1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * 64-bit file support on 64-bit platforms by Jakub Jelinek 16 * (jj@sunsite.ms.mff.cuni.cz) 17 * 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 19 */ 20 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/highuid.h> 24 #include <linux/pagemap.h> 25 #include <linux/quotaops.h> 26 #include <linux/string.h> 27 #include <linux/buffer_head.h> 28 #include <linux/writeback.h> 29 #include <linux/pagevec.h> 30 #include <linux/mpage.h> 31 #include <linux/namei.h> 32 #include <linux/uio.h> 33 #include <linux/bio.h> 34 #include <linux/workqueue.h> 35 #include <linux/kernel.h> 36 #include <linux/printk.h> 37 #include <linux/slab.h> 38 #include <linux/bitops.h> 39 40 #include "ext4_jbd2.h" 41 #include "xattr.h" 42 #include "acl.h" 43 #include "truncate.h" 44 45 #include <trace/events/ext4.h> 46 47 #define MPAGE_DA_EXTENT_TAIL 0x01 48 49 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 50 struct ext4_inode_info *ei) 51 { 52 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 53 __u16 csum_lo; 54 __u16 csum_hi = 0; 55 __u32 csum; 56 57 csum_lo = le16_to_cpu(raw->i_checksum_lo); 58 raw->i_checksum_lo = 0; 59 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 60 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 61 csum_hi = le16_to_cpu(raw->i_checksum_hi); 62 raw->i_checksum_hi = 0; 63 } 64 65 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, 66 EXT4_INODE_SIZE(inode->i_sb)); 67 68 raw->i_checksum_lo = cpu_to_le16(csum_lo); 69 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 70 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 71 raw->i_checksum_hi = cpu_to_le16(csum_hi); 72 73 return csum; 74 } 75 76 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 77 struct ext4_inode_info *ei) 78 { 79 __u32 provided, calculated; 80 81 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 82 cpu_to_le32(EXT4_OS_LINUX) || 83 !ext4_has_metadata_csum(inode->i_sb)) 84 return 1; 85 86 provided = le16_to_cpu(raw->i_checksum_lo); 87 calculated = ext4_inode_csum(inode, raw, ei); 88 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 89 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 90 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 91 else 92 calculated &= 0xFFFF; 93 94 return provided == calculated; 95 } 96 97 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 98 struct ext4_inode_info *ei) 99 { 100 __u32 csum; 101 102 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 103 cpu_to_le32(EXT4_OS_LINUX) || 104 !ext4_has_metadata_csum(inode->i_sb)) 105 return; 106 107 csum = ext4_inode_csum(inode, raw, ei); 108 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 109 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 110 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 111 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 112 } 113 114 static inline int ext4_begin_ordered_truncate(struct inode *inode, 115 loff_t new_size) 116 { 117 trace_ext4_begin_ordered_truncate(inode, new_size); 118 /* 119 * If jinode is zero, then we never opened the file for 120 * writing, so there's no need to call 121 * jbd2_journal_begin_ordered_truncate() since there's no 122 * outstanding writes we need to flush. 123 */ 124 if (!EXT4_I(inode)->jinode) 125 return 0; 126 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 127 EXT4_I(inode)->jinode, 128 new_size); 129 } 130 131 static void ext4_invalidatepage(struct page *page, unsigned int offset, 132 unsigned int length); 133 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 134 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 135 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 136 int pextents); 137 138 /* 139 * Test whether an inode is a fast symlink. 140 */ 141 int ext4_inode_is_fast_symlink(struct inode *inode) 142 { 143 int ea_blocks = EXT4_I(inode)->i_file_acl ? 144 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 145 146 if (ext4_has_inline_data(inode)) 147 return 0; 148 149 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 150 } 151 152 /* 153 * Restart the transaction associated with *handle. This does a commit, 154 * so before we call here everything must be consistently dirtied against 155 * this transaction. 156 */ 157 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 158 int nblocks) 159 { 160 int ret; 161 162 /* 163 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 164 * moment, get_block can be called only for blocks inside i_size since 165 * page cache has been already dropped and writes are blocked by 166 * i_mutex. So we can safely drop the i_data_sem here. 167 */ 168 BUG_ON(EXT4_JOURNAL(inode) == NULL); 169 jbd_debug(2, "restarting handle %p\n", handle); 170 up_write(&EXT4_I(inode)->i_data_sem); 171 ret = ext4_journal_restart(handle, nblocks); 172 down_write(&EXT4_I(inode)->i_data_sem); 173 ext4_discard_preallocations(inode); 174 175 return ret; 176 } 177 178 /* 179 * Called at the last iput() if i_nlink is zero. 180 */ 181 void ext4_evict_inode(struct inode *inode) 182 { 183 handle_t *handle; 184 int err; 185 186 trace_ext4_evict_inode(inode); 187 188 if (inode->i_nlink) { 189 /* 190 * When journalling data dirty buffers are tracked only in the 191 * journal. So although mm thinks everything is clean and 192 * ready for reaping the inode might still have some pages to 193 * write in the running transaction or waiting to be 194 * checkpointed. Thus calling jbd2_journal_invalidatepage() 195 * (via truncate_inode_pages()) to discard these buffers can 196 * cause data loss. Also even if we did not discard these 197 * buffers, we would have no way to find them after the inode 198 * is reaped and thus user could see stale data if he tries to 199 * read them before the transaction is checkpointed. So be 200 * careful and force everything to disk here... We use 201 * ei->i_datasync_tid to store the newest transaction 202 * containing inode's data. 203 * 204 * Note that directories do not have this problem because they 205 * don't use page cache. 206 */ 207 if (ext4_should_journal_data(inode) && 208 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 209 inode->i_ino != EXT4_JOURNAL_INO) { 210 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 211 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 212 213 jbd2_complete_transaction(journal, commit_tid); 214 filemap_write_and_wait(&inode->i_data); 215 } 216 truncate_inode_pages_final(&inode->i_data); 217 218 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count)); 219 goto no_delete; 220 } 221 222 if (is_bad_inode(inode)) 223 goto no_delete; 224 dquot_initialize(inode); 225 226 if (ext4_should_order_data(inode)) 227 ext4_begin_ordered_truncate(inode, 0); 228 truncate_inode_pages_final(&inode->i_data); 229 230 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count)); 231 232 /* 233 * Protect us against freezing - iput() caller didn't have to have any 234 * protection against it 235 */ 236 sb_start_intwrite(inode->i_sb); 237 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 238 ext4_blocks_for_truncate(inode)+3); 239 if (IS_ERR(handle)) { 240 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 241 /* 242 * If we're going to skip the normal cleanup, we still need to 243 * make sure that the in-core orphan linked list is properly 244 * cleaned up. 245 */ 246 ext4_orphan_del(NULL, inode); 247 sb_end_intwrite(inode->i_sb); 248 goto no_delete; 249 } 250 251 if (IS_SYNC(inode)) 252 ext4_handle_sync(handle); 253 inode->i_size = 0; 254 err = ext4_mark_inode_dirty(handle, inode); 255 if (err) { 256 ext4_warning(inode->i_sb, 257 "couldn't mark inode dirty (err %d)", err); 258 goto stop_handle; 259 } 260 if (inode->i_blocks) 261 ext4_truncate(inode); 262 263 /* 264 * ext4_ext_truncate() doesn't reserve any slop when it 265 * restarts journal transactions; therefore there may not be 266 * enough credits left in the handle to remove the inode from 267 * the orphan list and set the dtime field. 268 */ 269 if (!ext4_handle_has_enough_credits(handle, 3)) { 270 err = ext4_journal_extend(handle, 3); 271 if (err > 0) 272 err = ext4_journal_restart(handle, 3); 273 if (err != 0) { 274 ext4_warning(inode->i_sb, 275 "couldn't extend journal (err %d)", err); 276 stop_handle: 277 ext4_journal_stop(handle); 278 ext4_orphan_del(NULL, inode); 279 sb_end_intwrite(inode->i_sb); 280 goto no_delete; 281 } 282 } 283 284 /* 285 * Kill off the orphan record which ext4_truncate created. 286 * AKPM: I think this can be inside the above `if'. 287 * Note that ext4_orphan_del() has to be able to cope with the 288 * deletion of a non-existent orphan - this is because we don't 289 * know if ext4_truncate() actually created an orphan record. 290 * (Well, we could do this if we need to, but heck - it works) 291 */ 292 ext4_orphan_del(handle, inode); 293 EXT4_I(inode)->i_dtime = get_seconds(); 294 295 /* 296 * One subtle ordering requirement: if anything has gone wrong 297 * (transaction abort, IO errors, whatever), then we can still 298 * do these next steps (the fs will already have been marked as 299 * having errors), but we can't free the inode if the mark_dirty 300 * fails. 301 */ 302 if (ext4_mark_inode_dirty(handle, inode)) 303 /* If that failed, just do the required in-core inode clear. */ 304 ext4_clear_inode(inode); 305 else 306 ext4_free_inode(handle, inode); 307 ext4_journal_stop(handle); 308 sb_end_intwrite(inode->i_sb); 309 return; 310 no_delete: 311 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 312 } 313 314 #ifdef CONFIG_QUOTA 315 qsize_t *ext4_get_reserved_space(struct inode *inode) 316 { 317 return &EXT4_I(inode)->i_reserved_quota; 318 } 319 #endif 320 321 /* 322 * Called with i_data_sem down, which is important since we can call 323 * ext4_discard_preallocations() from here. 324 */ 325 void ext4_da_update_reserve_space(struct inode *inode, 326 int used, int quota_claim) 327 { 328 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 329 struct ext4_inode_info *ei = EXT4_I(inode); 330 331 spin_lock(&ei->i_block_reservation_lock); 332 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 333 if (unlikely(used > ei->i_reserved_data_blocks)) { 334 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 335 "with only %d reserved data blocks", 336 __func__, inode->i_ino, used, 337 ei->i_reserved_data_blocks); 338 WARN_ON(1); 339 used = ei->i_reserved_data_blocks; 340 } 341 342 /* Update per-inode reservations */ 343 ei->i_reserved_data_blocks -= used; 344 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 345 346 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 347 348 /* Update quota subsystem for data blocks */ 349 if (quota_claim) 350 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 351 else { 352 /* 353 * We did fallocate with an offset that is already delayed 354 * allocated. So on delayed allocated writeback we should 355 * not re-claim the quota for fallocated blocks. 356 */ 357 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 358 } 359 360 /* 361 * If we have done all the pending block allocations and if 362 * there aren't any writers on the inode, we can discard the 363 * inode's preallocations. 364 */ 365 if ((ei->i_reserved_data_blocks == 0) && 366 (atomic_read(&inode->i_writecount) == 0)) 367 ext4_discard_preallocations(inode); 368 } 369 370 static int __check_block_validity(struct inode *inode, const char *func, 371 unsigned int line, 372 struct ext4_map_blocks *map) 373 { 374 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 375 map->m_len)) { 376 ext4_error_inode(inode, func, line, map->m_pblk, 377 "lblock %lu mapped to illegal pblock " 378 "(length %d)", (unsigned long) map->m_lblk, 379 map->m_len); 380 return -EIO; 381 } 382 return 0; 383 } 384 385 #define check_block_validity(inode, map) \ 386 __check_block_validity((inode), __func__, __LINE__, (map)) 387 388 #ifdef ES_AGGRESSIVE_TEST 389 static void ext4_map_blocks_es_recheck(handle_t *handle, 390 struct inode *inode, 391 struct ext4_map_blocks *es_map, 392 struct ext4_map_blocks *map, 393 int flags) 394 { 395 int retval; 396 397 map->m_flags = 0; 398 /* 399 * There is a race window that the result is not the same. 400 * e.g. xfstests #223 when dioread_nolock enables. The reason 401 * is that we lookup a block mapping in extent status tree with 402 * out taking i_data_sem. So at the time the unwritten extent 403 * could be converted. 404 */ 405 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 406 down_read(&EXT4_I(inode)->i_data_sem); 407 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 408 retval = ext4_ext_map_blocks(handle, inode, map, flags & 409 EXT4_GET_BLOCKS_KEEP_SIZE); 410 } else { 411 retval = ext4_ind_map_blocks(handle, inode, map, flags & 412 EXT4_GET_BLOCKS_KEEP_SIZE); 413 } 414 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 415 up_read((&EXT4_I(inode)->i_data_sem)); 416 417 /* 418 * We don't check m_len because extent will be collpased in status 419 * tree. So the m_len might not equal. 420 */ 421 if (es_map->m_lblk != map->m_lblk || 422 es_map->m_flags != map->m_flags || 423 es_map->m_pblk != map->m_pblk) { 424 printk("ES cache assertion failed for inode: %lu " 425 "es_cached ex [%d/%d/%llu/%x] != " 426 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 427 inode->i_ino, es_map->m_lblk, es_map->m_len, 428 es_map->m_pblk, es_map->m_flags, map->m_lblk, 429 map->m_len, map->m_pblk, map->m_flags, 430 retval, flags); 431 } 432 } 433 #endif /* ES_AGGRESSIVE_TEST */ 434 435 /* 436 * The ext4_map_blocks() function tries to look up the requested blocks, 437 * and returns if the blocks are already mapped. 438 * 439 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 440 * and store the allocated blocks in the result buffer head and mark it 441 * mapped. 442 * 443 * If file type is extents based, it will call ext4_ext_map_blocks(), 444 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 445 * based files 446 * 447 * On success, it returns the number of blocks being mapped or allocated. 448 * if create==0 and the blocks are pre-allocated and unwritten block, 449 * the result buffer head is unmapped. If the create ==1, it will make sure 450 * the buffer head is mapped. 451 * 452 * It returns 0 if plain look up failed (blocks have not been allocated), in 453 * that case, buffer head is unmapped 454 * 455 * It returns the error in case of allocation failure. 456 */ 457 int ext4_map_blocks(handle_t *handle, struct inode *inode, 458 struct ext4_map_blocks *map, int flags) 459 { 460 struct extent_status es; 461 int retval; 462 int ret = 0; 463 #ifdef ES_AGGRESSIVE_TEST 464 struct ext4_map_blocks orig_map; 465 466 memcpy(&orig_map, map, sizeof(*map)); 467 #endif 468 469 map->m_flags = 0; 470 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 471 "logical block %lu\n", inode->i_ino, flags, map->m_len, 472 (unsigned long) map->m_lblk); 473 474 /* 475 * ext4_map_blocks returns an int, and m_len is an unsigned int 476 */ 477 if (unlikely(map->m_len > INT_MAX)) 478 map->m_len = INT_MAX; 479 480 /* We can handle the block number less than EXT_MAX_BLOCKS */ 481 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 482 return -EIO; 483 484 /* Lookup extent status tree firstly */ 485 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 486 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 487 map->m_pblk = ext4_es_pblock(&es) + 488 map->m_lblk - es.es_lblk; 489 map->m_flags |= ext4_es_is_written(&es) ? 490 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 491 retval = es.es_len - (map->m_lblk - es.es_lblk); 492 if (retval > map->m_len) 493 retval = map->m_len; 494 map->m_len = retval; 495 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 496 retval = 0; 497 } else { 498 BUG_ON(1); 499 } 500 #ifdef ES_AGGRESSIVE_TEST 501 ext4_map_blocks_es_recheck(handle, inode, map, 502 &orig_map, flags); 503 #endif 504 goto found; 505 } 506 507 /* 508 * Try to see if we can get the block without requesting a new 509 * file system block. 510 */ 511 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 512 down_read(&EXT4_I(inode)->i_data_sem); 513 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 514 retval = ext4_ext_map_blocks(handle, inode, map, flags & 515 EXT4_GET_BLOCKS_KEEP_SIZE); 516 } else { 517 retval = ext4_ind_map_blocks(handle, inode, map, flags & 518 EXT4_GET_BLOCKS_KEEP_SIZE); 519 } 520 if (retval > 0) { 521 unsigned int status; 522 523 if (unlikely(retval != map->m_len)) { 524 ext4_warning(inode->i_sb, 525 "ES len assertion failed for inode " 526 "%lu: retval %d != map->m_len %d", 527 inode->i_ino, retval, map->m_len); 528 WARN_ON(1); 529 } 530 531 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 532 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 533 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 534 ext4_find_delalloc_range(inode, map->m_lblk, 535 map->m_lblk + map->m_len - 1)) 536 status |= EXTENT_STATUS_DELAYED; 537 ret = ext4_es_insert_extent(inode, map->m_lblk, 538 map->m_len, map->m_pblk, status); 539 if (ret < 0) 540 retval = ret; 541 } 542 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 543 up_read((&EXT4_I(inode)->i_data_sem)); 544 545 found: 546 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 547 ret = check_block_validity(inode, map); 548 if (ret != 0) 549 return ret; 550 } 551 552 /* If it is only a block(s) look up */ 553 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 554 return retval; 555 556 /* 557 * Returns if the blocks have already allocated 558 * 559 * Note that if blocks have been preallocated 560 * ext4_ext_get_block() returns the create = 0 561 * with buffer head unmapped. 562 */ 563 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 564 /* 565 * If we need to convert extent to unwritten 566 * we continue and do the actual work in 567 * ext4_ext_map_blocks() 568 */ 569 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 570 return retval; 571 572 /* 573 * Here we clear m_flags because after allocating an new extent, 574 * it will be set again. 575 */ 576 map->m_flags &= ~EXT4_MAP_FLAGS; 577 578 /* 579 * New blocks allocate and/or writing to unwritten extent 580 * will possibly result in updating i_data, so we take 581 * the write lock of i_data_sem, and call get_block() 582 * with create == 1 flag. 583 */ 584 down_write(&EXT4_I(inode)->i_data_sem); 585 586 /* 587 * We need to check for EXT4 here because migrate 588 * could have changed the inode type in between 589 */ 590 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 591 retval = ext4_ext_map_blocks(handle, inode, map, flags); 592 } else { 593 retval = ext4_ind_map_blocks(handle, inode, map, flags); 594 595 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 596 /* 597 * We allocated new blocks which will result in 598 * i_data's format changing. Force the migrate 599 * to fail by clearing migrate flags 600 */ 601 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 602 } 603 604 /* 605 * Update reserved blocks/metadata blocks after successful 606 * block allocation which had been deferred till now. We don't 607 * support fallocate for non extent files. So we can update 608 * reserve space here. 609 */ 610 if ((retval > 0) && 611 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 612 ext4_da_update_reserve_space(inode, retval, 1); 613 } 614 615 if (retval > 0) { 616 unsigned int status; 617 618 if (unlikely(retval != map->m_len)) { 619 ext4_warning(inode->i_sb, 620 "ES len assertion failed for inode " 621 "%lu: retval %d != map->m_len %d", 622 inode->i_ino, retval, map->m_len); 623 WARN_ON(1); 624 } 625 626 /* 627 * If the extent has been zeroed out, we don't need to update 628 * extent status tree. 629 */ 630 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 631 ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 632 if (ext4_es_is_written(&es)) 633 goto has_zeroout; 634 } 635 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 636 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 637 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 638 ext4_find_delalloc_range(inode, map->m_lblk, 639 map->m_lblk + map->m_len - 1)) 640 status |= EXTENT_STATUS_DELAYED; 641 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 642 map->m_pblk, status); 643 if (ret < 0) 644 retval = ret; 645 } 646 647 has_zeroout: 648 up_write((&EXT4_I(inode)->i_data_sem)); 649 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 650 ret = check_block_validity(inode, map); 651 if (ret != 0) 652 return ret; 653 } 654 return retval; 655 } 656 657 static void ext4_end_io_unwritten(struct buffer_head *bh, int uptodate) 658 { 659 struct inode *inode = bh->b_assoc_map->host; 660 /* XXX: breaks on 32-bit > 16GB. Is that even supported? */ 661 loff_t offset = (loff_t)(uintptr_t)bh->b_private << inode->i_blkbits; 662 int err; 663 if (!uptodate) 664 return; 665 WARN_ON(!buffer_unwritten(bh)); 666 err = ext4_convert_unwritten_extents(NULL, inode, offset, bh->b_size); 667 } 668 669 /* Maximum number of blocks we map for direct IO at once. */ 670 #define DIO_MAX_BLOCKS 4096 671 672 static int _ext4_get_block(struct inode *inode, sector_t iblock, 673 struct buffer_head *bh, int flags) 674 { 675 handle_t *handle = ext4_journal_current_handle(); 676 struct ext4_map_blocks map; 677 int ret = 0, started = 0; 678 int dio_credits; 679 680 if (ext4_has_inline_data(inode)) 681 return -ERANGE; 682 683 map.m_lblk = iblock; 684 map.m_len = bh->b_size >> inode->i_blkbits; 685 686 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) { 687 /* Direct IO write... */ 688 if (map.m_len > DIO_MAX_BLOCKS) 689 map.m_len = DIO_MAX_BLOCKS; 690 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 691 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 692 dio_credits); 693 if (IS_ERR(handle)) { 694 ret = PTR_ERR(handle); 695 return ret; 696 } 697 started = 1; 698 } 699 700 ret = ext4_map_blocks(handle, inode, &map, flags); 701 if (ret > 0) { 702 ext4_io_end_t *io_end = ext4_inode_aio(inode); 703 704 map_bh(bh, inode->i_sb, map.m_pblk); 705 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 706 if (IS_DAX(inode) && buffer_unwritten(bh) && !io_end) { 707 bh->b_assoc_map = inode->i_mapping; 708 bh->b_private = (void *)(unsigned long)iblock; 709 bh->b_end_io = ext4_end_io_unwritten; 710 } 711 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN) 712 set_buffer_defer_completion(bh); 713 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 714 ret = 0; 715 } 716 if (started) 717 ext4_journal_stop(handle); 718 return ret; 719 } 720 721 int ext4_get_block(struct inode *inode, sector_t iblock, 722 struct buffer_head *bh, int create) 723 { 724 return _ext4_get_block(inode, iblock, bh, 725 create ? EXT4_GET_BLOCKS_CREATE : 0); 726 } 727 728 /* 729 * `handle' can be NULL if create is zero 730 */ 731 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 732 ext4_lblk_t block, int create) 733 { 734 struct ext4_map_blocks map; 735 struct buffer_head *bh; 736 int err; 737 738 J_ASSERT(handle != NULL || create == 0); 739 740 map.m_lblk = block; 741 map.m_len = 1; 742 err = ext4_map_blocks(handle, inode, &map, 743 create ? EXT4_GET_BLOCKS_CREATE : 0); 744 745 if (err == 0) 746 return create ? ERR_PTR(-ENOSPC) : NULL; 747 if (err < 0) 748 return ERR_PTR(err); 749 750 bh = sb_getblk(inode->i_sb, map.m_pblk); 751 if (unlikely(!bh)) 752 return ERR_PTR(-ENOMEM); 753 if (map.m_flags & EXT4_MAP_NEW) { 754 J_ASSERT(create != 0); 755 J_ASSERT(handle != NULL); 756 757 /* 758 * Now that we do not always journal data, we should 759 * keep in mind whether this should always journal the 760 * new buffer as metadata. For now, regular file 761 * writes use ext4_get_block instead, so it's not a 762 * problem. 763 */ 764 lock_buffer(bh); 765 BUFFER_TRACE(bh, "call get_create_access"); 766 err = ext4_journal_get_create_access(handle, bh); 767 if (unlikely(err)) { 768 unlock_buffer(bh); 769 goto errout; 770 } 771 if (!buffer_uptodate(bh)) { 772 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 773 set_buffer_uptodate(bh); 774 } 775 unlock_buffer(bh); 776 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 777 err = ext4_handle_dirty_metadata(handle, inode, bh); 778 if (unlikely(err)) 779 goto errout; 780 } else 781 BUFFER_TRACE(bh, "not a new buffer"); 782 return bh; 783 errout: 784 brelse(bh); 785 return ERR_PTR(err); 786 } 787 788 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 789 ext4_lblk_t block, int create) 790 { 791 struct buffer_head *bh; 792 793 bh = ext4_getblk(handle, inode, block, create); 794 if (IS_ERR(bh)) 795 return bh; 796 if (!bh || buffer_uptodate(bh)) 797 return bh; 798 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh); 799 wait_on_buffer(bh); 800 if (buffer_uptodate(bh)) 801 return bh; 802 put_bh(bh); 803 return ERR_PTR(-EIO); 804 } 805 806 int ext4_walk_page_buffers(handle_t *handle, 807 struct buffer_head *head, 808 unsigned from, 809 unsigned to, 810 int *partial, 811 int (*fn)(handle_t *handle, 812 struct buffer_head *bh)) 813 { 814 struct buffer_head *bh; 815 unsigned block_start, block_end; 816 unsigned blocksize = head->b_size; 817 int err, ret = 0; 818 struct buffer_head *next; 819 820 for (bh = head, block_start = 0; 821 ret == 0 && (bh != head || !block_start); 822 block_start = block_end, bh = next) { 823 next = bh->b_this_page; 824 block_end = block_start + blocksize; 825 if (block_end <= from || block_start >= to) { 826 if (partial && !buffer_uptodate(bh)) 827 *partial = 1; 828 continue; 829 } 830 err = (*fn)(handle, bh); 831 if (!ret) 832 ret = err; 833 } 834 return ret; 835 } 836 837 /* 838 * To preserve ordering, it is essential that the hole instantiation and 839 * the data write be encapsulated in a single transaction. We cannot 840 * close off a transaction and start a new one between the ext4_get_block() 841 * and the commit_write(). So doing the jbd2_journal_start at the start of 842 * prepare_write() is the right place. 843 * 844 * Also, this function can nest inside ext4_writepage(). In that case, we 845 * *know* that ext4_writepage() has generated enough buffer credits to do the 846 * whole page. So we won't block on the journal in that case, which is good, 847 * because the caller may be PF_MEMALLOC. 848 * 849 * By accident, ext4 can be reentered when a transaction is open via 850 * quota file writes. If we were to commit the transaction while thus 851 * reentered, there can be a deadlock - we would be holding a quota 852 * lock, and the commit would never complete if another thread had a 853 * transaction open and was blocking on the quota lock - a ranking 854 * violation. 855 * 856 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 857 * will _not_ run commit under these circumstances because handle->h_ref 858 * is elevated. We'll still have enough credits for the tiny quotafile 859 * write. 860 */ 861 int do_journal_get_write_access(handle_t *handle, 862 struct buffer_head *bh) 863 { 864 int dirty = buffer_dirty(bh); 865 int ret; 866 867 if (!buffer_mapped(bh) || buffer_freed(bh)) 868 return 0; 869 /* 870 * __block_write_begin() could have dirtied some buffers. Clean 871 * the dirty bit as jbd2_journal_get_write_access() could complain 872 * otherwise about fs integrity issues. Setting of the dirty bit 873 * by __block_write_begin() isn't a real problem here as we clear 874 * the bit before releasing a page lock and thus writeback cannot 875 * ever write the buffer. 876 */ 877 if (dirty) 878 clear_buffer_dirty(bh); 879 BUFFER_TRACE(bh, "get write access"); 880 ret = ext4_journal_get_write_access(handle, bh); 881 if (!ret && dirty) 882 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 883 return ret; 884 } 885 886 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 887 struct buffer_head *bh_result, int create); 888 889 #ifdef CONFIG_EXT4_FS_ENCRYPTION 890 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len, 891 get_block_t *get_block) 892 { 893 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 894 unsigned to = from + len; 895 struct inode *inode = page->mapping->host; 896 unsigned block_start, block_end; 897 sector_t block; 898 int err = 0; 899 unsigned blocksize = inode->i_sb->s_blocksize; 900 unsigned bbits; 901 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait; 902 bool decrypt = false; 903 904 BUG_ON(!PageLocked(page)); 905 BUG_ON(from > PAGE_CACHE_SIZE); 906 BUG_ON(to > PAGE_CACHE_SIZE); 907 BUG_ON(from > to); 908 909 if (!page_has_buffers(page)) 910 create_empty_buffers(page, blocksize, 0); 911 head = page_buffers(page); 912 bbits = ilog2(blocksize); 913 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 914 915 for (bh = head, block_start = 0; bh != head || !block_start; 916 block++, block_start = block_end, bh = bh->b_this_page) { 917 block_end = block_start + blocksize; 918 if (block_end <= from || block_start >= to) { 919 if (PageUptodate(page)) { 920 if (!buffer_uptodate(bh)) 921 set_buffer_uptodate(bh); 922 } 923 continue; 924 } 925 if (buffer_new(bh)) 926 clear_buffer_new(bh); 927 if (!buffer_mapped(bh)) { 928 WARN_ON(bh->b_size != blocksize); 929 err = get_block(inode, block, bh, 1); 930 if (err) 931 break; 932 if (buffer_new(bh)) { 933 unmap_underlying_metadata(bh->b_bdev, 934 bh->b_blocknr); 935 if (PageUptodate(page)) { 936 clear_buffer_new(bh); 937 set_buffer_uptodate(bh); 938 mark_buffer_dirty(bh); 939 continue; 940 } 941 if (block_end > to || block_start < from) 942 zero_user_segments(page, to, block_end, 943 block_start, from); 944 continue; 945 } 946 } 947 if (PageUptodate(page)) { 948 if (!buffer_uptodate(bh)) 949 set_buffer_uptodate(bh); 950 continue; 951 } 952 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 953 !buffer_unwritten(bh) && 954 (block_start < from || block_end > to)) { 955 ll_rw_block(READ, 1, &bh); 956 *wait_bh++ = bh; 957 decrypt = ext4_encrypted_inode(inode) && 958 S_ISREG(inode->i_mode); 959 } 960 } 961 /* 962 * If we issued read requests, let them complete. 963 */ 964 while (wait_bh > wait) { 965 wait_on_buffer(*--wait_bh); 966 if (!buffer_uptodate(*wait_bh)) 967 err = -EIO; 968 } 969 if (unlikely(err)) 970 page_zero_new_buffers(page, from, to); 971 else if (decrypt) 972 err = ext4_decrypt_one(inode, page); 973 return err; 974 } 975 #endif 976 977 static int ext4_write_begin(struct file *file, struct address_space *mapping, 978 loff_t pos, unsigned len, unsigned flags, 979 struct page **pagep, void **fsdata) 980 { 981 struct inode *inode = mapping->host; 982 int ret, needed_blocks; 983 handle_t *handle; 984 int retries = 0; 985 struct page *page; 986 pgoff_t index; 987 unsigned from, to; 988 989 trace_ext4_write_begin(inode, pos, len, flags); 990 /* 991 * Reserve one block more for addition to orphan list in case 992 * we allocate blocks but write fails for some reason 993 */ 994 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 995 index = pos >> PAGE_CACHE_SHIFT; 996 from = pos & (PAGE_CACHE_SIZE - 1); 997 to = from + len; 998 999 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1000 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1001 flags, pagep); 1002 if (ret < 0) 1003 return ret; 1004 if (ret == 1) 1005 return 0; 1006 } 1007 1008 /* 1009 * grab_cache_page_write_begin() can take a long time if the 1010 * system is thrashing due to memory pressure, or if the page 1011 * is being written back. So grab it first before we start 1012 * the transaction handle. This also allows us to allocate 1013 * the page (if needed) without using GFP_NOFS. 1014 */ 1015 retry_grab: 1016 page = grab_cache_page_write_begin(mapping, index, flags); 1017 if (!page) 1018 return -ENOMEM; 1019 unlock_page(page); 1020 1021 retry_journal: 1022 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1023 if (IS_ERR(handle)) { 1024 page_cache_release(page); 1025 return PTR_ERR(handle); 1026 } 1027 1028 lock_page(page); 1029 if (page->mapping != mapping) { 1030 /* The page got truncated from under us */ 1031 unlock_page(page); 1032 page_cache_release(page); 1033 ext4_journal_stop(handle); 1034 goto retry_grab; 1035 } 1036 /* In case writeback began while the page was unlocked */ 1037 wait_for_stable_page(page); 1038 1039 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1040 if (ext4_should_dioread_nolock(inode)) 1041 ret = ext4_block_write_begin(page, pos, len, 1042 ext4_get_block_write); 1043 else 1044 ret = ext4_block_write_begin(page, pos, len, 1045 ext4_get_block); 1046 #else 1047 if (ext4_should_dioread_nolock(inode)) 1048 ret = __block_write_begin(page, pos, len, ext4_get_block_write); 1049 else 1050 ret = __block_write_begin(page, pos, len, ext4_get_block); 1051 #endif 1052 if (!ret && ext4_should_journal_data(inode)) { 1053 ret = ext4_walk_page_buffers(handle, page_buffers(page), 1054 from, to, NULL, 1055 do_journal_get_write_access); 1056 } 1057 1058 if (ret) { 1059 unlock_page(page); 1060 /* 1061 * __block_write_begin may have instantiated a few blocks 1062 * outside i_size. Trim these off again. Don't need 1063 * i_size_read because we hold i_mutex. 1064 * 1065 * Add inode to orphan list in case we crash before 1066 * truncate finishes 1067 */ 1068 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1069 ext4_orphan_add(handle, inode); 1070 1071 ext4_journal_stop(handle); 1072 if (pos + len > inode->i_size) { 1073 ext4_truncate_failed_write(inode); 1074 /* 1075 * If truncate failed early the inode might 1076 * still be on the orphan list; we need to 1077 * make sure the inode is removed from the 1078 * orphan list in that case. 1079 */ 1080 if (inode->i_nlink) 1081 ext4_orphan_del(NULL, inode); 1082 } 1083 1084 if (ret == -ENOSPC && 1085 ext4_should_retry_alloc(inode->i_sb, &retries)) 1086 goto retry_journal; 1087 page_cache_release(page); 1088 return ret; 1089 } 1090 *pagep = page; 1091 return ret; 1092 } 1093 1094 /* For write_end() in data=journal mode */ 1095 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1096 { 1097 int ret; 1098 if (!buffer_mapped(bh) || buffer_freed(bh)) 1099 return 0; 1100 set_buffer_uptodate(bh); 1101 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1102 clear_buffer_meta(bh); 1103 clear_buffer_prio(bh); 1104 return ret; 1105 } 1106 1107 /* 1108 * We need to pick up the new inode size which generic_commit_write gave us 1109 * `file' can be NULL - eg, when called from page_symlink(). 1110 * 1111 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1112 * buffers are managed internally. 1113 */ 1114 static int ext4_write_end(struct file *file, 1115 struct address_space *mapping, 1116 loff_t pos, unsigned len, unsigned copied, 1117 struct page *page, void *fsdata) 1118 { 1119 handle_t *handle = ext4_journal_current_handle(); 1120 struct inode *inode = mapping->host; 1121 loff_t old_size = inode->i_size; 1122 int ret = 0, ret2; 1123 int i_size_changed = 0; 1124 1125 trace_ext4_write_end(inode, pos, len, copied); 1126 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) { 1127 ret = ext4_jbd2_file_inode(handle, inode); 1128 if (ret) { 1129 unlock_page(page); 1130 page_cache_release(page); 1131 goto errout; 1132 } 1133 } 1134 1135 if (ext4_has_inline_data(inode)) { 1136 ret = ext4_write_inline_data_end(inode, pos, len, 1137 copied, page); 1138 if (ret < 0) 1139 goto errout; 1140 copied = ret; 1141 } else 1142 copied = block_write_end(file, mapping, pos, 1143 len, copied, page, fsdata); 1144 /* 1145 * it's important to update i_size while still holding page lock: 1146 * page writeout could otherwise come in and zero beyond i_size. 1147 */ 1148 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1149 unlock_page(page); 1150 page_cache_release(page); 1151 1152 if (old_size < pos) 1153 pagecache_isize_extended(inode, old_size, pos); 1154 /* 1155 * Don't mark the inode dirty under page lock. First, it unnecessarily 1156 * makes the holding time of page lock longer. Second, it forces lock 1157 * ordering of page lock and transaction start for journaling 1158 * filesystems. 1159 */ 1160 if (i_size_changed) 1161 ext4_mark_inode_dirty(handle, inode); 1162 1163 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1164 /* if we have allocated more blocks and copied 1165 * less. We will have blocks allocated outside 1166 * inode->i_size. So truncate them 1167 */ 1168 ext4_orphan_add(handle, inode); 1169 errout: 1170 ret2 = ext4_journal_stop(handle); 1171 if (!ret) 1172 ret = ret2; 1173 1174 if (pos + len > inode->i_size) { 1175 ext4_truncate_failed_write(inode); 1176 /* 1177 * If truncate failed early the inode might still be 1178 * on the orphan list; we need to make sure the inode 1179 * is removed from the orphan list in that case. 1180 */ 1181 if (inode->i_nlink) 1182 ext4_orphan_del(NULL, inode); 1183 } 1184 1185 return ret ? ret : copied; 1186 } 1187 1188 static int ext4_journalled_write_end(struct file *file, 1189 struct address_space *mapping, 1190 loff_t pos, unsigned len, unsigned copied, 1191 struct page *page, void *fsdata) 1192 { 1193 handle_t *handle = ext4_journal_current_handle(); 1194 struct inode *inode = mapping->host; 1195 loff_t old_size = inode->i_size; 1196 int ret = 0, ret2; 1197 int partial = 0; 1198 unsigned from, to; 1199 int size_changed = 0; 1200 1201 trace_ext4_journalled_write_end(inode, pos, len, copied); 1202 from = pos & (PAGE_CACHE_SIZE - 1); 1203 to = from + len; 1204 1205 BUG_ON(!ext4_handle_valid(handle)); 1206 1207 if (ext4_has_inline_data(inode)) 1208 copied = ext4_write_inline_data_end(inode, pos, len, 1209 copied, page); 1210 else { 1211 if (copied < len) { 1212 if (!PageUptodate(page)) 1213 copied = 0; 1214 page_zero_new_buffers(page, from+copied, to); 1215 } 1216 1217 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1218 to, &partial, write_end_fn); 1219 if (!partial) 1220 SetPageUptodate(page); 1221 } 1222 size_changed = ext4_update_inode_size(inode, pos + copied); 1223 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1224 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1225 unlock_page(page); 1226 page_cache_release(page); 1227 1228 if (old_size < pos) 1229 pagecache_isize_extended(inode, old_size, pos); 1230 1231 if (size_changed) { 1232 ret2 = ext4_mark_inode_dirty(handle, inode); 1233 if (!ret) 1234 ret = ret2; 1235 } 1236 1237 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1238 /* if we have allocated more blocks and copied 1239 * less. We will have blocks allocated outside 1240 * inode->i_size. So truncate them 1241 */ 1242 ext4_orphan_add(handle, inode); 1243 1244 ret2 = ext4_journal_stop(handle); 1245 if (!ret) 1246 ret = ret2; 1247 if (pos + len > inode->i_size) { 1248 ext4_truncate_failed_write(inode); 1249 /* 1250 * If truncate failed early the inode might still be 1251 * on the orphan list; we need to make sure the inode 1252 * is removed from the orphan list in that case. 1253 */ 1254 if (inode->i_nlink) 1255 ext4_orphan_del(NULL, inode); 1256 } 1257 1258 return ret ? ret : copied; 1259 } 1260 1261 /* 1262 * Reserve a single cluster located at lblock 1263 */ 1264 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock) 1265 { 1266 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1267 struct ext4_inode_info *ei = EXT4_I(inode); 1268 unsigned int md_needed; 1269 int ret; 1270 1271 /* 1272 * We will charge metadata quota at writeout time; this saves 1273 * us from metadata over-estimation, though we may go over by 1274 * a small amount in the end. Here we just reserve for data. 1275 */ 1276 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1277 if (ret) 1278 return ret; 1279 1280 /* 1281 * recalculate the amount of metadata blocks to reserve 1282 * in order to allocate nrblocks 1283 * worse case is one extent per block 1284 */ 1285 spin_lock(&ei->i_block_reservation_lock); 1286 /* 1287 * ext4_calc_metadata_amount() has side effects, which we have 1288 * to be prepared undo if we fail to claim space. 1289 */ 1290 md_needed = 0; 1291 trace_ext4_da_reserve_space(inode, 0); 1292 1293 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1294 spin_unlock(&ei->i_block_reservation_lock); 1295 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1296 return -ENOSPC; 1297 } 1298 ei->i_reserved_data_blocks++; 1299 spin_unlock(&ei->i_block_reservation_lock); 1300 1301 return 0; /* success */ 1302 } 1303 1304 static void ext4_da_release_space(struct inode *inode, int to_free) 1305 { 1306 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1307 struct ext4_inode_info *ei = EXT4_I(inode); 1308 1309 if (!to_free) 1310 return; /* Nothing to release, exit */ 1311 1312 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1313 1314 trace_ext4_da_release_space(inode, to_free); 1315 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1316 /* 1317 * if there aren't enough reserved blocks, then the 1318 * counter is messed up somewhere. Since this 1319 * function is called from invalidate page, it's 1320 * harmless to return without any action. 1321 */ 1322 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1323 "ino %lu, to_free %d with only %d reserved " 1324 "data blocks", inode->i_ino, to_free, 1325 ei->i_reserved_data_blocks); 1326 WARN_ON(1); 1327 to_free = ei->i_reserved_data_blocks; 1328 } 1329 ei->i_reserved_data_blocks -= to_free; 1330 1331 /* update fs dirty data blocks counter */ 1332 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1333 1334 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1335 1336 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1337 } 1338 1339 static void ext4_da_page_release_reservation(struct page *page, 1340 unsigned int offset, 1341 unsigned int length) 1342 { 1343 int to_release = 0; 1344 struct buffer_head *head, *bh; 1345 unsigned int curr_off = 0; 1346 struct inode *inode = page->mapping->host; 1347 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1348 unsigned int stop = offset + length; 1349 int num_clusters; 1350 ext4_fsblk_t lblk; 1351 1352 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length); 1353 1354 head = page_buffers(page); 1355 bh = head; 1356 do { 1357 unsigned int next_off = curr_off + bh->b_size; 1358 1359 if (next_off > stop) 1360 break; 1361 1362 if ((offset <= curr_off) && (buffer_delay(bh))) { 1363 to_release++; 1364 clear_buffer_delay(bh); 1365 } 1366 curr_off = next_off; 1367 } while ((bh = bh->b_this_page) != head); 1368 1369 if (to_release) { 1370 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1371 ext4_es_remove_extent(inode, lblk, to_release); 1372 } 1373 1374 /* If we have released all the blocks belonging to a cluster, then we 1375 * need to release the reserved space for that cluster. */ 1376 num_clusters = EXT4_NUM_B2C(sbi, to_release); 1377 while (num_clusters > 0) { 1378 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) + 1379 ((num_clusters - 1) << sbi->s_cluster_bits); 1380 if (sbi->s_cluster_ratio == 1 || 1381 !ext4_find_delalloc_cluster(inode, lblk)) 1382 ext4_da_release_space(inode, 1); 1383 1384 num_clusters--; 1385 } 1386 } 1387 1388 /* 1389 * Delayed allocation stuff 1390 */ 1391 1392 struct mpage_da_data { 1393 struct inode *inode; 1394 struct writeback_control *wbc; 1395 1396 pgoff_t first_page; /* The first page to write */ 1397 pgoff_t next_page; /* Current page to examine */ 1398 pgoff_t last_page; /* Last page to examine */ 1399 /* 1400 * Extent to map - this can be after first_page because that can be 1401 * fully mapped. We somewhat abuse m_flags to store whether the extent 1402 * is delalloc or unwritten. 1403 */ 1404 struct ext4_map_blocks map; 1405 struct ext4_io_submit io_submit; /* IO submission data */ 1406 }; 1407 1408 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1409 bool invalidate) 1410 { 1411 int nr_pages, i; 1412 pgoff_t index, end; 1413 struct pagevec pvec; 1414 struct inode *inode = mpd->inode; 1415 struct address_space *mapping = inode->i_mapping; 1416 1417 /* This is necessary when next_page == 0. */ 1418 if (mpd->first_page >= mpd->next_page) 1419 return; 1420 1421 index = mpd->first_page; 1422 end = mpd->next_page - 1; 1423 if (invalidate) { 1424 ext4_lblk_t start, last; 1425 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1426 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1427 ext4_es_remove_extent(inode, start, last - start + 1); 1428 } 1429 1430 pagevec_init(&pvec, 0); 1431 while (index <= end) { 1432 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1433 if (nr_pages == 0) 1434 break; 1435 for (i = 0; i < nr_pages; i++) { 1436 struct page *page = pvec.pages[i]; 1437 if (page->index > end) 1438 break; 1439 BUG_ON(!PageLocked(page)); 1440 BUG_ON(PageWriteback(page)); 1441 if (invalidate) { 1442 block_invalidatepage(page, 0, PAGE_CACHE_SIZE); 1443 ClearPageUptodate(page); 1444 } 1445 unlock_page(page); 1446 } 1447 index = pvec.pages[nr_pages - 1]->index + 1; 1448 pagevec_release(&pvec); 1449 } 1450 } 1451 1452 static void ext4_print_free_blocks(struct inode *inode) 1453 { 1454 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1455 struct super_block *sb = inode->i_sb; 1456 struct ext4_inode_info *ei = EXT4_I(inode); 1457 1458 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1459 EXT4_C2B(EXT4_SB(inode->i_sb), 1460 ext4_count_free_clusters(sb))); 1461 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1462 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1463 (long long) EXT4_C2B(EXT4_SB(sb), 1464 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1465 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1466 (long long) EXT4_C2B(EXT4_SB(sb), 1467 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1468 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1469 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1470 ei->i_reserved_data_blocks); 1471 return; 1472 } 1473 1474 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1475 { 1476 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1477 } 1478 1479 /* 1480 * This function is grabs code from the very beginning of 1481 * ext4_map_blocks, but assumes that the caller is from delayed write 1482 * time. This function looks up the requested blocks and sets the 1483 * buffer delay bit under the protection of i_data_sem. 1484 */ 1485 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1486 struct ext4_map_blocks *map, 1487 struct buffer_head *bh) 1488 { 1489 struct extent_status es; 1490 int retval; 1491 sector_t invalid_block = ~((sector_t) 0xffff); 1492 #ifdef ES_AGGRESSIVE_TEST 1493 struct ext4_map_blocks orig_map; 1494 1495 memcpy(&orig_map, map, sizeof(*map)); 1496 #endif 1497 1498 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1499 invalid_block = ~0; 1500 1501 map->m_flags = 0; 1502 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1503 "logical block %lu\n", inode->i_ino, map->m_len, 1504 (unsigned long) map->m_lblk); 1505 1506 /* Lookup extent status tree firstly */ 1507 if (ext4_es_lookup_extent(inode, iblock, &es)) { 1508 if (ext4_es_is_hole(&es)) { 1509 retval = 0; 1510 down_read(&EXT4_I(inode)->i_data_sem); 1511 goto add_delayed; 1512 } 1513 1514 /* 1515 * Delayed extent could be allocated by fallocate. 1516 * So we need to check it. 1517 */ 1518 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1519 map_bh(bh, inode->i_sb, invalid_block); 1520 set_buffer_new(bh); 1521 set_buffer_delay(bh); 1522 return 0; 1523 } 1524 1525 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1526 retval = es.es_len - (iblock - es.es_lblk); 1527 if (retval > map->m_len) 1528 retval = map->m_len; 1529 map->m_len = retval; 1530 if (ext4_es_is_written(&es)) 1531 map->m_flags |= EXT4_MAP_MAPPED; 1532 else if (ext4_es_is_unwritten(&es)) 1533 map->m_flags |= EXT4_MAP_UNWRITTEN; 1534 else 1535 BUG_ON(1); 1536 1537 #ifdef ES_AGGRESSIVE_TEST 1538 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1539 #endif 1540 return retval; 1541 } 1542 1543 /* 1544 * Try to see if we can get the block without requesting a new 1545 * file system block. 1546 */ 1547 down_read(&EXT4_I(inode)->i_data_sem); 1548 if (ext4_has_inline_data(inode)) 1549 retval = 0; 1550 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1551 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1552 else 1553 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1554 1555 add_delayed: 1556 if (retval == 0) { 1557 int ret; 1558 /* 1559 * XXX: __block_prepare_write() unmaps passed block, 1560 * is it OK? 1561 */ 1562 /* 1563 * If the block was allocated from previously allocated cluster, 1564 * then we don't need to reserve it again. However we still need 1565 * to reserve metadata for every block we're going to write. 1566 */ 1567 if (EXT4_SB(inode->i_sb)->s_cluster_ratio <= 1 || 1568 !ext4_find_delalloc_cluster(inode, map->m_lblk)) { 1569 ret = ext4_da_reserve_space(inode, iblock); 1570 if (ret) { 1571 /* not enough space to reserve */ 1572 retval = ret; 1573 goto out_unlock; 1574 } 1575 } 1576 1577 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1578 ~0, EXTENT_STATUS_DELAYED); 1579 if (ret) { 1580 retval = ret; 1581 goto out_unlock; 1582 } 1583 1584 map_bh(bh, inode->i_sb, invalid_block); 1585 set_buffer_new(bh); 1586 set_buffer_delay(bh); 1587 } else if (retval > 0) { 1588 int ret; 1589 unsigned int status; 1590 1591 if (unlikely(retval != map->m_len)) { 1592 ext4_warning(inode->i_sb, 1593 "ES len assertion failed for inode " 1594 "%lu: retval %d != map->m_len %d", 1595 inode->i_ino, retval, map->m_len); 1596 WARN_ON(1); 1597 } 1598 1599 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1600 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1601 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1602 map->m_pblk, status); 1603 if (ret != 0) 1604 retval = ret; 1605 } 1606 1607 out_unlock: 1608 up_read((&EXT4_I(inode)->i_data_sem)); 1609 1610 return retval; 1611 } 1612 1613 /* 1614 * This is a special get_block_t callback which is used by 1615 * ext4_da_write_begin(). It will either return mapped block or 1616 * reserve space for a single block. 1617 * 1618 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1619 * We also have b_blocknr = -1 and b_bdev initialized properly 1620 * 1621 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1622 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1623 * initialized properly. 1624 */ 1625 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1626 struct buffer_head *bh, int create) 1627 { 1628 struct ext4_map_blocks map; 1629 int ret = 0; 1630 1631 BUG_ON(create == 0); 1632 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1633 1634 map.m_lblk = iblock; 1635 map.m_len = 1; 1636 1637 /* 1638 * first, we need to know whether the block is allocated already 1639 * preallocated blocks are unmapped but should treated 1640 * the same as allocated blocks. 1641 */ 1642 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1643 if (ret <= 0) 1644 return ret; 1645 1646 map_bh(bh, inode->i_sb, map.m_pblk); 1647 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 1648 1649 if (buffer_unwritten(bh)) { 1650 /* A delayed write to unwritten bh should be marked 1651 * new and mapped. Mapped ensures that we don't do 1652 * get_block multiple times when we write to the same 1653 * offset and new ensures that we do proper zero out 1654 * for partial write. 1655 */ 1656 set_buffer_new(bh); 1657 set_buffer_mapped(bh); 1658 } 1659 return 0; 1660 } 1661 1662 static int bget_one(handle_t *handle, struct buffer_head *bh) 1663 { 1664 get_bh(bh); 1665 return 0; 1666 } 1667 1668 static int bput_one(handle_t *handle, struct buffer_head *bh) 1669 { 1670 put_bh(bh); 1671 return 0; 1672 } 1673 1674 static int __ext4_journalled_writepage(struct page *page, 1675 unsigned int len) 1676 { 1677 struct address_space *mapping = page->mapping; 1678 struct inode *inode = mapping->host; 1679 struct buffer_head *page_bufs = NULL; 1680 handle_t *handle = NULL; 1681 int ret = 0, err = 0; 1682 int inline_data = ext4_has_inline_data(inode); 1683 struct buffer_head *inode_bh = NULL; 1684 1685 ClearPageChecked(page); 1686 1687 if (inline_data) { 1688 BUG_ON(page->index != 0); 1689 BUG_ON(len > ext4_get_max_inline_size(inode)); 1690 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1691 if (inode_bh == NULL) 1692 goto out; 1693 } else { 1694 page_bufs = page_buffers(page); 1695 if (!page_bufs) { 1696 BUG(); 1697 goto out; 1698 } 1699 ext4_walk_page_buffers(handle, page_bufs, 0, len, 1700 NULL, bget_one); 1701 } 1702 /* As soon as we unlock the page, it can go away, but we have 1703 * references to buffers so we are safe */ 1704 unlock_page(page); 1705 1706 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1707 ext4_writepage_trans_blocks(inode)); 1708 if (IS_ERR(handle)) { 1709 ret = PTR_ERR(handle); 1710 goto out; 1711 } 1712 1713 BUG_ON(!ext4_handle_valid(handle)); 1714 1715 if (inline_data) { 1716 BUFFER_TRACE(inode_bh, "get write access"); 1717 ret = ext4_journal_get_write_access(handle, inode_bh); 1718 1719 err = ext4_handle_dirty_metadata(handle, inode, inode_bh); 1720 1721 } else { 1722 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1723 do_journal_get_write_access); 1724 1725 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1726 write_end_fn); 1727 } 1728 if (ret == 0) 1729 ret = err; 1730 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1731 err = ext4_journal_stop(handle); 1732 if (!ret) 1733 ret = err; 1734 1735 if (!ext4_has_inline_data(inode)) 1736 ext4_walk_page_buffers(NULL, page_bufs, 0, len, 1737 NULL, bput_one); 1738 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1739 out: 1740 brelse(inode_bh); 1741 return ret; 1742 } 1743 1744 /* 1745 * Note that we don't need to start a transaction unless we're journaling data 1746 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1747 * need to file the inode to the transaction's list in ordered mode because if 1748 * we are writing back data added by write(), the inode is already there and if 1749 * we are writing back data modified via mmap(), no one guarantees in which 1750 * transaction the data will hit the disk. In case we are journaling data, we 1751 * cannot start transaction directly because transaction start ranks above page 1752 * lock so we have to do some magic. 1753 * 1754 * This function can get called via... 1755 * - ext4_writepages after taking page lock (have journal handle) 1756 * - journal_submit_inode_data_buffers (no journal handle) 1757 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 1758 * - grab_page_cache when doing write_begin (have journal handle) 1759 * 1760 * We don't do any block allocation in this function. If we have page with 1761 * multiple blocks we need to write those buffer_heads that are mapped. This 1762 * is important for mmaped based write. So if we do with blocksize 1K 1763 * truncate(f, 1024); 1764 * a = mmap(f, 0, 4096); 1765 * a[0] = 'a'; 1766 * truncate(f, 4096); 1767 * we have in the page first buffer_head mapped via page_mkwrite call back 1768 * but other buffer_heads would be unmapped but dirty (dirty done via the 1769 * do_wp_page). So writepage should write the first block. If we modify 1770 * the mmap area beyond 1024 we will again get a page_fault and the 1771 * page_mkwrite callback will do the block allocation and mark the 1772 * buffer_heads mapped. 1773 * 1774 * We redirty the page if we have any buffer_heads that is either delay or 1775 * unwritten in the page. 1776 * 1777 * We can get recursively called as show below. 1778 * 1779 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1780 * ext4_writepage() 1781 * 1782 * But since we don't do any block allocation we should not deadlock. 1783 * Page also have the dirty flag cleared so we don't get recurive page_lock. 1784 */ 1785 static int ext4_writepage(struct page *page, 1786 struct writeback_control *wbc) 1787 { 1788 int ret = 0; 1789 loff_t size; 1790 unsigned int len; 1791 struct buffer_head *page_bufs = NULL; 1792 struct inode *inode = page->mapping->host; 1793 struct ext4_io_submit io_submit; 1794 bool keep_towrite = false; 1795 1796 trace_ext4_writepage(page); 1797 size = i_size_read(inode); 1798 if (page->index == size >> PAGE_CACHE_SHIFT) 1799 len = size & ~PAGE_CACHE_MASK; 1800 else 1801 len = PAGE_CACHE_SIZE; 1802 1803 page_bufs = page_buffers(page); 1804 /* 1805 * We cannot do block allocation or other extent handling in this 1806 * function. If there are buffers needing that, we have to redirty 1807 * the page. But we may reach here when we do a journal commit via 1808 * journal_submit_inode_data_buffers() and in that case we must write 1809 * allocated buffers to achieve data=ordered mode guarantees. 1810 */ 1811 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 1812 ext4_bh_delay_or_unwritten)) { 1813 redirty_page_for_writepage(wbc, page); 1814 if (current->flags & PF_MEMALLOC) { 1815 /* 1816 * For memory cleaning there's no point in writing only 1817 * some buffers. So just bail out. Warn if we came here 1818 * from direct reclaim. 1819 */ 1820 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 1821 == PF_MEMALLOC); 1822 unlock_page(page); 1823 return 0; 1824 } 1825 keep_towrite = true; 1826 } 1827 1828 if (PageChecked(page) && ext4_should_journal_data(inode)) 1829 /* 1830 * It's mmapped pagecache. Add buffers and journal it. There 1831 * doesn't seem much point in redirtying the page here. 1832 */ 1833 return __ext4_journalled_writepage(page, len); 1834 1835 ext4_io_submit_init(&io_submit, wbc); 1836 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 1837 if (!io_submit.io_end) { 1838 redirty_page_for_writepage(wbc, page); 1839 unlock_page(page); 1840 return -ENOMEM; 1841 } 1842 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite); 1843 ext4_io_submit(&io_submit); 1844 /* Drop io_end reference we got from init */ 1845 ext4_put_io_end_defer(io_submit.io_end); 1846 return ret; 1847 } 1848 1849 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 1850 { 1851 int len; 1852 loff_t size = i_size_read(mpd->inode); 1853 int err; 1854 1855 BUG_ON(page->index != mpd->first_page); 1856 if (page->index == size >> PAGE_CACHE_SHIFT) 1857 len = size & ~PAGE_CACHE_MASK; 1858 else 1859 len = PAGE_CACHE_SIZE; 1860 clear_page_dirty_for_io(page); 1861 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false); 1862 if (!err) 1863 mpd->wbc->nr_to_write--; 1864 mpd->first_page++; 1865 1866 return err; 1867 } 1868 1869 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay)) 1870 1871 /* 1872 * mballoc gives us at most this number of blocks... 1873 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 1874 * The rest of mballoc seems to handle chunks up to full group size. 1875 */ 1876 #define MAX_WRITEPAGES_EXTENT_LEN 2048 1877 1878 /* 1879 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 1880 * 1881 * @mpd - extent of blocks 1882 * @lblk - logical number of the block in the file 1883 * @bh - buffer head we want to add to the extent 1884 * 1885 * The function is used to collect contig. blocks in the same state. If the 1886 * buffer doesn't require mapping for writeback and we haven't started the 1887 * extent of buffers to map yet, the function returns 'true' immediately - the 1888 * caller can write the buffer right away. Otherwise the function returns true 1889 * if the block has been added to the extent, false if the block couldn't be 1890 * added. 1891 */ 1892 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 1893 struct buffer_head *bh) 1894 { 1895 struct ext4_map_blocks *map = &mpd->map; 1896 1897 /* Buffer that doesn't need mapping for writeback? */ 1898 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 1899 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 1900 /* So far no extent to map => we write the buffer right away */ 1901 if (map->m_len == 0) 1902 return true; 1903 return false; 1904 } 1905 1906 /* First block in the extent? */ 1907 if (map->m_len == 0) { 1908 map->m_lblk = lblk; 1909 map->m_len = 1; 1910 map->m_flags = bh->b_state & BH_FLAGS; 1911 return true; 1912 } 1913 1914 /* Don't go larger than mballoc is willing to allocate */ 1915 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 1916 return false; 1917 1918 /* Can we merge the block to our big extent? */ 1919 if (lblk == map->m_lblk + map->m_len && 1920 (bh->b_state & BH_FLAGS) == map->m_flags) { 1921 map->m_len++; 1922 return true; 1923 } 1924 return false; 1925 } 1926 1927 /* 1928 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 1929 * 1930 * @mpd - extent of blocks for mapping 1931 * @head - the first buffer in the page 1932 * @bh - buffer we should start processing from 1933 * @lblk - logical number of the block in the file corresponding to @bh 1934 * 1935 * Walk through page buffers from @bh upto @head (exclusive) and either submit 1936 * the page for IO if all buffers in this page were mapped and there's no 1937 * accumulated extent of buffers to map or add buffers in the page to the 1938 * extent of buffers to map. The function returns 1 if the caller can continue 1939 * by processing the next page, 0 if it should stop adding buffers to the 1940 * extent to map because we cannot extend it anymore. It can also return value 1941 * < 0 in case of error during IO submission. 1942 */ 1943 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 1944 struct buffer_head *head, 1945 struct buffer_head *bh, 1946 ext4_lblk_t lblk) 1947 { 1948 struct inode *inode = mpd->inode; 1949 int err; 1950 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1) 1951 >> inode->i_blkbits; 1952 1953 do { 1954 BUG_ON(buffer_locked(bh)); 1955 1956 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 1957 /* Found extent to map? */ 1958 if (mpd->map.m_len) 1959 return 0; 1960 /* Everything mapped so far and we hit EOF */ 1961 break; 1962 } 1963 } while (lblk++, (bh = bh->b_this_page) != head); 1964 /* So far everything mapped? Submit the page for IO. */ 1965 if (mpd->map.m_len == 0) { 1966 err = mpage_submit_page(mpd, head->b_page); 1967 if (err < 0) 1968 return err; 1969 } 1970 return lblk < blocks; 1971 } 1972 1973 /* 1974 * mpage_map_buffers - update buffers corresponding to changed extent and 1975 * submit fully mapped pages for IO 1976 * 1977 * @mpd - description of extent to map, on return next extent to map 1978 * 1979 * Scan buffers corresponding to changed extent (we expect corresponding pages 1980 * to be already locked) and update buffer state according to new extent state. 1981 * We map delalloc buffers to their physical location, clear unwritten bits, 1982 * and mark buffers as uninit when we perform writes to unwritten extents 1983 * and do extent conversion after IO is finished. If the last page is not fully 1984 * mapped, we update @map to the next extent in the last page that needs 1985 * mapping. Otherwise we submit the page for IO. 1986 */ 1987 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 1988 { 1989 struct pagevec pvec; 1990 int nr_pages, i; 1991 struct inode *inode = mpd->inode; 1992 struct buffer_head *head, *bh; 1993 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits; 1994 pgoff_t start, end; 1995 ext4_lblk_t lblk; 1996 sector_t pblock; 1997 int err; 1998 1999 start = mpd->map.m_lblk >> bpp_bits; 2000 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2001 lblk = start << bpp_bits; 2002 pblock = mpd->map.m_pblk; 2003 2004 pagevec_init(&pvec, 0); 2005 while (start <= end) { 2006 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start, 2007 PAGEVEC_SIZE); 2008 if (nr_pages == 0) 2009 break; 2010 for (i = 0; i < nr_pages; i++) { 2011 struct page *page = pvec.pages[i]; 2012 2013 if (page->index > end) 2014 break; 2015 /* Up to 'end' pages must be contiguous */ 2016 BUG_ON(page->index != start); 2017 bh = head = page_buffers(page); 2018 do { 2019 if (lblk < mpd->map.m_lblk) 2020 continue; 2021 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2022 /* 2023 * Buffer after end of mapped extent. 2024 * Find next buffer in the page to map. 2025 */ 2026 mpd->map.m_len = 0; 2027 mpd->map.m_flags = 0; 2028 /* 2029 * FIXME: If dioread_nolock supports 2030 * blocksize < pagesize, we need to make 2031 * sure we add size mapped so far to 2032 * io_end->size as the following call 2033 * can submit the page for IO. 2034 */ 2035 err = mpage_process_page_bufs(mpd, head, 2036 bh, lblk); 2037 pagevec_release(&pvec); 2038 if (err > 0) 2039 err = 0; 2040 return err; 2041 } 2042 if (buffer_delay(bh)) { 2043 clear_buffer_delay(bh); 2044 bh->b_blocknr = pblock++; 2045 } 2046 clear_buffer_unwritten(bh); 2047 } while (lblk++, (bh = bh->b_this_page) != head); 2048 2049 /* 2050 * FIXME: This is going to break if dioread_nolock 2051 * supports blocksize < pagesize as we will try to 2052 * convert potentially unmapped parts of inode. 2053 */ 2054 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE; 2055 /* Page fully mapped - let IO run! */ 2056 err = mpage_submit_page(mpd, page); 2057 if (err < 0) { 2058 pagevec_release(&pvec); 2059 return err; 2060 } 2061 start++; 2062 } 2063 pagevec_release(&pvec); 2064 } 2065 /* Extent fully mapped and matches with page boundary. We are done. */ 2066 mpd->map.m_len = 0; 2067 mpd->map.m_flags = 0; 2068 return 0; 2069 } 2070 2071 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2072 { 2073 struct inode *inode = mpd->inode; 2074 struct ext4_map_blocks *map = &mpd->map; 2075 int get_blocks_flags; 2076 int err, dioread_nolock; 2077 2078 trace_ext4_da_write_pages_extent(inode, map); 2079 /* 2080 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2081 * to convert an unwritten extent to be initialized (in the case 2082 * where we have written into one or more preallocated blocks). It is 2083 * possible that we're going to need more metadata blocks than 2084 * previously reserved. However we must not fail because we're in 2085 * writeback and there is nothing we can do about it so it might result 2086 * in data loss. So use reserved blocks to allocate metadata if 2087 * possible. 2088 * 2089 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2090 * the blocks in question are delalloc blocks. This indicates 2091 * that the blocks and quotas has already been checked when 2092 * the data was copied into the page cache. 2093 */ 2094 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2095 EXT4_GET_BLOCKS_METADATA_NOFAIL; 2096 dioread_nolock = ext4_should_dioread_nolock(inode); 2097 if (dioread_nolock) 2098 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2099 if (map->m_flags & (1 << BH_Delay)) 2100 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2101 2102 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2103 if (err < 0) 2104 return err; 2105 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2106 if (!mpd->io_submit.io_end->handle && 2107 ext4_handle_valid(handle)) { 2108 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2109 handle->h_rsv_handle = NULL; 2110 } 2111 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2112 } 2113 2114 BUG_ON(map->m_len == 0); 2115 if (map->m_flags & EXT4_MAP_NEW) { 2116 struct block_device *bdev = inode->i_sb->s_bdev; 2117 int i; 2118 2119 for (i = 0; i < map->m_len; i++) 2120 unmap_underlying_metadata(bdev, map->m_pblk + i); 2121 } 2122 return 0; 2123 } 2124 2125 /* 2126 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2127 * mpd->len and submit pages underlying it for IO 2128 * 2129 * @handle - handle for journal operations 2130 * @mpd - extent to map 2131 * @give_up_on_write - we set this to true iff there is a fatal error and there 2132 * is no hope of writing the data. The caller should discard 2133 * dirty pages to avoid infinite loops. 2134 * 2135 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2136 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2137 * them to initialized or split the described range from larger unwritten 2138 * extent. Note that we need not map all the described range since allocation 2139 * can return less blocks or the range is covered by more unwritten extents. We 2140 * cannot map more because we are limited by reserved transaction credits. On 2141 * the other hand we always make sure that the last touched page is fully 2142 * mapped so that it can be written out (and thus forward progress is 2143 * guaranteed). After mapping we submit all mapped pages for IO. 2144 */ 2145 static int mpage_map_and_submit_extent(handle_t *handle, 2146 struct mpage_da_data *mpd, 2147 bool *give_up_on_write) 2148 { 2149 struct inode *inode = mpd->inode; 2150 struct ext4_map_blocks *map = &mpd->map; 2151 int err; 2152 loff_t disksize; 2153 int progress = 0; 2154 2155 mpd->io_submit.io_end->offset = 2156 ((loff_t)map->m_lblk) << inode->i_blkbits; 2157 do { 2158 err = mpage_map_one_extent(handle, mpd); 2159 if (err < 0) { 2160 struct super_block *sb = inode->i_sb; 2161 2162 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 2163 goto invalidate_dirty_pages; 2164 /* 2165 * Let the uper layers retry transient errors. 2166 * In the case of ENOSPC, if ext4_count_free_blocks() 2167 * is non-zero, a commit should free up blocks. 2168 */ 2169 if ((err == -ENOMEM) || 2170 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2171 if (progress) 2172 goto update_disksize; 2173 return err; 2174 } 2175 ext4_msg(sb, KERN_CRIT, 2176 "Delayed block allocation failed for " 2177 "inode %lu at logical offset %llu with" 2178 " max blocks %u with error %d", 2179 inode->i_ino, 2180 (unsigned long long)map->m_lblk, 2181 (unsigned)map->m_len, -err); 2182 ext4_msg(sb, KERN_CRIT, 2183 "This should not happen!! Data will " 2184 "be lost\n"); 2185 if (err == -ENOSPC) 2186 ext4_print_free_blocks(inode); 2187 invalidate_dirty_pages: 2188 *give_up_on_write = true; 2189 return err; 2190 } 2191 progress = 1; 2192 /* 2193 * Update buffer state, submit mapped pages, and get us new 2194 * extent to map 2195 */ 2196 err = mpage_map_and_submit_buffers(mpd); 2197 if (err < 0) 2198 goto update_disksize; 2199 } while (map->m_len); 2200 2201 update_disksize: 2202 /* 2203 * Update on-disk size after IO is submitted. Races with 2204 * truncate are avoided by checking i_size under i_data_sem. 2205 */ 2206 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT; 2207 if (disksize > EXT4_I(inode)->i_disksize) { 2208 int err2; 2209 loff_t i_size; 2210 2211 down_write(&EXT4_I(inode)->i_data_sem); 2212 i_size = i_size_read(inode); 2213 if (disksize > i_size) 2214 disksize = i_size; 2215 if (disksize > EXT4_I(inode)->i_disksize) 2216 EXT4_I(inode)->i_disksize = disksize; 2217 err2 = ext4_mark_inode_dirty(handle, inode); 2218 up_write(&EXT4_I(inode)->i_data_sem); 2219 if (err2) 2220 ext4_error(inode->i_sb, 2221 "Failed to mark inode %lu dirty", 2222 inode->i_ino); 2223 if (!err) 2224 err = err2; 2225 } 2226 return err; 2227 } 2228 2229 /* 2230 * Calculate the total number of credits to reserve for one writepages 2231 * iteration. This is called from ext4_writepages(). We map an extent of 2232 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2233 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2234 * bpp - 1 blocks in bpp different extents. 2235 */ 2236 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2237 { 2238 int bpp = ext4_journal_blocks_per_page(inode); 2239 2240 return ext4_meta_trans_blocks(inode, 2241 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2242 } 2243 2244 /* 2245 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2246 * and underlying extent to map 2247 * 2248 * @mpd - where to look for pages 2249 * 2250 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2251 * IO immediately. When we find a page which isn't mapped we start accumulating 2252 * extent of buffers underlying these pages that needs mapping (formed by 2253 * either delayed or unwritten buffers). We also lock the pages containing 2254 * these buffers. The extent found is returned in @mpd structure (starting at 2255 * mpd->lblk with length mpd->len blocks). 2256 * 2257 * Note that this function can attach bios to one io_end structure which are 2258 * neither logically nor physically contiguous. Although it may seem as an 2259 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2260 * case as we need to track IO to all buffers underlying a page in one io_end. 2261 */ 2262 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2263 { 2264 struct address_space *mapping = mpd->inode->i_mapping; 2265 struct pagevec pvec; 2266 unsigned int nr_pages; 2267 long left = mpd->wbc->nr_to_write; 2268 pgoff_t index = mpd->first_page; 2269 pgoff_t end = mpd->last_page; 2270 int tag; 2271 int i, err = 0; 2272 int blkbits = mpd->inode->i_blkbits; 2273 ext4_lblk_t lblk; 2274 struct buffer_head *head; 2275 2276 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2277 tag = PAGECACHE_TAG_TOWRITE; 2278 else 2279 tag = PAGECACHE_TAG_DIRTY; 2280 2281 pagevec_init(&pvec, 0); 2282 mpd->map.m_len = 0; 2283 mpd->next_page = index; 2284 while (index <= end) { 2285 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2286 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2287 if (nr_pages == 0) 2288 goto out; 2289 2290 for (i = 0; i < nr_pages; i++) { 2291 struct page *page = pvec.pages[i]; 2292 2293 /* 2294 * At this point, the page may be truncated or 2295 * invalidated (changing page->mapping to NULL), or 2296 * even swizzled back from swapper_space to tmpfs file 2297 * mapping. However, page->index will not change 2298 * because we have a reference on the page. 2299 */ 2300 if (page->index > end) 2301 goto out; 2302 2303 /* 2304 * Accumulated enough dirty pages? This doesn't apply 2305 * to WB_SYNC_ALL mode. For integrity sync we have to 2306 * keep going because someone may be concurrently 2307 * dirtying pages, and we might have synced a lot of 2308 * newly appeared dirty pages, but have not synced all 2309 * of the old dirty pages. 2310 */ 2311 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2312 goto out; 2313 2314 /* If we can't merge this page, we are done. */ 2315 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2316 goto out; 2317 2318 lock_page(page); 2319 /* 2320 * If the page is no longer dirty, or its mapping no 2321 * longer corresponds to inode we are writing (which 2322 * means it has been truncated or invalidated), or the 2323 * page is already under writeback and we are not doing 2324 * a data integrity writeback, skip the page 2325 */ 2326 if (!PageDirty(page) || 2327 (PageWriteback(page) && 2328 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2329 unlikely(page->mapping != mapping)) { 2330 unlock_page(page); 2331 continue; 2332 } 2333 2334 wait_on_page_writeback(page); 2335 BUG_ON(PageWriteback(page)); 2336 2337 if (mpd->map.m_len == 0) 2338 mpd->first_page = page->index; 2339 mpd->next_page = page->index + 1; 2340 /* Add all dirty buffers to mpd */ 2341 lblk = ((ext4_lblk_t)page->index) << 2342 (PAGE_CACHE_SHIFT - blkbits); 2343 head = page_buffers(page); 2344 err = mpage_process_page_bufs(mpd, head, head, lblk); 2345 if (err <= 0) 2346 goto out; 2347 err = 0; 2348 left--; 2349 } 2350 pagevec_release(&pvec); 2351 cond_resched(); 2352 } 2353 return 0; 2354 out: 2355 pagevec_release(&pvec); 2356 return err; 2357 } 2358 2359 static int __writepage(struct page *page, struct writeback_control *wbc, 2360 void *data) 2361 { 2362 struct address_space *mapping = data; 2363 int ret = ext4_writepage(page, wbc); 2364 mapping_set_error(mapping, ret); 2365 return ret; 2366 } 2367 2368 static int ext4_writepages(struct address_space *mapping, 2369 struct writeback_control *wbc) 2370 { 2371 pgoff_t writeback_index = 0; 2372 long nr_to_write = wbc->nr_to_write; 2373 int range_whole = 0; 2374 int cycled = 1; 2375 handle_t *handle = NULL; 2376 struct mpage_da_data mpd; 2377 struct inode *inode = mapping->host; 2378 int needed_blocks, rsv_blocks = 0, ret = 0; 2379 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2380 bool done; 2381 struct blk_plug plug; 2382 bool give_up_on_write = false; 2383 2384 trace_ext4_writepages(inode, wbc); 2385 2386 /* 2387 * No pages to write? This is mainly a kludge to avoid starting 2388 * a transaction for special inodes like journal inode on last iput() 2389 * because that could violate lock ordering on umount 2390 */ 2391 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2392 goto out_writepages; 2393 2394 if (ext4_should_journal_data(inode)) { 2395 struct blk_plug plug; 2396 2397 blk_start_plug(&plug); 2398 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 2399 blk_finish_plug(&plug); 2400 goto out_writepages; 2401 } 2402 2403 /* 2404 * If the filesystem has aborted, it is read-only, so return 2405 * right away instead of dumping stack traces later on that 2406 * will obscure the real source of the problem. We test 2407 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2408 * the latter could be true if the filesystem is mounted 2409 * read-only, and in that case, ext4_writepages should 2410 * *never* be called, so if that ever happens, we would want 2411 * the stack trace. 2412 */ 2413 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) { 2414 ret = -EROFS; 2415 goto out_writepages; 2416 } 2417 2418 if (ext4_should_dioread_nolock(inode)) { 2419 /* 2420 * We may need to convert up to one extent per block in 2421 * the page and we may dirty the inode. 2422 */ 2423 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits); 2424 } 2425 2426 /* 2427 * If we have inline data and arrive here, it means that 2428 * we will soon create the block for the 1st page, so 2429 * we'd better clear the inline data here. 2430 */ 2431 if (ext4_has_inline_data(inode)) { 2432 /* Just inode will be modified... */ 2433 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2434 if (IS_ERR(handle)) { 2435 ret = PTR_ERR(handle); 2436 goto out_writepages; 2437 } 2438 BUG_ON(ext4_test_inode_state(inode, 2439 EXT4_STATE_MAY_INLINE_DATA)); 2440 ext4_destroy_inline_data(handle, inode); 2441 ext4_journal_stop(handle); 2442 } 2443 2444 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2445 range_whole = 1; 2446 2447 if (wbc->range_cyclic) { 2448 writeback_index = mapping->writeback_index; 2449 if (writeback_index) 2450 cycled = 0; 2451 mpd.first_page = writeback_index; 2452 mpd.last_page = -1; 2453 } else { 2454 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT; 2455 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT; 2456 } 2457 2458 mpd.inode = inode; 2459 mpd.wbc = wbc; 2460 ext4_io_submit_init(&mpd.io_submit, wbc); 2461 retry: 2462 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2463 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2464 done = false; 2465 blk_start_plug(&plug); 2466 while (!done && mpd.first_page <= mpd.last_page) { 2467 /* For each extent of pages we use new io_end */ 2468 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2469 if (!mpd.io_submit.io_end) { 2470 ret = -ENOMEM; 2471 break; 2472 } 2473 2474 /* 2475 * We have two constraints: We find one extent to map and we 2476 * must always write out whole page (makes a difference when 2477 * blocksize < pagesize) so that we don't block on IO when we 2478 * try to write out the rest of the page. Journalled mode is 2479 * not supported by delalloc. 2480 */ 2481 BUG_ON(ext4_should_journal_data(inode)); 2482 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2483 2484 /* start a new transaction */ 2485 handle = ext4_journal_start_with_reserve(inode, 2486 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2487 if (IS_ERR(handle)) { 2488 ret = PTR_ERR(handle); 2489 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2490 "%ld pages, ino %lu; err %d", __func__, 2491 wbc->nr_to_write, inode->i_ino, ret); 2492 /* Release allocated io_end */ 2493 ext4_put_io_end(mpd.io_submit.io_end); 2494 break; 2495 } 2496 2497 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2498 ret = mpage_prepare_extent_to_map(&mpd); 2499 if (!ret) { 2500 if (mpd.map.m_len) 2501 ret = mpage_map_and_submit_extent(handle, &mpd, 2502 &give_up_on_write); 2503 else { 2504 /* 2505 * We scanned the whole range (or exhausted 2506 * nr_to_write), submitted what was mapped and 2507 * didn't find anything needing mapping. We are 2508 * done. 2509 */ 2510 done = true; 2511 } 2512 } 2513 ext4_journal_stop(handle); 2514 /* Submit prepared bio */ 2515 ext4_io_submit(&mpd.io_submit); 2516 /* Unlock pages we didn't use */ 2517 mpage_release_unused_pages(&mpd, give_up_on_write); 2518 /* Drop our io_end reference we got from init */ 2519 ext4_put_io_end(mpd.io_submit.io_end); 2520 2521 if (ret == -ENOSPC && sbi->s_journal) { 2522 /* 2523 * Commit the transaction which would 2524 * free blocks released in the transaction 2525 * and try again 2526 */ 2527 jbd2_journal_force_commit_nested(sbi->s_journal); 2528 ret = 0; 2529 continue; 2530 } 2531 /* Fatal error - ENOMEM, EIO... */ 2532 if (ret) 2533 break; 2534 } 2535 blk_finish_plug(&plug); 2536 if (!ret && !cycled && wbc->nr_to_write > 0) { 2537 cycled = 1; 2538 mpd.last_page = writeback_index - 1; 2539 mpd.first_page = 0; 2540 goto retry; 2541 } 2542 2543 /* Update index */ 2544 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2545 /* 2546 * Set the writeback_index so that range_cyclic 2547 * mode will write it back later 2548 */ 2549 mapping->writeback_index = mpd.first_page; 2550 2551 out_writepages: 2552 trace_ext4_writepages_result(inode, wbc, ret, 2553 nr_to_write - wbc->nr_to_write); 2554 return ret; 2555 } 2556 2557 static int ext4_nonda_switch(struct super_block *sb) 2558 { 2559 s64 free_clusters, dirty_clusters; 2560 struct ext4_sb_info *sbi = EXT4_SB(sb); 2561 2562 /* 2563 * switch to non delalloc mode if we are running low 2564 * on free block. The free block accounting via percpu 2565 * counters can get slightly wrong with percpu_counter_batch getting 2566 * accumulated on each CPU without updating global counters 2567 * Delalloc need an accurate free block accounting. So switch 2568 * to non delalloc when we are near to error range. 2569 */ 2570 free_clusters = 2571 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2572 dirty_clusters = 2573 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2574 /* 2575 * Start pushing delalloc when 1/2 of free blocks are dirty. 2576 */ 2577 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2578 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2579 2580 if (2 * free_clusters < 3 * dirty_clusters || 2581 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2582 /* 2583 * free block count is less than 150% of dirty blocks 2584 * or free blocks is less than watermark 2585 */ 2586 return 1; 2587 } 2588 return 0; 2589 } 2590 2591 /* We always reserve for an inode update; the superblock could be there too */ 2592 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len) 2593 { 2594 if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 2595 EXT4_FEATURE_RO_COMPAT_LARGE_FILE))) 2596 return 1; 2597 2598 if (pos + len <= 0x7fffffffULL) 2599 return 1; 2600 2601 /* We might need to update the superblock to set LARGE_FILE */ 2602 return 2; 2603 } 2604 2605 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2606 loff_t pos, unsigned len, unsigned flags, 2607 struct page **pagep, void **fsdata) 2608 { 2609 int ret, retries = 0; 2610 struct page *page; 2611 pgoff_t index; 2612 struct inode *inode = mapping->host; 2613 handle_t *handle; 2614 2615 index = pos >> PAGE_CACHE_SHIFT; 2616 2617 if (ext4_nonda_switch(inode->i_sb)) { 2618 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2619 return ext4_write_begin(file, mapping, pos, 2620 len, flags, pagep, fsdata); 2621 } 2622 *fsdata = (void *)0; 2623 trace_ext4_da_write_begin(inode, pos, len, flags); 2624 2625 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2626 ret = ext4_da_write_inline_data_begin(mapping, inode, 2627 pos, len, flags, 2628 pagep, fsdata); 2629 if (ret < 0) 2630 return ret; 2631 if (ret == 1) 2632 return 0; 2633 } 2634 2635 /* 2636 * grab_cache_page_write_begin() can take a long time if the 2637 * system is thrashing due to memory pressure, or if the page 2638 * is being written back. So grab it first before we start 2639 * the transaction handle. This also allows us to allocate 2640 * the page (if needed) without using GFP_NOFS. 2641 */ 2642 retry_grab: 2643 page = grab_cache_page_write_begin(mapping, index, flags); 2644 if (!page) 2645 return -ENOMEM; 2646 unlock_page(page); 2647 2648 /* 2649 * With delayed allocation, we don't log the i_disksize update 2650 * if there is delayed block allocation. But we still need 2651 * to journalling the i_disksize update if writes to the end 2652 * of file which has an already mapped buffer. 2653 */ 2654 retry_journal: 2655 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 2656 ext4_da_write_credits(inode, pos, len)); 2657 if (IS_ERR(handle)) { 2658 page_cache_release(page); 2659 return PTR_ERR(handle); 2660 } 2661 2662 lock_page(page); 2663 if (page->mapping != mapping) { 2664 /* The page got truncated from under us */ 2665 unlock_page(page); 2666 page_cache_release(page); 2667 ext4_journal_stop(handle); 2668 goto retry_grab; 2669 } 2670 /* In case writeback began while the page was unlocked */ 2671 wait_for_stable_page(page); 2672 2673 #ifdef CONFIG_EXT4_FS_ENCRYPTION 2674 ret = ext4_block_write_begin(page, pos, len, 2675 ext4_da_get_block_prep); 2676 #else 2677 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 2678 #endif 2679 if (ret < 0) { 2680 unlock_page(page); 2681 ext4_journal_stop(handle); 2682 /* 2683 * block_write_begin may have instantiated a few blocks 2684 * outside i_size. Trim these off again. Don't need 2685 * i_size_read because we hold i_mutex. 2686 */ 2687 if (pos + len > inode->i_size) 2688 ext4_truncate_failed_write(inode); 2689 2690 if (ret == -ENOSPC && 2691 ext4_should_retry_alloc(inode->i_sb, &retries)) 2692 goto retry_journal; 2693 2694 page_cache_release(page); 2695 return ret; 2696 } 2697 2698 *pagep = page; 2699 return ret; 2700 } 2701 2702 /* 2703 * Check if we should update i_disksize 2704 * when write to the end of file but not require block allocation 2705 */ 2706 static int ext4_da_should_update_i_disksize(struct page *page, 2707 unsigned long offset) 2708 { 2709 struct buffer_head *bh; 2710 struct inode *inode = page->mapping->host; 2711 unsigned int idx; 2712 int i; 2713 2714 bh = page_buffers(page); 2715 idx = offset >> inode->i_blkbits; 2716 2717 for (i = 0; i < idx; i++) 2718 bh = bh->b_this_page; 2719 2720 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2721 return 0; 2722 return 1; 2723 } 2724 2725 static int ext4_da_write_end(struct file *file, 2726 struct address_space *mapping, 2727 loff_t pos, unsigned len, unsigned copied, 2728 struct page *page, void *fsdata) 2729 { 2730 struct inode *inode = mapping->host; 2731 int ret = 0, ret2; 2732 handle_t *handle = ext4_journal_current_handle(); 2733 loff_t new_i_size; 2734 unsigned long start, end; 2735 int write_mode = (int)(unsigned long)fsdata; 2736 2737 if (write_mode == FALL_BACK_TO_NONDELALLOC) 2738 return ext4_write_end(file, mapping, pos, 2739 len, copied, page, fsdata); 2740 2741 trace_ext4_da_write_end(inode, pos, len, copied); 2742 start = pos & (PAGE_CACHE_SIZE - 1); 2743 end = start + copied - 1; 2744 2745 /* 2746 * generic_write_end() will run mark_inode_dirty() if i_size 2747 * changes. So let's piggyback the i_disksize mark_inode_dirty 2748 * into that. 2749 */ 2750 new_i_size = pos + copied; 2751 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 2752 if (ext4_has_inline_data(inode) || 2753 ext4_da_should_update_i_disksize(page, end)) { 2754 ext4_update_i_disksize(inode, new_i_size); 2755 /* We need to mark inode dirty even if 2756 * new_i_size is less that inode->i_size 2757 * bu greater than i_disksize.(hint delalloc) 2758 */ 2759 ext4_mark_inode_dirty(handle, inode); 2760 } 2761 } 2762 2763 if (write_mode != CONVERT_INLINE_DATA && 2764 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 2765 ext4_has_inline_data(inode)) 2766 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 2767 page); 2768 else 2769 ret2 = generic_write_end(file, mapping, pos, len, copied, 2770 page, fsdata); 2771 2772 copied = ret2; 2773 if (ret2 < 0) 2774 ret = ret2; 2775 ret2 = ext4_journal_stop(handle); 2776 if (!ret) 2777 ret = ret2; 2778 2779 return ret ? ret : copied; 2780 } 2781 2782 static void ext4_da_invalidatepage(struct page *page, unsigned int offset, 2783 unsigned int length) 2784 { 2785 /* 2786 * Drop reserved blocks 2787 */ 2788 BUG_ON(!PageLocked(page)); 2789 if (!page_has_buffers(page)) 2790 goto out; 2791 2792 ext4_da_page_release_reservation(page, offset, length); 2793 2794 out: 2795 ext4_invalidatepage(page, offset, length); 2796 2797 return; 2798 } 2799 2800 /* 2801 * Force all delayed allocation blocks to be allocated for a given inode. 2802 */ 2803 int ext4_alloc_da_blocks(struct inode *inode) 2804 { 2805 trace_ext4_alloc_da_blocks(inode); 2806 2807 if (!EXT4_I(inode)->i_reserved_data_blocks) 2808 return 0; 2809 2810 /* 2811 * We do something simple for now. The filemap_flush() will 2812 * also start triggering a write of the data blocks, which is 2813 * not strictly speaking necessary (and for users of 2814 * laptop_mode, not even desirable). However, to do otherwise 2815 * would require replicating code paths in: 2816 * 2817 * ext4_writepages() -> 2818 * write_cache_pages() ---> (via passed in callback function) 2819 * __mpage_da_writepage() --> 2820 * mpage_add_bh_to_extent() 2821 * mpage_da_map_blocks() 2822 * 2823 * The problem is that write_cache_pages(), located in 2824 * mm/page-writeback.c, marks pages clean in preparation for 2825 * doing I/O, which is not desirable if we're not planning on 2826 * doing I/O at all. 2827 * 2828 * We could call write_cache_pages(), and then redirty all of 2829 * the pages by calling redirty_page_for_writepage() but that 2830 * would be ugly in the extreme. So instead we would need to 2831 * replicate parts of the code in the above functions, 2832 * simplifying them because we wouldn't actually intend to 2833 * write out the pages, but rather only collect contiguous 2834 * logical block extents, call the multi-block allocator, and 2835 * then update the buffer heads with the block allocations. 2836 * 2837 * For now, though, we'll cheat by calling filemap_flush(), 2838 * which will map the blocks, and start the I/O, but not 2839 * actually wait for the I/O to complete. 2840 */ 2841 return filemap_flush(inode->i_mapping); 2842 } 2843 2844 /* 2845 * bmap() is special. It gets used by applications such as lilo and by 2846 * the swapper to find the on-disk block of a specific piece of data. 2847 * 2848 * Naturally, this is dangerous if the block concerned is still in the 2849 * journal. If somebody makes a swapfile on an ext4 data-journaling 2850 * filesystem and enables swap, then they may get a nasty shock when the 2851 * data getting swapped to that swapfile suddenly gets overwritten by 2852 * the original zero's written out previously to the journal and 2853 * awaiting writeback in the kernel's buffer cache. 2854 * 2855 * So, if we see any bmap calls here on a modified, data-journaled file, 2856 * take extra steps to flush any blocks which might be in the cache. 2857 */ 2858 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 2859 { 2860 struct inode *inode = mapping->host; 2861 journal_t *journal; 2862 int err; 2863 2864 /* 2865 * We can get here for an inline file via the FIBMAP ioctl 2866 */ 2867 if (ext4_has_inline_data(inode)) 2868 return 0; 2869 2870 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 2871 test_opt(inode->i_sb, DELALLOC)) { 2872 /* 2873 * With delalloc we want to sync the file 2874 * so that we can make sure we allocate 2875 * blocks for file 2876 */ 2877 filemap_write_and_wait(mapping); 2878 } 2879 2880 if (EXT4_JOURNAL(inode) && 2881 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 2882 /* 2883 * This is a REALLY heavyweight approach, but the use of 2884 * bmap on dirty files is expected to be extremely rare: 2885 * only if we run lilo or swapon on a freshly made file 2886 * do we expect this to happen. 2887 * 2888 * (bmap requires CAP_SYS_RAWIO so this does not 2889 * represent an unprivileged user DOS attack --- we'd be 2890 * in trouble if mortal users could trigger this path at 2891 * will.) 2892 * 2893 * NB. EXT4_STATE_JDATA is not set on files other than 2894 * regular files. If somebody wants to bmap a directory 2895 * or symlink and gets confused because the buffer 2896 * hasn't yet been flushed to disk, they deserve 2897 * everything they get. 2898 */ 2899 2900 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 2901 journal = EXT4_JOURNAL(inode); 2902 jbd2_journal_lock_updates(journal); 2903 err = jbd2_journal_flush(journal); 2904 jbd2_journal_unlock_updates(journal); 2905 2906 if (err) 2907 return 0; 2908 } 2909 2910 return generic_block_bmap(mapping, block, ext4_get_block); 2911 } 2912 2913 static int ext4_readpage(struct file *file, struct page *page) 2914 { 2915 int ret = -EAGAIN; 2916 struct inode *inode = page->mapping->host; 2917 2918 trace_ext4_readpage(page); 2919 2920 if (ext4_has_inline_data(inode)) 2921 ret = ext4_readpage_inline(inode, page); 2922 2923 if (ret == -EAGAIN) 2924 return ext4_mpage_readpages(page->mapping, NULL, page, 1); 2925 2926 return ret; 2927 } 2928 2929 static int 2930 ext4_readpages(struct file *file, struct address_space *mapping, 2931 struct list_head *pages, unsigned nr_pages) 2932 { 2933 struct inode *inode = mapping->host; 2934 2935 /* If the file has inline data, no need to do readpages. */ 2936 if (ext4_has_inline_data(inode)) 2937 return 0; 2938 2939 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages); 2940 } 2941 2942 static void ext4_invalidatepage(struct page *page, unsigned int offset, 2943 unsigned int length) 2944 { 2945 trace_ext4_invalidatepage(page, offset, length); 2946 2947 /* No journalling happens on data buffers when this function is used */ 2948 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 2949 2950 block_invalidatepage(page, offset, length); 2951 } 2952 2953 static int __ext4_journalled_invalidatepage(struct page *page, 2954 unsigned int offset, 2955 unsigned int length) 2956 { 2957 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2958 2959 trace_ext4_journalled_invalidatepage(page, offset, length); 2960 2961 /* 2962 * If it's a full truncate we just forget about the pending dirtying 2963 */ 2964 if (offset == 0 && length == PAGE_CACHE_SIZE) 2965 ClearPageChecked(page); 2966 2967 return jbd2_journal_invalidatepage(journal, page, offset, length); 2968 } 2969 2970 /* Wrapper for aops... */ 2971 static void ext4_journalled_invalidatepage(struct page *page, 2972 unsigned int offset, 2973 unsigned int length) 2974 { 2975 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 2976 } 2977 2978 static int ext4_releasepage(struct page *page, gfp_t wait) 2979 { 2980 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2981 2982 trace_ext4_releasepage(page); 2983 2984 /* Page has dirty journalled data -> cannot release */ 2985 if (PageChecked(page)) 2986 return 0; 2987 if (journal) 2988 return jbd2_journal_try_to_free_buffers(journal, page, wait); 2989 else 2990 return try_to_free_buffers(page); 2991 } 2992 2993 /* 2994 * ext4_get_block used when preparing for a DIO write or buffer write. 2995 * We allocate an uinitialized extent if blocks haven't been allocated. 2996 * The extent will be converted to initialized after the IO is complete. 2997 */ 2998 int ext4_get_block_write(struct inode *inode, sector_t iblock, 2999 struct buffer_head *bh_result, int create) 3000 { 3001 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n", 3002 inode->i_ino, create); 3003 return _ext4_get_block(inode, iblock, bh_result, 3004 EXT4_GET_BLOCKS_IO_CREATE_EXT); 3005 } 3006 3007 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 3008 struct buffer_head *bh_result, int create) 3009 { 3010 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n", 3011 inode->i_ino, create); 3012 return _ext4_get_block(inode, iblock, bh_result, 3013 EXT4_GET_BLOCKS_NO_LOCK); 3014 } 3015 3016 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 3017 ssize_t size, void *private) 3018 { 3019 ext4_io_end_t *io_end = iocb->private; 3020 3021 /* if not async direct IO just return */ 3022 if (!io_end) 3023 return; 3024 3025 ext_debug("ext4_end_io_dio(): io_end 0x%p " 3026 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", 3027 iocb->private, io_end->inode->i_ino, iocb, offset, 3028 size); 3029 3030 iocb->private = NULL; 3031 io_end->offset = offset; 3032 io_end->size = size; 3033 ext4_put_io_end(io_end); 3034 } 3035 3036 /* 3037 * For ext4 extent files, ext4 will do direct-io write to holes, 3038 * preallocated extents, and those write extend the file, no need to 3039 * fall back to buffered IO. 3040 * 3041 * For holes, we fallocate those blocks, mark them as unwritten 3042 * If those blocks were preallocated, we mark sure they are split, but 3043 * still keep the range to write as unwritten. 3044 * 3045 * The unwritten extents will be converted to written when DIO is completed. 3046 * For async direct IO, since the IO may still pending when return, we 3047 * set up an end_io call back function, which will do the conversion 3048 * when async direct IO completed. 3049 * 3050 * If the O_DIRECT write will extend the file then add this inode to the 3051 * orphan list. So recovery will truncate it back to the original size 3052 * if the machine crashes during the write. 3053 * 3054 */ 3055 static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter, 3056 loff_t offset) 3057 { 3058 struct file *file = iocb->ki_filp; 3059 struct inode *inode = file->f_mapping->host; 3060 ssize_t ret; 3061 size_t count = iov_iter_count(iter); 3062 int overwrite = 0; 3063 get_block_t *get_block_func = NULL; 3064 int dio_flags = 0; 3065 loff_t final_size = offset + count; 3066 ext4_io_end_t *io_end = NULL; 3067 3068 /* Use the old path for reads and writes beyond i_size. */ 3069 if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size) 3070 return ext4_ind_direct_IO(iocb, iter, offset); 3071 3072 BUG_ON(iocb->private == NULL); 3073 3074 /* 3075 * Make all waiters for direct IO properly wait also for extent 3076 * conversion. This also disallows race between truncate() and 3077 * overwrite DIO as i_dio_count needs to be incremented under i_mutex. 3078 */ 3079 if (iov_iter_rw(iter) == WRITE) 3080 inode_dio_begin(inode); 3081 3082 /* If we do a overwrite dio, i_mutex locking can be released */ 3083 overwrite = *((int *)iocb->private); 3084 3085 if (overwrite) { 3086 down_read(&EXT4_I(inode)->i_data_sem); 3087 mutex_unlock(&inode->i_mutex); 3088 } 3089 3090 /* 3091 * We could direct write to holes and fallocate. 3092 * 3093 * Allocated blocks to fill the hole are marked as 3094 * unwritten to prevent parallel buffered read to expose 3095 * the stale data before DIO complete the data IO. 3096 * 3097 * As to previously fallocated extents, ext4 get_block will 3098 * just simply mark the buffer mapped but still keep the 3099 * extents unwritten. 3100 * 3101 * For non AIO case, we will convert those unwritten extents 3102 * to written after return back from blockdev_direct_IO. 3103 * 3104 * For async DIO, the conversion needs to be deferred when the 3105 * IO is completed. The ext4 end_io callback function will be 3106 * called to take care of the conversion work. Here for async 3107 * case, we allocate an io_end structure to hook to the iocb. 3108 */ 3109 iocb->private = NULL; 3110 ext4_inode_aio_set(inode, NULL); 3111 if (!is_sync_kiocb(iocb)) { 3112 io_end = ext4_init_io_end(inode, GFP_NOFS); 3113 if (!io_end) { 3114 ret = -ENOMEM; 3115 goto retake_lock; 3116 } 3117 /* 3118 * Grab reference for DIO. Will be dropped in ext4_end_io_dio() 3119 */ 3120 iocb->private = ext4_get_io_end(io_end); 3121 /* 3122 * we save the io structure for current async direct 3123 * IO, so that later ext4_map_blocks() could flag the 3124 * io structure whether there is a unwritten extents 3125 * needs to be converted when IO is completed. 3126 */ 3127 ext4_inode_aio_set(inode, io_end); 3128 } 3129 3130 if (overwrite) { 3131 get_block_func = ext4_get_block_write_nolock; 3132 } else { 3133 get_block_func = ext4_get_block_write; 3134 dio_flags = DIO_LOCKING; 3135 } 3136 #ifdef CONFIG_EXT4_FS_ENCRYPTION 3137 BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode)); 3138 #endif 3139 if (IS_DAX(inode)) 3140 ret = dax_do_io(iocb, inode, iter, offset, get_block_func, 3141 ext4_end_io_dio, dio_flags); 3142 else 3143 ret = __blockdev_direct_IO(iocb, inode, 3144 inode->i_sb->s_bdev, iter, offset, 3145 get_block_func, 3146 ext4_end_io_dio, NULL, dio_flags); 3147 3148 /* 3149 * Put our reference to io_end. This can free the io_end structure e.g. 3150 * in sync IO case or in case of error. It can even perform extent 3151 * conversion if all bios we submitted finished before we got here. 3152 * Note that in that case iocb->private can be already set to NULL 3153 * here. 3154 */ 3155 if (io_end) { 3156 ext4_inode_aio_set(inode, NULL); 3157 ext4_put_io_end(io_end); 3158 /* 3159 * When no IO was submitted ext4_end_io_dio() was not 3160 * called so we have to put iocb's reference. 3161 */ 3162 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) { 3163 WARN_ON(iocb->private != io_end); 3164 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN); 3165 ext4_put_io_end(io_end); 3166 iocb->private = NULL; 3167 } 3168 } 3169 if (ret > 0 && !overwrite && ext4_test_inode_state(inode, 3170 EXT4_STATE_DIO_UNWRITTEN)) { 3171 int err; 3172 /* 3173 * for non AIO case, since the IO is already 3174 * completed, we could do the conversion right here 3175 */ 3176 err = ext4_convert_unwritten_extents(NULL, inode, 3177 offset, ret); 3178 if (err < 0) 3179 ret = err; 3180 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3181 } 3182 3183 retake_lock: 3184 if (iov_iter_rw(iter) == WRITE) 3185 inode_dio_end(inode); 3186 /* take i_mutex locking again if we do a ovewrite dio */ 3187 if (overwrite) { 3188 up_read(&EXT4_I(inode)->i_data_sem); 3189 mutex_lock(&inode->i_mutex); 3190 } 3191 3192 return ret; 3193 } 3194 3195 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter, 3196 loff_t offset) 3197 { 3198 struct file *file = iocb->ki_filp; 3199 struct inode *inode = file->f_mapping->host; 3200 size_t count = iov_iter_count(iter); 3201 ssize_t ret; 3202 3203 #ifdef CONFIG_EXT4_FS_ENCRYPTION 3204 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode)) 3205 return 0; 3206 #endif 3207 3208 /* 3209 * If we are doing data journalling we don't support O_DIRECT 3210 */ 3211 if (ext4_should_journal_data(inode)) 3212 return 0; 3213 3214 /* Let buffer I/O handle the inline data case. */ 3215 if (ext4_has_inline_data(inode)) 3216 return 0; 3217 3218 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter)); 3219 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3220 ret = ext4_ext_direct_IO(iocb, iter, offset); 3221 else 3222 ret = ext4_ind_direct_IO(iocb, iter, offset); 3223 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret); 3224 return ret; 3225 } 3226 3227 /* 3228 * Pages can be marked dirty completely asynchronously from ext4's journalling 3229 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3230 * much here because ->set_page_dirty is called under VFS locks. The page is 3231 * not necessarily locked. 3232 * 3233 * We cannot just dirty the page and leave attached buffers clean, because the 3234 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3235 * or jbddirty because all the journalling code will explode. 3236 * 3237 * So what we do is to mark the page "pending dirty" and next time writepage 3238 * is called, propagate that into the buffers appropriately. 3239 */ 3240 static int ext4_journalled_set_page_dirty(struct page *page) 3241 { 3242 SetPageChecked(page); 3243 return __set_page_dirty_nobuffers(page); 3244 } 3245 3246 static const struct address_space_operations ext4_aops = { 3247 .readpage = ext4_readpage, 3248 .readpages = ext4_readpages, 3249 .writepage = ext4_writepage, 3250 .writepages = ext4_writepages, 3251 .write_begin = ext4_write_begin, 3252 .write_end = ext4_write_end, 3253 .bmap = ext4_bmap, 3254 .invalidatepage = ext4_invalidatepage, 3255 .releasepage = ext4_releasepage, 3256 .direct_IO = ext4_direct_IO, 3257 .migratepage = buffer_migrate_page, 3258 .is_partially_uptodate = block_is_partially_uptodate, 3259 .error_remove_page = generic_error_remove_page, 3260 }; 3261 3262 static const struct address_space_operations ext4_journalled_aops = { 3263 .readpage = ext4_readpage, 3264 .readpages = ext4_readpages, 3265 .writepage = ext4_writepage, 3266 .writepages = ext4_writepages, 3267 .write_begin = ext4_write_begin, 3268 .write_end = ext4_journalled_write_end, 3269 .set_page_dirty = ext4_journalled_set_page_dirty, 3270 .bmap = ext4_bmap, 3271 .invalidatepage = ext4_journalled_invalidatepage, 3272 .releasepage = ext4_releasepage, 3273 .direct_IO = ext4_direct_IO, 3274 .is_partially_uptodate = block_is_partially_uptodate, 3275 .error_remove_page = generic_error_remove_page, 3276 }; 3277 3278 static const struct address_space_operations ext4_da_aops = { 3279 .readpage = ext4_readpage, 3280 .readpages = ext4_readpages, 3281 .writepage = ext4_writepage, 3282 .writepages = ext4_writepages, 3283 .write_begin = ext4_da_write_begin, 3284 .write_end = ext4_da_write_end, 3285 .bmap = ext4_bmap, 3286 .invalidatepage = ext4_da_invalidatepage, 3287 .releasepage = ext4_releasepage, 3288 .direct_IO = ext4_direct_IO, 3289 .migratepage = buffer_migrate_page, 3290 .is_partially_uptodate = block_is_partially_uptodate, 3291 .error_remove_page = generic_error_remove_page, 3292 }; 3293 3294 void ext4_set_aops(struct inode *inode) 3295 { 3296 switch (ext4_inode_journal_mode(inode)) { 3297 case EXT4_INODE_ORDERED_DATA_MODE: 3298 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3299 break; 3300 case EXT4_INODE_WRITEBACK_DATA_MODE: 3301 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3302 break; 3303 case EXT4_INODE_JOURNAL_DATA_MODE: 3304 inode->i_mapping->a_ops = &ext4_journalled_aops; 3305 return; 3306 default: 3307 BUG(); 3308 } 3309 if (test_opt(inode->i_sb, DELALLOC)) 3310 inode->i_mapping->a_ops = &ext4_da_aops; 3311 else 3312 inode->i_mapping->a_ops = &ext4_aops; 3313 } 3314 3315 static int __ext4_block_zero_page_range(handle_t *handle, 3316 struct address_space *mapping, loff_t from, loff_t length) 3317 { 3318 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3319 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3320 unsigned blocksize, pos; 3321 ext4_lblk_t iblock; 3322 struct inode *inode = mapping->host; 3323 struct buffer_head *bh; 3324 struct page *page; 3325 int err = 0; 3326 3327 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 3328 mapping_gfp_mask(mapping) & ~__GFP_FS); 3329 if (!page) 3330 return -ENOMEM; 3331 3332 blocksize = inode->i_sb->s_blocksize; 3333 3334 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3335 3336 if (!page_has_buffers(page)) 3337 create_empty_buffers(page, blocksize, 0); 3338 3339 /* Find the buffer that contains "offset" */ 3340 bh = page_buffers(page); 3341 pos = blocksize; 3342 while (offset >= pos) { 3343 bh = bh->b_this_page; 3344 iblock++; 3345 pos += blocksize; 3346 } 3347 if (buffer_freed(bh)) { 3348 BUFFER_TRACE(bh, "freed: skip"); 3349 goto unlock; 3350 } 3351 if (!buffer_mapped(bh)) { 3352 BUFFER_TRACE(bh, "unmapped"); 3353 ext4_get_block(inode, iblock, bh, 0); 3354 /* unmapped? It's a hole - nothing to do */ 3355 if (!buffer_mapped(bh)) { 3356 BUFFER_TRACE(bh, "still unmapped"); 3357 goto unlock; 3358 } 3359 } 3360 3361 /* Ok, it's mapped. Make sure it's up-to-date */ 3362 if (PageUptodate(page)) 3363 set_buffer_uptodate(bh); 3364 3365 if (!buffer_uptodate(bh)) { 3366 err = -EIO; 3367 ll_rw_block(READ, 1, &bh); 3368 wait_on_buffer(bh); 3369 /* Uhhuh. Read error. Complain and punt. */ 3370 if (!buffer_uptodate(bh)) 3371 goto unlock; 3372 if (S_ISREG(inode->i_mode) && 3373 ext4_encrypted_inode(inode)) { 3374 /* We expect the key to be set. */ 3375 BUG_ON(!ext4_has_encryption_key(inode)); 3376 BUG_ON(blocksize != PAGE_CACHE_SIZE); 3377 WARN_ON_ONCE(ext4_decrypt_one(inode, page)); 3378 } 3379 } 3380 if (ext4_should_journal_data(inode)) { 3381 BUFFER_TRACE(bh, "get write access"); 3382 err = ext4_journal_get_write_access(handle, bh); 3383 if (err) 3384 goto unlock; 3385 } 3386 zero_user(page, offset, length); 3387 BUFFER_TRACE(bh, "zeroed end of block"); 3388 3389 if (ext4_should_journal_data(inode)) { 3390 err = ext4_handle_dirty_metadata(handle, inode, bh); 3391 } else { 3392 err = 0; 3393 mark_buffer_dirty(bh); 3394 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) 3395 err = ext4_jbd2_file_inode(handle, inode); 3396 } 3397 3398 unlock: 3399 unlock_page(page); 3400 page_cache_release(page); 3401 return err; 3402 } 3403 3404 /* 3405 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3406 * starting from file offset 'from'. The range to be zero'd must 3407 * be contained with in one block. If the specified range exceeds 3408 * the end of the block it will be shortened to end of the block 3409 * that cooresponds to 'from' 3410 */ 3411 static int ext4_block_zero_page_range(handle_t *handle, 3412 struct address_space *mapping, loff_t from, loff_t length) 3413 { 3414 struct inode *inode = mapping->host; 3415 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3416 unsigned blocksize = inode->i_sb->s_blocksize; 3417 unsigned max = blocksize - (offset & (blocksize - 1)); 3418 3419 /* 3420 * correct length if it does not fall between 3421 * 'from' and the end of the block 3422 */ 3423 if (length > max || length < 0) 3424 length = max; 3425 3426 if (IS_DAX(inode)) 3427 return dax_zero_page_range(inode, from, length, ext4_get_block); 3428 return __ext4_block_zero_page_range(handle, mapping, from, length); 3429 } 3430 3431 /* 3432 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3433 * up to the end of the block which corresponds to `from'. 3434 * This required during truncate. We need to physically zero the tail end 3435 * of that block so it doesn't yield old data if the file is later grown. 3436 */ 3437 static int ext4_block_truncate_page(handle_t *handle, 3438 struct address_space *mapping, loff_t from) 3439 { 3440 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3441 unsigned length; 3442 unsigned blocksize; 3443 struct inode *inode = mapping->host; 3444 3445 blocksize = inode->i_sb->s_blocksize; 3446 length = blocksize - (offset & (blocksize - 1)); 3447 3448 return ext4_block_zero_page_range(handle, mapping, from, length); 3449 } 3450 3451 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3452 loff_t lstart, loff_t length) 3453 { 3454 struct super_block *sb = inode->i_sb; 3455 struct address_space *mapping = inode->i_mapping; 3456 unsigned partial_start, partial_end; 3457 ext4_fsblk_t start, end; 3458 loff_t byte_end = (lstart + length - 1); 3459 int err = 0; 3460 3461 partial_start = lstart & (sb->s_blocksize - 1); 3462 partial_end = byte_end & (sb->s_blocksize - 1); 3463 3464 start = lstart >> sb->s_blocksize_bits; 3465 end = byte_end >> sb->s_blocksize_bits; 3466 3467 /* Handle partial zero within the single block */ 3468 if (start == end && 3469 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3470 err = ext4_block_zero_page_range(handle, mapping, 3471 lstart, length); 3472 return err; 3473 } 3474 /* Handle partial zero out on the start of the range */ 3475 if (partial_start) { 3476 err = ext4_block_zero_page_range(handle, mapping, 3477 lstart, sb->s_blocksize); 3478 if (err) 3479 return err; 3480 } 3481 /* Handle partial zero out on the end of the range */ 3482 if (partial_end != sb->s_blocksize - 1) 3483 err = ext4_block_zero_page_range(handle, mapping, 3484 byte_end - partial_end, 3485 partial_end + 1); 3486 return err; 3487 } 3488 3489 int ext4_can_truncate(struct inode *inode) 3490 { 3491 if (S_ISREG(inode->i_mode)) 3492 return 1; 3493 if (S_ISDIR(inode->i_mode)) 3494 return 1; 3495 if (S_ISLNK(inode->i_mode)) 3496 return !ext4_inode_is_fast_symlink(inode); 3497 return 0; 3498 } 3499 3500 /* 3501 * ext4_punch_hole: punches a hole in a file by releaseing the blocks 3502 * associated with the given offset and length 3503 * 3504 * @inode: File inode 3505 * @offset: The offset where the hole will begin 3506 * @len: The length of the hole 3507 * 3508 * Returns: 0 on success or negative on failure 3509 */ 3510 3511 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 3512 { 3513 struct super_block *sb = inode->i_sb; 3514 ext4_lblk_t first_block, stop_block; 3515 struct address_space *mapping = inode->i_mapping; 3516 loff_t first_block_offset, last_block_offset; 3517 handle_t *handle; 3518 unsigned int credits; 3519 int ret = 0; 3520 3521 if (!S_ISREG(inode->i_mode)) 3522 return -EOPNOTSUPP; 3523 3524 trace_ext4_punch_hole(inode, offset, length, 0); 3525 3526 /* 3527 * Write out all dirty pages to avoid race conditions 3528 * Then release them. 3529 */ 3530 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 3531 ret = filemap_write_and_wait_range(mapping, offset, 3532 offset + length - 1); 3533 if (ret) 3534 return ret; 3535 } 3536 3537 mutex_lock(&inode->i_mutex); 3538 3539 /* No need to punch hole beyond i_size */ 3540 if (offset >= inode->i_size) 3541 goto out_mutex; 3542 3543 /* 3544 * If the hole extends beyond i_size, set the hole 3545 * to end after the page that contains i_size 3546 */ 3547 if (offset + length > inode->i_size) { 3548 length = inode->i_size + 3549 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) - 3550 offset; 3551 } 3552 3553 if (offset & (sb->s_blocksize - 1) || 3554 (offset + length) & (sb->s_blocksize - 1)) { 3555 /* 3556 * Attach jinode to inode for jbd2 if we do any zeroing of 3557 * partial block 3558 */ 3559 ret = ext4_inode_attach_jinode(inode); 3560 if (ret < 0) 3561 goto out_mutex; 3562 3563 } 3564 3565 first_block_offset = round_up(offset, sb->s_blocksize); 3566 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 3567 3568 /* Now release the pages and zero block aligned part of pages*/ 3569 if (last_block_offset > first_block_offset) 3570 truncate_pagecache_range(inode, first_block_offset, 3571 last_block_offset); 3572 3573 /* Wait all existing dio workers, newcomers will block on i_mutex */ 3574 ext4_inode_block_unlocked_dio(inode); 3575 inode_dio_wait(inode); 3576 3577 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3578 credits = ext4_writepage_trans_blocks(inode); 3579 else 3580 credits = ext4_blocks_for_truncate(inode); 3581 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3582 if (IS_ERR(handle)) { 3583 ret = PTR_ERR(handle); 3584 ext4_std_error(sb, ret); 3585 goto out_dio; 3586 } 3587 3588 ret = ext4_zero_partial_blocks(handle, inode, offset, 3589 length); 3590 if (ret) 3591 goto out_stop; 3592 3593 first_block = (offset + sb->s_blocksize - 1) >> 3594 EXT4_BLOCK_SIZE_BITS(sb); 3595 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 3596 3597 /* If there are no blocks to remove, return now */ 3598 if (first_block >= stop_block) 3599 goto out_stop; 3600 3601 down_write(&EXT4_I(inode)->i_data_sem); 3602 ext4_discard_preallocations(inode); 3603 3604 ret = ext4_es_remove_extent(inode, first_block, 3605 stop_block - first_block); 3606 if (ret) { 3607 up_write(&EXT4_I(inode)->i_data_sem); 3608 goto out_stop; 3609 } 3610 3611 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3612 ret = ext4_ext_remove_space(inode, first_block, 3613 stop_block - 1); 3614 else 3615 ret = ext4_ind_remove_space(handle, inode, first_block, 3616 stop_block); 3617 3618 up_write(&EXT4_I(inode)->i_data_sem); 3619 if (IS_SYNC(inode)) 3620 ext4_handle_sync(handle); 3621 3622 /* Now release the pages again to reduce race window */ 3623 if (last_block_offset > first_block_offset) 3624 truncate_pagecache_range(inode, first_block_offset, 3625 last_block_offset); 3626 3627 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3628 ext4_mark_inode_dirty(handle, inode); 3629 out_stop: 3630 ext4_journal_stop(handle); 3631 out_dio: 3632 ext4_inode_resume_unlocked_dio(inode); 3633 out_mutex: 3634 mutex_unlock(&inode->i_mutex); 3635 return ret; 3636 } 3637 3638 int ext4_inode_attach_jinode(struct inode *inode) 3639 { 3640 struct ext4_inode_info *ei = EXT4_I(inode); 3641 struct jbd2_inode *jinode; 3642 3643 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 3644 return 0; 3645 3646 jinode = jbd2_alloc_inode(GFP_KERNEL); 3647 spin_lock(&inode->i_lock); 3648 if (!ei->jinode) { 3649 if (!jinode) { 3650 spin_unlock(&inode->i_lock); 3651 return -ENOMEM; 3652 } 3653 ei->jinode = jinode; 3654 jbd2_journal_init_jbd_inode(ei->jinode, inode); 3655 jinode = NULL; 3656 } 3657 spin_unlock(&inode->i_lock); 3658 if (unlikely(jinode != NULL)) 3659 jbd2_free_inode(jinode); 3660 return 0; 3661 } 3662 3663 /* 3664 * ext4_truncate() 3665 * 3666 * We block out ext4_get_block() block instantiations across the entire 3667 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 3668 * simultaneously on behalf of the same inode. 3669 * 3670 * As we work through the truncate and commit bits of it to the journal there 3671 * is one core, guiding principle: the file's tree must always be consistent on 3672 * disk. We must be able to restart the truncate after a crash. 3673 * 3674 * The file's tree may be transiently inconsistent in memory (although it 3675 * probably isn't), but whenever we close off and commit a journal transaction, 3676 * the contents of (the filesystem + the journal) must be consistent and 3677 * restartable. It's pretty simple, really: bottom up, right to left (although 3678 * left-to-right works OK too). 3679 * 3680 * Note that at recovery time, journal replay occurs *before* the restart of 3681 * truncate against the orphan inode list. 3682 * 3683 * The committed inode has the new, desired i_size (which is the same as 3684 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 3685 * that this inode's truncate did not complete and it will again call 3686 * ext4_truncate() to have another go. So there will be instantiated blocks 3687 * to the right of the truncation point in a crashed ext4 filesystem. But 3688 * that's fine - as long as they are linked from the inode, the post-crash 3689 * ext4_truncate() run will find them and release them. 3690 */ 3691 void ext4_truncate(struct inode *inode) 3692 { 3693 struct ext4_inode_info *ei = EXT4_I(inode); 3694 unsigned int credits; 3695 handle_t *handle; 3696 struct address_space *mapping = inode->i_mapping; 3697 3698 /* 3699 * There is a possibility that we're either freeing the inode 3700 * or it's a completely new inode. In those cases we might not 3701 * have i_mutex locked because it's not necessary. 3702 */ 3703 if (!(inode->i_state & (I_NEW|I_FREEING))) 3704 WARN_ON(!mutex_is_locked(&inode->i_mutex)); 3705 trace_ext4_truncate_enter(inode); 3706 3707 if (!ext4_can_truncate(inode)) 3708 return; 3709 3710 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3711 3712 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 3713 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 3714 3715 if (ext4_has_inline_data(inode)) { 3716 int has_inline = 1; 3717 3718 ext4_inline_data_truncate(inode, &has_inline); 3719 if (has_inline) 3720 return; 3721 } 3722 3723 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 3724 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 3725 if (ext4_inode_attach_jinode(inode) < 0) 3726 return; 3727 } 3728 3729 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3730 credits = ext4_writepage_trans_blocks(inode); 3731 else 3732 credits = ext4_blocks_for_truncate(inode); 3733 3734 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3735 if (IS_ERR(handle)) { 3736 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 3737 return; 3738 } 3739 3740 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 3741 ext4_block_truncate_page(handle, mapping, inode->i_size); 3742 3743 /* 3744 * We add the inode to the orphan list, so that if this 3745 * truncate spans multiple transactions, and we crash, we will 3746 * resume the truncate when the filesystem recovers. It also 3747 * marks the inode dirty, to catch the new size. 3748 * 3749 * Implication: the file must always be in a sane, consistent 3750 * truncatable state while each transaction commits. 3751 */ 3752 if (ext4_orphan_add(handle, inode)) 3753 goto out_stop; 3754 3755 down_write(&EXT4_I(inode)->i_data_sem); 3756 3757 ext4_discard_preallocations(inode); 3758 3759 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3760 ext4_ext_truncate(handle, inode); 3761 else 3762 ext4_ind_truncate(handle, inode); 3763 3764 up_write(&ei->i_data_sem); 3765 3766 if (IS_SYNC(inode)) 3767 ext4_handle_sync(handle); 3768 3769 out_stop: 3770 /* 3771 * If this was a simple ftruncate() and the file will remain alive, 3772 * then we need to clear up the orphan record which we created above. 3773 * However, if this was a real unlink then we were called by 3774 * ext4_evict_inode(), and we allow that function to clean up the 3775 * orphan info for us. 3776 */ 3777 if (inode->i_nlink) 3778 ext4_orphan_del(handle, inode); 3779 3780 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3781 ext4_mark_inode_dirty(handle, inode); 3782 ext4_journal_stop(handle); 3783 3784 trace_ext4_truncate_exit(inode); 3785 } 3786 3787 /* 3788 * ext4_get_inode_loc returns with an extra refcount against the inode's 3789 * underlying buffer_head on success. If 'in_mem' is true, we have all 3790 * data in memory that is needed to recreate the on-disk version of this 3791 * inode. 3792 */ 3793 static int __ext4_get_inode_loc(struct inode *inode, 3794 struct ext4_iloc *iloc, int in_mem) 3795 { 3796 struct ext4_group_desc *gdp; 3797 struct buffer_head *bh; 3798 struct super_block *sb = inode->i_sb; 3799 ext4_fsblk_t block; 3800 int inodes_per_block, inode_offset; 3801 3802 iloc->bh = NULL; 3803 if (!ext4_valid_inum(sb, inode->i_ino)) 3804 return -EIO; 3805 3806 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 3807 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 3808 if (!gdp) 3809 return -EIO; 3810 3811 /* 3812 * Figure out the offset within the block group inode table 3813 */ 3814 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 3815 inode_offset = ((inode->i_ino - 1) % 3816 EXT4_INODES_PER_GROUP(sb)); 3817 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 3818 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 3819 3820 bh = sb_getblk(sb, block); 3821 if (unlikely(!bh)) 3822 return -ENOMEM; 3823 if (!buffer_uptodate(bh)) { 3824 lock_buffer(bh); 3825 3826 /* 3827 * If the buffer has the write error flag, we have failed 3828 * to write out another inode in the same block. In this 3829 * case, we don't have to read the block because we may 3830 * read the old inode data successfully. 3831 */ 3832 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 3833 set_buffer_uptodate(bh); 3834 3835 if (buffer_uptodate(bh)) { 3836 /* someone brought it uptodate while we waited */ 3837 unlock_buffer(bh); 3838 goto has_buffer; 3839 } 3840 3841 /* 3842 * If we have all information of the inode in memory and this 3843 * is the only valid inode in the block, we need not read the 3844 * block. 3845 */ 3846 if (in_mem) { 3847 struct buffer_head *bitmap_bh; 3848 int i, start; 3849 3850 start = inode_offset & ~(inodes_per_block - 1); 3851 3852 /* Is the inode bitmap in cache? */ 3853 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 3854 if (unlikely(!bitmap_bh)) 3855 goto make_io; 3856 3857 /* 3858 * If the inode bitmap isn't in cache then the 3859 * optimisation may end up performing two reads instead 3860 * of one, so skip it. 3861 */ 3862 if (!buffer_uptodate(bitmap_bh)) { 3863 brelse(bitmap_bh); 3864 goto make_io; 3865 } 3866 for (i = start; i < start + inodes_per_block; i++) { 3867 if (i == inode_offset) 3868 continue; 3869 if (ext4_test_bit(i, bitmap_bh->b_data)) 3870 break; 3871 } 3872 brelse(bitmap_bh); 3873 if (i == start + inodes_per_block) { 3874 /* all other inodes are free, so skip I/O */ 3875 memset(bh->b_data, 0, bh->b_size); 3876 set_buffer_uptodate(bh); 3877 unlock_buffer(bh); 3878 goto has_buffer; 3879 } 3880 } 3881 3882 make_io: 3883 /* 3884 * If we need to do any I/O, try to pre-readahead extra 3885 * blocks from the inode table. 3886 */ 3887 if (EXT4_SB(sb)->s_inode_readahead_blks) { 3888 ext4_fsblk_t b, end, table; 3889 unsigned num; 3890 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 3891 3892 table = ext4_inode_table(sb, gdp); 3893 /* s_inode_readahead_blks is always a power of 2 */ 3894 b = block & ~((ext4_fsblk_t) ra_blks - 1); 3895 if (table > b) 3896 b = table; 3897 end = b + ra_blks; 3898 num = EXT4_INODES_PER_GROUP(sb); 3899 if (ext4_has_group_desc_csum(sb)) 3900 num -= ext4_itable_unused_count(sb, gdp); 3901 table += num / inodes_per_block; 3902 if (end > table) 3903 end = table; 3904 while (b <= end) 3905 sb_breadahead(sb, b++); 3906 } 3907 3908 /* 3909 * There are other valid inodes in the buffer, this inode 3910 * has in-inode xattrs, or we don't have this inode in memory. 3911 * Read the block from disk. 3912 */ 3913 trace_ext4_load_inode(inode); 3914 get_bh(bh); 3915 bh->b_end_io = end_buffer_read_sync; 3916 submit_bh(READ | REQ_META | REQ_PRIO, bh); 3917 wait_on_buffer(bh); 3918 if (!buffer_uptodate(bh)) { 3919 EXT4_ERROR_INODE_BLOCK(inode, block, 3920 "unable to read itable block"); 3921 brelse(bh); 3922 return -EIO; 3923 } 3924 } 3925 has_buffer: 3926 iloc->bh = bh; 3927 return 0; 3928 } 3929 3930 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 3931 { 3932 /* We have all inode data except xattrs in memory here. */ 3933 return __ext4_get_inode_loc(inode, iloc, 3934 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 3935 } 3936 3937 void ext4_set_inode_flags(struct inode *inode) 3938 { 3939 unsigned int flags = EXT4_I(inode)->i_flags; 3940 unsigned int new_fl = 0; 3941 3942 if (flags & EXT4_SYNC_FL) 3943 new_fl |= S_SYNC; 3944 if (flags & EXT4_APPEND_FL) 3945 new_fl |= S_APPEND; 3946 if (flags & EXT4_IMMUTABLE_FL) 3947 new_fl |= S_IMMUTABLE; 3948 if (flags & EXT4_NOATIME_FL) 3949 new_fl |= S_NOATIME; 3950 if (flags & EXT4_DIRSYNC_FL) 3951 new_fl |= S_DIRSYNC; 3952 if (test_opt(inode->i_sb, DAX)) 3953 new_fl |= S_DAX; 3954 inode_set_flags(inode, new_fl, 3955 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX); 3956 } 3957 3958 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 3959 void ext4_get_inode_flags(struct ext4_inode_info *ei) 3960 { 3961 unsigned int vfs_fl; 3962 unsigned long old_fl, new_fl; 3963 3964 do { 3965 vfs_fl = ei->vfs_inode.i_flags; 3966 old_fl = ei->i_flags; 3967 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 3968 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL| 3969 EXT4_DIRSYNC_FL); 3970 if (vfs_fl & S_SYNC) 3971 new_fl |= EXT4_SYNC_FL; 3972 if (vfs_fl & S_APPEND) 3973 new_fl |= EXT4_APPEND_FL; 3974 if (vfs_fl & S_IMMUTABLE) 3975 new_fl |= EXT4_IMMUTABLE_FL; 3976 if (vfs_fl & S_NOATIME) 3977 new_fl |= EXT4_NOATIME_FL; 3978 if (vfs_fl & S_DIRSYNC) 3979 new_fl |= EXT4_DIRSYNC_FL; 3980 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl); 3981 } 3982 3983 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 3984 struct ext4_inode_info *ei) 3985 { 3986 blkcnt_t i_blocks ; 3987 struct inode *inode = &(ei->vfs_inode); 3988 struct super_block *sb = inode->i_sb; 3989 3990 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3991 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 3992 /* we are using combined 48 bit field */ 3993 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 3994 le32_to_cpu(raw_inode->i_blocks_lo); 3995 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 3996 /* i_blocks represent file system block size */ 3997 return i_blocks << (inode->i_blkbits - 9); 3998 } else { 3999 return i_blocks; 4000 } 4001 } else { 4002 return le32_to_cpu(raw_inode->i_blocks_lo); 4003 } 4004 } 4005 4006 static inline void ext4_iget_extra_inode(struct inode *inode, 4007 struct ext4_inode *raw_inode, 4008 struct ext4_inode_info *ei) 4009 { 4010 __le32 *magic = (void *)raw_inode + 4011 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4012 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4013 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4014 ext4_find_inline_data_nolock(inode); 4015 } else 4016 EXT4_I(inode)->i_inline_off = 0; 4017 } 4018 4019 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 4020 { 4021 struct ext4_iloc iloc; 4022 struct ext4_inode *raw_inode; 4023 struct ext4_inode_info *ei; 4024 struct inode *inode; 4025 journal_t *journal = EXT4_SB(sb)->s_journal; 4026 long ret; 4027 int block; 4028 uid_t i_uid; 4029 gid_t i_gid; 4030 4031 inode = iget_locked(sb, ino); 4032 if (!inode) 4033 return ERR_PTR(-ENOMEM); 4034 if (!(inode->i_state & I_NEW)) 4035 return inode; 4036 4037 ei = EXT4_I(inode); 4038 iloc.bh = NULL; 4039 4040 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4041 if (ret < 0) 4042 goto bad_inode; 4043 raw_inode = ext4_raw_inode(&iloc); 4044 4045 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4046 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4047 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4048 EXT4_INODE_SIZE(inode->i_sb)) { 4049 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)", 4050 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize, 4051 EXT4_INODE_SIZE(inode->i_sb)); 4052 ret = -EIO; 4053 goto bad_inode; 4054 } 4055 } else 4056 ei->i_extra_isize = 0; 4057 4058 /* Precompute checksum seed for inode metadata */ 4059 if (ext4_has_metadata_csum(sb)) { 4060 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4061 __u32 csum; 4062 __le32 inum = cpu_to_le32(inode->i_ino); 4063 __le32 gen = raw_inode->i_generation; 4064 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4065 sizeof(inum)); 4066 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4067 sizeof(gen)); 4068 } 4069 4070 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 4071 EXT4_ERROR_INODE(inode, "checksum invalid"); 4072 ret = -EIO; 4073 goto bad_inode; 4074 } 4075 4076 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4077 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4078 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4079 if (!(test_opt(inode->i_sb, NO_UID32))) { 4080 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4081 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4082 } 4083 i_uid_write(inode, i_uid); 4084 i_gid_write(inode, i_gid); 4085 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4086 4087 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4088 ei->i_inline_off = 0; 4089 ei->i_dir_start_lookup = 0; 4090 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4091 /* We now have enough fields to check if the inode was active or not. 4092 * This is needed because nfsd might try to access dead inodes 4093 * the test is that same one that e2fsck uses 4094 * NeilBrown 1999oct15 4095 */ 4096 if (inode->i_nlink == 0) { 4097 if ((inode->i_mode == 0 || 4098 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4099 ino != EXT4_BOOT_LOADER_INO) { 4100 /* this inode is deleted */ 4101 ret = -ESTALE; 4102 goto bad_inode; 4103 } 4104 /* The only unlinked inodes we let through here have 4105 * valid i_mode and are being read by the orphan 4106 * recovery code: that's fine, we're about to complete 4107 * the process of deleting those. 4108 * OR it is the EXT4_BOOT_LOADER_INO which is 4109 * not initialized on a new filesystem. */ 4110 } 4111 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4112 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4113 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4114 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) 4115 ei->i_file_acl |= 4116 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4117 inode->i_size = ext4_isize(raw_inode); 4118 ei->i_disksize = inode->i_size; 4119 #ifdef CONFIG_QUOTA 4120 ei->i_reserved_quota = 0; 4121 #endif 4122 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4123 ei->i_block_group = iloc.block_group; 4124 ei->i_last_alloc_group = ~0; 4125 /* 4126 * NOTE! The in-memory inode i_data array is in little-endian order 4127 * even on big-endian machines: we do NOT byteswap the block numbers! 4128 */ 4129 for (block = 0; block < EXT4_N_BLOCKS; block++) 4130 ei->i_data[block] = raw_inode->i_block[block]; 4131 INIT_LIST_HEAD(&ei->i_orphan); 4132 4133 /* 4134 * Set transaction id's of transactions that have to be committed 4135 * to finish f[data]sync. We set them to currently running transaction 4136 * as we cannot be sure that the inode or some of its metadata isn't 4137 * part of the transaction - the inode could have been reclaimed and 4138 * now it is reread from disk. 4139 */ 4140 if (journal) { 4141 transaction_t *transaction; 4142 tid_t tid; 4143 4144 read_lock(&journal->j_state_lock); 4145 if (journal->j_running_transaction) 4146 transaction = journal->j_running_transaction; 4147 else 4148 transaction = journal->j_committing_transaction; 4149 if (transaction) 4150 tid = transaction->t_tid; 4151 else 4152 tid = journal->j_commit_sequence; 4153 read_unlock(&journal->j_state_lock); 4154 ei->i_sync_tid = tid; 4155 ei->i_datasync_tid = tid; 4156 } 4157 4158 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4159 if (ei->i_extra_isize == 0) { 4160 /* The extra space is currently unused. Use it. */ 4161 ei->i_extra_isize = sizeof(struct ext4_inode) - 4162 EXT4_GOOD_OLD_INODE_SIZE; 4163 } else { 4164 ext4_iget_extra_inode(inode, raw_inode, ei); 4165 } 4166 } 4167 4168 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4169 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4170 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4171 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4172 4173 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4174 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4175 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4176 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4177 inode->i_version |= 4178 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4179 } 4180 } 4181 4182 ret = 0; 4183 if (ei->i_file_acl && 4184 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 4185 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 4186 ei->i_file_acl); 4187 ret = -EIO; 4188 goto bad_inode; 4189 } else if (!ext4_has_inline_data(inode)) { 4190 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 4191 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4192 (S_ISLNK(inode->i_mode) && 4193 !ext4_inode_is_fast_symlink(inode)))) 4194 /* Validate extent which is part of inode */ 4195 ret = ext4_ext_check_inode(inode); 4196 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4197 (S_ISLNK(inode->i_mode) && 4198 !ext4_inode_is_fast_symlink(inode))) { 4199 /* Validate block references which are part of inode */ 4200 ret = ext4_ind_check_inode(inode); 4201 } 4202 } 4203 if (ret) 4204 goto bad_inode; 4205 4206 if (S_ISREG(inode->i_mode)) { 4207 inode->i_op = &ext4_file_inode_operations; 4208 inode->i_fop = &ext4_file_operations; 4209 ext4_set_aops(inode); 4210 } else if (S_ISDIR(inode->i_mode)) { 4211 inode->i_op = &ext4_dir_inode_operations; 4212 inode->i_fop = &ext4_dir_operations; 4213 } else if (S_ISLNK(inode->i_mode)) { 4214 if (ext4_inode_is_fast_symlink(inode) && 4215 !ext4_encrypted_inode(inode)) { 4216 inode->i_op = &ext4_fast_symlink_inode_operations; 4217 nd_terminate_link(ei->i_data, inode->i_size, 4218 sizeof(ei->i_data) - 1); 4219 } else { 4220 inode->i_op = &ext4_symlink_inode_operations; 4221 ext4_set_aops(inode); 4222 } 4223 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4224 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4225 inode->i_op = &ext4_special_inode_operations; 4226 if (raw_inode->i_block[0]) 4227 init_special_inode(inode, inode->i_mode, 4228 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4229 else 4230 init_special_inode(inode, inode->i_mode, 4231 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4232 } else if (ino == EXT4_BOOT_LOADER_INO) { 4233 make_bad_inode(inode); 4234 } else { 4235 ret = -EIO; 4236 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 4237 goto bad_inode; 4238 } 4239 brelse(iloc.bh); 4240 ext4_set_inode_flags(inode); 4241 unlock_new_inode(inode); 4242 return inode; 4243 4244 bad_inode: 4245 brelse(iloc.bh); 4246 iget_failed(inode); 4247 return ERR_PTR(ret); 4248 } 4249 4250 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino) 4251 { 4252 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 4253 return ERR_PTR(-EIO); 4254 return ext4_iget(sb, ino); 4255 } 4256 4257 static int ext4_inode_blocks_set(handle_t *handle, 4258 struct ext4_inode *raw_inode, 4259 struct ext4_inode_info *ei) 4260 { 4261 struct inode *inode = &(ei->vfs_inode); 4262 u64 i_blocks = inode->i_blocks; 4263 struct super_block *sb = inode->i_sb; 4264 4265 if (i_blocks <= ~0U) { 4266 /* 4267 * i_blocks can be represented in a 32 bit variable 4268 * as multiple of 512 bytes 4269 */ 4270 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4271 raw_inode->i_blocks_high = 0; 4272 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4273 return 0; 4274 } 4275 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) 4276 return -EFBIG; 4277 4278 if (i_blocks <= 0xffffffffffffULL) { 4279 /* 4280 * i_blocks can be represented in a 48 bit variable 4281 * as multiple of 512 bytes 4282 */ 4283 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4284 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4285 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4286 } else { 4287 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4288 /* i_block is stored in file system block size */ 4289 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4290 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4291 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4292 } 4293 return 0; 4294 } 4295 4296 struct other_inode { 4297 unsigned long orig_ino; 4298 struct ext4_inode *raw_inode; 4299 }; 4300 4301 static int other_inode_match(struct inode * inode, unsigned long ino, 4302 void *data) 4303 { 4304 struct other_inode *oi = (struct other_inode *) data; 4305 4306 if ((inode->i_ino != ino) || 4307 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4308 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) || 4309 ((inode->i_state & I_DIRTY_TIME) == 0)) 4310 return 0; 4311 spin_lock(&inode->i_lock); 4312 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4313 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) && 4314 (inode->i_state & I_DIRTY_TIME)) { 4315 struct ext4_inode_info *ei = EXT4_I(inode); 4316 4317 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED); 4318 spin_unlock(&inode->i_lock); 4319 4320 spin_lock(&ei->i_raw_lock); 4321 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode); 4322 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode); 4323 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode); 4324 ext4_inode_csum_set(inode, oi->raw_inode, ei); 4325 spin_unlock(&ei->i_raw_lock); 4326 trace_ext4_other_inode_update_time(inode, oi->orig_ino); 4327 return -1; 4328 } 4329 spin_unlock(&inode->i_lock); 4330 return -1; 4331 } 4332 4333 /* 4334 * Opportunistically update the other time fields for other inodes in 4335 * the same inode table block. 4336 */ 4337 static void ext4_update_other_inodes_time(struct super_block *sb, 4338 unsigned long orig_ino, char *buf) 4339 { 4340 struct other_inode oi; 4341 unsigned long ino; 4342 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4343 int inode_size = EXT4_INODE_SIZE(sb); 4344 4345 oi.orig_ino = orig_ino; 4346 ino = orig_ino & ~(inodes_per_block - 1); 4347 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 4348 if (ino == orig_ino) 4349 continue; 4350 oi.raw_inode = (struct ext4_inode *) buf; 4351 (void) find_inode_nowait(sb, ino, other_inode_match, &oi); 4352 } 4353 } 4354 4355 /* 4356 * Post the struct inode info into an on-disk inode location in the 4357 * buffer-cache. This gobbles the caller's reference to the 4358 * buffer_head in the inode location struct. 4359 * 4360 * The caller must have write access to iloc->bh. 4361 */ 4362 static int ext4_do_update_inode(handle_t *handle, 4363 struct inode *inode, 4364 struct ext4_iloc *iloc) 4365 { 4366 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4367 struct ext4_inode_info *ei = EXT4_I(inode); 4368 struct buffer_head *bh = iloc->bh; 4369 struct super_block *sb = inode->i_sb; 4370 int err = 0, rc, block; 4371 int need_datasync = 0, set_large_file = 0; 4372 uid_t i_uid; 4373 gid_t i_gid; 4374 4375 spin_lock(&ei->i_raw_lock); 4376 4377 /* For fields not tracked in the in-memory inode, 4378 * initialise them to zero for new inodes. */ 4379 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4380 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4381 4382 ext4_get_inode_flags(ei); 4383 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4384 i_uid = i_uid_read(inode); 4385 i_gid = i_gid_read(inode); 4386 if (!(test_opt(inode->i_sb, NO_UID32))) { 4387 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4388 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4389 /* 4390 * Fix up interoperability with old kernels. Otherwise, old inodes get 4391 * re-used with the upper 16 bits of the uid/gid intact 4392 */ 4393 if (!ei->i_dtime) { 4394 raw_inode->i_uid_high = 4395 cpu_to_le16(high_16_bits(i_uid)); 4396 raw_inode->i_gid_high = 4397 cpu_to_le16(high_16_bits(i_gid)); 4398 } else { 4399 raw_inode->i_uid_high = 0; 4400 raw_inode->i_gid_high = 0; 4401 } 4402 } else { 4403 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4404 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4405 raw_inode->i_uid_high = 0; 4406 raw_inode->i_gid_high = 0; 4407 } 4408 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4409 4410 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4411 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4412 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4413 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4414 4415 err = ext4_inode_blocks_set(handle, raw_inode, ei); 4416 if (err) { 4417 spin_unlock(&ei->i_raw_lock); 4418 goto out_brelse; 4419 } 4420 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4421 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4422 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 4423 raw_inode->i_file_acl_high = 4424 cpu_to_le16(ei->i_file_acl >> 32); 4425 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4426 if (ei->i_disksize != ext4_isize(raw_inode)) { 4427 ext4_isize_set(raw_inode, ei->i_disksize); 4428 need_datasync = 1; 4429 } 4430 if (ei->i_disksize > 0x7fffffffULL) { 4431 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 4432 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 4433 EXT4_SB(sb)->s_es->s_rev_level == 4434 cpu_to_le32(EXT4_GOOD_OLD_REV)) 4435 set_large_file = 1; 4436 } 4437 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4438 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4439 if (old_valid_dev(inode->i_rdev)) { 4440 raw_inode->i_block[0] = 4441 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4442 raw_inode->i_block[1] = 0; 4443 } else { 4444 raw_inode->i_block[0] = 0; 4445 raw_inode->i_block[1] = 4446 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4447 raw_inode->i_block[2] = 0; 4448 } 4449 } else if (!ext4_has_inline_data(inode)) { 4450 for (block = 0; block < EXT4_N_BLOCKS; block++) 4451 raw_inode->i_block[block] = ei->i_data[block]; 4452 } 4453 4454 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4455 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 4456 if (ei->i_extra_isize) { 4457 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4458 raw_inode->i_version_hi = 4459 cpu_to_le32(inode->i_version >> 32); 4460 raw_inode->i_extra_isize = 4461 cpu_to_le16(ei->i_extra_isize); 4462 } 4463 } 4464 ext4_inode_csum_set(inode, raw_inode, ei); 4465 spin_unlock(&ei->i_raw_lock); 4466 if (inode->i_sb->s_flags & MS_LAZYTIME) 4467 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 4468 bh->b_data); 4469 4470 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4471 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 4472 if (!err) 4473 err = rc; 4474 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 4475 if (set_large_file) { 4476 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 4477 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh); 4478 if (err) 4479 goto out_brelse; 4480 ext4_update_dynamic_rev(sb); 4481 EXT4_SET_RO_COMPAT_FEATURE(sb, 4482 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 4483 ext4_handle_sync(handle); 4484 err = ext4_handle_dirty_super(handle, sb); 4485 } 4486 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 4487 out_brelse: 4488 brelse(bh); 4489 ext4_std_error(inode->i_sb, err); 4490 return err; 4491 } 4492 4493 /* 4494 * ext4_write_inode() 4495 * 4496 * We are called from a few places: 4497 * 4498 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 4499 * Here, there will be no transaction running. We wait for any running 4500 * transaction to commit. 4501 * 4502 * - Within flush work (sys_sync(), kupdate and such). 4503 * We wait on commit, if told to. 4504 * 4505 * - Within iput_final() -> write_inode_now() 4506 * We wait on commit, if told to. 4507 * 4508 * In all cases it is actually safe for us to return without doing anything, 4509 * because the inode has been copied into a raw inode buffer in 4510 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 4511 * writeback. 4512 * 4513 * Note that we are absolutely dependent upon all inode dirtiers doing the 4514 * right thing: they *must* call mark_inode_dirty() after dirtying info in 4515 * which we are interested. 4516 * 4517 * It would be a bug for them to not do this. The code: 4518 * 4519 * mark_inode_dirty(inode) 4520 * stuff(); 4521 * inode->i_size = expr; 4522 * 4523 * is in error because write_inode() could occur while `stuff()' is running, 4524 * and the new i_size will be lost. Plus the inode will no longer be on the 4525 * superblock's dirty inode list. 4526 */ 4527 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 4528 { 4529 int err; 4530 4531 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC)) 4532 return 0; 4533 4534 if (EXT4_SB(inode->i_sb)->s_journal) { 4535 if (ext4_journal_current_handle()) { 4536 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 4537 dump_stack(); 4538 return -EIO; 4539 } 4540 4541 /* 4542 * No need to force transaction in WB_SYNC_NONE mode. Also 4543 * ext4_sync_fs() will force the commit after everything is 4544 * written. 4545 */ 4546 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 4547 return 0; 4548 4549 err = ext4_force_commit(inode->i_sb); 4550 } else { 4551 struct ext4_iloc iloc; 4552 4553 err = __ext4_get_inode_loc(inode, &iloc, 0); 4554 if (err) 4555 return err; 4556 /* 4557 * sync(2) will flush the whole buffer cache. No need to do 4558 * it here separately for each inode. 4559 */ 4560 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 4561 sync_dirty_buffer(iloc.bh); 4562 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 4563 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 4564 "IO error syncing inode"); 4565 err = -EIO; 4566 } 4567 brelse(iloc.bh); 4568 } 4569 return err; 4570 } 4571 4572 /* 4573 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 4574 * buffers that are attached to a page stradding i_size and are undergoing 4575 * commit. In that case we have to wait for commit to finish and try again. 4576 */ 4577 static void ext4_wait_for_tail_page_commit(struct inode *inode) 4578 { 4579 struct page *page; 4580 unsigned offset; 4581 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 4582 tid_t commit_tid = 0; 4583 int ret; 4584 4585 offset = inode->i_size & (PAGE_CACHE_SIZE - 1); 4586 /* 4587 * All buffers in the last page remain valid? Then there's nothing to 4588 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE == 4589 * blocksize case 4590 */ 4591 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits)) 4592 return; 4593 while (1) { 4594 page = find_lock_page(inode->i_mapping, 4595 inode->i_size >> PAGE_CACHE_SHIFT); 4596 if (!page) 4597 return; 4598 ret = __ext4_journalled_invalidatepage(page, offset, 4599 PAGE_CACHE_SIZE - offset); 4600 unlock_page(page); 4601 page_cache_release(page); 4602 if (ret != -EBUSY) 4603 return; 4604 commit_tid = 0; 4605 read_lock(&journal->j_state_lock); 4606 if (journal->j_committing_transaction) 4607 commit_tid = journal->j_committing_transaction->t_tid; 4608 read_unlock(&journal->j_state_lock); 4609 if (commit_tid) 4610 jbd2_log_wait_commit(journal, commit_tid); 4611 } 4612 } 4613 4614 /* 4615 * ext4_setattr() 4616 * 4617 * Called from notify_change. 4618 * 4619 * We want to trap VFS attempts to truncate the file as soon as 4620 * possible. In particular, we want to make sure that when the VFS 4621 * shrinks i_size, we put the inode on the orphan list and modify 4622 * i_disksize immediately, so that during the subsequent flushing of 4623 * dirty pages and freeing of disk blocks, we can guarantee that any 4624 * commit will leave the blocks being flushed in an unused state on 4625 * disk. (On recovery, the inode will get truncated and the blocks will 4626 * be freed, so we have a strong guarantee that no future commit will 4627 * leave these blocks visible to the user.) 4628 * 4629 * Another thing we have to assure is that if we are in ordered mode 4630 * and inode is still attached to the committing transaction, we must 4631 * we start writeout of all the dirty pages which are being truncated. 4632 * This way we are sure that all the data written in the previous 4633 * transaction are already on disk (truncate waits for pages under 4634 * writeback). 4635 * 4636 * Called with inode->i_mutex down. 4637 */ 4638 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 4639 { 4640 struct inode *inode = d_inode(dentry); 4641 int error, rc = 0; 4642 int orphan = 0; 4643 const unsigned int ia_valid = attr->ia_valid; 4644 4645 error = inode_change_ok(inode, attr); 4646 if (error) 4647 return error; 4648 4649 if (is_quota_modification(inode, attr)) 4650 dquot_initialize(inode); 4651 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 4652 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 4653 handle_t *handle; 4654 4655 /* (user+group)*(old+new) structure, inode write (sb, 4656 * inode block, ? - but truncate inode update has it) */ 4657 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 4658 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 4659 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 4660 if (IS_ERR(handle)) { 4661 error = PTR_ERR(handle); 4662 goto err_out; 4663 } 4664 error = dquot_transfer(inode, attr); 4665 if (error) { 4666 ext4_journal_stop(handle); 4667 return error; 4668 } 4669 /* Update corresponding info in inode so that everything is in 4670 * one transaction */ 4671 if (attr->ia_valid & ATTR_UID) 4672 inode->i_uid = attr->ia_uid; 4673 if (attr->ia_valid & ATTR_GID) 4674 inode->i_gid = attr->ia_gid; 4675 error = ext4_mark_inode_dirty(handle, inode); 4676 ext4_journal_stop(handle); 4677 } 4678 4679 if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) { 4680 handle_t *handle; 4681 4682 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4683 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4684 4685 if (attr->ia_size > sbi->s_bitmap_maxbytes) 4686 return -EFBIG; 4687 } 4688 4689 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size) 4690 inode_inc_iversion(inode); 4691 4692 if (S_ISREG(inode->i_mode) && 4693 (attr->ia_size < inode->i_size)) { 4694 if (ext4_should_order_data(inode)) { 4695 error = ext4_begin_ordered_truncate(inode, 4696 attr->ia_size); 4697 if (error) 4698 goto err_out; 4699 } 4700 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 4701 if (IS_ERR(handle)) { 4702 error = PTR_ERR(handle); 4703 goto err_out; 4704 } 4705 if (ext4_handle_valid(handle)) { 4706 error = ext4_orphan_add(handle, inode); 4707 orphan = 1; 4708 } 4709 down_write(&EXT4_I(inode)->i_data_sem); 4710 EXT4_I(inode)->i_disksize = attr->ia_size; 4711 rc = ext4_mark_inode_dirty(handle, inode); 4712 if (!error) 4713 error = rc; 4714 /* 4715 * We have to update i_size under i_data_sem together 4716 * with i_disksize to avoid races with writeback code 4717 * running ext4_wb_update_i_disksize(). 4718 */ 4719 if (!error) 4720 i_size_write(inode, attr->ia_size); 4721 up_write(&EXT4_I(inode)->i_data_sem); 4722 ext4_journal_stop(handle); 4723 if (error) { 4724 ext4_orphan_del(NULL, inode); 4725 goto err_out; 4726 } 4727 } else { 4728 loff_t oldsize = inode->i_size; 4729 4730 i_size_write(inode, attr->ia_size); 4731 pagecache_isize_extended(inode, oldsize, inode->i_size); 4732 } 4733 4734 /* 4735 * Blocks are going to be removed from the inode. Wait 4736 * for dio in flight. Temporarily disable 4737 * dioread_nolock to prevent livelock. 4738 */ 4739 if (orphan) { 4740 if (!ext4_should_journal_data(inode)) { 4741 ext4_inode_block_unlocked_dio(inode); 4742 inode_dio_wait(inode); 4743 ext4_inode_resume_unlocked_dio(inode); 4744 } else 4745 ext4_wait_for_tail_page_commit(inode); 4746 } 4747 /* 4748 * Truncate pagecache after we've waited for commit 4749 * in data=journal mode to make pages freeable. 4750 */ 4751 truncate_pagecache(inode, inode->i_size); 4752 } 4753 /* 4754 * We want to call ext4_truncate() even if attr->ia_size == 4755 * inode->i_size for cases like truncation of fallocated space 4756 */ 4757 if (attr->ia_valid & ATTR_SIZE) 4758 ext4_truncate(inode); 4759 4760 if (!rc) { 4761 setattr_copy(inode, attr); 4762 mark_inode_dirty(inode); 4763 } 4764 4765 /* 4766 * If the call to ext4_truncate failed to get a transaction handle at 4767 * all, we need to clean up the in-core orphan list manually. 4768 */ 4769 if (orphan && inode->i_nlink) 4770 ext4_orphan_del(NULL, inode); 4771 4772 if (!rc && (ia_valid & ATTR_MODE)) 4773 rc = posix_acl_chmod(inode, inode->i_mode); 4774 4775 err_out: 4776 ext4_std_error(inode->i_sb, error); 4777 if (!error) 4778 error = rc; 4779 return error; 4780 } 4781 4782 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 4783 struct kstat *stat) 4784 { 4785 struct inode *inode; 4786 unsigned long long delalloc_blocks; 4787 4788 inode = d_inode(dentry); 4789 generic_fillattr(inode, stat); 4790 4791 /* 4792 * If there is inline data in the inode, the inode will normally not 4793 * have data blocks allocated (it may have an external xattr block). 4794 * Report at least one sector for such files, so tools like tar, rsync, 4795 * others doen't incorrectly think the file is completely sparse. 4796 */ 4797 if (unlikely(ext4_has_inline_data(inode))) 4798 stat->blocks += (stat->size + 511) >> 9; 4799 4800 /* 4801 * We can't update i_blocks if the block allocation is delayed 4802 * otherwise in the case of system crash before the real block 4803 * allocation is done, we will have i_blocks inconsistent with 4804 * on-disk file blocks. 4805 * We always keep i_blocks updated together with real 4806 * allocation. But to not confuse with user, stat 4807 * will return the blocks that include the delayed allocation 4808 * blocks for this file. 4809 */ 4810 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 4811 EXT4_I(inode)->i_reserved_data_blocks); 4812 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 4813 return 0; 4814 } 4815 4816 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 4817 int pextents) 4818 { 4819 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4820 return ext4_ind_trans_blocks(inode, lblocks); 4821 return ext4_ext_index_trans_blocks(inode, pextents); 4822 } 4823 4824 /* 4825 * Account for index blocks, block groups bitmaps and block group 4826 * descriptor blocks if modify datablocks and index blocks 4827 * worse case, the indexs blocks spread over different block groups 4828 * 4829 * If datablocks are discontiguous, they are possible to spread over 4830 * different block groups too. If they are contiguous, with flexbg, 4831 * they could still across block group boundary. 4832 * 4833 * Also account for superblock, inode, quota and xattr blocks 4834 */ 4835 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 4836 int pextents) 4837 { 4838 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 4839 int gdpblocks; 4840 int idxblocks; 4841 int ret = 0; 4842 4843 /* 4844 * How many index blocks need to touch to map @lblocks logical blocks 4845 * to @pextents physical extents? 4846 */ 4847 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 4848 4849 ret = idxblocks; 4850 4851 /* 4852 * Now let's see how many group bitmaps and group descriptors need 4853 * to account 4854 */ 4855 groups = idxblocks + pextents; 4856 gdpblocks = groups; 4857 if (groups > ngroups) 4858 groups = ngroups; 4859 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 4860 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 4861 4862 /* bitmaps and block group descriptor blocks */ 4863 ret += groups + gdpblocks; 4864 4865 /* Blocks for super block, inode, quota and xattr blocks */ 4866 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 4867 4868 return ret; 4869 } 4870 4871 /* 4872 * Calculate the total number of credits to reserve to fit 4873 * the modification of a single pages into a single transaction, 4874 * which may include multiple chunks of block allocations. 4875 * 4876 * This could be called via ext4_write_begin() 4877 * 4878 * We need to consider the worse case, when 4879 * one new block per extent. 4880 */ 4881 int ext4_writepage_trans_blocks(struct inode *inode) 4882 { 4883 int bpp = ext4_journal_blocks_per_page(inode); 4884 int ret; 4885 4886 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 4887 4888 /* Account for data blocks for journalled mode */ 4889 if (ext4_should_journal_data(inode)) 4890 ret += bpp; 4891 return ret; 4892 } 4893 4894 /* 4895 * Calculate the journal credits for a chunk of data modification. 4896 * 4897 * This is called from DIO, fallocate or whoever calling 4898 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 4899 * 4900 * journal buffers for data blocks are not included here, as DIO 4901 * and fallocate do no need to journal data buffers. 4902 */ 4903 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 4904 { 4905 return ext4_meta_trans_blocks(inode, nrblocks, 1); 4906 } 4907 4908 /* 4909 * The caller must have previously called ext4_reserve_inode_write(). 4910 * Give this, we know that the caller already has write access to iloc->bh. 4911 */ 4912 int ext4_mark_iloc_dirty(handle_t *handle, 4913 struct inode *inode, struct ext4_iloc *iloc) 4914 { 4915 int err = 0; 4916 4917 if (IS_I_VERSION(inode)) 4918 inode_inc_iversion(inode); 4919 4920 /* the do_update_inode consumes one bh->b_count */ 4921 get_bh(iloc->bh); 4922 4923 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 4924 err = ext4_do_update_inode(handle, inode, iloc); 4925 put_bh(iloc->bh); 4926 return err; 4927 } 4928 4929 /* 4930 * On success, We end up with an outstanding reference count against 4931 * iloc->bh. This _must_ be cleaned up later. 4932 */ 4933 4934 int 4935 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 4936 struct ext4_iloc *iloc) 4937 { 4938 int err; 4939 4940 err = ext4_get_inode_loc(inode, iloc); 4941 if (!err) { 4942 BUFFER_TRACE(iloc->bh, "get_write_access"); 4943 err = ext4_journal_get_write_access(handle, iloc->bh); 4944 if (err) { 4945 brelse(iloc->bh); 4946 iloc->bh = NULL; 4947 } 4948 } 4949 ext4_std_error(inode->i_sb, err); 4950 return err; 4951 } 4952 4953 /* 4954 * Expand an inode by new_extra_isize bytes. 4955 * Returns 0 on success or negative error number on failure. 4956 */ 4957 static int ext4_expand_extra_isize(struct inode *inode, 4958 unsigned int new_extra_isize, 4959 struct ext4_iloc iloc, 4960 handle_t *handle) 4961 { 4962 struct ext4_inode *raw_inode; 4963 struct ext4_xattr_ibody_header *header; 4964 4965 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 4966 return 0; 4967 4968 raw_inode = ext4_raw_inode(&iloc); 4969 4970 header = IHDR(inode, raw_inode); 4971 4972 /* No extended attributes present */ 4973 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 4974 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 4975 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 4976 new_extra_isize); 4977 EXT4_I(inode)->i_extra_isize = new_extra_isize; 4978 return 0; 4979 } 4980 4981 /* try to expand with EAs present */ 4982 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 4983 raw_inode, handle); 4984 } 4985 4986 /* 4987 * What we do here is to mark the in-core inode as clean with respect to inode 4988 * dirtiness (it may still be data-dirty). 4989 * This means that the in-core inode may be reaped by prune_icache 4990 * without having to perform any I/O. This is a very good thing, 4991 * because *any* task may call prune_icache - even ones which 4992 * have a transaction open against a different journal. 4993 * 4994 * Is this cheating? Not really. Sure, we haven't written the 4995 * inode out, but prune_icache isn't a user-visible syncing function. 4996 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 4997 * we start and wait on commits. 4998 */ 4999 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 5000 { 5001 struct ext4_iloc iloc; 5002 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5003 static unsigned int mnt_count; 5004 int err, ret; 5005 5006 might_sleep(); 5007 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5008 err = ext4_reserve_inode_write(handle, inode, &iloc); 5009 if (ext4_handle_valid(handle) && 5010 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 5011 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5012 /* 5013 * We need extra buffer credits since we may write into EA block 5014 * with this same handle. If journal_extend fails, then it will 5015 * only result in a minor loss of functionality for that inode. 5016 * If this is felt to be critical, then e2fsck should be run to 5017 * force a large enough s_min_extra_isize. 5018 */ 5019 if ((jbd2_journal_extend(handle, 5020 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 5021 ret = ext4_expand_extra_isize(inode, 5022 sbi->s_want_extra_isize, 5023 iloc, handle); 5024 if (ret) { 5025 ext4_set_inode_state(inode, 5026 EXT4_STATE_NO_EXPAND); 5027 if (mnt_count != 5028 le16_to_cpu(sbi->s_es->s_mnt_count)) { 5029 ext4_warning(inode->i_sb, 5030 "Unable to expand inode %lu. Delete" 5031 " some EAs or run e2fsck.", 5032 inode->i_ino); 5033 mnt_count = 5034 le16_to_cpu(sbi->s_es->s_mnt_count); 5035 } 5036 } 5037 } 5038 } 5039 if (!err) 5040 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 5041 return err; 5042 } 5043 5044 /* 5045 * ext4_dirty_inode() is called from __mark_inode_dirty() 5046 * 5047 * We're really interested in the case where a file is being extended. 5048 * i_size has been changed by generic_commit_write() and we thus need 5049 * to include the updated inode in the current transaction. 5050 * 5051 * Also, dquot_alloc_block() will always dirty the inode when blocks 5052 * are allocated to the file. 5053 * 5054 * If the inode is marked synchronous, we don't honour that here - doing 5055 * so would cause a commit on atime updates, which we don't bother doing. 5056 * We handle synchronous inodes at the highest possible level. 5057 * 5058 * If only the I_DIRTY_TIME flag is set, we can skip everything. If 5059 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need 5060 * to copy into the on-disk inode structure are the timestamp files. 5061 */ 5062 void ext4_dirty_inode(struct inode *inode, int flags) 5063 { 5064 handle_t *handle; 5065 5066 if (flags == I_DIRTY_TIME) 5067 return; 5068 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 5069 if (IS_ERR(handle)) 5070 goto out; 5071 5072 ext4_mark_inode_dirty(handle, inode); 5073 5074 ext4_journal_stop(handle); 5075 out: 5076 return; 5077 } 5078 5079 #if 0 5080 /* 5081 * Bind an inode's backing buffer_head into this transaction, to prevent 5082 * it from being flushed to disk early. Unlike 5083 * ext4_reserve_inode_write, this leaves behind no bh reference and 5084 * returns no iloc structure, so the caller needs to repeat the iloc 5085 * lookup to mark the inode dirty later. 5086 */ 5087 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 5088 { 5089 struct ext4_iloc iloc; 5090 5091 int err = 0; 5092 if (handle) { 5093 err = ext4_get_inode_loc(inode, &iloc); 5094 if (!err) { 5095 BUFFER_TRACE(iloc.bh, "get_write_access"); 5096 err = jbd2_journal_get_write_access(handle, iloc.bh); 5097 if (!err) 5098 err = ext4_handle_dirty_metadata(handle, 5099 NULL, 5100 iloc.bh); 5101 brelse(iloc.bh); 5102 } 5103 } 5104 ext4_std_error(inode->i_sb, err); 5105 return err; 5106 } 5107 #endif 5108 5109 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5110 { 5111 journal_t *journal; 5112 handle_t *handle; 5113 int err; 5114 5115 /* 5116 * We have to be very careful here: changing a data block's 5117 * journaling status dynamically is dangerous. If we write a 5118 * data block to the journal, change the status and then delete 5119 * that block, we risk forgetting to revoke the old log record 5120 * from the journal and so a subsequent replay can corrupt data. 5121 * So, first we make sure that the journal is empty and that 5122 * nobody is changing anything. 5123 */ 5124 5125 journal = EXT4_JOURNAL(inode); 5126 if (!journal) 5127 return 0; 5128 if (is_journal_aborted(journal)) 5129 return -EROFS; 5130 /* We have to allocate physical blocks for delalloc blocks 5131 * before flushing journal. otherwise delalloc blocks can not 5132 * be allocated any more. even more truncate on delalloc blocks 5133 * could trigger BUG by flushing delalloc blocks in journal. 5134 * There is no delalloc block in non-journal data mode. 5135 */ 5136 if (val && test_opt(inode->i_sb, DELALLOC)) { 5137 err = ext4_alloc_da_blocks(inode); 5138 if (err < 0) 5139 return err; 5140 } 5141 5142 /* Wait for all existing dio workers */ 5143 ext4_inode_block_unlocked_dio(inode); 5144 inode_dio_wait(inode); 5145 5146 jbd2_journal_lock_updates(journal); 5147 5148 /* 5149 * OK, there are no updates running now, and all cached data is 5150 * synced to disk. We are now in a completely consistent state 5151 * which doesn't have anything in the journal, and we know that 5152 * no filesystem updates are running, so it is safe to modify 5153 * the inode's in-core data-journaling state flag now. 5154 */ 5155 5156 if (val) 5157 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5158 else { 5159 err = jbd2_journal_flush(journal); 5160 if (err < 0) { 5161 jbd2_journal_unlock_updates(journal); 5162 ext4_inode_resume_unlocked_dio(inode); 5163 return err; 5164 } 5165 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5166 } 5167 ext4_set_aops(inode); 5168 5169 jbd2_journal_unlock_updates(journal); 5170 ext4_inode_resume_unlocked_dio(inode); 5171 5172 /* Finally we can mark the inode as dirty. */ 5173 5174 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 5175 if (IS_ERR(handle)) 5176 return PTR_ERR(handle); 5177 5178 err = ext4_mark_inode_dirty(handle, inode); 5179 ext4_handle_sync(handle); 5180 ext4_journal_stop(handle); 5181 ext4_std_error(inode->i_sb, err); 5182 5183 return err; 5184 } 5185 5186 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 5187 { 5188 return !buffer_mapped(bh); 5189 } 5190 5191 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 5192 { 5193 struct page *page = vmf->page; 5194 loff_t size; 5195 unsigned long len; 5196 int ret; 5197 struct file *file = vma->vm_file; 5198 struct inode *inode = file_inode(file); 5199 struct address_space *mapping = inode->i_mapping; 5200 handle_t *handle; 5201 get_block_t *get_block; 5202 int retries = 0; 5203 5204 sb_start_pagefault(inode->i_sb); 5205 file_update_time(vma->vm_file); 5206 /* Delalloc case is easy... */ 5207 if (test_opt(inode->i_sb, DELALLOC) && 5208 !ext4_should_journal_data(inode) && 5209 !ext4_nonda_switch(inode->i_sb)) { 5210 do { 5211 ret = __block_page_mkwrite(vma, vmf, 5212 ext4_da_get_block_prep); 5213 } while (ret == -ENOSPC && 5214 ext4_should_retry_alloc(inode->i_sb, &retries)); 5215 goto out_ret; 5216 } 5217 5218 lock_page(page); 5219 size = i_size_read(inode); 5220 /* Page got truncated from under us? */ 5221 if (page->mapping != mapping || page_offset(page) > size) { 5222 unlock_page(page); 5223 ret = VM_FAULT_NOPAGE; 5224 goto out; 5225 } 5226 5227 if (page->index == size >> PAGE_CACHE_SHIFT) 5228 len = size & ~PAGE_CACHE_MASK; 5229 else 5230 len = PAGE_CACHE_SIZE; 5231 /* 5232 * Return if we have all the buffers mapped. This avoids the need to do 5233 * journal_start/journal_stop which can block and take a long time 5234 */ 5235 if (page_has_buffers(page)) { 5236 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 5237 0, len, NULL, 5238 ext4_bh_unmapped)) { 5239 /* Wait so that we don't change page under IO */ 5240 wait_for_stable_page(page); 5241 ret = VM_FAULT_LOCKED; 5242 goto out; 5243 } 5244 } 5245 unlock_page(page); 5246 /* OK, we need to fill the hole... */ 5247 if (ext4_should_dioread_nolock(inode)) 5248 get_block = ext4_get_block_write; 5249 else 5250 get_block = ext4_get_block; 5251 retry_alloc: 5252 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 5253 ext4_writepage_trans_blocks(inode)); 5254 if (IS_ERR(handle)) { 5255 ret = VM_FAULT_SIGBUS; 5256 goto out; 5257 } 5258 ret = __block_page_mkwrite(vma, vmf, get_block); 5259 if (!ret && ext4_should_journal_data(inode)) { 5260 if (ext4_walk_page_buffers(handle, page_buffers(page), 0, 5261 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) { 5262 unlock_page(page); 5263 ret = VM_FAULT_SIGBUS; 5264 ext4_journal_stop(handle); 5265 goto out; 5266 } 5267 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 5268 } 5269 ext4_journal_stop(handle); 5270 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 5271 goto retry_alloc; 5272 out_ret: 5273 ret = block_page_mkwrite_return(ret); 5274 out: 5275 sb_end_pagefault(inode->i_sb); 5276 return ret; 5277 } 5278