1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Goal-directed block allocation by Stephen Tweedie 16 * (sct@redhat.com), 1993, 1998 17 * Big-endian to little-endian byte-swapping/bitmaps by 18 * David S. Miller (davem@caip.rutgers.edu), 1995 19 * 64-bit file support on 64-bit platforms by Jakub Jelinek 20 * (jj@sunsite.ms.mff.cuni.cz) 21 * 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 23 */ 24 25 #include <linux/module.h> 26 #include <linux/fs.h> 27 #include <linux/time.h> 28 #include <linux/jbd2.h> 29 #include <linux/highuid.h> 30 #include <linux/pagemap.h> 31 #include <linux/quotaops.h> 32 #include <linux/string.h> 33 #include <linux/buffer_head.h> 34 #include <linux/writeback.h> 35 #include <linux/pagevec.h> 36 #include <linux/mpage.h> 37 #include <linux/uio.h> 38 #include <linux/bio.h> 39 #include "ext4_jbd2.h" 40 #include "xattr.h" 41 #include "acl.h" 42 #include "ext4_extents.h" 43 44 #define MPAGE_DA_EXTENT_TAIL 0x01 45 46 static inline int ext4_begin_ordered_truncate(struct inode *inode, 47 loff_t new_size) 48 { 49 return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode, 50 new_size); 51 } 52 53 static void ext4_invalidatepage(struct page *page, unsigned long offset); 54 55 /* 56 * Test whether an inode is a fast symlink. 57 */ 58 static int ext4_inode_is_fast_symlink(struct inode *inode) 59 { 60 int ea_blocks = EXT4_I(inode)->i_file_acl ? 61 (inode->i_sb->s_blocksize >> 9) : 0; 62 63 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 64 } 65 66 /* 67 * The ext4 forget function must perform a revoke if we are freeing data 68 * which has been journaled. Metadata (eg. indirect blocks) must be 69 * revoked in all cases. 70 * 71 * "bh" may be NULL: a metadata block may have been freed from memory 72 * but there may still be a record of it in the journal, and that record 73 * still needs to be revoked. 74 */ 75 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode, 76 struct buffer_head *bh, ext4_fsblk_t blocknr) 77 { 78 int err; 79 80 might_sleep(); 81 82 BUFFER_TRACE(bh, "enter"); 83 84 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, " 85 "data mode %lx\n", 86 bh, is_metadata, inode->i_mode, 87 test_opt(inode->i_sb, DATA_FLAGS)); 88 89 /* Never use the revoke function if we are doing full data 90 * journaling: there is no need to, and a V1 superblock won't 91 * support it. Otherwise, only skip the revoke on un-journaled 92 * data blocks. */ 93 94 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA || 95 (!is_metadata && !ext4_should_journal_data(inode))) { 96 if (bh) { 97 BUFFER_TRACE(bh, "call jbd2_journal_forget"); 98 return ext4_journal_forget(handle, bh); 99 } 100 return 0; 101 } 102 103 /* 104 * data!=journal && (is_metadata || should_journal_data(inode)) 105 */ 106 BUFFER_TRACE(bh, "call ext4_journal_revoke"); 107 err = ext4_journal_revoke(handle, blocknr, bh); 108 if (err) 109 ext4_abort(inode->i_sb, __func__, 110 "error %d when attempting revoke", err); 111 BUFFER_TRACE(bh, "exit"); 112 return err; 113 } 114 115 /* 116 * Work out how many blocks we need to proceed with the next chunk of a 117 * truncate transaction. 118 */ 119 static unsigned long blocks_for_truncate(struct inode *inode) 120 { 121 ext4_lblk_t needed; 122 123 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9); 124 125 /* Give ourselves just enough room to cope with inodes in which 126 * i_blocks is corrupt: we've seen disk corruptions in the past 127 * which resulted in random data in an inode which looked enough 128 * like a regular file for ext4 to try to delete it. Things 129 * will go a bit crazy if that happens, but at least we should 130 * try not to panic the whole kernel. */ 131 if (needed < 2) 132 needed = 2; 133 134 /* But we need to bound the transaction so we don't overflow the 135 * journal. */ 136 if (needed > EXT4_MAX_TRANS_DATA) 137 needed = EXT4_MAX_TRANS_DATA; 138 139 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed; 140 } 141 142 /* 143 * Truncate transactions can be complex and absolutely huge. So we need to 144 * be able to restart the transaction at a conventient checkpoint to make 145 * sure we don't overflow the journal. 146 * 147 * start_transaction gets us a new handle for a truncate transaction, 148 * and extend_transaction tries to extend the existing one a bit. If 149 * extend fails, we need to propagate the failure up and restart the 150 * transaction in the top-level truncate loop. --sct 151 */ 152 static handle_t *start_transaction(struct inode *inode) 153 { 154 handle_t *result; 155 156 result = ext4_journal_start(inode, blocks_for_truncate(inode)); 157 if (!IS_ERR(result)) 158 return result; 159 160 ext4_std_error(inode->i_sb, PTR_ERR(result)); 161 return result; 162 } 163 164 /* 165 * Try to extend this transaction for the purposes of truncation. 166 * 167 * Returns 0 if we managed to create more room. If we can't create more 168 * room, and the transaction must be restarted we return 1. 169 */ 170 static int try_to_extend_transaction(handle_t *handle, struct inode *inode) 171 { 172 if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS) 173 return 0; 174 if (!ext4_journal_extend(handle, blocks_for_truncate(inode))) 175 return 0; 176 return 1; 177 } 178 179 /* 180 * Restart the transaction associated with *handle. This does a commit, 181 * so before we call here everything must be consistently dirtied against 182 * this transaction. 183 */ 184 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode) 185 { 186 jbd_debug(2, "restarting handle %p\n", handle); 187 return ext4_journal_restart(handle, blocks_for_truncate(inode)); 188 } 189 190 /* 191 * Called at the last iput() if i_nlink is zero. 192 */ 193 void ext4_delete_inode (struct inode * inode) 194 { 195 handle_t *handle; 196 int err; 197 198 if (ext4_should_order_data(inode)) 199 ext4_begin_ordered_truncate(inode, 0); 200 truncate_inode_pages(&inode->i_data, 0); 201 202 if (is_bad_inode(inode)) 203 goto no_delete; 204 205 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3); 206 if (IS_ERR(handle)) { 207 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 208 /* 209 * If we're going to skip the normal cleanup, we still need to 210 * make sure that the in-core orphan linked list is properly 211 * cleaned up. 212 */ 213 ext4_orphan_del(NULL, inode); 214 goto no_delete; 215 } 216 217 if (IS_SYNC(inode)) 218 handle->h_sync = 1; 219 inode->i_size = 0; 220 err = ext4_mark_inode_dirty(handle, inode); 221 if (err) { 222 ext4_warning(inode->i_sb, __func__, 223 "couldn't mark inode dirty (err %d)", err); 224 goto stop_handle; 225 } 226 if (inode->i_blocks) 227 ext4_truncate(inode); 228 229 /* 230 * ext4_ext_truncate() doesn't reserve any slop when it 231 * restarts journal transactions; therefore there may not be 232 * enough credits left in the handle to remove the inode from 233 * the orphan list and set the dtime field. 234 */ 235 if (handle->h_buffer_credits < 3) { 236 err = ext4_journal_extend(handle, 3); 237 if (err > 0) 238 err = ext4_journal_restart(handle, 3); 239 if (err != 0) { 240 ext4_warning(inode->i_sb, __func__, 241 "couldn't extend journal (err %d)", err); 242 stop_handle: 243 ext4_journal_stop(handle); 244 goto no_delete; 245 } 246 } 247 248 /* 249 * Kill off the orphan record which ext4_truncate created. 250 * AKPM: I think this can be inside the above `if'. 251 * Note that ext4_orphan_del() has to be able to cope with the 252 * deletion of a non-existent orphan - this is because we don't 253 * know if ext4_truncate() actually created an orphan record. 254 * (Well, we could do this if we need to, but heck - it works) 255 */ 256 ext4_orphan_del(handle, inode); 257 EXT4_I(inode)->i_dtime = get_seconds(); 258 259 /* 260 * One subtle ordering requirement: if anything has gone wrong 261 * (transaction abort, IO errors, whatever), then we can still 262 * do these next steps (the fs will already have been marked as 263 * having errors), but we can't free the inode if the mark_dirty 264 * fails. 265 */ 266 if (ext4_mark_inode_dirty(handle, inode)) 267 /* If that failed, just do the required in-core inode clear. */ 268 clear_inode(inode); 269 else 270 ext4_free_inode(handle, inode); 271 ext4_journal_stop(handle); 272 return; 273 no_delete: 274 clear_inode(inode); /* We must guarantee clearing of inode... */ 275 } 276 277 typedef struct { 278 __le32 *p; 279 __le32 key; 280 struct buffer_head *bh; 281 } Indirect; 282 283 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v) 284 { 285 p->key = *(p->p = v); 286 p->bh = bh; 287 } 288 289 /** 290 * ext4_block_to_path - parse the block number into array of offsets 291 * @inode: inode in question (we are only interested in its superblock) 292 * @i_block: block number to be parsed 293 * @offsets: array to store the offsets in 294 * @boundary: set this non-zero if the referred-to block is likely to be 295 * followed (on disk) by an indirect block. 296 * 297 * To store the locations of file's data ext4 uses a data structure common 298 * for UNIX filesystems - tree of pointers anchored in the inode, with 299 * data blocks at leaves and indirect blocks in intermediate nodes. 300 * This function translates the block number into path in that tree - 301 * return value is the path length and @offsets[n] is the offset of 302 * pointer to (n+1)th node in the nth one. If @block is out of range 303 * (negative or too large) warning is printed and zero returned. 304 * 305 * Note: function doesn't find node addresses, so no IO is needed. All 306 * we need to know is the capacity of indirect blocks (taken from the 307 * inode->i_sb). 308 */ 309 310 /* 311 * Portability note: the last comparison (check that we fit into triple 312 * indirect block) is spelled differently, because otherwise on an 313 * architecture with 32-bit longs and 8Kb pages we might get into trouble 314 * if our filesystem had 8Kb blocks. We might use long long, but that would 315 * kill us on x86. Oh, well, at least the sign propagation does not matter - 316 * i_block would have to be negative in the very beginning, so we would not 317 * get there at all. 318 */ 319 320 static int ext4_block_to_path(struct inode *inode, 321 ext4_lblk_t i_block, 322 ext4_lblk_t offsets[4], int *boundary) 323 { 324 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb); 325 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb); 326 const long direct_blocks = EXT4_NDIR_BLOCKS, 327 indirect_blocks = ptrs, 328 double_blocks = (1 << (ptrs_bits * 2)); 329 int n = 0; 330 int final = 0; 331 332 if (i_block < 0) { 333 ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0"); 334 } else if (i_block < direct_blocks) { 335 offsets[n++] = i_block; 336 final = direct_blocks; 337 } else if ( (i_block -= direct_blocks) < indirect_blocks) { 338 offsets[n++] = EXT4_IND_BLOCK; 339 offsets[n++] = i_block; 340 final = ptrs; 341 } else if ((i_block -= indirect_blocks) < double_blocks) { 342 offsets[n++] = EXT4_DIND_BLOCK; 343 offsets[n++] = i_block >> ptrs_bits; 344 offsets[n++] = i_block & (ptrs - 1); 345 final = ptrs; 346 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { 347 offsets[n++] = EXT4_TIND_BLOCK; 348 offsets[n++] = i_block >> (ptrs_bits * 2); 349 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); 350 offsets[n++] = i_block & (ptrs - 1); 351 final = ptrs; 352 } else { 353 ext4_warning(inode->i_sb, "ext4_block_to_path", 354 "block %lu > max", 355 i_block + direct_blocks + 356 indirect_blocks + double_blocks); 357 } 358 if (boundary) 359 *boundary = final - 1 - (i_block & (ptrs - 1)); 360 return n; 361 } 362 363 /** 364 * ext4_get_branch - read the chain of indirect blocks leading to data 365 * @inode: inode in question 366 * @depth: depth of the chain (1 - direct pointer, etc.) 367 * @offsets: offsets of pointers in inode/indirect blocks 368 * @chain: place to store the result 369 * @err: here we store the error value 370 * 371 * Function fills the array of triples <key, p, bh> and returns %NULL 372 * if everything went OK or the pointer to the last filled triple 373 * (incomplete one) otherwise. Upon the return chain[i].key contains 374 * the number of (i+1)-th block in the chain (as it is stored in memory, 375 * i.e. little-endian 32-bit), chain[i].p contains the address of that 376 * number (it points into struct inode for i==0 and into the bh->b_data 377 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect 378 * block for i>0 and NULL for i==0. In other words, it holds the block 379 * numbers of the chain, addresses they were taken from (and where we can 380 * verify that chain did not change) and buffer_heads hosting these 381 * numbers. 382 * 383 * Function stops when it stumbles upon zero pointer (absent block) 384 * (pointer to last triple returned, *@err == 0) 385 * or when it gets an IO error reading an indirect block 386 * (ditto, *@err == -EIO) 387 * or when it reads all @depth-1 indirect blocks successfully and finds 388 * the whole chain, all way to the data (returns %NULL, *err == 0). 389 * 390 * Need to be called with 391 * down_read(&EXT4_I(inode)->i_data_sem) 392 */ 393 static Indirect *ext4_get_branch(struct inode *inode, int depth, 394 ext4_lblk_t *offsets, 395 Indirect chain[4], int *err) 396 { 397 struct super_block *sb = inode->i_sb; 398 Indirect *p = chain; 399 struct buffer_head *bh; 400 401 *err = 0; 402 /* i_data is not going away, no lock needed */ 403 add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets); 404 if (!p->key) 405 goto no_block; 406 while (--depth) { 407 bh = sb_bread(sb, le32_to_cpu(p->key)); 408 if (!bh) 409 goto failure; 410 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets); 411 /* Reader: end */ 412 if (!p->key) 413 goto no_block; 414 } 415 return NULL; 416 417 failure: 418 *err = -EIO; 419 no_block: 420 return p; 421 } 422 423 /** 424 * ext4_find_near - find a place for allocation with sufficient locality 425 * @inode: owner 426 * @ind: descriptor of indirect block. 427 * 428 * This function returns the preferred place for block allocation. 429 * It is used when heuristic for sequential allocation fails. 430 * Rules are: 431 * + if there is a block to the left of our position - allocate near it. 432 * + if pointer will live in indirect block - allocate near that block. 433 * + if pointer will live in inode - allocate in the same 434 * cylinder group. 435 * 436 * In the latter case we colour the starting block by the callers PID to 437 * prevent it from clashing with concurrent allocations for a different inode 438 * in the same block group. The PID is used here so that functionally related 439 * files will be close-by on-disk. 440 * 441 * Caller must make sure that @ind is valid and will stay that way. 442 */ 443 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind) 444 { 445 struct ext4_inode_info *ei = EXT4_I(inode); 446 __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data; 447 __le32 *p; 448 ext4_fsblk_t bg_start; 449 ext4_fsblk_t last_block; 450 ext4_grpblk_t colour; 451 452 /* Try to find previous block */ 453 for (p = ind->p - 1; p >= start; p--) { 454 if (*p) 455 return le32_to_cpu(*p); 456 } 457 458 /* No such thing, so let's try location of indirect block */ 459 if (ind->bh) 460 return ind->bh->b_blocknr; 461 462 /* 463 * It is going to be referred to from the inode itself? OK, just put it 464 * into the same cylinder group then. 465 */ 466 bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group); 467 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1; 468 469 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block) 470 colour = (current->pid % 16) * 471 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16); 472 else 473 colour = (current->pid % 16) * ((last_block - bg_start) / 16); 474 return bg_start + colour; 475 } 476 477 /** 478 * ext4_find_goal - find a preferred place for allocation. 479 * @inode: owner 480 * @block: block we want 481 * @partial: pointer to the last triple within a chain 482 * 483 * Normally this function find the preferred place for block allocation, 484 * returns it. 485 */ 486 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block, 487 Indirect *partial) 488 { 489 struct ext4_block_alloc_info *block_i; 490 491 block_i = EXT4_I(inode)->i_block_alloc_info; 492 493 /* 494 * try the heuristic for sequential allocation, 495 * failing that at least try to get decent locality. 496 */ 497 if (block_i && (block == block_i->last_alloc_logical_block + 1) 498 && (block_i->last_alloc_physical_block != 0)) { 499 return block_i->last_alloc_physical_block + 1; 500 } 501 502 return ext4_find_near(inode, partial); 503 } 504 505 /** 506 * ext4_blks_to_allocate: Look up the block map and count the number 507 * of direct blocks need to be allocated for the given branch. 508 * 509 * @branch: chain of indirect blocks 510 * @k: number of blocks need for indirect blocks 511 * @blks: number of data blocks to be mapped. 512 * @blocks_to_boundary: the offset in the indirect block 513 * 514 * return the total number of blocks to be allocate, including the 515 * direct and indirect blocks. 516 */ 517 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks, 518 int blocks_to_boundary) 519 { 520 unsigned long count = 0; 521 522 /* 523 * Simple case, [t,d]Indirect block(s) has not allocated yet 524 * then it's clear blocks on that path have not allocated 525 */ 526 if (k > 0) { 527 /* right now we don't handle cross boundary allocation */ 528 if (blks < blocks_to_boundary + 1) 529 count += blks; 530 else 531 count += blocks_to_boundary + 1; 532 return count; 533 } 534 535 count++; 536 while (count < blks && count <= blocks_to_boundary && 537 le32_to_cpu(*(branch[0].p + count)) == 0) { 538 count++; 539 } 540 return count; 541 } 542 543 /** 544 * ext4_alloc_blocks: multiple allocate blocks needed for a branch 545 * @indirect_blks: the number of blocks need to allocate for indirect 546 * blocks 547 * 548 * @new_blocks: on return it will store the new block numbers for 549 * the indirect blocks(if needed) and the first direct block, 550 * @blks: on return it will store the total number of allocated 551 * direct blocks 552 */ 553 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode, 554 ext4_lblk_t iblock, ext4_fsblk_t goal, 555 int indirect_blks, int blks, 556 ext4_fsblk_t new_blocks[4], int *err) 557 { 558 int target, i; 559 unsigned long count = 0, blk_allocated = 0; 560 int index = 0; 561 ext4_fsblk_t current_block = 0; 562 int ret = 0; 563 564 /* 565 * Here we try to allocate the requested multiple blocks at once, 566 * on a best-effort basis. 567 * To build a branch, we should allocate blocks for 568 * the indirect blocks(if not allocated yet), and at least 569 * the first direct block of this branch. That's the 570 * minimum number of blocks need to allocate(required) 571 */ 572 /* first we try to allocate the indirect blocks */ 573 target = indirect_blks; 574 while (target > 0) { 575 count = target; 576 /* allocating blocks for indirect blocks and direct blocks */ 577 current_block = ext4_new_meta_blocks(handle, inode, 578 goal, &count, err); 579 if (*err) 580 goto failed_out; 581 582 target -= count; 583 /* allocate blocks for indirect blocks */ 584 while (index < indirect_blks && count) { 585 new_blocks[index++] = current_block++; 586 count--; 587 } 588 if (count > 0) { 589 /* 590 * save the new block number 591 * for the first direct block 592 */ 593 new_blocks[index] = current_block; 594 printk(KERN_INFO "%s returned more blocks than " 595 "requested\n", __func__); 596 WARN_ON(1); 597 break; 598 } 599 } 600 601 target = blks - count ; 602 blk_allocated = count; 603 if (!target) 604 goto allocated; 605 /* Now allocate data blocks */ 606 count = target; 607 /* allocating blocks for data blocks */ 608 current_block = ext4_new_blocks(handle, inode, iblock, 609 goal, &count, err); 610 if (*err && (target == blks)) { 611 /* 612 * if the allocation failed and we didn't allocate 613 * any blocks before 614 */ 615 goto failed_out; 616 } 617 if (!*err) { 618 if (target == blks) { 619 /* 620 * save the new block number 621 * for the first direct block 622 */ 623 new_blocks[index] = current_block; 624 } 625 blk_allocated += count; 626 } 627 allocated: 628 /* total number of blocks allocated for direct blocks */ 629 ret = blk_allocated; 630 *err = 0; 631 return ret; 632 failed_out: 633 for (i = 0; i <index; i++) 634 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0); 635 return ret; 636 } 637 638 /** 639 * ext4_alloc_branch - allocate and set up a chain of blocks. 640 * @inode: owner 641 * @indirect_blks: number of allocated indirect blocks 642 * @blks: number of allocated direct blocks 643 * @offsets: offsets (in the blocks) to store the pointers to next. 644 * @branch: place to store the chain in. 645 * 646 * This function allocates blocks, zeroes out all but the last one, 647 * links them into chain and (if we are synchronous) writes them to disk. 648 * In other words, it prepares a branch that can be spliced onto the 649 * inode. It stores the information about that chain in the branch[], in 650 * the same format as ext4_get_branch() would do. We are calling it after 651 * we had read the existing part of chain and partial points to the last 652 * triple of that (one with zero ->key). Upon the exit we have the same 653 * picture as after the successful ext4_get_block(), except that in one 654 * place chain is disconnected - *branch->p is still zero (we did not 655 * set the last link), but branch->key contains the number that should 656 * be placed into *branch->p to fill that gap. 657 * 658 * If allocation fails we free all blocks we've allocated (and forget 659 * their buffer_heads) and return the error value the from failed 660 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain 661 * as described above and return 0. 662 */ 663 static int ext4_alloc_branch(handle_t *handle, struct inode *inode, 664 ext4_lblk_t iblock, int indirect_blks, 665 int *blks, ext4_fsblk_t goal, 666 ext4_lblk_t *offsets, Indirect *branch) 667 { 668 int blocksize = inode->i_sb->s_blocksize; 669 int i, n = 0; 670 int err = 0; 671 struct buffer_head *bh; 672 int num; 673 ext4_fsblk_t new_blocks[4]; 674 ext4_fsblk_t current_block; 675 676 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks, 677 *blks, new_blocks, &err); 678 if (err) 679 return err; 680 681 branch[0].key = cpu_to_le32(new_blocks[0]); 682 /* 683 * metadata blocks and data blocks are allocated. 684 */ 685 for (n = 1; n <= indirect_blks; n++) { 686 /* 687 * Get buffer_head for parent block, zero it out 688 * and set the pointer to new one, then send 689 * parent to disk. 690 */ 691 bh = sb_getblk(inode->i_sb, new_blocks[n-1]); 692 branch[n].bh = bh; 693 lock_buffer(bh); 694 BUFFER_TRACE(bh, "call get_create_access"); 695 err = ext4_journal_get_create_access(handle, bh); 696 if (err) { 697 unlock_buffer(bh); 698 brelse(bh); 699 goto failed; 700 } 701 702 memset(bh->b_data, 0, blocksize); 703 branch[n].p = (__le32 *) bh->b_data + offsets[n]; 704 branch[n].key = cpu_to_le32(new_blocks[n]); 705 *branch[n].p = branch[n].key; 706 if ( n == indirect_blks) { 707 current_block = new_blocks[n]; 708 /* 709 * End of chain, update the last new metablock of 710 * the chain to point to the new allocated 711 * data blocks numbers 712 */ 713 for (i=1; i < num; i++) 714 *(branch[n].p + i) = cpu_to_le32(++current_block); 715 } 716 BUFFER_TRACE(bh, "marking uptodate"); 717 set_buffer_uptodate(bh); 718 unlock_buffer(bh); 719 720 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata"); 721 err = ext4_journal_dirty_metadata(handle, bh); 722 if (err) 723 goto failed; 724 } 725 *blks = num; 726 return err; 727 failed: 728 /* Allocation failed, free what we already allocated */ 729 for (i = 1; i <= n ; i++) { 730 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget"); 731 ext4_journal_forget(handle, branch[i].bh); 732 } 733 for (i = 0; i <indirect_blks; i++) 734 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0); 735 736 ext4_free_blocks(handle, inode, new_blocks[i], num, 0); 737 738 return err; 739 } 740 741 /** 742 * ext4_splice_branch - splice the allocated branch onto inode. 743 * @inode: owner 744 * @block: (logical) number of block we are adding 745 * @chain: chain of indirect blocks (with a missing link - see 746 * ext4_alloc_branch) 747 * @where: location of missing link 748 * @num: number of indirect blocks we are adding 749 * @blks: number of direct blocks we are adding 750 * 751 * This function fills the missing link and does all housekeeping needed in 752 * inode (->i_blocks, etc.). In case of success we end up with the full 753 * chain to new block and return 0. 754 */ 755 static int ext4_splice_branch(handle_t *handle, struct inode *inode, 756 ext4_lblk_t block, Indirect *where, int num, int blks) 757 { 758 int i; 759 int err = 0; 760 struct ext4_block_alloc_info *block_i; 761 ext4_fsblk_t current_block; 762 763 block_i = EXT4_I(inode)->i_block_alloc_info; 764 /* 765 * If we're splicing into a [td]indirect block (as opposed to the 766 * inode) then we need to get write access to the [td]indirect block 767 * before the splice. 768 */ 769 if (where->bh) { 770 BUFFER_TRACE(where->bh, "get_write_access"); 771 err = ext4_journal_get_write_access(handle, where->bh); 772 if (err) 773 goto err_out; 774 } 775 /* That's it */ 776 777 *where->p = where->key; 778 779 /* 780 * Update the host buffer_head or inode to point to more just allocated 781 * direct blocks blocks 782 */ 783 if (num == 0 && blks > 1) { 784 current_block = le32_to_cpu(where->key) + 1; 785 for (i = 1; i < blks; i++) 786 *(where->p + i ) = cpu_to_le32(current_block++); 787 } 788 789 /* 790 * update the most recently allocated logical & physical block 791 * in i_block_alloc_info, to assist find the proper goal block for next 792 * allocation 793 */ 794 if (block_i) { 795 block_i->last_alloc_logical_block = block + blks - 1; 796 block_i->last_alloc_physical_block = 797 le32_to_cpu(where[num].key) + blks - 1; 798 } 799 800 /* We are done with atomic stuff, now do the rest of housekeeping */ 801 802 inode->i_ctime = ext4_current_time(inode); 803 ext4_mark_inode_dirty(handle, inode); 804 805 /* had we spliced it onto indirect block? */ 806 if (where->bh) { 807 /* 808 * If we spliced it onto an indirect block, we haven't 809 * altered the inode. Note however that if it is being spliced 810 * onto an indirect block at the very end of the file (the 811 * file is growing) then we *will* alter the inode to reflect 812 * the new i_size. But that is not done here - it is done in 813 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode. 814 */ 815 jbd_debug(5, "splicing indirect only\n"); 816 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata"); 817 err = ext4_journal_dirty_metadata(handle, where->bh); 818 if (err) 819 goto err_out; 820 } else { 821 /* 822 * OK, we spliced it into the inode itself on a direct block. 823 * Inode was dirtied above. 824 */ 825 jbd_debug(5, "splicing direct\n"); 826 } 827 return err; 828 829 err_out: 830 for (i = 1; i <= num; i++) { 831 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget"); 832 ext4_journal_forget(handle, where[i].bh); 833 ext4_free_blocks(handle, inode, 834 le32_to_cpu(where[i-1].key), 1, 0); 835 } 836 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0); 837 838 return err; 839 } 840 841 /* 842 * Allocation strategy is simple: if we have to allocate something, we will 843 * have to go the whole way to leaf. So let's do it before attaching anything 844 * to tree, set linkage between the newborn blocks, write them if sync is 845 * required, recheck the path, free and repeat if check fails, otherwise 846 * set the last missing link (that will protect us from any truncate-generated 847 * removals - all blocks on the path are immune now) and possibly force the 848 * write on the parent block. 849 * That has a nice additional property: no special recovery from the failed 850 * allocations is needed - we simply release blocks and do not touch anything 851 * reachable from inode. 852 * 853 * `handle' can be NULL if create == 0. 854 * 855 * return > 0, # of blocks mapped or allocated. 856 * return = 0, if plain lookup failed. 857 * return < 0, error case. 858 * 859 * 860 * Need to be called with 861 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block 862 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem) 863 */ 864 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode, 865 ext4_lblk_t iblock, unsigned long maxblocks, 866 struct buffer_head *bh_result, 867 int create, int extend_disksize) 868 { 869 int err = -EIO; 870 ext4_lblk_t offsets[4]; 871 Indirect chain[4]; 872 Indirect *partial; 873 ext4_fsblk_t goal; 874 int indirect_blks; 875 int blocks_to_boundary = 0; 876 int depth; 877 struct ext4_inode_info *ei = EXT4_I(inode); 878 int count = 0; 879 ext4_fsblk_t first_block = 0; 880 loff_t disksize; 881 882 883 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)); 884 J_ASSERT(handle != NULL || create == 0); 885 depth = ext4_block_to_path(inode, iblock, offsets, 886 &blocks_to_boundary); 887 888 if (depth == 0) 889 goto out; 890 891 partial = ext4_get_branch(inode, depth, offsets, chain, &err); 892 893 /* Simplest case - block found, no allocation needed */ 894 if (!partial) { 895 first_block = le32_to_cpu(chain[depth - 1].key); 896 clear_buffer_new(bh_result); 897 count++; 898 /*map more blocks*/ 899 while (count < maxblocks && count <= blocks_to_boundary) { 900 ext4_fsblk_t blk; 901 902 blk = le32_to_cpu(*(chain[depth-1].p + count)); 903 904 if (blk == first_block + count) 905 count++; 906 else 907 break; 908 } 909 goto got_it; 910 } 911 912 /* Next simple case - plain lookup or failed read of indirect block */ 913 if (!create || err == -EIO) 914 goto cleanup; 915 916 /* 917 * Okay, we need to do block allocation. Lazily initialize the block 918 * allocation info here if necessary 919 */ 920 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info)) 921 ext4_init_block_alloc_info(inode); 922 923 goal = ext4_find_goal(inode, iblock, partial); 924 925 /* the number of blocks need to allocate for [d,t]indirect blocks */ 926 indirect_blks = (chain + depth) - partial - 1; 927 928 /* 929 * Next look up the indirect map to count the totoal number of 930 * direct blocks to allocate for this branch. 931 */ 932 count = ext4_blks_to_allocate(partial, indirect_blks, 933 maxblocks, blocks_to_boundary); 934 /* 935 * Block out ext4_truncate while we alter the tree 936 */ 937 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks, 938 &count, goal, 939 offsets + (partial - chain), partial); 940 941 /* 942 * The ext4_splice_branch call will free and forget any buffers 943 * on the new chain if there is a failure, but that risks using 944 * up transaction credits, especially for bitmaps where the 945 * credits cannot be returned. Can we handle this somehow? We 946 * may need to return -EAGAIN upwards in the worst case. --sct 947 */ 948 if (!err) 949 err = ext4_splice_branch(handle, inode, iblock, 950 partial, indirect_blks, count); 951 /* 952 * i_disksize growing is protected by i_data_sem. Don't forget to 953 * protect it if you're about to implement concurrent 954 * ext4_get_block() -bzzz 955 */ 956 if (!err && extend_disksize) { 957 disksize = ((loff_t) iblock + count) << inode->i_blkbits; 958 if (disksize > i_size_read(inode)) 959 disksize = i_size_read(inode); 960 if (disksize > ei->i_disksize) 961 ei->i_disksize = disksize; 962 } 963 if (err) 964 goto cleanup; 965 966 set_buffer_new(bh_result); 967 got_it: 968 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key)); 969 if (count > blocks_to_boundary) 970 set_buffer_boundary(bh_result); 971 err = count; 972 /* Clean up and exit */ 973 partial = chain + depth - 1; /* the whole chain */ 974 cleanup: 975 while (partial > chain) { 976 BUFFER_TRACE(partial->bh, "call brelse"); 977 brelse(partial->bh); 978 partial--; 979 } 980 BUFFER_TRACE(bh_result, "returned"); 981 out: 982 return err; 983 } 984 985 /* 986 * Calculate the number of metadata blocks need to reserve 987 * to allocate @blocks for non extent file based file 988 */ 989 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks) 990 { 991 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb); 992 int ind_blks, dind_blks, tind_blks; 993 994 /* number of new indirect blocks needed */ 995 ind_blks = (blocks + icap - 1) / icap; 996 997 dind_blks = (ind_blks + icap - 1) / icap; 998 999 tind_blks = 1; 1000 1001 return ind_blks + dind_blks + tind_blks; 1002 } 1003 1004 /* 1005 * Calculate the number of metadata blocks need to reserve 1006 * to allocate given number of blocks 1007 */ 1008 static int ext4_calc_metadata_amount(struct inode *inode, int blocks) 1009 { 1010 if (!blocks) 1011 return 0; 1012 1013 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) 1014 return ext4_ext_calc_metadata_amount(inode, blocks); 1015 1016 return ext4_indirect_calc_metadata_amount(inode, blocks); 1017 } 1018 1019 static void ext4_da_update_reserve_space(struct inode *inode, int used) 1020 { 1021 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1022 int total, mdb, mdb_free; 1023 1024 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1025 /* recalculate the number of metablocks still need to be reserved */ 1026 total = EXT4_I(inode)->i_reserved_data_blocks - used; 1027 mdb = ext4_calc_metadata_amount(inode, total); 1028 1029 /* figure out how many metablocks to release */ 1030 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks); 1031 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb; 1032 1033 /* Account for allocated meta_blocks */ 1034 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks; 1035 1036 /* update fs free blocks counter for truncate case */ 1037 percpu_counter_add(&sbi->s_freeblocks_counter, mdb_free); 1038 1039 /* update per-inode reservations */ 1040 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks); 1041 EXT4_I(inode)->i_reserved_data_blocks -= used; 1042 1043 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks); 1044 EXT4_I(inode)->i_reserved_meta_blocks = mdb; 1045 EXT4_I(inode)->i_allocated_meta_blocks = 0; 1046 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1047 } 1048 1049 /* 1050 * The ext4_get_blocks_wrap() function try to look up the requested blocks, 1051 * and returns if the blocks are already mapped. 1052 * 1053 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 1054 * and store the allocated blocks in the result buffer head and mark it 1055 * mapped. 1056 * 1057 * If file type is extents based, it will call ext4_ext_get_blocks(), 1058 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping 1059 * based files 1060 * 1061 * On success, it returns the number of blocks being mapped or allocate. 1062 * if create==0 and the blocks are pre-allocated and uninitialized block, 1063 * the result buffer head is unmapped. If the create ==1, it will make sure 1064 * the buffer head is mapped. 1065 * 1066 * It returns 0 if plain look up failed (blocks have not been allocated), in 1067 * that casem, buffer head is unmapped 1068 * 1069 * It returns the error in case of allocation failure. 1070 */ 1071 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block, 1072 unsigned long max_blocks, struct buffer_head *bh, 1073 int create, int extend_disksize, int flag) 1074 { 1075 int retval; 1076 1077 clear_buffer_mapped(bh); 1078 1079 /* 1080 * Try to see if we can get the block without requesting 1081 * for new file system block. 1082 */ 1083 down_read((&EXT4_I(inode)->i_data_sem)); 1084 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 1085 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks, 1086 bh, 0, 0); 1087 } else { 1088 retval = ext4_get_blocks_handle(handle, 1089 inode, block, max_blocks, bh, 0, 0); 1090 } 1091 up_read((&EXT4_I(inode)->i_data_sem)); 1092 1093 /* If it is only a block(s) look up */ 1094 if (!create) 1095 return retval; 1096 1097 /* 1098 * Returns if the blocks have already allocated 1099 * 1100 * Note that if blocks have been preallocated 1101 * ext4_ext_get_block() returns th create = 0 1102 * with buffer head unmapped. 1103 */ 1104 if (retval > 0 && buffer_mapped(bh)) 1105 return retval; 1106 1107 /* 1108 * New blocks allocate and/or writing to uninitialized extent 1109 * will possibly result in updating i_data, so we take 1110 * the write lock of i_data_sem, and call get_blocks() 1111 * with create == 1 flag. 1112 */ 1113 down_write((&EXT4_I(inode)->i_data_sem)); 1114 1115 /* 1116 * if the caller is from delayed allocation writeout path 1117 * we have already reserved fs blocks for allocation 1118 * let the underlying get_block() function know to 1119 * avoid double accounting 1120 */ 1121 if (flag) 1122 EXT4_I(inode)->i_delalloc_reserved_flag = 1; 1123 /* 1124 * We need to check for EXT4 here because migrate 1125 * could have changed the inode type in between 1126 */ 1127 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 1128 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks, 1129 bh, create, extend_disksize); 1130 } else { 1131 retval = ext4_get_blocks_handle(handle, inode, block, 1132 max_blocks, bh, create, extend_disksize); 1133 1134 if (retval > 0 && buffer_new(bh)) { 1135 /* 1136 * We allocated new blocks which will result in 1137 * i_data's format changing. Force the migrate 1138 * to fail by clearing migrate flags 1139 */ 1140 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags & 1141 ~EXT4_EXT_MIGRATE; 1142 } 1143 } 1144 1145 if (flag) { 1146 EXT4_I(inode)->i_delalloc_reserved_flag = 0; 1147 /* 1148 * Update reserved blocks/metadata blocks 1149 * after successful block allocation 1150 * which were deferred till now 1151 */ 1152 if ((retval > 0) && buffer_delay(bh)) 1153 ext4_da_update_reserve_space(inode, retval); 1154 } 1155 1156 up_write((&EXT4_I(inode)->i_data_sem)); 1157 return retval; 1158 } 1159 1160 /* Maximum number of blocks we map for direct IO at once. */ 1161 #define DIO_MAX_BLOCKS 4096 1162 1163 static int ext4_get_block(struct inode *inode, sector_t iblock, 1164 struct buffer_head *bh_result, int create) 1165 { 1166 handle_t *handle = ext4_journal_current_handle(); 1167 int ret = 0, started = 0; 1168 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; 1169 int dio_credits; 1170 1171 if (create && !handle) { 1172 /* Direct IO write... */ 1173 if (max_blocks > DIO_MAX_BLOCKS) 1174 max_blocks = DIO_MAX_BLOCKS; 1175 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks); 1176 handle = ext4_journal_start(inode, dio_credits); 1177 if (IS_ERR(handle)) { 1178 ret = PTR_ERR(handle); 1179 goto out; 1180 } 1181 started = 1; 1182 } 1183 1184 ret = ext4_get_blocks_wrap(handle, inode, iblock, 1185 max_blocks, bh_result, create, 0, 0); 1186 if (ret > 0) { 1187 bh_result->b_size = (ret << inode->i_blkbits); 1188 ret = 0; 1189 } 1190 if (started) 1191 ext4_journal_stop(handle); 1192 out: 1193 return ret; 1194 } 1195 1196 /* 1197 * `handle' can be NULL if create is zero 1198 */ 1199 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 1200 ext4_lblk_t block, int create, int *errp) 1201 { 1202 struct buffer_head dummy; 1203 int fatal = 0, err; 1204 1205 J_ASSERT(handle != NULL || create == 0); 1206 1207 dummy.b_state = 0; 1208 dummy.b_blocknr = -1000; 1209 buffer_trace_init(&dummy.b_history); 1210 err = ext4_get_blocks_wrap(handle, inode, block, 1, 1211 &dummy, create, 1, 0); 1212 /* 1213 * ext4_get_blocks_handle() returns number of blocks 1214 * mapped. 0 in case of a HOLE. 1215 */ 1216 if (err > 0) { 1217 if (err > 1) 1218 WARN_ON(1); 1219 err = 0; 1220 } 1221 *errp = err; 1222 if (!err && buffer_mapped(&dummy)) { 1223 struct buffer_head *bh; 1224 bh = sb_getblk(inode->i_sb, dummy.b_blocknr); 1225 if (!bh) { 1226 *errp = -EIO; 1227 goto err; 1228 } 1229 if (buffer_new(&dummy)) { 1230 J_ASSERT(create != 0); 1231 J_ASSERT(handle != NULL); 1232 1233 /* 1234 * Now that we do not always journal data, we should 1235 * keep in mind whether this should always journal the 1236 * new buffer as metadata. For now, regular file 1237 * writes use ext4_get_block instead, so it's not a 1238 * problem. 1239 */ 1240 lock_buffer(bh); 1241 BUFFER_TRACE(bh, "call get_create_access"); 1242 fatal = ext4_journal_get_create_access(handle, bh); 1243 if (!fatal && !buffer_uptodate(bh)) { 1244 memset(bh->b_data,0,inode->i_sb->s_blocksize); 1245 set_buffer_uptodate(bh); 1246 } 1247 unlock_buffer(bh); 1248 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata"); 1249 err = ext4_journal_dirty_metadata(handle, bh); 1250 if (!fatal) 1251 fatal = err; 1252 } else { 1253 BUFFER_TRACE(bh, "not a new buffer"); 1254 } 1255 if (fatal) { 1256 *errp = fatal; 1257 brelse(bh); 1258 bh = NULL; 1259 } 1260 return bh; 1261 } 1262 err: 1263 return NULL; 1264 } 1265 1266 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 1267 ext4_lblk_t block, int create, int *err) 1268 { 1269 struct buffer_head * bh; 1270 1271 bh = ext4_getblk(handle, inode, block, create, err); 1272 if (!bh) 1273 return bh; 1274 if (buffer_uptodate(bh)) 1275 return bh; 1276 ll_rw_block(READ_META, 1, &bh); 1277 wait_on_buffer(bh); 1278 if (buffer_uptodate(bh)) 1279 return bh; 1280 put_bh(bh); 1281 *err = -EIO; 1282 return NULL; 1283 } 1284 1285 static int walk_page_buffers( handle_t *handle, 1286 struct buffer_head *head, 1287 unsigned from, 1288 unsigned to, 1289 int *partial, 1290 int (*fn)( handle_t *handle, 1291 struct buffer_head *bh)) 1292 { 1293 struct buffer_head *bh; 1294 unsigned block_start, block_end; 1295 unsigned blocksize = head->b_size; 1296 int err, ret = 0; 1297 struct buffer_head *next; 1298 1299 for ( bh = head, block_start = 0; 1300 ret == 0 && (bh != head || !block_start); 1301 block_start = block_end, bh = next) 1302 { 1303 next = bh->b_this_page; 1304 block_end = block_start + blocksize; 1305 if (block_end <= from || block_start >= to) { 1306 if (partial && !buffer_uptodate(bh)) 1307 *partial = 1; 1308 continue; 1309 } 1310 err = (*fn)(handle, bh); 1311 if (!ret) 1312 ret = err; 1313 } 1314 return ret; 1315 } 1316 1317 /* 1318 * To preserve ordering, it is essential that the hole instantiation and 1319 * the data write be encapsulated in a single transaction. We cannot 1320 * close off a transaction and start a new one between the ext4_get_block() 1321 * and the commit_write(). So doing the jbd2_journal_start at the start of 1322 * prepare_write() is the right place. 1323 * 1324 * Also, this function can nest inside ext4_writepage() -> 1325 * block_write_full_page(). In that case, we *know* that ext4_writepage() 1326 * has generated enough buffer credits to do the whole page. So we won't 1327 * block on the journal in that case, which is good, because the caller may 1328 * be PF_MEMALLOC. 1329 * 1330 * By accident, ext4 can be reentered when a transaction is open via 1331 * quota file writes. If we were to commit the transaction while thus 1332 * reentered, there can be a deadlock - we would be holding a quota 1333 * lock, and the commit would never complete if another thread had a 1334 * transaction open and was blocking on the quota lock - a ranking 1335 * violation. 1336 * 1337 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1338 * will _not_ run commit under these circumstances because handle->h_ref 1339 * is elevated. We'll still have enough credits for the tiny quotafile 1340 * write. 1341 */ 1342 static int do_journal_get_write_access(handle_t *handle, 1343 struct buffer_head *bh) 1344 { 1345 if (!buffer_mapped(bh) || buffer_freed(bh)) 1346 return 0; 1347 return ext4_journal_get_write_access(handle, bh); 1348 } 1349 1350 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1351 loff_t pos, unsigned len, unsigned flags, 1352 struct page **pagep, void **fsdata) 1353 { 1354 struct inode *inode = mapping->host; 1355 int ret, needed_blocks = ext4_writepage_trans_blocks(inode); 1356 handle_t *handle; 1357 int retries = 0; 1358 struct page *page; 1359 pgoff_t index; 1360 unsigned from, to; 1361 1362 index = pos >> PAGE_CACHE_SHIFT; 1363 from = pos & (PAGE_CACHE_SIZE - 1); 1364 to = from + len; 1365 1366 retry: 1367 handle = ext4_journal_start(inode, needed_blocks); 1368 if (IS_ERR(handle)) { 1369 ret = PTR_ERR(handle); 1370 goto out; 1371 } 1372 1373 page = __grab_cache_page(mapping, index); 1374 if (!page) { 1375 ext4_journal_stop(handle); 1376 ret = -ENOMEM; 1377 goto out; 1378 } 1379 *pagep = page; 1380 1381 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata, 1382 ext4_get_block); 1383 1384 if (!ret && ext4_should_journal_data(inode)) { 1385 ret = walk_page_buffers(handle, page_buffers(page), 1386 from, to, NULL, do_journal_get_write_access); 1387 } 1388 1389 if (ret) { 1390 unlock_page(page); 1391 ext4_journal_stop(handle); 1392 page_cache_release(page); 1393 } 1394 1395 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1396 goto retry; 1397 out: 1398 return ret; 1399 } 1400 1401 /* For write_end() in data=journal mode */ 1402 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1403 { 1404 if (!buffer_mapped(bh) || buffer_freed(bh)) 1405 return 0; 1406 set_buffer_uptodate(bh); 1407 return ext4_journal_dirty_metadata(handle, bh); 1408 } 1409 1410 /* 1411 * We need to pick up the new inode size which generic_commit_write gave us 1412 * `file' can be NULL - eg, when called from page_symlink(). 1413 * 1414 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1415 * buffers are managed internally. 1416 */ 1417 static int ext4_ordered_write_end(struct file *file, 1418 struct address_space *mapping, 1419 loff_t pos, unsigned len, unsigned copied, 1420 struct page *page, void *fsdata) 1421 { 1422 handle_t *handle = ext4_journal_current_handle(); 1423 struct inode *inode = mapping->host; 1424 int ret = 0, ret2; 1425 1426 ret = ext4_jbd2_file_inode(handle, inode); 1427 1428 if (ret == 0) { 1429 /* 1430 * generic_write_end() will run mark_inode_dirty() if i_size 1431 * changes. So let's piggyback the i_disksize mark_inode_dirty 1432 * into that. 1433 */ 1434 loff_t new_i_size; 1435 1436 new_i_size = pos + copied; 1437 if (new_i_size > EXT4_I(inode)->i_disksize) 1438 EXT4_I(inode)->i_disksize = new_i_size; 1439 ret2 = generic_write_end(file, mapping, pos, len, copied, 1440 page, fsdata); 1441 copied = ret2; 1442 if (ret2 < 0) 1443 ret = ret2; 1444 } 1445 ret2 = ext4_journal_stop(handle); 1446 if (!ret) 1447 ret = ret2; 1448 1449 return ret ? ret : copied; 1450 } 1451 1452 static int ext4_writeback_write_end(struct file *file, 1453 struct address_space *mapping, 1454 loff_t pos, unsigned len, unsigned copied, 1455 struct page *page, void *fsdata) 1456 { 1457 handle_t *handle = ext4_journal_current_handle(); 1458 struct inode *inode = mapping->host; 1459 int ret = 0, ret2; 1460 loff_t new_i_size; 1461 1462 new_i_size = pos + copied; 1463 if (new_i_size > EXT4_I(inode)->i_disksize) 1464 EXT4_I(inode)->i_disksize = new_i_size; 1465 1466 ret2 = generic_write_end(file, mapping, pos, len, copied, 1467 page, fsdata); 1468 copied = ret2; 1469 if (ret2 < 0) 1470 ret = ret2; 1471 1472 ret2 = ext4_journal_stop(handle); 1473 if (!ret) 1474 ret = ret2; 1475 1476 return ret ? ret : copied; 1477 } 1478 1479 static int ext4_journalled_write_end(struct file *file, 1480 struct address_space *mapping, 1481 loff_t pos, unsigned len, unsigned copied, 1482 struct page *page, void *fsdata) 1483 { 1484 handle_t *handle = ext4_journal_current_handle(); 1485 struct inode *inode = mapping->host; 1486 int ret = 0, ret2; 1487 int partial = 0; 1488 unsigned from, to; 1489 1490 from = pos & (PAGE_CACHE_SIZE - 1); 1491 to = from + len; 1492 1493 if (copied < len) { 1494 if (!PageUptodate(page)) 1495 copied = 0; 1496 page_zero_new_buffers(page, from+copied, to); 1497 } 1498 1499 ret = walk_page_buffers(handle, page_buffers(page), from, 1500 to, &partial, write_end_fn); 1501 if (!partial) 1502 SetPageUptodate(page); 1503 if (pos+copied > inode->i_size) 1504 i_size_write(inode, pos+copied); 1505 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA; 1506 if (inode->i_size > EXT4_I(inode)->i_disksize) { 1507 EXT4_I(inode)->i_disksize = inode->i_size; 1508 ret2 = ext4_mark_inode_dirty(handle, inode); 1509 if (!ret) 1510 ret = ret2; 1511 } 1512 1513 unlock_page(page); 1514 ret2 = ext4_journal_stop(handle); 1515 if (!ret) 1516 ret = ret2; 1517 page_cache_release(page); 1518 1519 return ret ? ret : copied; 1520 } 1521 1522 static int ext4_da_reserve_space(struct inode *inode, int nrblocks) 1523 { 1524 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1525 unsigned long md_needed, mdblocks, total = 0; 1526 1527 /* 1528 * recalculate the amount of metadata blocks to reserve 1529 * in order to allocate nrblocks 1530 * worse case is one extent per block 1531 */ 1532 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1533 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks; 1534 mdblocks = ext4_calc_metadata_amount(inode, total); 1535 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks); 1536 1537 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks; 1538 total = md_needed + nrblocks; 1539 1540 if (ext4_has_free_blocks(sbi, total) < total) { 1541 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1542 return -ENOSPC; 1543 } 1544 /* reduce fs free blocks counter */ 1545 percpu_counter_sub(&sbi->s_freeblocks_counter, total); 1546 1547 EXT4_I(inode)->i_reserved_data_blocks += nrblocks; 1548 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks; 1549 1550 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1551 return 0; /* success */ 1552 } 1553 1554 static void ext4_da_release_space(struct inode *inode, int to_free) 1555 { 1556 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1557 int total, mdb, mdb_free, release; 1558 1559 if (!to_free) 1560 return; /* Nothing to release, exit */ 1561 1562 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1563 1564 if (!EXT4_I(inode)->i_reserved_data_blocks) { 1565 /* 1566 * if there is no reserved blocks, but we try to free some 1567 * then the counter is messed up somewhere. 1568 * but since this function is called from invalidate 1569 * page, it's harmless to return without any action 1570 */ 1571 printk(KERN_INFO "ext4 delalloc try to release %d reserved " 1572 "blocks for inode %lu, but there is no reserved " 1573 "data blocks\n", to_free, inode->i_ino); 1574 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1575 return; 1576 } 1577 1578 /* recalculate the number of metablocks still need to be reserved */ 1579 total = EXT4_I(inode)->i_reserved_data_blocks - to_free; 1580 mdb = ext4_calc_metadata_amount(inode, total); 1581 1582 /* figure out how many metablocks to release */ 1583 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks); 1584 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb; 1585 1586 release = to_free + mdb_free; 1587 1588 /* update fs free blocks counter for truncate case */ 1589 percpu_counter_add(&sbi->s_freeblocks_counter, release); 1590 1591 /* update per-inode reservations */ 1592 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks); 1593 EXT4_I(inode)->i_reserved_data_blocks -= to_free; 1594 1595 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks); 1596 EXT4_I(inode)->i_reserved_meta_blocks = mdb; 1597 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1598 } 1599 1600 static void ext4_da_page_release_reservation(struct page *page, 1601 unsigned long offset) 1602 { 1603 int to_release = 0; 1604 struct buffer_head *head, *bh; 1605 unsigned int curr_off = 0; 1606 1607 head = page_buffers(page); 1608 bh = head; 1609 do { 1610 unsigned int next_off = curr_off + bh->b_size; 1611 1612 if ((offset <= curr_off) && (buffer_delay(bh))) { 1613 to_release++; 1614 clear_buffer_delay(bh); 1615 } 1616 curr_off = next_off; 1617 } while ((bh = bh->b_this_page) != head); 1618 ext4_da_release_space(page->mapping->host, to_release); 1619 } 1620 1621 /* 1622 * Delayed allocation stuff 1623 */ 1624 1625 struct mpage_da_data { 1626 struct inode *inode; 1627 struct buffer_head lbh; /* extent of blocks */ 1628 unsigned long first_page, next_page; /* extent of pages */ 1629 get_block_t *get_block; 1630 struct writeback_control *wbc; 1631 int io_done; 1632 long pages_written; 1633 }; 1634 1635 /* 1636 * mpage_da_submit_io - walks through extent of pages and try to write 1637 * them with writepage() call back 1638 * 1639 * @mpd->inode: inode 1640 * @mpd->first_page: first page of the extent 1641 * @mpd->next_page: page after the last page of the extent 1642 * @mpd->get_block: the filesystem's block mapper function 1643 * 1644 * By the time mpage_da_submit_io() is called we expect all blocks 1645 * to be allocated. this may be wrong if allocation failed. 1646 * 1647 * As pages are already locked by write_cache_pages(), we can't use it 1648 */ 1649 static int mpage_da_submit_io(struct mpage_da_data *mpd) 1650 { 1651 struct address_space *mapping = mpd->inode->i_mapping; 1652 int ret = 0, err, nr_pages, i; 1653 unsigned long index, end; 1654 struct pagevec pvec; 1655 1656 BUG_ON(mpd->next_page <= mpd->first_page); 1657 pagevec_init(&pvec, 0); 1658 index = mpd->first_page; 1659 end = mpd->next_page - 1; 1660 1661 while (index <= end) { 1662 /* XXX: optimize tail */ 1663 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1664 if (nr_pages == 0) 1665 break; 1666 for (i = 0; i < nr_pages; i++) { 1667 struct page *page = pvec.pages[i]; 1668 1669 index = page->index; 1670 if (index > end) 1671 break; 1672 index++; 1673 1674 err = mapping->a_ops->writepage(page, mpd->wbc); 1675 if (!err) 1676 mpd->pages_written++; 1677 /* 1678 * In error case, we have to continue because 1679 * remaining pages are still locked 1680 * XXX: unlock and re-dirty them? 1681 */ 1682 if (ret == 0) 1683 ret = err; 1684 } 1685 pagevec_release(&pvec); 1686 } 1687 return ret; 1688 } 1689 1690 /* 1691 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers 1692 * 1693 * @mpd->inode - inode to walk through 1694 * @exbh->b_blocknr - first block on a disk 1695 * @exbh->b_size - amount of space in bytes 1696 * @logical - first logical block to start assignment with 1697 * 1698 * the function goes through all passed space and put actual disk 1699 * block numbers into buffer heads, dropping BH_Delay 1700 */ 1701 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical, 1702 struct buffer_head *exbh) 1703 { 1704 struct inode *inode = mpd->inode; 1705 struct address_space *mapping = inode->i_mapping; 1706 int blocks = exbh->b_size >> inode->i_blkbits; 1707 sector_t pblock = exbh->b_blocknr, cur_logical; 1708 struct buffer_head *head, *bh; 1709 pgoff_t index, end; 1710 struct pagevec pvec; 1711 int nr_pages, i; 1712 1713 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 1714 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 1715 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1716 1717 pagevec_init(&pvec, 0); 1718 1719 while (index <= end) { 1720 /* XXX: optimize tail */ 1721 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1722 if (nr_pages == 0) 1723 break; 1724 for (i = 0; i < nr_pages; i++) { 1725 struct page *page = pvec.pages[i]; 1726 1727 index = page->index; 1728 if (index > end) 1729 break; 1730 index++; 1731 1732 BUG_ON(!PageLocked(page)); 1733 BUG_ON(PageWriteback(page)); 1734 BUG_ON(!page_has_buffers(page)); 1735 1736 bh = page_buffers(page); 1737 head = bh; 1738 1739 /* skip blocks out of the range */ 1740 do { 1741 if (cur_logical >= logical) 1742 break; 1743 cur_logical++; 1744 } while ((bh = bh->b_this_page) != head); 1745 1746 do { 1747 if (cur_logical >= logical + blocks) 1748 break; 1749 if (buffer_delay(bh)) { 1750 bh->b_blocknr = pblock; 1751 clear_buffer_delay(bh); 1752 bh->b_bdev = inode->i_sb->s_bdev; 1753 } else if (buffer_unwritten(bh)) { 1754 bh->b_blocknr = pblock; 1755 clear_buffer_unwritten(bh); 1756 set_buffer_mapped(bh); 1757 set_buffer_new(bh); 1758 bh->b_bdev = inode->i_sb->s_bdev; 1759 } else if (buffer_mapped(bh)) 1760 BUG_ON(bh->b_blocknr != pblock); 1761 1762 cur_logical++; 1763 pblock++; 1764 } while ((bh = bh->b_this_page) != head); 1765 } 1766 pagevec_release(&pvec); 1767 } 1768 } 1769 1770 1771 /* 1772 * __unmap_underlying_blocks - just a helper function to unmap 1773 * set of blocks described by @bh 1774 */ 1775 static inline void __unmap_underlying_blocks(struct inode *inode, 1776 struct buffer_head *bh) 1777 { 1778 struct block_device *bdev = inode->i_sb->s_bdev; 1779 int blocks, i; 1780 1781 blocks = bh->b_size >> inode->i_blkbits; 1782 for (i = 0; i < blocks; i++) 1783 unmap_underlying_metadata(bdev, bh->b_blocknr + i); 1784 } 1785 1786 /* 1787 * mpage_da_map_blocks - go through given space 1788 * 1789 * @mpd->lbh - bh describing space 1790 * @mpd->get_block - the filesystem's block mapper function 1791 * 1792 * The function skips space we know is already mapped to disk blocks. 1793 * 1794 */ 1795 static void mpage_da_map_blocks(struct mpage_da_data *mpd) 1796 { 1797 int err = 0; 1798 struct buffer_head *lbh = &mpd->lbh; 1799 sector_t next = lbh->b_blocknr; 1800 struct buffer_head new; 1801 1802 /* 1803 * We consider only non-mapped and non-allocated blocks 1804 */ 1805 if (buffer_mapped(lbh) && !buffer_delay(lbh)) 1806 return; 1807 1808 new.b_state = lbh->b_state; 1809 new.b_blocknr = 0; 1810 new.b_size = lbh->b_size; 1811 1812 /* 1813 * If we didn't accumulate anything 1814 * to write simply return 1815 */ 1816 if (!new.b_size) 1817 return; 1818 err = mpd->get_block(mpd->inode, next, &new, 1); 1819 if (err) 1820 return; 1821 BUG_ON(new.b_size == 0); 1822 1823 if (buffer_new(&new)) 1824 __unmap_underlying_blocks(mpd->inode, &new); 1825 1826 /* 1827 * If blocks are delayed marked, we need to 1828 * put actual blocknr and drop delayed bit 1829 */ 1830 if (buffer_delay(lbh) || buffer_unwritten(lbh)) 1831 mpage_put_bnr_to_bhs(mpd, next, &new); 1832 1833 return; 1834 } 1835 1836 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \ 1837 (1 << BH_Delay) | (1 << BH_Unwritten)) 1838 1839 /* 1840 * mpage_add_bh_to_extent - try to add one more block to extent of blocks 1841 * 1842 * @mpd->lbh - extent of blocks 1843 * @logical - logical number of the block in the file 1844 * @bh - bh of the block (used to access block's state) 1845 * 1846 * the function is used to collect contig. blocks in same state 1847 */ 1848 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, 1849 sector_t logical, struct buffer_head *bh) 1850 { 1851 sector_t next; 1852 size_t b_size = bh->b_size; 1853 struct buffer_head *lbh = &mpd->lbh; 1854 int nrblocks = lbh->b_size >> mpd->inode->i_blkbits; 1855 1856 /* check if thereserved journal credits might overflow */ 1857 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) { 1858 if (nrblocks >= EXT4_MAX_TRANS_DATA) { 1859 /* 1860 * With non-extent format we are limited by the journal 1861 * credit available. Total credit needed to insert 1862 * nrblocks contiguous blocks is dependent on the 1863 * nrblocks. So limit nrblocks. 1864 */ 1865 goto flush_it; 1866 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) > 1867 EXT4_MAX_TRANS_DATA) { 1868 /* 1869 * Adding the new buffer_head would make it cross the 1870 * allowed limit for which we have journal credit 1871 * reserved. So limit the new bh->b_size 1872 */ 1873 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) << 1874 mpd->inode->i_blkbits; 1875 /* we will do mpage_da_submit_io in the next loop */ 1876 } 1877 } 1878 /* 1879 * First block in the extent 1880 */ 1881 if (lbh->b_size == 0) { 1882 lbh->b_blocknr = logical; 1883 lbh->b_size = b_size; 1884 lbh->b_state = bh->b_state & BH_FLAGS; 1885 return; 1886 } 1887 1888 next = lbh->b_blocknr + nrblocks; 1889 /* 1890 * Can we merge the block to our big extent? 1891 */ 1892 if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) { 1893 lbh->b_size += b_size; 1894 return; 1895 } 1896 1897 flush_it: 1898 /* 1899 * We couldn't merge the block to our extent, so we 1900 * need to flush current extent and start new one 1901 */ 1902 mpage_da_map_blocks(mpd); 1903 mpage_da_submit_io(mpd); 1904 mpd->io_done = 1; 1905 return; 1906 } 1907 1908 /* 1909 * __mpage_da_writepage - finds extent of pages and blocks 1910 * 1911 * @page: page to consider 1912 * @wbc: not used, we just follow rules 1913 * @data: context 1914 * 1915 * The function finds extents of pages and scan them for all blocks. 1916 */ 1917 static int __mpage_da_writepage(struct page *page, 1918 struct writeback_control *wbc, void *data) 1919 { 1920 struct mpage_da_data *mpd = data; 1921 struct inode *inode = mpd->inode; 1922 struct buffer_head *bh, *head, fake; 1923 sector_t logical; 1924 1925 if (mpd->io_done) { 1926 /* 1927 * Rest of the page in the page_vec 1928 * redirty then and skip then. We will 1929 * try to to write them again after 1930 * starting a new transaction 1931 */ 1932 redirty_page_for_writepage(wbc, page); 1933 unlock_page(page); 1934 return MPAGE_DA_EXTENT_TAIL; 1935 } 1936 /* 1937 * Can we merge this page to current extent? 1938 */ 1939 if (mpd->next_page != page->index) { 1940 /* 1941 * Nope, we can't. So, we map non-allocated blocks 1942 * and start IO on them using writepage() 1943 */ 1944 if (mpd->next_page != mpd->first_page) { 1945 mpage_da_map_blocks(mpd); 1946 mpage_da_submit_io(mpd); 1947 /* 1948 * skip rest of the page in the page_vec 1949 */ 1950 mpd->io_done = 1; 1951 redirty_page_for_writepage(wbc, page); 1952 unlock_page(page); 1953 return MPAGE_DA_EXTENT_TAIL; 1954 } 1955 1956 /* 1957 * Start next extent of pages ... 1958 */ 1959 mpd->first_page = page->index; 1960 1961 /* 1962 * ... and blocks 1963 */ 1964 mpd->lbh.b_size = 0; 1965 mpd->lbh.b_state = 0; 1966 mpd->lbh.b_blocknr = 0; 1967 } 1968 1969 mpd->next_page = page->index + 1; 1970 logical = (sector_t) page->index << 1971 (PAGE_CACHE_SHIFT - inode->i_blkbits); 1972 1973 if (!page_has_buffers(page)) { 1974 /* 1975 * There is no attached buffer heads yet (mmap?) 1976 * we treat the page asfull of dirty blocks 1977 */ 1978 bh = &fake; 1979 bh->b_size = PAGE_CACHE_SIZE; 1980 bh->b_state = 0; 1981 set_buffer_dirty(bh); 1982 set_buffer_uptodate(bh); 1983 mpage_add_bh_to_extent(mpd, logical, bh); 1984 if (mpd->io_done) 1985 return MPAGE_DA_EXTENT_TAIL; 1986 } else { 1987 /* 1988 * Page with regular buffer heads, just add all dirty ones 1989 */ 1990 head = page_buffers(page); 1991 bh = head; 1992 do { 1993 BUG_ON(buffer_locked(bh)); 1994 if (buffer_dirty(bh) && 1995 (!buffer_mapped(bh) || buffer_delay(bh))) { 1996 mpage_add_bh_to_extent(mpd, logical, bh); 1997 if (mpd->io_done) 1998 return MPAGE_DA_EXTENT_TAIL; 1999 } 2000 logical++; 2001 } while ((bh = bh->b_this_page) != head); 2002 } 2003 2004 return 0; 2005 } 2006 2007 /* 2008 * mpage_da_writepages - walk the list of dirty pages of the given 2009 * address space, allocates non-allocated blocks, maps newly-allocated 2010 * blocks to existing bhs and issue IO them 2011 * 2012 * @mapping: address space structure to write 2013 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2014 * @get_block: the filesystem's block mapper function. 2015 * 2016 * This is a library function, which implements the writepages() 2017 * address_space_operation. 2018 */ 2019 static int mpage_da_writepages(struct address_space *mapping, 2020 struct writeback_control *wbc, 2021 get_block_t get_block) 2022 { 2023 struct mpage_da_data mpd; 2024 long to_write; 2025 int ret; 2026 2027 if (!get_block) 2028 return generic_writepages(mapping, wbc); 2029 2030 mpd.wbc = wbc; 2031 mpd.inode = mapping->host; 2032 mpd.lbh.b_size = 0; 2033 mpd.lbh.b_state = 0; 2034 mpd.lbh.b_blocknr = 0; 2035 mpd.first_page = 0; 2036 mpd.next_page = 0; 2037 mpd.get_block = get_block; 2038 mpd.io_done = 0; 2039 mpd.pages_written = 0; 2040 2041 to_write = wbc->nr_to_write; 2042 2043 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, &mpd); 2044 2045 /* 2046 * Handle last extent of pages 2047 */ 2048 if (!mpd.io_done && mpd.next_page != mpd.first_page) { 2049 mpage_da_map_blocks(&mpd); 2050 mpage_da_submit_io(&mpd); 2051 } 2052 2053 wbc->nr_to_write = to_write - mpd.pages_written; 2054 return ret; 2055 } 2056 2057 /* 2058 * this is a special callback for ->write_begin() only 2059 * it's intention is to return mapped block or reserve space 2060 */ 2061 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 2062 struct buffer_head *bh_result, int create) 2063 { 2064 int ret = 0; 2065 2066 BUG_ON(create == 0); 2067 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize); 2068 2069 /* 2070 * first, we need to know whether the block is allocated already 2071 * preallocated blocks are unmapped but should treated 2072 * the same as allocated blocks. 2073 */ 2074 ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1, bh_result, 0, 0, 0); 2075 if ((ret == 0) && !buffer_delay(bh_result)) { 2076 /* the block isn't (pre)allocated yet, let's reserve space */ 2077 /* 2078 * XXX: __block_prepare_write() unmaps passed block, 2079 * is it OK? 2080 */ 2081 ret = ext4_da_reserve_space(inode, 1); 2082 if (ret) 2083 /* not enough space to reserve */ 2084 return ret; 2085 2086 map_bh(bh_result, inode->i_sb, 0); 2087 set_buffer_new(bh_result); 2088 set_buffer_delay(bh_result); 2089 } else if (ret > 0) { 2090 bh_result->b_size = (ret << inode->i_blkbits); 2091 ret = 0; 2092 } 2093 2094 return ret; 2095 } 2096 #define EXT4_DELALLOC_RSVED 1 2097 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock, 2098 struct buffer_head *bh_result, int create) 2099 { 2100 int ret; 2101 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; 2102 loff_t disksize = EXT4_I(inode)->i_disksize; 2103 handle_t *handle = NULL; 2104 2105 handle = ext4_journal_current_handle(); 2106 if (!handle) { 2107 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks, 2108 bh_result, 0, 0, 0); 2109 BUG_ON(!ret); 2110 } else { 2111 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks, 2112 bh_result, create, 0, EXT4_DELALLOC_RSVED); 2113 } 2114 2115 if (ret > 0) { 2116 bh_result->b_size = (ret << inode->i_blkbits); 2117 2118 /* 2119 * Update on-disk size along with block allocation 2120 * we don't use 'extend_disksize' as size may change 2121 * within already allocated block -bzzz 2122 */ 2123 disksize = ((loff_t) iblock + ret) << inode->i_blkbits; 2124 if (disksize > i_size_read(inode)) 2125 disksize = i_size_read(inode); 2126 if (disksize > EXT4_I(inode)->i_disksize) { 2127 /* 2128 * XXX: replace with spinlock if seen contended -bzzz 2129 */ 2130 down_write(&EXT4_I(inode)->i_data_sem); 2131 if (disksize > EXT4_I(inode)->i_disksize) 2132 EXT4_I(inode)->i_disksize = disksize; 2133 up_write(&EXT4_I(inode)->i_data_sem); 2134 2135 if (EXT4_I(inode)->i_disksize == disksize) { 2136 ret = ext4_mark_inode_dirty(handle, inode); 2137 return ret; 2138 } 2139 } 2140 ret = 0; 2141 } 2142 return ret; 2143 } 2144 2145 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh) 2146 { 2147 /* 2148 * unmapped buffer is possible for holes. 2149 * delay buffer is possible with delayed allocation 2150 */ 2151 return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh)); 2152 } 2153 2154 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock, 2155 struct buffer_head *bh_result, int create) 2156 { 2157 int ret = 0; 2158 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; 2159 2160 /* 2161 * we don't want to do block allocation in writepage 2162 * so call get_block_wrap with create = 0 2163 */ 2164 ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks, 2165 bh_result, 0, 0, 0); 2166 if (ret > 0) { 2167 bh_result->b_size = (ret << inode->i_blkbits); 2168 ret = 0; 2169 } 2170 return ret; 2171 } 2172 2173 /* 2174 * get called vi ext4_da_writepages after taking page lock (have journal handle) 2175 * get called via journal_submit_inode_data_buffers (no journal handle) 2176 * get called via shrink_page_list via pdflush (no journal handle) 2177 * or grab_page_cache when doing write_begin (have journal handle) 2178 */ 2179 static int ext4_da_writepage(struct page *page, 2180 struct writeback_control *wbc) 2181 { 2182 int ret = 0; 2183 loff_t size; 2184 unsigned long len; 2185 struct buffer_head *page_bufs; 2186 struct inode *inode = page->mapping->host; 2187 2188 size = i_size_read(inode); 2189 if (page->index == size >> PAGE_CACHE_SHIFT) 2190 len = size & ~PAGE_CACHE_MASK; 2191 else 2192 len = PAGE_CACHE_SIZE; 2193 2194 if (page_has_buffers(page)) { 2195 page_bufs = page_buffers(page); 2196 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2197 ext4_bh_unmapped_or_delay)) { 2198 /* 2199 * We don't want to do block allocation 2200 * So redirty the page and return 2201 * We may reach here when we do a journal commit 2202 * via journal_submit_inode_data_buffers. 2203 * If we don't have mapping block we just ignore 2204 * them. We can also reach here via shrink_page_list 2205 */ 2206 redirty_page_for_writepage(wbc, page); 2207 unlock_page(page); 2208 return 0; 2209 } 2210 } else { 2211 /* 2212 * The test for page_has_buffers() is subtle: 2213 * We know the page is dirty but it lost buffers. That means 2214 * that at some moment in time after write_begin()/write_end() 2215 * has been called all buffers have been clean and thus they 2216 * must have been written at least once. So they are all 2217 * mapped and we can happily proceed with mapping them 2218 * and writing the page. 2219 * 2220 * Try to initialize the buffer_heads and check whether 2221 * all are mapped and non delay. We don't want to 2222 * do block allocation here. 2223 */ 2224 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE, 2225 ext4_normal_get_block_write); 2226 if (!ret) { 2227 page_bufs = page_buffers(page); 2228 /* check whether all are mapped and non delay */ 2229 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2230 ext4_bh_unmapped_or_delay)) { 2231 redirty_page_for_writepage(wbc, page); 2232 unlock_page(page); 2233 return 0; 2234 } 2235 } else { 2236 /* 2237 * We can't do block allocation here 2238 * so just redity the page and unlock 2239 * and return 2240 */ 2241 redirty_page_for_writepage(wbc, page); 2242 unlock_page(page); 2243 return 0; 2244 } 2245 } 2246 2247 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode)) 2248 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc); 2249 else 2250 ret = block_write_full_page(page, 2251 ext4_normal_get_block_write, 2252 wbc); 2253 2254 return ret; 2255 } 2256 2257 /* 2258 * This is called via ext4_da_writepages() to 2259 * calulate the total number of credits to reserve to fit 2260 * a single extent allocation into a single transaction, 2261 * ext4_da_writpeages() will loop calling this before 2262 * the block allocation. 2263 */ 2264 2265 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2266 { 2267 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks; 2268 2269 /* 2270 * With non-extent format the journal credit needed to 2271 * insert nrblocks contiguous block is dependent on 2272 * number of contiguous block. So we will limit 2273 * number of contiguous block to a sane value 2274 */ 2275 if (!(inode->i_flags & EXT4_EXTENTS_FL) && 2276 (max_blocks > EXT4_MAX_TRANS_DATA)) 2277 max_blocks = EXT4_MAX_TRANS_DATA; 2278 2279 return ext4_chunk_trans_blocks(inode, max_blocks); 2280 } 2281 2282 static int ext4_da_writepages(struct address_space *mapping, 2283 struct writeback_control *wbc) 2284 { 2285 handle_t *handle = NULL; 2286 loff_t range_start = 0; 2287 struct inode *inode = mapping->host; 2288 int needed_blocks, ret = 0, nr_to_writebump = 0; 2289 long to_write, pages_skipped = 0; 2290 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2291 2292 /* 2293 * No pages to write? This is mainly a kludge to avoid starting 2294 * a transaction for special inodes like journal inode on last iput() 2295 * because that could violate lock ordering on umount 2296 */ 2297 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2298 return 0; 2299 /* 2300 * Make sure nr_to_write is >= sbi->s_mb_stream_request 2301 * This make sure small files blocks are allocated in 2302 * single attempt. This ensure that small files 2303 * get less fragmented. 2304 */ 2305 if (wbc->nr_to_write < sbi->s_mb_stream_request) { 2306 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write; 2307 wbc->nr_to_write = sbi->s_mb_stream_request; 2308 } 2309 2310 if (!wbc->range_cyclic) 2311 /* 2312 * If range_cyclic is not set force range_cont 2313 * and save the old writeback_index 2314 */ 2315 wbc->range_cont = 1; 2316 2317 range_start = wbc->range_start; 2318 pages_skipped = wbc->pages_skipped; 2319 2320 restart_loop: 2321 to_write = wbc->nr_to_write; 2322 while (!ret && to_write > 0) { 2323 2324 /* 2325 * we insert one extent at a time. So we need 2326 * credit needed for single extent allocation. 2327 * journalled mode is currently not supported 2328 * by delalloc 2329 */ 2330 BUG_ON(ext4_should_journal_data(inode)); 2331 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2332 2333 /* start a new transaction*/ 2334 handle = ext4_journal_start(inode, needed_blocks); 2335 if (IS_ERR(handle)) { 2336 ret = PTR_ERR(handle); 2337 printk(KERN_EMERG "%s: jbd2_start: " 2338 "%ld pages, ino %lu; err %d\n", __func__, 2339 wbc->nr_to_write, inode->i_ino, ret); 2340 dump_stack(); 2341 goto out_writepages; 2342 } 2343 if (ext4_should_order_data(inode)) { 2344 /* 2345 * With ordered mode we need to add 2346 * the inode to the journal handl 2347 * when we do block allocation. 2348 */ 2349 ret = ext4_jbd2_file_inode(handle, inode); 2350 if (ret) { 2351 ext4_journal_stop(handle); 2352 goto out_writepages; 2353 } 2354 } 2355 2356 to_write -= wbc->nr_to_write; 2357 ret = mpage_da_writepages(mapping, wbc, 2358 ext4_da_get_block_write); 2359 ext4_journal_stop(handle); 2360 if (ret == MPAGE_DA_EXTENT_TAIL) { 2361 /* 2362 * got one extent now try with 2363 * rest of the pages 2364 */ 2365 to_write += wbc->nr_to_write; 2366 ret = 0; 2367 } else if (wbc->nr_to_write) { 2368 /* 2369 * There is no more writeout needed 2370 * or we requested for a noblocking writeout 2371 * and we found the device congested 2372 */ 2373 to_write += wbc->nr_to_write; 2374 break; 2375 } 2376 wbc->nr_to_write = to_write; 2377 } 2378 2379 if (wbc->range_cont && (pages_skipped != wbc->pages_skipped)) { 2380 /* We skipped pages in this loop */ 2381 wbc->range_start = range_start; 2382 wbc->nr_to_write = to_write + 2383 wbc->pages_skipped - pages_skipped; 2384 wbc->pages_skipped = pages_skipped; 2385 goto restart_loop; 2386 } 2387 2388 out_writepages: 2389 wbc->nr_to_write = to_write - nr_to_writebump; 2390 wbc->range_start = range_start; 2391 return ret; 2392 } 2393 2394 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2395 loff_t pos, unsigned len, unsigned flags, 2396 struct page **pagep, void **fsdata) 2397 { 2398 int ret, retries = 0; 2399 struct page *page; 2400 pgoff_t index; 2401 unsigned from, to; 2402 struct inode *inode = mapping->host; 2403 handle_t *handle; 2404 2405 index = pos >> PAGE_CACHE_SHIFT; 2406 from = pos & (PAGE_CACHE_SIZE - 1); 2407 to = from + len; 2408 2409 retry: 2410 /* 2411 * With delayed allocation, we don't log the i_disksize update 2412 * if there is delayed block allocation. But we still need 2413 * to journalling the i_disksize update if writes to the end 2414 * of file which has an already mapped buffer. 2415 */ 2416 handle = ext4_journal_start(inode, 1); 2417 if (IS_ERR(handle)) { 2418 ret = PTR_ERR(handle); 2419 goto out; 2420 } 2421 2422 page = __grab_cache_page(mapping, index); 2423 if (!page) { 2424 ext4_journal_stop(handle); 2425 ret = -ENOMEM; 2426 goto out; 2427 } 2428 *pagep = page; 2429 2430 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata, 2431 ext4_da_get_block_prep); 2432 if (ret < 0) { 2433 unlock_page(page); 2434 ext4_journal_stop(handle); 2435 page_cache_release(page); 2436 } 2437 2438 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 2439 goto retry; 2440 out: 2441 return ret; 2442 } 2443 2444 /* 2445 * Check if we should update i_disksize 2446 * when write to the end of file but not require block allocation 2447 */ 2448 static int ext4_da_should_update_i_disksize(struct page *page, 2449 unsigned long offset) 2450 { 2451 struct buffer_head *bh; 2452 struct inode *inode = page->mapping->host; 2453 unsigned int idx; 2454 int i; 2455 2456 bh = page_buffers(page); 2457 idx = offset >> inode->i_blkbits; 2458 2459 for (i=0; i < idx; i++) 2460 bh = bh->b_this_page; 2461 2462 if (!buffer_mapped(bh) || (buffer_delay(bh))) 2463 return 0; 2464 return 1; 2465 } 2466 2467 static int ext4_da_write_end(struct file *file, 2468 struct address_space *mapping, 2469 loff_t pos, unsigned len, unsigned copied, 2470 struct page *page, void *fsdata) 2471 { 2472 struct inode *inode = mapping->host; 2473 int ret = 0, ret2; 2474 handle_t *handle = ext4_journal_current_handle(); 2475 loff_t new_i_size; 2476 unsigned long start, end; 2477 2478 start = pos & (PAGE_CACHE_SIZE - 1); 2479 end = start + copied -1; 2480 2481 /* 2482 * generic_write_end() will run mark_inode_dirty() if i_size 2483 * changes. So let's piggyback the i_disksize mark_inode_dirty 2484 * into that. 2485 */ 2486 2487 new_i_size = pos + copied; 2488 if (new_i_size > EXT4_I(inode)->i_disksize) { 2489 if (ext4_da_should_update_i_disksize(page, end)) { 2490 down_write(&EXT4_I(inode)->i_data_sem); 2491 if (new_i_size > EXT4_I(inode)->i_disksize) { 2492 /* 2493 * Updating i_disksize when extending file 2494 * without needing block allocation 2495 */ 2496 if (ext4_should_order_data(inode)) 2497 ret = ext4_jbd2_file_inode(handle, 2498 inode); 2499 2500 EXT4_I(inode)->i_disksize = new_i_size; 2501 } 2502 up_write(&EXT4_I(inode)->i_data_sem); 2503 } 2504 } 2505 ret2 = generic_write_end(file, mapping, pos, len, copied, 2506 page, fsdata); 2507 copied = ret2; 2508 if (ret2 < 0) 2509 ret = ret2; 2510 ret2 = ext4_journal_stop(handle); 2511 if (!ret) 2512 ret = ret2; 2513 2514 return ret ? ret : copied; 2515 } 2516 2517 static void ext4_da_invalidatepage(struct page *page, unsigned long offset) 2518 { 2519 /* 2520 * Drop reserved blocks 2521 */ 2522 BUG_ON(!PageLocked(page)); 2523 if (!page_has_buffers(page)) 2524 goto out; 2525 2526 ext4_da_page_release_reservation(page, offset); 2527 2528 out: 2529 ext4_invalidatepage(page, offset); 2530 2531 return; 2532 } 2533 2534 2535 /* 2536 * bmap() is special. It gets used by applications such as lilo and by 2537 * the swapper to find the on-disk block of a specific piece of data. 2538 * 2539 * Naturally, this is dangerous if the block concerned is still in the 2540 * journal. If somebody makes a swapfile on an ext4 data-journaling 2541 * filesystem and enables swap, then they may get a nasty shock when the 2542 * data getting swapped to that swapfile suddenly gets overwritten by 2543 * the original zero's written out previously to the journal and 2544 * awaiting writeback in the kernel's buffer cache. 2545 * 2546 * So, if we see any bmap calls here on a modified, data-journaled file, 2547 * take extra steps to flush any blocks which might be in the cache. 2548 */ 2549 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 2550 { 2551 struct inode *inode = mapping->host; 2552 journal_t *journal; 2553 int err; 2554 2555 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 2556 test_opt(inode->i_sb, DELALLOC)) { 2557 /* 2558 * With delalloc we want to sync the file 2559 * so that we can make sure we allocate 2560 * blocks for file 2561 */ 2562 filemap_write_and_wait(mapping); 2563 } 2564 2565 if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) { 2566 /* 2567 * This is a REALLY heavyweight approach, but the use of 2568 * bmap on dirty files is expected to be extremely rare: 2569 * only if we run lilo or swapon on a freshly made file 2570 * do we expect this to happen. 2571 * 2572 * (bmap requires CAP_SYS_RAWIO so this does not 2573 * represent an unprivileged user DOS attack --- we'd be 2574 * in trouble if mortal users could trigger this path at 2575 * will.) 2576 * 2577 * NB. EXT4_STATE_JDATA is not set on files other than 2578 * regular files. If somebody wants to bmap a directory 2579 * or symlink and gets confused because the buffer 2580 * hasn't yet been flushed to disk, they deserve 2581 * everything they get. 2582 */ 2583 2584 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA; 2585 journal = EXT4_JOURNAL(inode); 2586 jbd2_journal_lock_updates(journal); 2587 err = jbd2_journal_flush(journal); 2588 jbd2_journal_unlock_updates(journal); 2589 2590 if (err) 2591 return 0; 2592 } 2593 2594 return generic_block_bmap(mapping,block,ext4_get_block); 2595 } 2596 2597 static int bget_one(handle_t *handle, struct buffer_head *bh) 2598 { 2599 get_bh(bh); 2600 return 0; 2601 } 2602 2603 static int bput_one(handle_t *handle, struct buffer_head *bh) 2604 { 2605 put_bh(bh); 2606 return 0; 2607 } 2608 2609 /* 2610 * Note that we don't need to start a transaction unless we're journaling data 2611 * because we should have holes filled from ext4_page_mkwrite(). We even don't 2612 * need to file the inode to the transaction's list in ordered mode because if 2613 * we are writing back data added by write(), the inode is already there and if 2614 * we are writing back data modified via mmap(), noone guarantees in which 2615 * transaction the data will hit the disk. In case we are journaling data, we 2616 * cannot start transaction directly because transaction start ranks above page 2617 * lock so we have to do some magic. 2618 * 2619 * In all journaling modes block_write_full_page() will start the I/O. 2620 * 2621 * Problem: 2622 * 2623 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 2624 * ext4_writepage() 2625 * 2626 * Similar for: 2627 * 2628 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ... 2629 * 2630 * Same applies to ext4_get_block(). We will deadlock on various things like 2631 * lock_journal and i_data_sem 2632 * 2633 * Setting PF_MEMALLOC here doesn't work - too many internal memory 2634 * allocations fail. 2635 * 2636 * 16May01: If we're reentered then journal_current_handle() will be 2637 * non-zero. We simply *return*. 2638 * 2639 * 1 July 2001: @@@ FIXME: 2640 * In journalled data mode, a data buffer may be metadata against the 2641 * current transaction. But the same file is part of a shared mapping 2642 * and someone does a writepage() on it. 2643 * 2644 * We will move the buffer onto the async_data list, but *after* it has 2645 * been dirtied. So there's a small window where we have dirty data on 2646 * BJ_Metadata. 2647 * 2648 * Note that this only applies to the last partial page in the file. The 2649 * bit which block_write_full_page() uses prepare/commit for. (That's 2650 * broken code anyway: it's wrong for msync()). 2651 * 2652 * It's a rare case: affects the final partial page, for journalled data 2653 * where the file is subject to bith write() and writepage() in the same 2654 * transction. To fix it we'll need a custom block_write_full_page(). 2655 * We'll probably need that anyway for journalling writepage() output. 2656 * 2657 * We don't honour synchronous mounts for writepage(). That would be 2658 * disastrous. Any write() or metadata operation will sync the fs for 2659 * us. 2660 * 2661 */ 2662 static int __ext4_normal_writepage(struct page *page, 2663 struct writeback_control *wbc) 2664 { 2665 struct inode *inode = page->mapping->host; 2666 2667 if (test_opt(inode->i_sb, NOBH)) 2668 return nobh_writepage(page, 2669 ext4_normal_get_block_write, wbc); 2670 else 2671 return block_write_full_page(page, 2672 ext4_normal_get_block_write, 2673 wbc); 2674 } 2675 2676 static int ext4_normal_writepage(struct page *page, 2677 struct writeback_control *wbc) 2678 { 2679 struct inode *inode = page->mapping->host; 2680 loff_t size = i_size_read(inode); 2681 loff_t len; 2682 2683 J_ASSERT(PageLocked(page)); 2684 if (page->index == size >> PAGE_CACHE_SHIFT) 2685 len = size & ~PAGE_CACHE_MASK; 2686 else 2687 len = PAGE_CACHE_SIZE; 2688 2689 if (page_has_buffers(page)) { 2690 /* if page has buffers it should all be mapped 2691 * and allocated. If there are not buffers attached 2692 * to the page we know the page is dirty but it lost 2693 * buffers. That means that at some moment in time 2694 * after write_begin() / write_end() has been called 2695 * all buffers have been clean and thus they must have been 2696 * written at least once. So they are all mapped and we can 2697 * happily proceed with mapping them and writing the page. 2698 */ 2699 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL, 2700 ext4_bh_unmapped_or_delay)); 2701 } 2702 2703 if (!ext4_journal_current_handle()) 2704 return __ext4_normal_writepage(page, wbc); 2705 2706 redirty_page_for_writepage(wbc, page); 2707 unlock_page(page); 2708 return 0; 2709 } 2710 2711 static int __ext4_journalled_writepage(struct page *page, 2712 struct writeback_control *wbc) 2713 { 2714 struct address_space *mapping = page->mapping; 2715 struct inode *inode = mapping->host; 2716 struct buffer_head *page_bufs; 2717 handle_t *handle = NULL; 2718 int ret = 0; 2719 int err; 2720 2721 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE, 2722 ext4_normal_get_block_write); 2723 if (ret != 0) 2724 goto out_unlock; 2725 2726 page_bufs = page_buffers(page); 2727 walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL, 2728 bget_one); 2729 /* As soon as we unlock the page, it can go away, but we have 2730 * references to buffers so we are safe */ 2731 unlock_page(page); 2732 2733 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 2734 if (IS_ERR(handle)) { 2735 ret = PTR_ERR(handle); 2736 goto out; 2737 } 2738 2739 ret = walk_page_buffers(handle, page_bufs, 0, 2740 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access); 2741 2742 err = walk_page_buffers(handle, page_bufs, 0, 2743 PAGE_CACHE_SIZE, NULL, write_end_fn); 2744 if (ret == 0) 2745 ret = err; 2746 err = ext4_journal_stop(handle); 2747 if (!ret) 2748 ret = err; 2749 2750 walk_page_buffers(handle, page_bufs, 0, 2751 PAGE_CACHE_SIZE, NULL, bput_one); 2752 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA; 2753 goto out; 2754 2755 out_unlock: 2756 unlock_page(page); 2757 out: 2758 return ret; 2759 } 2760 2761 static int ext4_journalled_writepage(struct page *page, 2762 struct writeback_control *wbc) 2763 { 2764 struct inode *inode = page->mapping->host; 2765 loff_t size = i_size_read(inode); 2766 loff_t len; 2767 2768 J_ASSERT(PageLocked(page)); 2769 if (page->index == size >> PAGE_CACHE_SHIFT) 2770 len = size & ~PAGE_CACHE_MASK; 2771 else 2772 len = PAGE_CACHE_SIZE; 2773 2774 if (page_has_buffers(page)) { 2775 /* if page has buffers it should all be mapped 2776 * and allocated. If there are not buffers attached 2777 * to the page we know the page is dirty but it lost 2778 * buffers. That means that at some moment in time 2779 * after write_begin() / write_end() has been called 2780 * all buffers have been clean and thus they must have been 2781 * written at least once. So they are all mapped and we can 2782 * happily proceed with mapping them and writing the page. 2783 */ 2784 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL, 2785 ext4_bh_unmapped_or_delay)); 2786 } 2787 2788 if (ext4_journal_current_handle()) 2789 goto no_write; 2790 2791 if (PageChecked(page)) { 2792 /* 2793 * It's mmapped pagecache. Add buffers and journal it. There 2794 * doesn't seem much point in redirtying the page here. 2795 */ 2796 ClearPageChecked(page); 2797 return __ext4_journalled_writepage(page, wbc); 2798 } else { 2799 /* 2800 * It may be a page full of checkpoint-mode buffers. We don't 2801 * really know unless we go poke around in the buffer_heads. 2802 * But block_write_full_page will do the right thing. 2803 */ 2804 return block_write_full_page(page, 2805 ext4_normal_get_block_write, 2806 wbc); 2807 } 2808 no_write: 2809 redirty_page_for_writepage(wbc, page); 2810 unlock_page(page); 2811 return 0; 2812 } 2813 2814 static int ext4_readpage(struct file *file, struct page *page) 2815 { 2816 return mpage_readpage(page, ext4_get_block); 2817 } 2818 2819 static int 2820 ext4_readpages(struct file *file, struct address_space *mapping, 2821 struct list_head *pages, unsigned nr_pages) 2822 { 2823 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 2824 } 2825 2826 static void ext4_invalidatepage(struct page *page, unsigned long offset) 2827 { 2828 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2829 2830 /* 2831 * If it's a full truncate we just forget about the pending dirtying 2832 */ 2833 if (offset == 0) 2834 ClearPageChecked(page); 2835 2836 jbd2_journal_invalidatepage(journal, page, offset); 2837 } 2838 2839 static int ext4_releasepage(struct page *page, gfp_t wait) 2840 { 2841 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2842 2843 WARN_ON(PageChecked(page)); 2844 if (!page_has_buffers(page)) 2845 return 0; 2846 return jbd2_journal_try_to_free_buffers(journal, page, wait); 2847 } 2848 2849 /* 2850 * If the O_DIRECT write will extend the file then add this inode to the 2851 * orphan list. So recovery will truncate it back to the original size 2852 * if the machine crashes during the write. 2853 * 2854 * If the O_DIRECT write is intantiating holes inside i_size and the machine 2855 * crashes then stale disk data _may_ be exposed inside the file. But current 2856 * VFS code falls back into buffered path in that case so we are safe. 2857 */ 2858 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 2859 const struct iovec *iov, loff_t offset, 2860 unsigned long nr_segs) 2861 { 2862 struct file *file = iocb->ki_filp; 2863 struct inode *inode = file->f_mapping->host; 2864 struct ext4_inode_info *ei = EXT4_I(inode); 2865 handle_t *handle; 2866 ssize_t ret; 2867 int orphan = 0; 2868 size_t count = iov_length(iov, nr_segs); 2869 2870 if (rw == WRITE) { 2871 loff_t final_size = offset + count; 2872 2873 if (final_size > inode->i_size) { 2874 /* Credits for sb + inode write */ 2875 handle = ext4_journal_start(inode, 2); 2876 if (IS_ERR(handle)) { 2877 ret = PTR_ERR(handle); 2878 goto out; 2879 } 2880 ret = ext4_orphan_add(handle, inode); 2881 if (ret) { 2882 ext4_journal_stop(handle); 2883 goto out; 2884 } 2885 orphan = 1; 2886 ei->i_disksize = inode->i_size; 2887 ext4_journal_stop(handle); 2888 } 2889 } 2890 2891 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov, 2892 offset, nr_segs, 2893 ext4_get_block, NULL); 2894 2895 if (orphan) { 2896 int err; 2897 2898 /* Credits for sb + inode write */ 2899 handle = ext4_journal_start(inode, 2); 2900 if (IS_ERR(handle)) { 2901 /* This is really bad luck. We've written the data 2902 * but cannot extend i_size. Bail out and pretend 2903 * the write failed... */ 2904 ret = PTR_ERR(handle); 2905 goto out; 2906 } 2907 if (inode->i_nlink) 2908 ext4_orphan_del(handle, inode); 2909 if (ret > 0) { 2910 loff_t end = offset + ret; 2911 if (end > inode->i_size) { 2912 ei->i_disksize = end; 2913 i_size_write(inode, end); 2914 /* 2915 * We're going to return a positive `ret' 2916 * here due to non-zero-length I/O, so there's 2917 * no way of reporting error returns from 2918 * ext4_mark_inode_dirty() to userspace. So 2919 * ignore it. 2920 */ 2921 ext4_mark_inode_dirty(handle, inode); 2922 } 2923 } 2924 err = ext4_journal_stop(handle); 2925 if (ret == 0) 2926 ret = err; 2927 } 2928 out: 2929 return ret; 2930 } 2931 2932 /* 2933 * Pages can be marked dirty completely asynchronously from ext4's journalling 2934 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 2935 * much here because ->set_page_dirty is called under VFS locks. The page is 2936 * not necessarily locked. 2937 * 2938 * We cannot just dirty the page and leave attached buffers clean, because the 2939 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 2940 * or jbddirty because all the journalling code will explode. 2941 * 2942 * So what we do is to mark the page "pending dirty" and next time writepage 2943 * is called, propagate that into the buffers appropriately. 2944 */ 2945 static int ext4_journalled_set_page_dirty(struct page *page) 2946 { 2947 SetPageChecked(page); 2948 return __set_page_dirty_nobuffers(page); 2949 } 2950 2951 static const struct address_space_operations ext4_ordered_aops = { 2952 .readpage = ext4_readpage, 2953 .readpages = ext4_readpages, 2954 .writepage = ext4_normal_writepage, 2955 .sync_page = block_sync_page, 2956 .write_begin = ext4_write_begin, 2957 .write_end = ext4_ordered_write_end, 2958 .bmap = ext4_bmap, 2959 .invalidatepage = ext4_invalidatepage, 2960 .releasepage = ext4_releasepage, 2961 .direct_IO = ext4_direct_IO, 2962 .migratepage = buffer_migrate_page, 2963 .is_partially_uptodate = block_is_partially_uptodate, 2964 }; 2965 2966 static const struct address_space_operations ext4_writeback_aops = { 2967 .readpage = ext4_readpage, 2968 .readpages = ext4_readpages, 2969 .writepage = ext4_normal_writepage, 2970 .sync_page = block_sync_page, 2971 .write_begin = ext4_write_begin, 2972 .write_end = ext4_writeback_write_end, 2973 .bmap = ext4_bmap, 2974 .invalidatepage = ext4_invalidatepage, 2975 .releasepage = ext4_releasepage, 2976 .direct_IO = ext4_direct_IO, 2977 .migratepage = buffer_migrate_page, 2978 .is_partially_uptodate = block_is_partially_uptodate, 2979 }; 2980 2981 static const struct address_space_operations ext4_journalled_aops = { 2982 .readpage = ext4_readpage, 2983 .readpages = ext4_readpages, 2984 .writepage = ext4_journalled_writepage, 2985 .sync_page = block_sync_page, 2986 .write_begin = ext4_write_begin, 2987 .write_end = ext4_journalled_write_end, 2988 .set_page_dirty = ext4_journalled_set_page_dirty, 2989 .bmap = ext4_bmap, 2990 .invalidatepage = ext4_invalidatepage, 2991 .releasepage = ext4_releasepage, 2992 .is_partially_uptodate = block_is_partially_uptodate, 2993 }; 2994 2995 static const struct address_space_operations ext4_da_aops = { 2996 .readpage = ext4_readpage, 2997 .readpages = ext4_readpages, 2998 .writepage = ext4_da_writepage, 2999 .writepages = ext4_da_writepages, 3000 .sync_page = block_sync_page, 3001 .write_begin = ext4_da_write_begin, 3002 .write_end = ext4_da_write_end, 3003 .bmap = ext4_bmap, 3004 .invalidatepage = ext4_da_invalidatepage, 3005 .releasepage = ext4_releasepage, 3006 .direct_IO = ext4_direct_IO, 3007 .migratepage = buffer_migrate_page, 3008 .is_partially_uptodate = block_is_partially_uptodate, 3009 }; 3010 3011 void ext4_set_aops(struct inode *inode) 3012 { 3013 if (ext4_should_order_data(inode) && 3014 test_opt(inode->i_sb, DELALLOC)) 3015 inode->i_mapping->a_ops = &ext4_da_aops; 3016 else if (ext4_should_order_data(inode)) 3017 inode->i_mapping->a_ops = &ext4_ordered_aops; 3018 else if (ext4_should_writeback_data(inode) && 3019 test_opt(inode->i_sb, DELALLOC)) 3020 inode->i_mapping->a_ops = &ext4_da_aops; 3021 else if (ext4_should_writeback_data(inode)) 3022 inode->i_mapping->a_ops = &ext4_writeback_aops; 3023 else 3024 inode->i_mapping->a_ops = &ext4_journalled_aops; 3025 } 3026 3027 /* 3028 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3029 * up to the end of the block which corresponds to `from'. 3030 * This required during truncate. We need to physically zero the tail end 3031 * of that block so it doesn't yield old data if the file is later grown. 3032 */ 3033 int ext4_block_truncate_page(handle_t *handle, 3034 struct address_space *mapping, loff_t from) 3035 { 3036 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3037 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3038 unsigned blocksize, length, pos; 3039 ext4_lblk_t iblock; 3040 struct inode *inode = mapping->host; 3041 struct buffer_head *bh; 3042 struct page *page; 3043 int err = 0; 3044 3045 page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT); 3046 if (!page) 3047 return -EINVAL; 3048 3049 blocksize = inode->i_sb->s_blocksize; 3050 length = blocksize - (offset & (blocksize - 1)); 3051 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3052 3053 /* 3054 * For "nobh" option, we can only work if we don't need to 3055 * read-in the page - otherwise we create buffers to do the IO. 3056 */ 3057 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) && 3058 ext4_should_writeback_data(inode) && PageUptodate(page)) { 3059 zero_user(page, offset, length); 3060 set_page_dirty(page); 3061 goto unlock; 3062 } 3063 3064 if (!page_has_buffers(page)) 3065 create_empty_buffers(page, blocksize, 0); 3066 3067 /* Find the buffer that contains "offset" */ 3068 bh = page_buffers(page); 3069 pos = blocksize; 3070 while (offset >= pos) { 3071 bh = bh->b_this_page; 3072 iblock++; 3073 pos += blocksize; 3074 } 3075 3076 err = 0; 3077 if (buffer_freed(bh)) { 3078 BUFFER_TRACE(bh, "freed: skip"); 3079 goto unlock; 3080 } 3081 3082 if (!buffer_mapped(bh)) { 3083 BUFFER_TRACE(bh, "unmapped"); 3084 ext4_get_block(inode, iblock, bh, 0); 3085 /* unmapped? It's a hole - nothing to do */ 3086 if (!buffer_mapped(bh)) { 3087 BUFFER_TRACE(bh, "still unmapped"); 3088 goto unlock; 3089 } 3090 } 3091 3092 /* Ok, it's mapped. Make sure it's up-to-date */ 3093 if (PageUptodate(page)) 3094 set_buffer_uptodate(bh); 3095 3096 if (!buffer_uptodate(bh)) { 3097 err = -EIO; 3098 ll_rw_block(READ, 1, &bh); 3099 wait_on_buffer(bh); 3100 /* Uhhuh. Read error. Complain and punt. */ 3101 if (!buffer_uptodate(bh)) 3102 goto unlock; 3103 } 3104 3105 if (ext4_should_journal_data(inode)) { 3106 BUFFER_TRACE(bh, "get write access"); 3107 err = ext4_journal_get_write_access(handle, bh); 3108 if (err) 3109 goto unlock; 3110 } 3111 3112 zero_user(page, offset, length); 3113 3114 BUFFER_TRACE(bh, "zeroed end of block"); 3115 3116 err = 0; 3117 if (ext4_should_journal_data(inode)) { 3118 err = ext4_journal_dirty_metadata(handle, bh); 3119 } else { 3120 if (ext4_should_order_data(inode)) 3121 err = ext4_jbd2_file_inode(handle, inode); 3122 mark_buffer_dirty(bh); 3123 } 3124 3125 unlock: 3126 unlock_page(page); 3127 page_cache_release(page); 3128 return err; 3129 } 3130 3131 /* 3132 * Probably it should be a library function... search for first non-zero word 3133 * or memcmp with zero_page, whatever is better for particular architecture. 3134 * Linus? 3135 */ 3136 static inline int all_zeroes(__le32 *p, __le32 *q) 3137 { 3138 while (p < q) 3139 if (*p++) 3140 return 0; 3141 return 1; 3142 } 3143 3144 /** 3145 * ext4_find_shared - find the indirect blocks for partial truncation. 3146 * @inode: inode in question 3147 * @depth: depth of the affected branch 3148 * @offsets: offsets of pointers in that branch (see ext4_block_to_path) 3149 * @chain: place to store the pointers to partial indirect blocks 3150 * @top: place to the (detached) top of branch 3151 * 3152 * This is a helper function used by ext4_truncate(). 3153 * 3154 * When we do truncate() we may have to clean the ends of several 3155 * indirect blocks but leave the blocks themselves alive. Block is 3156 * partially truncated if some data below the new i_size is refered 3157 * from it (and it is on the path to the first completely truncated 3158 * data block, indeed). We have to free the top of that path along 3159 * with everything to the right of the path. Since no allocation 3160 * past the truncation point is possible until ext4_truncate() 3161 * finishes, we may safely do the latter, but top of branch may 3162 * require special attention - pageout below the truncation point 3163 * might try to populate it. 3164 * 3165 * We atomically detach the top of branch from the tree, store the 3166 * block number of its root in *@top, pointers to buffer_heads of 3167 * partially truncated blocks - in @chain[].bh and pointers to 3168 * their last elements that should not be removed - in 3169 * @chain[].p. Return value is the pointer to last filled element 3170 * of @chain. 3171 * 3172 * The work left to caller to do the actual freeing of subtrees: 3173 * a) free the subtree starting from *@top 3174 * b) free the subtrees whose roots are stored in 3175 * (@chain[i].p+1 .. end of @chain[i].bh->b_data) 3176 * c) free the subtrees growing from the inode past the @chain[0]. 3177 * (no partially truncated stuff there). */ 3178 3179 static Indirect *ext4_find_shared(struct inode *inode, int depth, 3180 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top) 3181 { 3182 Indirect *partial, *p; 3183 int k, err; 3184 3185 *top = 0; 3186 /* Make k index the deepest non-null offest + 1 */ 3187 for (k = depth; k > 1 && !offsets[k-1]; k--) 3188 ; 3189 partial = ext4_get_branch(inode, k, offsets, chain, &err); 3190 /* Writer: pointers */ 3191 if (!partial) 3192 partial = chain + k-1; 3193 /* 3194 * If the branch acquired continuation since we've looked at it - 3195 * fine, it should all survive and (new) top doesn't belong to us. 3196 */ 3197 if (!partial->key && *partial->p) 3198 /* Writer: end */ 3199 goto no_top; 3200 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--) 3201 ; 3202 /* 3203 * OK, we've found the last block that must survive. The rest of our 3204 * branch should be detached before unlocking. However, if that rest 3205 * of branch is all ours and does not grow immediately from the inode 3206 * it's easier to cheat and just decrement partial->p. 3207 */ 3208 if (p == chain + k - 1 && p > chain) { 3209 p->p--; 3210 } else { 3211 *top = *p->p; 3212 /* Nope, don't do this in ext4. Must leave the tree intact */ 3213 #if 0 3214 *p->p = 0; 3215 #endif 3216 } 3217 /* Writer: end */ 3218 3219 while(partial > p) { 3220 brelse(partial->bh); 3221 partial--; 3222 } 3223 no_top: 3224 return partial; 3225 } 3226 3227 /* 3228 * Zero a number of block pointers in either an inode or an indirect block. 3229 * If we restart the transaction we must again get write access to the 3230 * indirect block for further modification. 3231 * 3232 * We release `count' blocks on disk, but (last - first) may be greater 3233 * than `count' because there can be holes in there. 3234 */ 3235 static void ext4_clear_blocks(handle_t *handle, struct inode *inode, 3236 struct buffer_head *bh, ext4_fsblk_t block_to_free, 3237 unsigned long count, __le32 *first, __le32 *last) 3238 { 3239 __le32 *p; 3240 if (try_to_extend_transaction(handle, inode)) { 3241 if (bh) { 3242 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata"); 3243 ext4_journal_dirty_metadata(handle, bh); 3244 } 3245 ext4_mark_inode_dirty(handle, inode); 3246 ext4_journal_test_restart(handle, inode); 3247 if (bh) { 3248 BUFFER_TRACE(bh, "retaking write access"); 3249 ext4_journal_get_write_access(handle, bh); 3250 } 3251 } 3252 3253 /* 3254 * Any buffers which are on the journal will be in memory. We find 3255 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget() 3256 * on them. We've already detached each block from the file, so 3257 * bforget() in jbd2_journal_forget() should be safe. 3258 * 3259 * AKPM: turn on bforget in jbd2_journal_forget()!!! 3260 */ 3261 for (p = first; p < last; p++) { 3262 u32 nr = le32_to_cpu(*p); 3263 if (nr) { 3264 struct buffer_head *tbh; 3265 3266 *p = 0; 3267 tbh = sb_find_get_block(inode->i_sb, nr); 3268 ext4_forget(handle, 0, inode, tbh, nr); 3269 } 3270 } 3271 3272 ext4_free_blocks(handle, inode, block_to_free, count, 0); 3273 } 3274 3275 /** 3276 * ext4_free_data - free a list of data blocks 3277 * @handle: handle for this transaction 3278 * @inode: inode we are dealing with 3279 * @this_bh: indirect buffer_head which contains *@first and *@last 3280 * @first: array of block numbers 3281 * @last: points immediately past the end of array 3282 * 3283 * We are freeing all blocks refered from that array (numbers are stored as 3284 * little-endian 32-bit) and updating @inode->i_blocks appropriately. 3285 * 3286 * We accumulate contiguous runs of blocks to free. Conveniently, if these 3287 * blocks are contiguous then releasing them at one time will only affect one 3288 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't 3289 * actually use a lot of journal space. 3290 * 3291 * @this_bh will be %NULL if @first and @last point into the inode's direct 3292 * block pointers. 3293 */ 3294 static void ext4_free_data(handle_t *handle, struct inode *inode, 3295 struct buffer_head *this_bh, 3296 __le32 *first, __le32 *last) 3297 { 3298 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */ 3299 unsigned long count = 0; /* Number of blocks in the run */ 3300 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind 3301 corresponding to 3302 block_to_free */ 3303 ext4_fsblk_t nr; /* Current block # */ 3304 __le32 *p; /* Pointer into inode/ind 3305 for current block */ 3306 int err; 3307 3308 if (this_bh) { /* For indirect block */ 3309 BUFFER_TRACE(this_bh, "get_write_access"); 3310 err = ext4_journal_get_write_access(handle, this_bh); 3311 /* Important: if we can't update the indirect pointers 3312 * to the blocks, we can't free them. */ 3313 if (err) 3314 return; 3315 } 3316 3317 for (p = first; p < last; p++) { 3318 nr = le32_to_cpu(*p); 3319 if (nr) { 3320 /* accumulate blocks to free if they're contiguous */ 3321 if (count == 0) { 3322 block_to_free = nr; 3323 block_to_free_p = p; 3324 count = 1; 3325 } else if (nr == block_to_free + count) { 3326 count++; 3327 } else { 3328 ext4_clear_blocks(handle, inode, this_bh, 3329 block_to_free, 3330 count, block_to_free_p, p); 3331 block_to_free = nr; 3332 block_to_free_p = p; 3333 count = 1; 3334 } 3335 } 3336 } 3337 3338 if (count > 0) 3339 ext4_clear_blocks(handle, inode, this_bh, block_to_free, 3340 count, block_to_free_p, p); 3341 3342 if (this_bh) { 3343 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata"); 3344 3345 /* 3346 * The buffer head should have an attached journal head at this 3347 * point. However, if the data is corrupted and an indirect 3348 * block pointed to itself, it would have been detached when 3349 * the block was cleared. Check for this instead of OOPSing. 3350 */ 3351 if (bh2jh(this_bh)) 3352 ext4_journal_dirty_metadata(handle, this_bh); 3353 else 3354 ext4_error(inode->i_sb, __func__, 3355 "circular indirect block detected, " 3356 "inode=%lu, block=%llu", 3357 inode->i_ino, 3358 (unsigned long long) this_bh->b_blocknr); 3359 } 3360 } 3361 3362 /** 3363 * ext4_free_branches - free an array of branches 3364 * @handle: JBD handle for this transaction 3365 * @inode: inode we are dealing with 3366 * @parent_bh: the buffer_head which contains *@first and *@last 3367 * @first: array of block numbers 3368 * @last: pointer immediately past the end of array 3369 * @depth: depth of the branches to free 3370 * 3371 * We are freeing all blocks refered from these branches (numbers are 3372 * stored as little-endian 32-bit) and updating @inode->i_blocks 3373 * appropriately. 3374 */ 3375 static void ext4_free_branches(handle_t *handle, struct inode *inode, 3376 struct buffer_head *parent_bh, 3377 __le32 *first, __le32 *last, int depth) 3378 { 3379 ext4_fsblk_t nr; 3380 __le32 *p; 3381 3382 if (is_handle_aborted(handle)) 3383 return; 3384 3385 if (depth--) { 3386 struct buffer_head *bh; 3387 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 3388 p = last; 3389 while (--p >= first) { 3390 nr = le32_to_cpu(*p); 3391 if (!nr) 3392 continue; /* A hole */ 3393 3394 /* Go read the buffer for the next level down */ 3395 bh = sb_bread(inode->i_sb, nr); 3396 3397 /* 3398 * A read failure? Report error and clear slot 3399 * (should be rare). 3400 */ 3401 if (!bh) { 3402 ext4_error(inode->i_sb, "ext4_free_branches", 3403 "Read failure, inode=%lu, block=%llu", 3404 inode->i_ino, nr); 3405 continue; 3406 } 3407 3408 /* This zaps the entire block. Bottom up. */ 3409 BUFFER_TRACE(bh, "free child branches"); 3410 ext4_free_branches(handle, inode, bh, 3411 (__le32*)bh->b_data, 3412 (__le32*)bh->b_data + addr_per_block, 3413 depth); 3414 3415 /* 3416 * We've probably journalled the indirect block several 3417 * times during the truncate. But it's no longer 3418 * needed and we now drop it from the transaction via 3419 * jbd2_journal_revoke(). 3420 * 3421 * That's easy if it's exclusively part of this 3422 * transaction. But if it's part of the committing 3423 * transaction then jbd2_journal_forget() will simply 3424 * brelse() it. That means that if the underlying 3425 * block is reallocated in ext4_get_block(), 3426 * unmap_underlying_metadata() will find this block 3427 * and will try to get rid of it. damn, damn. 3428 * 3429 * If this block has already been committed to the 3430 * journal, a revoke record will be written. And 3431 * revoke records must be emitted *before* clearing 3432 * this block's bit in the bitmaps. 3433 */ 3434 ext4_forget(handle, 1, inode, bh, bh->b_blocknr); 3435 3436 /* 3437 * Everything below this this pointer has been 3438 * released. Now let this top-of-subtree go. 3439 * 3440 * We want the freeing of this indirect block to be 3441 * atomic in the journal with the updating of the 3442 * bitmap block which owns it. So make some room in 3443 * the journal. 3444 * 3445 * We zero the parent pointer *after* freeing its 3446 * pointee in the bitmaps, so if extend_transaction() 3447 * for some reason fails to put the bitmap changes and 3448 * the release into the same transaction, recovery 3449 * will merely complain about releasing a free block, 3450 * rather than leaking blocks. 3451 */ 3452 if (is_handle_aborted(handle)) 3453 return; 3454 if (try_to_extend_transaction(handle, inode)) { 3455 ext4_mark_inode_dirty(handle, inode); 3456 ext4_journal_test_restart(handle, inode); 3457 } 3458 3459 ext4_free_blocks(handle, inode, nr, 1, 1); 3460 3461 if (parent_bh) { 3462 /* 3463 * The block which we have just freed is 3464 * pointed to by an indirect block: journal it 3465 */ 3466 BUFFER_TRACE(parent_bh, "get_write_access"); 3467 if (!ext4_journal_get_write_access(handle, 3468 parent_bh)){ 3469 *p = 0; 3470 BUFFER_TRACE(parent_bh, 3471 "call ext4_journal_dirty_metadata"); 3472 ext4_journal_dirty_metadata(handle, 3473 parent_bh); 3474 } 3475 } 3476 } 3477 } else { 3478 /* We have reached the bottom of the tree. */ 3479 BUFFER_TRACE(parent_bh, "free data blocks"); 3480 ext4_free_data(handle, inode, parent_bh, first, last); 3481 } 3482 } 3483 3484 int ext4_can_truncate(struct inode *inode) 3485 { 3486 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 3487 return 0; 3488 if (S_ISREG(inode->i_mode)) 3489 return 1; 3490 if (S_ISDIR(inode->i_mode)) 3491 return 1; 3492 if (S_ISLNK(inode->i_mode)) 3493 return !ext4_inode_is_fast_symlink(inode); 3494 return 0; 3495 } 3496 3497 /* 3498 * ext4_truncate() 3499 * 3500 * We block out ext4_get_block() block instantiations across the entire 3501 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 3502 * simultaneously on behalf of the same inode. 3503 * 3504 * As we work through the truncate and commmit bits of it to the journal there 3505 * is one core, guiding principle: the file's tree must always be consistent on 3506 * disk. We must be able to restart the truncate after a crash. 3507 * 3508 * The file's tree may be transiently inconsistent in memory (although it 3509 * probably isn't), but whenever we close off and commit a journal transaction, 3510 * the contents of (the filesystem + the journal) must be consistent and 3511 * restartable. It's pretty simple, really: bottom up, right to left (although 3512 * left-to-right works OK too). 3513 * 3514 * Note that at recovery time, journal replay occurs *before* the restart of 3515 * truncate against the orphan inode list. 3516 * 3517 * The committed inode has the new, desired i_size (which is the same as 3518 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 3519 * that this inode's truncate did not complete and it will again call 3520 * ext4_truncate() to have another go. So there will be instantiated blocks 3521 * to the right of the truncation point in a crashed ext4 filesystem. But 3522 * that's fine - as long as they are linked from the inode, the post-crash 3523 * ext4_truncate() run will find them and release them. 3524 */ 3525 void ext4_truncate(struct inode *inode) 3526 { 3527 handle_t *handle; 3528 struct ext4_inode_info *ei = EXT4_I(inode); 3529 __le32 *i_data = ei->i_data; 3530 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 3531 struct address_space *mapping = inode->i_mapping; 3532 ext4_lblk_t offsets[4]; 3533 Indirect chain[4]; 3534 Indirect *partial; 3535 __le32 nr = 0; 3536 int n; 3537 ext4_lblk_t last_block; 3538 unsigned blocksize = inode->i_sb->s_blocksize; 3539 3540 if (!ext4_can_truncate(inode)) 3541 return; 3542 3543 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 3544 ext4_ext_truncate(inode); 3545 return; 3546 } 3547 3548 handle = start_transaction(inode); 3549 if (IS_ERR(handle)) 3550 return; /* AKPM: return what? */ 3551 3552 last_block = (inode->i_size + blocksize-1) 3553 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 3554 3555 if (inode->i_size & (blocksize - 1)) 3556 if (ext4_block_truncate_page(handle, mapping, inode->i_size)) 3557 goto out_stop; 3558 3559 n = ext4_block_to_path(inode, last_block, offsets, NULL); 3560 if (n == 0) 3561 goto out_stop; /* error */ 3562 3563 /* 3564 * OK. This truncate is going to happen. We add the inode to the 3565 * orphan list, so that if this truncate spans multiple transactions, 3566 * and we crash, we will resume the truncate when the filesystem 3567 * recovers. It also marks the inode dirty, to catch the new size. 3568 * 3569 * Implication: the file must always be in a sane, consistent 3570 * truncatable state while each transaction commits. 3571 */ 3572 if (ext4_orphan_add(handle, inode)) 3573 goto out_stop; 3574 3575 /* 3576 * From here we block out all ext4_get_block() callers who want to 3577 * modify the block allocation tree. 3578 */ 3579 down_write(&ei->i_data_sem); 3580 3581 ext4_discard_reservation(inode); 3582 3583 /* 3584 * The orphan list entry will now protect us from any crash which 3585 * occurs before the truncate completes, so it is now safe to propagate 3586 * the new, shorter inode size (held for now in i_size) into the 3587 * on-disk inode. We do this via i_disksize, which is the value which 3588 * ext4 *really* writes onto the disk inode. 3589 */ 3590 ei->i_disksize = inode->i_size; 3591 3592 if (n == 1) { /* direct blocks */ 3593 ext4_free_data(handle, inode, NULL, i_data+offsets[0], 3594 i_data + EXT4_NDIR_BLOCKS); 3595 goto do_indirects; 3596 } 3597 3598 partial = ext4_find_shared(inode, n, offsets, chain, &nr); 3599 /* Kill the top of shared branch (not detached) */ 3600 if (nr) { 3601 if (partial == chain) { 3602 /* Shared branch grows from the inode */ 3603 ext4_free_branches(handle, inode, NULL, 3604 &nr, &nr+1, (chain+n-1) - partial); 3605 *partial->p = 0; 3606 /* 3607 * We mark the inode dirty prior to restart, 3608 * and prior to stop. No need for it here. 3609 */ 3610 } else { 3611 /* Shared branch grows from an indirect block */ 3612 BUFFER_TRACE(partial->bh, "get_write_access"); 3613 ext4_free_branches(handle, inode, partial->bh, 3614 partial->p, 3615 partial->p+1, (chain+n-1) - partial); 3616 } 3617 } 3618 /* Clear the ends of indirect blocks on the shared branch */ 3619 while (partial > chain) { 3620 ext4_free_branches(handle, inode, partial->bh, partial->p + 1, 3621 (__le32*)partial->bh->b_data+addr_per_block, 3622 (chain+n-1) - partial); 3623 BUFFER_TRACE(partial->bh, "call brelse"); 3624 brelse (partial->bh); 3625 partial--; 3626 } 3627 do_indirects: 3628 /* Kill the remaining (whole) subtrees */ 3629 switch (offsets[0]) { 3630 default: 3631 nr = i_data[EXT4_IND_BLOCK]; 3632 if (nr) { 3633 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1); 3634 i_data[EXT4_IND_BLOCK] = 0; 3635 } 3636 case EXT4_IND_BLOCK: 3637 nr = i_data[EXT4_DIND_BLOCK]; 3638 if (nr) { 3639 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2); 3640 i_data[EXT4_DIND_BLOCK] = 0; 3641 } 3642 case EXT4_DIND_BLOCK: 3643 nr = i_data[EXT4_TIND_BLOCK]; 3644 if (nr) { 3645 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3); 3646 i_data[EXT4_TIND_BLOCK] = 0; 3647 } 3648 case EXT4_TIND_BLOCK: 3649 ; 3650 } 3651 3652 up_write(&ei->i_data_sem); 3653 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3654 ext4_mark_inode_dirty(handle, inode); 3655 3656 /* 3657 * In a multi-transaction truncate, we only make the final transaction 3658 * synchronous 3659 */ 3660 if (IS_SYNC(inode)) 3661 handle->h_sync = 1; 3662 out_stop: 3663 /* 3664 * If this was a simple ftruncate(), and the file will remain alive 3665 * then we need to clear up the orphan record which we created above. 3666 * However, if this was a real unlink then we were called by 3667 * ext4_delete_inode(), and we allow that function to clean up the 3668 * orphan info for us. 3669 */ 3670 if (inode->i_nlink) 3671 ext4_orphan_del(handle, inode); 3672 3673 ext4_journal_stop(handle); 3674 } 3675 3676 static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb, 3677 unsigned long ino, struct ext4_iloc *iloc) 3678 { 3679 ext4_group_t block_group; 3680 unsigned long offset; 3681 ext4_fsblk_t block; 3682 struct ext4_group_desc *gdp; 3683 3684 if (!ext4_valid_inum(sb, ino)) { 3685 /* 3686 * This error is already checked for in namei.c unless we are 3687 * looking at an NFS filehandle, in which case no error 3688 * report is needed 3689 */ 3690 return 0; 3691 } 3692 3693 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 3694 gdp = ext4_get_group_desc(sb, block_group, NULL); 3695 if (!gdp) 3696 return 0; 3697 3698 /* 3699 * Figure out the offset within the block group inode table 3700 */ 3701 offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) * 3702 EXT4_INODE_SIZE(sb); 3703 block = ext4_inode_table(sb, gdp) + 3704 (offset >> EXT4_BLOCK_SIZE_BITS(sb)); 3705 3706 iloc->block_group = block_group; 3707 iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1); 3708 return block; 3709 } 3710 3711 /* 3712 * ext4_get_inode_loc returns with an extra refcount against the inode's 3713 * underlying buffer_head on success. If 'in_mem' is true, we have all 3714 * data in memory that is needed to recreate the on-disk version of this 3715 * inode. 3716 */ 3717 static int __ext4_get_inode_loc(struct inode *inode, 3718 struct ext4_iloc *iloc, int in_mem) 3719 { 3720 ext4_fsblk_t block; 3721 struct buffer_head *bh; 3722 3723 block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc); 3724 if (!block) 3725 return -EIO; 3726 3727 bh = sb_getblk(inode->i_sb, block); 3728 if (!bh) { 3729 ext4_error (inode->i_sb, "ext4_get_inode_loc", 3730 "unable to read inode block - " 3731 "inode=%lu, block=%llu", 3732 inode->i_ino, block); 3733 return -EIO; 3734 } 3735 if (!buffer_uptodate(bh)) { 3736 lock_buffer(bh); 3737 3738 /* 3739 * If the buffer has the write error flag, we have failed 3740 * to write out another inode in the same block. In this 3741 * case, we don't have to read the block because we may 3742 * read the old inode data successfully. 3743 */ 3744 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 3745 set_buffer_uptodate(bh); 3746 3747 if (buffer_uptodate(bh)) { 3748 /* someone brought it uptodate while we waited */ 3749 unlock_buffer(bh); 3750 goto has_buffer; 3751 } 3752 3753 /* 3754 * If we have all information of the inode in memory and this 3755 * is the only valid inode in the block, we need not read the 3756 * block. 3757 */ 3758 if (in_mem) { 3759 struct buffer_head *bitmap_bh; 3760 struct ext4_group_desc *desc; 3761 int inodes_per_buffer; 3762 int inode_offset, i; 3763 ext4_group_t block_group; 3764 int start; 3765 3766 block_group = (inode->i_ino - 1) / 3767 EXT4_INODES_PER_GROUP(inode->i_sb); 3768 inodes_per_buffer = bh->b_size / 3769 EXT4_INODE_SIZE(inode->i_sb); 3770 inode_offset = ((inode->i_ino - 1) % 3771 EXT4_INODES_PER_GROUP(inode->i_sb)); 3772 start = inode_offset & ~(inodes_per_buffer - 1); 3773 3774 /* Is the inode bitmap in cache? */ 3775 desc = ext4_get_group_desc(inode->i_sb, 3776 block_group, NULL); 3777 if (!desc) 3778 goto make_io; 3779 3780 bitmap_bh = sb_getblk(inode->i_sb, 3781 ext4_inode_bitmap(inode->i_sb, desc)); 3782 if (!bitmap_bh) 3783 goto make_io; 3784 3785 /* 3786 * If the inode bitmap isn't in cache then the 3787 * optimisation may end up performing two reads instead 3788 * of one, so skip it. 3789 */ 3790 if (!buffer_uptodate(bitmap_bh)) { 3791 brelse(bitmap_bh); 3792 goto make_io; 3793 } 3794 for (i = start; i < start + inodes_per_buffer; i++) { 3795 if (i == inode_offset) 3796 continue; 3797 if (ext4_test_bit(i, bitmap_bh->b_data)) 3798 break; 3799 } 3800 brelse(bitmap_bh); 3801 if (i == start + inodes_per_buffer) { 3802 /* all other inodes are free, so skip I/O */ 3803 memset(bh->b_data, 0, bh->b_size); 3804 set_buffer_uptodate(bh); 3805 unlock_buffer(bh); 3806 goto has_buffer; 3807 } 3808 } 3809 3810 make_io: 3811 /* 3812 * There are other valid inodes in the buffer, this inode 3813 * has in-inode xattrs, or we don't have this inode in memory. 3814 * Read the block from disk. 3815 */ 3816 get_bh(bh); 3817 bh->b_end_io = end_buffer_read_sync; 3818 submit_bh(READ_META, bh); 3819 wait_on_buffer(bh); 3820 if (!buffer_uptodate(bh)) { 3821 ext4_error(inode->i_sb, "ext4_get_inode_loc", 3822 "unable to read inode block - " 3823 "inode=%lu, block=%llu", 3824 inode->i_ino, block); 3825 brelse(bh); 3826 return -EIO; 3827 } 3828 } 3829 has_buffer: 3830 iloc->bh = bh; 3831 return 0; 3832 } 3833 3834 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 3835 { 3836 /* We have all inode data except xattrs in memory here. */ 3837 return __ext4_get_inode_loc(inode, iloc, 3838 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR)); 3839 } 3840 3841 void ext4_set_inode_flags(struct inode *inode) 3842 { 3843 unsigned int flags = EXT4_I(inode)->i_flags; 3844 3845 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 3846 if (flags & EXT4_SYNC_FL) 3847 inode->i_flags |= S_SYNC; 3848 if (flags & EXT4_APPEND_FL) 3849 inode->i_flags |= S_APPEND; 3850 if (flags & EXT4_IMMUTABLE_FL) 3851 inode->i_flags |= S_IMMUTABLE; 3852 if (flags & EXT4_NOATIME_FL) 3853 inode->i_flags |= S_NOATIME; 3854 if (flags & EXT4_DIRSYNC_FL) 3855 inode->i_flags |= S_DIRSYNC; 3856 } 3857 3858 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 3859 void ext4_get_inode_flags(struct ext4_inode_info *ei) 3860 { 3861 unsigned int flags = ei->vfs_inode.i_flags; 3862 3863 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 3864 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL); 3865 if (flags & S_SYNC) 3866 ei->i_flags |= EXT4_SYNC_FL; 3867 if (flags & S_APPEND) 3868 ei->i_flags |= EXT4_APPEND_FL; 3869 if (flags & S_IMMUTABLE) 3870 ei->i_flags |= EXT4_IMMUTABLE_FL; 3871 if (flags & S_NOATIME) 3872 ei->i_flags |= EXT4_NOATIME_FL; 3873 if (flags & S_DIRSYNC) 3874 ei->i_flags |= EXT4_DIRSYNC_FL; 3875 } 3876 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 3877 struct ext4_inode_info *ei) 3878 { 3879 blkcnt_t i_blocks ; 3880 struct inode *inode = &(ei->vfs_inode); 3881 struct super_block *sb = inode->i_sb; 3882 3883 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3884 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 3885 /* we are using combined 48 bit field */ 3886 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 3887 le32_to_cpu(raw_inode->i_blocks_lo); 3888 if (ei->i_flags & EXT4_HUGE_FILE_FL) { 3889 /* i_blocks represent file system block size */ 3890 return i_blocks << (inode->i_blkbits - 9); 3891 } else { 3892 return i_blocks; 3893 } 3894 } else { 3895 return le32_to_cpu(raw_inode->i_blocks_lo); 3896 } 3897 } 3898 3899 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 3900 { 3901 struct ext4_iloc iloc; 3902 struct ext4_inode *raw_inode; 3903 struct ext4_inode_info *ei; 3904 struct buffer_head *bh; 3905 struct inode *inode; 3906 long ret; 3907 int block; 3908 3909 inode = iget_locked(sb, ino); 3910 if (!inode) 3911 return ERR_PTR(-ENOMEM); 3912 if (!(inode->i_state & I_NEW)) 3913 return inode; 3914 3915 ei = EXT4_I(inode); 3916 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL 3917 ei->i_acl = EXT4_ACL_NOT_CACHED; 3918 ei->i_default_acl = EXT4_ACL_NOT_CACHED; 3919 #endif 3920 ei->i_block_alloc_info = NULL; 3921 3922 ret = __ext4_get_inode_loc(inode, &iloc, 0); 3923 if (ret < 0) 3924 goto bad_inode; 3925 bh = iloc.bh; 3926 raw_inode = ext4_raw_inode(&iloc); 3927 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 3928 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 3929 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 3930 if(!(test_opt (inode->i_sb, NO_UID32))) { 3931 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 3932 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 3933 } 3934 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count); 3935 3936 ei->i_state = 0; 3937 ei->i_dir_start_lookup = 0; 3938 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 3939 /* We now have enough fields to check if the inode was active or not. 3940 * This is needed because nfsd might try to access dead inodes 3941 * the test is that same one that e2fsck uses 3942 * NeilBrown 1999oct15 3943 */ 3944 if (inode->i_nlink == 0) { 3945 if (inode->i_mode == 0 || 3946 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) { 3947 /* this inode is deleted */ 3948 brelse (bh); 3949 ret = -ESTALE; 3950 goto bad_inode; 3951 } 3952 /* The only unlinked inodes we let through here have 3953 * valid i_mode and are being read by the orphan 3954 * recovery code: that's fine, we're about to complete 3955 * the process of deleting those. */ 3956 } 3957 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 3958 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 3959 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 3960 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 3961 cpu_to_le32(EXT4_OS_HURD)) { 3962 ei->i_file_acl |= 3963 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 3964 } 3965 inode->i_size = ext4_isize(raw_inode); 3966 ei->i_disksize = inode->i_size; 3967 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 3968 ei->i_block_group = iloc.block_group; 3969 /* 3970 * NOTE! The in-memory inode i_data array is in little-endian order 3971 * even on big-endian machines: we do NOT byteswap the block numbers! 3972 */ 3973 for (block = 0; block < EXT4_N_BLOCKS; block++) 3974 ei->i_data[block] = raw_inode->i_block[block]; 3975 INIT_LIST_HEAD(&ei->i_orphan); 3976 3977 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 3978 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 3979 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 3980 EXT4_INODE_SIZE(inode->i_sb)) { 3981 brelse (bh); 3982 ret = -EIO; 3983 goto bad_inode; 3984 } 3985 if (ei->i_extra_isize == 0) { 3986 /* The extra space is currently unused. Use it. */ 3987 ei->i_extra_isize = sizeof(struct ext4_inode) - 3988 EXT4_GOOD_OLD_INODE_SIZE; 3989 } else { 3990 __le32 *magic = (void *)raw_inode + 3991 EXT4_GOOD_OLD_INODE_SIZE + 3992 ei->i_extra_isize; 3993 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) 3994 ei->i_state |= EXT4_STATE_XATTR; 3995 } 3996 } else 3997 ei->i_extra_isize = 0; 3998 3999 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4000 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4001 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4002 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4003 4004 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4005 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4006 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4007 inode->i_version |= 4008 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4009 } 4010 4011 if (S_ISREG(inode->i_mode)) { 4012 inode->i_op = &ext4_file_inode_operations; 4013 inode->i_fop = &ext4_file_operations; 4014 ext4_set_aops(inode); 4015 } else if (S_ISDIR(inode->i_mode)) { 4016 inode->i_op = &ext4_dir_inode_operations; 4017 inode->i_fop = &ext4_dir_operations; 4018 } else if (S_ISLNK(inode->i_mode)) { 4019 if (ext4_inode_is_fast_symlink(inode)) 4020 inode->i_op = &ext4_fast_symlink_inode_operations; 4021 else { 4022 inode->i_op = &ext4_symlink_inode_operations; 4023 ext4_set_aops(inode); 4024 } 4025 } else { 4026 inode->i_op = &ext4_special_inode_operations; 4027 if (raw_inode->i_block[0]) 4028 init_special_inode(inode, inode->i_mode, 4029 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4030 else 4031 init_special_inode(inode, inode->i_mode, 4032 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4033 } 4034 brelse (iloc.bh); 4035 ext4_set_inode_flags(inode); 4036 unlock_new_inode(inode); 4037 return inode; 4038 4039 bad_inode: 4040 iget_failed(inode); 4041 return ERR_PTR(ret); 4042 } 4043 4044 static int ext4_inode_blocks_set(handle_t *handle, 4045 struct ext4_inode *raw_inode, 4046 struct ext4_inode_info *ei) 4047 { 4048 struct inode *inode = &(ei->vfs_inode); 4049 u64 i_blocks = inode->i_blocks; 4050 struct super_block *sb = inode->i_sb; 4051 int err = 0; 4052 4053 if (i_blocks <= ~0U) { 4054 /* 4055 * i_blocks can be represnted in a 32 bit variable 4056 * as multiple of 512 bytes 4057 */ 4058 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4059 raw_inode->i_blocks_high = 0; 4060 ei->i_flags &= ~EXT4_HUGE_FILE_FL; 4061 } else if (i_blocks <= 0xffffffffffffULL) { 4062 /* 4063 * i_blocks can be represented in a 48 bit variable 4064 * as multiple of 512 bytes 4065 */ 4066 err = ext4_update_rocompat_feature(handle, sb, 4067 EXT4_FEATURE_RO_COMPAT_HUGE_FILE); 4068 if (err) 4069 goto err_out; 4070 /* i_block is stored in the split 48 bit fields */ 4071 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4072 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4073 ei->i_flags &= ~EXT4_HUGE_FILE_FL; 4074 } else { 4075 /* 4076 * i_blocks should be represented in a 48 bit variable 4077 * as multiple of file system block size 4078 */ 4079 err = ext4_update_rocompat_feature(handle, sb, 4080 EXT4_FEATURE_RO_COMPAT_HUGE_FILE); 4081 if (err) 4082 goto err_out; 4083 ei->i_flags |= EXT4_HUGE_FILE_FL; 4084 /* i_block is stored in file system block size */ 4085 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4086 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4087 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4088 } 4089 err_out: 4090 return err; 4091 } 4092 4093 /* 4094 * Post the struct inode info into an on-disk inode location in the 4095 * buffer-cache. This gobbles the caller's reference to the 4096 * buffer_head in the inode location struct. 4097 * 4098 * The caller must have write access to iloc->bh. 4099 */ 4100 static int ext4_do_update_inode(handle_t *handle, 4101 struct inode *inode, 4102 struct ext4_iloc *iloc) 4103 { 4104 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4105 struct ext4_inode_info *ei = EXT4_I(inode); 4106 struct buffer_head *bh = iloc->bh; 4107 int err = 0, rc, block; 4108 4109 /* For fields not not tracking in the in-memory inode, 4110 * initialise them to zero for new inodes. */ 4111 if (ei->i_state & EXT4_STATE_NEW) 4112 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4113 4114 ext4_get_inode_flags(ei); 4115 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4116 if(!(test_opt(inode->i_sb, NO_UID32))) { 4117 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid)); 4118 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid)); 4119 /* 4120 * Fix up interoperability with old kernels. Otherwise, old inodes get 4121 * re-used with the upper 16 bits of the uid/gid intact 4122 */ 4123 if(!ei->i_dtime) { 4124 raw_inode->i_uid_high = 4125 cpu_to_le16(high_16_bits(inode->i_uid)); 4126 raw_inode->i_gid_high = 4127 cpu_to_le16(high_16_bits(inode->i_gid)); 4128 } else { 4129 raw_inode->i_uid_high = 0; 4130 raw_inode->i_gid_high = 0; 4131 } 4132 } else { 4133 raw_inode->i_uid_low = 4134 cpu_to_le16(fs_high2lowuid(inode->i_uid)); 4135 raw_inode->i_gid_low = 4136 cpu_to_le16(fs_high2lowgid(inode->i_gid)); 4137 raw_inode->i_uid_high = 0; 4138 raw_inode->i_gid_high = 0; 4139 } 4140 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4141 4142 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4143 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4144 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4145 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4146 4147 if (ext4_inode_blocks_set(handle, raw_inode, ei)) 4148 goto out_brelse; 4149 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4150 /* clear the migrate flag in the raw_inode */ 4151 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE); 4152 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 4153 cpu_to_le32(EXT4_OS_HURD)) 4154 raw_inode->i_file_acl_high = 4155 cpu_to_le16(ei->i_file_acl >> 32); 4156 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4157 ext4_isize_set(raw_inode, ei->i_disksize); 4158 if (ei->i_disksize > 0x7fffffffULL) { 4159 struct super_block *sb = inode->i_sb; 4160 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 4161 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 4162 EXT4_SB(sb)->s_es->s_rev_level == 4163 cpu_to_le32(EXT4_GOOD_OLD_REV)) { 4164 /* If this is the first large file 4165 * created, add a flag to the superblock. 4166 */ 4167 err = ext4_journal_get_write_access(handle, 4168 EXT4_SB(sb)->s_sbh); 4169 if (err) 4170 goto out_brelse; 4171 ext4_update_dynamic_rev(sb); 4172 EXT4_SET_RO_COMPAT_FEATURE(sb, 4173 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 4174 sb->s_dirt = 1; 4175 handle->h_sync = 1; 4176 err = ext4_journal_dirty_metadata(handle, 4177 EXT4_SB(sb)->s_sbh); 4178 } 4179 } 4180 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4181 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4182 if (old_valid_dev(inode->i_rdev)) { 4183 raw_inode->i_block[0] = 4184 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4185 raw_inode->i_block[1] = 0; 4186 } else { 4187 raw_inode->i_block[0] = 0; 4188 raw_inode->i_block[1] = 4189 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4190 raw_inode->i_block[2] = 0; 4191 } 4192 } else for (block = 0; block < EXT4_N_BLOCKS; block++) 4193 raw_inode->i_block[block] = ei->i_data[block]; 4194 4195 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 4196 if (ei->i_extra_isize) { 4197 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4198 raw_inode->i_version_hi = 4199 cpu_to_le32(inode->i_version >> 32); 4200 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); 4201 } 4202 4203 4204 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata"); 4205 rc = ext4_journal_dirty_metadata(handle, bh); 4206 if (!err) 4207 err = rc; 4208 ei->i_state &= ~EXT4_STATE_NEW; 4209 4210 out_brelse: 4211 brelse (bh); 4212 ext4_std_error(inode->i_sb, err); 4213 return err; 4214 } 4215 4216 /* 4217 * ext4_write_inode() 4218 * 4219 * We are called from a few places: 4220 * 4221 * - Within generic_file_write() for O_SYNC files. 4222 * Here, there will be no transaction running. We wait for any running 4223 * trasnaction to commit. 4224 * 4225 * - Within sys_sync(), kupdate and such. 4226 * We wait on commit, if tol to. 4227 * 4228 * - Within prune_icache() (PF_MEMALLOC == true) 4229 * Here we simply return. We can't afford to block kswapd on the 4230 * journal commit. 4231 * 4232 * In all cases it is actually safe for us to return without doing anything, 4233 * because the inode has been copied into a raw inode buffer in 4234 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for 4235 * knfsd. 4236 * 4237 * Note that we are absolutely dependent upon all inode dirtiers doing the 4238 * right thing: they *must* call mark_inode_dirty() after dirtying info in 4239 * which we are interested. 4240 * 4241 * It would be a bug for them to not do this. The code: 4242 * 4243 * mark_inode_dirty(inode) 4244 * stuff(); 4245 * inode->i_size = expr; 4246 * 4247 * is in error because a kswapd-driven write_inode() could occur while 4248 * `stuff()' is running, and the new i_size will be lost. Plus the inode 4249 * will no longer be on the superblock's dirty inode list. 4250 */ 4251 int ext4_write_inode(struct inode *inode, int wait) 4252 { 4253 if (current->flags & PF_MEMALLOC) 4254 return 0; 4255 4256 if (ext4_journal_current_handle()) { 4257 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 4258 dump_stack(); 4259 return -EIO; 4260 } 4261 4262 if (!wait) 4263 return 0; 4264 4265 return ext4_force_commit(inode->i_sb); 4266 } 4267 4268 /* 4269 * ext4_setattr() 4270 * 4271 * Called from notify_change. 4272 * 4273 * We want to trap VFS attempts to truncate the file as soon as 4274 * possible. In particular, we want to make sure that when the VFS 4275 * shrinks i_size, we put the inode on the orphan list and modify 4276 * i_disksize immediately, so that during the subsequent flushing of 4277 * dirty pages and freeing of disk blocks, we can guarantee that any 4278 * commit will leave the blocks being flushed in an unused state on 4279 * disk. (On recovery, the inode will get truncated and the blocks will 4280 * be freed, so we have a strong guarantee that no future commit will 4281 * leave these blocks visible to the user.) 4282 * 4283 * Another thing we have to assure is that if we are in ordered mode 4284 * and inode is still attached to the committing transaction, we must 4285 * we start writeout of all the dirty pages which are being truncated. 4286 * This way we are sure that all the data written in the previous 4287 * transaction are already on disk (truncate waits for pages under 4288 * writeback). 4289 * 4290 * Called with inode->i_mutex down. 4291 */ 4292 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 4293 { 4294 struct inode *inode = dentry->d_inode; 4295 int error, rc = 0; 4296 const unsigned int ia_valid = attr->ia_valid; 4297 4298 error = inode_change_ok(inode, attr); 4299 if (error) 4300 return error; 4301 4302 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) || 4303 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) { 4304 handle_t *handle; 4305 4306 /* (user+group)*(old+new) structure, inode write (sb, 4307 * inode block, ? - but truncate inode update has it) */ 4308 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+ 4309 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3); 4310 if (IS_ERR(handle)) { 4311 error = PTR_ERR(handle); 4312 goto err_out; 4313 } 4314 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0; 4315 if (error) { 4316 ext4_journal_stop(handle); 4317 return error; 4318 } 4319 /* Update corresponding info in inode so that everything is in 4320 * one transaction */ 4321 if (attr->ia_valid & ATTR_UID) 4322 inode->i_uid = attr->ia_uid; 4323 if (attr->ia_valid & ATTR_GID) 4324 inode->i_gid = attr->ia_gid; 4325 error = ext4_mark_inode_dirty(handle, inode); 4326 ext4_journal_stop(handle); 4327 } 4328 4329 if (attr->ia_valid & ATTR_SIZE) { 4330 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) { 4331 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4332 4333 if (attr->ia_size > sbi->s_bitmap_maxbytes) { 4334 error = -EFBIG; 4335 goto err_out; 4336 } 4337 } 4338 } 4339 4340 if (S_ISREG(inode->i_mode) && 4341 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) { 4342 handle_t *handle; 4343 4344 handle = ext4_journal_start(inode, 3); 4345 if (IS_ERR(handle)) { 4346 error = PTR_ERR(handle); 4347 goto err_out; 4348 } 4349 4350 error = ext4_orphan_add(handle, inode); 4351 EXT4_I(inode)->i_disksize = attr->ia_size; 4352 rc = ext4_mark_inode_dirty(handle, inode); 4353 if (!error) 4354 error = rc; 4355 ext4_journal_stop(handle); 4356 4357 if (ext4_should_order_data(inode)) { 4358 error = ext4_begin_ordered_truncate(inode, 4359 attr->ia_size); 4360 if (error) { 4361 /* Do as much error cleanup as possible */ 4362 handle = ext4_journal_start(inode, 3); 4363 if (IS_ERR(handle)) { 4364 ext4_orphan_del(NULL, inode); 4365 goto err_out; 4366 } 4367 ext4_orphan_del(handle, inode); 4368 ext4_journal_stop(handle); 4369 goto err_out; 4370 } 4371 } 4372 } 4373 4374 rc = inode_setattr(inode, attr); 4375 4376 /* If inode_setattr's call to ext4_truncate failed to get a 4377 * transaction handle at all, we need to clean up the in-core 4378 * orphan list manually. */ 4379 if (inode->i_nlink) 4380 ext4_orphan_del(NULL, inode); 4381 4382 if (!rc && (ia_valid & ATTR_MODE)) 4383 rc = ext4_acl_chmod(inode); 4384 4385 err_out: 4386 ext4_std_error(inode->i_sb, error); 4387 if (!error) 4388 error = rc; 4389 return error; 4390 } 4391 4392 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 4393 struct kstat *stat) 4394 { 4395 struct inode *inode; 4396 unsigned long delalloc_blocks; 4397 4398 inode = dentry->d_inode; 4399 generic_fillattr(inode, stat); 4400 4401 /* 4402 * We can't update i_blocks if the block allocation is delayed 4403 * otherwise in the case of system crash before the real block 4404 * allocation is done, we will have i_blocks inconsistent with 4405 * on-disk file blocks. 4406 * We always keep i_blocks updated together with real 4407 * allocation. But to not confuse with user, stat 4408 * will return the blocks that include the delayed allocation 4409 * blocks for this file. 4410 */ 4411 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 4412 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks; 4413 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 4414 4415 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9; 4416 return 0; 4417 } 4418 4419 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks, 4420 int chunk) 4421 { 4422 int indirects; 4423 4424 /* if nrblocks are contiguous */ 4425 if (chunk) { 4426 /* 4427 * With N contiguous data blocks, it need at most 4428 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks 4429 * 2 dindirect blocks 4430 * 1 tindirect block 4431 */ 4432 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb); 4433 return indirects + 3; 4434 } 4435 /* 4436 * if nrblocks are not contiguous, worse case, each block touch 4437 * a indirect block, and each indirect block touch a double indirect 4438 * block, plus a triple indirect block 4439 */ 4440 indirects = nrblocks * 2 + 1; 4441 return indirects; 4442 } 4443 4444 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk) 4445 { 4446 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) 4447 return ext4_indirect_trans_blocks(inode, nrblocks, 0); 4448 return ext4_ext_index_trans_blocks(inode, nrblocks, 0); 4449 } 4450 /* 4451 * Account for index blocks, block groups bitmaps and block group 4452 * descriptor blocks if modify datablocks and index blocks 4453 * worse case, the indexs blocks spread over different block groups 4454 * 4455 * If datablocks are discontiguous, they are possible to spread over 4456 * different block groups too. If they are contiugous, with flexbg, 4457 * they could still across block group boundary. 4458 * 4459 * Also account for superblock, inode, quota and xattr blocks 4460 */ 4461 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk) 4462 { 4463 int groups, gdpblocks; 4464 int idxblocks; 4465 int ret = 0; 4466 4467 /* 4468 * How many index blocks need to touch to modify nrblocks? 4469 * The "Chunk" flag indicating whether the nrblocks is 4470 * physically contiguous on disk 4471 * 4472 * For Direct IO and fallocate, they calls get_block to allocate 4473 * one single extent at a time, so they could set the "Chunk" flag 4474 */ 4475 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk); 4476 4477 ret = idxblocks; 4478 4479 /* 4480 * Now let's see how many group bitmaps and group descriptors need 4481 * to account 4482 */ 4483 groups = idxblocks; 4484 if (chunk) 4485 groups += 1; 4486 else 4487 groups += nrblocks; 4488 4489 gdpblocks = groups; 4490 if (groups > EXT4_SB(inode->i_sb)->s_groups_count) 4491 groups = EXT4_SB(inode->i_sb)->s_groups_count; 4492 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 4493 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 4494 4495 /* bitmaps and block group descriptor blocks */ 4496 ret += groups + gdpblocks; 4497 4498 /* Blocks for super block, inode, quota and xattr blocks */ 4499 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 4500 4501 return ret; 4502 } 4503 4504 /* 4505 * Calulate the total number of credits to reserve to fit 4506 * the modification of a single pages into a single transaction, 4507 * which may include multiple chunks of block allocations. 4508 * 4509 * This could be called via ext4_write_begin() 4510 * 4511 * We need to consider the worse case, when 4512 * one new block per extent. 4513 */ 4514 int ext4_writepage_trans_blocks(struct inode *inode) 4515 { 4516 int bpp = ext4_journal_blocks_per_page(inode); 4517 int ret; 4518 4519 ret = ext4_meta_trans_blocks(inode, bpp, 0); 4520 4521 /* Account for data blocks for journalled mode */ 4522 if (ext4_should_journal_data(inode)) 4523 ret += bpp; 4524 return ret; 4525 } 4526 4527 /* 4528 * Calculate the journal credits for a chunk of data modification. 4529 * 4530 * This is called from DIO, fallocate or whoever calling 4531 * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks. 4532 * 4533 * journal buffers for data blocks are not included here, as DIO 4534 * and fallocate do no need to journal data buffers. 4535 */ 4536 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 4537 { 4538 return ext4_meta_trans_blocks(inode, nrblocks, 1); 4539 } 4540 4541 /* 4542 * The caller must have previously called ext4_reserve_inode_write(). 4543 * Give this, we know that the caller already has write access to iloc->bh. 4544 */ 4545 int ext4_mark_iloc_dirty(handle_t *handle, 4546 struct inode *inode, struct ext4_iloc *iloc) 4547 { 4548 int err = 0; 4549 4550 if (test_opt(inode->i_sb, I_VERSION)) 4551 inode_inc_iversion(inode); 4552 4553 /* the do_update_inode consumes one bh->b_count */ 4554 get_bh(iloc->bh); 4555 4556 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 4557 err = ext4_do_update_inode(handle, inode, iloc); 4558 put_bh(iloc->bh); 4559 return err; 4560 } 4561 4562 /* 4563 * On success, We end up with an outstanding reference count against 4564 * iloc->bh. This _must_ be cleaned up later. 4565 */ 4566 4567 int 4568 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 4569 struct ext4_iloc *iloc) 4570 { 4571 int err = 0; 4572 if (handle) { 4573 err = ext4_get_inode_loc(inode, iloc); 4574 if (!err) { 4575 BUFFER_TRACE(iloc->bh, "get_write_access"); 4576 err = ext4_journal_get_write_access(handle, iloc->bh); 4577 if (err) { 4578 brelse(iloc->bh); 4579 iloc->bh = NULL; 4580 } 4581 } 4582 } 4583 ext4_std_error(inode->i_sb, err); 4584 return err; 4585 } 4586 4587 /* 4588 * Expand an inode by new_extra_isize bytes. 4589 * Returns 0 on success or negative error number on failure. 4590 */ 4591 static int ext4_expand_extra_isize(struct inode *inode, 4592 unsigned int new_extra_isize, 4593 struct ext4_iloc iloc, 4594 handle_t *handle) 4595 { 4596 struct ext4_inode *raw_inode; 4597 struct ext4_xattr_ibody_header *header; 4598 struct ext4_xattr_entry *entry; 4599 4600 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 4601 return 0; 4602 4603 raw_inode = ext4_raw_inode(&iloc); 4604 4605 header = IHDR(inode, raw_inode); 4606 entry = IFIRST(header); 4607 4608 /* No extended attributes present */ 4609 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) || 4610 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 4611 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 4612 new_extra_isize); 4613 EXT4_I(inode)->i_extra_isize = new_extra_isize; 4614 return 0; 4615 } 4616 4617 /* try to expand with EAs present */ 4618 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 4619 raw_inode, handle); 4620 } 4621 4622 /* 4623 * What we do here is to mark the in-core inode as clean with respect to inode 4624 * dirtiness (it may still be data-dirty). 4625 * This means that the in-core inode may be reaped by prune_icache 4626 * without having to perform any I/O. This is a very good thing, 4627 * because *any* task may call prune_icache - even ones which 4628 * have a transaction open against a different journal. 4629 * 4630 * Is this cheating? Not really. Sure, we haven't written the 4631 * inode out, but prune_icache isn't a user-visible syncing function. 4632 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 4633 * we start and wait on commits. 4634 * 4635 * Is this efficient/effective? Well, we're being nice to the system 4636 * by cleaning up our inodes proactively so they can be reaped 4637 * without I/O. But we are potentially leaving up to five seconds' 4638 * worth of inodes floating about which prune_icache wants us to 4639 * write out. One way to fix that would be to get prune_icache() 4640 * to do a write_super() to free up some memory. It has the desired 4641 * effect. 4642 */ 4643 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 4644 { 4645 struct ext4_iloc iloc; 4646 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4647 static unsigned int mnt_count; 4648 int err, ret; 4649 4650 might_sleep(); 4651 err = ext4_reserve_inode_write(handle, inode, &iloc); 4652 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 4653 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) { 4654 /* 4655 * We need extra buffer credits since we may write into EA block 4656 * with this same handle. If journal_extend fails, then it will 4657 * only result in a minor loss of functionality for that inode. 4658 * If this is felt to be critical, then e2fsck should be run to 4659 * force a large enough s_min_extra_isize. 4660 */ 4661 if ((jbd2_journal_extend(handle, 4662 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 4663 ret = ext4_expand_extra_isize(inode, 4664 sbi->s_want_extra_isize, 4665 iloc, handle); 4666 if (ret) { 4667 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND; 4668 if (mnt_count != 4669 le16_to_cpu(sbi->s_es->s_mnt_count)) { 4670 ext4_warning(inode->i_sb, __func__, 4671 "Unable to expand inode %lu. Delete" 4672 " some EAs or run e2fsck.", 4673 inode->i_ino); 4674 mnt_count = 4675 le16_to_cpu(sbi->s_es->s_mnt_count); 4676 } 4677 } 4678 } 4679 } 4680 if (!err) 4681 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 4682 return err; 4683 } 4684 4685 /* 4686 * ext4_dirty_inode() is called from __mark_inode_dirty() 4687 * 4688 * We're really interested in the case where a file is being extended. 4689 * i_size has been changed by generic_commit_write() and we thus need 4690 * to include the updated inode in the current transaction. 4691 * 4692 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks 4693 * are allocated to the file. 4694 * 4695 * If the inode is marked synchronous, we don't honour that here - doing 4696 * so would cause a commit on atime updates, which we don't bother doing. 4697 * We handle synchronous inodes at the highest possible level. 4698 */ 4699 void ext4_dirty_inode(struct inode *inode) 4700 { 4701 handle_t *current_handle = ext4_journal_current_handle(); 4702 handle_t *handle; 4703 4704 handle = ext4_journal_start(inode, 2); 4705 if (IS_ERR(handle)) 4706 goto out; 4707 if (current_handle && 4708 current_handle->h_transaction != handle->h_transaction) { 4709 /* This task has a transaction open against a different fs */ 4710 printk(KERN_EMERG "%s: transactions do not match!\n", 4711 __func__); 4712 } else { 4713 jbd_debug(5, "marking dirty. outer handle=%p\n", 4714 current_handle); 4715 ext4_mark_inode_dirty(handle, inode); 4716 } 4717 ext4_journal_stop(handle); 4718 out: 4719 return; 4720 } 4721 4722 #if 0 4723 /* 4724 * Bind an inode's backing buffer_head into this transaction, to prevent 4725 * it from being flushed to disk early. Unlike 4726 * ext4_reserve_inode_write, this leaves behind no bh reference and 4727 * returns no iloc structure, so the caller needs to repeat the iloc 4728 * lookup to mark the inode dirty later. 4729 */ 4730 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 4731 { 4732 struct ext4_iloc iloc; 4733 4734 int err = 0; 4735 if (handle) { 4736 err = ext4_get_inode_loc(inode, &iloc); 4737 if (!err) { 4738 BUFFER_TRACE(iloc.bh, "get_write_access"); 4739 err = jbd2_journal_get_write_access(handle, iloc.bh); 4740 if (!err) 4741 err = ext4_journal_dirty_metadata(handle, 4742 iloc.bh); 4743 brelse(iloc.bh); 4744 } 4745 } 4746 ext4_std_error(inode->i_sb, err); 4747 return err; 4748 } 4749 #endif 4750 4751 int ext4_change_inode_journal_flag(struct inode *inode, int val) 4752 { 4753 journal_t *journal; 4754 handle_t *handle; 4755 int err; 4756 4757 /* 4758 * We have to be very careful here: changing a data block's 4759 * journaling status dynamically is dangerous. If we write a 4760 * data block to the journal, change the status and then delete 4761 * that block, we risk forgetting to revoke the old log record 4762 * from the journal and so a subsequent replay can corrupt data. 4763 * So, first we make sure that the journal is empty and that 4764 * nobody is changing anything. 4765 */ 4766 4767 journal = EXT4_JOURNAL(inode); 4768 if (is_journal_aborted(journal)) 4769 return -EROFS; 4770 4771 jbd2_journal_lock_updates(journal); 4772 jbd2_journal_flush(journal); 4773 4774 /* 4775 * OK, there are no updates running now, and all cached data is 4776 * synced to disk. We are now in a completely consistent state 4777 * which doesn't have anything in the journal, and we know that 4778 * no filesystem updates are running, so it is safe to modify 4779 * the inode's in-core data-journaling state flag now. 4780 */ 4781 4782 if (val) 4783 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL; 4784 else 4785 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL; 4786 ext4_set_aops(inode); 4787 4788 jbd2_journal_unlock_updates(journal); 4789 4790 /* Finally we can mark the inode as dirty. */ 4791 4792 handle = ext4_journal_start(inode, 1); 4793 if (IS_ERR(handle)) 4794 return PTR_ERR(handle); 4795 4796 err = ext4_mark_inode_dirty(handle, inode); 4797 handle->h_sync = 1; 4798 ext4_journal_stop(handle); 4799 ext4_std_error(inode->i_sb, err); 4800 4801 return err; 4802 } 4803 4804 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 4805 { 4806 return !buffer_mapped(bh); 4807 } 4808 4809 int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page) 4810 { 4811 loff_t size; 4812 unsigned long len; 4813 int ret = -EINVAL; 4814 struct file *file = vma->vm_file; 4815 struct inode *inode = file->f_path.dentry->d_inode; 4816 struct address_space *mapping = inode->i_mapping; 4817 4818 /* 4819 * Get i_alloc_sem to stop truncates messing with the inode. We cannot 4820 * get i_mutex because we are already holding mmap_sem. 4821 */ 4822 down_read(&inode->i_alloc_sem); 4823 size = i_size_read(inode); 4824 if (page->mapping != mapping || size <= page_offset(page) 4825 || !PageUptodate(page)) { 4826 /* page got truncated from under us? */ 4827 goto out_unlock; 4828 } 4829 ret = 0; 4830 if (PageMappedToDisk(page)) 4831 goto out_unlock; 4832 4833 if (page->index == size >> PAGE_CACHE_SHIFT) 4834 len = size & ~PAGE_CACHE_MASK; 4835 else 4836 len = PAGE_CACHE_SIZE; 4837 4838 if (page_has_buffers(page)) { 4839 /* return if we have all the buffers mapped */ 4840 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL, 4841 ext4_bh_unmapped)) 4842 goto out_unlock; 4843 } 4844 /* 4845 * OK, we need to fill the hole... Do write_begin write_end 4846 * to do block allocation/reservation.We are not holding 4847 * inode.i__mutex here. That allow * parallel write_begin, 4848 * write_end call. lock_page prevent this from happening 4849 * on the same page though 4850 */ 4851 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page), 4852 len, AOP_FLAG_UNINTERRUPTIBLE, &page, NULL); 4853 if (ret < 0) 4854 goto out_unlock; 4855 ret = mapping->a_ops->write_end(file, mapping, page_offset(page), 4856 len, len, page, NULL); 4857 if (ret < 0) 4858 goto out_unlock; 4859 ret = 0; 4860 out_unlock: 4861 up_read(&inode->i_alloc_sem); 4862 return ret; 4863 } 4864