1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * 64-bit file support on 64-bit platforms by Jakub Jelinek 16 * (jj@sunsite.ms.mff.cuni.cz) 17 * 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 19 */ 20 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/highuid.h> 24 #include <linux/pagemap.h> 25 #include <linux/dax.h> 26 #include <linux/quotaops.h> 27 #include <linux/string.h> 28 #include <linux/buffer_head.h> 29 #include <linux/writeback.h> 30 #include <linux/pagevec.h> 31 #include <linux/mpage.h> 32 #include <linux/namei.h> 33 #include <linux/uio.h> 34 #include <linux/bio.h> 35 #include <linux/workqueue.h> 36 #include <linux/kernel.h> 37 #include <linux/printk.h> 38 #include <linux/slab.h> 39 #include <linux/bitops.h> 40 #include <linux/iomap.h> 41 42 #include "ext4_jbd2.h" 43 #include "xattr.h" 44 #include "acl.h" 45 #include "truncate.h" 46 47 #include <trace/events/ext4.h> 48 49 #define MPAGE_DA_EXTENT_TAIL 0x01 50 51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 52 struct ext4_inode_info *ei) 53 { 54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 55 __u32 csum; 56 __u16 dummy_csum = 0; 57 int offset = offsetof(struct ext4_inode, i_checksum_lo); 58 unsigned int csum_size = sizeof(dummy_csum); 59 60 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset); 61 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size); 62 offset += csum_size; 63 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 64 EXT4_GOOD_OLD_INODE_SIZE - offset); 65 66 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 67 offset = offsetof(struct ext4_inode, i_checksum_hi); 68 csum = ext4_chksum(sbi, csum, (__u8 *)raw + 69 EXT4_GOOD_OLD_INODE_SIZE, 70 offset - EXT4_GOOD_OLD_INODE_SIZE); 71 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 72 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, 73 csum_size); 74 offset += csum_size; 75 } 76 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 77 EXT4_INODE_SIZE(inode->i_sb) - offset); 78 } 79 80 return csum; 81 } 82 83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 84 struct ext4_inode_info *ei) 85 { 86 __u32 provided, calculated; 87 88 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 89 cpu_to_le32(EXT4_OS_LINUX) || 90 !ext4_has_metadata_csum(inode->i_sb)) 91 return 1; 92 93 provided = le16_to_cpu(raw->i_checksum_lo); 94 calculated = ext4_inode_csum(inode, raw, ei); 95 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 96 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 97 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 98 else 99 calculated &= 0xFFFF; 100 101 return provided == calculated; 102 } 103 104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 105 struct ext4_inode_info *ei) 106 { 107 __u32 csum; 108 109 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 110 cpu_to_le32(EXT4_OS_LINUX) || 111 !ext4_has_metadata_csum(inode->i_sb)) 112 return; 113 114 csum = ext4_inode_csum(inode, raw, ei); 115 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 116 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 117 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 118 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 119 } 120 121 static inline int ext4_begin_ordered_truncate(struct inode *inode, 122 loff_t new_size) 123 { 124 trace_ext4_begin_ordered_truncate(inode, new_size); 125 /* 126 * If jinode is zero, then we never opened the file for 127 * writing, so there's no need to call 128 * jbd2_journal_begin_ordered_truncate() since there's no 129 * outstanding writes we need to flush. 130 */ 131 if (!EXT4_I(inode)->jinode) 132 return 0; 133 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 134 EXT4_I(inode)->jinode, 135 new_size); 136 } 137 138 static void ext4_invalidatepage(struct page *page, unsigned int offset, 139 unsigned int length); 140 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 143 int pextents); 144 145 /* 146 * Test whether an inode is a fast symlink. 147 * A fast symlink has its symlink data stored in ext4_inode_info->i_data. 148 */ 149 int ext4_inode_is_fast_symlink(struct inode *inode) 150 { 151 return S_ISLNK(inode->i_mode) && inode->i_size && 152 (inode->i_size < EXT4_N_BLOCKS * 4); 153 } 154 155 /* 156 * Restart the transaction associated with *handle. This does a commit, 157 * so before we call here everything must be consistently dirtied against 158 * this transaction. 159 */ 160 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 161 int nblocks) 162 { 163 int ret; 164 165 /* 166 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 167 * moment, get_block can be called only for blocks inside i_size since 168 * page cache has been already dropped and writes are blocked by 169 * i_mutex. So we can safely drop the i_data_sem here. 170 */ 171 BUG_ON(EXT4_JOURNAL(inode) == NULL); 172 jbd_debug(2, "restarting handle %p\n", handle); 173 up_write(&EXT4_I(inode)->i_data_sem); 174 ret = ext4_journal_restart(handle, nblocks); 175 down_write(&EXT4_I(inode)->i_data_sem); 176 ext4_discard_preallocations(inode); 177 178 return ret; 179 } 180 181 /* 182 * Called at the last iput() if i_nlink is zero. 183 */ 184 void ext4_evict_inode(struct inode *inode) 185 { 186 handle_t *handle; 187 int err; 188 int extra_credits = 3; 189 struct ext4_xattr_inode_array *ea_inode_array = NULL; 190 191 trace_ext4_evict_inode(inode); 192 193 if (inode->i_nlink) { 194 /* 195 * When journalling data dirty buffers are tracked only in the 196 * journal. So although mm thinks everything is clean and 197 * ready for reaping the inode might still have some pages to 198 * write in the running transaction or waiting to be 199 * checkpointed. Thus calling jbd2_journal_invalidatepage() 200 * (via truncate_inode_pages()) to discard these buffers can 201 * cause data loss. Also even if we did not discard these 202 * buffers, we would have no way to find them after the inode 203 * is reaped and thus user could see stale data if he tries to 204 * read them before the transaction is checkpointed. So be 205 * careful and force everything to disk here... We use 206 * ei->i_datasync_tid to store the newest transaction 207 * containing inode's data. 208 * 209 * Note that directories do not have this problem because they 210 * don't use page cache. 211 */ 212 if (inode->i_ino != EXT4_JOURNAL_INO && 213 ext4_should_journal_data(inode) && 214 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 215 inode->i_data.nrpages) { 216 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 217 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 218 219 jbd2_complete_transaction(journal, commit_tid); 220 filemap_write_and_wait(&inode->i_data); 221 } 222 truncate_inode_pages_final(&inode->i_data); 223 224 goto no_delete; 225 } 226 227 if (is_bad_inode(inode)) 228 goto no_delete; 229 dquot_initialize(inode); 230 231 if (ext4_should_order_data(inode)) 232 ext4_begin_ordered_truncate(inode, 0); 233 truncate_inode_pages_final(&inode->i_data); 234 235 /* 236 * Protect us against freezing - iput() caller didn't have to have any 237 * protection against it 238 */ 239 sb_start_intwrite(inode->i_sb); 240 241 if (!IS_NOQUOTA(inode)) 242 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); 243 244 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 245 ext4_blocks_for_truncate(inode)+extra_credits); 246 if (IS_ERR(handle)) { 247 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 248 /* 249 * If we're going to skip the normal cleanup, we still need to 250 * make sure that the in-core orphan linked list is properly 251 * cleaned up. 252 */ 253 ext4_orphan_del(NULL, inode); 254 sb_end_intwrite(inode->i_sb); 255 goto no_delete; 256 } 257 258 if (IS_SYNC(inode)) 259 ext4_handle_sync(handle); 260 261 /* 262 * Set inode->i_size to 0 before calling ext4_truncate(). We need 263 * special handling of symlinks here because i_size is used to 264 * determine whether ext4_inode_info->i_data contains symlink data or 265 * block mappings. Setting i_size to 0 will remove its fast symlink 266 * status. Erase i_data so that it becomes a valid empty block map. 267 */ 268 if (ext4_inode_is_fast_symlink(inode)) 269 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data)); 270 inode->i_size = 0; 271 err = ext4_mark_inode_dirty(handle, inode); 272 if (err) { 273 ext4_warning(inode->i_sb, 274 "couldn't mark inode dirty (err %d)", err); 275 goto stop_handle; 276 } 277 if (inode->i_blocks) { 278 err = ext4_truncate(inode); 279 if (err) { 280 ext4_error(inode->i_sb, 281 "couldn't truncate inode %lu (err %d)", 282 inode->i_ino, err); 283 goto stop_handle; 284 } 285 } 286 287 /* Remove xattr references. */ 288 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array, 289 extra_credits); 290 if (err) { 291 ext4_warning(inode->i_sb, "xattr delete (err %d)", err); 292 stop_handle: 293 ext4_journal_stop(handle); 294 ext4_orphan_del(NULL, inode); 295 sb_end_intwrite(inode->i_sb); 296 ext4_xattr_inode_array_free(ea_inode_array); 297 goto no_delete; 298 } 299 300 /* 301 * Kill off the orphan record which ext4_truncate created. 302 * AKPM: I think this can be inside the above `if'. 303 * Note that ext4_orphan_del() has to be able to cope with the 304 * deletion of a non-existent orphan - this is because we don't 305 * know if ext4_truncate() actually created an orphan record. 306 * (Well, we could do this if we need to, but heck - it works) 307 */ 308 ext4_orphan_del(handle, inode); 309 EXT4_I(inode)->i_dtime = get_seconds(); 310 311 /* 312 * One subtle ordering requirement: if anything has gone wrong 313 * (transaction abort, IO errors, whatever), then we can still 314 * do these next steps (the fs will already have been marked as 315 * having errors), but we can't free the inode if the mark_dirty 316 * fails. 317 */ 318 if (ext4_mark_inode_dirty(handle, inode)) 319 /* If that failed, just do the required in-core inode clear. */ 320 ext4_clear_inode(inode); 321 else 322 ext4_free_inode(handle, inode); 323 ext4_journal_stop(handle); 324 sb_end_intwrite(inode->i_sb); 325 ext4_xattr_inode_array_free(ea_inode_array); 326 return; 327 no_delete: 328 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 329 } 330 331 #ifdef CONFIG_QUOTA 332 qsize_t *ext4_get_reserved_space(struct inode *inode) 333 { 334 return &EXT4_I(inode)->i_reserved_quota; 335 } 336 #endif 337 338 /* 339 * Called with i_data_sem down, which is important since we can call 340 * ext4_discard_preallocations() from here. 341 */ 342 void ext4_da_update_reserve_space(struct inode *inode, 343 int used, int quota_claim) 344 { 345 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 346 struct ext4_inode_info *ei = EXT4_I(inode); 347 348 spin_lock(&ei->i_block_reservation_lock); 349 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 350 if (unlikely(used > ei->i_reserved_data_blocks)) { 351 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 352 "with only %d reserved data blocks", 353 __func__, inode->i_ino, used, 354 ei->i_reserved_data_blocks); 355 WARN_ON(1); 356 used = ei->i_reserved_data_blocks; 357 } 358 359 /* Update per-inode reservations */ 360 ei->i_reserved_data_blocks -= used; 361 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 362 363 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 364 365 /* Update quota subsystem for data blocks */ 366 if (quota_claim) 367 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 368 else { 369 /* 370 * We did fallocate with an offset that is already delayed 371 * allocated. So on delayed allocated writeback we should 372 * not re-claim the quota for fallocated blocks. 373 */ 374 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 375 } 376 377 /* 378 * If we have done all the pending block allocations and if 379 * there aren't any writers on the inode, we can discard the 380 * inode's preallocations. 381 */ 382 if ((ei->i_reserved_data_blocks == 0) && 383 (atomic_read(&inode->i_writecount) == 0)) 384 ext4_discard_preallocations(inode); 385 } 386 387 static int __check_block_validity(struct inode *inode, const char *func, 388 unsigned int line, 389 struct ext4_map_blocks *map) 390 { 391 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 392 map->m_len)) { 393 ext4_error_inode(inode, func, line, map->m_pblk, 394 "lblock %lu mapped to illegal pblock " 395 "(length %d)", (unsigned long) map->m_lblk, 396 map->m_len); 397 return -EFSCORRUPTED; 398 } 399 return 0; 400 } 401 402 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 403 ext4_lblk_t len) 404 { 405 int ret; 406 407 if (ext4_encrypted_inode(inode)) 408 return fscrypt_zeroout_range(inode, lblk, pblk, len); 409 410 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 411 if (ret > 0) 412 ret = 0; 413 414 return ret; 415 } 416 417 #define check_block_validity(inode, map) \ 418 __check_block_validity((inode), __func__, __LINE__, (map)) 419 420 #ifdef ES_AGGRESSIVE_TEST 421 static void ext4_map_blocks_es_recheck(handle_t *handle, 422 struct inode *inode, 423 struct ext4_map_blocks *es_map, 424 struct ext4_map_blocks *map, 425 int flags) 426 { 427 int retval; 428 429 map->m_flags = 0; 430 /* 431 * There is a race window that the result is not the same. 432 * e.g. xfstests #223 when dioread_nolock enables. The reason 433 * is that we lookup a block mapping in extent status tree with 434 * out taking i_data_sem. So at the time the unwritten extent 435 * could be converted. 436 */ 437 down_read(&EXT4_I(inode)->i_data_sem); 438 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 439 retval = ext4_ext_map_blocks(handle, inode, map, flags & 440 EXT4_GET_BLOCKS_KEEP_SIZE); 441 } else { 442 retval = ext4_ind_map_blocks(handle, inode, map, flags & 443 EXT4_GET_BLOCKS_KEEP_SIZE); 444 } 445 up_read((&EXT4_I(inode)->i_data_sem)); 446 447 /* 448 * We don't check m_len because extent will be collpased in status 449 * tree. So the m_len might not equal. 450 */ 451 if (es_map->m_lblk != map->m_lblk || 452 es_map->m_flags != map->m_flags || 453 es_map->m_pblk != map->m_pblk) { 454 printk("ES cache assertion failed for inode: %lu " 455 "es_cached ex [%d/%d/%llu/%x] != " 456 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 457 inode->i_ino, es_map->m_lblk, es_map->m_len, 458 es_map->m_pblk, es_map->m_flags, map->m_lblk, 459 map->m_len, map->m_pblk, map->m_flags, 460 retval, flags); 461 } 462 } 463 #endif /* ES_AGGRESSIVE_TEST */ 464 465 /* 466 * The ext4_map_blocks() function tries to look up the requested blocks, 467 * and returns if the blocks are already mapped. 468 * 469 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 470 * and store the allocated blocks in the result buffer head and mark it 471 * mapped. 472 * 473 * If file type is extents based, it will call ext4_ext_map_blocks(), 474 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 475 * based files 476 * 477 * On success, it returns the number of blocks being mapped or allocated. if 478 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map 479 * is marked as unwritten. If the create == 1, it will mark @map as mapped. 480 * 481 * It returns 0 if plain look up failed (blocks have not been allocated), in 482 * that case, @map is returned as unmapped but we still do fill map->m_len to 483 * indicate the length of a hole starting at map->m_lblk. 484 * 485 * It returns the error in case of allocation failure. 486 */ 487 int ext4_map_blocks(handle_t *handle, struct inode *inode, 488 struct ext4_map_blocks *map, int flags) 489 { 490 struct extent_status es; 491 int retval; 492 int ret = 0; 493 #ifdef ES_AGGRESSIVE_TEST 494 struct ext4_map_blocks orig_map; 495 496 memcpy(&orig_map, map, sizeof(*map)); 497 #endif 498 499 map->m_flags = 0; 500 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 501 "logical block %lu\n", inode->i_ino, flags, map->m_len, 502 (unsigned long) map->m_lblk); 503 504 /* 505 * ext4_map_blocks returns an int, and m_len is an unsigned int 506 */ 507 if (unlikely(map->m_len > INT_MAX)) 508 map->m_len = INT_MAX; 509 510 /* We can handle the block number less than EXT_MAX_BLOCKS */ 511 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 512 return -EFSCORRUPTED; 513 514 /* Lookup extent status tree firstly */ 515 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 516 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 517 map->m_pblk = ext4_es_pblock(&es) + 518 map->m_lblk - es.es_lblk; 519 map->m_flags |= ext4_es_is_written(&es) ? 520 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 521 retval = es.es_len - (map->m_lblk - es.es_lblk); 522 if (retval > map->m_len) 523 retval = map->m_len; 524 map->m_len = retval; 525 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 526 map->m_pblk = 0; 527 retval = es.es_len - (map->m_lblk - es.es_lblk); 528 if (retval > map->m_len) 529 retval = map->m_len; 530 map->m_len = retval; 531 retval = 0; 532 } else { 533 BUG_ON(1); 534 } 535 #ifdef ES_AGGRESSIVE_TEST 536 ext4_map_blocks_es_recheck(handle, inode, map, 537 &orig_map, flags); 538 #endif 539 goto found; 540 } 541 542 /* 543 * Try to see if we can get the block without requesting a new 544 * file system block. 545 */ 546 down_read(&EXT4_I(inode)->i_data_sem); 547 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 548 retval = ext4_ext_map_blocks(handle, inode, map, flags & 549 EXT4_GET_BLOCKS_KEEP_SIZE); 550 } else { 551 retval = ext4_ind_map_blocks(handle, inode, map, flags & 552 EXT4_GET_BLOCKS_KEEP_SIZE); 553 } 554 if (retval > 0) { 555 unsigned int status; 556 557 if (unlikely(retval != map->m_len)) { 558 ext4_warning(inode->i_sb, 559 "ES len assertion failed for inode " 560 "%lu: retval %d != map->m_len %d", 561 inode->i_ino, retval, map->m_len); 562 WARN_ON(1); 563 } 564 565 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 566 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 567 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 568 !(status & EXTENT_STATUS_WRITTEN) && 569 ext4_find_delalloc_range(inode, map->m_lblk, 570 map->m_lblk + map->m_len - 1)) 571 status |= EXTENT_STATUS_DELAYED; 572 ret = ext4_es_insert_extent(inode, map->m_lblk, 573 map->m_len, map->m_pblk, status); 574 if (ret < 0) 575 retval = ret; 576 } 577 up_read((&EXT4_I(inode)->i_data_sem)); 578 579 found: 580 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 581 ret = check_block_validity(inode, map); 582 if (ret != 0) 583 return ret; 584 } 585 586 /* If it is only a block(s) look up */ 587 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 588 return retval; 589 590 /* 591 * Returns if the blocks have already allocated 592 * 593 * Note that if blocks have been preallocated 594 * ext4_ext_get_block() returns the create = 0 595 * with buffer head unmapped. 596 */ 597 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 598 /* 599 * If we need to convert extent to unwritten 600 * we continue and do the actual work in 601 * ext4_ext_map_blocks() 602 */ 603 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 604 return retval; 605 606 /* 607 * Here we clear m_flags because after allocating an new extent, 608 * it will be set again. 609 */ 610 map->m_flags &= ~EXT4_MAP_FLAGS; 611 612 /* 613 * New blocks allocate and/or writing to unwritten extent 614 * will possibly result in updating i_data, so we take 615 * the write lock of i_data_sem, and call get_block() 616 * with create == 1 flag. 617 */ 618 down_write(&EXT4_I(inode)->i_data_sem); 619 620 /* 621 * We need to check for EXT4 here because migrate 622 * could have changed the inode type in between 623 */ 624 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 625 retval = ext4_ext_map_blocks(handle, inode, map, flags); 626 } else { 627 retval = ext4_ind_map_blocks(handle, inode, map, flags); 628 629 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 630 /* 631 * We allocated new blocks which will result in 632 * i_data's format changing. Force the migrate 633 * to fail by clearing migrate flags 634 */ 635 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 636 } 637 638 /* 639 * Update reserved blocks/metadata blocks after successful 640 * block allocation which had been deferred till now. We don't 641 * support fallocate for non extent files. So we can update 642 * reserve space here. 643 */ 644 if ((retval > 0) && 645 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 646 ext4_da_update_reserve_space(inode, retval, 1); 647 } 648 649 if (retval > 0) { 650 unsigned int status; 651 652 if (unlikely(retval != map->m_len)) { 653 ext4_warning(inode->i_sb, 654 "ES len assertion failed for inode " 655 "%lu: retval %d != map->m_len %d", 656 inode->i_ino, retval, map->m_len); 657 WARN_ON(1); 658 } 659 660 /* 661 * We have to zeroout blocks before inserting them into extent 662 * status tree. Otherwise someone could look them up there and 663 * use them before they are really zeroed. We also have to 664 * unmap metadata before zeroing as otherwise writeback can 665 * overwrite zeros with stale data from block device. 666 */ 667 if (flags & EXT4_GET_BLOCKS_ZERO && 668 map->m_flags & EXT4_MAP_MAPPED && 669 map->m_flags & EXT4_MAP_NEW) { 670 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk, 671 map->m_len); 672 ret = ext4_issue_zeroout(inode, map->m_lblk, 673 map->m_pblk, map->m_len); 674 if (ret) { 675 retval = ret; 676 goto out_sem; 677 } 678 } 679 680 /* 681 * If the extent has been zeroed out, we don't need to update 682 * extent status tree. 683 */ 684 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 685 ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 686 if (ext4_es_is_written(&es)) 687 goto out_sem; 688 } 689 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 690 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 691 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 692 !(status & EXTENT_STATUS_WRITTEN) && 693 ext4_find_delalloc_range(inode, map->m_lblk, 694 map->m_lblk + map->m_len - 1)) 695 status |= EXTENT_STATUS_DELAYED; 696 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 697 map->m_pblk, status); 698 if (ret < 0) { 699 retval = ret; 700 goto out_sem; 701 } 702 } 703 704 out_sem: 705 up_write((&EXT4_I(inode)->i_data_sem)); 706 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 707 ret = check_block_validity(inode, map); 708 if (ret != 0) 709 return ret; 710 711 /* 712 * Inodes with freshly allocated blocks where contents will be 713 * visible after transaction commit must be on transaction's 714 * ordered data list. 715 */ 716 if (map->m_flags & EXT4_MAP_NEW && 717 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 718 !(flags & EXT4_GET_BLOCKS_ZERO) && 719 !ext4_is_quota_file(inode) && 720 ext4_should_order_data(inode)) { 721 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 722 ret = ext4_jbd2_inode_add_wait(handle, inode); 723 else 724 ret = ext4_jbd2_inode_add_write(handle, inode); 725 if (ret) 726 return ret; 727 } 728 } 729 return retval; 730 } 731 732 /* 733 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 734 * we have to be careful as someone else may be manipulating b_state as well. 735 */ 736 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 737 { 738 unsigned long old_state; 739 unsigned long new_state; 740 741 flags &= EXT4_MAP_FLAGS; 742 743 /* Dummy buffer_head? Set non-atomically. */ 744 if (!bh->b_page) { 745 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 746 return; 747 } 748 /* 749 * Someone else may be modifying b_state. Be careful! This is ugly but 750 * once we get rid of using bh as a container for mapping information 751 * to pass to / from get_block functions, this can go away. 752 */ 753 do { 754 old_state = READ_ONCE(bh->b_state); 755 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 756 } while (unlikely( 757 cmpxchg(&bh->b_state, old_state, new_state) != old_state)); 758 } 759 760 static int _ext4_get_block(struct inode *inode, sector_t iblock, 761 struct buffer_head *bh, int flags) 762 { 763 struct ext4_map_blocks map; 764 int ret = 0; 765 766 if (ext4_has_inline_data(inode)) 767 return -ERANGE; 768 769 map.m_lblk = iblock; 770 map.m_len = bh->b_size >> inode->i_blkbits; 771 772 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 773 flags); 774 if (ret > 0) { 775 map_bh(bh, inode->i_sb, map.m_pblk); 776 ext4_update_bh_state(bh, map.m_flags); 777 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 778 ret = 0; 779 } else if (ret == 0) { 780 /* hole case, need to fill in bh->b_size */ 781 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 782 } 783 return ret; 784 } 785 786 int ext4_get_block(struct inode *inode, sector_t iblock, 787 struct buffer_head *bh, int create) 788 { 789 return _ext4_get_block(inode, iblock, bh, 790 create ? EXT4_GET_BLOCKS_CREATE : 0); 791 } 792 793 /* 794 * Get block function used when preparing for buffered write if we require 795 * creating an unwritten extent if blocks haven't been allocated. The extent 796 * will be converted to written after the IO is complete. 797 */ 798 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 799 struct buffer_head *bh_result, int create) 800 { 801 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 802 inode->i_ino, create); 803 return _ext4_get_block(inode, iblock, bh_result, 804 EXT4_GET_BLOCKS_IO_CREATE_EXT); 805 } 806 807 /* Maximum number of blocks we map for direct IO at once. */ 808 #define DIO_MAX_BLOCKS 4096 809 810 /* 811 * Get blocks function for the cases that need to start a transaction - 812 * generally difference cases of direct IO and DAX IO. It also handles retries 813 * in case of ENOSPC. 814 */ 815 static int ext4_get_block_trans(struct inode *inode, sector_t iblock, 816 struct buffer_head *bh_result, int flags) 817 { 818 int dio_credits; 819 handle_t *handle; 820 int retries = 0; 821 int ret; 822 823 /* Trim mapping request to maximum we can map at once for DIO */ 824 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS) 825 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits; 826 dio_credits = ext4_chunk_trans_blocks(inode, 827 bh_result->b_size >> inode->i_blkbits); 828 retry: 829 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 830 if (IS_ERR(handle)) 831 return PTR_ERR(handle); 832 833 ret = _ext4_get_block(inode, iblock, bh_result, flags); 834 ext4_journal_stop(handle); 835 836 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 837 goto retry; 838 return ret; 839 } 840 841 /* Get block function for DIO reads and writes to inodes without extents */ 842 int ext4_dio_get_block(struct inode *inode, sector_t iblock, 843 struct buffer_head *bh, int create) 844 { 845 /* We don't expect handle for direct IO */ 846 WARN_ON_ONCE(ext4_journal_current_handle()); 847 848 if (!create) 849 return _ext4_get_block(inode, iblock, bh, 0); 850 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE); 851 } 852 853 /* 854 * Get block function for AIO DIO writes when we create unwritten extent if 855 * blocks are not allocated yet. The extent will be converted to written 856 * after IO is complete. 857 */ 858 static int ext4_dio_get_block_unwritten_async(struct inode *inode, 859 sector_t iblock, struct buffer_head *bh_result, int create) 860 { 861 int ret; 862 863 /* We don't expect handle for direct IO */ 864 WARN_ON_ONCE(ext4_journal_current_handle()); 865 866 ret = ext4_get_block_trans(inode, iblock, bh_result, 867 EXT4_GET_BLOCKS_IO_CREATE_EXT); 868 869 /* 870 * When doing DIO using unwritten extents, we need io_end to convert 871 * unwritten extents to written on IO completion. We allocate io_end 872 * once we spot unwritten extent and store it in b_private. Generic 873 * DIO code keeps b_private set and furthermore passes the value to 874 * our completion callback in 'private' argument. 875 */ 876 if (!ret && buffer_unwritten(bh_result)) { 877 if (!bh_result->b_private) { 878 ext4_io_end_t *io_end; 879 880 io_end = ext4_init_io_end(inode, GFP_KERNEL); 881 if (!io_end) 882 return -ENOMEM; 883 bh_result->b_private = io_end; 884 ext4_set_io_unwritten_flag(inode, io_end); 885 } 886 set_buffer_defer_completion(bh_result); 887 } 888 889 return ret; 890 } 891 892 /* 893 * Get block function for non-AIO DIO writes when we create unwritten extent if 894 * blocks are not allocated yet. The extent will be converted to written 895 * after IO is complete by ext4_direct_IO_write(). 896 */ 897 static int ext4_dio_get_block_unwritten_sync(struct inode *inode, 898 sector_t iblock, struct buffer_head *bh_result, int create) 899 { 900 int ret; 901 902 /* We don't expect handle for direct IO */ 903 WARN_ON_ONCE(ext4_journal_current_handle()); 904 905 ret = ext4_get_block_trans(inode, iblock, bh_result, 906 EXT4_GET_BLOCKS_IO_CREATE_EXT); 907 908 /* 909 * Mark inode as having pending DIO writes to unwritten extents. 910 * ext4_direct_IO_write() checks this flag and converts extents to 911 * written. 912 */ 913 if (!ret && buffer_unwritten(bh_result)) 914 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 915 916 return ret; 917 } 918 919 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock, 920 struct buffer_head *bh_result, int create) 921 { 922 int ret; 923 924 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n", 925 inode->i_ino, create); 926 /* We don't expect handle for direct IO */ 927 WARN_ON_ONCE(ext4_journal_current_handle()); 928 929 ret = _ext4_get_block(inode, iblock, bh_result, 0); 930 /* 931 * Blocks should have been preallocated! ext4_file_write_iter() checks 932 * that. 933 */ 934 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result)); 935 936 return ret; 937 } 938 939 940 /* 941 * `handle' can be NULL if create is zero 942 */ 943 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 944 ext4_lblk_t block, int map_flags) 945 { 946 struct ext4_map_blocks map; 947 struct buffer_head *bh; 948 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 949 int err; 950 951 J_ASSERT(handle != NULL || create == 0); 952 953 map.m_lblk = block; 954 map.m_len = 1; 955 err = ext4_map_blocks(handle, inode, &map, map_flags); 956 957 if (err == 0) 958 return create ? ERR_PTR(-ENOSPC) : NULL; 959 if (err < 0) 960 return ERR_PTR(err); 961 962 bh = sb_getblk(inode->i_sb, map.m_pblk); 963 if (unlikely(!bh)) 964 return ERR_PTR(-ENOMEM); 965 if (map.m_flags & EXT4_MAP_NEW) { 966 J_ASSERT(create != 0); 967 J_ASSERT(handle != NULL); 968 969 /* 970 * Now that we do not always journal data, we should 971 * keep in mind whether this should always journal the 972 * new buffer as metadata. For now, regular file 973 * writes use ext4_get_block instead, so it's not a 974 * problem. 975 */ 976 lock_buffer(bh); 977 BUFFER_TRACE(bh, "call get_create_access"); 978 err = ext4_journal_get_create_access(handle, bh); 979 if (unlikely(err)) { 980 unlock_buffer(bh); 981 goto errout; 982 } 983 if (!buffer_uptodate(bh)) { 984 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 985 set_buffer_uptodate(bh); 986 } 987 unlock_buffer(bh); 988 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 989 err = ext4_handle_dirty_metadata(handle, inode, bh); 990 if (unlikely(err)) 991 goto errout; 992 } else 993 BUFFER_TRACE(bh, "not a new buffer"); 994 return bh; 995 errout: 996 brelse(bh); 997 return ERR_PTR(err); 998 } 999 1000 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 1001 ext4_lblk_t block, int map_flags) 1002 { 1003 struct buffer_head *bh; 1004 1005 bh = ext4_getblk(handle, inode, block, map_flags); 1006 if (IS_ERR(bh)) 1007 return bh; 1008 if (!bh || buffer_uptodate(bh)) 1009 return bh; 1010 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh); 1011 wait_on_buffer(bh); 1012 if (buffer_uptodate(bh)) 1013 return bh; 1014 put_bh(bh); 1015 return ERR_PTR(-EIO); 1016 } 1017 1018 /* Read a contiguous batch of blocks. */ 1019 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, 1020 bool wait, struct buffer_head **bhs) 1021 { 1022 int i, err; 1023 1024 for (i = 0; i < bh_count; i++) { 1025 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */); 1026 if (IS_ERR(bhs[i])) { 1027 err = PTR_ERR(bhs[i]); 1028 bh_count = i; 1029 goto out_brelse; 1030 } 1031 } 1032 1033 for (i = 0; i < bh_count; i++) 1034 /* Note that NULL bhs[i] is valid because of holes. */ 1035 if (bhs[i] && !buffer_uptodate(bhs[i])) 1036 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, 1037 &bhs[i]); 1038 1039 if (!wait) 1040 return 0; 1041 1042 for (i = 0; i < bh_count; i++) 1043 if (bhs[i]) 1044 wait_on_buffer(bhs[i]); 1045 1046 for (i = 0; i < bh_count; i++) { 1047 if (bhs[i] && !buffer_uptodate(bhs[i])) { 1048 err = -EIO; 1049 goto out_brelse; 1050 } 1051 } 1052 return 0; 1053 1054 out_brelse: 1055 for (i = 0; i < bh_count; i++) { 1056 brelse(bhs[i]); 1057 bhs[i] = NULL; 1058 } 1059 return err; 1060 } 1061 1062 int ext4_walk_page_buffers(handle_t *handle, 1063 struct buffer_head *head, 1064 unsigned from, 1065 unsigned to, 1066 int *partial, 1067 int (*fn)(handle_t *handle, 1068 struct buffer_head *bh)) 1069 { 1070 struct buffer_head *bh; 1071 unsigned block_start, block_end; 1072 unsigned blocksize = head->b_size; 1073 int err, ret = 0; 1074 struct buffer_head *next; 1075 1076 for (bh = head, block_start = 0; 1077 ret == 0 && (bh != head || !block_start); 1078 block_start = block_end, bh = next) { 1079 next = bh->b_this_page; 1080 block_end = block_start + blocksize; 1081 if (block_end <= from || block_start >= to) { 1082 if (partial && !buffer_uptodate(bh)) 1083 *partial = 1; 1084 continue; 1085 } 1086 err = (*fn)(handle, bh); 1087 if (!ret) 1088 ret = err; 1089 } 1090 return ret; 1091 } 1092 1093 /* 1094 * To preserve ordering, it is essential that the hole instantiation and 1095 * the data write be encapsulated in a single transaction. We cannot 1096 * close off a transaction and start a new one between the ext4_get_block() 1097 * and the commit_write(). So doing the jbd2_journal_start at the start of 1098 * prepare_write() is the right place. 1099 * 1100 * Also, this function can nest inside ext4_writepage(). In that case, we 1101 * *know* that ext4_writepage() has generated enough buffer credits to do the 1102 * whole page. So we won't block on the journal in that case, which is good, 1103 * because the caller may be PF_MEMALLOC. 1104 * 1105 * By accident, ext4 can be reentered when a transaction is open via 1106 * quota file writes. If we were to commit the transaction while thus 1107 * reentered, there can be a deadlock - we would be holding a quota 1108 * lock, and the commit would never complete if another thread had a 1109 * transaction open and was blocking on the quota lock - a ranking 1110 * violation. 1111 * 1112 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1113 * will _not_ run commit under these circumstances because handle->h_ref 1114 * is elevated. We'll still have enough credits for the tiny quotafile 1115 * write. 1116 */ 1117 int do_journal_get_write_access(handle_t *handle, 1118 struct buffer_head *bh) 1119 { 1120 int dirty = buffer_dirty(bh); 1121 int ret; 1122 1123 if (!buffer_mapped(bh) || buffer_freed(bh)) 1124 return 0; 1125 /* 1126 * __block_write_begin() could have dirtied some buffers. Clean 1127 * the dirty bit as jbd2_journal_get_write_access() could complain 1128 * otherwise about fs integrity issues. Setting of the dirty bit 1129 * by __block_write_begin() isn't a real problem here as we clear 1130 * the bit before releasing a page lock and thus writeback cannot 1131 * ever write the buffer. 1132 */ 1133 if (dirty) 1134 clear_buffer_dirty(bh); 1135 BUFFER_TRACE(bh, "get write access"); 1136 ret = ext4_journal_get_write_access(handle, bh); 1137 if (!ret && dirty) 1138 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1139 return ret; 1140 } 1141 1142 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1143 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len, 1144 get_block_t *get_block) 1145 { 1146 unsigned from = pos & (PAGE_SIZE - 1); 1147 unsigned to = from + len; 1148 struct inode *inode = page->mapping->host; 1149 unsigned block_start, block_end; 1150 sector_t block; 1151 int err = 0; 1152 unsigned blocksize = inode->i_sb->s_blocksize; 1153 unsigned bbits; 1154 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait; 1155 bool decrypt = false; 1156 1157 BUG_ON(!PageLocked(page)); 1158 BUG_ON(from > PAGE_SIZE); 1159 BUG_ON(to > PAGE_SIZE); 1160 BUG_ON(from > to); 1161 1162 if (!page_has_buffers(page)) 1163 create_empty_buffers(page, blocksize, 0); 1164 head = page_buffers(page); 1165 bbits = ilog2(blocksize); 1166 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1167 1168 for (bh = head, block_start = 0; bh != head || !block_start; 1169 block++, block_start = block_end, bh = bh->b_this_page) { 1170 block_end = block_start + blocksize; 1171 if (block_end <= from || block_start >= to) { 1172 if (PageUptodate(page)) { 1173 if (!buffer_uptodate(bh)) 1174 set_buffer_uptodate(bh); 1175 } 1176 continue; 1177 } 1178 if (buffer_new(bh)) 1179 clear_buffer_new(bh); 1180 if (!buffer_mapped(bh)) { 1181 WARN_ON(bh->b_size != blocksize); 1182 err = get_block(inode, block, bh, 1); 1183 if (err) 1184 break; 1185 if (buffer_new(bh)) { 1186 clean_bdev_bh_alias(bh); 1187 if (PageUptodate(page)) { 1188 clear_buffer_new(bh); 1189 set_buffer_uptodate(bh); 1190 mark_buffer_dirty(bh); 1191 continue; 1192 } 1193 if (block_end > to || block_start < from) 1194 zero_user_segments(page, to, block_end, 1195 block_start, from); 1196 continue; 1197 } 1198 } 1199 if (PageUptodate(page)) { 1200 if (!buffer_uptodate(bh)) 1201 set_buffer_uptodate(bh); 1202 continue; 1203 } 1204 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1205 !buffer_unwritten(bh) && 1206 (block_start < from || block_end > to)) { 1207 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1208 *wait_bh++ = bh; 1209 decrypt = ext4_encrypted_inode(inode) && 1210 S_ISREG(inode->i_mode); 1211 } 1212 } 1213 /* 1214 * If we issued read requests, let them complete. 1215 */ 1216 while (wait_bh > wait) { 1217 wait_on_buffer(*--wait_bh); 1218 if (!buffer_uptodate(*wait_bh)) 1219 err = -EIO; 1220 } 1221 if (unlikely(err)) 1222 page_zero_new_buffers(page, from, to); 1223 else if (decrypt) 1224 err = fscrypt_decrypt_page(page->mapping->host, page, 1225 PAGE_SIZE, 0, page->index); 1226 return err; 1227 } 1228 #endif 1229 1230 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1231 loff_t pos, unsigned len, unsigned flags, 1232 struct page **pagep, void **fsdata) 1233 { 1234 struct inode *inode = mapping->host; 1235 int ret, needed_blocks; 1236 handle_t *handle; 1237 int retries = 0; 1238 struct page *page; 1239 pgoff_t index; 1240 unsigned from, to; 1241 1242 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 1243 return -EIO; 1244 1245 trace_ext4_write_begin(inode, pos, len, flags); 1246 /* 1247 * Reserve one block more for addition to orphan list in case 1248 * we allocate blocks but write fails for some reason 1249 */ 1250 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1251 index = pos >> PAGE_SHIFT; 1252 from = pos & (PAGE_SIZE - 1); 1253 to = from + len; 1254 1255 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1256 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1257 flags, pagep); 1258 if (ret < 0) 1259 return ret; 1260 if (ret == 1) 1261 return 0; 1262 } 1263 1264 /* 1265 * grab_cache_page_write_begin() can take a long time if the 1266 * system is thrashing due to memory pressure, or if the page 1267 * is being written back. So grab it first before we start 1268 * the transaction handle. This also allows us to allocate 1269 * the page (if needed) without using GFP_NOFS. 1270 */ 1271 retry_grab: 1272 page = grab_cache_page_write_begin(mapping, index, flags); 1273 if (!page) 1274 return -ENOMEM; 1275 unlock_page(page); 1276 1277 retry_journal: 1278 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1279 if (IS_ERR(handle)) { 1280 put_page(page); 1281 return PTR_ERR(handle); 1282 } 1283 1284 lock_page(page); 1285 if (page->mapping != mapping) { 1286 /* The page got truncated from under us */ 1287 unlock_page(page); 1288 put_page(page); 1289 ext4_journal_stop(handle); 1290 goto retry_grab; 1291 } 1292 /* In case writeback began while the page was unlocked */ 1293 wait_for_stable_page(page); 1294 1295 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1296 if (ext4_should_dioread_nolock(inode)) 1297 ret = ext4_block_write_begin(page, pos, len, 1298 ext4_get_block_unwritten); 1299 else 1300 ret = ext4_block_write_begin(page, pos, len, 1301 ext4_get_block); 1302 #else 1303 if (ext4_should_dioread_nolock(inode)) 1304 ret = __block_write_begin(page, pos, len, 1305 ext4_get_block_unwritten); 1306 else 1307 ret = __block_write_begin(page, pos, len, ext4_get_block); 1308 #endif 1309 if (!ret && ext4_should_journal_data(inode)) { 1310 ret = ext4_walk_page_buffers(handle, page_buffers(page), 1311 from, to, NULL, 1312 do_journal_get_write_access); 1313 } 1314 1315 if (ret) { 1316 unlock_page(page); 1317 /* 1318 * __block_write_begin may have instantiated a few blocks 1319 * outside i_size. Trim these off again. Don't need 1320 * i_size_read because we hold i_mutex. 1321 * 1322 * Add inode to orphan list in case we crash before 1323 * truncate finishes 1324 */ 1325 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1326 ext4_orphan_add(handle, inode); 1327 1328 ext4_journal_stop(handle); 1329 if (pos + len > inode->i_size) { 1330 ext4_truncate_failed_write(inode); 1331 /* 1332 * If truncate failed early the inode might 1333 * still be on the orphan list; we need to 1334 * make sure the inode is removed from the 1335 * orphan list in that case. 1336 */ 1337 if (inode->i_nlink) 1338 ext4_orphan_del(NULL, inode); 1339 } 1340 1341 if (ret == -ENOSPC && 1342 ext4_should_retry_alloc(inode->i_sb, &retries)) 1343 goto retry_journal; 1344 put_page(page); 1345 return ret; 1346 } 1347 *pagep = page; 1348 return ret; 1349 } 1350 1351 /* For write_end() in data=journal mode */ 1352 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1353 { 1354 int ret; 1355 if (!buffer_mapped(bh) || buffer_freed(bh)) 1356 return 0; 1357 set_buffer_uptodate(bh); 1358 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1359 clear_buffer_meta(bh); 1360 clear_buffer_prio(bh); 1361 return ret; 1362 } 1363 1364 /* 1365 * We need to pick up the new inode size which generic_commit_write gave us 1366 * `file' can be NULL - eg, when called from page_symlink(). 1367 * 1368 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1369 * buffers are managed internally. 1370 */ 1371 static int ext4_write_end(struct file *file, 1372 struct address_space *mapping, 1373 loff_t pos, unsigned len, unsigned copied, 1374 struct page *page, void *fsdata) 1375 { 1376 handle_t *handle = ext4_journal_current_handle(); 1377 struct inode *inode = mapping->host; 1378 loff_t old_size = inode->i_size; 1379 int ret = 0, ret2; 1380 int i_size_changed = 0; 1381 1382 trace_ext4_write_end(inode, pos, len, copied); 1383 if (ext4_has_inline_data(inode)) { 1384 ret = ext4_write_inline_data_end(inode, pos, len, 1385 copied, page); 1386 if (ret < 0) { 1387 unlock_page(page); 1388 put_page(page); 1389 goto errout; 1390 } 1391 copied = ret; 1392 } else 1393 copied = block_write_end(file, mapping, pos, 1394 len, copied, page, fsdata); 1395 /* 1396 * it's important to update i_size while still holding page lock: 1397 * page writeout could otherwise come in and zero beyond i_size. 1398 */ 1399 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1400 unlock_page(page); 1401 put_page(page); 1402 1403 if (old_size < pos) 1404 pagecache_isize_extended(inode, old_size, pos); 1405 /* 1406 * Don't mark the inode dirty under page lock. First, it unnecessarily 1407 * makes the holding time of page lock longer. Second, it forces lock 1408 * ordering of page lock and transaction start for journaling 1409 * filesystems. 1410 */ 1411 if (i_size_changed) 1412 ext4_mark_inode_dirty(handle, inode); 1413 1414 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1415 /* if we have allocated more blocks and copied 1416 * less. We will have blocks allocated outside 1417 * inode->i_size. So truncate them 1418 */ 1419 ext4_orphan_add(handle, inode); 1420 errout: 1421 ret2 = ext4_journal_stop(handle); 1422 if (!ret) 1423 ret = ret2; 1424 1425 if (pos + len > inode->i_size) { 1426 ext4_truncate_failed_write(inode); 1427 /* 1428 * If truncate failed early the inode might still be 1429 * on the orphan list; we need to make sure the inode 1430 * is removed from the orphan list in that case. 1431 */ 1432 if (inode->i_nlink) 1433 ext4_orphan_del(NULL, inode); 1434 } 1435 1436 return ret ? ret : copied; 1437 } 1438 1439 /* 1440 * This is a private version of page_zero_new_buffers() which doesn't 1441 * set the buffer to be dirty, since in data=journalled mode we need 1442 * to call ext4_handle_dirty_metadata() instead. 1443 */ 1444 static void ext4_journalled_zero_new_buffers(handle_t *handle, 1445 struct page *page, 1446 unsigned from, unsigned to) 1447 { 1448 unsigned int block_start = 0, block_end; 1449 struct buffer_head *head, *bh; 1450 1451 bh = head = page_buffers(page); 1452 do { 1453 block_end = block_start + bh->b_size; 1454 if (buffer_new(bh)) { 1455 if (block_end > from && block_start < to) { 1456 if (!PageUptodate(page)) { 1457 unsigned start, size; 1458 1459 start = max(from, block_start); 1460 size = min(to, block_end) - start; 1461 1462 zero_user(page, start, size); 1463 write_end_fn(handle, bh); 1464 } 1465 clear_buffer_new(bh); 1466 } 1467 } 1468 block_start = block_end; 1469 bh = bh->b_this_page; 1470 } while (bh != head); 1471 } 1472 1473 static int ext4_journalled_write_end(struct file *file, 1474 struct address_space *mapping, 1475 loff_t pos, unsigned len, unsigned copied, 1476 struct page *page, void *fsdata) 1477 { 1478 handle_t *handle = ext4_journal_current_handle(); 1479 struct inode *inode = mapping->host; 1480 loff_t old_size = inode->i_size; 1481 int ret = 0, ret2; 1482 int partial = 0; 1483 unsigned from, to; 1484 int size_changed = 0; 1485 1486 trace_ext4_journalled_write_end(inode, pos, len, copied); 1487 from = pos & (PAGE_SIZE - 1); 1488 to = from + len; 1489 1490 BUG_ON(!ext4_handle_valid(handle)); 1491 1492 if (ext4_has_inline_data(inode)) { 1493 ret = ext4_write_inline_data_end(inode, pos, len, 1494 copied, page); 1495 if (ret < 0) { 1496 unlock_page(page); 1497 put_page(page); 1498 goto errout; 1499 } 1500 copied = ret; 1501 } else if (unlikely(copied < len) && !PageUptodate(page)) { 1502 copied = 0; 1503 ext4_journalled_zero_new_buffers(handle, page, from, to); 1504 } else { 1505 if (unlikely(copied < len)) 1506 ext4_journalled_zero_new_buffers(handle, page, 1507 from + copied, to); 1508 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1509 from + copied, &partial, 1510 write_end_fn); 1511 if (!partial) 1512 SetPageUptodate(page); 1513 } 1514 size_changed = ext4_update_inode_size(inode, pos + copied); 1515 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1516 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1517 unlock_page(page); 1518 put_page(page); 1519 1520 if (old_size < pos) 1521 pagecache_isize_extended(inode, old_size, pos); 1522 1523 if (size_changed) { 1524 ret2 = ext4_mark_inode_dirty(handle, inode); 1525 if (!ret) 1526 ret = ret2; 1527 } 1528 1529 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1530 /* if we have allocated more blocks and copied 1531 * less. We will have blocks allocated outside 1532 * inode->i_size. So truncate them 1533 */ 1534 ext4_orphan_add(handle, inode); 1535 1536 errout: 1537 ret2 = ext4_journal_stop(handle); 1538 if (!ret) 1539 ret = ret2; 1540 if (pos + len > inode->i_size) { 1541 ext4_truncate_failed_write(inode); 1542 /* 1543 * If truncate failed early the inode might still be 1544 * on the orphan list; we need to make sure the inode 1545 * is removed from the orphan list in that case. 1546 */ 1547 if (inode->i_nlink) 1548 ext4_orphan_del(NULL, inode); 1549 } 1550 1551 return ret ? ret : copied; 1552 } 1553 1554 /* 1555 * Reserve space for a single cluster 1556 */ 1557 static int ext4_da_reserve_space(struct inode *inode) 1558 { 1559 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1560 struct ext4_inode_info *ei = EXT4_I(inode); 1561 int ret; 1562 1563 /* 1564 * We will charge metadata quota at writeout time; this saves 1565 * us from metadata over-estimation, though we may go over by 1566 * a small amount in the end. Here we just reserve for data. 1567 */ 1568 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1569 if (ret) 1570 return ret; 1571 1572 spin_lock(&ei->i_block_reservation_lock); 1573 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1574 spin_unlock(&ei->i_block_reservation_lock); 1575 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1576 return -ENOSPC; 1577 } 1578 ei->i_reserved_data_blocks++; 1579 trace_ext4_da_reserve_space(inode); 1580 spin_unlock(&ei->i_block_reservation_lock); 1581 1582 return 0; /* success */ 1583 } 1584 1585 static void ext4_da_release_space(struct inode *inode, int to_free) 1586 { 1587 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1588 struct ext4_inode_info *ei = EXT4_I(inode); 1589 1590 if (!to_free) 1591 return; /* Nothing to release, exit */ 1592 1593 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1594 1595 trace_ext4_da_release_space(inode, to_free); 1596 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1597 /* 1598 * if there aren't enough reserved blocks, then the 1599 * counter is messed up somewhere. Since this 1600 * function is called from invalidate page, it's 1601 * harmless to return without any action. 1602 */ 1603 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1604 "ino %lu, to_free %d with only %d reserved " 1605 "data blocks", inode->i_ino, to_free, 1606 ei->i_reserved_data_blocks); 1607 WARN_ON(1); 1608 to_free = ei->i_reserved_data_blocks; 1609 } 1610 ei->i_reserved_data_blocks -= to_free; 1611 1612 /* update fs dirty data blocks counter */ 1613 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1614 1615 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1616 1617 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1618 } 1619 1620 static void ext4_da_page_release_reservation(struct page *page, 1621 unsigned int offset, 1622 unsigned int length) 1623 { 1624 int to_release = 0, contiguous_blks = 0; 1625 struct buffer_head *head, *bh; 1626 unsigned int curr_off = 0; 1627 struct inode *inode = page->mapping->host; 1628 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1629 unsigned int stop = offset + length; 1630 int num_clusters; 1631 ext4_fsblk_t lblk; 1632 1633 BUG_ON(stop > PAGE_SIZE || stop < length); 1634 1635 head = page_buffers(page); 1636 bh = head; 1637 do { 1638 unsigned int next_off = curr_off + bh->b_size; 1639 1640 if (next_off > stop) 1641 break; 1642 1643 if ((offset <= curr_off) && (buffer_delay(bh))) { 1644 to_release++; 1645 contiguous_blks++; 1646 clear_buffer_delay(bh); 1647 } else if (contiguous_blks) { 1648 lblk = page->index << 1649 (PAGE_SHIFT - inode->i_blkbits); 1650 lblk += (curr_off >> inode->i_blkbits) - 1651 contiguous_blks; 1652 ext4_es_remove_extent(inode, lblk, contiguous_blks); 1653 contiguous_blks = 0; 1654 } 1655 curr_off = next_off; 1656 } while ((bh = bh->b_this_page) != head); 1657 1658 if (contiguous_blks) { 1659 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits); 1660 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks; 1661 ext4_es_remove_extent(inode, lblk, contiguous_blks); 1662 } 1663 1664 /* If we have released all the blocks belonging to a cluster, then we 1665 * need to release the reserved space for that cluster. */ 1666 num_clusters = EXT4_NUM_B2C(sbi, to_release); 1667 while (num_clusters > 0) { 1668 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) + 1669 ((num_clusters - 1) << sbi->s_cluster_bits); 1670 if (sbi->s_cluster_ratio == 1 || 1671 !ext4_find_delalloc_cluster(inode, lblk)) 1672 ext4_da_release_space(inode, 1); 1673 1674 num_clusters--; 1675 } 1676 } 1677 1678 /* 1679 * Delayed allocation stuff 1680 */ 1681 1682 struct mpage_da_data { 1683 struct inode *inode; 1684 struct writeback_control *wbc; 1685 1686 pgoff_t first_page; /* The first page to write */ 1687 pgoff_t next_page; /* Current page to examine */ 1688 pgoff_t last_page; /* Last page to examine */ 1689 /* 1690 * Extent to map - this can be after first_page because that can be 1691 * fully mapped. We somewhat abuse m_flags to store whether the extent 1692 * is delalloc or unwritten. 1693 */ 1694 struct ext4_map_blocks map; 1695 struct ext4_io_submit io_submit; /* IO submission data */ 1696 unsigned int do_map:1; 1697 }; 1698 1699 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1700 bool invalidate) 1701 { 1702 int nr_pages, i; 1703 pgoff_t index, end; 1704 struct pagevec pvec; 1705 struct inode *inode = mpd->inode; 1706 struct address_space *mapping = inode->i_mapping; 1707 1708 /* This is necessary when next_page == 0. */ 1709 if (mpd->first_page >= mpd->next_page) 1710 return; 1711 1712 index = mpd->first_page; 1713 end = mpd->next_page - 1; 1714 if (invalidate) { 1715 ext4_lblk_t start, last; 1716 start = index << (PAGE_SHIFT - inode->i_blkbits); 1717 last = end << (PAGE_SHIFT - inode->i_blkbits); 1718 ext4_es_remove_extent(inode, start, last - start + 1); 1719 } 1720 1721 pagevec_init(&pvec, 0); 1722 while (index <= end) { 1723 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end); 1724 if (nr_pages == 0) 1725 break; 1726 for (i = 0; i < nr_pages; i++) { 1727 struct page *page = pvec.pages[i]; 1728 1729 BUG_ON(!PageLocked(page)); 1730 BUG_ON(PageWriteback(page)); 1731 if (invalidate) { 1732 if (page_mapped(page)) 1733 clear_page_dirty_for_io(page); 1734 block_invalidatepage(page, 0, PAGE_SIZE); 1735 ClearPageUptodate(page); 1736 } 1737 unlock_page(page); 1738 } 1739 pagevec_release(&pvec); 1740 } 1741 } 1742 1743 static void ext4_print_free_blocks(struct inode *inode) 1744 { 1745 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1746 struct super_block *sb = inode->i_sb; 1747 struct ext4_inode_info *ei = EXT4_I(inode); 1748 1749 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1750 EXT4_C2B(EXT4_SB(inode->i_sb), 1751 ext4_count_free_clusters(sb))); 1752 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1753 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1754 (long long) EXT4_C2B(EXT4_SB(sb), 1755 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1756 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1757 (long long) EXT4_C2B(EXT4_SB(sb), 1758 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1759 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1760 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1761 ei->i_reserved_data_blocks); 1762 return; 1763 } 1764 1765 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1766 { 1767 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1768 } 1769 1770 /* 1771 * This function is grabs code from the very beginning of 1772 * ext4_map_blocks, but assumes that the caller is from delayed write 1773 * time. This function looks up the requested blocks and sets the 1774 * buffer delay bit under the protection of i_data_sem. 1775 */ 1776 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1777 struct ext4_map_blocks *map, 1778 struct buffer_head *bh) 1779 { 1780 struct extent_status es; 1781 int retval; 1782 sector_t invalid_block = ~((sector_t) 0xffff); 1783 #ifdef ES_AGGRESSIVE_TEST 1784 struct ext4_map_blocks orig_map; 1785 1786 memcpy(&orig_map, map, sizeof(*map)); 1787 #endif 1788 1789 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1790 invalid_block = ~0; 1791 1792 map->m_flags = 0; 1793 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1794 "logical block %lu\n", inode->i_ino, map->m_len, 1795 (unsigned long) map->m_lblk); 1796 1797 /* Lookup extent status tree firstly */ 1798 if (ext4_es_lookup_extent(inode, iblock, &es)) { 1799 if (ext4_es_is_hole(&es)) { 1800 retval = 0; 1801 down_read(&EXT4_I(inode)->i_data_sem); 1802 goto add_delayed; 1803 } 1804 1805 /* 1806 * Delayed extent could be allocated by fallocate. 1807 * So we need to check it. 1808 */ 1809 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1810 map_bh(bh, inode->i_sb, invalid_block); 1811 set_buffer_new(bh); 1812 set_buffer_delay(bh); 1813 return 0; 1814 } 1815 1816 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1817 retval = es.es_len - (iblock - es.es_lblk); 1818 if (retval > map->m_len) 1819 retval = map->m_len; 1820 map->m_len = retval; 1821 if (ext4_es_is_written(&es)) 1822 map->m_flags |= EXT4_MAP_MAPPED; 1823 else if (ext4_es_is_unwritten(&es)) 1824 map->m_flags |= EXT4_MAP_UNWRITTEN; 1825 else 1826 BUG_ON(1); 1827 1828 #ifdef ES_AGGRESSIVE_TEST 1829 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1830 #endif 1831 return retval; 1832 } 1833 1834 /* 1835 * Try to see if we can get the block without requesting a new 1836 * file system block. 1837 */ 1838 down_read(&EXT4_I(inode)->i_data_sem); 1839 if (ext4_has_inline_data(inode)) 1840 retval = 0; 1841 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1842 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1843 else 1844 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1845 1846 add_delayed: 1847 if (retval == 0) { 1848 int ret; 1849 /* 1850 * XXX: __block_prepare_write() unmaps passed block, 1851 * is it OK? 1852 */ 1853 /* 1854 * If the block was allocated from previously allocated cluster, 1855 * then we don't need to reserve it again. However we still need 1856 * to reserve metadata for every block we're going to write. 1857 */ 1858 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 || 1859 !ext4_find_delalloc_cluster(inode, map->m_lblk)) { 1860 ret = ext4_da_reserve_space(inode); 1861 if (ret) { 1862 /* not enough space to reserve */ 1863 retval = ret; 1864 goto out_unlock; 1865 } 1866 } 1867 1868 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1869 ~0, EXTENT_STATUS_DELAYED); 1870 if (ret) { 1871 retval = ret; 1872 goto out_unlock; 1873 } 1874 1875 map_bh(bh, inode->i_sb, invalid_block); 1876 set_buffer_new(bh); 1877 set_buffer_delay(bh); 1878 } else if (retval > 0) { 1879 int ret; 1880 unsigned int status; 1881 1882 if (unlikely(retval != map->m_len)) { 1883 ext4_warning(inode->i_sb, 1884 "ES len assertion failed for inode " 1885 "%lu: retval %d != map->m_len %d", 1886 inode->i_ino, retval, map->m_len); 1887 WARN_ON(1); 1888 } 1889 1890 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1891 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1892 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1893 map->m_pblk, status); 1894 if (ret != 0) 1895 retval = ret; 1896 } 1897 1898 out_unlock: 1899 up_read((&EXT4_I(inode)->i_data_sem)); 1900 1901 return retval; 1902 } 1903 1904 /* 1905 * This is a special get_block_t callback which is used by 1906 * ext4_da_write_begin(). It will either return mapped block or 1907 * reserve space for a single block. 1908 * 1909 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1910 * We also have b_blocknr = -1 and b_bdev initialized properly 1911 * 1912 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1913 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1914 * initialized properly. 1915 */ 1916 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1917 struct buffer_head *bh, int create) 1918 { 1919 struct ext4_map_blocks map; 1920 int ret = 0; 1921 1922 BUG_ON(create == 0); 1923 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1924 1925 map.m_lblk = iblock; 1926 map.m_len = 1; 1927 1928 /* 1929 * first, we need to know whether the block is allocated already 1930 * preallocated blocks are unmapped but should treated 1931 * the same as allocated blocks. 1932 */ 1933 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1934 if (ret <= 0) 1935 return ret; 1936 1937 map_bh(bh, inode->i_sb, map.m_pblk); 1938 ext4_update_bh_state(bh, map.m_flags); 1939 1940 if (buffer_unwritten(bh)) { 1941 /* A delayed write to unwritten bh should be marked 1942 * new and mapped. Mapped ensures that we don't do 1943 * get_block multiple times when we write to the same 1944 * offset and new ensures that we do proper zero out 1945 * for partial write. 1946 */ 1947 set_buffer_new(bh); 1948 set_buffer_mapped(bh); 1949 } 1950 return 0; 1951 } 1952 1953 static int bget_one(handle_t *handle, struct buffer_head *bh) 1954 { 1955 get_bh(bh); 1956 return 0; 1957 } 1958 1959 static int bput_one(handle_t *handle, struct buffer_head *bh) 1960 { 1961 put_bh(bh); 1962 return 0; 1963 } 1964 1965 static int __ext4_journalled_writepage(struct page *page, 1966 unsigned int len) 1967 { 1968 struct address_space *mapping = page->mapping; 1969 struct inode *inode = mapping->host; 1970 struct buffer_head *page_bufs = NULL; 1971 handle_t *handle = NULL; 1972 int ret = 0, err = 0; 1973 int inline_data = ext4_has_inline_data(inode); 1974 struct buffer_head *inode_bh = NULL; 1975 1976 ClearPageChecked(page); 1977 1978 if (inline_data) { 1979 BUG_ON(page->index != 0); 1980 BUG_ON(len > ext4_get_max_inline_size(inode)); 1981 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1982 if (inode_bh == NULL) 1983 goto out; 1984 } else { 1985 page_bufs = page_buffers(page); 1986 if (!page_bufs) { 1987 BUG(); 1988 goto out; 1989 } 1990 ext4_walk_page_buffers(handle, page_bufs, 0, len, 1991 NULL, bget_one); 1992 } 1993 /* 1994 * We need to release the page lock before we start the 1995 * journal, so grab a reference so the page won't disappear 1996 * out from under us. 1997 */ 1998 get_page(page); 1999 unlock_page(page); 2000 2001 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 2002 ext4_writepage_trans_blocks(inode)); 2003 if (IS_ERR(handle)) { 2004 ret = PTR_ERR(handle); 2005 put_page(page); 2006 goto out_no_pagelock; 2007 } 2008 BUG_ON(!ext4_handle_valid(handle)); 2009 2010 lock_page(page); 2011 put_page(page); 2012 if (page->mapping != mapping) { 2013 /* The page got truncated from under us */ 2014 ext4_journal_stop(handle); 2015 ret = 0; 2016 goto out; 2017 } 2018 2019 if (inline_data) { 2020 BUFFER_TRACE(inode_bh, "get write access"); 2021 ret = ext4_journal_get_write_access(handle, inode_bh); 2022 2023 err = ext4_handle_dirty_metadata(handle, inode, inode_bh); 2024 2025 } else { 2026 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 2027 do_journal_get_write_access); 2028 2029 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 2030 write_end_fn); 2031 } 2032 if (ret == 0) 2033 ret = err; 2034 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 2035 err = ext4_journal_stop(handle); 2036 if (!ret) 2037 ret = err; 2038 2039 if (!ext4_has_inline_data(inode)) 2040 ext4_walk_page_buffers(NULL, page_bufs, 0, len, 2041 NULL, bput_one); 2042 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 2043 out: 2044 unlock_page(page); 2045 out_no_pagelock: 2046 brelse(inode_bh); 2047 return ret; 2048 } 2049 2050 /* 2051 * Note that we don't need to start a transaction unless we're journaling data 2052 * because we should have holes filled from ext4_page_mkwrite(). We even don't 2053 * need to file the inode to the transaction's list in ordered mode because if 2054 * we are writing back data added by write(), the inode is already there and if 2055 * we are writing back data modified via mmap(), no one guarantees in which 2056 * transaction the data will hit the disk. In case we are journaling data, we 2057 * cannot start transaction directly because transaction start ranks above page 2058 * lock so we have to do some magic. 2059 * 2060 * This function can get called via... 2061 * - ext4_writepages after taking page lock (have journal handle) 2062 * - journal_submit_inode_data_buffers (no journal handle) 2063 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 2064 * - grab_page_cache when doing write_begin (have journal handle) 2065 * 2066 * We don't do any block allocation in this function. If we have page with 2067 * multiple blocks we need to write those buffer_heads that are mapped. This 2068 * is important for mmaped based write. So if we do with blocksize 1K 2069 * truncate(f, 1024); 2070 * a = mmap(f, 0, 4096); 2071 * a[0] = 'a'; 2072 * truncate(f, 4096); 2073 * we have in the page first buffer_head mapped via page_mkwrite call back 2074 * but other buffer_heads would be unmapped but dirty (dirty done via the 2075 * do_wp_page). So writepage should write the first block. If we modify 2076 * the mmap area beyond 1024 we will again get a page_fault and the 2077 * page_mkwrite callback will do the block allocation and mark the 2078 * buffer_heads mapped. 2079 * 2080 * We redirty the page if we have any buffer_heads that is either delay or 2081 * unwritten in the page. 2082 * 2083 * We can get recursively called as show below. 2084 * 2085 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 2086 * ext4_writepage() 2087 * 2088 * But since we don't do any block allocation we should not deadlock. 2089 * Page also have the dirty flag cleared so we don't get recurive page_lock. 2090 */ 2091 static int ext4_writepage(struct page *page, 2092 struct writeback_control *wbc) 2093 { 2094 int ret = 0; 2095 loff_t size; 2096 unsigned int len; 2097 struct buffer_head *page_bufs = NULL; 2098 struct inode *inode = page->mapping->host; 2099 struct ext4_io_submit io_submit; 2100 bool keep_towrite = false; 2101 2102 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 2103 ext4_invalidatepage(page, 0, PAGE_SIZE); 2104 unlock_page(page); 2105 return -EIO; 2106 } 2107 2108 trace_ext4_writepage(page); 2109 size = i_size_read(inode); 2110 if (page->index == size >> PAGE_SHIFT) 2111 len = size & ~PAGE_MASK; 2112 else 2113 len = PAGE_SIZE; 2114 2115 page_bufs = page_buffers(page); 2116 /* 2117 * We cannot do block allocation or other extent handling in this 2118 * function. If there are buffers needing that, we have to redirty 2119 * the page. But we may reach here when we do a journal commit via 2120 * journal_submit_inode_data_buffers() and in that case we must write 2121 * allocated buffers to achieve data=ordered mode guarantees. 2122 * 2123 * Also, if there is only one buffer per page (the fs block 2124 * size == the page size), if one buffer needs block 2125 * allocation or needs to modify the extent tree to clear the 2126 * unwritten flag, we know that the page can't be written at 2127 * all, so we might as well refuse the write immediately. 2128 * Unfortunately if the block size != page size, we can't as 2129 * easily detect this case using ext4_walk_page_buffers(), but 2130 * for the extremely common case, this is an optimization that 2131 * skips a useless round trip through ext4_bio_write_page(). 2132 */ 2133 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2134 ext4_bh_delay_or_unwritten)) { 2135 redirty_page_for_writepage(wbc, page); 2136 if ((current->flags & PF_MEMALLOC) || 2137 (inode->i_sb->s_blocksize == PAGE_SIZE)) { 2138 /* 2139 * For memory cleaning there's no point in writing only 2140 * some buffers. So just bail out. Warn if we came here 2141 * from direct reclaim. 2142 */ 2143 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 2144 == PF_MEMALLOC); 2145 unlock_page(page); 2146 return 0; 2147 } 2148 keep_towrite = true; 2149 } 2150 2151 if (PageChecked(page) && ext4_should_journal_data(inode)) 2152 /* 2153 * It's mmapped pagecache. Add buffers and journal it. There 2154 * doesn't seem much point in redirtying the page here. 2155 */ 2156 return __ext4_journalled_writepage(page, len); 2157 2158 ext4_io_submit_init(&io_submit, wbc); 2159 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 2160 if (!io_submit.io_end) { 2161 redirty_page_for_writepage(wbc, page); 2162 unlock_page(page); 2163 return -ENOMEM; 2164 } 2165 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite); 2166 ext4_io_submit(&io_submit); 2167 /* Drop io_end reference we got from init */ 2168 ext4_put_io_end_defer(io_submit.io_end); 2169 return ret; 2170 } 2171 2172 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 2173 { 2174 int len; 2175 loff_t size; 2176 int err; 2177 2178 BUG_ON(page->index != mpd->first_page); 2179 clear_page_dirty_for_io(page); 2180 /* 2181 * We have to be very careful here! Nothing protects writeback path 2182 * against i_size changes and the page can be writeably mapped into 2183 * page tables. So an application can be growing i_size and writing 2184 * data through mmap while writeback runs. clear_page_dirty_for_io() 2185 * write-protects our page in page tables and the page cannot get 2186 * written to again until we release page lock. So only after 2187 * clear_page_dirty_for_io() we are safe to sample i_size for 2188 * ext4_bio_write_page() to zero-out tail of the written page. We rely 2189 * on the barrier provided by TestClearPageDirty in 2190 * clear_page_dirty_for_io() to make sure i_size is really sampled only 2191 * after page tables are updated. 2192 */ 2193 size = i_size_read(mpd->inode); 2194 if (page->index == size >> PAGE_SHIFT) 2195 len = size & ~PAGE_MASK; 2196 else 2197 len = PAGE_SIZE; 2198 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false); 2199 if (!err) 2200 mpd->wbc->nr_to_write--; 2201 mpd->first_page++; 2202 2203 return err; 2204 } 2205 2206 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay)) 2207 2208 /* 2209 * mballoc gives us at most this number of blocks... 2210 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 2211 * The rest of mballoc seems to handle chunks up to full group size. 2212 */ 2213 #define MAX_WRITEPAGES_EXTENT_LEN 2048 2214 2215 /* 2216 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 2217 * 2218 * @mpd - extent of blocks 2219 * @lblk - logical number of the block in the file 2220 * @bh - buffer head we want to add to the extent 2221 * 2222 * The function is used to collect contig. blocks in the same state. If the 2223 * buffer doesn't require mapping for writeback and we haven't started the 2224 * extent of buffers to map yet, the function returns 'true' immediately - the 2225 * caller can write the buffer right away. Otherwise the function returns true 2226 * if the block has been added to the extent, false if the block couldn't be 2227 * added. 2228 */ 2229 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 2230 struct buffer_head *bh) 2231 { 2232 struct ext4_map_blocks *map = &mpd->map; 2233 2234 /* Buffer that doesn't need mapping for writeback? */ 2235 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 2236 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 2237 /* So far no extent to map => we write the buffer right away */ 2238 if (map->m_len == 0) 2239 return true; 2240 return false; 2241 } 2242 2243 /* First block in the extent? */ 2244 if (map->m_len == 0) { 2245 /* We cannot map unless handle is started... */ 2246 if (!mpd->do_map) 2247 return false; 2248 map->m_lblk = lblk; 2249 map->m_len = 1; 2250 map->m_flags = bh->b_state & BH_FLAGS; 2251 return true; 2252 } 2253 2254 /* Don't go larger than mballoc is willing to allocate */ 2255 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 2256 return false; 2257 2258 /* Can we merge the block to our big extent? */ 2259 if (lblk == map->m_lblk + map->m_len && 2260 (bh->b_state & BH_FLAGS) == map->m_flags) { 2261 map->m_len++; 2262 return true; 2263 } 2264 return false; 2265 } 2266 2267 /* 2268 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 2269 * 2270 * @mpd - extent of blocks for mapping 2271 * @head - the first buffer in the page 2272 * @bh - buffer we should start processing from 2273 * @lblk - logical number of the block in the file corresponding to @bh 2274 * 2275 * Walk through page buffers from @bh upto @head (exclusive) and either submit 2276 * the page for IO if all buffers in this page were mapped and there's no 2277 * accumulated extent of buffers to map or add buffers in the page to the 2278 * extent of buffers to map. The function returns 1 if the caller can continue 2279 * by processing the next page, 0 if it should stop adding buffers to the 2280 * extent to map because we cannot extend it anymore. It can also return value 2281 * < 0 in case of error during IO submission. 2282 */ 2283 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 2284 struct buffer_head *head, 2285 struct buffer_head *bh, 2286 ext4_lblk_t lblk) 2287 { 2288 struct inode *inode = mpd->inode; 2289 int err; 2290 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) 2291 >> inode->i_blkbits; 2292 2293 do { 2294 BUG_ON(buffer_locked(bh)); 2295 2296 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2297 /* Found extent to map? */ 2298 if (mpd->map.m_len) 2299 return 0; 2300 /* Buffer needs mapping and handle is not started? */ 2301 if (!mpd->do_map) 2302 return 0; 2303 /* Everything mapped so far and we hit EOF */ 2304 break; 2305 } 2306 } while (lblk++, (bh = bh->b_this_page) != head); 2307 /* So far everything mapped? Submit the page for IO. */ 2308 if (mpd->map.m_len == 0) { 2309 err = mpage_submit_page(mpd, head->b_page); 2310 if (err < 0) 2311 return err; 2312 } 2313 return lblk < blocks; 2314 } 2315 2316 /* 2317 * mpage_map_buffers - update buffers corresponding to changed extent and 2318 * submit fully mapped pages for IO 2319 * 2320 * @mpd - description of extent to map, on return next extent to map 2321 * 2322 * Scan buffers corresponding to changed extent (we expect corresponding pages 2323 * to be already locked) and update buffer state according to new extent state. 2324 * We map delalloc buffers to their physical location, clear unwritten bits, 2325 * and mark buffers as uninit when we perform writes to unwritten extents 2326 * and do extent conversion after IO is finished. If the last page is not fully 2327 * mapped, we update @map to the next extent in the last page that needs 2328 * mapping. Otherwise we submit the page for IO. 2329 */ 2330 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2331 { 2332 struct pagevec pvec; 2333 int nr_pages, i; 2334 struct inode *inode = mpd->inode; 2335 struct buffer_head *head, *bh; 2336 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2337 pgoff_t start, end; 2338 ext4_lblk_t lblk; 2339 sector_t pblock; 2340 int err; 2341 2342 start = mpd->map.m_lblk >> bpp_bits; 2343 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2344 lblk = start << bpp_bits; 2345 pblock = mpd->map.m_pblk; 2346 2347 pagevec_init(&pvec, 0); 2348 while (start <= end) { 2349 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, 2350 &start, end); 2351 if (nr_pages == 0) 2352 break; 2353 for (i = 0; i < nr_pages; i++) { 2354 struct page *page = pvec.pages[i]; 2355 2356 bh = head = page_buffers(page); 2357 do { 2358 if (lblk < mpd->map.m_lblk) 2359 continue; 2360 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2361 /* 2362 * Buffer after end of mapped extent. 2363 * Find next buffer in the page to map. 2364 */ 2365 mpd->map.m_len = 0; 2366 mpd->map.m_flags = 0; 2367 /* 2368 * FIXME: If dioread_nolock supports 2369 * blocksize < pagesize, we need to make 2370 * sure we add size mapped so far to 2371 * io_end->size as the following call 2372 * can submit the page for IO. 2373 */ 2374 err = mpage_process_page_bufs(mpd, head, 2375 bh, lblk); 2376 pagevec_release(&pvec); 2377 if (err > 0) 2378 err = 0; 2379 return err; 2380 } 2381 if (buffer_delay(bh)) { 2382 clear_buffer_delay(bh); 2383 bh->b_blocknr = pblock++; 2384 } 2385 clear_buffer_unwritten(bh); 2386 } while (lblk++, (bh = bh->b_this_page) != head); 2387 2388 /* 2389 * FIXME: This is going to break if dioread_nolock 2390 * supports blocksize < pagesize as we will try to 2391 * convert potentially unmapped parts of inode. 2392 */ 2393 mpd->io_submit.io_end->size += PAGE_SIZE; 2394 /* Page fully mapped - let IO run! */ 2395 err = mpage_submit_page(mpd, page); 2396 if (err < 0) { 2397 pagevec_release(&pvec); 2398 return err; 2399 } 2400 } 2401 pagevec_release(&pvec); 2402 } 2403 /* Extent fully mapped and matches with page boundary. We are done. */ 2404 mpd->map.m_len = 0; 2405 mpd->map.m_flags = 0; 2406 return 0; 2407 } 2408 2409 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2410 { 2411 struct inode *inode = mpd->inode; 2412 struct ext4_map_blocks *map = &mpd->map; 2413 int get_blocks_flags; 2414 int err, dioread_nolock; 2415 2416 trace_ext4_da_write_pages_extent(inode, map); 2417 /* 2418 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2419 * to convert an unwritten extent to be initialized (in the case 2420 * where we have written into one or more preallocated blocks). It is 2421 * possible that we're going to need more metadata blocks than 2422 * previously reserved. However we must not fail because we're in 2423 * writeback and there is nothing we can do about it so it might result 2424 * in data loss. So use reserved blocks to allocate metadata if 2425 * possible. 2426 * 2427 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2428 * the blocks in question are delalloc blocks. This indicates 2429 * that the blocks and quotas has already been checked when 2430 * the data was copied into the page cache. 2431 */ 2432 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2433 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2434 EXT4_GET_BLOCKS_IO_SUBMIT; 2435 dioread_nolock = ext4_should_dioread_nolock(inode); 2436 if (dioread_nolock) 2437 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2438 if (map->m_flags & (1 << BH_Delay)) 2439 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2440 2441 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2442 if (err < 0) 2443 return err; 2444 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2445 if (!mpd->io_submit.io_end->handle && 2446 ext4_handle_valid(handle)) { 2447 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2448 handle->h_rsv_handle = NULL; 2449 } 2450 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2451 } 2452 2453 BUG_ON(map->m_len == 0); 2454 if (map->m_flags & EXT4_MAP_NEW) { 2455 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk, 2456 map->m_len); 2457 } 2458 return 0; 2459 } 2460 2461 /* 2462 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2463 * mpd->len and submit pages underlying it for IO 2464 * 2465 * @handle - handle for journal operations 2466 * @mpd - extent to map 2467 * @give_up_on_write - we set this to true iff there is a fatal error and there 2468 * is no hope of writing the data. The caller should discard 2469 * dirty pages to avoid infinite loops. 2470 * 2471 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2472 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2473 * them to initialized or split the described range from larger unwritten 2474 * extent. Note that we need not map all the described range since allocation 2475 * can return less blocks or the range is covered by more unwritten extents. We 2476 * cannot map more because we are limited by reserved transaction credits. On 2477 * the other hand we always make sure that the last touched page is fully 2478 * mapped so that it can be written out (and thus forward progress is 2479 * guaranteed). After mapping we submit all mapped pages for IO. 2480 */ 2481 static int mpage_map_and_submit_extent(handle_t *handle, 2482 struct mpage_da_data *mpd, 2483 bool *give_up_on_write) 2484 { 2485 struct inode *inode = mpd->inode; 2486 struct ext4_map_blocks *map = &mpd->map; 2487 int err; 2488 loff_t disksize; 2489 int progress = 0; 2490 2491 mpd->io_submit.io_end->offset = 2492 ((loff_t)map->m_lblk) << inode->i_blkbits; 2493 do { 2494 err = mpage_map_one_extent(handle, mpd); 2495 if (err < 0) { 2496 struct super_block *sb = inode->i_sb; 2497 2498 if (ext4_forced_shutdown(EXT4_SB(sb)) || 2499 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 2500 goto invalidate_dirty_pages; 2501 /* 2502 * Let the uper layers retry transient errors. 2503 * In the case of ENOSPC, if ext4_count_free_blocks() 2504 * is non-zero, a commit should free up blocks. 2505 */ 2506 if ((err == -ENOMEM) || 2507 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2508 if (progress) 2509 goto update_disksize; 2510 return err; 2511 } 2512 ext4_msg(sb, KERN_CRIT, 2513 "Delayed block allocation failed for " 2514 "inode %lu at logical offset %llu with" 2515 " max blocks %u with error %d", 2516 inode->i_ino, 2517 (unsigned long long)map->m_lblk, 2518 (unsigned)map->m_len, -err); 2519 ext4_msg(sb, KERN_CRIT, 2520 "This should not happen!! Data will " 2521 "be lost\n"); 2522 if (err == -ENOSPC) 2523 ext4_print_free_blocks(inode); 2524 invalidate_dirty_pages: 2525 *give_up_on_write = true; 2526 return err; 2527 } 2528 progress = 1; 2529 /* 2530 * Update buffer state, submit mapped pages, and get us new 2531 * extent to map 2532 */ 2533 err = mpage_map_and_submit_buffers(mpd); 2534 if (err < 0) 2535 goto update_disksize; 2536 } while (map->m_len); 2537 2538 update_disksize: 2539 /* 2540 * Update on-disk size after IO is submitted. Races with 2541 * truncate are avoided by checking i_size under i_data_sem. 2542 */ 2543 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2544 if (disksize > EXT4_I(inode)->i_disksize) { 2545 int err2; 2546 loff_t i_size; 2547 2548 down_write(&EXT4_I(inode)->i_data_sem); 2549 i_size = i_size_read(inode); 2550 if (disksize > i_size) 2551 disksize = i_size; 2552 if (disksize > EXT4_I(inode)->i_disksize) 2553 EXT4_I(inode)->i_disksize = disksize; 2554 up_write(&EXT4_I(inode)->i_data_sem); 2555 err2 = ext4_mark_inode_dirty(handle, inode); 2556 if (err2) 2557 ext4_error(inode->i_sb, 2558 "Failed to mark inode %lu dirty", 2559 inode->i_ino); 2560 if (!err) 2561 err = err2; 2562 } 2563 return err; 2564 } 2565 2566 /* 2567 * Calculate the total number of credits to reserve for one writepages 2568 * iteration. This is called from ext4_writepages(). We map an extent of 2569 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2570 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2571 * bpp - 1 blocks in bpp different extents. 2572 */ 2573 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2574 { 2575 int bpp = ext4_journal_blocks_per_page(inode); 2576 2577 return ext4_meta_trans_blocks(inode, 2578 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2579 } 2580 2581 /* 2582 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2583 * and underlying extent to map 2584 * 2585 * @mpd - where to look for pages 2586 * 2587 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2588 * IO immediately. When we find a page which isn't mapped we start accumulating 2589 * extent of buffers underlying these pages that needs mapping (formed by 2590 * either delayed or unwritten buffers). We also lock the pages containing 2591 * these buffers. The extent found is returned in @mpd structure (starting at 2592 * mpd->lblk with length mpd->len blocks). 2593 * 2594 * Note that this function can attach bios to one io_end structure which are 2595 * neither logically nor physically contiguous. Although it may seem as an 2596 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2597 * case as we need to track IO to all buffers underlying a page in one io_end. 2598 */ 2599 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2600 { 2601 struct address_space *mapping = mpd->inode->i_mapping; 2602 struct pagevec pvec; 2603 unsigned int nr_pages; 2604 long left = mpd->wbc->nr_to_write; 2605 pgoff_t index = mpd->first_page; 2606 pgoff_t end = mpd->last_page; 2607 int tag; 2608 int i, err = 0; 2609 int blkbits = mpd->inode->i_blkbits; 2610 ext4_lblk_t lblk; 2611 struct buffer_head *head; 2612 2613 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2614 tag = PAGECACHE_TAG_TOWRITE; 2615 else 2616 tag = PAGECACHE_TAG_DIRTY; 2617 2618 pagevec_init(&pvec, 0); 2619 mpd->map.m_len = 0; 2620 mpd->next_page = index; 2621 while (index <= end) { 2622 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2623 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2624 if (nr_pages == 0) 2625 goto out; 2626 2627 for (i = 0; i < nr_pages; i++) { 2628 struct page *page = pvec.pages[i]; 2629 2630 /* 2631 * At this point, the page may be truncated or 2632 * invalidated (changing page->mapping to NULL), or 2633 * even swizzled back from swapper_space to tmpfs file 2634 * mapping. However, page->index will not change 2635 * because we have a reference on the page. 2636 */ 2637 if (page->index > end) 2638 goto out; 2639 2640 /* 2641 * Accumulated enough dirty pages? This doesn't apply 2642 * to WB_SYNC_ALL mode. For integrity sync we have to 2643 * keep going because someone may be concurrently 2644 * dirtying pages, and we might have synced a lot of 2645 * newly appeared dirty pages, but have not synced all 2646 * of the old dirty pages. 2647 */ 2648 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2649 goto out; 2650 2651 /* If we can't merge this page, we are done. */ 2652 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2653 goto out; 2654 2655 lock_page(page); 2656 /* 2657 * If the page is no longer dirty, or its mapping no 2658 * longer corresponds to inode we are writing (which 2659 * means it has been truncated or invalidated), or the 2660 * page is already under writeback and we are not doing 2661 * a data integrity writeback, skip the page 2662 */ 2663 if (!PageDirty(page) || 2664 (PageWriteback(page) && 2665 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2666 unlikely(page->mapping != mapping)) { 2667 unlock_page(page); 2668 continue; 2669 } 2670 2671 wait_on_page_writeback(page); 2672 BUG_ON(PageWriteback(page)); 2673 2674 if (mpd->map.m_len == 0) 2675 mpd->first_page = page->index; 2676 mpd->next_page = page->index + 1; 2677 /* Add all dirty buffers to mpd */ 2678 lblk = ((ext4_lblk_t)page->index) << 2679 (PAGE_SHIFT - blkbits); 2680 head = page_buffers(page); 2681 err = mpage_process_page_bufs(mpd, head, head, lblk); 2682 if (err <= 0) 2683 goto out; 2684 err = 0; 2685 left--; 2686 } 2687 pagevec_release(&pvec); 2688 cond_resched(); 2689 } 2690 return 0; 2691 out: 2692 pagevec_release(&pvec); 2693 return err; 2694 } 2695 2696 static int __writepage(struct page *page, struct writeback_control *wbc, 2697 void *data) 2698 { 2699 struct address_space *mapping = data; 2700 int ret = ext4_writepage(page, wbc); 2701 mapping_set_error(mapping, ret); 2702 return ret; 2703 } 2704 2705 static int ext4_writepages(struct address_space *mapping, 2706 struct writeback_control *wbc) 2707 { 2708 pgoff_t writeback_index = 0; 2709 long nr_to_write = wbc->nr_to_write; 2710 int range_whole = 0; 2711 int cycled = 1; 2712 handle_t *handle = NULL; 2713 struct mpage_da_data mpd; 2714 struct inode *inode = mapping->host; 2715 int needed_blocks, rsv_blocks = 0, ret = 0; 2716 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2717 bool done; 2718 struct blk_plug plug; 2719 bool give_up_on_write = false; 2720 2721 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2722 return -EIO; 2723 2724 percpu_down_read(&sbi->s_journal_flag_rwsem); 2725 trace_ext4_writepages(inode, wbc); 2726 2727 if (dax_mapping(mapping)) { 2728 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, 2729 wbc); 2730 goto out_writepages; 2731 } 2732 2733 /* 2734 * No pages to write? This is mainly a kludge to avoid starting 2735 * a transaction for special inodes like journal inode on last iput() 2736 * because that could violate lock ordering on umount 2737 */ 2738 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2739 goto out_writepages; 2740 2741 if (ext4_should_journal_data(inode)) { 2742 struct blk_plug plug; 2743 2744 blk_start_plug(&plug); 2745 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 2746 blk_finish_plug(&plug); 2747 goto out_writepages; 2748 } 2749 2750 /* 2751 * If the filesystem has aborted, it is read-only, so return 2752 * right away instead of dumping stack traces later on that 2753 * will obscure the real source of the problem. We test 2754 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2755 * the latter could be true if the filesystem is mounted 2756 * read-only, and in that case, ext4_writepages should 2757 * *never* be called, so if that ever happens, we would want 2758 * the stack trace. 2759 */ 2760 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) || 2761 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) { 2762 ret = -EROFS; 2763 goto out_writepages; 2764 } 2765 2766 if (ext4_should_dioread_nolock(inode)) { 2767 /* 2768 * We may need to convert up to one extent per block in 2769 * the page and we may dirty the inode. 2770 */ 2771 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits); 2772 } 2773 2774 /* 2775 * If we have inline data and arrive here, it means that 2776 * we will soon create the block for the 1st page, so 2777 * we'd better clear the inline data here. 2778 */ 2779 if (ext4_has_inline_data(inode)) { 2780 /* Just inode will be modified... */ 2781 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2782 if (IS_ERR(handle)) { 2783 ret = PTR_ERR(handle); 2784 goto out_writepages; 2785 } 2786 BUG_ON(ext4_test_inode_state(inode, 2787 EXT4_STATE_MAY_INLINE_DATA)); 2788 ext4_destroy_inline_data(handle, inode); 2789 ext4_journal_stop(handle); 2790 } 2791 2792 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2793 range_whole = 1; 2794 2795 if (wbc->range_cyclic) { 2796 writeback_index = mapping->writeback_index; 2797 if (writeback_index) 2798 cycled = 0; 2799 mpd.first_page = writeback_index; 2800 mpd.last_page = -1; 2801 } else { 2802 mpd.first_page = wbc->range_start >> PAGE_SHIFT; 2803 mpd.last_page = wbc->range_end >> PAGE_SHIFT; 2804 } 2805 2806 mpd.inode = inode; 2807 mpd.wbc = wbc; 2808 ext4_io_submit_init(&mpd.io_submit, wbc); 2809 retry: 2810 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2811 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2812 done = false; 2813 blk_start_plug(&plug); 2814 2815 /* 2816 * First writeback pages that don't need mapping - we can avoid 2817 * starting a transaction unnecessarily and also avoid being blocked 2818 * in the block layer on device congestion while having transaction 2819 * started. 2820 */ 2821 mpd.do_map = 0; 2822 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2823 if (!mpd.io_submit.io_end) { 2824 ret = -ENOMEM; 2825 goto unplug; 2826 } 2827 ret = mpage_prepare_extent_to_map(&mpd); 2828 /* Submit prepared bio */ 2829 ext4_io_submit(&mpd.io_submit); 2830 ext4_put_io_end_defer(mpd.io_submit.io_end); 2831 mpd.io_submit.io_end = NULL; 2832 /* Unlock pages we didn't use */ 2833 mpage_release_unused_pages(&mpd, false); 2834 if (ret < 0) 2835 goto unplug; 2836 2837 while (!done && mpd.first_page <= mpd.last_page) { 2838 /* For each extent of pages we use new io_end */ 2839 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2840 if (!mpd.io_submit.io_end) { 2841 ret = -ENOMEM; 2842 break; 2843 } 2844 2845 /* 2846 * We have two constraints: We find one extent to map and we 2847 * must always write out whole page (makes a difference when 2848 * blocksize < pagesize) so that we don't block on IO when we 2849 * try to write out the rest of the page. Journalled mode is 2850 * not supported by delalloc. 2851 */ 2852 BUG_ON(ext4_should_journal_data(inode)); 2853 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2854 2855 /* start a new transaction */ 2856 handle = ext4_journal_start_with_reserve(inode, 2857 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2858 if (IS_ERR(handle)) { 2859 ret = PTR_ERR(handle); 2860 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2861 "%ld pages, ino %lu; err %d", __func__, 2862 wbc->nr_to_write, inode->i_ino, ret); 2863 /* Release allocated io_end */ 2864 ext4_put_io_end(mpd.io_submit.io_end); 2865 mpd.io_submit.io_end = NULL; 2866 break; 2867 } 2868 mpd.do_map = 1; 2869 2870 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2871 ret = mpage_prepare_extent_to_map(&mpd); 2872 if (!ret) { 2873 if (mpd.map.m_len) 2874 ret = mpage_map_and_submit_extent(handle, &mpd, 2875 &give_up_on_write); 2876 else { 2877 /* 2878 * We scanned the whole range (or exhausted 2879 * nr_to_write), submitted what was mapped and 2880 * didn't find anything needing mapping. We are 2881 * done. 2882 */ 2883 done = true; 2884 } 2885 } 2886 /* 2887 * Caution: If the handle is synchronous, 2888 * ext4_journal_stop() can wait for transaction commit 2889 * to finish which may depend on writeback of pages to 2890 * complete or on page lock to be released. In that 2891 * case, we have to wait until after after we have 2892 * submitted all the IO, released page locks we hold, 2893 * and dropped io_end reference (for extent conversion 2894 * to be able to complete) before stopping the handle. 2895 */ 2896 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2897 ext4_journal_stop(handle); 2898 handle = NULL; 2899 mpd.do_map = 0; 2900 } 2901 /* Submit prepared bio */ 2902 ext4_io_submit(&mpd.io_submit); 2903 /* Unlock pages we didn't use */ 2904 mpage_release_unused_pages(&mpd, give_up_on_write); 2905 /* 2906 * Drop our io_end reference we got from init. We have 2907 * to be careful and use deferred io_end finishing if 2908 * we are still holding the transaction as we can 2909 * release the last reference to io_end which may end 2910 * up doing unwritten extent conversion. 2911 */ 2912 if (handle) { 2913 ext4_put_io_end_defer(mpd.io_submit.io_end); 2914 ext4_journal_stop(handle); 2915 } else 2916 ext4_put_io_end(mpd.io_submit.io_end); 2917 mpd.io_submit.io_end = NULL; 2918 2919 if (ret == -ENOSPC && sbi->s_journal) { 2920 /* 2921 * Commit the transaction which would 2922 * free blocks released in the transaction 2923 * and try again 2924 */ 2925 jbd2_journal_force_commit_nested(sbi->s_journal); 2926 ret = 0; 2927 continue; 2928 } 2929 /* Fatal error - ENOMEM, EIO... */ 2930 if (ret) 2931 break; 2932 } 2933 unplug: 2934 blk_finish_plug(&plug); 2935 if (!ret && !cycled && wbc->nr_to_write > 0) { 2936 cycled = 1; 2937 mpd.last_page = writeback_index - 1; 2938 mpd.first_page = 0; 2939 goto retry; 2940 } 2941 2942 /* Update index */ 2943 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2944 /* 2945 * Set the writeback_index so that range_cyclic 2946 * mode will write it back later 2947 */ 2948 mapping->writeback_index = mpd.first_page; 2949 2950 out_writepages: 2951 trace_ext4_writepages_result(inode, wbc, ret, 2952 nr_to_write - wbc->nr_to_write); 2953 percpu_up_read(&sbi->s_journal_flag_rwsem); 2954 return ret; 2955 } 2956 2957 static int ext4_nonda_switch(struct super_block *sb) 2958 { 2959 s64 free_clusters, dirty_clusters; 2960 struct ext4_sb_info *sbi = EXT4_SB(sb); 2961 2962 /* 2963 * switch to non delalloc mode if we are running low 2964 * on free block. The free block accounting via percpu 2965 * counters can get slightly wrong with percpu_counter_batch getting 2966 * accumulated on each CPU without updating global counters 2967 * Delalloc need an accurate free block accounting. So switch 2968 * to non delalloc when we are near to error range. 2969 */ 2970 free_clusters = 2971 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2972 dirty_clusters = 2973 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2974 /* 2975 * Start pushing delalloc when 1/2 of free blocks are dirty. 2976 */ 2977 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2978 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2979 2980 if (2 * free_clusters < 3 * dirty_clusters || 2981 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2982 /* 2983 * free block count is less than 150% of dirty blocks 2984 * or free blocks is less than watermark 2985 */ 2986 return 1; 2987 } 2988 return 0; 2989 } 2990 2991 /* We always reserve for an inode update; the superblock could be there too */ 2992 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len) 2993 { 2994 if (likely(ext4_has_feature_large_file(inode->i_sb))) 2995 return 1; 2996 2997 if (pos + len <= 0x7fffffffULL) 2998 return 1; 2999 3000 /* We might need to update the superblock to set LARGE_FILE */ 3001 return 2; 3002 } 3003 3004 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 3005 loff_t pos, unsigned len, unsigned flags, 3006 struct page **pagep, void **fsdata) 3007 { 3008 int ret, retries = 0; 3009 struct page *page; 3010 pgoff_t index; 3011 struct inode *inode = mapping->host; 3012 handle_t *handle; 3013 3014 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 3015 return -EIO; 3016 3017 index = pos >> PAGE_SHIFT; 3018 3019 if (ext4_nonda_switch(inode->i_sb) || 3020 S_ISLNK(inode->i_mode)) { 3021 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 3022 return ext4_write_begin(file, mapping, pos, 3023 len, flags, pagep, fsdata); 3024 } 3025 *fsdata = (void *)0; 3026 trace_ext4_da_write_begin(inode, pos, len, flags); 3027 3028 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 3029 ret = ext4_da_write_inline_data_begin(mapping, inode, 3030 pos, len, flags, 3031 pagep, fsdata); 3032 if (ret < 0) 3033 return ret; 3034 if (ret == 1) 3035 return 0; 3036 } 3037 3038 /* 3039 * grab_cache_page_write_begin() can take a long time if the 3040 * system is thrashing due to memory pressure, or if the page 3041 * is being written back. So grab it first before we start 3042 * the transaction handle. This also allows us to allocate 3043 * the page (if needed) without using GFP_NOFS. 3044 */ 3045 retry_grab: 3046 page = grab_cache_page_write_begin(mapping, index, flags); 3047 if (!page) 3048 return -ENOMEM; 3049 unlock_page(page); 3050 3051 /* 3052 * With delayed allocation, we don't log the i_disksize update 3053 * if there is delayed block allocation. But we still need 3054 * to journalling the i_disksize update if writes to the end 3055 * of file which has an already mapped buffer. 3056 */ 3057 retry_journal: 3058 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 3059 ext4_da_write_credits(inode, pos, len)); 3060 if (IS_ERR(handle)) { 3061 put_page(page); 3062 return PTR_ERR(handle); 3063 } 3064 3065 lock_page(page); 3066 if (page->mapping != mapping) { 3067 /* The page got truncated from under us */ 3068 unlock_page(page); 3069 put_page(page); 3070 ext4_journal_stop(handle); 3071 goto retry_grab; 3072 } 3073 /* In case writeback began while the page was unlocked */ 3074 wait_for_stable_page(page); 3075 3076 #ifdef CONFIG_EXT4_FS_ENCRYPTION 3077 ret = ext4_block_write_begin(page, pos, len, 3078 ext4_da_get_block_prep); 3079 #else 3080 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 3081 #endif 3082 if (ret < 0) { 3083 unlock_page(page); 3084 ext4_journal_stop(handle); 3085 /* 3086 * block_write_begin may have instantiated a few blocks 3087 * outside i_size. Trim these off again. Don't need 3088 * i_size_read because we hold i_mutex. 3089 */ 3090 if (pos + len > inode->i_size) 3091 ext4_truncate_failed_write(inode); 3092 3093 if (ret == -ENOSPC && 3094 ext4_should_retry_alloc(inode->i_sb, &retries)) 3095 goto retry_journal; 3096 3097 put_page(page); 3098 return ret; 3099 } 3100 3101 *pagep = page; 3102 return ret; 3103 } 3104 3105 /* 3106 * Check if we should update i_disksize 3107 * when write to the end of file but not require block allocation 3108 */ 3109 static int ext4_da_should_update_i_disksize(struct page *page, 3110 unsigned long offset) 3111 { 3112 struct buffer_head *bh; 3113 struct inode *inode = page->mapping->host; 3114 unsigned int idx; 3115 int i; 3116 3117 bh = page_buffers(page); 3118 idx = offset >> inode->i_blkbits; 3119 3120 for (i = 0; i < idx; i++) 3121 bh = bh->b_this_page; 3122 3123 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 3124 return 0; 3125 return 1; 3126 } 3127 3128 static int ext4_da_write_end(struct file *file, 3129 struct address_space *mapping, 3130 loff_t pos, unsigned len, unsigned copied, 3131 struct page *page, void *fsdata) 3132 { 3133 struct inode *inode = mapping->host; 3134 int ret = 0, ret2; 3135 handle_t *handle = ext4_journal_current_handle(); 3136 loff_t new_i_size; 3137 unsigned long start, end; 3138 int write_mode = (int)(unsigned long)fsdata; 3139 3140 if (write_mode == FALL_BACK_TO_NONDELALLOC) 3141 return ext4_write_end(file, mapping, pos, 3142 len, copied, page, fsdata); 3143 3144 trace_ext4_da_write_end(inode, pos, len, copied); 3145 start = pos & (PAGE_SIZE - 1); 3146 end = start + copied - 1; 3147 3148 /* 3149 * generic_write_end() will run mark_inode_dirty() if i_size 3150 * changes. So let's piggyback the i_disksize mark_inode_dirty 3151 * into that. 3152 */ 3153 new_i_size = pos + copied; 3154 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 3155 if (ext4_has_inline_data(inode) || 3156 ext4_da_should_update_i_disksize(page, end)) { 3157 ext4_update_i_disksize(inode, new_i_size); 3158 /* We need to mark inode dirty even if 3159 * new_i_size is less that inode->i_size 3160 * bu greater than i_disksize.(hint delalloc) 3161 */ 3162 ext4_mark_inode_dirty(handle, inode); 3163 } 3164 } 3165 3166 if (write_mode != CONVERT_INLINE_DATA && 3167 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3168 ext4_has_inline_data(inode)) 3169 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 3170 page); 3171 else 3172 ret2 = generic_write_end(file, mapping, pos, len, copied, 3173 page, fsdata); 3174 3175 copied = ret2; 3176 if (ret2 < 0) 3177 ret = ret2; 3178 ret2 = ext4_journal_stop(handle); 3179 if (!ret) 3180 ret = ret2; 3181 3182 return ret ? ret : copied; 3183 } 3184 3185 static void ext4_da_invalidatepage(struct page *page, unsigned int offset, 3186 unsigned int length) 3187 { 3188 /* 3189 * Drop reserved blocks 3190 */ 3191 BUG_ON(!PageLocked(page)); 3192 if (!page_has_buffers(page)) 3193 goto out; 3194 3195 ext4_da_page_release_reservation(page, offset, length); 3196 3197 out: 3198 ext4_invalidatepage(page, offset, length); 3199 3200 return; 3201 } 3202 3203 /* 3204 * Force all delayed allocation blocks to be allocated for a given inode. 3205 */ 3206 int ext4_alloc_da_blocks(struct inode *inode) 3207 { 3208 trace_ext4_alloc_da_blocks(inode); 3209 3210 if (!EXT4_I(inode)->i_reserved_data_blocks) 3211 return 0; 3212 3213 /* 3214 * We do something simple for now. The filemap_flush() will 3215 * also start triggering a write of the data blocks, which is 3216 * not strictly speaking necessary (and for users of 3217 * laptop_mode, not even desirable). However, to do otherwise 3218 * would require replicating code paths in: 3219 * 3220 * ext4_writepages() -> 3221 * write_cache_pages() ---> (via passed in callback function) 3222 * __mpage_da_writepage() --> 3223 * mpage_add_bh_to_extent() 3224 * mpage_da_map_blocks() 3225 * 3226 * The problem is that write_cache_pages(), located in 3227 * mm/page-writeback.c, marks pages clean in preparation for 3228 * doing I/O, which is not desirable if we're not planning on 3229 * doing I/O at all. 3230 * 3231 * We could call write_cache_pages(), and then redirty all of 3232 * the pages by calling redirty_page_for_writepage() but that 3233 * would be ugly in the extreme. So instead we would need to 3234 * replicate parts of the code in the above functions, 3235 * simplifying them because we wouldn't actually intend to 3236 * write out the pages, but rather only collect contiguous 3237 * logical block extents, call the multi-block allocator, and 3238 * then update the buffer heads with the block allocations. 3239 * 3240 * For now, though, we'll cheat by calling filemap_flush(), 3241 * which will map the blocks, and start the I/O, but not 3242 * actually wait for the I/O to complete. 3243 */ 3244 return filemap_flush(inode->i_mapping); 3245 } 3246 3247 /* 3248 * bmap() is special. It gets used by applications such as lilo and by 3249 * the swapper to find the on-disk block of a specific piece of data. 3250 * 3251 * Naturally, this is dangerous if the block concerned is still in the 3252 * journal. If somebody makes a swapfile on an ext4 data-journaling 3253 * filesystem and enables swap, then they may get a nasty shock when the 3254 * data getting swapped to that swapfile suddenly gets overwritten by 3255 * the original zero's written out previously to the journal and 3256 * awaiting writeback in the kernel's buffer cache. 3257 * 3258 * So, if we see any bmap calls here on a modified, data-journaled file, 3259 * take extra steps to flush any blocks which might be in the cache. 3260 */ 3261 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3262 { 3263 struct inode *inode = mapping->host; 3264 journal_t *journal; 3265 int err; 3266 3267 /* 3268 * We can get here for an inline file via the FIBMAP ioctl 3269 */ 3270 if (ext4_has_inline_data(inode)) 3271 return 0; 3272 3273 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3274 test_opt(inode->i_sb, DELALLOC)) { 3275 /* 3276 * With delalloc we want to sync the file 3277 * so that we can make sure we allocate 3278 * blocks for file 3279 */ 3280 filemap_write_and_wait(mapping); 3281 } 3282 3283 if (EXT4_JOURNAL(inode) && 3284 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 3285 /* 3286 * This is a REALLY heavyweight approach, but the use of 3287 * bmap on dirty files is expected to be extremely rare: 3288 * only if we run lilo or swapon on a freshly made file 3289 * do we expect this to happen. 3290 * 3291 * (bmap requires CAP_SYS_RAWIO so this does not 3292 * represent an unprivileged user DOS attack --- we'd be 3293 * in trouble if mortal users could trigger this path at 3294 * will.) 3295 * 3296 * NB. EXT4_STATE_JDATA is not set on files other than 3297 * regular files. If somebody wants to bmap a directory 3298 * or symlink and gets confused because the buffer 3299 * hasn't yet been flushed to disk, they deserve 3300 * everything they get. 3301 */ 3302 3303 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 3304 journal = EXT4_JOURNAL(inode); 3305 jbd2_journal_lock_updates(journal); 3306 err = jbd2_journal_flush(journal); 3307 jbd2_journal_unlock_updates(journal); 3308 3309 if (err) 3310 return 0; 3311 } 3312 3313 return generic_block_bmap(mapping, block, ext4_get_block); 3314 } 3315 3316 static int ext4_readpage(struct file *file, struct page *page) 3317 { 3318 int ret = -EAGAIN; 3319 struct inode *inode = page->mapping->host; 3320 3321 trace_ext4_readpage(page); 3322 3323 if (ext4_has_inline_data(inode)) 3324 ret = ext4_readpage_inline(inode, page); 3325 3326 if (ret == -EAGAIN) 3327 return ext4_mpage_readpages(page->mapping, NULL, page, 1); 3328 3329 return ret; 3330 } 3331 3332 static int 3333 ext4_readpages(struct file *file, struct address_space *mapping, 3334 struct list_head *pages, unsigned nr_pages) 3335 { 3336 struct inode *inode = mapping->host; 3337 3338 /* If the file has inline data, no need to do readpages. */ 3339 if (ext4_has_inline_data(inode)) 3340 return 0; 3341 3342 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages); 3343 } 3344 3345 static void ext4_invalidatepage(struct page *page, unsigned int offset, 3346 unsigned int length) 3347 { 3348 trace_ext4_invalidatepage(page, offset, length); 3349 3350 /* No journalling happens on data buffers when this function is used */ 3351 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 3352 3353 block_invalidatepage(page, offset, length); 3354 } 3355 3356 static int __ext4_journalled_invalidatepage(struct page *page, 3357 unsigned int offset, 3358 unsigned int length) 3359 { 3360 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3361 3362 trace_ext4_journalled_invalidatepage(page, offset, length); 3363 3364 /* 3365 * If it's a full truncate we just forget about the pending dirtying 3366 */ 3367 if (offset == 0 && length == PAGE_SIZE) 3368 ClearPageChecked(page); 3369 3370 return jbd2_journal_invalidatepage(journal, page, offset, length); 3371 } 3372 3373 /* Wrapper for aops... */ 3374 static void ext4_journalled_invalidatepage(struct page *page, 3375 unsigned int offset, 3376 unsigned int length) 3377 { 3378 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 3379 } 3380 3381 static int ext4_releasepage(struct page *page, gfp_t wait) 3382 { 3383 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3384 3385 trace_ext4_releasepage(page); 3386 3387 /* Page has dirty journalled data -> cannot release */ 3388 if (PageChecked(page)) 3389 return 0; 3390 if (journal) 3391 return jbd2_journal_try_to_free_buffers(journal, page, wait); 3392 else 3393 return try_to_free_buffers(page); 3394 } 3395 3396 #ifdef CONFIG_FS_DAX 3397 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3398 unsigned flags, struct iomap *iomap) 3399 { 3400 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3401 unsigned int blkbits = inode->i_blkbits; 3402 unsigned long first_block = offset >> blkbits; 3403 unsigned long last_block = (offset + length - 1) >> blkbits; 3404 struct ext4_map_blocks map; 3405 int ret; 3406 3407 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3408 return -ERANGE; 3409 3410 map.m_lblk = first_block; 3411 map.m_len = last_block - first_block + 1; 3412 3413 if (!(flags & IOMAP_WRITE)) { 3414 ret = ext4_map_blocks(NULL, inode, &map, 0); 3415 } else { 3416 int dio_credits; 3417 handle_t *handle; 3418 int retries = 0; 3419 3420 /* Trim mapping request to maximum we can map at once for DIO */ 3421 if (map.m_len > DIO_MAX_BLOCKS) 3422 map.m_len = DIO_MAX_BLOCKS; 3423 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 3424 retry: 3425 /* 3426 * Either we allocate blocks and then we don't get unwritten 3427 * extent so we have reserved enough credits, or the blocks 3428 * are already allocated and unwritten and in that case 3429 * extent conversion fits in the credits as well. 3430 */ 3431 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 3432 dio_credits); 3433 if (IS_ERR(handle)) 3434 return PTR_ERR(handle); 3435 3436 ret = ext4_map_blocks(handle, inode, &map, 3437 EXT4_GET_BLOCKS_CREATE_ZERO); 3438 if (ret < 0) { 3439 ext4_journal_stop(handle); 3440 if (ret == -ENOSPC && 3441 ext4_should_retry_alloc(inode->i_sb, &retries)) 3442 goto retry; 3443 return ret; 3444 } 3445 3446 /* 3447 * If we added blocks beyond i_size, we need to make sure they 3448 * will get truncated if we crash before updating i_size in 3449 * ext4_iomap_end(). For faults we don't need to do that (and 3450 * even cannot because for orphan list operations inode_lock is 3451 * required) - if we happen to instantiate block beyond i_size, 3452 * it is because we race with truncate which has already added 3453 * the inode to the orphan list. 3454 */ 3455 if (!(flags & IOMAP_FAULT) && first_block + map.m_len > 3456 (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) { 3457 int err; 3458 3459 err = ext4_orphan_add(handle, inode); 3460 if (err < 0) { 3461 ext4_journal_stop(handle); 3462 return err; 3463 } 3464 } 3465 ext4_journal_stop(handle); 3466 } 3467 3468 iomap->flags = 0; 3469 iomap->bdev = inode->i_sb->s_bdev; 3470 iomap->dax_dev = sbi->s_daxdev; 3471 iomap->offset = first_block << blkbits; 3472 3473 if (ret == 0) { 3474 iomap->type = IOMAP_HOLE; 3475 iomap->blkno = IOMAP_NULL_BLOCK; 3476 iomap->length = (u64)map.m_len << blkbits; 3477 } else { 3478 if (map.m_flags & EXT4_MAP_MAPPED) { 3479 iomap->type = IOMAP_MAPPED; 3480 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) { 3481 iomap->type = IOMAP_UNWRITTEN; 3482 } else { 3483 WARN_ON_ONCE(1); 3484 return -EIO; 3485 } 3486 iomap->blkno = (sector_t)map.m_pblk << (blkbits - 9); 3487 iomap->length = (u64)map.m_len << blkbits; 3488 } 3489 3490 if (map.m_flags & EXT4_MAP_NEW) 3491 iomap->flags |= IOMAP_F_NEW; 3492 return 0; 3493 } 3494 3495 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, 3496 ssize_t written, unsigned flags, struct iomap *iomap) 3497 { 3498 int ret = 0; 3499 handle_t *handle; 3500 int blkbits = inode->i_blkbits; 3501 bool truncate = false; 3502 3503 if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT)) 3504 return 0; 3505 3506 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3507 if (IS_ERR(handle)) { 3508 ret = PTR_ERR(handle); 3509 goto orphan_del; 3510 } 3511 if (ext4_update_inode_size(inode, offset + written)) 3512 ext4_mark_inode_dirty(handle, inode); 3513 /* 3514 * We may need to truncate allocated but not written blocks beyond EOF. 3515 */ 3516 if (iomap->offset + iomap->length > 3517 ALIGN(inode->i_size, 1 << blkbits)) { 3518 ext4_lblk_t written_blk, end_blk; 3519 3520 written_blk = (offset + written) >> blkbits; 3521 end_blk = (offset + length) >> blkbits; 3522 if (written_blk < end_blk && ext4_can_truncate(inode)) 3523 truncate = true; 3524 } 3525 /* 3526 * Remove inode from orphan list if we were extending a inode and 3527 * everything went fine. 3528 */ 3529 if (!truncate && inode->i_nlink && 3530 !list_empty(&EXT4_I(inode)->i_orphan)) 3531 ext4_orphan_del(handle, inode); 3532 ext4_journal_stop(handle); 3533 if (truncate) { 3534 ext4_truncate_failed_write(inode); 3535 orphan_del: 3536 /* 3537 * If truncate failed early the inode might still be on the 3538 * orphan list; we need to make sure the inode is removed from 3539 * the orphan list in that case. 3540 */ 3541 if (inode->i_nlink) 3542 ext4_orphan_del(NULL, inode); 3543 } 3544 return ret; 3545 } 3546 3547 const struct iomap_ops ext4_iomap_ops = { 3548 .iomap_begin = ext4_iomap_begin, 3549 .iomap_end = ext4_iomap_end, 3550 }; 3551 3552 #endif 3553 3554 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 3555 ssize_t size, void *private) 3556 { 3557 ext4_io_end_t *io_end = private; 3558 3559 /* if not async direct IO just return */ 3560 if (!io_end) 3561 return 0; 3562 3563 ext_debug("ext4_end_io_dio(): io_end 0x%p " 3564 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", 3565 io_end, io_end->inode->i_ino, iocb, offset, size); 3566 3567 /* 3568 * Error during AIO DIO. We cannot convert unwritten extents as the 3569 * data was not written. Just clear the unwritten flag and drop io_end. 3570 */ 3571 if (size <= 0) { 3572 ext4_clear_io_unwritten_flag(io_end); 3573 size = 0; 3574 } 3575 io_end->offset = offset; 3576 io_end->size = size; 3577 ext4_put_io_end(io_end); 3578 3579 return 0; 3580 } 3581 3582 /* 3583 * Handling of direct IO writes. 3584 * 3585 * For ext4 extent files, ext4 will do direct-io write even to holes, 3586 * preallocated extents, and those write extend the file, no need to 3587 * fall back to buffered IO. 3588 * 3589 * For holes, we fallocate those blocks, mark them as unwritten 3590 * If those blocks were preallocated, we mark sure they are split, but 3591 * still keep the range to write as unwritten. 3592 * 3593 * The unwritten extents will be converted to written when DIO is completed. 3594 * For async direct IO, since the IO may still pending when return, we 3595 * set up an end_io call back function, which will do the conversion 3596 * when async direct IO completed. 3597 * 3598 * If the O_DIRECT write will extend the file then add this inode to the 3599 * orphan list. So recovery will truncate it back to the original size 3600 * if the machine crashes during the write. 3601 * 3602 */ 3603 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter) 3604 { 3605 struct file *file = iocb->ki_filp; 3606 struct inode *inode = file->f_mapping->host; 3607 struct ext4_inode_info *ei = EXT4_I(inode); 3608 ssize_t ret; 3609 loff_t offset = iocb->ki_pos; 3610 size_t count = iov_iter_count(iter); 3611 int overwrite = 0; 3612 get_block_t *get_block_func = NULL; 3613 int dio_flags = 0; 3614 loff_t final_size = offset + count; 3615 int orphan = 0; 3616 handle_t *handle; 3617 3618 if (final_size > inode->i_size) { 3619 /* Credits for sb + inode write */ 3620 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3621 if (IS_ERR(handle)) { 3622 ret = PTR_ERR(handle); 3623 goto out; 3624 } 3625 ret = ext4_orphan_add(handle, inode); 3626 if (ret) { 3627 ext4_journal_stop(handle); 3628 goto out; 3629 } 3630 orphan = 1; 3631 ei->i_disksize = inode->i_size; 3632 ext4_journal_stop(handle); 3633 } 3634 3635 BUG_ON(iocb->private == NULL); 3636 3637 /* 3638 * Make all waiters for direct IO properly wait also for extent 3639 * conversion. This also disallows race between truncate() and 3640 * overwrite DIO as i_dio_count needs to be incremented under i_mutex. 3641 */ 3642 inode_dio_begin(inode); 3643 3644 /* If we do a overwrite dio, i_mutex locking can be released */ 3645 overwrite = *((int *)iocb->private); 3646 3647 if (overwrite) 3648 inode_unlock(inode); 3649 3650 /* 3651 * For extent mapped files we could direct write to holes and fallocate. 3652 * 3653 * Allocated blocks to fill the hole are marked as unwritten to prevent 3654 * parallel buffered read to expose the stale data before DIO complete 3655 * the data IO. 3656 * 3657 * As to previously fallocated extents, ext4 get_block will just simply 3658 * mark the buffer mapped but still keep the extents unwritten. 3659 * 3660 * For non AIO case, we will convert those unwritten extents to written 3661 * after return back from blockdev_direct_IO. That way we save us from 3662 * allocating io_end structure and also the overhead of offloading 3663 * the extent convertion to a workqueue. 3664 * 3665 * For async DIO, the conversion needs to be deferred when the 3666 * IO is completed. The ext4 end_io callback function will be 3667 * called to take care of the conversion work. Here for async 3668 * case, we allocate an io_end structure to hook to the iocb. 3669 */ 3670 iocb->private = NULL; 3671 if (overwrite) 3672 get_block_func = ext4_dio_get_block_overwrite; 3673 else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) || 3674 round_down(offset, i_blocksize(inode)) >= inode->i_size) { 3675 get_block_func = ext4_dio_get_block; 3676 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES; 3677 } else if (is_sync_kiocb(iocb)) { 3678 get_block_func = ext4_dio_get_block_unwritten_sync; 3679 dio_flags = DIO_LOCKING; 3680 } else { 3681 get_block_func = ext4_dio_get_block_unwritten_async; 3682 dio_flags = DIO_LOCKING; 3683 } 3684 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter, 3685 get_block_func, ext4_end_io_dio, NULL, 3686 dio_flags); 3687 3688 if (ret > 0 && !overwrite && ext4_test_inode_state(inode, 3689 EXT4_STATE_DIO_UNWRITTEN)) { 3690 int err; 3691 /* 3692 * for non AIO case, since the IO is already 3693 * completed, we could do the conversion right here 3694 */ 3695 err = ext4_convert_unwritten_extents(NULL, inode, 3696 offset, ret); 3697 if (err < 0) 3698 ret = err; 3699 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3700 } 3701 3702 inode_dio_end(inode); 3703 /* take i_mutex locking again if we do a ovewrite dio */ 3704 if (overwrite) 3705 inode_lock(inode); 3706 3707 if (ret < 0 && final_size > inode->i_size) 3708 ext4_truncate_failed_write(inode); 3709 3710 /* Handle extending of i_size after direct IO write */ 3711 if (orphan) { 3712 int err; 3713 3714 /* Credits for sb + inode write */ 3715 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3716 if (IS_ERR(handle)) { 3717 /* This is really bad luck. We've written the data 3718 * but cannot extend i_size. Bail out and pretend 3719 * the write failed... */ 3720 ret = PTR_ERR(handle); 3721 if (inode->i_nlink) 3722 ext4_orphan_del(NULL, inode); 3723 3724 goto out; 3725 } 3726 if (inode->i_nlink) 3727 ext4_orphan_del(handle, inode); 3728 if (ret > 0) { 3729 loff_t end = offset + ret; 3730 if (end > inode->i_size) { 3731 ei->i_disksize = end; 3732 i_size_write(inode, end); 3733 /* 3734 * We're going to return a positive `ret' 3735 * here due to non-zero-length I/O, so there's 3736 * no way of reporting error returns from 3737 * ext4_mark_inode_dirty() to userspace. So 3738 * ignore it. 3739 */ 3740 ext4_mark_inode_dirty(handle, inode); 3741 } 3742 } 3743 err = ext4_journal_stop(handle); 3744 if (ret == 0) 3745 ret = err; 3746 } 3747 out: 3748 return ret; 3749 } 3750 3751 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter) 3752 { 3753 struct address_space *mapping = iocb->ki_filp->f_mapping; 3754 struct inode *inode = mapping->host; 3755 size_t count = iov_iter_count(iter); 3756 ssize_t ret; 3757 3758 /* 3759 * Shared inode_lock is enough for us - it protects against concurrent 3760 * writes & truncates and since we take care of writing back page cache, 3761 * we are protected against page writeback as well. 3762 */ 3763 inode_lock_shared(inode); 3764 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos, 3765 iocb->ki_pos + count - 1); 3766 if (ret) 3767 goto out_unlock; 3768 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, 3769 iter, ext4_dio_get_block, NULL, NULL, 0); 3770 out_unlock: 3771 inode_unlock_shared(inode); 3772 return ret; 3773 } 3774 3775 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 3776 { 3777 struct file *file = iocb->ki_filp; 3778 struct inode *inode = file->f_mapping->host; 3779 size_t count = iov_iter_count(iter); 3780 loff_t offset = iocb->ki_pos; 3781 ssize_t ret; 3782 3783 #ifdef CONFIG_EXT4_FS_ENCRYPTION 3784 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode)) 3785 return 0; 3786 #endif 3787 3788 /* 3789 * If we are doing data journalling we don't support O_DIRECT 3790 */ 3791 if (ext4_should_journal_data(inode)) 3792 return 0; 3793 3794 /* Let buffer I/O handle the inline data case. */ 3795 if (ext4_has_inline_data(inode)) 3796 return 0; 3797 3798 /* DAX uses iomap path now */ 3799 if (WARN_ON_ONCE(IS_DAX(inode))) 3800 return 0; 3801 3802 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter)); 3803 if (iov_iter_rw(iter) == READ) 3804 ret = ext4_direct_IO_read(iocb, iter); 3805 else 3806 ret = ext4_direct_IO_write(iocb, iter); 3807 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret); 3808 return ret; 3809 } 3810 3811 /* 3812 * Pages can be marked dirty completely asynchronously from ext4's journalling 3813 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3814 * much here because ->set_page_dirty is called under VFS locks. The page is 3815 * not necessarily locked. 3816 * 3817 * We cannot just dirty the page and leave attached buffers clean, because the 3818 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3819 * or jbddirty because all the journalling code will explode. 3820 * 3821 * So what we do is to mark the page "pending dirty" and next time writepage 3822 * is called, propagate that into the buffers appropriately. 3823 */ 3824 static int ext4_journalled_set_page_dirty(struct page *page) 3825 { 3826 SetPageChecked(page); 3827 return __set_page_dirty_nobuffers(page); 3828 } 3829 3830 static int ext4_set_page_dirty(struct page *page) 3831 { 3832 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page)); 3833 WARN_ON_ONCE(!page_has_buffers(page)); 3834 return __set_page_dirty_buffers(page); 3835 } 3836 3837 static const struct address_space_operations ext4_aops = { 3838 .readpage = ext4_readpage, 3839 .readpages = ext4_readpages, 3840 .writepage = ext4_writepage, 3841 .writepages = ext4_writepages, 3842 .write_begin = ext4_write_begin, 3843 .write_end = ext4_write_end, 3844 .set_page_dirty = ext4_set_page_dirty, 3845 .bmap = ext4_bmap, 3846 .invalidatepage = ext4_invalidatepage, 3847 .releasepage = ext4_releasepage, 3848 .direct_IO = ext4_direct_IO, 3849 .migratepage = buffer_migrate_page, 3850 .is_partially_uptodate = block_is_partially_uptodate, 3851 .error_remove_page = generic_error_remove_page, 3852 }; 3853 3854 static const struct address_space_operations ext4_journalled_aops = { 3855 .readpage = ext4_readpage, 3856 .readpages = ext4_readpages, 3857 .writepage = ext4_writepage, 3858 .writepages = ext4_writepages, 3859 .write_begin = ext4_write_begin, 3860 .write_end = ext4_journalled_write_end, 3861 .set_page_dirty = ext4_journalled_set_page_dirty, 3862 .bmap = ext4_bmap, 3863 .invalidatepage = ext4_journalled_invalidatepage, 3864 .releasepage = ext4_releasepage, 3865 .direct_IO = ext4_direct_IO, 3866 .is_partially_uptodate = block_is_partially_uptodate, 3867 .error_remove_page = generic_error_remove_page, 3868 }; 3869 3870 static const struct address_space_operations ext4_da_aops = { 3871 .readpage = ext4_readpage, 3872 .readpages = ext4_readpages, 3873 .writepage = ext4_writepage, 3874 .writepages = ext4_writepages, 3875 .write_begin = ext4_da_write_begin, 3876 .write_end = ext4_da_write_end, 3877 .set_page_dirty = ext4_set_page_dirty, 3878 .bmap = ext4_bmap, 3879 .invalidatepage = ext4_da_invalidatepage, 3880 .releasepage = ext4_releasepage, 3881 .direct_IO = ext4_direct_IO, 3882 .migratepage = buffer_migrate_page, 3883 .is_partially_uptodate = block_is_partially_uptodate, 3884 .error_remove_page = generic_error_remove_page, 3885 }; 3886 3887 void ext4_set_aops(struct inode *inode) 3888 { 3889 switch (ext4_inode_journal_mode(inode)) { 3890 case EXT4_INODE_ORDERED_DATA_MODE: 3891 case EXT4_INODE_WRITEBACK_DATA_MODE: 3892 break; 3893 case EXT4_INODE_JOURNAL_DATA_MODE: 3894 inode->i_mapping->a_ops = &ext4_journalled_aops; 3895 return; 3896 default: 3897 BUG(); 3898 } 3899 if (test_opt(inode->i_sb, DELALLOC)) 3900 inode->i_mapping->a_ops = &ext4_da_aops; 3901 else 3902 inode->i_mapping->a_ops = &ext4_aops; 3903 } 3904 3905 static int __ext4_block_zero_page_range(handle_t *handle, 3906 struct address_space *mapping, loff_t from, loff_t length) 3907 { 3908 ext4_fsblk_t index = from >> PAGE_SHIFT; 3909 unsigned offset = from & (PAGE_SIZE-1); 3910 unsigned blocksize, pos; 3911 ext4_lblk_t iblock; 3912 struct inode *inode = mapping->host; 3913 struct buffer_head *bh; 3914 struct page *page; 3915 int err = 0; 3916 3917 page = find_or_create_page(mapping, from >> PAGE_SHIFT, 3918 mapping_gfp_constraint(mapping, ~__GFP_FS)); 3919 if (!page) 3920 return -ENOMEM; 3921 3922 blocksize = inode->i_sb->s_blocksize; 3923 3924 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 3925 3926 if (!page_has_buffers(page)) 3927 create_empty_buffers(page, blocksize, 0); 3928 3929 /* Find the buffer that contains "offset" */ 3930 bh = page_buffers(page); 3931 pos = blocksize; 3932 while (offset >= pos) { 3933 bh = bh->b_this_page; 3934 iblock++; 3935 pos += blocksize; 3936 } 3937 if (buffer_freed(bh)) { 3938 BUFFER_TRACE(bh, "freed: skip"); 3939 goto unlock; 3940 } 3941 if (!buffer_mapped(bh)) { 3942 BUFFER_TRACE(bh, "unmapped"); 3943 ext4_get_block(inode, iblock, bh, 0); 3944 /* unmapped? It's a hole - nothing to do */ 3945 if (!buffer_mapped(bh)) { 3946 BUFFER_TRACE(bh, "still unmapped"); 3947 goto unlock; 3948 } 3949 } 3950 3951 /* Ok, it's mapped. Make sure it's up-to-date */ 3952 if (PageUptodate(page)) 3953 set_buffer_uptodate(bh); 3954 3955 if (!buffer_uptodate(bh)) { 3956 err = -EIO; 3957 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 3958 wait_on_buffer(bh); 3959 /* Uhhuh. Read error. Complain and punt. */ 3960 if (!buffer_uptodate(bh)) 3961 goto unlock; 3962 if (S_ISREG(inode->i_mode) && 3963 ext4_encrypted_inode(inode)) { 3964 /* We expect the key to be set. */ 3965 BUG_ON(!fscrypt_has_encryption_key(inode)); 3966 BUG_ON(blocksize != PAGE_SIZE); 3967 WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host, 3968 page, PAGE_SIZE, 0, page->index)); 3969 } 3970 } 3971 if (ext4_should_journal_data(inode)) { 3972 BUFFER_TRACE(bh, "get write access"); 3973 err = ext4_journal_get_write_access(handle, bh); 3974 if (err) 3975 goto unlock; 3976 } 3977 zero_user(page, offset, length); 3978 BUFFER_TRACE(bh, "zeroed end of block"); 3979 3980 if (ext4_should_journal_data(inode)) { 3981 err = ext4_handle_dirty_metadata(handle, inode, bh); 3982 } else { 3983 err = 0; 3984 mark_buffer_dirty(bh); 3985 if (ext4_should_order_data(inode)) 3986 err = ext4_jbd2_inode_add_write(handle, inode); 3987 } 3988 3989 unlock: 3990 unlock_page(page); 3991 put_page(page); 3992 return err; 3993 } 3994 3995 /* 3996 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3997 * starting from file offset 'from'. The range to be zero'd must 3998 * be contained with in one block. If the specified range exceeds 3999 * the end of the block it will be shortened to end of the block 4000 * that cooresponds to 'from' 4001 */ 4002 static int ext4_block_zero_page_range(handle_t *handle, 4003 struct address_space *mapping, loff_t from, loff_t length) 4004 { 4005 struct inode *inode = mapping->host; 4006 unsigned offset = from & (PAGE_SIZE-1); 4007 unsigned blocksize = inode->i_sb->s_blocksize; 4008 unsigned max = blocksize - (offset & (blocksize - 1)); 4009 4010 /* 4011 * correct length if it does not fall between 4012 * 'from' and the end of the block 4013 */ 4014 if (length > max || length < 0) 4015 length = max; 4016 4017 if (IS_DAX(inode)) { 4018 return iomap_zero_range(inode, from, length, NULL, 4019 &ext4_iomap_ops); 4020 } 4021 return __ext4_block_zero_page_range(handle, mapping, from, length); 4022 } 4023 4024 /* 4025 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 4026 * up to the end of the block which corresponds to `from'. 4027 * This required during truncate. We need to physically zero the tail end 4028 * of that block so it doesn't yield old data if the file is later grown. 4029 */ 4030 static int ext4_block_truncate_page(handle_t *handle, 4031 struct address_space *mapping, loff_t from) 4032 { 4033 unsigned offset = from & (PAGE_SIZE-1); 4034 unsigned length; 4035 unsigned blocksize; 4036 struct inode *inode = mapping->host; 4037 4038 /* If we are processing an encrypted inode during orphan list handling */ 4039 if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode)) 4040 return 0; 4041 4042 blocksize = inode->i_sb->s_blocksize; 4043 length = blocksize - (offset & (blocksize - 1)); 4044 4045 return ext4_block_zero_page_range(handle, mapping, from, length); 4046 } 4047 4048 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 4049 loff_t lstart, loff_t length) 4050 { 4051 struct super_block *sb = inode->i_sb; 4052 struct address_space *mapping = inode->i_mapping; 4053 unsigned partial_start, partial_end; 4054 ext4_fsblk_t start, end; 4055 loff_t byte_end = (lstart + length - 1); 4056 int err = 0; 4057 4058 partial_start = lstart & (sb->s_blocksize - 1); 4059 partial_end = byte_end & (sb->s_blocksize - 1); 4060 4061 start = lstart >> sb->s_blocksize_bits; 4062 end = byte_end >> sb->s_blocksize_bits; 4063 4064 /* Handle partial zero within the single block */ 4065 if (start == end && 4066 (partial_start || (partial_end != sb->s_blocksize - 1))) { 4067 err = ext4_block_zero_page_range(handle, mapping, 4068 lstart, length); 4069 return err; 4070 } 4071 /* Handle partial zero out on the start of the range */ 4072 if (partial_start) { 4073 err = ext4_block_zero_page_range(handle, mapping, 4074 lstart, sb->s_blocksize); 4075 if (err) 4076 return err; 4077 } 4078 /* Handle partial zero out on the end of the range */ 4079 if (partial_end != sb->s_blocksize - 1) 4080 err = ext4_block_zero_page_range(handle, mapping, 4081 byte_end - partial_end, 4082 partial_end + 1); 4083 return err; 4084 } 4085 4086 int ext4_can_truncate(struct inode *inode) 4087 { 4088 if (S_ISREG(inode->i_mode)) 4089 return 1; 4090 if (S_ISDIR(inode->i_mode)) 4091 return 1; 4092 if (S_ISLNK(inode->i_mode)) 4093 return !ext4_inode_is_fast_symlink(inode); 4094 return 0; 4095 } 4096 4097 /* 4098 * We have to make sure i_disksize gets properly updated before we truncate 4099 * page cache due to hole punching or zero range. Otherwise i_disksize update 4100 * can get lost as it may have been postponed to submission of writeback but 4101 * that will never happen after we truncate page cache. 4102 */ 4103 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 4104 loff_t len) 4105 { 4106 handle_t *handle; 4107 loff_t size = i_size_read(inode); 4108 4109 WARN_ON(!inode_is_locked(inode)); 4110 if (offset > size || offset + len < size) 4111 return 0; 4112 4113 if (EXT4_I(inode)->i_disksize >= size) 4114 return 0; 4115 4116 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 4117 if (IS_ERR(handle)) 4118 return PTR_ERR(handle); 4119 ext4_update_i_disksize(inode, size); 4120 ext4_mark_inode_dirty(handle, inode); 4121 ext4_journal_stop(handle); 4122 4123 return 0; 4124 } 4125 4126 /* 4127 * ext4_punch_hole: punches a hole in a file by releasing the blocks 4128 * associated with the given offset and length 4129 * 4130 * @inode: File inode 4131 * @offset: The offset where the hole will begin 4132 * @len: The length of the hole 4133 * 4134 * Returns: 0 on success or negative on failure 4135 */ 4136 4137 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 4138 { 4139 struct super_block *sb = inode->i_sb; 4140 ext4_lblk_t first_block, stop_block; 4141 struct address_space *mapping = inode->i_mapping; 4142 loff_t first_block_offset, last_block_offset; 4143 handle_t *handle; 4144 unsigned int credits; 4145 int ret = 0; 4146 4147 if (!S_ISREG(inode->i_mode)) 4148 return -EOPNOTSUPP; 4149 4150 trace_ext4_punch_hole(inode, offset, length, 0); 4151 4152 /* 4153 * Write out all dirty pages to avoid race conditions 4154 * Then release them. 4155 */ 4156 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 4157 ret = filemap_write_and_wait_range(mapping, offset, 4158 offset + length - 1); 4159 if (ret) 4160 return ret; 4161 } 4162 4163 inode_lock(inode); 4164 4165 /* No need to punch hole beyond i_size */ 4166 if (offset >= inode->i_size) 4167 goto out_mutex; 4168 4169 /* 4170 * If the hole extends beyond i_size, set the hole 4171 * to end after the page that contains i_size 4172 */ 4173 if (offset + length > inode->i_size) { 4174 length = inode->i_size + 4175 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) - 4176 offset; 4177 } 4178 4179 if (offset & (sb->s_blocksize - 1) || 4180 (offset + length) & (sb->s_blocksize - 1)) { 4181 /* 4182 * Attach jinode to inode for jbd2 if we do any zeroing of 4183 * partial block 4184 */ 4185 ret = ext4_inode_attach_jinode(inode); 4186 if (ret < 0) 4187 goto out_mutex; 4188 4189 } 4190 4191 /* Wait all existing dio workers, newcomers will block on i_mutex */ 4192 ext4_inode_block_unlocked_dio(inode); 4193 inode_dio_wait(inode); 4194 4195 /* 4196 * Prevent page faults from reinstantiating pages we have released from 4197 * page cache. 4198 */ 4199 down_write(&EXT4_I(inode)->i_mmap_sem); 4200 first_block_offset = round_up(offset, sb->s_blocksize); 4201 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 4202 4203 /* Now release the pages and zero block aligned part of pages*/ 4204 if (last_block_offset > first_block_offset) { 4205 ret = ext4_update_disksize_before_punch(inode, offset, length); 4206 if (ret) 4207 goto out_dio; 4208 truncate_pagecache_range(inode, first_block_offset, 4209 last_block_offset); 4210 } 4211 4212 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4213 credits = ext4_writepage_trans_blocks(inode); 4214 else 4215 credits = ext4_blocks_for_truncate(inode); 4216 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4217 if (IS_ERR(handle)) { 4218 ret = PTR_ERR(handle); 4219 ext4_std_error(sb, ret); 4220 goto out_dio; 4221 } 4222 4223 ret = ext4_zero_partial_blocks(handle, inode, offset, 4224 length); 4225 if (ret) 4226 goto out_stop; 4227 4228 first_block = (offset + sb->s_blocksize - 1) >> 4229 EXT4_BLOCK_SIZE_BITS(sb); 4230 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 4231 4232 /* If there are no blocks to remove, return now */ 4233 if (first_block >= stop_block) 4234 goto out_stop; 4235 4236 down_write(&EXT4_I(inode)->i_data_sem); 4237 ext4_discard_preallocations(inode); 4238 4239 ret = ext4_es_remove_extent(inode, first_block, 4240 stop_block - first_block); 4241 if (ret) { 4242 up_write(&EXT4_I(inode)->i_data_sem); 4243 goto out_stop; 4244 } 4245 4246 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4247 ret = ext4_ext_remove_space(inode, first_block, 4248 stop_block - 1); 4249 else 4250 ret = ext4_ind_remove_space(handle, inode, first_block, 4251 stop_block); 4252 4253 up_write(&EXT4_I(inode)->i_data_sem); 4254 if (IS_SYNC(inode)) 4255 ext4_handle_sync(handle); 4256 4257 inode->i_mtime = inode->i_ctime = current_time(inode); 4258 ext4_mark_inode_dirty(handle, inode); 4259 if (ret >= 0) 4260 ext4_update_inode_fsync_trans(handle, inode, 1); 4261 out_stop: 4262 ext4_journal_stop(handle); 4263 out_dio: 4264 up_write(&EXT4_I(inode)->i_mmap_sem); 4265 ext4_inode_resume_unlocked_dio(inode); 4266 out_mutex: 4267 inode_unlock(inode); 4268 return ret; 4269 } 4270 4271 int ext4_inode_attach_jinode(struct inode *inode) 4272 { 4273 struct ext4_inode_info *ei = EXT4_I(inode); 4274 struct jbd2_inode *jinode; 4275 4276 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4277 return 0; 4278 4279 jinode = jbd2_alloc_inode(GFP_KERNEL); 4280 spin_lock(&inode->i_lock); 4281 if (!ei->jinode) { 4282 if (!jinode) { 4283 spin_unlock(&inode->i_lock); 4284 return -ENOMEM; 4285 } 4286 ei->jinode = jinode; 4287 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4288 jinode = NULL; 4289 } 4290 spin_unlock(&inode->i_lock); 4291 if (unlikely(jinode != NULL)) 4292 jbd2_free_inode(jinode); 4293 return 0; 4294 } 4295 4296 /* 4297 * ext4_truncate() 4298 * 4299 * We block out ext4_get_block() block instantiations across the entire 4300 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4301 * simultaneously on behalf of the same inode. 4302 * 4303 * As we work through the truncate and commit bits of it to the journal there 4304 * is one core, guiding principle: the file's tree must always be consistent on 4305 * disk. We must be able to restart the truncate after a crash. 4306 * 4307 * The file's tree may be transiently inconsistent in memory (although it 4308 * probably isn't), but whenever we close off and commit a journal transaction, 4309 * the contents of (the filesystem + the journal) must be consistent and 4310 * restartable. It's pretty simple, really: bottom up, right to left (although 4311 * left-to-right works OK too). 4312 * 4313 * Note that at recovery time, journal replay occurs *before* the restart of 4314 * truncate against the orphan inode list. 4315 * 4316 * The committed inode has the new, desired i_size (which is the same as 4317 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4318 * that this inode's truncate did not complete and it will again call 4319 * ext4_truncate() to have another go. So there will be instantiated blocks 4320 * to the right of the truncation point in a crashed ext4 filesystem. But 4321 * that's fine - as long as they are linked from the inode, the post-crash 4322 * ext4_truncate() run will find them and release them. 4323 */ 4324 int ext4_truncate(struct inode *inode) 4325 { 4326 struct ext4_inode_info *ei = EXT4_I(inode); 4327 unsigned int credits; 4328 int err = 0; 4329 handle_t *handle; 4330 struct address_space *mapping = inode->i_mapping; 4331 4332 /* 4333 * There is a possibility that we're either freeing the inode 4334 * or it's a completely new inode. In those cases we might not 4335 * have i_mutex locked because it's not necessary. 4336 */ 4337 if (!(inode->i_state & (I_NEW|I_FREEING))) 4338 WARN_ON(!inode_is_locked(inode)); 4339 trace_ext4_truncate_enter(inode); 4340 4341 if (!ext4_can_truncate(inode)) 4342 return 0; 4343 4344 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 4345 4346 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4347 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4348 4349 if (ext4_has_inline_data(inode)) { 4350 int has_inline = 1; 4351 4352 err = ext4_inline_data_truncate(inode, &has_inline); 4353 if (err) 4354 return err; 4355 if (has_inline) 4356 return 0; 4357 } 4358 4359 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4360 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4361 if (ext4_inode_attach_jinode(inode) < 0) 4362 return 0; 4363 } 4364 4365 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4366 credits = ext4_writepage_trans_blocks(inode); 4367 else 4368 credits = ext4_blocks_for_truncate(inode); 4369 4370 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4371 if (IS_ERR(handle)) 4372 return PTR_ERR(handle); 4373 4374 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4375 ext4_block_truncate_page(handle, mapping, inode->i_size); 4376 4377 /* 4378 * We add the inode to the orphan list, so that if this 4379 * truncate spans multiple transactions, and we crash, we will 4380 * resume the truncate when the filesystem recovers. It also 4381 * marks the inode dirty, to catch the new size. 4382 * 4383 * Implication: the file must always be in a sane, consistent 4384 * truncatable state while each transaction commits. 4385 */ 4386 err = ext4_orphan_add(handle, inode); 4387 if (err) 4388 goto out_stop; 4389 4390 down_write(&EXT4_I(inode)->i_data_sem); 4391 4392 ext4_discard_preallocations(inode); 4393 4394 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4395 err = ext4_ext_truncate(handle, inode); 4396 else 4397 ext4_ind_truncate(handle, inode); 4398 4399 up_write(&ei->i_data_sem); 4400 if (err) 4401 goto out_stop; 4402 4403 if (IS_SYNC(inode)) 4404 ext4_handle_sync(handle); 4405 4406 out_stop: 4407 /* 4408 * If this was a simple ftruncate() and the file will remain alive, 4409 * then we need to clear up the orphan record which we created above. 4410 * However, if this was a real unlink then we were called by 4411 * ext4_evict_inode(), and we allow that function to clean up the 4412 * orphan info for us. 4413 */ 4414 if (inode->i_nlink) 4415 ext4_orphan_del(handle, inode); 4416 4417 inode->i_mtime = inode->i_ctime = current_time(inode); 4418 ext4_mark_inode_dirty(handle, inode); 4419 ext4_journal_stop(handle); 4420 4421 trace_ext4_truncate_exit(inode); 4422 return err; 4423 } 4424 4425 /* 4426 * ext4_get_inode_loc returns with an extra refcount against the inode's 4427 * underlying buffer_head on success. If 'in_mem' is true, we have all 4428 * data in memory that is needed to recreate the on-disk version of this 4429 * inode. 4430 */ 4431 static int __ext4_get_inode_loc(struct inode *inode, 4432 struct ext4_iloc *iloc, int in_mem) 4433 { 4434 struct ext4_group_desc *gdp; 4435 struct buffer_head *bh; 4436 struct super_block *sb = inode->i_sb; 4437 ext4_fsblk_t block; 4438 int inodes_per_block, inode_offset; 4439 4440 iloc->bh = NULL; 4441 if (!ext4_valid_inum(sb, inode->i_ino)) 4442 return -EFSCORRUPTED; 4443 4444 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 4445 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4446 if (!gdp) 4447 return -EIO; 4448 4449 /* 4450 * Figure out the offset within the block group inode table 4451 */ 4452 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4453 inode_offset = ((inode->i_ino - 1) % 4454 EXT4_INODES_PER_GROUP(sb)); 4455 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 4456 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4457 4458 bh = sb_getblk(sb, block); 4459 if (unlikely(!bh)) 4460 return -ENOMEM; 4461 if (!buffer_uptodate(bh)) { 4462 lock_buffer(bh); 4463 4464 /* 4465 * If the buffer has the write error flag, we have failed 4466 * to write out another inode in the same block. In this 4467 * case, we don't have to read the block because we may 4468 * read the old inode data successfully. 4469 */ 4470 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 4471 set_buffer_uptodate(bh); 4472 4473 if (buffer_uptodate(bh)) { 4474 /* someone brought it uptodate while we waited */ 4475 unlock_buffer(bh); 4476 goto has_buffer; 4477 } 4478 4479 /* 4480 * If we have all information of the inode in memory and this 4481 * is the only valid inode in the block, we need not read the 4482 * block. 4483 */ 4484 if (in_mem) { 4485 struct buffer_head *bitmap_bh; 4486 int i, start; 4487 4488 start = inode_offset & ~(inodes_per_block - 1); 4489 4490 /* Is the inode bitmap in cache? */ 4491 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4492 if (unlikely(!bitmap_bh)) 4493 goto make_io; 4494 4495 /* 4496 * If the inode bitmap isn't in cache then the 4497 * optimisation may end up performing two reads instead 4498 * of one, so skip it. 4499 */ 4500 if (!buffer_uptodate(bitmap_bh)) { 4501 brelse(bitmap_bh); 4502 goto make_io; 4503 } 4504 for (i = start; i < start + inodes_per_block; i++) { 4505 if (i == inode_offset) 4506 continue; 4507 if (ext4_test_bit(i, bitmap_bh->b_data)) 4508 break; 4509 } 4510 brelse(bitmap_bh); 4511 if (i == start + inodes_per_block) { 4512 /* all other inodes are free, so skip I/O */ 4513 memset(bh->b_data, 0, bh->b_size); 4514 set_buffer_uptodate(bh); 4515 unlock_buffer(bh); 4516 goto has_buffer; 4517 } 4518 } 4519 4520 make_io: 4521 /* 4522 * If we need to do any I/O, try to pre-readahead extra 4523 * blocks from the inode table. 4524 */ 4525 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4526 ext4_fsblk_t b, end, table; 4527 unsigned num; 4528 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4529 4530 table = ext4_inode_table(sb, gdp); 4531 /* s_inode_readahead_blks is always a power of 2 */ 4532 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4533 if (table > b) 4534 b = table; 4535 end = b + ra_blks; 4536 num = EXT4_INODES_PER_GROUP(sb); 4537 if (ext4_has_group_desc_csum(sb)) 4538 num -= ext4_itable_unused_count(sb, gdp); 4539 table += num / inodes_per_block; 4540 if (end > table) 4541 end = table; 4542 while (b <= end) 4543 sb_breadahead(sb, b++); 4544 } 4545 4546 /* 4547 * There are other valid inodes in the buffer, this inode 4548 * has in-inode xattrs, or we don't have this inode in memory. 4549 * Read the block from disk. 4550 */ 4551 trace_ext4_load_inode(inode); 4552 get_bh(bh); 4553 bh->b_end_io = end_buffer_read_sync; 4554 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh); 4555 wait_on_buffer(bh); 4556 if (!buffer_uptodate(bh)) { 4557 EXT4_ERROR_INODE_BLOCK(inode, block, 4558 "unable to read itable block"); 4559 brelse(bh); 4560 return -EIO; 4561 } 4562 } 4563 has_buffer: 4564 iloc->bh = bh; 4565 return 0; 4566 } 4567 4568 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4569 { 4570 /* We have all inode data except xattrs in memory here. */ 4571 return __ext4_get_inode_loc(inode, iloc, 4572 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 4573 } 4574 4575 void ext4_set_inode_flags(struct inode *inode) 4576 { 4577 unsigned int flags = EXT4_I(inode)->i_flags; 4578 unsigned int new_fl = 0; 4579 4580 if (flags & EXT4_SYNC_FL) 4581 new_fl |= S_SYNC; 4582 if (flags & EXT4_APPEND_FL) 4583 new_fl |= S_APPEND; 4584 if (flags & EXT4_IMMUTABLE_FL) 4585 new_fl |= S_IMMUTABLE; 4586 if (flags & EXT4_NOATIME_FL) 4587 new_fl |= S_NOATIME; 4588 if (flags & EXT4_DIRSYNC_FL) 4589 new_fl |= S_DIRSYNC; 4590 if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode) && 4591 !ext4_should_journal_data(inode) && !ext4_has_inline_data(inode) && 4592 !ext4_encrypted_inode(inode)) 4593 new_fl |= S_DAX; 4594 inode_set_flags(inode, new_fl, 4595 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX); 4596 } 4597 4598 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4599 struct ext4_inode_info *ei) 4600 { 4601 blkcnt_t i_blocks ; 4602 struct inode *inode = &(ei->vfs_inode); 4603 struct super_block *sb = inode->i_sb; 4604 4605 if (ext4_has_feature_huge_file(sb)) { 4606 /* we are using combined 48 bit field */ 4607 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4608 le32_to_cpu(raw_inode->i_blocks_lo); 4609 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4610 /* i_blocks represent file system block size */ 4611 return i_blocks << (inode->i_blkbits - 9); 4612 } else { 4613 return i_blocks; 4614 } 4615 } else { 4616 return le32_to_cpu(raw_inode->i_blocks_lo); 4617 } 4618 } 4619 4620 static inline void ext4_iget_extra_inode(struct inode *inode, 4621 struct ext4_inode *raw_inode, 4622 struct ext4_inode_info *ei) 4623 { 4624 __le32 *magic = (void *)raw_inode + 4625 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4626 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <= 4627 EXT4_INODE_SIZE(inode->i_sb) && 4628 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4629 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4630 ext4_find_inline_data_nolock(inode); 4631 } else 4632 EXT4_I(inode)->i_inline_off = 0; 4633 } 4634 4635 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4636 { 4637 if (!ext4_has_feature_project(inode->i_sb)) 4638 return -EOPNOTSUPP; 4639 *projid = EXT4_I(inode)->i_projid; 4640 return 0; 4641 } 4642 4643 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 4644 { 4645 struct ext4_iloc iloc; 4646 struct ext4_inode *raw_inode; 4647 struct ext4_inode_info *ei; 4648 struct inode *inode; 4649 journal_t *journal = EXT4_SB(sb)->s_journal; 4650 long ret; 4651 loff_t size; 4652 int block; 4653 uid_t i_uid; 4654 gid_t i_gid; 4655 projid_t i_projid; 4656 4657 inode = iget_locked(sb, ino); 4658 if (!inode) 4659 return ERR_PTR(-ENOMEM); 4660 if (!(inode->i_state & I_NEW)) 4661 return inode; 4662 4663 ei = EXT4_I(inode); 4664 iloc.bh = NULL; 4665 4666 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4667 if (ret < 0) 4668 goto bad_inode; 4669 raw_inode = ext4_raw_inode(&iloc); 4670 4671 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4672 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4673 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4674 EXT4_INODE_SIZE(inode->i_sb) || 4675 (ei->i_extra_isize & 3)) { 4676 EXT4_ERROR_INODE(inode, 4677 "bad extra_isize %u (inode size %u)", 4678 ei->i_extra_isize, 4679 EXT4_INODE_SIZE(inode->i_sb)); 4680 ret = -EFSCORRUPTED; 4681 goto bad_inode; 4682 } 4683 } else 4684 ei->i_extra_isize = 0; 4685 4686 /* Precompute checksum seed for inode metadata */ 4687 if (ext4_has_metadata_csum(sb)) { 4688 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4689 __u32 csum; 4690 __le32 inum = cpu_to_le32(inode->i_ino); 4691 __le32 gen = raw_inode->i_generation; 4692 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4693 sizeof(inum)); 4694 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4695 sizeof(gen)); 4696 } 4697 4698 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 4699 EXT4_ERROR_INODE(inode, "checksum invalid"); 4700 ret = -EFSBADCRC; 4701 goto bad_inode; 4702 } 4703 4704 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4705 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4706 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4707 if (ext4_has_feature_project(sb) && 4708 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4709 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4710 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4711 else 4712 i_projid = EXT4_DEF_PROJID; 4713 4714 if (!(test_opt(inode->i_sb, NO_UID32))) { 4715 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4716 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4717 } 4718 i_uid_write(inode, i_uid); 4719 i_gid_write(inode, i_gid); 4720 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4721 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4722 4723 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4724 ei->i_inline_off = 0; 4725 ei->i_dir_start_lookup = 0; 4726 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4727 /* We now have enough fields to check if the inode was active or not. 4728 * This is needed because nfsd might try to access dead inodes 4729 * the test is that same one that e2fsck uses 4730 * NeilBrown 1999oct15 4731 */ 4732 if (inode->i_nlink == 0) { 4733 if ((inode->i_mode == 0 || 4734 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4735 ino != EXT4_BOOT_LOADER_INO) { 4736 /* this inode is deleted */ 4737 ret = -ESTALE; 4738 goto bad_inode; 4739 } 4740 /* The only unlinked inodes we let through here have 4741 * valid i_mode and are being read by the orphan 4742 * recovery code: that's fine, we're about to complete 4743 * the process of deleting those. 4744 * OR it is the EXT4_BOOT_LOADER_INO which is 4745 * not initialized on a new filesystem. */ 4746 } 4747 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4748 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4749 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4750 if (ext4_has_feature_64bit(sb)) 4751 ei->i_file_acl |= 4752 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4753 inode->i_size = ext4_isize(sb, raw_inode); 4754 if ((size = i_size_read(inode)) < 0) { 4755 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size); 4756 ret = -EFSCORRUPTED; 4757 goto bad_inode; 4758 } 4759 ei->i_disksize = inode->i_size; 4760 #ifdef CONFIG_QUOTA 4761 ei->i_reserved_quota = 0; 4762 #endif 4763 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4764 ei->i_block_group = iloc.block_group; 4765 ei->i_last_alloc_group = ~0; 4766 /* 4767 * NOTE! The in-memory inode i_data array is in little-endian order 4768 * even on big-endian machines: we do NOT byteswap the block numbers! 4769 */ 4770 for (block = 0; block < EXT4_N_BLOCKS; block++) 4771 ei->i_data[block] = raw_inode->i_block[block]; 4772 INIT_LIST_HEAD(&ei->i_orphan); 4773 4774 /* 4775 * Set transaction id's of transactions that have to be committed 4776 * to finish f[data]sync. We set them to currently running transaction 4777 * as we cannot be sure that the inode or some of its metadata isn't 4778 * part of the transaction - the inode could have been reclaimed and 4779 * now it is reread from disk. 4780 */ 4781 if (journal) { 4782 transaction_t *transaction; 4783 tid_t tid; 4784 4785 read_lock(&journal->j_state_lock); 4786 if (journal->j_running_transaction) 4787 transaction = journal->j_running_transaction; 4788 else 4789 transaction = journal->j_committing_transaction; 4790 if (transaction) 4791 tid = transaction->t_tid; 4792 else 4793 tid = journal->j_commit_sequence; 4794 read_unlock(&journal->j_state_lock); 4795 ei->i_sync_tid = tid; 4796 ei->i_datasync_tid = tid; 4797 } 4798 4799 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4800 if (ei->i_extra_isize == 0) { 4801 /* The extra space is currently unused. Use it. */ 4802 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 4803 ei->i_extra_isize = sizeof(struct ext4_inode) - 4804 EXT4_GOOD_OLD_INODE_SIZE; 4805 } else { 4806 ext4_iget_extra_inode(inode, raw_inode, ei); 4807 } 4808 } 4809 4810 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4811 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4812 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4813 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4814 4815 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4816 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4817 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4818 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4819 inode->i_version |= 4820 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4821 } 4822 } 4823 4824 ret = 0; 4825 if (ei->i_file_acl && 4826 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 4827 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 4828 ei->i_file_acl); 4829 ret = -EFSCORRUPTED; 4830 goto bad_inode; 4831 } else if (!ext4_has_inline_data(inode)) { 4832 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 4833 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4834 (S_ISLNK(inode->i_mode) && 4835 !ext4_inode_is_fast_symlink(inode)))) 4836 /* Validate extent which is part of inode */ 4837 ret = ext4_ext_check_inode(inode); 4838 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4839 (S_ISLNK(inode->i_mode) && 4840 !ext4_inode_is_fast_symlink(inode))) { 4841 /* Validate block references which are part of inode */ 4842 ret = ext4_ind_check_inode(inode); 4843 } 4844 } 4845 if (ret) 4846 goto bad_inode; 4847 4848 if (S_ISREG(inode->i_mode)) { 4849 inode->i_op = &ext4_file_inode_operations; 4850 inode->i_fop = &ext4_file_operations; 4851 ext4_set_aops(inode); 4852 } else if (S_ISDIR(inode->i_mode)) { 4853 inode->i_op = &ext4_dir_inode_operations; 4854 inode->i_fop = &ext4_dir_operations; 4855 } else if (S_ISLNK(inode->i_mode)) { 4856 if (ext4_encrypted_inode(inode)) { 4857 inode->i_op = &ext4_encrypted_symlink_inode_operations; 4858 ext4_set_aops(inode); 4859 } else if (ext4_inode_is_fast_symlink(inode)) { 4860 inode->i_link = (char *)ei->i_data; 4861 inode->i_op = &ext4_fast_symlink_inode_operations; 4862 nd_terminate_link(ei->i_data, inode->i_size, 4863 sizeof(ei->i_data) - 1); 4864 } else { 4865 inode->i_op = &ext4_symlink_inode_operations; 4866 ext4_set_aops(inode); 4867 } 4868 inode_nohighmem(inode); 4869 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4870 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4871 inode->i_op = &ext4_special_inode_operations; 4872 if (raw_inode->i_block[0]) 4873 init_special_inode(inode, inode->i_mode, 4874 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4875 else 4876 init_special_inode(inode, inode->i_mode, 4877 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4878 } else if (ino == EXT4_BOOT_LOADER_INO) { 4879 make_bad_inode(inode); 4880 } else { 4881 ret = -EFSCORRUPTED; 4882 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 4883 goto bad_inode; 4884 } 4885 brelse(iloc.bh); 4886 ext4_set_inode_flags(inode); 4887 4888 unlock_new_inode(inode); 4889 return inode; 4890 4891 bad_inode: 4892 brelse(iloc.bh); 4893 iget_failed(inode); 4894 return ERR_PTR(ret); 4895 } 4896 4897 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino) 4898 { 4899 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 4900 return ERR_PTR(-EFSCORRUPTED); 4901 return ext4_iget(sb, ino); 4902 } 4903 4904 static int ext4_inode_blocks_set(handle_t *handle, 4905 struct ext4_inode *raw_inode, 4906 struct ext4_inode_info *ei) 4907 { 4908 struct inode *inode = &(ei->vfs_inode); 4909 u64 i_blocks = inode->i_blocks; 4910 struct super_block *sb = inode->i_sb; 4911 4912 if (i_blocks <= ~0U) { 4913 /* 4914 * i_blocks can be represented in a 32 bit variable 4915 * as multiple of 512 bytes 4916 */ 4917 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4918 raw_inode->i_blocks_high = 0; 4919 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4920 return 0; 4921 } 4922 if (!ext4_has_feature_huge_file(sb)) 4923 return -EFBIG; 4924 4925 if (i_blocks <= 0xffffffffffffULL) { 4926 /* 4927 * i_blocks can be represented in a 48 bit variable 4928 * as multiple of 512 bytes 4929 */ 4930 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4931 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4932 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4933 } else { 4934 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4935 /* i_block is stored in file system block size */ 4936 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4937 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4938 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4939 } 4940 return 0; 4941 } 4942 4943 struct other_inode { 4944 unsigned long orig_ino; 4945 struct ext4_inode *raw_inode; 4946 }; 4947 4948 static int other_inode_match(struct inode * inode, unsigned long ino, 4949 void *data) 4950 { 4951 struct other_inode *oi = (struct other_inode *) data; 4952 4953 if ((inode->i_ino != ino) || 4954 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4955 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) || 4956 ((inode->i_state & I_DIRTY_TIME) == 0)) 4957 return 0; 4958 spin_lock(&inode->i_lock); 4959 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4960 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) && 4961 (inode->i_state & I_DIRTY_TIME)) { 4962 struct ext4_inode_info *ei = EXT4_I(inode); 4963 4964 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED); 4965 spin_unlock(&inode->i_lock); 4966 4967 spin_lock(&ei->i_raw_lock); 4968 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode); 4969 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode); 4970 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode); 4971 ext4_inode_csum_set(inode, oi->raw_inode, ei); 4972 spin_unlock(&ei->i_raw_lock); 4973 trace_ext4_other_inode_update_time(inode, oi->orig_ino); 4974 return -1; 4975 } 4976 spin_unlock(&inode->i_lock); 4977 return -1; 4978 } 4979 4980 /* 4981 * Opportunistically update the other time fields for other inodes in 4982 * the same inode table block. 4983 */ 4984 static void ext4_update_other_inodes_time(struct super_block *sb, 4985 unsigned long orig_ino, char *buf) 4986 { 4987 struct other_inode oi; 4988 unsigned long ino; 4989 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4990 int inode_size = EXT4_INODE_SIZE(sb); 4991 4992 oi.orig_ino = orig_ino; 4993 /* 4994 * Calculate the first inode in the inode table block. Inode 4995 * numbers are one-based. That is, the first inode in a block 4996 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 4997 */ 4998 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 4999 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 5000 if (ino == orig_ino) 5001 continue; 5002 oi.raw_inode = (struct ext4_inode *) buf; 5003 (void) find_inode_nowait(sb, ino, other_inode_match, &oi); 5004 } 5005 } 5006 5007 /* 5008 * Post the struct inode info into an on-disk inode location in the 5009 * buffer-cache. This gobbles the caller's reference to the 5010 * buffer_head in the inode location struct. 5011 * 5012 * The caller must have write access to iloc->bh. 5013 */ 5014 static int ext4_do_update_inode(handle_t *handle, 5015 struct inode *inode, 5016 struct ext4_iloc *iloc) 5017 { 5018 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5019 struct ext4_inode_info *ei = EXT4_I(inode); 5020 struct buffer_head *bh = iloc->bh; 5021 struct super_block *sb = inode->i_sb; 5022 int err = 0, rc, block; 5023 int need_datasync = 0, set_large_file = 0; 5024 uid_t i_uid; 5025 gid_t i_gid; 5026 projid_t i_projid; 5027 5028 spin_lock(&ei->i_raw_lock); 5029 5030 /* For fields not tracked in the in-memory inode, 5031 * initialise them to zero for new inodes. */ 5032 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5033 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5034 5035 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 5036 i_uid = i_uid_read(inode); 5037 i_gid = i_gid_read(inode); 5038 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 5039 if (!(test_opt(inode->i_sb, NO_UID32))) { 5040 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 5041 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 5042 /* 5043 * Fix up interoperability with old kernels. Otherwise, old inodes get 5044 * re-used with the upper 16 bits of the uid/gid intact 5045 */ 5046 if (ei->i_dtime && list_empty(&ei->i_orphan)) { 5047 raw_inode->i_uid_high = 0; 5048 raw_inode->i_gid_high = 0; 5049 } else { 5050 raw_inode->i_uid_high = 5051 cpu_to_le16(high_16_bits(i_uid)); 5052 raw_inode->i_gid_high = 5053 cpu_to_le16(high_16_bits(i_gid)); 5054 } 5055 } else { 5056 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 5057 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 5058 raw_inode->i_uid_high = 0; 5059 raw_inode->i_gid_high = 0; 5060 } 5061 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 5062 5063 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 5064 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 5065 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 5066 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 5067 5068 err = ext4_inode_blocks_set(handle, raw_inode, ei); 5069 if (err) { 5070 spin_unlock(&ei->i_raw_lock); 5071 goto out_brelse; 5072 } 5073 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 5074 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 5075 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 5076 raw_inode->i_file_acl_high = 5077 cpu_to_le16(ei->i_file_acl >> 32); 5078 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 5079 if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) { 5080 ext4_isize_set(raw_inode, ei->i_disksize); 5081 need_datasync = 1; 5082 } 5083 if (ei->i_disksize > 0x7fffffffULL) { 5084 if (!ext4_has_feature_large_file(sb) || 5085 EXT4_SB(sb)->s_es->s_rev_level == 5086 cpu_to_le32(EXT4_GOOD_OLD_REV)) 5087 set_large_file = 1; 5088 } 5089 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 5090 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 5091 if (old_valid_dev(inode->i_rdev)) { 5092 raw_inode->i_block[0] = 5093 cpu_to_le32(old_encode_dev(inode->i_rdev)); 5094 raw_inode->i_block[1] = 0; 5095 } else { 5096 raw_inode->i_block[0] = 0; 5097 raw_inode->i_block[1] = 5098 cpu_to_le32(new_encode_dev(inode->i_rdev)); 5099 raw_inode->i_block[2] = 0; 5100 } 5101 } else if (!ext4_has_inline_data(inode)) { 5102 for (block = 0; block < EXT4_N_BLOCKS; block++) 5103 raw_inode->i_block[block] = ei->i_data[block]; 5104 } 5105 5106 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 5107 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 5108 if (ei->i_extra_isize) { 5109 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 5110 raw_inode->i_version_hi = 5111 cpu_to_le32(inode->i_version >> 32); 5112 raw_inode->i_extra_isize = 5113 cpu_to_le16(ei->i_extra_isize); 5114 } 5115 } 5116 5117 BUG_ON(!ext4_has_feature_project(inode->i_sb) && 5118 i_projid != EXT4_DEF_PROJID); 5119 5120 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 5121 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 5122 raw_inode->i_projid = cpu_to_le32(i_projid); 5123 5124 ext4_inode_csum_set(inode, raw_inode, ei); 5125 spin_unlock(&ei->i_raw_lock); 5126 if (inode->i_sb->s_flags & MS_LAZYTIME) 5127 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 5128 bh->b_data); 5129 5130 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5131 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 5132 if (!err) 5133 err = rc; 5134 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5135 if (set_large_file) { 5136 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 5137 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh); 5138 if (err) 5139 goto out_brelse; 5140 ext4_update_dynamic_rev(sb); 5141 ext4_set_feature_large_file(sb); 5142 ext4_handle_sync(handle); 5143 err = ext4_handle_dirty_super(handle, sb); 5144 } 5145 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5146 out_brelse: 5147 brelse(bh); 5148 ext4_std_error(inode->i_sb, err); 5149 return err; 5150 } 5151 5152 /* 5153 * ext4_write_inode() 5154 * 5155 * We are called from a few places: 5156 * 5157 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5158 * Here, there will be no transaction running. We wait for any running 5159 * transaction to commit. 5160 * 5161 * - Within flush work (sys_sync(), kupdate and such). 5162 * We wait on commit, if told to. 5163 * 5164 * - Within iput_final() -> write_inode_now() 5165 * We wait on commit, if told to. 5166 * 5167 * In all cases it is actually safe for us to return without doing anything, 5168 * because the inode has been copied into a raw inode buffer in 5169 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5170 * writeback. 5171 * 5172 * Note that we are absolutely dependent upon all inode dirtiers doing the 5173 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5174 * which we are interested. 5175 * 5176 * It would be a bug for them to not do this. The code: 5177 * 5178 * mark_inode_dirty(inode) 5179 * stuff(); 5180 * inode->i_size = expr; 5181 * 5182 * is in error because write_inode() could occur while `stuff()' is running, 5183 * and the new i_size will be lost. Plus the inode will no longer be on the 5184 * superblock's dirty inode list. 5185 */ 5186 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5187 { 5188 int err; 5189 5190 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC)) 5191 return 0; 5192 5193 if (EXT4_SB(inode->i_sb)->s_journal) { 5194 if (ext4_journal_current_handle()) { 5195 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 5196 dump_stack(); 5197 return -EIO; 5198 } 5199 5200 /* 5201 * No need to force transaction in WB_SYNC_NONE mode. Also 5202 * ext4_sync_fs() will force the commit after everything is 5203 * written. 5204 */ 5205 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5206 return 0; 5207 5208 err = ext4_force_commit(inode->i_sb); 5209 } else { 5210 struct ext4_iloc iloc; 5211 5212 err = __ext4_get_inode_loc(inode, &iloc, 0); 5213 if (err) 5214 return err; 5215 /* 5216 * sync(2) will flush the whole buffer cache. No need to do 5217 * it here separately for each inode. 5218 */ 5219 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5220 sync_dirty_buffer(iloc.bh); 5221 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5222 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 5223 "IO error syncing inode"); 5224 err = -EIO; 5225 } 5226 brelse(iloc.bh); 5227 } 5228 return err; 5229 } 5230 5231 /* 5232 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 5233 * buffers that are attached to a page stradding i_size and are undergoing 5234 * commit. In that case we have to wait for commit to finish and try again. 5235 */ 5236 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5237 { 5238 struct page *page; 5239 unsigned offset; 5240 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5241 tid_t commit_tid = 0; 5242 int ret; 5243 5244 offset = inode->i_size & (PAGE_SIZE - 1); 5245 /* 5246 * All buffers in the last page remain valid? Then there's nothing to 5247 * do. We do the check mainly to optimize the common PAGE_SIZE == 5248 * blocksize case 5249 */ 5250 if (offset > PAGE_SIZE - i_blocksize(inode)) 5251 return; 5252 while (1) { 5253 page = find_lock_page(inode->i_mapping, 5254 inode->i_size >> PAGE_SHIFT); 5255 if (!page) 5256 return; 5257 ret = __ext4_journalled_invalidatepage(page, offset, 5258 PAGE_SIZE - offset); 5259 unlock_page(page); 5260 put_page(page); 5261 if (ret != -EBUSY) 5262 return; 5263 commit_tid = 0; 5264 read_lock(&journal->j_state_lock); 5265 if (journal->j_committing_transaction) 5266 commit_tid = journal->j_committing_transaction->t_tid; 5267 read_unlock(&journal->j_state_lock); 5268 if (commit_tid) 5269 jbd2_log_wait_commit(journal, commit_tid); 5270 } 5271 } 5272 5273 /* 5274 * ext4_setattr() 5275 * 5276 * Called from notify_change. 5277 * 5278 * We want to trap VFS attempts to truncate the file as soon as 5279 * possible. In particular, we want to make sure that when the VFS 5280 * shrinks i_size, we put the inode on the orphan list and modify 5281 * i_disksize immediately, so that during the subsequent flushing of 5282 * dirty pages and freeing of disk blocks, we can guarantee that any 5283 * commit will leave the blocks being flushed in an unused state on 5284 * disk. (On recovery, the inode will get truncated and the blocks will 5285 * be freed, so we have a strong guarantee that no future commit will 5286 * leave these blocks visible to the user.) 5287 * 5288 * Another thing we have to assure is that if we are in ordered mode 5289 * and inode is still attached to the committing transaction, we must 5290 * we start writeout of all the dirty pages which are being truncated. 5291 * This way we are sure that all the data written in the previous 5292 * transaction are already on disk (truncate waits for pages under 5293 * writeback). 5294 * 5295 * Called with inode->i_mutex down. 5296 */ 5297 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 5298 { 5299 struct inode *inode = d_inode(dentry); 5300 int error, rc = 0; 5301 int orphan = 0; 5302 const unsigned int ia_valid = attr->ia_valid; 5303 5304 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5305 return -EIO; 5306 5307 error = setattr_prepare(dentry, attr); 5308 if (error) 5309 return error; 5310 5311 if (is_quota_modification(inode, attr)) { 5312 error = dquot_initialize(inode); 5313 if (error) 5314 return error; 5315 } 5316 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 5317 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 5318 handle_t *handle; 5319 5320 /* (user+group)*(old+new) structure, inode write (sb, 5321 * inode block, ? - but truncate inode update has it) */ 5322 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5323 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5324 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5325 if (IS_ERR(handle)) { 5326 error = PTR_ERR(handle); 5327 goto err_out; 5328 } 5329 5330 /* dquot_transfer() calls back ext4_get_inode_usage() which 5331 * counts xattr inode references. 5332 */ 5333 down_read(&EXT4_I(inode)->xattr_sem); 5334 error = dquot_transfer(inode, attr); 5335 up_read(&EXT4_I(inode)->xattr_sem); 5336 5337 if (error) { 5338 ext4_journal_stop(handle); 5339 return error; 5340 } 5341 /* Update corresponding info in inode so that everything is in 5342 * one transaction */ 5343 if (attr->ia_valid & ATTR_UID) 5344 inode->i_uid = attr->ia_uid; 5345 if (attr->ia_valid & ATTR_GID) 5346 inode->i_gid = attr->ia_gid; 5347 error = ext4_mark_inode_dirty(handle, inode); 5348 ext4_journal_stop(handle); 5349 } 5350 5351 if (attr->ia_valid & ATTR_SIZE) { 5352 handle_t *handle; 5353 loff_t oldsize = inode->i_size; 5354 int shrink = (attr->ia_size <= inode->i_size); 5355 5356 if (ext4_encrypted_inode(inode)) { 5357 error = fscrypt_get_encryption_info(inode); 5358 if (error) 5359 return error; 5360 if (!fscrypt_has_encryption_key(inode)) 5361 return -ENOKEY; 5362 } 5363 5364 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5365 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5366 5367 if (attr->ia_size > sbi->s_bitmap_maxbytes) 5368 return -EFBIG; 5369 } 5370 if (!S_ISREG(inode->i_mode)) 5371 return -EINVAL; 5372 5373 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size) 5374 inode_inc_iversion(inode); 5375 5376 if (ext4_should_order_data(inode) && 5377 (attr->ia_size < inode->i_size)) { 5378 error = ext4_begin_ordered_truncate(inode, 5379 attr->ia_size); 5380 if (error) 5381 goto err_out; 5382 } 5383 if (attr->ia_size != inode->i_size) { 5384 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5385 if (IS_ERR(handle)) { 5386 error = PTR_ERR(handle); 5387 goto err_out; 5388 } 5389 if (ext4_handle_valid(handle) && shrink) { 5390 error = ext4_orphan_add(handle, inode); 5391 orphan = 1; 5392 } 5393 /* 5394 * Update c/mtime on truncate up, ext4_truncate() will 5395 * update c/mtime in shrink case below 5396 */ 5397 if (!shrink) { 5398 inode->i_mtime = current_time(inode); 5399 inode->i_ctime = inode->i_mtime; 5400 } 5401 down_write(&EXT4_I(inode)->i_data_sem); 5402 EXT4_I(inode)->i_disksize = attr->ia_size; 5403 rc = ext4_mark_inode_dirty(handle, inode); 5404 if (!error) 5405 error = rc; 5406 /* 5407 * We have to update i_size under i_data_sem together 5408 * with i_disksize to avoid races with writeback code 5409 * running ext4_wb_update_i_disksize(). 5410 */ 5411 if (!error) 5412 i_size_write(inode, attr->ia_size); 5413 up_write(&EXT4_I(inode)->i_data_sem); 5414 ext4_journal_stop(handle); 5415 if (error) { 5416 if (orphan) 5417 ext4_orphan_del(NULL, inode); 5418 goto err_out; 5419 } 5420 } 5421 if (!shrink) 5422 pagecache_isize_extended(inode, oldsize, inode->i_size); 5423 5424 /* 5425 * Blocks are going to be removed from the inode. Wait 5426 * for dio in flight. Temporarily disable 5427 * dioread_nolock to prevent livelock. 5428 */ 5429 if (orphan) { 5430 if (!ext4_should_journal_data(inode)) { 5431 ext4_inode_block_unlocked_dio(inode); 5432 inode_dio_wait(inode); 5433 ext4_inode_resume_unlocked_dio(inode); 5434 } else 5435 ext4_wait_for_tail_page_commit(inode); 5436 } 5437 down_write(&EXT4_I(inode)->i_mmap_sem); 5438 /* 5439 * Truncate pagecache after we've waited for commit 5440 * in data=journal mode to make pages freeable. 5441 */ 5442 truncate_pagecache(inode, inode->i_size); 5443 if (shrink) { 5444 rc = ext4_truncate(inode); 5445 if (rc) 5446 error = rc; 5447 } 5448 up_write(&EXT4_I(inode)->i_mmap_sem); 5449 } 5450 5451 if (!error) { 5452 setattr_copy(inode, attr); 5453 mark_inode_dirty(inode); 5454 } 5455 5456 /* 5457 * If the call to ext4_truncate failed to get a transaction handle at 5458 * all, we need to clean up the in-core orphan list manually. 5459 */ 5460 if (orphan && inode->i_nlink) 5461 ext4_orphan_del(NULL, inode); 5462 5463 if (!error && (ia_valid & ATTR_MODE)) 5464 rc = posix_acl_chmod(inode, inode->i_mode); 5465 5466 err_out: 5467 ext4_std_error(inode->i_sb, error); 5468 if (!error) 5469 error = rc; 5470 return error; 5471 } 5472 5473 int ext4_getattr(const struct path *path, struct kstat *stat, 5474 u32 request_mask, unsigned int query_flags) 5475 { 5476 struct inode *inode = d_inode(path->dentry); 5477 struct ext4_inode *raw_inode; 5478 struct ext4_inode_info *ei = EXT4_I(inode); 5479 unsigned int flags; 5480 5481 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { 5482 stat->result_mask |= STATX_BTIME; 5483 stat->btime.tv_sec = ei->i_crtime.tv_sec; 5484 stat->btime.tv_nsec = ei->i_crtime.tv_nsec; 5485 } 5486 5487 flags = ei->i_flags & EXT4_FL_USER_VISIBLE; 5488 if (flags & EXT4_APPEND_FL) 5489 stat->attributes |= STATX_ATTR_APPEND; 5490 if (flags & EXT4_COMPR_FL) 5491 stat->attributes |= STATX_ATTR_COMPRESSED; 5492 if (flags & EXT4_ENCRYPT_FL) 5493 stat->attributes |= STATX_ATTR_ENCRYPTED; 5494 if (flags & EXT4_IMMUTABLE_FL) 5495 stat->attributes |= STATX_ATTR_IMMUTABLE; 5496 if (flags & EXT4_NODUMP_FL) 5497 stat->attributes |= STATX_ATTR_NODUMP; 5498 5499 stat->attributes_mask |= (STATX_ATTR_APPEND | 5500 STATX_ATTR_COMPRESSED | 5501 STATX_ATTR_ENCRYPTED | 5502 STATX_ATTR_IMMUTABLE | 5503 STATX_ATTR_NODUMP); 5504 5505 generic_fillattr(inode, stat); 5506 return 0; 5507 } 5508 5509 int ext4_file_getattr(const struct path *path, struct kstat *stat, 5510 u32 request_mask, unsigned int query_flags) 5511 { 5512 struct inode *inode = d_inode(path->dentry); 5513 u64 delalloc_blocks; 5514 5515 ext4_getattr(path, stat, request_mask, query_flags); 5516 5517 /* 5518 * If there is inline data in the inode, the inode will normally not 5519 * have data blocks allocated (it may have an external xattr block). 5520 * Report at least one sector for such files, so tools like tar, rsync, 5521 * others don't incorrectly think the file is completely sparse. 5522 */ 5523 if (unlikely(ext4_has_inline_data(inode))) 5524 stat->blocks += (stat->size + 511) >> 9; 5525 5526 /* 5527 * We can't update i_blocks if the block allocation is delayed 5528 * otherwise in the case of system crash before the real block 5529 * allocation is done, we will have i_blocks inconsistent with 5530 * on-disk file blocks. 5531 * We always keep i_blocks updated together with real 5532 * allocation. But to not confuse with user, stat 5533 * will return the blocks that include the delayed allocation 5534 * blocks for this file. 5535 */ 5536 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5537 EXT4_I(inode)->i_reserved_data_blocks); 5538 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5539 return 0; 5540 } 5541 5542 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5543 int pextents) 5544 { 5545 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5546 return ext4_ind_trans_blocks(inode, lblocks); 5547 return ext4_ext_index_trans_blocks(inode, pextents); 5548 } 5549 5550 /* 5551 * Account for index blocks, block groups bitmaps and block group 5552 * descriptor blocks if modify datablocks and index blocks 5553 * worse case, the indexs blocks spread over different block groups 5554 * 5555 * If datablocks are discontiguous, they are possible to spread over 5556 * different block groups too. If they are contiguous, with flexbg, 5557 * they could still across block group boundary. 5558 * 5559 * Also account for superblock, inode, quota and xattr blocks 5560 */ 5561 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5562 int pextents) 5563 { 5564 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5565 int gdpblocks; 5566 int idxblocks; 5567 int ret = 0; 5568 5569 /* 5570 * How many index blocks need to touch to map @lblocks logical blocks 5571 * to @pextents physical extents? 5572 */ 5573 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5574 5575 ret = idxblocks; 5576 5577 /* 5578 * Now let's see how many group bitmaps and group descriptors need 5579 * to account 5580 */ 5581 groups = idxblocks + pextents; 5582 gdpblocks = groups; 5583 if (groups > ngroups) 5584 groups = ngroups; 5585 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5586 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5587 5588 /* bitmaps and block group descriptor blocks */ 5589 ret += groups + gdpblocks; 5590 5591 /* Blocks for super block, inode, quota and xattr blocks */ 5592 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5593 5594 return ret; 5595 } 5596 5597 /* 5598 * Calculate the total number of credits to reserve to fit 5599 * the modification of a single pages into a single transaction, 5600 * which may include multiple chunks of block allocations. 5601 * 5602 * This could be called via ext4_write_begin() 5603 * 5604 * We need to consider the worse case, when 5605 * one new block per extent. 5606 */ 5607 int ext4_writepage_trans_blocks(struct inode *inode) 5608 { 5609 int bpp = ext4_journal_blocks_per_page(inode); 5610 int ret; 5611 5612 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5613 5614 /* Account for data blocks for journalled mode */ 5615 if (ext4_should_journal_data(inode)) 5616 ret += bpp; 5617 return ret; 5618 } 5619 5620 /* 5621 * Calculate the journal credits for a chunk of data modification. 5622 * 5623 * This is called from DIO, fallocate or whoever calling 5624 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5625 * 5626 * journal buffers for data blocks are not included here, as DIO 5627 * and fallocate do no need to journal data buffers. 5628 */ 5629 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5630 { 5631 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5632 } 5633 5634 /* 5635 * The caller must have previously called ext4_reserve_inode_write(). 5636 * Give this, we know that the caller already has write access to iloc->bh. 5637 */ 5638 int ext4_mark_iloc_dirty(handle_t *handle, 5639 struct inode *inode, struct ext4_iloc *iloc) 5640 { 5641 int err = 0; 5642 5643 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5644 return -EIO; 5645 5646 if (IS_I_VERSION(inode)) 5647 inode_inc_iversion(inode); 5648 5649 /* the do_update_inode consumes one bh->b_count */ 5650 get_bh(iloc->bh); 5651 5652 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5653 err = ext4_do_update_inode(handle, inode, iloc); 5654 put_bh(iloc->bh); 5655 return err; 5656 } 5657 5658 /* 5659 * On success, We end up with an outstanding reference count against 5660 * iloc->bh. This _must_ be cleaned up later. 5661 */ 5662 5663 int 5664 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5665 struct ext4_iloc *iloc) 5666 { 5667 int err; 5668 5669 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5670 return -EIO; 5671 5672 err = ext4_get_inode_loc(inode, iloc); 5673 if (!err) { 5674 BUFFER_TRACE(iloc->bh, "get_write_access"); 5675 err = ext4_journal_get_write_access(handle, iloc->bh); 5676 if (err) { 5677 brelse(iloc->bh); 5678 iloc->bh = NULL; 5679 } 5680 } 5681 ext4_std_error(inode->i_sb, err); 5682 return err; 5683 } 5684 5685 static int __ext4_expand_extra_isize(struct inode *inode, 5686 unsigned int new_extra_isize, 5687 struct ext4_iloc *iloc, 5688 handle_t *handle, int *no_expand) 5689 { 5690 struct ext4_inode *raw_inode; 5691 struct ext4_xattr_ibody_header *header; 5692 int error; 5693 5694 raw_inode = ext4_raw_inode(iloc); 5695 5696 header = IHDR(inode, raw_inode); 5697 5698 /* No extended attributes present */ 5699 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5700 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5701 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + 5702 EXT4_I(inode)->i_extra_isize, 0, 5703 new_extra_isize - EXT4_I(inode)->i_extra_isize); 5704 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5705 return 0; 5706 } 5707 5708 /* try to expand with EAs present */ 5709 error = ext4_expand_extra_isize_ea(inode, new_extra_isize, 5710 raw_inode, handle); 5711 if (error) { 5712 /* 5713 * Inode size expansion failed; don't try again 5714 */ 5715 *no_expand = 1; 5716 } 5717 5718 return error; 5719 } 5720 5721 /* 5722 * Expand an inode by new_extra_isize bytes. 5723 * Returns 0 on success or negative error number on failure. 5724 */ 5725 static int ext4_try_to_expand_extra_isize(struct inode *inode, 5726 unsigned int new_extra_isize, 5727 struct ext4_iloc iloc, 5728 handle_t *handle) 5729 { 5730 int no_expand; 5731 int error; 5732 5733 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) 5734 return -EOVERFLOW; 5735 5736 /* 5737 * In nojournal mode, we can immediately attempt to expand 5738 * the inode. When journaled, we first need to obtain extra 5739 * buffer credits since we may write into the EA block 5740 * with this same handle. If journal_extend fails, then it will 5741 * only result in a minor loss of functionality for that inode. 5742 * If this is felt to be critical, then e2fsck should be run to 5743 * force a large enough s_min_extra_isize. 5744 */ 5745 if (ext4_handle_valid(handle) && 5746 jbd2_journal_extend(handle, 5747 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0) 5748 return -ENOSPC; 5749 5750 if (ext4_write_trylock_xattr(inode, &no_expand) == 0) 5751 return -EBUSY; 5752 5753 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc, 5754 handle, &no_expand); 5755 ext4_write_unlock_xattr(inode, &no_expand); 5756 5757 return error; 5758 } 5759 5760 int ext4_expand_extra_isize(struct inode *inode, 5761 unsigned int new_extra_isize, 5762 struct ext4_iloc *iloc) 5763 { 5764 handle_t *handle; 5765 int no_expand; 5766 int error, rc; 5767 5768 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5769 brelse(iloc->bh); 5770 return -EOVERFLOW; 5771 } 5772 5773 handle = ext4_journal_start(inode, EXT4_HT_INODE, 5774 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)); 5775 if (IS_ERR(handle)) { 5776 error = PTR_ERR(handle); 5777 brelse(iloc->bh); 5778 return error; 5779 } 5780 5781 ext4_write_lock_xattr(inode, &no_expand); 5782 5783 BUFFER_TRACE(iloc.bh, "get_write_access"); 5784 error = ext4_journal_get_write_access(handle, iloc->bh); 5785 if (error) { 5786 brelse(iloc->bh); 5787 goto out_stop; 5788 } 5789 5790 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc, 5791 handle, &no_expand); 5792 5793 rc = ext4_mark_iloc_dirty(handle, inode, iloc); 5794 if (!error) 5795 error = rc; 5796 5797 ext4_write_unlock_xattr(inode, &no_expand); 5798 out_stop: 5799 ext4_journal_stop(handle); 5800 return error; 5801 } 5802 5803 /* 5804 * What we do here is to mark the in-core inode as clean with respect to inode 5805 * dirtiness (it may still be data-dirty). 5806 * This means that the in-core inode may be reaped by prune_icache 5807 * without having to perform any I/O. This is a very good thing, 5808 * because *any* task may call prune_icache - even ones which 5809 * have a transaction open against a different journal. 5810 * 5811 * Is this cheating? Not really. Sure, we haven't written the 5812 * inode out, but prune_icache isn't a user-visible syncing function. 5813 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5814 * we start and wait on commits. 5815 */ 5816 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 5817 { 5818 struct ext4_iloc iloc; 5819 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5820 int err; 5821 5822 might_sleep(); 5823 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5824 err = ext4_reserve_inode_write(handle, inode, &iloc); 5825 if (err) 5826 return err; 5827 5828 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize) 5829 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize, 5830 iloc, handle); 5831 5832 return ext4_mark_iloc_dirty(handle, inode, &iloc); 5833 } 5834 5835 /* 5836 * ext4_dirty_inode() is called from __mark_inode_dirty() 5837 * 5838 * We're really interested in the case where a file is being extended. 5839 * i_size has been changed by generic_commit_write() and we thus need 5840 * to include the updated inode in the current transaction. 5841 * 5842 * Also, dquot_alloc_block() will always dirty the inode when blocks 5843 * are allocated to the file. 5844 * 5845 * If the inode is marked synchronous, we don't honour that here - doing 5846 * so would cause a commit on atime updates, which we don't bother doing. 5847 * We handle synchronous inodes at the highest possible level. 5848 * 5849 * If only the I_DIRTY_TIME flag is set, we can skip everything. If 5850 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need 5851 * to copy into the on-disk inode structure are the timestamp files. 5852 */ 5853 void ext4_dirty_inode(struct inode *inode, int flags) 5854 { 5855 handle_t *handle; 5856 5857 if (flags == I_DIRTY_TIME) 5858 return; 5859 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 5860 if (IS_ERR(handle)) 5861 goto out; 5862 5863 ext4_mark_inode_dirty(handle, inode); 5864 5865 ext4_journal_stop(handle); 5866 out: 5867 return; 5868 } 5869 5870 #if 0 5871 /* 5872 * Bind an inode's backing buffer_head into this transaction, to prevent 5873 * it from being flushed to disk early. Unlike 5874 * ext4_reserve_inode_write, this leaves behind no bh reference and 5875 * returns no iloc structure, so the caller needs to repeat the iloc 5876 * lookup to mark the inode dirty later. 5877 */ 5878 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 5879 { 5880 struct ext4_iloc iloc; 5881 5882 int err = 0; 5883 if (handle) { 5884 err = ext4_get_inode_loc(inode, &iloc); 5885 if (!err) { 5886 BUFFER_TRACE(iloc.bh, "get_write_access"); 5887 err = jbd2_journal_get_write_access(handle, iloc.bh); 5888 if (!err) 5889 err = ext4_handle_dirty_metadata(handle, 5890 NULL, 5891 iloc.bh); 5892 brelse(iloc.bh); 5893 } 5894 } 5895 ext4_std_error(inode->i_sb, err); 5896 return err; 5897 } 5898 #endif 5899 5900 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5901 { 5902 journal_t *journal; 5903 handle_t *handle; 5904 int err; 5905 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5906 5907 /* 5908 * We have to be very careful here: changing a data block's 5909 * journaling status dynamically is dangerous. If we write a 5910 * data block to the journal, change the status and then delete 5911 * that block, we risk forgetting to revoke the old log record 5912 * from the journal and so a subsequent replay can corrupt data. 5913 * So, first we make sure that the journal is empty and that 5914 * nobody is changing anything. 5915 */ 5916 5917 journal = EXT4_JOURNAL(inode); 5918 if (!journal) 5919 return 0; 5920 if (is_journal_aborted(journal)) 5921 return -EROFS; 5922 5923 /* Wait for all existing dio workers */ 5924 ext4_inode_block_unlocked_dio(inode); 5925 inode_dio_wait(inode); 5926 5927 /* 5928 * Before flushing the journal and switching inode's aops, we have 5929 * to flush all dirty data the inode has. There can be outstanding 5930 * delayed allocations, there can be unwritten extents created by 5931 * fallocate or buffered writes in dioread_nolock mode covered by 5932 * dirty data which can be converted only after flushing the dirty 5933 * data (and journalled aops don't know how to handle these cases). 5934 */ 5935 if (val) { 5936 down_write(&EXT4_I(inode)->i_mmap_sem); 5937 err = filemap_write_and_wait(inode->i_mapping); 5938 if (err < 0) { 5939 up_write(&EXT4_I(inode)->i_mmap_sem); 5940 ext4_inode_resume_unlocked_dio(inode); 5941 return err; 5942 } 5943 } 5944 5945 percpu_down_write(&sbi->s_journal_flag_rwsem); 5946 jbd2_journal_lock_updates(journal); 5947 5948 /* 5949 * OK, there are no updates running now, and all cached data is 5950 * synced to disk. We are now in a completely consistent state 5951 * which doesn't have anything in the journal, and we know that 5952 * no filesystem updates are running, so it is safe to modify 5953 * the inode's in-core data-journaling state flag now. 5954 */ 5955 5956 if (val) 5957 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5958 else { 5959 err = jbd2_journal_flush(journal); 5960 if (err < 0) { 5961 jbd2_journal_unlock_updates(journal); 5962 percpu_up_write(&sbi->s_journal_flag_rwsem); 5963 ext4_inode_resume_unlocked_dio(inode); 5964 return err; 5965 } 5966 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5967 } 5968 ext4_set_aops(inode); 5969 /* 5970 * Update inode->i_flags after EXT4_INODE_JOURNAL_DATA was updated. 5971 * E.g. S_DAX may get cleared / set. 5972 */ 5973 ext4_set_inode_flags(inode); 5974 5975 jbd2_journal_unlock_updates(journal); 5976 percpu_up_write(&sbi->s_journal_flag_rwsem); 5977 5978 if (val) 5979 up_write(&EXT4_I(inode)->i_mmap_sem); 5980 ext4_inode_resume_unlocked_dio(inode); 5981 5982 /* Finally we can mark the inode as dirty. */ 5983 5984 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 5985 if (IS_ERR(handle)) 5986 return PTR_ERR(handle); 5987 5988 err = ext4_mark_inode_dirty(handle, inode); 5989 ext4_handle_sync(handle); 5990 ext4_journal_stop(handle); 5991 ext4_std_error(inode->i_sb, err); 5992 5993 return err; 5994 } 5995 5996 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 5997 { 5998 return !buffer_mapped(bh); 5999 } 6000 6001 int ext4_page_mkwrite(struct vm_fault *vmf) 6002 { 6003 struct vm_area_struct *vma = vmf->vma; 6004 struct page *page = vmf->page; 6005 loff_t size; 6006 unsigned long len; 6007 int ret; 6008 struct file *file = vma->vm_file; 6009 struct inode *inode = file_inode(file); 6010 struct address_space *mapping = inode->i_mapping; 6011 handle_t *handle; 6012 get_block_t *get_block; 6013 int retries = 0; 6014 6015 sb_start_pagefault(inode->i_sb); 6016 file_update_time(vma->vm_file); 6017 6018 down_read(&EXT4_I(inode)->i_mmap_sem); 6019 6020 ret = ext4_convert_inline_data(inode); 6021 if (ret) 6022 goto out_ret; 6023 6024 /* Delalloc case is easy... */ 6025 if (test_opt(inode->i_sb, DELALLOC) && 6026 !ext4_should_journal_data(inode) && 6027 !ext4_nonda_switch(inode->i_sb)) { 6028 do { 6029 ret = block_page_mkwrite(vma, vmf, 6030 ext4_da_get_block_prep); 6031 } while (ret == -ENOSPC && 6032 ext4_should_retry_alloc(inode->i_sb, &retries)); 6033 goto out_ret; 6034 } 6035 6036 lock_page(page); 6037 size = i_size_read(inode); 6038 /* Page got truncated from under us? */ 6039 if (page->mapping != mapping || page_offset(page) > size) { 6040 unlock_page(page); 6041 ret = VM_FAULT_NOPAGE; 6042 goto out; 6043 } 6044 6045 if (page->index == size >> PAGE_SHIFT) 6046 len = size & ~PAGE_MASK; 6047 else 6048 len = PAGE_SIZE; 6049 /* 6050 * Return if we have all the buffers mapped. This avoids the need to do 6051 * journal_start/journal_stop which can block and take a long time 6052 */ 6053 if (page_has_buffers(page)) { 6054 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 6055 0, len, NULL, 6056 ext4_bh_unmapped)) { 6057 /* Wait so that we don't change page under IO */ 6058 wait_for_stable_page(page); 6059 ret = VM_FAULT_LOCKED; 6060 goto out; 6061 } 6062 } 6063 unlock_page(page); 6064 /* OK, we need to fill the hole... */ 6065 if (ext4_should_dioread_nolock(inode)) 6066 get_block = ext4_get_block_unwritten; 6067 else 6068 get_block = ext4_get_block; 6069 retry_alloc: 6070 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 6071 ext4_writepage_trans_blocks(inode)); 6072 if (IS_ERR(handle)) { 6073 ret = VM_FAULT_SIGBUS; 6074 goto out; 6075 } 6076 ret = block_page_mkwrite(vma, vmf, get_block); 6077 if (!ret && ext4_should_journal_data(inode)) { 6078 if (ext4_walk_page_buffers(handle, page_buffers(page), 0, 6079 PAGE_SIZE, NULL, do_journal_get_write_access)) { 6080 unlock_page(page); 6081 ret = VM_FAULT_SIGBUS; 6082 ext4_journal_stop(handle); 6083 goto out; 6084 } 6085 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 6086 } 6087 ext4_journal_stop(handle); 6088 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 6089 goto retry_alloc; 6090 out_ret: 6091 ret = block_page_mkwrite_return(ret); 6092 out: 6093 up_read(&EXT4_I(inode)->i_mmap_sem); 6094 sb_end_pagefault(inode->i_sb); 6095 return ret; 6096 } 6097 6098 int ext4_filemap_fault(struct vm_fault *vmf) 6099 { 6100 struct inode *inode = file_inode(vmf->vma->vm_file); 6101 int err; 6102 6103 down_read(&EXT4_I(inode)->i_mmap_sem); 6104 err = filemap_fault(vmf); 6105 up_read(&EXT4_I(inode)->i_mmap_sem); 6106 6107 return err; 6108 } 6109 6110 /* 6111 * Find the first extent at or after @lblk in an inode that is not a hole. 6112 * Search for @map_len blocks at most. The extent is returned in @result. 6113 * 6114 * The function returns 1 if we found an extent. The function returns 0 in 6115 * case there is no extent at or after @lblk and in that case also sets 6116 * @result->es_len to 0. In case of error, the error code is returned. 6117 */ 6118 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk, 6119 unsigned int map_len, struct extent_status *result) 6120 { 6121 struct ext4_map_blocks map; 6122 struct extent_status es = {}; 6123 int ret; 6124 6125 map.m_lblk = lblk; 6126 map.m_len = map_len; 6127 6128 /* 6129 * For non-extent based files this loop may iterate several times since 6130 * we do not determine full hole size. 6131 */ 6132 while (map.m_len > 0) { 6133 ret = ext4_map_blocks(NULL, inode, &map, 0); 6134 if (ret < 0) 6135 return ret; 6136 /* There's extent covering m_lblk? Just return it. */ 6137 if (ret > 0) { 6138 int status; 6139 6140 ext4_es_store_pblock(result, map.m_pblk); 6141 result->es_lblk = map.m_lblk; 6142 result->es_len = map.m_len; 6143 if (map.m_flags & EXT4_MAP_UNWRITTEN) 6144 status = EXTENT_STATUS_UNWRITTEN; 6145 else 6146 status = EXTENT_STATUS_WRITTEN; 6147 ext4_es_store_status(result, status); 6148 return 1; 6149 } 6150 ext4_es_find_delayed_extent_range(inode, map.m_lblk, 6151 map.m_lblk + map.m_len - 1, 6152 &es); 6153 /* Is delalloc data before next block in extent tree? */ 6154 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) { 6155 ext4_lblk_t offset = 0; 6156 6157 if (es.es_lblk < lblk) 6158 offset = lblk - es.es_lblk; 6159 result->es_lblk = es.es_lblk + offset; 6160 ext4_es_store_pblock(result, 6161 ext4_es_pblock(&es) + offset); 6162 result->es_len = es.es_len - offset; 6163 ext4_es_store_status(result, ext4_es_status(&es)); 6164 6165 return 1; 6166 } 6167 /* There's a hole at m_lblk, advance us after it */ 6168 map.m_lblk += map.m_len; 6169 map_len -= map.m_len; 6170 map.m_len = map_len; 6171 cond_resched(); 6172 } 6173 result->es_len = 0; 6174 return 0; 6175 } 6176