1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * 64-bit file support on 64-bit platforms by Jakub Jelinek 16 * (jj@sunsite.ms.mff.cuni.cz) 17 * 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 19 */ 20 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/jbd2.h> 24 #include <linux/highuid.h> 25 #include <linux/pagemap.h> 26 #include <linux/quotaops.h> 27 #include <linux/string.h> 28 #include <linux/buffer_head.h> 29 #include <linux/writeback.h> 30 #include <linux/pagevec.h> 31 #include <linux/mpage.h> 32 #include <linux/namei.h> 33 #include <linux/uio.h> 34 #include <linux/bio.h> 35 #include <linux/workqueue.h> 36 #include <linux/kernel.h> 37 #include <linux/printk.h> 38 #include <linux/slab.h> 39 #include <linux/ratelimit.h> 40 #include <linux/aio.h> 41 #include <linux/bitops.h> 42 43 #include "ext4_jbd2.h" 44 #include "xattr.h" 45 #include "acl.h" 46 #include "truncate.h" 47 48 #include <trace/events/ext4.h> 49 50 #define MPAGE_DA_EXTENT_TAIL 0x01 51 52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 53 struct ext4_inode_info *ei) 54 { 55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 56 __u16 csum_lo; 57 __u16 csum_hi = 0; 58 __u32 csum; 59 60 csum_lo = le16_to_cpu(raw->i_checksum_lo); 61 raw->i_checksum_lo = 0; 62 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 63 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 64 csum_hi = le16_to_cpu(raw->i_checksum_hi); 65 raw->i_checksum_hi = 0; 66 } 67 68 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, 69 EXT4_INODE_SIZE(inode->i_sb)); 70 71 raw->i_checksum_lo = cpu_to_le16(csum_lo); 72 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 73 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 74 raw->i_checksum_hi = cpu_to_le16(csum_hi); 75 76 return csum; 77 } 78 79 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 80 struct ext4_inode_info *ei) 81 { 82 __u32 provided, calculated; 83 84 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 85 cpu_to_le32(EXT4_OS_LINUX) || 86 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 87 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 88 return 1; 89 90 provided = le16_to_cpu(raw->i_checksum_lo); 91 calculated = ext4_inode_csum(inode, raw, ei); 92 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 93 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 94 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 95 else 96 calculated &= 0xFFFF; 97 98 return provided == calculated; 99 } 100 101 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 102 struct ext4_inode_info *ei) 103 { 104 __u32 csum; 105 106 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 107 cpu_to_le32(EXT4_OS_LINUX) || 108 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 109 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 110 return; 111 112 csum = ext4_inode_csum(inode, raw, ei); 113 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 114 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 115 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 116 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 117 } 118 119 static inline int ext4_begin_ordered_truncate(struct inode *inode, 120 loff_t new_size) 121 { 122 trace_ext4_begin_ordered_truncate(inode, new_size); 123 /* 124 * If jinode is zero, then we never opened the file for 125 * writing, so there's no need to call 126 * jbd2_journal_begin_ordered_truncate() since there's no 127 * outstanding writes we need to flush. 128 */ 129 if (!EXT4_I(inode)->jinode) 130 return 0; 131 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 132 EXT4_I(inode)->jinode, 133 new_size); 134 } 135 136 static void ext4_invalidatepage(struct page *page, unsigned int offset, 137 unsigned int length); 138 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 139 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 140 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 141 int pextents); 142 143 /* 144 * Test whether an inode is a fast symlink. 145 */ 146 static int ext4_inode_is_fast_symlink(struct inode *inode) 147 { 148 int ea_blocks = EXT4_I(inode)->i_file_acl ? 149 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 150 151 if (ext4_has_inline_data(inode)) 152 return 0; 153 154 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 155 } 156 157 /* 158 * Restart the transaction associated with *handle. This does a commit, 159 * so before we call here everything must be consistently dirtied against 160 * this transaction. 161 */ 162 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 163 int nblocks) 164 { 165 int ret; 166 167 /* 168 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 169 * moment, get_block can be called only for blocks inside i_size since 170 * page cache has been already dropped and writes are blocked by 171 * i_mutex. So we can safely drop the i_data_sem here. 172 */ 173 BUG_ON(EXT4_JOURNAL(inode) == NULL); 174 jbd_debug(2, "restarting handle %p\n", handle); 175 up_write(&EXT4_I(inode)->i_data_sem); 176 ret = ext4_journal_restart(handle, nblocks); 177 down_write(&EXT4_I(inode)->i_data_sem); 178 ext4_discard_preallocations(inode); 179 180 return ret; 181 } 182 183 /* 184 * Called at the last iput() if i_nlink is zero. 185 */ 186 void ext4_evict_inode(struct inode *inode) 187 { 188 handle_t *handle; 189 int err; 190 191 trace_ext4_evict_inode(inode); 192 193 if (inode->i_nlink) { 194 /* 195 * When journalling data dirty buffers are tracked only in the 196 * journal. So although mm thinks everything is clean and 197 * ready for reaping the inode might still have some pages to 198 * write in the running transaction or waiting to be 199 * checkpointed. Thus calling jbd2_journal_invalidatepage() 200 * (via truncate_inode_pages()) to discard these buffers can 201 * cause data loss. Also even if we did not discard these 202 * buffers, we would have no way to find them after the inode 203 * is reaped and thus user could see stale data if he tries to 204 * read them before the transaction is checkpointed. So be 205 * careful and force everything to disk here... We use 206 * ei->i_datasync_tid to store the newest transaction 207 * containing inode's data. 208 * 209 * Note that directories do not have this problem because they 210 * don't use page cache. 211 */ 212 if (ext4_should_journal_data(inode) && 213 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 214 inode->i_ino != EXT4_JOURNAL_INO) { 215 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 216 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 217 218 jbd2_complete_transaction(journal, commit_tid); 219 filemap_write_and_wait(&inode->i_data); 220 } 221 truncate_inode_pages_final(&inode->i_data); 222 223 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count)); 224 goto no_delete; 225 } 226 227 if (!is_bad_inode(inode)) 228 dquot_initialize(inode); 229 230 if (ext4_should_order_data(inode)) 231 ext4_begin_ordered_truncate(inode, 0); 232 truncate_inode_pages_final(&inode->i_data); 233 234 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count)); 235 if (is_bad_inode(inode)) 236 goto no_delete; 237 238 /* 239 * Protect us against freezing - iput() caller didn't have to have any 240 * protection against it 241 */ 242 sb_start_intwrite(inode->i_sb); 243 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 244 ext4_blocks_for_truncate(inode)+3); 245 if (IS_ERR(handle)) { 246 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 247 /* 248 * If we're going to skip the normal cleanup, we still need to 249 * make sure that the in-core orphan linked list is properly 250 * cleaned up. 251 */ 252 ext4_orphan_del(NULL, inode); 253 sb_end_intwrite(inode->i_sb); 254 goto no_delete; 255 } 256 257 if (IS_SYNC(inode)) 258 ext4_handle_sync(handle); 259 inode->i_size = 0; 260 err = ext4_mark_inode_dirty(handle, inode); 261 if (err) { 262 ext4_warning(inode->i_sb, 263 "couldn't mark inode dirty (err %d)", err); 264 goto stop_handle; 265 } 266 if (inode->i_blocks) 267 ext4_truncate(inode); 268 269 /* 270 * ext4_ext_truncate() doesn't reserve any slop when it 271 * restarts journal transactions; therefore there may not be 272 * enough credits left in the handle to remove the inode from 273 * the orphan list and set the dtime field. 274 */ 275 if (!ext4_handle_has_enough_credits(handle, 3)) { 276 err = ext4_journal_extend(handle, 3); 277 if (err > 0) 278 err = ext4_journal_restart(handle, 3); 279 if (err != 0) { 280 ext4_warning(inode->i_sb, 281 "couldn't extend journal (err %d)", err); 282 stop_handle: 283 ext4_journal_stop(handle); 284 ext4_orphan_del(NULL, inode); 285 sb_end_intwrite(inode->i_sb); 286 goto no_delete; 287 } 288 } 289 290 /* 291 * Kill off the orphan record which ext4_truncate created. 292 * AKPM: I think this can be inside the above `if'. 293 * Note that ext4_orphan_del() has to be able to cope with the 294 * deletion of a non-existent orphan - this is because we don't 295 * know if ext4_truncate() actually created an orphan record. 296 * (Well, we could do this if we need to, but heck - it works) 297 */ 298 ext4_orphan_del(handle, inode); 299 EXT4_I(inode)->i_dtime = get_seconds(); 300 301 /* 302 * One subtle ordering requirement: if anything has gone wrong 303 * (transaction abort, IO errors, whatever), then we can still 304 * do these next steps (the fs will already have been marked as 305 * having errors), but we can't free the inode if the mark_dirty 306 * fails. 307 */ 308 if (ext4_mark_inode_dirty(handle, inode)) 309 /* If that failed, just do the required in-core inode clear. */ 310 ext4_clear_inode(inode); 311 else 312 ext4_free_inode(handle, inode); 313 ext4_journal_stop(handle); 314 sb_end_intwrite(inode->i_sb); 315 return; 316 no_delete: 317 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 318 } 319 320 #ifdef CONFIG_QUOTA 321 qsize_t *ext4_get_reserved_space(struct inode *inode) 322 { 323 return &EXT4_I(inode)->i_reserved_quota; 324 } 325 #endif 326 327 /* 328 * Called with i_data_sem down, which is important since we can call 329 * ext4_discard_preallocations() from here. 330 */ 331 void ext4_da_update_reserve_space(struct inode *inode, 332 int used, int quota_claim) 333 { 334 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 335 struct ext4_inode_info *ei = EXT4_I(inode); 336 337 spin_lock(&ei->i_block_reservation_lock); 338 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 339 if (unlikely(used > ei->i_reserved_data_blocks)) { 340 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 341 "with only %d reserved data blocks", 342 __func__, inode->i_ino, used, 343 ei->i_reserved_data_blocks); 344 WARN_ON(1); 345 used = ei->i_reserved_data_blocks; 346 } 347 348 /* Update per-inode reservations */ 349 ei->i_reserved_data_blocks -= used; 350 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 351 352 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 353 354 /* Update quota subsystem for data blocks */ 355 if (quota_claim) 356 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 357 else { 358 /* 359 * We did fallocate with an offset that is already delayed 360 * allocated. So on delayed allocated writeback we should 361 * not re-claim the quota for fallocated blocks. 362 */ 363 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 364 } 365 366 /* 367 * If we have done all the pending block allocations and if 368 * there aren't any writers on the inode, we can discard the 369 * inode's preallocations. 370 */ 371 if ((ei->i_reserved_data_blocks == 0) && 372 (atomic_read(&inode->i_writecount) == 0)) 373 ext4_discard_preallocations(inode); 374 } 375 376 static int __check_block_validity(struct inode *inode, const char *func, 377 unsigned int line, 378 struct ext4_map_blocks *map) 379 { 380 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 381 map->m_len)) { 382 ext4_error_inode(inode, func, line, map->m_pblk, 383 "lblock %lu mapped to illegal pblock " 384 "(length %d)", (unsigned long) map->m_lblk, 385 map->m_len); 386 return -EIO; 387 } 388 return 0; 389 } 390 391 #define check_block_validity(inode, map) \ 392 __check_block_validity((inode), __func__, __LINE__, (map)) 393 394 #ifdef ES_AGGRESSIVE_TEST 395 static void ext4_map_blocks_es_recheck(handle_t *handle, 396 struct inode *inode, 397 struct ext4_map_blocks *es_map, 398 struct ext4_map_blocks *map, 399 int flags) 400 { 401 int retval; 402 403 map->m_flags = 0; 404 /* 405 * There is a race window that the result is not the same. 406 * e.g. xfstests #223 when dioread_nolock enables. The reason 407 * is that we lookup a block mapping in extent status tree with 408 * out taking i_data_sem. So at the time the unwritten extent 409 * could be converted. 410 */ 411 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 412 down_read(&EXT4_I(inode)->i_data_sem); 413 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 414 retval = ext4_ext_map_blocks(handle, inode, map, flags & 415 EXT4_GET_BLOCKS_KEEP_SIZE); 416 } else { 417 retval = ext4_ind_map_blocks(handle, inode, map, flags & 418 EXT4_GET_BLOCKS_KEEP_SIZE); 419 } 420 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 421 up_read((&EXT4_I(inode)->i_data_sem)); 422 /* 423 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag 424 * because it shouldn't be marked in es_map->m_flags. 425 */ 426 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY); 427 428 /* 429 * We don't check m_len because extent will be collpased in status 430 * tree. So the m_len might not equal. 431 */ 432 if (es_map->m_lblk != map->m_lblk || 433 es_map->m_flags != map->m_flags || 434 es_map->m_pblk != map->m_pblk) { 435 printk("ES cache assertion failed for inode: %lu " 436 "es_cached ex [%d/%d/%llu/%x] != " 437 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 438 inode->i_ino, es_map->m_lblk, es_map->m_len, 439 es_map->m_pblk, es_map->m_flags, map->m_lblk, 440 map->m_len, map->m_pblk, map->m_flags, 441 retval, flags); 442 } 443 } 444 #endif /* ES_AGGRESSIVE_TEST */ 445 446 /* 447 * The ext4_map_blocks() function tries to look up the requested blocks, 448 * and returns if the blocks are already mapped. 449 * 450 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 451 * and store the allocated blocks in the result buffer head and mark it 452 * mapped. 453 * 454 * If file type is extents based, it will call ext4_ext_map_blocks(), 455 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 456 * based files 457 * 458 * On success, it returns the number of blocks being mapped or allocated. 459 * if create==0 and the blocks are pre-allocated and unwritten block, 460 * the result buffer head is unmapped. If the create ==1, it will make sure 461 * the buffer head is mapped. 462 * 463 * It returns 0 if plain look up failed (blocks have not been allocated), in 464 * that case, buffer head is unmapped 465 * 466 * It returns the error in case of allocation failure. 467 */ 468 int ext4_map_blocks(handle_t *handle, struct inode *inode, 469 struct ext4_map_blocks *map, int flags) 470 { 471 struct extent_status es; 472 int retval; 473 int ret = 0; 474 #ifdef ES_AGGRESSIVE_TEST 475 struct ext4_map_blocks orig_map; 476 477 memcpy(&orig_map, map, sizeof(*map)); 478 #endif 479 480 map->m_flags = 0; 481 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 482 "logical block %lu\n", inode->i_ino, flags, map->m_len, 483 (unsigned long) map->m_lblk); 484 485 /* 486 * ext4_map_blocks returns an int, and m_len is an unsigned int 487 */ 488 if (unlikely(map->m_len > INT_MAX)) 489 map->m_len = INT_MAX; 490 491 /* We can handle the block number less than EXT_MAX_BLOCKS */ 492 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 493 return -EIO; 494 495 /* Lookup extent status tree firstly */ 496 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 497 ext4_es_lru_add(inode); 498 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 499 map->m_pblk = ext4_es_pblock(&es) + 500 map->m_lblk - es.es_lblk; 501 map->m_flags |= ext4_es_is_written(&es) ? 502 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 503 retval = es.es_len - (map->m_lblk - es.es_lblk); 504 if (retval > map->m_len) 505 retval = map->m_len; 506 map->m_len = retval; 507 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 508 retval = 0; 509 } else { 510 BUG_ON(1); 511 } 512 #ifdef ES_AGGRESSIVE_TEST 513 ext4_map_blocks_es_recheck(handle, inode, map, 514 &orig_map, flags); 515 #endif 516 goto found; 517 } 518 519 /* 520 * Try to see if we can get the block without requesting a new 521 * file system block. 522 */ 523 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 524 down_read(&EXT4_I(inode)->i_data_sem); 525 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 526 retval = ext4_ext_map_blocks(handle, inode, map, flags & 527 EXT4_GET_BLOCKS_KEEP_SIZE); 528 } else { 529 retval = ext4_ind_map_blocks(handle, inode, map, flags & 530 EXT4_GET_BLOCKS_KEEP_SIZE); 531 } 532 if (retval > 0) { 533 unsigned int status; 534 535 if (unlikely(retval != map->m_len)) { 536 ext4_warning(inode->i_sb, 537 "ES len assertion failed for inode " 538 "%lu: retval %d != map->m_len %d", 539 inode->i_ino, retval, map->m_len); 540 WARN_ON(1); 541 } 542 543 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 544 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 545 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 546 ext4_find_delalloc_range(inode, map->m_lblk, 547 map->m_lblk + map->m_len - 1)) 548 status |= EXTENT_STATUS_DELAYED; 549 ret = ext4_es_insert_extent(inode, map->m_lblk, 550 map->m_len, map->m_pblk, status); 551 if (ret < 0) 552 retval = ret; 553 } 554 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 555 up_read((&EXT4_I(inode)->i_data_sem)); 556 557 found: 558 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 559 ret = check_block_validity(inode, map); 560 if (ret != 0) 561 return ret; 562 } 563 564 /* If it is only a block(s) look up */ 565 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 566 return retval; 567 568 /* 569 * Returns if the blocks have already allocated 570 * 571 * Note that if blocks have been preallocated 572 * ext4_ext_get_block() returns the create = 0 573 * with buffer head unmapped. 574 */ 575 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 576 /* 577 * If we need to convert extent to unwritten 578 * we continue and do the actual work in 579 * ext4_ext_map_blocks() 580 */ 581 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 582 return retval; 583 584 /* 585 * Here we clear m_flags because after allocating an new extent, 586 * it will be set again. 587 */ 588 map->m_flags &= ~EXT4_MAP_FLAGS; 589 590 /* 591 * New blocks allocate and/or writing to unwritten extent 592 * will possibly result in updating i_data, so we take 593 * the write lock of i_data_sem, and call get_blocks() 594 * with create == 1 flag. 595 */ 596 down_write(&EXT4_I(inode)->i_data_sem); 597 598 /* 599 * if the caller is from delayed allocation writeout path 600 * we have already reserved fs blocks for allocation 601 * let the underlying get_block() function know to 602 * avoid double accounting 603 */ 604 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 605 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 606 /* 607 * We need to check for EXT4 here because migrate 608 * could have changed the inode type in between 609 */ 610 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 611 retval = ext4_ext_map_blocks(handle, inode, map, flags); 612 } else { 613 retval = ext4_ind_map_blocks(handle, inode, map, flags); 614 615 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 616 /* 617 * We allocated new blocks which will result in 618 * i_data's format changing. Force the migrate 619 * to fail by clearing migrate flags 620 */ 621 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 622 } 623 624 /* 625 * Update reserved blocks/metadata blocks after successful 626 * block allocation which had been deferred till now. We don't 627 * support fallocate for non extent files. So we can update 628 * reserve space here. 629 */ 630 if ((retval > 0) && 631 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 632 ext4_da_update_reserve_space(inode, retval, 1); 633 } 634 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 635 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 636 637 if (retval > 0) { 638 unsigned int status; 639 640 if (unlikely(retval != map->m_len)) { 641 ext4_warning(inode->i_sb, 642 "ES len assertion failed for inode " 643 "%lu: retval %d != map->m_len %d", 644 inode->i_ino, retval, map->m_len); 645 WARN_ON(1); 646 } 647 648 /* 649 * If the extent has been zeroed out, we don't need to update 650 * extent status tree. 651 */ 652 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 653 ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 654 if (ext4_es_is_written(&es)) 655 goto has_zeroout; 656 } 657 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 658 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 659 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 660 ext4_find_delalloc_range(inode, map->m_lblk, 661 map->m_lblk + map->m_len - 1)) 662 status |= EXTENT_STATUS_DELAYED; 663 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 664 map->m_pblk, status); 665 if (ret < 0) 666 retval = ret; 667 } 668 669 has_zeroout: 670 up_write((&EXT4_I(inode)->i_data_sem)); 671 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 672 ret = check_block_validity(inode, map); 673 if (ret != 0) 674 return ret; 675 } 676 return retval; 677 } 678 679 /* Maximum number of blocks we map for direct IO at once. */ 680 #define DIO_MAX_BLOCKS 4096 681 682 static int _ext4_get_block(struct inode *inode, sector_t iblock, 683 struct buffer_head *bh, int flags) 684 { 685 handle_t *handle = ext4_journal_current_handle(); 686 struct ext4_map_blocks map; 687 int ret = 0, started = 0; 688 int dio_credits; 689 690 if (ext4_has_inline_data(inode)) 691 return -ERANGE; 692 693 map.m_lblk = iblock; 694 map.m_len = bh->b_size >> inode->i_blkbits; 695 696 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) { 697 /* Direct IO write... */ 698 if (map.m_len > DIO_MAX_BLOCKS) 699 map.m_len = DIO_MAX_BLOCKS; 700 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 701 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 702 dio_credits); 703 if (IS_ERR(handle)) { 704 ret = PTR_ERR(handle); 705 return ret; 706 } 707 started = 1; 708 } 709 710 ret = ext4_map_blocks(handle, inode, &map, flags); 711 if (ret > 0) { 712 ext4_io_end_t *io_end = ext4_inode_aio(inode); 713 714 map_bh(bh, inode->i_sb, map.m_pblk); 715 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 716 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN) 717 set_buffer_defer_completion(bh); 718 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 719 ret = 0; 720 } 721 if (started) 722 ext4_journal_stop(handle); 723 return ret; 724 } 725 726 int ext4_get_block(struct inode *inode, sector_t iblock, 727 struct buffer_head *bh, int create) 728 { 729 return _ext4_get_block(inode, iblock, bh, 730 create ? EXT4_GET_BLOCKS_CREATE : 0); 731 } 732 733 /* 734 * `handle' can be NULL if create is zero 735 */ 736 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 737 ext4_lblk_t block, int create, int *errp) 738 { 739 struct ext4_map_blocks map; 740 struct buffer_head *bh; 741 int fatal = 0, err; 742 743 J_ASSERT(handle != NULL || create == 0); 744 745 map.m_lblk = block; 746 map.m_len = 1; 747 err = ext4_map_blocks(handle, inode, &map, 748 create ? EXT4_GET_BLOCKS_CREATE : 0); 749 750 /* ensure we send some value back into *errp */ 751 *errp = 0; 752 753 if (create && err == 0) 754 err = -ENOSPC; /* should never happen */ 755 if (err < 0) 756 *errp = err; 757 if (err <= 0) 758 return NULL; 759 760 bh = sb_getblk(inode->i_sb, map.m_pblk); 761 if (unlikely(!bh)) { 762 *errp = -ENOMEM; 763 return NULL; 764 } 765 if (map.m_flags & EXT4_MAP_NEW) { 766 J_ASSERT(create != 0); 767 J_ASSERT(handle != NULL); 768 769 /* 770 * Now that we do not always journal data, we should 771 * keep in mind whether this should always journal the 772 * new buffer as metadata. For now, regular file 773 * writes use ext4_get_block instead, so it's not a 774 * problem. 775 */ 776 lock_buffer(bh); 777 BUFFER_TRACE(bh, "call get_create_access"); 778 fatal = ext4_journal_get_create_access(handle, bh); 779 if (!fatal && !buffer_uptodate(bh)) { 780 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 781 set_buffer_uptodate(bh); 782 } 783 unlock_buffer(bh); 784 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 785 err = ext4_handle_dirty_metadata(handle, inode, bh); 786 if (!fatal) 787 fatal = err; 788 } else { 789 BUFFER_TRACE(bh, "not a new buffer"); 790 } 791 if (fatal) { 792 *errp = fatal; 793 brelse(bh); 794 bh = NULL; 795 } 796 return bh; 797 } 798 799 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 800 ext4_lblk_t block, int create, int *err) 801 { 802 struct buffer_head *bh; 803 804 bh = ext4_getblk(handle, inode, block, create, err); 805 if (!bh) 806 return bh; 807 if (buffer_uptodate(bh)) 808 return bh; 809 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh); 810 wait_on_buffer(bh); 811 if (buffer_uptodate(bh)) 812 return bh; 813 put_bh(bh); 814 *err = -EIO; 815 return NULL; 816 } 817 818 int ext4_walk_page_buffers(handle_t *handle, 819 struct buffer_head *head, 820 unsigned from, 821 unsigned to, 822 int *partial, 823 int (*fn)(handle_t *handle, 824 struct buffer_head *bh)) 825 { 826 struct buffer_head *bh; 827 unsigned block_start, block_end; 828 unsigned blocksize = head->b_size; 829 int err, ret = 0; 830 struct buffer_head *next; 831 832 for (bh = head, block_start = 0; 833 ret == 0 && (bh != head || !block_start); 834 block_start = block_end, bh = next) { 835 next = bh->b_this_page; 836 block_end = block_start + blocksize; 837 if (block_end <= from || block_start >= to) { 838 if (partial && !buffer_uptodate(bh)) 839 *partial = 1; 840 continue; 841 } 842 err = (*fn)(handle, bh); 843 if (!ret) 844 ret = err; 845 } 846 return ret; 847 } 848 849 /* 850 * To preserve ordering, it is essential that the hole instantiation and 851 * the data write be encapsulated in a single transaction. We cannot 852 * close off a transaction and start a new one between the ext4_get_block() 853 * and the commit_write(). So doing the jbd2_journal_start at the start of 854 * prepare_write() is the right place. 855 * 856 * Also, this function can nest inside ext4_writepage(). In that case, we 857 * *know* that ext4_writepage() has generated enough buffer credits to do the 858 * whole page. So we won't block on the journal in that case, which is good, 859 * because the caller may be PF_MEMALLOC. 860 * 861 * By accident, ext4 can be reentered when a transaction is open via 862 * quota file writes. If we were to commit the transaction while thus 863 * reentered, there can be a deadlock - we would be holding a quota 864 * lock, and the commit would never complete if another thread had a 865 * transaction open and was blocking on the quota lock - a ranking 866 * violation. 867 * 868 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 869 * will _not_ run commit under these circumstances because handle->h_ref 870 * is elevated. We'll still have enough credits for the tiny quotafile 871 * write. 872 */ 873 int do_journal_get_write_access(handle_t *handle, 874 struct buffer_head *bh) 875 { 876 int dirty = buffer_dirty(bh); 877 int ret; 878 879 if (!buffer_mapped(bh) || buffer_freed(bh)) 880 return 0; 881 /* 882 * __block_write_begin() could have dirtied some buffers. Clean 883 * the dirty bit as jbd2_journal_get_write_access() could complain 884 * otherwise about fs integrity issues. Setting of the dirty bit 885 * by __block_write_begin() isn't a real problem here as we clear 886 * the bit before releasing a page lock and thus writeback cannot 887 * ever write the buffer. 888 */ 889 if (dirty) 890 clear_buffer_dirty(bh); 891 BUFFER_TRACE(bh, "get write access"); 892 ret = ext4_journal_get_write_access(handle, bh); 893 if (!ret && dirty) 894 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 895 return ret; 896 } 897 898 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 899 struct buffer_head *bh_result, int create); 900 static int ext4_write_begin(struct file *file, struct address_space *mapping, 901 loff_t pos, unsigned len, unsigned flags, 902 struct page **pagep, void **fsdata) 903 { 904 struct inode *inode = mapping->host; 905 int ret, needed_blocks; 906 handle_t *handle; 907 int retries = 0; 908 struct page *page; 909 pgoff_t index; 910 unsigned from, to; 911 912 trace_ext4_write_begin(inode, pos, len, flags); 913 /* 914 * Reserve one block more for addition to orphan list in case 915 * we allocate blocks but write fails for some reason 916 */ 917 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 918 index = pos >> PAGE_CACHE_SHIFT; 919 from = pos & (PAGE_CACHE_SIZE - 1); 920 to = from + len; 921 922 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 923 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 924 flags, pagep); 925 if (ret < 0) 926 return ret; 927 if (ret == 1) 928 return 0; 929 } 930 931 /* 932 * grab_cache_page_write_begin() can take a long time if the 933 * system is thrashing due to memory pressure, or if the page 934 * is being written back. So grab it first before we start 935 * the transaction handle. This also allows us to allocate 936 * the page (if needed) without using GFP_NOFS. 937 */ 938 retry_grab: 939 page = grab_cache_page_write_begin(mapping, index, flags); 940 if (!page) 941 return -ENOMEM; 942 unlock_page(page); 943 944 retry_journal: 945 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 946 if (IS_ERR(handle)) { 947 page_cache_release(page); 948 return PTR_ERR(handle); 949 } 950 951 lock_page(page); 952 if (page->mapping != mapping) { 953 /* The page got truncated from under us */ 954 unlock_page(page); 955 page_cache_release(page); 956 ext4_journal_stop(handle); 957 goto retry_grab; 958 } 959 /* In case writeback began while the page was unlocked */ 960 wait_for_stable_page(page); 961 962 if (ext4_should_dioread_nolock(inode)) 963 ret = __block_write_begin(page, pos, len, ext4_get_block_write); 964 else 965 ret = __block_write_begin(page, pos, len, ext4_get_block); 966 967 if (!ret && ext4_should_journal_data(inode)) { 968 ret = ext4_walk_page_buffers(handle, page_buffers(page), 969 from, to, NULL, 970 do_journal_get_write_access); 971 } 972 973 if (ret) { 974 unlock_page(page); 975 /* 976 * __block_write_begin may have instantiated a few blocks 977 * outside i_size. Trim these off again. Don't need 978 * i_size_read because we hold i_mutex. 979 * 980 * Add inode to orphan list in case we crash before 981 * truncate finishes 982 */ 983 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 984 ext4_orphan_add(handle, inode); 985 986 ext4_journal_stop(handle); 987 if (pos + len > inode->i_size) { 988 ext4_truncate_failed_write(inode); 989 /* 990 * If truncate failed early the inode might 991 * still be on the orphan list; we need to 992 * make sure the inode is removed from the 993 * orphan list in that case. 994 */ 995 if (inode->i_nlink) 996 ext4_orphan_del(NULL, inode); 997 } 998 999 if (ret == -ENOSPC && 1000 ext4_should_retry_alloc(inode->i_sb, &retries)) 1001 goto retry_journal; 1002 page_cache_release(page); 1003 return ret; 1004 } 1005 *pagep = page; 1006 return ret; 1007 } 1008 1009 /* For write_end() in data=journal mode */ 1010 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1011 { 1012 int ret; 1013 if (!buffer_mapped(bh) || buffer_freed(bh)) 1014 return 0; 1015 set_buffer_uptodate(bh); 1016 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1017 clear_buffer_meta(bh); 1018 clear_buffer_prio(bh); 1019 return ret; 1020 } 1021 1022 /* 1023 * We need to pick up the new inode size which generic_commit_write gave us 1024 * `file' can be NULL - eg, when called from page_symlink(). 1025 * 1026 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1027 * buffers are managed internally. 1028 */ 1029 static int ext4_write_end(struct file *file, 1030 struct address_space *mapping, 1031 loff_t pos, unsigned len, unsigned copied, 1032 struct page *page, void *fsdata) 1033 { 1034 handle_t *handle = ext4_journal_current_handle(); 1035 struct inode *inode = mapping->host; 1036 int ret = 0, ret2; 1037 int i_size_changed = 0; 1038 1039 trace_ext4_write_end(inode, pos, len, copied); 1040 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) { 1041 ret = ext4_jbd2_file_inode(handle, inode); 1042 if (ret) { 1043 unlock_page(page); 1044 page_cache_release(page); 1045 goto errout; 1046 } 1047 } 1048 1049 if (ext4_has_inline_data(inode)) { 1050 ret = ext4_write_inline_data_end(inode, pos, len, 1051 copied, page); 1052 if (ret < 0) 1053 goto errout; 1054 copied = ret; 1055 } else 1056 copied = block_write_end(file, mapping, pos, 1057 len, copied, page, fsdata); 1058 1059 /* 1060 * No need to use i_size_read() here, the i_size 1061 * cannot change under us because we hole i_mutex. 1062 * 1063 * But it's important to update i_size while still holding page lock: 1064 * page writeout could otherwise come in and zero beyond i_size. 1065 */ 1066 if (pos + copied > inode->i_size) { 1067 i_size_write(inode, pos + copied); 1068 i_size_changed = 1; 1069 } 1070 1071 if (pos + copied > EXT4_I(inode)->i_disksize) { 1072 /* We need to mark inode dirty even if 1073 * new_i_size is less that inode->i_size 1074 * but greater than i_disksize. (hint delalloc) 1075 */ 1076 ext4_update_i_disksize(inode, (pos + copied)); 1077 i_size_changed = 1; 1078 } 1079 unlock_page(page); 1080 page_cache_release(page); 1081 1082 /* 1083 * Don't mark the inode dirty under page lock. First, it unnecessarily 1084 * makes the holding time of page lock longer. Second, it forces lock 1085 * ordering of page lock and transaction start for journaling 1086 * filesystems. 1087 */ 1088 if (i_size_changed) 1089 ext4_mark_inode_dirty(handle, inode); 1090 1091 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1092 /* if we have allocated more blocks and copied 1093 * less. We will have blocks allocated outside 1094 * inode->i_size. So truncate them 1095 */ 1096 ext4_orphan_add(handle, inode); 1097 errout: 1098 ret2 = ext4_journal_stop(handle); 1099 if (!ret) 1100 ret = ret2; 1101 1102 if (pos + len > inode->i_size) { 1103 ext4_truncate_failed_write(inode); 1104 /* 1105 * If truncate failed early the inode might still be 1106 * on the orphan list; we need to make sure the inode 1107 * is removed from the orphan list in that case. 1108 */ 1109 if (inode->i_nlink) 1110 ext4_orphan_del(NULL, inode); 1111 } 1112 1113 return ret ? ret : copied; 1114 } 1115 1116 static int ext4_journalled_write_end(struct file *file, 1117 struct address_space *mapping, 1118 loff_t pos, unsigned len, unsigned copied, 1119 struct page *page, void *fsdata) 1120 { 1121 handle_t *handle = ext4_journal_current_handle(); 1122 struct inode *inode = mapping->host; 1123 int ret = 0, ret2; 1124 int partial = 0; 1125 unsigned from, to; 1126 loff_t new_i_size; 1127 1128 trace_ext4_journalled_write_end(inode, pos, len, copied); 1129 from = pos & (PAGE_CACHE_SIZE - 1); 1130 to = from + len; 1131 1132 BUG_ON(!ext4_handle_valid(handle)); 1133 1134 if (ext4_has_inline_data(inode)) 1135 copied = ext4_write_inline_data_end(inode, pos, len, 1136 copied, page); 1137 else { 1138 if (copied < len) { 1139 if (!PageUptodate(page)) 1140 copied = 0; 1141 page_zero_new_buffers(page, from+copied, to); 1142 } 1143 1144 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1145 to, &partial, write_end_fn); 1146 if (!partial) 1147 SetPageUptodate(page); 1148 } 1149 new_i_size = pos + copied; 1150 if (new_i_size > inode->i_size) 1151 i_size_write(inode, pos+copied); 1152 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1153 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1154 if (new_i_size > EXT4_I(inode)->i_disksize) { 1155 ext4_update_i_disksize(inode, new_i_size); 1156 ret2 = ext4_mark_inode_dirty(handle, inode); 1157 if (!ret) 1158 ret = ret2; 1159 } 1160 1161 unlock_page(page); 1162 page_cache_release(page); 1163 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1164 /* if we have allocated more blocks and copied 1165 * less. We will have blocks allocated outside 1166 * inode->i_size. So truncate them 1167 */ 1168 ext4_orphan_add(handle, inode); 1169 1170 ret2 = ext4_journal_stop(handle); 1171 if (!ret) 1172 ret = ret2; 1173 if (pos + len > inode->i_size) { 1174 ext4_truncate_failed_write(inode); 1175 /* 1176 * If truncate failed early the inode might still be 1177 * on the orphan list; we need to make sure the inode 1178 * is removed from the orphan list in that case. 1179 */ 1180 if (inode->i_nlink) 1181 ext4_orphan_del(NULL, inode); 1182 } 1183 1184 return ret ? ret : copied; 1185 } 1186 1187 /* 1188 * Reserve a single cluster located at lblock 1189 */ 1190 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock) 1191 { 1192 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1193 struct ext4_inode_info *ei = EXT4_I(inode); 1194 unsigned int md_needed; 1195 int ret; 1196 1197 /* 1198 * We will charge metadata quota at writeout time; this saves 1199 * us from metadata over-estimation, though we may go over by 1200 * a small amount in the end. Here we just reserve for data. 1201 */ 1202 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1203 if (ret) 1204 return ret; 1205 1206 /* 1207 * recalculate the amount of metadata blocks to reserve 1208 * in order to allocate nrblocks 1209 * worse case is one extent per block 1210 */ 1211 spin_lock(&ei->i_block_reservation_lock); 1212 /* 1213 * ext4_calc_metadata_amount() has side effects, which we have 1214 * to be prepared undo if we fail to claim space. 1215 */ 1216 md_needed = 0; 1217 trace_ext4_da_reserve_space(inode, 0); 1218 1219 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1220 spin_unlock(&ei->i_block_reservation_lock); 1221 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1222 return -ENOSPC; 1223 } 1224 ei->i_reserved_data_blocks++; 1225 spin_unlock(&ei->i_block_reservation_lock); 1226 1227 return 0; /* success */ 1228 } 1229 1230 static void ext4_da_release_space(struct inode *inode, int to_free) 1231 { 1232 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1233 struct ext4_inode_info *ei = EXT4_I(inode); 1234 1235 if (!to_free) 1236 return; /* Nothing to release, exit */ 1237 1238 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1239 1240 trace_ext4_da_release_space(inode, to_free); 1241 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1242 /* 1243 * if there aren't enough reserved blocks, then the 1244 * counter is messed up somewhere. Since this 1245 * function is called from invalidate page, it's 1246 * harmless to return without any action. 1247 */ 1248 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1249 "ino %lu, to_free %d with only %d reserved " 1250 "data blocks", inode->i_ino, to_free, 1251 ei->i_reserved_data_blocks); 1252 WARN_ON(1); 1253 to_free = ei->i_reserved_data_blocks; 1254 } 1255 ei->i_reserved_data_blocks -= to_free; 1256 1257 /* update fs dirty data blocks counter */ 1258 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1259 1260 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1261 1262 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1263 } 1264 1265 static void ext4_da_page_release_reservation(struct page *page, 1266 unsigned int offset, 1267 unsigned int length) 1268 { 1269 int to_release = 0; 1270 struct buffer_head *head, *bh; 1271 unsigned int curr_off = 0; 1272 struct inode *inode = page->mapping->host; 1273 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1274 unsigned int stop = offset + length; 1275 int num_clusters; 1276 ext4_fsblk_t lblk; 1277 1278 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length); 1279 1280 head = page_buffers(page); 1281 bh = head; 1282 do { 1283 unsigned int next_off = curr_off + bh->b_size; 1284 1285 if (next_off > stop) 1286 break; 1287 1288 if ((offset <= curr_off) && (buffer_delay(bh))) { 1289 to_release++; 1290 clear_buffer_delay(bh); 1291 } 1292 curr_off = next_off; 1293 } while ((bh = bh->b_this_page) != head); 1294 1295 if (to_release) { 1296 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1297 ext4_es_remove_extent(inode, lblk, to_release); 1298 } 1299 1300 /* If we have released all the blocks belonging to a cluster, then we 1301 * need to release the reserved space for that cluster. */ 1302 num_clusters = EXT4_NUM_B2C(sbi, to_release); 1303 while (num_clusters > 0) { 1304 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) + 1305 ((num_clusters - 1) << sbi->s_cluster_bits); 1306 if (sbi->s_cluster_ratio == 1 || 1307 !ext4_find_delalloc_cluster(inode, lblk)) 1308 ext4_da_release_space(inode, 1); 1309 1310 num_clusters--; 1311 } 1312 } 1313 1314 /* 1315 * Delayed allocation stuff 1316 */ 1317 1318 struct mpage_da_data { 1319 struct inode *inode; 1320 struct writeback_control *wbc; 1321 1322 pgoff_t first_page; /* The first page to write */ 1323 pgoff_t next_page; /* Current page to examine */ 1324 pgoff_t last_page; /* Last page to examine */ 1325 /* 1326 * Extent to map - this can be after first_page because that can be 1327 * fully mapped. We somewhat abuse m_flags to store whether the extent 1328 * is delalloc or unwritten. 1329 */ 1330 struct ext4_map_blocks map; 1331 struct ext4_io_submit io_submit; /* IO submission data */ 1332 }; 1333 1334 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1335 bool invalidate) 1336 { 1337 int nr_pages, i; 1338 pgoff_t index, end; 1339 struct pagevec pvec; 1340 struct inode *inode = mpd->inode; 1341 struct address_space *mapping = inode->i_mapping; 1342 1343 /* This is necessary when next_page == 0. */ 1344 if (mpd->first_page >= mpd->next_page) 1345 return; 1346 1347 index = mpd->first_page; 1348 end = mpd->next_page - 1; 1349 if (invalidate) { 1350 ext4_lblk_t start, last; 1351 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1352 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1353 ext4_es_remove_extent(inode, start, last - start + 1); 1354 } 1355 1356 pagevec_init(&pvec, 0); 1357 while (index <= end) { 1358 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1359 if (nr_pages == 0) 1360 break; 1361 for (i = 0; i < nr_pages; i++) { 1362 struct page *page = pvec.pages[i]; 1363 if (page->index > end) 1364 break; 1365 BUG_ON(!PageLocked(page)); 1366 BUG_ON(PageWriteback(page)); 1367 if (invalidate) { 1368 block_invalidatepage(page, 0, PAGE_CACHE_SIZE); 1369 ClearPageUptodate(page); 1370 } 1371 unlock_page(page); 1372 } 1373 index = pvec.pages[nr_pages - 1]->index + 1; 1374 pagevec_release(&pvec); 1375 } 1376 } 1377 1378 static void ext4_print_free_blocks(struct inode *inode) 1379 { 1380 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1381 struct super_block *sb = inode->i_sb; 1382 struct ext4_inode_info *ei = EXT4_I(inode); 1383 1384 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1385 EXT4_C2B(EXT4_SB(inode->i_sb), 1386 ext4_count_free_clusters(sb))); 1387 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1388 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1389 (long long) EXT4_C2B(EXT4_SB(sb), 1390 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1391 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1392 (long long) EXT4_C2B(EXT4_SB(sb), 1393 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1394 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1395 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1396 ei->i_reserved_data_blocks); 1397 return; 1398 } 1399 1400 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1401 { 1402 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1403 } 1404 1405 /* 1406 * This function is grabs code from the very beginning of 1407 * ext4_map_blocks, but assumes that the caller is from delayed write 1408 * time. This function looks up the requested blocks and sets the 1409 * buffer delay bit under the protection of i_data_sem. 1410 */ 1411 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1412 struct ext4_map_blocks *map, 1413 struct buffer_head *bh) 1414 { 1415 struct extent_status es; 1416 int retval; 1417 sector_t invalid_block = ~((sector_t) 0xffff); 1418 #ifdef ES_AGGRESSIVE_TEST 1419 struct ext4_map_blocks orig_map; 1420 1421 memcpy(&orig_map, map, sizeof(*map)); 1422 #endif 1423 1424 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1425 invalid_block = ~0; 1426 1427 map->m_flags = 0; 1428 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1429 "logical block %lu\n", inode->i_ino, map->m_len, 1430 (unsigned long) map->m_lblk); 1431 1432 /* Lookup extent status tree firstly */ 1433 if (ext4_es_lookup_extent(inode, iblock, &es)) { 1434 ext4_es_lru_add(inode); 1435 if (ext4_es_is_hole(&es)) { 1436 retval = 0; 1437 down_read(&EXT4_I(inode)->i_data_sem); 1438 goto add_delayed; 1439 } 1440 1441 /* 1442 * Delayed extent could be allocated by fallocate. 1443 * So we need to check it. 1444 */ 1445 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1446 map_bh(bh, inode->i_sb, invalid_block); 1447 set_buffer_new(bh); 1448 set_buffer_delay(bh); 1449 return 0; 1450 } 1451 1452 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1453 retval = es.es_len - (iblock - es.es_lblk); 1454 if (retval > map->m_len) 1455 retval = map->m_len; 1456 map->m_len = retval; 1457 if (ext4_es_is_written(&es)) 1458 map->m_flags |= EXT4_MAP_MAPPED; 1459 else if (ext4_es_is_unwritten(&es)) 1460 map->m_flags |= EXT4_MAP_UNWRITTEN; 1461 else 1462 BUG_ON(1); 1463 1464 #ifdef ES_AGGRESSIVE_TEST 1465 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1466 #endif 1467 return retval; 1468 } 1469 1470 /* 1471 * Try to see if we can get the block without requesting a new 1472 * file system block. 1473 */ 1474 down_read(&EXT4_I(inode)->i_data_sem); 1475 if (ext4_has_inline_data(inode)) { 1476 /* 1477 * We will soon create blocks for this page, and let 1478 * us pretend as if the blocks aren't allocated yet. 1479 * In case of clusters, we have to handle the work 1480 * of mapping from cluster so that the reserved space 1481 * is calculated properly. 1482 */ 1483 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) && 1484 ext4_find_delalloc_cluster(inode, map->m_lblk)) 1485 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 1486 retval = 0; 1487 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1488 retval = ext4_ext_map_blocks(NULL, inode, map, 1489 EXT4_GET_BLOCKS_NO_PUT_HOLE); 1490 else 1491 retval = ext4_ind_map_blocks(NULL, inode, map, 1492 EXT4_GET_BLOCKS_NO_PUT_HOLE); 1493 1494 add_delayed: 1495 if (retval == 0) { 1496 int ret; 1497 /* 1498 * XXX: __block_prepare_write() unmaps passed block, 1499 * is it OK? 1500 */ 1501 /* 1502 * If the block was allocated from previously allocated cluster, 1503 * then we don't need to reserve it again. However we still need 1504 * to reserve metadata for every block we're going to write. 1505 */ 1506 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) { 1507 ret = ext4_da_reserve_space(inode, iblock); 1508 if (ret) { 1509 /* not enough space to reserve */ 1510 retval = ret; 1511 goto out_unlock; 1512 } 1513 } 1514 1515 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1516 ~0, EXTENT_STATUS_DELAYED); 1517 if (ret) { 1518 retval = ret; 1519 goto out_unlock; 1520 } 1521 1522 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served 1523 * and it should not appear on the bh->b_state. 1524 */ 1525 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER; 1526 1527 map_bh(bh, inode->i_sb, invalid_block); 1528 set_buffer_new(bh); 1529 set_buffer_delay(bh); 1530 } else if (retval > 0) { 1531 int ret; 1532 unsigned int status; 1533 1534 if (unlikely(retval != map->m_len)) { 1535 ext4_warning(inode->i_sb, 1536 "ES len assertion failed for inode " 1537 "%lu: retval %d != map->m_len %d", 1538 inode->i_ino, retval, map->m_len); 1539 WARN_ON(1); 1540 } 1541 1542 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1543 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1544 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1545 map->m_pblk, status); 1546 if (ret != 0) 1547 retval = ret; 1548 } 1549 1550 out_unlock: 1551 up_read((&EXT4_I(inode)->i_data_sem)); 1552 1553 return retval; 1554 } 1555 1556 /* 1557 * This is a special get_blocks_t callback which is used by 1558 * ext4_da_write_begin(). It will either return mapped block or 1559 * reserve space for a single block. 1560 * 1561 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1562 * We also have b_blocknr = -1 and b_bdev initialized properly 1563 * 1564 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1565 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1566 * initialized properly. 1567 */ 1568 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1569 struct buffer_head *bh, int create) 1570 { 1571 struct ext4_map_blocks map; 1572 int ret = 0; 1573 1574 BUG_ON(create == 0); 1575 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1576 1577 map.m_lblk = iblock; 1578 map.m_len = 1; 1579 1580 /* 1581 * first, we need to know whether the block is allocated already 1582 * preallocated blocks are unmapped but should treated 1583 * the same as allocated blocks. 1584 */ 1585 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1586 if (ret <= 0) 1587 return ret; 1588 1589 map_bh(bh, inode->i_sb, map.m_pblk); 1590 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 1591 1592 if (buffer_unwritten(bh)) { 1593 /* A delayed write to unwritten bh should be marked 1594 * new and mapped. Mapped ensures that we don't do 1595 * get_block multiple times when we write to the same 1596 * offset and new ensures that we do proper zero out 1597 * for partial write. 1598 */ 1599 set_buffer_new(bh); 1600 set_buffer_mapped(bh); 1601 } 1602 return 0; 1603 } 1604 1605 static int bget_one(handle_t *handle, struct buffer_head *bh) 1606 { 1607 get_bh(bh); 1608 return 0; 1609 } 1610 1611 static int bput_one(handle_t *handle, struct buffer_head *bh) 1612 { 1613 put_bh(bh); 1614 return 0; 1615 } 1616 1617 static int __ext4_journalled_writepage(struct page *page, 1618 unsigned int len) 1619 { 1620 struct address_space *mapping = page->mapping; 1621 struct inode *inode = mapping->host; 1622 struct buffer_head *page_bufs = NULL; 1623 handle_t *handle = NULL; 1624 int ret = 0, err = 0; 1625 int inline_data = ext4_has_inline_data(inode); 1626 struct buffer_head *inode_bh = NULL; 1627 1628 ClearPageChecked(page); 1629 1630 if (inline_data) { 1631 BUG_ON(page->index != 0); 1632 BUG_ON(len > ext4_get_max_inline_size(inode)); 1633 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1634 if (inode_bh == NULL) 1635 goto out; 1636 } else { 1637 page_bufs = page_buffers(page); 1638 if (!page_bufs) { 1639 BUG(); 1640 goto out; 1641 } 1642 ext4_walk_page_buffers(handle, page_bufs, 0, len, 1643 NULL, bget_one); 1644 } 1645 /* As soon as we unlock the page, it can go away, but we have 1646 * references to buffers so we are safe */ 1647 unlock_page(page); 1648 1649 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1650 ext4_writepage_trans_blocks(inode)); 1651 if (IS_ERR(handle)) { 1652 ret = PTR_ERR(handle); 1653 goto out; 1654 } 1655 1656 BUG_ON(!ext4_handle_valid(handle)); 1657 1658 if (inline_data) { 1659 BUFFER_TRACE(inode_bh, "get write access"); 1660 ret = ext4_journal_get_write_access(handle, inode_bh); 1661 1662 err = ext4_handle_dirty_metadata(handle, inode, inode_bh); 1663 1664 } else { 1665 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1666 do_journal_get_write_access); 1667 1668 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1669 write_end_fn); 1670 } 1671 if (ret == 0) 1672 ret = err; 1673 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1674 err = ext4_journal_stop(handle); 1675 if (!ret) 1676 ret = err; 1677 1678 if (!ext4_has_inline_data(inode)) 1679 ext4_walk_page_buffers(NULL, page_bufs, 0, len, 1680 NULL, bput_one); 1681 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1682 out: 1683 brelse(inode_bh); 1684 return ret; 1685 } 1686 1687 /* 1688 * Note that we don't need to start a transaction unless we're journaling data 1689 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1690 * need to file the inode to the transaction's list in ordered mode because if 1691 * we are writing back data added by write(), the inode is already there and if 1692 * we are writing back data modified via mmap(), no one guarantees in which 1693 * transaction the data will hit the disk. In case we are journaling data, we 1694 * cannot start transaction directly because transaction start ranks above page 1695 * lock so we have to do some magic. 1696 * 1697 * This function can get called via... 1698 * - ext4_writepages after taking page lock (have journal handle) 1699 * - journal_submit_inode_data_buffers (no journal handle) 1700 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 1701 * - grab_page_cache when doing write_begin (have journal handle) 1702 * 1703 * We don't do any block allocation in this function. If we have page with 1704 * multiple blocks we need to write those buffer_heads that are mapped. This 1705 * is important for mmaped based write. So if we do with blocksize 1K 1706 * truncate(f, 1024); 1707 * a = mmap(f, 0, 4096); 1708 * a[0] = 'a'; 1709 * truncate(f, 4096); 1710 * we have in the page first buffer_head mapped via page_mkwrite call back 1711 * but other buffer_heads would be unmapped but dirty (dirty done via the 1712 * do_wp_page). So writepage should write the first block. If we modify 1713 * the mmap area beyond 1024 we will again get a page_fault and the 1714 * page_mkwrite callback will do the block allocation and mark the 1715 * buffer_heads mapped. 1716 * 1717 * We redirty the page if we have any buffer_heads that is either delay or 1718 * unwritten in the page. 1719 * 1720 * We can get recursively called as show below. 1721 * 1722 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1723 * ext4_writepage() 1724 * 1725 * But since we don't do any block allocation we should not deadlock. 1726 * Page also have the dirty flag cleared so we don't get recurive page_lock. 1727 */ 1728 static int ext4_writepage(struct page *page, 1729 struct writeback_control *wbc) 1730 { 1731 int ret = 0; 1732 loff_t size; 1733 unsigned int len; 1734 struct buffer_head *page_bufs = NULL; 1735 struct inode *inode = page->mapping->host; 1736 struct ext4_io_submit io_submit; 1737 bool keep_towrite = false; 1738 1739 trace_ext4_writepage(page); 1740 size = i_size_read(inode); 1741 if (page->index == size >> PAGE_CACHE_SHIFT) 1742 len = size & ~PAGE_CACHE_MASK; 1743 else 1744 len = PAGE_CACHE_SIZE; 1745 1746 page_bufs = page_buffers(page); 1747 /* 1748 * We cannot do block allocation or other extent handling in this 1749 * function. If there are buffers needing that, we have to redirty 1750 * the page. But we may reach here when we do a journal commit via 1751 * journal_submit_inode_data_buffers() and in that case we must write 1752 * allocated buffers to achieve data=ordered mode guarantees. 1753 */ 1754 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 1755 ext4_bh_delay_or_unwritten)) { 1756 redirty_page_for_writepage(wbc, page); 1757 if (current->flags & PF_MEMALLOC) { 1758 /* 1759 * For memory cleaning there's no point in writing only 1760 * some buffers. So just bail out. Warn if we came here 1761 * from direct reclaim. 1762 */ 1763 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 1764 == PF_MEMALLOC); 1765 unlock_page(page); 1766 return 0; 1767 } 1768 keep_towrite = true; 1769 } 1770 1771 if (PageChecked(page) && ext4_should_journal_data(inode)) 1772 /* 1773 * It's mmapped pagecache. Add buffers and journal it. There 1774 * doesn't seem much point in redirtying the page here. 1775 */ 1776 return __ext4_journalled_writepage(page, len); 1777 1778 ext4_io_submit_init(&io_submit, wbc); 1779 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 1780 if (!io_submit.io_end) { 1781 redirty_page_for_writepage(wbc, page); 1782 unlock_page(page); 1783 return -ENOMEM; 1784 } 1785 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite); 1786 ext4_io_submit(&io_submit); 1787 /* Drop io_end reference we got from init */ 1788 ext4_put_io_end_defer(io_submit.io_end); 1789 return ret; 1790 } 1791 1792 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 1793 { 1794 int len; 1795 loff_t size = i_size_read(mpd->inode); 1796 int err; 1797 1798 BUG_ON(page->index != mpd->first_page); 1799 if (page->index == size >> PAGE_CACHE_SHIFT) 1800 len = size & ~PAGE_CACHE_MASK; 1801 else 1802 len = PAGE_CACHE_SIZE; 1803 clear_page_dirty_for_io(page); 1804 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false); 1805 if (!err) 1806 mpd->wbc->nr_to_write--; 1807 mpd->first_page++; 1808 1809 return err; 1810 } 1811 1812 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay)) 1813 1814 /* 1815 * mballoc gives us at most this number of blocks... 1816 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 1817 * The rest of mballoc seems to handle chunks up to full group size. 1818 */ 1819 #define MAX_WRITEPAGES_EXTENT_LEN 2048 1820 1821 /* 1822 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 1823 * 1824 * @mpd - extent of blocks 1825 * @lblk - logical number of the block in the file 1826 * @bh - buffer head we want to add to the extent 1827 * 1828 * The function is used to collect contig. blocks in the same state. If the 1829 * buffer doesn't require mapping for writeback and we haven't started the 1830 * extent of buffers to map yet, the function returns 'true' immediately - the 1831 * caller can write the buffer right away. Otherwise the function returns true 1832 * if the block has been added to the extent, false if the block couldn't be 1833 * added. 1834 */ 1835 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 1836 struct buffer_head *bh) 1837 { 1838 struct ext4_map_blocks *map = &mpd->map; 1839 1840 /* Buffer that doesn't need mapping for writeback? */ 1841 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 1842 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 1843 /* So far no extent to map => we write the buffer right away */ 1844 if (map->m_len == 0) 1845 return true; 1846 return false; 1847 } 1848 1849 /* First block in the extent? */ 1850 if (map->m_len == 0) { 1851 map->m_lblk = lblk; 1852 map->m_len = 1; 1853 map->m_flags = bh->b_state & BH_FLAGS; 1854 return true; 1855 } 1856 1857 /* Don't go larger than mballoc is willing to allocate */ 1858 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 1859 return false; 1860 1861 /* Can we merge the block to our big extent? */ 1862 if (lblk == map->m_lblk + map->m_len && 1863 (bh->b_state & BH_FLAGS) == map->m_flags) { 1864 map->m_len++; 1865 return true; 1866 } 1867 return false; 1868 } 1869 1870 /* 1871 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 1872 * 1873 * @mpd - extent of blocks for mapping 1874 * @head - the first buffer in the page 1875 * @bh - buffer we should start processing from 1876 * @lblk - logical number of the block in the file corresponding to @bh 1877 * 1878 * Walk through page buffers from @bh upto @head (exclusive) and either submit 1879 * the page for IO if all buffers in this page were mapped and there's no 1880 * accumulated extent of buffers to map or add buffers in the page to the 1881 * extent of buffers to map. The function returns 1 if the caller can continue 1882 * by processing the next page, 0 if it should stop adding buffers to the 1883 * extent to map because we cannot extend it anymore. It can also return value 1884 * < 0 in case of error during IO submission. 1885 */ 1886 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 1887 struct buffer_head *head, 1888 struct buffer_head *bh, 1889 ext4_lblk_t lblk) 1890 { 1891 struct inode *inode = mpd->inode; 1892 int err; 1893 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1) 1894 >> inode->i_blkbits; 1895 1896 do { 1897 BUG_ON(buffer_locked(bh)); 1898 1899 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 1900 /* Found extent to map? */ 1901 if (mpd->map.m_len) 1902 return 0; 1903 /* Everything mapped so far and we hit EOF */ 1904 break; 1905 } 1906 } while (lblk++, (bh = bh->b_this_page) != head); 1907 /* So far everything mapped? Submit the page for IO. */ 1908 if (mpd->map.m_len == 0) { 1909 err = mpage_submit_page(mpd, head->b_page); 1910 if (err < 0) 1911 return err; 1912 } 1913 return lblk < blocks; 1914 } 1915 1916 /* 1917 * mpage_map_buffers - update buffers corresponding to changed extent and 1918 * submit fully mapped pages for IO 1919 * 1920 * @mpd - description of extent to map, on return next extent to map 1921 * 1922 * Scan buffers corresponding to changed extent (we expect corresponding pages 1923 * to be already locked) and update buffer state according to new extent state. 1924 * We map delalloc buffers to their physical location, clear unwritten bits, 1925 * and mark buffers as uninit when we perform writes to unwritten extents 1926 * and do extent conversion after IO is finished. If the last page is not fully 1927 * mapped, we update @map to the next extent in the last page that needs 1928 * mapping. Otherwise we submit the page for IO. 1929 */ 1930 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 1931 { 1932 struct pagevec pvec; 1933 int nr_pages, i; 1934 struct inode *inode = mpd->inode; 1935 struct buffer_head *head, *bh; 1936 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits; 1937 pgoff_t start, end; 1938 ext4_lblk_t lblk; 1939 sector_t pblock; 1940 int err; 1941 1942 start = mpd->map.m_lblk >> bpp_bits; 1943 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 1944 lblk = start << bpp_bits; 1945 pblock = mpd->map.m_pblk; 1946 1947 pagevec_init(&pvec, 0); 1948 while (start <= end) { 1949 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start, 1950 PAGEVEC_SIZE); 1951 if (nr_pages == 0) 1952 break; 1953 for (i = 0; i < nr_pages; i++) { 1954 struct page *page = pvec.pages[i]; 1955 1956 if (page->index > end) 1957 break; 1958 /* Up to 'end' pages must be contiguous */ 1959 BUG_ON(page->index != start); 1960 bh = head = page_buffers(page); 1961 do { 1962 if (lblk < mpd->map.m_lblk) 1963 continue; 1964 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 1965 /* 1966 * Buffer after end of mapped extent. 1967 * Find next buffer in the page to map. 1968 */ 1969 mpd->map.m_len = 0; 1970 mpd->map.m_flags = 0; 1971 /* 1972 * FIXME: If dioread_nolock supports 1973 * blocksize < pagesize, we need to make 1974 * sure we add size mapped so far to 1975 * io_end->size as the following call 1976 * can submit the page for IO. 1977 */ 1978 err = mpage_process_page_bufs(mpd, head, 1979 bh, lblk); 1980 pagevec_release(&pvec); 1981 if (err > 0) 1982 err = 0; 1983 return err; 1984 } 1985 if (buffer_delay(bh)) { 1986 clear_buffer_delay(bh); 1987 bh->b_blocknr = pblock++; 1988 } 1989 clear_buffer_unwritten(bh); 1990 } while (lblk++, (bh = bh->b_this_page) != head); 1991 1992 /* 1993 * FIXME: This is going to break if dioread_nolock 1994 * supports blocksize < pagesize as we will try to 1995 * convert potentially unmapped parts of inode. 1996 */ 1997 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE; 1998 /* Page fully mapped - let IO run! */ 1999 err = mpage_submit_page(mpd, page); 2000 if (err < 0) { 2001 pagevec_release(&pvec); 2002 return err; 2003 } 2004 start++; 2005 } 2006 pagevec_release(&pvec); 2007 } 2008 /* Extent fully mapped and matches with page boundary. We are done. */ 2009 mpd->map.m_len = 0; 2010 mpd->map.m_flags = 0; 2011 return 0; 2012 } 2013 2014 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2015 { 2016 struct inode *inode = mpd->inode; 2017 struct ext4_map_blocks *map = &mpd->map; 2018 int get_blocks_flags; 2019 int err, dioread_nolock; 2020 2021 trace_ext4_da_write_pages_extent(inode, map); 2022 /* 2023 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2024 * to convert an unwritten extent to be initialized (in the case 2025 * where we have written into one or more preallocated blocks). It is 2026 * possible that we're going to need more metadata blocks than 2027 * previously reserved. However we must not fail because we're in 2028 * writeback and there is nothing we can do about it so it might result 2029 * in data loss. So use reserved blocks to allocate metadata if 2030 * possible. 2031 * 2032 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks 2033 * in question are delalloc blocks. This affects functions in many 2034 * different parts of the allocation call path. This flag exists 2035 * primarily because we don't want to change *many* call functions, so 2036 * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag 2037 * once the inode's allocation semaphore is taken. 2038 */ 2039 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2040 EXT4_GET_BLOCKS_METADATA_NOFAIL; 2041 dioread_nolock = ext4_should_dioread_nolock(inode); 2042 if (dioread_nolock) 2043 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2044 if (map->m_flags & (1 << BH_Delay)) 2045 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2046 2047 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2048 if (err < 0) 2049 return err; 2050 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2051 if (!mpd->io_submit.io_end->handle && 2052 ext4_handle_valid(handle)) { 2053 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2054 handle->h_rsv_handle = NULL; 2055 } 2056 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2057 } 2058 2059 BUG_ON(map->m_len == 0); 2060 if (map->m_flags & EXT4_MAP_NEW) { 2061 struct block_device *bdev = inode->i_sb->s_bdev; 2062 int i; 2063 2064 for (i = 0; i < map->m_len; i++) 2065 unmap_underlying_metadata(bdev, map->m_pblk + i); 2066 } 2067 return 0; 2068 } 2069 2070 /* 2071 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2072 * mpd->len and submit pages underlying it for IO 2073 * 2074 * @handle - handle for journal operations 2075 * @mpd - extent to map 2076 * @give_up_on_write - we set this to true iff there is a fatal error and there 2077 * is no hope of writing the data. The caller should discard 2078 * dirty pages to avoid infinite loops. 2079 * 2080 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2081 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2082 * them to initialized or split the described range from larger unwritten 2083 * extent. Note that we need not map all the described range since allocation 2084 * can return less blocks or the range is covered by more unwritten extents. We 2085 * cannot map more because we are limited by reserved transaction credits. On 2086 * the other hand we always make sure that the last touched page is fully 2087 * mapped so that it can be written out (and thus forward progress is 2088 * guaranteed). After mapping we submit all mapped pages for IO. 2089 */ 2090 static int mpage_map_and_submit_extent(handle_t *handle, 2091 struct mpage_da_data *mpd, 2092 bool *give_up_on_write) 2093 { 2094 struct inode *inode = mpd->inode; 2095 struct ext4_map_blocks *map = &mpd->map; 2096 int err; 2097 loff_t disksize; 2098 2099 mpd->io_submit.io_end->offset = 2100 ((loff_t)map->m_lblk) << inode->i_blkbits; 2101 do { 2102 err = mpage_map_one_extent(handle, mpd); 2103 if (err < 0) { 2104 struct super_block *sb = inode->i_sb; 2105 2106 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 2107 goto invalidate_dirty_pages; 2108 /* 2109 * Let the uper layers retry transient errors. 2110 * In the case of ENOSPC, if ext4_count_free_blocks() 2111 * is non-zero, a commit should free up blocks. 2112 */ 2113 if ((err == -ENOMEM) || 2114 (err == -ENOSPC && ext4_count_free_clusters(sb))) 2115 return err; 2116 ext4_msg(sb, KERN_CRIT, 2117 "Delayed block allocation failed for " 2118 "inode %lu at logical offset %llu with" 2119 " max blocks %u with error %d", 2120 inode->i_ino, 2121 (unsigned long long)map->m_lblk, 2122 (unsigned)map->m_len, -err); 2123 ext4_msg(sb, KERN_CRIT, 2124 "This should not happen!! Data will " 2125 "be lost\n"); 2126 if (err == -ENOSPC) 2127 ext4_print_free_blocks(inode); 2128 invalidate_dirty_pages: 2129 *give_up_on_write = true; 2130 return err; 2131 } 2132 /* 2133 * Update buffer state, submit mapped pages, and get us new 2134 * extent to map 2135 */ 2136 err = mpage_map_and_submit_buffers(mpd); 2137 if (err < 0) 2138 return err; 2139 } while (map->m_len); 2140 2141 /* 2142 * Update on-disk size after IO is submitted. Races with 2143 * truncate are avoided by checking i_size under i_data_sem. 2144 */ 2145 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT; 2146 if (disksize > EXT4_I(inode)->i_disksize) { 2147 int err2; 2148 loff_t i_size; 2149 2150 down_write(&EXT4_I(inode)->i_data_sem); 2151 i_size = i_size_read(inode); 2152 if (disksize > i_size) 2153 disksize = i_size; 2154 if (disksize > EXT4_I(inode)->i_disksize) 2155 EXT4_I(inode)->i_disksize = disksize; 2156 err2 = ext4_mark_inode_dirty(handle, inode); 2157 up_write(&EXT4_I(inode)->i_data_sem); 2158 if (err2) 2159 ext4_error(inode->i_sb, 2160 "Failed to mark inode %lu dirty", 2161 inode->i_ino); 2162 if (!err) 2163 err = err2; 2164 } 2165 return err; 2166 } 2167 2168 /* 2169 * Calculate the total number of credits to reserve for one writepages 2170 * iteration. This is called from ext4_writepages(). We map an extent of 2171 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2172 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2173 * bpp - 1 blocks in bpp different extents. 2174 */ 2175 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2176 { 2177 int bpp = ext4_journal_blocks_per_page(inode); 2178 2179 return ext4_meta_trans_blocks(inode, 2180 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2181 } 2182 2183 /* 2184 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2185 * and underlying extent to map 2186 * 2187 * @mpd - where to look for pages 2188 * 2189 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2190 * IO immediately. When we find a page which isn't mapped we start accumulating 2191 * extent of buffers underlying these pages that needs mapping (formed by 2192 * either delayed or unwritten buffers). We also lock the pages containing 2193 * these buffers. The extent found is returned in @mpd structure (starting at 2194 * mpd->lblk with length mpd->len blocks). 2195 * 2196 * Note that this function can attach bios to one io_end structure which are 2197 * neither logically nor physically contiguous. Although it may seem as an 2198 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2199 * case as we need to track IO to all buffers underlying a page in one io_end. 2200 */ 2201 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2202 { 2203 struct address_space *mapping = mpd->inode->i_mapping; 2204 struct pagevec pvec; 2205 unsigned int nr_pages; 2206 long left = mpd->wbc->nr_to_write; 2207 pgoff_t index = mpd->first_page; 2208 pgoff_t end = mpd->last_page; 2209 int tag; 2210 int i, err = 0; 2211 int blkbits = mpd->inode->i_blkbits; 2212 ext4_lblk_t lblk; 2213 struct buffer_head *head; 2214 2215 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2216 tag = PAGECACHE_TAG_TOWRITE; 2217 else 2218 tag = PAGECACHE_TAG_DIRTY; 2219 2220 pagevec_init(&pvec, 0); 2221 mpd->map.m_len = 0; 2222 mpd->next_page = index; 2223 while (index <= end) { 2224 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2225 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2226 if (nr_pages == 0) 2227 goto out; 2228 2229 for (i = 0; i < nr_pages; i++) { 2230 struct page *page = pvec.pages[i]; 2231 2232 /* 2233 * At this point, the page may be truncated or 2234 * invalidated (changing page->mapping to NULL), or 2235 * even swizzled back from swapper_space to tmpfs file 2236 * mapping. However, page->index will not change 2237 * because we have a reference on the page. 2238 */ 2239 if (page->index > end) 2240 goto out; 2241 2242 /* 2243 * Accumulated enough dirty pages? This doesn't apply 2244 * to WB_SYNC_ALL mode. For integrity sync we have to 2245 * keep going because someone may be concurrently 2246 * dirtying pages, and we might have synced a lot of 2247 * newly appeared dirty pages, but have not synced all 2248 * of the old dirty pages. 2249 */ 2250 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2251 goto out; 2252 2253 /* If we can't merge this page, we are done. */ 2254 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2255 goto out; 2256 2257 lock_page(page); 2258 /* 2259 * If the page is no longer dirty, or its mapping no 2260 * longer corresponds to inode we are writing (which 2261 * means it has been truncated or invalidated), or the 2262 * page is already under writeback and we are not doing 2263 * a data integrity writeback, skip the page 2264 */ 2265 if (!PageDirty(page) || 2266 (PageWriteback(page) && 2267 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2268 unlikely(page->mapping != mapping)) { 2269 unlock_page(page); 2270 continue; 2271 } 2272 2273 wait_on_page_writeback(page); 2274 BUG_ON(PageWriteback(page)); 2275 2276 if (mpd->map.m_len == 0) 2277 mpd->first_page = page->index; 2278 mpd->next_page = page->index + 1; 2279 /* Add all dirty buffers to mpd */ 2280 lblk = ((ext4_lblk_t)page->index) << 2281 (PAGE_CACHE_SHIFT - blkbits); 2282 head = page_buffers(page); 2283 err = mpage_process_page_bufs(mpd, head, head, lblk); 2284 if (err <= 0) 2285 goto out; 2286 err = 0; 2287 left--; 2288 } 2289 pagevec_release(&pvec); 2290 cond_resched(); 2291 } 2292 return 0; 2293 out: 2294 pagevec_release(&pvec); 2295 return err; 2296 } 2297 2298 static int __writepage(struct page *page, struct writeback_control *wbc, 2299 void *data) 2300 { 2301 struct address_space *mapping = data; 2302 int ret = ext4_writepage(page, wbc); 2303 mapping_set_error(mapping, ret); 2304 return ret; 2305 } 2306 2307 static int ext4_writepages(struct address_space *mapping, 2308 struct writeback_control *wbc) 2309 { 2310 pgoff_t writeback_index = 0; 2311 long nr_to_write = wbc->nr_to_write; 2312 int range_whole = 0; 2313 int cycled = 1; 2314 handle_t *handle = NULL; 2315 struct mpage_da_data mpd; 2316 struct inode *inode = mapping->host; 2317 int needed_blocks, rsv_blocks = 0, ret = 0; 2318 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2319 bool done; 2320 struct blk_plug plug; 2321 bool give_up_on_write = false; 2322 2323 trace_ext4_writepages(inode, wbc); 2324 2325 /* 2326 * No pages to write? This is mainly a kludge to avoid starting 2327 * a transaction for special inodes like journal inode on last iput() 2328 * because that could violate lock ordering on umount 2329 */ 2330 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2331 goto out_writepages; 2332 2333 if (ext4_should_journal_data(inode)) { 2334 struct blk_plug plug; 2335 2336 blk_start_plug(&plug); 2337 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 2338 blk_finish_plug(&plug); 2339 goto out_writepages; 2340 } 2341 2342 /* 2343 * If the filesystem has aborted, it is read-only, so return 2344 * right away instead of dumping stack traces later on that 2345 * will obscure the real source of the problem. We test 2346 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2347 * the latter could be true if the filesystem is mounted 2348 * read-only, and in that case, ext4_writepages should 2349 * *never* be called, so if that ever happens, we would want 2350 * the stack trace. 2351 */ 2352 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) { 2353 ret = -EROFS; 2354 goto out_writepages; 2355 } 2356 2357 if (ext4_should_dioread_nolock(inode)) { 2358 /* 2359 * We may need to convert up to one extent per block in 2360 * the page and we may dirty the inode. 2361 */ 2362 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits); 2363 } 2364 2365 /* 2366 * If we have inline data and arrive here, it means that 2367 * we will soon create the block for the 1st page, so 2368 * we'd better clear the inline data here. 2369 */ 2370 if (ext4_has_inline_data(inode)) { 2371 /* Just inode will be modified... */ 2372 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2373 if (IS_ERR(handle)) { 2374 ret = PTR_ERR(handle); 2375 goto out_writepages; 2376 } 2377 BUG_ON(ext4_test_inode_state(inode, 2378 EXT4_STATE_MAY_INLINE_DATA)); 2379 ext4_destroy_inline_data(handle, inode); 2380 ext4_journal_stop(handle); 2381 } 2382 2383 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2384 range_whole = 1; 2385 2386 if (wbc->range_cyclic) { 2387 writeback_index = mapping->writeback_index; 2388 if (writeback_index) 2389 cycled = 0; 2390 mpd.first_page = writeback_index; 2391 mpd.last_page = -1; 2392 } else { 2393 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT; 2394 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT; 2395 } 2396 2397 mpd.inode = inode; 2398 mpd.wbc = wbc; 2399 ext4_io_submit_init(&mpd.io_submit, wbc); 2400 retry: 2401 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2402 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2403 done = false; 2404 blk_start_plug(&plug); 2405 while (!done && mpd.first_page <= mpd.last_page) { 2406 /* For each extent of pages we use new io_end */ 2407 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2408 if (!mpd.io_submit.io_end) { 2409 ret = -ENOMEM; 2410 break; 2411 } 2412 2413 /* 2414 * We have two constraints: We find one extent to map and we 2415 * must always write out whole page (makes a difference when 2416 * blocksize < pagesize) so that we don't block on IO when we 2417 * try to write out the rest of the page. Journalled mode is 2418 * not supported by delalloc. 2419 */ 2420 BUG_ON(ext4_should_journal_data(inode)); 2421 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2422 2423 /* start a new transaction */ 2424 handle = ext4_journal_start_with_reserve(inode, 2425 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2426 if (IS_ERR(handle)) { 2427 ret = PTR_ERR(handle); 2428 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2429 "%ld pages, ino %lu; err %d", __func__, 2430 wbc->nr_to_write, inode->i_ino, ret); 2431 /* Release allocated io_end */ 2432 ext4_put_io_end(mpd.io_submit.io_end); 2433 break; 2434 } 2435 2436 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2437 ret = mpage_prepare_extent_to_map(&mpd); 2438 if (!ret) { 2439 if (mpd.map.m_len) 2440 ret = mpage_map_and_submit_extent(handle, &mpd, 2441 &give_up_on_write); 2442 else { 2443 /* 2444 * We scanned the whole range (or exhausted 2445 * nr_to_write), submitted what was mapped and 2446 * didn't find anything needing mapping. We are 2447 * done. 2448 */ 2449 done = true; 2450 } 2451 } 2452 ext4_journal_stop(handle); 2453 /* Submit prepared bio */ 2454 ext4_io_submit(&mpd.io_submit); 2455 /* Unlock pages we didn't use */ 2456 mpage_release_unused_pages(&mpd, give_up_on_write); 2457 /* Drop our io_end reference we got from init */ 2458 ext4_put_io_end(mpd.io_submit.io_end); 2459 2460 if (ret == -ENOSPC && sbi->s_journal) { 2461 /* 2462 * Commit the transaction which would 2463 * free blocks released in the transaction 2464 * and try again 2465 */ 2466 jbd2_journal_force_commit_nested(sbi->s_journal); 2467 ret = 0; 2468 continue; 2469 } 2470 /* Fatal error - ENOMEM, EIO... */ 2471 if (ret) 2472 break; 2473 } 2474 blk_finish_plug(&plug); 2475 if (!ret && !cycled && wbc->nr_to_write > 0) { 2476 cycled = 1; 2477 mpd.last_page = writeback_index - 1; 2478 mpd.first_page = 0; 2479 goto retry; 2480 } 2481 2482 /* Update index */ 2483 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2484 /* 2485 * Set the writeback_index so that range_cyclic 2486 * mode will write it back later 2487 */ 2488 mapping->writeback_index = mpd.first_page; 2489 2490 out_writepages: 2491 trace_ext4_writepages_result(inode, wbc, ret, 2492 nr_to_write - wbc->nr_to_write); 2493 return ret; 2494 } 2495 2496 static int ext4_nonda_switch(struct super_block *sb) 2497 { 2498 s64 free_clusters, dirty_clusters; 2499 struct ext4_sb_info *sbi = EXT4_SB(sb); 2500 2501 /* 2502 * switch to non delalloc mode if we are running low 2503 * on free block. The free block accounting via percpu 2504 * counters can get slightly wrong with percpu_counter_batch getting 2505 * accumulated on each CPU without updating global counters 2506 * Delalloc need an accurate free block accounting. So switch 2507 * to non delalloc when we are near to error range. 2508 */ 2509 free_clusters = 2510 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2511 dirty_clusters = 2512 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2513 /* 2514 * Start pushing delalloc when 1/2 of free blocks are dirty. 2515 */ 2516 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2517 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2518 2519 if (2 * free_clusters < 3 * dirty_clusters || 2520 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2521 /* 2522 * free block count is less than 150% of dirty blocks 2523 * or free blocks is less than watermark 2524 */ 2525 return 1; 2526 } 2527 return 0; 2528 } 2529 2530 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2531 loff_t pos, unsigned len, unsigned flags, 2532 struct page **pagep, void **fsdata) 2533 { 2534 int ret, retries = 0; 2535 struct page *page; 2536 pgoff_t index; 2537 struct inode *inode = mapping->host; 2538 handle_t *handle; 2539 2540 index = pos >> PAGE_CACHE_SHIFT; 2541 2542 if (ext4_nonda_switch(inode->i_sb)) { 2543 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2544 return ext4_write_begin(file, mapping, pos, 2545 len, flags, pagep, fsdata); 2546 } 2547 *fsdata = (void *)0; 2548 trace_ext4_da_write_begin(inode, pos, len, flags); 2549 2550 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2551 ret = ext4_da_write_inline_data_begin(mapping, inode, 2552 pos, len, flags, 2553 pagep, fsdata); 2554 if (ret < 0) 2555 return ret; 2556 if (ret == 1) 2557 return 0; 2558 } 2559 2560 /* 2561 * grab_cache_page_write_begin() can take a long time if the 2562 * system is thrashing due to memory pressure, or if the page 2563 * is being written back. So grab it first before we start 2564 * the transaction handle. This also allows us to allocate 2565 * the page (if needed) without using GFP_NOFS. 2566 */ 2567 retry_grab: 2568 page = grab_cache_page_write_begin(mapping, index, flags); 2569 if (!page) 2570 return -ENOMEM; 2571 unlock_page(page); 2572 2573 /* 2574 * With delayed allocation, we don't log the i_disksize update 2575 * if there is delayed block allocation. But we still need 2576 * to journalling the i_disksize update if writes to the end 2577 * of file which has an already mapped buffer. 2578 */ 2579 retry_journal: 2580 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1); 2581 if (IS_ERR(handle)) { 2582 page_cache_release(page); 2583 return PTR_ERR(handle); 2584 } 2585 2586 lock_page(page); 2587 if (page->mapping != mapping) { 2588 /* The page got truncated from under us */ 2589 unlock_page(page); 2590 page_cache_release(page); 2591 ext4_journal_stop(handle); 2592 goto retry_grab; 2593 } 2594 /* In case writeback began while the page was unlocked */ 2595 wait_for_stable_page(page); 2596 2597 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 2598 if (ret < 0) { 2599 unlock_page(page); 2600 ext4_journal_stop(handle); 2601 /* 2602 * block_write_begin may have instantiated a few blocks 2603 * outside i_size. Trim these off again. Don't need 2604 * i_size_read because we hold i_mutex. 2605 */ 2606 if (pos + len > inode->i_size) 2607 ext4_truncate_failed_write(inode); 2608 2609 if (ret == -ENOSPC && 2610 ext4_should_retry_alloc(inode->i_sb, &retries)) 2611 goto retry_journal; 2612 2613 page_cache_release(page); 2614 return ret; 2615 } 2616 2617 *pagep = page; 2618 return ret; 2619 } 2620 2621 /* 2622 * Check if we should update i_disksize 2623 * when write to the end of file but not require block allocation 2624 */ 2625 static int ext4_da_should_update_i_disksize(struct page *page, 2626 unsigned long offset) 2627 { 2628 struct buffer_head *bh; 2629 struct inode *inode = page->mapping->host; 2630 unsigned int idx; 2631 int i; 2632 2633 bh = page_buffers(page); 2634 idx = offset >> inode->i_blkbits; 2635 2636 for (i = 0; i < idx; i++) 2637 bh = bh->b_this_page; 2638 2639 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2640 return 0; 2641 return 1; 2642 } 2643 2644 static int ext4_da_write_end(struct file *file, 2645 struct address_space *mapping, 2646 loff_t pos, unsigned len, unsigned copied, 2647 struct page *page, void *fsdata) 2648 { 2649 struct inode *inode = mapping->host; 2650 int ret = 0, ret2; 2651 handle_t *handle = ext4_journal_current_handle(); 2652 loff_t new_i_size; 2653 unsigned long start, end; 2654 int write_mode = (int)(unsigned long)fsdata; 2655 2656 if (write_mode == FALL_BACK_TO_NONDELALLOC) 2657 return ext4_write_end(file, mapping, pos, 2658 len, copied, page, fsdata); 2659 2660 trace_ext4_da_write_end(inode, pos, len, copied); 2661 start = pos & (PAGE_CACHE_SIZE - 1); 2662 end = start + copied - 1; 2663 2664 /* 2665 * generic_write_end() will run mark_inode_dirty() if i_size 2666 * changes. So let's piggyback the i_disksize mark_inode_dirty 2667 * into that. 2668 */ 2669 new_i_size = pos + copied; 2670 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 2671 if (ext4_has_inline_data(inode) || 2672 ext4_da_should_update_i_disksize(page, end)) { 2673 down_write(&EXT4_I(inode)->i_data_sem); 2674 if (new_i_size > EXT4_I(inode)->i_disksize) 2675 EXT4_I(inode)->i_disksize = new_i_size; 2676 up_write(&EXT4_I(inode)->i_data_sem); 2677 /* We need to mark inode dirty even if 2678 * new_i_size is less that inode->i_size 2679 * bu greater than i_disksize.(hint delalloc) 2680 */ 2681 ext4_mark_inode_dirty(handle, inode); 2682 } 2683 } 2684 2685 if (write_mode != CONVERT_INLINE_DATA && 2686 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 2687 ext4_has_inline_data(inode)) 2688 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 2689 page); 2690 else 2691 ret2 = generic_write_end(file, mapping, pos, len, copied, 2692 page, fsdata); 2693 2694 copied = ret2; 2695 if (ret2 < 0) 2696 ret = ret2; 2697 ret2 = ext4_journal_stop(handle); 2698 if (!ret) 2699 ret = ret2; 2700 2701 return ret ? ret : copied; 2702 } 2703 2704 static void ext4_da_invalidatepage(struct page *page, unsigned int offset, 2705 unsigned int length) 2706 { 2707 /* 2708 * Drop reserved blocks 2709 */ 2710 BUG_ON(!PageLocked(page)); 2711 if (!page_has_buffers(page)) 2712 goto out; 2713 2714 ext4_da_page_release_reservation(page, offset, length); 2715 2716 out: 2717 ext4_invalidatepage(page, offset, length); 2718 2719 return; 2720 } 2721 2722 /* 2723 * Force all delayed allocation blocks to be allocated for a given inode. 2724 */ 2725 int ext4_alloc_da_blocks(struct inode *inode) 2726 { 2727 trace_ext4_alloc_da_blocks(inode); 2728 2729 if (!EXT4_I(inode)->i_reserved_data_blocks) 2730 return 0; 2731 2732 /* 2733 * We do something simple for now. The filemap_flush() will 2734 * also start triggering a write of the data blocks, which is 2735 * not strictly speaking necessary (and for users of 2736 * laptop_mode, not even desirable). However, to do otherwise 2737 * would require replicating code paths in: 2738 * 2739 * ext4_writepages() -> 2740 * write_cache_pages() ---> (via passed in callback function) 2741 * __mpage_da_writepage() --> 2742 * mpage_add_bh_to_extent() 2743 * mpage_da_map_blocks() 2744 * 2745 * The problem is that write_cache_pages(), located in 2746 * mm/page-writeback.c, marks pages clean in preparation for 2747 * doing I/O, which is not desirable if we're not planning on 2748 * doing I/O at all. 2749 * 2750 * We could call write_cache_pages(), and then redirty all of 2751 * the pages by calling redirty_page_for_writepage() but that 2752 * would be ugly in the extreme. So instead we would need to 2753 * replicate parts of the code in the above functions, 2754 * simplifying them because we wouldn't actually intend to 2755 * write out the pages, but rather only collect contiguous 2756 * logical block extents, call the multi-block allocator, and 2757 * then update the buffer heads with the block allocations. 2758 * 2759 * For now, though, we'll cheat by calling filemap_flush(), 2760 * which will map the blocks, and start the I/O, but not 2761 * actually wait for the I/O to complete. 2762 */ 2763 return filemap_flush(inode->i_mapping); 2764 } 2765 2766 /* 2767 * bmap() is special. It gets used by applications such as lilo and by 2768 * the swapper to find the on-disk block of a specific piece of data. 2769 * 2770 * Naturally, this is dangerous if the block concerned is still in the 2771 * journal. If somebody makes a swapfile on an ext4 data-journaling 2772 * filesystem and enables swap, then they may get a nasty shock when the 2773 * data getting swapped to that swapfile suddenly gets overwritten by 2774 * the original zero's written out previously to the journal and 2775 * awaiting writeback in the kernel's buffer cache. 2776 * 2777 * So, if we see any bmap calls here on a modified, data-journaled file, 2778 * take extra steps to flush any blocks which might be in the cache. 2779 */ 2780 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 2781 { 2782 struct inode *inode = mapping->host; 2783 journal_t *journal; 2784 int err; 2785 2786 /* 2787 * We can get here for an inline file via the FIBMAP ioctl 2788 */ 2789 if (ext4_has_inline_data(inode)) 2790 return 0; 2791 2792 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 2793 test_opt(inode->i_sb, DELALLOC)) { 2794 /* 2795 * With delalloc we want to sync the file 2796 * so that we can make sure we allocate 2797 * blocks for file 2798 */ 2799 filemap_write_and_wait(mapping); 2800 } 2801 2802 if (EXT4_JOURNAL(inode) && 2803 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 2804 /* 2805 * This is a REALLY heavyweight approach, but the use of 2806 * bmap on dirty files is expected to be extremely rare: 2807 * only if we run lilo or swapon on a freshly made file 2808 * do we expect this to happen. 2809 * 2810 * (bmap requires CAP_SYS_RAWIO so this does not 2811 * represent an unprivileged user DOS attack --- we'd be 2812 * in trouble if mortal users could trigger this path at 2813 * will.) 2814 * 2815 * NB. EXT4_STATE_JDATA is not set on files other than 2816 * regular files. If somebody wants to bmap a directory 2817 * or symlink and gets confused because the buffer 2818 * hasn't yet been flushed to disk, they deserve 2819 * everything they get. 2820 */ 2821 2822 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 2823 journal = EXT4_JOURNAL(inode); 2824 jbd2_journal_lock_updates(journal); 2825 err = jbd2_journal_flush(journal); 2826 jbd2_journal_unlock_updates(journal); 2827 2828 if (err) 2829 return 0; 2830 } 2831 2832 return generic_block_bmap(mapping, block, ext4_get_block); 2833 } 2834 2835 static int ext4_readpage(struct file *file, struct page *page) 2836 { 2837 int ret = -EAGAIN; 2838 struct inode *inode = page->mapping->host; 2839 2840 trace_ext4_readpage(page); 2841 2842 if (ext4_has_inline_data(inode)) 2843 ret = ext4_readpage_inline(inode, page); 2844 2845 if (ret == -EAGAIN) 2846 return mpage_readpage(page, ext4_get_block); 2847 2848 return ret; 2849 } 2850 2851 static int 2852 ext4_readpages(struct file *file, struct address_space *mapping, 2853 struct list_head *pages, unsigned nr_pages) 2854 { 2855 struct inode *inode = mapping->host; 2856 2857 /* If the file has inline data, no need to do readpages. */ 2858 if (ext4_has_inline_data(inode)) 2859 return 0; 2860 2861 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 2862 } 2863 2864 static void ext4_invalidatepage(struct page *page, unsigned int offset, 2865 unsigned int length) 2866 { 2867 trace_ext4_invalidatepage(page, offset, length); 2868 2869 /* No journalling happens on data buffers when this function is used */ 2870 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 2871 2872 block_invalidatepage(page, offset, length); 2873 } 2874 2875 static int __ext4_journalled_invalidatepage(struct page *page, 2876 unsigned int offset, 2877 unsigned int length) 2878 { 2879 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2880 2881 trace_ext4_journalled_invalidatepage(page, offset, length); 2882 2883 /* 2884 * If it's a full truncate we just forget about the pending dirtying 2885 */ 2886 if (offset == 0 && length == PAGE_CACHE_SIZE) 2887 ClearPageChecked(page); 2888 2889 return jbd2_journal_invalidatepage(journal, page, offset, length); 2890 } 2891 2892 /* Wrapper for aops... */ 2893 static void ext4_journalled_invalidatepage(struct page *page, 2894 unsigned int offset, 2895 unsigned int length) 2896 { 2897 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 2898 } 2899 2900 static int ext4_releasepage(struct page *page, gfp_t wait) 2901 { 2902 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2903 2904 trace_ext4_releasepage(page); 2905 2906 /* Page has dirty journalled data -> cannot release */ 2907 if (PageChecked(page)) 2908 return 0; 2909 if (journal) 2910 return jbd2_journal_try_to_free_buffers(journal, page, wait); 2911 else 2912 return try_to_free_buffers(page); 2913 } 2914 2915 /* 2916 * ext4_get_block used when preparing for a DIO write or buffer write. 2917 * We allocate an uinitialized extent if blocks haven't been allocated. 2918 * The extent will be converted to initialized after the IO is complete. 2919 */ 2920 int ext4_get_block_write(struct inode *inode, sector_t iblock, 2921 struct buffer_head *bh_result, int create) 2922 { 2923 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n", 2924 inode->i_ino, create); 2925 return _ext4_get_block(inode, iblock, bh_result, 2926 EXT4_GET_BLOCKS_IO_CREATE_EXT); 2927 } 2928 2929 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 2930 struct buffer_head *bh_result, int create) 2931 { 2932 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n", 2933 inode->i_ino, create); 2934 return _ext4_get_block(inode, iblock, bh_result, 2935 EXT4_GET_BLOCKS_NO_LOCK); 2936 } 2937 2938 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 2939 ssize_t size, void *private) 2940 { 2941 ext4_io_end_t *io_end = iocb->private; 2942 2943 /* if not async direct IO just return */ 2944 if (!io_end) 2945 return; 2946 2947 ext_debug("ext4_end_io_dio(): io_end 0x%p " 2948 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", 2949 iocb->private, io_end->inode->i_ino, iocb, offset, 2950 size); 2951 2952 iocb->private = NULL; 2953 io_end->offset = offset; 2954 io_end->size = size; 2955 ext4_put_io_end(io_end); 2956 } 2957 2958 /* 2959 * For ext4 extent files, ext4 will do direct-io write to holes, 2960 * preallocated extents, and those write extend the file, no need to 2961 * fall back to buffered IO. 2962 * 2963 * For holes, we fallocate those blocks, mark them as unwritten 2964 * If those blocks were preallocated, we mark sure they are split, but 2965 * still keep the range to write as unwritten. 2966 * 2967 * The unwritten extents will be converted to written when DIO is completed. 2968 * For async direct IO, since the IO may still pending when return, we 2969 * set up an end_io call back function, which will do the conversion 2970 * when async direct IO completed. 2971 * 2972 * If the O_DIRECT write will extend the file then add this inode to the 2973 * orphan list. So recovery will truncate it back to the original size 2974 * if the machine crashes during the write. 2975 * 2976 */ 2977 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb, 2978 struct iov_iter *iter, loff_t offset) 2979 { 2980 struct file *file = iocb->ki_filp; 2981 struct inode *inode = file->f_mapping->host; 2982 ssize_t ret; 2983 size_t count = iov_iter_count(iter); 2984 int overwrite = 0; 2985 get_block_t *get_block_func = NULL; 2986 int dio_flags = 0; 2987 loff_t final_size = offset + count; 2988 ext4_io_end_t *io_end = NULL; 2989 2990 /* Use the old path for reads and writes beyond i_size. */ 2991 if (rw != WRITE || final_size > inode->i_size) 2992 return ext4_ind_direct_IO(rw, iocb, iter, offset); 2993 2994 BUG_ON(iocb->private == NULL); 2995 2996 /* 2997 * Make all waiters for direct IO properly wait also for extent 2998 * conversion. This also disallows race between truncate() and 2999 * overwrite DIO as i_dio_count needs to be incremented under i_mutex. 3000 */ 3001 if (rw == WRITE) 3002 atomic_inc(&inode->i_dio_count); 3003 3004 /* If we do a overwrite dio, i_mutex locking can be released */ 3005 overwrite = *((int *)iocb->private); 3006 3007 if (overwrite) { 3008 down_read(&EXT4_I(inode)->i_data_sem); 3009 mutex_unlock(&inode->i_mutex); 3010 } 3011 3012 /* 3013 * We could direct write to holes and fallocate. 3014 * 3015 * Allocated blocks to fill the hole are marked as 3016 * unwritten to prevent parallel buffered read to expose 3017 * the stale data before DIO complete the data IO. 3018 * 3019 * As to previously fallocated extents, ext4 get_block will 3020 * just simply mark the buffer mapped but still keep the 3021 * extents unwritten. 3022 * 3023 * For non AIO case, we will convert those unwritten extents 3024 * to written after return back from blockdev_direct_IO. 3025 * 3026 * For async DIO, the conversion needs to be deferred when the 3027 * IO is completed. The ext4 end_io callback function will be 3028 * called to take care of the conversion work. Here for async 3029 * case, we allocate an io_end structure to hook to the iocb. 3030 */ 3031 iocb->private = NULL; 3032 ext4_inode_aio_set(inode, NULL); 3033 if (!is_sync_kiocb(iocb)) { 3034 io_end = ext4_init_io_end(inode, GFP_NOFS); 3035 if (!io_end) { 3036 ret = -ENOMEM; 3037 goto retake_lock; 3038 } 3039 /* 3040 * Grab reference for DIO. Will be dropped in ext4_end_io_dio() 3041 */ 3042 iocb->private = ext4_get_io_end(io_end); 3043 /* 3044 * we save the io structure for current async direct 3045 * IO, so that later ext4_map_blocks() could flag the 3046 * io structure whether there is a unwritten extents 3047 * needs to be converted when IO is completed. 3048 */ 3049 ext4_inode_aio_set(inode, io_end); 3050 } 3051 3052 if (overwrite) { 3053 get_block_func = ext4_get_block_write_nolock; 3054 } else { 3055 get_block_func = ext4_get_block_write; 3056 dio_flags = DIO_LOCKING; 3057 } 3058 ret = __blockdev_direct_IO(rw, iocb, inode, 3059 inode->i_sb->s_bdev, iter, 3060 offset, 3061 get_block_func, 3062 ext4_end_io_dio, 3063 NULL, 3064 dio_flags); 3065 3066 /* 3067 * Put our reference to io_end. This can free the io_end structure e.g. 3068 * in sync IO case or in case of error. It can even perform extent 3069 * conversion if all bios we submitted finished before we got here. 3070 * Note that in that case iocb->private can be already set to NULL 3071 * here. 3072 */ 3073 if (io_end) { 3074 ext4_inode_aio_set(inode, NULL); 3075 ext4_put_io_end(io_end); 3076 /* 3077 * When no IO was submitted ext4_end_io_dio() was not 3078 * called so we have to put iocb's reference. 3079 */ 3080 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) { 3081 WARN_ON(iocb->private != io_end); 3082 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN); 3083 ext4_put_io_end(io_end); 3084 iocb->private = NULL; 3085 } 3086 } 3087 if (ret > 0 && !overwrite && ext4_test_inode_state(inode, 3088 EXT4_STATE_DIO_UNWRITTEN)) { 3089 int err; 3090 /* 3091 * for non AIO case, since the IO is already 3092 * completed, we could do the conversion right here 3093 */ 3094 err = ext4_convert_unwritten_extents(NULL, inode, 3095 offset, ret); 3096 if (err < 0) 3097 ret = err; 3098 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3099 } 3100 3101 retake_lock: 3102 if (rw == WRITE) 3103 inode_dio_done(inode); 3104 /* take i_mutex locking again if we do a ovewrite dio */ 3105 if (overwrite) { 3106 up_read(&EXT4_I(inode)->i_data_sem); 3107 mutex_lock(&inode->i_mutex); 3108 } 3109 3110 return ret; 3111 } 3112 3113 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 3114 struct iov_iter *iter, loff_t offset) 3115 { 3116 struct file *file = iocb->ki_filp; 3117 struct inode *inode = file->f_mapping->host; 3118 size_t count = iov_iter_count(iter); 3119 ssize_t ret; 3120 3121 /* 3122 * If we are doing data journalling we don't support O_DIRECT 3123 */ 3124 if (ext4_should_journal_data(inode)) 3125 return 0; 3126 3127 /* Let buffer I/O handle the inline data case. */ 3128 if (ext4_has_inline_data(inode)) 3129 return 0; 3130 3131 trace_ext4_direct_IO_enter(inode, offset, count, rw); 3132 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3133 ret = ext4_ext_direct_IO(rw, iocb, iter, offset); 3134 else 3135 ret = ext4_ind_direct_IO(rw, iocb, iter, offset); 3136 trace_ext4_direct_IO_exit(inode, offset, count, rw, ret); 3137 return ret; 3138 } 3139 3140 /* 3141 * Pages can be marked dirty completely asynchronously from ext4's journalling 3142 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3143 * much here because ->set_page_dirty is called under VFS locks. The page is 3144 * not necessarily locked. 3145 * 3146 * We cannot just dirty the page and leave attached buffers clean, because the 3147 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3148 * or jbddirty because all the journalling code will explode. 3149 * 3150 * So what we do is to mark the page "pending dirty" and next time writepage 3151 * is called, propagate that into the buffers appropriately. 3152 */ 3153 static int ext4_journalled_set_page_dirty(struct page *page) 3154 { 3155 SetPageChecked(page); 3156 return __set_page_dirty_nobuffers(page); 3157 } 3158 3159 static const struct address_space_operations ext4_aops = { 3160 .readpage = ext4_readpage, 3161 .readpages = ext4_readpages, 3162 .writepage = ext4_writepage, 3163 .writepages = ext4_writepages, 3164 .write_begin = ext4_write_begin, 3165 .write_end = ext4_write_end, 3166 .bmap = ext4_bmap, 3167 .invalidatepage = ext4_invalidatepage, 3168 .releasepage = ext4_releasepage, 3169 .direct_IO = ext4_direct_IO, 3170 .migratepage = buffer_migrate_page, 3171 .is_partially_uptodate = block_is_partially_uptodate, 3172 .error_remove_page = generic_error_remove_page, 3173 }; 3174 3175 static const struct address_space_operations ext4_journalled_aops = { 3176 .readpage = ext4_readpage, 3177 .readpages = ext4_readpages, 3178 .writepage = ext4_writepage, 3179 .writepages = ext4_writepages, 3180 .write_begin = ext4_write_begin, 3181 .write_end = ext4_journalled_write_end, 3182 .set_page_dirty = ext4_journalled_set_page_dirty, 3183 .bmap = ext4_bmap, 3184 .invalidatepage = ext4_journalled_invalidatepage, 3185 .releasepage = ext4_releasepage, 3186 .direct_IO = ext4_direct_IO, 3187 .is_partially_uptodate = block_is_partially_uptodate, 3188 .error_remove_page = generic_error_remove_page, 3189 }; 3190 3191 static const struct address_space_operations ext4_da_aops = { 3192 .readpage = ext4_readpage, 3193 .readpages = ext4_readpages, 3194 .writepage = ext4_writepage, 3195 .writepages = ext4_writepages, 3196 .write_begin = ext4_da_write_begin, 3197 .write_end = ext4_da_write_end, 3198 .bmap = ext4_bmap, 3199 .invalidatepage = ext4_da_invalidatepage, 3200 .releasepage = ext4_releasepage, 3201 .direct_IO = ext4_direct_IO, 3202 .migratepage = buffer_migrate_page, 3203 .is_partially_uptodate = block_is_partially_uptodate, 3204 .error_remove_page = generic_error_remove_page, 3205 }; 3206 3207 void ext4_set_aops(struct inode *inode) 3208 { 3209 switch (ext4_inode_journal_mode(inode)) { 3210 case EXT4_INODE_ORDERED_DATA_MODE: 3211 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3212 break; 3213 case EXT4_INODE_WRITEBACK_DATA_MODE: 3214 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3215 break; 3216 case EXT4_INODE_JOURNAL_DATA_MODE: 3217 inode->i_mapping->a_ops = &ext4_journalled_aops; 3218 return; 3219 default: 3220 BUG(); 3221 } 3222 if (test_opt(inode->i_sb, DELALLOC)) 3223 inode->i_mapping->a_ops = &ext4_da_aops; 3224 else 3225 inode->i_mapping->a_ops = &ext4_aops; 3226 } 3227 3228 /* 3229 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3230 * starting from file offset 'from'. The range to be zero'd must 3231 * be contained with in one block. If the specified range exceeds 3232 * the end of the block it will be shortened to end of the block 3233 * that cooresponds to 'from' 3234 */ 3235 static int ext4_block_zero_page_range(handle_t *handle, 3236 struct address_space *mapping, loff_t from, loff_t length) 3237 { 3238 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3239 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3240 unsigned blocksize, max, pos; 3241 ext4_lblk_t iblock; 3242 struct inode *inode = mapping->host; 3243 struct buffer_head *bh; 3244 struct page *page; 3245 int err = 0; 3246 3247 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 3248 mapping_gfp_mask(mapping) & ~__GFP_FS); 3249 if (!page) 3250 return -ENOMEM; 3251 3252 blocksize = inode->i_sb->s_blocksize; 3253 max = blocksize - (offset & (blocksize - 1)); 3254 3255 /* 3256 * correct length if it does not fall between 3257 * 'from' and the end of the block 3258 */ 3259 if (length > max || length < 0) 3260 length = max; 3261 3262 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3263 3264 if (!page_has_buffers(page)) 3265 create_empty_buffers(page, blocksize, 0); 3266 3267 /* Find the buffer that contains "offset" */ 3268 bh = page_buffers(page); 3269 pos = blocksize; 3270 while (offset >= pos) { 3271 bh = bh->b_this_page; 3272 iblock++; 3273 pos += blocksize; 3274 } 3275 if (buffer_freed(bh)) { 3276 BUFFER_TRACE(bh, "freed: skip"); 3277 goto unlock; 3278 } 3279 if (!buffer_mapped(bh)) { 3280 BUFFER_TRACE(bh, "unmapped"); 3281 ext4_get_block(inode, iblock, bh, 0); 3282 /* unmapped? It's a hole - nothing to do */ 3283 if (!buffer_mapped(bh)) { 3284 BUFFER_TRACE(bh, "still unmapped"); 3285 goto unlock; 3286 } 3287 } 3288 3289 /* Ok, it's mapped. Make sure it's up-to-date */ 3290 if (PageUptodate(page)) 3291 set_buffer_uptodate(bh); 3292 3293 if (!buffer_uptodate(bh)) { 3294 err = -EIO; 3295 ll_rw_block(READ, 1, &bh); 3296 wait_on_buffer(bh); 3297 /* Uhhuh. Read error. Complain and punt. */ 3298 if (!buffer_uptodate(bh)) 3299 goto unlock; 3300 } 3301 if (ext4_should_journal_data(inode)) { 3302 BUFFER_TRACE(bh, "get write access"); 3303 err = ext4_journal_get_write_access(handle, bh); 3304 if (err) 3305 goto unlock; 3306 } 3307 zero_user(page, offset, length); 3308 BUFFER_TRACE(bh, "zeroed end of block"); 3309 3310 if (ext4_should_journal_data(inode)) { 3311 err = ext4_handle_dirty_metadata(handle, inode, bh); 3312 } else { 3313 err = 0; 3314 mark_buffer_dirty(bh); 3315 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) 3316 err = ext4_jbd2_file_inode(handle, inode); 3317 } 3318 3319 unlock: 3320 unlock_page(page); 3321 page_cache_release(page); 3322 return err; 3323 } 3324 3325 /* 3326 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3327 * up to the end of the block which corresponds to `from'. 3328 * This required during truncate. We need to physically zero the tail end 3329 * of that block so it doesn't yield old data if the file is later grown. 3330 */ 3331 static int ext4_block_truncate_page(handle_t *handle, 3332 struct address_space *mapping, loff_t from) 3333 { 3334 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3335 unsigned length; 3336 unsigned blocksize; 3337 struct inode *inode = mapping->host; 3338 3339 blocksize = inode->i_sb->s_blocksize; 3340 length = blocksize - (offset & (blocksize - 1)); 3341 3342 return ext4_block_zero_page_range(handle, mapping, from, length); 3343 } 3344 3345 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3346 loff_t lstart, loff_t length) 3347 { 3348 struct super_block *sb = inode->i_sb; 3349 struct address_space *mapping = inode->i_mapping; 3350 unsigned partial_start, partial_end; 3351 ext4_fsblk_t start, end; 3352 loff_t byte_end = (lstart + length - 1); 3353 int err = 0; 3354 3355 partial_start = lstart & (sb->s_blocksize - 1); 3356 partial_end = byte_end & (sb->s_blocksize - 1); 3357 3358 start = lstart >> sb->s_blocksize_bits; 3359 end = byte_end >> sb->s_blocksize_bits; 3360 3361 /* Handle partial zero within the single block */ 3362 if (start == end && 3363 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3364 err = ext4_block_zero_page_range(handle, mapping, 3365 lstart, length); 3366 return err; 3367 } 3368 /* Handle partial zero out on the start of the range */ 3369 if (partial_start) { 3370 err = ext4_block_zero_page_range(handle, mapping, 3371 lstart, sb->s_blocksize); 3372 if (err) 3373 return err; 3374 } 3375 /* Handle partial zero out on the end of the range */ 3376 if (partial_end != sb->s_blocksize - 1) 3377 err = ext4_block_zero_page_range(handle, mapping, 3378 byte_end - partial_end, 3379 partial_end + 1); 3380 return err; 3381 } 3382 3383 int ext4_can_truncate(struct inode *inode) 3384 { 3385 if (S_ISREG(inode->i_mode)) 3386 return 1; 3387 if (S_ISDIR(inode->i_mode)) 3388 return 1; 3389 if (S_ISLNK(inode->i_mode)) 3390 return !ext4_inode_is_fast_symlink(inode); 3391 return 0; 3392 } 3393 3394 /* 3395 * ext4_punch_hole: punches a hole in a file by releaseing the blocks 3396 * associated with the given offset and length 3397 * 3398 * @inode: File inode 3399 * @offset: The offset where the hole will begin 3400 * @len: The length of the hole 3401 * 3402 * Returns: 0 on success or negative on failure 3403 */ 3404 3405 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 3406 { 3407 struct super_block *sb = inode->i_sb; 3408 ext4_lblk_t first_block, stop_block; 3409 struct address_space *mapping = inode->i_mapping; 3410 loff_t first_block_offset, last_block_offset; 3411 handle_t *handle; 3412 unsigned int credits; 3413 int ret = 0; 3414 3415 if (!S_ISREG(inode->i_mode)) 3416 return -EOPNOTSUPP; 3417 3418 trace_ext4_punch_hole(inode, offset, length, 0); 3419 3420 /* 3421 * Write out all dirty pages to avoid race conditions 3422 * Then release them. 3423 */ 3424 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 3425 ret = filemap_write_and_wait_range(mapping, offset, 3426 offset + length - 1); 3427 if (ret) 3428 return ret; 3429 } 3430 3431 mutex_lock(&inode->i_mutex); 3432 3433 /* No need to punch hole beyond i_size */ 3434 if (offset >= inode->i_size) 3435 goto out_mutex; 3436 3437 /* 3438 * If the hole extends beyond i_size, set the hole 3439 * to end after the page that contains i_size 3440 */ 3441 if (offset + length > inode->i_size) { 3442 length = inode->i_size + 3443 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) - 3444 offset; 3445 } 3446 3447 if (offset & (sb->s_blocksize - 1) || 3448 (offset + length) & (sb->s_blocksize - 1)) { 3449 /* 3450 * Attach jinode to inode for jbd2 if we do any zeroing of 3451 * partial block 3452 */ 3453 ret = ext4_inode_attach_jinode(inode); 3454 if (ret < 0) 3455 goto out_mutex; 3456 3457 } 3458 3459 first_block_offset = round_up(offset, sb->s_blocksize); 3460 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 3461 3462 /* Now release the pages and zero block aligned part of pages*/ 3463 if (last_block_offset > first_block_offset) 3464 truncate_pagecache_range(inode, first_block_offset, 3465 last_block_offset); 3466 3467 /* Wait all existing dio workers, newcomers will block on i_mutex */ 3468 ext4_inode_block_unlocked_dio(inode); 3469 inode_dio_wait(inode); 3470 3471 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3472 credits = ext4_writepage_trans_blocks(inode); 3473 else 3474 credits = ext4_blocks_for_truncate(inode); 3475 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3476 if (IS_ERR(handle)) { 3477 ret = PTR_ERR(handle); 3478 ext4_std_error(sb, ret); 3479 goto out_dio; 3480 } 3481 3482 ret = ext4_zero_partial_blocks(handle, inode, offset, 3483 length); 3484 if (ret) 3485 goto out_stop; 3486 3487 first_block = (offset + sb->s_blocksize - 1) >> 3488 EXT4_BLOCK_SIZE_BITS(sb); 3489 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 3490 3491 /* If there are no blocks to remove, return now */ 3492 if (first_block >= stop_block) 3493 goto out_stop; 3494 3495 down_write(&EXT4_I(inode)->i_data_sem); 3496 ext4_discard_preallocations(inode); 3497 3498 ret = ext4_es_remove_extent(inode, first_block, 3499 stop_block - first_block); 3500 if (ret) { 3501 up_write(&EXT4_I(inode)->i_data_sem); 3502 goto out_stop; 3503 } 3504 3505 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3506 ret = ext4_ext_remove_space(inode, first_block, 3507 stop_block - 1); 3508 else 3509 ret = ext4_ind_remove_space(handle, inode, first_block, 3510 stop_block); 3511 3512 up_write(&EXT4_I(inode)->i_data_sem); 3513 if (IS_SYNC(inode)) 3514 ext4_handle_sync(handle); 3515 3516 /* Now release the pages again to reduce race window */ 3517 if (last_block_offset > first_block_offset) 3518 truncate_pagecache_range(inode, first_block_offset, 3519 last_block_offset); 3520 3521 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3522 ext4_mark_inode_dirty(handle, inode); 3523 out_stop: 3524 ext4_journal_stop(handle); 3525 out_dio: 3526 ext4_inode_resume_unlocked_dio(inode); 3527 out_mutex: 3528 mutex_unlock(&inode->i_mutex); 3529 return ret; 3530 } 3531 3532 int ext4_inode_attach_jinode(struct inode *inode) 3533 { 3534 struct ext4_inode_info *ei = EXT4_I(inode); 3535 struct jbd2_inode *jinode; 3536 3537 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 3538 return 0; 3539 3540 jinode = jbd2_alloc_inode(GFP_KERNEL); 3541 spin_lock(&inode->i_lock); 3542 if (!ei->jinode) { 3543 if (!jinode) { 3544 spin_unlock(&inode->i_lock); 3545 return -ENOMEM; 3546 } 3547 ei->jinode = jinode; 3548 jbd2_journal_init_jbd_inode(ei->jinode, inode); 3549 jinode = NULL; 3550 } 3551 spin_unlock(&inode->i_lock); 3552 if (unlikely(jinode != NULL)) 3553 jbd2_free_inode(jinode); 3554 return 0; 3555 } 3556 3557 /* 3558 * ext4_truncate() 3559 * 3560 * We block out ext4_get_block() block instantiations across the entire 3561 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 3562 * simultaneously on behalf of the same inode. 3563 * 3564 * As we work through the truncate and commit bits of it to the journal there 3565 * is one core, guiding principle: the file's tree must always be consistent on 3566 * disk. We must be able to restart the truncate after a crash. 3567 * 3568 * The file's tree may be transiently inconsistent in memory (although it 3569 * probably isn't), but whenever we close off and commit a journal transaction, 3570 * the contents of (the filesystem + the journal) must be consistent and 3571 * restartable. It's pretty simple, really: bottom up, right to left (although 3572 * left-to-right works OK too). 3573 * 3574 * Note that at recovery time, journal replay occurs *before* the restart of 3575 * truncate against the orphan inode list. 3576 * 3577 * The committed inode has the new, desired i_size (which is the same as 3578 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 3579 * that this inode's truncate did not complete and it will again call 3580 * ext4_truncate() to have another go. So there will be instantiated blocks 3581 * to the right of the truncation point in a crashed ext4 filesystem. But 3582 * that's fine - as long as they are linked from the inode, the post-crash 3583 * ext4_truncate() run will find them and release them. 3584 */ 3585 void ext4_truncate(struct inode *inode) 3586 { 3587 struct ext4_inode_info *ei = EXT4_I(inode); 3588 unsigned int credits; 3589 handle_t *handle; 3590 struct address_space *mapping = inode->i_mapping; 3591 3592 /* 3593 * There is a possibility that we're either freeing the inode 3594 * or it's a completely new inode. In those cases we might not 3595 * have i_mutex locked because it's not necessary. 3596 */ 3597 if (!(inode->i_state & (I_NEW|I_FREEING))) 3598 WARN_ON(!mutex_is_locked(&inode->i_mutex)); 3599 trace_ext4_truncate_enter(inode); 3600 3601 if (!ext4_can_truncate(inode)) 3602 return; 3603 3604 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3605 3606 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 3607 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 3608 3609 if (ext4_has_inline_data(inode)) { 3610 int has_inline = 1; 3611 3612 ext4_inline_data_truncate(inode, &has_inline); 3613 if (has_inline) 3614 return; 3615 } 3616 3617 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 3618 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 3619 if (ext4_inode_attach_jinode(inode) < 0) 3620 return; 3621 } 3622 3623 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3624 credits = ext4_writepage_trans_blocks(inode); 3625 else 3626 credits = ext4_blocks_for_truncate(inode); 3627 3628 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3629 if (IS_ERR(handle)) { 3630 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 3631 return; 3632 } 3633 3634 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 3635 ext4_block_truncate_page(handle, mapping, inode->i_size); 3636 3637 /* 3638 * We add the inode to the orphan list, so that if this 3639 * truncate spans multiple transactions, and we crash, we will 3640 * resume the truncate when the filesystem recovers. It also 3641 * marks the inode dirty, to catch the new size. 3642 * 3643 * Implication: the file must always be in a sane, consistent 3644 * truncatable state while each transaction commits. 3645 */ 3646 if (ext4_orphan_add(handle, inode)) 3647 goto out_stop; 3648 3649 down_write(&EXT4_I(inode)->i_data_sem); 3650 3651 ext4_discard_preallocations(inode); 3652 3653 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3654 ext4_ext_truncate(handle, inode); 3655 else 3656 ext4_ind_truncate(handle, inode); 3657 3658 up_write(&ei->i_data_sem); 3659 3660 if (IS_SYNC(inode)) 3661 ext4_handle_sync(handle); 3662 3663 out_stop: 3664 /* 3665 * If this was a simple ftruncate() and the file will remain alive, 3666 * then we need to clear up the orphan record which we created above. 3667 * However, if this was a real unlink then we were called by 3668 * ext4_delete_inode(), and we allow that function to clean up the 3669 * orphan info for us. 3670 */ 3671 if (inode->i_nlink) 3672 ext4_orphan_del(handle, inode); 3673 3674 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3675 ext4_mark_inode_dirty(handle, inode); 3676 ext4_journal_stop(handle); 3677 3678 trace_ext4_truncate_exit(inode); 3679 } 3680 3681 /* 3682 * ext4_get_inode_loc returns with an extra refcount against the inode's 3683 * underlying buffer_head on success. If 'in_mem' is true, we have all 3684 * data in memory that is needed to recreate the on-disk version of this 3685 * inode. 3686 */ 3687 static int __ext4_get_inode_loc(struct inode *inode, 3688 struct ext4_iloc *iloc, int in_mem) 3689 { 3690 struct ext4_group_desc *gdp; 3691 struct buffer_head *bh; 3692 struct super_block *sb = inode->i_sb; 3693 ext4_fsblk_t block; 3694 int inodes_per_block, inode_offset; 3695 3696 iloc->bh = NULL; 3697 if (!ext4_valid_inum(sb, inode->i_ino)) 3698 return -EIO; 3699 3700 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 3701 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 3702 if (!gdp) 3703 return -EIO; 3704 3705 /* 3706 * Figure out the offset within the block group inode table 3707 */ 3708 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 3709 inode_offset = ((inode->i_ino - 1) % 3710 EXT4_INODES_PER_GROUP(sb)); 3711 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 3712 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 3713 3714 bh = sb_getblk(sb, block); 3715 if (unlikely(!bh)) 3716 return -ENOMEM; 3717 if (!buffer_uptodate(bh)) { 3718 lock_buffer(bh); 3719 3720 /* 3721 * If the buffer has the write error flag, we have failed 3722 * to write out another inode in the same block. In this 3723 * case, we don't have to read the block because we may 3724 * read the old inode data successfully. 3725 */ 3726 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 3727 set_buffer_uptodate(bh); 3728 3729 if (buffer_uptodate(bh)) { 3730 /* someone brought it uptodate while we waited */ 3731 unlock_buffer(bh); 3732 goto has_buffer; 3733 } 3734 3735 /* 3736 * If we have all information of the inode in memory and this 3737 * is the only valid inode in the block, we need not read the 3738 * block. 3739 */ 3740 if (in_mem) { 3741 struct buffer_head *bitmap_bh; 3742 int i, start; 3743 3744 start = inode_offset & ~(inodes_per_block - 1); 3745 3746 /* Is the inode bitmap in cache? */ 3747 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 3748 if (unlikely(!bitmap_bh)) 3749 goto make_io; 3750 3751 /* 3752 * If the inode bitmap isn't in cache then the 3753 * optimisation may end up performing two reads instead 3754 * of one, so skip it. 3755 */ 3756 if (!buffer_uptodate(bitmap_bh)) { 3757 brelse(bitmap_bh); 3758 goto make_io; 3759 } 3760 for (i = start; i < start + inodes_per_block; i++) { 3761 if (i == inode_offset) 3762 continue; 3763 if (ext4_test_bit(i, bitmap_bh->b_data)) 3764 break; 3765 } 3766 brelse(bitmap_bh); 3767 if (i == start + inodes_per_block) { 3768 /* all other inodes are free, so skip I/O */ 3769 memset(bh->b_data, 0, bh->b_size); 3770 set_buffer_uptodate(bh); 3771 unlock_buffer(bh); 3772 goto has_buffer; 3773 } 3774 } 3775 3776 make_io: 3777 /* 3778 * If we need to do any I/O, try to pre-readahead extra 3779 * blocks from the inode table. 3780 */ 3781 if (EXT4_SB(sb)->s_inode_readahead_blks) { 3782 ext4_fsblk_t b, end, table; 3783 unsigned num; 3784 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 3785 3786 table = ext4_inode_table(sb, gdp); 3787 /* s_inode_readahead_blks is always a power of 2 */ 3788 b = block & ~((ext4_fsblk_t) ra_blks - 1); 3789 if (table > b) 3790 b = table; 3791 end = b + ra_blks; 3792 num = EXT4_INODES_PER_GROUP(sb); 3793 if (ext4_has_group_desc_csum(sb)) 3794 num -= ext4_itable_unused_count(sb, gdp); 3795 table += num / inodes_per_block; 3796 if (end > table) 3797 end = table; 3798 while (b <= end) 3799 sb_breadahead(sb, b++); 3800 } 3801 3802 /* 3803 * There are other valid inodes in the buffer, this inode 3804 * has in-inode xattrs, or we don't have this inode in memory. 3805 * Read the block from disk. 3806 */ 3807 trace_ext4_load_inode(inode); 3808 get_bh(bh); 3809 bh->b_end_io = end_buffer_read_sync; 3810 submit_bh(READ | REQ_META | REQ_PRIO, bh); 3811 wait_on_buffer(bh); 3812 if (!buffer_uptodate(bh)) { 3813 EXT4_ERROR_INODE_BLOCK(inode, block, 3814 "unable to read itable block"); 3815 brelse(bh); 3816 return -EIO; 3817 } 3818 } 3819 has_buffer: 3820 iloc->bh = bh; 3821 return 0; 3822 } 3823 3824 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 3825 { 3826 /* We have all inode data except xattrs in memory here. */ 3827 return __ext4_get_inode_loc(inode, iloc, 3828 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 3829 } 3830 3831 void ext4_set_inode_flags(struct inode *inode) 3832 { 3833 unsigned int flags = EXT4_I(inode)->i_flags; 3834 unsigned int new_fl = 0; 3835 3836 if (flags & EXT4_SYNC_FL) 3837 new_fl |= S_SYNC; 3838 if (flags & EXT4_APPEND_FL) 3839 new_fl |= S_APPEND; 3840 if (flags & EXT4_IMMUTABLE_FL) 3841 new_fl |= S_IMMUTABLE; 3842 if (flags & EXT4_NOATIME_FL) 3843 new_fl |= S_NOATIME; 3844 if (flags & EXT4_DIRSYNC_FL) 3845 new_fl |= S_DIRSYNC; 3846 inode_set_flags(inode, new_fl, 3847 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 3848 } 3849 3850 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 3851 void ext4_get_inode_flags(struct ext4_inode_info *ei) 3852 { 3853 unsigned int vfs_fl; 3854 unsigned long old_fl, new_fl; 3855 3856 do { 3857 vfs_fl = ei->vfs_inode.i_flags; 3858 old_fl = ei->i_flags; 3859 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 3860 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL| 3861 EXT4_DIRSYNC_FL); 3862 if (vfs_fl & S_SYNC) 3863 new_fl |= EXT4_SYNC_FL; 3864 if (vfs_fl & S_APPEND) 3865 new_fl |= EXT4_APPEND_FL; 3866 if (vfs_fl & S_IMMUTABLE) 3867 new_fl |= EXT4_IMMUTABLE_FL; 3868 if (vfs_fl & S_NOATIME) 3869 new_fl |= EXT4_NOATIME_FL; 3870 if (vfs_fl & S_DIRSYNC) 3871 new_fl |= EXT4_DIRSYNC_FL; 3872 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl); 3873 } 3874 3875 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 3876 struct ext4_inode_info *ei) 3877 { 3878 blkcnt_t i_blocks ; 3879 struct inode *inode = &(ei->vfs_inode); 3880 struct super_block *sb = inode->i_sb; 3881 3882 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3883 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 3884 /* we are using combined 48 bit field */ 3885 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 3886 le32_to_cpu(raw_inode->i_blocks_lo); 3887 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 3888 /* i_blocks represent file system block size */ 3889 return i_blocks << (inode->i_blkbits - 9); 3890 } else { 3891 return i_blocks; 3892 } 3893 } else { 3894 return le32_to_cpu(raw_inode->i_blocks_lo); 3895 } 3896 } 3897 3898 static inline void ext4_iget_extra_inode(struct inode *inode, 3899 struct ext4_inode *raw_inode, 3900 struct ext4_inode_info *ei) 3901 { 3902 __le32 *magic = (void *)raw_inode + 3903 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 3904 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 3905 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 3906 ext4_find_inline_data_nolock(inode); 3907 } else 3908 EXT4_I(inode)->i_inline_off = 0; 3909 } 3910 3911 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 3912 { 3913 struct ext4_iloc iloc; 3914 struct ext4_inode *raw_inode; 3915 struct ext4_inode_info *ei; 3916 struct inode *inode; 3917 journal_t *journal = EXT4_SB(sb)->s_journal; 3918 long ret; 3919 int block; 3920 uid_t i_uid; 3921 gid_t i_gid; 3922 3923 inode = iget_locked(sb, ino); 3924 if (!inode) 3925 return ERR_PTR(-ENOMEM); 3926 if (!(inode->i_state & I_NEW)) 3927 return inode; 3928 3929 ei = EXT4_I(inode); 3930 iloc.bh = NULL; 3931 3932 ret = __ext4_get_inode_loc(inode, &iloc, 0); 3933 if (ret < 0) 3934 goto bad_inode; 3935 raw_inode = ext4_raw_inode(&iloc); 3936 3937 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 3938 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 3939 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 3940 EXT4_INODE_SIZE(inode->i_sb)) { 3941 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)", 3942 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize, 3943 EXT4_INODE_SIZE(inode->i_sb)); 3944 ret = -EIO; 3945 goto bad_inode; 3946 } 3947 } else 3948 ei->i_extra_isize = 0; 3949 3950 /* Precompute checksum seed for inode metadata */ 3951 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3952 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 3953 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3954 __u32 csum; 3955 __le32 inum = cpu_to_le32(inode->i_ino); 3956 __le32 gen = raw_inode->i_generation; 3957 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 3958 sizeof(inum)); 3959 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 3960 sizeof(gen)); 3961 } 3962 3963 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 3964 EXT4_ERROR_INODE(inode, "checksum invalid"); 3965 ret = -EIO; 3966 goto bad_inode; 3967 } 3968 3969 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 3970 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 3971 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 3972 if (!(test_opt(inode->i_sb, NO_UID32))) { 3973 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 3974 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 3975 } 3976 i_uid_write(inode, i_uid); 3977 i_gid_write(inode, i_gid); 3978 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 3979 3980 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 3981 ei->i_inline_off = 0; 3982 ei->i_dir_start_lookup = 0; 3983 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 3984 /* We now have enough fields to check if the inode was active or not. 3985 * This is needed because nfsd might try to access dead inodes 3986 * the test is that same one that e2fsck uses 3987 * NeilBrown 1999oct15 3988 */ 3989 if (inode->i_nlink == 0) { 3990 if ((inode->i_mode == 0 || 3991 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 3992 ino != EXT4_BOOT_LOADER_INO) { 3993 /* this inode is deleted */ 3994 ret = -ESTALE; 3995 goto bad_inode; 3996 } 3997 /* The only unlinked inodes we let through here have 3998 * valid i_mode and are being read by the orphan 3999 * recovery code: that's fine, we're about to complete 4000 * the process of deleting those. 4001 * OR it is the EXT4_BOOT_LOADER_INO which is 4002 * not initialized on a new filesystem. */ 4003 } 4004 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4005 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4006 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4007 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) 4008 ei->i_file_acl |= 4009 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4010 inode->i_size = ext4_isize(raw_inode); 4011 ei->i_disksize = inode->i_size; 4012 #ifdef CONFIG_QUOTA 4013 ei->i_reserved_quota = 0; 4014 #endif 4015 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4016 ei->i_block_group = iloc.block_group; 4017 ei->i_last_alloc_group = ~0; 4018 /* 4019 * NOTE! The in-memory inode i_data array is in little-endian order 4020 * even on big-endian machines: we do NOT byteswap the block numbers! 4021 */ 4022 for (block = 0; block < EXT4_N_BLOCKS; block++) 4023 ei->i_data[block] = raw_inode->i_block[block]; 4024 INIT_LIST_HEAD(&ei->i_orphan); 4025 4026 /* 4027 * Set transaction id's of transactions that have to be committed 4028 * to finish f[data]sync. We set them to currently running transaction 4029 * as we cannot be sure that the inode or some of its metadata isn't 4030 * part of the transaction - the inode could have been reclaimed and 4031 * now it is reread from disk. 4032 */ 4033 if (journal) { 4034 transaction_t *transaction; 4035 tid_t tid; 4036 4037 read_lock(&journal->j_state_lock); 4038 if (journal->j_running_transaction) 4039 transaction = journal->j_running_transaction; 4040 else 4041 transaction = journal->j_committing_transaction; 4042 if (transaction) 4043 tid = transaction->t_tid; 4044 else 4045 tid = journal->j_commit_sequence; 4046 read_unlock(&journal->j_state_lock); 4047 ei->i_sync_tid = tid; 4048 ei->i_datasync_tid = tid; 4049 } 4050 4051 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4052 if (ei->i_extra_isize == 0) { 4053 /* The extra space is currently unused. Use it. */ 4054 ei->i_extra_isize = sizeof(struct ext4_inode) - 4055 EXT4_GOOD_OLD_INODE_SIZE; 4056 } else { 4057 ext4_iget_extra_inode(inode, raw_inode, ei); 4058 } 4059 } 4060 4061 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4062 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4063 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4064 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4065 4066 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4067 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4068 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4069 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4070 inode->i_version |= 4071 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4072 } 4073 } 4074 4075 ret = 0; 4076 if (ei->i_file_acl && 4077 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 4078 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 4079 ei->i_file_acl); 4080 ret = -EIO; 4081 goto bad_inode; 4082 } else if (!ext4_has_inline_data(inode)) { 4083 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 4084 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4085 (S_ISLNK(inode->i_mode) && 4086 !ext4_inode_is_fast_symlink(inode)))) 4087 /* Validate extent which is part of inode */ 4088 ret = ext4_ext_check_inode(inode); 4089 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4090 (S_ISLNK(inode->i_mode) && 4091 !ext4_inode_is_fast_symlink(inode))) { 4092 /* Validate block references which are part of inode */ 4093 ret = ext4_ind_check_inode(inode); 4094 } 4095 } 4096 if (ret) 4097 goto bad_inode; 4098 4099 if (S_ISREG(inode->i_mode)) { 4100 inode->i_op = &ext4_file_inode_operations; 4101 inode->i_fop = &ext4_file_operations; 4102 ext4_set_aops(inode); 4103 } else if (S_ISDIR(inode->i_mode)) { 4104 inode->i_op = &ext4_dir_inode_operations; 4105 inode->i_fop = &ext4_dir_operations; 4106 } else if (S_ISLNK(inode->i_mode)) { 4107 if (ext4_inode_is_fast_symlink(inode)) { 4108 inode->i_op = &ext4_fast_symlink_inode_operations; 4109 nd_terminate_link(ei->i_data, inode->i_size, 4110 sizeof(ei->i_data) - 1); 4111 } else { 4112 inode->i_op = &ext4_symlink_inode_operations; 4113 ext4_set_aops(inode); 4114 } 4115 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4116 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4117 inode->i_op = &ext4_special_inode_operations; 4118 if (raw_inode->i_block[0]) 4119 init_special_inode(inode, inode->i_mode, 4120 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4121 else 4122 init_special_inode(inode, inode->i_mode, 4123 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4124 } else if (ino == EXT4_BOOT_LOADER_INO) { 4125 make_bad_inode(inode); 4126 } else { 4127 ret = -EIO; 4128 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 4129 goto bad_inode; 4130 } 4131 brelse(iloc.bh); 4132 ext4_set_inode_flags(inode); 4133 unlock_new_inode(inode); 4134 return inode; 4135 4136 bad_inode: 4137 brelse(iloc.bh); 4138 iget_failed(inode); 4139 return ERR_PTR(ret); 4140 } 4141 4142 static int ext4_inode_blocks_set(handle_t *handle, 4143 struct ext4_inode *raw_inode, 4144 struct ext4_inode_info *ei) 4145 { 4146 struct inode *inode = &(ei->vfs_inode); 4147 u64 i_blocks = inode->i_blocks; 4148 struct super_block *sb = inode->i_sb; 4149 4150 if (i_blocks <= ~0U) { 4151 /* 4152 * i_blocks can be represented in a 32 bit variable 4153 * as multiple of 512 bytes 4154 */ 4155 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4156 raw_inode->i_blocks_high = 0; 4157 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4158 return 0; 4159 } 4160 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) 4161 return -EFBIG; 4162 4163 if (i_blocks <= 0xffffffffffffULL) { 4164 /* 4165 * i_blocks can be represented in a 48 bit variable 4166 * as multiple of 512 bytes 4167 */ 4168 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4169 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4170 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4171 } else { 4172 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4173 /* i_block is stored in file system block size */ 4174 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4175 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4176 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4177 } 4178 return 0; 4179 } 4180 4181 /* 4182 * Post the struct inode info into an on-disk inode location in the 4183 * buffer-cache. This gobbles the caller's reference to the 4184 * buffer_head in the inode location struct. 4185 * 4186 * The caller must have write access to iloc->bh. 4187 */ 4188 static int ext4_do_update_inode(handle_t *handle, 4189 struct inode *inode, 4190 struct ext4_iloc *iloc) 4191 { 4192 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4193 struct ext4_inode_info *ei = EXT4_I(inode); 4194 struct buffer_head *bh = iloc->bh; 4195 struct super_block *sb = inode->i_sb; 4196 int err = 0, rc, block; 4197 int need_datasync = 0, set_large_file = 0; 4198 uid_t i_uid; 4199 gid_t i_gid; 4200 4201 spin_lock(&ei->i_raw_lock); 4202 4203 /* For fields not tracked in the in-memory inode, 4204 * initialise them to zero for new inodes. */ 4205 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4206 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4207 4208 ext4_get_inode_flags(ei); 4209 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4210 i_uid = i_uid_read(inode); 4211 i_gid = i_gid_read(inode); 4212 if (!(test_opt(inode->i_sb, NO_UID32))) { 4213 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4214 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4215 /* 4216 * Fix up interoperability with old kernels. Otherwise, old inodes get 4217 * re-used with the upper 16 bits of the uid/gid intact 4218 */ 4219 if (!ei->i_dtime) { 4220 raw_inode->i_uid_high = 4221 cpu_to_le16(high_16_bits(i_uid)); 4222 raw_inode->i_gid_high = 4223 cpu_to_le16(high_16_bits(i_gid)); 4224 } else { 4225 raw_inode->i_uid_high = 0; 4226 raw_inode->i_gid_high = 0; 4227 } 4228 } else { 4229 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4230 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4231 raw_inode->i_uid_high = 0; 4232 raw_inode->i_gid_high = 0; 4233 } 4234 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4235 4236 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4237 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4238 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4239 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4240 4241 if (ext4_inode_blocks_set(handle, raw_inode, ei)) { 4242 spin_unlock(&ei->i_raw_lock); 4243 goto out_brelse; 4244 } 4245 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4246 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4247 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 4248 raw_inode->i_file_acl_high = 4249 cpu_to_le16(ei->i_file_acl >> 32); 4250 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4251 if (ei->i_disksize != ext4_isize(raw_inode)) { 4252 ext4_isize_set(raw_inode, ei->i_disksize); 4253 need_datasync = 1; 4254 } 4255 if (ei->i_disksize > 0x7fffffffULL) { 4256 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 4257 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 4258 EXT4_SB(sb)->s_es->s_rev_level == 4259 cpu_to_le32(EXT4_GOOD_OLD_REV)) 4260 set_large_file = 1; 4261 } 4262 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4263 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4264 if (old_valid_dev(inode->i_rdev)) { 4265 raw_inode->i_block[0] = 4266 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4267 raw_inode->i_block[1] = 0; 4268 } else { 4269 raw_inode->i_block[0] = 0; 4270 raw_inode->i_block[1] = 4271 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4272 raw_inode->i_block[2] = 0; 4273 } 4274 } else if (!ext4_has_inline_data(inode)) { 4275 for (block = 0; block < EXT4_N_BLOCKS; block++) 4276 raw_inode->i_block[block] = ei->i_data[block]; 4277 } 4278 4279 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4280 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 4281 if (ei->i_extra_isize) { 4282 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4283 raw_inode->i_version_hi = 4284 cpu_to_le32(inode->i_version >> 32); 4285 raw_inode->i_extra_isize = 4286 cpu_to_le16(ei->i_extra_isize); 4287 } 4288 } 4289 4290 ext4_inode_csum_set(inode, raw_inode, ei); 4291 4292 spin_unlock(&ei->i_raw_lock); 4293 4294 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4295 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 4296 if (!err) 4297 err = rc; 4298 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 4299 if (set_large_file) { 4300 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 4301 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh); 4302 if (err) 4303 goto out_brelse; 4304 ext4_update_dynamic_rev(sb); 4305 EXT4_SET_RO_COMPAT_FEATURE(sb, 4306 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 4307 ext4_handle_sync(handle); 4308 err = ext4_handle_dirty_super(handle, sb); 4309 } 4310 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 4311 out_brelse: 4312 brelse(bh); 4313 ext4_std_error(inode->i_sb, err); 4314 return err; 4315 } 4316 4317 /* 4318 * ext4_write_inode() 4319 * 4320 * We are called from a few places: 4321 * 4322 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 4323 * Here, there will be no transaction running. We wait for any running 4324 * transaction to commit. 4325 * 4326 * - Within flush work (sys_sync(), kupdate and such). 4327 * We wait on commit, if told to. 4328 * 4329 * - Within iput_final() -> write_inode_now() 4330 * We wait on commit, if told to. 4331 * 4332 * In all cases it is actually safe for us to return without doing anything, 4333 * because the inode has been copied into a raw inode buffer in 4334 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 4335 * writeback. 4336 * 4337 * Note that we are absolutely dependent upon all inode dirtiers doing the 4338 * right thing: they *must* call mark_inode_dirty() after dirtying info in 4339 * which we are interested. 4340 * 4341 * It would be a bug for them to not do this. The code: 4342 * 4343 * mark_inode_dirty(inode) 4344 * stuff(); 4345 * inode->i_size = expr; 4346 * 4347 * is in error because write_inode() could occur while `stuff()' is running, 4348 * and the new i_size will be lost. Plus the inode will no longer be on the 4349 * superblock's dirty inode list. 4350 */ 4351 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 4352 { 4353 int err; 4354 4355 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC)) 4356 return 0; 4357 4358 if (EXT4_SB(inode->i_sb)->s_journal) { 4359 if (ext4_journal_current_handle()) { 4360 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 4361 dump_stack(); 4362 return -EIO; 4363 } 4364 4365 /* 4366 * No need to force transaction in WB_SYNC_NONE mode. Also 4367 * ext4_sync_fs() will force the commit after everything is 4368 * written. 4369 */ 4370 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 4371 return 0; 4372 4373 err = ext4_force_commit(inode->i_sb); 4374 } else { 4375 struct ext4_iloc iloc; 4376 4377 err = __ext4_get_inode_loc(inode, &iloc, 0); 4378 if (err) 4379 return err; 4380 /* 4381 * sync(2) will flush the whole buffer cache. No need to do 4382 * it here separately for each inode. 4383 */ 4384 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 4385 sync_dirty_buffer(iloc.bh); 4386 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 4387 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 4388 "IO error syncing inode"); 4389 err = -EIO; 4390 } 4391 brelse(iloc.bh); 4392 } 4393 return err; 4394 } 4395 4396 /* 4397 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 4398 * buffers that are attached to a page stradding i_size and are undergoing 4399 * commit. In that case we have to wait for commit to finish and try again. 4400 */ 4401 static void ext4_wait_for_tail_page_commit(struct inode *inode) 4402 { 4403 struct page *page; 4404 unsigned offset; 4405 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 4406 tid_t commit_tid = 0; 4407 int ret; 4408 4409 offset = inode->i_size & (PAGE_CACHE_SIZE - 1); 4410 /* 4411 * All buffers in the last page remain valid? Then there's nothing to 4412 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE == 4413 * blocksize case 4414 */ 4415 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits)) 4416 return; 4417 while (1) { 4418 page = find_lock_page(inode->i_mapping, 4419 inode->i_size >> PAGE_CACHE_SHIFT); 4420 if (!page) 4421 return; 4422 ret = __ext4_journalled_invalidatepage(page, offset, 4423 PAGE_CACHE_SIZE - offset); 4424 unlock_page(page); 4425 page_cache_release(page); 4426 if (ret != -EBUSY) 4427 return; 4428 commit_tid = 0; 4429 read_lock(&journal->j_state_lock); 4430 if (journal->j_committing_transaction) 4431 commit_tid = journal->j_committing_transaction->t_tid; 4432 read_unlock(&journal->j_state_lock); 4433 if (commit_tid) 4434 jbd2_log_wait_commit(journal, commit_tid); 4435 } 4436 } 4437 4438 /* 4439 * ext4_setattr() 4440 * 4441 * Called from notify_change. 4442 * 4443 * We want to trap VFS attempts to truncate the file as soon as 4444 * possible. In particular, we want to make sure that when the VFS 4445 * shrinks i_size, we put the inode on the orphan list and modify 4446 * i_disksize immediately, so that during the subsequent flushing of 4447 * dirty pages and freeing of disk blocks, we can guarantee that any 4448 * commit will leave the blocks being flushed in an unused state on 4449 * disk. (On recovery, the inode will get truncated and the blocks will 4450 * be freed, so we have a strong guarantee that no future commit will 4451 * leave these blocks visible to the user.) 4452 * 4453 * Another thing we have to assure is that if we are in ordered mode 4454 * and inode is still attached to the committing transaction, we must 4455 * we start writeout of all the dirty pages which are being truncated. 4456 * This way we are sure that all the data written in the previous 4457 * transaction are already on disk (truncate waits for pages under 4458 * writeback). 4459 * 4460 * Called with inode->i_mutex down. 4461 */ 4462 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 4463 { 4464 struct inode *inode = dentry->d_inode; 4465 int error, rc = 0; 4466 int orphan = 0; 4467 const unsigned int ia_valid = attr->ia_valid; 4468 4469 error = inode_change_ok(inode, attr); 4470 if (error) 4471 return error; 4472 4473 if (is_quota_modification(inode, attr)) 4474 dquot_initialize(inode); 4475 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 4476 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 4477 handle_t *handle; 4478 4479 /* (user+group)*(old+new) structure, inode write (sb, 4480 * inode block, ? - but truncate inode update has it) */ 4481 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 4482 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 4483 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 4484 if (IS_ERR(handle)) { 4485 error = PTR_ERR(handle); 4486 goto err_out; 4487 } 4488 error = dquot_transfer(inode, attr); 4489 if (error) { 4490 ext4_journal_stop(handle); 4491 return error; 4492 } 4493 /* Update corresponding info in inode so that everything is in 4494 * one transaction */ 4495 if (attr->ia_valid & ATTR_UID) 4496 inode->i_uid = attr->ia_uid; 4497 if (attr->ia_valid & ATTR_GID) 4498 inode->i_gid = attr->ia_gid; 4499 error = ext4_mark_inode_dirty(handle, inode); 4500 ext4_journal_stop(handle); 4501 } 4502 4503 if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) { 4504 handle_t *handle; 4505 4506 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4507 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4508 4509 if (attr->ia_size > sbi->s_bitmap_maxbytes) 4510 return -EFBIG; 4511 } 4512 4513 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size) 4514 inode_inc_iversion(inode); 4515 4516 if (S_ISREG(inode->i_mode) && 4517 (attr->ia_size < inode->i_size)) { 4518 if (ext4_should_order_data(inode)) { 4519 error = ext4_begin_ordered_truncate(inode, 4520 attr->ia_size); 4521 if (error) 4522 goto err_out; 4523 } 4524 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 4525 if (IS_ERR(handle)) { 4526 error = PTR_ERR(handle); 4527 goto err_out; 4528 } 4529 if (ext4_handle_valid(handle)) { 4530 error = ext4_orphan_add(handle, inode); 4531 orphan = 1; 4532 } 4533 down_write(&EXT4_I(inode)->i_data_sem); 4534 EXT4_I(inode)->i_disksize = attr->ia_size; 4535 rc = ext4_mark_inode_dirty(handle, inode); 4536 if (!error) 4537 error = rc; 4538 /* 4539 * We have to update i_size under i_data_sem together 4540 * with i_disksize to avoid races with writeback code 4541 * running ext4_wb_update_i_disksize(). 4542 */ 4543 if (!error) 4544 i_size_write(inode, attr->ia_size); 4545 up_write(&EXT4_I(inode)->i_data_sem); 4546 ext4_journal_stop(handle); 4547 if (error) { 4548 ext4_orphan_del(NULL, inode); 4549 goto err_out; 4550 } 4551 } else 4552 i_size_write(inode, attr->ia_size); 4553 4554 /* 4555 * Blocks are going to be removed from the inode. Wait 4556 * for dio in flight. Temporarily disable 4557 * dioread_nolock to prevent livelock. 4558 */ 4559 if (orphan) { 4560 if (!ext4_should_journal_data(inode)) { 4561 ext4_inode_block_unlocked_dio(inode); 4562 inode_dio_wait(inode); 4563 ext4_inode_resume_unlocked_dio(inode); 4564 } else 4565 ext4_wait_for_tail_page_commit(inode); 4566 } 4567 /* 4568 * Truncate pagecache after we've waited for commit 4569 * in data=journal mode to make pages freeable. 4570 */ 4571 truncate_pagecache(inode, inode->i_size); 4572 } 4573 /* 4574 * We want to call ext4_truncate() even if attr->ia_size == 4575 * inode->i_size for cases like truncation of fallocated space 4576 */ 4577 if (attr->ia_valid & ATTR_SIZE) 4578 ext4_truncate(inode); 4579 4580 if (!rc) { 4581 setattr_copy(inode, attr); 4582 mark_inode_dirty(inode); 4583 } 4584 4585 /* 4586 * If the call to ext4_truncate failed to get a transaction handle at 4587 * all, we need to clean up the in-core orphan list manually. 4588 */ 4589 if (orphan && inode->i_nlink) 4590 ext4_orphan_del(NULL, inode); 4591 4592 if (!rc && (ia_valid & ATTR_MODE)) 4593 rc = posix_acl_chmod(inode, inode->i_mode); 4594 4595 err_out: 4596 ext4_std_error(inode->i_sb, error); 4597 if (!error) 4598 error = rc; 4599 return error; 4600 } 4601 4602 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 4603 struct kstat *stat) 4604 { 4605 struct inode *inode; 4606 unsigned long long delalloc_blocks; 4607 4608 inode = dentry->d_inode; 4609 generic_fillattr(inode, stat); 4610 4611 /* 4612 * If there is inline data in the inode, the inode will normally not 4613 * have data blocks allocated (it may have an external xattr block). 4614 * Report at least one sector for such files, so tools like tar, rsync, 4615 * others doen't incorrectly think the file is completely sparse. 4616 */ 4617 if (unlikely(ext4_has_inline_data(inode))) 4618 stat->blocks += (stat->size + 511) >> 9; 4619 4620 /* 4621 * We can't update i_blocks if the block allocation is delayed 4622 * otherwise in the case of system crash before the real block 4623 * allocation is done, we will have i_blocks inconsistent with 4624 * on-disk file blocks. 4625 * We always keep i_blocks updated together with real 4626 * allocation. But to not confuse with user, stat 4627 * will return the blocks that include the delayed allocation 4628 * blocks for this file. 4629 */ 4630 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 4631 EXT4_I(inode)->i_reserved_data_blocks); 4632 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 4633 return 0; 4634 } 4635 4636 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 4637 int pextents) 4638 { 4639 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4640 return ext4_ind_trans_blocks(inode, lblocks); 4641 return ext4_ext_index_trans_blocks(inode, pextents); 4642 } 4643 4644 /* 4645 * Account for index blocks, block groups bitmaps and block group 4646 * descriptor blocks if modify datablocks and index blocks 4647 * worse case, the indexs blocks spread over different block groups 4648 * 4649 * If datablocks are discontiguous, they are possible to spread over 4650 * different block groups too. If they are contiguous, with flexbg, 4651 * they could still across block group boundary. 4652 * 4653 * Also account for superblock, inode, quota and xattr blocks 4654 */ 4655 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 4656 int pextents) 4657 { 4658 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 4659 int gdpblocks; 4660 int idxblocks; 4661 int ret = 0; 4662 4663 /* 4664 * How many index blocks need to touch to map @lblocks logical blocks 4665 * to @pextents physical extents? 4666 */ 4667 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 4668 4669 ret = idxblocks; 4670 4671 /* 4672 * Now let's see how many group bitmaps and group descriptors need 4673 * to account 4674 */ 4675 groups = idxblocks + pextents; 4676 gdpblocks = groups; 4677 if (groups > ngroups) 4678 groups = ngroups; 4679 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 4680 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 4681 4682 /* bitmaps and block group descriptor blocks */ 4683 ret += groups + gdpblocks; 4684 4685 /* Blocks for super block, inode, quota and xattr blocks */ 4686 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 4687 4688 return ret; 4689 } 4690 4691 /* 4692 * Calculate the total number of credits to reserve to fit 4693 * the modification of a single pages into a single transaction, 4694 * which may include multiple chunks of block allocations. 4695 * 4696 * This could be called via ext4_write_begin() 4697 * 4698 * We need to consider the worse case, when 4699 * one new block per extent. 4700 */ 4701 int ext4_writepage_trans_blocks(struct inode *inode) 4702 { 4703 int bpp = ext4_journal_blocks_per_page(inode); 4704 int ret; 4705 4706 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 4707 4708 /* Account for data blocks for journalled mode */ 4709 if (ext4_should_journal_data(inode)) 4710 ret += bpp; 4711 return ret; 4712 } 4713 4714 /* 4715 * Calculate the journal credits for a chunk of data modification. 4716 * 4717 * This is called from DIO, fallocate or whoever calling 4718 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 4719 * 4720 * journal buffers for data blocks are not included here, as DIO 4721 * and fallocate do no need to journal data buffers. 4722 */ 4723 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 4724 { 4725 return ext4_meta_trans_blocks(inode, nrblocks, 1); 4726 } 4727 4728 /* 4729 * The caller must have previously called ext4_reserve_inode_write(). 4730 * Give this, we know that the caller already has write access to iloc->bh. 4731 */ 4732 int ext4_mark_iloc_dirty(handle_t *handle, 4733 struct inode *inode, struct ext4_iloc *iloc) 4734 { 4735 int err = 0; 4736 4737 if (IS_I_VERSION(inode)) 4738 inode_inc_iversion(inode); 4739 4740 /* the do_update_inode consumes one bh->b_count */ 4741 get_bh(iloc->bh); 4742 4743 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 4744 err = ext4_do_update_inode(handle, inode, iloc); 4745 put_bh(iloc->bh); 4746 return err; 4747 } 4748 4749 /* 4750 * On success, We end up with an outstanding reference count against 4751 * iloc->bh. This _must_ be cleaned up later. 4752 */ 4753 4754 int 4755 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 4756 struct ext4_iloc *iloc) 4757 { 4758 int err; 4759 4760 err = ext4_get_inode_loc(inode, iloc); 4761 if (!err) { 4762 BUFFER_TRACE(iloc->bh, "get_write_access"); 4763 err = ext4_journal_get_write_access(handle, iloc->bh); 4764 if (err) { 4765 brelse(iloc->bh); 4766 iloc->bh = NULL; 4767 } 4768 } 4769 ext4_std_error(inode->i_sb, err); 4770 return err; 4771 } 4772 4773 /* 4774 * Expand an inode by new_extra_isize bytes. 4775 * Returns 0 on success or negative error number on failure. 4776 */ 4777 static int ext4_expand_extra_isize(struct inode *inode, 4778 unsigned int new_extra_isize, 4779 struct ext4_iloc iloc, 4780 handle_t *handle) 4781 { 4782 struct ext4_inode *raw_inode; 4783 struct ext4_xattr_ibody_header *header; 4784 4785 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 4786 return 0; 4787 4788 raw_inode = ext4_raw_inode(&iloc); 4789 4790 header = IHDR(inode, raw_inode); 4791 4792 /* No extended attributes present */ 4793 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 4794 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 4795 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 4796 new_extra_isize); 4797 EXT4_I(inode)->i_extra_isize = new_extra_isize; 4798 return 0; 4799 } 4800 4801 /* try to expand with EAs present */ 4802 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 4803 raw_inode, handle); 4804 } 4805 4806 /* 4807 * What we do here is to mark the in-core inode as clean with respect to inode 4808 * dirtiness (it may still be data-dirty). 4809 * This means that the in-core inode may be reaped by prune_icache 4810 * without having to perform any I/O. This is a very good thing, 4811 * because *any* task may call prune_icache - even ones which 4812 * have a transaction open against a different journal. 4813 * 4814 * Is this cheating? Not really. Sure, we haven't written the 4815 * inode out, but prune_icache isn't a user-visible syncing function. 4816 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 4817 * we start and wait on commits. 4818 */ 4819 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 4820 { 4821 struct ext4_iloc iloc; 4822 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4823 static unsigned int mnt_count; 4824 int err, ret; 4825 4826 might_sleep(); 4827 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 4828 err = ext4_reserve_inode_write(handle, inode, &iloc); 4829 if (ext4_handle_valid(handle) && 4830 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 4831 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 4832 /* 4833 * We need extra buffer credits since we may write into EA block 4834 * with this same handle. If journal_extend fails, then it will 4835 * only result in a minor loss of functionality for that inode. 4836 * If this is felt to be critical, then e2fsck should be run to 4837 * force a large enough s_min_extra_isize. 4838 */ 4839 if ((jbd2_journal_extend(handle, 4840 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 4841 ret = ext4_expand_extra_isize(inode, 4842 sbi->s_want_extra_isize, 4843 iloc, handle); 4844 if (ret) { 4845 ext4_set_inode_state(inode, 4846 EXT4_STATE_NO_EXPAND); 4847 if (mnt_count != 4848 le16_to_cpu(sbi->s_es->s_mnt_count)) { 4849 ext4_warning(inode->i_sb, 4850 "Unable to expand inode %lu. Delete" 4851 " some EAs or run e2fsck.", 4852 inode->i_ino); 4853 mnt_count = 4854 le16_to_cpu(sbi->s_es->s_mnt_count); 4855 } 4856 } 4857 } 4858 } 4859 if (!err) 4860 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 4861 return err; 4862 } 4863 4864 /* 4865 * ext4_dirty_inode() is called from __mark_inode_dirty() 4866 * 4867 * We're really interested in the case where a file is being extended. 4868 * i_size has been changed by generic_commit_write() and we thus need 4869 * to include the updated inode in the current transaction. 4870 * 4871 * Also, dquot_alloc_block() will always dirty the inode when blocks 4872 * are allocated to the file. 4873 * 4874 * If the inode is marked synchronous, we don't honour that here - doing 4875 * so would cause a commit on atime updates, which we don't bother doing. 4876 * We handle synchronous inodes at the highest possible level. 4877 */ 4878 void ext4_dirty_inode(struct inode *inode, int flags) 4879 { 4880 handle_t *handle; 4881 4882 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 4883 if (IS_ERR(handle)) 4884 goto out; 4885 4886 ext4_mark_inode_dirty(handle, inode); 4887 4888 ext4_journal_stop(handle); 4889 out: 4890 return; 4891 } 4892 4893 #if 0 4894 /* 4895 * Bind an inode's backing buffer_head into this transaction, to prevent 4896 * it from being flushed to disk early. Unlike 4897 * ext4_reserve_inode_write, this leaves behind no bh reference and 4898 * returns no iloc structure, so the caller needs to repeat the iloc 4899 * lookup to mark the inode dirty later. 4900 */ 4901 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 4902 { 4903 struct ext4_iloc iloc; 4904 4905 int err = 0; 4906 if (handle) { 4907 err = ext4_get_inode_loc(inode, &iloc); 4908 if (!err) { 4909 BUFFER_TRACE(iloc.bh, "get_write_access"); 4910 err = jbd2_journal_get_write_access(handle, iloc.bh); 4911 if (!err) 4912 err = ext4_handle_dirty_metadata(handle, 4913 NULL, 4914 iloc.bh); 4915 brelse(iloc.bh); 4916 } 4917 } 4918 ext4_std_error(inode->i_sb, err); 4919 return err; 4920 } 4921 #endif 4922 4923 int ext4_change_inode_journal_flag(struct inode *inode, int val) 4924 { 4925 journal_t *journal; 4926 handle_t *handle; 4927 int err; 4928 4929 /* 4930 * We have to be very careful here: changing a data block's 4931 * journaling status dynamically is dangerous. If we write a 4932 * data block to the journal, change the status and then delete 4933 * that block, we risk forgetting to revoke the old log record 4934 * from the journal and so a subsequent replay can corrupt data. 4935 * So, first we make sure that the journal is empty and that 4936 * nobody is changing anything. 4937 */ 4938 4939 journal = EXT4_JOURNAL(inode); 4940 if (!journal) 4941 return 0; 4942 if (is_journal_aborted(journal)) 4943 return -EROFS; 4944 /* We have to allocate physical blocks for delalloc blocks 4945 * before flushing journal. otherwise delalloc blocks can not 4946 * be allocated any more. even more truncate on delalloc blocks 4947 * could trigger BUG by flushing delalloc blocks in journal. 4948 * There is no delalloc block in non-journal data mode. 4949 */ 4950 if (val && test_opt(inode->i_sb, DELALLOC)) { 4951 err = ext4_alloc_da_blocks(inode); 4952 if (err < 0) 4953 return err; 4954 } 4955 4956 /* Wait for all existing dio workers */ 4957 ext4_inode_block_unlocked_dio(inode); 4958 inode_dio_wait(inode); 4959 4960 jbd2_journal_lock_updates(journal); 4961 4962 /* 4963 * OK, there are no updates running now, and all cached data is 4964 * synced to disk. We are now in a completely consistent state 4965 * which doesn't have anything in the journal, and we know that 4966 * no filesystem updates are running, so it is safe to modify 4967 * the inode's in-core data-journaling state flag now. 4968 */ 4969 4970 if (val) 4971 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 4972 else { 4973 jbd2_journal_flush(journal); 4974 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 4975 } 4976 ext4_set_aops(inode); 4977 4978 jbd2_journal_unlock_updates(journal); 4979 ext4_inode_resume_unlocked_dio(inode); 4980 4981 /* Finally we can mark the inode as dirty. */ 4982 4983 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 4984 if (IS_ERR(handle)) 4985 return PTR_ERR(handle); 4986 4987 err = ext4_mark_inode_dirty(handle, inode); 4988 ext4_handle_sync(handle); 4989 ext4_journal_stop(handle); 4990 ext4_std_error(inode->i_sb, err); 4991 4992 return err; 4993 } 4994 4995 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 4996 { 4997 return !buffer_mapped(bh); 4998 } 4999 5000 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 5001 { 5002 struct page *page = vmf->page; 5003 loff_t size; 5004 unsigned long len; 5005 int ret; 5006 struct file *file = vma->vm_file; 5007 struct inode *inode = file_inode(file); 5008 struct address_space *mapping = inode->i_mapping; 5009 handle_t *handle; 5010 get_block_t *get_block; 5011 int retries = 0; 5012 5013 sb_start_pagefault(inode->i_sb); 5014 file_update_time(vma->vm_file); 5015 /* Delalloc case is easy... */ 5016 if (test_opt(inode->i_sb, DELALLOC) && 5017 !ext4_should_journal_data(inode) && 5018 !ext4_nonda_switch(inode->i_sb)) { 5019 do { 5020 ret = __block_page_mkwrite(vma, vmf, 5021 ext4_da_get_block_prep); 5022 } while (ret == -ENOSPC && 5023 ext4_should_retry_alloc(inode->i_sb, &retries)); 5024 goto out_ret; 5025 } 5026 5027 lock_page(page); 5028 size = i_size_read(inode); 5029 /* Page got truncated from under us? */ 5030 if (page->mapping != mapping || page_offset(page) > size) { 5031 unlock_page(page); 5032 ret = VM_FAULT_NOPAGE; 5033 goto out; 5034 } 5035 5036 if (page->index == size >> PAGE_CACHE_SHIFT) 5037 len = size & ~PAGE_CACHE_MASK; 5038 else 5039 len = PAGE_CACHE_SIZE; 5040 /* 5041 * Return if we have all the buffers mapped. This avoids the need to do 5042 * journal_start/journal_stop which can block and take a long time 5043 */ 5044 if (page_has_buffers(page)) { 5045 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 5046 0, len, NULL, 5047 ext4_bh_unmapped)) { 5048 /* Wait so that we don't change page under IO */ 5049 wait_for_stable_page(page); 5050 ret = VM_FAULT_LOCKED; 5051 goto out; 5052 } 5053 } 5054 unlock_page(page); 5055 /* OK, we need to fill the hole... */ 5056 if (ext4_should_dioread_nolock(inode)) 5057 get_block = ext4_get_block_write; 5058 else 5059 get_block = ext4_get_block; 5060 retry_alloc: 5061 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 5062 ext4_writepage_trans_blocks(inode)); 5063 if (IS_ERR(handle)) { 5064 ret = VM_FAULT_SIGBUS; 5065 goto out; 5066 } 5067 ret = __block_page_mkwrite(vma, vmf, get_block); 5068 if (!ret && ext4_should_journal_data(inode)) { 5069 if (ext4_walk_page_buffers(handle, page_buffers(page), 0, 5070 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) { 5071 unlock_page(page); 5072 ret = VM_FAULT_SIGBUS; 5073 ext4_journal_stop(handle); 5074 goto out; 5075 } 5076 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 5077 } 5078 ext4_journal_stop(handle); 5079 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 5080 goto retry_alloc; 5081 out_ret: 5082 ret = block_page_mkwrite_return(ret); 5083 out: 5084 sb_end_pagefault(inode->i_sb); 5085 return ret; 5086 } 5087