xref: /openbmc/linux/fs/ext4/inode.c (revision 33ac9dba)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *	(jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20 
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41 #include <linux/bitops.h>
42 
43 #include "ext4_jbd2.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "truncate.h"
47 
48 #include <trace/events/ext4.h>
49 
50 #define MPAGE_DA_EXTENT_TAIL 0x01
51 
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 			      struct ext4_inode_info *ei)
54 {
55 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56 	__u16 csum_lo;
57 	__u16 csum_hi = 0;
58 	__u32 csum;
59 
60 	csum_lo = le16_to_cpu(raw->i_checksum_lo);
61 	raw->i_checksum_lo = 0;
62 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
63 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
64 		csum_hi = le16_to_cpu(raw->i_checksum_hi);
65 		raw->i_checksum_hi = 0;
66 	}
67 
68 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
69 			   EXT4_INODE_SIZE(inode->i_sb));
70 
71 	raw->i_checksum_lo = cpu_to_le16(csum_lo);
72 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
73 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
74 		raw->i_checksum_hi = cpu_to_le16(csum_hi);
75 
76 	return csum;
77 }
78 
79 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
80 				  struct ext4_inode_info *ei)
81 {
82 	__u32 provided, calculated;
83 
84 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
85 	    cpu_to_le32(EXT4_OS_LINUX) ||
86 	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
87 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
88 		return 1;
89 
90 	provided = le16_to_cpu(raw->i_checksum_lo);
91 	calculated = ext4_inode_csum(inode, raw, ei);
92 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
93 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
94 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
95 	else
96 		calculated &= 0xFFFF;
97 
98 	return provided == calculated;
99 }
100 
101 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
102 				struct ext4_inode_info *ei)
103 {
104 	__u32 csum;
105 
106 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
107 	    cpu_to_le32(EXT4_OS_LINUX) ||
108 	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
109 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
110 		return;
111 
112 	csum = ext4_inode_csum(inode, raw, ei);
113 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
114 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
115 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
116 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
117 }
118 
119 static inline int ext4_begin_ordered_truncate(struct inode *inode,
120 					      loff_t new_size)
121 {
122 	trace_ext4_begin_ordered_truncate(inode, new_size);
123 	/*
124 	 * If jinode is zero, then we never opened the file for
125 	 * writing, so there's no need to call
126 	 * jbd2_journal_begin_ordered_truncate() since there's no
127 	 * outstanding writes we need to flush.
128 	 */
129 	if (!EXT4_I(inode)->jinode)
130 		return 0;
131 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
132 						   EXT4_I(inode)->jinode,
133 						   new_size);
134 }
135 
136 static void ext4_invalidatepage(struct page *page, unsigned int offset,
137 				unsigned int length);
138 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
139 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
140 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
141 				  int pextents);
142 
143 /*
144  * Test whether an inode is a fast symlink.
145  */
146 static int ext4_inode_is_fast_symlink(struct inode *inode)
147 {
148         int ea_blocks = EXT4_I(inode)->i_file_acl ?
149 		EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
150 
151 	if (ext4_has_inline_data(inode))
152 		return 0;
153 
154 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
155 }
156 
157 /*
158  * Restart the transaction associated with *handle.  This does a commit,
159  * so before we call here everything must be consistently dirtied against
160  * this transaction.
161  */
162 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
163 				 int nblocks)
164 {
165 	int ret;
166 
167 	/*
168 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
169 	 * moment, get_block can be called only for blocks inside i_size since
170 	 * page cache has been already dropped and writes are blocked by
171 	 * i_mutex. So we can safely drop the i_data_sem here.
172 	 */
173 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
174 	jbd_debug(2, "restarting handle %p\n", handle);
175 	up_write(&EXT4_I(inode)->i_data_sem);
176 	ret = ext4_journal_restart(handle, nblocks);
177 	down_write(&EXT4_I(inode)->i_data_sem);
178 	ext4_discard_preallocations(inode);
179 
180 	return ret;
181 }
182 
183 /*
184  * Called at the last iput() if i_nlink is zero.
185  */
186 void ext4_evict_inode(struct inode *inode)
187 {
188 	handle_t *handle;
189 	int err;
190 
191 	trace_ext4_evict_inode(inode);
192 
193 	if (inode->i_nlink) {
194 		/*
195 		 * When journalling data dirty buffers are tracked only in the
196 		 * journal. So although mm thinks everything is clean and
197 		 * ready for reaping the inode might still have some pages to
198 		 * write in the running transaction or waiting to be
199 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
200 		 * (via truncate_inode_pages()) to discard these buffers can
201 		 * cause data loss. Also even if we did not discard these
202 		 * buffers, we would have no way to find them after the inode
203 		 * is reaped and thus user could see stale data if he tries to
204 		 * read them before the transaction is checkpointed. So be
205 		 * careful and force everything to disk here... We use
206 		 * ei->i_datasync_tid to store the newest transaction
207 		 * containing inode's data.
208 		 *
209 		 * Note that directories do not have this problem because they
210 		 * don't use page cache.
211 		 */
212 		if (ext4_should_journal_data(inode) &&
213 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
214 		    inode->i_ino != EXT4_JOURNAL_INO) {
215 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
216 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
217 
218 			jbd2_complete_transaction(journal, commit_tid);
219 			filemap_write_and_wait(&inode->i_data);
220 		}
221 		truncate_inode_pages_final(&inode->i_data);
222 
223 		WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
224 		goto no_delete;
225 	}
226 
227 	if (!is_bad_inode(inode))
228 		dquot_initialize(inode);
229 
230 	if (ext4_should_order_data(inode))
231 		ext4_begin_ordered_truncate(inode, 0);
232 	truncate_inode_pages_final(&inode->i_data);
233 
234 	WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
235 	if (is_bad_inode(inode))
236 		goto no_delete;
237 
238 	/*
239 	 * Protect us against freezing - iput() caller didn't have to have any
240 	 * protection against it
241 	 */
242 	sb_start_intwrite(inode->i_sb);
243 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
244 				    ext4_blocks_for_truncate(inode)+3);
245 	if (IS_ERR(handle)) {
246 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
247 		/*
248 		 * If we're going to skip the normal cleanup, we still need to
249 		 * make sure that the in-core orphan linked list is properly
250 		 * cleaned up.
251 		 */
252 		ext4_orphan_del(NULL, inode);
253 		sb_end_intwrite(inode->i_sb);
254 		goto no_delete;
255 	}
256 
257 	if (IS_SYNC(inode))
258 		ext4_handle_sync(handle);
259 	inode->i_size = 0;
260 	err = ext4_mark_inode_dirty(handle, inode);
261 	if (err) {
262 		ext4_warning(inode->i_sb,
263 			     "couldn't mark inode dirty (err %d)", err);
264 		goto stop_handle;
265 	}
266 	if (inode->i_blocks)
267 		ext4_truncate(inode);
268 
269 	/*
270 	 * ext4_ext_truncate() doesn't reserve any slop when it
271 	 * restarts journal transactions; therefore there may not be
272 	 * enough credits left in the handle to remove the inode from
273 	 * the orphan list and set the dtime field.
274 	 */
275 	if (!ext4_handle_has_enough_credits(handle, 3)) {
276 		err = ext4_journal_extend(handle, 3);
277 		if (err > 0)
278 			err = ext4_journal_restart(handle, 3);
279 		if (err != 0) {
280 			ext4_warning(inode->i_sb,
281 				     "couldn't extend journal (err %d)", err);
282 		stop_handle:
283 			ext4_journal_stop(handle);
284 			ext4_orphan_del(NULL, inode);
285 			sb_end_intwrite(inode->i_sb);
286 			goto no_delete;
287 		}
288 	}
289 
290 	/*
291 	 * Kill off the orphan record which ext4_truncate created.
292 	 * AKPM: I think this can be inside the above `if'.
293 	 * Note that ext4_orphan_del() has to be able to cope with the
294 	 * deletion of a non-existent orphan - this is because we don't
295 	 * know if ext4_truncate() actually created an orphan record.
296 	 * (Well, we could do this if we need to, but heck - it works)
297 	 */
298 	ext4_orphan_del(handle, inode);
299 	EXT4_I(inode)->i_dtime	= get_seconds();
300 
301 	/*
302 	 * One subtle ordering requirement: if anything has gone wrong
303 	 * (transaction abort, IO errors, whatever), then we can still
304 	 * do these next steps (the fs will already have been marked as
305 	 * having errors), but we can't free the inode if the mark_dirty
306 	 * fails.
307 	 */
308 	if (ext4_mark_inode_dirty(handle, inode))
309 		/* If that failed, just do the required in-core inode clear. */
310 		ext4_clear_inode(inode);
311 	else
312 		ext4_free_inode(handle, inode);
313 	ext4_journal_stop(handle);
314 	sb_end_intwrite(inode->i_sb);
315 	return;
316 no_delete:
317 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
318 }
319 
320 #ifdef CONFIG_QUOTA
321 qsize_t *ext4_get_reserved_space(struct inode *inode)
322 {
323 	return &EXT4_I(inode)->i_reserved_quota;
324 }
325 #endif
326 
327 /*
328  * Called with i_data_sem down, which is important since we can call
329  * ext4_discard_preallocations() from here.
330  */
331 void ext4_da_update_reserve_space(struct inode *inode,
332 					int used, int quota_claim)
333 {
334 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
335 	struct ext4_inode_info *ei = EXT4_I(inode);
336 
337 	spin_lock(&ei->i_block_reservation_lock);
338 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
339 	if (unlikely(used > ei->i_reserved_data_blocks)) {
340 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
341 			 "with only %d reserved data blocks",
342 			 __func__, inode->i_ino, used,
343 			 ei->i_reserved_data_blocks);
344 		WARN_ON(1);
345 		used = ei->i_reserved_data_blocks;
346 	}
347 
348 	/* Update per-inode reservations */
349 	ei->i_reserved_data_blocks -= used;
350 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
351 
352 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
353 
354 	/* Update quota subsystem for data blocks */
355 	if (quota_claim)
356 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
357 	else {
358 		/*
359 		 * We did fallocate with an offset that is already delayed
360 		 * allocated. So on delayed allocated writeback we should
361 		 * not re-claim the quota for fallocated blocks.
362 		 */
363 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
364 	}
365 
366 	/*
367 	 * If we have done all the pending block allocations and if
368 	 * there aren't any writers on the inode, we can discard the
369 	 * inode's preallocations.
370 	 */
371 	if ((ei->i_reserved_data_blocks == 0) &&
372 	    (atomic_read(&inode->i_writecount) == 0))
373 		ext4_discard_preallocations(inode);
374 }
375 
376 static int __check_block_validity(struct inode *inode, const char *func,
377 				unsigned int line,
378 				struct ext4_map_blocks *map)
379 {
380 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
381 				   map->m_len)) {
382 		ext4_error_inode(inode, func, line, map->m_pblk,
383 				 "lblock %lu mapped to illegal pblock "
384 				 "(length %d)", (unsigned long) map->m_lblk,
385 				 map->m_len);
386 		return -EIO;
387 	}
388 	return 0;
389 }
390 
391 #define check_block_validity(inode, map)	\
392 	__check_block_validity((inode), __func__, __LINE__, (map))
393 
394 #ifdef ES_AGGRESSIVE_TEST
395 static void ext4_map_blocks_es_recheck(handle_t *handle,
396 				       struct inode *inode,
397 				       struct ext4_map_blocks *es_map,
398 				       struct ext4_map_blocks *map,
399 				       int flags)
400 {
401 	int retval;
402 
403 	map->m_flags = 0;
404 	/*
405 	 * There is a race window that the result is not the same.
406 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
407 	 * is that we lookup a block mapping in extent status tree with
408 	 * out taking i_data_sem.  So at the time the unwritten extent
409 	 * could be converted.
410 	 */
411 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
412 		down_read(&EXT4_I(inode)->i_data_sem);
413 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
414 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
415 					     EXT4_GET_BLOCKS_KEEP_SIZE);
416 	} else {
417 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
418 					     EXT4_GET_BLOCKS_KEEP_SIZE);
419 	}
420 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
421 		up_read((&EXT4_I(inode)->i_data_sem));
422 	/*
423 	 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
424 	 * because it shouldn't be marked in es_map->m_flags.
425 	 */
426 	map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
427 
428 	/*
429 	 * We don't check m_len because extent will be collpased in status
430 	 * tree.  So the m_len might not equal.
431 	 */
432 	if (es_map->m_lblk != map->m_lblk ||
433 	    es_map->m_flags != map->m_flags ||
434 	    es_map->m_pblk != map->m_pblk) {
435 		printk("ES cache assertion failed for inode: %lu "
436 		       "es_cached ex [%d/%d/%llu/%x] != "
437 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
438 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
439 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
440 		       map->m_len, map->m_pblk, map->m_flags,
441 		       retval, flags);
442 	}
443 }
444 #endif /* ES_AGGRESSIVE_TEST */
445 
446 /*
447  * The ext4_map_blocks() function tries to look up the requested blocks,
448  * and returns if the blocks are already mapped.
449  *
450  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
451  * and store the allocated blocks in the result buffer head and mark it
452  * mapped.
453  *
454  * If file type is extents based, it will call ext4_ext_map_blocks(),
455  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
456  * based files
457  *
458  * On success, it returns the number of blocks being mapped or allocated.
459  * if create==0 and the blocks are pre-allocated and unwritten block,
460  * the result buffer head is unmapped. If the create ==1, it will make sure
461  * the buffer head is mapped.
462  *
463  * It returns 0 if plain look up failed (blocks have not been allocated), in
464  * that case, buffer head is unmapped
465  *
466  * It returns the error in case of allocation failure.
467  */
468 int ext4_map_blocks(handle_t *handle, struct inode *inode,
469 		    struct ext4_map_blocks *map, int flags)
470 {
471 	struct extent_status es;
472 	int retval;
473 	int ret = 0;
474 #ifdef ES_AGGRESSIVE_TEST
475 	struct ext4_map_blocks orig_map;
476 
477 	memcpy(&orig_map, map, sizeof(*map));
478 #endif
479 
480 	map->m_flags = 0;
481 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
482 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
483 		  (unsigned long) map->m_lblk);
484 
485 	/*
486 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
487 	 */
488 	if (unlikely(map->m_len > INT_MAX))
489 		map->m_len = INT_MAX;
490 
491 	/* We can handle the block number less than EXT_MAX_BLOCKS */
492 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
493 		return -EIO;
494 
495 	/* Lookup extent status tree firstly */
496 	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
497 		ext4_es_lru_add(inode);
498 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
499 			map->m_pblk = ext4_es_pblock(&es) +
500 					map->m_lblk - es.es_lblk;
501 			map->m_flags |= ext4_es_is_written(&es) ?
502 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
503 			retval = es.es_len - (map->m_lblk - es.es_lblk);
504 			if (retval > map->m_len)
505 				retval = map->m_len;
506 			map->m_len = retval;
507 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
508 			retval = 0;
509 		} else {
510 			BUG_ON(1);
511 		}
512 #ifdef ES_AGGRESSIVE_TEST
513 		ext4_map_blocks_es_recheck(handle, inode, map,
514 					   &orig_map, flags);
515 #endif
516 		goto found;
517 	}
518 
519 	/*
520 	 * Try to see if we can get the block without requesting a new
521 	 * file system block.
522 	 */
523 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
524 		down_read(&EXT4_I(inode)->i_data_sem);
525 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
526 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
527 					     EXT4_GET_BLOCKS_KEEP_SIZE);
528 	} else {
529 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
530 					     EXT4_GET_BLOCKS_KEEP_SIZE);
531 	}
532 	if (retval > 0) {
533 		unsigned int status;
534 
535 		if (unlikely(retval != map->m_len)) {
536 			ext4_warning(inode->i_sb,
537 				     "ES len assertion failed for inode "
538 				     "%lu: retval %d != map->m_len %d",
539 				     inode->i_ino, retval, map->m_len);
540 			WARN_ON(1);
541 		}
542 
543 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
544 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
545 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
546 		    ext4_find_delalloc_range(inode, map->m_lblk,
547 					     map->m_lblk + map->m_len - 1))
548 			status |= EXTENT_STATUS_DELAYED;
549 		ret = ext4_es_insert_extent(inode, map->m_lblk,
550 					    map->m_len, map->m_pblk, status);
551 		if (ret < 0)
552 			retval = ret;
553 	}
554 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
555 		up_read((&EXT4_I(inode)->i_data_sem));
556 
557 found:
558 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
559 		ret = check_block_validity(inode, map);
560 		if (ret != 0)
561 			return ret;
562 	}
563 
564 	/* If it is only a block(s) look up */
565 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
566 		return retval;
567 
568 	/*
569 	 * Returns if the blocks have already allocated
570 	 *
571 	 * Note that if blocks have been preallocated
572 	 * ext4_ext_get_block() returns the create = 0
573 	 * with buffer head unmapped.
574 	 */
575 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
576 		/*
577 		 * If we need to convert extent to unwritten
578 		 * we continue and do the actual work in
579 		 * ext4_ext_map_blocks()
580 		 */
581 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
582 			return retval;
583 
584 	/*
585 	 * Here we clear m_flags because after allocating an new extent,
586 	 * it will be set again.
587 	 */
588 	map->m_flags &= ~EXT4_MAP_FLAGS;
589 
590 	/*
591 	 * New blocks allocate and/or writing to unwritten extent
592 	 * will possibly result in updating i_data, so we take
593 	 * the write lock of i_data_sem, and call get_blocks()
594 	 * with create == 1 flag.
595 	 */
596 	down_write(&EXT4_I(inode)->i_data_sem);
597 
598 	/*
599 	 * if the caller is from delayed allocation writeout path
600 	 * we have already reserved fs blocks for allocation
601 	 * let the underlying get_block() function know to
602 	 * avoid double accounting
603 	 */
604 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
605 		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
606 	/*
607 	 * We need to check for EXT4 here because migrate
608 	 * could have changed the inode type in between
609 	 */
610 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
611 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
612 	} else {
613 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
614 
615 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
616 			/*
617 			 * We allocated new blocks which will result in
618 			 * i_data's format changing.  Force the migrate
619 			 * to fail by clearing migrate flags
620 			 */
621 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
622 		}
623 
624 		/*
625 		 * Update reserved blocks/metadata blocks after successful
626 		 * block allocation which had been deferred till now. We don't
627 		 * support fallocate for non extent files. So we can update
628 		 * reserve space here.
629 		 */
630 		if ((retval > 0) &&
631 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
632 			ext4_da_update_reserve_space(inode, retval, 1);
633 	}
634 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
635 		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
636 
637 	if (retval > 0) {
638 		unsigned int status;
639 
640 		if (unlikely(retval != map->m_len)) {
641 			ext4_warning(inode->i_sb,
642 				     "ES len assertion failed for inode "
643 				     "%lu: retval %d != map->m_len %d",
644 				     inode->i_ino, retval, map->m_len);
645 			WARN_ON(1);
646 		}
647 
648 		/*
649 		 * If the extent has been zeroed out, we don't need to update
650 		 * extent status tree.
651 		 */
652 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
653 		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
654 			if (ext4_es_is_written(&es))
655 				goto has_zeroout;
656 		}
657 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
658 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
659 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
660 		    ext4_find_delalloc_range(inode, map->m_lblk,
661 					     map->m_lblk + map->m_len - 1))
662 			status |= EXTENT_STATUS_DELAYED;
663 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
664 					    map->m_pblk, status);
665 		if (ret < 0)
666 			retval = ret;
667 	}
668 
669 has_zeroout:
670 	up_write((&EXT4_I(inode)->i_data_sem));
671 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
672 		ret = check_block_validity(inode, map);
673 		if (ret != 0)
674 			return ret;
675 	}
676 	return retval;
677 }
678 
679 /* Maximum number of blocks we map for direct IO at once. */
680 #define DIO_MAX_BLOCKS 4096
681 
682 static int _ext4_get_block(struct inode *inode, sector_t iblock,
683 			   struct buffer_head *bh, int flags)
684 {
685 	handle_t *handle = ext4_journal_current_handle();
686 	struct ext4_map_blocks map;
687 	int ret = 0, started = 0;
688 	int dio_credits;
689 
690 	if (ext4_has_inline_data(inode))
691 		return -ERANGE;
692 
693 	map.m_lblk = iblock;
694 	map.m_len = bh->b_size >> inode->i_blkbits;
695 
696 	if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
697 		/* Direct IO write... */
698 		if (map.m_len > DIO_MAX_BLOCKS)
699 			map.m_len = DIO_MAX_BLOCKS;
700 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
701 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
702 					    dio_credits);
703 		if (IS_ERR(handle)) {
704 			ret = PTR_ERR(handle);
705 			return ret;
706 		}
707 		started = 1;
708 	}
709 
710 	ret = ext4_map_blocks(handle, inode, &map, flags);
711 	if (ret > 0) {
712 		ext4_io_end_t *io_end = ext4_inode_aio(inode);
713 
714 		map_bh(bh, inode->i_sb, map.m_pblk);
715 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
716 		if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
717 			set_buffer_defer_completion(bh);
718 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
719 		ret = 0;
720 	}
721 	if (started)
722 		ext4_journal_stop(handle);
723 	return ret;
724 }
725 
726 int ext4_get_block(struct inode *inode, sector_t iblock,
727 		   struct buffer_head *bh, int create)
728 {
729 	return _ext4_get_block(inode, iblock, bh,
730 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
731 }
732 
733 /*
734  * `handle' can be NULL if create is zero
735  */
736 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
737 				ext4_lblk_t block, int create, int *errp)
738 {
739 	struct ext4_map_blocks map;
740 	struct buffer_head *bh;
741 	int fatal = 0, err;
742 
743 	J_ASSERT(handle != NULL || create == 0);
744 
745 	map.m_lblk = block;
746 	map.m_len = 1;
747 	err = ext4_map_blocks(handle, inode, &map,
748 			      create ? EXT4_GET_BLOCKS_CREATE : 0);
749 
750 	/* ensure we send some value back into *errp */
751 	*errp = 0;
752 
753 	if (create && err == 0)
754 		err = -ENOSPC;	/* should never happen */
755 	if (err < 0)
756 		*errp = err;
757 	if (err <= 0)
758 		return NULL;
759 
760 	bh = sb_getblk(inode->i_sb, map.m_pblk);
761 	if (unlikely(!bh)) {
762 		*errp = -ENOMEM;
763 		return NULL;
764 	}
765 	if (map.m_flags & EXT4_MAP_NEW) {
766 		J_ASSERT(create != 0);
767 		J_ASSERT(handle != NULL);
768 
769 		/*
770 		 * Now that we do not always journal data, we should
771 		 * keep in mind whether this should always journal the
772 		 * new buffer as metadata.  For now, regular file
773 		 * writes use ext4_get_block instead, so it's not a
774 		 * problem.
775 		 */
776 		lock_buffer(bh);
777 		BUFFER_TRACE(bh, "call get_create_access");
778 		fatal = ext4_journal_get_create_access(handle, bh);
779 		if (!fatal && !buffer_uptodate(bh)) {
780 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
781 			set_buffer_uptodate(bh);
782 		}
783 		unlock_buffer(bh);
784 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
785 		err = ext4_handle_dirty_metadata(handle, inode, bh);
786 		if (!fatal)
787 			fatal = err;
788 	} else {
789 		BUFFER_TRACE(bh, "not a new buffer");
790 	}
791 	if (fatal) {
792 		*errp = fatal;
793 		brelse(bh);
794 		bh = NULL;
795 	}
796 	return bh;
797 }
798 
799 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
800 			       ext4_lblk_t block, int create, int *err)
801 {
802 	struct buffer_head *bh;
803 
804 	bh = ext4_getblk(handle, inode, block, create, err);
805 	if (!bh)
806 		return bh;
807 	if (buffer_uptodate(bh))
808 		return bh;
809 	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
810 	wait_on_buffer(bh);
811 	if (buffer_uptodate(bh))
812 		return bh;
813 	put_bh(bh);
814 	*err = -EIO;
815 	return NULL;
816 }
817 
818 int ext4_walk_page_buffers(handle_t *handle,
819 			   struct buffer_head *head,
820 			   unsigned from,
821 			   unsigned to,
822 			   int *partial,
823 			   int (*fn)(handle_t *handle,
824 				     struct buffer_head *bh))
825 {
826 	struct buffer_head *bh;
827 	unsigned block_start, block_end;
828 	unsigned blocksize = head->b_size;
829 	int err, ret = 0;
830 	struct buffer_head *next;
831 
832 	for (bh = head, block_start = 0;
833 	     ret == 0 && (bh != head || !block_start);
834 	     block_start = block_end, bh = next) {
835 		next = bh->b_this_page;
836 		block_end = block_start + blocksize;
837 		if (block_end <= from || block_start >= to) {
838 			if (partial && !buffer_uptodate(bh))
839 				*partial = 1;
840 			continue;
841 		}
842 		err = (*fn)(handle, bh);
843 		if (!ret)
844 			ret = err;
845 	}
846 	return ret;
847 }
848 
849 /*
850  * To preserve ordering, it is essential that the hole instantiation and
851  * the data write be encapsulated in a single transaction.  We cannot
852  * close off a transaction and start a new one between the ext4_get_block()
853  * and the commit_write().  So doing the jbd2_journal_start at the start of
854  * prepare_write() is the right place.
855  *
856  * Also, this function can nest inside ext4_writepage().  In that case, we
857  * *know* that ext4_writepage() has generated enough buffer credits to do the
858  * whole page.  So we won't block on the journal in that case, which is good,
859  * because the caller may be PF_MEMALLOC.
860  *
861  * By accident, ext4 can be reentered when a transaction is open via
862  * quota file writes.  If we were to commit the transaction while thus
863  * reentered, there can be a deadlock - we would be holding a quota
864  * lock, and the commit would never complete if another thread had a
865  * transaction open and was blocking on the quota lock - a ranking
866  * violation.
867  *
868  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
869  * will _not_ run commit under these circumstances because handle->h_ref
870  * is elevated.  We'll still have enough credits for the tiny quotafile
871  * write.
872  */
873 int do_journal_get_write_access(handle_t *handle,
874 				struct buffer_head *bh)
875 {
876 	int dirty = buffer_dirty(bh);
877 	int ret;
878 
879 	if (!buffer_mapped(bh) || buffer_freed(bh))
880 		return 0;
881 	/*
882 	 * __block_write_begin() could have dirtied some buffers. Clean
883 	 * the dirty bit as jbd2_journal_get_write_access() could complain
884 	 * otherwise about fs integrity issues. Setting of the dirty bit
885 	 * by __block_write_begin() isn't a real problem here as we clear
886 	 * the bit before releasing a page lock and thus writeback cannot
887 	 * ever write the buffer.
888 	 */
889 	if (dirty)
890 		clear_buffer_dirty(bh);
891 	BUFFER_TRACE(bh, "get write access");
892 	ret = ext4_journal_get_write_access(handle, bh);
893 	if (!ret && dirty)
894 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
895 	return ret;
896 }
897 
898 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
899 		   struct buffer_head *bh_result, int create);
900 static int ext4_write_begin(struct file *file, struct address_space *mapping,
901 			    loff_t pos, unsigned len, unsigned flags,
902 			    struct page **pagep, void **fsdata)
903 {
904 	struct inode *inode = mapping->host;
905 	int ret, needed_blocks;
906 	handle_t *handle;
907 	int retries = 0;
908 	struct page *page;
909 	pgoff_t index;
910 	unsigned from, to;
911 
912 	trace_ext4_write_begin(inode, pos, len, flags);
913 	/*
914 	 * Reserve one block more for addition to orphan list in case
915 	 * we allocate blocks but write fails for some reason
916 	 */
917 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
918 	index = pos >> PAGE_CACHE_SHIFT;
919 	from = pos & (PAGE_CACHE_SIZE - 1);
920 	to = from + len;
921 
922 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
923 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
924 						    flags, pagep);
925 		if (ret < 0)
926 			return ret;
927 		if (ret == 1)
928 			return 0;
929 	}
930 
931 	/*
932 	 * grab_cache_page_write_begin() can take a long time if the
933 	 * system is thrashing due to memory pressure, or if the page
934 	 * is being written back.  So grab it first before we start
935 	 * the transaction handle.  This also allows us to allocate
936 	 * the page (if needed) without using GFP_NOFS.
937 	 */
938 retry_grab:
939 	page = grab_cache_page_write_begin(mapping, index, flags);
940 	if (!page)
941 		return -ENOMEM;
942 	unlock_page(page);
943 
944 retry_journal:
945 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
946 	if (IS_ERR(handle)) {
947 		page_cache_release(page);
948 		return PTR_ERR(handle);
949 	}
950 
951 	lock_page(page);
952 	if (page->mapping != mapping) {
953 		/* The page got truncated from under us */
954 		unlock_page(page);
955 		page_cache_release(page);
956 		ext4_journal_stop(handle);
957 		goto retry_grab;
958 	}
959 	/* In case writeback began while the page was unlocked */
960 	wait_for_stable_page(page);
961 
962 	if (ext4_should_dioread_nolock(inode))
963 		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
964 	else
965 		ret = __block_write_begin(page, pos, len, ext4_get_block);
966 
967 	if (!ret && ext4_should_journal_data(inode)) {
968 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
969 					     from, to, NULL,
970 					     do_journal_get_write_access);
971 	}
972 
973 	if (ret) {
974 		unlock_page(page);
975 		/*
976 		 * __block_write_begin may have instantiated a few blocks
977 		 * outside i_size.  Trim these off again. Don't need
978 		 * i_size_read because we hold i_mutex.
979 		 *
980 		 * Add inode to orphan list in case we crash before
981 		 * truncate finishes
982 		 */
983 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
984 			ext4_orphan_add(handle, inode);
985 
986 		ext4_journal_stop(handle);
987 		if (pos + len > inode->i_size) {
988 			ext4_truncate_failed_write(inode);
989 			/*
990 			 * If truncate failed early the inode might
991 			 * still be on the orphan list; we need to
992 			 * make sure the inode is removed from the
993 			 * orphan list in that case.
994 			 */
995 			if (inode->i_nlink)
996 				ext4_orphan_del(NULL, inode);
997 		}
998 
999 		if (ret == -ENOSPC &&
1000 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1001 			goto retry_journal;
1002 		page_cache_release(page);
1003 		return ret;
1004 	}
1005 	*pagep = page;
1006 	return ret;
1007 }
1008 
1009 /* For write_end() in data=journal mode */
1010 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1011 {
1012 	int ret;
1013 	if (!buffer_mapped(bh) || buffer_freed(bh))
1014 		return 0;
1015 	set_buffer_uptodate(bh);
1016 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1017 	clear_buffer_meta(bh);
1018 	clear_buffer_prio(bh);
1019 	return ret;
1020 }
1021 
1022 /*
1023  * We need to pick up the new inode size which generic_commit_write gave us
1024  * `file' can be NULL - eg, when called from page_symlink().
1025  *
1026  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1027  * buffers are managed internally.
1028  */
1029 static int ext4_write_end(struct file *file,
1030 			  struct address_space *mapping,
1031 			  loff_t pos, unsigned len, unsigned copied,
1032 			  struct page *page, void *fsdata)
1033 {
1034 	handle_t *handle = ext4_journal_current_handle();
1035 	struct inode *inode = mapping->host;
1036 	int ret = 0, ret2;
1037 	int i_size_changed = 0;
1038 
1039 	trace_ext4_write_end(inode, pos, len, copied);
1040 	if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1041 		ret = ext4_jbd2_file_inode(handle, inode);
1042 		if (ret) {
1043 			unlock_page(page);
1044 			page_cache_release(page);
1045 			goto errout;
1046 		}
1047 	}
1048 
1049 	if (ext4_has_inline_data(inode)) {
1050 		ret = ext4_write_inline_data_end(inode, pos, len,
1051 						 copied, page);
1052 		if (ret < 0)
1053 			goto errout;
1054 		copied = ret;
1055 	} else
1056 		copied = block_write_end(file, mapping, pos,
1057 					 len, copied, page, fsdata);
1058 
1059 	/*
1060 	 * No need to use i_size_read() here, the i_size
1061 	 * cannot change under us because we hole i_mutex.
1062 	 *
1063 	 * But it's important to update i_size while still holding page lock:
1064 	 * page writeout could otherwise come in and zero beyond i_size.
1065 	 */
1066 	if (pos + copied > inode->i_size) {
1067 		i_size_write(inode, pos + copied);
1068 		i_size_changed = 1;
1069 	}
1070 
1071 	if (pos + copied > EXT4_I(inode)->i_disksize) {
1072 		/* We need to mark inode dirty even if
1073 		 * new_i_size is less that inode->i_size
1074 		 * but greater than i_disksize. (hint delalloc)
1075 		 */
1076 		ext4_update_i_disksize(inode, (pos + copied));
1077 		i_size_changed = 1;
1078 	}
1079 	unlock_page(page);
1080 	page_cache_release(page);
1081 
1082 	/*
1083 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1084 	 * makes the holding time of page lock longer. Second, it forces lock
1085 	 * ordering of page lock and transaction start for journaling
1086 	 * filesystems.
1087 	 */
1088 	if (i_size_changed)
1089 		ext4_mark_inode_dirty(handle, inode);
1090 
1091 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1092 		/* if we have allocated more blocks and copied
1093 		 * less. We will have blocks allocated outside
1094 		 * inode->i_size. So truncate them
1095 		 */
1096 		ext4_orphan_add(handle, inode);
1097 errout:
1098 	ret2 = ext4_journal_stop(handle);
1099 	if (!ret)
1100 		ret = ret2;
1101 
1102 	if (pos + len > inode->i_size) {
1103 		ext4_truncate_failed_write(inode);
1104 		/*
1105 		 * If truncate failed early the inode might still be
1106 		 * on the orphan list; we need to make sure the inode
1107 		 * is removed from the orphan list in that case.
1108 		 */
1109 		if (inode->i_nlink)
1110 			ext4_orphan_del(NULL, inode);
1111 	}
1112 
1113 	return ret ? ret : copied;
1114 }
1115 
1116 static int ext4_journalled_write_end(struct file *file,
1117 				     struct address_space *mapping,
1118 				     loff_t pos, unsigned len, unsigned copied,
1119 				     struct page *page, void *fsdata)
1120 {
1121 	handle_t *handle = ext4_journal_current_handle();
1122 	struct inode *inode = mapping->host;
1123 	int ret = 0, ret2;
1124 	int partial = 0;
1125 	unsigned from, to;
1126 	loff_t new_i_size;
1127 
1128 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1129 	from = pos & (PAGE_CACHE_SIZE - 1);
1130 	to = from + len;
1131 
1132 	BUG_ON(!ext4_handle_valid(handle));
1133 
1134 	if (ext4_has_inline_data(inode))
1135 		copied = ext4_write_inline_data_end(inode, pos, len,
1136 						    copied, page);
1137 	else {
1138 		if (copied < len) {
1139 			if (!PageUptodate(page))
1140 				copied = 0;
1141 			page_zero_new_buffers(page, from+copied, to);
1142 		}
1143 
1144 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1145 					     to, &partial, write_end_fn);
1146 		if (!partial)
1147 			SetPageUptodate(page);
1148 	}
1149 	new_i_size = pos + copied;
1150 	if (new_i_size > inode->i_size)
1151 		i_size_write(inode, pos+copied);
1152 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1153 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1154 	if (new_i_size > EXT4_I(inode)->i_disksize) {
1155 		ext4_update_i_disksize(inode, new_i_size);
1156 		ret2 = ext4_mark_inode_dirty(handle, inode);
1157 		if (!ret)
1158 			ret = ret2;
1159 	}
1160 
1161 	unlock_page(page);
1162 	page_cache_release(page);
1163 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1164 		/* if we have allocated more blocks and copied
1165 		 * less. We will have blocks allocated outside
1166 		 * inode->i_size. So truncate them
1167 		 */
1168 		ext4_orphan_add(handle, inode);
1169 
1170 	ret2 = ext4_journal_stop(handle);
1171 	if (!ret)
1172 		ret = ret2;
1173 	if (pos + len > inode->i_size) {
1174 		ext4_truncate_failed_write(inode);
1175 		/*
1176 		 * If truncate failed early the inode might still be
1177 		 * on the orphan list; we need to make sure the inode
1178 		 * is removed from the orphan list in that case.
1179 		 */
1180 		if (inode->i_nlink)
1181 			ext4_orphan_del(NULL, inode);
1182 	}
1183 
1184 	return ret ? ret : copied;
1185 }
1186 
1187 /*
1188  * Reserve a single cluster located at lblock
1189  */
1190 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1191 {
1192 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1193 	struct ext4_inode_info *ei = EXT4_I(inode);
1194 	unsigned int md_needed;
1195 	int ret;
1196 
1197 	/*
1198 	 * We will charge metadata quota at writeout time; this saves
1199 	 * us from metadata over-estimation, though we may go over by
1200 	 * a small amount in the end.  Here we just reserve for data.
1201 	 */
1202 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1203 	if (ret)
1204 		return ret;
1205 
1206 	/*
1207 	 * recalculate the amount of metadata blocks to reserve
1208 	 * in order to allocate nrblocks
1209 	 * worse case is one extent per block
1210 	 */
1211 	spin_lock(&ei->i_block_reservation_lock);
1212 	/*
1213 	 * ext4_calc_metadata_amount() has side effects, which we have
1214 	 * to be prepared undo if we fail to claim space.
1215 	 */
1216 	md_needed = 0;
1217 	trace_ext4_da_reserve_space(inode, 0);
1218 
1219 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1220 		spin_unlock(&ei->i_block_reservation_lock);
1221 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1222 		return -ENOSPC;
1223 	}
1224 	ei->i_reserved_data_blocks++;
1225 	spin_unlock(&ei->i_block_reservation_lock);
1226 
1227 	return 0;       /* success */
1228 }
1229 
1230 static void ext4_da_release_space(struct inode *inode, int to_free)
1231 {
1232 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1233 	struct ext4_inode_info *ei = EXT4_I(inode);
1234 
1235 	if (!to_free)
1236 		return;		/* Nothing to release, exit */
1237 
1238 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1239 
1240 	trace_ext4_da_release_space(inode, to_free);
1241 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1242 		/*
1243 		 * if there aren't enough reserved blocks, then the
1244 		 * counter is messed up somewhere.  Since this
1245 		 * function is called from invalidate page, it's
1246 		 * harmless to return without any action.
1247 		 */
1248 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1249 			 "ino %lu, to_free %d with only %d reserved "
1250 			 "data blocks", inode->i_ino, to_free,
1251 			 ei->i_reserved_data_blocks);
1252 		WARN_ON(1);
1253 		to_free = ei->i_reserved_data_blocks;
1254 	}
1255 	ei->i_reserved_data_blocks -= to_free;
1256 
1257 	/* update fs dirty data blocks counter */
1258 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1259 
1260 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1261 
1262 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1263 }
1264 
1265 static void ext4_da_page_release_reservation(struct page *page,
1266 					     unsigned int offset,
1267 					     unsigned int length)
1268 {
1269 	int to_release = 0;
1270 	struct buffer_head *head, *bh;
1271 	unsigned int curr_off = 0;
1272 	struct inode *inode = page->mapping->host;
1273 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1274 	unsigned int stop = offset + length;
1275 	int num_clusters;
1276 	ext4_fsblk_t lblk;
1277 
1278 	BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1279 
1280 	head = page_buffers(page);
1281 	bh = head;
1282 	do {
1283 		unsigned int next_off = curr_off + bh->b_size;
1284 
1285 		if (next_off > stop)
1286 			break;
1287 
1288 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1289 			to_release++;
1290 			clear_buffer_delay(bh);
1291 		}
1292 		curr_off = next_off;
1293 	} while ((bh = bh->b_this_page) != head);
1294 
1295 	if (to_release) {
1296 		lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1297 		ext4_es_remove_extent(inode, lblk, to_release);
1298 	}
1299 
1300 	/* If we have released all the blocks belonging to a cluster, then we
1301 	 * need to release the reserved space for that cluster. */
1302 	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1303 	while (num_clusters > 0) {
1304 		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1305 			((num_clusters - 1) << sbi->s_cluster_bits);
1306 		if (sbi->s_cluster_ratio == 1 ||
1307 		    !ext4_find_delalloc_cluster(inode, lblk))
1308 			ext4_da_release_space(inode, 1);
1309 
1310 		num_clusters--;
1311 	}
1312 }
1313 
1314 /*
1315  * Delayed allocation stuff
1316  */
1317 
1318 struct mpage_da_data {
1319 	struct inode *inode;
1320 	struct writeback_control *wbc;
1321 
1322 	pgoff_t first_page;	/* The first page to write */
1323 	pgoff_t next_page;	/* Current page to examine */
1324 	pgoff_t last_page;	/* Last page to examine */
1325 	/*
1326 	 * Extent to map - this can be after first_page because that can be
1327 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1328 	 * is delalloc or unwritten.
1329 	 */
1330 	struct ext4_map_blocks map;
1331 	struct ext4_io_submit io_submit;	/* IO submission data */
1332 };
1333 
1334 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1335 				       bool invalidate)
1336 {
1337 	int nr_pages, i;
1338 	pgoff_t index, end;
1339 	struct pagevec pvec;
1340 	struct inode *inode = mpd->inode;
1341 	struct address_space *mapping = inode->i_mapping;
1342 
1343 	/* This is necessary when next_page == 0. */
1344 	if (mpd->first_page >= mpd->next_page)
1345 		return;
1346 
1347 	index = mpd->first_page;
1348 	end   = mpd->next_page - 1;
1349 	if (invalidate) {
1350 		ext4_lblk_t start, last;
1351 		start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1352 		last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1353 		ext4_es_remove_extent(inode, start, last - start + 1);
1354 	}
1355 
1356 	pagevec_init(&pvec, 0);
1357 	while (index <= end) {
1358 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1359 		if (nr_pages == 0)
1360 			break;
1361 		for (i = 0; i < nr_pages; i++) {
1362 			struct page *page = pvec.pages[i];
1363 			if (page->index > end)
1364 				break;
1365 			BUG_ON(!PageLocked(page));
1366 			BUG_ON(PageWriteback(page));
1367 			if (invalidate) {
1368 				block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1369 				ClearPageUptodate(page);
1370 			}
1371 			unlock_page(page);
1372 		}
1373 		index = pvec.pages[nr_pages - 1]->index + 1;
1374 		pagevec_release(&pvec);
1375 	}
1376 }
1377 
1378 static void ext4_print_free_blocks(struct inode *inode)
1379 {
1380 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1381 	struct super_block *sb = inode->i_sb;
1382 	struct ext4_inode_info *ei = EXT4_I(inode);
1383 
1384 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1385 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1386 			ext4_count_free_clusters(sb)));
1387 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1388 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1389 	       (long long) EXT4_C2B(EXT4_SB(sb),
1390 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1391 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1392 	       (long long) EXT4_C2B(EXT4_SB(sb),
1393 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1394 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1395 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1396 		 ei->i_reserved_data_blocks);
1397 	return;
1398 }
1399 
1400 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1401 {
1402 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1403 }
1404 
1405 /*
1406  * This function is grabs code from the very beginning of
1407  * ext4_map_blocks, but assumes that the caller is from delayed write
1408  * time. This function looks up the requested blocks and sets the
1409  * buffer delay bit under the protection of i_data_sem.
1410  */
1411 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1412 			      struct ext4_map_blocks *map,
1413 			      struct buffer_head *bh)
1414 {
1415 	struct extent_status es;
1416 	int retval;
1417 	sector_t invalid_block = ~((sector_t) 0xffff);
1418 #ifdef ES_AGGRESSIVE_TEST
1419 	struct ext4_map_blocks orig_map;
1420 
1421 	memcpy(&orig_map, map, sizeof(*map));
1422 #endif
1423 
1424 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1425 		invalid_block = ~0;
1426 
1427 	map->m_flags = 0;
1428 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1429 		  "logical block %lu\n", inode->i_ino, map->m_len,
1430 		  (unsigned long) map->m_lblk);
1431 
1432 	/* Lookup extent status tree firstly */
1433 	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1434 		ext4_es_lru_add(inode);
1435 		if (ext4_es_is_hole(&es)) {
1436 			retval = 0;
1437 			down_read(&EXT4_I(inode)->i_data_sem);
1438 			goto add_delayed;
1439 		}
1440 
1441 		/*
1442 		 * Delayed extent could be allocated by fallocate.
1443 		 * So we need to check it.
1444 		 */
1445 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1446 			map_bh(bh, inode->i_sb, invalid_block);
1447 			set_buffer_new(bh);
1448 			set_buffer_delay(bh);
1449 			return 0;
1450 		}
1451 
1452 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1453 		retval = es.es_len - (iblock - es.es_lblk);
1454 		if (retval > map->m_len)
1455 			retval = map->m_len;
1456 		map->m_len = retval;
1457 		if (ext4_es_is_written(&es))
1458 			map->m_flags |= EXT4_MAP_MAPPED;
1459 		else if (ext4_es_is_unwritten(&es))
1460 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1461 		else
1462 			BUG_ON(1);
1463 
1464 #ifdef ES_AGGRESSIVE_TEST
1465 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1466 #endif
1467 		return retval;
1468 	}
1469 
1470 	/*
1471 	 * Try to see if we can get the block without requesting a new
1472 	 * file system block.
1473 	 */
1474 	down_read(&EXT4_I(inode)->i_data_sem);
1475 	if (ext4_has_inline_data(inode)) {
1476 		/*
1477 		 * We will soon create blocks for this page, and let
1478 		 * us pretend as if the blocks aren't allocated yet.
1479 		 * In case of clusters, we have to handle the work
1480 		 * of mapping from cluster so that the reserved space
1481 		 * is calculated properly.
1482 		 */
1483 		if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1484 		    ext4_find_delalloc_cluster(inode, map->m_lblk))
1485 			map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1486 		retval = 0;
1487 	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1488 		retval = ext4_ext_map_blocks(NULL, inode, map,
1489 					     EXT4_GET_BLOCKS_NO_PUT_HOLE);
1490 	else
1491 		retval = ext4_ind_map_blocks(NULL, inode, map,
1492 					     EXT4_GET_BLOCKS_NO_PUT_HOLE);
1493 
1494 add_delayed:
1495 	if (retval == 0) {
1496 		int ret;
1497 		/*
1498 		 * XXX: __block_prepare_write() unmaps passed block,
1499 		 * is it OK?
1500 		 */
1501 		/*
1502 		 * If the block was allocated from previously allocated cluster,
1503 		 * then we don't need to reserve it again. However we still need
1504 		 * to reserve metadata for every block we're going to write.
1505 		 */
1506 		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1507 			ret = ext4_da_reserve_space(inode, iblock);
1508 			if (ret) {
1509 				/* not enough space to reserve */
1510 				retval = ret;
1511 				goto out_unlock;
1512 			}
1513 		}
1514 
1515 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1516 					    ~0, EXTENT_STATUS_DELAYED);
1517 		if (ret) {
1518 			retval = ret;
1519 			goto out_unlock;
1520 		}
1521 
1522 		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1523 		 * and it should not appear on the bh->b_state.
1524 		 */
1525 		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1526 
1527 		map_bh(bh, inode->i_sb, invalid_block);
1528 		set_buffer_new(bh);
1529 		set_buffer_delay(bh);
1530 	} else if (retval > 0) {
1531 		int ret;
1532 		unsigned int status;
1533 
1534 		if (unlikely(retval != map->m_len)) {
1535 			ext4_warning(inode->i_sb,
1536 				     "ES len assertion failed for inode "
1537 				     "%lu: retval %d != map->m_len %d",
1538 				     inode->i_ino, retval, map->m_len);
1539 			WARN_ON(1);
1540 		}
1541 
1542 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1543 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1544 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1545 					    map->m_pblk, status);
1546 		if (ret != 0)
1547 			retval = ret;
1548 	}
1549 
1550 out_unlock:
1551 	up_read((&EXT4_I(inode)->i_data_sem));
1552 
1553 	return retval;
1554 }
1555 
1556 /*
1557  * This is a special get_blocks_t callback which is used by
1558  * ext4_da_write_begin().  It will either return mapped block or
1559  * reserve space for a single block.
1560  *
1561  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1562  * We also have b_blocknr = -1 and b_bdev initialized properly
1563  *
1564  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1565  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1566  * initialized properly.
1567  */
1568 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1569 			   struct buffer_head *bh, int create)
1570 {
1571 	struct ext4_map_blocks map;
1572 	int ret = 0;
1573 
1574 	BUG_ON(create == 0);
1575 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1576 
1577 	map.m_lblk = iblock;
1578 	map.m_len = 1;
1579 
1580 	/*
1581 	 * first, we need to know whether the block is allocated already
1582 	 * preallocated blocks are unmapped but should treated
1583 	 * the same as allocated blocks.
1584 	 */
1585 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1586 	if (ret <= 0)
1587 		return ret;
1588 
1589 	map_bh(bh, inode->i_sb, map.m_pblk);
1590 	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1591 
1592 	if (buffer_unwritten(bh)) {
1593 		/* A delayed write to unwritten bh should be marked
1594 		 * new and mapped.  Mapped ensures that we don't do
1595 		 * get_block multiple times when we write to the same
1596 		 * offset and new ensures that we do proper zero out
1597 		 * for partial write.
1598 		 */
1599 		set_buffer_new(bh);
1600 		set_buffer_mapped(bh);
1601 	}
1602 	return 0;
1603 }
1604 
1605 static int bget_one(handle_t *handle, struct buffer_head *bh)
1606 {
1607 	get_bh(bh);
1608 	return 0;
1609 }
1610 
1611 static int bput_one(handle_t *handle, struct buffer_head *bh)
1612 {
1613 	put_bh(bh);
1614 	return 0;
1615 }
1616 
1617 static int __ext4_journalled_writepage(struct page *page,
1618 				       unsigned int len)
1619 {
1620 	struct address_space *mapping = page->mapping;
1621 	struct inode *inode = mapping->host;
1622 	struct buffer_head *page_bufs = NULL;
1623 	handle_t *handle = NULL;
1624 	int ret = 0, err = 0;
1625 	int inline_data = ext4_has_inline_data(inode);
1626 	struct buffer_head *inode_bh = NULL;
1627 
1628 	ClearPageChecked(page);
1629 
1630 	if (inline_data) {
1631 		BUG_ON(page->index != 0);
1632 		BUG_ON(len > ext4_get_max_inline_size(inode));
1633 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1634 		if (inode_bh == NULL)
1635 			goto out;
1636 	} else {
1637 		page_bufs = page_buffers(page);
1638 		if (!page_bufs) {
1639 			BUG();
1640 			goto out;
1641 		}
1642 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1643 				       NULL, bget_one);
1644 	}
1645 	/* As soon as we unlock the page, it can go away, but we have
1646 	 * references to buffers so we are safe */
1647 	unlock_page(page);
1648 
1649 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1650 				    ext4_writepage_trans_blocks(inode));
1651 	if (IS_ERR(handle)) {
1652 		ret = PTR_ERR(handle);
1653 		goto out;
1654 	}
1655 
1656 	BUG_ON(!ext4_handle_valid(handle));
1657 
1658 	if (inline_data) {
1659 		BUFFER_TRACE(inode_bh, "get write access");
1660 		ret = ext4_journal_get_write_access(handle, inode_bh);
1661 
1662 		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1663 
1664 	} else {
1665 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1666 					     do_journal_get_write_access);
1667 
1668 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1669 					     write_end_fn);
1670 	}
1671 	if (ret == 0)
1672 		ret = err;
1673 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1674 	err = ext4_journal_stop(handle);
1675 	if (!ret)
1676 		ret = err;
1677 
1678 	if (!ext4_has_inline_data(inode))
1679 		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1680 				       NULL, bput_one);
1681 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1682 out:
1683 	brelse(inode_bh);
1684 	return ret;
1685 }
1686 
1687 /*
1688  * Note that we don't need to start a transaction unless we're journaling data
1689  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1690  * need to file the inode to the transaction's list in ordered mode because if
1691  * we are writing back data added by write(), the inode is already there and if
1692  * we are writing back data modified via mmap(), no one guarantees in which
1693  * transaction the data will hit the disk. In case we are journaling data, we
1694  * cannot start transaction directly because transaction start ranks above page
1695  * lock so we have to do some magic.
1696  *
1697  * This function can get called via...
1698  *   - ext4_writepages after taking page lock (have journal handle)
1699  *   - journal_submit_inode_data_buffers (no journal handle)
1700  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1701  *   - grab_page_cache when doing write_begin (have journal handle)
1702  *
1703  * We don't do any block allocation in this function. If we have page with
1704  * multiple blocks we need to write those buffer_heads that are mapped. This
1705  * is important for mmaped based write. So if we do with blocksize 1K
1706  * truncate(f, 1024);
1707  * a = mmap(f, 0, 4096);
1708  * a[0] = 'a';
1709  * truncate(f, 4096);
1710  * we have in the page first buffer_head mapped via page_mkwrite call back
1711  * but other buffer_heads would be unmapped but dirty (dirty done via the
1712  * do_wp_page). So writepage should write the first block. If we modify
1713  * the mmap area beyond 1024 we will again get a page_fault and the
1714  * page_mkwrite callback will do the block allocation and mark the
1715  * buffer_heads mapped.
1716  *
1717  * We redirty the page if we have any buffer_heads that is either delay or
1718  * unwritten in the page.
1719  *
1720  * We can get recursively called as show below.
1721  *
1722  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1723  *		ext4_writepage()
1724  *
1725  * But since we don't do any block allocation we should not deadlock.
1726  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1727  */
1728 static int ext4_writepage(struct page *page,
1729 			  struct writeback_control *wbc)
1730 {
1731 	int ret = 0;
1732 	loff_t size;
1733 	unsigned int len;
1734 	struct buffer_head *page_bufs = NULL;
1735 	struct inode *inode = page->mapping->host;
1736 	struct ext4_io_submit io_submit;
1737 	bool keep_towrite = false;
1738 
1739 	trace_ext4_writepage(page);
1740 	size = i_size_read(inode);
1741 	if (page->index == size >> PAGE_CACHE_SHIFT)
1742 		len = size & ~PAGE_CACHE_MASK;
1743 	else
1744 		len = PAGE_CACHE_SIZE;
1745 
1746 	page_bufs = page_buffers(page);
1747 	/*
1748 	 * We cannot do block allocation or other extent handling in this
1749 	 * function. If there are buffers needing that, we have to redirty
1750 	 * the page. But we may reach here when we do a journal commit via
1751 	 * journal_submit_inode_data_buffers() and in that case we must write
1752 	 * allocated buffers to achieve data=ordered mode guarantees.
1753 	 */
1754 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1755 				   ext4_bh_delay_or_unwritten)) {
1756 		redirty_page_for_writepage(wbc, page);
1757 		if (current->flags & PF_MEMALLOC) {
1758 			/*
1759 			 * For memory cleaning there's no point in writing only
1760 			 * some buffers. So just bail out. Warn if we came here
1761 			 * from direct reclaim.
1762 			 */
1763 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1764 							== PF_MEMALLOC);
1765 			unlock_page(page);
1766 			return 0;
1767 		}
1768 		keep_towrite = true;
1769 	}
1770 
1771 	if (PageChecked(page) && ext4_should_journal_data(inode))
1772 		/*
1773 		 * It's mmapped pagecache.  Add buffers and journal it.  There
1774 		 * doesn't seem much point in redirtying the page here.
1775 		 */
1776 		return __ext4_journalled_writepage(page, len);
1777 
1778 	ext4_io_submit_init(&io_submit, wbc);
1779 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1780 	if (!io_submit.io_end) {
1781 		redirty_page_for_writepage(wbc, page);
1782 		unlock_page(page);
1783 		return -ENOMEM;
1784 	}
1785 	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1786 	ext4_io_submit(&io_submit);
1787 	/* Drop io_end reference we got from init */
1788 	ext4_put_io_end_defer(io_submit.io_end);
1789 	return ret;
1790 }
1791 
1792 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1793 {
1794 	int len;
1795 	loff_t size = i_size_read(mpd->inode);
1796 	int err;
1797 
1798 	BUG_ON(page->index != mpd->first_page);
1799 	if (page->index == size >> PAGE_CACHE_SHIFT)
1800 		len = size & ~PAGE_CACHE_MASK;
1801 	else
1802 		len = PAGE_CACHE_SIZE;
1803 	clear_page_dirty_for_io(page);
1804 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1805 	if (!err)
1806 		mpd->wbc->nr_to_write--;
1807 	mpd->first_page++;
1808 
1809 	return err;
1810 }
1811 
1812 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1813 
1814 /*
1815  * mballoc gives us at most this number of blocks...
1816  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1817  * The rest of mballoc seems to handle chunks up to full group size.
1818  */
1819 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1820 
1821 /*
1822  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1823  *
1824  * @mpd - extent of blocks
1825  * @lblk - logical number of the block in the file
1826  * @bh - buffer head we want to add to the extent
1827  *
1828  * The function is used to collect contig. blocks in the same state. If the
1829  * buffer doesn't require mapping for writeback and we haven't started the
1830  * extent of buffers to map yet, the function returns 'true' immediately - the
1831  * caller can write the buffer right away. Otherwise the function returns true
1832  * if the block has been added to the extent, false if the block couldn't be
1833  * added.
1834  */
1835 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1836 				   struct buffer_head *bh)
1837 {
1838 	struct ext4_map_blocks *map = &mpd->map;
1839 
1840 	/* Buffer that doesn't need mapping for writeback? */
1841 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1842 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1843 		/* So far no extent to map => we write the buffer right away */
1844 		if (map->m_len == 0)
1845 			return true;
1846 		return false;
1847 	}
1848 
1849 	/* First block in the extent? */
1850 	if (map->m_len == 0) {
1851 		map->m_lblk = lblk;
1852 		map->m_len = 1;
1853 		map->m_flags = bh->b_state & BH_FLAGS;
1854 		return true;
1855 	}
1856 
1857 	/* Don't go larger than mballoc is willing to allocate */
1858 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1859 		return false;
1860 
1861 	/* Can we merge the block to our big extent? */
1862 	if (lblk == map->m_lblk + map->m_len &&
1863 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
1864 		map->m_len++;
1865 		return true;
1866 	}
1867 	return false;
1868 }
1869 
1870 /*
1871  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1872  *
1873  * @mpd - extent of blocks for mapping
1874  * @head - the first buffer in the page
1875  * @bh - buffer we should start processing from
1876  * @lblk - logical number of the block in the file corresponding to @bh
1877  *
1878  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1879  * the page for IO if all buffers in this page were mapped and there's no
1880  * accumulated extent of buffers to map or add buffers in the page to the
1881  * extent of buffers to map. The function returns 1 if the caller can continue
1882  * by processing the next page, 0 if it should stop adding buffers to the
1883  * extent to map because we cannot extend it anymore. It can also return value
1884  * < 0 in case of error during IO submission.
1885  */
1886 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1887 				   struct buffer_head *head,
1888 				   struct buffer_head *bh,
1889 				   ext4_lblk_t lblk)
1890 {
1891 	struct inode *inode = mpd->inode;
1892 	int err;
1893 	ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1894 							>> inode->i_blkbits;
1895 
1896 	do {
1897 		BUG_ON(buffer_locked(bh));
1898 
1899 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1900 			/* Found extent to map? */
1901 			if (mpd->map.m_len)
1902 				return 0;
1903 			/* Everything mapped so far and we hit EOF */
1904 			break;
1905 		}
1906 	} while (lblk++, (bh = bh->b_this_page) != head);
1907 	/* So far everything mapped? Submit the page for IO. */
1908 	if (mpd->map.m_len == 0) {
1909 		err = mpage_submit_page(mpd, head->b_page);
1910 		if (err < 0)
1911 			return err;
1912 	}
1913 	return lblk < blocks;
1914 }
1915 
1916 /*
1917  * mpage_map_buffers - update buffers corresponding to changed extent and
1918  *		       submit fully mapped pages for IO
1919  *
1920  * @mpd - description of extent to map, on return next extent to map
1921  *
1922  * Scan buffers corresponding to changed extent (we expect corresponding pages
1923  * to be already locked) and update buffer state according to new extent state.
1924  * We map delalloc buffers to their physical location, clear unwritten bits,
1925  * and mark buffers as uninit when we perform writes to unwritten extents
1926  * and do extent conversion after IO is finished. If the last page is not fully
1927  * mapped, we update @map to the next extent in the last page that needs
1928  * mapping. Otherwise we submit the page for IO.
1929  */
1930 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
1931 {
1932 	struct pagevec pvec;
1933 	int nr_pages, i;
1934 	struct inode *inode = mpd->inode;
1935 	struct buffer_head *head, *bh;
1936 	int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
1937 	pgoff_t start, end;
1938 	ext4_lblk_t lblk;
1939 	sector_t pblock;
1940 	int err;
1941 
1942 	start = mpd->map.m_lblk >> bpp_bits;
1943 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
1944 	lblk = start << bpp_bits;
1945 	pblock = mpd->map.m_pblk;
1946 
1947 	pagevec_init(&pvec, 0);
1948 	while (start <= end) {
1949 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
1950 					  PAGEVEC_SIZE);
1951 		if (nr_pages == 0)
1952 			break;
1953 		for (i = 0; i < nr_pages; i++) {
1954 			struct page *page = pvec.pages[i];
1955 
1956 			if (page->index > end)
1957 				break;
1958 			/* Up to 'end' pages must be contiguous */
1959 			BUG_ON(page->index != start);
1960 			bh = head = page_buffers(page);
1961 			do {
1962 				if (lblk < mpd->map.m_lblk)
1963 					continue;
1964 				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
1965 					/*
1966 					 * Buffer after end of mapped extent.
1967 					 * Find next buffer in the page to map.
1968 					 */
1969 					mpd->map.m_len = 0;
1970 					mpd->map.m_flags = 0;
1971 					/*
1972 					 * FIXME: If dioread_nolock supports
1973 					 * blocksize < pagesize, we need to make
1974 					 * sure we add size mapped so far to
1975 					 * io_end->size as the following call
1976 					 * can submit the page for IO.
1977 					 */
1978 					err = mpage_process_page_bufs(mpd, head,
1979 								      bh, lblk);
1980 					pagevec_release(&pvec);
1981 					if (err > 0)
1982 						err = 0;
1983 					return err;
1984 				}
1985 				if (buffer_delay(bh)) {
1986 					clear_buffer_delay(bh);
1987 					bh->b_blocknr = pblock++;
1988 				}
1989 				clear_buffer_unwritten(bh);
1990 			} while (lblk++, (bh = bh->b_this_page) != head);
1991 
1992 			/*
1993 			 * FIXME: This is going to break if dioread_nolock
1994 			 * supports blocksize < pagesize as we will try to
1995 			 * convert potentially unmapped parts of inode.
1996 			 */
1997 			mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
1998 			/* Page fully mapped - let IO run! */
1999 			err = mpage_submit_page(mpd, page);
2000 			if (err < 0) {
2001 				pagevec_release(&pvec);
2002 				return err;
2003 			}
2004 			start++;
2005 		}
2006 		pagevec_release(&pvec);
2007 	}
2008 	/* Extent fully mapped and matches with page boundary. We are done. */
2009 	mpd->map.m_len = 0;
2010 	mpd->map.m_flags = 0;
2011 	return 0;
2012 }
2013 
2014 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2015 {
2016 	struct inode *inode = mpd->inode;
2017 	struct ext4_map_blocks *map = &mpd->map;
2018 	int get_blocks_flags;
2019 	int err, dioread_nolock;
2020 
2021 	trace_ext4_da_write_pages_extent(inode, map);
2022 	/*
2023 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2024 	 * to convert an unwritten extent to be initialized (in the case
2025 	 * where we have written into one or more preallocated blocks).  It is
2026 	 * possible that we're going to need more metadata blocks than
2027 	 * previously reserved. However we must not fail because we're in
2028 	 * writeback and there is nothing we can do about it so it might result
2029 	 * in data loss.  So use reserved blocks to allocate metadata if
2030 	 * possible.
2031 	 *
2032 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2033 	 * in question are delalloc blocks.  This affects functions in many
2034 	 * different parts of the allocation call path.  This flag exists
2035 	 * primarily because we don't want to change *many* call functions, so
2036 	 * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2037 	 * once the inode's allocation semaphore is taken.
2038 	 */
2039 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2040 			   EXT4_GET_BLOCKS_METADATA_NOFAIL;
2041 	dioread_nolock = ext4_should_dioread_nolock(inode);
2042 	if (dioread_nolock)
2043 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2044 	if (map->m_flags & (1 << BH_Delay))
2045 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2046 
2047 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2048 	if (err < 0)
2049 		return err;
2050 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2051 		if (!mpd->io_submit.io_end->handle &&
2052 		    ext4_handle_valid(handle)) {
2053 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2054 			handle->h_rsv_handle = NULL;
2055 		}
2056 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2057 	}
2058 
2059 	BUG_ON(map->m_len == 0);
2060 	if (map->m_flags & EXT4_MAP_NEW) {
2061 		struct block_device *bdev = inode->i_sb->s_bdev;
2062 		int i;
2063 
2064 		for (i = 0; i < map->m_len; i++)
2065 			unmap_underlying_metadata(bdev, map->m_pblk + i);
2066 	}
2067 	return 0;
2068 }
2069 
2070 /*
2071  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2072  *				 mpd->len and submit pages underlying it for IO
2073  *
2074  * @handle - handle for journal operations
2075  * @mpd - extent to map
2076  * @give_up_on_write - we set this to true iff there is a fatal error and there
2077  *                     is no hope of writing the data. The caller should discard
2078  *                     dirty pages to avoid infinite loops.
2079  *
2080  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2081  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2082  * them to initialized or split the described range from larger unwritten
2083  * extent. Note that we need not map all the described range since allocation
2084  * can return less blocks or the range is covered by more unwritten extents. We
2085  * cannot map more because we are limited by reserved transaction credits. On
2086  * the other hand we always make sure that the last touched page is fully
2087  * mapped so that it can be written out (and thus forward progress is
2088  * guaranteed). After mapping we submit all mapped pages for IO.
2089  */
2090 static int mpage_map_and_submit_extent(handle_t *handle,
2091 				       struct mpage_da_data *mpd,
2092 				       bool *give_up_on_write)
2093 {
2094 	struct inode *inode = mpd->inode;
2095 	struct ext4_map_blocks *map = &mpd->map;
2096 	int err;
2097 	loff_t disksize;
2098 
2099 	mpd->io_submit.io_end->offset =
2100 				((loff_t)map->m_lblk) << inode->i_blkbits;
2101 	do {
2102 		err = mpage_map_one_extent(handle, mpd);
2103 		if (err < 0) {
2104 			struct super_block *sb = inode->i_sb;
2105 
2106 			if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2107 				goto invalidate_dirty_pages;
2108 			/*
2109 			 * Let the uper layers retry transient errors.
2110 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2111 			 * is non-zero, a commit should free up blocks.
2112 			 */
2113 			if ((err == -ENOMEM) ||
2114 			    (err == -ENOSPC && ext4_count_free_clusters(sb)))
2115 				return err;
2116 			ext4_msg(sb, KERN_CRIT,
2117 				 "Delayed block allocation failed for "
2118 				 "inode %lu at logical offset %llu with"
2119 				 " max blocks %u with error %d",
2120 				 inode->i_ino,
2121 				 (unsigned long long)map->m_lblk,
2122 				 (unsigned)map->m_len, -err);
2123 			ext4_msg(sb, KERN_CRIT,
2124 				 "This should not happen!! Data will "
2125 				 "be lost\n");
2126 			if (err == -ENOSPC)
2127 				ext4_print_free_blocks(inode);
2128 		invalidate_dirty_pages:
2129 			*give_up_on_write = true;
2130 			return err;
2131 		}
2132 		/*
2133 		 * Update buffer state, submit mapped pages, and get us new
2134 		 * extent to map
2135 		 */
2136 		err = mpage_map_and_submit_buffers(mpd);
2137 		if (err < 0)
2138 			return err;
2139 	} while (map->m_len);
2140 
2141 	/*
2142 	 * Update on-disk size after IO is submitted.  Races with
2143 	 * truncate are avoided by checking i_size under i_data_sem.
2144 	 */
2145 	disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2146 	if (disksize > EXT4_I(inode)->i_disksize) {
2147 		int err2;
2148 		loff_t i_size;
2149 
2150 		down_write(&EXT4_I(inode)->i_data_sem);
2151 		i_size = i_size_read(inode);
2152 		if (disksize > i_size)
2153 			disksize = i_size;
2154 		if (disksize > EXT4_I(inode)->i_disksize)
2155 			EXT4_I(inode)->i_disksize = disksize;
2156 		err2 = ext4_mark_inode_dirty(handle, inode);
2157 		up_write(&EXT4_I(inode)->i_data_sem);
2158 		if (err2)
2159 			ext4_error(inode->i_sb,
2160 				   "Failed to mark inode %lu dirty",
2161 				   inode->i_ino);
2162 		if (!err)
2163 			err = err2;
2164 	}
2165 	return err;
2166 }
2167 
2168 /*
2169  * Calculate the total number of credits to reserve for one writepages
2170  * iteration. This is called from ext4_writepages(). We map an extent of
2171  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2172  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2173  * bpp - 1 blocks in bpp different extents.
2174  */
2175 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2176 {
2177 	int bpp = ext4_journal_blocks_per_page(inode);
2178 
2179 	return ext4_meta_trans_blocks(inode,
2180 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2181 }
2182 
2183 /*
2184  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2185  * 				 and underlying extent to map
2186  *
2187  * @mpd - where to look for pages
2188  *
2189  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2190  * IO immediately. When we find a page which isn't mapped we start accumulating
2191  * extent of buffers underlying these pages that needs mapping (formed by
2192  * either delayed or unwritten buffers). We also lock the pages containing
2193  * these buffers. The extent found is returned in @mpd structure (starting at
2194  * mpd->lblk with length mpd->len blocks).
2195  *
2196  * Note that this function can attach bios to one io_end structure which are
2197  * neither logically nor physically contiguous. Although it may seem as an
2198  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2199  * case as we need to track IO to all buffers underlying a page in one io_end.
2200  */
2201 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2202 {
2203 	struct address_space *mapping = mpd->inode->i_mapping;
2204 	struct pagevec pvec;
2205 	unsigned int nr_pages;
2206 	long left = mpd->wbc->nr_to_write;
2207 	pgoff_t index = mpd->first_page;
2208 	pgoff_t end = mpd->last_page;
2209 	int tag;
2210 	int i, err = 0;
2211 	int blkbits = mpd->inode->i_blkbits;
2212 	ext4_lblk_t lblk;
2213 	struct buffer_head *head;
2214 
2215 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2216 		tag = PAGECACHE_TAG_TOWRITE;
2217 	else
2218 		tag = PAGECACHE_TAG_DIRTY;
2219 
2220 	pagevec_init(&pvec, 0);
2221 	mpd->map.m_len = 0;
2222 	mpd->next_page = index;
2223 	while (index <= end) {
2224 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2225 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2226 		if (nr_pages == 0)
2227 			goto out;
2228 
2229 		for (i = 0; i < nr_pages; i++) {
2230 			struct page *page = pvec.pages[i];
2231 
2232 			/*
2233 			 * At this point, the page may be truncated or
2234 			 * invalidated (changing page->mapping to NULL), or
2235 			 * even swizzled back from swapper_space to tmpfs file
2236 			 * mapping. However, page->index will not change
2237 			 * because we have a reference on the page.
2238 			 */
2239 			if (page->index > end)
2240 				goto out;
2241 
2242 			/*
2243 			 * Accumulated enough dirty pages? This doesn't apply
2244 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2245 			 * keep going because someone may be concurrently
2246 			 * dirtying pages, and we might have synced a lot of
2247 			 * newly appeared dirty pages, but have not synced all
2248 			 * of the old dirty pages.
2249 			 */
2250 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2251 				goto out;
2252 
2253 			/* If we can't merge this page, we are done. */
2254 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2255 				goto out;
2256 
2257 			lock_page(page);
2258 			/*
2259 			 * If the page is no longer dirty, or its mapping no
2260 			 * longer corresponds to inode we are writing (which
2261 			 * means it has been truncated or invalidated), or the
2262 			 * page is already under writeback and we are not doing
2263 			 * a data integrity writeback, skip the page
2264 			 */
2265 			if (!PageDirty(page) ||
2266 			    (PageWriteback(page) &&
2267 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2268 			    unlikely(page->mapping != mapping)) {
2269 				unlock_page(page);
2270 				continue;
2271 			}
2272 
2273 			wait_on_page_writeback(page);
2274 			BUG_ON(PageWriteback(page));
2275 
2276 			if (mpd->map.m_len == 0)
2277 				mpd->first_page = page->index;
2278 			mpd->next_page = page->index + 1;
2279 			/* Add all dirty buffers to mpd */
2280 			lblk = ((ext4_lblk_t)page->index) <<
2281 				(PAGE_CACHE_SHIFT - blkbits);
2282 			head = page_buffers(page);
2283 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2284 			if (err <= 0)
2285 				goto out;
2286 			err = 0;
2287 			left--;
2288 		}
2289 		pagevec_release(&pvec);
2290 		cond_resched();
2291 	}
2292 	return 0;
2293 out:
2294 	pagevec_release(&pvec);
2295 	return err;
2296 }
2297 
2298 static int __writepage(struct page *page, struct writeback_control *wbc,
2299 		       void *data)
2300 {
2301 	struct address_space *mapping = data;
2302 	int ret = ext4_writepage(page, wbc);
2303 	mapping_set_error(mapping, ret);
2304 	return ret;
2305 }
2306 
2307 static int ext4_writepages(struct address_space *mapping,
2308 			   struct writeback_control *wbc)
2309 {
2310 	pgoff_t	writeback_index = 0;
2311 	long nr_to_write = wbc->nr_to_write;
2312 	int range_whole = 0;
2313 	int cycled = 1;
2314 	handle_t *handle = NULL;
2315 	struct mpage_da_data mpd;
2316 	struct inode *inode = mapping->host;
2317 	int needed_blocks, rsv_blocks = 0, ret = 0;
2318 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2319 	bool done;
2320 	struct blk_plug plug;
2321 	bool give_up_on_write = false;
2322 
2323 	trace_ext4_writepages(inode, wbc);
2324 
2325 	/*
2326 	 * No pages to write? This is mainly a kludge to avoid starting
2327 	 * a transaction for special inodes like journal inode on last iput()
2328 	 * because that could violate lock ordering on umount
2329 	 */
2330 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2331 		goto out_writepages;
2332 
2333 	if (ext4_should_journal_data(inode)) {
2334 		struct blk_plug plug;
2335 
2336 		blk_start_plug(&plug);
2337 		ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2338 		blk_finish_plug(&plug);
2339 		goto out_writepages;
2340 	}
2341 
2342 	/*
2343 	 * If the filesystem has aborted, it is read-only, so return
2344 	 * right away instead of dumping stack traces later on that
2345 	 * will obscure the real source of the problem.  We test
2346 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2347 	 * the latter could be true if the filesystem is mounted
2348 	 * read-only, and in that case, ext4_writepages should
2349 	 * *never* be called, so if that ever happens, we would want
2350 	 * the stack trace.
2351 	 */
2352 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2353 		ret = -EROFS;
2354 		goto out_writepages;
2355 	}
2356 
2357 	if (ext4_should_dioread_nolock(inode)) {
2358 		/*
2359 		 * We may need to convert up to one extent per block in
2360 		 * the page and we may dirty the inode.
2361 		 */
2362 		rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2363 	}
2364 
2365 	/*
2366 	 * If we have inline data and arrive here, it means that
2367 	 * we will soon create the block for the 1st page, so
2368 	 * we'd better clear the inline data here.
2369 	 */
2370 	if (ext4_has_inline_data(inode)) {
2371 		/* Just inode will be modified... */
2372 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2373 		if (IS_ERR(handle)) {
2374 			ret = PTR_ERR(handle);
2375 			goto out_writepages;
2376 		}
2377 		BUG_ON(ext4_test_inode_state(inode,
2378 				EXT4_STATE_MAY_INLINE_DATA));
2379 		ext4_destroy_inline_data(handle, inode);
2380 		ext4_journal_stop(handle);
2381 	}
2382 
2383 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2384 		range_whole = 1;
2385 
2386 	if (wbc->range_cyclic) {
2387 		writeback_index = mapping->writeback_index;
2388 		if (writeback_index)
2389 			cycled = 0;
2390 		mpd.first_page = writeback_index;
2391 		mpd.last_page = -1;
2392 	} else {
2393 		mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2394 		mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2395 	}
2396 
2397 	mpd.inode = inode;
2398 	mpd.wbc = wbc;
2399 	ext4_io_submit_init(&mpd.io_submit, wbc);
2400 retry:
2401 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2402 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2403 	done = false;
2404 	blk_start_plug(&plug);
2405 	while (!done && mpd.first_page <= mpd.last_page) {
2406 		/* For each extent of pages we use new io_end */
2407 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2408 		if (!mpd.io_submit.io_end) {
2409 			ret = -ENOMEM;
2410 			break;
2411 		}
2412 
2413 		/*
2414 		 * We have two constraints: We find one extent to map and we
2415 		 * must always write out whole page (makes a difference when
2416 		 * blocksize < pagesize) so that we don't block on IO when we
2417 		 * try to write out the rest of the page. Journalled mode is
2418 		 * not supported by delalloc.
2419 		 */
2420 		BUG_ON(ext4_should_journal_data(inode));
2421 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2422 
2423 		/* start a new transaction */
2424 		handle = ext4_journal_start_with_reserve(inode,
2425 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2426 		if (IS_ERR(handle)) {
2427 			ret = PTR_ERR(handle);
2428 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2429 			       "%ld pages, ino %lu; err %d", __func__,
2430 				wbc->nr_to_write, inode->i_ino, ret);
2431 			/* Release allocated io_end */
2432 			ext4_put_io_end(mpd.io_submit.io_end);
2433 			break;
2434 		}
2435 
2436 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2437 		ret = mpage_prepare_extent_to_map(&mpd);
2438 		if (!ret) {
2439 			if (mpd.map.m_len)
2440 				ret = mpage_map_and_submit_extent(handle, &mpd,
2441 					&give_up_on_write);
2442 			else {
2443 				/*
2444 				 * We scanned the whole range (or exhausted
2445 				 * nr_to_write), submitted what was mapped and
2446 				 * didn't find anything needing mapping. We are
2447 				 * done.
2448 				 */
2449 				done = true;
2450 			}
2451 		}
2452 		ext4_journal_stop(handle);
2453 		/* Submit prepared bio */
2454 		ext4_io_submit(&mpd.io_submit);
2455 		/* Unlock pages we didn't use */
2456 		mpage_release_unused_pages(&mpd, give_up_on_write);
2457 		/* Drop our io_end reference we got from init */
2458 		ext4_put_io_end(mpd.io_submit.io_end);
2459 
2460 		if (ret == -ENOSPC && sbi->s_journal) {
2461 			/*
2462 			 * Commit the transaction which would
2463 			 * free blocks released in the transaction
2464 			 * and try again
2465 			 */
2466 			jbd2_journal_force_commit_nested(sbi->s_journal);
2467 			ret = 0;
2468 			continue;
2469 		}
2470 		/* Fatal error - ENOMEM, EIO... */
2471 		if (ret)
2472 			break;
2473 	}
2474 	blk_finish_plug(&plug);
2475 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2476 		cycled = 1;
2477 		mpd.last_page = writeback_index - 1;
2478 		mpd.first_page = 0;
2479 		goto retry;
2480 	}
2481 
2482 	/* Update index */
2483 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2484 		/*
2485 		 * Set the writeback_index so that range_cyclic
2486 		 * mode will write it back later
2487 		 */
2488 		mapping->writeback_index = mpd.first_page;
2489 
2490 out_writepages:
2491 	trace_ext4_writepages_result(inode, wbc, ret,
2492 				     nr_to_write - wbc->nr_to_write);
2493 	return ret;
2494 }
2495 
2496 static int ext4_nonda_switch(struct super_block *sb)
2497 {
2498 	s64 free_clusters, dirty_clusters;
2499 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2500 
2501 	/*
2502 	 * switch to non delalloc mode if we are running low
2503 	 * on free block. The free block accounting via percpu
2504 	 * counters can get slightly wrong with percpu_counter_batch getting
2505 	 * accumulated on each CPU without updating global counters
2506 	 * Delalloc need an accurate free block accounting. So switch
2507 	 * to non delalloc when we are near to error range.
2508 	 */
2509 	free_clusters =
2510 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2511 	dirty_clusters =
2512 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2513 	/*
2514 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2515 	 */
2516 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2517 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2518 
2519 	if (2 * free_clusters < 3 * dirty_clusters ||
2520 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2521 		/*
2522 		 * free block count is less than 150% of dirty blocks
2523 		 * or free blocks is less than watermark
2524 		 */
2525 		return 1;
2526 	}
2527 	return 0;
2528 }
2529 
2530 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2531 			       loff_t pos, unsigned len, unsigned flags,
2532 			       struct page **pagep, void **fsdata)
2533 {
2534 	int ret, retries = 0;
2535 	struct page *page;
2536 	pgoff_t index;
2537 	struct inode *inode = mapping->host;
2538 	handle_t *handle;
2539 
2540 	index = pos >> PAGE_CACHE_SHIFT;
2541 
2542 	if (ext4_nonda_switch(inode->i_sb)) {
2543 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2544 		return ext4_write_begin(file, mapping, pos,
2545 					len, flags, pagep, fsdata);
2546 	}
2547 	*fsdata = (void *)0;
2548 	trace_ext4_da_write_begin(inode, pos, len, flags);
2549 
2550 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2551 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2552 						      pos, len, flags,
2553 						      pagep, fsdata);
2554 		if (ret < 0)
2555 			return ret;
2556 		if (ret == 1)
2557 			return 0;
2558 	}
2559 
2560 	/*
2561 	 * grab_cache_page_write_begin() can take a long time if the
2562 	 * system is thrashing due to memory pressure, or if the page
2563 	 * is being written back.  So grab it first before we start
2564 	 * the transaction handle.  This also allows us to allocate
2565 	 * the page (if needed) without using GFP_NOFS.
2566 	 */
2567 retry_grab:
2568 	page = grab_cache_page_write_begin(mapping, index, flags);
2569 	if (!page)
2570 		return -ENOMEM;
2571 	unlock_page(page);
2572 
2573 	/*
2574 	 * With delayed allocation, we don't log the i_disksize update
2575 	 * if there is delayed block allocation. But we still need
2576 	 * to journalling the i_disksize update if writes to the end
2577 	 * of file which has an already mapped buffer.
2578 	 */
2579 retry_journal:
2580 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2581 	if (IS_ERR(handle)) {
2582 		page_cache_release(page);
2583 		return PTR_ERR(handle);
2584 	}
2585 
2586 	lock_page(page);
2587 	if (page->mapping != mapping) {
2588 		/* The page got truncated from under us */
2589 		unlock_page(page);
2590 		page_cache_release(page);
2591 		ext4_journal_stop(handle);
2592 		goto retry_grab;
2593 	}
2594 	/* In case writeback began while the page was unlocked */
2595 	wait_for_stable_page(page);
2596 
2597 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2598 	if (ret < 0) {
2599 		unlock_page(page);
2600 		ext4_journal_stop(handle);
2601 		/*
2602 		 * block_write_begin may have instantiated a few blocks
2603 		 * outside i_size.  Trim these off again. Don't need
2604 		 * i_size_read because we hold i_mutex.
2605 		 */
2606 		if (pos + len > inode->i_size)
2607 			ext4_truncate_failed_write(inode);
2608 
2609 		if (ret == -ENOSPC &&
2610 		    ext4_should_retry_alloc(inode->i_sb, &retries))
2611 			goto retry_journal;
2612 
2613 		page_cache_release(page);
2614 		return ret;
2615 	}
2616 
2617 	*pagep = page;
2618 	return ret;
2619 }
2620 
2621 /*
2622  * Check if we should update i_disksize
2623  * when write to the end of file but not require block allocation
2624  */
2625 static int ext4_da_should_update_i_disksize(struct page *page,
2626 					    unsigned long offset)
2627 {
2628 	struct buffer_head *bh;
2629 	struct inode *inode = page->mapping->host;
2630 	unsigned int idx;
2631 	int i;
2632 
2633 	bh = page_buffers(page);
2634 	idx = offset >> inode->i_blkbits;
2635 
2636 	for (i = 0; i < idx; i++)
2637 		bh = bh->b_this_page;
2638 
2639 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2640 		return 0;
2641 	return 1;
2642 }
2643 
2644 static int ext4_da_write_end(struct file *file,
2645 			     struct address_space *mapping,
2646 			     loff_t pos, unsigned len, unsigned copied,
2647 			     struct page *page, void *fsdata)
2648 {
2649 	struct inode *inode = mapping->host;
2650 	int ret = 0, ret2;
2651 	handle_t *handle = ext4_journal_current_handle();
2652 	loff_t new_i_size;
2653 	unsigned long start, end;
2654 	int write_mode = (int)(unsigned long)fsdata;
2655 
2656 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
2657 		return ext4_write_end(file, mapping, pos,
2658 				      len, copied, page, fsdata);
2659 
2660 	trace_ext4_da_write_end(inode, pos, len, copied);
2661 	start = pos & (PAGE_CACHE_SIZE - 1);
2662 	end = start + copied - 1;
2663 
2664 	/*
2665 	 * generic_write_end() will run mark_inode_dirty() if i_size
2666 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2667 	 * into that.
2668 	 */
2669 	new_i_size = pos + copied;
2670 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2671 		if (ext4_has_inline_data(inode) ||
2672 		    ext4_da_should_update_i_disksize(page, end)) {
2673 			down_write(&EXT4_I(inode)->i_data_sem);
2674 			if (new_i_size > EXT4_I(inode)->i_disksize)
2675 				EXT4_I(inode)->i_disksize = new_i_size;
2676 			up_write(&EXT4_I(inode)->i_data_sem);
2677 			/* We need to mark inode dirty even if
2678 			 * new_i_size is less that inode->i_size
2679 			 * bu greater than i_disksize.(hint delalloc)
2680 			 */
2681 			ext4_mark_inode_dirty(handle, inode);
2682 		}
2683 	}
2684 
2685 	if (write_mode != CONVERT_INLINE_DATA &&
2686 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2687 	    ext4_has_inline_data(inode))
2688 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2689 						     page);
2690 	else
2691 		ret2 = generic_write_end(file, mapping, pos, len, copied,
2692 							page, fsdata);
2693 
2694 	copied = ret2;
2695 	if (ret2 < 0)
2696 		ret = ret2;
2697 	ret2 = ext4_journal_stop(handle);
2698 	if (!ret)
2699 		ret = ret2;
2700 
2701 	return ret ? ret : copied;
2702 }
2703 
2704 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2705 				   unsigned int length)
2706 {
2707 	/*
2708 	 * Drop reserved blocks
2709 	 */
2710 	BUG_ON(!PageLocked(page));
2711 	if (!page_has_buffers(page))
2712 		goto out;
2713 
2714 	ext4_da_page_release_reservation(page, offset, length);
2715 
2716 out:
2717 	ext4_invalidatepage(page, offset, length);
2718 
2719 	return;
2720 }
2721 
2722 /*
2723  * Force all delayed allocation blocks to be allocated for a given inode.
2724  */
2725 int ext4_alloc_da_blocks(struct inode *inode)
2726 {
2727 	trace_ext4_alloc_da_blocks(inode);
2728 
2729 	if (!EXT4_I(inode)->i_reserved_data_blocks)
2730 		return 0;
2731 
2732 	/*
2733 	 * We do something simple for now.  The filemap_flush() will
2734 	 * also start triggering a write of the data blocks, which is
2735 	 * not strictly speaking necessary (and for users of
2736 	 * laptop_mode, not even desirable).  However, to do otherwise
2737 	 * would require replicating code paths in:
2738 	 *
2739 	 * ext4_writepages() ->
2740 	 *    write_cache_pages() ---> (via passed in callback function)
2741 	 *        __mpage_da_writepage() -->
2742 	 *           mpage_add_bh_to_extent()
2743 	 *           mpage_da_map_blocks()
2744 	 *
2745 	 * The problem is that write_cache_pages(), located in
2746 	 * mm/page-writeback.c, marks pages clean in preparation for
2747 	 * doing I/O, which is not desirable if we're not planning on
2748 	 * doing I/O at all.
2749 	 *
2750 	 * We could call write_cache_pages(), and then redirty all of
2751 	 * the pages by calling redirty_page_for_writepage() but that
2752 	 * would be ugly in the extreme.  So instead we would need to
2753 	 * replicate parts of the code in the above functions,
2754 	 * simplifying them because we wouldn't actually intend to
2755 	 * write out the pages, but rather only collect contiguous
2756 	 * logical block extents, call the multi-block allocator, and
2757 	 * then update the buffer heads with the block allocations.
2758 	 *
2759 	 * For now, though, we'll cheat by calling filemap_flush(),
2760 	 * which will map the blocks, and start the I/O, but not
2761 	 * actually wait for the I/O to complete.
2762 	 */
2763 	return filemap_flush(inode->i_mapping);
2764 }
2765 
2766 /*
2767  * bmap() is special.  It gets used by applications such as lilo and by
2768  * the swapper to find the on-disk block of a specific piece of data.
2769  *
2770  * Naturally, this is dangerous if the block concerned is still in the
2771  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2772  * filesystem and enables swap, then they may get a nasty shock when the
2773  * data getting swapped to that swapfile suddenly gets overwritten by
2774  * the original zero's written out previously to the journal and
2775  * awaiting writeback in the kernel's buffer cache.
2776  *
2777  * So, if we see any bmap calls here on a modified, data-journaled file,
2778  * take extra steps to flush any blocks which might be in the cache.
2779  */
2780 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2781 {
2782 	struct inode *inode = mapping->host;
2783 	journal_t *journal;
2784 	int err;
2785 
2786 	/*
2787 	 * We can get here for an inline file via the FIBMAP ioctl
2788 	 */
2789 	if (ext4_has_inline_data(inode))
2790 		return 0;
2791 
2792 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2793 			test_opt(inode->i_sb, DELALLOC)) {
2794 		/*
2795 		 * With delalloc we want to sync the file
2796 		 * so that we can make sure we allocate
2797 		 * blocks for file
2798 		 */
2799 		filemap_write_and_wait(mapping);
2800 	}
2801 
2802 	if (EXT4_JOURNAL(inode) &&
2803 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2804 		/*
2805 		 * This is a REALLY heavyweight approach, but the use of
2806 		 * bmap on dirty files is expected to be extremely rare:
2807 		 * only if we run lilo or swapon on a freshly made file
2808 		 * do we expect this to happen.
2809 		 *
2810 		 * (bmap requires CAP_SYS_RAWIO so this does not
2811 		 * represent an unprivileged user DOS attack --- we'd be
2812 		 * in trouble if mortal users could trigger this path at
2813 		 * will.)
2814 		 *
2815 		 * NB. EXT4_STATE_JDATA is not set on files other than
2816 		 * regular files.  If somebody wants to bmap a directory
2817 		 * or symlink and gets confused because the buffer
2818 		 * hasn't yet been flushed to disk, they deserve
2819 		 * everything they get.
2820 		 */
2821 
2822 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2823 		journal = EXT4_JOURNAL(inode);
2824 		jbd2_journal_lock_updates(journal);
2825 		err = jbd2_journal_flush(journal);
2826 		jbd2_journal_unlock_updates(journal);
2827 
2828 		if (err)
2829 			return 0;
2830 	}
2831 
2832 	return generic_block_bmap(mapping, block, ext4_get_block);
2833 }
2834 
2835 static int ext4_readpage(struct file *file, struct page *page)
2836 {
2837 	int ret = -EAGAIN;
2838 	struct inode *inode = page->mapping->host;
2839 
2840 	trace_ext4_readpage(page);
2841 
2842 	if (ext4_has_inline_data(inode))
2843 		ret = ext4_readpage_inline(inode, page);
2844 
2845 	if (ret == -EAGAIN)
2846 		return mpage_readpage(page, ext4_get_block);
2847 
2848 	return ret;
2849 }
2850 
2851 static int
2852 ext4_readpages(struct file *file, struct address_space *mapping,
2853 		struct list_head *pages, unsigned nr_pages)
2854 {
2855 	struct inode *inode = mapping->host;
2856 
2857 	/* If the file has inline data, no need to do readpages. */
2858 	if (ext4_has_inline_data(inode))
2859 		return 0;
2860 
2861 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2862 }
2863 
2864 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2865 				unsigned int length)
2866 {
2867 	trace_ext4_invalidatepage(page, offset, length);
2868 
2869 	/* No journalling happens on data buffers when this function is used */
2870 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2871 
2872 	block_invalidatepage(page, offset, length);
2873 }
2874 
2875 static int __ext4_journalled_invalidatepage(struct page *page,
2876 					    unsigned int offset,
2877 					    unsigned int length)
2878 {
2879 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2880 
2881 	trace_ext4_journalled_invalidatepage(page, offset, length);
2882 
2883 	/*
2884 	 * If it's a full truncate we just forget about the pending dirtying
2885 	 */
2886 	if (offset == 0 && length == PAGE_CACHE_SIZE)
2887 		ClearPageChecked(page);
2888 
2889 	return jbd2_journal_invalidatepage(journal, page, offset, length);
2890 }
2891 
2892 /* Wrapper for aops... */
2893 static void ext4_journalled_invalidatepage(struct page *page,
2894 					   unsigned int offset,
2895 					   unsigned int length)
2896 {
2897 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2898 }
2899 
2900 static int ext4_releasepage(struct page *page, gfp_t wait)
2901 {
2902 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2903 
2904 	trace_ext4_releasepage(page);
2905 
2906 	/* Page has dirty journalled data -> cannot release */
2907 	if (PageChecked(page))
2908 		return 0;
2909 	if (journal)
2910 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
2911 	else
2912 		return try_to_free_buffers(page);
2913 }
2914 
2915 /*
2916  * ext4_get_block used when preparing for a DIO write or buffer write.
2917  * We allocate an uinitialized extent if blocks haven't been allocated.
2918  * The extent will be converted to initialized after the IO is complete.
2919  */
2920 int ext4_get_block_write(struct inode *inode, sector_t iblock,
2921 		   struct buffer_head *bh_result, int create)
2922 {
2923 	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2924 		   inode->i_ino, create);
2925 	return _ext4_get_block(inode, iblock, bh_result,
2926 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
2927 }
2928 
2929 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2930 		   struct buffer_head *bh_result, int create)
2931 {
2932 	ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2933 		   inode->i_ino, create);
2934 	return _ext4_get_block(inode, iblock, bh_result,
2935 			       EXT4_GET_BLOCKS_NO_LOCK);
2936 }
2937 
2938 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2939 			    ssize_t size, void *private)
2940 {
2941         ext4_io_end_t *io_end = iocb->private;
2942 
2943 	/* if not async direct IO just return */
2944 	if (!io_end)
2945 		return;
2946 
2947 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
2948 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2949  		  iocb->private, io_end->inode->i_ino, iocb, offset,
2950 		  size);
2951 
2952 	iocb->private = NULL;
2953 	io_end->offset = offset;
2954 	io_end->size = size;
2955 	ext4_put_io_end(io_end);
2956 }
2957 
2958 /*
2959  * For ext4 extent files, ext4 will do direct-io write to holes,
2960  * preallocated extents, and those write extend the file, no need to
2961  * fall back to buffered IO.
2962  *
2963  * For holes, we fallocate those blocks, mark them as unwritten
2964  * If those blocks were preallocated, we mark sure they are split, but
2965  * still keep the range to write as unwritten.
2966  *
2967  * The unwritten extents will be converted to written when DIO is completed.
2968  * For async direct IO, since the IO may still pending when return, we
2969  * set up an end_io call back function, which will do the conversion
2970  * when async direct IO completed.
2971  *
2972  * If the O_DIRECT write will extend the file then add this inode to the
2973  * orphan list.  So recovery will truncate it back to the original size
2974  * if the machine crashes during the write.
2975  *
2976  */
2977 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2978 			      struct iov_iter *iter, loff_t offset)
2979 {
2980 	struct file *file = iocb->ki_filp;
2981 	struct inode *inode = file->f_mapping->host;
2982 	ssize_t ret;
2983 	size_t count = iov_iter_count(iter);
2984 	int overwrite = 0;
2985 	get_block_t *get_block_func = NULL;
2986 	int dio_flags = 0;
2987 	loff_t final_size = offset + count;
2988 	ext4_io_end_t *io_end = NULL;
2989 
2990 	/* Use the old path for reads and writes beyond i_size. */
2991 	if (rw != WRITE || final_size > inode->i_size)
2992 		return ext4_ind_direct_IO(rw, iocb, iter, offset);
2993 
2994 	BUG_ON(iocb->private == NULL);
2995 
2996 	/*
2997 	 * Make all waiters for direct IO properly wait also for extent
2998 	 * conversion. This also disallows race between truncate() and
2999 	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3000 	 */
3001 	if (rw == WRITE)
3002 		atomic_inc(&inode->i_dio_count);
3003 
3004 	/* If we do a overwrite dio, i_mutex locking can be released */
3005 	overwrite = *((int *)iocb->private);
3006 
3007 	if (overwrite) {
3008 		down_read(&EXT4_I(inode)->i_data_sem);
3009 		mutex_unlock(&inode->i_mutex);
3010 	}
3011 
3012 	/*
3013 	 * We could direct write to holes and fallocate.
3014 	 *
3015 	 * Allocated blocks to fill the hole are marked as
3016 	 * unwritten to prevent parallel buffered read to expose
3017 	 * the stale data before DIO complete the data IO.
3018 	 *
3019 	 * As to previously fallocated extents, ext4 get_block will
3020 	 * just simply mark the buffer mapped but still keep the
3021 	 * extents unwritten.
3022 	 *
3023 	 * For non AIO case, we will convert those unwritten extents
3024 	 * to written after return back from blockdev_direct_IO.
3025 	 *
3026 	 * For async DIO, the conversion needs to be deferred when the
3027 	 * IO is completed. The ext4 end_io callback function will be
3028 	 * called to take care of the conversion work.  Here for async
3029 	 * case, we allocate an io_end structure to hook to the iocb.
3030 	 */
3031 	iocb->private = NULL;
3032 	ext4_inode_aio_set(inode, NULL);
3033 	if (!is_sync_kiocb(iocb)) {
3034 		io_end = ext4_init_io_end(inode, GFP_NOFS);
3035 		if (!io_end) {
3036 			ret = -ENOMEM;
3037 			goto retake_lock;
3038 		}
3039 		/*
3040 		 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3041 		 */
3042 		iocb->private = ext4_get_io_end(io_end);
3043 		/*
3044 		 * we save the io structure for current async direct
3045 		 * IO, so that later ext4_map_blocks() could flag the
3046 		 * io structure whether there is a unwritten extents
3047 		 * needs to be converted when IO is completed.
3048 		 */
3049 		ext4_inode_aio_set(inode, io_end);
3050 	}
3051 
3052 	if (overwrite) {
3053 		get_block_func = ext4_get_block_write_nolock;
3054 	} else {
3055 		get_block_func = ext4_get_block_write;
3056 		dio_flags = DIO_LOCKING;
3057 	}
3058 	ret = __blockdev_direct_IO(rw, iocb, inode,
3059 				   inode->i_sb->s_bdev, iter,
3060 				   offset,
3061 				   get_block_func,
3062 				   ext4_end_io_dio,
3063 				   NULL,
3064 				   dio_flags);
3065 
3066 	/*
3067 	 * Put our reference to io_end. This can free the io_end structure e.g.
3068 	 * in sync IO case or in case of error. It can even perform extent
3069 	 * conversion if all bios we submitted finished before we got here.
3070 	 * Note that in that case iocb->private can be already set to NULL
3071 	 * here.
3072 	 */
3073 	if (io_end) {
3074 		ext4_inode_aio_set(inode, NULL);
3075 		ext4_put_io_end(io_end);
3076 		/*
3077 		 * When no IO was submitted ext4_end_io_dio() was not
3078 		 * called so we have to put iocb's reference.
3079 		 */
3080 		if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3081 			WARN_ON(iocb->private != io_end);
3082 			WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3083 			ext4_put_io_end(io_end);
3084 			iocb->private = NULL;
3085 		}
3086 	}
3087 	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3088 						EXT4_STATE_DIO_UNWRITTEN)) {
3089 		int err;
3090 		/*
3091 		 * for non AIO case, since the IO is already
3092 		 * completed, we could do the conversion right here
3093 		 */
3094 		err = ext4_convert_unwritten_extents(NULL, inode,
3095 						     offset, ret);
3096 		if (err < 0)
3097 			ret = err;
3098 		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3099 	}
3100 
3101 retake_lock:
3102 	if (rw == WRITE)
3103 		inode_dio_done(inode);
3104 	/* take i_mutex locking again if we do a ovewrite dio */
3105 	if (overwrite) {
3106 		up_read(&EXT4_I(inode)->i_data_sem);
3107 		mutex_lock(&inode->i_mutex);
3108 	}
3109 
3110 	return ret;
3111 }
3112 
3113 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3114 			      struct iov_iter *iter, loff_t offset)
3115 {
3116 	struct file *file = iocb->ki_filp;
3117 	struct inode *inode = file->f_mapping->host;
3118 	size_t count = iov_iter_count(iter);
3119 	ssize_t ret;
3120 
3121 	/*
3122 	 * If we are doing data journalling we don't support O_DIRECT
3123 	 */
3124 	if (ext4_should_journal_data(inode))
3125 		return 0;
3126 
3127 	/* Let buffer I/O handle the inline data case. */
3128 	if (ext4_has_inline_data(inode))
3129 		return 0;
3130 
3131 	trace_ext4_direct_IO_enter(inode, offset, count, rw);
3132 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3133 		ret = ext4_ext_direct_IO(rw, iocb, iter, offset);
3134 	else
3135 		ret = ext4_ind_direct_IO(rw, iocb, iter, offset);
3136 	trace_ext4_direct_IO_exit(inode, offset, count, rw, ret);
3137 	return ret;
3138 }
3139 
3140 /*
3141  * Pages can be marked dirty completely asynchronously from ext4's journalling
3142  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3143  * much here because ->set_page_dirty is called under VFS locks.  The page is
3144  * not necessarily locked.
3145  *
3146  * We cannot just dirty the page and leave attached buffers clean, because the
3147  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3148  * or jbddirty because all the journalling code will explode.
3149  *
3150  * So what we do is to mark the page "pending dirty" and next time writepage
3151  * is called, propagate that into the buffers appropriately.
3152  */
3153 static int ext4_journalled_set_page_dirty(struct page *page)
3154 {
3155 	SetPageChecked(page);
3156 	return __set_page_dirty_nobuffers(page);
3157 }
3158 
3159 static const struct address_space_operations ext4_aops = {
3160 	.readpage		= ext4_readpage,
3161 	.readpages		= ext4_readpages,
3162 	.writepage		= ext4_writepage,
3163 	.writepages		= ext4_writepages,
3164 	.write_begin		= ext4_write_begin,
3165 	.write_end		= ext4_write_end,
3166 	.bmap			= ext4_bmap,
3167 	.invalidatepage		= ext4_invalidatepage,
3168 	.releasepage		= ext4_releasepage,
3169 	.direct_IO		= ext4_direct_IO,
3170 	.migratepage		= buffer_migrate_page,
3171 	.is_partially_uptodate  = block_is_partially_uptodate,
3172 	.error_remove_page	= generic_error_remove_page,
3173 };
3174 
3175 static const struct address_space_operations ext4_journalled_aops = {
3176 	.readpage		= ext4_readpage,
3177 	.readpages		= ext4_readpages,
3178 	.writepage		= ext4_writepage,
3179 	.writepages		= ext4_writepages,
3180 	.write_begin		= ext4_write_begin,
3181 	.write_end		= ext4_journalled_write_end,
3182 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3183 	.bmap			= ext4_bmap,
3184 	.invalidatepage		= ext4_journalled_invalidatepage,
3185 	.releasepage		= ext4_releasepage,
3186 	.direct_IO		= ext4_direct_IO,
3187 	.is_partially_uptodate  = block_is_partially_uptodate,
3188 	.error_remove_page	= generic_error_remove_page,
3189 };
3190 
3191 static const struct address_space_operations ext4_da_aops = {
3192 	.readpage		= ext4_readpage,
3193 	.readpages		= ext4_readpages,
3194 	.writepage		= ext4_writepage,
3195 	.writepages		= ext4_writepages,
3196 	.write_begin		= ext4_da_write_begin,
3197 	.write_end		= ext4_da_write_end,
3198 	.bmap			= ext4_bmap,
3199 	.invalidatepage		= ext4_da_invalidatepage,
3200 	.releasepage		= ext4_releasepage,
3201 	.direct_IO		= ext4_direct_IO,
3202 	.migratepage		= buffer_migrate_page,
3203 	.is_partially_uptodate  = block_is_partially_uptodate,
3204 	.error_remove_page	= generic_error_remove_page,
3205 };
3206 
3207 void ext4_set_aops(struct inode *inode)
3208 {
3209 	switch (ext4_inode_journal_mode(inode)) {
3210 	case EXT4_INODE_ORDERED_DATA_MODE:
3211 		ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3212 		break;
3213 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3214 		ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3215 		break;
3216 	case EXT4_INODE_JOURNAL_DATA_MODE:
3217 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3218 		return;
3219 	default:
3220 		BUG();
3221 	}
3222 	if (test_opt(inode->i_sb, DELALLOC))
3223 		inode->i_mapping->a_ops = &ext4_da_aops;
3224 	else
3225 		inode->i_mapping->a_ops = &ext4_aops;
3226 }
3227 
3228 /*
3229  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3230  * starting from file offset 'from'.  The range to be zero'd must
3231  * be contained with in one block.  If the specified range exceeds
3232  * the end of the block it will be shortened to end of the block
3233  * that cooresponds to 'from'
3234  */
3235 static int ext4_block_zero_page_range(handle_t *handle,
3236 		struct address_space *mapping, loff_t from, loff_t length)
3237 {
3238 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3239 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3240 	unsigned blocksize, max, pos;
3241 	ext4_lblk_t iblock;
3242 	struct inode *inode = mapping->host;
3243 	struct buffer_head *bh;
3244 	struct page *page;
3245 	int err = 0;
3246 
3247 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3248 				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3249 	if (!page)
3250 		return -ENOMEM;
3251 
3252 	blocksize = inode->i_sb->s_blocksize;
3253 	max = blocksize - (offset & (blocksize - 1));
3254 
3255 	/*
3256 	 * correct length if it does not fall between
3257 	 * 'from' and the end of the block
3258 	 */
3259 	if (length > max || length < 0)
3260 		length = max;
3261 
3262 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3263 
3264 	if (!page_has_buffers(page))
3265 		create_empty_buffers(page, blocksize, 0);
3266 
3267 	/* Find the buffer that contains "offset" */
3268 	bh = page_buffers(page);
3269 	pos = blocksize;
3270 	while (offset >= pos) {
3271 		bh = bh->b_this_page;
3272 		iblock++;
3273 		pos += blocksize;
3274 	}
3275 	if (buffer_freed(bh)) {
3276 		BUFFER_TRACE(bh, "freed: skip");
3277 		goto unlock;
3278 	}
3279 	if (!buffer_mapped(bh)) {
3280 		BUFFER_TRACE(bh, "unmapped");
3281 		ext4_get_block(inode, iblock, bh, 0);
3282 		/* unmapped? It's a hole - nothing to do */
3283 		if (!buffer_mapped(bh)) {
3284 			BUFFER_TRACE(bh, "still unmapped");
3285 			goto unlock;
3286 		}
3287 	}
3288 
3289 	/* Ok, it's mapped. Make sure it's up-to-date */
3290 	if (PageUptodate(page))
3291 		set_buffer_uptodate(bh);
3292 
3293 	if (!buffer_uptodate(bh)) {
3294 		err = -EIO;
3295 		ll_rw_block(READ, 1, &bh);
3296 		wait_on_buffer(bh);
3297 		/* Uhhuh. Read error. Complain and punt. */
3298 		if (!buffer_uptodate(bh))
3299 			goto unlock;
3300 	}
3301 	if (ext4_should_journal_data(inode)) {
3302 		BUFFER_TRACE(bh, "get write access");
3303 		err = ext4_journal_get_write_access(handle, bh);
3304 		if (err)
3305 			goto unlock;
3306 	}
3307 	zero_user(page, offset, length);
3308 	BUFFER_TRACE(bh, "zeroed end of block");
3309 
3310 	if (ext4_should_journal_data(inode)) {
3311 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3312 	} else {
3313 		err = 0;
3314 		mark_buffer_dirty(bh);
3315 		if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3316 			err = ext4_jbd2_file_inode(handle, inode);
3317 	}
3318 
3319 unlock:
3320 	unlock_page(page);
3321 	page_cache_release(page);
3322 	return err;
3323 }
3324 
3325 /*
3326  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3327  * up to the end of the block which corresponds to `from'.
3328  * This required during truncate. We need to physically zero the tail end
3329  * of that block so it doesn't yield old data if the file is later grown.
3330  */
3331 static int ext4_block_truncate_page(handle_t *handle,
3332 		struct address_space *mapping, loff_t from)
3333 {
3334 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3335 	unsigned length;
3336 	unsigned blocksize;
3337 	struct inode *inode = mapping->host;
3338 
3339 	blocksize = inode->i_sb->s_blocksize;
3340 	length = blocksize - (offset & (blocksize - 1));
3341 
3342 	return ext4_block_zero_page_range(handle, mapping, from, length);
3343 }
3344 
3345 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3346 			     loff_t lstart, loff_t length)
3347 {
3348 	struct super_block *sb = inode->i_sb;
3349 	struct address_space *mapping = inode->i_mapping;
3350 	unsigned partial_start, partial_end;
3351 	ext4_fsblk_t start, end;
3352 	loff_t byte_end = (lstart + length - 1);
3353 	int err = 0;
3354 
3355 	partial_start = lstart & (sb->s_blocksize - 1);
3356 	partial_end = byte_end & (sb->s_blocksize - 1);
3357 
3358 	start = lstart >> sb->s_blocksize_bits;
3359 	end = byte_end >> sb->s_blocksize_bits;
3360 
3361 	/* Handle partial zero within the single block */
3362 	if (start == end &&
3363 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3364 		err = ext4_block_zero_page_range(handle, mapping,
3365 						 lstart, length);
3366 		return err;
3367 	}
3368 	/* Handle partial zero out on the start of the range */
3369 	if (partial_start) {
3370 		err = ext4_block_zero_page_range(handle, mapping,
3371 						 lstart, sb->s_blocksize);
3372 		if (err)
3373 			return err;
3374 	}
3375 	/* Handle partial zero out on the end of the range */
3376 	if (partial_end != sb->s_blocksize - 1)
3377 		err = ext4_block_zero_page_range(handle, mapping,
3378 						 byte_end - partial_end,
3379 						 partial_end + 1);
3380 	return err;
3381 }
3382 
3383 int ext4_can_truncate(struct inode *inode)
3384 {
3385 	if (S_ISREG(inode->i_mode))
3386 		return 1;
3387 	if (S_ISDIR(inode->i_mode))
3388 		return 1;
3389 	if (S_ISLNK(inode->i_mode))
3390 		return !ext4_inode_is_fast_symlink(inode);
3391 	return 0;
3392 }
3393 
3394 /*
3395  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3396  * associated with the given offset and length
3397  *
3398  * @inode:  File inode
3399  * @offset: The offset where the hole will begin
3400  * @len:    The length of the hole
3401  *
3402  * Returns: 0 on success or negative on failure
3403  */
3404 
3405 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3406 {
3407 	struct super_block *sb = inode->i_sb;
3408 	ext4_lblk_t first_block, stop_block;
3409 	struct address_space *mapping = inode->i_mapping;
3410 	loff_t first_block_offset, last_block_offset;
3411 	handle_t *handle;
3412 	unsigned int credits;
3413 	int ret = 0;
3414 
3415 	if (!S_ISREG(inode->i_mode))
3416 		return -EOPNOTSUPP;
3417 
3418 	trace_ext4_punch_hole(inode, offset, length, 0);
3419 
3420 	/*
3421 	 * Write out all dirty pages to avoid race conditions
3422 	 * Then release them.
3423 	 */
3424 	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3425 		ret = filemap_write_and_wait_range(mapping, offset,
3426 						   offset + length - 1);
3427 		if (ret)
3428 			return ret;
3429 	}
3430 
3431 	mutex_lock(&inode->i_mutex);
3432 
3433 	/* No need to punch hole beyond i_size */
3434 	if (offset >= inode->i_size)
3435 		goto out_mutex;
3436 
3437 	/*
3438 	 * If the hole extends beyond i_size, set the hole
3439 	 * to end after the page that contains i_size
3440 	 */
3441 	if (offset + length > inode->i_size) {
3442 		length = inode->i_size +
3443 		   PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3444 		   offset;
3445 	}
3446 
3447 	if (offset & (sb->s_blocksize - 1) ||
3448 	    (offset + length) & (sb->s_blocksize - 1)) {
3449 		/*
3450 		 * Attach jinode to inode for jbd2 if we do any zeroing of
3451 		 * partial block
3452 		 */
3453 		ret = ext4_inode_attach_jinode(inode);
3454 		if (ret < 0)
3455 			goto out_mutex;
3456 
3457 	}
3458 
3459 	first_block_offset = round_up(offset, sb->s_blocksize);
3460 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3461 
3462 	/* Now release the pages and zero block aligned part of pages*/
3463 	if (last_block_offset > first_block_offset)
3464 		truncate_pagecache_range(inode, first_block_offset,
3465 					 last_block_offset);
3466 
3467 	/* Wait all existing dio workers, newcomers will block on i_mutex */
3468 	ext4_inode_block_unlocked_dio(inode);
3469 	inode_dio_wait(inode);
3470 
3471 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3472 		credits = ext4_writepage_trans_blocks(inode);
3473 	else
3474 		credits = ext4_blocks_for_truncate(inode);
3475 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3476 	if (IS_ERR(handle)) {
3477 		ret = PTR_ERR(handle);
3478 		ext4_std_error(sb, ret);
3479 		goto out_dio;
3480 	}
3481 
3482 	ret = ext4_zero_partial_blocks(handle, inode, offset,
3483 				       length);
3484 	if (ret)
3485 		goto out_stop;
3486 
3487 	first_block = (offset + sb->s_blocksize - 1) >>
3488 		EXT4_BLOCK_SIZE_BITS(sb);
3489 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3490 
3491 	/* If there are no blocks to remove, return now */
3492 	if (first_block >= stop_block)
3493 		goto out_stop;
3494 
3495 	down_write(&EXT4_I(inode)->i_data_sem);
3496 	ext4_discard_preallocations(inode);
3497 
3498 	ret = ext4_es_remove_extent(inode, first_block,
3499 				    stop_block - first_block);
3500 	if (ret) {
3501 		up_write(&EXT4_I(inode)->i_data_sem);
3502 		goto out_stop;
3503 	}
3504 
3505 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3506 		ret = ext4_ext_remove_space(inode, first_block,
3507 					    stop_block - 1);
3508 	else
3509 		ret = ext4_ind_remove_space(handle, inode, first_block,
3510 					    stop_block);
3511 
3512 	up_write(&EXT4_I(inode)->i_data_sem);
3513 	if (IS_SYNC(inode))
3514 		ext4_handle_sync(handle);
3515 
3516 	/* Now release the pages again to reduce race window */
3517 	if (last_block_offset > first_block_offset)
3518 		truncate_pagecache_range(inode, first_block_offset,
3519 					 last_block_offset);
3520 
3521 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3522 	ext4_mark_inode_dirty(handle, inode);
3523 out_stop:
3524 	ext4_journal_stop(handle);
3525 out_dio:
3526 	ext4_inode_resume_unlocked_dio(inode);
3527 out_mutex:
3528 	mutex_unlock(&inode->i_mutex);
3529 	return ret;
3530 }
3531 
3532 int ext4_inode_attach_jinode(struct inode *inode)
3533 {
3534 	struct ext4_inode_info *ei = EXT4_I(inode);
3535 	struct jbd2_inode *jinode;
3536 
3537 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3538 		return 0;
3539 
3540 	jinode = jbd2_alloc_inode(GFP_KERNEL);
3541 	spin_lock(&inode->i_lock);
3542 	if (!ei->jinode) {
3543 		if (!jinode) {
3544 			spin_unlock(&inode->i_lock);
3545 			return -ENOMEM;
3546 		}
3547 		ei->jinode = jinode;
3548 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
3549 		jinode = NULL;
3550 	}
3551 	spin_unlock(&inode->i_lock);
3552 	if (unlikely(jinode != NULL))
3553 		jbd2_free_inode(jinode);
3554 	return 0;
3555 }
3556 
3557 /*
3558  * ext4_truncate()
3559  *
3560  * We block out ext4_get_block() block instantiations across the entire
3561  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3562  * simultaneously on behalf of the same inode.
3563  *
3564  * As we work through the truncate and commit bits of it to the journal there
3565  * is one core, guiding principle: the file's tree must always be consistent on
3566  * disk.  We must be able to restart the truncate after a crash.
3567  *
3568  * The file's tree may be transiently inconsistent in memory (although it
3569  * probably isn't), but whenever we close off and commit a journal transaction,
3570  * the contents of (the filesystem + the journal) must be consistent and
3571  * restartable.  It's pretty simple, really: bottom up, right to left (although
3572  * left-to-right works OK too).
3573  *
3574  * Note that at recovery time, journal replay occurs *before* the restart of
3575  * truncate against the orphan inode list.
3576  *
3577  * The committed inode has the new, desired i_size (which is the same as
3578  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3579  * that this inode's truncate did not complete and it will again call
3580  * ext4_truncate() to have another go.  So there will be instantiated blocks
3581  * to the right of the truncation point in a crashed ext4 filesystem.  But
3582  * that's fine - as long as they are linked from the inode, the post-crash
3583  * ext4_truncate() run will find them and release them.
3584  */
3585 void ext4_truncate(struct inode *inode)
3586 {
3587 	struct ext4_inode_info *ei = EXT4_I(inode);
3588 	unsigned int credits;
3589 	handle_t *handle;
3590 	struct address_space *mapping = inode->i_mapping;
3591 
3592 	/*
3593 	 * There is a possibility that we're either freeing the inode
3594 	 * or it's a completely new inode. In those cases we might not
3595 	 * have i_mutex locked because it's not necessary.
3596 	 */
3597 	if (!(inode->i_state & (I_NEW|I_FREEING)))
3598 		WARN_ON(!mutex_is_locked(&inode->i_mutex));
3599 	trace_ext4_truncate_enter(inode);
3600 
3601 	if (!ext4_can_truncate(inode))
3602 		return;
3603 
3604 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3605 
3606 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3607 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3608 
3609 	if (ext4_has_inline_data(inode)) {
3610 		int has_inline = 1;
3611 
3612 		ext4_inline_data_truncate(inode, &has_inline);
3613 		if (has_inline)
3614 			return;
3615 	}
3616 
3617 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
3618 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3619 		if (ext4_inode_attach_jinode(inode) < 0)
3620 			return;
3621 	}
3622 
3623 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3624 		credits = ext4_writepage_trans_blocks(inode);
3625 	else
3626 		credits = ext4_blocks_for_truncate(inode);
3627 
3628 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3629 	if (IS_ERR(handle)) {
3630 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
3631 		return;
3632 	}
3633 
3634 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3635 		ext4_block_truncate_page(handle, mapping, inode->i_size);
3636 
3637 	/*
3638 	 * We add the inode to the orphan list, so that if this
3639 	 * truncate spans multiple transactions, and we crash, we will
3640 	 * resume the truncate when the filesystem recovers.  It also
3641 	 * marks the inode dirty, to catch the new size.
3642 	 *
3643 	 * Implication: the file must always be in a sane, consistent
3644 	 * truncatable state while each transaction commits.
3645 	 */
3646 	if (ext4_orphan_add(handle, inode))
3647 		goto out_stop;
3648 
3649 	down_write(&EXT4_I(inode)->i_data_sem);
3650 
3651 	ext4_discard_preallocations(inode);
3652 
3653 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3654 		ext4_ext_truncate(handle, inode);
3655 	else
3656 		ext4_ind_truncate(handle, inode);
3657 
3658 	up_write(&ei->i_data_sem);
3659 
3660 	if (IS_SYNC(inode))
3661 		ext4_handle_sync(handle);
3662 
3663 out_stop:
3664 	/*
3665 	 * If this was a simple ftruncate() and the file will remain alive,
3666 	 * then we need to clear up the orphan record which we created above.
3667 	 * However, if this was a real unlink then we were called by
3668 	 * ext4_delete_inode(), and we allow that function to clean up the
3669 	 * orphan info for us.
3670 	 */
3671 	if (inode->i_nlink)
3672 		ext4_orphan_del(handle, inode);
3673 
3674 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3675 	ext4_mark_inode_dirty(handle, inode);
3676 	ext4_journal_stop(handle);
3677 
3678 	trace_ext4_truncate_exit(inode);
3679 }
3680 
3681 /*
3682  * ext4_get_inode_loc returns with an extra refcount against the inode's
3683  * underlying buffer_head on success. If 'in_mem' is true, we have all
3684  * data in memory that is needed to recreate the on-disk version of this
3685  * inode.
3686  */
3687 static int __ext4_get_inode_loc(struct inode *inode,
3688 				struct ext4_iloc *iloc, int in_mem)
3689 {
3690 	struct ext4_group_desc	*gdp;
3691 	struct buffer_head	*bh;
3692 	struct super_block	*sb = inode->i_sb;
3693 	ext4_fsblk_t		block;
3694 	int			inodes_per_block, inode_offset;
3695 
3696 	iloc->bh = NULL;
3697 	if (!ext4_valid_inum(sb, inode->i_ino))
3698 		return -EIO;
3699 
3700 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3701 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3702 	if (!gdp)
3703 		return -EIO;
3704 
3705 	/*
3706 	 * Figure out the offset within the block group inode table
3707 	 */
3708 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3709 	inode_offset = ((inode->i_ino - 1) %
3710 			EXT4_INODES_PER_GROUP(sb));
3711 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3712 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3713 
3714 	bh = sb_getblk(sb, block);
3715 	if (unlikely(!bh))
3716 		return -ENOMEM;
3717 	if (!buffer_uptodate(bh)) {
3718 		lock_buffer(bh);
3719 
3720 		/*
3721 		 * If the buffer has the write error flag, we have failed
3722 		 * to write out another inode in the same block.  In this
3723 		 * case, we don't have to read the block because we may
3724 		 * read the old inode data successfully.
3725 		 */
3726 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3727 			set_buffer_uptodate(bh);
3728 
3729 		if (buffer_uptodate(bh)) {
3730 			/* someone brought it uptodate while we waited */
3731 			unlock_buffer(bh);
3732 			goto has_buffer;
3733 		}
3734 
3735 		/*
3736 		 * If we have all information of the inode in memory and this
3737 		 * is the only valid inode in the block, we need not read the
3738 		 * block.
3739 		 */
3740 		if (in_mem) {
3741 			struct buffer_head *bitmap_bh;
3742 			int i, start;
3743 
3744 			start = inode_offset & ~(inodes_per_block - 1);
3745 
3746 			/* Is the inode bitmap in cache? */
3747 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3748 			if (unlikely(!bitmap_bh))
3749 				goto make_io;
3750 
3751 			/*
3752 			 * If the inode bitmap isn't in cache then the
3753 			 * optimisation may end up performing two reads instead
3754 			 * of one, so skip it.
3755 			 */
3756 			if (!buffer_uptodate(bitmap_bh)) {
3757 				brelse(bitmap_bh);
3758 				goto make_io;
3759 			}
3760 			for (i = start; i < start + inodes_per_block; i++) {
3761 				if (i == inode_offset)
3762 					continue;
3763 				if (ext4_test_bit(i, bitmap_bh->b_data))
3764 					break;
3765 			}
3766 			brelse(bitmap_bh);
3767 			if (i == start + inodes_per_block) {
3768 				/* all other inodes are free, so skip I/O */
3769 				memset(bh->b_data, 0, bh->b_size);
3770 				set_buffer_uptodate(bh);
3771 				unlock_buffer(bh);
3772 				goto has_buffer;
3773 			}
3774 		}
3775 
3776 make_io:
3777 		/*
3778 		 * If we need to do any I/O, try to pre-readahead extra
3779 		 * blocks from the inode table.
3780 		 */
3781 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
3782 			ext4_fsblk_t b, end, table;
3783 			unsigned num;
3784 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3785 
3786 			table = ext4_inode_table(sb, gdp);
3787 			/* s_inode_readahead_blks is always a power of 2 */
3788 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
3789 			if (table > b)
3790 				b = table;
3791 			end = b + ra_blks;
3792 			num = EXT4_INODES_PER_GROUP(sb);
3793 			if (ext4_has_group_desc_csum(sb))
3794 				num -= ext4_itable_unused_count(sb, gdp);
3795 			table += num / inodes_per_block;
3796 			if (end > table)
3797 				end = table;
3798 			while (b <= end)
3799 				sb_breadahead(sb, b++);
3800 		}
3801 
3802 		/*
3803 		 * There are other valid inodes in the buffer, this inode
3804 		 * has in-inode xattrs, or we don't have this inode in memory.
3805 		 * Read the block from disk.
3806 		 */
3807 		trace_ext4_load_inode(inode);
3808 		get_bh(bh);
3809 		bh->b_end_io = end_buffer_read_sync;
3810 		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3811 		wait_on_buffer(bh);
3812 		if (!buffer_uptodate(bh)) {
3813 			EXT4_ERROR_INODE_BLOCK(inode, block,
3814 					       "unable to read itable block");
3815 			brelse(bh);
3816 			return -EIO;
3817 		}
3818 	}
3819 has_buffer:
3820 	iloc->bh = bh;
3821 	return 0;
3822 }
3823 
3824 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3825 {
3826 	/* We have all inode data except xattrs in memory here. */
3827 	return __ext4_get_inode_loc(inode, iloc,
3828 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3829 }
3830 
3831 void ext4_set_inode_flags(struct inode *inode)
3832 {
3833 	unsigned int flags = EXT4_I(inode)->i_flags;
3834 	unsigned int new_fl = 0;
3835 
3836 	if (flags & EXT4_SYNC_FL)
3837 		new_fl |= S_SYNC;
3838 	if (flags & EXT4_APPEND_FL)
3839 		new_fl |= S_APPEND;
3840 	if (flags & EXT4_IMMUTABLE_FL)
3841 		new_fl |= S_IMMUTABLE;
3842 	if (flags & EXT4_NOATIME_FL)
3843 		new_fl |= S_NOATIME;
3844 	if (flags & EXT4_DIRSYNC_FL)
3845 		new_fl |= S_DIRSYNC;
3846 	inode_set_flags(inode, new_fl,
3847 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3848 }
3849 
3850 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3851 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3852 {
3853 	unsigned int vfs_fl;
3854 	unsigned long old_fl, new_fl;
3855 
3856 	do {
3857 		vfs_fl = ei->vfs_inode.i_flags;
3858 		old_fl = ei->i_flags;
3859 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3860 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3861 				EXT4_DIRSYNC_FL);
3862 		if (vfs_fl & S_SYNC)
3863 			new_fl |= EXT4_SYNC_FL;
3864 		if (vfs_fl & S_APPEND)
3865 			new_fl |= EXT4_APPEND_FL;
3866 		if (vfs_fl & S_IMMUTABLE)
3867 			new_fl |= EXT4_IMMUTABLE_FL;
3868 		if (vfs_fl & S_NOATIME)
3869 			new_fl |= EXT4_NOATIME_FL;
3870 		if (vfs_fl & S_DIRSYNC)
3871 			new_fl |= EXT4_DIRSYNC_FL;
3872 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3873 }
3874 
3875 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3876 				  struct ext4_inode_info *ei)
3877 {
3878 	blkcnt_t i_blocks ;
3879 	struct inode *inode = &(ei->vfs_inode);
3880 	struct super_block *sb = inode->i_sb;
3881 
3882 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3883 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3884 		/* we are using combined 48 bit field */
3885 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3886 					le32_to_cpu(raw_inode->i_blocks_lo);
3887 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3888 			/* i_blocks represent file system block size */
3889 			return i_blocks  << (inode->i_blkbits - 9);
3890 		} else {
3891 			return i_blocks;
3892 		}
3893 	} else {
3894 		return le32_to_cpu(raw_inode->i_blocks_lo);
3895 	}
3896 }
3897 
3898 static inline void ext4_iget_extra_inode(struct inode *inode,
3899 					 struct ext4_inode *raw_inode,
3900 					 struct ext4_inode_info *ei)
3901 {
3902 	__le32 *magic = (void *)raw_inode +
3903 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3904 	if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3905 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3906 		ext4_find_inline_data_nolock(inode);
3907 	} else
3908 		EXT4_I(inode)->i_inline_off = 0;
3909 }
3910 
3911 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3912 {
3913 	struct ext4_iloc iloc;
3914 	struct ext4_inode *raw_inode;
3915 	struct ext4_inode_info *ei;
3916 	struct inode *inode;
3917 	journal_t *journal = EXT4_SB(sb)->s_journal;
3918 	long ret;
3919 	int block;
3920 	uid_t i_uid;
3921 	gid_t i_gid;
3922 
3923 	inode = iget_locked(sb, ino);
3924 	if (!inode)
3925 		return ERR_PTR(-ENOMEM);
3926 	if (!(inode->i_state & I_NEW))
3927 		return inode;
3928 
3929 	ei = EXT4_I(inode);
3930 	iloc.bh = NULL;
3931 
3932 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
3933 	if (ret < 0)
3934 		goto bad_inode;
3935 	raw_inode = ext4_raw_inode(&iloc);
3936 
3937 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3938 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3939 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3940 		    EXT4_INODE_SIZE(inode->i_sb)) {
3941 			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3942 				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3943 				EXT4_INODE_SIZE(inode->i_sb));
3944 			ret = -EIO;
3945 			goto bad_inode;
3946 		}
3947 	} else
3948 		ei->i_extra_isize = 0;
3949 
3950 	/* Precompute checksum seed for inode metadata */
3951 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3952 			EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3953 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3954 		__u32 csum;
3955 		__le32 inum = cpu_to_le32(inode->i_ino);
3956 		__le32 gen = raw_inode->i_generation;
3957 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3958 				   sizeof(inum));
3959 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3960 					      sizeof(gen));
3961 	}
3962 
3963 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3964 		EXT4_ERROR_INODE(inode, "checksum invalid");
3965 		ret = -EIO;
3966 		goto bad_inode;
3967 	}
3968 
3969 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3970 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3971 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3972 	if (!(test_opt(inode->i_sb, NO_UID32))) {
3973 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3974 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3975 	}
3976 	i_uid_write(inode, i_uid);
3977 	i_gid_write(inode, i_gid);
3978 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3979 
3980 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
3981 	ei->i_inline_off = 0;
3982 	ei->i_dir_start_lookup = 0;
3983 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3984 	/* We now have enough fields to check if the inode was active or not.
3985 	 * This is needed because nfsd might try to access dead inodes
3986 	 * the test is that same one that e2fsck uses
3987 	 * NeilBrown 1999oct15
3988 	 */
3989 	if (inode->i_nlink == 0) {
3990 		if ((inode->i_mode == 0 ||
3991 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
3992 		    ino != EXT4_BOOT_LOADER_INO) {
3993 			/* this inode is deleted */
3994 			ret = -ESTALE;
3995 			goto bad_inode;
3996 		}
3997 		/* The only unlinked inodes we let through here have
3998 		 * valid i_mode and are being read by the orphan
3999 		 * recovery code: that's fine, we're about to complete
4000 		 * the process of deleting those.
4001 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4002 		 * not initialized on a new filesystem. */
4003 	}
4004 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4005 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4006 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4007 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4008 		ei->i_file_acl |=
4009 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4010 	inode->i_size = ext4_isize(raw_inode);
4011 	ei->i_disksize = inode->i_size;
4012 #ifdef CONFIG_QUOTA
4013 	ei->i_reserved_quota = 0;
4014 #endif
4015 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4016 	ei->i_block_group = iloc.block_group;
4017 	ei->i_last_alloc_group = ~0;
4018 	/*
4019 	 * NOTE! The in-memory inode i_data array is in little-endian order
4020 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4021 	 */
4022 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4023 		ei->i_data[block] = raw_inode->i_block[block];
4024 	INIT_LIST_HEAD(&ei->i_orphan);
4025 
4026 	/*
4027 	 * Set transaction id's of transactions that have to be committed
4028 	 * to finish f[data]sync. We set them to currently running transaction
4029 	 * as we cannot be sure that the inode or some of its metadata isn't
4030 	 * part of the transaction - the inode could have been reclaimed and
4031 	 * now it is reread from disk.
4032 	 */
4033 	if (journal) {
4034 		transaction_t *transaction;
4035 		tid_t tid;
4036 
4037 		read_lock(&journal->j_state_lock);
4038 		if (journal->j_running_transaction)
4039 			transaction = journal->j_running_transaction;
4040 		else
4041 			transaction = journal->j_committing_transaction;
4042 		if (transaction)
4043 			tid = transaction->t_tid;
4044 		else
4045 			tid = journal->j_commit_sequence;
4046 		read_unlock(&journal->j_state_lock);
4047 		ei->i_sync_tid = tid;
4048 		ei->i_datasync_tid = tid;
4049 	}
4050 
4051 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4052 		if (ei->i_extra_isize == 0) {
4053 			/* The extra space is currently unused. Use it. */
4054 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4055 					    EXT4_GOOD_OLD_INODE_SIZE;
4056 		} else {
4057 			ext4_iget_extra_inode(inode, raw_inode, ei);
4058 		}
4059 	}
4060 
4061 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4062 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4063 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4064 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4065 
4066 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4067 		inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4068 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4069 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4070 				inode->i_version |=
4071 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4072 		}
4073 	}
4074 
4075 	ret = 0;
4076 	if (ei->i_file_acl &&
4077 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4078 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4079 				 ei->i_file_acl);
4080 		ret = -EIO;
4081 		goto bad_inode;
4082 	} else if (!ext4_has_inline_data(inode)) {
4083 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4084 			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4085 			    (S_ISLNK(inode->i_mode) &&
4086 			     !ext4_inode_is_fast_symlink(inode))))
4087 				/* Validate extent which is part of inode */
4088 				ret = ext4_ext_check_inode(inode);
4089 		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4090 			   (S_ISLNK(inode->i_mode) &&
4091 			    !ext4_inode_is_fast_symlink(inode))) {
4092 			/* Validate block references which are part of inode */
4093 			ret = ext4_ind_check_inode(inode);
4094 		}
4095 	}
4096 	if (ret)
4097 		goto bad_inode;
4098 
4099 	if (S_ISREG(inode->i_mode)) {
4100 		inode->i_op = &ext4_file_inode_operations;
4101 		inode->i_fop = &ext4_file_operations;
4102 		ext4_set_aops(inode);
4103 	} else if (S_ISDIR(inode->i_mode)) {
4104 		inode->i_op = &ext4_dir_inode_operations;
4105 		inode->i_fop = &ext4_dir_operations;
4106 	} else if (S_ISLNK(inode->i_mode)) {
4107 		if (ext4_inode_is_fast_symlink(inode)) {
4108 			inode->i_op = &ext4_fast_symlink_inode_operations;
4109 			nd_terminate_link(ei->i_data, inode->i_size,
4110 				sizeof(ei->i_data) - 1);
4111 		} else {
4112 			inode->i_op = &ext4_symlink_inode_operations;
4113 			ext4_set_aops(inode);
4114 		}
4115 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4116 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4117 		inode->i_op = &ext4_special_inode_operations;
4118 		if (raw_inode->i_block[0])
4119 			init_special_inode(inode, inode->i_mode,
4120 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4121 		else
4122 			init_special_inode(inode, inode->i_mode,
4123 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4124 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4125 		make_bad_inode(inode);
4126 	} else {
4127 		ret = -EIO;
4128 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4129 		goto bad_inode;
4130 	}
4131 	brelse(iloc.bh);
4132 	ext4_set_inode_flags(inode);
4133 	unlock_new_inode(inode);
4134 	return inode;
4135 
4136 bad_inode:
4137 	brelse(iloc.bh);
4138 	iget_failed(inode);
4139 	return ERR_PTR(ret);
4140 }
4141 
4142 static int ext4_inode_blocks_set(handle_t *handle,
4143 				struct ext4_inode *raw_inode,
4144 				struct ext4_inode_info *ei)
4145 {
4146 	struct inode *inode = &(ei->vfs_inode);
4147 	u64 i_blocks = inode->i_blocks;
4148 	struct super_block *sb = inode->i_sb;
4149 
4150 	if (i_blocks <= ~0U) {
4151 		/*
4152 		 * i_blocks can be represented in a 32 bit variable
4153 		 * as multiple of 512 bytes
4154 		 */
4155 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4156 		raw_inode->i_blocks_high = 0;
4157 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4158 		return 0;
4159 	}
4160 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4161 		return -EFBIG;
4162 
4163 	if (i_blocks <= 0xffffffffffffULL) {
4164 		/*
4165 		 * i_blocks can be represented in a 48 bit variable
4166 		 * as multiple of 512 bytes
4167 		 */
4168 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4169 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4170 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4171 	} else {
4172 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4173 		/* i_block is stored in file system block size */
4174 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4175 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4176 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4177 	}
4178 	return 0;
4179 }
4180 
4181 /*
4182  * Post the struct inode info into an on-disk inode location in the
4183  * buffer-cache.  This gobbles the caller's reference to the
4184  * buffer_head in the inode location struct.
4185  *
4186  * The caller must have write access to iloc->bh.
4187  */
4188 static int ext4_do_update_inode(handle_t *handle,
4189 				struct inode *inode,
4190 				struct ext4_iloc *iloc)
4191 {
4192 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4193 	struct ext4_inode_info *ei = EXT4_I(inode);
4194 	struct buffer_head *bh = iloc->bh;
4195 	struct super_block *sb = inode->i_sb;
4196 	int err = 0, rc, block;
4197 	int need_datasync = 0, set_large_file = 0;
4198 	uid_t i_uid;
4199 	gid_t i_gid;
4200 
4201 	spin_lock(&ei->i_raw_lock);
4202 
4203 	/* For fields not tracked in the in-memory inode,
4204 	 * initialise them to zero for new inodes. */
4205 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4206 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4207 
4208 	ext4_get_inode_flags(ei);
4209 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4210 	i_uid = i_uid_read(inode);
4211 	i_gid = i_gid_read(inode);
4212 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4213 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4214 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4215 /*
4216  * Fix up interoperability with old kernels. Otherwise, old inodes get
4217  * re-used with the upper 16 bits of the uid/gid intact
4218  */
4219 		if (!ei->i_dtime) {
4220 			raw_inode->i_uid_high =
4221 				cpu_to_le16(high_16_bits(i_uid));
4222 			raw_inode->i_gid_high =
4223 				cpu_to_le16(high_16_bits(i_gid));
4224 		} else {
4225 			raw_inode->i_uid_high = 0;
4226 			raw_inode->i_gid_high = 0;
4227 		}
4228 	} else {
4229 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4230 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4231 		raw_inode->i_uid_high = 0;
4232 		raw_inode->i_gid_high = 0;
4233 	}
4234 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4235 
4236 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4237 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4238 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4239 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4240 
4241 	if (ext4_inode_blocks_set(handle, raw_inode, ei)) {
4242 		spin_unlock(&ei->i_raw_lock);
4243 		goto out_brelse;
4244 	}
4245 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4246 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4247 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4248 		raw_inode->i_file_acl_high =
4249 			cpu_to_le16(ei->i_file_acl >> 32);
4250 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4251 	if (ei->i_disksize != ext4_isize(raw_inode)) {
4252 		ext4_isize_set(raw_inode, ei->i_disksize);
4253 		need_datasync = 1;
4254 	}
4255 	if (ei->i_disksize > 0x7fffffffULL) {
4256 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4257 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4258 				EXT4_SB(sb)->s_es->s_rev_level ==
4259 		    cpu_to_le32(EXT4_GOOD_OLD_REV))
4260 			set_large_file = 1;
4261 	}
4262 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4263 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4264 		if (old_valid_dev(inode->i_rdev)) {
4265 			raw_inode->i_block[0] =
4266 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4267 			raw_inode->i_block[1] = 0;
4268 		} else {
4269 			raw_inode->i_block[0] = 0;
4270 			raw_inode->i_block[1] =
4271 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4272 			raw_inode->i_block[2] = 0;
4273 		}
4274 	} else if (!ext4_has_inline_data(inode)) {
4275 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4276 			raw_inode->i_block[block] = ei->i_data[block];
4277 	}
4278 
4279 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4280 		raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4281 		if (ei->i_extra_isize) {
4282 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4283 				raw_inode->i_version_hi =
4284 					cpu_to_le32(inode->i_version >> 32);
4285 			raw_inode->i_extra_isize =
4286 				cpu_to_le16(ei->i_extra_isize);
4287 		}
4288 	}
4289 
4290 	ext4_inode_csum_set(inode, raw_inode, ei);
4291 
4292 	spin_unlock(&ei->i_raw_lock);
4293 
4294 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4295 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4296 	if (!err)
4297 		err = rc;
4298 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4299 	if (set_large_file) {
4300 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4301 		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4302 		if (err)
4303 			goto out_brelse;
4304 		ext4_update_dynamic_rev(sb);
4305 		EXT4_SET_RO_COMPAT_FEATURE(sb,
4306 					   EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4307 		ext4_handle_sync(handle);
4308 		err = ext4_handle_dirty_super(handle, sb);
4309 	}
4310 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4311 out_brelse:
4312 	brelse(bh);
4313 	ext4_std_error(inode->i_sb, err);
4314 	return err;
4315 }
4316 
4317 /*
4318  * ext4_write_inode()
4319  *
4320  * We are called from a few places:
4321  *
4322  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4323  *   Here, there will be no transaction running. We wait for any running
4324  *   transaction to commit.
4325  *
4326  * - Within flush work (sys_sync(), kupdate and such).
4327  *   We wait on commit, if told to.
4328  *
4329  * - Within iput_final() -> write_inode_now()
4330  *   We wait on commit, if told to.
4331  *
4332  * In all cases it is actually safe for us to return without doing anything,
4333  * because the inode has been copied into a raw inode buffer in
4334  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4335  * writeback.
4336  *
4337  * Note that we are absolutely dependent upon all inode dirtiers doing the
4338  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4339  * which we are interested.
4340  *
4341  * It would be a bug for them to not do this.  The code:
4342  *
4343  *	mark_inode_dirty(inode)
4344  *	stuff();
4345  *	inode->i_size = expr;
4346  *
4347  * is in error because write_inode() could occur while `stuff()' is running,
4348  * and the new i_size will be lost.  Plus the inode will no longer be on the
4349  * superblock's dirty inode list.
4350  */
4351 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4352 {
4353 	int err;
4354 
4355 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4356 		return 0;
4357 
4358 	if (EXT4_SB(inode->i_sb)->s_journal) {
4359 		if (ext4_journal_current_handle()) {
4360 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4361 			dump_stack();
4362 			return -EIO;
4363 		}
4364 
4365 		/*
4366 		 * No need to force transaction in WB_SYNC_NONE mode. Also
4367 		 * ext4_sync_fs() will force the commit after everything is
4368 		 * written.
4369 		 */
4370 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4371 			return 0;
4372 
4373 		err = ext4_force_commit(inode->i_sb);
4374 	} else {
4375 		struct ext4_iloc iloc;
4376 
4377 		err = __ext4_get_inode_loc(inode, &iloc, 0);
4378 		if (err)
4379 			return err;
4380 		/*
4381 		 * sync(2) will flush the whole buffer cache. No need to do
4382 		 * it here separately for each inode.
4383 		 */
4384 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4385 			sync_dirty_buffer(iloc.bh);
4386 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4387 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4388 					 "IO error syncing inode");
4389 			err = -EIO;
4390 		}
4391 		brelse(iloc.bh);
4392 	}
4393 	return err;
4394 }
4395 
4396 /*
4397  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4398  * buffers that are attached to a page stradding i_size and are undergoing
4399  * commit. In that case we have to wait for commit to finish and try again.
4400  */
4401 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4402 {
4403 	struct page *page;
4404 	unsigned offset;
4405 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4406 	tid_t commit_tid = 0;
4407 	int ret;
4408 
4409 	offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4410 	/*
4411 	 * All buffers in the last page remain valid? Then there's nothing to
4412 	 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4413 	 * blocksize case
4414 	 */
4415 	if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4416 		return;
4417 	while (1) {
4418 		page = find_lock_page(inode->i_mapping,
4419 				      inode->i_size >> PAGE_CACHE_SHIFT);
4420 		if (!page)
4421 			return;
4422 		ret = __ext4_journalled_invalidatepage(page, offset,
4423 						PAGE_CACHE_SIZE - offset);
4424 		unlock_page(page);
4425 		page_cache_release(page);
4426 		if (ret != -EBUSY)
4427 			return;
4428 		commit_tid = 0;
4429 		read_lock(&journal->j_state_lock);
4430 		if (journal->j_committing_transaction)
4431 			commit_tid = journal->j_committing_transaction->t_tid;
4432 		read_unlock(&journal->j_state_lock);
4433 		if (commit_tid)
4434 			jbd2_log_wait_commit(journal, commit_tid);
4435 	}
4436 }
4437 
4438 /*
4439  * ext4_setattr()
4440  *
4441  * Called from notify_change.
4442  *
4443  * We want to trap VFS attempts to truncate the file as soon as
4444  * possible.  In particular, we want to make sure that when the VFS
4445  * shrinks i_size, we put the inode on the orphan list and modify
4446  * i_disksize immediately, so that during the subsequent flushing of
4447  * dirty pages and freeing of disk blocks, we can guarantee that any
4448  * commit will leave the blocks being flushed in an unused state on
4449  * disk.  (On recovery, the inode will get truncated and the blocks will
4450  * be freed, so we have a strong guarantee that no future commit will
4451  * leave these blocks visible to the user.)
4452  *
4453  * Another thing we have to assure is that if we are in ordered mode
4454  * and inode is still attached to the committing transaction, we must
4455  * we start writeout of all the dirty pages which are being truncated.
4456  * This way we are sure that all the data written in the previous
4457  * transaction are already on disk (truncate waits for pages under
4458  * writeback).
4459  *
4460  * Called with inode->i_mutex down.
4461  */
4462 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4463 {
4464 	struct inode *inode = dentry->d_inode;
4465 	int error, rc = 0;
4466 	int orphan = 0;
4467 	const unsigned int ia_valid = attr->ia_valid;
4468 
4469 	error = inode_change_ok(inode, attr);
4470 	if (error)
4471 		return error;
4472 
4473 	if (is_quota_modification(inode, attr))
4474 		dquot_initialize(inode);
4475 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4476 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4477 		handle_t *handle;
4478 
4479 		/* (user+group)*(old+new) structure, inode write (sb,
4480 		 * inode block, ? - but truncate inode update has it) */
4481 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4482 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4483 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4484 		if (IS_ERR(handle)) {
4485 			error = PTR_ERR(handle);
4486 			goto err_out;
4487 		}
4488 		error = dquot_transfer(inode, attr);
4489 		if (error) {
4490 			ext4_journal_stop(handle);
4491 			return error;
4492 		}
4493 		/* Update corresponding info in inode so that everything is in
4494 		 * one transaction */
4495 		if (attr->ia_valid & ATTR_UID)
4496 			inode->i_uid = attr->ia_uid;
4497 		if (attr->ia_valid & ATTR_GID)
4498 			inode->i_gid = attr->ia_gid;
4499 		error = ext4_mark_inode_dirty(handle, inode);
4500 		ext4_journal_stop(handle);
4501 	}
4502 
4503 	if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4504 		handle_t *handle;
4505 
4506 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4507 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4508 
4509 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
4510 				return -EFBIG;
4511 		}
4512 
4513 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4514 			inode_inc_iversion(inode);
4515 
4516 		if (S_ISREG(inode->i_mode) &&
4517 		    (attr->ia_size < inode->i_size)) {
4518 			if (ext4_should_order_data(inode)) {
4519 				error = ext4_begin_ordered_truncate(inode,
4520 							    attr->ia_size);
4521 				if (error)
4522 					goto err_out;
4523 			}
4524 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4525 			if (IS_ERR(handle)) {
4526 				error = PTR_ERR(handle);
4527 				goto err_out;
4528 			}
4529 			if (ext4_handle_valid(handle)) {
4530 				error = ext4_orphan_add(handle, inode);
4531 				orphan = 1;
4532 			}
4533 			down_write(&EXT4_I(inode)->i_data_sem);
4534 			EXT4_I(inode)->i_disksize = attr->ia_size;
4535 			rc = ext4_mark_inode_dirty(handle, inode);
4536 			if (!error)
4537 				error = rc;
4538 			/*
4539 			 * We have to update i_size under i_data_sem together
4540 			 * with i_disksize to avoid races with writeback code
4541 			 * running ext4_wb_update_i_disksize().
4542 			 */
4543 			if (!error)
4544 				i_size_write(inode, attr->ia_size);
4545 			up_write(&EXT4_I(inode)->i_data_sem);
4546 			ext4_journal_stop(handle);
4547 			if (error) {
4548 				ext4_orphan_del(NULL, inode);
4549 				goto err_out;
4550 			}
4551 		} else
4552 			i_size_write(inode, attr->ia_size);
4553 
4554 		/*
4555 		 * Blocks are going to be removed from the inode. Wait
4556 		 * for dio in flight.  Temporarily disable
4557 		 * dioread_nolock to prevent livelock.
4558 		 */
4559 		if (orphan) {
4560 			if (!ext4_should_journal_data(inode)) {
4561 				ext4_inode_block_unlocked_dio(inode);
4562 				inode_dio_wait(inode);
4563 				ext4_inode_resume_unlocked_dio(inode);
4564 			} else
4565 				ext4_wait_for_tail_page_commit(inode);
4566 		}
4567 		/*
4568 		 * Truncate pagecache after we've waited for commit
4569 		 * in data=journal mode to make pages freeable.
4570 		 */
4571 			truncate_pagecache(inode, inode->i_size);
4572 	}
4573 	/*
4574 	 * We want to call ext4_truncate() even if attr->ia_size ==
4575 	 * inode->i_size for cases like truncation of fallocated space
4576 	 */
4577 	if (attr->ia_valid & ATTR_SIZE)
4578 		ext4_truncate(inode);
4579 
4580 	if (!rc) {
4581 		setattr_copy(inode, attr);
4582 		mark_inode_dirty(inode);
4583 	}
4584 
4585 	/*
4586 	 * If the call to ext4_truncate failed to get a transaction handle at
4587 	 * all, we need to clean up the in-core orphan list manually.
4588 	 */
4589 	if (orphan && inode->i_nlink)
4590 		ext4_orphan_del(NULL, inode);
4591 
4592 	if (!rc && (ia_valid & ATTR_MODE))
4593 		rc = posix_acl_chmod(inode, inode->i_mode);
4594 
4595 err_out:
4596 	ext4_std_error(inode->i_sb, error);
4597 	if (!error)
4598 		error = rc;
4599 	return error;
4600 }
4601 
4602 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4603 		 struct kstat *stat)
4604 {
4605 	struct inode *inode;
4606 	unsigned long long delalloc_blocks;
4607 
4608 	inode = dentry->d_inode;
4609 	generic_fillattr(inode, stat);
4610 
4611 	/*
4612 	 * If there is inline data in the inode, the inode will normally not
4613 	 * have data blocks allocated (it may have an external xattr block).
4614 	 * Report at least one sector for such files, so tools like tar, rsync,
4615 	 * others doen't incorrectly think the file is completely sparse.
4616 	 */
4617 	if (unlikely(ext4_has_inline_data(inode)))
4618 		stat->blocks += (stat->size + 511) >> 9;
4619 
4620 	/*
4621 	 * We can't update i_blocks if the block allocation is delayed
4622 	 * otherwise in the case of system crash before the real block
4623 	 * allocation is done, we will have i_blocks inconsistent with
4624 	 * on-disk file blocks.
4625 	 * We always keep i_blocks updated together with real
4626 	 * allocation. But to not confuse with user, stat
4627 	 * will return the blocks that include the delayed allocation
4628 	 * blocks for this file.
4629 	 */
4630 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4631 				   EXT4_I(inode)->i_reserved_data_blocks);
4632 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4633 	return 0;
4634 }
4635 
4636 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4637 				   int pextents)
4638 {
4639 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4640 		return ext4_ind_trans_blocks(inode, lblocks);
4641 	return ext4_ext_index_trans_blocks(inode, pextents);
4642 }
4643 
4644 /*
4645  * Account for index blocks, block groups bitmaps and block group
4646  * descriptor blocks if modify datablocks and index blocks
4647  * worse case, the indexs blocks spread over different block groups
4648  *
4649  * If datablocks are discontiguous, they are possible to spread over
4650  * different block groups too. If they are contiguous, with flexbg,
4651  * they could still across block group boundary.
4652  *
4653  * Also account for superblock, inode, quota and xattr blocks
4654  */
4655 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4656 				  int pextents)
4657 {
4658 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4659 	int gdpblocks;
4660 	int idxblocks;
4661 	int ret = 0;
4662 
4663 	/*
4664 	 * How many index blocks need to touch to map @lblocks logical blocks
4665 	 * to @pextents physical extents?
4666 	 */
4667 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4668 
4669 	ret = idxblocks;
4670 
4671 	/*
4672 	 * Now let's see how many group bitmaps and group descriptors need
4673 	 * to account
4674 	 */
4675 	groups = idxblocks + pextents;
4676 	gdpblocks = groups;
4677 	if (groups > ngroups)
4678 		groups = ngroups;
4679 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4680 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4681 
4682 	/* bitmaps and block group descriptor blocks */
4683 	ret += groups + gdpblocks;
4684 
4685 	/* Blocks for super block, inode, quota and xattr blocks */
4686 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4687 
4688 	return ret;
4689 }
4690 
4691 /*
4692  * Calculate the total number of credits to reserve to fit
4693  * the modification of a single pages into a single transaction,
4694  * which may include multiple chunks of block allocations.
4695  *
4696  * This could be called via ext4_write_begin()
4697  *
4698  * We need to consider the worse case, when
4699  * one new block per extent.
4700  */
4701 int ext4_writepage_trans_blocks(struct inode *inode)
4702 {
4703 	int bpp = ext4_journal_blocks_per_page(inode);
4704 	int ret;
4705 
4706 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4707 
4708 	/* Account for data blocks for journalled mode */
4709 	if (ext4_should_journal_data(inode))
4710 		ret += bpp;
4711 	return ret;
4712 }
4713 
4714 /*
4715  * Calculate the journal credits for a chunk of data modification.
4716  *
4717  * This is called from DIO, fallocate or whoever calling
4718  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4719  *
4720  * journal buffers for data blocks are not included here, as DIO
4721  * and fallocate do no need to journal data buffers.
4722  */
4723 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4724 {
4725 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
4726 }
4727 
4728 /*
4729  * The caller must have previously called ext4_reserve_inode_write().
4730  * Give this, we know that the caller already has write access to iloc->bh.
4731  */
4732 int ext4_mark_iloc_dirty(handle_t *handle,
4733 			 struct inode *inode, struct ext4_iloc *iloc)
4734 {
4735 	int err = 0;
4736 
4737 	if (IS_I_VERSION(inode))
4738 		inode_inc_iversion(inode);
4739 
4740 	/* the do_update_inode consumes one bh->b_count */
4741 	get_bh(iloc->bh);
4742 
4743 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4744 	err = ext4_do_update_inode(handle, inode, iloc);
4745 	put_bh(iloc->bh);
4746 	return err;
4747 }
4748 
4749 /*
4750  * On success, We end up with an outstanding reference count against
4751  * iloc->bh.  This _must_ be cleaned up later.
4752  */
4753 
4754 int
4755 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4756 			 struct ext4_iloc *iloc)
4757 {
4758 	int err;
4759 
4760 	err = ext4_get_inode_loc(inode, iloc);
4761 	if (!err) {
4762 		BUFFER_TRACE(iloc->bh, "get_write_access");
4763 		err = ext4_journal_get_write_access(handle, iloc->bh);
4764 		if (err) {
4765 			brelse(iloc->bh);
4766 			iloc->bh = NULL;
4767 		}
4768 	}
4769 	ext4_std_error(inode->i_sb, err);
4770 	return err;
4771 }
4772 
4773 /*
4774  * Expand an inode by new_extra_isize bytes.
4775  * Returns 0 on success or negative error number on failure.
4776  */
4777 static int ext4_expand_extra_isize(struct inode *inode,
4778 				   unsigned int new_extra_isize,
4779 				   struct ext4_iloc iloc,
4780 				   handle_t *handle)
4781 {
4782 	struct ext4_inode *raw_inode;
4783 	struct ext4_xattr_ibody_header *header;
4784 
4785 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4786 		return 0;
4787 
4788 	raw_inode = ext4_raw_inode(&iloc);
4789 
4790 	header = IHDR(inode, raw_inode);
4791 
4792 	/* No extended attributes present */
4793 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4794 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4795 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4796 			new_extra_isize);
4797 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
4798 		return 0;
4799 	}
4800 
4801 	/* try to expand with EAs present */
4802 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4803 					  raw_inode, handle);
4804 }
4805 
4806 /*
4807  * What we do here is to mark the in-core inode as clean with respect to inode
4808  * dirtiness (it may still be data-dirty).
4809  * This means that the in-core inode may be reaped by prune_icache
4810  * without having to perform any I/O.  This is a very good thing,
4811  * because *any* task may call prune_icache - even ones which
4812  * have a transaction open against a different journal.
4813  *
4814  * Is this cheating?  Not really.  Sure, we haven't written the
4815  * inode out, but prune_icache isn't a user-visible syncing function.
4816  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4817  * we start and wait on commits.
4818  */
4819 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4820 {
4821 	struct ext4_iloc iloc;
4822 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4823 	static unsigned int mnt_count;
4824 	int err, ret;
4825 
4826 	might_sleep();
4827 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4828 	err = ext4_reserve_inode_write(handle, inode, &iloc);
4829 	if (ext4_handle_valid(handle) &&
4830 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4831 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4832 		/*
4833 		 * We need extra buffer credits since we may write into EA block
4834 		 * with this same handle. If journal_extend fails, then it will
4835 		 * only result in a minor loss of functionality for that inode.
4836 		 * If this is felt to be critical, then e2fsck should be run to
4837 		 * force a large enough s_min_extra_isize.
4838 		 */
4839 		if ((jbd2_journal_extend(handle,
4840 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4841 			ret = ext4_expand_extra_isize(inode,
4842 						      sbi->s_want_extra_isize,
4843 						      iloc, handle);
4844 			if (ret) {
4845 				ext4_set_inode_state(inode,
4846 						     EXT4_STATE_NO_EXPAND);
4847 				if (mnt_count !=
4848 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4849 					ext4_warning(inode->i_sb,
4850 					"Unable to expand inode %lu. Delete"
4851 					" some EAs or run e2fsck.",
4852 					inode->i_ino);
4853 					mnt_count =
4854 					  le16_to_cpu(sbi->s_es->s_mnt_count);
4855 				}
4856 			}
4857 		}
4858 	}
4859 	if (!err)
4860 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4861 	return err;
4862 }
4863 
4864 /*
4865  * ext4_dirty_inode() is called from __mark_inode_dirty()
4866  *
4867  * We're really interested in the case where a file is being extended.
4868  * i_size has been changed by generic_commit_write() and we thus need
4869  * to include the updated inode in the current transaction.
4870  *
4871  * Also, dquot_alloc_block() will always dirty the inode when blocks
4872  * are allocated to the file.
4873  *
4874  * If the inode is marked synchronous, we don't honour that here - doing
4875  * so would cause a commit on atime updates, which we don't bother doing.
4876  * We handle synchronous inodes at the highest possible level.
4877  */
4878 void ext4_dirty_inode(struct inode *inode, int flags)
4879 {
4880 	handle_t *handle;
4881 
4882 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4883 	if (IS_ERR(handle))
4884 		goto out;
4885 
4886 	ext4_mark_inode_dirty(handle, inode);
4887 
4888 	ext4_journal_stop(handle);
4889 out:
4890 	return;
4891 }
4892 
4893 #if 0
4894 /*
4895  * Bind an inode's backing buffer_head into this transaction, to prevent
4896  * it from being flushed to disk early.  Unlike
4897  * ext4_reserve_inode_write, this leaves behind no bh reference and
4898  * returns no iloc structure, so the caller needs to repeat the iloc
4899  * lookup to mark the inode dirty later.
4900  */
4901 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4902 {
4903 	struct ext4_iloc iloc;
4904 
4905 	int err = 0;
4906 	if (handle) {
4907 		err = ext4_get_inode_loc(inode, &iloc);
4908 		if (!err) {
4909 			BUFFER_TRACE(iloc.bh, "get_write_access");
4910 			err = jbd2_journal_get_write_access(handle, iloc.bh);
4911 			if (!err)
4912 				err = ext4_handle_dirty_metadata(handle,
4913 								 NULL,
4914 								 iloc.bh);
4915 			brelse(iloc.bh);
4916 		}
4917 	}
4918 	ext4_std_error(inode->i_sb, err);
4919 	return err;
4920 }
4921 #endif
4922 
4923 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4924 {
4925 	journal_t *journal;
4926 	handle_t *handle;
4927 	int err;
4928 
4929 	/*
4930 	 * We have to be very careful here: changing a data block's
4931 	 * journaling status dynamically is dangerous.  If we write a
4932 	 * data block to the journal, change the status and then delete
4933 	 * that block, we risk forgetting to revoke the old log record
4934 	 * from the journal and so a subsequent replay can corrupt data.
4935 	 * So, first we make sure that the journal is empty and that
4936 	 * nobody is changing anything.
4937 	 */
4938 
4939 	journal = EXT4_JOURNAL(inode);
4940 	if (!journal)
4941 		return 0;
4942 	if (is_journal_aborted(journal))
4943 		return -EROFS;
4944 	/* We have to allocate physical blocks for delalloc blocks
4945 	 * before flushing journal. otherwise delalloc blocks can not
4946 	 * be allocated any more. even more truncate on delalloc blocks
4947 	 * could trigger BUG by flushing delalloc blocks in journal.
4948 	 * There is no delalloc block in non-journal data mode.
4949 	 */
4950 	if (val && test_opt(inode->i_sb, DELALLOC)) {
4951 		err = ext4_alloc_da_blocks(inode);
4952 		if (err < 0)
4953 			return err;
4954 	}
4955 
4956 	/* Wait for all existing dio workers */
4957 	ext4_inode_block_unlocked_dio(inode);
4958 	inode_dio_wait(inode);
4959 
4960 	jbd2_journal_lock_updates(journal);
4961 
4962 	/*
4963 	 * OK, there are no updates running now, and all cached data is
4964 	 * synced to disk.  We are now in a completely consistent state
4965 	 * which doesn't have anything in the journal, and we know that
4966 	 * no filesystem updates are running, so it is safe to modify
4967 	 * the inode's in-core data-journaling state flag now.
4968 	 */
4969 
4970 	if (val)
4971 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4972 	else {
4973 		jbd2_journal_flush(journal);
4974 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4975 	}
4976 	ext4_set_aops(inode);
4977 
4978 	jbd2_journal_unlock_updates(journal);
4979 	ext4_inode_resume_unlocked_dio(inode);
4980 
4981 	/* Finally we can mark the inode as dirty. */
4982 
4983 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
4984 	if (IS_ERR(handle))
4985 		return PTR_ERR(handle);
4986 
4987 	err = ext4_mark_inode_dirty(handle, inode);
4988 	ext4_handle_sync(handle);
4989 	ext4_journal_stop(handle);
4990 	ext4_std_error(inode->i_sb, err);
4991 
4992 	return err;
4993 }
4994 
4995 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4996 {
4997 	return !buffer_mapped(bh);
4998 }
4999 
5000 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5001 {
5002 	struct page *page = vmf->page;
5003 	loff_t size;
5004 	unsigned long len;
5005 	int ret;
5006 	struct file *file = vma->vm_file;
5007 	struct inode *inode = file_inode(file);
5008 	struct address_space *mapping = inode->i_mapping;
5009 	handle_t *handle;
5010 	get_block_t *get_block;
5011 	int retries = 0;
5012 
5013 	sb_start_pagefault(inode->i_sb);
5014 	file_update_time(vma->vm_file);
5015 	/* Delalloc case is easy... */
5016 	if (test_opt(inode->i_sb, DELALLOC) &&
5017 	    !ext4_should_journal_data(inode) &&
5018 	    !ext4_nonda_switch(inode->i_sb)) {
5019 		do {
5020 			ret = __block_page_mkwrite(vma, vmf,
5021 						   ext4_da_get_block_prep);
5022 		} while (ret == -ENOSPC &&
5023 		       ext4_should_retry_alloc(inode->i_sb, &retries));
5024 		goto out_ret;
5025 	}
5026 
5027 	lock_page(page);
5028 	size = i_size_read(inode);
5029 	/* Page got truncated from under us? */
5030 	if (page->mapping != mapping || page_offset(page) > size) {
5031 		unlock_page(page);
5032 		ret = VM_FAULT_NOPAGE;
5033 		goto out;
5034 	}
5035 
5036 	if (page->index == size >> PAGE_CACHE_SHIFT)
5037 		len = size & ~PAGE_CACHE_MASK;
5038 	else
5039 		len = PAGE_CACHE_SIZE;
5040 	/*
5041 	 * Return if we have all the buffers mapped. This avoids the need to do
5042 	 * journal_start/journal_stop which can block and take a long time
5043 	 */
5044 	if (page_has_buffers(page)) {
5045 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5046 					    0, len, NULL,
5047 					    ext4_bh_unmapped)) {
5048 			/* Wait so that we don't change page under IO */
5049 			wait_for_stable_page(page);
5050 			ret = VM_FAULT_LOCKED;
5051 			goto out;
5052 		}
5053 	}
5054 	unlock_page(page);
5055 	/* OK, we need to fill the hole... */
5056 	if (ext4_should_dioread_nolock(inode))
5057 		get_block = ext4_get_block_write;
5058 	else
5059 		get_block = ext4_get_block;
5060 retry_alloc:
5061 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5062 				    ext4_writepage_trans_blocks(inode));
5063 	if (IS_ERR(handle)) {
5064 		ret = VM_FAULT_SIGBUS;
5065 		goto out;
5066 	}
5067 	ret = __block_page_mkwrite(vma, vmf, get_block);
5068 	if (!ret && ext4_should_journal_data(inode)) {
5069 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5070 			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5071 			unlock_page(page);
5072 			ret = VM_FAULT_SIGBUS;
5073 			ext4_journal_stop(handle);
5074 			goto out;
5075 		}
5076 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5077 	}
5078 	ext4_journal_stop(handle);
5079 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5080 		goto retry_alloc;
5081 out_ret:
5082 	ret = block_page_mkwrite_return(ret);
5083 out:
5084 	sb_end_pagefault(inode->i_sb);
5085 	return ret;
5086 }
5087