xref: /openbmc/linux/fs/ext4/inode.c (revision 384740dc)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *	(sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *	(jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24 
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include "ext4_jbd2.h"
40 #include "xattr.h"
41 #include "acl.h"
42 #include "ext4_extents.h"
43 
44 #define MPAGE_DA_EXTENT_TAIL 0x01
45 
46 static inline int ext4_begin_ordered_truncate(struct inode *inode,
47 					      loff_t new_size)
48 {
49 	return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode,
50 						   new_size);
51 }
52 
53 static void ext4_invalidatepage(struct page *page, unsigned long offset);
54 
55 /*
56  * Test whether an inode is a fast symlink.
57  */
58 static int ext4_inode_is_fast_symlink(struct inode *inode)
59 {
60 	int ea_blocks = EXT4_I(inode)->i_file_acl ?
61 		(inode->i_sb->s_blocksize >> 9) : 0;
62 
63 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
64 }
65 
66 /*
67  * The ext4 forget function must perform a revoke if we are freeing data
68  * which has been journaled.  Metadata (eg. indirect blocks) must be
69  * revoked in all cases.
70  *
71  * "bh" may be NULL: a metadata block may have been freed from memory
72  * but there may still be a record of it in the journal, and that record
73  * still needs to be revoked.
74  */
75 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
76 			struct buffer_head *bh, ext4_fsblk_t blocknr)
77 {
78 	int err;
79 
80 	might_sleep();
81 
82 	BUFFER_TRACE(bh, "enter");
83 
84 	jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
85 		  "data mode %lx\n",
86 		  bh, is_metadata, inode->i_mode,
87 		  test_opt(inode->i_sb, DATA_FLAGS));
88 
89 	/* Never use the revoke function if we are doing full data
90 	 * journaling: there is no need to, and a V1 superblock won't
91 	 * support it.  Otherwise, only skip the revoke on un-journaled
92 	 * data blocks. */
93 
94 	if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
95 	    (!is_metadata && !ext4_should_journal_data(inode))) {
96 		if (bh) {
97 			BUFFER_TRACE(bh, "call jbd2_journal_forget");
98 			return ext4_journal_forget(handle, bh);
99 		}
100 		return 0;
101 	}
102 
103 	/*
104 	 * data!=journal && (is_metadata || should_journal_data(inode))
105 	 */
106 	BUFFER_TRACE(bh, "call ext4_journal_revoke");
107 	err = ext4_journal_revoke(handle, blocknr, bh);
108 	if (err)
109 		ext4_abort(inode->i_sb, __func__,
110 			   "error %d when attempting revoke", err);
111 	BUFFER_TRACE(bh, "exit");
112 	return err;
113 }
114 
115 /*
116  * Work out how many blocks we need to proceed with the next chunk of a
117  * truncate transaction.
118  */
119 static unsigned long blocks_for_truncate(struct inode *inode)
120 {
121 	ext4_lblk_t needed;
122 
123 	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
124 
125 	/* Give ourselves just enough room to cope with inodes in which
126 	 * i_blocks is corrupt: we've seen disk corruptions in the past
127 	 * which resulted in random data in an inode which looked enough
128 	 * like a regular file for ext4 to try to delete it.  Things
129 	 * will go a bit crazy if that happens, but at least we should
130 	 * try not to panic the whole kernel. */
131 	if (needed < 2)
132 		needed = 2;
133 
134 	/* But we need to bound the transaction so we don't overflow the
135 	 * journal. */
136 	if (needed > EXT4_MAX_TRANS_DATA)
137 		needed = EXT4_MAX_TRANS_DATA;
138 
139 	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
140 }
141 
142 /*
143  * Truncate transactions can be complex and absolutely huge.  So we need to
144  * be able to restart the transaction at a conventient checkpoint to make
145  * sure we don't overflow the journal.
146  *
147  * start_transaction gets us a new handle for a truncate transaction,
148  * and extend_transaction tries to extend the existing one a bit.  If
149  * extend fails, we need to propagate the failure up and restart the
150  * transaction in the top-level truncate loop. --sct
151  */
152 static handle_t *start_transaction(struct inode *inode)
153 {
154 	handle_t *result;
155 
156 	result = ext4_journal_start(inode, blocks_for_truncate(inode));
157 	if (!IS_ERR(result))
158 		return result;
159 
160 	ext4_std_error(inode->i_sb, PTR_ERR(result));
161 	return result;
162 }
163 
164 /*
165  * Try to extend this transaction for the purposes of truncation.
166  *
167  * Returns 0 if we managed to create more room.  If we can't create more
168  * room, and the transaction must be restarted we return 1.
169  */
170 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
171 {
172 	if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
173 		return 0;
174 	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
175 		return 0;
176 	return 1;
177 }
178 
179 /*
180  * Restart the transaction associated with *handle.  This does a commit,
181  * so before we call here everything must be consistently dirtied against
182  * this transaction.
183  */
184 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
185 {
186 	jbd_debug(2, "restarting handle %p\n", handle);
187 	return ext4_journal_restart(handle, blocks_for_truncate(inode));
188 }
189 
190 /*
191  * Called at the last iput() if i_nlink is zero.
192  */
193 void ext4_delete_inode (struct inode * inode)
194 {
195 	handle_t *handle;
196 	int err;
197 
198 	if (ext4_should_order_data(inode))
199 		ext4_begin_ordered_truncate(inode, 0);
200 	truncate_inode_pages(&inode->i_data, 0);
201 
202 	if (is_bad_inode(inode))
203 		goto no_delete;
204 
205 	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
206 	if (IS_ERR(handle)) {
207 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
208 		/*
209 		 * If we're going to skip the normal cleanup, we still need to
210 		 * make sure that the in-core orphan linked list is properly
211 		 * cleaned up.
212 		 */
213 		ext4_orphan_del(NULL, inode);
214 		goto no_delete;
215 	}
216 
217 	if (IS_SYNC(inode))
218 		handle->h_sync = 1;
219 	inode->i_size = 0;
220 	err = ext4_mark_inode_dirty(handle, inode);
221 	if (err) {
222 		ext4_warning(inode->i_sb, __func__,
223 			     "couldn't mark inode dirty (err %d)", err);
224 		goto stop_handle;
225 	}
226 	if (inode->i_blocks)
227 		ext4_truncate(inode);
228 
229 	/*
230 	 * ext4_ext_truncate() doesn't reserve any slop when it
231 	 * restarts journal transactions; therefore there may not be
232 	 * enough credits left in the handle to remove the inode from
233 	 * the orphan list and set the dtime field.
234 	 */
235 	if (handle->h_buffer_credits < 3) {
236 		err = ext4_journal_extend(handle, 3);
237 		if (err > 0)
238 			err = ext4_journal_restart(handle, 3);
239 		if (err != 0) {
240 			ext4_warning(inode->i_sb, __func__,
241 				     "couldn't extend journal (err %d)", err);
242 		stop_handle:
243 			ext4_journal_stop(handle);
244 			goto no_delete;
245 		}
246 	}
247 
248 	/*
249 	 * Kill off the orphan record which ext4_truncate created.
250 	 * AKPM: I think this can be inside the above `if'.
251 	 * Note that ext4_orphan_del() has to be able to cope with the
252 	 * deletion of a non-existent orphan - this is because we don't
253 	 * know if ext4_truncate() actually created an orphan record.
254 	 * (Well, we could do this if we need to, but heck - it works)
255 	 */
256 	ext4_orphan_del(handle, inode);
257 	EXT4_I(inode)->i_dtime	= get_seconds();
258 
259 	/*
260 	 * One subtle ordering requirement: if anything has gone wrong
261 	 * (transaction abort, IO errors, whatever), then we can still
262 	 * do these next steps (the fs will already have been marked as
263 	 * having errors), but we can't free the inode if the mark_dirty
264 	 * fails.
265 	 */
266 	if (ext4_mark_inode_dirty(handle, inode))
267 		/* If that failed, just do the required in-core inode clear. */
268 		clear_inode(inode);
269 	else
270 		ext4_free_inode(handle, inode);
271 	ext4_journal_stop(handle);
272 	return;
273 no_delete:
274 	clear_inode(inode);	/* We must guarantee clearing of inode... */
275 }
276 
277 typedef struct {
278 	__le32	*p;
279 	__le32	key;
280 	struct buffer_head *bh;
281 } Indirect;
282 
283 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
284 {
285 	p->key = *(p->p = v);
286 	p->bh = bh;
287 }
288 
289 /**
290  *	ext4_block_to_path - parse the block number into array of offsets
291  *	@inode: inode in question (we are only interested in its superblock)
292  *	@i_block: block number to be parsed
293  *	@offsets: array to store the offsets in
294  *	@boundary: set this non-zero if the referred-to block is likely to be
295  *	       followed (on disk) by an indirect block.
296  *
297  *	To store the locations of file's data ext4 uses a data structure common
298  *	for UNIX filesystems - tree of pointers anchored in the inode, with
299  *	data blocks at leaves and indirect blocks in intermediate nodes.
300  *	This function translates the block number into path in that tree -
301  *	return value is the path length and @offsets[n] is the offset of
302  *	pointer to (n+1)th node in the nth one. If @block is out of range
303  *	(negative or too large) warning is printed and zero returned.
304  *
305  *	Note: function doesn't find node addresses, so no IO is needed. All
306  *	we need to know is the capacity of indirect blocks (taken from the
307  *	inode->i_sb).
308  */
309 
310 /*
311  * Portability note: the last comparison (check that we fit into triple
312  * indirect block) is spelled differently, because otherwise on an
313  * architecture with 32-bit longs and 8Kb pages we might get into trouble
314  * if our filesystem had 8Kb blocks. We might use long long, but that would
315  * kill us on x86. Oh, well, at least the sign propagation does not matter -
316  * i_block would have to be negative in the very beginning, so we would not
317  * get there at all.
318  */
319 
320 static int ext4_block_to_path(struct inode *inode,
321 			ext4_lblk_t i_block,
322 			ext4_lblk_t offsets[4], int *boundary)
323 {
324 	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
325 	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
326 	const long direct_blocks = EXT4_NDIR_BLOCKS,
327 		indirect_blocks = ptrs,
328 		double_blocks = (1 << (ptrs_bits * 2));
329 	int n = 0;
330 	int final = 0;
331 
332 	if (i_block < 0) {
333 		ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
334 	} else if (i_block < direct_blocks) {
335 		offsets[n++] = i_block;
336 		final = direct_blocks;
337 	} else if ( (i_block -= direct_blocks) < indirect_blocks) {
338 		offsets[n++] = EXT4_IND_BLOCK;
339 		offsets[n++] = i_block;
340 		final = ptrs;
341 	} else if ((i_block -= indirect_blocks) < double_blocks) {
342 		offsets[n++] = EXT4_DIND_BLOCK;
343 		offsets[n++] = i_block >> ptrs_bits;
344 		offsets[n++] = i_block & (ptrs - 1);
345 		final = ptrs;
346 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
347 		offsets[n++] = EXT4_TIND_BLOCK;
348 		offsets[n++] = i_block >> (ptrs_bits * 2);
349 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
350 		offsets[n++] = i_block & (ptrs - 1);
351 		final = ptrs;
352 	} else {
353 		ext4_warning(inode->i_sb, "ext4_block_to_path",
354 				"block %lu > max",
355 				i_block + direct_blocks +
356 				indirect_blocks + double_blocks);
357 	}
358 	if (boundary)
359 		*boundary = final - 1 - (i_block & (ptrs - 1));
360 	return n;
361 }
362 
363 /**
364  *	ext4_get_branch - read the chain of indirect blocks leading to data
365  *	@inode: inode in question
366  *	@depth: depth of the chain (1 - direct pointer, etc.)
367  *	@offsets: offsets of pointers in inode/indirect blocks
368  *	@chain: place to store the result
369  *	@err: here we store the error value
370  *
371  *	Function fills the array of triples <key, p, bh> and returns %NULL
372  *	if everything went OK or the pointer to the last filled triple
373  *	(incomplete one) otherwise. Upon the return chain[i].key contains
374  *	the number of (i+1)-th block in the chain (as it is stored in memory,
375  *	i.e. little-endian 32-bit), chain[i].p contains the address of that
376  *	number (it points into struct inode for i==0 and into the bh->b_data
377  *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
378  *	block for i>0 and NULL for i==0. In other words, it holds the block
379  *	numbers of the chain, addresses they were taken from (and where we can
380  *	verify that chain did not change) and buffer_heads hosting these
381  *	numbers.
382  *
383  *	Function stops when it stumbles upon zero pointer (absent block)
384  *		(pointer to last triple returned, *@err == 0)
385  *	or when it gets an IO error reading an indirect block
386  *		(ditto, *@err == -EIO)
387  *	or when it reads all @depth-1 indirect blocks successfully and finds
388  *	the whole chain, all way to the data (returns %NULL, *err == 0).
389  *
390  *      Need to be called with
391  *      down_read(&EXT4_I(inode)->i_data_sem)
392  */
393 static Indirect *ext4_get_branch(struct inode *inode, int depth,
394 				 ext4_lblk_t  *offsets,
395 				 Indirect chain[4], int *err)
396 {
397 	struct super_block *sb = inode->i_sb;
398 	Indirect *p = chain;
399 	struct buffer_head *bh;
400 
401 	*err = 0;
402 	/* i_data is not going away, no lock needed */
403 	add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
404 	if (!p->key)
405 		goto no_block;
406 	while (--depth) {
407 		bh = sb_bread(sb, le32_to_cpu(p->key));
408 		if (!bh)
409 			goto failure;
410 		add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
411 		/* Reader: end */
412 		if (!p->key)
413 			goto no_block;
414 	}
415 	return NULL;
416 
417 failure:
418 	*err = -EIO;
419 no_block:
420 	return p;
421 }
422 
423 /**
424  *	ext4_find_near - find a place for allocation with sufficient locality
425  *	@inode: owner
426  *	@ind: descriptor of indirect block.
427  *
428  *	This function returns the preferred place for block allocation.
429  *	It is used when heuristic for sequential allocation fails.
430  *	Rules are:
431  *	  + if there is a block to the left of our position - allocate near it.
432  *	  + if pointer will live in indirect block - allocate near that block.
433  *	  + if pointer will live in inode - allocate in the same
434  *	    cylinder group.
435  *
436  * In the latter case we colour the starting block by the callers PID to
437  * prevent it from clashing with concurrent allocations for a different inode
438  * in the same block group.   The PID is used here so that functionally related
439  * files will be close-by on-disk.
440  *
441  *	Caller must make sure that @ind is valid and will stay that way.
442  */
443 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
444 {
445 	struct ext4_inode_info *ei = EXT4_I(inode);
446 	__le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
447 	__le32 *p;
448 	ext4_fsblk_t bg_start;
449 	ext4_fsblk_t last_block;
450 	ext4_grpblk_t colour;
451 
452 	/* Try to find previous block */
453 	for (p = ind->p - 1; p >= start; p--) {
454 		if (*p)
455 			return le32_to_cpu(*p);
456 	}
457 
458 	/* No such thing, so let's try location of indirect block */
459 	if (ind->bh)
460 		return ind->bh->b_blocknr;
461 
462 	/*
463 	 * It is going to be referred to from the inode itself? OK, just put it
464 	 * into the same cylinder group then.
465 	 */
466 	bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
467 	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
468 
469 	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
470 		colour = (current->pid % 16) *
471 			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
472 	else
473 		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
474 	return bg_start + colour;
475 }
476 
477 /**
478  *	ext4_find_goal - find a preferred place for allocation.
479  *	@inode: owner
480  *	@block:  block we want
481  *	@partial: pointer to the last triple within a chain
482  *
483  *	Normally this function find the preferred place for block allocation,
484  *	returns it.
485  */
486 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
487 		Indirect *partial)
488 {
489 	struct ext4_block_alloc_info *block_i;
490 
491 	block_i =  EXT4_I(inode)->i_block_alloc_info;
492 
493 	/*
494 	 * try the heuristic for sequential allocation,
495 	 * failing that at least try to get decent locality.
496 	 */
497 	if (block_i && (block == block_i->last_alloc_logical_block + 1)
498 		&& (block_i->last_alloc_physical_block != 0)) {
499 		return block_i->last_alloc_physical_block + 1;
500 	}
501 
502 	return ext4_find_near(inode, partial);
503 }
504 
505 /**
506  *	ext4_blks_to_allocate: Look up the block map and count the number
507  *	of direct blocks need to be allocated for the given branch.
508  *
509  *	@branch: chain of indirect blocks
510  *	@k: number of blocks need for indirect blocks
511  *	@blks: number of data blocks to be mapped.
512  *	@blocks_to_boundary:  the offset in the indirect block
513  *
514  *	return the total number of blocks to be allocate, including the
515  *	direct and indirect blocks.
516  */
517 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
518 		int blocks_to_boundary)
519 {
520 	unsigned long count = 0;
521 
522 	/*
523 	 * Simple case, [t,d]Indirect block(s) has not allocated yet
524 	 * then it's clear blocks on that path have not allocated
525 	 */
526 	if (k > 0) {
527 		/* right now we don't handle cross boundary allocation */
528 		if (blks < blocks_to_boundary + 1)
529 			count += blks;
530 		else
531 			count += blocks_to_boundary + 1;
532 		return count;
533 	}
534 
535 	count++;
536 	while (count < blks && count <= blocks_to_boundary &&
537 		le32_to_cpu(*(branch[0].p + count)) == 0) {
538 		count++;
539 	}
540 	return count;
541 }
542 
543 /**
544  *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
545  *	@indirect_blks: the number of blocks need to allocate for indirect
546  *			blocks
547  *
548  *	@new_blocks: on return it will store the new block numbers for
549  *	the indirect blocks(if needed) and the first direct block,
550  *	@blks:	on return it will store the total number of allocated
551  *		direct blocks
552  */
553 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
554 				ext4_lblk_t iblock, ext4_fsblk_t goal,
555 				int indirect_blks, int blks,
556 				ext4_fsblk_t new_blocks[4], int *err)
557 {
558 	int target, i;
559 	unsigned long count = 0, blk_allocated = 0;
560 	int index = 0;
561 	ext4_fsblk_t current_block = 0;
562 	int ret = 0;
563 
564 	/*
565 	 * Here we try to allocate the requested multiple blocks at once,
566 	 * on a best-effort basis.
567 	 * To build a branch, we should allocate blocks for
568 	 * the indirect blocks(if not allocated yet), and at least
569 	 * the first direct block of this branch.  That's the
570 	 * minimum number of blocks need to allocate(required)
571 	 */
572 	/* first we try to allocate the indirect blocks */
573 	target = indirect_blks;
574 	while (target > 0) {
575 		count = target;
576 		/* allocating blocks for indirect blocks and direct blocks */
577 		current_block = ext4_new_meta_blocks(handle, inode,
578 							goal, &count, err);
579 		if (*err)
580 			goto failed_out;
581 
582 		target -= count;
583 		/* allocate blocks for indirect blocks */
584 		while (index < indirect_blks && count) {
585 			new_blocks[index++] = current_block++;
586 			count--;
587 		}
588 		if (count > 0) {
589 			/*
590 			 * save the new block number
591 			 * for the first direct block
592 			 */
593 			new_blocks[index] = current_block;
594 			printk(KERN_INFO "%s returned more blocks than "
595 						"requested\n", __func__);
596 			WARN_ON(1);
597 			break;
598 		}
599 	}
600 
601 	target = blks - count ;
602 	blk_allocated = count;
603 	if (!target)
604 		goto allocated;
605 	/* Now allocate data blocks */
606 	count = target;
607 	/* allocating blocks for data blocks */
608 	current_block = ext4_new_blocks(handle, inode, iblock,
609 						goal, &count, err);
610 	if (*err && (target == blks)) {
611 		/*
612 		 * if the allocation failed and we didn't allocate
613 		 * any blocks before
614 		 */
615 		goto failed_out;
616 	}
617 	if (!*err) {
618 		if (target == blks) {
619 		/*
620 		 * save the new block number
621 		 * for the first direct block
622 		 */
623 			new_blocks[index] = current_block;
624 		}
625 		blk_allocated += count;
626 	}
627 allocated:
628 	/* total number of blocks allocated for direct blocks */
629 	ret = blk_allocated;
630 	*err = 0;
631 	return ret;
632 failed_out:
633 	for (i = 0; i <index; i++)
634 		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
635 	return ret;
636 }
637 
638 /**
639  *	ext4_alloc_branch - allocate and set up a chain of blocks.
640  *	@inode: owner
641  *	@indirect_blks: number of allocated indirect blocks
642  *	@blks: number of allocated direct blocks
643  *	@offsets: offsets (in the blocks) to store the pointers to next.
644  *	@branch: place to store the chain in.
645  *
646  *	This function allocates blocks, zeroes out all but the last one,
647  *	links them into chain and (if we are synchronous) writes them to disk.
648  *	In other words, it prepares a branch that can be spliced onto the
649  *	inode. It stores the information about that chain in the branch[], in
650  *	the same format as ext4_get_branch() would do. We are calling it after
651  *	we had read the existing part of chain and partial points to the last
652  *	triple of that (one with zero ->key). Upon the exit we have the same
653  *	picture as after the successful ext4_get_block(), except that in one
654  *	place chain is disconnected - *branch->p is still zero (we did not
655  *	set the last link), but branch->key contains the number that should
656  *	be placed into *branch->p to fill that gap.
657  *
658  *	If allocation fails we free all blocks we've allocated (and forget
659  *	their buffer_heads) and return the error value the from failed
660  *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
661  *	as described above and return 0.
662  */
663 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
664 				ext4_lblk_t iblock, int indirect_blks,
665 				int *blks, ext4_fsblk_t goal,
666 				ext4_lblk_t *offsets, Indirect *branch)
667 {
668 	int blocksize = inode->i_sb->s_blocksize;
669 	int i, n = 0;
670 	int err = 0;
671 	struct buffer_head *bh;
672 	int num;
673 	ext4_fsblk_t new_blocks[4];
674 	ext4_fsblk_t current_block;
675 
676 	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
677 				*blks, new_blocks, &err);
678 	if (err)
679 		return err;
680 
681 	branch[0].key = cpu_to_le32(new_blocks[0]);
682 	/*
683 	 * metadata blocks and data blocks are allocated.
684 	 */
685 	for (n = 1; n <= indirect_blks;  n++) {
686 		/*
687 		 * Get buffer_head for parent block, zero it out
688 		 * and set the pointer to new one, then send
689 		 * parent to disk.
690 		 */
691 		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
692 		branch[n].bh = bh;
693 		lock_buffer(bh);
694 		BUFFER_TRACE(bh, "call get_create_access");
695 		err = ext4_journal_get_create_access(handle, bh);
696 		if (err) {
697 			unlock_buffer(bh);
698 			brelse(bh);
699 			goto failed;
700 		}
701 
702 		memset(bh->b_data, 0, blocksize);
703 		branch[n].p = (__le32 *) bh->b_data + offsets[n];
704 		branch[n].key = cpu_to_le32(new_blocks[n]);
705 		*branch[n].p = branch[n].key;
706 		if ( n == indirect_blks) {
707 			current_block = new_blocks[n];
708 			/*
709 			 * End of chain, update the last new metablock of
710 			 * the chain to point to the new allocated
711 			 * data blocks numbers
712 			 */
713 			for (i=1; i < num; i++)
714 				*(branch[n].p + i) = cpu_to_le32(++current_block);
715 		}
716 		BUFFER_TRACE(bh, "marking uptodate");
717 		set_buffer_uptodate(bh);
718 		unlock_buffer(bh);
719 
720 		BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
721 		err = ext4_journal_dirty_metadata(handle, bh);
722 		if (err)
723 			goto failed;
724 	}
725 	*blks = num;
726 	return err;
727 failed:
728 	/* Allocation failed, free what we already allocated */
729 	for (i = 1; i <= n ; i++) {
730 		BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
731 		ext4_journal_forget(handle, branch[i].bh);
732 	}
733 	for (i = 0; i <indirect_blks; i++)
734 		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
735 
736 	ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
737 
738 	return err;
739 }
740 
741 /**
742  * ext4_splice_branch - splice the allocated branch onto inode.
743  * @inode: owner
744  * @block: (logical) number of block we are adding
745  * @chain: chain of indirect blocks (with a missing link - see
746  *	ext4_alloc_branch)
747  * @where: location of missing link
748  * @num:   number of indirect blocks we are adding
749  * @blks:  number of direct blocks we are adding
750  *
751  * This function fills the missing link and does all housekeeping needed in
752  * inode (->i_blocks, etc.). In case of success we end up with the full
753  * chain to new block and return 0.
754  */
755 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
756 			ext4_lblk_t block, Indirect *where, int num, int blks)
757 {
758 	int i;
759 	int err = 0;
760 	struct ext4_block_alloc_info *block_i;
761 	ext4_fsblk_t current_block;
762 
763 	block_i = EXT4_I(inode)->i_block_alloc_info;
764 	/*
765 	 * If we're splicing into a [td]indirect block (as opposed to the
766 	 * inode) then we need to get write access to the [td]indirect block
767 	 * before the splice.
768 	 */
769 	if (where->bh) {
770 		BUFFER_TRACE(where->bh, "get_write_access");
771 		err = ext4_journal_get_write_access(handle, where->bh);
772 		if (err)
773 			goto err_out;
774 	}
775 	/* That's it */
776 
777 	*where->p = where->key;
778 
779 	/*
780 	 * Update the host buffer_head or inode to point to more just allocated
781 	 * direct blocks blocks
782 	 */
783 	if (num == 0 && blks > 1) {
784 		current_block = le32_to_cpu(where->key) + 1;
785 		for (i = 1; i < blks; i++)
786 			*(where->p + i ) = cpu_to_le32(current_block++);
787 	}
788 
789 	/*
790 	 * update the most recently allocated logical & physical block
791 	 * in i_block_alloc_info, to assist find the proper goal block for next
792 	 * allocation
793 	 */
794 	if (block_i) {
795 		block_i->last_alloc_logical_block = block + blks - 1;
796 		block_i->last_alloc_physical_block =
797 				le32_to_cpu(where[num].key) + blks - 1;
798 	}
799 
800 	/* We are done with atomic stuff, now do the rest of housekeeping */
801 
802 	inode->i_ctime = ext4_current_time(inode);
803 	ext4_mark_inode_dirty(handle, inode);
804 
805 	/* had we spliced it onto indirect block? */
806 	if (where->bh) {
807 		/*
808 		 * If we spliced it onto an indirect block, we haven't
809 		 * altered the inode.  Note however that if it is being spliced
810 		 * onto an indirect block at the very end of the file (the
811 		 * file is growing) then we *will* alter the inode to reflect
812 		 * the new i_size.  But that is not done here - it is done in
813 		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
814 		 */
815 		jbd_debug(5, "splicing indirect only\n");
816 		BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
817 		err = ext4_journal_dirty_metadata(handle, where->bh);
818 		if (err)
819 			goto err_out;
820 	} else {
821 		/*
822 		 * OK, we spliced it into the inode itself on a direct block.
823 		 * Inode was dirtied above.
824 		 */
825 		jbd_debug(5, "splicing direct\n");
826 	}
827 	return err;
828 
829 err_out:
830 	for (i = 1; i <= num; i++) {
831 		BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
832 		ext4_journal_forget(handle, where[i].bh);
833 		ext4_free_blocks(handle, inode,
834 					le32_to_cpu(where[i-1].key), 1, 0);
835 	}
836 	ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
837 
838 	return err;
839 }
840 
841 /*
842  * Allocation strategy is simple: if we have to allocate something, we will
843  * have to go the whole way to leaf. So let's do it before attaching anything
844  * to tree, set linkage between the newborn blocks, write them if sync is
845  * required, recheck the path, free and repeat if check fails, otherwise
846  * set the last missing link (that will protect us from any truncate-generated
847  * removals - all blocks on the path are immune now) and possibly force the
848  * write on the parent block.
849  * That has a nice additional property: no special recovery from the failed
850  * allocations is needed - we simply release blocks and do not touch anything
851  * reachable from inode.
852  *
853  * `handle' can be NULL if create == 0.
854  *
855  * return > 0, # of blocks mapped or allocated.
856  * return = 0, if plain lookup failed.
857  * return < 0, error case.
858  *
859  *
860  * Need to be called with
861  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
862  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
863  */
864 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
865 		ext4_lblk_t iblock, unsigned long maxblocks,
866 		struct buffer_head *bh_result,
867 		int create, int extend_disksize)
868 {
869 	int err = -EIO;
870 	ext4_lblk_t offsets[4];
871 	Indirect chain[4];
872 	Indirect *partial;
873 	ext4_fsblk_t goal;
874 	int indirect_blks;
875 	int blocks_to_boundary = 0;
876 	int depth;
877 	struct ext4_inode_info *ei = EXT4_I(inode);
878 	int count = 0;
879 	ext4_fsblk_t first_block = 0;
880 	loff_t disksize;
881 
882 
883 	J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
884 	J_ASSERT(handle != NULL || create == 0);
885 	depth = ext4_block_to_path(inode, iblock, offsets,
886 					&blocks_to_boundary);
887 
888 	if (depth == 0)
889 		goto out;
890 
891 	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
892 
893 	/* Simplest case - block found, no allocation needed */
894 	if (!partial) {
895 		first_block = le32_to_cpu(chain[depth - 1].key);
896 		clear_buffer_new(bh_result);
897 		count++;
898 		/*map more blocks*/
899 		while (count < maxblocks && count <= blocks_to_boundary) {
900 			ext4_fsblk_t blk;
901 
902 			blk = le32_to_cpu(*(chain[depth-1].p + count));
903 
904 			if (blk == first_block + count)
905 				count++;
906 			else
907 				break;
908 		}
909 		goto got_it;
910 	}
911 
912 	/* Next simple case - plain lookup or failed read of indirect block */
913 	if (!create || err == -EIO)
914 		goto cleanup;
915 
916 	/*
917 	 * Okay, we need to do block allocation.  Lazily initialize the block
918 	 * allocation info here if necessary
919 	*/
920 	if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
921 		ext4_init_block_alloc_info(inode);
922 
923 	goal = ext4_find_goal(inode, iblock, partial);
924 
925 	/* the number of blocks need to allocate for [d,t]indirect blocks */
926 	indirect_blks = (chain + depth) - partial - 1;
927 
928 	/*
929 	 * Next look up the indirect map to count the totoal number of
930 	 * direct blocks to allocate for this branch.
931 	 */
932 	count = ext4_blks_to_allocate(partial, indirect_blks,
933 					maxblocks, blocks_to_boundary);
934 	/*
935 	 * Block out ext4_truncate while we alter the tree
936 	 */
937 	err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
938 					&count, goal,
939 					offsets + (partial - chain), partial);
940 
941 	/*
942 	 * The ext4_splice_branch call will free and forget any buffers
943 	 * on the new chain if there is a failure, but that risks using
944 	 * up transaction credits, especially for bitmaps where the
945 	 * credits cannot be returned.  Can we handle this somehow?  We
946 	 * may need to return -EAGAIN upwards in the worst case.  --sct
947 	 */
948 	if (!err)
949 		err = ext4_splice_branch(handle, inode, iblock,
950 					partial, indirect_blks, count);
951 	/*
952 	 * i_disksize growing is protected by i_data_sem.  Don't forget to
953 	 * protect it if you're about to implement concurrent
954 	 * ext4_get_block() -bzzz
955 	*/
956 	if (!err && extend_disksize) {
957 		disksize = ((loff_t) iblock + count) << inode->i_blkbits;
958 		if (disksize > i_size_read(inode))
959 			disksize = i_size_read(inode);
960 		if (disksize > ei->i_disksize)
961 			ei->i_disksize = disksize;
962 	}
963 	if (err)
964 		goto cleanup;
965 
966 	set_buffer_new(bh_result);
967 got_it:
968 	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
969 	if (count > blocks_to_boundary)
970 		set_buffer_boundary(bh_result);
971 	err = count;
972 	/* Clean up and exit */
973 	partial = chain + depth - 1;	/* the whole chain */
974 cleanup:
975 	while (partial > chain) {
976 		BUFFER_TRACE(partial->bh, "call brelse");
977 		brelse(partial->bh);
978 		partial--;
979 	}
980 	BUFFER_TRACE(bh_result, "returned");
981 out:
982 	return err;
983 }
984 
985 /*
986  * Calculate the number of metadata blocks need to reserve
987  * to allocate @blocks for non extent file based file
988  */
989 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
990 {
991 	int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
992 	int ind_blks, dind_blks, tind_blks;
993 
994 	/* number of new indirect blocks needed */
995 	ind_blks = (blocks + icap - 1) / icap;
996 
997 	dind_blks = (ind_blks + icap - 1) / icap;
998 
999 	tind_blks = 1;
1000 
1001 	return ind_blks + dind_blks + tind_blks;
1002 }
1003 
1004 /*
1005  * Calculate the number of metadata blocks need to reserve
1006  * to allocate given number of blocks
1007  */
1008 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1009 {
1010 	if (!blocks)
1011 		return 0;
1012 
1013 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1014 		return ext4_ext_calc_metadata_amount(inode, blocks);
1015 
1016 	return ext4_indirect_calc_metadata_amount(inode, blocks);
1017 }
1018 
1019 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1020 {
1021 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1022 	int total, mdb, mdb_free;
1023 
1024 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1025 	/* recalculate the number of metablocks still need to be reserved */
1026 	total = EXT4_I(inode)->i_reserved_data_blocks - used;
1027 	mdb = ext4_calc_metadata_amount(inode, total);
1028 
1029 	/* figure out how many metablocks to release */
1030 	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1031 	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1032 
1033 	/* Account for allocated meta_blocks */
1034 	mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1035 
1036 	/* update fs free blocks counter for truncate case */
1037 	percpu_counter_add(&sbi->s_freeblocks_counter, mdb_free);
1038 
1039 	/* update per-inode reservations */
1040 	BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
1041 	EXT4_I(inode)->i_reserved_data_blocks -= used;
1042 
1043 	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1044 	EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1045 	EXT4_I(inode)->i_allocated_meta_blocks = 0;
1046 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1047 }
1048 
1049 /*
1050  * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1051  * and returns if the blocks are already mapped.
1052  *
1053  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1054  * and store the allocated blocks in the result buffer head and mark it
1055  * mapped.
1056  *
1057  * If file type is extents based, it will call ext4_ext_get_blocks(),
1058  * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1059  * based files
1060  *
1061  * On success, it returns the number of blocks being mapped or allocate.
1062  * if create==0 and the blocks are pre-allocated and uninitialized block,
1063  * the result buffer head is unmapped. If the create ==1, it will make sure
1064  * the buffer head is mapped.
1065  *
1066  * It returns 0 if plain look up failed (blocks have not been allocated), in
1067  * that casem, buffer head is unmapped
1068  *
1069  * It returns the error in case of allocation failure.
1070  */
1071 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1072 			unsigned long max_blocks, struct buffer_head *bh,
1073 			int create, int extend_disksize, int flag)
1074 {
1075 	int retval;
1076 
1077 	clear_buffer_mapped(bh);
1078 
1079 	/*
1080 	 * Try to see if we can get  the block without requesting
1081 	 * for new file system block.
1082 	 */
1083 	down_read((&EXT4_I(inode)->i_data_sem));
1084 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1085 		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1086 				bh, 0, 0);
1087 	} else {
1088 		retval = ext4_get_blocks_handle(handle,
1089 				inode, block, max_blocks, bh, 0, 0);
1090 	}
1091 	up_read((&EXT4_I(inode)->i_data_sem));
1092 
1093 	/* If it is only a block(s) look up */
1094 	if (!create)
1095 		return retval;
1096 
1097 	/*
1098 	 * Returns if the blocks have already allocated
1099 	 *
1100 	 * Note that if blocks have been preallocated
1101 	 * ext4_ext_get_block() returns th create = 0
1102 	 * with buffer head unmapped.
1103 	 */
1104 	if (retval > 0 && buffer_mapped(bh))
1105 		return retval;
1106 
1107 	/*
1108 	 * New blocks allocate and/or writing to uninitialized extent
1109 	 * will possibly result in updating i_data, so we take
1110 	 * the write lock of i_data_sem, and call get_blocks()
1111 	 * with create == 1 flag.
1112 	 */
1113 	down_write((&EXT4_I(inode)->i_data_sem));
1114 
1115 	/*
1116 	 * if the caller is from delayed allocation writeout path
1117 	 * we have already reserved fs blocks for allocation
1118 	 * let the underlying get_block() function know to
1119 	 * avoid double accounting
1120 	 */
1121 	if (flag)
1122 		EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1123 	/*
1124 	 * We need to check for EXT4 here because migrate
1125 	 * could have changed the inode type in between
1126 	 */
1127 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1128 		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1129 				bh, create, extend_disksize);
1130 	} else {
1131 		retval = ext4_get_blocks_handle(handle, inode, block,
1132 				max_blocks, bh, create, extend_disksize);
1133 
1134 		if (retval > 0 && buffer_new(bh)) {
1135 			/*
1136 			 * We allocated new blocks which will result in
1137 			 * i_data's format changing.  Force the migrate
1138 			 * to fail by clearing migrate flags
1139 			 */
1140 			EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1141 							~EXT4_EXT_MIGRATE;
1142 		}
1143 	}
1144 
1145 	if (flag) {
1146 		EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1147 		/*
1148 		 * Update reserved blocks/metadata blocks
1149 		 * after successful block allocation
1150 		 * which were deferred till now
1151 		 */
1152 		if ((retval > 0) && buffer_delay(bh))
1153 			ext4_da_update_reserve_space(inode, retval);
1154 	}
1155 
1156 	up_write((&EXT4_I(inode)->i_data_sem));
1157 	return retval;
1158 }
1159 
1160 /* Maximum number of blocks we map for direct IO at once. */
1161 #define DIO_MAX_BLOCKS 4096
1162 
1163 static int ext4_get_block(struct inode *inode, sector_t iblock,
1164 			struct buffer_head *bh_result, int create)
1165 {
1166 	handle_t *handle = ext4_journal_current_handle();
1167 	int ret = 0, started = 0;
1168 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1169 	int dio_credits;
1170 
1171 	if (create && !handle) {
1172 		/* Direct IO write... */
1173 		if (max_blocks > DIO_MAX_BLOCKS)
1174 			max_blocks = DIO_MAX_BLOCKS;
1175 		dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1176 		handle = ext4_journal_start(inode, dio_credits);
1177 		if (IS_ERR(handle)) {
1178 			ret = PTR_ERR(handle);
1179 			goto out;
1180 		}
1181 		started = 1;
1182 	}
1183 
1184 	ret = ext4_get_blocks_wrap(handle, inode, iblock,
1185 					max_blocks, bh_result, create, 0, 0);
1186 	if (ret > 0) {
1187 		bh_result->b_size = (ret << inode->i_blkbits);
1188 		ret = 0;
1189 	}
1190 	if (started)
1191 		ext4_journal_stop(handle);
1192 out:
1193 	return ret;
1194 }
1195 
1196 /*
1197  * `handle' can be NULL if create is zero
1198  */
1199 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1200 				ext4_lblk_t block, int create, int *errp)
1201 {
1202 	struct buffer_head dummy;
1203 	int fatal = 0, err;
1204 
1205 	J_ASSERT(handle != NULL || create == 0);
1206 
1207 	dummy.b_state = 0;
1208 	dummy.b_blocknr = -1000;
1209 	buffer_trace_init(&dummy.b_history);
1210 	err = ext4_get_blocks_wrap(handle, inode, block, 1,
1211 					&dummy, create, 1, 0);
1212 	/*
1213 	 * ext4_get_blocks_handle() returns number of blocks
1214 	 * mapped. 0 in case of a HOLE.
1215 	 */
1216 	if (err > 0) {
1217 		if (err > 1)
1218 			WARN_ON(1);
1219 		err = 0;
1220 	}
1221 	*errp = err;
1222 	if (!err && buffer_mapped(&dummy)) {
1223 		struct buffer_head *bh;
1224 		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1225 		if (!bh) {
1226 			*errp = -EIO;
1227 			goto err;
1228 		}
1229 		if (buffer_new(&dummy)) {
1230 			J_ASSERT(create != 0);
1231 			J_ASSERT(handle != NULL);
1232 
1233 			/*
1234 			 * Now that we do not always journal data, we should
1235 			 * keep in mind whether this should always journal the
1236 			 * new buffer as metadata.  For now, regular file
1237 			 * writes use ext4_get_block instead, so it's not a
1238 			 * problem.
1239 			 */
1240 			lock_buffer(bh);
1241 			BUFFER_TRACE(bh, "call get_create_access");
1242 			fatal = ext4_journal_get_create_access(handle, bh);
1243 			if (!fatal && !buffer_uptodate(bh)) {
1244 				memset(bh->b_data,0,inode->i_sb->s_blocksize);
1245 				set_buffer_uptodate(bh);
1246 			}
1247 			unlock_buffer(bh);
1248 			BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1249 			err = ext4_journal_dirty_metadata(handle, bh);
1250 			if (!fatal)
1251 				fatal = err;
1252 		} else {
1253 			BUFFER_TRACE(bh, "not a new buffer");
1254 		}
1255 		if (fatal) {
1256 			*errp = fatal;
1257 			brelse(bh);
1258 			bh = NULL;
1259 		}
1260 		return bh;
1261 	}
1262 err:
1263 	return NULL;
1264 }
1265 
1266 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1267 			       ext4_lblk_t block, int create, int *err)
1268 {
1269 	struct buffer_head * bh;
1270 
1271 	bh = ext4_getblk(handle, inode, block, create, err);
1272 	if (!bh)
1273 		return bh;
1274 	if (buffer_uptodate(bh))
1275 		return bh;
1276 	ll_rw_block(READ_META, 1, &bh);
1277 	wait_on_buffer(bh);
1278 	if (buffer_uptodate(bh))
1279 		return bh;
1280 	put_bh(bh);
1281 	*err = -EIO;
1282 	return NULL;
1283 }
1284 
1285 static int walk_page_buffers(	handle_t *handle,
1286 				struct buffer_head *head,
1287 				unsigned from,
1288 				unsigned to,
1289 				int *partial,
1290 				int (*fn)(	handle_t *handle,
1291 						struct buffer_head *bh))
1292 {
1293 	struct buffer_head *bh;
1294 	unsigned block_start, block_end;
1295 	unsigned blocksize = head->b_size;
1296 	int err, ret = 0;
1297 	struct buffer_head *next;
1298 
1299 	for (	bh = head, block_start = 0;
1300 		ret == 0 && (bh != head || !block_start);
1301 		block_start = block_end, bh = next)
1302 	{
1303 		next = bh->b_this_page;
1304 		block_end = block_start + blocksize;
1305 		if (block_end <= from || block_start >= to) {
1306 			if (partial && !buffer_uptodate(bh))
1307 				*partial = 1;
1308 			continue;
1309 		}
1310 		err = (*fn)(handle, bh);
1311 		if (!ret)
1312 			ret = err;
1313 	}
1314 	return ret;
1315 }
1316 
1317 /*
1318  * To preserve ordering, it is essential that the hole instantiation and
1319  * the data write be encapsulated in a single transaction.  We cannot
1320  * close off a transaction and start a new one between the ext4_get_block()
1321  * and the commit_write().  So doing the jbd2_journal_start at the start of
1322  * prepare_write() is the right place.
1323  *
1324  * Also, this function can nest inside ext4_writepage() ->
1325  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1326  * has generated enough buffer credits to do the whole page.  So we won't
1327  * block on the journal in that case, which is good, because the caller may
1328  * be PF_MEMALLOC.
1329  *
1330  * By accident, ext4 can be reentered when a transaction is open via
1331  * quota file writes.  If we were to commit the transaction while thus
1332  * reentered, there can be a deadlock - we would be holding a quota
1333  * lock, and the commit would never complete if another thread had a
1334  * transaction open and was blocking on the quota lock - a ranking
1335  * violation.
1336  *
1337  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1338  * will _not_ run commit under these circumstances because handle->h_ref
1339  * is elevated.  We'll still have enough credits for the tiny quotafile
1340  * write.
1341  */
1342 static int do_journal_get_write_access(handle_t *handle,
1343 					struct buffer_head *bh)
1344 {
1345 	if (!buffer_mapped(bh) || buffer_freed(bh))
1346 		return 0;
1347 	return ext4_journal_get_write_access(handle, bh);
1348 }
1349 
1350 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1351 				loff_t pos, unsigned len, unsigned flags,
1352 				struct page **pagep, void **fsdata)
1353 {
1354  	struct inode *inode = mapping->host;
1355 	int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1356 	handle_t *handle;
1357 	int retries = 0;
1358  	struct page *page;
1359  	pgoff_t index;
1360  	unsigned from, to;
1361 
1362  	index = pos >> PAGE_CACHE_SHIFT;
1363  	from = pos & (PAGE_CACHE_SIZE - 1);
1364  	to = from + len;
1365 
1366 retry:
1367   	handle = ext4_journal_start(inode, needed_blocks);
1368   	if (IS_ERR(handle)) {
1369   		ret = PTR_ERR(handle);
1370   		goto out;
1371 	}
1372 
1373 	page = __grab_cache_page(mapping, index);
1374 	if (!page) {
1375 		ext4_journal_stop(handle);
1376 		ret = -ENOMEM;
1377 		goto out;
1378 	}
1379 	*pagep = page;
1380 
1381 	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1382 							ext4_get_block);
1383 
1384 	if (!ret && ext4_should_journal_data(inode)) {
1385 		ret = walk_page_buffers(handle, page_buffers(page),
1386 				from, to, NULL, do_journal_get_write_access);
1387 	}
1388 
1389 	if (ret) {
1390  		unlock_page(page);
1391 		ext4_journal_stop(handle);
1392  		page_cache_release(page);
1393 	}
1394 
1395 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1396 		goto retry;
1397 out:
1398 	return ret;
1399 }
1400 
1401 /* For write_end() in data=journal mode */
1402 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1403 {
1404 	if (!buffer_mapped(bh) || buffer_freed(bh))
1405 		return 0;
1406 	set_buffer_uptodate(bh);
1407 	return ext4_journal_dirty_metadata(handle, bh);
1408 }
1409 
1410 /*
1411  * We need to pick up the new inode size which generic_commit_write gave us
1412  * `file' can be NULL - eg, when called from page_symlink().
1413  *
1414  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1415  * buffers are managed internally.
1416  */
1417 static int ext4_ordered_write_end(struct file *file,
1418 				struct address_space *mapping,
1419 				loff_t pos, unsigned len, unsigned copied,
1420 				struct page *page, void *fsdata)
1421 {
1422 	handle_t *handle = ext4_journal_current_handle();
1423 	struct inode *inode = mapping->host;
1424 	int ret = 0, ret2;
1425 
1426 	ret = ext4_jbd2_file_inode(handle, inode);
1427 
1428 	if (ret == 0) {
1429 		/*
1430 		 * generic_write_end() will run mark_inode_dirty() if i_size
1431 		 * changes.  So let's piggyback the i_disksize mark_inode_dirty
1432 		 * into that.
1433 		 */
1434 		loff_t new_i_size;
1435 
1436 		new_i_size = pos + copied;
1437 		if (new_i_size > EXT4_I(inode)->i_disksize)
1438 			EXT4_I(inode)->i_disksize = new_i_size;
1439 		ret2 = generic_write_end(file, mapping, pos, len, copied,
1440 							page, fsdata);
1441 		copied = ret2;
1442 		if (ret2 < 0)
1443 			ret = ret2;
1444 	}
1445 	ret2 = ext4_journal_stop(handle);
1446 	if (!ret)
1447 		ret = ret2;
1448 
1449 	return ret ? ret : copied;
1450 }
1451 
1452 static int ext4_writeback_write_end(struct file *file,
1453 				struct address_space *mapping,
1454 				loff_t pos, unsigned len, unsigned copied,
1455 				struct page *page, void *fsdata)
1456 {
1457 	handle_t *handle = ext4_journal_current_handle();
1458 	struct inode *inode = mapping->host;
1459 	int ret = 0, ret2;
1460 	loff_t new_i_size;
1461 
1462 	new_i_size = pos + copied;
1463 	if (new_i_size > EXT4_I(inode)->i_disksize)
1464 		EXT4_I(inode)->i_disksize = new_i_size;
1465 
1466 	ret2 = generic_write_end(file, mapping, pos, len, copied,
1467 							page, fsdata);
1468 	copied = ret2;
1469 	if (ret2 < 0)
1470 		ret = ret2;
1471 
1472 	ret2 = ext4_journal_stop(handle);
1473 	if (!ret)
1474 		ret = ret2;
1475 
1476 	return ret ? ret : copied;
1477 }
1478 
1479 static int ext4_journalled_write_end(struct file *file,
1480 				struct address_space *mapping,
1481 				loff_t pos, unsigned len, unsigned copied,
1482 				struct page *page, void *fsdata)
1483 {
1484 	handle_t *handle = ext4_journal_current_handle();
1485 	struct inode *inode = mapping->host;
1486 	int ret = 0, ret2;
1487 	int partial = 0;
1488 	unsigned from, to;
1489 
1490 	from = pos & (PAGE_CACHE_SIZE - 1);
1491 	to = from + len;
1492 
1493 	if (copied < len) {
1494 		if (!PageUptodate(page))
1495 			copied = 0;
1496 		page_zero_new_buffers(page, from+copied, to);
1497 	}
1498 
1499 	ret = walk_page_buffers(handle, page_buffers(page), from,
1500 				to, &partial, write_end_fn);
1501 	if (!partial)
1502 		SetPageUptodate(page);
1503 	if (pos+copied > inode->i_size)
1504 		i_size_write(inode, pos+copied);
1505 	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1506 	if (inode->i_size > EXT4_I(inode)->i_disksize) {
1507 		EXT4_I(inode)->i_disksize = inode->i_size;
1508 		ret2 = ext4_mark_inode_dirty(handle, inode);
1509 		if (!ret)
1510 			ret = ret2;
1511 	}
1512 
1513 	unlock_page(page);
1514 	ret2 = ext4_journal_stop(handle);
1515 	if (!ret)
1516 		ret = ret2;
1517 	page_cache_release(page);
1518 
1519 	return ret ? ret : copied;
1520 }
1521 
1522 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1523 {
1524        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1525        unsigned long md_needed, mdblocks, total = 0;
1526 
1527 	/*
1528 	 * recalculate the amount of metadata blocks to reserve
1529 	 * in order to allocate nrblocks
1530 	 * worse case is one extent per block
1531 	 */
1532 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1533 	total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1534 	mdblocks = ext4_calc_metadata_amount(inode, total);
1535 	BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1536 
1537 	md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1538 	total = md_needed + nrblocks;
1539 
1540 	if (ext4_has_free_blocks(sbi, total) < total) {
1541 		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1542 		return -ENOSPC;
1543 	}
1544 	/* reduce fs free blocks counter */
1545 	percpu_counter_sub(&sbi->s_freeblocks_counter, total);
1546 
1547 	EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1548 	EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1549 
1550 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1551 	return 0;       /* success */
1552 }
1553 
1554 static void ext4_da_release_space(struct inode *inode, int to_free)
1555 {
1556 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1557 	int total, mdb, mdb_free, release;
1558 
1559 	if (!to_free)
1560 		return;		/* Nothing to release, exit */
1561 
1562 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1563 
1564 	if (!EXT4_I(inode)->i_reserved_data_blocks) {
1565 		/*
1566 		 * if there is no reserved blocks, but we try to free some
1567 		 * then the counter is messed up somewhere.
1568 		 * but since this function is called from invalidate
1569 		 * page, it's harmless to return without any action
1570 		 */
1571 		printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1572 			    "blocks for inode %lu, but there is no reserved "
1573 			    "data blocks\n", to_free, inode->i_ino);
1574 		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1575 		return;
1576 	}
1577 
1578 	/* recalculate the number of metablocks still need to be reserved */
1579 	total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1580 	mdb = ext4_calc_metadata_amount(inode, total);
1581 
1582 	/* figure out how many metablocks to release */
1583 	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1584 	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1585 
1586 	release = to_free + mdb_free;
1587 
1588 	/* update fs free blocks counter for truncate case */
1589 	percpu_counter_add(&sbi->s_freeblocks_counter, release);
1590 
1591 	/* update per-inode reservations */
1592 	BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1593 	EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1594 
1595 	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1596 	EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1597 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1598 }
1599 
1600 static void ext4_da_page_release_reservation(struct page *page,
1601 						unsigned long offset)
1602 {
1603 	int to_release = 0;
1604 	struct buffer_head *head, *bh;
1605 	unsigned int curr_off = 0;
1606 
1607 	head = page_buffers(page);
1608 	bh = head;
1609 	do {
1610 		unsigned int next_off = curr_off + bh->b_size;
1611 
1612 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1613 			to_release++;
1614 			clear_buffer_delay(bh);
1615 		}
1616 		curr_off = next_off;
1617 	} while ((bh = bh->b_this_page) != head);
1618 	ext4_da_release_space(page->mapping->host, to_release);
1619 }
1620 
1621 /*
1622  * Delayed allocation stuff
1623  */
1624 
1625 struct mpage_da_data {
1626 	struct inode *inode;
1627 	struct buffer_head lbh;			/* extent of blocks */
1628 	unsigned long first_page, next_page;	/* extent of pages */
1629 	get_block_t *get_block;
1630 	struct writeback_control *wbc;
1631 	int io_done;
1632 	long pages_written;
1633 };
1634 
1635 /*
1636  * mpage_da_submit_io - walks through extent of pages and try to write
1637  * them with writepage() call back
1638  *
1639  * @mpd->inode: inode
1640  * @mpd->first_page: first page of the extent
1641  * @mpd->next_page: page after the last page of the extent
1642  * @mpd->get_block: the filesystem's block mapper function
1643  *
1644  * By the time mpage_da_submit_io() is called we expect all blocks
1645  * to be allocated. this may be wrong if allocation failed.
1646  *
1647  * As pages are already locked by write_cache_pages(), we can't use it
1648  */
1649 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1650 {
1651 	struct address_space *mapping = mpd->inode->i_mapping;
1652 	int ret = 0, err, nr_pages, i;
1653 	unsigned long index, end;
1654 	struct pagevec pvec;
1655 
1656 	BUG_ON(mpd->next_page <= mpd->first_page);
1657 	pagevec_init(&pvec, 0);
1658 	index = mpd->first_page;
1659 	end = mpd->next_page - 1;
1660 
1661 	while (index <= end) {
1662 		/* XXX: optimize tail */
1663 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1664 		if (nr_pages == 0)
1665 			break;
1666 		for (i = 0; i < nr_pages; i++) {
1667 			struct page *page = pvec.pages[i];
1668 
1669 			index = page->index;
1670 			if (index > end)
1671 				break;
1672 			index++;
1673 
1674 			err = mapping->a_ops->writepage(page, mpd->wbc);
1675 			if (!err)
1676 				mpd->pages_written++;
1677 			/*
1678 			 * In error case, we have to continue because
1679 			 * remaining pages are still locked
1680 			 * XXX: unlock and re-dirty them?
1681 			 */
1682 			if (ret == 0)
1683 				ret = err;
1684 		}
1685 		pagevec_release(&pvec);
1686 	}
1687 	return ret;
1688 }
1689 
1690 /*
1691  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1692  *
1693  * @mpd->inode - inode to walk through
1694  * @exbh->b_blocknr - first block on a disk
1695  * @exbh->b_size - amount of space in bytes
1696  * @logical - first logical block to start assignment with
1697  *
1698  * the function goes through all passed space and put actual disk
1699  * block numbers into buffer heads, dropping BH_Delay
1700  */
1701 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1702 				 struct buffer_head *exbh)
1703 {
1704 	struct inode *inode = mpd->inode;
1705 	struct address_space *mapping = inode->i_mapping;
1706 	int blocks = exbh->b_size >> inode->i_blkbits;
1707 	sector_t pblock = exbh->b_blocknr, cur_logical;
1708 	struct buffer_head *head, *bh;
1709 	pgoff_t index, end;
1710 	struct pagevec pvec;
1711 	int nr_pages, i;
1712 
1713 	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1714 	end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1715 	cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1716 
1717 	pagevec_init(&pvec, 0);
1718 
1719 	while (index <= end) {
1720 		/* XXX: optimize tail */
1721 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1722 		if (nr_pages == 0)
1723 			break;
1724 		for (i = 0; i < nr_pages; i++) {
1725 			struct page *page = pvec.pages[i];
1726 
1727 			index = page->index;
1728 			if (index > end)
1729 				break;
1730 			index++;
1731 
1732 			BUG_ON(!PageLocked(page));
1733 			BUG_ON(PageWriteback(page));
1734 			BUG_ON(!page_has_buffers(page));
1735 
1736 			bh = page_buffers(page);
1737 			head = bh;
1738 
1739 			/* skip blocks out of the range */
1740 			do {
1741 				if (cur_logical >= logical)
1742 					break;
1743 				cur_logical++;
1744 			} while ((bh = bh->b_this_page) != head);
1745 
1746 			do {
1747 				if (cur_logical >= logical + blocks)
1748 					break;
1749 				if (buffer_delay(bh)) {
1750 					bh->b_blocknr = pblock;
1751 					clear_buffer_delay(bh);
1752 					bh->b_bdev = inode->i_sb->s_bdev;
1753 				} else if (buffer_unwritten(bh)) {
1754 					bh->b_blocknr = pblock;
1755 					clear_buffer_unwritten(bh);
1756 					set_buffer_mapped(bh);
1757 					set_buffer_new(bh);
1758 					bh->b_bdev = inode->i_sb->s_bdev;
1759 				} else if (buffer_mapped(bh))
1760 					BUG_ON(bh->b_blocknr != pblock);
1761 
1762 				cur_logical++;
1763 				pblock++;
1764 			} while ((bh = bh->b_this_page) != head);
1765 		}
1766 		pagevec_release(&pvec);
1767 	}
1768 }
1769 
1770 
1771 /*
1772  * __unmap_underlying_blocks - just a helper function to unmap
1773  * set of blocks described by @bh
1774  */
1775 static inline void __unmap_underlying_blocks(struct inode *inode,
1776 					     struct buffer_head *bh)
1777 {
1778 	struct block_device *bdev = inode->i_sb->s_bdev;
1779 	int blocks, i;
1780 
1781 	blocks = bh->b_size >> inode->i_blkbits;
1782 	for (i = 0; i < blocks; i++)
1783 		unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1784 }
1785 
1786 /*
1787  * mpage_da_map_blocks - go through given space
1788  *
1789  * @mpd->lbh - bh describing space
1790  * @mpd->get_block - the filesystem's block mapper function
1791  *
1792  * The function skips space we know is already mapped to disk blocks.
1793  *
1794  */
1795 static void mpage_da_map_blocks(struct mpage_da_data *mpd)
1796 {
1797 	int err = 0;
1798 	struct buffer_head *lbh = &mpd->lbh;
1799 	sector_t next = lbh->b_blocknr;
1800 	struct buffer_head new;
1801 
1802 	/*
1803 	 * We consider only non-mapped and non-allocated blocks
1804 	 */
1805 	if (buffer_mapped(lbh) && !buffer_delay(lbh))
1806 		return;
1807 
1808 	new.b_state = lbh->b_state;
1809 	new.b_blocknr = 0;
1810 	new.b_size = lbh->b_size;
1811 
1812 	/*
1813 	 * If we didn't accumulate anything
1814 	 * to write simply return
1815 	 */
1816 	if (!new.b_size)
1817 		return;
1818 	err = mpd->get_block(mpd->inode, next, &new, 1);
1819 	if (err)
1820 		return;
1821 	BUG_ON(new.b_size == 0);
1822 
1823 	if (buffer_new(&new))
1824 		__unmap_underlying_blocks(mpd->inode, &new);
1825 
1826 	/*
1827 	 * If blocks are delayed marked, we need to
1828 	 * put actual blocknr and drop delayed bit
1829 	 */
1830 	if (buffer_delay(lbh) || buffer_unwritten(lbh))
1831 		mpage_put_bnr_to_bhs(mpd, next, &new);
1832 
1833 	return;
1834 }
1835 
1836 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1837 		(1 << BH_Delay) | (1 << BH_Unwritten))
1838 
1839 /*
1840  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1841  *
1842  * @mpd->lbh - extent of blocks
1843  * @logical - logical number of the block in the file
1844  * @bh - bh of the block (used to access block's state)
1845  *
1846  * the function is used to collect contig. blocks in same state
1847  */
1848 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1849 				   sector_t logical, struct buffer_head *bh)
1850 {
1851 	sector_t next;
1852 	size_t b_size = bh->b_size;
1853 	struct buffer_head *lbh = &mpd->lbh;
1854 	int nrblocks = lbh->b_size >> mpd->inode->i_blkbits;
1855 
1856 	/* check if thereserved journal credits might overflow */
1857 	if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
1858 		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1859 			/*
1860 			 * With non-extent format we are limited by the journal
1861 			 * credit available.  Total credit needed to insert
1862 			 * nrblocks contiguous blocks is dependent on the
1863 			 * nrblocks.  So limit nrblocks.
1864 			 */
1865 			goto flush_it;
1866 		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1867 				EXT4_MAX_TRANS_DATA) {
1868 			/*
1869 			 * Adding the new buffer_head would make it cross the
1870 			 * allowed limit for which we have journal credit
1871 			 * reserved. So limit the new bh->b_size
1872 			 */
1873 			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1874 						mpd->inode->i_blkbits;
1875 			/* we will do mpage_da_submit_io in the next loop */
1876 		}
1877 	}
1878 	/*
1879 	 * First block in the extent
1880 	 */
1881 	if (lbh->b_size == 0) {
1882 		lbh->b_blocknr = logical;
1883 		lbh->b_size = b_size;
1884 		lbh->b_state = bh->b_state & BH_FLAGS;
1885 		return;
1886 	}
1887 
1888 	next = lbh->b_blocknr + nrblocks;
1889 	/*
1890 	 * Can we merge the block to our big extent?
1891 	 */
1892 	if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
1893 		lbh->b_size += b_size;
1894 		return;
1895 	}
1896 
1897 flush_it:
1898 	/*
1899 	 * We couldn't merge the block to our extent, so we
1900 	 * need to flush current  extent and start new one
1901 	 */
1902 	mpage_da_map_blocks(mpd);
1903 	mpage_da_submit_io(mpd);
1904 	mpd->io_done = 1;
1905 	return;
1906 }
1907 
1908 /*
1909  * __mpage_da_writepage - finds extent of pages and blocks
1910  *
1911  * @page: page to consider
1912  * @wbc: not used, we just follow rules
1913  * @data: context
1914  *
1915  * The function finds extents of pages and scan them for all blocks.
1916  */
1917 static int __mpage_da_writepage(struct page *page,
1918 				struct writeback_control *wbc, void *data)
1919 {
1920 	struct mpage_da_data *mpd = data;
1921 	struct inode *inode = mpd->inode;
1922 	struct buffer_head *bh, *head, fake;
1923 	sector_t logical;
1924 
1925 	if (mpd->io_done) {
1926 		/*
1927 		 * Rest of the page in the page_vec
1928 		 * redirty then and skip then. We will
1929 		 * try to to write them again after
1930 		 * starting a new transaction
1931 		 */
1932 		redirty_page_for_writepage(wbc, page);
1933 		unlock_page(page);
1934 		return MPAGE_DA_EXTENT_TAIL;
1935 	}
1936 	/*
1937 	 * Can we merge this page to current extent?
1938 	 */
1939 	if (mpd->next_page != page->index) {
1940 		/*
1941 		 * Nope, we can't. So, we map non-allocated blocks
1942 		 * and start IO on them using writepage()
1943 		 */
1944 		if (mpd->next_page != mpd->first_page) {
1945 			mpage_da_map_blocks(mpd);
1946 			mpage_da_submit_io(mpd);
1947 			/*
1948 			 * skip rest of the page in the page_vec
1949 			 */
1950 			mpd->io_done = 1;
1951 			redirty_page_for_writepage(wbc, page);
1952 			unlock_page(page);
1953 			return MPAGE_DA_EXTENT_TAIL;
1954 		}
1955 
1956 		/*
1957 		 * Start next extent of pages ...
1958 		 */
1959 		mpd->first_page = page->index;
1960 
1961 		/*
1962 		 * ... and blocks
1963 		 */
1964 		mpd->lbh.b_size = 0;
1965 		mpd->lbh.b_state = 0;
1966 		mpd->lbh.b_blocknr = 0;
1967 	}
1968 
1969 	mpd->next_page = page->index + 1;
1970 	logical = (sector_t) page->index <<
1971 		  (PAGE_CACHE_SHIFT - inode->i_blkbits);
1972 
1973 	if (!page_has_buffers(page)) {
1974 		/*
1975 		 * There is no attached buffer heads yet (mmap?)
1976 		 * we treat the page asfull of dirty blocks
1977 		 */
1978 		bh = &fake;
1979 		bh->b_size = PAGE_CACHE_SIZE;
1980 		bh->b_state = 0;
1981 		set_buffer_dirty(bh);
1982 		set_buffer_uptodate(bh);
1983 		mpage_add_bh_to_extent(mpd, logical, bh);
1984 		if (mpd->io_done)
1985 			return MPAGE_DA_EXTENT_TAIL;
1986 	} else {
1987 		/*
1988 		 * Page with regular buffer heads, just add all dirty ones
1989 		 */
1990 		head = page_buffers(page);
1991 		bh = head;
1992 		do {
1993 			BUG_ON(buffer_locked(bh));
1994 			if (buffer_dirty(bh) &&
1995 				(!buffer_mapped(bh) || buffer_delay(bh))) {
1996 				mpage_add_bh_to_extent(mpd, logical, bh);
1997 				if (mpd->io_done)
1998 					return MPAGE_DA_EXTENT_TAIL;
1999 			}
2000 			logical++;
2001 		} while ((bh = bh->b_this_page) != head);
2002 	}
2003 
2004 	return 0;
2005 }
2006 
2007 /*
2008  * mpage_da_writepages - walk the list of dirty pages of the given
2009  * address space, allocates non-allocated blocks, maps newly-allocated
2010  * blocks to existing bhs and issue IO them
2011  *
2012  * @mapping: address space structure to write
2013  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2014  * @get_block: the filesystem's block mapper function.
2015  *
2016  * This is a library function, which implements the writepages()
2017  * address_space_operation.
2018  */
2019 static int mpage_da_writepages(struct address_space *mapping,
2020 			       struct writeback_control *wbc,
2021 			       get_block_t get_block)
2022 {
2023 	struct mpage_da_data mpd;
2024 	long to_write;
2025 	int ret;
2026 
2027 	if (!get_block)
2028 		return generic_writepages(mapping, wbc);
2029 
2030 	mpd.wbc = wbc;
2031 	mpd.inode = mapping->host;
2032 	mpd.lbh.b_size = 0;
2033 	mpd.lbh.b_state = 0;
2034 	mpd.lbh.b_blocknr = 0;
2035 	mpd.first_page = 0;
2036 	mpd.next_page = 0;
2037 	mpd.get_block = get_block;
2038 	mpd.io_done = 0;
2039 	mpd.pages_written = 0;
2040 
2041 	to_write = wbc->nr_to_write;
2042 
2043 	ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, &mpd);
2044 
2045 	/*
2046 	 * Handle last extent of pages
2047 	 */
2048 	if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2049 		mpage_da_map_blocks(&mpd);
2050 		mpage_da_submit_io(&mpd);
2051 	}
2052 
2053 	wbc->nr_to_write = to_write - mpd.pages_written;
2054 	return ret;
2055 }
2056 
2057 /*
2058  * this is a special callback for ->write_begin() only
2059  * it's intention is to return mapped block or reserve space
2060  */
2061 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2062 				  struct buffer_head *bh_result, int create)
2063 {
2064 	int ret = 0;
2065 
2066 	BUG_ON(create == 0);
2067 	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2068 
2069 	/*
2070 	 * first, we need to know whether the block is allocated already
2071 	 * preallocated blocks are unmapped but should treated
2072 	 * the same as allocated blocks.
2073 	 */
2074 	ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1,  bh_result, 0, 0, 0);
2075 	if ((ret == 0) && !buffer_delay(bh_result)) {
2076 		/* the block isn't (pre)allocated yet, let's reserve space */
2077 		/*
2078 		 * XXX: __block_prepare_write() unmaps passed block,
2079 		 * is it OK?
2080 		 */
2081 		ret = ext4_da_reserve_space(inode, 1);
2082 		if (ret)
2083 			/* not enough space to reserve */
2084 			return ret;
2085 
2086 		map_bh(bh_result, inode->i_sb, 0);
2087 		set_buffer_new(bh_result);
2088 		set_buffer_delay(bh_result);
2089 	} else if (ret > 0) {
2090 		bh_result->b_size = (ret << inode->i_blkbits);
2091 		ret = 0;
2092 	}
2093 
2094 	return ret;
2095 }
2096 #define		EXT4_DELALLOC_RSVED	1
2097 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
2098 				   struct buffer_head *bh_result, int create)
2099 {
2100 	int ret;
2101 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2102 	loff_t disksize = EXT4_I(inode)->i_disksize;
2103 	handle_t *handle = NULL;
2104 
2105 	handle = ext4_journal_current_handle();
2106 	if (!handle) {
2107 		ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2108 				   bh_result, 0, 0, 0);
2109 		BUG_ON(!ret);
2110 	} else {
2111 		ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2112 				   bh_result, create, 0, EXT4_DELALLOC_RSVED);
2113 	}
2114 
2115 	if (ret > 0) {
2116 		bh_result->b_size = (ret << inode->i_blkbits);
2117 
2118 		/*
2119 		 * Update on-disk size along with block allocation
2120 		 * we don't use 'extend_disksize' as size may change
2121 		 * within already allocated block -bzzz
2122 		 */
2123 		disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2124 		if (disksize > i_size_read(inode))
2125 			disksize = i_size_read(inode);
2126 		if (disksize > EXT4_I(inode)->i_disksize) {
2127 			/*
2128 			 * XXX: replace with spinlock if seen contended -bzzz
2129 			 */
2130 			down_write(&EXT4_I(inode)->i_data_sem);
2131 			if (disksize > EXT4_I(inode)->i_disksize)
2132 				EXT4_I(inode)->i_disksize = disksize;
2133 			up_write(&EXT4_I(inode)->i_data_sem);
2134 
2135 			if (EXT4_I(inode)->i_disksize == disksize) {
2136 				ret = ext4_mark_inode_dirty(handle, inode);
2137 				return ret;
2138 			}
2139 		}
2140 		ret = 0;
2141 	}
2142 	return ret;
2143 }
2144 
2145 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2146 {
2147 	/*
2148 	 * unmapped buffer is possible for holes.
2149 	 * delay buffer is possible with delayed allocation
2150 	 */
2151 	return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2152 }
2153 
2154 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2155 				   struct buffer_head *bh_result, int create)
2156 {
2157 	int ret = 0;
2158 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2159 
2160 	/*
2161 	 * we don't want to do block allocation in writepage
2162 	 * so call get_block_wrap with create = 0
2163 	 */
2164 	ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2165 				   bh_result, 0, 0, 0);
2166 	if (ret > 0) {
2167 		bh_result->b_size = (ret << inode->i_blkbits);
2168 		ret = 0;
2169 	}
2170 	return ret;
2171 }
2172 
2173 /*
2174  * get called vi ext4_da_writepages after taking page lock (have journal handle)
2175  * get called via journal_submit_inode_data_buffers (no journal handle)
2176  * get called via shrink_page_list via pdflush (no journal handle)
2177  * or grab_page_cache when doing write_begin (have journal handle)
2178  */
2179 static int ext4_da_writepage(struct page *page,
2180 				struct writeback_control *wbc)
2181 {
2182 	int ret = 0;
2183 	loff_t size;
2184 	unsigned long len;
2185 	struct buffer_head *page_bufs;
2186 	struct inode *inode = page->mapping->host;
2187 
2188 	size = i_size_read(inode);
2189 	if (page->index == size >> PAGE_CACHE_SHIFT)
2190 		len = size & ~PAGE_CACHE_MASK;
2191 	else
2192 		len = PAGE_CACHE_SIZE;
2193 
2194 	if (page_has_buffers(page)) {
2195 		page_bufs = page_buffers(page);
2196 		if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2197 					ext4_bh_unmapped_or_delay)) {
2198 			/*
2199 			 * We don't want to do  block allocation
2200 			 * So redirty the page and return
2201 			 * We may reach here when we do a journal commit
2202 			 * via journal_submit_inode_data_buffers.
2203 			 * If we don't have mapping block we just ignore
2204 			 * them. We can also reach here via shrink_page_list
2205 			 */
2206 			redirty_page_for_writepage(wbc, page);
2207 			unlock_page(page);
2208 			return 0;
2209 		}
2210 	} else {
2211 		/*
2212 		 * The test for page_has_buffers() is subtle:
2213 		 * We know the page is dirty but it lost buffers. That means
2214 		 * that at some moment in time after write_begin()/write_end()
2215 		 * has been called all buffers have been clean and thus they
2216 		 * must have been written at least once. So they are all
2217 		 * mapped and we can happily proceed with mapping them
2218 		 * and writing the page.
2219 		 *
2220 		 * Try to initialize the buffer_heads and check whether
2221 		 * all are mapped and non delay. We don't want to
2222 		 * do block allocation here.
2223 		 */
2224 		ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2225 						ext4_normal_get_block_write);
2226 		if (!ret) {
2227 			page_bufs = page_buffers(page);
2228 			/* check whether all are mapped and non delay */
2229 			if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2230 						ext4_bh_unmapped_or_delay)) {
2231 				redirty_page_for_writepage(wbc, page);
2232 				unlock_page(page);
2233 				return 0;
2234 			}
2235 		} else {
2236 			/*
2237 			 * We can't do block allocation here
2238 			 * so just redity the page and unlock
2239 			 * and return
2240 			 */
2241 			redirty_page_for_writepage(wbc, page);
2242 			unlock_page(page);
2243 			return 0;
2244 		}
2245 	}
2246 
2247 	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2248 		ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2249 	else
2250 		ret = block_write_full_page(page,
2251 						ext4_normal_get_block_write,
2252 						wbc);
2253 
2254 	return ret;
2255 }
2256 
2257 /*
2258  * This is called via ext4_da_writepages() to
2259  * calulate the total number of credits to reserve to fit
2260  * a single extent allocation into a single transaction,
2261  * ext4_da_writpeages() will loop calling this before
2262  * the block allocation.
2263  */
2264 
2265 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2266 {
2267 	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2268 
2269 	/*
2270 	 * With non-extent format the journal credit needed to
2271 	 * insert nrblocks contiguous block is dependent on
2272 	 * number of contiguous block. So we will limit
2273 	 * number of contiguous block to a sane value
2274 	 */
2275 	if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2276 	    (max_blocks > EXT4_MAX_TRANS_DATA))
2277 		max_blocks = EXT4_MAX_TRANS_DATA;
2278 
2279 	return ext4_chunk_trans_blocks(inode, max_blocks);
2280 }
2281 
2282 static int ext4_da_writepages(struct address_space *mapping,
2283 			      struct writeback_control *wbc)
2284 {
2285 	handle_t *handle = NULL;
2286 	loff_t range_start = 0;
2287 	struct inode *inode = mapping->host;
2288 	int needed_blocks, ret = 0, nr_to_writebump = 0;
2289 	long to_write, pages_skipped = 0;
2290 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2291 
2292 	/*
2293 	 * No pages to write? This is mainly a kludge to avoid starting
2294 	 * a transaction for special inodes like journal inode on last iput()
2295 	 * because that could violate lock ordering on umount
2296 	 */
2297 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2298 		return 0;
2299 	/*
2300 	 * Make sure nr_to_write is >= sbi->s_mb_stream_request
2301 	 * This make sure small files blocks are allocated in
2302 	 * single attempt. This ensure that small files
2303 	 * get less fragmented.
2304 	 */
2305 	if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2306 		nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2307 		wbc->nr_to_write = sbi->s_mb_stream_request;
2308 	}
2309 
2310 	if (!wbc->range_cyclic)
2311 		/*
2312 		 * If range_cyclic is not set force range_cont
2313 		 * and save the old writeback_index
2314 		 */
2315 		wbc->range_cont = 1;
2316 
2317 	range_start =  wbc->range_start;
2318 	pages_skipped = wbc->pages_skipped;
2319 
2320 restart_loop:
2321 	to_write = wbc->nr_to_write;
2322 	while (!ret && to_write > 0) {
2323 
2324 		/*
2325 		 * we  insert one extent at a time. So we need
2326 		 * credit needed for single extent allocation.
2327 		 * journalled mode is currently not supported
2328 		 * by delalloc
2329 		 */
2330 		BUG_ON(ext4_should_journal_data(inode));
2331 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2332 
2333 		/* start a new transaction*/
2334 		handle = ext4_journal_start(inode, needed_blocks);
2335 		if (IS_ERR(handle)) {
2336 			ret = PTR_ERR(handle);
2337 			printk(KERN_EMERG "%s: jbd2_start: "
2338 			       "%ld pages, ino %lu; err %d\n", __func__,
2339 				wbc->nr_to_write, inode->i_ino, ret);
2340 			dump_stack();
2341 			goto out_writepages;
2342 		}
2343 		if (ext4_should_order_data(inode)) {
2344 			/*
2345 			 * With ordered mode we need to add
2346 			 * the inode to the journal handl
2347 			 * when we do block allocation.
2348 			 */
2349 			ret = ext4_jbd2_file_inode(handle, inode);
2350 			if (ret) {
2351 				ext4_journal_stop(handle);
2352 				goto out_writepages;
2353 			}
2354 		}
2355 
2356 		to_write -= wbc->nr_to_write;
2357 		ret = mpage_da_writepages(mapping, wbc,
2358 					  ext4_da_get_block_write);
2359 		ext4_journal_stop(handle);
2360 		if (ret == MPAGE_DA_EXTENT_TAIL) {
2361 			/*
2362 			 * got one extent now try with
2363 			 * rest of the pages
2364 			 */
2365 			to_write += wbc->nr_to_write;
2366 			ret = 0;
2367 		} else if (wbc->nr_to_write) {
2368 			/*
2369 			 * There is no more writeout needed
2370 			 * or we requested for a noblocking writeout
2371 			 * and we found the device congested
2372 			 */
2373 			to_write += wbc->nr_to_write;
2374 			break;
2375 		}
2376 		wbc->nr_to_write = to_write;
2377 	}
2378 
2379 	if (wbc->range_cont && (pages_skipped != wbc->pages_skipped)) {
2380 		/* We skipped pages in this loop */
2381 		wbc->range_start = range_start;
2382 		wbc->nr_to_write = to_write +
2383 				wbc->pages_skipped - pages_skipped;
2384 		wbc->pages_skipped = pages_skipped;
2385 		goto restart_loop;
2386 	}
2387 
2388 out_writepages:
2389 	wbc->nr_to_write = to_write - nr_to_writebump;
2390 	wbc->range_start = range_start;
2391 	return ret;
2392 }
2393 
2394 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2395 				loff_t pos, unsigned len, unsigned flags,
2396 				struct page **pagep, void **fsdata)
2397 {
2398 	int ret, retries = 0;
2399 	struct page *page;
2400 	pgoff_t index;
2401 	unsigned from, to;
2402 	struct inode *inode = mapping->host;
2403 	handle_t *handle;
2404 
2405 	index = pos >> PAGE_CACHE_SHIFT;
2406 	from = pos & (PAGE_CACHE_SIZE - 1);
2407 	to = from + len;
2408 
2409 retry:
2410 	/*
2411 	 * With delayed allocation, we don't log the i_disksize update
2412 	 * if there is delayed block allocation. But we still need
2413 	 * to journalling the i_disksize update if writes to the end
2414 	 * of file which has an already mapped buffer.
2415 	 */
2416 	handle = ext4_journal_start(inode, 1);
2417 	if (IS_ERR(handle)) {
2418 		ret = PTR_ERR(handle);
2419 		goto out;
2420 	}
2421 
2422 	page = __grab_cache_page(mapping, index);
2423 	if (!page) {
2424 		ext4_journal_stop(handle);
2425 		ret = -ENOMEM;
2426 		goto out;
2427 	}
2428 	*pagep = page;
2429 
2430 	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2431 							ext4_da_get_block_prep);
2432 	if (ret < 0) {
2433 		unlock_page(page);
2434 		ext4_journal_stop(handle);
2435 		page_cache_release(page);
2436 	}
2437 
2438 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2439 		goto retry;
2440 out:
2441 	return ret;
2442 }
2443 
2444 /*
2445  * Check if we should update i_disksize
2446  * when write to the end of file but not require block allocation
2447  */
2448 static int ext4_da_should_update_i_disksize(struct page *page,
2449 					 unsigned long offset)
2450 {
2451 	struct buffer_head *bh;
2452 	struct inode *inode = page->mapping->host;
2453 	unsigned int idx;
2454 	int i;
2455 
2456 	bh = page_buffers(page);
2457 	idx = offset >> inode->i_blkbits;
2458 
2459 	for (i=0; i < idx; i++)
2460 		bh = bh->b_this_page;
2461 
2462 	if (!buffer_mapped(bh) || (buffer_delay(bh)))
2463 		return 0;
2464 	return 1;
2465 }
2466 
2467 static int ext4_da_write_end(struct file *file,
2468 				struct address_space *mapping,
2469 				loff_t pos, unsigned len, unsigned copied,
2470 				struct page *page, void *fsdata)
2471 {
2472 	struct inode *inode = mapping->host;
2473 	int ret = 0, ret2;
2474 	handle_t *handle = ext4_journal_current_handle();
2475 	loff_t new_i_size;
2476 	unsigned long start, end;
2477 
2478 	start = pos & (PAGE_CACHE_SIZE - 1);
2479 	end = start + copied -1;
2480 
2481 	/*
2482 	 * generic_write_end() will run mark_inode_dirty() if i_size
2483 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2484 	 * into that.
2485 	 */
2486 
2487 	new_i_size = pos + copied;
2488 	if (new_i_size > EXT4_I(inode)->i_disksize) {
2489 		if (ext4_da_should_update_i_disksize(page, end)) {
2490 			down_write(&EXT4_I(inode)->i_data_sem);
2491 			if (new_i_size > EXT4_I(inode)->i_disksize) {
2492 				/*
2493 				 * Updating i_disksize when extending file
2494 				 * without needing block allocation
2495 				 */
2496 				if (ext4_should_order_data(inode))
2497 					ret = ext4_jbd2_file_inode(handle,
2498 								   inode);
2499 
2500 				EXT4_I(inode)->i_disksize = new_i_size;
2501 			}
2502 			up_write(&EXT4_I(inode)->i_data_sem);
2503 		}
2504 	}
2505 	ret2 = generic_write_end(file, mapping, pos, len, copied,
2506 							page, fsdata);
2507 	copied = ret2;
2508 	if (ret2 < 0)
2509 		ret = ret2;
2510 	ret2 = ext4_journal_stop(handle);
2511 	if (!ret)
2512 		ret = ret2;
2513 
2514 	return ret ? ret : copied;
2515 }
2516 
2517 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2518 {
2519 	/*
2520 	 * Drop reserved blocks
2521 	 */
2522 	BUG_ON(!PageLocked(page));
2523 	if (!page_has_buffers(page))
2524 		goto out;
2525 
2526 	ext4_da_page_release_reservation(page, offset);
2527 
2528 out:
2529 	ext4_invalidatepage(page, offset);
2530 
2531 	return;
2532 }
2533 
2534 
2535 /*
2536  * bmap() is special.  It gets used by applications such as lilo and by
2537  * the swapper to find the on-disk block of a specific piece of data.
2538  *
2539  * Naturally, this is dangerous if the block concerned is still in the
2540  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2541  * filesystem and enables swap, then they may get a nasty shock when the
2542  * data getting swapped to that swapfile suddenly gets overwritten by
2543  * the original zero's written out previously to the journal and
2544  * awaiting writeback in the kernel's buffer cache.
2545  *
2546  * So, if we see any bmap calls here on a modified, data-journaled file,
2547  * take extra steps to flush any blocks which might be in the cache.
2548  */
2549 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2550 {
2551 	struct inode *inode = mapping->host;
2552 	journal_t *journal;
2553 	int err;
2554 
2555 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2556 			test_opt(inode->i_sb, DELALLOC)) {
2557 		/*
2558 		 * With delalloc we want to sync the file
2559 		 * so that we can make sure we allocate
2560 		 * blocks for file
2561 		 */
2562 		filemap_write_and_wait(mapping);
2563 	}
2564 
2565 	if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2566 		/*
2567 		 * This is a REALLY heavyweight approach, but the use of
2568 		 * bmap on dirty files is expected to be extremely rare:
2569 		 * only if we run lilo or swapon on a freshly made file
2570 		 * do we expect this to happen.
2571 		 *
2572 		 * (bmap requires CAP_SYS_RAWIO so this does not
2573 		 * represent an unprivileged user DOS attack --- we'd be
2574 		 * in trouble if mortal users could trigger this path at
2575 		 * will.)
2576 		 *
2577 		 * NB. EXT4_STATE_JDATA is not set on files other than
2578 		 * regular files.  If somebody wants to bmap a directory
2579 		 * or symlink and gets confused because the buffer
2580 		 * hasn't yet been flushed to disk, they deserve
2581 		 * everything they get.
2582 		 */
2583 
2584 		EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2585 		journal = EXT4_JOURNAL(inode);
2586 		jbd2_journal_lock_updates(journal);
2587 		err = jbd2_journal_flush(journal);
2588 		jbd2_journal_unlock_updates(journal);
2589 
2590 		if (err)
2591 			return 0;
2592 	}
2593 
2594 	return generic_block_bmap(mapping,block,ext4_get_block);
2595 }
2596 
2597 static int bget_one(handle_t *handle, struct buffer_head *bh)
2598 {
2599 	get_bh(bh);
2600 	return 0;
2601 }
2602 
2603 static int bput_one(handle_t *handle, struct buffer_head *bh)
2604 {
2605 	put_bh(bh);
2606 	return 0;
2607 }
2608 
2609 /*
2610  * Note that we don't need to start a transaction unless we're journaling data
2611  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2612  * need to file the inode to the transaction's list in ordered mode because if
2613  * we are writing back data added by write(), the inode is already there and if
2614  * we are writing back data modified via mmap(), noone guarantees in which
2615  * transaction the data will hit the disk. In case we are journaling data, we
2616  * cannot start transaction directly because transaction start ranks above page
2617  * lock so we have to do some magic.
2618  *
2619  * In all journaling modes block_write_full_page() will start the I/O.
2620  *
2621  * Problem:
2622  *
2623  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2624  *		ext4_writepage()
2625  *
2626  * Similar for:
2627  *
2628  *	ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
2629  *
2630  * Same applies to ext4_get_block().  We will deadlock on various things like
2631  * lock_journal and i_data_sem
2632  *
2633  * Setting PF_MEMALLOC here doesn't work - too many internal memory
2634  * allocations fail.
2635  *
2636  * 16May01: If we're reentered then journal_current_handle() will be
2637  *	    non-zero. We simply *return*.
2638  *
2639  * 1 July 2001: @@@ FIXME:
2640  *   In journalled data mode, a data buffer may be metadata against the
2641  *   current transaction.  But the same file is part of a shared mapping
2642  *   and someone does a writepage() on it.
2643  *
2644  *   We will move the buffer onto the async_data list, but *after* it has
2645  *   been dirtied. So there's a small window where we have dirty data on
2646  *   BJ_Metadata.
2647  *
2648  *   Note that this only applies to the last partial page in the file.  The
2649  *   bit which block_write_full_page() uses prepare/commit for.  (That's
2650  *   broken code anyway: it's wrong for msync()).
2651  *
2652  *   It's a rare case: affects the final partial page, for journalled data
2653  *   where the file is subject to bith write() and writepage() in the same
2654  *   transction.  To fix it we'll need a custom block_write_full_page().
2655  *   We'll probably need that anyway for journalling writepage() output.
2656  *
2657  * We don't honour synchronous mounts for writepage().  That would be
2658  * disastrous.  Any write() or metadata operation will sync the fs for
2659  * us.
2660  *
2661  */
2662 static int __ext4_normal_writepage(struct page *page,
2663 				struct writeback_control *wbc)
2664 {
2665 	struct inode *inode = page->mapping->host;
2666 
2667 	if (test_opt(inode->i_sb, NOBH))
2668 		return nobh_writepage(page,
2669 					ext4_normal_get_block_write, wbc);
2670 	else
2671 		return block_write_full_page(page,
2672 						ext4_normal_get_block_write,
2673 						wbc);
2674 }
2675 
2676 static int ext4_normal_writepage(struct page *page,
2677 				struct writeback_control *wbc)
2678 {
2679 	struct inode *inode = page->mapping->host;
2680 	loff_t size = i_size_read(inode);
2681 	loff_t len;
2682 
2683 	J_ASSERT(PageLocked(page));
2684 	if (page->index == size >> PAGE_CACHE_SHIFT)
2685 		len = size & ~PAGE_CACHE_MASK;
2686 	else
2687 		len = PAGE_CACHE_SIZE;
2688 
2689 	if (page_has_buffers(page)) {
2690 		/* if page has buffers it should all be mapped
2691 		 * and allocated. If there are not buffers attached
2692 		 * to the page we know the page is dirty but it lost
2693 		 * buffers. That means that at some moment in time
2694 		 * after write_begin() / write_end() has been called
2695 		 * all buffers have been clean and thus they must have been
2696 		 * written at least once. So they are all mapped and we can
2697 		 * happily proceed with mapping them and writing the page.
2698 		 */
2699 		BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2700 					ext4_bh_unmapped_or_delay));
2701 	}
2702 
2703 	if (!ext4_journal_current_handle())
2704 		return __ext4_normal_writepage(page, wbc);
2705 
2706 	redirty_page_for_writepage(wbc, page);
2707 	unlock_page(page);
2708 	return 0;
2709 }
2710 
2711 static int __ext4_journalled_writepage(struct page *page,
2712 				struct writeback_control *wbc)
2713 {
2714 	struct address_space *mapping = page->mapping;
2715 	struct inode *inode = mapping->host;
2716 	struct buffer_head *page_bufs;
2717 	handle_t *handle = NULL;
2718 	int ret = 0;
2719 	int err;
2720 
2721 	ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2722 					ext4_normal_get_block_write);
2723 	if (ret != 0)
2724 		goto out_unlock;
2725 
2726 	page_bufs = page_buffers(page);
2727 	walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
2728 								bget_one);
2729 	/* As soon as we unlock the page, it can go away, but we have
2730 	 * references to buffers so we are safe */
2731 	unlock_page(page);
2732 
2733 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2734 	if (IS_ERR(handle)) {
2735 		ret = PTR_ERR(handle);
2736 		goto out;
2737 	}
2738 
2739 	ret = walk_page_buffers(handle, page_bufs, 0,
2740 			PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
2741 
2742 	err = walk_page_buffers(handle, page_bufs, 0,
2743 				PAGE_CACHE_SIZE, NULL, write_end_fn);
2744 	if (ret == 0)
2745 		ret = err;
2746 	err = ext4_journal_stop(handle);
2747 	if (!ret)
2748 		ret = err;
2749 
2750 	walk_page_buffers(handle, page_bufs, 0,
2751 				PAGE_CACHE_SIZE, NULL, bput_one);
2752 	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2753 	goto out;
2754 
2755 out_unlock:
2756 	unlock_page(page);
2757 out:
2758 	return ret;
2759 }
2760 
2761 static int ext4_journalled_writepage(struct page *page,
2762 				struct writeback_control *wbc)
2763 {
2764 	struct inode *inode = page->mapping->host;
2765 	loff_t size = i_size_read(inode);
2766 	loff_t len;
2767 
2768 	J_ASSERT(PageLocked(page));
2769 	if (page->index == size >> PAGE_CACHE_SHIFT)
2770 		len = size & ~PAGE_CACHE_MASK;
2771 	else
2772 		len = PAGE_CACHE_SIZE;
2773 
2774 	if (page_has_buffers(page)) {
2775 		/* if page has buffers it should all be mapped
2776 		 * and allocated. If there are not buffers attached
2777 		 * to the page we know the page is dirty but it lost
2778 		 * buffers. That means that at some moment in time
2779 		 * after write_begin() / write_end() has been called
2780 		 * all buffers have been clean and thus they must have been
2781 		 * written at least once. So they are all mapped and we can
2782 		 * happily proceed with mapping them and writing the page.
2783 		 */
2784 		BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2785 					ext4_bh_unmapped_or_delay));
2786 	}
2787 
2788 	if (ext4_journal_current_handle())
2789 		goto no_write;
2790 
2791 	if (PageChecked(page)) {
2792 		/*
2793 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2794 		 * doesn't seem much point in redirtying the page here.
2795 		 */
2796 		ClearPageChecked(page);
2797 		return __ext4_journalled_writepage(page, wbc);
2798 	} else {
2799 		/*
2800 		 * It may be a page full of checkpoint-mode buffers.  We don't
2801 		 * really know unless we go poke around in the buffer_heads.
2802 		 * But block_write_full_page will do the right thing.
2803 		 */
2804 		return block_write_full_page(page,
2805 						ext4_normal_get_block_write,
2806 						wbc);
2807 	}
2808 no_write:
2809 	redirty_page_for_writepage(wbc, page);
2810 	unlock_page(page);
2811 	return 0;
2812 }
2813 
2814 static int ext4_readpage(struct file *file, struct page *page)
2815 {
2816 	return mpage_readpage(page, ext4_get_block);
2817 }
2818 
2819 static int
2820 ext4_readpages(struct file *file, struct address_space *mapping,
2821 		struct list_head *pages, unsigned nr_pages)
2822 {
2823 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2824 }
2825 
2826 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2827 {
2828 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2829 
2830 	/*
2831 	 * If it's a full truncate we just forget about the pending dirtying
2832 	 */
2833 	if (offset == 0)
2834 		ClearPageChecked(page);
2835 
2836 	jbd2_journal_invalidatepage(journal, page, offset);
2837 }
2838 
2839 static int ext4_releasepage(struct page *page, gfp_t wait)
2840 {
2841 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2842 
2843 	WARN_ON(PageChecked(page));
2844 	if (!page_has_buffers(page))
2845 		return 0;
2846 	return jbd2_journal_try_to_free_buffers(journal, page, wait);
2847 }
2848 
2849 /*
2850  * If the O_DIRECT write will extend the file then add this inode to the
2851  * orphan list.  So recovery will truncate it back to the original size
2852  * if the machine crashes during the write.
2853  *
2854  * If the O_DIRECT write is intantiating holes inside i_size and the machine
2855  * crashes then stale disk data _may_ be exposed inside the file. But current
2856  * VFS code falls back into buffered path in that case so we are safe.
2857  */
2858 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2859 			const struct iovec *iov, loff_t offset,
2860 			unsigned long nr_segs)
2861 {
2862 	struct file *file = iocb->ki_filp;
2863 	struct inode *inode = file->f_mapping->host;
2864 	struct ext4_inode_info *ei = EXT4_I(inode);
2865 	handle_t *handle;
2866 	ssize_t ret;
2867 	int orphan = 0;
2868 	size_t count = iov_length(iov, nr_segs);
2869 
2870 	if (rw == WRITE) {
2871 		loff_t final_size = offset + count;
2872 
2873 		if (final_size > inode->i_size) {
2874 			/* Credits for sb + inode write */
2875 			handle = ext4_journal_start(inode, 2);
2876 			if (IS_ERR(handle)) {
2877 				ret = PTR_ERR(handle);
2878 				goto out;
2879 			}
2880 			ret = ext4_orphan_add(handle, inode);
2881 			if (ret) {
2882 				ext4_journal_stop(handle);
2883 				goto out;
2884 			}
2885 			orphan = 1;
2886 			ei->i_disksize = inode->i_size;
2887 			ext4_journal_stop(handle);
2888 		}
2889 	}
2890 
2891 	ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
2892 				 offset, nr_segs,
2893 				 ext4_get_block, NULL);
2894 
2895 	if (orphan) {
2896 		int err;
2897 
2898 		/* Credits for sb + inode write */
2899 		handle = ext4_journal_start(inode, 2);
2900 		if (IS_ERR(handle)) {
2901 			/* This is really bad luck. We've written the data
2902 			 * but cannot extend i_size. Bail out and pretend
2903 			 * the write failed... */
2904 			ret = PTR_ERR(handle);
2905 			goto out;
2906 		}
2907 		if (inode->i_nlink)
2908 			ext4_orphan_del(handle, inode);
2909 		if (ret > 0) {
2910 			loff_t end = offset + ret;
2911 			if (end > inode->i_size) {
2912 				ei->i_disksize = end;
2913 				i_size_write(inode, end);
2914 				/*
2915 				 * We're going to return a positive `ret'
2916 				 * here due to non-zero-length I/O, so there's
2917 				 * no way of reporting error returns from
2918 				 * ext4_mark_inode_dirty() to userspace.  So
2919 				 * ignore it.
2920 				 */
2921 				ext4_mark_inode_dirty(handle, inode);
2922 			}
2923 		}
2924 		err = ext4_journal_stop(handle);
2925 		if (ret == 0)
2926 			ret = err;
2927 	}
2928 out:
2929 	return ret;
2930 }
2931 
2932 /*
2933  * Pages can be marked dirty completely asynchronously from ext4's journalling
2934  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
2935  * much here because ->set_page_dirty is called under VFS locks.  The page is
2936  * not necessarily locked.
2937  *
2938  * We cannot just dirty the page and leave attached buffers clean, because the
2939  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
2940  * or jbddirty because all the journalling code will explode.
2941  *
2942  * So what we do is to mark the page "pending dirty" and next time writepage
2943  * is called, propagate that into the buffers appropriately.
2944  */
2945 static int ext4_journalled_set_page_dirty(struct page *page)
2946 {
2947 	SetPageChecked(page);
2948 	return __set_page_dirty_nobuffers(page);
2949 }
2950 
2951 static const struct address_space_operations ext4_ordered_aops = {
2952 	.readpage		= ext4_readpage,
2953 	.readpages		= ext4_readpages,
2954 	.writepage		= ext4_normal_writepage,
2955 	.sync_page		= block_sync_page,
2956 	.write_begin		= ext4_write_begin,
2957 	.write_end		= ext4_ordered_write_end,
2958 	.bmap			= ext4_bmap,
2959 	.invalidatepage		= ext4_invalidatepage,
2960 	.releasepage		= ext4_releasepage,
2961 	.direct_IO		= ext4_direct_IO,
2962 	.migratepage		= buffer_migrate_page,
2963 	.is_partially_uptodate  = block_is_partially_uptodate,
2964 };
2965 
2966 static const struct address_space_operations ext4_writeback_aops = {
2967 	.readpage		= ext4_readpage,
2968 	.readpages		= ext4_readpages,
2969 	.writepage		= ext4_normal_writepage,
2970 	.sync_page		= block_sync_page,
2971 	.write_begin		= ext4_write_begin,
2972 	.write_end		= ext4_writeback_write_end,
2973 	.bmap			= ext4_bmap,
2974 	.invalidatepage		= ext4_invalidatepage,
2975 	.releasepage		= ext4_releasepage,
2976 	.direct_IO		= ext4_direct_IO,
2977 	.migratepage		= buffer_migrate_page,
2978 	.is_partially_uptodate  = block_is_partially_uptodate,
2979 };
2980 
2981 static const struct address_space_operations ext4_journalled_aops = {
2982 	.readpage		= ext4_readpage,
2983 	.readpages		= ext4_readpages,
2984 	.writepage		= ext4_journalled_writepage,
2985 	.sync_page		= block_sync_page,
2986 	.write_begin		= ext4_write_begin,
2987 	.write_end		= ext4_journalled_write_end,
2988 	.set_page_dirty		= ext4_journalled_set_page_dirty,
2989 	.bmap			= ext4_bmap,
2990 	.invalidatepage		= ext4_invalidatepage,
2991 	.releasepage		= ext4_releasepage,
2992 	.is_partially_uptodate  = block_is_partially_uptodate,
2993 };
2994 
2995 static const struct address_space_operations ext4_da_aops = {
2996 	.readpage		= ext4_readpage,
2997 	.readpages		= ext4_readpages,
2998 	.writepage		= ext4_da_writepage,
2999 	.writepages		= ext4_da_writepages,
3000 	.sync_page		= block_sync_page,
3001 	.write_begin		= ext4_da_write_begin,
3002 	.write_end		= ext4_da_write_end,
3003 	.bmap			= ext4_bmap,
3004 	.invalidatepage		= ext4_da_invalidatepage,
3005 	.releasepage		= ext4_releasepage,
3006 	.direct_IO		= ext4_direct_IO,
3007 	.migratepage		= buffer_migrate_page,
3008 	.is_partially_uptodate  = block_is_partially_uptodate,
3009 };
3010 
3011 void ext4_set_aops(struct inode *inode)
3012 {
3013 	if (ext4_should_order_data(inode) &&
3014 		test_opt(inode->i_sb, DELALLOC))
3015 		inode->i_mapping->a_ops = &ext4_da_aops;
3016 	else if (ext4_should_order_data(inode))
3017 		inode->i_mapping->a_ops = &ext4_ordered_aops;
3018 	else if (ext4_should_writeback_data(inode) &&
3019 		 test_opt(inode->i_sb, DELALLOC))
3020 		inode->i_mapping->a_ops = &ext4_da_aops;
3021 	else if (ext4_should_writeback_data(inode))
3022 		inode->i_mapping->a_ops = &ext4_writeback_aops;
3023 	else
3024 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3025 }
3026 
3027 /*
3028  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3029  * up to the end of the block which corresponds to `from'.
3030  * This required during truncate. We need to physically zero the tail end
3031  * of that block so it doesn't yield old data if the file is later grown.
3032  */
3033 int ext4_block_truncate_page(handle_t *handle,
3034 		struct address_space *mapping, loff_t from)
3035 {
3036 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3037 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3038 	unsigned blocksize, length, pos;
3039 	ext4_lblk_t iblock;
3040 	struct inode *inode = mapping->host;
3041 	struct buffer_head *bh;
3042 	struct page *page;
3043 	int err = 0;
3044 
3045 	page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3046 	if (!page)
3047 		return -EINVAL;
3048 
3049 	blocksize = inode->i_sb->s_blocksize;
3050 	length = blocksize - (offset & (blocksize - 1));
3051 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3052 
3053 	/*
3054 	 * For "nobh" option,  we can only work if we don't need to
3055 	 * read-in the page - otherwise we create buffers to do the IO.
3056 	 */
3057 	if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3058 	     ext4_should_writeback_data(inode) && PageUptodate(page)) {
3059 		zero_user(page, offset, length);
3060 		set_page_dirty(page);
3061 		goto unlock;
3062 	}
3063 
3064 	if (!page_has_buffers(page))
3065 		create_empty_buffers(page, blocksize, 0);
3066 
3067 	/* Find the buffer that contains "offset" */
3068 	bh = page_buffers(page);
3069 	pos = blocksize;
3070 	while (offset >= pos) {
3071 		bh = bh->b_this_page;
3072 		iblock++;
3073 		pos += blocksize;
3074 	}
3075 
3076 	err = 0;
3077 	if (buffer_freed(bh)) {
3078 		BUFFER_TRACE(bh, "freed: skip");
3079 		goto unlock;
3080 	}
3081 
3082 	if (!buffer_mapped(bh)) {
3083 		BUFFER_TRACE(bh, "unmapped");
3084 		ext4_get_block(inode, iblock, bh, 0);
3085 		/* unmapped? It's a hole - nothing to do */
3086 		if (!buffer_mapped(bh)) {
3087 			BUFFER_TRACE(bh, "still unmapped");
3088 			goto unlock;
3089 		}
3090 	}
3091 
3092 	/* Ok, it's mapped. Make sure it's up-to-date */
3093 	if (PageUptodate(page))
3094 		set_buffer_uptodate(bh);
3095 
3096 	if (!buffer_uptodate(bh)) {
3097 		err = -EIO;
3098 		ll_rw_block(READ, 1, &bh);
3099 		wait_on_buffer(bh);
3100 		/* Uhhuh. Read error. Complain and punt. */
3101 		if (!buffer_uptodate(bh))
3102 			goto unlock;
3103 	}
3104 
3105 	if (ext4_should_journal_data(inode)) {
3106 		BUFFER_TRACE(bh, "get write access");
3107 		err = ext4_journal_get_write_access(handle, bh);
3108 		if (err)
3109 			goto unlock;
3110 	}
3111 
3112 	zero_user(page, offset, length);
3113 
3114 	BUFFER_TRACE(bh, "zeroed end of block");
3115 
3116 	err = 0;
3117 	if (ext4_should_journal_data(inode)) {
3118 		err = ext4_journal_dirty_metadata(handle, bh);
3119 	} else {
3120 		if (ext4_should_order_data(inode))
3121 			err = ext4_jbd2_file_inode(handle, inode);
3122 		mark_buffer_dirty(bh);
3123 	}
3124 
3125 unlock:
3126 	unlock_page(page);
3127 	page_cache_release(page);
3128 	return err;
3129 }
3130 
3131 /*
3132  * Probably it should be a library function... search for first non-zero word
3133  * or memcmp with zero_page, whatever is better for particular architecture.
3134  * Linus?
3135  */
3136 static inline int all_zeroes(__le32 *p, __le32 *q)
3137 {
3138 	while (p < q)
3139 		if (*p++)
3140 			return 0;
3141 	return 1;
3142 }
3143 
3144 /**
3145  *	ext4_find_shared - find the indirect blocks for partial truncation.
3146  *	@inode:	  inode in question
3147  *	@depth:	  depth of the affected branch
3148  *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
3149  *	@chain:	  place to store the pointers to partial indirect blocks
3150  *	@top:	  place to the (detached) top of branch
3151  *
3152  *	This is a helper function used by ext4_truncate().
3153  *
3154  *	When we do truncate() we may have to clean the ends of several
3155  *	indirect blocks but leave the blocks themselves alive. Block is
3156  *	partially truncated if some data below the new i_size is refered
3157  *	from it (and it is on the path to the first completely truncated
3158  *	data block, indeed).  We have to free the top of that path along
3159  *	with everything to the right of the path. Since no allocation
3160  *	past the truncation point is possible until ext4_truncate()
3161  *	finishes, we may safely do the latter, but top of branch may
3162  *	require special attention - pageout below the truncation point
3163  *	might try to populate it.
3164  *
3165  *	We atomically detach the top of branch from the tree, store the
3166  *	block number of its root in *@top, pointers to buffer_heads of
3167  *	partially truncated blocks - in @chain[].bh and pointers to
3168  *	their last elements that should not be removed - in
3169  *	@chain[].p. Return value is the pointer to last filled element
3170  *	of @chain.
3171  *
3172  *	The work left to caller to do the actual freeing of subtrees:
3173  *		a) free the subtree starting from *@top
3174  *		b) free the subtrees whose roots are stored in
3175  *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
3176  *		c) free the subtrees growing from the inode past the @chain[0].
3177  *			(no partially truncated stuff there).  */
3178 
3179 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3180 			ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3181 {
3182 	Indirect *partial, *p;
3183 	int k, err;
3184 
3185 	*top = 0;
3186 	/* Make k index the deepest non-null offest + 1 */
3187 	for (k = depth; k > 1 && !offsets[k-1]; k--)
3188 		;
3189 	partial = ext4_get_branch(inode, k, offsets, chain, &err);
3190 	/* Writer: pointers */
3191 	if (!partial)
3192 		partial = chain + k-1;
3193 	/*
3194 	 * If the branch acquired continuation since we've looked at it -
3195 	 * fine, it should all survive and (new) top doesn't belong to us.
3196 	 */
3197 	if (!partial->key && *partial->p)
3198 		/* Writer: end */
3199 		goto no_top;
3200 	for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
3201 		;
3202 	/*
3203 	 * OK, we've found the last block that must survive. The rest of our
3204 	 * branch should be detached before unlocking. However, if that rest
3205 	 * of branch is all ours and does not grow immediately from the inode
3206 	 * it's easier to cheat and just decrement partial->p.
3207 	 */
3208 	if (p == chain + k - 1 && p > chain) {
3209 		p->p--;
3210 	} else {
3211 		*top = *p->p;
3212 		/* Nope, don't do this in ext4.  Must leave the tree intact */
3213 #if 0
3214 		*p->p = 0;
3215 #endif
3216 	}
3217 	/* Writer: end */
3218 
3219 	while(partial > p) {
3220 		brelse(partial->bh);
3221 		partial--;
3222 	}
3223 no_top:
3224 	return partial;
3225 }
3226 
3227 /*
3228  * Zero a number of block pointers in either an inode or an indirect block.
3229  * If we restart the transaction we must again get write access to the
3230  * indirect block for further modification.
3231  *
3232  * We release `count' blocks on disk, but (last - first) may be greater
3233  * than `count' because there can be holes in there.
3234  */
3235 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3236 		struct buffer_head *bh, ext4_fsblk_t block_to_free,
3237 		unsigned long count, __le32 *first, __le32 *last)
3238 {
3239 	__le32 *p;
3240 	if (try_to_extend_transaction(handle, inode)) {
3241 		if (bh) {
3242 			BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
3243 			ext4_journal_dirty_metadata(handle, bh);
3244 		}
3245 		ext4_mark_inode_dirty(handle, inode);
3246 		ext4_journal_test_restart(handle, inode);
3247 		if (bh) {
3248 			BUFFER_TRACE(bh, "retaking write access");
3249 			ext4_journal_get_write_access(handle, bh);
3250 		}
3251 	}
3252 
3253 	/*
3254 	 * Any buffers which are on the journal will be in memory. We find
3255 	 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3256 	 * on them.  We've already detached each block from the file, so
3257 	 * bforget() in jbd2_journal_forget() should be safe.
3258 	 *
3259 	 * AKPM: turn on bforget in jbd2_journal_forget()!!!
3260 	 */
3261 	for (p = first; p < last; p++) {
3262 		u32 nr = le32_to_cpu(*p);
3263 		if (nr) {
3264 			struct buffer_head *tbh;
3265 
3266 			*p = 0;
3267 			tbh = sb_find_get_block(inode->i_sb, nr);
3268 			ext4_forget(handle, 0, inode, tbh, nr);
3269 		}
3270 	}
3271 
3272 	ext4_free_blocks(handle, inode, block_to_free, count, 0);
3273 }
3274 
3275 /**
3276  * ext4_free_data - free a list of data blocks
3277  * @handle:	handle for this transaction
3278  * @inode:	inode we are dealing with
3279  * @this_bh:	indirect buffer_head which contains *@first and *@last
3280  * @first:	array of block numbers
3281  * @last:	points immediately past the end of array
3282  *
3283  * We are freeing all blocks refered from that array (numbers are stored as
3284  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3285  *
3286  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
3287  * blocks are contiguous then releasing them at one time will only affect one
3288  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3289  * actually use a lot of journal space.
3290  *
3291  * @this_bh will be %NULL if @first and @last point into the inode's direct
3292  * block pointers.
3293  */
3294 static void ext4_free_data(handle_t *handle, struct inode *inode,
3295 			   struct buffer_head *this_bh,
3296 			   __le32 *first, __le32 *last)
3297 {
3298 	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3299 	unsigned long count = 0;	    /* Number of blocks in the run */
3300 	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
3301 					       corresponding to
3302 					       block_to_free */
3303 	ext4_fsblk_t nr;		    /* Current block # */
3304 	__le32 *p;			    /* Pointer into inode/ind
3305 					       for current block */
3306 	int err;
3307 
3308 	if (this_bh) {				/* For indirect block */
3309 		BUFFER_TRACE(this_bh, "get_write_access");
3310 		err = ext4_journal_get_write_access(handle, this_bh);
3311 		/* Important: if we can't update the indirect pointers
3312 		 * to the blocks, we can't free them. */
3313 		if (err)
3314 			return;
3315 	}
3316 
3317 	for (p = first; p < last; p++) {
3318 		nr = le32_to_cpu(*p);
3319 		if (nr) {
3320 			/* accumulate blocks to free if they're contiguous */
3321 			if (count == 0) {
3322 				block_to_free = nr;
3323 				block_to_free_p = p;
3324 				count = 1;
3325 			} else if (nr == block_to_free + count) {
3326 				count++;
3327 			} else {
3328 				ext4_clear_blocks(handle, inode, this_bh,
3329 						  block_to_free,
3330 						  count, block_to_free_p, p);
3331 				block_to_free = nr;
3332 				block_to_free_p = p;
3333 				count = 1;
3334 			}
3335 		}
3336 	}
3337 
3338 	if (count > 0)
3339 		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3340 				  count, block_to_free_p, p);
3341 
3342 	if (this_bh) {
3343 		BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
3344 
3345 		/*
3346 		 * The buffer head should have an attached journal head at this
3347 		 * point. However, if the data is corrupted and an indirect
3348 		 * block pointed to itself, it would have been detached when
3349 		 * the block was cleared. Check for this instead of OOPSing.
3350 		 */
3351 		if (bh2jh(this_bh))
3352 			ext4_journal_dirty_metadata(handle, this_bh);
3353 		else
3354 			ext4_error(inode->i_sb, __func__,
3355 				   "circular indirect block detected, "
3356 				   "inode=%lu, block=%llu",
3357 				   inode->i_ino,
3358 				   (unsigned long long) this_bh->b_blocknr);
3359 	}
3360 }
3361 
3362 /**
3363  *	ext4_free_branches - free an array of branches
3364  *	@handle: JBD handle for this transaction
3365  *	@inode:	inode we are dealing with
3366  *	@parent_bh: the buffer_head which contains *@first and *@last
3367  *	@first:	array of block numbers
3368  *	@last:	pointer immediately past the end of array
3369  *	@depth:	depth of the branches to free
3370  *
3371  *	We are freeing all blocks refered from these branches (numbers are
3372  *	stored as little-endian 32-bit) and updating @inode->i_blocks
3373  *	appropriately.
3374  */
3375 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3376 			       struct buffer_head *parent_bh,
3377 			       __le32 *first, __le32 *last, int depth)
3378 {
3379 	ext4_fsblk_t nr;
3380 	__le32 *p;
3381 
3382 	if (is_handle_aborted(handle))
3383 		return;
3384 
3385 	if (depth--) {
3386 		struct buffer_head *bh;
3387 		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3388 		p = last;
3389 		while (--p >= first) {
3390 			nr = le32_to_cpu(*p);
3391 			if (!nr)
3392 				continue;		/* A hole */
3393 
3394 			/* Go read the buffer for the next level down */
3395 			bh = sb_bread(inode->i_sb, nr);
3396 
3397 			/*
3398 			 * A read failure? Report error and clear slot
3399 			 * (should be rare).
3400 			 */
3401 			if (!bh) {
3402 				ext4_error(inode->i_sb, "ext4_free_branches",
3403 					   "Read failure, inode=%lu, block=%llu",
3404 					   inode->i_ino, nr);
3405 				continue;
3406 			}
3407 
3408 			/* This zaps the entire block.  Bottom up. */
3409 			BUFFER_TRACE(bh, "free child branches");
3410 			ext4_free_branches(handle, inode, bh,
3411 					   (__le32*)bh->b_data,
3412 					   (__le32*)bh->b_data + addr_per_block,
3413 					   depth);
3414 
3415 			/*
3416 			 * We've probably journalled the indirect block several
3417 			 * times during the truncate.  But it's no longer
3418 			 * needed and we now drop it from the transaction via
3419 			 * jbd2_journal_revoke().
3420 			 *
3421 			 * That's easy if it's exclusively part of this
3422 			 * transaction.  But if it's part of the committing
3423 			 * transaction then jbd2_journal_forget() will simply
3424 			 * brelse() it.  That means that if the underlying
3425 			 * block is reallocated in ext4_get_block(),
3426 			 * unmap_underlying_metadata() will find this block
3427 			 * and will try to get rid of it.  damn, damn.
3428 			 *
3429 			 * If this block has already been committed to the
3430 			 * journal, a revoke record will be written.  And
3431 			 * revoke records must be emitted *before* clearing
3432 			 * this block's bit in the bitmaps.
3433 			 */
3434 			ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3435 
3436 			/*
3437 			 * Everything below this this pointer has been
3438 			 * released.  Now let this top-of-subtree go.
3439 			 *
3440 			 * We want the freeing of this indirect block to be
3441 			 * atomic in the journal with the updating of the
3442 			 * bitmap block which owns it.  So make some room in
3443 			 * the journal.
3444 			 *
3445 			 * We zero the parent pointer *after* freeing its
3446 			 * pointee in the bitmaps, so if extend_transaction()
3447 			 * for some reason fails to put the bitmap changes and
3448 			 * the release into the same transaction, recovery
3449 			 * will merely complain about releasing a free block,
3450 			 * rather than leaking blocks.
3451 			 */
3452 			if (is_handle_aborted(handle))
3453 				return;
3454 			if (try_to_extend_transaction(handle, inode)) {
3455 				ext4_mark_inode_dirty(handle, inode);
3456 				ext4_journal_test_restart(handle, inode);
3457 			}
3458 
3459 			ext4_free_blocks(handle, inode, nr, 1, 1);
3460 
3461 			if (parent_bh) {
3462 				/*
3463 				 * The block which we have just freed is
3464 				 * pointed to by an indirect block: journal it
3465 				 */
3466 				BUFFER_TRACE(parent_bh, "get_write_access");
3467 				if (!ext4_journal_get_write_access(handle,
3468 								   parent_bh)){
3469 					*p = 0;
3470 					BUFFER_TRACE(parent_bh,
3471 					"call ext4_journal_dirty_metadata");
3472 					ext4_journal_dirty_metadata(handle,
3473 								    parent_bh);
3474 				}
3475 			}
3476 		}
3477 	} else {
3478 		/* We have reached the bottom of the tree. */
3479 		BUFFER_TRACE(parent_bh, "free data blocks");
3480 		ext4_free_data(handle, inode, parent_bh, first, last);
3481 	}
3482 }
3483 
3484 int ext4_can_truncate(struct inode *inode)
3485 {
3486 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3487 		return 0;
3488 	if (S_ISREG(inode->i_mode))
3489 		return 1;
3490 	if (S_ISDIR(inode->i_mode))
3491 		return 1;
3492 	if (S_ISLNK(inode->i_mode))
3493 		return !ext4_inode_is_fast_symlink(inode);
3494 	return 0;
3495 }
3496 
3497 /*
3498  * ext4_truncate()
3499  *
3500  * We block out ext4_get_block() block instantiations across the entire
3501  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3502  * simultaneously on behalf of the same inode.
3503  *
3504  * As we work through the truncate and commmit bits of it to the journal there
3505  * is one core, guiding principle: the file's tree must always be consistent on
3506  * disk.  We must be able to restart the truncate after a crash.
3507  *
3508  * The file's tree may be transiently inconsistent in memory (although it
3509  * probably isn't), but whenever we close off and commit a journal transaction,
3510  * the contents of (the filesystem + the journal) must be consistent and
3511  * restartable.  It's pretty simple, really: bottom up, right to left (although
3512  * left-to-right works OK too).
3513  *
3514  * Note that at recovery time, journal replay occurs *before* the restart of
3515  * truncate against the orphan inode list.
3516  *
3517  * The committed inode has the new, desired i_size (which is the same as
3518  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3519  * that this inode's truncate did not complete and it will again call
3520  * ext4_truncate() to have another go.  So there will be instantiated blocks
3521  * to the right of the truncation point in a crashed ext4 filesystem.  But
3522  * that's fine - as long as they are linked from the inode, the post-crash
3523  * ext4_truncate() run will find them and release them.
3524  */
3525 void ext4_truncate(struct inode *inode)
3526 {
3527 	handle_t *handle;
3528 	struct ext4_inode_info *ei = EXT4_I(inode);
3529 	__le32 *i_data = ei->i_data;
3530 	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3531 	struct address_space *mapping = inode->i_mapping;
3532 	ext4_lblk_t offsets[4];
3533 	Indirect chain[4];
3534 	Indirect *partial;
3535 	__le32 nr = 0;
3536 	int n;
3537 	ext4_lblk_t last_block;
3538 	unsigned blocksize = inode->i_sb->s_blocksize;
3539 
3540 	if (!ext4_can_truncate(inode))
3541 		return;
3542 
3543 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3544 		ext4_ext_truncate(inode);
3545 		return;
3546 	}
3547 
3548 	handle = start_transaction(inode);
3549 	if (IS_ERR(handle))
3550 		return;		/* AKPM: return what? */
3551 
3552 	last_block = (inode->i_size + blocksize-1)
3553 					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3554 
3555 	if (inode->i_size & (blocksize - 1))
3556 		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3557 			goto out_stop;
3558 
3559 	n = ext4_block_to_path(inode, last_block, offsets, NULL);
3560 	if (n == 0)
3561 		goto out_stop;	/* error */
3562 
3563 	/*
3564 	 * OK.  This truncate is going to happen.  We add the inode to the
3565 	 * orphan list, so that if this truncate spans multiple transactions,
3566 	 * and we crash, we will resume the truncate when the filesystem
3567 	 * recovers.  It also marks the inode dirty, to catch the new size.
3568 	 *
3569 	 * Implication: the file must always be in a sane, consistent
3570 	 * truncatable state while each transaction commits.
3571 	 */
3572 	if (ext4_orphan_add(handle, inode))
3573 		goto out_stop;
3574 
3575 	/*
3576 	 * From here we block out all ext4_get_block() callers who want to
3577 	 * modify the block allocation tree.
3578 	 */
3579 	down_write(&ei->i_data_sem);
3580 
3581 	ext4_discard_reservation(inode);
3582 
3583 	/*
3584 	 * The orphan list entry will now protect us from any crash which
3585 	 * occurs before the truncate completes, so it is now safe to propagate
3586 	 * the new, shorter inode size (held for now in i_size) into the
3587 	 * on-disk inode. We do this via i_disksize, which is the value which
3588 	 * ext4 *really* writes onto the disk inode.
3589 	 */
3590 	ei->i_disksize = inode->i_size;
3591 
3592 	if (n == 1) {		/* direct blocks */
3593 		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3594 			       i_data + EXT4_NDIR_BLOCKS);
3595 		goto do_indirects;
3596 	}
3597 
3598 	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
3599 	/* Kill the top of shared branch (not detached) */
3600 	if (nr) {
3601 		if (partial == chain) {
3602 			/* Shared branch grows from the inode */
3603 			ext4_free_branches(handle, inode, NULL,
3604 					   &nr, &nr+1, (chain+n-1) - partial);
3605 			*partial->p = 0;
3606 			/*
3607 			 * We mark the inode dirty prior to restart,
3608 			 * and prior to stop.  No need for it here.
3609 			 */
3610 		} else {
3611 			/* Shared branch grows from an indirect block */
3612 			BUFFER_TRACE(partial->bh, "get_write_access");
3613 			ext4_free_branches(handle, inode, partial->bh,
3614 					partial->p,
3615 					partial->p+1, (chain+n-1) - partial);
3616 		}
3617 	}
3618 	/* Clear the ends of indirect blocks on the shared branch */
3619 	while (partial > chain) {
3620 		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
3621 				   (__le32*)partial->bh->b_data+addr_per_block,
3622 				   (chain+n-1) - partial);
3623 		BUFFER_TRACE(partial->bh, "call brelse");
3624 		brelse (partial->bh);
3625 		partial--;
3626 	}
3627 do_indirects:
3628 	/* Kill the remaining (whole) subtrees */
3629 	switch (offsets[0]) {
3630 	default:
3631 		nr = i_data[EXT4_IND_BLOCK];
3632 		if (nr) {
3633 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
3634 			i_data[EXT4_IND_BLOCK] = 0;
3635 		}
3636 	case EXT4_IND_BLOCK:
3637 		nr = i_data[EXT4_DIND_BLOCK];
3638 		if (nr) {
3639 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
3640 			i_data[EXT4_DIND_BLOCK] = 0;
3641 		}
3642 	case EXT4_DIND_BLOCK:
3643 		nr = i_data[EXT4_TIND_BLOCK];
3644 		if (nr) {
3645 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
3646 			i_data[EXT4_TIND_BLOCK] = 0;
3647 		}
3648 	case EXT4_TIND_BLOCK:
3649 		;
3650 	}
3651 
3652 	up_write(&ei->i_data_sem);
3653 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3654 	ext4_mark_inode_dirty(handle, inode);
3655 
3656 	/*
3657 	 * In a multi-transaction truncate, we only make the final transaction
3658 	 * synchronous
3659 	 */
3660 	if (IS_SYNC(inode))
3661 		handle->h_sync = 1;
3662 out_stop:
3663 	/*
3664 	 * If this was a simple ftruncate(), and the file will remain alive
3665 	 * then we need to clear up the orphan record which we created above.
3666 	 * However, if this was a real unlink then we were called by
3667 	 * ext4_delete_inode(), and we allow that function to clean up the
3668 	 * orphan info for us.
3669 	 */
3670 	if (inode->i_nlink)
3671 		ext4_orphan_del(handle, inode);
3672 
3673 	ext4_journal_stop(handle);
3674 }
3675 
3676 static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
3677 		unsigned long ino, struct ext4_iloc *iloc)
3678 {
3679 	ext4_group_t block_group;
3680 	unsigned long offset;
3681 	ext4_fsblk_t block;
3682 	struct ext4_group_desc *gdp;
3683 
3684 	if (!ext4_valid_inum(sb, ino)) {
3685 		/*
3686 		 * This error is already checked for in namei.c unless we are
3687 		 * looking at an NFS filehandle, in which case no error
3688 		 * report is needed
3689 		 */
3690 		return 0;
3691 	}
3692 
3693 	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
3694 	gdp = ext4_get_group_desc(sb, block_group, NULL);
3695 	if (!gdp)
3696 		return 0;
3697 
3698 	/*
3699 	 * Figure out the offset within the block group inode table
3700 	 */
3701 	offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
3702 		EXT4_INODE_SIZE(sb);
3703 	block = ext4_inode_table(sb, gdp) +
3704 		(offset >> EXT4_BLOCK_SIZE_BITS(sb));
3705 
3706 	iloc->block_group = block_group;
3707 	iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
3708 	return block;
3709 }
3710 
3711 /*
3712  * ext4_get_inode_loc returns with an extra refcount against the inode's
3713  * underlying buffer_head on success. If 'in_mem' is true, we have all
3714  * data in memory that is needed to recreate the on-disk version of this
3715  * inode.
3716  */
3717 static int __ext4_get_inode_loc(struct inode *inode,
3718 				struct ext4_iloc *iloc, int in_mem)
3719 {
3720 	ext4_fsblk_t block;
3721 	struct buffer_head *bh;
3722 
3723 	block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
3724 	if (!block)
3725 		return -EIO;
3726 
3727 	bh = sb_getblk(inode->i_sb, block);
3728 	if (!bh) {
3729 		ext4_error (inode->i_sb, "ext4_get_inode_loc",
3730 				"unable to read inode block - "
3731 				"inode=%lu, block=%llu",
3732 				 inode->i_ino, block);
3733 		return -EIO;
3734 	}
3735 	if (!buffer_uptodate(bh)) {
3736 		lock_buffer(bh);
3737 
3738 		/*
3739 		 * If the buffer has the write error flag, we have failed
3740 		 * to write out another inode in the same block.  In this
3741 		 * case, we don't have to read the block because we may
3742 		 * read the old inode data successfully.
3743 		 */
3744 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3745 			set_buffer_uptodate(bh);
3746 
3747 		if (buffer_uptodate(bh)) {
3748 			/* someone brought it uptodate while we waited */
3749 			unlock_buffer(bh);
3750 			goto has_buffer;
3751 		}
3752 
3753 		/*
3754 		 * If we have all information of the inode in memory and this
3755 		 * is the only valid inode in the block, we need not read the
3756 		 * block.
3757 		 */
3758 		if (in_mem) {
3759 			struct buffer_head *bitmap_bh;
3760 			struct ext4_group_desc *desc;
3761 			int inodes_per_buffer;
3762 			int inode_offset, i;
3763 			ext4_group_t block_group;
3764 			int start;
3765 
3766 			block_group = (inode->i_ino - 1) /
3767 					EXT4_INODES_PER_GROUP(inode->i_sb);
3768 			inodes_per_buffer = bh->b_size /
3769 				EXT4_INODE_SIZE(inode->i_sb);
3770 			inode_offset = ((inode->i_ino - 1) %
3771 					EXT4_INODES_PER_GROUP(inode->i_sb));
3772 			start = inode_offset & ~(inodes_per_buffer - 1);
3773 
3774 			/* Is the inode bitmap in cache? */
3775 			desc = ext4_get_group_desc(inode->i_sb,
3776 						block_group, NULL);
3777 			if (!desc)
3778 				goto make_io;
3779 
3780 			bitmap_bh = sb_getblk(inode->i_sb,
3781 				ext4_inode_bitmap(inode->i_sb, desc));
3782 			if (!bitmap_bh)
3783 				goto make_io;
3784 
3785 			/*
3786 			 * If the inode bitmap isn't in cache then the
3787 			 * optimisation may end up performing two reads instead
3788 			 * of one, so skip it.
3789 			 */
3790 			if (!buffer_uptodate(bitmap_bh)) {
3791 				brelse(bitmap_bh);
3792 				goto make_io;
3793 			}
3794 			for (i = start; i < start + inodes_per_buffer; i++) {
3795 				if (i == inode_offset)
3796 					continue;
3797 				if (ext4_test_bit(i, bitmap_bh->b_data))
3798 					break;
3799 			}
3800 			brelse(bitmap_bh);
3801 			if (i == start + inodes_per_buffer) {
3802 				/* all other inodes are free, so skip I/O */
3803 				memset(bh->b_data, 0, bh->b_size);
3804 				set_buffer_uptodate(bh);
3805 				unlock_buffer(bh);
3806 				goto has_buffer;
3807 			}
3808 		}
3809 
3810 make_io:
3811 		/*
3812 		 * There are other valid inodes in the buffer, this inode
3813 		 * has in-inode xattrs, or we don't have this inode in memory.
3814 		 * Read the block from disk.
3815 		 */
3816 		get_bh(bh);
3817 		bh->b_end_io = end_buffer_read_sync;
3818 		submit_bh(READ_META, bh);
3819 		wait_on_buffer(bh);
3820 		if (!buffer_uptodate(bh)) {
3821 			ext4_error(inode->i_sb, "ext4_get_inode_loc",
3822 					"unable to read inode block - "
3823 					"inode=%lu, block=%llu",
3824 					inode->i_ino, block);
3825 			brelse(bh);
3826 			return -EIO;
3827 		}
3828 	}
3829 has_buffer:
3830 	iloc->bh = bh;
3831 	return 0;
3832 }
3833 
3834 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3835 {
3836 	/* We have all inode data except xattrs in memory here. */
3837 	return __ext4_get_inode_loc(inode, iloc,
3838 		!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
3839 }
3840 
3841 void ext4_set_inode_flags(struct inode *inode)
3842 {
3843 	unsigned int flags = EXT4_I(inode)->i_flags;
3844 
3845 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3846 	if (flags & EXT4_SYNC_FL)
3847 		inode->i_flags |= S_SYNC;
3848 	if (flags & EXT4_APPEND_FL)
3849 		inode->i_flags |= S_APPEND;
3850 	if (flags & EXT4_IMMUTABLE_FL)
3851 		inode->i_flags |= S_IMMUTABLE;
3852 	if (flags & EXT4_NOATIME_FL)
3853 		inode->i_flags |= S_NOATIME;
3854 	if (flags & EXT4_DIRSYNC_FL)
3855 		inode->i_flags |= S_DIRSYNC;
3856 }
3857 
3858 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3859 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3860 {
3861 	unsigned int flags = ei->vfs_inode.i_flags;
3862 
3863 	ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3864 			EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
3865 	if (flags & S_SYNC)
3866 		ei->i_flags |= EXT4_SYNC_FL;
3867 	if (flags & S_APPEND)
3868 		ei->i_flags |= EXT4_APPEND_FL;
3869 	if (flags & S_IMMUTABLE)
3870 		ei->i_flags |= EXT4_IMMUTABLE_FL;
3871 	if (flags & S_NOATIME)
3872 		ei->i_flags |= EXT4_NOATIME_FL;
3873 	if (flags & S_DIRSYNC)
3874 		ei->i_flags |= EXT4_DIRSYNC_FL;
3875 }
3876 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3877 					struct ext4_inode_info *ei)
3878 {
3879 	blkcnt_t i_blocks ;
3880 	struct inode *inode = &(ei->vfs_inode);
3881 	struct super_block *sb = inode->i_sb;
3882 
3883 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3884 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3885 		/* we are using combined 48 bit field */
3886 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3887 					le32_to_cpu(raw_inode->i_blocks_lo);
3888 		if (ei->i_flags & EXT4_HUGE_FILE_FL) {
3889 			/* i_blocks represent file system block size */
3890 			return i_blocks  << (inode->i_blkbits - 9);
3891 		} else {
3892 			return i_blocks;
3893 		}
3894 	} else {
3895 		return le32_to_cpu(raw_inode->i_blocks_lo);
3896 	}
3897 }
3898 
3899 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3900 {
3901 	struct ext4_iloc iloc;
3902 	struct ext4_inode *raw_inode;
3903 	struct ext4_inode_info *ei;
3904 	struct buffer_head *bh;
3905 	struct inode *inode;
3906 	long ret;
3907 	int block;
3908 
3909 	inode = iget_locked(sb, ino);
3910 	if (!inode)
3911 		return ERR_PTR(-ENOMEM);
3912 	if (!(inode->i_state & I_NEW))
3913 		return inode;
3914 
3915 	ei = EXT4_I(inode);
3916 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
3917 	ei->i_acl = EXT4_ACL_NOT_CACHED;
3918 	ei->i_default_acl = EXT4_ACL_NOT_CACHED;
3919 #endif
3920 	ei->i_block_alloc_info = NULL;
3921 
3922 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
3923 	if (ret < 0)
3924 		goto bad_inode;
3925 	bh = iloc.bh;
3926 	raw_inode = ext4_raw_inode(&iloc);
3927 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3928 	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3929 	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3930 	if(!(test_opt (inode->i_sb, NO_UID32))) {
3931 		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3932 		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3933 	}
3934 	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
3935 
3936 	ei->i_state = 0;
3937 	ei->i_dir_start_lookup = 0;
3938 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3939 	/* We now have enough fields to check if the inode was active or not.
3940 	 * This is needed because nfsd might try to access dead inodes
3941 	 * the test is that same one that e2fsck uses
3942 	 * NeilBrown 1999oct15
3943 	 */
3944 	if (inode->i_nlink == 0) {
3945 		if (inode->i_mode == 0 ||
3946 		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3947 			/* this inode is deleted */
3948 			brelse (bh);
3949 			ret = -ESTALE;
3950 			goto bad_inode;
3951 		}
3952 		/* The only unlinked inodes we let through here have
3953 		 * valid i_mode and are being read by the orphan
3954 		 * recovery code: that's fine, we're about to complete
3955 		 * the process of deleting those. */
3956 	}
3957 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3958 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3959 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3960 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
3961 	    cpu_to_le32(EXT4_OS_HURD)) {
3962 		ei->i_file_acl |=
3963 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3964 	}
3965 	inode->i_size = ext4_isize(raw_inode);
3966 	ei->i_disksize = inode->i_size;
3967 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3968 	ei->i_block_group = iloc.block_group;
3969 	/*
3970 	 * NOTE! The in-memory inode i_data array is in little-endian order
3971 	 * even on big-endian machines: we do NOT byteswap the block numbers!
3972 	 */
3973 	for (block = 0; block < EXT4_N_BLOCKS; block++)
3974 		ei->i_data[block] = raw_inode->i_block[block];
3975 	INIT_LIST_HEAD(&ei->i_orphan);
3976 
3977 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3978 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3979 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3980 		    EXT4_INODE_SIZE(inode->i_sb)) {
3981 			brelse (bh);
3982 			ret = -EIO;
3983 			goto bad_inode;
3984 		}
3985 		if (ei->i_extra_isize == 0) {
3986 			/* The extra space is currently unused. Use it. */
3987 			ei->i_extra_isize = sizeof(struct ext4_inode) -
3988 					    EXT4_GOOD_OLD_INODE_SIZE;
3989 		} else {
3990 			__le32 *magic = (void *)raw_inode +
3991 					EXT4_GOOD_OLD_INODE_SIZE +
3992 					ei->i_extra_isize;
3993 			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3994 				 ei->i_state |= EXT4_STATE_XATTR;
3995 		}
3996 	} else
3997 		ei->i_extra_isize = 0;
3998 
3999 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4000 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4001 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4002 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4003 
4004 	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4005 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4006 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4007 			inode->i_version |=
4008 			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4009 	}
4010 
4011 	if (S_ISREG(inode->i_mode)) {
4012 		inode->i_op = &ext4_file_inode_operations;
4013 		inode->i_fop = &ext4_file_operations;
4014 		ext4_set_aops(inode);
4015 	} else if (S_ISDIR(inode->i_mode)) {
4016 		inode->i_op = &ext4_dir_inode_operations;
4017 		inode->i_fop = &ext4_dir_operations;
4018 	} else if (S_ISLNK(inode->i_mode)) {
4019 		if (ext4_inode_is_fast_symlink(inode))
4020 			inode->i_op = &ext4_fast_symlink_inode_operations;
4021 		else {
4022 			inode->i_op = &ext4_symlink_inode_operations;
4023 			ext4_set_aops(inode);
4024 		}
4025 	} else {
4026 		inode->i_op = &ext4_special_inode_operations;
4027 		if (raw_inode->i_block[0])
4028 			init_special_inode(inode, inode->i_mode,
4029 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4030 		else
4031 			init_special_inode(inode, inode->i_mode,
4032 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4033 	}
4034 	brelse (iloc.bh);
4035 	ext4_set_inode_flags(inode);
4036 	unlock_new_inode(inode);
4037 	return inode;
4038 
4039 bad_inode:
4040 	iget_failed(inode);
4041 	return ERR_PTR(ret);
4042 }
4043 
4044 static int ext4_inode_blocks_set(handle_t *handle,
4045 				struct ext4_inode *raw_inode,
4046 				struct ext4_inode_info *ei)
4047 {
4048 	struct inode *inode = &(ei->vfs_inode);
4049 	u64 i_blocks = inode->i_blocks;
4050 	struct super_block *sb = inode->i_sb;
4051 	int err = 0;
4052 
4053 	if (i_blocks <= ~0U) {
4054 		/*
4055 		 * i_blocks can be represnted in a 32 bit variable
4056 		 * as multiple of 512 bytes
4057 		 */
4058 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4059 		raw_inode->i_blocks_high = 0;
4060 		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4061 	} else if (i_blocks <= 0xffffffffffffULL) {
4062 		/*
4063 		 * i_blocks can be represented in a 48 bit variable
4064 		 * as multiple of 512 bytes
4065 		 */
4066 		err = ext4_update_rocompat_feature(handle, sb,
4067 					    EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
4068 		if (err)
4069 			goto  err_out;
4070 		/* i_block is stored in the split  48 bit fields */
4071 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4072 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4073 		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4074 	} else {
4075 		/*
4076 		 * i_blocks should be represented in a 48 bit variable
4077 		 * as multiple of  file system block size
4078 		 */
4079 		err = ext4_update_rocompat_feature(handle, sb,
4080 					    EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
4081 		if (err)
4082 			goto  err_out;
4083 		ei->i_flags |= EXT4_HUGE_FILE_FL;
4084 		/* i_block is stored in file system block size */
4085 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4086 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4087 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4088 	}
4089 err_out:
4090 	return err;
4091 }
4092 
4093 /*
4094  * Post the struct inode info into an on-disk inode location in the
4095  * buffer-cache.  This gobbles the caller's reference to the
4096  * buffer_head in the inode location struct.
4097  *
4098  * The caller must have write access to iloc->bh.
4099  */
4100 static int ext4_do_update_inode(handle_t *handle,
4101 				struct inode *inode,
4102 				struct ext4_iloc *iloc)
4103 {
4104 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4105 	struct ext4_inode_info *ei = EXT4_I(inode);
4106 	struct buffer_head *bh = iloc->bh;
4107 	int err = 0, rc, block;
4108 
4109 	/* For fields not not tracking in the in-memory inode,
4110 	 * initialise them to zero for new inodes. */
4111 	if (ei->i_state & EXT4_STATE_NEW)
4112 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4113 
4114 	ext4_get_inode_flags(ei);
4115 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4116 	if(!(test_opt(inode->i_sb, NO_UID32))) {
4117 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4118 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4119 /*
4120  * Fix up interoperability with old kernels. Otherwise, old inodes get
4121  * re-used with the upper 16 bits of the uid/gid intact
4122  */
4123 		if(!ei->i_dtime) {
4124 			raw_inode->i_uid_high =
4125 				cpu_to_le16(high_16_bits(inode->i_uid));
4126 			raw_inode->i_gid_high =
4127 				cpu_to_le16(high_16_bits(inode->i_gid));
4128 		} else {
4129 			raw_inode->i_uid_high = 0;
4130 			raw_inode->i_gid_high = 0;
4131 		}
4132 	} else {
4133 		raw_inode->i_uid_low =
4134 			cpu_to_le16(fs_high2lowuid(inode->i_uid));
4135 		raw_inode->i_gid_low =
4136 			cpu_to_le16(fs_high2lowgid(inode->i_gid));
4137 		raw_inode->i_uid_high = 0;
4138 		raw_inode->i_gid_high = 0;
4139 	}
4140 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4141 
4142 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4143 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4144 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4145 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4146 
4147 	if (ext4_inode_blocks_set(handle, raw_inode, ei))
4148 		goto out_brelse;
4149 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4150 	/* clear the migrate flag in the raw_inode */
4151 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4152 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4153 	    cpu_to_le32(EXT4_OS_HURD))
4154 		raw_inode->i_file_acl_high =
4155 			cpu_to_le16(ei->i_file_acl >> 32);
4156 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4157 	ext4_isize_set(raw_inode, ei->i_disksize);
4158 	if (ei->i_disksize > 0x7fffffffULL) {
4159 		struct super_block *sb = inode->i_sb;
4160 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4161 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4162 				EXT4_SB(sb)->s_es->s_rev_level ==
4163 				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4164 			/* If this is the first large file
4165 			 * created, add a flag to the superblock.
4166 			 */
4167 			err = ext4_journal_get_write_access(handle,
4168 					EXT4_SB(sb)->s_sbh);
4169 			if (err)
4170 				goto out_brelse;
4171 			ext4_update_dynamic_rev(sb);
4172 			EXT4_SET_RO_COMPAT_FEATURE(sb,
4173 					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4174 			sb->s_dirt = 1;
4175 			handle->h_sync = 1;
4176 			err = ext4_journal_dirty_metadata(handle,
4177 					EXT4_SB(sb)->s_sbh);
4178 		}
4179 	}
4180 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4181 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4182 		if (old_valid_dev(inode->i_rdev)) {
4183 			raw_inode->i_block[0] =
4184 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4185 			raw_inode->i_block[1] = 0;
4186 		} else {
4187 			raw_inode->i_block[0] = 0;
4188 			raw_inode->i_block[1] =
4189 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4190 			raw_inode->i_block[2] = 0;
4191 		}
4192 	} else for (block = 0; block < EXT4_N_BLOCKS; block++)
4193 		raw_inode->i_block[block] = ei->i_data[block];
4194 
4195 	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4196 	if (ei->i_extra_isize) {
4197 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4198 			raw_inode->i_version_hi =
4199 			cpu_to_le32(inode->i_version >> 32);
4200 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4201 	}
4202 
4203 
4204 	BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
4205 	rc = ext4_journal_dirty_metadata(handle, bh);
4206 	if (!err)
4207 		err = rc;
4208 	ei->i_state &= ~EXT4_STATE_NEW;
4209 
4210 out_brelse:
4211 	brelse (bh);
4212 	ext4_std_error(inode->i_sb, err);
4213 	return err;
4214 }
4215 
4216 /*
4217  * ext4_write_inode()
4218  *
4219  * We are called from a few places:
4220  *
4221  * - Within generic_file_write() for O_SYNC files.
4222  *   Here, there will be no transaction running. We wait for any running
4223  *   trasnaction to commit.
4224  *
4225  * - Within sys_sync(), kupdate and such.
4226  *   We wait on commit, if tol to.
4227  *
4228  * - Within prune_icache() (PF_MEMALLOC == true)
4229  *   Here we simply return.  We can't afford to block kswapd on the
4230  *   journal commit.
4231  *
4232  * In all cases it is actually safe for us to return without doing anything,
4233  * because the inode has been copied into a raw inode buffer in
4234  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4235  * knfsd.
4236  *
4237  * Note that we are absolutely dependent upon all inode dirtiers doing the
4238  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4239  * which we are interested.
4240  *
4241  * It would be a bug for them to not do this.  The code:
4242  *
4243  *	mark_inode_dirty(inode)
4244  *	stuff();
4245  *	inode->i_size = expr;
4246  *
4247  * is in error because a kswapd-driven write_inode() could occur while
4248  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4249  * will no longer be on the superblock's dirty inode list.
4250  */
4251 int ext4_write_inode(struct inode *inode, int wait)
4252 {
4253 	if (current->flags & PF_MEMALLOC)
4254 		return 0;
4255 
4256 	if (ext4_journal_current_handle()) {
4257 		jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4258 		dump_stack();
4259 		return -EIO;
4260 	}
4261 
4262 	if (!wait)
4263 		return 0;
4264 
4265 	return ext4_force_commit(inode->i_sb);
4266 }
4267 
4268 /*
4269  * ext4_setattr()
4270  *
4271  * Called from notify_change.
4272  *
4273  * We want to trap VFS attempts to truncate the file as soon as
4274  * possible.  In particular, we want to make sure that when the VFS
4275  * shrinks i_size, we put the inode on the orphan list and modify
4276  * i_disksize immediately, so that during the subsequent flushing of
4277  * dirty pages and freeing of disk blocks, we can guarantee that any
4278  * commit will leave the blocks being flushed in an unused state on
4279  * disk.  (On recovery, the inode will get truncated and the blocks will
4280  * be freed, so we have a strong guarantee that no future commit will
4281  * leave these blocks visible to the user.)
4282  *
4283  * Another thing we have to assure is that if we are in ordered mode
4284  * and inode is still attached to the committing transaction, we must
4285  * we start writeout of all the dirty pages which are being truncated.
4286  * This way we are sure that all the data written in the previous
4287  * transaction are already on disk (truncate waits for pages under
4288  * writeback).
4289  *
4290  * Called with inode->i_mutex down.
4291  */
4292 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4293 {
4294 	struct inode *inode = dentry->d_inode;
4295 	int error, rc = 0;
4296 	const unsigned int ia_valid = attr->ia_valid;
4297 
4298 	error = inode_change_ok(inode, attr);
4299 	if (error)
4300 		return error;
4301 
4302 	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4303 		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4304 		handle_t *handle;
4305 
4306 		/* (user+group)*(old+new) structure, inode write (sb,
4307 		 * inode block, ? - but truncate inode update has it) */
4308 		handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4309 					EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4310 		if (IS_ERR(handle)) {
4311 			error = PTR_ERR(handle);
4312 			goto err_out;
4313 		}
4314 		error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
4315 		if (error) {
4316 			ext4_journal_stop(handle);
4317 			return error;
4318 		}
4319 		/* Update corresponding info in inode so that everything is in
4320 		 * one transaction */
4321 		if (attr->ia_valid & ATTR_UID)
4322 			inode->i_uid = attr->ia_uid;
4323 		if (attr->ia_valid & ATTR_GID)
4324 			inode->i_gid = attr->ia_gid;
4325 		error = ext4_mark_inode_dirty(handle, inode);
4326 		ext4_journal_stop(handle);
4327 	}
4328 
4329 	if (attr->ia_valid & ATTR_SIZE) {
4330 		if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4331 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4332 
4333 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4334 				error = -EFBIG;
4335 				goto err_out;
4336 			}
4337 		}
4338 	}
4339 
4340 	if (S_ISREG(inode->i_mode) &&
4341 	    attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4342 		handle_t *handle;
4343 
4344 		handle = ext4_journal_start(inode, 3);
4345 		if (IS_ERR(handle)) {
4346 			error = PTR_ERR(handle);
4347 			goto err_out;
4348 		}
4349 
4350 		error = ext4_orphan_add(handle, inode);
4351 		EXT4_I(inode)->i_disksize = attr->ia_size;
4352 		rc = ext4_mark_inode_dirty(handle, inode);
4353 		if (!error)
4354 			error = rc;
4355 		ext4_journal_stop(handle);
4356 
4357 		if (ext4_should_order_data(inode)) {
4358 			error = ext4_begin_ordered_truncate(inode,
4359 							    attr->ia_size);
4360 			if (error) {
4361 				/* Do as much error cleanup as possible */
4362 				handle = ext4_journal_start(inode, 3);
4363 				if (IS_ERR(handle)) {
4364 					ext4_orphan_del(NULL, inode);
4365 					goto err_out;
4366 				}
4367 				ext4_orphan_del(handle, inode);
4368 				ext4_journal_stop(handle);
4369 				goto err_out;
4370 			}
4371 		}
4372 	}
4373 
4374 	rc = inode_setattr(inode, attr);
4375 
4376 	/* If inode_setattr's call to ext4_truncate failed to get a
4377 	 * transaction handle at all, we need to clean up the in-core
4378 	 * orphan list manually. */
4379 	if (inode->i_nlink)
4380 		ext4_orphan_del(NULL, inode);
4381 
4382 	if (!rc && (ia_valid & ATTR_MODE))
4383 		rc = ext4_acl_chmod(inode);
4384 
4385 err_out:
4386 	ext4_std_error(inode->i_sb, error);
4387 	if (!error)
4388 		error = rc;
4389 	return error;
4390 }
4391 
4392 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4393 		 struct kstat *stat)
4394 {
4395 	struct inode *inode;
4396 	unsigned long delalloc_blocks;
4397 
4398 	inode = dentry->d_inode;
4399 	generic_fillattr(inode, stat);
4400 
4401 	/*
4402 	 * We can't update i_blocks if the block allocation is delayed
4403 	 * otherwise in the case of system crash before the real block
4404 	 * allocation is done, we will have i_blocks inconsistent with
4405 	 * on-disk file blocks.
4406 	 * We always keep i_blocks updated together with real
4407 	 * allocation. But to not confuse with user, stat
4408 	 * will return the blocks that include the delayed allocation
4409 	 * blocks for this file.
4410 	 */
4411 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4412 	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4413 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4414 
4415 	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4416 	return 0;
4417 }
4418 
4419 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4420 				      int chunk)
4421 {
4422 	int indirects;
4423 
4424 	/* if nrblocks are contiguous */
4425 	if (chunk) {
4426 		/*
4427 		 * With N contiguous data blocks, it need at most
4428 		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4429 		 * 2 dindirect blocks
4430 		 * 1 tindirect block
4431 		 */
4432 		indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4433 		return indirects + 3;
4434 	}
4435 	/*
4436 	 * if nrblocks are not contiguous, worse case, each block touch
4437 	 * a indirect block, and each indirect block touch a double indirect
4438 	 * block, plus a triple indirect block
4439 	 */
4440 	indirects = nrblocks * 2 + 1;
4441 	return indirects;
4442 }
4443 
4444 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4445 {
4446 	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4447 		return ext4_indirect_trans_blocks(inode, nrblocks, 0);
4448 	return ext4_ext_index_trans_blocks(inode, nrblocks, 0);
4449 }
4450 /*
4451  * Account for index blocks, block groups bitmaps and block group
4452  * descriptor blocks if modify datablocks and index blocks
4453  * worse case, the indexs blocks spread over different block groups
4454  *
4455  * If datablocks are discontiguous, they are possible to spread over
4456  * different block groups too. If they are contiugous, with flexbg,
4457  * they could still across block group boundary.
4458  *
4459  * Also account for superblock, inode, quota and xattr blocks
4460  */
4461 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4462 {
4463 	int groups, gdpblocks;
4464 	int idxblocks;
4465 	int ret = 0;
4466 
4467 	/*
4468 	 * How many index blocks need to touch to modify nrblocks?
4469 	 * The "Chunk" flag indicating whether the nrblocks is
4470 	 * physically contiguous on disk
4471 	 *
4472 	 * For Direct IO and fallocate, they calls get_block to allocate
4473 	 * one single extent at a time, so they could set the "Chunk" flag
4474 	 */
4475 	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4476 
4477 	ret = idxblocks;
4478 
4479 	/*
4480 	 * Now let's see how many group bitmaps and group descriptors need
4481 	 * to account
4482 	 */
4483 	groups = idxblocks;
4484 	if (chunk)
4485 		groups += 1;
4486 	else
4487 		groups += nrblocks;
4488 
4489 	gdpblocks = groups;
4490 	if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
4491 		groups = EXT4_SB(inode->i_sb)->s_groups_count;
4492 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4493 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4494 
4495 	/* bitmaps and block group descriptor blocks */
4496 	ret += groups + gdpblocks;
4497 
4498 	/* Blocks for super block, inode, quota and xattr blocks */
4499 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4500 
4501 	return ret;
4502 }
4503 
4504 /*
4505  * Calulate the total number of credits to reserve to fit
4506  * the modification of a single pages into a single transaction,
4507  * which may include multiple chunks of block allocations.
4508  *
4509  * This could be called via ext4_write_begin()
4510  *
4511  * We need to consider the worse case, when
4512  * one new block per extent.
4513  */
4514 int ext4_writepage_trans_blocks(struct inode *inode)
4515 {
4516 	int bpp = ext4_journal_blocks_per_page(inode);
4517 	int ret;
4518 
4519 	ret = ext4_meta_trans_blocks(inode, bpp, 0);
4520 
4521 	/* Account for data blocks for journalled mode */
4522 	if (ext4_should_journal_data(inode))
4523 		ret += bpp;
4524 	return ret;
4525 }
4526 
4527 /*
4528  * Calculate the journal credits for a chunk of data modification.
4529  *
4530  * This is called from DIO, fallocate or whoever calling
4531  * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
4532  *
4533  * journal buffers for data blocks are not included here, as DIO
4534  * and fallocate do no need to journal data buffers.
4535  */
4536 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4537 {
4538 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
4539 }
4540 
4541 /*
4542  * The caller must have previously called ext4_reserve_inode_write().
4543  * Give this, we know that the caller already has write access to iloc->bh.
4544  */
4545 int ext4_mark_iloc_dirty(handle_t *handle,
4546 		struct inode *inode, struct ext4_iloc *iloc)
4547 {
4548 	int err = 0;
4549 
4550 	if (test_opt(inode->i_sb, I_VERSION))
4551 		inode_inc_iversion(inode);
4552 
4553 	/* the do_update_inode consumes one bh->b_count */
4554 	get_bh(iloc->bh);
4555 
4556 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4557 	err = ext4_do_update_inode(handle, inode, iloc);
4558 	put_bh(iloc->bh);
4559 	return err;
4560 }
4561 
4562 /*
4563  * On success, We end up with an outstanding reference count against
4564  * iloc->bh.  This _must_ be cleaned up later.
4565  */
4566 
4567 int
4568 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4569 			 struct ext4_iloc *iloc)
4570 {
4571 	int err = 0;
4572 	if (handle) {
4573 		err = ext4_get_inode_loc(inode, iloc);
4574 		if (!err) {
4575 			BUFFER_TRACE(iloc->bh, "get_write_access");
4576 			err = ext4_journal_get_write_access(handle, iloc->bh);
4577 			if (err) {
4578 				brelse(iloc->bh);
4579 				iloc->bh = NULL;
4580 			}
4581 		}
4582 	}
4583 	ext4_std_error(inode->i_sb, err);
4584 	return err;
4585 }
4586 
4587 /*
4588  * Expand an inode by new_extra_isize bytes.
4589  * Returns 0 on success or negative error number on failure.
4590  */
4591 static int ext4_expand_extra_isize(struct inode *inode,
4592 				   unsigned int new_extra_isize,
4593 				   struct ext4_iloc iloc,
4594 				   handle_t *handle)
4595 {
4596 	struct ext4_inode *raw_inode;
4597 	struct ext4_xattr_ibody_header *header;
4598 	struct ext4_xattr_entry *entry;
4599 
4600 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4601 		return 0;
4602 
4603 	raw_inode = ext4_raw_inode(&iloc);
4604 
4605 	header = IHDR(inode, raw_inode);
4606 	entry = IFIRST(header);
4607 
4608 	/* No extended attributes present */
4609 	if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4610 		header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4611 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4612 			new_extra_isize);
4613 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
4614 		return 0;
4615 	}
4616 
4617 	/* try to expand with EAs present */
4618 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4619 					  raw_inode, handle);
4620 }
4621 
4622 /*
4623  * What we do here is to mark the in-core inode as clean with respect to inode
4624  * dirtiness (it may still be data-dirty).
4625  * This means that the in-core inode may be reaped by prune_icache
4626  * without having to perform any I/O.  This is a very good thing,
4627  * because *any* task may call prune_icache - even ones which
4628  * have a transaction open against a different journal.
4629  *
4630  * Is this cheating?  Not really.  Sure, we haven't written the
4631  * inode out, but prune_icache isn't a user-visible syncing function.
4632  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4633  * we start and wait on commits.
4634  *
4635  * Is this efficient/effective?  Well, we're being nice to the system
4636  * by cleaning up our inodes proactively so they can be reaped
4637  * without I/O.  But we are potentially leaving up to five seconds'
4638  * worth of inodes floating about which prune_icache wants us to
4639  * write out.  One way to fix that would be to get prune_icache()
4640  * to do a write_super() to free up some memory.  It has the desired
4641  * effect.
4642  */
4643 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4644 {
4645 	struct ext4_iloc iloc;
4646 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4647 	static unsigned int mnt_count;
4648 	int err, ret;
4649 
4650 	might_sleep();
4651 	err = ext4_reserve_inode_write(handle, inode, &iloc);
4652 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4653 	    !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
4654 		/*
4655 		 * We need extra buffer credits since we may write into EA block
4656 		 * with this same handle. If journal_extend fails, then it will
4657 		 * only result in a minor loss of functionality for that inode.
4658 		 * If this is felt to be critical, then e2fsck should be run to
4659 		 * force a large enough s_min_extra_isize.
4660 		 */
4661 		if ((jbd2_journal_extend(handle,
4662 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4663 			ret = ext4_expand_extra_isize(inode,
4664 						      sbi->s_want_extra_isize,
4665 						      iloc, handle);
4666 			if (ret) {
4667 				EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
4668 				if (mnt_count !=
4669 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4670 					ext4_warning(inode->i_sb, __func__,
4671 					"Unable to expand inode %lu. Delete"
4672 					" some EAs or run e2fsck.",
4673 					inode->i_ino);
4674 					mnt_count =
4675 					  le16_to_cpu(sbi->s_es->s_mnt_count);
4676 				}
4677 			}
4678 		}
4679 	}
4680 	if (!err)
4681 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4682 	return err;
4683 }
4684 
4685 /*
4686  * ext4_dirty_inode() is called from __mark_inode_dirty()
4687  *
4688  * We're really interested in the case where a file is being extended.
4689  * i_size has been changed by generic_commit_write() and we thus need
4690  * to include the updated inode in the current transaction.
4691  *
4692  * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
4693  * are allocated to the file.
4694  *
4695  * If the inode is marked synchronous, we don't honour that here - doing
4696  * so would cause a commit on atime updates, which we don't bother doing.
4697  * We handle synchronous inodes at the highest possible level.
4698  */
4699 void ext4_dirty_inode(struct inode *inode)
4700 {
4701 	handle_t *current_handle = ext4_journal_current_handle();
4702 	handle_t *handle;
4703 
4704 	handle = ext4_journal_start(inode, 2);
4705 	if (IS_ERR(handle))
4706 		goto out;
4707 	if (current_handle &&
4708 		current_handle->h_transaction != handle->h_transaction) {
4709 		/* This task has a transaction open against a different fs */
4710 		printk(KERN_EMERG "%s: transactions do not match!\n",
4711 		       __func__);
4712 	} else {
4713 		jbd_debug(5, "marking dirty.  outer handle=%p\n",
4714 				current_handle);
4715 		ext4_mark_inode_dirty(handle, inode);
4716 	}
4717 	ext4_journal_stop(handle);
4718 out:
4719 	return;
4720 }
4721 
4722 #if 0
4723 /*
4724  * Bind an inode's backing buffer_head into this transaction, to prevent
4725  * it from being flushed to disk early.  Unlike
4726  * ext4_reserve_inode_write, this leaves behind no bh reference and
4727  * returns no iloc structure, so the caller needs to repeat the iloc
4728  * lookup to mark the inode dirty later.
4729  */
4730 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4731 {
4732 	struct ext4_iloc iloc;
4733 
4734 	int err = 0;
4735 	if (handle) {
4736 		err = ext4_get_inode_loc(inode, &iloc);
4737 		if (!err) {
4738 			BUFFER_TRACE(iloc.bh, "get_write_access");
4739 			err = jbd2_journal_get_write_access(handle, iloc.bh);
4740 			if (!err)
4741 				err = ext4_journal_dirty_metadata(handle,
4742 								  iloc.bh);
4743 			brelse(iloc.bh);
4744 		}
4745 	}
4746 	ext4_std_error(inode->i_sb, err);
4747 	return err;
4748 }
4749 #endif
4750 
4751 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4752 {
4753 	journal_t *journal;
4754 	handle_t *handle;
4755 	int err;
4756 
4757 	/*
4758 	 * We have to be very careful here: changing a data block's
4759 	 * journaling status dynamically is dangerous.  If we write a
4760 	 * data block to the journal, change the status and then delete
4761 	 * that block, we risk forgetting to revoke the old log record
4762 	 * from the journal and so a subsequent replay can corrupt data.
4763 	 * So, first we make sure that the journal is empty and that
4764 	 * nobody is changing anything.
4765 	 */
4766 
4767 	journal = EXT4_JOURNAL(inode);
4768 	if (is_journal_aborted(journal))
4769 		return -EROFS;
4770 
4771 	jbd2_journal_lock_updates(journal);
4772 	jbd2_journal_flush(journal);
4773 
4774 	/*
4775 	 * OK, there are no updates running now, and all cached data is
4776 	 * synced to disk.  We are now in a completely consistent state
4777 	 * which doesn't have anything in the journal, and we know that
4778 	 * no filesystem updates are running, so it is safe to modify
4779 	 * the inode's in-core data-journaling state flag now.
4780 	 */
4781 
4782 	if (val)
4783 		EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
4784 	else
4785 		EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
4786 	ext4_set_aops(inode);
4787 
4788 	jbd2_journal_unlock_updates(journal);
4789 
4790 	/* Finally we can mark the inode as dirty. */
4791 
4792 	handle = ext4_journal_start(inode, 1);
4793 	if (IS_ERR(handle))
4794 		return PTR_ERR(handle);
4795 
4796 	err = ext4_mark_inode_dirty(handle, inode);
4797 	handle->h_sync = 1;
4798 	ext4_journal_stop(handle);
4799 	ext4_std_error(inode->i_sb, err);
4800 
4801 	return err;
4802 }
4803 
4804 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4805 {
4806 	return !buffer_mapped(bh);
4807 }
4808 
4809 int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4810 {
4811 	loff_t size;
4812 	unsigned long len;
4813 	int ret = -EINVAL;
4814 	struct file *file = vma->vm_file;
4815 	struct inode *inode = file->f_path.dentry->d_inode;
4816 	struct address_space *mapping = inode->i_mapping;
4817 
4818 	/*
4819 	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
4820 	 * get i_mutex because we are already holding mmap_sem.
4821 	 */
4822 	down_read(&inode->i_alloc_sem);
4823 	size = i_size_read(inode);
4824 	if (page->mapping != mapping || size <= page_offset(page)
4825 	    || !PageUptodate(page)) {
4826 		/* page got truncated from under us? */
4827 		goto out_unlock;
4828 	}
4829 	ret = 0;
4830 	if (PageMappedToDisk(page))
4831 		goto out_unlock;
4832 
4833 	if (page->index == size >> PAGE_CACHE_SHIFT)
4834 		len = size & ~PAGE_CACHE_MASK;
4835 	else
4836 		len = PAGE_CACHE_SIZE;
4837 
4838 	if (page_has_buffers(page)) {
4839 		/* return if we have all the buffers mapped */
4840 		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4841 				       ext4_bh_unmapped))
4842 			goto out_unlock;
4843 	}
4844 	/*
4845 	 * OK, we need to fill the hole... Do write_begin write_end
4846 	 * to do block allocation/reservation.We are not holding
4847 	 * inode.i__mutex here. That allow * parallel write_begin,
4848 	 * write_end call. lock_page prevent this from happening
4849 	 * on the same page though
4850 	 */
4851 	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
4852 			len, AOP_FLAG_UNINTERRUPTIBLE, &page, NULL);
4853 	if (ret < 0)
4854 		goto out_unlock;
4855 	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
4856 			len, len, page, NULL);
4857 	if (ret < 0)
4858 		goto out_unlock;
4859 	ret = 0;
4860 out_unlock:
4861 	up_read(&inode->i_alloc_sem);
4862 	return ret;
4863 }
4864