1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * 64-bit file support on 64-bit platforms by Jakub Jelinek 16 * (jj@sunsite.ms.mff.cuni.cz) 17 * 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 19 */ 20 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/jbd2.h> 24 #include <linux/highuid.h> 25 #include <linux/pagemap.h> 26 #include <linux/quotaops.h> 27 #include <linux/string.h> 28 #include <linux/buffer_head.h> 29 #include <linux/writeback.h> 30 #include <linux/pagevec.h> 31 #include <linux/mpage.h> 32 #include <linux/namei.h> 33 #include <linux/uio.h> 34 #include <linux/bio.h> 35 #include <linux/workqueue.h> 36 #include <linux/kernel.h> 37 #include <linux/printk.h> 38 #include <linux/slab.h> 39 #include <linux/ratelimit.h> 40 #include <linux/aio.h> 41 #include <linux/bitops.h> 42 43 #include "ext4_jbd2.h" 44 #include "xattr.h" 45 #include "acl.h" 46 #include "truncate.h" 47 48 #include <trace/events/ext4.h> 49 50 #define MPAGE_DA_EXTENT_TAIL 0x01 51 52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 53 struct ext4_inode_info *ei) 54 { 55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 56 __u16 csum_lo; 57 __u16 csum_hi = 0; 58 __u32 csum; 59 60 csum_lo = le16_to_cpu(raw->i_checksum_lo); 61 raw->i_checksum_lo = 0; 62 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 63 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 64 csum_hi = le16_to_cpu(raw->i_checksum_hi); 65 raw->i_checksum_hi = 0; 66 } 67 68 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, 69 EXT4_INODE_SIZE(inode->i_sb)); 70 71 raw->i_checksum_lo = cpu_to_le16(csum_lo); 72 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 73 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 74 raw->i_checksum_hi = cpu_to_le16(csum_hi); 75 76 return csum; 77 } 78 79 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 80 struct ext4_inode_info *ei) 81 { 82 __u32 provided, calculated; 83 84 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 85 cpu_to_le32(EXT4_OS_LINUX) || 86 !ext4_has_metadata_csum(inode->i_sb)) 87 return 1; 88 89 provided = le16_to_cpu(raw->i_checksum_lo); 90 calculated = ext4_inode_csum(inode, raw, ei); 91 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 92 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 93 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 94 else 95 calculated &= 0xFFFF; 96 97 return provided == calculated; 98 } 99 100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 101 struct ext4_inode_info *ei) 102 { 103 __u32 csum; 104 105 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 106 cpu_to_le32(EXT4_OS_LINUX) || 107 !ext4_has_metadata_csum(inode->i_sb)) 108 return; 109 110 csum = ext4_inode_csum(inode, raw, ei); 111 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 112 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 113 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 114 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 115 } 116 117 static inline int ext4_begin_ordered_truncate(struct inode *inode, 118 loff_t new_size) 119 { 120 trace_ext4_begin_ordered_truncate(inode, new_size); 121 /* 122 * If jinode is zero, then we never opened the file for 123 * writing, so there's no need to call 124 * jbd2_journal_begin_ordered_truncate() since there's no 125 * outstanding writes we need to flush. 126 */ 127 if (!EXT4_I(inode)->jinode) 128 return 0; 129 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 130 EXT4_I(inode)->jinode, 131 new_size); 132 } 133 134 static void ext4_invalidatepage(struct page *page, unsigned int offset, 135 unsigned int length); 136 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 137 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 138 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 139 int pextents); 140 141 /* 142 * Test whether an inode is a fast symlink. 143 */ 144 static int ext4_inode_is_fast_symlink(struct inode *inode) 145 { 146 int ea_blocks = EXT4_I(inode)->i_file_acl ? 147 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 148 149 if (ext4_has_inline_data(inode)) 150 return 0; 151 152 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 153 } 154 155 /* 156 * Restart the transaction associated with *handle. This does a commit, 157 * so before we call here everything must be consistently dirtied against 158 * this transaction. 159 */ 160 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 161 int nblocks) 162 { 163 int ret; 164 165 /* 166 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 167 * moment, get_block can be called only for blocks inside i_size since 168 * page cache has been already dropped and writes are blocked by 169 * i_mutex. So we can safely drop the i_data_sem here. 170 */ 171 BUG_ON(EXT4_JOURNAL(inode) == NULL); 172 jbd_debug(2, "restarting handle %p\n", handle); 173 up_write(&EXT4_I(inode)->i_data_sem); 174 ret = ext4_journal_restart(handle, nblocks); 175 down_write(&EXT4_I(inode)->i_data_sem); 176 ext4_discard_preallocations(inode); 177 178 return ret; 179 } 180 181 /* 182 * Called at the last iput() if i_nlink is zero. 183 */ 184 void ext4_evict_inode(struct inode *inode) 185 { 186 handle_t *handle; 187 int err; 188 189 trace_ext4_evict_inode(inode); 190 191 if (inode->i_nlink) { 192 /* 193 * When journalling data dirty buffers are tracked only in the 194 * journal. So although mm thinks everything is clean and 195 * ready for reaping the inode might still have some pages to 196 * write in the running transaction or waiting to be 197 * checkpointed. Thus calling jbd2_journal_invalidatepage() 198 * (via truncate_inode_pages()) to discard these buffers can 199 * cause data loss. Also even if we did not discard these 200 * buffers, we would have no way to find them after the inode 201 * is reaped and thus user could see stale data if he tries to 202 * read them before the transaction is checkpointed. So be 203 * careful and force everything to disk here... We use 204 * ei->i_datasync_tid to store the newest transaction 205 * containing inode's data. 206 * 207 * Note that directories do not have this problem because they 208 * don't use page cache. 209 */ 210 if (ext4_should_journal_data(inode) && 211 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 212 inode->i_ino != EXT4_JOURNAL_INO) { 213 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 214 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 215 216 jbd2_complete_transaction(journal, commit_tid); 217 filemap_write_and_wait(&inode->i_data); 218 } 219 truncate_inode_pages_final(&inode->i_data); 220 221 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count)); 222 goto no_delete; 223 } 224 225 if (is_bad_inode(inode)) 226 goto no_delete; 227 dquot_initialize(inode); 228 229 if (ext4_should_order_data(inode)) 230 ext4_begin_ordered_truncate(inode, 0); 231 truncate_inode_pages_final(&inode->i_data); 232 233 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count)); 234 235 /* 236 * Protect us against freezing - iput() caller didn't have to have any 237 * protection against it 238 */ 239 sb_start_intwrite(inode->i_sb); 240 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 241 ext4_blocks_for_truncate(inode)+3); 242 if (IS_ERR(handle)) { 243 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 244 /* 245 * If we're going to skip the normal cleanup, we still need to 246 * make sure that the in-core orphan linked list is properly 247 * cleaned up. 248 */ 249 ext4_orphan_del(NULL, inode); 250 sb_end_intwrite(inode->i_sb); 251 goto no_delete; 252 } 253 254 if (IS_SYNC(inode)) 255 ext4_handle_sync(handle); 256 inode->i_size = 0; 257 err = ext4_mark_inode_dirty(handle, inode); 258 if (err) { 259 ext4_warning(inode->i_sb, 260 "couldn't mark inode dirty (err %d)", err); 261 goto stop_handle; 262 } 263 if (inode->i_blocks) 264 ext4_truncate(inode); 265 266 /* 267 * ext4_ext_truncate() doesn't reserve any slop when it 268 * restarts journal transactions; therefore there may not be 269 * enough credits left in the handle to remove the inode from 270 * the orphan list and set the dtime field. 271 */ 272 if (!ext4_handle_has_enough_credits(handle, 3)) { 273 err = ext4_journal_extend(handle, 3); 274 if (err > 0) 275 err = ext4_journal_restart(handle, 3); 276 if (err != 0) { 277 ext4_warning(inode->i_sb, 278 "couldn't extend journal (err %d)", err); 279 stop_handle: 280 ext4_journal_stop(handle); 281 ext4_orphan_del(NULL, inode); 282 sb_end_intwrite(inode->i_sb); 283 goto no_delete; 284 } 285 } 286 287 /* 288 * Kill off the orphan record which ext4_truncate created. 289 * AKPM: I think this can be inside the above `if'. 290 * Note that ext4_orphan_del() has to be able to cope with the 291 * deletion of a non-existent orphan - this is because we don't 292 * know if ext4_truncate() actually created an orphan record. 293 * (Well, we could do this if we need to, but heck - it works) 294 */ 295 ext4_orphan_del(handle, inode); 296 EXT4_I(inode)->i_dtime = get_seconds(); 297 298 /* 299 * One subtle ordering requirement: if anything has gone wrong 300 * (transaction abort, IO errors, whatever), then we can still 301 * do these next steps (the fs will already have been marked as 302 * having errors), but we can't free the inode if the mark_dirty 303 * fails. 304 */ 305 if (ext4_mark_inode_dirty(handle, inode)) 306 /* If that failed, just do the required in-core inode clear. */ 307 ext4_clear_inode(inode); 308 else 309 ext4_free_inode(handle, inode); 310 ext4_journal_stop(handle); 311 sb_end_intwrite(inode->i_sb); 312 return; 313 no_delete: 314 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 315 } 316 317 #ifdef CONFIG_QUOTA 318 qsize_t *ext4_get_reserved_space(struct inode *inode) 319 { 320 return &EXT4_I(inode)->i_reserved_quota; 321 } 322 #endif 323 324 /* 325 * Called with i_data_sem down, which is important since we can call 326 * ext4_discard_preallocations() from here. 327 */ 328 void ext4_da_update_reserve_space(struct inode *inode, 329 int used, int quota_claim) 330 { 331 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 332 struct ext4_inode_info *ei = EXT4_I(inode); 333 334 spin_lock(&ei->i_block_reservation_lock); 335 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 336 if (unlikely(used > ei->i_reserved_data_blocks)) { 337 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 338 "with only %d reserved data blocks", 339 __func__, inode->i_ino, used, 340 ei->i_reserved_data_blocks); 341 WARN_ON(1); 342 used = ei->i_reserved_data_blocks; 343 } 344 345 /* Update per-inode reservations */ 346 ei->i_reserved_data_blocks -= used; 347 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 348 349 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 350 351 /* Update quota subsystem for data blocks */ 352 if (quota_claim) 353 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 354 else { 355 /* 356 * We did fallocate with an offset that is already delayed 357 * allocated. So on delayed allocated writeback we should 358 * not re-claim the quota for fallocated blocks. 359 */ 360 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 361 } 362 363 /* 364 * If we have done all the pending block allocations and if 365 * there aren't any writers on the inode, we can discard the 366 * inode's preallocations. 367 */ 368 if ((ei->i_reserved_data_blocks == 0) && 369 (atomic_read(&inode->i_writecount) == 0)) 370 ext4_discard_preallocations(inode); 371 } 372 373 static int __check_block_validity(struct inode *inode, const char *func, 374 unsigned int line, 375 struct ext4_map_blocks *map) 376 { 377 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 378 map->m_len)) { 379 ext4_error_inode(inode, func, line, map->m_pblk, 380 "lblock %lu mapped to illegal pblock " 381 "(length %d)", (unsigned long) map->m_lblk, 382 map->m_len); 383 return -EIO; 384 } 385 return 0; 386 } 387 388 #define check_block_validity(inode, map) \ 389 __check_block_validity((inode), __func__, __LINE__, (map)) 390 391 #ifdef ES_AGGRESSIVE_TEST 392 static void ext4_map_blocks_es_recheck(handle_t *handle, 393 struct inode *inode, 394 struct ext4_map_blocks *es_map, 395 struct ext4_map_blocks *map, 396 int flags) 397 { 398 int retval; 399 400 map->m_flags = 0; 401 /* 402 * There is a race window that the result is not the same. 403 * e.g. xfstests #223 when dioread_nolock enables. The reason 404 * is that we lookup a block mapping in extent status tree with 405 * out taking i_data_sem. So at the time the unwritten extent 406 * could be converted. 407 */ 408 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 409 down_read(&EXT4_I(inode)->i_data_sem); 410 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 411 retval = ext4_ext_map_blocks(handle, inode, map, flags & 412 EXT4_GET_BLOCKS_KEEP_SIZE); 413 } else { 414 retval = ext4_ind_map_blocks(handle, inode, map, flags & 415 EXT4_GET_BLOCKS_KEEP_SIZE); 416 } 417 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 418 up_read((&EXT4_I(inode)->i_data_sem)); 419 420 /* 421 * We don't check m_len because extent will be collpased in status 422 * tree. So the m_len might not equal. 423 */ 424 if (es_map->m_lblk != map->m_lblk || 425 es_map->m_flags != map->m_flags || 426 es_map->m_pblk != map->m_pblk) { 427 printk("ES cache assertion failed for inode: %lu " 428 "es_cached ex [%d/%d/%llu/%x] != " 429 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 430 inode->i_ino, es_map->m_lblk, es_map->m_len, 431 es_map->m_pblk, es_map->m_flags, map->m_lblk, 432 map->m_len, map->m_pblk, map->m_flags, 433 retval, flags); 434 } 435 } 436 #endif /* ES_AGGRESSIVE_TEST */ 437 438 /* 439 * The ext4_map_blocks() function tries to look up the requested blocks, 440 * and returns if the blocks are already mapped. 441 * 442 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 443 * and store the allocated blocks in the result buffer head and mark it 444 * mapped. 445 * 446 * If file type is extents based, it will call ext4_ext_map_blocks(), 447 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 448 * based files 449 * 450 * On success, it returns the number of blocks being mapped or allocated. 451 * if create==0 and the blocks are pre-allocated and unwritten block, 452 * the result buffer head is unmapped. If the create ==1, it will make sure 453 * the buffer head is mapped. 454 * 455 * It returns 0 if plain look up failed (blocks have not been allocated), in 456 * that case, buffer head is unmapped 457 * 458 * It returns the error in case of allocation failure. 459 */ 460 int ext4_map_blocks(handle_t *handle, struct inode *inode, 461 struct ext4_map_blocks *map, int flags) 462 { 463 struct extent_status es; 464 int retval; 465 int ret = 0; 466 #ifdef ES_AGGRESSIVE_TEST 467 struct ext4_map_blocks orig_map; 468 469 memcpy(&orig_map, map, sizeof(*map)); 470 #endif 471 472 map->m_flags = 0; 473 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 474 "logical block %lu\n", inode->i_ino, flags, map->m_len, 475 (unsigned long) map->m_lblk); 476 477 /* 478 * ext4_map_blocks returns an int, and m_len is an unsigned int 479 */ 480 if (unlikely(map->m_len > INT_MAX)) 481 map->m_len = INT_MAX; 482 483 /* We can handle the block number less than EXT_MAX_BLOCKS */ 484 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 485 return -EIO; 486 487 /* Lookup extent status tree firstly */ 488 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 489 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 490 map->m_pblk = ext4_es_pblock(&es) + 491 map->m_lblk - es.es_lblk; 492 map->m_flags |= ext4_es_is_written(&es) ? 493 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 494 retval = es.es_len - (map->m_lblk - es.es_lblk); 495 if (retval > map->m_len) 496 retval = map->m_len; 497 map->m_len = retval; 498 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 499 retval = 0; 500 } else { 501 BUG_ON(1); 502 } 503 #ifdef ES_AGGRESSIVE_TEST 504 ext4_map_blocks_es_recheck(handle, inode, map, 505 &orig_map, flags); 506 #endif 507 goto found; 508 } 509 510 /* 511 * Try to see if we can get the block without requesting a new 512 * file system block. 513 */ 514 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 515 down_read(&EXT4_I(inode)->i_data_sem); 516 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 517 retval = ext4_ext_map_blocks(handle, inode, map, flags & 518 EXT4_GET_BLOCKS_KEEP_SIZE); 519 } else { 520 retval = ext4_ind_map_blocks(handle, inode, map, flags & 521 EXT4_GET_BLOCKS_KEEP_SIZE); 522 } 523 if (retval > 0) { 524 unsigned int status; 525 526 if (unlikely(retval != map->m_len)) { 527 ext4_warning(inode->i_sb, 528 "ES len assertion failed for inode " 529 "%lu: retval %d != map->m_len %d", 530 inode->i_ino, retval, map->m_len); 531 WARN_ON(1); 532 } 533 534 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 535 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 536 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 537 ext4_find_delalloc_range(inode, map->m_lblk, 538 map->m_lblk + map->m_len - 1)) 539 status |= EXTENT_STATUS_DELAYED; 540 ret = ext4_es_insert_extent(inode, map->m_lblk, 541 map->m_len, map->m_pblk, status); 542 if (ret < 0) 543 retval = ret; 544 } 545 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 546 up_read((&EXT4_I(inode)->i_data_sem)); 547 548 found: 549 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 550 ret = check_block_validity(inode, map); 551 if (ret != 0) 552 return ret; 553 } 554 555 /* If it is only a block(s) look up */ 556 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 557 return retval; 558 559 /* 560 * Returns if the blocks have already allocated 561 * 562 * Note that if blocks have been preallocated 563 * ext4_ext_get_block() returns the create = 0 564 * with buffer head unmapped. 565 */ 566 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 567 /* 568 * If we need to convert extent to unwritten 569 * we continue and do the actual work in 570 * ext4_ext_map_blocks() 571 */ 572 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 573 return retval; 574 575 /* 576 * Here we clear m_flags because after allocating an new extent, 577 * it will be set again. 578 */ 579 map->m_flags &= ~EXT4_MAP_FLAGS; 580 581 /* 582 * New blocks allocate and/or writing to unwritten extent 583 * will possibly result in updating i_data, so we take 584 * the write lock of i_data_sem, and call get_block() 585 * with create == 1 flag. 586 */ 587 down_write(&EXT4_I(inode)->i_data_sem); 588 589 /* 590 * We need to check for EXT4 here because migrate 591 * could have changed the inode type in between 592 */ 593 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 594 retval = ext4_ext_map_blocks(handle, inode, map, flags); 595 } else { 596 retval = ext4_ind_map_blocks(handle, inode, map, flags); 597 598 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 599 /* 600 * We allocated new blocks which will result in 601 * i_data's format changing. Force the migrate 602 * to fail by clearing migrate flags 603 */ 604 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 605 } 606 607 /* 608 * Update reserved blocks/metadata blocks after successful 609 * block allocation which had been deferred till now. We don't 610 * support fallocate for non extent files. So we can update 611 * reserve space here. 612 */ 613 if ((retval > 0) && 614 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 615 ext4_da_update_reserve_space(inode, retval, 1); 616 } 617 618 if (retval > 0) { 619 unsigned int status; 620 621 if (unlikely(retval != map->m_len)) { 622 ext4_warning(inode->i_sb, 623 "ES len assertion failed for inode " 624 "%lu: retval %d != map->m_len %d", 625 inode->i_ino, retval, map->m_len); 626 WARN_ON(1); 627 } 628 629 /* 630 * If the extent has been zeroed out, we don't need to update 631 * extent status tree. 632 */ 633 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 634 ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 635 if (ext4_es_is_written(&es)) 636 goto has_zeroout; 637 } 638 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 639 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 640 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 641 ext4_find_delalloc_range(inode, map->m_lblk, 642 map->m_lblk + map->m_len - 1)) 643 status |= EXTENT_STATUS_DELAYED; 644 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 645 map->m_pblk, status); 646 if (ret < 0) 647 retval = ret; 648 } 649 650 has_zeroout: 651 up_write((&EXT4_I(inode)->i_data_sem)); 652 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 653 ret = check_block_validity(inode, map); 654 if (ret != 0) 655 return ret; 656 } 657 return retval; 658 } 659 660 /* Maximum number of blocks we map for direct IO at once. */ 661 #define DIO_MAX_BLOCKS 4096 662 663 static int _ext4_get_block(struct inode *inode, sector_t iblock, 664 struct buffer_head *bh, int flags) 665 { 666 handle_t *handle = ext4_journal_current_handle(); 667 struct ext4_map_blocks map; 668 int ret = 0, started = 0; 669 int dio_credits; 670 671 if (ext4_has_inline_data(inode)) 672 return -ERANGE; 673 674 map.m_lblk = iblock; 675 map.m_len = bh->b_size >> inode->i_blkbits; 676 677 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) { 678 /* Direct IO write... */ 679 if (map.m_len > DIO_MAX_BLOCKS) 680 map.m_len = DIO_MAX_BLOCKS; 681 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 682 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 683 dio_credits); 684 if (IS_ERR(handle)) { 685 ret = PTR_ERR(handle); 686 return ret; 687 } 688 started = 1; 689 } 690 691 ret = ext4_map_blocks(handle, inode, &map, flags); 692 if (ret > 0) { 693 ext4_io_end_t *io_end = ext4_inode_aio(inode); 694 695 map_bh(bh, inode->i_sb, map.m_pblk); 696 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 697 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN) 698 set_buffer_defer_completion(bh); 699 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 700 ret = 0; 701 } 702 if (started) 703 ext4_journal_stop(handle); 704 return ret; 705 } 706 707 int ext4_get_block(struct inode *inode, sector_t iblock, 708 struct buffer_head *bh, int create) 709 { 710 return _ext4_get_block(inode, iblock, bh, 711 create ? EXT4_GET_BLOCKS_CREATE : 0); 712 } 713 714 /* 715 * `handle' can be NULL if create is zero 716 */ 717 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 718 ext4_lblk_t block, int create) 719 { 720 struct ext4_map_blocks map; 721 struct buffer_head *bh; 722 int err; 723 724 J_ASSERT(handle != NULL || create == 0); 725 726 map.m_lblk = block; 727 map.m_len = 1; 728 err = ext4_map_blocks(handle, inode, &map, 729 create ? EXT4_GET_BLOCKS_CREATE : 0); 730 731 if (err == 0) 732 return create ? ERR_PTR(-ENOSPC) : NULL; 733 if (err < 0) 734 return ERR_PTR(err); 735 736 bh = sb_getblk(inode->i_sb, map.m_pblk); 737 if (unlikely(!bh)) 738 return ERR_PTR(-ENOMEM); 739 if (map.m_flags & EXT4_MAP_NEW) { 740 J_ASSERT(create != 0); 741 J_ASSERT(handle != NULL); 742 743 /* 744 * Now that we do not always journal data, we should 745 * keep in mind whether this should always journal the 746 * new buffer as metadata. For now, regular file 747 * writes use ext4_get_block instead, so it's not a 748 * problem. 749 */ 750 lock_buffer(bh); 751 BUFFER_TRACE(bh, "call get_create_access"); 752 err = ext4_journal_get_create_access(handle, bh); 753 if (unlikely(err)) { 754 unlock_buffer(bh); 755 goto errout; 756 } 757 if (!buffer_uptodate(bh)) { 758 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 759 set_buffer_uptodate(bh); 760 } 761 unlock_buffer(bh); 762 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 763 err = ext4_handle_dirty_metadata(handle, inode, bh); 764 if (unlikely(err)) 765 goto errout; 766 } else 767 BUFFER_TRACE(bh, "not a new buffer"); 768 return bh; 769 errout: 770 brelse(bh); 771 return ERR_PTR(err); 772 } 773 774 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 775 ext4_lblk_t block, int create) 776 { 777 struct buffer_head *bh; 778 779 bh = ext4_getblk(handle, inode, block, create); 780 if (IS_ERR(bh)) 781 return bh; 782 if (!bh || buffer_uptodate(bh)) 783 return bh; 784 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh); 785 wait_on_buffer(bh); 786 if (buffer_uptodate(bh)) 787 return bh; 788 put_bh(bh); 789 return ERR_PTR(-EIO); 790 } 791 792 int ext4_walk_page_buffers(handle_t *handle, 793 struct buffer_head *head, 794 unsigned from, 795 unsigned to, 796 int *partial, 797 int (*fn)(handle_t *handle, 798 struct buffer_head *bh)) 799 { 800 struct buffer_head *bh; 801 unsigned block_start, block_end; 802 unsigned blocksize = head->b_size; 803 int err, ret = 0; 804 struct buffer_head *next; 805 806 for (bh = head, block_start = 0; 807 ret == 0 && (bh != head || !block_start); 808 block_start = block_end, bh = next) { 809 next = bh->b_this_page; 810 block_end = block_start + blocksize; 811 if (block_end <= from || block_start >= to) { 812 if (partial && !buffer_uptodate(bh)) 813 *partial = 1; 814 continue; 815 } 816 err = (*fn)(handle, bh); 817 if (!ret) 818 ret = err; 819 } 820 return ret; 821 } 822 823 /* 824 * To preserve ordering, it is essential that the hole instantiation and 825 * the data write be encapsulated in a single transaction. We cannot 826 * close off a transaction and start a new one between the ext4_get_block() 827 * and the commit_write(). So doing the jbd2_journal_start at the start of 828 * prepare_write() is the right place. 829 * 830 * Also, this function can nest inside ext4_writepage(). In that case, we 831 * *know* that ext4_writepage() has generated enough buffer credits to do the 832 * whole page. So we won't block on the journal in that case, which is good, 833 * because the caller may be PF_MEMALLOC. 834 * 835 * By accident, ext4 can be reentered when a transaction is open via 836 * quota file writes. If we were to commit the transaction while thus 837 * reentered, there can be a deadlock - we would be holding a quota 838 * lock, and the commit would never complete if another thread had a 839 * transaction open and was blocking on the quota lock - a ranking 840 * violation. 841 * 842 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 843 * will _not_ run commit under these circumstances because handle->h_ref 844 * is elevated. We'll still have enough credits for the tiny quotafile 845 * write. 846 */ 847 int do_journal_get_write_access(handle_t *handle, 848 struct buffer_head *bh) 849 { 850 int dirty = buffer_dirty(bh); 851 int ret; 852 853 if (!buffer_mapped(bh) || buffer_freed(bh)) 854 return 0; 855 /* 856 * __block_write_begin() could have dirtied some buffers. Clean 857 * the dirty bit as jbd2_journal_get_write_access() could complain 858 * otherwise about fs integrity issues. Setting of the dirty bit 859 * by __block_write_begin() isn't a real problem here as we clear 860 * the bit before releasing a page lock and thus writeback cannot 861 * ever write the buffer. 862 */ 863 if (dirty) 864 clear_buffer_dirty(bh); 865 BUFFER_TRACE(bh, "get write access"); 866 ret = ext4_journal_get_write_access(handle, bh); 867 if (!ret && dirty) 868 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 869 return ret; 870 } 871 872 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 873 struct buffer_head *bh_result, int create); 874 static int ext4_write_begin(struct file *file, struct address_space *mapping, 875 loff_t pos, unsigned len, unsigned flags, 876 struct page **pagep, void **fsdata) 877 { 878 struct inode *inode = mapping->host; 879 int ret, needed_blocks; 880 handle_t *handle; 881 int retries = 0; 882 struct page *page; 883 pgoff_t index; 884 unsigned from, to; 885 886 trace_ext4_write_begin(inode, pos, len, flags); 887 /* 888 * Reserve one block more for addition to orphan list in case 889 * we allocate blocks but write fails for some reason 890 */ 891 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 892 index = pos >> PAGE_CACHE_SHIFT; 893 from = pos & (PAGE_CACHE_SIZE - 1); 894 to = from + len; 895 896 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 897 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 898 flags, pagep); 899 if (ret < 0) 900 return ret; 901 if (ret == 1) 902 return 0; 903 } 904 905 /* 906 * grab_cache_page_write_begin() can take a long time if the 907 * system is thrashing due to memory pressure, or if the page 908 * is being written back. So grab it first before we start 909 * the transaction handle. This also allows us to allocate 910 * the page (if needed) without using GFP_NOFS. 911 */ 912 retry_grab: 913 page = grab_cache_page_write_begin(mapping, index, flags); 914 if (!page) 915 return -ENOMEM; 916 unlock_page(page); 917 918 retry_journal: 919 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 920 if (IS_ERR(handle)) { 921 page_cache_release(page); 922 return PTR_ERR(handle); 923 } 924 925 lock_page(page); 926 if (page->mapping != mapping) { 927 /* The page got truncated from under us */ 928 unlock_page(page); 929 page_cache_release(page); 930 ext4_journal_stop(handle); 931 goto retry_grab; 932 } 933 /* In case writeback began while the page was unlocked */ 934 wait_for_stable_page(page); 935 936 if (ext4_should_dioread_nolock(inode)) 937 ret = __block_write_begin(page, pos, len, ext4_get_block_write); 938 else 939 ret = __block_write_begin(page, pos, len, ext4_get_block); 940 941 if (!ret && ext4_should_journal_data(inode)) { 942 ret = ext4_walk_page_buffers(handle, page_buffers(page), 943 from, to, NULL, 944 do_journal_get_write_access); 945 } 946 947 if (ret) { 948 unlock_page(page); 949 /* 950 * __block_write_begin may have instantiated a few blocks 951 * outside i_size. Trim these off again. Don't need 952 * i_size_read because we hold i_mutex. 953 * 954 * Add inode to orphan list in case we crash before 955 * truncate finishes 956 */ 957 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 958 ext4_orphan_add(handle, inode); 959 960 ext4_journal_stop(handle); 961 if (pos + len > inode->i_size) { 962 ext4_truncate_failed_write(inode); 963 /* 964 * If truncate failed early the inode might 965 * still be on the orphan list; we need to 966 * make sure the inode is removed from the 967 * orphan list in that case. 968 */ 969 if (inode->i_nlink) 970 ext4_orphan_del(NULL, inode); 971 } 972 973 if (ret == -ENOSPC && 974 ext4_should_retry_alloc(inode->i_sb, &retries)) 975 goto retry_journal; 976 page_cache_release(page); 977 return ret; 978 } 979 *pagep = page; 980 return ret; 981 } 982 983 /* For write_end() in data=journal mode */ 984 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 985 { 986 int ret; 987 if (!buffer_mapped(bh) || buffer_freed(bh)) 988 return 0; 989 set_buffer_uptodate(bh); 990 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 991 clear_buffer_meta(bh); 992 clear_buffer_prio(bh); 993 return ret; 994 } 995 996 /* 997 * We need to pick up the new inode size which generic_commit_write gave us 998 * `file' can be NULL - eg, when called from page_symlink(). 999 * 1000 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1001 * buffers are managed internally. 1002 */ 1003 static int ext4_write_end(struct file *file, 1004 struct address_space *mapping, 1005 loff_t pos, unsigned len, unsigned copied, 1006 struct page *page, void *fsdata) 1007 { 1008 handle_t *handle = ext4_journal_current_handle(); 1009 struct inode *inode = mapping->host; 1010 int ret = 0, ret2; 1011 int i_size_changed = 0; 1012 1013 trace_ext4_write_end(inode, pos, len, copied); 1014 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) { 1015 ret = ext4_jbd2_file_inode(handle, inode); 1016 if (ret) { 1017 unlock_page(page); 1018 page_cache_release(page); 1019 goto errout; 1020 } 1021 } 1022 1023 if (ext4_has_inline_data(inode)) { 1024 ret = ext4_write_inline_data_end(inode, pos, len, 1025 copied, page); 1026 if (ret < 0) 1027 goto errout; 1028 copied = ret; 1029 } else 1030 copied = block_write_end(file, mapping, pos, 1031 len, copied, page, fsdata); 1032 /* 1033 * it's important to update i_size while still holding page lock: 1034 * page writeout could otherwise come in and zero beyond i_size. 1035 */ 1036 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1037 unlock_page(page); 1038 page_cache_release(page); 1039 1040 /* 1041 * Don't mark the inode dirty under page lock. First, it unnecessarily 1042 * makes the holding time of page lock longer. Second, it forces lock 1043 * ordering of page lock and transaction start for journaling 1044 * filesystems. 1045 */ 1046 if (i_size_changed) 1047 ext4_mark_inode_dirty(handle, inode); 1048 1049 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1050 /* if we have allocated more blocks and copied 1051 * less. We will have blocks allocated outside 1052 * inode->i_size. So truncate them 1053 */ 1054 ext4_orphan_add(handle, inode); 1055 errout: 1056 ret2 = ext4_journal_stop(handle); 1057 if (!ret) 1058 ret = ret2; 1059 1060 if (pos + len > inode->i_size) { 1061 ext4_truncate_failed_write(inode); 1062 /* 1063 * If truncate failed early the inode might still be 1064 * on the orphan list; we need to make sure the inode 1065 * is removed from the orphan list in that case. 1066 */ 1067 if (inode->i_nlink) 1068 ext4_orphan_del(NULL, inode); 1069 } 1070 1071 return ret ? ret : copied; 1072 } 1073 1074 static int ext4_journalled_write_end(struct file *file, 1075 struct address_space *mapping, 1076 loff_t pos, unsigned len, unsigned copied, 1077 struct page *page, void *fsdata) 1078 { 1079 handle_t *handle = ext4_journal_current_handle(); 1080 struct inode *inode = mapping->host; 1081 int ret = 0, ret2; 1082 int partial = 0; 1083 unsigned from, to; 1084 int size_changed = 0; 1085 1086 trace_ext4_journalled_write_end(inode, pos, len, copied); 1087 from = pos & (PAGE_CACHE_SIZE - 1); 1088 to = from + len; 1089 1090 BUG_ON(!ext4_handle_valid(handle)); 1091 1092 if (ext4_has_inline_data(inode)) 1093 copied = ext4_write_inline_data_end(inode, pos, len, 1094 copied, page); 1095 else { 1096 if (copied < len) { 1097 if (!PageUptodate(page)) 1098 copied = 0; 1099 page_zero_new_buffers(page, from+copied, to); 1100 } 1101 1102 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1103 to, &partial, write_end_fn); 1104 if (!partial) 1105 SetPageUptodate(page); 1106 } 1107 size_changed = ext4_update_inode_size(inode, pos + copied); 1108 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1109 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1110 unlock_page(page); 1111 page_cache_release(page); 1112 1113 if (size_changed) { 1114 ret2 = ext4_mark_inode_dirty(handle, inode); 1115 if (!ret) 1116 ret = ret2; 1117 } 1118 1119 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1120 /* if we have allocated more blocks and copied 1121 * less. We will have blocks allocated outside 1122 * inode->i_size. So truncate them 1123 */ 1124 ext4_orphan_add(handle, inode); 1125 1126 ret2 = ext4_journal_stop(handle); 1127 if (!ret) 1128 ret = ret2; 1129 if (pos + len > inode->i_size) { 1130 ext4_truncate_failed_write(inode); 1131 /* 1132 * If truncate failed early the inode might still be 1133 * on the orphan list; we need to make sure the inode 1134 * is removed from the orphan list in that case. 1135 */ 1136 if (inode->i_nlink) 1137 ext4_orphan_del(NULL, inode); 1138 } 1139 1140 return ret ? ret : copied; 1141 } 1142 1143 /* 1144 * Reserve a single cluster located at lblock 1145 */ 1146 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock) 1147 { 1148 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1149 struct ext4_inode_info *ei = EXT4_I(inode); 1150 unsigned int md_needed; 1151 int ret; 1152 1153 /* 1154 * We will charge metadata quota at writeout time; this saves 1155 * us from metadata over-estimation, though we may go over by 1156 * a small amount in the end. Here we just reserve for data. 1157 */ 1158 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1159 if (ret) 1160 return ret; 1161 1162 /* 1163 * recalculate the amount of metadata blocks to reserve 1164 * in order to allocate nrblocks 1165 * worse case is one extent per block 1166 */ 1167 spin_lock(&ei->i_block_reservation_lock); 1168 /* 1169 * ext4_calc_metadata_amount() has side effects, which we have 1170 * to be prepared undo if we fail to claim space. 1171 */ 1172 md_needed = 0; 1173 trace_ext4_da_reserve_space(inode, 0); 1174 1175 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1176 spin_unlock(&ei->i_block_reservation_lock); 1177 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1178 return -ENOSPC; 1179 } 1180 ei->i_reserved_data_blocks++; 1181 spin_unlock(&ei->i_block_reservation_lock); 1182 1183 return 0; /* success */ 1184 } 1185 1186 static void ext4_da_release_space(struct inode *inode, int to_free) 1187 { 1188 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1189 struct ext4_inode_info *ei = EXT4_I(inode); 1190 1191 if (!to_free) 1192 return; /* Nothing to release, exit */ 1193 1194 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1195 1196 trace_ext4_da_release_space(inode, to_free); 1197 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1198 /* 1199 * if there aren't enough reserved blocks, then the 1200 * counter is messed up somewhere. Since this 1201 * function is called from invalidate page, it's 1202 * harmless to return without any action. 1203 */ 1204 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1205 "ino %lu, to_free %d with only %d reserved " 1206 "data blocks", inode->i_ino, to_free, 1207 ei->i_reserved_data_blocks); 1208 WARN_ON(1); 1209 to_free = ei->i_reserved_data_blocks; 1210 } 1211 ei->i_reserved_data_blocks -= to_free; 1212 1213 /* update fs dirty data blocks counter */ 1214 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1215 1216 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1217 1218 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1219 } 1220 1221 static void ext4_da_page_release_reservation(struct page *page, 1222 unsigned int offset, 1223 unsigned int length) 1224 { 1225 int to_release = 0; 1226 struct buffer_head *head, *bh; 1227 unsigned int curr_off = 0; 1228 struct inode *inode = page->mapping->host; 1229 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1230 unsigned int stop = offset + length; 1231 int num_clusters; 1232 ext4_fsblk_t lblk; 1233 1234 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length); 1235 1236 head = page_buffers(page); 1237 bh = head; 1238 do { 1239 unsigned int next_off = curr_off + bh->b_size; 1240 1241 if (next_off > stop) 1242 break; 1243 1244 if ((offset <= curr_off) && (buffer_delay(bh))) { 1245 to_release++; 1246 clear_buffer_delay(bh); 1247 } 1248 curr_off = next_off; 1249 } while ((bh = bh->b_this_page) != head); 1250 1251 if (to_release) { 1252 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1253 ext4_es_remove_extent(inode, lblk, to_release); 1254 } 1255 1256 /* If we have released all the blocks belonging to a cluster, then we 1257 * need to release the reserved space for that cluster. */ 1258 num_clusters = EXT4_NUM_B2C(sbi, to_release); 1259 while (num_clusters > 0) { 1260 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) + 1261 ((num_clusters - 1) << sbi->s_cluster_bits); 1262 if (sbi->s_cluster_ratio == 1 || 1263 !ext4_find_delalloc_cluster(inode, lblk)) 1264 ext4_da_release_space(inode, 1); 1265 1266 num_clusters--; 1267 } 1268 } 1269 1270 /* 1271 * Delayed allocation stuff 1272 */ 1273 1274 struct mpage_da_data { 1275 struct inode *inode; 1276 struct writeback_control *wbc; 1277 1278 pgoff_t first_page; /* The first page to write */ 1279 pgoff_t next_page; /* Current page to examine */ 1280 pgoff_t last_page; /* Last page to examine */ 1281 /* 1282 * Extent to map - this can be after first_page because that can be 1283 * fully mapped. We somewhat abuse m_flags to store whether the extent 1284 * is delalloc or unwritten. 1285 */ 1286 struct ext4_map_blocks map; 1287 struct ext4_io_submit io_submit; /* IO submission data */ 1288 }; 1289 1290 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1291 bool invalidate) 1292 { 1293 int nr_pages, i; 1294 pgoff_t index, end; 1295 struct pagevec pvec; 1296 struct inode *inode = mpd->inode; 1297 struct address_space *mapping = inode->i_mapping; 1298 1299 /* This is necessary when next_page == 0. */ 1300 if (mpd->first_page >= mpd->next_page) 1301 return; 1302 1303 index = mpd->first_page; 1304 end = mpd->next_page - 1; 1305 if (invalidate) { 1306 ext4_lblk_t start, last; 1307 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1308 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1309 ext4_es_remove_extent(inode, start, last - start + 1); 1310 } 1311 1312 pagevec_init(&pvec, 0); 1313 while (index <= end) { 1314 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1315 if (nr_pages == 0) 1316 break; 1317 for (i = 0; i < nr_pages; i++) { 1318 struct page *page = pvec.pages[i]; 1319 if (page->index > end) 1320 break; 1321 BUG_ON(!PageLocked(page)); 1322 BUG_ON(PageWriteback(page)); 1323 if (invalidate) { 1324 block_invalidatepage(page, 0, PAGE_CACHE_SIZE); 1325 ClearPageUptodate(page); 1326 } 1327 unlock_page(page); 1328 } 1329 index = pvec.pages[nr_pages - 1]->index + 1; 1330 pagevec_release(&pvec); 1331 } 1332 } 1333 1334 static void ext4_print_free_blocks(struct inode *inode) 1335 { 1336 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1337 struct super_block *sb = inode->i_sb; 1338 struct ext4_inode_info *ei = EXT4_I(inode); 1339 1340 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1341 EXT4_C2B(EXT4_SB(inode->i_sb), 1342 ext4_count_free_clusters(sb))); 1343 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1344 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1345 (long long) EXT4_C2B(EXT4_SB(sb), 1346 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1347 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1348 (long long) EXT4_C2B(EXT4_SB(sb), 1349 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1350 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1351 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1352 ei->i_reserved_data_blocks); 1353 return; 1354 } 1355 1356 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1357 { 1358 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1359 } 1360 1361 /* 1362 * This function is grabs code from the very beginning of 1363 * ext4_map_blocks, but assumes that the caller is from delayed write 1364 * time. This function looks up the requested blocks and sets the 1365 * buffer delay bit under the protection of i_data_sem. 1366 */ 1367 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1368 struct ext4_map_blocks *map, 1369 struct buffer_head *bh) 1370 { 1371 struct extent_status es; 1372 int retval; 1373 sector_t invalid_block = ~((sector_t) 0xffff); 1374 #ifdef ES_AGGRESSIVE_TEST 1375 struct ext4_map_blocks orig_map; 1376 1377 memcpy(&orig_map, map, sizeof(*map)); 1378 #endif 1379 1380 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1381 invalid_block = ~0; 1382 1383 map->m_flags = 0; 1384 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1385 "logical block %lu\n", inode->i_ino, map->m_len, 1386 (unsigned long) map->m_lblk); 1387 1388 /* Lookup extent status tree firstly */ 1389 if (ext4_es_lookup_extent(inode, iblock, &es)) { 1390 if (ext4_es_is_hole(&es)) { 1391 retval = 0; 1392 down_read(&EXT4_I(inode)->i_data_sem); 1393 goto add_delayed; 1394 } 1395 1396 /* 1397 * Delayed extent could be allocated by fallocate. 1398 * So we need to check it. 1399 */ 1400 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1401 map_bh(bh, inode->i_sb, invalid_block); 1402 set_buffer_new(bh); 1403 set_buffer_delay(bh); 1404 return 0; 1405 } 1406 1407 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1408 retval = es.es_len - (iblock - es.es_lblk); 1409 if (retval > map->m_len) 1410 retval = map->m_len; 1411 map->m_len = retval; 1412 if (ext4_es_is_written(&es)) 1413 map->m_flags |= EXT4_MAP_MAPPED; 1414 else if (ext4_es_is_unwritten(&es)) 1415 map->m_flags |= EXT4_MAP_UNWRITTEN; 1416 else 1417 BUG_ON(1); 1418 1419 #ifdef ES_AGGRESSIVE_TEST 1420 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1421 #endif 1422 return retval; 1423 } 1424 1425 /* 1426 * Try to see if we can get the block without requesting a new 1427 * file system block. 1428 */ 1429 down_read(&EXT4_I(inode)->i_data_sem); 1430 if (ext4_has_inline_data(inode)) 1431 retval = 0; 1432 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1433 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1434 else 1435 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1436 1437 add_delayed: 1438 if (retval == 0) { 1439 int ret; 1440 /* 1441 * XXX: __block_prepare_write() unmaps passed block, 1442 * is it OK? 1443 */ 1444 /* 1445 * If the block was allocated from previously allocated cluster, 1446 * then we don't need to reserve it again. However we still need 1447 * to reserve metadata for every block we're going to write. 1448 */ 1449 if (EXT4_SB(inode->i_sb)->s_cluster_ratio <= 1 || 1450 !ext4_find_delalloc_cluster(inode, map->m_lblk)) { 1451 ret = ext4_da_reserve_space(inode, iblock); 1452 if (ret) { 1453 /* not enough space to reserve */ 1454 retval = ret; 1455 goto out_unlock; 1456 } 1457 } 1458 1459 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1460 ~0, EXTENT_STATUS_DELAYED); 1461 if (ret) { 1462 retval = ret; 1463 goto out_unlock; 1464 } 1465 1466 map_bh(bh, inode->i_sb, invalid_block); 1467 set_buffer_new(bh); 1468 set_buffer_delay(bh); 1469 } else if (retval > 0) { 1470 int ret; 1471 unsigned int status; 1472 1473 if (unlikely(retval != map->m_len)) { 1474 ext4_warning(inode->i_sb, 1475 "ES len assertion failed for inode " 1476 "%lu: retval %d != map->m_len %d", 1477 inode->i_ino, retval, map->m_len); 1478 WARN_ON(1); 1479 } 1480 1481 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1482 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1483 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1484 map->m_pblk, status); 1485 if (ret != 0) 1486 retval = ret; 1487 } 1488 1489 out_unlock: 1490 up_read((&EXT4_I(inode)->i_data_sem)); 1491 1492 return retval; 1493 } 1494 1495 /* 1496 * This is a special get_block_t callback which is used by 1497 * ext4_da_write_begin(). It will either return mapped block or 1498 * reserve space for a single block. 1499 * 1500 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1501 * We also have b_blocknr = -1 and b_bdev initialized properly 1502 * 1503 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1504 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1505 * initialized properly. 1506 */ 1507 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1508 struct buffer_head *bh, int create) 1509 { 1510 struct ext4_map_blocks map; 1511 int ret = 0; 1512 1513 BUG_ON(create == 0); 1514 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1515 1516 map.m_lblk = iblock; 1517 map.m_len = 1; 1518 1519 /* 1520 * first, we need to know whether the block is allocated already 1521 * preallocated blocks are unmapped but should treated 1522 * the same as allocated blocks. 1523 */ 1524 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1525 if (ret <= 0) 1526 return ret; 1527 1528 map_bh(bh, inode->i_sb, map.m_pblk); 1529 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 1530 1531 if (buffer_unwritten(bh)) { 1532 /* A delayed write to unwritten bh should be marked 1533 * new and mapped. Mapped ensures that we don't do 1534 * get_block multiple times when we write to the same 1535 * offset and new ensures that we do proper zero out 1536 * for partial write. 1537 */ 1538 set_buffer_new(bh); 1539 set_buffer_mapped(bh); 1540 } 1541 return 0; 1542 } 1543 1544 static int bget_one(handle_t *handle, struct buffer_head *bh) 1545 { 1546 get_bh(bh); 1547 return 0; 1548 } 1549 1550 static int bput_one(handle_t *handle, struct buffer_head *bh) 1551 { 1552 put_bh(bh); 1553 return 0; 1554 } 1555 1556 static int __ext4_journalled_writepage(struct page *page, 1557 unsigned int len) 1558 { 1559 struct address_space *mapping = page->mapping; 1560 struct inode *inode = mapping->host; 1561 struct buffer_head *page_bufs = NULL; 1562 handle_t *handle = NULL; 1563 int ret = 0, err = 0; 1564 int inline_data = ext4_has_inline_data(inode); 1565 struct buffer_head *inode_bh = NULL; 1566 1567 ClearPageChecked(page); 1568 1569 if (inline_data) { 1570 BUG_ON(page->index != 0); 1571 BUG_ON(len > ext4_get_max_inline_size(inode)); 1572 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1573 if (inode_bh == NULL) 1574 goto out; 1575 } else { 1576 page_bufs = page_buffers(page); 1577 if (!page_bufs) { 1578 BUG(); 1579 goto out; 1580 } 1581 ext4_walk_page_buffers(handle, page_bufs, 0, len, 1582 NULL, bget_one); 1583 } 1584 /* As soon as we unlock the page, it can go away, but we have 1585 * references to buffers so we are safe */ 1586 unlock_page(page); 1587 1588 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1589 ext4_writepage_trans_blocks(inode)); 1590 if (IS_ERR(handle)) { 1591 ret = PTR_ERR(handle); 1592 goto out; 1593 } 1594 1595 BUG_ON(!ext4_handle_valid(handle)); 1596 1597 if (inline_data) { 1598 BUFFER_TRACE(inode_bh, "get write access"); 1599 ret = ext4_journal_get_write_access(handle, inode_bh); 1600 1601 err = ext4_handle_dirty_metadata(handle, inode, inode_bh); 1602 1603 } else { 1604 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1605 do_journal_get_write_access); 1606 1607 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1608 write_end_fn); 1609 } 1610 if (ret == 0) 1611 ret = err; 1612 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1613 err = ext4_journal_stop(handle); 1614 if (!ret) 1615 ret = err; 1616 1617 if (!ext4_has_inline_data(inode)) 1618 ext4_walk_page_buffers(NULL, page_bufs, 0, len, 1619 NULL, bput_one); 1620 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1621 out: 1622 brelse(inode_bh); 1623 return ret; 1624 } 1625 1626 /* 1627 * Note that we don't need to start a transaction unless we're journaling data 1628 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1629 * need to file the inode to the transaction's list in ordered mode because if 1630 * we are writing back data added by write(), the inode is already there and if 1631 * we are writing back data modified via mmap(), no one guarantees in which 1632 * transaction the data will hit the disk. In case we are journaling data, we 1633 * cannot start transaction directly because transaction start ranks above page 1634 * lock so we have to do some magic. 1635 * 1636 * This function can get called via... 1637 * - ext4_writepages after taking page lock (have journal handle) 1638 * - journal_submit_inode_data_buffers (no journal handle) 1639 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 1640 * - grab_page_cache when doing write_begin (have journal handle) 1641 * 1642 * We don't do any block allocation in this function. If we have page with 1643 * multiple blocks we need to write those buffer_heads that are mapped. This 1644 * is important for mmaped based write. So if we do with blocksize 1K 1645 * truncate(f, 1024); 1646 * a = mmap(f, 0, 4096); 1647 * a[0] = 'a'; 1648 * truncate(f, 4096); 1649 * we have in the page first buffer_head mapped via page_mkwrite call back 1650 * but other buffer_heads would be unmapped but dirty (dirty done via the 1651 * do_wp_page). So writepage should write the first block. If we modify 1652 * the mmap area beyond 1024 we will again get a page_fault and the 1653 * page_mkwrite callback will do the block allocation and mark the 1654 * buffer_heads mapped. 1655 * 1656 * We redirty the page if we have any buffer_heads that is either delay or 1657 * unwritten in the page. 1658 * 1659 * We can get recursively called as show below. 1660 * 1661 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1662 * ext4_writepage() 1663 * 1664 * But since we don't do any block allocation we should not deadlock. 1665 * Page also have the dirty flag cleared so we don't get recurive page_lock. 1666 */ 1667 static int ext4_writepage(struct page *page, 1668 struct writeback_control *wbc) 1669 { 1670 int ret = 0; 1671 loff_t size; 1672 unsigned int len; 1673 struct buffer_head *page_bufs = NULL; 1674 struct inode *inode = page->mapping->host; 1675 struct ext4_io_submit io_submit; 1676 bool keep_towrite = false; 1677 1678 trace_ext4_writepage(page); 1679 size = i_size_read(inode); 1680 if (page->index == size >> PAGE_CACHE_SHIFT) 1681 len = size & ~PAGE_CACHE_MASK; 1682 else 1683 len = PAGE_CACHE_SIZE; 1684 1685 page_bufs = page_buffers(page); 1686 /* 1687 * We cannot do block allocation or other extent handling in this 1688 * function. If there are buffers needing that, we have to redirty 1689 * the page. But we may reach here when we do a journal commit via 1690 * journal_submit_inode_data_buffers() and in that case we must write 1691 * allocated buffers to achieve data=ordered mode guarantees. 1692 */ 1693 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 1694 ext4_bh_delay_or_unwritten)) { 1695 redirty_page_for_writepage(wbc, page); 1696 if (current->flags & PF_MEMALLOC) { 1697 /* 1698 * For memory cleaning there's no point in writing only 1699 * some buffers. So just bail out. Warn if we came here 1700 * from direct reclaim. 1701 */ 1702 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 1703 == PF_MEMALLOC); 1704 unlock_page(page); 1705 return 0; 1706 } 1707 keep_towrite = true; 1708 } 1709 1710 if (PageChecked(page) && ext4_should_journal_data(inode)) 1711 /* 1712 * It's mmapped pagecache. Add buffers and journal it. There 1713 * doesn't seem much point in redirtying the page here. 1714 */ 1715 return __ext4_journalled_writepage(page, len); 1716 1717 ext4_io_submit_init(&io_submit, wbc); 1718 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 1719 if (!io_submit.io_end) { 1720 redirty_page_for_writepage(wbc, page); 1721 unlock_page(page); 1722 return -ENOMEM; 1723 } 1724 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite); 1725 ext4_io_submit(&io_submit); 1726 /* Drop io_end reference we got from init */ 1727 ext4_put_io_end_defer(io_submit.io_end); 1728 return ret; 1729 } 1730 1731 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 1732 { 1733 int len; 1734 loff_t size = i_size_read(mpd->inode); 1735 int err; 1736 1737 BUG_ON(page->index != mpd->first_page); 1738 if (page->index == size >> PAGE_CACHE_SHIFT) 1739 len = size & ~PAGE_CACHE_MASK; 1740 else 1741 len = PAGE_CACHE_SIZE; 1742 clear_page_dirty_for_io(page); 1743 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false); 1744 if (!err) 1745 mpd->wbc->nr_to_write--; 1746 mpd->first_page++; 1747 1748 return err; 1749 } 1750 1751 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay)) 1752 1753 /* 1754 * mballoc gives us at most this number of blocks... 1755 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 1756 * The rest of mballoc seems to handle chunks up to full group size. 1757 */ 1758 #define MAX_WRITEPAGES_EXTENT_LEN 2048 1759 1760 /* 1761 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 1762 * 1763 * @mpd - extent of blocks 1764 * @lblk - logical number of the block in the file 1765 * @bh - buffer head we want to add to the extent 1766 * 1767 * The function is used to collect contig. blocks in the same state. If the 1768 * buffer doesn't require mapping for writeback and we haven't started the 1769 * extent of buffers to map yet, the function returns 'true' immediately - the 1770 * caller can write the buffer right away. Otherwise the function returns true 1771 * if the block has been added to the extent, false if the block couldn't be 1772 * added. 1773 */ 1774 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 1775 struct buffer_head *bh) 1776 { 1777 struct ext4_map_blocks *map = &mpd->map; 1778 1779 /* Buffer that doesn't need mapping for writeback? */ 1780 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 1781 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 1782 /* So far no extent to map => we write the buffer right away */ 1783 if (map->m_len == 0) 1784 return true; 1785 return false; 1786 } 1787 1788 /* First block in the extent? */ 1789 if (map->m_len == 0) { 1790 map->m_lblk = lblk; 1791 map->m_len = 1; 1792 map->m_flags = bh->b_state & BH_FLAGS; 1793 return true; 1794 } 1795 1796 /* Don't go larger than mballoc is willing to allocate */ 1797 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 1798 return false; 1799 1800 /* Can we merge the block to our big extent? */ 1801 if (lblk == map->m_lblk + map->m_len && 1802 (bh->b_state & BH_FLAGS) == map->m_flags) { 1803 map->m_len++; 1804 return true; 1805 } 1806 return false; 1807 } 1808 1809 /* 1810 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 1811 * 1812 * @mpd - extent of blocks for mapping 1813 * @head - the first buffer in the page 1814 * @bh - buffer we should start processing from 1815 * @lblk - logical number of the block in the file corresponding to @bh 1816 * 1817 * Walk through page buffers from @bh upto @head (exclusive) and either submit 1818 * the page for IO if all buffers in this page were mapped and there's no 1819 * accumulated extent of buffers to map or add buffers in the page to the 1820 * extent of buffers to map. The function returns 1 if the caller can continue 1821 * by processing the next page, 0 if it should stop adding buffers to the 1822 * extent to map because we cannot extend it anymore. It can also return value 1823 * < 0 in case of error during IO submission. 1824 */ 1825 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 1826 struct buffer_head *head, 1827 struct buffer_head *bh, 1828 ext4_lblk_t lblk) 1829 { 1830 struct inode *inode = mpd->inode; 1831 int err; 1832 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1) 1833 >> inode->i_blkbits; 1834 1835 do { 1836 BUG_ON(buffer_locked(bh)); 1837 1838 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 1839 /* Found extent to map? */ 1840 if (mpd->map.m_len) 1841 return 0; 1842 /* Everything mapped so far and we hit EOF */ 1843 break; 1844 } 1845 } while (lblk++, (bh = bh->b_this_page) != head); 1846 /* So far everything mapped? Submit the page for IO. */ 1847 if (mpd->map.m_len == 0) { 1848 err = mpage_submit_page(mpd, head->b_page); 1849 if (err < 0) 1850 return err; 1851 } 1852 return lblk < blocks; 1853 } 1854 1855 /* 1856 * mpage_map_buffers - update buffers corresponding to changed extent and 1857 * submit fully mapped pages for IO 1858 * 1859 * @mpd - description of extent to map, on return next extent to map 1860 * 1861 * Scan buffers corresponding to changed extent (we expect corresponding pages 1862 * to be already locked) and update buffer state according to new extent state. 1863 * We map delalloc buffers to their physical location, clear unwritten bits, 1864 * and mark buffers as uninit when we perform writes to unwritten extents 1865 * and do extent conversion after IO is finished. If the last page is not fully 1866 * mapped, we update @map to the next extent in the last page that needs 1867 * mapping. Otherwise we submit the page for IO. 1868 */ 1869 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 1870 { 1871 struct pagevec pvec; 1872 int nr_pages, i; 1873 struct inode *inode = mpd->inode; 1874 struct buffer_head *head, *bh; 1875 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits; 1876 pgoff_t start, end; 1877 ext4_lblk_t lblk; 1878 sector_t pblock; 1879 int err; 1880 1881 start = mpd->map.m_lblk >> bpp_bits; 1882 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 1883 lblk = start << bpp_bits; 1884 pblock = mpd->map.m_pblk; 1885 1886 pagevec_init(&pvec, 0); 1887 while (start <= end) { 1888 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start, 1889 PAGEVEC_SIZE); 1890 if (nr_pages == 0) 1891 break; 1892 for (i = 0; i < nr_pages; i++) { 1893 struct page *page = pvec.pages[i]; 1894 1895 if (page->index > end) 1896 break; 1897 /* Up to 'end' pages must be contiguous */ 1898 BUG_ON(page->index != start); 1899 bh = head = page_buffers(page); 1900 do { 1901 if (lblk < mpd->map.m_lblk) 1902 continue; 1903 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 1904 /* 1905 * Buffer after end of mapped extent. 1906 * Find next buffer in the page to map. 1907 */ 1908 mpd->map.m_len = 0; 1909 mpd->map.m_flags = 0; 1910 /* 1911 * FIXME: If dioread_nolock supports 1912 * blocksize < pagesize, we need to make 1913 * sure we add size mapped so far to 1914 * io_end->size as the following call 1915 * can submit the page for IO. 1916 */ 1917 err = mpage_process_page_bufs(mpd, head, 1918 bh, lblk); 1919 pagevec_release(&pvec); 1920 if (err > 0) 1921 err = 0; 1922 return err; 1923 } 1924 if (buffer_delay(bh)) { 1925 clear_buffer_delay(bh); 1926 bh->b_blocknr = pblock++; 1927 } 1928 clear_buffer_unwritten(bh); 1929 } while (lblk++, (bh = bh->b_this_page) != head); 1930 1931 /* 1932 * FIXME: This is going to break if dioread_nolock 1933 * supports blocksize < pagesize as we will try to 1934 * convert potentially unmapped parts of inode. 1935 */ 1936 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE; 1937 /* Page fully mapped - let IO run! */ 1938 err = mpage_submit_page(mpd, page); 1939 if (err < 0) { 1940 pagevec_release(&pvec); 1941 return err; 1942 } 1943 start++; 1944 } 1945 pagevec_release(&pvec); 1946 } 1947 /* Extent fully mapped and matches with page boundary. We are done. */ 1948 mpd->map.m_len = 0; 1949 mpd->map.m_flags = 0; 1950 return 0; 1951 } 1952 1953 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 1954 { 1955 struct inode *inode = mpd->inode; 1956 struct ext4_map_blocks *map = &mpd->map; 1957 int get_blocks_flags; 1958 int err, dioread_nolock; 1959 1960 trace_ext4_da_write_pages_extent(inode, map); 1961 /* 1962 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 1963 * to convert an unwritten extent to be initialized (in the case 1964 * where we have written into one or more preallocated blocks). It is 1965 * possible that we're going to need more metadata blocks than 1966 * previously reserved. However we must not fail because we're in 1967 * writeback and there is nothing we can do about it so it might result 1968 * in data loss. So use reserved blocks to allocate metadata if 1969 * possible. 1970 * 1971 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 1972 * the blocks in question are delalloc blocks. This indicates 1973 * that the blocks and quotas has already been checked when 1974 * the data was copied into the page cache. 1975 */ 1976 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 1977 EXT4_GET_BLOCKS_METADATA_NOFAIL; 1978 dioread_nolock = ext4_should_dioread_nolock(inode); 1979 if (dioread_nolock) 1980 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 1981 if (map->m_flags & (1 << BH_Delay)) 1982 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 1983 1984 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 1985 if (err < 0) 1986 return err; 1987 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 1988 if (!mpd->io_submit.io_end->handle && 1989 ext4_handle_valid(handle)) { 1990 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 1991 handle->h_rsv_handle = NULL; 1992 } 1993 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 1994 } 1995 1996 BUG_ON(map->m_len == 0); 1997 if (map->m_flags & EXT4_MAP_NEW) { 1998 struct block_device *bdev = inode->i_sb->s_bdev; 1999 int i; 2000 2001 for (i = 0; i < map->m_len; i++) 2002 unmap_underlying_metadata(bdev, map->m_pblk + i); 2003 } 2004 return 0; 2005 } 2006 2007 /* 2008 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2009 * mpd->len and submit pages underlying it for IO 2010 * 2011 * @handle - handle for journal operations 2012 * @mpd - extent to map 2013 * @give_up_on_write - we set this to true iff there is a fatal error and there 2014 * is no hope of writing the data. The caller should discard 2015 * dirty pages to avoid infinite loops. 2016 * 2017 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2018 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2019 * them to initialized or split the described range from larger unwritten 2020 * extent. Note that we need not map all the described range since allocation 2021 * can return less blocks or the range is covered by more unwritten extents. We 2022 * cannot map more because we are limited by reserved transaction credits. On 2023 * the other hand we always make sure that the last touched page is fully 2024 * mapped so that it can be written out (and thus forward progress is 2025 * guaranteed). After mapping we submit all mapped pages for IO. 2026 */ 2027 static int mpage_map_and_submit_extent(handle_t *handle, 2028 struct mpage_da_data *mpd, 2029 bool *give_up_on_write) 2030 { 2031 struct inode *inode = mpd->inode; 2032 struct ext4_map_blocks *map = &mpd->map; 2033 int err; 2034 loff_t disksize; 2035 int progress = 0; 2036 2037 mpd->io_submit.io_end->offset = 2038 ((loff_t)map->m_lblk) << inode->i_blkbits; 2039 do { 2040 err = mpage_map_one_extent(handle, mpd); 2041 if (err < 0) { 2042 struct super_block *sb = inode->i_sb; 2043 2044 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 2045 goto invalidate_dirty_pages; 2046 /* 2047 * Let the uper layers retry transient errors. 2048 * In the case of ENOSPC, if ext4_count_free_blocks() 2049 * is non-zero, a commit should free up blocks. 2050 */ 2051 if ((err == -ENOMEM) || 2052 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2053 if (progress) 2054 goto update_disksize; 2055 return err; 2056 } 2057 ext4_msg(sb, KERN_CRIT, 2058 "Delayed block allocation failed for " 2059 "inode %lu at logical offset %llu with" 2060 " max blocks %u with error %d", 2061 inode->i_ino, 2062 (unsigned long long)map->m_lblk, 2063 (unsigned)map->m_len, -err); 2064 ext4_msg(sb, KERN_CRIT, 2065 "This should not happen!! Data will " 2066 "be lost\n"); 2067 if (err == -ENOSPC) 2068 ext4_print_free_blocks(inode); 2069 invalidate_dirty_pages: 2070 *give_up_on_write = true; 2071 return err; 2072 } 2073 progress = 1; 2074 /* 2075 * Update buffer state, submit mapped pages, and get us new 2076 * extent to map 2077 */ 2078 err = mpage_map_and_submit_buffers(mpd); 2079 if (err < 0) 2080 goto update_disksize; 2081 } while (map->m_len); 2082 2083 update_disksize: 2084 /* 2085 * Update on-disk size after IO is submitted. Races with 2086 * truncate are avoided by checking i_size under i_data_sem. 2087 */ 2088 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT; 2089 if (disksize > EXT4_I(inode)->i_disksize) { 2090 int err2; 2091 loff_t i_size; 2092 2093 down_write(&EXT4_I(inode)->i_data_sem); 2094 i_size = i_size_read(inode); 2095 if (disksize > i_size) 2096 disksize = i_size; 2097 if (disksize > EXT4_I(inode)->i_disksize) 2098 EXT4_I(inode)->i_disksize = disksize; 2099 err2 = ext4_mark_inode_dirty(handle, inode); 2100 up_write(&EXT4_I(inode)->i_data_sem); 2101 if (err2) 2102 ext4_error(inode->i_sb, 2103 "Failed to mark inode %lu dirty", 2104 inode->i_ino); 2105 if (!err) 2106 err = err2; 2107 } 2108 return err; 2109 } 2110 2111 /* 2112 * Calculate the total number of credits to reserve for one writepages 2113 * iteration. This is called from ext4_writepages(). We map an extent of 2114 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2115 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2116 * bpp - 1 blocks in bpp different extents. 2117 */ 2118 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2119 { 2120 int bpp = ext4_journal_blocks_per_page(inode); 2121 2122 return ext4_meta_trans_blocks(inode, 2123 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2124 } 2125 2126 /* 2127 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2128 * and underlying extent to map 2129 * 2130 * @mpd - where to look for pages 2131 * 2132 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2133 * IO immediately. When we find a page which isn't mapped we start accumulating 2134 * extent of buffers underlying these pages that needs mapping (formed by 2135 * either delayed or unwritten buffers). We also lock the pages containing 2136 * these buffers. The extent found is returned in @mpd structure (starting at 2137 * mpd->lblk with length mpd->len blocks). 2138 * 2139 * Note that this function can attach bios to one io_end structure which are 2140 * neither logically nor physically contiguous. Although it may seem as an 2141 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2142 * case as we need to track IO to all buffers underlying a page in one io_end. 2143 */ 2144 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2145 { 2146 struct address_space *mapping = mpd->inode->i_mapping; 2147 struct pagevec pvec; 2148 unsigned int nr_pages; 2149 long left = mpd->wbc->nr_to_write; 2150 pgoff_t index = mpd->first_page; 2151 pgoff_t end = mpd->last_page; 2152 int tag; 2153 int i, err = 0; 2154 int blkbits = mpd->inode->i_blkbits; 2155 ext4_lblk_t lblk; 2156 struct buffer_head *head; 2157 2158 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2159 tag = PAGECACHE_TAG_TOWRITE; 2160 else 2161 tag = PAGECACHE_TAG_DIRTY; 2162 2163 pagevec_init(&pvec, 0); 2164 mpd->map.m_len = 0; 2165 mpd->next_page = index; 2166 while (index <= end) { 2167 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2168 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2169 if (nr_pages == 0) 2170 goto out; 2171 2172 for (i = 0; i < nr_pages; i++) { 2173 struct page *page = pvec.pages[i]; 2174 2175 /* 2176 * At this point, the page may be truncated or 2177 * invalidated (changing page->mapping to NULL), or 2178 * even swizzled back from swapper_space to tmpfs file 2179 * mapping. However, page->index will not change 2180 * because we have a reference on the page. 2181 */ 2182 if (page->index > end) 2183 goto out; 2184 2185 /* 2186 * Accumulated enough dirty pages? This doesn't apply 2187 * to WB_SYNC_ALL mode. For integrity sync we have to 2188 * keep going because someone may be concurrently 2189 * dirtying pages, and we might have synced a lot of 2190 * newly appeared dirty pages, but have not synced all 2191 * of the old dirty pages. 2192 */ 2193 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2194 goto out; 2195 2196 /* If we can't merge this page, we are done. */ 2197 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2198 goto out; 2199 2200 lock_page(page); 2201 /* 2202 * If the page is no longer dirty, or its mapping no 2203 * longer corresponds to inode we are writing (which 2204 * means it has been truncated or invalidated), or the 2205 * page is already under writeback and we are not doing 2206 * a data integrity writeback, skip the page 2207 */ 2208 if (!PageDirty(page) || 2209 (PageWriteback(page) && 2210 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2211 unlikely(page->mapping != mapping)) { 2212 unlock_page(page); 2213 continue; 2214 } 2215 2216 wait_on_page_writeback(page); 2217 BUG_ON(PageWriteback(page)); 2218 2219 if (mpd->map.m_len == 0) 2220 mpd->first_page = page->index; 2221 mpd->next_page = page->index + 1; 2222 /* Add all dirty buffers to mpd */ 2223 lblk = ((ext4_lblk_t)page->index) << 2224 (PAGE_CACHE_SHIFT - blkbits); 2225 head = page_buffers(page); 2226 err = mpage_process_page_bufs(mpd, head, head, lblk); 2227 if (err <= 0) 2228 goto out; 2229 err = 0; 2230 left--; 2231 } 2232 pagevec_release(&pvec); 2233 cond_resched(); 2234 } 2235 return 0; 2236 out: 2237 pagevec_release(&pvec); 2238 return err; 2239 } 2240 2241 static int __writepage(struct page *page, struct writeback_control *wbc, 2242 void *data) 2243 { 2244 struct address_space *mapping = data; 2245 int ret = ext4_writepage(page, wbc); 2246 mapping_set_error(mapping, ret); 2247 return ret; 2248 } 2249 2250 static int ext4_writepages(struct address_space *mapping, 2251 struct writeback_control *wbc) 2252 { 2253 pgoff_t writeback_index = 0; 2254 long nr_to_write = wbc->nr_to_write; 2255 int range_whole = 0; 2256 int cycled = 1; 2257 handle_t *handle = NULL; 2258 struct mpage_da_data mpd; 2259 struct inode *inode = mapping->host; 2260 int needed_blocks, rsv_blocks = 0, ret = 0; 2261 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2262 bool done; 2263 struct blk_plug plug; 2264 bool give_up_on_write = false; 2265 2266 trace_ext4_writepages(inode, wbc); 2267 2268 /* 2269 * No pages to write? This is mainly a kludge to avoid starting 2270 * a transaction for special inodes like journal inode on last iput() 2271 * because that could violate lock ordering on umount 2272 */ 2273 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2274 goto out_writepages; 2275 2276 if (ext4_should_journal_data(inode)) { 2277 struct blk_plug plug; 2278 2279 blk_start_plug(&plug); 2280 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 2281 blk_finish_plug(&plug); 2282 goto out_writepages; 2283 } 2284 2285 /* 2286 * If the filesystem has aborted, it is read-only, so return 2287 * right away instead of dumping stack traces later on that 2288 * will obscure the real source of the problem. We test 2289 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2290 * the latter could be true if the filesystem is mounted 2291 * read-only, and in that case, ext4_writepages should 2292 * *never* be called, so if that ever happens, we would want 2293 * the stack trace. 2294 */ 2295 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) { 2296 ret = -EROFS; 2297 goto out_writepages; 2298 } 2299 2300 if (ext4_should_dioread_nolock(inode)) { 2301 /* 2302 * We may need to convert up to one extent per block in 2303 * the page and we may dirty the inode. 2304 */ 2305 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits); 2306 } 2307 2308 /* 2309 * If we have inline data and arrive here, it means that 2310 * we will soon create the block for the 1st page, so 2311 * we'd better clear the inline data here. 2312 */ 2313 if (ext4_has_inline_data(inode)) { 2314 /* Just inode will be modified... */ 2315 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2316 if (IS_ERR(handle)) { 2317 ret = PTR_ERR(handle); 2318 goto out_writepages; 2319 } 2320 BUG_ON(ext4_test_inode_state(inode, 2321 EXT4_STATE_MAY_INLINE_DATA)); 2322 ext4_destroy_inline_data(handle, inode); 2323 ext4_journal_stop(handle); 2324 } 2325 2326 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2327 range_whole = 1; 2328 2329 if (wbc->range_cyclic) { 2330 writeback_index = mapping->writeback_index; 2331 if (writeback_index) 2332 cycled = 0; 2333 mpd.first_page = writeback_index; 2334 mpd.last_page = -1; 2335 } else { 2336 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT; 2337 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT; 2338 } 2339 2340 mpd.inode = inode; 2341 mpd.wbc = wbc; 2342 ext4_io_submit_init(&mpd.io_submit, wbc); 2343 retry: 2344 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2345 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2346 done = false; 2347 blk_start_plug(&plug); 2348 while (!done && mpd.first_page <= mpd.last_page) { 2349 /* For each extent of pages we use new io_end */ 2350 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2351 if (!mpd.io_submit.io_end) { 2352 ret = -ENOMEM; 2353 break; 2354 } 2355 2356 /* 2357 * We have two constraints: We find one extent to map and we 2358 * must always write out whole page (makes a difference when 2359 * blocksize < pagesize) so that we don't block on IO when we 2360 * try to write out the rest of the page. Journalled mode is 2361 * not supported by delalloc. 2362 */ 2363 BUG_ON(ext4_should_journal_data(inode)); 2364 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2365 2366 /* start a new transaction */ 2367 handle = ext4_journal_start_with_reserve(inode, 2368 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2369 if (IS_ERR(handle)) { 2370 ret = PTR_ERR(handle); 2371 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2372 "%ld pages, ino %lu; err %d", __func__, 2373 wbc->nr_to_write, inode->i_ino, ret); 2374 /* Release allocated io_end */ 2375 ext4_put_io_end(mpd.io_submit.io_end); 2376 break; 2377 } 2378 2379 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2380 ret = mpage_prepare_extent_to_map(&mpd); 2381 if (!ret) { 2382 if (mpd.map.m_len) 2383 ret = mpage_map_and_submit_extent(handle, &mpd, 2384 &give_up_on_write); 2385 else { 2386 /* 2387 * We scanned the whole range (or exhausted 2388 * nr_to_write), submitted what was mapped and 2389 * didn't find anything needing mapping. We are 2390 * done. 2391 */ 2392 done = true; 2393 } 2394 } 2395 ext4_journal_stop(handle); 2396 /* Submit prepared bio */ 2397 ext4_io_submit(&mpd.io_submit); 2398 /* Unlock pages we didn't use */ 2399 mpage_release_unused_pages(&mpd, give_up_on_write); 2400 /* Drop our io_end reference we got from init */ 2401 ext4_put_io_end(mpd.io_submit.io_end); 2402 2403 if (ret == -ENOSPC && sbi->s_journal) { 2404 /* 2405 * Commit the transaction which would 2406 * free blocks released in the transaction 2407 * and try again 2408 */ 2409 jbd2_journal_force_commit_nested(sbi->s_journal); 2410 ret = 0; 2411 continue; 2412 } 2413 /* Fatal error - ENOMEM, EIO... */ 2414 if (ret) 2415 break; 2416 } 2417 blk_finish_plug(&plug); 2418 if (!ret && !cycled && wbc->nr_to_write > 0) { 2419 cycled = 1; 2420 mpd.last_page = writeback_index - 1; 2421 mpd.first_page = 0; 2422 goto retry; 2423 } 2424 2425 /* Update index */ 2426 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2427 /* 2428 * Set the writeback_index so that range_cyclic 2429 * mode will write it back later 2430 */ 2431 mapping->writeback_index = mpd.first_page; 2432 2433 out_writepages: 2434 trace_ext4_writepages_result(inode, wbc, ret, 2435 nr_to_write - wbc->nr_to_write); 2436 return ret; 2437 } 2438 2439 static int ext4_nonda_switch(struct super_block *sb) 2440 { 2441 s64 free_clusters, dirty_clusters; 2442 struct ext4_sb_info *sbi = EXT4_SB(sb); 2443 2444 /* 2445 * switch to non delalloc mode if we are running low 2446 * on free block. The free block accounting via percpu 2447 * counters can get slightly wrong with percpu_counter_batch getting 2448 * accumulated on each CPU without updating global counters 2449 * Delalloc need an accurate free block accounting. So switch 2450 * to non delalloc when we are near to error range. 2451 */ 2452 free_clusters = 2453 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2454 dirty_clusters = 2455 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2456 /* 2457 * Start pushing delalloc when 1/2 of free blocks are dirty. 2458 */ 2459 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2460 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2461 2462 if (2 * free_clusters < 3 * dirty_clusters || 2463 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2464 /* 2465 * free block count is less than 150% of dirty blocks 2466 * or free blocks is less than watermark 2467 */ 2468 return 1; 2469 } 2470 return 0; 2471 } 2472 2473 /* We always reserve for an inode update; the superblock could be there too */ 2474 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len) 2475 { 2476 if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 2477 EXT4_FEATURE_RO_COMPAT_LARGE_FILE))) 2478 return 1; 2479 2480 if (pos + len <= 0x7fffffffULL) 2481 return 1; 2482 2483 /* We might need to update the superblock to set LARGE_FILE */ 2484 return 2; 2485 } 2486 2487 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2488 loff_t pos, unsigned len, unsigned flags, 2489 struct page **pagep, void **fsdata) 2490 { 2491 int ret, retries = 0; 2492 struct page *page; 2493 pgoff_t index; 2494 struct inode *inode = mapping->host; 2495 handle_t *handle; 2496 2497 index = pos >> PAGE_CACHE_SHIFT; 2498 2499 if (ext4_nonda_switch(inode->i_sb)) { 2500 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2501 return ext4_write_begin(file, mapping, pos, 2502 len, flags, pagep, fsdata); 2503 } 2504 *fsdata = (void *)0; 2505 trace_ext4_da_write_begin(inode, pos, len, flags); 2506 2507 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2508 ret = ext4_da_write_inline_data_begin(mapping, inode, 2509 pos, len, flags, 2510 pagep, fsdata); 2511 if (ret < 0) 2512 return ret; 2513 if (ret == 1) 2514 return 0; 2515 } 2516 2517 /* 2518 * grab_cache_page_write_begin() can take a long time if the 2519 * system is thrashing due to memory pressure, or if the page 2520 * is being written back. So grab it first before we start 2521 * the transaction handle. This also allows us to allocate 2522 * the page (if needed) without using GFP_NOFS. 2523 */ 2524 retry_grab: 2525 page = grab_cache_page_write_begin(mapping, index, flags); 2526 if (!page) 2527 return -ENOMEM; 2528 unlock_page(page); 2529 2530 /* 2531 * With delayed allocation, we don't log the i_disksize update 2532 * if there is delayed block allocation. But we still need 2533 * to journalling the i_disksize update if writes to the end 2534 * of file which has an already mapped buffer. 2535 */ 2536 retry_journal: 2537 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 2538 ext4_da_write_credits(inode, pos, len)); 2539 if (IS_ERR(handle)) { 2540 page_cache_release(page); 2541 return PTR_ERR(handle); 2542 } 2543 2544 lock_page(page); 2545 if (page->mapping != mapping) { 2546 /* The page got truncated from under us */ 2547 unlock_page(page); 2548 page_cache_release(page); 2549 ext4_journal_stop(handle); 2550 goto retry_grab; 2551 } 2552 /* In case writeback began while the page was unlocked */ 2553 wait_for_stable_page(page); 2554 2555 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 2556 if (ret < 0) { 2557 unlock_page(page); 2558 ext4_journal_stop(handle); 2559 /* 2560 * block_write_begin may have instantiated a few blocks 2561 * outside i_size. Trim these off again. Don't need 2562 * i_size_read because we hold i_mutex. 2563 */ 2564 if (pos + len > inode->i_size) 2565 ext4_truncate_failed_write(inode); 2566 2567 if (ret == -ENOSPC && 2568 ext4_should_retry_alloc(inode->i_sb, &retries)) 2569 goto retry_journal; 2570 2571 page_cache_release(page); 2572 return ret; 2573 } 2574 2575 *pagep = page; 2576 return ret; 2577 } 2578 2579 /* 2580 * Check if we should update i_disksize 2581 * when write to the end of file but not require block allocation 2582 */ 2583 static int ext4_da_should_update_i_disksize(struct page *page, 2584 unsigned long offset) 2585 { 2586 struct buffer_head *bh; 2587 struct inode *inode = page->mapping->host; 2588 unsigned int idx; 2589 int i; 2590 2591 bh = page_buffers(page); 2592 idx = offset >> inode->i_blkbits; 2593 2594 for (i = 0; i < idx; i++) 2595 bh = bh->b_this_page; 2596 2597 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2598 return 0; 2599 return 1; 2600 } 2601 2602 static int ext4_da_write_end(struct file *file, 2603 struct address_space *mapping, 2604 loff_t pos, unsigned len, unsigned copied, 2605 struct page *page, void *fsdata) 2606 { 2607 struct inode *inode = mapping->host; 2608 int ret = 0, ret2; 2609 handle_t *handle = ext4_journal_current_handle(); 2610 loff_t new_i_size; 2611 unsigned long start, end; 2612 int write_mode = (int)(unsigned long)fsdata; 2613 2614 if (write_mode == FALL_BACK_TO_NONDELALLOC) 2615 return ext4_write_end(file, mapping, pos, 2616 len, copied, page, fsdata); 2617 2618 trace_ext4_da_write_end(inode, pos, len, copied); 2619 start = pos & (PAGE_CACHE_SIZE - 1); 2620 end = start + copied - 1; 2621 2622 /* 2623 * generic_write_end() will run mark_inode_dirty() if i_size 2624 * changes. So let's piggyback the i_disksize mark_inode_dirty 2625 * into that. 2626 */ 2627 new_i_size = pos + copied; 2628 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 2629 if (ext4_has_inline_data(inode) || 2630 ext4_da_should_update_i_disksize(page, end)) { 2631 ext4_update_i_disksize(inode, new_i_size); 2632 /* We need to mark inode dirty even if 2633 * new_i_size is less that inode->i_size 2634 * bu greater than i_disksize.(hint delalloc) 2635 */ 2636 ext4_mark_inode_dirty(handle, inode); 2637 } 2638 } 2639 2640 if (write_mode != CONVERT_INLINE_DATA && 2641 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 2642 ext4_has_inline_data(inode)) 2643 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 2644 page); 2645 else 2646 ret2 = generic_write_end(file, mapping, pos, len, copied, 2647 page, fsdata); 2648 2649 copied = ret2; 2650 if (ret2 < 0) 2651 ret = ret2; 2652 ret2 = ext4_journal_stop(handle); 2653 if (!ret) 2654 ret = ret2; 2655 2656 return ret ? ret : copied; 2657 } 2658 2659 static void ext4_da_invalidatepage(struct page *page, unsigned int offset, 2660 unsigned int length) 2661 { 2662 /* 2663 * Drop reserved blocks 2664 */ 2665 BUG_ON(!PageLocked(page)); 2666 if (!page_has_buffers(page)) 2667 goto out; 2668 2669 ext4_da_page_release_reservation(page, offset, length); 2670 2671 out: 2672 ext4_invalidatepage(page, offset, length); 2673 2674 return; 2675 } 2676 2677 /* 2678 * Force all delayed allocation blocks to be allocated for a given inode. 2679 */ 2680 int ext4_alloc_da_blocks(struct inode *inode) 2681 { 2682 trace_ext4_alloc_da_blocks(inode); 2683 2684 if (!EXT4_I(inode)->i_reserved_data_blocks) 2685 return 0; 2686 2687 /* 2688 * We do something simple for now. The filemap_flush() will 2689 * also start triggering a write of the data blocks, which is 2690 * not strictly speaking necessary (and for users of 2691 * laptop_mode, not even desirable). However, to do otherwise 2692 * would require replicating code paths in: 2693 * 2694 * ext4_writepages() -> 2695 * write_cache_pages() ---> (via passed in callback function) 2696 * __mpage_da_writepage() --> 2697 * mpage_add_bh_to_extent() 2698 * mpage_da_map_blocks() 2699 * 2700 * The problem is that write_cache_pages(), located in 2701 * mm/page-writeback.c, marks pages clean in preparation for 2702 * doing I/O, which is not desirable if we're not planning on 2703 * doing I/O at all. 2704 * 2705 * We could call write_cache_pages(), and then redirty all of 2706 * the pages by calling redirty_page_for_writepage() but that 2707 * would be ugly in the extreme. So instead we would need to 2708 * replicate parts of the code in the above functions, 2709 * simplifying them because we wouldn't actually intend to 2710 * write out the pages, but rather only collect contiguous 2711 * logical block extents, call the multi-block allocator, and 2712 * then update the buffer heads with the block allocations. 2713 * 2714 * For now, though, we'll cheat by calling filemap_flush(), 2715 * which will map the blocks, and start the I/O, but not 2716 * actually wait for the I/O to complete. 2717 */ 2718 return filemap_flush(inode->i_mapping); 2719 } 2720 2721 /* 2722 * bmap() is special. It gets used by applications such as lilo and by 2723 * the swapper to find the on-disk block of a specific piece of data. 2724 * 2725 * Naturally, this is dangerous if the block concerned is still in the 2726 * journal. If somebody makes a swapfile on an ext4 data-journaling 2727 * filesystem and enables swap, then they may get a nasty shock when the 2728 * data getting swapped to that swapfile suddenly gets overwritten by 2729 * the original zero's written out previously to the journal and 2730 * awaiting writeback in the kernel's buffer cache. 2731 * 2732 * So, if we see any bmap calls here on a modified, data-journaled file, 2733 * take extra steps to flush any blocks which might be in the cache. 2734 */ 2735 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 2736 { 2737 struct inode *inode = mapping->host; 2738 journal_t *journal; 2739 int err; 2740 2741 /* 2742 * We can get here for an inline file via the FIBMAP ioctl 2743 */ 2744 if (ext4_has_inline_data(inode)) 2745 return 0; 2746 2747 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 2748 test_opt(inode->i_sb, DELALLOC)) { 2749 /* 2750 * With delalloc we want to sync the file 2751 * so that we can make sure we allocate 2752 * blocks for file 2753 */ 2754 filemap_write_and_wait(mapping); 2755 } 2756 2757 if (EXT4_JOURNAL(inode) && 2758 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 2759 /* 2760 * This is a REALLY heavyweight approach, but the use of 2761 * bmap on dirty files is expected to be extremely rare: 2762 * only if we run lilo or swapon on a freshly made file 2763 * do we expect this to happen. 2764 * 2765 * (bmap requires CAP_SYS_RAWIO so this does not 2766 * represent an unprivileged user DOS attack --- we'd be 2767 * in trouble if mortal users could trigger this path at 2768 * will.) 2769 * 2770 * NB. EXT4_STATE_JDATA is not set on files other than 2771 * regular files. If somebody wants to bmap a directory 2772 * or symlink and gets confused because the buffer 2773 * hasn't yet been flushed to disk, they deserve 2774 * everything they get. 2775 */ 2776 2777 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 2778 journal = EXT4_JOURNAL(inode); 2779 jbd2_journal_lock_updates(journal); 2780 err = jbd2_journal_flush(journal); 2781 jbd2_journal_unlock_updates(journal); 2782 2783 if (err) 2784 return 0; 2785 } 2786 2787 return generic_block_bmap(mapping, block, ext4_get_block); 2788 } 2789 2790 static int ext4_readpage(struct file *file, struct page *page) 2791 { 2792 int ret = -EAGAIN; 2793 struct inode *inode = page->mapping->host; 2794 2795 trace_ext4_readpage(page); 2796 2797 if (ext4_has_inline_data(inode)) 2798 ret = ext4_readpage_inline(inode, page); 2799 2800 if (ret == -EAGAIN) 2801 return mpage_readpage(page, ext4_get_block); 2802 2803 return ret; 2804 } 2805 2806 static int 2807 ext4_readpages(struct file *file, struct address_space *mapping, 2808 struct list_head *pages, unsigned nr_pages) 2809 { 2810 struct inode *inode = mapping->host; 2811 2812 /* If the file has inline data, no need to do readpages. */ 2813 if (ext4_has_inline_data(inode)) 2814 return 0; 2815 2816 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 2817 } 2818 2819 static void ext4_invalidatepage(struct page *page, unsigned int offset, 2820 unsigned int length) 2821 { 2822 trace_ext4_invalidatepage(page, offset, length); 2823 2824 /* No journalling happens on data buffers when this function is used */ 2825 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 2826 2827 block_invalidatepage(page, offset, length); 2828 } 2829 2830 static int __ext4_journalled_invalidatepage(struct page *page, 2831 unsigned int offset, 2832 unsigned int length) 2833 { 2834 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2835 2836 trace_ext4_journalled_invalidatepage(page, offset, length); 2837 2838 /* 2839 * If it's a full truncate we just forget about the pending dirtying 2840 */ 2841 if (offset == 0 && length == PAGE_CACHE_SIZE) 2842 ClearPageChecked(page); 2843 2844 return jbd2_journal_invalidatepage(journal, page, offset, length); 2845 } 2846 2847 /* Wrapper for aops... */ 2848 static void ext4_journalled_invalidatepage(struct page *page, 2849 unsigned int offset, 2850 unsigned int length) 2851 { 2852 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 2853 } 2854 2855 static int ext4_releasepage(struct page *page, gfp_t wait) 2856 { 2857 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2858 2859 trace_ext4_releasepage(page); 2860 2861 /* Page has dirty journalled data -> cannot release */ 2862 if (PageChecked(page)) 2863 return 0; 2864 if (journal) 2865 return jbd2_journal_try_to_free_buffers(journal, page, wait); 2866 else 2867 return try_to_free_buffers(page); 2868 } 2869 2870 /* 2871 * ext4_get_block used when preparing for a DIO write or buffer write. 2872 * We allocate an uinitialized extent if blocks haven't been allocated. 2873 * The extent will be converted to initialized after the IO is complete. 2874 */ 2875 int ext4_get_block_write(struct inode *inode, sector_t iblock, 2876 struct buffer_head *bh_result, int create) 2877 { 2878 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n", 2879 inode->i_ino, create); 2880 return _ext4_get_block(inode, iblock, bh_result, 2881 EXT4_GET_BLOCKS_IO_CREATE_EXT); 2882 } 2883 2884 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 2885 struct buffer_head *bh_result, int create) 2886 { 2887 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n", 2888 inode->i_ino, create); 2889 return _ext4_get_block(inode, iblock, bh_result, 2890 EXT4_GET_BLOCKS_NO_LOCK); 2891 } 2892 2893 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 2894 ssize_t size, void *private) 2895 { 2896 ext4_io_end_t *io_end = iocb->private; 2897 2898 /* if not async direct IO just return */ 2899 if (!io_end) 2900 return; 2901 2902 ext_debug("ext4_end_io_dio(): io_end 0x%p " 2903 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", 2904 iocb->private, io_end->inode->i_ino, iocb, offset, 2905 size); 2906 2907 iocb->private = NULL; 2908 io_end->offset = offset; 2909 io_end->size = size; 2910 ext4_put_io_end(io_end); 2911 } 2912 2913 /* 2914 * For ext4 extent files, ext4 will do direct-io write to holes, 2915 * preallocated extents, and those write extend the file, no need to 2916 * fall back to buffered IO. 2917 * 2918 * For holes, we fallocate those blocks, mark them as unwritten 2919 * If those blocks were preallocated, we mark sure they are split, but 2920 * still keep the range to write as unwritten. 2921 * 2922 * The unwritten extents will be converted to written when DIO is completed. 2923 * For async direct IO, since the IO may still pending when return, we 2924 * set up an end_io call back function, which will do the conversion 2925 * when async direct IO completed. 2926 * 2927 * If the O_DIRECT write will extend the file then add this inode to the 2928 * orphan list. So recovery will truncate it back to the original size 2929 * if the machine crashes during the write. 2930 * 2931 */ 2932 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb, 2933 struct iov_iter *iter, loff_t offset) 2934 { 2935 struct file *file = iocb->ki_filp; 2936 struct inode *inode = file->f_mapping->host; 2937 ssize_t ret; 2938 size_t count = iov_iter_count(iter); 2939 int overwrite = 0; 2940 get_block_t *get_block_func = NULL; 2941 int dio_flags = 0; 2942 loff_t final_size = offset + count; 2943 ext4_io_end_t *io_end = NULL; 2944 2945 /* Use the old path for reads and writes beyond i_size. */ 2946 if (rw != WRITE || final_size > inode->i_size) 2947 return ext4_ind_direct_IO(rw, iocb, iter, offset); 2948 2949 BUG_ON(iocb->private == NULL); 2950 2951 /* 2952 * Make all waiters for direct IO properly wait also for extent 2953 * conversion. This also disallows race between truncate() and 2954 * overwrite DIO as i_dio_count needs to be incremented under i_mutex. 2955 */ 2956 if (rw == WRITE) 2957 atomic_inc(&inode->i_dio_count); 2958 2959 /* If we do a overwrite dio, i_mutex locking can be released */ 2960 overwrite = *((int *)iocb->private); 2961 2962 if (overwrite) { 2963 down_read(&EXT4_I(inode)->i_data_sem); 2964 mutex_unlock(&inode->i_mutex); 2965 } 2966 2967 /* 2968 * We could direct write to holes and fallocate. 2969 * 2970 * Allocated blocks to fill the hole are marked as 2971 * unwritten to prevent parallel buffered read to expose 2972 * the stale data before DIO complete the data IO. 2973 * 2974 * As to previously fallocated extents, ext4 get_block will 2975 * just simply mark the buffer mapped but still keep the 2976 * extents unwritten. 2977 * 2978 * For non AIO case, we will convert those unwritten extents 2979 * to written after return back from blockdev_direct_IO. 2980 * 2981 * For async DIO, the conversion needs to be deferred when the 2982 * IO is completed. The ext4 end_io callback function will be 2983 * called to take care of the conversion work. Here for async 2984 * case, we allocate an io_end structure to hook to the iocb. 2985 */ 2986 iocb->private = NULL; 2987 ext4_inode_aio_set(inode, NULL); 2988 if (!is_sync_kiocb(iocb)) { 2989 io_end = ext4_init_io_end(inode, GFP_NOFS); 2990 if (!io_end) { 2991 ret = -ENOMEM; 2992 goto retake_lock; 2993 } 2994 /* 2995 * Grab reference for DIO. Will be dropped in ext4_end_io_dio() 2996 */ 2997 iocb->private = ext4_get_io_end(io_end); 2998 /* 2999 * we save the io structure for current async direct 3000 * IO, so that later ext4_map_blocks() could flag the 3001 * io structure whether there is a unwritten extents 3002 * needs to be converted when IO is completed. 3003 */ 3004 ext4_inode_aio_set(inode, io_end); 3005 } 3006 3007 if (overwrite) { 3008 get_block_func = ext4_get_block_write_nolock; 3009 } else { 3010 get_block_func = ext4_get_block_write; 3011 dio_flags = DIO_LOCKING; 3012 } 3013 ret = __blockdev_direct_IO(rw, iocb, inode, 3014 inode->i_sb->s_bdev, iter, 3015 offset, 3016 get_block_func, 3017 ext4_end_io_dio, 3018 NULL, 3019 dio_flags); 3020 3021 /* 3022 * Put our reference to io_end. This can free the io_end structure e.g. 3023 * in sync IO case or in case of error. It can even perform extent 3024 * conversion if all bios we submitted finished before we got here. 3025 * Note that in that case iocb->private can be already set to NULL 3026 * here. 3027 */ 3028 if (io_end) { 3029 ext4_inode_aio_set(inode, NULL); 3030 ext4_put_io_end(io_end); 3031 /* 3032 * When no IO was submitted ext4_end_io_dio() was not 3033 * called so we have to put iocb's reference. 3034 */ 3035 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) { 3036 WARN_ON(iocb->private != io_end); 3037 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN); 3038 ext4_put_io_end(io_end); 3039 iocb->private = NULL; 3040 } 3041 } 3042 if (ret > 0 && !overwrite && ext4_test_inode_state(inode, 3043 EXT4_STATE_DIO_UNWRITTEN)) { 3044 int err; 3045 /* 3046 * for non AIO case, since the IO is already 3047 * completed, we could do the conversion right here 3048 */ 3049 err = ext4_convert_unwritten_extents(NULL, inode, 3050 offset, ret); 3051 if (err < 0) 3052 ret = err; 3053 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3054 } 3055 3056 retake_lock: 3057 if (rw == WRITE) 3058 inode_dio_done(inode); 3059 /* take i_mutex locking again if we do a ovewrite dio */ 3060 if (overwrite) { 3061 up_read(&EXT4_I(inode)->i_data_sem); 3062 mutex_lock(&inode->i_mutex); 3063 } 3064 3065 return ret; 3066 } 3067 3068 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 3069 struct iov_iter *iter, loff_t offset) 3070 { 3071 struct file *file = iocb->ki_filp; 3072 struct inode *inode = file->f_mapping->host; 3073 size_t count = iov_iter_count(iter); 3074 ssize_t ret; 3075 3076 /* 3077 * If we are doing data journalling we don't support O_DIRECT 3078 */ 3079 if (ext4_should_journal_data(inode)) 3080 return 0; 3081 3082 /* Let buffer I/O handle the inline data case. */ 3083 if (ext4_has_inline_data(inode)) 3084 return 0; 3085 3086 trace_ext4_direct_IO_enter(inode, offset, count, rw); 3087 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3088 ret = ext4_ext_direct_IO(rw, iocb, iter, offset); 3089 else 3090 ret = ext4_ind_direct_IO(rw, iocb, iter, offset); 3091 trace_ext4_direct_IO_exit(inode, offset, count, rw, ret); 3092 return ret; 3093 } 3094 3095 /* 3096 * Pages can be marked dirty completely asynchronously from ext4's journalling 3097 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3098 * much here because ->set_page_dirty is called under VFS locks. The page is 3099 * not necessarily locked. 3100 * 3101 * We cannot just dirty the page and leave attached buffers clean, because the 3102 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3103 * or jbddirty because all the journalling code will explode. 3104 * 3105 * So what we do is to mark the page "pending dirty" and next time writepage 3106 * is called, propagate that into the buffers appropriately. 3107 */ 3108 static int ext4_journalled_set_page_dirty(struct page *page) 3109 { 3110 SetPageChecked(page); 3111 return __set_page_dirty_nobuffers(page); 3112 } 3113 3114 static const struct address_space_operations ext4_aops = { 3115 .readpage = ext4_readpage, 3116 .readpages = ext4_readpages, 3117 .writepage = ext4_writepage, 3118 .writepages = ext4_writepages, 3119 .write_begin = ext4_write_begin, 3120 .write_end = ext4_write_end, 3121 .bmap = ext4_bmap, 3122 .invalidatepage = ext4_invalidatepage, 3123 .releasepage = ext4_releasepage, 3124 .direct_IO = ext4_direct_IO, 3125 .migratepage = buffer_migrate_page, 3126 .is_partially_uptodate = block_is_partially_uptodate, 3127 .error_remove_page = generic_error_remove_page, 3128 }; 3129 3130 static const struct address_space_operations ext4_journalled_aops = { 3131 .readpage = ext4_readpage, 3132 .readpages = ext4_readpages, 3133 .writepage = ext4_writepage, 3134 .writepages = ext4_writepages, 3135 .write_begin = ext4_write_begin, 3136 .write_end = ext4_journalled_write_end, 3137 .set_page_dirty = ext4_journalled_set_page_dirty, 3138 .bmap = ext4_bmap, 3139 .invalidatepage = ext4_journalled_invalidatepage, 3140 .releasepage = ext4_releasepage, 3141 .direct_IO = ext4_direct_IO, 3142 .is_partially_uptodate = block_is_partially_uptodate, 3143 .error_remove_page = generic_error_remove_page, 3144 }; 3145 3146 static const struct address_space_operations ext4_da_aops = { 3147 .readpage = ext4_readpage, 3148 .readpages = ext4_readpages, 3149 .writepage = ext4_writepage, 3150 .writepages = ext4_writepages, 3151 .write_begin = ext4_da_write_begin, 3152 .write_end = ext4_da_write_end, 3153 .bmap = ext4_bmap, 3154 .invalidatepage = ext4_da_invalidatepage, 3155 .releasepage = ext4_releasepage, 3156 .direct_IO = ext4_direct_IO, 3157 .migratepage = buffer_migrate_page, 3158 .is_partially_uptodate = block_is_partially_uptodate, 3159 .error_remove_page = generic_error_remove_page, 3160 }; 3161 3162 void ext4_set_aops(struct inode *inode) 3163 { 3164 switch (ext4_inode_journal_mode(inode)) { 3165 case EXT4_INODE_ORDERED_DATA_MODE: 3166 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3167 break; 3168 case EXT4_INODE_WRITEBACK_DATA_MODE: 3169 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3170 break; 3171 case EXT4_INODE_JOURNAL_DATA_MODE: 3172 inode->i_mapping->a_ops = &ext4_journalled_aops; 3173 return; 3174 default: 3175 BUG(); 3176 } 3177 if (test_opt(inode->i_sb, DELALLOC)) 3178 inode->i_mapping->a_ops = &ext4_da_aops; 3179 else 3180 inode->i_mapping->a_ops = &ext4_aops; 3181 } 3182 3183 /* 3184 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3185 * starting from file offset 'from'. The range to be zero'd must 3186 * be contained with in one block. If the specified range exceeds 3187 * the end of the block it will be shortened to end of the block 3188 * that cooresponds to 'from' 3189 */ 3190 static int ext4_block_zero_page_range(handle_t *handle, 3191 struct address_space *mapping, loff_t from, loff_t length) 3192 { 3193 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3194 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3195 unsigned blocksize, max, pos; 3196 ext4_lblk_t iblock; 3197 struct inode *inode = mapping->host; 3198 struct buffer_head *bh; 3199 struct page *page; 3200 int err = 0; 3201 3202 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 3203 mapping_gfp_mask(mapping) & ~__GFP_FS); 3204 if (!page) 3205 return -ENOMEM; 3206 3207 blocksize = inode->i_sb->s_blocksize; 3208 max = blocksize - (offset & (blocksize - 1)); 3209 3210 /* 3211 * correct length if it does not fall between 3212 * 'from' and the end of the block 3213 */ 3214 if (length > max || length < 0) 3215 length = max; 3216 3217 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3218 3219 if (!page_has_buffers(page)) 3220 create_empty_buffers(page, blocksize, 0); 3221 3222 /* Find the buffer that contains "offset" */ 3223 bh = page_buffers(page); 3224 pos = blocksize; 3225 while (offset >= pos) { 3226 bh = bh->b_this_page; 3227 iblock++; 3228 pos += blocksize; 3229 } 3230 if (buffer_freed(bh)) { 3231 BUFFER_TRACE(bh, "freed: skip"); 3232 goto unlock; 3233 } 3234 if (!buffer_mapped(bh)) { 3235 BUFFER_TRACE(bh, "unmapped"); 3236 ext4_get_block(inode, iblock, bh, 0); 3237 /* unmapped? It's a hole - nothing to do */ 3238 if (!buffer_mapped(bh)) { 3239 BUFFER_TRACE(bh, "still unmapped"); 3240 goto unlock; 3241 } 3242 } 3243 3244 /* Ok, it's mapped. Make sure it's up-to-date */ 3245 if (PageUptodate(page)) 3246 set_buffer_uptodate(bh); 3247 3248 if (!buffer_uptodate(bh)) { 3249 err = -EIO; 3250 ll_rw_block(READ, 1, &bh); 3251 wait_on_buffer(bh); 3252 /* Uhhuh. Read error. Complain and punt. */ 3253 if (!buffer_uptodate(bh)) 3254 goto unlock; 3255 } 3256 if (ext4_should_journal_data(inode)) { 3257 BUFFER_TRACE(bh, "get write access"); 3258 err = ext4_journal_get_write_access(handle, bh); 3259 if (err) 3260 goto unlock; 3261 } 3262 zero_user(page, offset, length); 3263 BUFFER_TRACE(bh, "zeroed end of block"); 3264 3265 if (ext4_should_journal_data(inode)) { 3266 err = ext4_handle_dirty_metadata(handle, inode, bh); 3267 } else { 3268 err = 0; 3269 mark_buffer_dirty(bh); 3270 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) 3271 err = ext4_jbd2_file_inode(handle, inode); 3272 } 3273 3274 unlock: 3275 unlock_page(page); 3276 page_cache_release(page); 3277 return err; 3278 } 3279 3280 /* 3281 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3282 * up to the end of the block which corresponds to `from'. 3283 * This required during truncate. We need to physically zero the tail end 3284 * of that block so it doesn't yield old data if the file is later grown. 3285 */ 3286 static int ext4_block_truncate_page(handle_t *handle, 3287 struct address_space *mapping, loff_t from) 3288 { 3289 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3290 unsigned length; 3291 unsigned blocksize; 3292 struct inode *inode = mapping->host; 3293 3294 blocksize = inode->i_sb->s_blocksize; 3295 length = blocksize - (offset & (blocksize - 1)); 3296 3297 return ext4_block_zero_page_range(handle, mapping, from, length); 3298 } 3299 3300 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3301 loff_t lstart, loff_t length) 3302 { 3303 struct super_block *sb = inode->i_sb; 3304 struct address_space *mapping = inode->i_mapping; 3305 unsigned partial_start, partial_end; 3306 ext4_fsblk_t start, end; 3307 loff_t byte_end = (lstart + length - 1); 3308 int err = 0; 3309 3310 partial_start = lstart & (sb->s_blocksize - 1); 3311 partial_end = byte_end & (sb->s_blocksize - 1); 3312 3313 start = lstart >> sb->s_blocksize_bits; 3314 end = byte_end >> sb->s_blocksize_bits; 3315 3316 /* Handle partial zero within the single block */ 3317 if (start == end && 3318 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3319 err = ext4_block_zero_page_range(handle, mapping, 3320 lstart, length); 3321 return err; 3322 } 3323 /* Handle partial zero out on the start of the range */ 3324 if (partial_start) { 3325 err = ext4_block_zero_page_range(handle, mapping, 3326 lstart, sb->s_blocksize); 3327 if (err) 3328 return err; 3329 } 3330 /* Handle partial zero out on the end of the range */ 3331 if (partial_end != sb->s_blocksize - 1) 3332 err = ext4_block_zero_page_range(handle, mapping, 3333 byte_end - partial_end, 3334 partial_end + 1); 3335 return err; 3336 } 3337 3338 int ext4_can_truncate(struct inode *inode) 3339 { 3340 if (S_ISREG(inode->i_mode)) 3341 return 1; 3342 if (S_ISDIR(inode->i_mode)) 3343 return 1; 3344 if (S_ISLNK(inode->i_mode)) 3345 return !ext4_inode_is_fast_symlink(inode); 3346 return 0; 3347 } 3348 3349 /* 3350 * ext4_punch_hole: punches a hole in a file by releaseing the blocks 3351 * associated with the given offset and length 3352 * 3353 * @inode: File inode 3354 * @offset: The offset where the hole will begin 3355 * @len: The length of the hole 3356 * 3357 * Returns: 0 on success or negative on failure 3358 */ 3359 3360 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 3361 { 3362 struct super_block *sb = inode->i_sb; 3363 ext4_lblk_t first_block, stop_block; 3364 struct address_space *mapping = inode->i_mapping; 3365 loff_t first_block_offset, last_block_offset; 3366 handle_t *handle; 3367 unsigned int credits; 3368 int ret = 0; 3369 3370 if (!S_ISREG(inode->i_mode)) 3371 return -EOPNOTSUPP; 3372 3373 trace_ext4_punch_hole(inode, offset, length, 0); 3374 3375 /* 3376 * Write out all dirty pages to avoid race conditions 3377 * Then release them. 3378 */ 3379 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 3380 ret = filemap_write_and_wait_range(mapping, offset, 3381 offset + length - 1); 3382 if (ret) 3383 return ret; 3384 } 3385 3386 mutex_lock(&inode->i_mutex); 3387 3388 /* No need to punch hole beyond i_size */ 3389 if (offset >= inode->i_size) 3390 goto out_mutex; 3391 3392 /* 3393 * If the hole extends beyond i_size, set the hole 3394 * to end after the page that contains i_size 3395 */ 3396 if (offset + length > inode->i_size) { 3397 length = inode->i_size + 3398 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) - 3399 offset; 3400 } 3401 3402 if (offset & (sb->s_blocksize - 1) || 3403 (offset + length) & (sb->s_blocksize - 1)) { 3404 /* 3405 * Attach jinode to inode for jbd2 if we do any zeroing of 3406 * partial block 3407 */ 3408 ret = ext4_inode_attach_jinode(inode); 3409 if (ret < 0) 3410 goto out_mutex; 3411 3412 } 3413 3414 first_block_offset = round_up(offset, sb->s_blocksize); 3415 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 3416 3417 /* Now release the pages and zero block aligned part of pages*/ 3418 if (last_block_offset > first_block_offset) 3419 truncate_pagecache_range(inode, first_block_offset, 3420 last_block_offset); 3421 3422 /* Wait all existing dio workers, newcomers will block on i_mutex */ 3423 ext4_inode_block_unlocked_dio(inode); 3424 inode_dio_wait(inode); 3425 3426 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3427 credits = ext4_writepage_trans_blocks(inode); 3428 else 3429 credits = ext4_blocks_for_truncate(inode); 3430 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3431 if (IS_ERR(handle)) { 3432 ret = PTR_ERR(handle); 3433 ext4_std_error(sb, ret); 3434 goto out_dio; 3435 } 3436 3437 ret = ext4_zero_partial_blocks(handle, inode, offset, 3438 length); 3439 if (ret) 3440 goto out_stop; 3441 3442 first_block = (offset + sb->s_blocksize - 1) >> 3443 EXT4_BLOCK_SIZE_BITS(sb); 3444 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 3445 3446 /* If there are no blocks to remove, return now */ 3447 if (first_block >= stop_block) 3448 goto out_stop; 3449 3450 down_write(&EXT4_I(inode)->i_data_sem); 3451 ext4_discard_preallocations(inode); 3452 3453 ret = ext4_es_remove_extent(inode, first_block, 3454 stop_block - first_block); 3455 if (ret) { 3456 up_write(&EXT4_I(inode)->i_data_sem); 3457 goto out_stop; 3458 } 3459 3460 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3461 ret = ext4_ext_remove_space(inode, first_block, 3462 stop_block - 1); 3463 else 3464 ret = ext4_ind_remove_space(handle, inode, first_block, 3465 stop_block); 3466 3467 up_write(&EXT4_I(inode)->i_data_sem); 3468 if (IS_SYNC(inode)) 3469 ext4_handle_sync(handle); 3470 3471 /* Now release the pages again to reduce race window */ 3472 if (last_block_offset > first_block_offset) 3473 truncate_pagecache_range(inode, first_block_offset, 3474 last_block_offset); 3475 3476 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3477 ext4_mark_inode_dirty(handle, inode); 3478 out_stop: 3479 ext4_journal_stop(handle); 3480 out_dio: 3481 ext4_inode_resume_unlocked_dio(inode); 3482 out_mutex: 3483 mutex_unlock(&inode->i_mutex); 3484 return ret; 3485 } 3486 3487 int ext4_inode_attach_jinode(struct inode *inode) 3488 { 3489 struct ext4_inode_info *ei = EXT4_I(inode); 3490 struct jbd2_inode *jinode; 3491 3492 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 3493 return 0; 3494 3495 jinode = jbd2_alloc_inode(GFP_KERNEL); 3496 spin_lock(&inode->i_lock); 3497 if (!ei->jinode) { 3498 if (!jinode) { 3499 spin_unlock(&inode->i_lock); 3500 return -ENOMEM; 3501 } 3502 ei->jinode = jinode; 3503 jbd2_journal_init_jbd_inode(ei->jinode, inode); 3504 jinode = NULL; 3505 } 3506 spin_unlock(&inode->i_lock); 3507 if (unlikely(jinode != NULL)) 3508 jbd2_free_inode(jinode); 3509 return 0; 3510 } 3511 3512 /* 3513 * ext4_truncate() 3514 * 3515 * We block out ext4_get_block() block instantiations across the entire 3516 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 3517 * simultaneously on behalf of the same inode. 3518 * 3519 * As we work through the truncate and commit bits of it to the journal there 3520 * is one core, guiding principle: the file's tree must always be consistent on 3521 * disk. We must be able to restart the truncate after a crash. 3522 * 3523 * The file's tree may be transiently inconsistent in memory (although it 3524 * probably isn't), but whenever we close off and commit a journal transaction, 3525 * the contents of (the filesystem + the journal) must be consistent and 3526 * restartable. It's pretty simple, really: bottom up, right to left (although 3527 * left-to-right works OK too). 3528 * 3529 * Note that at recovery time, journal replay occurs *before* the restart of 3530 * truncate against the orphan inode list. 3531 * 3532 * The committed inode has the new, desired i_size (which is the same as 3533 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 3534 * that this inode's truncate did not complete and it will again call 3535 * ext4_truncate() to have another go. So there will be instantiated blocks 3536 * to the right of the truncation point in a crashed ext4 filesystem. But 3537 * that's fine - as long as they are linked from the inode, the post-crash 3538 * ext4_truncate() run will find them and release them. 3539 */ 3540 void ext4_truncate(struct inode *inode) 3541 { 3542 struct ext4_inode_info *ei = EXT4_I(inode); 3543 unsigned int credits; 3544 handle_t *handle; 3545 struct address_space *mapping = inode->i_mapping; 3546 3547 /* 3548 * There is a possibility that we're either freeing the inode 3549 * or it's a completely new inode. In those cases we might not 3550 * have i_mutex locked because it's not necessary. 3551 */ 3552 if (!(inode->i_state & (I_NEW|I_FREEING))) 3553 WARN_ON(!mutex_is_locked(&inode->i_mutex)); 3554 trace_ext4_truncate_enter(inode); 3555 3556 if (!ext4_can_truncate(inode)) 3557 return; 3558 3559 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3560 3561 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 3562 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 3563 3564 if (ext4_has_inline_data(inode)) { 3565 int has_inline = 1; 3566 3567 ext4_inline_data_truncate(inode, &has_inline); 3568 if (has_inline) 3569 return; 3570 } 3571 3572 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 3573 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 3574 if (ext4_inode_attach_jinode(inode) < 0) 3575 return; 3576 } 3577 3578 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3579 credits = ext4_writepage_trans_blocks(inode); 3580 else 3581 credits = ext4_blocks_for_truncate(inode); 3582 3583 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3584 if (IS_ERR(handle)) { 3585 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 3586 return; 3587 } 3588 3589 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 3590 ext4_block_truncate_page(handle, mapping, inode->i_size); 3591 3592 /* 3593 * We add the inode to the orphan list, so that if this 3594 * truncate spans multiple transactions, and we crash, we will 3595 * resume the truncate when the filesystem recovers. It also 3596 * marks the inode dirty, to catch the new size. 3597 * 3598 * Implication: the file must always be in a sane, consistent 3599 * truncatable state while each transaction commits. 3600 */ 3601 if (ext4_orphan_add(handle, inode)) 3602 goto out_stop; 3603 3604 down_write(&EXT4_I(inode)->i_data_sem); 3605 3606 ext4_discard_preallocations(inode); 3607 3608 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3609 ext4_ext_truncate(handle, inode); 3610 else 3611 ext4_ind_truncate(handle, inode); 3612 3613 up_write(&ei->i_data_sem); 3614 3615 if (IS_SYNC(inode)) 3616 ext4_handle_sync(handle); 3617 3618 out_stop: 3619 /* 3620 * If this was a simple ftruncate() and the file will remain alive, 3621 * then we need to clear up the orphan record which we created above. 3622 * However, if this was a real unlink then we were called by 3623 * ext4_evict_inode(), and we allow that function to clean up the 3624 * orphan info for us. 3625 */ 3626 if (inode->i_nlink) 3627 ext4_orphan_del(handle, inode); 3628 3629 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3630 ext4_mark_inode_dirty(handle, inode); 3631 ext4_journal_stop(handle); 3632 3633 trace_ext4_truncate_exit(inode); 3634 } 3635 3636 /* 3637 * ext4_get_inode_loc returns with an extra refcount against the inode's 3638 * underlying buffer_head on success. If 'in_mem' is true, we have all 3639 * data in memory that is needed to recreate the on-disk version of this 3640 * inode. 3641 */ 3642 static int __ext4_get_inode_loc(struct inode *inode, 3643 struct ext4_iloc *iloc, int in_mem) 3644 { 3645 struct ext4_group_desc *gdp; 3646 struct buffer_head *bh; 3647 struct super_block *sb = inode->i_sb; 3648 ext4_fsblk_t block; 3649 int inodes_per_block, inode_offset; 3650 3651 iloc->bh = NULL; 3652 if (!ext4_valid_inum(sb, inode->i_ino)) 3653 return -EIO; 3654 3655 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 3656 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 3657 if (!gdp) 3658 return -EIO; 3659 3660 /* 3661 * Figure out the offset within the block group inode table 3662 */ 3663 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 3664 inode_offset = ((inode->i_ino - 1) % 3665 EXT4_INODES_PER_GROUP(sb)); 3666 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 3667 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 3668 3669 bh = sb_getblk(sb, block); 3670 if (unlikely(!bh)) 3671 return -ENOMEM; 3672 if (!buffer_uptodate(bh)) { 3673 lock_buffer(bh); 3674 3675 /* 3676 * If the buffer has the write error flag, we have failed 3677 * to write out another inode in the same block. In this 3678 * case, we don't have to read the block because we may 3679 * read the old inode data successfully. 3680 */ 3681 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 3682 set_buffer_uptodate(bh); 3683 3684 if (buffer_uptodate(bh)) { 3685 /* someone brought it uptodate while we waited */ 3686 unlock_buffer(bh); 3687 goto has_buffer; 3688 } 3689 3690 /* 3691 * If we have all information of the inode in memory and this 3692 * is the only valid inode in the block, we need not read the 3693 * block. 3694 */ 3695 if (in_mem) { 3696 struct buffer_head *bitmap_bh; 3697 int i, start; 3698 3699 start = inode_offset & ~(inodes_per_block - 1); 3700 3701 /* Is the inode bitmap in cache? */ 3702 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 3703 if (unlikely(!bitmap_bh)) 3704 goto make_io; 3705 3706 /* 3707 * If the inode bitmap isn't in cache then the 3708 * optimisation may end up performing two reads instead 3709 * of one, so skip it. 3710 */ 3711 if (!buffer_uptodate(bitmap_bh)) { 3712 brelse(bitmap_bh); 3713 goto make_io; 3714 } 3715 for (i = start; i < start + inodes_per_block; i++) { 3716 if (i == inode_offset) 3717 continue; 3718 if (ext4_test_bit(i, bitmap_bh->b_data)) 3719 break; 3720 } 3721 brelse(bitmap_bh); 3722 if (i == start + inodes_per_block) { 3723 /* all other inodes are free, so skip I/O */ 3724 memset(bh->b_data, 0, bh->b_size); 3725 set_buffer_uptodate(bh); 3726 unlock_buffer(bh); 3727 goto has_buffer; 3728 } 3729 } 3730 3731 make_io: 3732 /* 3733 * If we need to do any I/O, try to pre-readahead extra 3734 * blocks from the inode table. 3735 */ 3736 if (EXT4_SB(sb)->s_inode_readahead_blks) { 3737 ext4_fsblk_t b, end, table; 3738 unsigned num; 3739 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 3740 3741 table = ext4_inode_table(sb, gdp); 3742 /* s_inode_readahead_blks is always a power of 2 */ 3743 b = block & ~((ext4_fsblk_t) ra_blks - 1); 3744 if (table > b) 3745 b = table; 3746 end = b + ra_blks; 3747 num = EXT4_INODES_PER_GROUP(sb); 3748 if (ext4_has_group_desc_csum(sb)) 3749 num -= ext4_itable_unused_count(sb, gdp); 3750 table += num / inodes_per_block; 3751 if (end > table) 3752 end = table; 3753 while (b <= end) 3754 sb_breadahead(sb, b++); 3755 } 3756 3757 /* 3758 * There are other valid inodes in the buffer, this inode 3759 * has in-inode xattrs, or we don't have this inode in memory. 3760 * Read the block from disk. 3761 */ 3762 trace_ext4_load_inode(inode); 3763 get_bh(bh); 3764 bh->b_end_io = end_buffer_read_sync; 3765 submit_bh(READ | REQ_META | REQ_PRIO, bh); 3766 wait_on_buffer(bh); 3767 if (!buffer_uptodate(bh)) { 3768 EXT4_ERROR_INODE_BLOCK(inode, block, 3769 "unable to read itable block"); 3770 brelse(bh); 3771 return -EIO; 3772 } 3773 } 3774 has_buffer: 3775 iloc->bh = bh; 3776 return 0; 3777 } 3778 3779 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 3780 { 3781 /* We have all inode data except xattrs in memory here. */ 3782 return __ext4_get_inode_loc(inode, iloc, 3783 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 3784 } 3785 3786 void ext4_set_inode_flags(struct inode *inode) 3787 { 3788 unsigned int flags = EXT4_I(inode)->i_flags; 3789 unsigned int new_fl = 0; 3790 3791 if (flags & EXT4_SYNC_FL) 3792 new_fl |= S_SYNC; 3793 if (flags & EXT4_APPEND_FL) 3794 new_fl |= S_APPEND; 3795 if (flags & EXT4_IMMUTABLE_FL) 3796 new_fl |= S_IMMUTABLE; 3797 if (flags & EXT4_NOATIME_FL) 3798 new_fl |= S_NOATIME; 3799 if (flags & EXT4_DIRSYNC_FL) 3800 new_fl |= S_DIRSYNC; 3801 inode_set_flags(inode, new_fl, 3802 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 3803 } 3804 3805 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 3806 void ext4_get_inode_flags(struct ext4_inode_info *ei) 3807 { 3808 unsigned int vfs_fl; 3809 unsigned long old_fl, new_fl; 3810 3811 do { 3812 vfs_fl = ei->vfs_inode.i_flags; 3813 old_fl = ei->i_flags; 3814 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 3815 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL| 3816 EXT4_DIRSYNC_FL); 3817 if (vfs_fl & S_SYNC) 3818 new_fl |= EXT4_SYNC_FL; 3819 if (vfs_fl & S_APPEND) 3820 new_fl |= EXT4_APPEND_FL; 3821 if (vfs_fl & S_IMMUTABLE) 3822 new_fl |= EXT4_IMMUTABLE_FL; 3823 if (vfs_fl & S_NOATIME) 3824 new_fl |= EXT4_NOATIME_FL; 3825 if (vfs_fl & S_DIRSYNC) 3826 new_fl |= EXT4_DIRSYNC_FL; 3827 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl); 3828 } 3829 3830 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 3831 struct ext4_inode_info *ei) 3832 { 3833 blkcnt_t i_blocks ; 3834 struct inode *inode = &(ei->vfs_inode); 3835 struct super_block *sb = inode->i_sb; 3836 3837 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3838 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 3839 /* we are using combined 48 bit field */ 3840 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 3841 le32_to_cpu(raw_inode->i_blocks_lo); 3842 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 3843 /* i_blocks represent file system block size */ 3844 return i_blocks << (inode->i_blkbits - 9); 3845 } else { 3846 return i_blocks; 3847 } 3848 } else { 3849 return le32_to_cpu(raw_inode->i_blocks_lo); 3850 } 3851 } 3852 3853 static inline void ext4_iget_extra_inode(struct inode *inode, 3854 struct ext4_inode *raw_inode, 3855 struct ext4_inode_info *ei) 3856 { 3857 __le32 *magic = (void *)raw_inode + 3858 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 3859 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 3860 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 3861 ext4_find_inline_data_nolock(inode); 3862 } else 3863 EXT4_I(inode)->i_inline_off = 0; 3864 } 3865 3866 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 3867 { 3868 struct ext4_iloc iloc; 3869 struct ext4_inode *raw_inode; 3870 struct ext4_inode_info *ei; 3871 struct inode *inode; 3872 journal_t *journal = EXT4_SB(sb)->s_journal; 3873 long ret; 3874 int block; 3875 uid_t i_uid; 3876 gid_t i_gid; 3877 3878 inode = iget_locked(sb, ino); 3879 if (!inode) 3880 return ERR_PTR(-ENOMEM); 3881 if (!(inode->i_state & I_NEW)) 3882 return inode; 3883 3884 ei = EXT4_I(inode); 3885 iloc.bh = NULL; 3886 3887 ret = __ext4_get_inode_loc(inode, &iloc, 0); 3888 if (ret < 0) 3889 goto bad_inode; 3890 raw_inode = ext4_raw_inode(&iloc); 3891 3892 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 3893 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 3894 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 3895 EXT4_INODE_SIZE(inode->i_sb)) { 3896 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)", 3897 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize, 3898 EXT4_INODE_SIZE(inode->i_sb)); 3899 ret = -EIO; 3900 goto bad_inode; 3901 } 3902 } else 3903 ei->i_extra_isize = 0; 3904 3905 /* Precompute checksum seed for inode metadata */ 3906 if (ext4_has_metadata_csum(sb)) { 3907 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3908 __u32 csum; 3909 __le32 inum = cpu_to_le32(inode->i_ino); 3910 __le32 gen = raw_inode->i_generation; 3911 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 3912 sizeof(inum)); 3913 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 3914 sizeof(gen)); 3915 } 3916 3917 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 3918 EXT4_ERROR_INODE(inode, "checksum invalid"); 3919 ret = -EIO; 3920 goto bad_inode; 3921 } 3922 3923 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 3924 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 3925 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 3926 if (!(test_opt(inode->i_sb, NO_UID32))) { 3927 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 3928 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 3929 } 3930 i_uid_write(inode, i_uid); 3931 i_gid_write(inode, i_gid); 3932 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 3933 3934 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 3935 ei->i_inline_off = 0; 3936 ei->i_dir_start_lookup = 0; 3937 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 3938 /* We now have enough fields to check if the inode was active or not. 3939 * This is needed because nfsd might try to access dead inodes 3940 * the test is that same one that e2fsck uses 3941 * NeilBrown 1999oct15 3942 */ 3943 if (inode->i_nlink == 0) { 3944 if ((inode->i_mode == 0 || 3945 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 3946 ino != EXT4_BOOT_LOADER_INO) { 3947 /* this inode is deleted */ 3948 ret = -ESTALE; 3949 goto bad_inode; 3950 } 3951 /* The only unlinked inodes we let through here have 3952 * valid i_mode and are being read by the orphan 3953 * recovery code: that's fine, we're about to complete 3954 * the process of deleting those. 3955 * OR it is the EXT4_BOOT_LOADER_INO which is 3956 * not initialized on a new filesystem. */ 3957 } 3958 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 3959 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 3960 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 3961 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) 3962 ei->i_file_acl |= 3963 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 3964 inode->i_size = ext4_isize(raw_inode); 3965 ei->i_disksize = inode->i_size; 3966 #ifdef CONFIG_QUOTA 3967 ei->i_reserved_quota = 0; 3968 #endif 3969 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 3970 ei->i_block_group = iloc.block_group; 3971 ei->i_last_alloc_group = ~0; 3972 /* 3973 * NOTE! The in-memory inode i_data array is in little-endian order 3974 * even on big-endian machines: we do NOT byteswap the block numbers! 3975 */ 3976 for (block = 0; block < EXT4_N_BLOCKS; block++) 3977 ei->i_data[block] = raw_inode->i_block[block]; 3978 INIT_LIST_HEAD(&ei->i_orphan); 3979 3980 /* 3981 * Set transaction id's of transactions that have to be committed 3982 * to finish f[data]sync. We set them to currently running transaction 3983 * as we cannot be sure that the inode or some of its metadata isn't 3984 * part of the transaction - the inode could have been reclaimed and 3985 * now it is reread from disk. 3986 */ 3987 if (journal) { 3988 transaction_t *transaction; 3989 tid_t tid; 3990 3991 read_lock(&journal->j_state_lock); 3992 if (journal->j_running_transaction) 3993 transaction = journal->j_running_transaction; 3994 else 3995 transaction = journal->j_committing_transaction; 3996 if (transaction) 3997 tid = transaction->t_tid; 3998 else 3999 tid = journal->j_commit_sequence; 4000 read_unlock(&journal->j_state_lock); 4001 ei->i_sync_tid = tid; 4002 ei->i_datasync_tid = tid; 4003 } 4004 4005 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4006 if (ei->i_extra_isize == 0) { 4007 /* The extra space is currently unused. Use it. */ 4008 ei->i_extra_isize = sizeof(struct ext4_inode) - 4009 EXT4_GOOD_OLD_INODE_SIZE; 4010 } else { 4011 ext4_iget_extra_inode(inode, raw_inode, ei); 4012 } 4013 } 4014 4015 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4016 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4017 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4018 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4019 4020 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4021 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4022 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4023 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4024 inode->i_version |= 4025 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4026 } 4027 } 4028 4029 ret = 0; 4030 if (ei->i_file_acl && 4031 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 4032 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 4033 ei->i_file_acl); 4034 ret = -EIO; 4035 goto bad_inode; 4036 } else if (!ext4_has_inline_data(inode)) { 4037 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 4038 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4039 (S_ISLNK(inode->i_mode) && 4040 !ext4_inode_is_fast_symlink(inode)))) 4041 /* Validate extent which is part of inode */ 4042 ret = ext4_ext_check_inode(inode); 4043 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4044 (S_ISLNK(inode->i_mode) && 4045 !ext4_inode_is_fast_symlink(inode))) { 4046 /* Validate block references which are part of inode */ 4047 ret = ext4_ind_check_inode(inode); 4048 } 4049 } 4050 if (ret) 4051 goto bad_inode; 4052 4053 if (S_ISREG(inode->i_mode)) { 4054 inode->i_op = &ext4_file_inode_operations; 4055 inode->i_fop = &ext4_file_operations; 4056 ext4_set_aops(inode); 4057 } else if (S_ISDIR(inode->i_mode)) { 4058 inode->i_op = &ext4_dir_inode_operations; 4059 inode->i_fop = &ext4_dir_operations; 4060 } else if (S_ISLNK(inode->i_mode)) { 4061 if (ext4_inode_is_fast_symlink(inode)) { 4062 inode->i_op = &ext4_fast_symlink_inode_operations; 4063 nd_terminate_link(ei->i_data, inode->i_size, 4064 sizeof(ei->i_data) - 1); 4065 } else { 4066 inode->i_op = &ext4_symlink_inode_operations; 4067 ext4_set_aops(inode); 4068 } 4069 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4070 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4071 inode->i_op = &ext4_special_inode_operations; 4072 if (raw_inode->i_block[0]) 4073 init_special_inode(inode, inode->i_mode, 4074 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4075 else 4076 init_special_inode(inode, inode->i_mode, 4077 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4078 } else if (ino == EXT4_BOOT_LOADER_INO) { 4079 make_bad_inode(inode); 4080 } else { 4081 ret = -EIO; 4082 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 4083 goto bad_inode; 4084 } 4085 brelse(iloc.bh); 4086 ext4_set_inode_flags(inode); 4087 unlock_new_inode(inode); 4088 return inode; 4089 4090 bad_inode: 4091 brelse(iloc.bh); 4092 iget_failed(inode); 4093 return ERR_PTR(ret); 4094 } 4095 4096 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino) 4097 { 4098 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 4099 return ERR_PTR(-EIO); 4100 return ext4_iget(sb, ino); 4101 } 4102 4103 static int ext4_inode_blocks_set(handle_t *handle, 4104 struct ext4_inode *raw_inode, 4105 struct ext4_inode_info *ei) 4106 { 4107 struct inode *inode = &(ei->vfs_inode); 4108 u64 i_blocks = inode->i_blocks; 4109 struct super_block *sb = inode->i_sb; 4110 4111 if (i_blocks <= ~0U) { 4112 /* 4113 * i_blocks can be represented in a 32 bit variable 4114 * as multiple of 512 bytes 4115 */ 4116 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4117 raw_inode->i_blocks_high = 0; 4118 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4119 return 0; 4120 } 4121 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) 4122 return -EFBIG; 4123 4124 if (i_blocks <= 0xffffffffffffULL) { 4125 /* 4126 * i_blocks can be represented in a 48 bit variable 4127 * as multiple of 512 bytes 4128 */ 4129 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4130 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4131 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4132 } else { 4133 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4134 /* i_block is stored in file system block size */ 4135 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4136 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4137 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4138 } 4139 return 0; 4140 } 4141 4142 /* 4143 * Post the struct inode info into an on-disk inode location in the 4144 * buffer-cache. This gobbles the caller's reference to the 4145 * buffer_head in the inode location struct. 4146 * 4147 * The caller must have write access to iloc->bh. 4148 */ 4149 static int ext4_do_update_inode(handle_t *handle, 4150 struct inode *inode, 4151 struct ext4_iloc *iloc) 4152 { 4153 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4154 struct ext4_inode_info *ei = EXT4_I(inode); 4155 struct buffer_head *bh = iloc->bh; 4156 struct super_block *sb = inode->i_sb; 4157 int err = 0, rc, block; 4158 int need_datasync = 0, set_large_file = 0; 4159 uid_t i_uid; 4160 gid_t i_gid; 4161 4162 spin_lock(&ei->i_raw_lock); 4163 4164 /* For fields not tracked in the in-memory inode, 4165 * initialise them to zero for new inodes. */ 4166 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4167 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4168 4169 ext4_get_inode_flags(ei); 4170 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4171 i_uid = i_uid_read(inode); 4172 i_gid = i_gid_read(inode); 4173 if (!(test_opt(inode->i_sb, NO_UID32))) { 4174 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4175 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4176 /* 4177 * Fix up interoperability with old kernels. Otherwise, old inodes get 4178 * re-used with the upper 16 bits of the uid/gid intact 4179 */ 4180 if (!ei->i_dtime) { 4181 raw_inode->i_uid_high = 4182 cpu_to_le16(high_16_bits(i_uid)); 4183 raw_inode->i_gid_high = 4184 cpu_to_le16(high_16_bits(i_gid)); 4185 } else { 4186 raw_inode->i_uid_high = 0; 4187 raw_inode->i_gid_high = 0; 4188 } 4189 } else { 4190 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4191 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4192 raw_inode->i_uid_high = 0; 4193 raw_inode->i_gid_high = 0; 4194 } 4195 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4196 4197 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4198 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4199 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4200 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4201 4202 err = ext4_inode_blocks_set(handle, raw_inode, ei); 4203 if (err) { 4204 spin_unlock(&ei->i_raw_lock); 4205 goto out_brelse; 4206 } 4207 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4208 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4209 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 4210 raw_inode->i_file_acl_high = 4211 cpu_to_le16(ei->i_file_acl >> 32); 4212 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4213 if (ei->i_disksize != ext4_isize(raw_inode)) { 4214 ext4_isize_set(raw_inode, ei->i_disksize); 4215 need_datasync = 1; 4216 } 4217 if (ei->i_disksize > 0x7fffffffULL) { 4218 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 4219 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 4220 EXT4_SB(sb)->s_es->s_rev_level == 4221 cpu_to_le32(EXT4_GOOD_OLD_REV)) 4222 set_large_file = 1; 4223 } 4224 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4225 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4226 if (old_valid_dev(inode->i_rdev)) { 4227 raw_inode->i_block[0] = 4228 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4229 raw_inode->i_block[1] = 0; 4230 } else { 4231 raw_inode->i_block[0] = 0; 4232 raw_inode->i_block[1] = 4233 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4234 raw_inode->i_block[2] = 0; 4235 } 4236 } else if (!ext4_has_inline_data(inode)) { 4237 for (block = 0; block < EXT4_N_BLOCKS; block++) 4238 raw_inode->i_block[block] = ei->i_data[block]; 4239 } 4240 4241 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4242 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 4243 if (ei->i_extra_isize) { 4244 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4245 raw_inode->i_version_hi = 4246 cpu_to_le32(inode->i_version >> 32); 4247 raw_inode->i_extra_isize = 4248 cpu_to_le16(ei->i_extra_isize); 4249 } 4250 } 4251 4252 ext4_inode_csum_set(inode, raw_inode, ei); 4253 4254 spin_unlock(&ei->i_raw_lock); 4255 4256 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4257 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 4258 if (!err) 4259 err = rc; 4260 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 4261 if (set_large_file) { 4262 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 4263 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh); 4264 if (err) 4265 goto out_brelse; 4266 ext4_update_dynamic_rev(sb); 4267 EXT4_SET_RO_COMPAT_FEATURE(sb, 4268 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 4269 ext4_handle_sync(handle); 4270 err = ext4_handle_dirty_super(handle, sb); 4271 } 4272 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 4273 out_brelse: 4274 brelse(bh); 4275 ext4_std_error(inode->i_sb, err); 4276 return err; 4277 } 4278 4279 /* 4280 * ext4_write_inode() 4281 * 4282 * We are called from a few places: 4283 * 4284 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 4285 * Here, there will be no transaction running. We wait for any running 4286 * transaction to commit. 4287 * 4288 * - Within flush work (sys_sync(), kupdate and such). 4289 * We wait on commit, if told to. 4290 * 4291 * - Within iput_final() -> write_inode_now() 4292 * We wait on commit, if told to. 4293 * 4294 * In all cases it is actually safe for us to return without doing anything, 4295 * because the inode has been copied into a raw inode buffer in 4296 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 4297 * writeback. 4298 * 4299 * Note that we are absolutely dependent upon all inode dirtiers doing the 4300 * right thing: they *must* call mark_inode_dirty() after dirtying info in 4301 * which we are interested. 4302 * 4303 * It would be a bug for them to not do this. The code: 4304 * 4305 * mark_inode_dirty(inode) 4306 * stuff(); 4307 * inode->i_size = expr; 4308 * 4309 * is in error because write_inode() could occur while `stuff()' is running, 4310 * and the new i_size will be lost. Plus the inode will no longer be on the 4311 * superblock's dirty inode list. 4312 */ 4313 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 4314 { 4315 int err; 4316 4317 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC)) 4318 return 0; 4319 4320 if (EXT4_SB(inode->i_sb)->s_journal) { 4321 if (ext4_journal_current_handle()) { 4322 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 4323 dump_stack(); 4324 return -EIO; 4325 } 4326 4327 /* 4328 * No need to force transaction in WB_SYNC_NONE mode. Also 4329 * ext4_sync_fs() will force the commit after everything is 4330 * written. 4331 */ 4332 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 4333 return 0; 4334 4335 err = ext4_force_commit(inode->i_sb); 4336 } else { 4337 struct ext4_iloc iloc; 4338 4339 err = __ext4_get_inode_loc(inode, &iloc, 0); 4340 if (err) 4341 return err; 4342 /* 4343 * sync(2) will flush the whole buffer cache. No need to do 4344 * it here separately for each inode. 4345 */ 4346 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 4347 sync_dirty_buffer(iloc.bh); 4348 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 4349 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 4350 "IO error syncing inode"); 4351 err = -EIO; 4352 } 4353 brelse(iloc.bh); 4354 } 4355 return err; 4356 } 4357 4358 /* 4359 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 4360 * buffers that are attached to a page stradding i_size and are undergoing 4361 * commit. In that case we have to wait for commit to finish and try again. 4362 */ 4363 static void ext4_wait_for_tail_page_commit(struct inode *inode) 4364 { 4365 struct page *page; 4366 unsigned offset; 4367 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 4368 tid_t commit_tid = 0; 4369 int ret; 4370 4371 offset = inode->i_size & (PAGE_CACHE_SIZE - 1); 4372 /* 4373 * All buffers in the last page remain valid? Then there's nothing to 4374 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE == 4375 * blocksize case 4376 */ 4377 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits)) 4378 return; 4379 while (1) { 4380 page = find_lock_page(inode->i_mapping, 4381 inode->i_size >> PAGE_CACHE_SHIFT); 4382 if (!page) 4383 return; 4384 ret = __ext4_journalled_invalidatepage(page, offset, 4385 PAGE_CACHE_SIZE - offset); 4386 unlock_page(page); 4387 page_cache_release(page); 4388 if (ret != -EBUSY) 4389 return; 4390 commit_tid = 0; 4391 read_lock(&journal->j_state_lock); 4392 if (journal->j_committing_transaction) 4393 commit_tid = journal->j_committing_transaction->t_tid; 4394 read_unlock(&journal->j_state_lock); 4395 if (commit_tid) 4396 jbd2_log_wait_commit(journal, commit_tid); 4397 } 4398 } 4399 4400 /* 4401 * ext4_setattr() 4402 * 4403 * Called from notify_change. 4404 * 4405 * We want to trap VFS attempts to truncate the file as soon as 4406 * possible. In particular, we want to make sure that when the VFS 4407 * shrinks i_size, we put the inode on the orphan list and modify 4408 * i_disksize immediately, so that during the subsequent flushing of 4409 * dirty pages and freeing of disk blocks, we can guarantee that any 4410 * commit will leave the blocks being flushed in an unused state on 4411 * disk. (On recovery, the inode will get truncated and the blocks will 4412 * be freed, so we have a strong guarantee that no future commit will 4413 * leave these blocks visible to the user.) 4414 * 4415 * Another thing we have to assure is that if we are in ordered mode 4416 * and inode is still attached to the committing transaction, we must 4417 * we start writeout of all the dirty pages which are being truncated. 4418 * This way we are sure that all the data written in the previous 4419 * transaction are already on disk (truncate waits for pages under 4420 * writeback). 4421 * 4422 * Called with inode->i_mutex down. 4423 */ 4424 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 4425 { 4426 struct inode *inode = dentry->d_inode; 4427 int error, rc = 0; 4428 int orphan = 0; 4429 const unsigned int ia_valid = attr->ia_valid; 4430 4431 error = inode_change_ok(inode, attr); 4432 if (error) 4433 return error; 4434 4435 if (is_quota_modification(inode, attr)) 4436 dquot_initialize(inode); 4437 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 4438 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 4439 handle_t *handle; 4440 4441 /* (user+group)*(old+new) structure, inode write (sb, 4442 * inode block, ? - but truncate inode update has it) */ 4443 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 4444 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 4445 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 4446 if (IS_ERR(handle)) { 4447 error = PTR_ERR(handle); 4448 goto err_out; 4449 } 4450 error = dquot_transfer(inode, attr); 4451 if (error) { 4452 ext4_journal_stop(handle); 4453 return error; 4454 } 4455 /* Update corresponding info in inode so that everything is in 4456 * one transaction */ 4457 if (attr->ia_valid & ATTR_UID) 4458 inode->i_uid = attr->ia_uid; 4459 if (attr->ia_valid & ATTR_GID) 4460 inode->i_gid = attr->ia_gid; 4461 error = ext4_mark_inode_dirty(handle, inode); 4462 ext4_journal_stop(handle); 4463 } 4464 4465 if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) { 4466 handle_t *handle; 4467 4468 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4469 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4470 4471 if (attr->ia_size > sbi->s_bitmap_maxbytes) 4472 return -EFBIG; 4473 } 4474 4475 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size) 4476 inode_inc_iversion(inode); 4477 4478 if (S_ISREG(inode->i_mode) && 4479 (attr->ia_size < inode->i_size)) { 4480 if (ext4_should_order_data(inode)) { 4481 error = ext4_begin_ordered_truncate(inode, 4482 attr->ia_size); 4483 if (error) 4484 goto err_out; 4485 } 4486 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 4487 if (IS_ERR(handle)) { 4488 error = PTR_ERR(handle); 4489 goto err_out; 4490 } 4491 if (ext4_handle_valid(handle)) { 4492 error = ext4_orphan_add(handle, inode); 4493 orphan = 1; 4494 } 4495 down_write(&EXT4_I(inode)->i_data_sem); 4496 EXT4_I(inode)->i_disksize = attr->ia_size; 4497 rc = ext4_mark_inode_dirty(handle, inode); 4498 if (!error) 4499 error = rc; 4500 /* 4501 * We have to update i_size under i_data_sem together 4502 * with i_disksize to avoid races with writeback code 4503 * running ext4_wb_update_i_disksize(). 4504 */ 4505 if (!error) 4506 i_size_write(inode, attr->ia_size); 4507 up_write(&EXT4_I(inode)->i_data_sem); 4508 ext4_journal_stop(handle); 4509 if (error) { 4510 ext4_orphan_del(NULL, inode); 4511 goto err_out; 4512 } 4513 } else { 4514 loff_t oldsize = inode->i_size; 4515 4516 i_size_write(inode, attr->ia_size); 4517 pagecache_isize_extended(inode, oldsize, inode->i_size); 4518 } 4519 4520 /* 4521 * Blocks are going to be removed from the inode. Wait 4522 * for dio in flight. Temporarily disable 4523 * dioread_nolock to prevent livelock. 4524 */ 4525 if (orphan) { 4526 if (!ext4_should_journal_data(inode)) { 4527 ext4_inode_block_unlocked_dio(inode); 4528 inode_dio_wait(inode); 4529 ext4_inode_resume_unlocked_dio(inode); 4530 } else 4531 ext4_wait_for_tail_page_commit(inode); 4532 } 4533 /* 4534 * Truncate pagecache after we've waited for commit 4535 * in data=journal mode to make pages freeable. 4536 */ 4537 truncate_pagecache(inode, inode->i_size); 4538 } 4539 /* 4540 * We want to call ext4_truncate() even if attr->ia_size == 4541 * inode->i_size for cases like truncation of fallocated space 4542 */ 4543 if (attr->ia_valid & ATTR_SIZE) 4544 ext4_truncate(inode); 4545 4546 if (!rc) { 4547 setattr_copy(inode, attr); 4548 mark_inode_dirty(inode); 4549 } 4550 4551 /* 4552 * If the call to ext4_truncate failed to get a transaction handle at 4553 * all, we need to clean up the in-core orphan list manually. 4554 */ 4555 if (orphan && inode->i_nlink) 4556 ext4_orphan_del(NULL, inode); 4557 4558 if (!rc && (ia_valid & ATTR_MODE)) 4559 rc = posix_acl_chmod(inode, inode->i_mode); 4560 4561 err_out: 4562 ext4_std_error(inode->i_sb, error); 4563 if (!error) 4564 error = rc; 4565 return error; 4566 } 4567 4568 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 4569 struct kstat *stat) 4570 { 4571 struct inode *inode; 4572 unsigned long long delalloc_blocks; 4573 4574 inode = dentry->d_inode; 4575 generic_fillattr(inode, stat); 4576 4577 /* 4578 * If there is inline data in the inode, the inode will normally not 4579 * have data blocks allocated (it may have an external xattr block). 4580 * Report at least one sector for such files, so tools like tar, rsync, 4581 * others doen't incorrectly think the file is completely sparse. 4582 */ 4583 if (unlikely(ext4_has_inline_data(inode))) 4584 stat->blocks += (stat->size + 511) >> 9; 4585 4586 /* 4587 * We can't update i_blocks if the block allocation is delayed 4588 * otherwise in the case of system crash before the real block 4589 * allocation is done, we will have i_blocks inconsistent with 4590 * on-disk file blocks. 4591 * We always keep i_blocks updated together with real 4592 * allocation. But to not confuse with user, stat 4593 * will return the blocks that include the delayed allocation 4594 * blocks for this file. 4595 */ 4596 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 4597 EXT4_I(inode)->i_reserved_data_blocks); 4598 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 4599 return 0; 4600 } 4601 4602 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 4603 int pextents) 4604 { 4605 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4606 return ext4_ind_trans_blocks(inode, lblocks); 4607 return ext4_ext_index_trans_blocks(inode, pextents); 4608 } 4609 4610 /* 4611 * Account for index blocks, block groups bitmaps and block group 4612 * descriptor blocks if modify datablocks and index blocks 4613 * worse case, the indexs blocks spread over different block groups 4614 * 4615 * If datablocks are discontiguous, they are possible to spread over 4616 * different block groups too. If they are contiguous, with flexbg, 4617 * they could still across block group boundary. 4618 * 4619 * Also account for superblock, inode, quota and xattr blocks 4620 */ 4621 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 4622 int pextents) 4623 { 4624 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 4625 int gdpblocks; 4626 int idxblocks; 4627 int ret = 0; 4628 4629 /* 4630 * How many index blocks need to touch to map @lblocks logical blocks 4631 * to @pextents physical extents? 4632 */ 4633 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 4634 4635 ret = idxblocks; 4636 4637 /* 4638 * Now let's see how many group bitmaps and group descriptors need 4639 * to account 4640 */ 4641 groups = idxblocks + pextents; 4642 gdpblocks = groups; 4643 if (groups > ngroups) 4644 groups = ngroups; 4645 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 4646 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 4647 4648 /* bitmaps and block group descriptor blocks */ 4649 ret += groups + gdpblocks; 4650 4651 /* Blocks for super block, inode, quota and xattr blocks */ 4652 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 4653 4654 return ret; 4655 } 4656 4657 /* 4658 * Calculate the total number of credits to reserve to fit 4659 * the modification of a single pages into a single transaction, 4660 * which may include multiple chunks of block allocations. 4661 * 4662 * This could be called via ext4_write_begin() 4663 * 4664 * We need to consider the worse case, when 4665 * one new block per extent. 4666 */ 4667 int ext4_writepage_trans_blocks(struct inode *inode) 4668 { 4669 int bpp = ext4_journal_blocks_per_page(inode); 4670 int ret; 4671 4672 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 4673 4674 /* Account for data blocks for journalled mode */ 4675 if (ext4_should_journal_data(inode)) 4676 ret += bpp; 4677 return ret; 4678 } 4679 4680 /* 4681 * Calculate the journal credits for a chunk of data modification. 4682 * 4683 * This is called from DIO, fallocate or whoever calling 4684 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 4685 * 4686 * journal buffers for data blocks are not included here, as DIO 4687 * and fallocate do no need to journal data buffers. 4688 */ 4689 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 4690 { 4691 return ext4_meta_trans_blocks(inode, nrblocks, 1); 4692 } 4693 4694 /* 4695 * The caller must have previously called ext4_reserve_inode_write(). 4696 * Give this, we know that the caller already has write access to iloc->bh. 4697 */ 4698 int ext4_mark_iloc_dirty(handle_t *handle, 4699 struct inode *inode, struct ext4_iloc *iloc) 4700 { 4701 int err = 0; 4702 4703 if (IS_I_VERSION(inode)) 4704 inode_inc_iversion(inode); 4705 4706 /* the do_update_inode consumes one bh->b_count */ 4707 get_bh(iloc->bh); 4708 4709 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 4710 err = ext4_do_update_inode(handle, inode, iloc); 4711 put_bh(iloc->bh); 4712 return err; 4713 } 4714 4715 /* 4716 * On success, We end up with an outstanding reference count against 4717 * iloc->bh. This _must_ be cleaned up later. 4718 */ 4719 4720 int 4721 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 4722 struct ext4_iloc *iloc) 4723 { 4724 int err; 4725 4726 err = ext4_get_inode_loc(inode, iloc); 4727 if (!err) { 4728 BUFFER_TRACE(iloc->bh, "get_write_access"); 4729 err = ext4_journal_get_write_access(handle, iloc->bh); 4730 if (err) { 4731 brelse(iloc->bh); 4732 iloc->bh = NULL; 4733 } 4734 } 4735 ext4_std_error(inode->i_sb, err); 4736 return err; 4737 } 4738 4739 /* 4740 * Expand an inode by new_extra_isize bytes. 4741 * Returns 0 on success or negative error number on failure. 4742 */ 4743 static int ext4_expand_extra_isize(struct inode *inode, 4744 unsigned int new_extra_isize, 4745 struct ext4_iloc iloc, 4746 handle_t *handle) 4747 { 4748 struct ext4_inode *raw_inode; 4749 struct ext4_xattr_ibody_header *header; 4750 4751 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 4752 return 0; 4753 4754 raw_inode = ext4_raw_inode(&iloc); 4755 4756 header = IHDR(inode, raw_inode); 4757 4758 /* No extended attributes present */ 4759 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 4760 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 4761 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 4762 new_extra_isize); 4763 EXT4_I(inode)->i_extra_isize = new_extra_isize; 4764 return 0; 4765 } 4766 4767 /* try to expand with EAs present */ 4768 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 4769 raw_inode, handle); 4770 } 4771 4772 /* 4773 * What we do here is to mark the in-core inode as clean with respect to inode 4774 * dirtiness (it may still be data-dirty). 4775 * This means that the in-core inode may be reaped by prune_icache 4776 * without having to perform any I/O. This is a very good thing, 4777 * because *any* task may call prune_icache - even ones which 4778 * have a transaction open against a different journal. 4779 * 4780 * Is this cheating? Not really. Sure, we haven't written the 4781 * inode out, but prune_icache isn't a user-visible syncing function. 4782 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 4783 * we start and wait on commits. 4784 */ 4785 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 4786 { 4787 struct ext4_iloc iloc; 4788 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4789 static unsigned int mnt_count; 4790 int err, ret; 4791 4792 might_sleep(); 4793 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 4794 err = ext4_reserve_inode_write(handle, inode, &iloc); 4795 if (ext4_handle_valid(handle) && 4796 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 4797 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 4798 /* 4799 * We need extra buffer credits since we may write into EA block 4800 * with this same handle. If journal_extend fails, then it will 4801 * only result in a minor loss of functionality for that inode. 4802 * If this is felt to be critical, then e2fsck should be run to 4803 * force a large enough s_min_extra_isize. 4804 */ 4805 if ((jbd2_journal_extend(handle, 4806 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 4807 ret = ext4_expand_extra_isize(inode, 4808 sbi->s_want_extra_isize, 4809 iloc, handle); 4810 if (ret) { 4811 ext4_set_inode_state(inode, 4812 EXT4_STATE_NO_EXPAND); 4813 if (mnt_count != 4814 le16_to_cpu(sbi->s_es->s_mnt_count)) { 4815 ext4_warning(inode->i_sb, 4816 "Unable to expand inode %lu. Delete" 4817 " some EAs or run e2fsck.", 4818 inode->i_ino); 4819 mnt_count = 4820 le16_to_cpu(sbi->s_es->s_mnt_count); 4821 } 4822 } 4823 } 4824 } 4825 if (!err) 4826 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 4827 return err; 4828 } 4829 4830 /* 4831 * ext4_dirty_inode() is called from __mark_inode_dirty() 4832 * 4833 * We're really interested in the case where a file is being extended. 4834 * i_size has been changed by generic_commit_write() and we thus need 4835 * to include the updated inode in the current transaction. 4836 * 4837 * Also, dquot_alloc_block() will always dirty the inode when blocks 4838 * are allocated to the file. 4839 * 4840 * If the inode is marked synchronous, we don't honour that here - doing 4841 * so would cause a commit on atime updates, which we don't bother doing. 4842 * We handle synchronous inodes at the highest possible level. 4843 */ 4844 void ext4_dirty_inode(struct inode *inode, int flags) 4845 { 4846 handle_t *handle; 4847 4848 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 4849 if (IS_ERR(handle)) 4850 goto out; 4851 4852 ext4_mark_inode_dirty(handle, inode); 4853 4854 ext4_journal_stop(handle); 4855 out: 4856 return; 4857 } 4858 4859 #if 0 4860 /* 4861 * Bind an inode's backing buffer_head into this transaction, to prevent 4862 * it from being flushed to disk early. Unlike 4863 * ext4_reserve_inode_write, this leaves behind no bh reference and 4864 * returns no iloc structure, so the caller needs to repeat the iloc 4865 * lookup to mark the inode dirty later. 4866 */ 4867 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 4868 { 4869 struct ext4_iloc iloc; 4870 4871 int err = 0; 4872 if (handle) { 4873 err = ext4_get_inode_loc(inode, &iloc); 4874 if (!err) { 4875 BUFFER_TRACE(iloc.bh, "get_write_access"); 4876 err = jbd2_journal_get_write_access(handle, iloc.bh); 4877 if (!err) 4878 err = ext4_handle_dirty_metadata(handle, 4879 NULL, 4880 iloc.bh); 4881 brelse(iloc.bh); 4882 } 4883 } 4884 ext4_std_error(inode->i_sb, err); 4885 return err; 4886 } 4887 #endif 4888 4889 int ext4_change_inode_journal_flag(struct inode *inode, int val) 4890 { 4891 journal_t *journal; 4892 handle_t *handle; 4893 int err; 4894 4895 /* 4896 * We have to be very careful here: changing a data block's 4897 * journaling status dynamically is dangerous. If we write a 4898 * data block to the journal, change the status and then delete 4899 * that block, we risk forgetting to revoke the old log record 4900 * from the journal and so a subsequent replay can corrupt data. 4901 * So, first we make sure that the journal is empty and that 4902 * nobody is changing anything. 4903 */ 4904 4905 journal = EXT4_JOURNAL(inode); 4906 if (!journal) 4907 return 0; 4908 if (is_journal_aborted(journal)) 4909 return -EROFS; 4910 /* We have to allocate physical blocks for delalloc blocks 4911 * before flushing journal. otherwise delalloc blocks can not 4912 * be allocated any more. even more truncate on delalloc blocks 4913 * could trigger BUG by flushing delalloc blocks in journal. 4914 * There is no delalloc block in non-journal data mode. 4915 */ 4916 if (val && test_opt(inode->i_sb, DELALLOC)) { 4917 err = ext4_alloc_da_blocks(inode); 4918 if (err < 0) 4919 return err; 4920 } 4921 4922 /* Wait for all existing dio workers */ 4923 ext4_inode_block_unlocked_dio(inode); 4924 inode_dio_wait(inode); 4925 4926 jbd2_journal_lock_updates(journal); 4927 4928 /* 4929 * OK, there are no updates running now, and all cached data is 4930 * synced to disk. We are now in a completely consistent state 4931 * which doesn't have anything in the journal, and we know that 4932 * no filesystem updates are running, so it is safe to modify 4933 * the inode's in-core data-journaling state flag now. 4934 */ 4935 4936 if (val) 4937 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 4938 else { 4939 err = jbd2_journal_flush(journal); 4940 if (err < 0) { 4941 jbd2_journal_unlock_updates(journal); 4942 ext4_inode_resume_unlocked_dio(inode); 4943 return err; 4944 } 4945 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 4946 } 4947 ext4_set_aops(inode); 4948 4949 jbd2_journal_unlock_updates(journal); 4950 ext4_inode_resume_unlocked_dio(inode); 4951 4952 /* Finally we can mark the inode as dirty. */ 4953 4954 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 4955 if (IS_ERR(handle)) 4956 return PTR_ERR(handle); 4957 4958 err = ext4_mark_inode_dirty(handle, inode); 4959 ext4_handle_sync(handle); 4960 ext4_journal_stop(handle); 4961 ext4_std_error(inode->i_sb, err); 4962 4963 return err; 4964 } 4965 4966 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 4967 { 4968 return !buffer_mapped(bh); 4969 } 4970 4971 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 4972 { 4973 struct page *page = vmf->page; 4974 loff_t size; 4975 unsigned long len; 4976 int ret; 4977 struct file *file = vma->vm_file; 4978 struct inode *inode = file_inode(file); 4979 struct address_space *mapping = inode->i_mapping; 4980 handle_t *handle; 4981 get_block_t *get_block; 4982 int retries = 0; 4983 4984 sb_start_pagefault(inode->i_sb); 4985 file_update_time(vma->vm_file); 4986 /* Delalloc case is easy... */ 4987 if (test_opt(inode->i_sb, DELALLOC) && 4988 !ext4_should_journal_data(inode) && 4989 !ext4_nonda_switch(inode->i_sb)) { 4990 do { 4991 ret = __block_page_mkwrite(vma, vmf, 4992 ext4_da_get_block_prep); 4993 } while (ret == -ENOSPC && 4994 ext4_should_retry_alloc(inode->i_sb, &retries)); 4995 goto out_ret; 4996 } 4997 4998 lock_page(page); 4999 size = i_size_read(inode); 5000 /* Page got truncated from under us? */ 5001 if (page->mapping != mapping || page_offset(page) > size) { 5002 unlock_page(page); 5003 ret = VM_FAULT_NOPAGE; 5004 goto out; 5005 } 5006 5007 if (page->index == size >> PAGE_CACHE_SHIFT) 5008 len = size & ~PAGE_CACHE_MASK; 5009 else 5010 len = PAGE_CACHE_SIZE; 5011 /* 5012 * Return if we have all the buffers mapped. This avoids the need to do 5013 * journal_start/journal_stop which can block and take a long time 5014 */ 5015 if (page_has_buffers(page)) { 5016 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 5017 0, len, NULL, 5018 ext4_bh_unmapped)) { 5019 /* Wait so that we don't change page under IO */ 5020 wait_for_stable_page(page); 5021 ret = VM_FAULT_LOCKED; 5022 goto out; 5023 } 5024 } 5025 unlock_page(page); 5026 /* OK, we need to fill the hole... */ 5027 if (ext4_should_dioread_nolock(inode)) 5028 get_block = ext4_get_block_write; 5029 else 5030 get_block = ext4_get_block; 5031 retry_alloc: 5032 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 5033 ext4_writepage_trans_blocks(inode)); 5034 if (IS_ERR(handle)) { 5035 ret = VM_FAULT_SIGBUS; 5036 goto out; 5037 } 5038 ret = __block_page_mkwrite(vma, vmf, get_block); 5039 if (!ret && ext4_should_journal_data(inode)) { 5040 if (ext4_walk_page_buffers(handle, page_buffers(page), 0, 5041 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) { 5042 unlock_page(page); 5043 ret = VM_FAULT_SIGBUS; 5044 ext4_journal_stop(handle); 5045 goto out; 5046 } 5047 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 5048 } 5049 ext4_journal_stop(handle); 5050 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 5051 goto retry_alloc; 5052 out_ret: 5053 ret = block_page_mkwrite_return(ret); 5054 out: 5055 sb_end_pagefault(inode->i_sb); 5056 return ret; 5057 } 5058