up_write(&EXT4_I(inode)->i_mmap_sem);
4172 	ext4_inode_resume_unlocked_dio(inode);
4173 out_mutex:
4174 	inode_unlock(inode);
4175 	return ret;
4176 }
4177 
4178 int ext4_inode_attach_jinode(struct inode *inode)
4179 {
4180 	struct ext4_inode_info *ei = EXT4_I(inode);
4181 	struct jbd2_inode *jinode;
4182 
4183 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4184 		return 0;
4185 
4186 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4187 	spin_lock(&inode->i_lock);
4188 	if (!ei->jinode) {
4189 		if (!jinode) {
4190 			spin_unlock(&inode->i_lock);
4191 			return -ENOMEM;
4192 		}
4193 		ei->jinode = jinode;
4194 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4195 		jinode = NULL;
4196 	}
4197 	spin_unlock(&inode->i_lock);
4198 	if (unlikely(jinode != NULL))
4199 		jbd2_free_inode(jinode);
4200 	return 0;
4201 }
4202 
4203 /*
4204  * ext4_truncate()
4205  *
4206  * We block out ext4_get_block() block instantiations across the entire
4207  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4208  * simultaneously on behalf of the same inode.
4209  *
4210  * As we work through the truncate and commit bits of it to the journal there
4211  * is one core, guiding principle: the file's tree must always be consistent on
4212  * disk.  We must be able to restart the truncate after a crash.
4213  *
4214  * The file's tree may be transiently inconsistent in memory (although it
4215  * probably isn't), but whenever we close off and commit a journal transaction,
4216  * the contents of (the filesystem + the journal) must be consistent and
4217  * restartable.  It's pretty simple, really: bottom up, right to left (although
4218  * left-to-right works OK too).
4219  *
4220  * Note that at recovery time, journal replay occurs *before* the restart of
4221  * truncate against the orphan inode list.
4222  *
4223  * The committed inode has the new, desired i_size (which is the same as
4224  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4225  * that this inode's truncate did not complete and it will again call
4226  * ext4_truncate() to have another go.  So there will be instantiated blocks
4227  * to the right of the truncation point in a crashed ext4 filesystem.  But
4228  * that's fine - as long as they are linked from the inode, the post-crash
4229  * ext4_truncate() run will find them and release them.
4230  */
4231 int ext4_truncate(struct inode *inode)
4232 {
4233 	struct ext4_inode_info *ei = EXT4_I(inode);
4234 	unsigned int credits;
4235 	int err = 0;
4236 	handle_t *handle;
4237 	struct address_space *mapping = inode->i_mapping;
4238 
4239 	/*
4240 	 * There is a possibility that we're either freeing the inode
4241 	 * or it's a completely new inode. In those cases we might not
4242 	 * have i_mutex locked because it's not necessary.
4243 	 */
4244 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4245 		WARN_ON(!inode_is_locked(inode));
4246 	trace_ext4_truncate_enter(inode);
4247 
4248 	if (!ext4_can_truncate(inode))
4249 		return 0;
4250 
4251 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4252 
4253 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4254 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4255 
4256 	if (ext4_has_inline_data(inode)) {
4257 		int has_inline = 1;
4258 
4259 		err = ext4_inline_data_truncate(inode, &has_inline);
4260 		if (err)
4261 			return err;
4262 		if (has_inline)
4263 			return 0;
4264 	}
4265 
4266 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4267 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4268 		if (ext4_inode_attach_jinode(inode) < 0)
4269 			return 0;
4270 	}
4271 
4272 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4273 		credits = ext4_writepage_trans_blocks(inode);
4274 	else
4275 		credits = ext4_blocks_for_truncate(inode);
4276 
4277 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4278 	if (IS_ERR(handle))
4279 		return PTR_ERR(handle);
4280 
4281 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4282 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4283 
4284 	/*
4285 	 * We add the inode to the orphan list, so that if this
4286 	 * truncate spans multiple transactions, and we crash, we will
4287 	 * resume the truncate when the filesystem recovers.  It also
4288 	 * marks the inode dirty, to catch the new size.
4289 	 *
4290 	 * Implication: the file must always be in a sane, consistent
4291 	 * truncatable state while each transaction commits.
4292 	 */
4293 	err = ext4_orphan_add(handle, inode);
4294 	if (err)
4295 		goto out_stop;
4296 
4297 	down_write(&EXT4_I(inode)->i_data_sem);
4298 
4299 	ext4_discard_preallocations(inode);
4300 
4301 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4302 		err = ext4_ext_truncate(handle, inode);
4303 	else
4304 		ext4_ind_truncate(handle, inode);
4305 
4306 	up_write(&ei->i_data_sem);
4307 	if (err)
4308 		goto out_stop;
4309 
4310 	if (IS_SYNC(inode))
4311 		ext4_handle_sync(handle);
4312 
4313 out_stop:
4314 	/*
4315 	 * If this was a simple ftruncate() and the file will remain alive,
4316 	 * then we need to clear up the orphan record which we created above.
4317 	 * However, if this was a real unlink then we were called by
4318 	 * ext4_evict_inode(), and we allow that function to clean up the
4319 	 * orphan info for us.
4320 	 */
4321 	if (inode->i_nlink)
4322 		ext4_orphan_del(handle, inode);
4323 
4324 	inode->i_mtime = inode->i_ctime = current_time(inode);
4325 	ext4_mark_inode_dirty(handle, inode);
4326 	ext4_journal_stop(handle);
4327 
4328 	trace_ext4_truncate_exit(inode);
4329 	return err;
4330 }
4331 
4332 /*
4333  * ext4_get_inode_loc returns with an extra refcount against the inode's
4334  * underlying buffer_head on success. If 'in_mem' is true, we have all
4335  * data in memory that is needed to recreate the on-disk version of this
4336  * inode.
4337  */
4338 static int __ext4_get_inode_loc(struct inode *inode,
4339 				struct ext4_iloc *iloc, int in_mem)
4340 {
4341 	struct ext4_group_desc	*gdp;
4342 	struct buffer_head	*bh;
4343 	struct super_block	*sb = inode->i_sb;
4344 	ext4_fsblk_t		block;
4345 	int			inodes_per_block, inode_offset;
4346 
4347 	iloc->bh = NULL;
4348 	if (!ext4_valid_inum(sb, inode->i_ino))
4349 		return -EFSCORRUPTED;
4350 
4351 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4352 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4353 	if (!gdp)
4354 		return -EIO;
4355 
4356 	/*
4357 	 * Figure out the offset within the block group inode table
4358 	 */
4359 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4360 	inode_offset = ((inode->i_ino - 1) %
4361 			EXT4_INODES_PER_GROUP(sb));
4362 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4363 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4364 
4365 	bh = sb_getblk(sb, block);
4366 	if (unlikely(!bh))
4367 		return -ENOMEM;
4368 	if (!buffer_uptodate(bh)) {
4369 		lock_buffer(bh);
4370 
4371 		/*
4372 		 * If the buffer has the write error flag, we have failed
4373 		 * to write out another inode in the same block.  In this
4374 		 * case, we don't have to read the block because we may
4375 		 * read the old inode data successfully.
4376 		 */
4377 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4378 			set_buffer_uptodate(bh);
4379 
4380 		if (buffer_uptodate(bh)) {
4381 			/* someone brought it uptodate while we waited */
4382 			unlock_buffer(bh);
4383 			goto has_buffer;
4384 		}
4385 
4386 		/*
4387 		 * If we have all information of the inode in memory and this
4388 		 * is the only valid inode in the block, we need not read the
4389 		 * block.
4390 		 */
4391 		if (in_mem) {
4392 			struct buffer_head *bitmap_bh;
4393 			int i, start;
4394 
4395 			start = inode_offset & ~(inodes_per_block - 1);
4396 
4397 			/* Is the inode bitmap in cache? */
4398 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4399 			if (unlikely(!bitmap_bh))
4400 				goto make_io;
4401 
4402 			/*
4403 			 * If the inode bitmap isn't in cache then the
4404 			 * optimisation may end up performing two reads instead
4405 			 * of one, so skip it.
4406 			 */
4407 			if (!buffer_uptodate(bitmap_bh)) {
4408 				brelse(bitmap_bh);
4409 				goto make_io;
4410 			}
4411 			for (i = start; i < start + inodes_per_block; i++) {
4412 				if (i == inode_offset)
4413 					continue;
4414 				if (ext4_test_bit(i, bitmap_bh->b_data))
4415 					break;
4416 			}
4417 			brelse(bitmap_bh);
4418 			if (i == start + inodes_per_block) {
4419 				/* all other inodes are free, so skip I/O */
4420 				memset(bh->b_data, 0, bh->b_size);
4421 				set_buffer_uptodate(bh);
4422 				unlock_buffer(bh);
4423 				goto has_buffer;
4424 			}
4425 		}
4426 
4427 make_io:
4428 		/*
4429 		 * If we need to do any I/O, try to pre-readahead extra
4430 		 * blocks from the inode table.
4431 		 */
4432 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4433 			ext4_fsblk_t b, end, table;
4434 			unsigned num;
4435 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4436 
4437 			table = ext4_inode_table(sb, gdp);
4438 			/* s_inode_readahead_blks is always a power of 2 */
4439 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4440 			if (table > b)
4441 				b = table;
4442 			end = b + ra_blks;
4443 			num = EXT4_INODES_PER_GROUP(sb);
4444 			if (ext4_has_group_desc_csum(sb))
4445 				num -= ext4_itable_unused_count(sb, gdp);
4446 			table += num / inodes_per_block;
4447 			if (end > table)
4448 				end = table;
4449 			while (b <= end)
4450 				sb_breadahead(sb, b++);
4451 		}
4452 
4453 		/*
4454 		 * There are other valid inodes in the buffer, this inode
4455 		 * has in-inode xattrs, or we don't have this inode in memory.
4456 		 * Read the block from disk.
4457 		 */
4458 		trace_ext4_load_inode(inode);
4459 		get_bh(bh);
4460 		bh->b_end_io = end_buffer_read_sync;
4461 		submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4462 		wait_on_buffer(bh);
4463 		if (!buffer_uptodate(bh)) {
4464 			EXT4_ERROR_INODE_BLOCK(inode, block,
4465 					       "unable to read itable block");
4466 			brelse(bh);
4467 			return -EIO;
4468 		}
4469 	}
4470 has_buffer:
4471 	iloc->bh = bh;
4472 	return 0;
4473 }
4474 
4475 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4476 {
4477 	/* We have all inode data except xattrs in memory here. */
4478 	return __ext4_get_inode_loc(inode, iloc,
4479 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4480 }
4481 
4482 void ext4_set_inode_flags(struct inode *inode)
4483 {
4484 	unsigned int flags = EXT4_I(inode)->i_flags;
4485 	unsigned int new_fl = 0;
4486 
4487 	if (flags & EXT4_SYNC_FL)
4488 		new_fl |= S_SYNC;
4489 	if (flags & EXT4_APPEND_FL)
4490 		new_fl |= S_APPEND;
4491 	if (flags & EXT4_IMMUTABLE_FL)
4492 		new_fl |= S_IMMUTABLE;
4493 	if (flags & EXT4_NOATIME_FL)
4494 		new_fl |= S_NOATIME;
4495 	if (flags & EXT4_DIRSYNC_FL)
4496 		new_fl |= S_DIRSYNC;
4497 	if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode) &&
4498 	    !ext4_should_journal_data(inode) && !ext4_has_inline_data(inode) &&
4499 	    !ext4_encrypted_inode(inode))
4500 		new_fl |= S_DAX;
4501 	inode_set_flags(inode, new_fl,
4502 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4503 }
4504 
4505 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4506 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4507 {
4508 	unsigned int vfs_fl;
4509 	unsigned long old_fl, new_fl;
4510 
4511 	do {
4512 		vfs_fl = ei->vfs_inode.i_flags;
4513 		old_fl = ei->i_flags;
4514 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4515 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4516 				EXT4_DIRSYNC_FL);
4517 		if (vfs_fl & S_SYNC)
4518 			new_fl |= EXT4_SYNC_FL;
4519 		if (vfs_fl & S_APPEND)
4520 			new_fl |= EXT4_APPEND_FL;
4521 		if (vfs_fl & S_IMMUTABLE)
4522 			new_fl |= EXT4_IMMUTABLE_FL;
4523 		if (vfs_fl & S_NOATIME)
4524 			new_fl |= EXT4_NOATIME_FL;
4525 		if (vfs_fl & S_DIRSYNC)
4526 			new_fl |= EXT4_DIRSYNC_FL;
4527 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4528 }
4529 
4530 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4531 				  struct ext4_inode_info *ei)
4532 {
4533 	blkcnt_t i_blocks ;
4534 	struct inode *inode = &(ei->vfs_inode);
4535 	struct super_block *sb = inode->i_sb;
4536 
4537 	if (ext4_has_feature_huge_file(sb)) {
4538 		/* we are using combined 48 bit field */
4539 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4540 					le32_to_cpu(raw_inode->i_blocks_lo);
4541 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4542 			/* i_blocks represent file system block size */
4543 			return i_blocks  << (inode->i_blkbits - 9);
4544 		} else {
4545 			return i_blocks;
4546 		}
4547 	} else {
4548 		return le32_to_cpu(raw_inode->i_blocks_lo);
4549 	}
4550 }
4551 
4552 static inline void ext4_iget_extra_inode(struct inode *inode,
4553 					 struct ext4_inode *raw_inode,
4554 					 struct ext4_inode_info *ei)
4555 {
4556 	__le32 *magic = (void *)raw_inode +
4557 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4558 	if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4559 	    EXT4_INODE_SIZE(inode->i_sb) &&
4560 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4561 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4562 		ext4_find_inline_data_nolock(inode);
4563 	} else
4564 		EXT4_I(inode)->i_inline_off = 0;
4565 }
4566 
4567 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4568 {
4569 	if (!ext4_has_feature_project(inode->i_sb))
4570 		return -EOPNOTSUPP;
4571 	*projid = EXT4_I(inode)->i_projid;
4572 	return 0;
4573 }
4574 
4575 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4576 {
4577 	struct ext4_iloc iloc;
4578 	struct ext4_inode *raw_inode;
4579 	struct ext4_inode_info *ei;
4580 	struct inode *inode;
4581 	journal_t *journal = EXT4_SB(sb)->s_journal;
4582 	long ret;
4583 	loff_t size;
4584 	int block;
4585 	uid_t i_uid;
4586 	gid_t i_gid;
4587 	projid_t i_projid;
4588 
4589 	inode = iget_locked(sb, ino);
4590 	if (!inode)
4591 		return ERR_PTR(-ENOMEM);
4592 	if (!(inode->i_state & I_NEW))
4593 		return inode;
4594 
4595 	ei = EXT4_I(inode);
4596 	iloc.bh = NULL;
4597 
4598 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4599 	if (ret < 0)
4600 		goto bad_inode;
4601 	raw_inode = ext4_raw_inode(&iloc);
4602 
4603 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4604 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4605 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4606 			EXT4_INODE_SIZE(inode->i_sb) ||
4607 		    (ei->i_extra_isize & 3)) {
4608 			EXT4_ERROR_INODE(inode,
4609 					 "bad extra_isize %u (inode size %u)",
4610 					 ei->i_extra_isize,
4611 					 EXT4_INODE_SIZE(inode->i_sb));
4612 			ret = -EFSCORRUPTED;
4613 			goto bad_inode;
4614 		}
4615 	} else
4616 		ei->i_extra_isize = 0;
4617 
4618 	/* Precompute checksum seed for inode metadata */
4619 	if (ext4_has_metadata_csum(sb)) {
4620 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4621 		__u32 csum;
4622 		__le32 inum = cpu_to_le32(inode->i_ino);
4623 		__le32 gen = raw_inode->i_generation;
4624 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4625 				   sizeof(inum));
4626 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4627 					      sizeof(gen));
4628 	}
4629 
4630 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4631 		EXT4_ERROR_INODE(inode, "checksum invalid");
4632 		ret = -EFSBADCRC;
4633 		goto bad_inode;
4634 	}
4635 
4636 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4637 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4638 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4639 	if (ext4_has_feature_project(sb) &&
4640 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4641 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4642 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4643 	else
4644 		i_projid = EXT4_DEF_PROJID;
4645 
4646 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4647 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4648 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4649 	}
4650 	i_uid_write(inode, i_uid);
4651 	i_gid_write(inode, i_gid);
4652 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4653 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4654 
4655 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4656 	ei->i_inline_off = 0;
4657 	ei->i_dir_start_lookup = 0;
4658 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4659 	/* We now have enough fields to check if the inode was active or not.
4660 	 * This is needed because nfsd might try to access dead inodes
4661 	 * the test is that same one that e2fsck uses
4662 	 * NeilBrown 1999oct15
4663 	 */
4664 	if (inode->i_nlink == 0) {
4665 		if ((inode->i_mode == 0 ||
4666 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4667 		    ino != EXT4_BOOT_LOADER_INO) {
4668 			/* this inode is deleted */
4669 			ret = -ESTALE;
4670 			goto bad_inode;
4671 		}
4672 		/* The only unlinked inodes we let through here have
4673 		 * valid i_mode and are being read by the orphan
4674 		 * recovery code: that's fine, we're about to complete
4675 		 * the process of deleting those.
4676 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4677 		 * not initialized on a new filesystem. */
4678 	}
4679 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4680 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4681 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4682 	if (ext4_has_feature_64bit(sb))
4683 		ei->i_file_acl |=
4684 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4685 	inode->i_size = ext4_isize(raw_inode);
4686 	if ((size = i_size_read(inode)) < 0) {
4687 		EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4688 		ret = -EFSCORRUPTED;
4689 		goto bad_inode;
4690 	}
4691 	ei->i_disksize = inode->i_size;
4692 #ifdef CONFIG_QUOTA
4693 	ei->i_reserved_quota = 0;
4694 #endif
4695 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4696 	ei->i_block_group = iloc.block_group;
4697 	ei->i_last_alloc_group = ~0;
4698 	/*
4699 	 * NOTE! The in-memory inode i_data array is in little-endian order
4700 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4701 	 */
4702 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4703 		ei->i_data[block] = raw_inode->i_block[block];
4704 	INIT_LIST_HEAD(&ei->i_orphan);
4705 
4706 	/*
4707 	 * Set transaction id's of transactions that have to be committed
4708 	 * to finish f[data]sync. We set them to currently running transaction
4709 	 * as we cannot be sure that the inode or some of its metadata isn't
4710 	 * part of the transaction - the inode could have been reclaimed and
4711 	 * now it is reread from disk.
4712 	 */
4713 	if (journal) {
4714 		transaction_t *transaction;
4715 		tid_t tid;
4716 
4717 		read_lock(&journal->j_state_lock);
4718 		if (journal->j_running_transaction)
4719 			transaction = journal->j_running_transaction;
4720 		else
4721 			transaction = journal->j_committing_transaction;
4722 		if (transaction)
4723 			tid = transaction->t_tid;
4724 		else
4725 			tid = journal->j_commit_sequence;
4726 		read_unlock(&journal->j_state_lock);
4727 		ei->i_sync_tid = tid;
4728 		ei->i_datasync_tid = tid;
4729 	}
4730 
4731 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4732 		if (ei->i_extra_isize == 0) {
4733 			/* The extra space is currently unused. Use it. */
4734 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4735 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4736 					    EXT4_GOOD_OLD_INODE_SIZE;
4737 		} else {
4738 			ext4_iget_extra_inode(inode, raw_inode, ei);
4739 		}
4740 	}
4741 
4742 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4743 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4744 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4745 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4746 
4747 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4748 		inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4749 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4750 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4751 				inode->i_version |=
4752 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4753 		}
4754 	}
4755 
4756 	ret = 0;
4757 	if (ei->i_file_acl &&
4758 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4759 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4760 				 ei->i_file_acl);
4761 		ret = -EFSCORRUPTED;
4762 		goto bad_inode;
4763 	} else if (!ext4_has_inline_data(inode)) {
4764 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4765 			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4766 			    (S_ISLNK(inode->i_mode) &&
4767 			     !ext4_inode_is_fast_symlink(inode))))
4768 				/* Validate extent which is part of inode */
4769 				ret = ext4_ext_check_inode(inode);
4770 		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4771 			   (S_ISLNK(inode->i_mode) &&
4772 			    !ext4_inode_is_fast_symlink(inode))) {
4773 			/* Validate block references which are part of inode */
4774 			ret = ext4_ind_check_inode(inode);
4775 		}
4776 	}
4777 	if (ret)
4778 		goto bad_inode;
4779 
4780 	if (S_ISREG(inode->i_mode)) {
4781 		inode->i_op = &ext4_file_inode_operations;
4782 		inode->i_fop = &ext4_file_operations;
4783 		ext4_set_aops(inode);
4784 	} else if (S_ISDIR(inode->i_mode)) {
4785 		inode->i_op = &ext4_dir_inode_operations;
4786 		inode->i_fop = &ext4_dir_operations;
4787 	} else if (S_ISLNK(inode->i_mode)) {
4788 		if (ext4_encrypted_inode(inode)) {
4789 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4790 			ext4_set_aops(inode);
4791 		} else if (ext4_inode_is_fast_symlink(inode)) {
4792 			inode->i_link = (char *)ei->i_data;
4793 			inode->i_op = &ext4_fast_symlink_inode_operations;
4794 			nd_terminate_link(ei->i_data, inode->i_size,
4795 				sizeof(ei->i_data) - 1);
4796 		} else {
4797 			inode->i_op = &ext4_symlink_inode_operations;
4798 			ext4_set_aops(inode);
4799 		}
4800 		inode_nohighmem(inode);
4801 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4802 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4803 		inode->i_op = &ext4_special_inode_operations;
4804 		if (raw_inode->i_block[0])
4805 			init_special_inode(inode, inode->i_mode,
4806 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4807 		else
4808 			init_special_inode(inode, inode->i_mode,
4809 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4810 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4811 		make_bad_inode(inode);
4812 	} else {
4813 		ret = -EFSCORRUPTED;
4814 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4815 		goto bad_inode;
4816 	}
4817 	brelse(iloc.bh);
4818 	ext4_set_inode_flags(inode);
4819 	unlock_new_inode(inode);
4820 	return inode;
4821 
4822 bad_inode:
4823 	brelse(iloc.bh);
4824 	iget_failed(inode);
4825 	return ERR_PTR(ret);
4826 }
4827 
4828 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4829 {
4830 	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4831 		return ERR_PTR(-EFSCORRUPTED);
4832 	return ext4_iget(sb, ino);
4833 }
4834 
4835 static int ext4_inode_blocks_set(handle_t *handle,
4836 				struct ext4_inode *raw_inode,
4837 				struct ext4_inode_info *ei)
4838 {
4839 	struct inode *inode = &(ei->vfs_inode);
4840 	u64 i_blocks = inode->i_blocks;
4841 	struct super_block *sb = inode->i_sb;
4842 
4843 	if (i_blocks <= ~0U) {
4844 		/*
4845 		 * i_blocks can be represented in a 32 bit variable
4846 		 * as multiple of 512 bytes
4847 		 */
4848 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4849 		raw_inode->i_blocks_high = 0;
4850 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4851 		return 0;
4852 	}
4853 	if (!ext4_has_feature_huge_file(sb))
4854 		return -EFBIG;
4855 
4856 	if (i_blocks <= 0xffffffffffffULL) {
4857 		/*
4858 		 * i_blocks can be represented in a 48 bit variable
4859 		 * as multiple of 512 bytes
4860 		 */
4861 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4862 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4863 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4864 	} else {
4865 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4866 		/* i_block is stored in file system block size */
4867 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4868 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4869 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4870 	}
4871 	return 0;
4872 }
4873 
4874 struct other_inode {
4875 	unsigned long		orig_ino;
4876 	struct ext4_inode	*raw_inode;
4877 };
4878 
4879 static int other_inode_match(struct inode * inode, unsigned long ino,
4880 			     void *data)
4881 {
4882 	struct other_inode *oi = (struct other_inode *) data;
4883 
4884 	if ((inode->i_ino != ino) ||
4885 	    (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4886 			       I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4887 	    ((inode->i_state & I_DIRTY_TIME) == 0))
4888 		return 0;
4889 	spin_lock(&inode->i_lock);
4890 	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4891 				I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4892 	    (inode->i_state & I_DIRTY_TIME)) {
4893 		struct ext4_inode_info	*ei = EXT4_I(inode);
4894 
4895 		inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4896 		spin_unlock(&inode->i_lock);
4897 
4898 		spin_lock(&ei->i_raw_lock);
4899 		EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4900 		EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4901 		EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4902 		ext4_inode_csum_set(inode, oi->raw_inode, ei);
4903 		spin_unlock(&ei->i_raw_lock);
4904 		trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4905 		return -1;
4906 	}
4907 	spin_unlock(&inode->i_lock);
4908 	return -1;
4909 }
4910 
4911 /*
4912  * Opportunistically update the other time fields for other inodes in
4913  * the same inode table block.
4914  */
4915 static void ext4_update_other_inodes_time(struct super_block *sb,
4916 					  unsigned long orig_ino, char *buf)
4917 {
4918 	struct other_inode oi;
4919 	unsigned long ino;
4920 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4921 	int inode_size = EXT4_INODE_SIZE(sb);
4922 
4923 	oi.orig_ino = orig_ino;
4924 	/*
4925 	 * Calculate the first inode in the inode table block.  Inode
4926 	 * numbers are one-based.  That is, the first inode in a block
4927 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4928 	 */
4929 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4930 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4931 		if (ino == orig_ino)
4932 			continue;
4933 		oi.raw_inode = (struct ext4_inode *) buf;
4934 		(void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4935 	}
4936 }
4937 
4938 /*
4939  * Post the struct inode info into an on-disk inode location in the
4940  * buffer-cache.  This gobbles the caller's reference to the
4941  * buffer_head in the inode location struct.
4942  *
4943  * The caller must have write access to iloc->bh.
4944  */
4945 static int ext4_do_update_inode(handle_t *handle,
4946 				struct inode *inode,
4947 				struct ext4_iloc *iloc)
4948 {
4949 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4950 	struct ext4_inode_info *ei = EXT4_I(inode);
4951 	struct buffer_head *bh = iloc->bh;
4952 	struct super_block *sb = inode->i_sb;
4953 	int err = 0, rc, block;
4954 	int need_datasync = 0, set_large_file = 0;
4955 	uid_t i_uid;
4956 	gid_t i_gid;
4957 	projid_t i_projid;
4958 
4959 	spin_lock(&ei->i_raw_lock);
4960 
4961 	/* For fields not tracked in the in-memory inode,
4962 	 * initialise them to zero for new inodes. */
4963 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4964 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4965 
4966 	ext4_get_inode_flags(ei);
4967 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4968 	i_uid = i_uid_read(inode);
4969 	i_gid = i_gid_read(inode);
4970 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4971 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4972 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4973 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4974 /*
4975  * Fix up interoperability with old kernels. Otherwise, old inodes get
4976  * re-used with the upper 16 bits of the uid/gid intact
4977  */
4978 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4979 			raw_inode->i_uid_high = 0;
4980 			raw_inode->i_gid_high = 0;
4981 		} else {
4982 			raw_inode->i_uid_high =
4983 				cpu_to_le16(high_16_bits(i_uid));
4984 			raw_inode->i_gid_high =
4985 				cpu_to_le16(high_16_bits(i_gid));
4986 		}
4987 	} else {
4988 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4989 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4990 		raw_inode->i_uid_high = 0;
4991 		raw_inode->i_gid_high = 0;
4992 	}
4993 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4994 
4995 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4996 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4997 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4998 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4999 
5000 	err = ext4_inode_blocks_set(handle, raw_inode, ei);
5001 	if (err) {
5002 		spin_unlock(&ei->i_raw_lock);
5003 		goto out_brelse;
5004 	}
5005 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5006 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5007 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5008 		raw_inode->i_file_acl_high =
5009 			cpu_to_le16(ei->i_file_acl >> 32);
5010 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5011 	if (ei->i_disksize != ext4_isize(raw_inode)) {
5012 		ext4_isize_set(raw_inode, ei->i_disksize);
5013 		need_datasync = 1;
5014 	}
5015 	if (ei->i_disksize > 0x7fffffffULL) {
5016 		if (!ext4_has_feature_large_file(sb) ||
5017 				EXT4_SB(sb)->s_es->s_rev_level ==
5018 		    cpu_to_le32(EXT4_GOOD_OLD_REV))
5019 			set_large_file = 1;
5020 	}
5021 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5022 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5023 		if (old_valid_dev(inode->i_rdev)) {
5024 			raw_inode->i_block[0] =
5025 				cpu_to_le32(old_encode_dev(inode->i_rdev));
5026 			raw_inode->i_block[1] = 0;
5027 		} else {
5028 			raw_inode->i_block[0] = 0;
5029 			raw_inode->i_block[1] =
5030 				cpu_to_le32(new_encode_dev(inode->i_rdev));
5031 			raw_inode->i_block[2] = 0;
5032 		}
5033 	} else if (!ext4_has_inline_data(inode)) {
5034 		for (block = 0; block < EXT4_N_BLOCKS; block++)
5035 			raw_inode->i_block[block] = ei->i_data[block];
5036 	}
5037 
5038 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5039 		raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5040 		if (ei->i_extra_isize) {
5041 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5042 				raw_inode->i_version_hi =
5043 					cpu_to_le32(inode->i_version >> 32);
5044 			raw_inode->i_extra_isize =
5045 				cpu_to_le16(ei->i_extra_isize);
5046 		}
5047 	}
5048 
5049 	BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5050 	       i_projid != EXT4_DEF_PROJID);
5051 
5052 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5053 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5054 		raw_inode->i_projid = cpu_to_le32(i_projid);
5055 
5056 	ext4_inode_csum_set(inode, raw_inode, ei);
5057 	spin_unlock(&ei->i_raw_lock);
5058 	if (inode->i_sb->s_flags & MS_LAZYTIME)
5059 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5060 					      bh->b_data);
5061 
5062 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5063 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5064 	if (!err)
5065 		err = rc;
5066 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5067 	if (set_large_file) {
5068 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5069 		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5070 		if (err)
5071 			goto out_brelse;
5072 		ext4_update_dynamic_rev(sb);
5073 		ext4_set_feature_large_file(sb);
5074 		ext4_handle_sync(handle);
5075 		err = ext4_handle_dirty_super(handle, sb);
5076 	}
5077 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5078 out_brelse:
5079 	brelse(bh);
5080 	ext4_std_error(inode->i_sb, err);
5081 	return err;
5082 }
5083 
5084 /*
5085  * ext4_write_inode()
5086  *
5087  * We are called from a few places:
5088  *
5089  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5090  *   Here, there will be no transaction running. We wait for any running
5091  *   transaction to commit.
5092  *
5093  * - Within flush work (sys_sync(), kupdate and such).
5094  *   We wait on commit, if told to.
5095  *
5096  * - Within iput_final() -> write_inode_now()
5097  *   We wait on commit, if told to.
5098  *
5099  * In all cases it is actually safe for us to return without doing anything,
5100  * because the inode has been copied into a raw inode buffer in
5101  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5102  * writeback.
5103  *
5104  * Note that we are absolutely dependent upon all inode dirtiers doing the
5105  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5106  * which we are interested.
5107  *
5108  * It would be a bug for them to not do this.  The code:
5109  *
5110  *	mark_inode_dirty(inode)
5111  *	stuff();
5112  *	inode->i_size = expr;
5113  *
5114  * is in error because write_inode() could occur while `stuff()' is running,
5115  * and the new i_size will be lost.  Plus the inode will no longer be on the
5116  * superblock's dirty inode list.
5117  */
5118 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5119 {
5120 	int err;
5121 
5122 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5123 		return 0;
5124 
5125 	if (EXT4_SB(inode->i_sb)->s_journal) {
5126 		if (ext4_journal_current_handle()) {
5127 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5128 			dump_stack();
5129 			return -EIO;
5130 		}
5131 
5132 		/*
5133 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5134 		 * ext4_sync_fs() will force the commit after everything is
5135 		 * written.
5136 		 */
5137 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5138 			return 0;
5139 
5140 		err = ext4_force_commit(inode->i_sb);
5141 	} else {
5142 		struct ext4_iloc iloc;
5143 
5144 		err = __ext4_get_inode_loc(inode, &iloc, 0);
5145 		if (err)
5146 			return err;
5147 		/*
5148 		 * sync(2) will flush the whole buffer cache. No need to do
5149 		 * it here separately for each inode.
5150 		 */
5151 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5152 			sync_dirty_buffer(iloc.bh);
5153 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5154 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5155 					 "IO error syncing inode");
5156 			err = -EIO;
5157 		}
5158 		brelse(iloc.bh);
5159 	}
5160 	return err;
5161 }
5162 
5163 /*
5164  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5165  * buffers that are attached to a page stradding i_size and are undergoing
5166  * commit. In that case we have to wait for commit to finish and try again.
5167  */
5168 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5169 {
5170 	struct page *page;
5171 	unsigned offset;
5172 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5173 	tid_t commit_tid = 0;
5174 	int ret;
5175 
5176 	offset = inode->i_size & (PAGE_SIZE - 1);
5177 	/*
5178 	 * All buffers in the last page remain valid? Then there's nothing to
5179 	 * do. We do the check mainly to optimize the common PAGE_SIZE ==
5180 	 * blocksize case
5181 	 */
5182 	if (offset > PAGE_SIZE - i_blocksize(inode))
5183 		return;
5184 	while (1) {
5185 		page = find_lock_page(inode->i_mapping,
5186 				      inode->i_size >> PAGE_SHIFT);
5187 		if (!page)
5188 			return;
5189 		ret = __ext4_journalled_invalidatepage(page, offset,
5190 						PAGE_SIZE - offset);
5191 		unlock_page(page);
5192 		put_page(page);
5193 		if (ret != -EBUSY)
5194 			return;
5195 		commit_tid = 0;
5196 		read_lock(&journal->j_state_lock);
5197 		if (journal->j_committing_transaction)
5198 			commit_tid = journal->j_committing_transaction->t_tid;
5199 		read_unlock(&journal->j_state_lock);
5200 		if (commit_tid)
5201 			jbd2_log_wait_commit(journal, commit_tid);
5202 	}
5203 }
5204 
5205 /*
5206  * ext4_setattr()
5207  *
5208  * Called from notify_change.
5209  *
5210  * We want to trap VFS attempts to truncate the file as soon as
5211  * possible.  In particular, we want to make sure that when the VFS
5212  * shrinks i_size, we put the inode on the orphan list and modify
5213  * i_disksize immediately, so that during the subsequent flushing of
5214  * dirty pages and freeing of disk blocks, we can guarantee that any
5215  * commit will leave the blocks being flushed in an unused state on
5216  * disk.  (On recovery, the inode will get truncated and the blocks will
5217  * be freed, so we have a strong guarantee that no future commit will
5218  * leave these blocks visible to the user.)
5219  *
5220  * Another thing we have to assure is that if we are in ordered mode
5221  * and inode is still attached to the committing transaction, we must
5222  * we start writeout of all the dirty pages which are being truncated.
5223  * This way we are sure that all the data written in the previous
5224  * transaction are already on disk (truncate waits for pages under
5225  * writeback).
5226  *
5227  * Called with inode->i_mutex down.
5228  */
5229 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5230 {
5231 	struct inode *inode = d_inode(dentry);
5232 	int error, rc = 0;
5233 	int orphan = 0;
5234 	const unsigned int ia_valid = attr->ia_valid;
5235 
5236 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5237 		return -EIO;
5238 
5239 	error = setattr_prepare(dentry, attr);
5240 	if (error)
5241 		return error;
5242 
5243 	if (is_quota_modification(inode, attr)) {
5244 		error = dquot_initialize(inode);
5245 		if (error)
5246 			return error;
5247 	}
5248 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5249 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5250 		handle_t *handle;
5251 
5252 		/* (user+group)*(old+new) structure, inode write (sb,
5253 		 * inode block, ? - but truncate inode update has it) */
5254 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5255 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5256 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5257 		if (IS_ERR(handle)) {
5258 			error = PTR_ERR(handle);
5259 			goto err_out;
5260 		}
5261 		error = dquot_transfer(inode, attr);
5262 		if (error) {
5263 			ext4_journal_stop(handle);
5264 			return error;
5265 		}
5266 		/* Update corresponding info in inode so that everything is in
5267 		 * one transaction */
5268 		if (attr->ia_valid & ATTR_UID)
5269 			inode->i_uid = attr->ia_uid;
5270 		if (attr->ia_valid & ATTR_GID)
5271 			inode->i_gid = attr->ia_gid;
5272 		error = ext4_mark_inode_dirty(handle, inode);
5273 		ext4_journal_stop(handle);
5274 	}
5275 
5276 	if (attr->ia_valid & ATTR_SIZE) {
5277 		handle_t *handle;
5278 		loff_t oldsize = inode->i_size;
5279 		int shrink = (attr->ia_size <= inode->i_size);
5280 
5281 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5282 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5283 
5284 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
5285 				return -EFBIG;
5286 		}
5287 		if (!S_ISREG(inode->i_mode))
5288 			return -EINVAL;
5289 
5290 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5291 			inode_inc_iversion(inode);
5292 
5293 		if (ext4_should_order_data(inode) &&
5294 		    (attr->ia_size < inode->i_size)) {
5295 			error = ext4_begin_ordered_truncate(inode,
5296 							    attr->ia_size);
5297 			if (error)
5298 				goto err_out;
5299 		}
5300 		if (attr->ia_size != inode->i_size) {
5301 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5302 			if (IS_ERR(handle)) {
5303 				error = PTR_ERR(handle);
5304 				goto err_out;
5305 			}
5306 			if (ext4_handle_valid(handle) && shrink) {
5307 				error = ext4_orphan_add(handle, inode);
5308 				orphan = 1;
5309 			}
5310 			/*
5311 			 * Update c/mtime on truncate up, ext4_truncate() will
5312 			 * update c/mtime in shrink case below
5313 			 */
5314 			if (!shrink) {
5315 				inode->i_mtime = current_time(inode);
5316 				inode->i_ctime = inode->i_mtime;
5317 			}
5318 			down_write(&EXT4_I(inode)->i_data_sem);
5319 			EXT4_I(inode)->i_disksize = attr->ia_size;
5320 			rc = ext4_mark_inode_dirty(handle, inode);
5321 			if (!error)
5322 				error = rc;
5323 			/*
5324 			 * We have to update i_size under i_data_sem together
5325 			 * with i_disksize to avoid races with writeback code
5326 			 * running ext4_wb_update_i_disksize().
5327 			 */
5328 			if (!error)
5329 				i_size_write(inode, attr->ia_size);
5330 			up_write(&EXT4_I(inode)->i_data_sem);
5331 			ext4_journal_stop(handle);
5332 			if (error) {
5333 				if (orphan)
5334 					ext4_orphan_del(NULL, inode);
5335 				goto err_out;
5336 			}
5337 		}
5338 		if (!shrink)
5339 			pagecache_isize_extended(inode, oldsize, inode->i_size);
5340 
5341 		/*
5342 		 * Blocks are going to be removed from the inode. Wait
5343 		 * for dio in flight.  Temporarily disable
5344 		 * dioread_nolock to prevent livelock.
5345 		 */
5346 		if (orphan) {
5347 			if (!ext4_should_journal_data(inode)) {
5348 				ext4_inode_block_unlocked_dio(inode);
5349 				inode_dio_wait(inode);
5350 				ext4_inode_resume_unlocked_dio(inode);
5351 			} else
5352 				ext4_wait_for_tail_page_commit(inode);
5353 		}
5354 		down_write(&EXT4_I(inode)->i_mmap_sem);
5355 		/*
5356 		 * Truncate pagecache after we've waited for commit
5357 		 * in data=journal mode to make pages freeable.
5358 		 */
5359 		truncate_pagecache(inode, inode->i_size);
5360 		if (shrink) {
5361 			rc = ext4_truncate(inode);
5362 			if (rc)
5363 				error = rc;
5364 		}
5365 		up_write(&EXT4_I(inode)->i_mmap_sem);
5366 	}
5367 
5368 	if (!error) {
5369 		setattr_copy(inode, attr);
5370 		mark_inode_dirty(inode);
5371 	}
5372 
5373 	/*
5374 	 * If the call to ext4_truncate failed to get a transaction handle at
5375 	 * all, we need to clean up the in-core orphan list manually.
5376 	 */
5377 	if (orphan && inode->i_nlink)
5378 		ext4_orphan_del(NULL, inode);
5379 
5380 	if (!error && (ia_valid & ATTR_MODE))
5381 		rc = posix_acl_chmod(inode, inode->i_mode);
5382 
5383 err_out:
5384 	ext4_std_error(inode->i_sb, error);
5385 	if (!error)
5386 		error = rc;
5387 	return error;
5388 }
5389 
5390 int ext4_getattr(const struct path *path, struct kstat *stat,
5391 		 u32 request_mask, unsigned int query_flags)
5392 {
5393 	struct inode *inode;
5394 	unsigned long long delalloc_blocks;
5395 
5396 	inode = d_inode(path->dentry);
5397 	generic_fillattr(inode, stat);
5398 
5399 	/*
5400 	 * If there is inline data in the inode, the inode will normally not
5401 	 * have data blocks allocated (it may have an external xattr block).
5402 	 * Report at least one sector for such files, so tools like tar, rsync,
5403 	 * others doen't incorrectly think the file is completely sparse.
5404 	 */
5405 	if (unlikely(ext4_has_inline_data(inode)))
5406 		stat->blocks += (stat->size + 511) >> 9;
5407 
5408 	/*
5409 	 * We can't update i_blocks if the block allocation is delayed
5410 	 * otherwise in the case of system crash before the real block
5411 	 * allocation is done, we will have i_blocks inconsistent with
5412 	 * on-disk file blocks.
5413 	 * We always keep i_blocks updated together with real
5414 	 * allocation. But to not confuse with user, stat
5415 	 * will return the blocks that include the delayed allocation
5416 	 * blocks for this file.
5417 	 */
5418 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5419 				   EXT4_I(inode)->i_reserved_data_blocks);
5420 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5421 	return 0;
5422 }
5423 
5424 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5425 				   int pextents)
5426 {
5427 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5428 		return ext4_ind_trans_blocks(inode, lblocks);
5429 	return ext4_ext_index_trans_blocks(inode, pextents);
5430 }
5431 
5432 /*
5433  * Account for index blocks, block groups bitmaps and block group
5434  * descriptor blocks if modify datablocks and index blocks
5435  * worse case, the indexs blocks spread over different block groups
5436  *
5437  * If datablocks are discontiguous, they are possible to spread over
5438  * different block groups too. If they are contiguous, with flexbg,
5439  * they could still across block group boundary.
5440  *
5441  * Also account for superblock, inode, quota and xattr blocks
5442  */
5443 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5444 				  int pextents)
5445 {
5446 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5447 	int gdpblocks;
5448 	int idxblocks;
5449 	int ret = 0;
5450 
5451 	/*
5452 	 * How many index blocks need to touch to map @lblocks logical blocks
5453 	 * to @pextents physical extents?
5454 	 */
5455 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5456 
5457 	ret = idxblocks;
5458 
5459 	/*
5460 	 * Now let's see how many group bitmaps and group descriptors need
5461 	 * to account
5462 	 */
5463 	groups = idxblocks + pextents;
5464 	gdpblocks = groups;
5465 	if (groups > ngroups)
5466 		groups = ngroups;
5467 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5468 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5469 
5470 	/* bitmaps and block group descriptor blocks */
5471 	ret += groups + gdpblocks;
5472 
5473 	/* Blocks for super block, inode, quota and xattr blocks */
5474 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5475 
5476 	return ret;
5477 }
5478 
5479 /*
5480  * Calculate the total number of credits to reserve to fit
5481  * the modification of a single pages into a single transaction,
5482  * which may include multiple chunks of block allocations.
5483  *
5484  * This could be called via ext4_write_begin()
5485  *
5486  * We need to consider the worse case, when
5487  * one new block per extent.
5488  */
5489 int ext4_writepage_trans_blocks(struct inode *inode)
5490 {
5491 	int bpp = ext4_journal_blocks_per_page(inode);
5492 	int ret;
5493 
5494 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5495 
5496 	/* Account for data blocks for journalled mode */
5497 	if (ext4_should_journal_data(inode))
5498 		ret += bpp;
5499 	return ret;
5500 }
5501 
5502 /*
5503  * Calculate the journal credits for a chunk of data modification.
5504  *
5505  * This is called from DIO, fallocate or whoever calling
5506  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5507  *
5508  * journal buffers for data blocks are not included here, as DIO
5509  * and fallocate do no need to journal data buffers.
5510  */
5511 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5512 {
5513 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5514 }
5515 
5516 /*
5517  * The caller must have previously called ext4_reserve_inode_write().
5518  * Give this, we know that the caller already has write access to iloc->bh.
5519  */
5520 int ext4_mark_iloc_dirty(handle_t *handle,
5521 			 struct inode *inode, struct ext4_iloc *iloc)
5522 {
5523 	int err = 0;
5524 
5525 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5526 		return -EIO;
5527 
5528 	if (IS_I_VERSION(inode))
5529 		inode_inc_iversion(inode);
5530 
5531 	/* the do_update_inode consumes one bh->b_count */
5532 	get_bh(iloc->bh);
5533 
5534 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5535 	err = ext4_do_update_inode(handle, inode, iloc);
5536 	put_bh(iloc->bh);
5537 	return err;
5538 }
5539 
5540 /*
5541  * On success, We end up with an outstanding reference count against
5542  * iloc->bh.  This _must_ be cleaned up later.
5543  */
5544 
5545 int
5546 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5547 			 struct ext4_iloc *iloc)
5548 {
5549 	int err;
5550 
5551 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5552 		return -EIO;
5553 
5554 	err = ext4_get_inode_loc(inode, iloc);
5555 	if (!err) {
5556 		BUFFER_TRACE(iloc->bh, "get_write_access");
5557 		err = ext4_journal_get_write_access(handle, iloc->bh);
5558 		if (err) {
5559 			brelse(iloc->bh);
5560 			iloc->bh = NULL;
5561 		}
5562 	}
5563 	ext4_std_error(inode->i_sb, err);
5564 	return err;
5565 }
5566 
5567 /*
5568  * Expand an inode by new_extra_isize bytes.
5569  * Returns 0 on success or negative error number on failure.
5570  */
5571 static int ext4_expand_extra_isize(struct inode *inode,
5572 				   unsigned int new_extra_isize,
5573 				   struct ext4_iloc iloc,
5574 				   handle_t *handle)
5575 {
5576 	struct ext4_inode *raw_inode;
5577 	struct ext4_xattr_ibody_header *header;
5578 
5579 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5580 		return 0;
5581 
5582 	raw_inode = ext4_raw_inode(&iloc);
5583 
5584 	header = IHDR(inode, raw_inode);
5585 
5586 	/* No extended attributes present */
5587 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5588 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5589 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5590 			new_extra_isize);
5591 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5592 		return 0;
5593 	}
5594 
5595 	/* try to expand with EAs present */
5596 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5597 					  raw_inode, handle);
5598 }
5599 
5600 /*
5601  * What we do here is to mark the in-core inode as clean with respect to inode
5602  * dirtiness (it may still be data-dirty).
5603  * This means that the in-core inode may be reaped by prune_icache
5604  * without having to perform any I/O.  This is a very good thing,
5605  * because *any* task may call prune_icache - even ones which
5606  * have a transaction open against a different journal.
5607  *
5608  * Is this cheating?  Not really.  Sure, we haven't written the
5609  * inode out, but prune_icache isn't a user-visible syncing function.
5610  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5611  * we start and wait on commits.
5612  */
5613 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5614 {
5615 	struct ext4_iloc iloc;
5616 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5617 	static unsigned int mnt_count;
5618 	int err, ret;
5619 
5620 	might_sleep();
5621 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5622 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5623 	if (err)
5624 		return err;
5625 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5626 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5627 		/*
5628 		 * In nojournal mode, we can immediately attempt to expand
5629 		 * the inode.  When journaled, we first need to obtain extra
5630 		 * buffer credits since we may write into the EA block
5631 		 * with this same handle. If journal_extend fails, then it will
5632 		 * only result in a minor loss of functionality for that inode.
5633 		 * If this is felt to be critical, then e2fsck should be run to
5634 		 * force a large enough s_min_extra_isize.
5635 		 */
5636 		if (!ext4_handle_valid(handle) ||
5637 		    jbd2_journal_extend(handle,
5638 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) == 0) {
5639 			ret = ext4_expand_extra_isize(inode,
5640 						      sbi->s_want_extra_isize,
5641 						      iloc, handle);
5642 			if (ret) {
5643 				if (mnt_count !=
5644 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5645 					ext4_warning(inode->i_sb,
5646 					"Unable to expand inode %lu. Delete"
5647 					" some EAs or run e2fsck.",
5648 					inode->i_ino);
5649 					mnt_count =
5650 					  le16_to_cpu(sbi->s_es->s_mnt_count);
5651 				}
5652 			}
5653 		}
5654 	}
5655 	return ext4_mark_iloc_dirty(handle, inode, &iloc);
5656 }
5657 
5658 /*
5659  * ext4_dirty_inode() is called from __mark_inode_dirty()
5660  *
5661  * We're really interested in the case where a file is being extended.
5662  * i_size has been changed by generic_commit_write() and we thus need
5663  * to include the updated inode in the current transaction.
5664  *
5665  * Also, dquot_alloc_block() will always dirty the inode when blocks
5666  * are allocated to the file.
5667  *
5668  * If the inode is marked synchronous, we don't honour that here - doing
5669  * so would cause a commit on atime updates, which we don't bother doing.
5670  * We handle synchronous inodes at the highest possible level.
5671  *
5672  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5673  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5674  * to copy into the on-disk inode structure are the timestamp files.
5675  */
5676 void ext4_dirty_inode(struct inode *inode, int flags)
5677 {
5678 	handle_t *handle;
5679 
5680 	if (flags == I_DIRTY_TIME)
5681 		return;
5682 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5683 	if (IS_ERR(handle))
5684 		goto out;
5685 
5686 	ext4_mark_inode_dirty(handle, inode);
5687 
5688 	ext4_journal_stop(handle);
5689 out:
5690 	return;
5691 }
5692 
5693 #if 0
5694 /*
5695  * Bind an inode's backing buffer_head into this transaction, to prevent
5696  * it from being flushed to disk early.  Unlike
5697  * ext4_reserve_inode_write, this leaves behind no bh reference and
5698  * returns no iloc structure, so the caller needs to repeat the iloc
5699  * lookup to mark the inode dirty later.
5700  */
5701 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5702 {
5703 	struct ext4_iloc iloc;
5704 
5705 	int err = 0;
5706 	if (handle) {
5707 		err = ext4_get_inode_loc(inode, &iloc);
5708 		if (!err) {
5709 			BUFFER_TRACE(iloc.bh, "get_write_access");
5710 			err = jbd2_journal_get_write_access(handle, iloc.bh);
5711 			if (!err)
5712 				err = ext4_handle_dirty_metadata(handle,
5713 								 NULL,
5714 								 iloc.bh);
5715 			brelse(iloc.bh);
5716 		}
5717 	}
5718 	ext4_std_error(inode->i_sb, err);
5719 	return err;
5720 }
5721 #endif
5722 
5723 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5724 {
5725 	journal_t *journal;
5726 	handle_t *handle;
5727 	int err;
5728 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5729 
5730 	/*
5731 	 * We have to be very careful here: changing a data block's
5732 	 * journaling status dynamically is dangerous.  If we write a
5733 	 * data block to the journal, change the status and then delete
5734 	 * that block, we risk forgetting to revoke the old log record
5735 	 * from the journal and so a subsequent replay can corrupt data.
5736 	 * So, first we make sure that the journal is empty and that
5737 	 * nobody is changing anything.
5738 	 */
5739 
5740 	journal = EXT4_JOURNAL(inode);
5741 	if (!journal)
5742 		return 0;
5743 	if (is_journal_aborted(journal))
5744 		return -EROFS;
5745 
5746 	/* Wait for all existing dio workers */
5747 	ext4_inode_block_unlocked_dio(inode);
5748 	inode_dio_wait(inode);
5749 
5750 	/*
5751 	 * Before flushing the journal and switching inode's aops, we have
5752 	 * to flush all dirty data the inode has. There can be outstanding
5753 	 * delayed allocations, there can be unwritten extents created by
5754 	 * fallocate or buffered writes in dioread_nolock mode covered by
5755 	 * dirty data which can be converted only after flushing the dirty
5756 	 * data (and journalled aops don't know how to handle these cases).
5757 	 */
5758 	if (val) {
5759 		down_write(&EXT4_I(inode)->i_mmap_sem);
5760 		err = filemap_write_and_wait(inode->i_mapping);
5761 		if (err < 0) {
5762 			up_write(&EXT4_I(inode)->i_mmap_sem);
5763 			ext4_inode_resume_unlocked_dio(inode);
5764 			return err;
5765 		}
5766 	}
5767 
5768 	percpu_down_write(&sbi->s_journal_flag_rwsem);
5769 	jbd2_journal_lock_updates(journal);
5770 
5771 	/*
5772 	 * OK, there are no updates running now, and all cached data is
5773 	 * synced to disk.  We are now in a completely consistent state
5774 	 * which doesn't have anything in the journal, and we know that
5775 	 * no filesystem updates are running, so it is safe to modify
5776 	 * the inode's in-core data-journaling state flag now.
5777 	 */
5778 
5779 	if (val)
5780 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5781 	else {
5782 		err = jbd2_journal_flush(journal);
5783 		if (err < 0) {
5784 			jbd2_journal_unlock_updates(journal);
5785 			percpu_up_write(&sbi->s_journal_flag_rwsem);
5786 			ext4_inode_resume_unlocked_dio(inode);
5787 			return err;
5788 		}
5789 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5790 	}
5791 	ext4_set_aops(inode);
5792 	/*
5793 	 * Update inode->i_flags after EXT4_INODE_JOURNAL_DATA was updated.
5794 	 * E.g. S_DAX may get cleared / set.
5795 	 */
5796 	ext4_set_inode_flags(inode);
5797 
5798 	jbd2_journal_unlock_updates(journal);
5799 	percpu_up_write(&sbi->s_journal_flag_rwsem);
5800 
5801 	if (val)
5802 		up_write(&EXT4_I(inode)->i_mmap_sem);
5803 	ext4_inode_resume_unlocked_dio(inode);
5804 
5805 	/* Finally we can mark the inode as dirty. */
5806 
5807 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5808 	if (IS_ERR(handle))
5809 		return PTR_ERR(handle);
5810 
5811 	err = ext4_mark_inode_dirty(handle, inode);
5812 	ext4_handle_sync(handle);
5813 	ext4_journal_stop(handle);
5814 	ext4_std_error(inode->i_sb, err);
5815 
5816 	return err;
5817 }
5818 
5819 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5820 {
5821 	return !buffer_mapped(bh);
5822 }
5823 
5824 int ext4_page_mkwrite(struct vm_fault *vmf)
5825 {
5826 	struct vm_area_struct *vma = vmf->vma;
5827 	struct page *page = vmf->page;
5828 	loff_t size;
5829 	unsigned long len;
5830 	int ret;
5831 	struct file *file = vma->vm_file;
5832 	struct inode *inode = file_inode(file);
5833 	struct address_space *mapping = inode->i_mapping;
5834 	handle_t *handle;
5835 	get_block_t *get_block;
5836 	int retries = 0;
5837 
5838 	sb_start_pagefault(inode->i_sb);
5839 	file_update_time(vma->vm_file);
5840 
5841 	down_read(&EXT4_I(inode)->i_mmap_sem);
5842 	/* Delalloc case is easy... */
5843 	if (test_opt(inode->i_sb, DELALLOC) &&
5844 	    !ext4_should_journal_data(inode) &&
5845 	    !ext4_nonda_switch(inode->i_sb)) {
5846 		do {
5847 			ret = block_page_mkwrite(vma, vmf,
5848 						   ext4_da_get_block_prep);
5849 		} while (ret == -ENOSPC &&
5850 		       ext4_should_retry_alloc(inode->i_sb, &retries));
5851 		goto out_ret;
5852 	}
5853 
5854 	lock_page(page);
5855 	size = i_size_read(inode);
5856 	/* Page got truncated from under us? */
5857 	if (page->mapping != mapping || page_offset(page) > size) {
5858 		unlock_page(page);
5859 		ret = VM_FAULT_NOPAGE;
5860 		goto out;
5861 	}
5862 
5863 	if (page->index == size >> PAGE_SHIFT)
5864 		len = size & ~PAGE_MASK;
5865 	else
5866 		len = PAGE_SIZE;
5867 	/*
5868 	 * Return if we have all the buffers mapped. This avoids the need to do
5869 	 * journal_start/journal_stop which can block and take a long time
5870 	 */
5871 	if (page_has_buffers(page)) {
5872 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5873 					    0, len, NULL,
5874 					    ext4_bh_unmapped)) {
5875 			/* Wait so that we don't change page under IO */
5876 			wait_for_stable_page(page);
5877 			ret = VM_FAULT_LOCKED;
5878 			goto out;
5879 		}
5880 	}
5881 	unlock_page(page);
5882 	/* OK, we need to fill the hole... */
5883 	if (ext4_should_dioread_nolock(inode))
5884 		get_block = ext4_get_block_unwritten;
5885 	else
5886 		get_block = ext4_get_block;
5887 retry_alloc:
5888 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5889 				    ext4_writepage_trans_blocks(inode));
5890 	if (IS_ERR(handle)) {
5891 		ret = VM_FAULT_SIGBUS;
5892 		goto out;
5893 	}
5894 	ret = block_page_mkwrite(vma, vmf, get_block);
5895 	if (!ret && ext4_should_journal_data(inode)) {
5896 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5897 			  PAGE_SIZE, NULL, do_journal_get_write_access)) {
5898 			unlock_page(page);
5899 			ret = VM_FAULT_SIGBUS;
5900 			ext4_journal_stop(handle);
5901 			goto out;
5902 		}
5903 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5904 	}
5905 	ext4_journal_stop(handle);
5906 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5907 		goto retry_alloc;
5908 out_ret:
5909 	ret = block_page_mkwrite_return(ret);
5910 out:
5911 	up_read(&EXT4_I(inode)->i_mmap_sem);
5912 	sb_end_pagefault(inode->i_sb);
5913 	return ret;
5914 }
5915 
5916 int ext4_filemap_fault(struct vm_fault *vmf)
5917 {
5918 	struct inode *inode = file_inode(vmf->vma->vm_file);
5919 	int err;
5920 
5921 	down_read(&EXT4_I(inode)->i_mmap_sem);
5922 	err = filemap_fault(vmf);
5923 	up_read(&EXT4_I(inode)->i_mmap_sem);
5924 
5925 	return err;
5926 }
5927 
5928 /*
5929  * Find the first extent at or after @lblk in an inode that is not a hole.
5930  * Search for @map_len blocks at most. The extent is returned in @result.
5931  *
5932  * The function returns 1 if we found an extent. The function returns 0 in
5933  * case there is no extent at or after @lblk and in that case also sets
5934  * @result->es_len to 0. In case of error, the error code is returned.
5935  */
5936 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
5937 			 unsigned int map_len, struct extent_status *result)
5938 {
5939 	struct ext4_map_blocks map;
5940 	struct extent_status es = {};
5941 	int ret;
5942 
5943 	map.m_lblk = lblk;
5944 	map.m_len = map_len;
5945 
5946 	/*
5947 	 * For non-extent based files this loop may iterate several times since
5948 	 * we do not determine full hole size.
5949 	 */
5950 	while (map.m_len > 0) {
5951 		ret = ext4_map_blocks(NULL, inode, &map, 0);
5952 		if (ret < 0)
5953 			return ret;
5954 		/* There's extent covering m_lblk? Just return it. */
5955 		if (ret > 0) {
5956 			int status;
5957 
5958 			ext4_es_store_pblock(result, map.m_pblk);
5959 			result->es_lblk = map.m_lblk;
5960 			result->es_len = map.m_len;
5961 			if (map.m_flags & EXT4_MAP_UNWRITTEN)
5962 				status = EXTENT_STATUS_UNWRITTEN;
5963 			else
5964 				status = EXTENT_STATUS_WRITTEN;
5965 			ext4_es_store_status(result, status);
5966 			return 1;
5967 		}
5968 		ext4_es_find_delayed_extent_range(inode, map.m_lblk,
5969 						  map.m_lblk + map.m_len - 1,
5970 						  &es);
5971 		/* Is delalloc data before next block in extent tree? */
5972 		if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
5973 			ext4_lblk_t offset = 0;
5974 
5975 			if (es.es_lblk < lblk)
5976 				offset = lblk - es.es_lblk;
5977 			result->es_lblk = es.es_lblk + offset;
5978 			ext4_es_store_pblock(result,
5979 					     ext4_es_pblock(&es) + offset);
5980 			result->es_len = es.es_len - offset;
5981 			ext4_es_store_status(result, ext4_es_status(&es));
5982 
5983 			return 1;
5984 		}
5985 		/* There's a hole at m_lblk, advance us after it */
5986 		map.m_lblk += map.m_len;
5987 		map_len -= map.m_len;
5988 		map.m_len = map_len;
5989 		cond_resched();
5990 	}
5991 	result->es_len = 0;
5992 	return 0;
5993 }
5994