1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * 64-bit file support on 64-bit platforms by Jakub Jelinek 16 * (jj@sunsite.ms.mff.cuni.cz) 17 * 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 19 */ 20 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/highuid.h> 24 #include <linux/pagemap.h> 25 #include <linux/dax.h> 26 #include <linux/quotaops.h> 27 #include <linux/string.h> 28 #include <linux/buffer_head.h> 29 #include <linux/writeback.h> 30 #include <linux/pagevec.h> 31 #include <linux/mpage.h> 32 #include <linux/namei.h> 33 #include <linux/uio.h> 34 #include <linux/bio.h> 35 #include <linux/workqueue.h> 36 #include <linux/kernel.h> 37 #include <linux/printk.h> 38 #include <linux/slab.h> 39 #include <linux/bitops.h> 40 41 #include "ext4_jbd2.h" 42 #include "xattr.h" 43 #include "acl.h" 44 #include "truncate.h" 45 46 #include <trace/events/ext4.h> 47 48 #define MPAGE_DA_EXTENT_TAIL 0x01 49 50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 51 struct ext4_inode_info *ei) 52 { 53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 54 __u16 csum_lo; 55 __u16 csum_hi = 0; 56 __u32 csum; 57 58 csum_lo = le16_to_cpu(raw->i_checksum_lo); 59 raw->i_checksum_lo = 0; 60 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 61 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 62 csum_hi = le16_to_cpu(raw->i_checksum_hi); 63 raw->i_checksum_hi = 0; 64 } 65 66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, 67 EXT4_INODE_SIZE(inode->i_sb)); 68 69 raw->i_checksum_lo = cpu_to_le16(csum_lo); 70 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 71 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 72 raw->i_checksum_hi = cpu_to_le16(csum_hi); 73 74 return csum; 75 } 76 77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 78 struct ext4_inode_info *ei) 79 { 80 __u32 provided, calculated; 81 82 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 83 cpu_to_le32(EXT4_OS_LINUX) || 84 !ext4_has_metadata_csum(inode->i_sb)) 85 return 1; 86 87 provided = le16_to_cpu(raw->i_checksum_lo); 88 calculated = ext4_inode_csum(inode, raw, ei); 89 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 90 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 91 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 92 else 93 calculated &= 0xFFFF; 94 95 return provided == calculated; 96 } 97 98 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 99 struct ext4_inode_info *ei) 100 { 101 __u32 csum; 102 103 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 104 cpu_to_le32(EXT4_OS_LINUX) || 105 !ext4_has_metadata_csum(inode->i_sb)) 106 return; 107 108 csum = ext4_inode_csum(inode, raw, ei); 109 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 110 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 111 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 112 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 113 } 114 115 static inline int ext4_begin_ordered_truncate(struct inode *inode, 116 loff_t new_size) 117 { 118 trace_ext4_begin_ordered_truncate(inode, new_size); 119 /* 120 * If jinode is zero, then we never opened the file for 121 * writing, so there's no need to call 122 * jbd2_journal_begin_ordered_truncate() since there's no 123 * outstanding writes we need to flush. 124 */ 125 if (!EXT4_I(inode)->jinode) 126 return 0; 127 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 128 EXT4_I(inode)->jinode, 129 new_size); 130 } 131 132 static void ext4_invalidatepage(struct page *page, unsigned int offset, 133 unsigned int length); 134 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 135 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 136 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 137 int pextents); 138 139 /* 140 * Test whether an inode is a fast symlink. 141 */ 142 int ext4_inode_is_fast_symlink(struct inode *inode) 143 { 144 int ea_blocks = EXT4_I(inode)->i_file_acl ? 145 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 146 147 if (ext4_has_inline_data(inode)) 148 return 0; 149 150 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 151 } 152 153 /* 154 * Restart the transaction associated with *handle. This does a commit, 155 * so before we call here everything must be consistently dirtied against 156 * this transaction. 157 */ 158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 159 int nblocks) 160 { 161 int ret; 162 163 /* 164 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 165 * moment, get_block can be called only for blocks inside i_size since 166 * page cache has been already dropped and writes are blocked by 167 * i_mutex. So we can safely drop the i_data_sem here. 168 */ 169 BUG_ON(EXT4_JOURNAL(inode) == NULL); 170 jbd_debug(2, "restarting handle %p\n", handle); 171 up_write(&EXT4_I(inode)->i_data_sem); 172 ret = ext4_journal_restart(handle, nblocks); 173 down_write(&EXT4_I(inode)->i_data_sem); 174 ext4_discard_preallocations(inode); 175 176 return ret; 177 } 178 179 /* 180 * Called at the last iput() if i_nlink is zero. 181 */ 182 void ext4_evict_inode(struct inode *inode) 183 { 184 handle_t *handle; 185 int err; 186 187 trace_ext4_evict_inode(inode); 188 189 if (inode->i_nlink) { 190 /* 191 * When journalling data dirty buffers are tracked only in the 192 * journal. So although mm thinks everything is clean and 193 * ready for reaping the inode might still have some pages to 194 * write in the running transaction or waiting to be 195 * checkpointed. Thus calling jbd2_journal_invalidatepage() 196 * (via truncate_inode_pages()) to discard these buffers can 197 * cause data loss. Also even if we did not discard these 198 * buffers, we would have no way to find them after the inode 199 * is reaped and thus user could see stale data if he tries to 200 * read them before the transaction is checkpointed. So be 201 * careful and force everything to disk here... We use 202 * ei->i_datasync_tid to store the newest transaction 203 * containing inode's data. 204 * 205 * Note that directories do not have this problem because they 206 * don't use page cache. 207 */ 208 if (ext4_should_journal_data(inode) && 209 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 210 inode->i_ino != EXT4_JOURNAL_INO) { 211 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 212 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 213 214 jbd2_complete_transaction(journal, commit_tid); 215 filemap_write_and_wait(&inode->i_data); 216 } 217 truncate_inode_pages_final(&inode->i_data); 218 219 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count)); 220 goto no_delete; 221 } 222 223 if (is_bad_inode(inode)) 224 goto no_delete; 225 dquot_initialize(inode); 226 227 if (ext4_should_order_data(inode)) 228 ext4_begin_ordered_truncate(inode, 0); 229 truncate_inode_pages_final(&inode->i_data); 230 231 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count)); 232 233 /* 234 * Protect us against freezing - iput() caller didn't have to have any 235 * protection against it 236 */ 237 sb_start_intwrite(inode->i_sb); 238 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 239 ext4_blocks_for_truncate(inode)+3); 240 if (IS_ERR(handle)) { 241 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 242 /* 243 * If we're going to skip the normal cleanup, we still need to 244 * make sure that the in-core orphan linked list is properly 245 * cleaned up. 246 */ 247 ext4_orphan_del(NULL, inode); 248 sb_end_intwrite(inode->i_sb); 249 goto no_delete; 250 } 251 252 if (IS_SYNC(inode)) 253 ext4_handle_sync(handle); 254 inode->i_size = 0; 255 err = ext4_mark_inode_dirty(handle, inode); 256 if (err) { 257 ext4_warning(inode->i_sb, 258 "couldn't mark inode dirty (err %d)", err); 259 goto stop_handle; 260 } 261 if (inode->i_blocks) 262 ext4_truncate(inode); 263 264 /* 265 * ext4_ext_truncate() doesn't reserve any slop when it 266 * restarts journal transactions; therefore there may not be 267 * enough credits left in the handle to remove the inode from 268 * the orphan list and set the dtime field. 269 */ 270 if (!ext4_handle_has_enough_credits(handle, 3)) { 271 err = ext4_journal_extend(handle, 3); 272 if (err > 0) 273 err = ext4_journal_restart(handle, 3); 274 if (err != 0) { 275 ext4_warning(inode->i_sb, 276 "couldn't extend journal (err %d)", err); 277 stop_handle: 278 ext4_journal_stop(handle); 279 ext4_orphan_del(NULL, inode); 280 sb_end_intwrite(inode->i_sb); 281 goto no_delete; 282 } 283 } 284 285 /* 286 * Kill off the orphan record which ext4_truncate created. 287 * AKPM: I think this can be inside the above `if'. 288 * Note that ext4_orphan_del() has to be able to cope with the 289 * deletion of a non-existent orphan - this is because we don't 290 * know if ext4_truncate() actually created an orphan record. 291 * (Well, we could do this if we need to, but heck - it works) 292 */ 293 ext4_orphan_del(handle, inode); 294 EXT4_I(inode)->i_dtime = get_seconds(); 295 296 /* 297 * One subtle ordering requirement: if anything has gone wrong 298 * (transaction abort, IO errors, whatever), then we can still 299 * do these next steps (the fs will already have been marked as 300 * having errors), but we can't free the inode if the mark_dirty 301 * fails. 302 */ 303 if (ext4_mark_inode_dirty(handle, inode)) 304 /* If that failed, just do the required in-core inode clear. */ 305 ext4_clear_inode(inode); 306 else 307 ext4_free_inode(handle, inode); 308 ext4_journal_stop(handle); 309 sb_end_intwrite(inode->i_sb); 310 return; 311 no_delete: 312 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 313 } 314 315 #ifdef CONFIG_QUOTA 316 qsize_t *ext4_get_reserved_space(struct inode *inode) 317 { 318 return &EXT4_I(inode)->i_reserved_quota; 319 } 320 #endif 321 322 /* 323 * Called with i_data_sem down, which is important since we can call 324 * ext4_discard_preallocations() from here. 325 */ 326 void ext4_da_update_reserve_space(struct inode *inode, 327 int used, int quota_claim) 328 { 329 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 330 struct ext4_inode_info *ei = EXT4_I(inode); 331 332 spin_lock(&ei->i_block_reservation_lock); 333 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 334 if (unlikely(used > ei->i_reserved_data_blocks)) { 335 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 336 "with only %d reserved data blocks", 337 __func__, inode->i_ino, used, 338 ei->i_reserved_data_blocks); 339 WARN_ON(1); 340 used = ei->i_reserved_data_blocks; 341 } 342 343 /* Update per-inode reservations */ 344 ei->i_reserved_data_blocks -= used; 345 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 346 347 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 348 349 /* Update quota subsystem for data blocks */ 350 if (quota_claim) 351 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 352 else { 353 /* 354 * We did fallocate with an offset that is already delayed 355 * allocated. So on delayed allocated writeback we should 356 * not re-claim the quota for fallocated blocks. 357 */ 358 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 359 } 360 361 /* 362 * If we have done all the pending block allocations and if 363 * there aren't any writers on the inode, we can discard the 364 * inode's preallocations. 365 */ 366 if ((ei->i_reserved_data_blocks == 0) && 367 (atomic_read(&inode->i_writecount) == 0)) 368 ext4_discard_preallocations(inode); 369 } 370 371 static int __check_block_validity(struct inode *inode, const char *func, 372 unsigned int line, 373 struct ext4_map_blocks *map) 374 { 375 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 376 map->m_len)) { 377 ext4_error_inode(inode, func, line, map->m_pblk, 378 "lblock %lu mapped to illegal pblock " 379 "(length %d)", (unsigned long) map->m_lblk, 380 map->m_len); 381 return -EFSCORRUPTED; 382 } 383 return 0; 384 } 385 386 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 387 ext4_lblk_t len) 388 { 389 int ret; 390 391 if (ext4_encrypted_inode(inode)) 392 return ext4_encrypted_zeroout(inode, lblk, pblk, len); 393 394 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 395 if (ret > 0) 396 ret = 0; 397 398 return ret; 399 } 400 401 #define check_block_validity(inode, map) \ 402 __check_block_validity((inode), __func__, __LINE__, (map)) 403 404 #ifdef ES_AGGRESSIVE_TEST 405 static void ext4_map_blocks_es_recheck(handle_t *handle, 406 struct inode *inode, 407 struct ext4_map_blocks *es_map, 408 struct ext4_map_blocks *map, 409 int flags) 410 { 411 int retval; 412 413 map->m_flags = 0; 414 /* 415 * There is a race window that the result is not the same. 416 * e.g. xfstests #223 when dioread_nolock enables. The reason 417 * is that we lookup a block mapping in extent status tree with 418 * out taking i_data_sem. So at the time the unwritten extent 419 * could be converted. 420 */ 421 down_read(&EXT4_I(inode)->i_data_sem); 422 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 423 retval = ext4_ext_map_blocks(handle, inode, map, flags & 424 EXT4_GET_BLOCKS_KEEP_SIZE); 425 } else { 426 retval = ext4_ind_map_blocks(handle, inode, map, flags & 427 EXT4_GET_BLOCKS_KEEP_SIZE); 428 } 429 up_read((&EXT4_I(inode)->i_data_sem)); 430 431 /* 432 * We don't check m_len because extent will be collpased in status 433 * tree. So the m_len might not equal. 434 */ 435 if (es_map->m_lblk != map->m_lblk || 436 es_map->m_flags != map->m_flags || 437 es_map->m_pblk != map->m_pblk) { 438 printk("ES cache assertion failed for inode: %lu " 439 "es_cached ex [%d/%d/%llu/%x] != " 440 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 441 inode->i_ino, es_map->m_lblk, es_map->m_len, 442 es_map->m_pblk, es_map->m_flags, map->m_lblk, 443 map->m_len, map->m_pblk, map->m_flags, 444 retval, flags); 445 } 446 } 447 #endif /* ES_AGGRESSIVE_TEST */ 448 449 /* 450 * The ext4_map_blocks() function tries to look up the requested blocks, 451 * and returns if the blocks are already mapped. 452 * 453 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 454 * and store the allocated blocks in the result buffer head and mark it 455 * mapped. 456 * 457 * If file type is extents based, it will call ext4_ext_map_blocks(), 458 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 459 * based files 460 * 461 * On success, it returns the number of blocks being mapped or allocated. 462 * if create==0 and the blocks are pre-allocated and unwritten block, 463 * the result buffer head is unmapped. If the create ==1, it will make sure 464 * the buffer head is mapped. 465 * 466 * It returns 0 if plain look up failed (blocks have not been allocated), in 467 * that case, buffer head is unmapped 468 * 469 * It returns the error in case of allocation failure. 470 */ 471 int ext4_map_blocks(handle_t *handle, struct inode *inode, 472 struct ext4_map_blocks *map, int flags) 473 { 474 struct extent_status es; 475 int retval; 476 int ret = 0; 477 #ifdef ES_AGGRESSIVE_TEST 478 struct ext4_map_blocks orig_map; 479 480 memcpy(&orig_map, map, sizeof(*map)); 481 #endif 482 483 map->m_flags = 0; 484 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 485 "logical block %lu\n", inode->i_ino, flags, map->m_len, 486 (unsigned long) map->m_lblk); 487 488 /* 489 * ext4_map_blocks returns an int, and m_len is an unsigned int 490 */ 491 if (unlikely(map->m_len > INT_MAX)) 492 map->m_len = INT_MAX; 493 494 /* We can handle the block number less than EXT_MAX_BLOCKS */ 495 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 496 return -EFSCORRUPTED; 497 498 /* Lookup extent status tree firstly */ 499 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 500 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 501 map->m_pblk = ext4_es_pblock(&es) + 502 map->m_lblk - es.es_lblk; 503 map->m_flags |= ext4_es_is_written(&es) ? 504 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 505 retval = es.es_len - (map->m_lblk - es.es_lblk); 506 if (retval > map->m_len) 507 retval = map->m_len; 508 map->m_len = retval; 509 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 510 retval = 0; 511 } else { 512 BUG_ON(1); 513 } 514 #ifdef ES_AGGRESSIVE_TEST 515 ext4_map_blocks_es_recheck(handle, inode, map, 516 &orig_map, flags); 517 #endif 518 goto found; 519 } 520 521 /* 522 * Try to see if we can get the block without requesting a new 523 * file system block. 524 */ 525 down_read(&EXT4_I(inode)->i_data_sem); 526 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 527 retval = ext4_ext_map_blocks(handle, inode, map, flags & 528 EXT4_GET_BLOCKS_KEEP_SIZE); 529 } else { 530 retval = ext4_ind_map_blocks(handle, inode, map, flags & 531 EXT4_GET_BLOCKS_KEEP_SIZE); 532 } 533 if (retval > 0) { 534 unsigned int status; 535 536 if (unlikely(retval != map->m_len)) { 537 ext4_warning(inode->i_sb, 538 "ES len assertion failed for inode " 539 "%lu: retval %d != map->m_len %d", 540 inode->i_ino, retval, map->m_len); 541 WARN_ON(1); 542 } 543 544 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 545 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 546 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 547 !(status & EXTENT_STATUS_WRITTEN) && 548 ext4_find_delalloc_range(inode, map->m_lblk, 549 map->m_lblk + map->m_len - 1)) 550 status |= EXTENT_STATUS_DELAYED; 551 ret = ext4_es_insert_extent(inode, map->m_lblk, 552 map->m_len, map->m_pblk, status); 553 if (ret < 0) 554 retval = ret; 555 } 556 up_read((&EXT4_I(inode)->i_data_sem)); 557 558 found: 559 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 560 ret = check_block_validity(inode, map); 561 if (ret != 0) 562 return ret; 563 } 564 565 /* If it is only a block(s) look up */ 566 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 567 return retval; 568 569 /* 570 * Returns if the blocks have already allocated 571 * 572 * Note that if blocks have been preallocated 573 * ext4_ext_get_block() returns the create = 0 574 * with buffer head unmapped. 575 */ 576 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 577 /* 578 * If we need to convert extent to unwritten 579 * we continue and do the actual work in 580 * ext4_ext_map_blocks() 581 */ 582 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 583 return retval; 584 585 /* 586 * Here we clear m_flags because after allocating an new extent, 587 * it will be set again. 588 */ 589 map->m_flags &= ~EXT4_MAP_FLAGS; 590 591 /* 592 * New blocks allocate and/or writing to unwritten extent 593 * will possibly result in updating i_data, so we take 594 * the write lock of i_data_sem, and call get_block() 595 * with create == 1 flag. 596 */ 597 down_write(&EXT4_I(inode)->i_data_sem); 598 599 /* 600 * We need to check for EXT4 here because migrate 601 * could have changed the inode type in between 602 */ 603 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 604 retval = ext4_ext_map_blocks(handle, inode, map, flags); 605 } else { 606 retval = ext4_ind_map_blocks(handle, inode, map, flags); 607 608 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 609 /* 610 * We allocated new blocks which will result in 611 * i_data's format changing. Force the migrate 612 * to fail by clearing migrate flags 613 */ 614 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 615 } 616 617 /* 618 * Update reserved blocks/metadata blocks after successful 619 * block allocation which had been deferred till now. We don't 620 * support fallocate for non extent files. So we can update 621 * reserve space here. 622 */ 623 if ((retval > 0) && 624 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 625 ext4_da_update_reserve_space(inode, retval, 1); 626 } 627 628 if (retval > 0) { 629 unsigned int status; 630 631 if (unlikely(retval != map->m_len)) { 632 ext4_warning(inode->i_sb, 633 "ES len assertion failed for inode " 634 "%lu: retval %d != map->m_len %d", 635 inode->i_ino, retval, map->m_len); 636 WARN_ON(1); 637 } 638 639 /* 640 * We have to zeroout blocks before inserting them into extent 641 * status tree. Otherwise someone could look them up there and 642 * use them before they are really zeroed. 643 */ 644 if (flags & EXT4_GET_BLOCKS_ZERO && 645 map->m_flags & EXT4_MAP_MAPPED && 646 map->m_flags & EXT4_MAP_NEW) { 647 ret = ext4_issue_zeroout(inode, map->m_lblk, 648 map->m_pblk, map->m_len); 649 if (ret) { 650 retval = ret; 651 goto out_sem; 652 } 653 } 654 655 /* 656 * If the extent has been zeroed out, we don't need to update 657 * extent status tree. 658 */ 659 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 660 ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 661 if (ext4_es_is_written(&es)) 662 goto out_sem; 663 } 664 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 665 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 666 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 667 !(status & EXTENT_STATUS_WRITTEN) && 668 ext4_find_delalloc_range(inode, map->m_lblk, 669 map->m_lblk + map->m_len - 1)) 670 status |= EXTENT_STATUS_DELAYED; 671 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 672 map->m_pblk, status); 673 if (ret < 0) { 674 retval = ret; 675 goto out_sem; 676 } 677 } 678 679 out_sem: 680 up_write((&EXT4_I(inode)->i_data_sem)); 681 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 682 ret = check_block_validity(inode, map); 683 if (ret != 0) 684 return ret; 685 } 686 return retval; 687 } 688 689 /* 690 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 691 * we have to be careful as someone else may be manipulating b_state as well. 692 */ 693 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 694 { 695 unsigned long old_state; 696 unsigned long new_state; 697 698 flags &= EXT4_MAP_FLAGS; 699 700 /* Dummy buffer_head? Set non-atomically. */ 701 if (!bh->b_page) { 702 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 703 return; 704 } 705 /* 706 * Someone else may be modifying b_state. Be careful! This is ugly but 707 * once we get rid of using bh as a container for mapping information 708 * to pass to / from get_block functions, this can go away. 709 */ 710 do { 711 old_state = READ_ONCE(bh->b_state); 712 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 713 } while (unlikely( 714 cmpxchg(&bh->b_state, old_state, new_state) != old_state)); 715 } 716 717 /* Maximum number of blocks we map for direct IO at once. */ 718 #define DIO_MAX_BLOCKS 4096 719 720 static int _ext4_get_block(struct inode *inode, sector_t iblock, 721 struct buffer_head *bh, int flags) 722 { 723 handle_t *handle = ext4_journal_current_handle(); 724 struct ext4_map_blocks map; 725 int ret = 0, started = 0; 726 int dio_credits; 727 728 if (ext4_has_inline_data(inode)) 729 return -ERANGE; 730 731 map.m_lblk = iblock; 732 map.m_len = bh->b_size >> inode->i_blkbits; 733 734 if (flags && !handle) { 735 /* Direct IO write... */ 736 if (map.m_len > DIO_MAX_BLOCKS) 737 map.m_len = DIO_MAX_BLOCKS; 738 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 739 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 740 dio_credits); 741 if (IS_ERR(handle)) { 742 ret = PTR_ERR(handle); 743 return ret; 744 } 745 started = 1; 746 } 747 748 ret = ext4_map_blocks(handle, inode, &map, flags); 749 if (ret > 0) { 750 ext4_io_end_t *io_end = ext4_inode_aio(inode); 751 752 map_bh(bh, inode->i_sb, map.m_pblk); 753 ext4_update_bh_state(bh, map.m_flags); 754 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN) 755 set_buffer_defer_completion(bh); 756 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 757 ret = 0; 758 } 759 if (started) 760 ext4_journal_stop(handle); 761 return ret; 762 } 763 764 int ext4_get_block(struct inode *inode, sector_t iblock, 765 struct buffer_head *bh, int create) 766 { 767 return _ext4_get_block(inode, iblock, bh, 768 create ? EXT4_GET_BLOCKS_CREATE : 0); 769 } 770 771 /* 772 * `handle' can be NULL if create is zero 773 */ 774 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 775 ext4_lblk_t block, int map_flags) 776 { 777 struct ext4_map_blocks map; 778 struct buffer_head *bh; 779 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 780 int err; 781 782 J_ASSERT(handle != NULL || create == 0); 783 784 map.m_lblk = block; 785 map.m_len = 1; 786 err = ext4_map_blocks(handle, inode, &map, map_flags); 787 788 if (err == 0) 789 return create ? ERR_PTR(-ENOSPC) : NULL; 790 if (err < 0) 791 return ERR_PTR(err); 792 793 bh = sb_getblk(inode->i_sb, map.m_pblk); 794 if (unlikely(!bh)) 795 return ERR_PTR(-ENOMEM); 796 if (map.m_flags & EXT4_MAP_NEW) { 797 J_ASSERT(create != 0); 798 J_ASSERT(handle != NULL); 799 800 /* 801 * Now that we do not always journal data, we should 802 * keep in mind whether this should always journal the 803 * new buffer as metadata. For now, regular file 804 * writes use ext4_get_block instead, so it's not a 805 * problem. 806 */ 807 lock_buffer(bh); 808 BUFFER_TRACE(bh, "call get_create_access"); 809 err = ext4_journal_get_create_access(handle, bh); 810 if (unlikely(err)) { 811 unlock_buffer(bh); 812 goto errout; 813 } 814 if (!buffer_uptodate(bh)) { 815 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 816 set_buffer_uptodate(bh); 817 } 818 unlock_buffer(bh); 819 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 820 err = ext4_handle_dirty_metadata(handle, inode, bh); 821 if (unlikely(err)) 822 goto errout; 823 } else 824 BUFFER_TRACE(bh, "not a new buffer"); 825 return bh; 826 errout: 827 brelse(bh); 828 return ERR_PTR(err); 829 } 830 831 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 832 ext4_lblk_t block, int map_flags) 833 { 834 struct buffer_head *bh; 835 836 bh = ext4_getblk(handle, inode, block, map_flags); 837 if (IS_ERR(bh)) 838 return bh; 839 if (!bh || buffer_uptodate(bh)) 840 return bh; 841 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh); 842 wait_on_buffer(bh); 843 if (buffer_uptodate(bh)) 844 return bh; 845 put_bh(bh); 846 return ERR_PTR(-EIO); 847 } 848 849 int ext4_walk_page_buffers(handle_t *handle, 850 struct buffer_head *head, 851 unsigned from, 852 unsigned to, 853 int *partial, 854 int (*fn)(handle_t *handle, 855 struct buffer_head *bh)) 856 { 857 struct buffer_head *bh; 858 unsigned block_start, block_end; 859 unsigned blocksize = head->b_size; 860 int err, ret = 0; 861 struct buffer_head *next; 862 863 for (bh = head, block_start = 0; 864 ret == 0 && (bh != head || !block_start); 865 block_start = block_end, bh = next) { 866 next = bh->b_this_page; 867 block_end = block_start + blocksize; 868 if (block_end <= from || block_start >= to) { 869 if (partial && !buffer_uptodate(bh)) 870 *partial = 1; 871 continue; 872 } 873 err = (*fn)(handle, bh); 874 if (!ret) 875 ret = err; 876 } 877 return ret; 878 } 879 880 /* 881 * To preserve ordering, it is essential that the hole instantiation and 882 * the data write be encapsulated in a single transaction. We cannot 883 * close off a transaction and start a new one between the ext4_get_block() 884 * and the commit_write(). So doing the jbd2_journal_start at the start of 885 * prepare_write() is the right place. 886 * 887 * Also, this function can nest inside ext4_writepage(). In that case, we 888 * *know* that ext4_writepage() has generated enough buffer credits to do the 889 * whole page. So we won't block on the journal in that case, which is good, 890 * because the caller may be PF_MEMALLOC. 891 * 892 * By accident, ext4 can be reentered when a transaction is open via 893 * quota file writes. If we were to commit the transaction while thus 894 * reentered, there can be a deadlock - we would be holding a quota 895 * lock, and the commit would never complete if another thread had a 896 * transaction open and was blocking on the quota lock - a ranking 897 * violation. 898 * 899 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 900 * will _not_ run commit under these circumstances because handle->h_ref 901 * is elevated. We'll still have enough credits for the tiny quotafile 902 * write. 903 */ 904 int do_journal_get_write_access(handle_t *handle, 905 struct buffer_head *bh) 906 { 907 int dirty = buffer_dirty(bh); 908 int ret; 909 910 if (!buffer_mapped(bh) || buffer_freed(bh)) 911 return 0; 912 /* 913 * __block_write_begin() could have dirtied some buffers. Clean 914 * the dirty bit as jbd2_journal_get_write_access() could complain 915 * otherwise about fs integrity issues. Setting of the dirty bit 916 * by __block_write_begin() isn't a real problem here as we clear 917 * the bit before releasing a page lock and thus writeback cannot 918 * ever write the buffer. 919 */ 920 if (dirty) 921 clear_buffer_dirty(bh); 922 BUFFER_TRACE(bh, "get write access"); 923 ret = ext4_journal_get_write_access(handle, bh); 924 if (!ret && dirty) 925 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 926 return ret; 927 } 928 929 #ifdef CONFIG_EXT4_FS_ENCRYPTION 930 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len, 931 get_block_t *get_block) 932 { 933 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 934 unsigned to = from + len; 935 struct inode *inode = page->mapping->host; 936 unsigned block_start, block_end; 937 sector_t block; 938 int err = 0; 939 unsigned blocksize = inode->i_sb->s_blocksize; 940 unsigned bbits; 941 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait; 942 bool decrypt = false; 943 944 BUG_ON(!PageLocked(page)); 945 BUG_ON(from > PAGE_CACHE_SIZE); 946 BUG_ON(to > PAGE_CACHE_SIZE); 947 BUG_ON(from > to); 948 949 if (!page_has_buffers(page)) 950 create_empty_buffers(page, blocksize, 0); 951 head = page_buffers(page); 952 bbits = ilog2(blocksize); 953 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 954 955 for (bh = head, block_start = 0; bh != head || !block_start; 956 block++, block_start = block_end, bh = bh->b_this_page) { 957 block_end = block_start + blocksize; 958 if (block_end <= from || block_start >= to) { 959 if (PageUptodate(page)) { 960 if (!buffer_uptodate(bh)) 961 set_buffer_uptodate(bh); 962 } 963 continue; 964 } 965 if (buffer_new(bh)) 966 clear_buffer_new(bh); 967 if (!buffer_mapped(bh)) { 968 WARN_ON(bh->b_size != blocksize); 969 err = get_block(inode, block, bh, 1); 970 if (err) 971 break; 972 if (buffer_new(bh)) { 973 unmap_underlying_metadata(bh->b_bdev, 974 bh->b_blocknr); 975 if (PageUptodate(page)) { 976 clear_buffer_new(bh); 977 set_buffer_uptodate(bh); 978 mark_buffer_dirty(bh); 979 continue; 980 } 981 if (block_end > to || block_start < from) 982 zero_user_segments(page, to, block_end, 983 block_start, from); 984 continue; 985 } 986 } 987 if (PageUptodate(page)) { 988 if (!buffer_uptodate(bh)) 989 set_buffer_uptodate(bh); 990 continue; 991 } 992 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 993 !buffer_unwritten(bh) && 994 (block_start < from || block_end > to)) { 995 ll_rw_block(READ, 1, &bh); 996 *wait_bh++ = bh; 997 decrypt = ext4_encrypted_inode(inode) && 998 S_ISREG(inode->i_mode); 999 } 1000 } 1001 /* 1002 * If we issued read requests, let them complete. 1003 */ 1004 while (wait_bh > wait) { 1005 wait_on_buffer(*--wait_bh); 1006 if (!buffer_uptodate(*wait_bh)) 1007 err = -EIO; 1008 } 1009 if (unlikely(err)) 1010 page_zero_new_buffers(page, from, to); 1011 else if (decrypt) 1012 err = ext4_decrypt(page); 1013 return err; 1014 } 1015 #endif 1016 1017 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1018 loff_t pos, unsigned len, unsigned flags, 1019 struct page **pagep, void **fsdata) 1020 { 1021 struct inode *inode = mapping->host; 1022 int ret, needed_blocks; 1023 handle_t *handle; 1024 int retries = 0; 1025 struct page *page; 1026 pgoff_t index; 1027 unsigned from, to; 1028 1029 trace_ext4_write_begin(inode, pos, len, flags); 1030 /* 1031 * Reserve one block more for addition to orphan list in case 1032 * we allocate blocks but write fails for some reason 1033 */ 1034 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1035 index = pos >> PAGE_CACHE_SHIFT; 1036 from = pos & (PAGE_CACHE_SIZE - 1); 1037 to = from + len; 1038 1039 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1040 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1041 flags, pagep); 1042 if (ret < 0) 1043 return ret; 1044 if (ret == 1) 1045 return 0; 1046 } 1047 1048 /* 1049 * grab_cache_page_write_begin() can take a long time if the 1050 * system is thrashing due to memory pressure, or if the page 1051 * is being written back. So grab it first before we start 1052 * the transaction handle. This also allows us to allocate 1053 * the page (if needed) without using GFP_NOFS. 1054 */ 1055 retry_grab: 1056 page = grab_cache_page_write_begin(mapping, index, flags); 1057 if (!page) 1058 return -ENOMEM; 1059 unlock_page(page); 1060 1061 retry_journal: 1062 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1063 if (IS_ERR(handle)) { 1064 page_cache_release(page); 1065 return PTR_ERR(handle); 1066 } 1067 1068 lock_page(page); 1069 if (page->mapping != mapping) { 1070 /* The page got truncated from under us */ 1071 unlock_page(page); 1072 page_cache_release(page); 1073 ext4_journal_stop(handle); 1074 goto retry_grab; 1075 } 1076 /* In case writeback began while the page was unlocked */ 1077 wait_for_stable_page(page); 1078 1079 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1080 if (ext4_should_dioread_nolock(inode)) 1081 ret = ext4_block_write_begin(page, pos, len, 1082 ext4_get_block_write); 1083 else 1084 ret = ext4_block_write_begin(page, pos, len, 1085 ext4_get_block); 1086 #else 1087 if (ext4_should_dioread_nolock(inode)) 1088 ret = __block_write_begin(page, pos, len, ext4_get_block_write); 1089 else 1090 ret = __block_write_begin(page, pos, len, ext4_get_block); 1091 #endif 1092 if (!ret && ext4_should_journal_data(inode)) { 1093 ret = ext4_walk_page_buffers(handle, page_buffers(page), 1094 from, to, NULL, 1095 do_journal_get_write_access); 1096 } 1097 1098 if (ret) { 1099 unlock_page(page); 1100 /* 1101 * __block_write_begin may have instantiated a few blocks 1102 * outside i_size. Trim these off again. Don't need 1103 * i_size_read because we hold i_mutex. 1104 * 1105 * Add inode to orphan list in case we crash before 1106 * truncate finishes 1107 */ 1108 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1109 ext4_orphan_add(handle, inode); 1110 1111 ext4_journal_stop(handle); 1112 if (pos + len > inode->i_size) { 1113 ext4_truncate_failed_write(inode); 1114 /* 1115 * If truncate failed early the inode might 1116 * still be on the orphan list; we need to 1117 * make sure the inode is removed from the 1118 * orphan list in that case. 1119 */ 1120 if (inode->i_nlink) 1121 ext4_orphan_del(NULL, inode); 1122 } 1123 1124 if (ret == -ENOSPC && 1125 ext4_should_retry_alloc(inode->i_sb, &retries)) 1126 goto retry_journal; 1127 page_cache_release(page); 1128 return ret; 1129 } 1130 *pagep = page; 1131 return ret; 1132 } 1133 1134 /* For write_end() in data=journal mode */ 1135 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1136 { 1137 int ret; 1138 if (!buffer_mapped(bh) || buffer_freed(bh)) 1139 return 0; 1140 set_buffer_uptodate(bh); 1141 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1142 clear_buffer_meta(bh); 1143 clear_buffer_prio(bh); 1144 return ret; 1145 } 1146 1147 /* 1148 * We need to pick up the new inode size which generic_commit_write gave us 1149 * `file' can be NULL - eg, when called from page_symlink(). 1150 * 1151 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1152 * buffers are managed internally. 1153 */ 1154 static int ext4_write_end(struct file *file, 1155 struct address_space *mapping, 1156 loff_t pos, unsigned len, unsigned copied, 1157 struct page *page, void *fsdata) 1158 { 1159 handle_t *handle = ext4_journal_current_handle(); 1160 struct inode *inode = mapping->host; 1161 loff_t old_size = inode->i_size; 1162 int ret = 0, ret2; 1163 int i_size_changed = 0; 1164 1165 trace_ext4_write_end(inode, pos, len, copied); 1166 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) { 1167 ret = ext4_jbd2_file_inode(handle, inode); 1168 if (ret) { 1169 unlock_page(page); 1170 page_cache_release(page); 1171 goto errout; 1172 } 1173 } 1174 1175 if (ext4_has_inline_data(inode)) { 1176 ret = ext4_write_inline_data_end(inode, pos, len, 1177 copied, page); 1178 if (ret < 0) 1179 goto errout; 1180 copied = ret; 1181 } else 1182 copied = block_write_end(file, mapping, pos, 1183 len, copied, page, fsdata); 1184 /* 1185 * it's important to update i_size while still holding page lock: 1186 * page writeout could otherwise come in and zero beyond i_size. 1187 */ 1188 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1189 unlock_page(page); 1190 page_cache_release(page); 1191 1192 if (old_size < pos) 1193 pagecache_isize_extended(inode, old_size, pos); 1194 /* 1195 * Don't mark the inode dirty under page lock. First, it unnecessarily 1196 * makes the holding time of page lock longer. Second, it forces lock 1197 * ordering of page lock and transaction start for journaling 1198 * filesystems. 1199 */ 1200 if (i_size_changed) 1201 ext4_mark_inode_dirty(handle, inode); 1202 1203 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1204 /* if we have allocated more blocks and copied 1205 * less. We will have blocks allocated outside 1206 * inode->i_size. So truncate them 1207 */ 1208 ext4_orphan_add(handle, inode); 1209 errout: 1210 ret2 = ext4_journal_stop(handle); 1211 if (!ret) 1212 ret = ret2; 1213 1214 if (pos + len > inode->i_size) { 1215 ext4_truncate_failed_write(inode); 1216 /* 1217 * If truncate failed early the inode might still be 1218 * on the orphan list; we need to make sure the inode 1219 * is removed from the orphan list in that case. 1220 */ 1221 if (inode->i_nlink) 1222 ext4_orphan_del(NULL, inode); 1223 } 1224 1225 return ret ? ret : copied; 1226 } 1227 1228 /* 1229 * This is a private version of page_zero_new_buffers() which doesn't 1230 * set the buffer to be dirty, since in data=journalled mode we need 1231 * to call ext4_handle_dirty_metadata() instead. 1232 */ 1233 static void zero_new_buffers(struct page *page, unsigned from, unsigned to) 1234 { 1235 unsigned int block_start = 0, block_end; 1236 struct buffer_head *head, *bh; 1237 1238 bh = head = page_buffers(page); 1239 do { 1240 block_end = block_start + bh->b_size; 1241 if (buffer_new(bh)) { 1242 if (block_end > from && block_start < to) { 1243 if (!PageUptodate(page)) { 1244 unsigned start, size; 1245 1246 start = max(from, block_start); 1247 size = min(to, block_end) - start; 1248 1249 zero_user(page, start, size); 1250 set_buffer_uptodate(bh); 1251 } 1252 clear_buffer_new(bh); 1253 } 1254 } 1255 block_start = block_end; 1256 bh = bh->b_this_page; 1257 } while (bh != head); 1258 } 1259 1260 static int ext4_journalled_write_end(struct file *file, 1261 struct address_space *mapping, 1262 loff_t pos, unsigned len, unsigned copied, 1263 struct page *page, void *fsdata) 1264 { 1265 handle_t *handle = ext4_journal_current_handle(); 1266 struct inode *inode = mapping->host; 1267 loff_t old_size = inode->i_size; 1268 int ret = 0, ret2; 1269 int partial = 0; 1270 unsigned from, to; 1271 int size_changed = 0; 1272 1273 trace_ext4_journalled_write_end(inode, pos, len, copied); 1274 from = pos & (PAGE_CACHE_SIZE - 1); 1275 to = from + len; 1276 1277 BUG_ON(!ext4_handle_valid(handle)); 1278 1279 if (ext4_has_inline_data(inode)) 1280 copied = ext4_write_inline_data_end(inode, pos, len, 1281 copied, page); 1282 else { 1283 if (copied < len) { 1284 if (!PageUptodate(page)) 1285 copied = 0; 1286 zero_new_buffers(page, from+copied, to); 1287 } 1288 1289 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1290 to, &partial, write_end_fn); 1291 if (!partial) 1292 SetPageUptodate(page); 1293 } 1294 size_changed = ext4_update_inode_size(inode, pos + copied); 1295 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1296 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1297 unlock_page(page); 1298 page_cache_release(page); 1299 1300 if (old_size < pos) 1301 pagecache_isize_extended(inode, old_size, pos); 1302 1303 if (size_changed) { 1304 ret2 = ext4_mark_inode_dirty(handle, inode); 1305 if (!ret) 1306 ret = ret2; 1307 } 1308 1309 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1310 /* if we have allocated more blocks and copied 1311 * less. We will have blocks allocated outside 1312 * inode->i_size. So truncate them 1313 */ 1314 ext4_orphan_add(handle, inode); 1315 1316 ret2 = ext4_journal_stop(handle); 1317 if (!ret) 1318 ret = ret2; 1319 if (pos + len > inode->i_size) { 1320 ext4_truncate_failed_write(inode); 1321 /* 1322 * If truncate failed early the inode might still be 1323 * on the orphan list; we need to make sure the inode 1324 * is removed from the orphan list in that case. 1325 */ 1326 if (inode->i_nlink) 1327 ext4_orphan_del(NULL, inode); 1328 } 1329 1330 return ret ? ret : copied; 1331 } 1332 1333 /* 1334 * Reserve space for a single cluster 1335 */ 1336 static int ext4_da_reserve_space(struct inode *inode) 1337 { 1338 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1339 struct ext4_inode_info *ei = EXT4_I(inode); 1340 int ret; 1341 1342 /* 1343 * We will charge metadata quota at writeout time; this saves 1344 * us from metadata over-estimation, though we may go over by 1345 * a small amount in the end. Here we just reserve for data. 1346 */ 1347 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1348 if (ret) 1349 return ret; 1350 1351 spin_lock(&ei->i_block_reservation_lock); 1352 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1353 spin_unlock(&ei->i_block_reservation_lock); 1354 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1355 return -ENOSPC; 1356 } 1357 ei->i_reserved_data_blocks++; 1358 trace_ext4_da_reserve_space(inode); 1359 spin_unlock(&ei->i_block_reservation_lock); 1360 1361 return 0; /* success */ 1362 } 1363 1364 static void ext4_da_release_space(struct inode *inode, int to_free) 1365 { 1366 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1367 struct ext4_inode_info *ei = EXT4_I(inode); 1368 1369 if (!to_free) 1370 return; /* Nothing to release, exit */ 1371 1372 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1373 1374 trace_ext4_da_release_space(inode, to_free); 1375 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1376 /* 1377 * if there aren't enough reserved blocks, then the 1378 * counter is messed up somewhere. Since this 1379 * function is called from invalidate page, it's 1380 * harmless to return without any action. 1381 */ 1382 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1383 "ino %lu, to_free %d with only %d reserved " 1384 "data blocks", inode->i_ino, to_free, 1385 ei->i_reserved_data_blocks); 1386 WARN_ON(1); 1387 to_free = ei->i_reserved_data_blocks; 1388 } 1389 ei->i_reserved_data_blocks -= to_free; 1390 1391 /* update fs dirty data blocks counter */ 1392 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1393 1394 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1395 1396 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1397 } 1398 1399 static void ext4_da_page_release_reservation(struct page *page, 1400 unsigned int offset, 1401 unsigned int length) 1402 { 1403 int to_release = 0, contiguous_blks = 0; 1404 struct buffer_head *head, *bh; 1405 unsigned int curr_off = 0; 1406 struct inode *inode = page->mapping->host; 1407 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1408 unsigned int stop = offset + length; 1409 int num_clusters; 1410 ext4_fsblk_t lblk; 1411 1412 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length); 1413 1414 head = page_buffers(page); 1415 bh = head; 1416 do { 1417 unsigned int next_off = curr_off + bh->b_size; 1418 1419 if (next_off > stop) 1420 break; 1421 1422 if ((offset <= curr_off) && (buffer_delay(bh))) { 1423 to_release++; 1424 contiguous_blks++; 1425 clear_buffer_delay(bh); 1426 } else if (contiguous_blks) { 1427 lblk = page->index << 1428 (PAGE_CACHE_SHIFT - inode->i_blkbits); 1429 lblk += (curr_off >> inode->i_blkbits) - 1430 contiguous_blks; 1431 ext4_es_remove_extent(inode, lblk, contiguous_blks); 1432 contiguous_blks = 0; 1433 } 1434 curr_off = next_off; 1435 } while ((bh = bh->b_this_page) != head); 1436 1437 if (contiguous_blks) { 1438 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1439 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks; 1440 ext4_es_remove_extent(inode, lblk, contiguous_blks); 1441 } 1442 1443 /* If we have released all the blocks belonging to a cluster, then we 1444 * need to release the reserved space for that cluster. */ 1445 num_clusters = EXT4_NUM_B2C(sbi, to_release); 1446 while (num_clusters > 0) { 1447 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) + 1448 ((num_clusters - 1) << sbi->s_cluster_bits); 1449 if (sbi->s_cluster_ratio == 1 || 1450 !ext4_find_delalloc_cluster(inode, lblk)) 1451 ext4_da_release_space(inode, 1); 1452 1453 num_clusters--; 1454 } 1455 } 1456 1457 /* 1458 * Delayed allocation stuff 1459 */ 1460 1461 struct mpage_da_data { 1462 struct inode *inode; 1463 struct writeback_control *wbc; 1464 1465 pgoff_t first_page; /* The first page to write */ 1466 pgoff_t next_page; /* Current page to examine */ 1467 pgoff_t last_page; /* Last page to examine */ 1468 /* 1469 * Extent to map - this can be after first_page because that can be 1470 * fully mapped. We somewhat abuse m_flags to store whether the extent 1471 * is delalloc or unwritten. 1472 */ 1473 struct ext4_map_blocks map; 1474 struct ext4_io_submit io_submit; /* IO submission data */ 1475 }; 1476 1477 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1478 bool invalidate) 1479 { 1480 int nr_pages, i; 1481 pgoff_t index, end; 1482 struct pagevec pvec; 1483 struct inode *inode = mpd->inode; 1484 struct address_space *mapping = inode->i_mapping; 1485 1486 /* This is necessary when next_page == 0. */ 1487 if (mpd->first_page >= mpd->next_page) 1488 return; 1489 1490 index = mpd->first_page; 1491 end = mpd->next_page - 1; 1492 if (invalidate) { 1493 ext4_lblk_t start, last; 1494 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1495 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1496 ext4_es_remove_extent(inode, start, last - start + 1); 1497 } 1498 1499 pagevec_init(&pvec, 0); 1500 while (index <= end) { 1501 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1502 if (nr_pages == 0) 1503 break; 1504 for (i = 0; i < nr_pages; i++) { 1505 struct page *page = pvec.pages[i]; 1506 if (page->index > end) 1507 break; 1508 BUG_ON(!PageLocked(page)); 1509 BUG_ON(PageWriteback(page)); 1510 if (invalidate) { 1511 block_invalidatepage(page, 0, PAGE_CACHE_SIZE); 1512 ClearPageUptodate(page); 1513 } 1514 unlock_page(page); 1515 } 1516 index = pvec.pages[nr_pages - 1]->index + 1; 1517 pagevec_release(&pvec); 1518 } 1519 } 1520 1521 static void ext4_print_free_blocks(struct inode *inode) 1522 { 1523 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1524 struct super_block *sb = inode->i_sb; 1525 struct ext4_inode_info *ei = EXT4_I(inode); 1526 1527 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1528 EXT4_C2B(EXT4_SB(inode->i_sb), 1529 ext4_count_free_clusters(sb))); 1530 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1531 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1532 (long long) EXT4_C2B(EXT4_SB(sb), 1533 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1534 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1535 (long long) EXT4_C2B(EXT4_SB(sb), 1536 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1537 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1538 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1539 ei->i_reserved_data_blocks); 1540 return; 1541 } 1542 1543 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1544 { 1545 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1546 } 1547 1548 /* 1549 * This function is grabs code from the very beginning of 1550 * ext4_map_blocks, but assumes that the caller is from delayed write 1551 * time. This function looks up the requested blocks and sets the 1552 * buffer delay bit under the protection of i_data_sem. 1553 */ 1554 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1555 struct ext4_map_blocks *map, 1556 struct buffer_head *bh) 1557 { 1558 struct extent_status es; 1559 int retval; 1560 sector_t invalid_block = ~((sector_t) 0xffff); 1561 #ifdef ES_AGGRESSIVE_TEST 1562 struct ext4_map_blocks orig_map; 1563 1564 memcpy(&orig_map, map, sizeof(*map)); 1565 #endif 1566 1567 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1568 invalid_block = ~0; 1569 1570 map->m_flags = 0; 1571 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1572 "logical block %lu\n", inode->i_ino, map->m_len, 1573 (unsigned long) map->m_lblk); 1574 1575 /* Lookup extent status tree firstly */ 1576 if (ext4_es_lookup_extent(inode, iblock, &es)) { 1577 if (ext4_es_is_hole(&es)) { 1578 retval = 0; 1579 down_read(&EXT4_I(inode)->i_data_sem); 1580 goto add_delayed; 1581 } 1582 1583 /* 1584 * Delayed extent could be allocated by fallocate. 1585 * So we need to check it. 1586 */ 1587 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1588 map_bh(bh, inode->i_sb, invalid_block); 1589 set_buffer_new(bh); 1590 set_buffer_delay(bh); 1591 return 0; 1592 } 1593 1594 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1595 retval = es.es_len - (iblock - es.es_lblk); 1596 if (retval > map->m_len) 1597 retval = map->m_len; 1598 map->m_len = retval; 1599 if (ext4_es_is_written(&es)) 1600 map->m_flags |= EXT4_MAP_MAPPED; 1601 else if (ext4_es_is_unwritten(&es)) 1602 map->m_flags |= EXT4_MAP_UNWRITTEN; 1603 else 1604 BUG_ON(1); 1605 1606 #ifdef ES_AGGRESSIVE_TEST 1607 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1608 #endif 1609 return retval; 1610 } 1611 1612 /* 1613 * Try to see if we can get the block without requesting a new 1614 * file system block. 1615 */ 1616 down_read(&EXT4_I(inode)->i_data_sem); 1617 if (ext4_has_inline_data(inode)) 1618 retval = 0; 1619 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1620 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1621 else 1622 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1623 1624 add_delayed: 1625 if (retval == 0) { 1626 int ret; 1627 /* 1628 * XXX: __block_prepare_write() unmaps passed block, 1629 * is it OK? 1630 */ 1631 /* 1632 * If the block was allocated from previously allocated cluster, 1633 * then we don't need to reserve it again. However we still need 1634 * to reserve metadata for every block we're going to write. 1635 */ 1636 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 || 1637 !ext4_find_delalloc_cluster(inode, map->m_lblk)) { 1638 ret = ext4_da_reserve_space(inode); 1639 if (ret) { 1640 /* not enough space to reserve */ 1641 retval = ret; 1642 goto out_unlock; 1643 } 1644 } 1645 1646 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1647 ~0, EXTENT_STATUS_DELAYED); 1648 if (ret) { 1649 retval = ret; 1650 goto out_unlock; 1651 } 1652 1653 map_bh(bh, inode->i_sb, invalid_block); 1654 set_buffer_new(bh); 1655 set_buffer_delay(bh); 1656 } else if (retval > 0) { 1657 int ret; 1658 unsigned int status; 1659 1660 if (unlikely(retval != map->m_len)) { 1661 ext4_warning(inode->i_sb, 1662 "ES len assertion failed for inode " 1663 "%lu: retval %d != map->m_len %d", 1664 inode->i_ino, retval, map->m_len); 1665 WARN_ON(1); 1666 } 1667 1668 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1669 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1670 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1671 map->m_pblk, status); 1672 if (ret != 0) 1673 retval = ret; 1674 } 1675 1676 out_unlock: 1677 up_read((&EXT4_I(inode)->i_data_sem)); 1678 1679 return retval; 1680 } 1681 1682 /* 1683 * This is a special get_block_t callback which is used by 1684 * ext4_da_write_begin(). It will either return mapped block or 1685 * reserve space for a single block. 1686 * 1687 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1688 * We also have b_blocknr = -1 and b_bdev initialized properly 1689 * 1690 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1691 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1692 * initialized properly. 1693 */ 1694 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1695 struct buffer_head *bh, int create) 1696 { 1697 struct ext4_map_blocks map; 1698 int ret = 0; 1699 1700 BUG_ON(create == 0); 1701 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1702 1703 map.m_lblk = iblock; 1704 map.m_len = 1; 1705 1706 /* 1707 * first, we need to know whether the block is allocated already 1708 * preallocated blocks are unmapped but should treated 1709 * the same as allocated blocks. 1710 */ 1711 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1712 if (ret <= 0) 1713 return ret; 1714 1715 map_bh(bh, inode->i_sb, map.m_pblk); 1716 ext4_update_bh_state(bh, map.m_flags); 1717 1718 if (buffer_unwritten(bh)) { 1719 /* A delayed write to unwritten bh should be marked 1720 * new and mapped. Mapped ensures that we don't do 1721 * get_block multiple times when we write to the same 1722 * offset and new ensures that we do proper zero out 1723 * for partial write. 1724 */ 1725 set_buffer_new(bh); 1726 set_buffer_mapped(bh); 1727 } 1728 return 0; 1729 } 1730 1731 static int bget_one(handle_t *handle, struct buffer_head *bh) 1732 { 1733 get_bh(bh); 1734 return 0; 1735 } 1736 1737 static int bput_one(handle_t *handle, struct buffer_head *bh) 1738 { 1739 put_bh(bh); 1740 return 0; 1741 } 1742 1743 static int __ext4_journalled_writepage(struct page *page, 1744 unsigned int len) 1745 { 1746 struct address_space *mapping = page->mapping; 1747 struct inode *inode = mapping->host; 1748 struct buffer_head *page_bufs = NULL; 1749 handle_t *handle = NULL; 1750 int ret = 0, err = 0; 1751 int inline_data = ext4_has_inline_data(inode); 1752 struct buffer_head *inode_bh = NULL; 1753 1754 ClearPageChecked(page); 1755 1756 if (inline_data) { 1757 BUG_ON(page->index != 0); 1758 BUG_ON(len > ext4_get_max_inline_size(inode)); 1759 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1760 if (inode_bh == NULL) 1761 goto out; 1762 } else { 1763 page_bufs = page_buffers(page); 1764 if (!page_bufs) { 1765 BUG(); 1766 goto out; 1767 } 1768 ext4_walk_page_buffers(handle, page_bufs, 0, len, 1769 NULL, bget_one); 1770 } 1771 /* 1772 * We need to release the page lock before we start the 1773 * journal, so grab a reference so the page won't disappear 1774 * out from under us. 1775 */ 1776 get_page(page); 1777 unlock_page(page); 1778 1779 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1780 ext4_writepage_trans_blocks(inode)); 1781 if (IS_ERR(handle)) { 1782 ret = PTR_ERR(handle); 1783 put_page(page); 1784 goto out_no_pagelock; 1785 } 1786 BUG_ON(!ext4_handle_valid(handle)); 1787 1788 lock_page(page); 1789 put_page(page); 1790 if (page->mapping != mapping) { 1791 /* The page got truncated from under us */ 1792 ext4_journal_stop(handle); 1793 ret = 0; 1794 goto out; 1795 } 1796 1797 if (inline_data) { 1798 BUFFER_TRACE(inode_bh, "get write access"); 1799 ret = ext4_journal_get_write_access(handle, inode_bh); 1800 1801 err = ext4_handle_dirty_metadata(handle, inode, inode_bh); 1802 1803 } else { 1804 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1805 do_journal_get_write_access); 1806 1807 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1808 write_end_fn); 1809 } 1810 if (ret == 0) 1811 ret = err; 1812 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1813 err = ext4_journal_stop(handle); 1814 if (!ret) 1815 ret = err; 1816 1817 if (!ext4_has_inline_data(inode)) 1818 ext4_walk_page_buffers(NULL, page_bufs, 0, len, 1819 NULL, bput_one); 1820 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1821 out: 1822 unlock_page(page); 1823 out_no_pagelock: 1824 brelse(inode_bh); 1825 return ret; 1826 } 1827 1828 /* 1829 * Note that we don't need to start a transaction unless we're journaling data 1830 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1831 * need to file the inode to the transaction's list in ordered mode because if 1832 * we are writing back data added by write(), the inode is already there and if 1833 * we are writing back data modified via mmap(), no one guarantees in which 1834 * transaction the data will hit the disk. In case we are journaling data, we 1835 * cannot start transaction directly because transaction start ranks above page 1836 * lock so we have to do some magic. 1837 * 1838 * This function can get called via... 1839 * - ext4_writepages after taking page lock (have journal handle) 1840 * - journal_submit_inode_data_buffers (no journal handle) 1841 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 1842 * - grab_page_cache when doing write_begin (have journal handle) 1843 * 1844 * We don't do any block allocation in this function. If we have page with 1845 * multiple blocks we need to write those buffer_heads that are mapped. This 1846 * is important for mmaped based write. So if we do with blocksize 1K 1847 * truncate(f, 1024); 1848 * a = mmap(f, 0, 4096); 1849 * a[0] = 'a'; 1850 * truncate(f, 4096); 1851 * we have in the page first buffer_head mapped via page_mkwrite call back 1852 * but other buffer_heads would be unmapped but dirty (dirty done via the 1853 * do_wp_page). So writepage should write the first block. If we modify 1854 * the mmap area beyond 1024 we will again get a page_fault and the 1855 * page_mkwrite callback will do the block allocation and mark the 1856 * buffer_heads mapped. 1857 * 1858 * We redirty the page if we have any buffer_heads that is either delay or 1859 * unwritten in the page. 1860 * 1861 * We can get recursively called as show below. 1862 * 1863 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1864 * ext4_writepage() 1865 * 1866 * But since we don't do any block allocation we should not deadlock. 1867 * Page also have the dirty flag cleared so we don't get recurive page_lock. 1868 */ 1869 static int ext4_writepage(struct page *page, 1870 struct writeback_control *wbc) 1871 { 1872 int ret = 0; 1873 loff_t size; 1874 unsigned int len; 1875 struct buffer_head *page_bufs = NULL; 1876 struct inode *inode = page->mapping->host; 1877 struct ext4_io_submit io_submit; 1878 bool keep_towrite = false; 1879 1880 trace_ext4_writepage(page); 1881 size = i_size_read(inode); 1882 if (page->index == size >> PAGE_CACHE_SHIFT) 1883 len = size & ~PAGE_CACHE_MASK; 1884 else 1885 len = PAGE_CACHE_SIZE; 1886 1887 page_bufs = page_buffers(page); 1888 /* 1889 * We cannot do block allocation or other extent handling in this 1890 * function. If there are buffers needing that, we have to redirty 1891 * the page. But we may reach here when we do a journal commit via 1892 * journal_submit_inode_data_buffers() and in that case we must write 1893 * allocated buffers to achieve data=ordered mode guarantees. 1894 * 1895 * Also, if there is only one buffer per page (the fs block 1896 * size == the page size), if one buffer needs block 1897 * allocation or needs to modify the extent tree to clear the 1898 * unwritten flag, we know that the page can't be written at 1899 * all, so we might as well refuse the write immediately. 1900 * Unfortunately if the block size != page size, we can't as 1901 * easily detect this case using ext4_walk_page_buffers(), but 1902 * for the extremely common case, this is an optimization that 1903 * skips a useless round trip through ext4_bio_write_page(). 1904 */ 1905 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 1906 ext4_bh_delay_or_unwritten)) { 1907 redirty_page_for_writepage(wbc, page); 1908 if ((current->flags & PF_MEMALLOC) || 1909 (inode->i_sb->s_blocksize == PAGE_CACHE_SIZE)) { 1910 /* 1911 * For memory cleaning there's no point in writing only 1912 * some buffers. So just bail out. Warn if we came here 1913 * from direct reclaim. 1914 */ 1915 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 1916 == PF_MEMALLOC); 1917 unlock_page(page); 1918 return 0; 1919 } 1920 keep_towrite = true; 1921 } 1922 1923 if (PageChecked(page) && ext4_should_journal_data(inode)) 1924 /* 1925 * It's mmapped pagecache. Add buffers and journal it. There 1926 * doesn't seem much point in redirtying the page here. 1927 */ 1928 return __ext4_journalled_writepage(page, len); 1929 1930 ext4_io_submit_init(&io_submit, wbc); 1931 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 1932 if (!io_submit.io_end) { 1933 redirty_page_for_writepage(wbc, page); 1934 unlock_page(page); 1935 return -ENOMEM; 1936 } 1937 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite); 1938 ext4_io_submit(&io_submit); 1939 /* Drop io_end reference we got from init */ 1940 ext4_put_io_end_defer(io_submit.io_end); 1941 return ret; 1942 } 1943 1944 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 1945 { 1946 int len; 1947 loff_t size = i_size_read(mpd->inode); 1948 int err; 1949 1950 BUG_ON(page->index != mpd->first_page); 1951 if (page->index == size >> PAGE_CACHE_SHIFT) 1952 len = size & ~PAGE_CACHE_MASK; 1953 else 1954 len = PAGE_CACHE_SIZE; 1955 clear_page_dirty_for_io(page); 1956 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false); 1957 if (!err) 1958 mpd->wbc->nr_to_write--; 1959 mpd->first_page++; 1960 1961 return err; 1962 } 1963 1964 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay)) 1965 1966 /* 1967 * mballoc gives us at most this number of blocks... 1968 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 1969 * The rest of mballoc seems to handle chunks up to full group size. 1970 */ 1971 #define MAX_WRITEPAGES_EXTENT_LEN 2048 1972 1973 /* 1974 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 1975 * 1976 * @mpd - extent of blocks 1977 * @lblk - logical number of the block in the file 1978 * @bh - buffer head we want to add to the extent 1979 * 1980 * The function is used to collect contig. blocks in the same state. If the 1981 * buffer doesn't require mapping for writeback and we haven't started the 1982 * extent of buffers to map yet, the function returns 'true' immediately - the 1983 * caller can write the buffer right away. Otherwise the function returns true 1984 * if the block has been added to the extent, false if the block couldn't be 1985 * added. 1986 */ 1987 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 1988 struct buffer_head *bh) 1989 { 1990 struct ext4_map_blocks *map = &mpd->map; 1991 1992 /* Buffer that doesn't need mapping for writeback? */ 1993 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 1994 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 1995 /* So far no extent to map => we write the buffer right away */ 1996 if (map->m_len == 0) 1997 return true; 1998 return false; 1999 } 2000 2001 /* First block in the extent? */ 2002 if (map->m_len == 0) { 2003 map->m_lblk = lblk; 2004 map->m_len = 1; 2005 map->m_flags = bh->b_state & BH_FLAGS; 2006 return true; 2007 } 2008 2009 /* Don't go larger than mballoc is willing to allocate */ 2010 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 2011 return false; 2012 2013 /* Can we merge the block to our big extent? */ 2014 if (lblk == map->m_lblk + map->m_len && 2015 (bh->b_state & BH_FLAGS) == map->m_flags) { 2016 map->m_len++; 2017 return true; 2018 } 2019 return false; 2020 } 2021 2022 /* 2023 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 2024 * 2025 * @mpd - extent of blocks for mapping 2026 * @head - the first buffer in the page 2027 * @bh - buffer we should start processing from 2028 * @lblk - logical number of the block in the file corresponding to @bh 2029 * 2030 * Walk through page buffers from @bh upto @head (exclusive) and either submit 2031 * the page for IO if all buffers in this page were mapped and there's no 2032 * accumulated extent of buffers to map or add buffers in the page to the 2033 * extent of buffers to map. The function returns 1 if the caller can continue 2034 * by processing the next page, 0 if it should stop adding buffers to the 2035 * extent to map because we cannot extend it anymore. It can also return value 2036 * < 0 in case of error during IO submission. 2037 */ 2038 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 2039 struct buffer_head *head, 2040 struct buffer_head *bh, 2041 ext4_lblk_t lblk) 2042 { 2043 struct inode *inode = mpd->inode; 2044 int err; 2045 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1) 2046 >> inode->i_blkbits; 2047 2048 do { 2049 BUG_ON(buffer_locked(bh)); 2050 2051 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2052 /* Found extent to map? */ 2053 if (mpd->map.m_len) 2054 return 0; 2055 /* Everything mapped so far and we hit EOF */ 2056 break; 2057 } 2058 } while (lblk++, (bh = bh->b_this_page) != head); 2059 /* So far everything mapped? Submit the page for IO. */ 2060 if (mpd->map.m_len == 0) { 2061 err = mpage_submit_page(mpd, head->b_page); 2062 if (err < 0) 2063 return err; 2064 } 2065 return lblk < blocks; 2066 } 2067 2068 /* 2069 * mpage_map_buffers - update buffers corresponding to changed extent and 2070 * submit fully mapped pages for IO 2071 * 2072 * @mpd - description of extent to map, on return next extent to map 2073 * 2074 * Scan buffers corresponding to changed extent (we expect corresponding pages 2075 * to be already locked) and update buffer state according to new extent state. 2076 * We map delalloc buffers to their physical location, clear unwritten bits, 2077 * and mark buffers as uninit when we perform writes to unwritten extents 2078 * and do extent conversion after IO is finished. If the last page is not fully 2079 * mapped, we update @map to the next extent in the last page that needs 2080 * mapping. Otherwise we submit the page for IO. 2081 */ 2082 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2083 { 2084 struct pagevec pvec; 2085 int nr_pages, i; 2086 struct inode *inode = mpd->inode; 2087 struct buffer_head *head, *bh; 2088 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits; 2089 pgoff_t start, end; 2090 ext4_lblk_t lblk; 2091 sector_t pblock; 2092 int err; 2093 2094 start = mpd->map.m_lblk >> bpp_bits; 2095 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2096 lblk = start << bpp_bits; 2097 pblock = mpd->map.m_pblk; 2098 2099 pagevec_init(&pvec, 0); 2100 while (start <= end) { 2101 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start, 2102 PAGEVEC_SIZE); 2103 if (nr_pages == 0) 2104 break; 2105 for (i = 0; i < nr_pages; i++) { 2106 struct page *page = pvec.pages[i]; 2107 2108 if (page->index > end) 2109 break; 2110 /* Up to 'end' pages must be contiguous */ 2111 BUG_ON(page->index != start); 2112 bh = head = page_buffers(page); 2113 do { 2114 if (lblk < mpd->map.m_lblk) 2115 continue; 2116 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2117 /* 2118 * Buffer after end of mapped extent. 2119 * Find next buffer in the page to map. 2120 */ 2121 mpd->map.m_len = 0; 2122 mpd->map.m_flags = 0; 2123 /* 2124 * FIXME: If dioread_nolock supports 2125 * blocksize < pagesize, we need to make 2126 * sure we add size mapped so far to 2127 * io_end->size as the following call 2128 * can submit the page for IO. 2129 */ 2130 err = mpage_process_page_bufs(mpd, head, 2131 bh, lblk); 2132 pagevec_release(&pvec); 2133 if (err > 0) 2134 err = 0; 2135 return err; 2136 } 2137 if (buffer_delay(bh)) { 2138 clear_buffer_delay(bh); 2139 bh->b_blocknr = pblock++; 2140 } 2141 clear_buffer_unwritten(bh); 2142 } while (lblk++, (bh = bh->b_this_page) != head); 2143 2144 /* 2145 * FIXME: This is going to break if dioread_nolock 2146 * supports blocksize < pagesize as we will try to 2147 * convert potentially unmapped parts of inode. 2148 */ 2149 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE; 2150 /* Page fully mapped - let IO run! */ 2151 err = mpage_submit_page(mpd, page); 2152 if (err < 0) { 2153 pagevec_release(&pvec); 2154 return err; 2155 } 2156 start++; 2157 } 2158 pagevec_release(&pvec); 2159 } 2160 /* Extent fully mapped and matches with page boundary. We are done. */ 2161 mpd->map.m_len = 0; 2162 mpd->map.m_flags = 0; 2163 return 0; 2164 } 2165 2166 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2167 { 2168 struct inode *inode = mpd->inode; 2169 struct ext4_map_blocks *map = &mpd->map; 2170 int get_blocks_flags; 2171 int err, dioread_nolock; 2172 2173 trace_ext4_da_write_pages_extent(inode, map); 2174 /* 2175 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2176 * to convert an unwritten extent to be initialized (in the case 2177 * where we have written into one or more preallocated blocks). It is 2178 * possible that we're going to need more metadata blocks than 2179 * previously reserved. However we must not fail because we're in 2180 * writeback and there is nothing we can do about it so it might result 2181 * in data loss. So use reserved blocks to allocate metadata if 2182 * possible. 2183 * 2184 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2185 * the blocks in question are delalloc blocks. This indicates 2186 * that the blocks and quotas has already been checked when 2187 * the data was copied into the page cache. 2188 */ 2189 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2190 EXT4_GET_BLOCKS_METADATA_NOFAIL; 2191 dioread_nolock = ext4_should_dioread_nolock(inode); 2192 if (dioread_nolock) 2193 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2194 if (map->m_flags & (1 << BH_Delay)) 2195 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2196 2197 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2198 if (err < 0) 2199 return err; 2200 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2201 if (!mpd->io_submit.io_end->handle && 2202 ext4_handle_valid(handle)) { 2203 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2204 handle->h_rsv_handle = NULL; 2205 } 2206 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2207 } 2208 2209 BUG_ON(map->m_len == 0); 2210 if (map->m_flags & EXT4_MAP_NEW) { 2211 struct block_device *bdev = inode->i_sb->s_bdev; 2212 int i; 2213 2214 for (i = 0; i < map->m_len; i++) 2215 unmap_underlying_metadata(bdev, map->m_pblk + i); 2216 } 2217 return 0; 2218 } 2219 2220 /* 2221 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2222 * mpd->len and submit pages underlying it for IO 2223 * 2224 * @handle - handle for journal operations 2225 * @mpd - extent to map 2226 * @give_up_on_write - we set this to true iff there is a fatal error and there 2227 * is no hope of writing the data. The caller should discard 2228 * dirty pages to avoid infinite loops. 2229 * 2230 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2231 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2232 * them to initialized or split the described range from larger unwritten 2233 * extent. Note that we need not map all the described range since allocation 2234 * can return less blocks or the range is covered by more unwritten extents. We 2235 * cannot map more because we are limited by reserved transaction credits. On 2236 * the other hand we always make sure that the last touched page is fully 2237 * mapped so that it can be written out (and thus forward progress is 2238 * guaranteed). After mapping we submit all mapped pages for IO. 2239 */ 2240 static int mpage_map_and_submit_extent(handle_t *handle, 2241 struct mpage_da_data *mpd, 2242 bool *give_up_on_write) 2243 { 2244 struct inode *inode = mpd->inode; 2245 struct ext4_map_blocks *map = &mpd->map; 2246 int err; 2247 loff_t disksize; 2248 int progress = 0; 2249 2250 mpd->io_submit.io_end->offset = 2251 ((loff_t)map->m_lblk) << inode->i_blkbits; 2252 do { 2253 err = mpage_map_one_extent(handle, mpd); 2254 if (err < 0) { 2255 struct super_block *sb = inode->i_sb; 2256 2257 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 2258 goto invalidate_dirty_pages; 2259 /* 2260 * Let the uper layers retry transient errors. 2261 * In the case of ENOSPC, if ext4_count_free_blocks() 2262 * is non-zero, a commit should free up blocks. 2263 */ 2264 if ((err == -ENOMEM) || 2265 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2266 if (progress) 2267 goto update_disksize; 2268 return err; 2269 } 2270 ext4_msg(sb, KERN_CRIT, 2271 "Delayed block allocation failed for " 2272 "inode %lu at logical offset %llu with" 2273 " max blocks %u with error %d", 2274 inode->i_ino, 2275 (unsigned long long)map->m_lblk, 2276 (unsigned)map->m_len, -err); 2277 ext4_msg(sb, KERN_CRIT, 2278 "This should not happen!! Data will " 2279 "be lost\n"); 2280 if (err == -ENOSPC) 2281 ext4_print_free_blocks(inode); 2282 invalidate_dirty_pages: 2283 *give_up_on_write = true; 2284 return err; 2285 } 2286 progress = 1; 2287 /* 2288 * Update buffer state, submit mapped pages, and get us new 2289 * extent to map 2290 */ 2291 err = mpage_map_and_submit_buffers(mpd); 2292 if (err < 0) 2293 goto update_disksize; 2294 } while (map->m_len); 2295 2296 update_disksize: 2297 /* 2298 * Update on-disk size after IO is submitted. Races with 2299 * truncate are avoided by checking i_size under i_data_sem. 2300 */ 2301 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT; 2302 if (disksize > EXT4_I(inode)->i_disksize) { 2303 int err2; 2304 loff_t i_size; 2305 2306 down_write(&EXT4_I(inode)->i_data_sem); 2307 i_size = i_size_read(inode); 2308 if (disksize > i_size) 2309 disksize = i_size; 2310 if (disksize > EXT4_I(inode)->i_disksize) 2311 EXT4_I(inode)->i_disksize = disksize; 2312 err2 = ext4_mark_inode_dirty(handle, inode); 2313 up_write(&EXT4_I(inode)->i_data_sem); 2314 if (err2) 2315 ext4_error(inode->i_sb, 2316 "Failed to mark inode %lu dirty", 2317 inode->i_ino); 2318 if (!err) 2319 err = err2; 2320 } 2321 return err; 2322 } 2323 2324 /* 2325 * Calculate the total number of credits to reserve for one writepages 2326 * iteration. This is called from ext4_writepages(). We map an extent of 2327 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2328 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2329 * bpp - 1 blocks in bpp different extents. 2330 */ 2331 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2332 { 2333 int bpp = ext4_journal_blocks_per_page(inode); 2334 2335 return ext4_meta_trans_blocks(inode, 2336 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2337 } 2338 2339 /* 2340 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2341 * and underlying extent to map 2342 * 2343 * @mpd - where to look for pages 2344 * 2345 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2346 * IO immediately. When we find a page which isn't mapped we start accumulating 2347 * extent of buffers underlying these pages that needs mapping (formed by 2348 * either delayed or unwritten buffers). We also lock the pages containing 2349 * these buffers. The extent found is returned in @mpd structure (starting at 2350 * mpd->lblk with length mpd->len blocks). 2351 * 2352 * Note that this function can attach bios to one io_end structure which are 2353 * neither logically nor physically contiguous. Although it may seem as an 2354 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2355 * case as we need to track IO to all buffers underlying a page in one io_end. 2356 */ 2357 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2358 { 2359 struct address_space *mapping = mpd->inode->i_mapping; 2360 struct pagevec pvec; 2361 unsigned int nr_pages; 2362 long left = mpd->wbc->nr_to_write; 2363 pgoff_t index = mpd->first_page; 2364 pgoff_t end = mpd->last_page; 2365 int tag; 2366 int i, err = 0; 2367 int blkbits = mpd->inode->i_blkbits; 2368 ext4_lblk_t lblk; 2369 struct buffer_head *head; 2370 2371 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2372 tag = PAGECACHE_TAG_TOWRITE; 2373 else 2374 tag = PAGECACHE_TAG_DIRTY; 2375 2376 pagevec_init(&pvec, 0); 2377 mpd->map.m_len = 0; 2378 mpd->next_page = index; 2379 while (index <= end) { 2380 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2381 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2382 if (nr_pages == 0) 2383 goto out; 2384 2385 for (i = 0; i < nr_pages; i++) { 2386 struct page *page = pvec.pages[i]; 2387 2388 /* 2389 * At this point, the page may be truncated or 2390 * invalidated (changing page->mapping to NULL), or 2391 * even swizzled back from swapper_space to tmpfs file 2392 * mapping. However, page->index will not change 2393 * because we have a reference on the page. 2394 */ 2395 if (page->index > end) 2396 goto out; 2397 2398 /* 2399 * Accumulated enough dirty pages? This doesn't apply 2400 * to WB_SYNC_ALL mode. For integrity sync we have to 2401 * keep going because someone may be concurrently 2402 * dirtying pages, and we might have synced a lot of 2403 * newly appeared dirty pages, but have not synced all 2404 * of the old dirty pages. 2405 */ 2406 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2407 goto out; 2408 2409 /* If we can't merge this page, we are done. */ 2410 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2411 goto out; 2412 2413 lock_page(page); 2414 /* 2415 * If the page is no longer dirty, or its mapping no 2416 * longer corresponds to inode we are writing (which 2417 * means it has been truncated or invalidated), or the 2418 * page is already under writeback and we are not doing 2419 * a data integrity writeback, skip the page 2420 */ 2421 if (!PageDirty(page) || 2422 (PageWriteback(page) && 2423 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2424 unlikely(page->mapping != mapping)) { 2425 unlock_page(page); 2426 continue; 2427 } 2428 2429 wait_on_page_writeback(page); 2430 BUG_ON(PageWriteback(page)); 2431 2432 if (mpd->map.m_len == 0) 2433 mpd->first_page = page->index; 2434 mpd->next_page = page->index + 1; 2435 /* Add all dirty buffers to mpd */ 2436 lblk = ((ext4_lblk_t)page->index) << 2437 (PAGE_CACHE_SHIFT - blkbits); 2438 head = page_buffers(page); 2439 err = mpage_process_page_bufs(mpd, head, head, lblk); 2440 if (err <= 0) 2441 goto out; 2442 err = 0; 2443 left--; 2444 } 2445 pagevec_release(&pvec); 2446 cond_resched(); 2447 } 2448 return 0; 2449 out: 2450 pagevec_release(&pvec); 2451 return err; 2452 } 2453 2454 static int __writepage(struct page *page, struct writeback_control *wbc, 2455 void *data) 2456 { 2457 struct address_space *mapping = data; 2458 int ret = ext4_writepage(page, wbc); 2459 mapping_set_error(mapping, ret); 2460 return ret; 2461 } 2462 2463 static int ext4_writepages(struct address_space *mapping, 2464 struct writeback_control *wbc) 2465 { 2466 pgoff_t writeback_index = 0; 2467 long nr_to_write = wbc->nr_to_write; 2468 int range_whole = 0; 2469 int cycled = 1; 2470 handle_t *handle = NULL; 2471 struct mpage_da_data mpd; 2472 struct inode *inode = mapping->host; 2473 int needed_blocks, rsv_blocks = 0, ret = 0; 2474 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2475 bool done; 2476 struct blk_plug plug; 2477 bool give_up_on_write = false; 2478 2479 trace_ext4_writepages(inode, wbc); 2480 2481 if (dax_mapping(mapping)) 2482 return dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, 2483 wbc); 2484 2485 /* 2486 * No pages to write? This is mainly a kludge to avoid starting 2487 * a transaction for special inodes like journal inode on last iput() 2488 * because that could violate lock ordering on umount 2489 */ 2490 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2491 goto out_writepages; 2492 2493 if (ext4_should_journal_data(inode)) { 2494 struct blk_plug plug; 2495 2496 blk_start_plug(&plug); 2497 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 2498 blk_finish_plug(&plug); 2499 goto out_writepages; 2500 } 2501 2502 /* 2503 * If the filesystem has aborted, it is read-only, so return 2504 * right away instead of dumping stack traces later on that 2505 * will obscure the real source of the problem. We test 2506 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2507 * the latter could be true if the filesystem is mounted 2508 * read-only, and in that case, ext4_writepages should 2509 * *never* be called, so if that ever happens, we would want 2510 * the stack trace. 2511 */ 2512 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) { 2513 ret = -EROFS; 2514 goto out_writepages; 2515 } 2516 2517 if (ext4_should_dioread_nolock(inode)) { 2518 /* 2519 * We may need to convert up to one extent per block in 2520 * the page and we may dirty the inode. 2521 */ 2522 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits); 2523 } 2524 2525 /* 2526 * If we have inline data and arrive here, it means that 2527 * we will soon create the block for the 1st page, so 2528 * we'd better clear the inline data here. 2529 */ 2530 if (ext4_has_inline_data(inode)) { 2531 /* Just inode will be modified... */ 2532 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2533 if (IS_ERR(handle)) { 2534 ret = PTR_ERR(handle); 2535 goto out_writepages; 2536 } 2537 BUG_ON(ext4_test_inode_state(inode, 2538 EXT4_STATE_MAY_INLINE_DATA)); 2539 ext4_destroy_inline_data(handle, inode); 2540 ext4_journal_stop(handle); 2541 } 2542 2543 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2544 range_whole = 1; 2545 2546 if (wbc->range_cyclic) { 2547 writeback_index = mapping->writeback_index; 2548 if (writeback_index) 2549 cycled = 0; 2550 mpd.first_page = writeback_index; 2551 mpd.last_page = -1; 2552 } else { 2553 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT; 2554 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT; 2555 } 2556 2557 mpd.inode = inode; 2558 mpd.wbc = wbc; 2559 ext4_io_submit_init(&mpd.io_submit, wbc); 2560 retry: 2561 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2562 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2563 done = false; 2564 blk_start_plug(&plug); 2565 while (!done && mpd.first_page <= mpd.last_page) { 2566 /* For each extent of pages we use new io_end */ 2567 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2568 if (!mpd.io_submit.io_end) { 2569 ret = -ENOMEM; 2570 break; 2571 } 2572 2573 /* 2574 * We have two constraints: We find one extent to map and we 2575 * must always write out whole page (makes a difference when 2576 * blocksize < pagesize) so that we don't block on IO when we 2577 * try to write out the rest of the page. Journalled mode is 2578 * not supported by delalloc. 2579 */ 2580 BUG_ON(ext4_should_journal_data(inode)); 2581 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2582 2583 /* start a new transaction */ 2584 handle = ext4_journal_start_with_reserve(inode, 2585 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2586 if (IS_ERR(handle)) { 2587 ret = PTR_ERR(handle); 2588 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2589 "%ld pages, ino %lu; err %d", __func__, 2590 wbc->nr_to_write, inode->i_ino, ret); 2591 /* Release allocated io_end */ 2592 ext4_put_io_end(mpd.io_submit.io_end); 2593 break; 2594 } 2595 2596 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2597 ret = mpage_prepare_extent_to_map(&mpd); 2598 if (!ret) { 2599 if (mpd.map.m_len) 2600 ret = mpage_map_and_submit_extent(handle, &mpd, 2601 &give_up_on_write); 2602 else { 2603 /* 2604 * We scanned the whole range (or exhausted 2605 * nr_to_write), submitted what was mapped and 2606 * didn't find anything needing mapping. We are 2607 * done. 2608 */ 2609 done = true; 2610 } 2611 } 2612 ext4_journal_stop(handle); 2613 /* Submit prepared bio */ 2614 ext4_io_submit(&mpd.io_submit); 2615 /* Unlock pages we didn't use */ 2616 mpage_release_unused_pages(&mpd, give_up_on_write); 2617 /* Drop our io_end reference we got from init */ 2618 ext4_put_io_end(mpd.io_submit.io_end); 2619 2620 if (ret == -ENOSPC && sbi->s_journal) { 2621 /* 2622 * Commit the transaction which would 2623 * free blocks released in the transaction 2624 * and try again 2625 */ 2626 jbd2_journal_force_commit_nested(sbi->s_journal); 2627 ret = 0; 2628 continue; 2629 } 2630 /* Fatal error - ENOMEM, EIO... */ 2631 if (ret) 2632 break; 2633 } 2634 blk_finish_plug(&plug); 2635 if (!ret && !cycled && wbc->nr_to_write > 0) { 2636 cycled = 1; 2637 mpd.last_page = writeback_index - 1; 2638 mpd.first_page = 0; 2639 goto retry; 2640 } 2641 2642 /* Update index */ 2643 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2644 /* 2645 * Set the writeback_index so that range_cyclic 2646 * mode will write it back later 2647 */ 2648 mapping->writeback_index = mpd.first_page; 2649 2650 out_writepages: 2651 trace_ext4_writepages_result(inode, wbc, ret, 2652 nr_to_write - wbc->nr_to_write); 2653 return ret; 2654 } 2655 2656 static int ext4_nonda_switch(struct super_block *sb) 2657 { 2658 s64 free_clusters, dirty_clusters; 2659 struct ext4_sb_info *sbi = EXT4_SB(sb); 2660 2661 /* 2662 * switch to non delalloc mode if we are running low 2663 * on free block. The free block accounting via percpu 2664 * counters can get slightly wrong with percpu_counter_batch getting 2665 * accumulated on each CPU without updating global counters 2666 * Delalloc need an accurate free block accounting. So switch 2667 * to non delalloc when we are near to error range. 2668 */ 2669 free_clusters = 2670 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2671 dirty_clusters = 2672 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2673 /* 2674 * Start pushing delalloc when 1/2 of free blocks are dirty. 2675 */ 2676 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2677 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2678 2679 if (2 * free_clusters < 3 * dirty_clusters || 2680 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2681 /* 2682 * free block count is less than 150% of dirty blocks 2683 * or free blocks is less than watermark 2684 */ 2685 return 1; 2686 } 2687 return 0; 2688 } 2689 2690 /* We always reserve for an inode update; the superblock could be there too */ 2691 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len) 2692 { 2693 if (likely(ext4_has_feature_large_file(inode->i_sb))) 2694 return 1; 2695 2696 if (pos + len <= 0x7fffffffULL) 2697 return 1; 2698 2699 /* We might need to update the superblock to set LARGE_FILE */ 2700 return 2; 2701 } 2702 2703 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2704 loff_t pos, unsigned len, unsigned flags, 2705 struct page **pagep, void **fsdata) 2706 { 2707 int ret, retries = 0; 2708 struct page *page; 2709 pgoff_t index; 2710 struct inode *inode = mapping->host; 2711 handle_t *handle; 2712 2713 index = pos >> PAGE_CACHE_SHIFT; 2714 2715 if (ext4_nonda_switch(inode->i_sb)) { 2716 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2717 return ext4_write_begin(file, mapping, pos, 2718 len, flags, pagep, fsdata); 2719 } 2720 *fsdata = (void *)0; 2721 trace_ext4_da_write_begin(inode, pos, len, flags); 2722 2723 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2724 ret = ext4_da_write_inline_data_begin(mapping, inode, 2725 pos, len, flags, 2726 pagep, fsdata); 2727 if (ret < 0) 2728 return ret; 2729 if (ret == 1) 2730 return 0; 2731 } 2732 2733 /* 2734 * grab_cache_page_write_begin() can take a long time if the 2735 * system is thrashing due to memory pressure, or if the page 2736 * is being written back. So grab it first before we start 2737 * the transaction handle. This also allows us to allocate 2738 * the page (if needed) without using GFP_NOFS. 2739 */ 2740 retry_grab: 2741 page = grab_cache_page_write_begin(mapping, index, flags); 2742 if (!page) 2743 return -ENOMEM; 2744 unlock_page(page); 2745 2746 /* 2747 * With delayed allocation, we don't log the i_disksize update 2748 * if there is delayed block allocation. But we still need 2749 * to journalling the i_disksize update if writes to the end 2750 * of file which has an already mapped buffer. 2751 */ 2752 retry_journal: 2753 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 2754 ext4_da_write_credits(inode, pos, len)); 2755 if (IS_ERR(handle)) { 2756 page_cache_release(page); 2757 return PTR_ERR(handle); 2758 } 2759 2760 lock_page(page); 2761 if (page->mapping != mapping) { 2762 /* The page got truncated from under us */ 2763 unlock_page(page); 2764 page_cache_release(page); 2765 ext4_journal_stop(handle); 2766 goto retry_grab; 2767 } 2768 /* In case writeback began while the page was unlocked */ 2769 wait_for_stable_page(page); 2770 2771 #ifdef CONFIG_EXT4_FS_ENCRYPTION 2772 ret = ext4_block_write_begin(page, pos, len, 2773 ext4_da_get_block_prep); 2774 #else 2775 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 2776 #endif 2777 if (ret < 0) { 2778 unlock_page(page); 2779 ext4_journal_stop(handle); 2780 /* 2781 * block_write_begin may have instantiated a few blocks 2782 * outside i_size. Trim these off again. Don't need 2783 * i_size_read because we hold i_mutex. 2784 */ 2785 if (pos + len > inode->i_size) 2786 ext4_truncate_failed_write(inode); 2787 2788 if (ret == -ENOSPC && 2789 ext4_should_retry_alloc(inode->i_sb, &retries)) 2790 goto retry_journal; 2791 2792 page_cache_release(page); 2793 return ret; 2794 } 2795 2796 *pagep = page; 2797 return ret; 2798 } 2799 2800 /* 2801 * Check if we should update i_disksize 2802 * when write to the end of file but not require block allocation 2803 */ 2804 static int ext4_da_should_update_i_disksize(struct page *page, 2805 unsigned long offset) 2806 { 2807 struct buffer_head *bh; 2808 struct inode *inode = page->mapping->host; 2809 unsigned int idx; 2810 int i; 2811 2812 bh = page_buffers(page); 2813 idx = offset >> inode->i_blkbits; 2814 2815 for (i = 0; i < idx; i++) 2816 bh = bh->b_this_page; 2817 2818 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2819 return 0; 2820 return 1; 2821 } 2822 2823 static int ext4_da_write_end(struct file *file, 2824 struct address_space *mapping, 2825 loff_t pos, unsigned len, unsigned copied, 2826 struct page *page, void *fsdata) 2827 { 2828 struct inode *inode = mapping->host; 2829 int ret = 0, ret2; 2830 handle_t *handle = ext4_journal_current_handle(); 2831 loff_t new_i_size; 2832 unsigned long start, end; 2833 int write_mode = (int)(unsigned long)fsdata; 2834 2835 if (write_mode == FALL_BACK_TO_NONDELALLOC) 2836 return ext4_write_end(file, mapping, pos, 2837 len, copied, page, fsdata); 2838 2839 trace_ext4_da_write_end(inode, pos, len, copied); 2840 start = pos & (PAGE_CACHE_SIZE - 1); 2841 end = start + copied - 1; 2842 2843 /* 2844 * generic_write_end() will run mark_inode_dirty() if i_size 2845 * changes. So let's piggyback the i_disksize mark_inode_dirty 2846 * into that. 2847 */ 2848 new_i_size = pos + copied; 2849 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 2850 if (ext4_has_inline_data(inode) || 2851 ext4_da_should_update_i_disksize(page, end)) { 2852 ext4_update_i_disksize(inode, new_i_size); 2853 /* We need to mark inode dirty even if 2854 * new_i_size is less that inode->i_size 2855 * bu greater than i_disksize.(hint delalloc) 2856 */ 2857 ext4_mark_inode_dirty(handle, inode); 2858 } 2859 } 2860 2861 if (write_mode != CONVERT_INLINE_DATA && 2862 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 2863 ext4_has_inline_data(inode)) 2864 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 2865 page); 2866 else 2867 ret2 = generic_write_end(file, mapping, pos, len, copied, 2868 page, fsdata); 2869 2870 copied = ret2; 2871 if (ret2 < 0) 2872 ret = ret2; 2873 ret2 = ext4_journal_stop(handle); 2874 if (!ret) 2875 ret = ret2; 2876 2877 return ret ? ret : copied; 2878 } 2879 2880 static void ext4_da_invalidatepage(struct page *page, unsigned int offset, 2881 unsigned int length) 2882 { 2883 /* 2884 * Drop reserved blocks 2885 */ 2886 BUG_ON(!PageLocked(page)); 2887 if (!page_has_buffers(page)) 2888 goto out; 2889 2890 ext4_da_page_release_reservation(page, offset, length); 2891 2892 out: 2893 ext4_invalidatepage(page, offset, length); 2894 2895 return; 2896 } 2897 2898 /* 2899 * Force all delayed allocation blocks to be allocated for a given inode. 2900 */ 2901 int ext4_alloc_da_blocks(struct inode *inode) 2902 { 2903 trace_ext4_alloc_da_blocks(inode); 2904 2905 if (!EXT4_I(inode)->i_reserved_data_blocks) 2906 return 0; 2907 2908 /* 2909 * We do something simple for now. The filemap_flush() will 2910 * also start triggering a write of the data blocks, which is 2911 * not strictly speaking necessary (and for users of 2912 * laptop_mode, not even desirable). However, to do otherwise 2913 * would require replicating code paths in: 2914 * 2915 * ext4_writepages() -> 2916 * write_cache_pages() ---> (via passed in callback function) 2917 * __mpage_da_writepage() --> 2918 * mpage_add_bh_to_extent() 2919 * mpage_da_map_blocks() 2920 * 2921 * The problem is that write_cache_pages(), located in 2922 * mm/page-writeback.c, marks pages clean in preparation for 2923 * doing I/O, which is not desirable if we're not planning on 2924 * doing I/O at all. 2925 * 2926 * We could call write_cache_pages(), and then redirty all of 2927 * the pages by calling redirty_page_for_writepage() but that 2928 * would be ugly in the extreme. So instead we would need to 2929 * replicate parts of the code in the above functions, 2930 * simplifying them because we wouldn't actually intend to 2931 * write out the pages, but rather only collect contiguous 2932 * logical block extents, call the multi-block allocator, and 2933 * then update the buffer heads with the block allocations. 2934 * 2935 * For now, though, we'll cheat by calling filemap_flush(), 2936 * which will map the blocks, and start the I/O, but not 2937 * actually wait for the I/O to complete. 2938 */ 2939 return filemap_flush(inode->i_mapping); 2940 } 2941 2942 /* 2943 * bmap() is special. It gets used by applications such as lilo and by 2944 * the swapper to find the on-disk block of a specific piece of data. 2945 * 2946 * Naturally, this is dangerous if the block concerned is still in the 2947 * journal. If somebody makes a swapfile on an ext4 data-journaling 2948 * filesystem and enables swap, then they may get a nasty shock when the 2949 * data getting swapped to that swapfile suddenly gets overwritten by 2950 * the original zero's written out previously to the journal and 2951 * awaiting writeback in the kernel's buffer cache. 2952 * 2953 * So, if we see any bmap calls here on a modified, data-journaled file, 2954 * take extra steps to flush any blocks which might be in the cache. 2955 */ 2956 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 2957 { 2958 struct inode *inode = mapping->host; 2959 journal_t *journal; 2960 int err; 2961 2962 /* 2963 * We can get here for an inline file via the FIBMAP ioctl 2964 */ 2965 if (ext4_has_inline_data(inode)) 2966 return 0; 2967 2968 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 2969 test_opt(inode->i_sb, DELALLOC)) { 2970 /* 2971 * With delalloc we want to sync the file 2972 * so that we can make sure we allocate 2973 * blocks for file 2974 */ 2975 filemap_write_and_wait(mapping); 2976 } 2977 2978 if (EXT4_JOURNAL(inode) && 2979 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 2980 /* 2981 * This is a REALLY heavyweight approach, but the use of 2982 * bmap on dirty files is expected to be extremely rare: 2983 * only if we run lilo or swapon on a freshly made file 2984 * do we expect this to happen. 2985 * 2986 * (bmap requires CAP_SYS_RAWIO so this does not 2987 * represent an unprivileged user DOS attack --- we'd be 2988 * in trouble if mortal users could trigger this path at 2989 * will.) 2990 * 2991 * NB. EXT4_STATE_JDATA is not set on files other than 2992 * regular files. If somebody wants to bmap a directory 2993 * or symlink and gets confused because the buffer 2994 * hasn't yet been flushed to disk, they deserve 2995 * everything they get. 2996 */ 2997 2998 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 2999 journal = EXT4_JOURNAL(inode); 3000 jbd2_journal_lock_updates(journal); 3001 err = jbd2_journal_flush(journal); 3002 jbd2_journal_unlock_updates(journal); 3003 3004 if (err) 3005 return 0; 3006 } 3007 3008 return generic_block_bmap(mapping, block, ext4_get_block); 3009 } 3010 3011 static int ext4_readpage(struct file *file, struct page *page) 3012 { 3013 int ret = -EAGAIN; 3014 struct inode *inode = page->mapping->host; 3015 3016 trace_ext4_readpage(page); 3017 3018 if (ext4_has_inline_data(inode)) 3019 ret = ext4_readpage_inline(inode, page); 3020 3021 if (ret == -EAGAIN) 3022 return ext4_mpage_readpages(page->mapping, NULL, page, 1); 3023 3024 return ret; 3025 } 3026 3027 static int 3028 ext4_readpages(struct file *file, struct address_space *mapping, 3029 struct list_head *pages, unsigned nr_pages) 3030 { 3031 struct inode *inode = mapping->host; 3032 3033 /* If the file has inline data, no need to do readpages. */ 3034 if (ext4_has_inline_data(inode)) 3035 return 0; 3036 3037 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages); 3038 } 3039 3040 static void ext4_invalidatepage(struct page *page, unsigned int offset, 3041 unsigned int length) 3042 { 3043 trace_ext4_invalidatepage(page, offset, length); 3044 3045 /* No journalling happens on data buffers when this function is used */ 3046 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 3047 3048 block_invalidatepage(page, offset, length); 3049 } 3050 3051 static int __ext4_journalled_invalidatepage(struct page *page, 3052 unsigned int offset, 3053 unsigned int length) 3054 { 3055 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3056 3057 trace_ext4_journalled_invalidatepage(page, offset, length); 3058 3059 /* 3060 * If it's a full truncate we just forget about the pending dirtying 3061 */ 3062 if (offset == 0 && length == PAGE_CACHE_SIZE) 3063 ClearPageChecked(page); 3064 3065 return jbd2_journal_invalidatepage(journal, page, offset, length); 3066 } 3067 3068 /* Wrapper for aops... */ 3069 static void ext4_journalled_invalidatepage(struct page *page, 3070 unsigned int offset, 3071 unsigned int length) 3072 { 3073 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 3074 } 3075 3076 static int ext4_releasepage(struct page *page, gfp_t wait) 3077 { 3078 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3079 3080 trace_ext4_releasepage(page); 3081 3082 /* Page has dirty journalled data -> cannot release */ 3083 if (PageChecked(page)) 3084 return 0; 3085 if (journal) 3086 return jbd2_journal_try_to_free_buffers(journal, page, wait); 3087 else 3088 return try_to_free_buffers(page); 3089 } 3090 3091 /* 3092 * ext4_get_block used when preparing for a DIO write or buffer write. 3093 * We allocate an uinitialized extent if blocks haven't been allocated. 3094 * The extent will be converted to initialized after the IO is complete. 3095 */ 3096 int ext4_get_block_write(struct inode *inode, sector_t iblock, 3097 struct buffer_head *bh_result, int create) 3098 { 3099 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n", 3100 inode->i_ino, create); 3101 return _ext4_get_block(inode, iblock, bh_result, 3102 EXT4_GET_BLOCKS_IO_CREATE_EXT); 3103 } 3104 3105 static int ext4_get_block_overwrite(struct inode *inode, sector_t iblock, 3106 struct buffer_head *bh_result, int create) 3107 { 3108 int ret; 3109 3110 ext4_debug("ext4_get_block_overwrite: inode %lu, create flag %d\n", 3111 inode->i_ino, create); 3112 ret = _ext4_get_block(inode, iblock, bh_result, 0); 3113 /* 3114 * Blocks should have been preallocated! ext4_file_write_iter() checks 3115 * that. 3116 */ 3117 WARN_ON_ONCE(!buffer_mapped(bh_result)); 3118 3119 return ret; 3120 } 3121 3122 #ifdef CONFIG_FS_DAX 3123 int ext4_dax_mmap_get_block(struct inode *inode, sector_t iblock, 3124 struct buffer_head *bh_result, int create) 3125 { 3126 int ret, err; 3127 int credits; 3128 struct ext4_map_blocks map; 3129 handle_t *handle = NULL; 3130 int flags = 0; 3131 3132 ext4_debug("ext4_dax_mmap_get_block: inode %lu, create flag %d\n", 3133 inode->i_ino, create); 3134 map.m_lblk = iblock; 3135 map.m_len = bh_result->b_size >> inode->i_blkbits; 3136 credits = ext4_chunk_trans_blocks(inode, map.m_len); 3137 if (create) { 3138 flags |= EXT4_GET_BLOCKS_PRE_IO | EXT4_GET_BLOCKS_CREATE_ZERO; 3139 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits); 3140 if (IS_ERR(handle)) { 3141 ret = PTR_ERR(handle); 3142 return ret; 3143 } 3144 } 3145 3146 ret = ext4_map_blocks(handle, inode, &map, flags); 3147 if (create) { 3148 err = ext4_journal_stop(handle); 3149 if (ret >= 0 && err < 0) 3150 ret = err; 3151 } 3152 if (ret <= 0) 3153 goto out; 3154 if (map.m_flags & EXT4_MAP_UNWRITTEN) { 3155 int err2; 3156 3157 /* 3158 * We are protected by i_mmap_sem so we know block cannot go 3159 * away from under us even though we dropped i_data_sem. 3160 * Convert extent to written and write zeros there. 3161 * 3162 * Note: We may get here even when create == 0. 3163 */ 3164 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits); 3165 if (IS_ERR(handle)) { 3166 ret = PTR_ERR(handle); 3167 goto out; 3168 } 3169 3170 err = ext4_map_blocks(handle, inode, &map, 3171 EXT4_GET_BLOCKS_CONVERT | EXT4_GET_BLOCKS_CREATE_ZERO); 3172 if (err < 0) 3173 ret = err; 3174 err2 = ext4_journal_stop(handle); 3175 if (err2 < 0 && ret > 0) 3176 ret = err2; 3177 } 3178 out: 3179 WARN_ON_ONCE(ret == 0 && create); 3180 if (ret > 0) { 3181 map_bh(bh_result, inode->i_sb, map.m_pblk); 3182 bh_result->b_state = (bh_result->b_state & ~EXT4_MAP_FLAGS) | 3183 map.m_flags; 3184 /* 3185 * At least for now we have to clear BH_New so that DAX code 3186 * doesn't attempt to zero blocks again in a racy way. 3187 */ 3188 bh_result->b_state &= ~(1 << BH_New); 3189 bh_result->b_size = map.m_len << inode->i_blkbits; 3190 ret = 0; 3191 } 3192 return ret; 3193 } 3194 #endif 3195 3196 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 3197 ssize_t size, void *private) 3198 { 3199 ext4_io_end_t *io_end = iocb->private; 3200 3201 /* if not async direct IO just return */ 3202 if (!io_end) 3203 return; 3204 3205 ext_debug("ext4_end_io_dio(): io_end 0x%p " 3206 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", 3207 iocb->private, io_end->inode->i_ino, iocb, offset, 3208 size); 3209 3210 iocb->private = NULL; 3211 io_end->offset = offset; 3212 io_end->size = size; 3213 ext4_put_io_end(io_end); 3214 } 3215 3216 /* 3217 * For ext4 extent files, ext4 will do direct-io write to holes, 3218 * preallocated extents, and those write extend the file, no need to 3219 * fall back to buffered IO. 3220 * 3221 * For holes, we fallocate those blocks, mark them as unwritten 3222 * If those blocks were preallocated, we mark sure they are split, but 3223 * still keep the range to write as unwritten. 3224 * 3225 * The unwritten extents will be converted to written when DIO is completed. 3226 * For async direct IO, since the IO may still pending when return, we 3227 * set up an end_io call back function, which will do the conversion 3228 * when async direct IO completed. 3229 * 3230 * If the O_DIRECT write will extend the file then add this inode to the 3231 * orphan list. So recovery will truncate it back to the original size 3232 * if the machine crashes during the write. 3233 * 3234 */ 3235 static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter, 3236 loff_t offset) 3237 { 3238 struct file *file = iocb->ki_filp; 3239 struct inode *inode = file->f_mapping->host; 3240 ssize_t ret; 3241 size_t count = iov_iter_count(iter); 3242 int overwrite = 0; 3243 get_block_t *get_block_func = NULL; 3244 int dio_flags = 0; 3245 loff_t final_size = offset + count; 3246 ext4_io_end_t *io_end = NULL; 3247 3248 /* Use the old path for reads and writes beyond i_size. */ 3249 if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size) 3250 return ext4_ind_direct_IO(iocb, iter, offset); 3251 3252 BUG_ON(iocb->private == NULL); 3253 3254 /* 3255 * Make all waiters for direct IO properly wait also for extent 3256 * conversion. This also disallows race between truncate() and 3257 * overwrite DIO as i_dio_count needs to be incremented under i_mutex. 3258 */ 3259 if (iov_iter_rw(iter) == WRITE) 3260 inode_dio_begin(inode); 3261 3262 /* If we do a overwrite dio, i_mutex locking can be released */ 3263 overwrite = *((int *)iocb->private); 3264 3265 if (overwrite) 3266 inode_unlock(inode); 3267 3268 /* 3269 * We could direct write to holes and fallocate. 3270 * 3271 * Allocated blocks to fill the hole are marked as 3272 * unwritten to prevent parallel buffered read to expose 3273 * the stale data before DIO complete the data IO. 3274 * 3275 * As to previously fallocated extents, ext4 get_block will 3276 * just simply mark the buffer mapped but still keep the 3277 * extents unwritten. 3278 * 3279 * For non AIO case, we will convert those unwritten extents 3280 * to written after return back from blockdev_direct_IO. 3281 * 3282 * For async DIO, the conversion needs to be deferred when the 3283 * IO is completed. The ext4 end_io callback function will be 3284 * called to take care of the conversion work. Here for async 3285 * case, we allocate an io_end structure to hook to the iocb. 3286 */ 3287 iocb->private = NULL; 3288 if (overwrite) { 3289 get_block_func = ext4_get_block_overwrite; 3290 } else { 3291 ext4_inode_aio_set(inode, NULL); 3292 if (!is_sync_kiocb(iocb)) { 3293 io_end = ext4_init_io_end(inode, GFP_NOFS); 3294 if (!io_end) { 3295 ret = -ENOMEM; 3296 goto retake_lock; 3297 } 3298 /* 3299 * Grab reference for DIO. Will be dropped in 3300 * ext4_end_io_dio() 3301 */ 3302 iocb->private = ext4_get_io_end(io_end); 3303 /* 3304 * we save the io structure for current async direct 3305 * IO, so that later ext4_map_blocks() could flag the 3306 * io structure whether there is a unwritten extents 3307 * needs to be converted when IO is completed. 3308 */ 3309 ext4_inode_aio_set(inode, io_end); 3310 } 3311 get_block_func = ext4_get_block_write; 3312 dio_flags = DIO_LOCKING; 3313 } 3314 #ifdef CONFIG_EXT4_FS_ENCRYPTION 3315 BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode)); 3316 #endif 3317 if (IS_DAX(inode)) 3318 ret = dax_do_io(iocb, inode, iter, offset, get_block_func, 3319 ext4_end_io_dio, dio_flags); 3320 else 3321 ret = __blockdev_direct_IO(iocb, inode, 3322 inode->i_sb->s_bdev, iter, offset, 3323 get_block_func, 3324 ext4_end_io_dio, NULL, dio_flags); 3325 3326 /* 3327 * Put our reference to io_end. This can free the io_end structure e.g. 3328 * in sync IO case or in case of error. It can even perform extent 3329 * conversion if all bios we submitted finished before we got here. 3330 * Note that in that case iocb->private can be already set to NULL 3331 * here. 3332 */ 3333 if (io_end) { 3334 ext4_inode_aio_set(inode, NULL); 3335 ext4_put_io_end(io_end); 3336 /* 3337 * When no IO was submitted ext4_end_io_dio() was not 3338 * called so we have to put iocb's reference. 3339 */ 3340 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) { 3341 WARN_ON(iocb->private != io_end); 3342 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN); 3343 ext4_put_io_end(io_end); 3344 iocb->private = NULL; 3345 } 3346 } 3347 if (ret > 0 && !overwrite && ext4_test_inode_state(inode, 3348 EXT4_STATE_DIO_UNWRITTEN)) { 3349 int err; 3350 /* 3351 * for non AIO case, since the IO is already 3352 * completed, we could do the conversion right here 3353 */ 3354 err = ext4_convert_unwritten_extents(NULL, inode, 3355 offset, ret); 3356 if (err < 0) 3357 ret = err; 3358 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3359 } 3360 3361 retake_lock: 3362 if (iov_iter_rw(iter) == WRITE) 3363 inode_dio_end(inode); 3364 /* take i_mutex locking again if we do a ovewrite dio */ 3365 if (overwrite) 3366 inode_lock(inode); 3367 3368 return ret; 3369 } 3370 3371 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter, 3372 loff_t offset) 3373 { 3374 struct file *file = iocb->ki_filp; 3375 struct inode *inode = file->f_mapping->host; 3376 size_t count = iov_iter_count(iter); 3377 ssize_t ret; 3378 3379 #ifdef CONFIG_EXT4_FS_ENCRYPTION 3380 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode)) 3381 return 0; 3382 #endif 3383 3384 /* 3385 * If we are doing data journalling we don't support O_DIRECT 3386 */ 3387 if (ext4_should_journal_data(inode)) 3388 return 0; 3389 3390 /* Let buffer I/O handle the inline data case. */ 3391 if (ext4_has_inline_data(inode)) 3392 return 0; 3393 3394 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter)); 3395 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3396 ret = ext4_ext_direct_IO(iocb, iter, offset); 3397 else 3398 ret = ext4_ind_direct_IO(iocb, iter, offset); 3399 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret); 3400 return ret; 3401 } 3402 3403 /* 3404 * Pages can be marked dirty completely asynchronously from ext4's journalling 3405 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3406 * much here because ->set_page_dirty is called under VFS locks. The page is 3407 * not necessarily locked. 3408 * 3409 * We cannot just dirty the page and leave attached buffers clean, because the 3410 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3411 * or jbddirty because all the journalling code will explode. 3412 * 3413 * So what we do is to mark the page "pending dirty" and next time writepage 3414 * is called, propagate that into the buffers appropriately. 3415 */ 3416 static int ext4_journalled_set_page_dirty(struct page *page) 3417 { 3418 SetPageChecked(page); 3419 return __set_page_dirty_nobuffers(page); 3420 } 3421 3422 static const struct address_space_operations ext4_aops = { 3423 .readpage = ext4_readpage, 3424 .readpages = ext4_readpages, 3425 .writepage = ext4_writepage, 3426 .writepages = ext4_writepages, 3427 .write_begin = ext4_write_begin, 3428 .write_end = ext4_write_end, 3429 .bmap = ext4_bmap, 3430 .invalidatepage = ext4_invalidatepage, 3431 .releasepage = ext4_releasepage, 3432 .direct_IO = ext4_direct_IO, 3433 .migratepage = buffer_migrate_page, 3434 .is_partially_uptodate = block_is_partially_uptodate, 3435 .error_remove_page = generic_error_remove_page, 3436 }; 3437 3438 static const struct address_space_operations ext4_journalled_aops = { 3439 .readpage = ext4_readpage, 3440 .readpages = ext4_readpages, 3441 .writepage = ext4_writepage, 3442 .writepages = ext4_writepages, 3443 .write_begin = ext4_write_begin, 3444 .write_end = ext4_journalled_write_end, 3445 .set_page_dirty = ext4_journalled_set_page_dirty, 3446 .bmap = ext4_bmap, 3447 .invalidatepage = ext4_journalled_invalidatepage, 3448 .releasepage = ext4_releasepage, 3449 .direct_IO = ext4_direct_IO, 3450 .is_partially_uptodate = block_is_partially_uptodate, 3451 .error_remove_page = generic_error_remove_page, 3452 }; 3453 3454 static const struct address_space_operations ext4_da_aops = { 3455 .readpage = ext4_readpage, 3456 .readpages = ext4_readpages, 3457 .writepage = ext4_writepage, 3458 .writepages = ext4_writepages, 3459 .write_begin = ext4_da_write_begin, 3460 .write_end = ext4_da_write_end, 3461 .bmap = ext4_bmap, 3462 .invalidatepage = ext4_da_invalidatepage, 3463 .releasepage = ext4_releasepage, 3464 .direct_IO = ext4_direct_IO, 3465 .migratepage = buffer_migrate_page, 3466 .is_partially_uptodate = block_is_partially_uptodate, 3467 .error_remove_page = generic_error_remove_page, 3468 }; 3469 3470 void ext4_set_aops(struct inode *inode) 3471 { 3472 switch (ext4_inode_journal_mode(inode)) { 3473 case EXT4_INODE_ORDERED_DATA_MODE: 3474 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3475 break; 3476 case EXT4_INODE_WRITEBACK_DATA_MODE: 3477 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3478 break; 3479 case EXT4_INODE_JOURNAL_DATA_MODE: 3480 inode->i_mapping->a_ops = &ext4_journalled_aops; 3481 return; 3482 default: 3483 BUG(); 3484 } 3485 if (test_opt(inode->i_sb, DELALLOC)) 3486 inode->i_mapping->a_ops = &ext4_da_aops; 3487 else 3488 inode->i_mapping->a_ops = &ext4_aops; 3489 } 3490 3491 static int __ext4_block_zero_page_range(handle_t *handle, 3492 struct address_space *mapping, loff_t from, loff_t length) 3493 { 3494 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3495 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3496 unsigned blocksize, pos; 3497 ext4_lblk_t iblock; 3498 struct inode *inode = mapping->host; 3499 struct buffer_head *bh; 3500 struct page *page; 3501 int err = 0; 3502 3503 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 3504 mapping_gfp_constraint(mapping, ~__GFP_FS)); 3505 if (!page) 3506 return -ENOMEM; 3507 3508 blocksize = inode->i_sb->s_blocksize; 3509 3510 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3511 3512 if (!page_has_buffers(page)) 3513 create_empty_buffers(page, blocksize, 0); 3514 3515 /* Find the buffer that contains "offset" */ 3516 bh = page_buffers(page); 3517 pos = blocksize; 3518 while (offset >= pos) { 3519 bh = bh->b_this_page; 3520 iblock++; 3521 pos += blocksize; 3522 } 3523 if (buffer_freed(bh)) { 3524 BUFFER_TRACE(bh, "freed: skip"); 3525 goto unlock; 3526 } 3527 if (!buffer_mapped(bh)) { 3528 BUFFER_TRACE(bh, "unmapped"); 3529 ext4_get_block(inode, iblock, bh, 0); 3530 /* unmapped? It's a hole - nothing to do */ 3531 if (!buffer_mapped(bh)) { 3532 BUFFER_TRACE(bh, "still unmapped"); 3533 goto unlock; 3534 } 3535 } 3536 3537 /* Ok, it's mapped. Make sure it's up-to-date */ 3538 if (PageUptodate(page)) 3539 set_buffer_uptodate(bh); 3540 3541 if (!buffer_uptodate(bh)) { 3542 err = -EIO; 3543 ll_rw_block(READ, 1, &bh); 3544 wait_on_buffer(bh); 3545 /* Uhhuh. Read error. Complain and punt. */ 3546 if (!buffer_uptodate(bh)) 3547 goto unlock; 3548 if (S_ISREG(inode->i_mode) && 3549 ext4_encrypted_inode(inode)) { 3550 /* We expect the key to be set. */ 3551 BUG_ON(!ext4_has_encryption_key(inode)); 3552 BUG_ON(blocksize != PAGE_CACHE_SIZE); 3553 WARN_ON_ONCE(ext4_decrypt(page)); 3554 } 3555 } 3556 if (ext4_should_journal_data(inode)) { 3557 BUFFER_TRACE(bh, "get write access"); 3558 err = ext4_journal_get_write_access(handle, bh); 3559 if (err) 3560 goto unlock; 3561 } 3562 zero_user(page, offset, length); 3563 BUFFER_TRACE(bh, "zeroed end of block"); 3564 3565 if (ext4_should_journal_data(inode)) { 3566 err = ext4_handle_dirty_metadata(handle, inode, bh); 3567 } else { 3568 err = 0; 3569 mark_buffer_dirty(bh); 3570 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) 3571 err = ext4_jbd2_file_inode(handle, inode); 3572 } 3573 3574 unlock: 3575 unlock_page(page); 3576 page_cache_release(page); 3577 return err; 3578 } 3579 3580 /* 3581 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3582 * starting from file offset 'from'. The range to be zero'd must 3583 * be contained with in one block. If the specified range exceeds 3584 * the end of the block it will be shortened to end of the block 3585 * that cooresponds to 'from' 3586 */ 3587 static int ext4_block_zero_page_range(handle_t *handle, 3588 struct address_space *mapping, loff_t from, loff_t length) 3589 { 3590 struct inode *inode = mapping->host; 3591 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3592 unsigned blocksize = inode->i_sb->s_blocksize; 3593 unsigned max = blocksize - (offset & (blocksize - 1)); 3594 3595 /* 3596 * correct length if it does not fall between 3597 * 'from' and the end of the block 3598 */ 3599 if (length > max || length < 0) 3600 length = max; 3601 3602 if (IS_DAX(inode)) 3603 return dax_zero_page_range(inode, from, length, ext4_get_block); 3604 return __ext4_block_zero_page_range(handle, mapping, from, length); 3605 } 3606 3607 /* 3608 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3609 * up to the end of the block which corresponds to `from'. 3610 * This required during truncate. We need to physically zero the tail end 3611 * of that block so it doesn't yield old data if the file is later grown. 3612 */ 3613 static int ext4_block_truncate_page(handle_t *handle, 3614 struct address_space *mapping, loff_t from) 3615 { 3616 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3617 unsigned length; 3618 unsigned blocksize; 3619 struct inode *inode = mapping->host; 3620 3621 blocksize = inode->i_sb->s_blocksize; 3622 length = blocksize - (offset & (blocksize - 1)); 3623 3624 return ext4_block_zero_page_range(handle, mapping, from, length); 3625 } 3626 3627 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3628 loff_t lstart, loff_t length) 3629 { 3630 struct super_block *sb = inode->i_sb; 3631 struct address_space *mapping = inode->i_mapping; 3632 unsigned partial_start, partial_end; 3633 ext4_fsblk_t start, end; 3634 loff_t byte_end = (lstart + length - 1); 3635 int err = 0; 3636 3637 partial_start = lstart & (sb->s_blocksize - 1); 3638 partial_end = byte_end & (sb->s_blocksize - 1); 3639 3640 start = lstart >> sb->s_blocksize_bits; 3641 end = byte_end >> sb->s_blocksize_bits; 3642 3643 /* Handle partial zero within the single block */ 3644 if (start == end && 3645 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3646 err = ext4_block_zero_page_range(handle, mapping, 3647 lstart, length); 3648 return err; 3649 } 3650 /* Handle partial zero out on the start of the range */ 3651 if (partial_start) { 3652 err = ext4_block_zero_page_range(handle, mapping, 3653 lstart, sb->s_blocksize); 3654 if (err) 3655 return err; 3656 } 3657 /* Handle partial zero out on the end of the range */ 3658 if (partial_end != sb->s_blocksize - 1) 3659 err = ext4_block_zero_page_range(handle, mapping, 3660 byte_end - partial_end, 3661 partial_end + 1); 3662 return err; 3663 } 3664 3665 int ext4_can_truncate(struct inode *inode) 3666 { 3667 if (S_ISREG(inode->i_mode)) 3668 return 1; 3669 if (S_ISDIR(inode->i_mode)) 3670 return 1; 3671 if (S_ISLNK(inode->i_mode)) 3672 return !ext4_inode_is_fast_symlink(inode); 3673 return 0; 3674 } 3675 3676 /* 3677 * We have to make sure i_disksize gets properly updated before we truncate 3678 * page cache due to hole punching or zero range. Otherwise i_disksize update 3679 * can get lost as it may have been postponed to submission of writeback but 3680 * that will never happen after we truncate page cache. 3681 */ 3682 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 3683 loff_t len) 3684 { 3685 handle_t *handle; 3686 loff_t size = i_size_read(inode); 3687 3688 WARN_ON(!inode_is_locked(inode)); 3689 if (offset > size || offset + len < size) 3690 return 0; 3691 3692 if (EXT4_I(inode)->i_disksize >= size) 3693 return 0; 3694 3695 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 3696 if (IS_ERR(handle)) 3697 return PTR_ERR(handle); 3698 ext4_update_i_disksize(inode, size); 3699 ext4_mark_inode_dirty(handle, inode); 3700 ext4_journal_stop(handle); 3701 3702 return 0; 3703 } 3704 3705 /* 3706 * ext4_punch_hole: punches a hole in a file by releaseing the blocks 3707 * associated with the given offset and length 3708 * 3709 * @inode: File inode 3710 * @offset: The offset where the hole will begin 3711 * @len: The length of the hole 3712 * 3713 * Returns: 0 on success or negative on failure 3714 */ 3715 3716 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 3717 { 3718 struct super_block *sb = inode->i_sb; 3719 ext4_lblk_t first_block, stop_block; 3720 struct address_space *mapping = inode->i_mapping; 3721 loff_t first_block_offset, last_block_offset; 3722 handle_t *handle; 3723 unsigned int credits; 3724 int ret = 0; 3725 3726 if (!S_ISREG(inode->i_mode)) 3727 return -EOPNOTSUPP; 3728 3729 trace_ext4_punch_hole(inode, offset, length, 0); 3730 3731 /* 3732 * Write out all dirty pages to avoid race conditions 3733 * Then release them. 3734 */ 3735 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 3736 ret = filemap_write_and_wait_range(mapping, offset, 3737 offset + length - 1); 3738 if (ret) 3739 return ret; 3740 } 3741 3742 inode_lock(inode); 3743 3744 /* No need to punch hole beyond i_size */ 3745 if (offset >= inode->i_size) 3746 goto out_mutex; 3747 3748 /* 3749 * If the hole extends beyond i_size, set the hole 3750 * to end after the page that contains i_size 3751 */ 3752 if (offset + length > inode->i_size) { 3753 length = inode->i_size + 3754 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) - 3755 offset; 3756 } 3757 3758 if (offset & (sb->s_blocksize - 1) || 3759 (offset + length) & (sb->s_blocksize - 1)) { 3760 /* 3761 * Attach jinode to inode for jbd2 if we do any zeroing of 3762 * partial block 3763 */ 3764 ret = ext4_inode_attach_jinode(inode); 3765 if (ret < 0) 3766 goto out_mutex; 3767 3768 } 3769 3770 /* Wait all existing dio workers, newcomers will block on i_mutex */ 3771 ext4_inode_block_unlocked_dio(inode); 3772 inode_dio_wait(inode); 3773 3774 /* 3775 * Prevent page faults from reinstantiating pages we have released from 3776 * page cache. 3777 */ 3778 down_write(&EXT4_I(inode)->i_mmap_sem); 3779 first_block_offset = round_up(offset, sb->s_blocksize); 3780 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 3781 3782 /* Now release the pages and zero block aligned part of pages*/ 3783 if (last_block_offset > first_block_offset) { 3784 ret = ext4_update_disksize_before_punch(inode, offset, length); 3785 if (ret) 3786 goto out_dio; 3787 truncate_pagecache_range(inode, first_block_offset, 3788 last_block_offset); 3789 } 3790 3791 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3792 credits = ext4_writepage_trans_blocks(inode); 3793 else 3794 credits = ext4_blocks_for_truncate(inode); 3795 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3796 if (IS_ERR(handle)) { 3797 ret = PTR_ERR(handle); 3798 ext4_std_error(sb, ret); 3799 goto out_dio; 3800 } 3801 3802 ret = ext4_zero_partial_blocks(handle, inode, offset, 3803 length); 3804 if (ret) 3805 goto out_stop; 3806 3807 first_block = (offset + sb->s_blocksize - 1) >> 3808 EXT4_BLOCK_SIZE_BITS(sb); 3809 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 3810 3811 /* If there are no blocks to remove, return now */ 3812 if (first_block >= stop_block) 3813 goto out_stop; 3814 3815 down_write(&EXT4_I(inode)->i_data_sem); 3816 ext4_discard_preallocations(inode); 3817 3818 ret = ext4_es_remove_extent(inode, first_block, 3819 stop_block - first_block); 3820 if (ret) { 3821 up_write(&EXT4_I(inode)->i_data_sem); 3822 goto out_stop; 3823 } 3824 3825 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3826 ret = ext4_ext_remove_space(inode, first_block, 3827 stop_block - 1); 3828 else 3829 ret = ext4_ind_remove_space(handle, inode, first_block, 3830 stop_block); 3831 3832 up_write(&EXT4_I(inode)->i_data_sem); 3833 if (IS_SYNC(inode)) 3834 ext4_handle_sync(handle); 3835 3836 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3837 ext4_mark_inode_dirty(handle, inode); 3838 out_stop: 3839 ext4_journal_stop(handle); 3840 out_dio: 3841 up_write(&EXT4_I(inode)->i_mmap_sem); 3842 ext4_inode_resume_unlocked_dio(inode); 3843 out_mutex: 3844 inode_unlock(inode); 3845 return ret; 3846 } 3847 3848 int ext4_inode_attach_jinode(struct inode *inode) 3849 { 3850 struct ext4_inode_info *ei = EXT4_I(inode); 3851 struct jbd2_inode *jinode; 3852 3853 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 3854 return 0; 3855 3856 jinode = jbd2_alloc_inode(GFP_KERNEL); 3857 spin_lock(&inode->i_lock); 3858 if (!ei->jinode) { 3859 if (!jinode) { 3860 spin_unlock(&inode->i_lock); 3861 return -ENOMEM; 3862 } 3863 ei->jinode = jinode; 3864 jbd2_journal_init_jbd_inode(ei->jinode, inode); 3865 jinode = NULL; 3866 } 3867 spin_unlock(&inode->i_lock); 3868 if (unlikely(jinode != NULL)) 3869 jbd2_free_inode(jinode); 3870 return 0; 3871 } 3872 3873 /* 3874 * ext4_truncate() 3875 * 3876 * We block out ext4_get_block() block instantiations across the entire 3877 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 3878 * simultaneously on behalf of the same inode. 3879 * 3880 * As we work through the truncate and commit bits of it to the journal there 3881 * is one core, guiding principle: the file's tree must always be consistent on 3882 * disk. We must be able to restart the truncate after a crash. 3883 * 3884 * The file's tree may be transiently inconsistent in memory (although it 3885 * probably isn't), but whenever we close off and commit a journal transaction, 3886 * the contents of (the filesystem + the journal) must be consistent and 3887 * restartable. It's pretty simple, really: bottom up, right to left (although 3888 * left-to-right works OK too). 3889 * 3890 * Note that at recovery time, journal replay occurs *before* the restart of 3891 * truncate against the orphan inode list. 3892 * 3893 * The committed inode has the new, desired i_size (which is the same as 3894 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 3895 * that this inode's truncate did not complete and it will again call 3896 * ext4_truncate() to have another go. So there will be instantiated blocks 3897 * to the right of the truncation point in a crashed ext4 filesystem. But 3898 * that's fine - as long as they are linked from the inode, the post-crash 3899 * ext4_truncate() run will find them and release them. 3900 */ 3901 void ext4_truncate(struct inode *inode) 3902 { 3903 struct ext4_inode_info *ei = EXT4_I(inode); 3904 unsigned int credits; 3905 handle_t *handle; 3906 struct address_space *mapping = inode->i_mapping; 3907 3908 /* 3909 * There is a possibility that we're either freeing the inode 3910 * or it's a completely new inode. In those cases we might not 3911 * have i_mutex locked because it's not necessary. 3912 */ 3913 if (!(inode->i_state & (I_NEW|I_FREEING))) 3914 WARN_ON(!inode_is_locked(inode)); 3915 trace_ext4_truncate_enter(inode); 3916 3917 if (!ext4_can_truncate(inode)) 3918 return; 3919 3920 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3921 3922 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 3923 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 3924 3925 if (ext4_has_inline_data(inode)) { 3926 int has_inline = 1; 3927 3928 ext4_inline_data_truncate(inode, &has_inline); 3929 if (has_inline) 3930 return; 3931 } 3932 3933 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 3934 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 3935 if (ext4_inode_attach_jinode(inode) < 0) 3936 return; 3937 } 3938 3939 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3940 credits = ext4_writepage_trans_blocks(inode); 3941 else 3942 credits = ext4_blocks_for_truncate(inode); 3943 3944 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3945 if (IS_ERR(handle)) { 3946 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 3947 return; 3948 } 3949 3950 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 3951 ext4_block_truncate_page(handle, mapping, inode->i_size); 3952 3953 /* 3954 * We add the inode to the orphan list, so that if this 3955 * truncate spans multiple transactions, and we crash, we will 3956 * resume the truncate when the filesystem recovers. It also 3957 * marks the inode dirty, to catch the new size. 3958 * 3959 * Implication: the file must always be in a sane, consistent 3960 * truncatable state while each transaction commits. 3961 */ 3962 if (ext4_orphan_add(handle, inode)) 3963 goto out_stop; 3964 3965 down_write(&EXT4_I(inode)->i_data_sem); 3966 3967 ext4_discard_preallocations(inode); 3968 3969 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3970 ext4_ext_truncate(handle, inode); 3971 else 3972 ext4_ind_truncate(handle, inode); 3973 3974 up_write(&ei->i_data_sem); 3975 3976 if (IS_SYNC(inode)) 3977 ext4_handle_sync(handle); 3978 3979 out_stop: 3980 /* 3981 * If this was a simple ftruncate() and the file will remain alive, 3982 * then we need to clear up the orphan record which we created above. 3983 * However, if this was a real unlink then we were called by 3984 * ext4_evict_inode(), and we allow that function to clean up the 3985 * orphan info for us. 3986 */ 3987 if (inode->i_nlink) 3988 ext4_orphan_del(handle, inode); 3989 3990 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3991 ext4_mark_inode_dirty(handle, inode); 3992 ext4_journal_stop(handle); 3993 3994 trace_ext4_truncate_exit(inode); 3995 } 3996 3997 /* 3998 * ext4_get_inode_loc returns with an extra refcount against the inode's 3999 * underlying buffer_head on success. If 'in_mem' is true, we have all 4000 * data in memory that is needed to recreate the on-disk version of this 4001 * inode. 4002 */ 4003 static int __ext4_get_inode_loc(struct inode *inode, 4004 struct ext4_iloc *iloc, int in_mem) 4005 { 4006 struct ext4_group_desc *gdp; 4007 struct buffer_head *bh; 4008 struct super_block *sb = inode->i_sb; 4009 ext4_fsblk_t block; 4010 int inodes_per_block, inode_offset; 4011 4012 iloc->bh = NULL; 4013 if (!ext4_valid_inum(sb, inode->i_ino)) 4014 return -EFSCORRUPTED; 4015 4016 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 4017 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4018 if (!gdp) 4019 return -EIO; 4020 4021 /* 4022 * Figure out the offset within the block group inode table 4023 */ 4024 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4025 inode_offset = ((inode->i_ino - 1) % 4026 EXT4_INODES_PER_GROUP(sb)); 4027 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 4028 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4029 4030 bh = sb_getblk(sb, block); 4031 if (unlikely(!bh)) 4032 return -ENOMEM; 4033 if (!buffer_uptodate(bh)) { 4034 lock_buffer(bh); 4035 4036 /* 4037 * If the buffer has the write error flag, we have failed 4038 * to write out another inode in the same block. In this 4039 * case, we don't have to read the block because we may 4040 * read the old inode data successfully. 4041 */ 4042 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 4043 set_buffer_uptodate(bh); 4044 4045 if (buffer_uptodate(bh)) { 4046 /* someone brought it uptodate while we waited */ 4047 unlock_buffer(bh); 4048 goto has_buffer; 4049 } 4050 4051 /* 4052 * If we have all information of the inode in memory and this 4053 * is the only valid inode in the block, we need not read the 4054 * block. 4055 */ 4056 if (in_mem) { 4057 struct buffer_head *bitmap_bh; 4058 int i, start; 4059 4060 start = inode_offset & ~(inodes_per_block - 1); 4061 4062 /* Is the inode bitmap in cache? */ 4063 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4064 if (unlikely(!bitmap_bh)) 4065 goto make_io; 4066 4067 /* 4068 * If the inode bitmap isn't in cache then the 4069 * optimisation may end up performing two reads instead 4070 * of one, so skip it. 4071 */ 4072 if (!buffer_uptodate(bitmap_bh)) { 4073 brelse(bitmap_bh); 4074 goto make_io; 4075 } 4076 for (i = start; i < start + inodes_per_block; i++) { 4077 if (i == inode_offset) 4078 continue; 4079 if (ext4_test_bit(i, bitmap_bh->b_data)) 4080 break; 4081 } 4082 brelse(bitmap_bh); 4083 if (i == start + inodes_per_block) { 4084 /* all other inodes are free, so skip I/O */ 4085 memset(bh->b_data, 0, bh->b_size); 4086 set_buffer_uptodate(bh); 4087 unlock_buffer(bh); 4088 goto has_buffer; 4089 } 4090 } 4091 4092 make_io: 4093 /* 4094 * If we need to do any I/O, try to pre-readahead extra 4095 * blocks from the inode table. 4096 */ 4097 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4098 ext4_fsblk_t b, end, table; 4099 unsigned num; 4100 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4101 4102 table = ext4_inode_table(sb, gdp); 4103 /* s_inode_readahead_blks is always a power of 2 */ 4104 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4105 if (table > b) 4106 b = table; 4107 end = b + ra_blks; 4108 num = EXT4_INODES_PER_GROUP(sb); 4109 if (ext4_has_group_desc_csum(sb)) 4110 num -= ext4_itable_unused_count(sb, gdp); 4111 table += num / inodes_per_block; 4112 if (end > table) 4113 end = table; 4114 while (b <= end) 4115 sb_breadahead(sb, b++); 4116 } 4117 4118 /* 4119 * There are other valid inodes in the buffer, this inode 4120 * has in-inode xattrs, or we don't have this inode in memory. 4121 * Read the block from disk. 4122 */ 4123 trace_ext4_load_inode(inode); 4124 get_bh(bh); 4125 bh->b_end_io = end_buffer_read_sync; 4126 submit_bh(READ | REQ_META | REQ_PRIO, bh); 4127 wait_on_buffer(bh); 4128 if (!buffer_uptodate(bh)) { 4129 EXT4_ERROR_INODE_BLOCK(inode, block, 4130 "unable to read itable block"); 4131 brelse(bh); 4132 return -EIO; 4133 } 4134 } 4135 has_buffer: 4136 iloc->bh = bh; 4137 return 0; 4138 } 4139 4140 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4141 { 4142 /* We have all inode data except xattrs in memory here. */ 4143 return __ext4_get_inode_loc(inode, iloc, 4144 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 4145 } 4146 4147 void ext4_set_inode_flags(struct inode *inode) 4148 { 4149 unsigned int flags = EXT4_I(inode)->i_flags; 4150 unsigned int new_fl = 0; 4151 4152 if (flags & EXT4_SYNC_FL) 4153 new_fl |= S_SYNC; 4154 if (flags & EXT4_APPEND_FL) 4155 new_fl |= S_APPEND; 4156 if (flags & EXT4_IMMUTABLE_FL) 4157 new_fl |= S_IMMUTABLE; 4158 if (flags & EXT4_NOATIME_FL) 4159 new_fl |= S_NOATIME; 4160 if (flags & EXT4_DIRSYNC_FL) 4161 new_fl |= S_DIRSYNC; 4162 if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode)) 4163 new_fl |= S_DAX; 4164 inode_set_flags(inode, new_fl, 4165 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX); 4166 } 4167 4168 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 4169 void ext4_get_inode_flags(struct ext4_inode_info *ei) 4170 { 4171 unsigned int vfs_fl; 4172 unsigned long old_fl, new_fl; 4173 4174 do { 4175 vfs_fl = ei->vfs_inode.i_flags; 4176 old_fl = ei->i_flags; 4177 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 4178 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL| 4179 EXT4_DIRSYNC_FL); 4180 if (vfs_fl & S_SYNC) 4181 new_fl |= EXT4_SYNC_FL; 4182 if (vfs_fl & S_APPEND) 4183 new_fl |= EXT4_APPEND_FL; 4184 if (vfs_fl & S_IMMUTABLE) 4185 new_fl |= EXT4_IMMUTABLE_FL; 4186 if (vfs_fl & S_NOATIME) 4187 new_fl |= EXT4_NOATIME_FL; 4188 if (vfs_fl & S_DIRSYNC) 4189 new_fl |= EXT4_DIRSYNC_FL; 4190 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl); 4191 } 4192 4193 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4194 struct ext4_inode_info *ei) 4195 { 4196 blkcnt_t i_blocks ; 4197 struct inode *inode = &(ei->vfs_inode); 4198 struct super_block *sb = inode->i_sb; 4199 4200 if (ext4_has_feature_huge_file(sb)) { 4201 /* we are using combined 48 bit field */ 4202 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4203 le32_to_cpu(raw_inode->i_blocks_lo); 4204 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4205 /* i_blocks represent file system block size */ 4206 return i_blocks << (inode->i_blkbits - 9); 4207 } else { 4208 return i_blocks; 4209 } 4210 } else { 4211 return le32_to_cpu(raw_inode->i_blocks_lo); 4212 } 4213 } 4214 4215 static inline void ext4_iget_extra_inode(struct inode *inode, 4216 struct ext4_inode *raw_inode, 4217 struct ext4_inode_info *ei) 4218 { 4219 __le32 *magic = (void *)raw_inode + 4220 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4221 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4222 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4223 ext4_find_inline_data_nolock(inode); 4224 } else 4225 EXT4_I(inode)->i_inline_off = 0; 4226 } 4227 4228 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4229 { 4230 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, EXT4_FEATURE_RO_COMPAT_PROJECT)) 4231 return -EOPNOTSUPP; 4232 *projid = EXT4_I(inode)->i_projid; 4233 return 0; 4234 } 4235 4236 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 4237 { 4238 struct ext4_iloc iloc; 4239 struct ext4_inode *raw_inode; 4240 struct ext4_inode_info *ei; 4241 struct inode *inode; 4242 journal_t *journal = EXT4_SB(sb)->s_journal; 4243 long ret; 4244 int block; 4245 uid_t i_uid; 4246 gid_t i_gid; 4247 projid_t i_projid; 4248 4249 inode = iget_locked(sb, ino); 4250 if (!inode) 4251 return ERR_PTR(-ENOMEM); 4252 if (!(inode->i_state & I_NEW)) 4253 return inode; 4254 4255 ei = EXT4_I(inode); 4256 iloc.bh = NULL; 4257 4258 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4259 if (ret < 0) 4260 goto bad_inode; 4261 raw_inode = ext4_raw_inode(&iloc); 4262 4263 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4264 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4265 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4266 EXT4_INODE_SIZE(inode->i_sb)) { 4267 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)", 4268 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize, 4269 EXT4_INODE_SIZE(inode->i_sb)); 4270 ret = -EFSCORRUPTED; 4271 goto bad_inode; 4272 } 4273 } else 4274 ei->i_extra_isize = 0; 4275 4276 /* Precompute checksum seed for inode metadata */ 4277 if (ext4_has_metadata_csum(sb)) { 4278 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4279 __u32 csum; 4280 __le32 inum = cpu_to_le32(inode->i_ino); 4281 __le32 gen = raw_inode->i_generation; 4282 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4283 sizeof(inum)); 4284 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4285 sizeof(gen)); 4286 } 4287 4288 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 4289 EXT4_ERROR_INODE(inode, "checksum invalid"); 4290 ret = -EFSBADCRC; 4291 goto bad_inode; 4292 } 4293 4294 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4295 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4296 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4297 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_PROJECT) && 4298 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4299 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4300 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4301 else 4302 i_projid = EXT4_DEF_PROJID; 4303 4304 if (!(test_opt(inode->i_sb, NO_UID32))) { 4305 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4306 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4307 } 4308 i_uid_write(inode, i_uid); 4309 i_gid_write(inode, i_gid); 4310 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4311 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4312 4313 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4314 ei->i_inline_off = 0; 4315 ei->i_dir_start_lookup = 0; 4316 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4317 /* We now have enough fields to check if the inode was active or not. 4318 * This is needed because nfsd might try to access dead inodes 4319 * the test is that same one that e2fsck uses 4320 * NeilBrown 1999oct15 4321 */ 4322 if (inode->i_nlink == 0) { 4323 if ((inode->i_mode == 0 || 4324 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4325 ino != EXT4_BOOT_LOADER_INO) { 4326 /* this inode is deleted */ 4327 ret = -ESTALE; 4328 goto bad_inode; 4329 } 4330 /* The only unlinked inodes we let through here have 4331 * valid i_mode and are being read by the orphan 4332 * recovery code: that's fine, we're about to complete 4333 * the process of deleting those. 4334 * OR it is the EXT4_BOOT_LOADER_INO which is 4335 * not initialized on a new filesystem. */ 4336 } 4337 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4338 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4339 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4340 if (ext4_has_feature_64bit(sb)) 4341 ei->i_file_acl |= 4342 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4343 inode->i_size = ext4_isize(raw_inode); 4344 ei->i_disksize = inode->i_size; 4345 #ifdef CONFIG_QUOTA 4346 ei->i_reserved_quota = 0; 4347 #endif 4348 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4349 ei->i_block_group = iloc.block_group; 4350 ei->i_last_alloc_group = ~0; 4351 /* 4352 * NOTE! The in-memory inode i_data array is in little-endian order 4353 * even on big-endian machines: we do NOT byteswap the block numbers! 4354 */ 4355 for (block = 0; block < EXT4_N_BLOCKS; block++) 4356 ei->i_data[block] = raw_inode->i_block[block]; 4357 INIT_LIST_HEAD(&ei->i_orphan); 4358 4359 /* 4360 * Set transaction id's of transactions that have to be committed 4361 * to finish f[data]sync. We set them to currently running transaction 4362 * as we cannot be sure that the inode or some of its metadata isn't 4363 * part of the transaction - the inode could have been reclaimed and 4364 * now it is reread from disk. 4365 */ 4366 if (journal) { 4367 transaction_t *transaction; 4368 tid_t tid; 4369 4370 read_lock(&journal->j_state_lock); 4371 if (journal->j_running_transaction) 4372 transaction = journal->j_running_transaction; 4373 else 4374 transaction = journal->j_committing_transaction; 4375 if (transaction) 4376 tid = transaction->t_tid; 4377 else 4378 tid = journal->j_commit_sequence; 4379 read_unlock(&journal->j_state_lock); 4380 ei->i_sync_tid = tid; 4381 ei->i_datasync_tid = tid; 4382 } 4383 4384 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4385 if (ei->i_extra_isize == 0) { 4386 /* The extra space is currently unused. Use it. */ 4387 ei->i_extra_isize = sizeof(struct ext4_inode) - 4388 EXT4_GOOD_OLD_INODE_SIZE; 4389 } else { 4390 ext4_iget_extra_inode(inode, raw_inode, ei); 4391 } 4392 } 4393 4394 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4395 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4396 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4397 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4398 4399 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4400 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4401 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4402 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4403 inode->i_version |= 4404 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4405 } 4406 } 4407 4408 ret = 0; 4409 if (ei->i_file_acl && 4410 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 4411 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 4412 ei->i_file_acl); 4413 ret = -EFSCORRUPTED; 4414 goto bad_inode; 4415 } else if (!ext4_has_inline_data(inode)) { 4416 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 4417 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4418 (S_ISLNK(inode->i_mode) && 4419 !ext4_inode_is_fast_symlink(inode)))) 4420 /* Validate extent which is part of inode */ 4421 ret = ext4_ext_check_inode(inode); 4422 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4423 (S_ISLNK(inode->i_mode) && 4424 !ext4_inode_is_fast_symlink(inode))) { 4425 /* Validate block references which are part of inode */ 4426 ret = ext4_ind_check_inode(inode); 4427 } 4428 } 4429 if (ret) 4430 goto bad_inode; 4431 4432 if (S_ISREG(inode->i_mode)) { 4433 inode->i_op = &ext4_file_inode_operations; 4434 inode->i_fop = &ext4_file_operations; 4435 ext4_set_aops(inode); 4436 } else if (S_ISDIR(inode->i_mode)) { 4437 inode->i_op = &ext4_dir_inode_operations; 4438 inode->i_fop = &ext4_dir_operations; 4439 } else if (S_ISLNK(inode->i_mode)) { 4440 if (ext4_encrypted_inode(inode)) { 4441 inode->i_op = &ext4_encrypted_symlink_inode_operations; 4442 ext4_set_aops(inode); 4443 } else if (ext4_inode_is_fast_symlink(inode)) { 4444 inode->i_link = (char *)ei->i_data; 4445 inode->i_op = &ext4_fast_symlink_inode_operations; 4446 nd_terminate_link(ei->i_data, inode->i_size, 4447 sizeof(ei->i_data) - 1); 4448 } else { 4449 inode->i_op = &ext4_symlink_inode_operations; 4450 ext4_set_aops(inode); 4451 } 4452 inode_nohighmem(inode); 4453 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4454 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4455 inode->i_op = &ext4_special_inode_operations; 4456 if (raw_inode->i_block[0]) 4457 init_special_inode(inode, inode->i_mode, 4458 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4459 else 4460 init_special_inode(inode, inode->i_mode, 4461 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4462 } else if (ino == EXT4_BOOT_LOADER_INO) { 4463 make_bad_inode(inode); 4464 } else { 4465 ret = -EFSCORRUPTED; 4466 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 4467 goto bad_inode; 4468 } 4469 brelse(iloc.bh); 4470 ext4_set_inode_flags(inode); 4471 unlock_new_inode(inode); 4472 return inode; 4473 4474 bad_inode: 4475 brelse(iloc.bh); 4476 iget_failed(inode); 4477 return ERR_PTR(ret); 4478 } 4479 4480 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino) 4481 { 4482 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 4483 return ERR_PTR(-EFSCORRUPTED); 4484 return ext4_iget(sb, ino); 4485 } 4486 4487 static int ext4_inode_blocks_set(handle_t *handle, 4488 struct ext4_inode *raw_inode, 4489 struct ext4_inode_info *ei) 4490 { 4491 struct inode *inode = &(ei->vfs_inode); 4492 u64 i_blocks = inode->i_blocks; 4493 struct super_block *sb = inode->i_sb; 4494 4495 if (i_blocks <= ~0U) { 4496 /* 4497 * i_blocks can be represented in a 32 bit variable 4498 * as multiple of 512 bytes 4499 */ 4500 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4501 raw_inode->i_blocks_high = 0; 4502 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4503 return 0; 4504 } 4505 if (!ext4_has_feature_huge_file(sb)) 4506 return -EFBIG; 4507 4508 if (i_blocks <= 0xffffffffffffULL) { 4509 /* 4510 * i_blocks can be represented in a 48 bit variable 4511 * as multiple of 512 bytes 4512 */ 4513 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4514 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4515 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4516 } else { 4517 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4518 /* i_block is stored in file system block size */ 4519 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4520 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4521 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4522 } 4523 return 0; 4524 } 4525 4526 struct other_inode { 4527 unsigned long orig_ino; 4528 struct ext4_inode *raw_inode; 4529 }; 4530 4531 static int other_inode_match(struct inode * inode, unsigned long ino, 4532 void *data) 4533 { 4534 struct other_inode *oi = (struct other_inode *) data; 4535 4536 if ((inode->i_ino != ino) || 4537 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4538 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) || 4539 ((inode->i_state & I_DIRTY_TIME) == 0)) 4540 return 0; 4541 spin_lock(&inode->i_lock); 4542 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4543 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) && 4544 (inode->i_state & I_DIRTY_TIME)) { 4545 struct ext4_inode_info *ei = EXT4_I(inode); 4546 4547 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED); 4548 spin_unlock(&inode->i_lock); 4549 4550 spin_lock(&ei->i_raw_lock); 4551 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode); 4552 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode); 4553 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode); 4554 ext4_inode_csum_set(inode, oi->raw_inode, ei); 4555 spin_unlock(&ei->i_raw_lock); 4556 trace_ext4_other_inode_update_time(inode, oi->orig_ino); 4557 return -1; 4558 } 4559 spin_unlock(&inode->i_lock); 4560 return -1; 4561 } 4562 4563 /* 4564 * Opportunistically update the other time fields for other inodes in 4565 * the same inode table block. 4566 */ 4567 static void ext4_update_other_inodes_time(struct super_block *sb, 4568 unsigned long orig_ino, char *buf) 4569 { 4570 struct other_inode oi; 4571 unsigned long ino; 4572 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4573 int inode_size = EXT4_INODE_SIZE(sb); 4574 4575 oi.orig_ino = orig_ino; 4576 /* 4577 * Calculate the first inode in the inode table block. Inode 4578 * numbers are one-based. That is, the first inode in a block 4579 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 4580 */ 4581 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 4582 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 4583 if (ino == orig_ino) 4584 continue; 4585 oi.raw_inode = (struct ext4_inode *) buf; 4586 (void) find_inode_nowait(sb, ino, other_inode_match, &oi); 4587 } 4588 } 4589 4590 /* 4591 * Post the struct inode info into an on-disk inode location in the 4592 * buffer-cache. This gobbles the caller's reference to the 4593 * buffer_head in the inode location struct. 4594 * 4595 * The caller must have write access to iloc->bh. 4596 */ 4597 static int ext4_do_update_inode(handle_t *handle, 4598 struct inode *inode, 4599 struct ext4_iloc *iloc) 4600 { 4601 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4602 struct ext4_inode_info *ei = EXT4_I(inode); 4603 struct buffer_head *bh = iloc->bh; 4604 struct super_block *sb = inode->i_sb; 4605 int err = 0, rc, block; 4606 int need_datasync = 0, set_large_file = 0; 4607 uid_t i_uid; 4608 gid_t i_gid; 4609 projid_t i_projid; 4610 4611 spin_lock(&ei->i_raw_lock); 4612 4613 /* For fields not tracked in the in-memory inode, 4614 * initialise them to zero for new inodes. */ 4615 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4616 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4617 4618 ext4_get_inode_flags(ei); 4619 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4620 i_uid = i_uid_read(inode); 4621 i_gid = i_gid_read(inode); 4622 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 4623 if (!(test_opt(inode->i_sb, NO_UID32))) { 4624 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4625 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4626 /* 4627 * Fix up interoperability with old kernels. Otherwise, old inodes get 4628 * re-used with the upper 16 bits of the uid/gid intact 4629 */ 4630 if (!ei->i_dtime) { 4631 raw_inode->i_uid_high = 4632 cpu_to_le16(high_16_bits(i_uid)); 4633 raw_inode->i_gid_high = 4634 cpu_to_le16(high_16_bits(i_gid)); 4635 } else { 4636 raw_inode->i_uid_high = 0; 4637 raw_inode->i_gid_high = 0; 4638 } 4639 } else { 4640 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4641 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4642 raw_inode->i_uid_high = 0; 4643 raw_inode->i_gid_high = 0; 4644 } 4645 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4646 4647 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4648 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4649 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4650 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4651 4652 err = ext4_inode_blocks_set(handle, raw_inode, ei); 4653 if (err) { 4654 spin_unlock(&ei->i_raw_lock); 4655 goto out_brelse; 4656 } 4657 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4658 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4659 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 4660 raw_inode->i_file_acl_high = 4661 cpu_to_le16(ei->i_file_acl >> 32); 4662 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4663 if (ei->i_disksize != ext4_isize(raw_inode)) { 4664 ext4_isize_set(raw_inode, ei->i_disksize); 4665 need_datasync = 1; 4666 } 4667 if (ei->i_disksize > 0x7fffffffULL) { 4668 if (!ext4_has_feature_large_file(sb) || 4669 EXT4_SB(sb)->s_es->s_rev_level == 4670 cpu_to_le32(EXT4_GOOD_OLD_REV)) 4671 set_large_file = 1; 4672 } 4673 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4674 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4675 if (old_valid_dev(inode->i_rdev)) { 4676 raw_inode->i_block[0] = 4677 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4678 raw_inode->i_block[1] = 0; 4679 } else { 4680 raw_inode->i_block[0] = 0; 4681 raw_inode->i_block[1] = 4682 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4683 raw_inode->i_block[2] = 0; 4684 } 4685 } else if (!ext4_has_inline_data(inode)) { 4686 for (block = 0; block < EXT4_N_BLOCKS; block++) 4687 raw_inode->i_block[block] = ei->i_data[block]; 4688 } 4689 4690 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4691 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 4692 if (ei->i_extra_isize) { 4693 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4694 raw_inode->i_version_hi = 4695 cpu_to_le32(inode->i_version >> 32); 4696 raw_inode->i_extra_isize = 4697 cpu_to_le16(ei->i_extra_isize); 4698 } 4699 } 4700 4701 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 4702 EXT4_FEATURE_RO_COMPAT_PROJECT) && 4703 i_projid != EXT4_DEF_PROJID); 4704 4705 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 4706 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4707 raw_inode->i_projid = cpu_to_le32(i_projid); 4708 4709 ext4_inode_csum_set(inode, raw_inode, ei); 4710 spin_unlock(&ei->i_raw_lock); 4711 if (inode->i_sb->s_flags & MS_LAZYTIME) 4712 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 4713 bh->b_data); 4714 4715 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4716 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 4717 if (!err) 4718 err = rc; 4719 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 4720 if (set_large_file) { 4721 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 4722 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh); 4723 if (err) 4724 goto out_brelse; 4725 ext4_update_dynamic_rev(sb); 4726 ext4_set_feature_large_file(sb); 4727 ext4_handle_sync(handle); 4728 err = ext4_handle_dirty_super(handle, sb); 4729 } 4730 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 4731 out_brelse: 4732 brelse(bh); 4733 ext4_std_error(inode->i_sb, err); 4734 return err; 4735 } 4736 4737 /* 4738 * ext4_write_inode() 4739 * 4740 * We are called from a few places: 4741 * 4742 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 4743 * Here, there will be no transaction running. We wait for any running 4744 * transaction to commit. 4745 * 4746 * - Within flush work (sys_sync(), kupdate and such). 4747 * We wait on commit, if told to. 4748 * 4749 * - Within iput_final() -> write_inode_now() 4750 * We wait on commit, if told to. 4751 * 4752 * In all cases it is actually safe for us to return without doing anything, 4753 * because the inode has been copied into a raw inode buffer in 4754 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 4755 * writeback. 4756 * 4757 * Note that we are absolutely dependent upon all inode dirtiers doing the 4758 * right thing: they *must* call mark_inode_dirty() after dirtying info in 4759 * which we are interested. 4760 * 4761 * It would be a bug for them to not do this. The code: 4762 * 4763 * mark_inode_dirty(inode) 4764 * stuff(); 4765 * inode->i_size = expr; 4766 * 4767 * is in error because write_inode() could occur while `stuff()' is running, 4768 * and the new i_size will be lost. Plus the inode will no longer be on the 4769 * superblock's dirty inode list. 4770 */ 4771 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 4772 { 4773 int err; 4774 4775 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC)) 4776 return 0; 4777 4778 if (EXT4_SB(inode->i_sb)->s_journal) { 4779 if (ext4_journal_current_handle()) { 4780 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 4781 dump_stack(); 4782 return -EIO; 4783 } 4784 4785 /* 4786 * No need to force transaction in WB_SYNC_NONE mode. Also 4787 * ext4_sync_fs() will force the commit after everything is 4788 * written. 4789 */ 4790 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 4791 return 0; 4792 4793 err = ext4_force_commit(inode->i_sb); 4794 } else { 4795 struct ext4_iloc iloc; 4796 4797 err = __ext4_get_inode_loc(inode, &iloc, 0); 4798 if (err) 4799 return err; 4800 /* 4801 * sync(2) will flush the whole buffer cache. No need to do 4802 * it here separately for each inode. 4803 */ 4804 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 4805 sync_dirty_buffer(iloc.bh); 4806 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 4807 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 4808 "IO error syncing inode"); 4809 err = -EIO; 4810 } 4811 brelse(iloc.bh); 4812 } 4813 return err; 4814 } 4815 4816 /* 4817 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 4818 * buffers that are attached to a page stradding i_size and are undergoing 4819 * commit. In that case we have to wait for commit to finish and try again. 4820 */ 4821 static void ext4_wait_for_tail_page_commit(struct inode *inode) 4822 { 4823 struct page *page; 4824 unsigned offset; 4825 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 4826 tid_t commit_tid = 0; 4827 int ret; 4828 4829 offset = inode->i_size & (PAGE_CACHE_SIZE - 1); 4830 /* 4831 * All buffers in the last page remain valid? Then there's nothing to 4832 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE == 4833 * blocksize case 4834 */ 4835 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits)) 4836 return; 4837 while (1) { 4838 page = find_lock_page(inode->i_mapping, 4839 inode->i_size >> PAGE_CACHE_SHIFT); 4840 if (!page) 4841 return; 4842 ret = __ext4_journalled_invalidatepage(page, offset, 4843 PAGE_CACHE_SIZE - offset); 4844 unlock_page(page); 4845 page_cache_release(page); 4846 if (ret != -EBUSY) 4847 return; 4848 commit_tid = 0; 4849 read_lock(&journal->j_state_lock); 4850 if (journal->j_committing_transaction) 4851 commit_tid = journal->j_committing_transaction->t_tid; 4852 read_unlock(&journal->j_state_lock); 4853 if (commit_tid) 4854 jbd2_log_wait_commit(journal, commit_tid); 4855 } 4856 } 4857 4858 /* 4859 * ext4_setattr() 4860 * 4861 * Called from notify_change. 4862 * 4863 * We want to trap VFS attempts to truncate the file as soon as 4864 * possible. In particular, we want to make sure that when the VFS 4865 * shrinks i_size, we put the inode on the orphan list and modify 4866 * i_disksize immediately, so that during the subsequent flushing of 4867 * dirty pages and freeing of disk blocks, we can guarantee that any 4868 * commit will leave the blocks being flushed in an unused state on 4869 * disk. (On recovery, the inode will get truncated and the blocks will 4870 * be freed, so we have a strong guarantee that no future commit will 4871 * leave these blocks visible to the user.) 4872 * 4873 * Another thing we have to assure is that if we are in ordered mode 4874 * and inode is still attached to the committing transaction, we must 4875 * we start writeout of all the dirty pages which are being truncated. 4876 * This way we are sure that all the data written in the previous 4877 * transaction are already on disk (truncate waits for pages under 4878 * writeback). 4879 * 4880 * Called with inode->i_mutex down. 4881 */ 4882 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 4883 { 4884 struct inode *inode = d_inode(dentry); 4885 int error, rc = 0; 4886 int orphan = 0; 4887 const unsigned int ia_valid = attr->ia_valid; 4888 4889 error = inode_change_ok(inode, attr); 4890 if (error) 4891 return error; 4892 4893 if (is_quota_modification(inode, attr)) { 4894 error = dquot_initialize(inode); 4895 if (error) 4896 return error; 4897 } 4898 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 4899 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 4900 handle_t *handle; 4901 4902 /* (user+group)*(old+new) structure, inode write (sb, 4903 * inode block, ? - but truncate inode update has it) */ 4904 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 4905 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 4906 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 4907 if (IS_ERR(handle)) { 4908 error = PTR_ERR(handle); 4909 goto err_out; 4910 } 4911 error = dquot_transfer(inode, attr); 4912 if (error) { 4913 ext4_journal_stop(handle); 4914 return error; 4915 } 4916 /* Update corresponding info in inode so that everything is in 4917 * one transaction */ 4918 if (attr->ia_valid & ATTR_UID) 4919 inode->i_uid = attr->ia_uid; 4920 if (attr->ia_valid & ATTR_GID) 4921 inode->i_gid = attr->ia_gid; 4922 error = ext4_mark_inode_dirty(handle, inode); 4923 ext4_journal_stop(handle); 4924 } 4925 4926 if (attr->ia_valid & ATTR_SIZE) { 4927 handle_t *handle; 4928 loff_t oldsize = inode->i_size; 4929 int shrink = (attr->ia_size <= inode->i_size); 4930 4931 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4932 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4933 4934 if (attr->ia_size > sbi->s_bitmap_maxbytes) 4935 return -EFBIG; 4936 } 4937 if (!S_ISREG(inode->i_mode)) 4938 return -EINVAL; 4939 4940 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size) 4941 inode_inc_iversion(inode); 4942 4943 if (ext4_should_order_data(inode) && 4944 (attr->ia_size < inode->i_size)) { 4945 error = ext4_begin_ordered_truncate(inode, 4946 attr->ia_size); 4947 if (error) 4948 goto err_out; 4949 } 4950 if (attr->ia_size != inode->i_size) { 4951 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 4952 if (IS_ERR(handle)) { 4953 error = PTR_ERR(handle); 4954 goto err_out; 4955 } 4956 if (ext4_handle_valid(handle) && shrink) { 4957 error = ext4_orphan_add(handle, inode); 4958 orphan = 1; 4959 } 4960 /* 4961 * Update c/mtime on truncate up, ext4_truncate() will 4962 * update c/mtime in shrink case below 4963 */ 4964 if (!shrink) { 4965 inode->i_mtime = ext4_current_time(inode); 4966 inode->i_ctime = inode->i_mtime; 4967 } 4968 down_write(&EXT4_I(inode)->i_data_sem); 4969 EXT4_I(inode)->i_disksize = attr->ia_size; 4970 rc = ext4_mark_inode_dirty(handle, inode); 4971 if (!error) 4972 error = rc; 4973 /* 4974 * We have to update i_size under i_data_sem together 4975 * with i_disksize to avoid races with writeback code 4976 * running ext4_wb_update_i_disksize(). 4977 */ 4978 if (!error) 4979 i_size_write(inode, attr->ia_size); 4980 up_write(&EXT4_I(inode)->i_data_sem); 4981 ext4_journal_stop(handle); 4982 if (error) { 4983 if (orphan) 4984 ext4_orphan_del(NULL, inode); 4985 goto err_out; 4986 } 4987 } 4988 if (!shrink) 4989 pagecache_isize_extended(inode, oldsize, inode->i_size); 4990 4991 /* 4992 * Blocks are going to be removed from the inode. Wait 4993 * for dio in flight. Temporarily disable 4994 * dioread_nolock to prevent livelock. 4995 */ 4996 if (orphan) { 4997 if (!ext4_should_journal_data(inode)) { 4998 ext4_inode_block_unlocked_dio(inode); 4999 inode_dio_wait(inode); 5000 ext4_inode_resume_unlocked_dio(inode); 5001 } else 5002 ext4_wait_for_tail_page_commit(inode); 5003 } 5004 down_write(&EXT4_I(inode)->i_mmap_sem); 5005 /* 5006 * Truncate pagecache after we've waited for commit 5007 * in data=journal mode to make pages freeable. 5008 */ 5009 truncate_pagecache(inode, inode->i_size); 5010 if (shrink) 5011 ext4_truncate(inode); 5012 up_write(&EXT4_I(inode)->i_mmap_sem); 5013 } 5014 5015 if (!rc) { 5016 setattr_copy(inode, attr); 5017 mark_inode_dirty(inode); 5018 } 5019 5020 /* 5021 * If the call to ext4_truncate failed to get a transaction handle at 5022 * all, we need to clean up the in-core orphan list manually. 5023 */ 5024 if (orphan && inode->i_nlink) 5025 ext4_orphan_del(NULL, inode); 5026 5027 if (!rc && (ia_valid & ATTR_MODE)) 5028 rc = posix_acl_chmod(inode, inode->i_mode); 5029 5030 err_out: 5031 ext4_std_error(inode->i_sb, error); 5032 if (!error) 5033 error = rc; 5034 return error; 5035 } 5036 5037 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 5038 struct kstat *stat) 5039 { 5040 struct inode *inode; 5041 unsigned long long delalloc_blocks; 5042 5043 inode = d_inode(dentry); 5044 generic_fillattr(inode, stat); 5045 5046 /* 5047 * If there is inline data in the inode, the inode will normally not 5048 * have data blocks allocated (it may have an external xattr block). 5049 * Report at least one sector for such files, so tools like tar, rsync, 5050 * others doen't incorrectly think the file is completely sparse. 5051 */ 5052 if (unlikely(ext4_has_inline_data(inode))) 5053 stat->blocks += (stat->size + 511) >> 9; 5054 5055 /* 5056 * We can't update i_blocks if the block allocation is delayed 5057 * otherwise in the case of system crash before the real block 5058 * allocation is done, we will have i_blocks inconsistent with 5059 * on-disk file blocks. 5060 * We always keep i_blocks updated together with real 5061 * allocation. But to not confuse with user, stat 5062 * will return the blocks that include the delayed allocation 5063 * blocks for this file. 5064 */ 5065 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5066 EXT4_I(inode)->i_reserved_data_blocks); 5067 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5068 return 0; 5069 } 5070 5071 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5072 int pextents) 5073 { 5074 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5075 return ext4_ind_trans_blocks(inode, lblocks); 5076 return ext4_ext_index_trans_blocks(inode, pextents); 5077 } 5078 5079 /* 5080 * Account for index blocks, block groups bitmaps and block group 5081 * descriptor blocks if modify datablocks and index blocks 5082 * worse case, the indexs blocks spread over different block groups 5083 * 5084 * If datablocks are discontiguous, they are possible to spread over 5085 * different block groups too. If they are contiguous, with flexbg, 5086 * they could still across block group boundary. 5087 * 5088 * Also account for superblock, inode, quota and xattr blocks 5089 */ 5090 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5091 int pextents) 5092 { 5093 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5094 int gdpblocks; 5095 int idxblocks; 5096 int ret = 0; 5097 5098 /* 5099 * How many index blocks need to touch to map @lblocks logical blocks 5100 * to @pextents physical extents? 5101 */ 5102 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5103 5104 ret = idxblocks; 5105 5106 /* 5107 * Now let's see how many group bitmaps and group descriptors need 5108 * to account 5109 */ 5110 groups = idxblocks + pextents; 5111 gdpblocks = groups; 5112 if (groups > ngroups) 5113 groups = ngroups; 5114 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5115 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5116 5117 /* bitmaps and block group descriptor blocks */ 5118 ret += groups + gdpblocks; 5119 5120 /* Blocks for super block, inode, quota and xattr blocks */ 5121 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5122 5123 return ret; 5124 } 5125 5126 /* 5127 * Calculate the total number of credits to reserve to fit 5128 * the modification of a single pages into a single transaction, 5129 * which may include multiple chunks of block allocations. 5130 * 5131 * This could be called via ext4_write_begin() 5132 * 5133 * We need to consider the worse case, when 5134 * one new block per extent. 5135 */ 5136 int ext4_writepage_trans_blocks(struct inode *inode) 5137 { 5138 int bpp = ext4_journal_blocks_per_page(inode); 5139 int ret; 5140 5141 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5142 5143 /* Account for data blocks for journalled mode */ 5144 if (ext4_should_journal_data(inode)) 5145 ret += bpp; 5146 return ret; 5147 } 5148 5149 /* 5150 * Calculate the journal credits for a chunk of data modification. 5151 * 5152 * This is called from DIO, fallocate or whoever calling 5153 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5154 * 5155 * journal buffers for data blocks are not included here, as DIO 5156 * and fallocate do no need to journal data buffers. 5157 */ 5158 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5159 { 5160 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5161 } 5162 5163 /* 5164 * The caller must have previously called ext4_reserve_inode_write(). 5165 * Give this, we know that the caller already has write access to iloc->bh. 5166 */ 5167 int ext4_mark_iloc_dirty(handle_t *handle, 5168 struct inode *inode, struct ext4_iloc *iloc) 5169 { 5170 int err = 0; 5171 5172 if (IS_I_VERSION(inode)) 5173 inode_inc_iversion(inode); 5174 5175 /* the do_update_inode consumes one bh->b_count */ 5176 get_bh(iloc->bh); 5177 5178 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5179 err = ext4_do_update_inode(handle, inode, iloc); 5180 put_bh(iloc->bh); 5181 return err; 5182 } 5183 5184 /* 5185 * On success, We end up with an outstanding reference count against 5186 * iloc->bh. This _must_ be cleaned up later. 5187 */ 5188 5189 int 5190 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5191 struct ext4_iloc *iloc) 5192 { 5193 int err; 5194 5195 err = ext4_get_inode_loc(inode, iloc); 5196 if (!err) { 5197 BUFFER_TRACE(iloc->bh, "get_write_access"); 5198 err = ext4_journal_get_write_access(handle, iloc->bh); 5199 if (err) { 5200 brelse(iloc->bh); 5201 iloc->bh = NULL; 5202 } 5203 } 5204 ext4_std_error(inode->i_sb, err); 5205 return err; 5206 } 5207 5208 /* 5209 * Expand an inode by new_extra_isize bytes. 5210 * Returns 0 on success or negative error number on failure. 5211 */ 5212 static int ext4_expand_extra_isize(struct inode *inode, 5213 unsigned int new_extra_isize, 5214 struct ext4_iloc iloc, 5215 handle_t *handle) 5216 { 5217 struct ext4_inode *raw_inode; 5218 struct ext4_xattr_ibody_header *header; 5219 5220 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 5221 return 0; 5222 5223 raw_inode = ext4_raw_inode(&iloc); 5224 5225 header = IHDR(inode, raw_inode); 5226 5227 /* No extended attributes present */ 5228 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5229 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5230 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 5231 new_extra_isize); 5232 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5233 return 0; 5234 } 5235 5236 /* try to expand with EAs present */ 5237 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 5238 raw_inode, handle); 5239 } 5240 5241 /* 5242 * What we do here is to mark the in-core inode as clean with respect to inode 5243 * dirtiness (it may still be data-dirty). 5244 * This means that the in-core inode may be reaped by prune_icache 5245 * without having to perform any I/O. This is a very good thing, 5246 * because *any* task may call prune_icache - even ones which 5247 * have a transaction open against a different journal. 5248 * 5249 * Is this cheating? Not really. Sure, we haven't written the 5250 * inode out, but prune_icache isn't a user-visible syncing function. 5251 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5252 * we start and wait on commits. 5253 */ 5254 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 5255 { 5256 struct ext4_iloc iloc; 5257 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5258 static unsigned int mnt_count; 5259 int err, ret; 5260 5261 might_sleep(); 5262 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5263 err = ext4_reserve_inode_write(handle, inode, &iloc); 5264 if (ext4_handle_valid(handle) && 5265 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 5266 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5267 /* 5268 * We need extra buffer credits since we may write into EA block 5269 * with this same handle. If journal_extend fails, then it will 5270 * only result in a minor loss of functionality for that inode. 5271 * If this is felt to be critical, then e2fsck should be run to 5272 * force a large enough s_min_extra_isize. 5273 */ 5274 if ((jbd2_journal_extend(handle, 5275 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 5276 ret = ext4_expand_extra_isize(inode, 5277 sbi->s_want_extra_isize, 5278 iloc, handle); 5279 if (ret) { 5280 ext4_set_inode_state(inode, 5281 EXT4_STATE_NO_EXPAND); 5282 if (mnt_count != 5283 le16_to_cpu(sbi->s_es->s_mnt_count)) { 5284 ext4_warning(inode->i_sb, 5285 "Unable to expand inode %lu. Delete" 5286 " some EAs or run e2fsck.", 5287 inode->i_ino); 5288 mnt_count = 5289 le16_to_cpu(sbi->s_es->s_mnt_count); 5290 } 5291 } 5292 } 5293 } 5294 if (!err) 5295 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 5296 return err; 5297 } 5298 5299 /* 5300 * ext4_dirty_inode() is called from __mark_inode_dirty() 5301 * 5302 * We're really interested in the case where a file is being extended. 5303 * i_size has been changed by generic_commit_write() and we thus need 5304 * to include the updated inode in the current transaction. 5305 * 5306 * Also, dquot_alloc_block() will always dirty the inode when blocks 5307 * are allocated to the file. 5308 * 5309 * If the inode is marked synchronous, we don't honour that here - doing 5310 * so would cause a commit on atime updates, which we don't bother doing. 5311 * We handle synchronous inodes at the highest possible level. 5312 * 5313 * If only the I_DIRTY_TIME flag is set, we can skip everything. If 5314 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need 5315 * to copy into the on-disk inode structure are the timestamp files. 5316 */ 5317 void ext4_dirty_inode(struct inode *inode, int flags) 5318 { 5319 handle_t *handle; 5320 5321 if (flags == I_DIRTY_TIME) 5322 return; 5323 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 5324 if (IS_ERR(handle)) 5325 goto out; 5326 5327 ext4_mark_inode_dirty(handle, inode); 5328 5329 ext4_journal_stop(handle); 5330 out: 5331 return; 5332 } 5333 5334 #if 0 5335 /* 5336 * Bind an inode's backing buffer_head into this transaction, to prevent 5337 * it from being flushed to disk early. Unlike 5338 * ext4_reserve_inode_write, this leaves behind no bh reference and 5339 * returns no iloc structure, so the caller needs to repeat the iloc 5340 * lookup to mark the inode dirty later. 5341 */ 5342 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 5343 { 5344 struct ext4_iloc iloc; 5345 5346 int err = 0; 5347 if (handle) { 5348 err = ext4_get_inode_loc(inode, &iloc); 5349 if (!err) { 5350 BUFFER_TRACE(iloc.bh, "get_write_access"); 5351 err = jbd2_journal_get_write_access(handle, iloc.bh); 5352 if (!err) 5353 err = ext4_handle_dirty_metadata(handle, 5354 NULL, 5355 iloc.bh); 5356 brelse(iloc.bh); 5357 } 5358 } 5359 ext4_std_error(inode->i_sb, err); 5360 return err; 5361 } 5362 #endif 5363 5364 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5365 { 5366 journal_t *journal; 5367 handle_t *handle; 5368 int err; 5369 5370 /* 5371 * We have to be very careful here: changing a data block's 5372 * journaling status dynamically is dangerous. If we write a 5373 * data block to the journal, change the status and then delete 5374 * that block, we risk forgetting to revoke the old log record 5375 * from the journal and so a subsequent replay can corrupt data. 5376 * So, first we make sure that the journal is empty and that 5377 * nobody is changing anything. 5378 */ 5379 5380 journal = EXT4_JOURNAL(inode); 5381 if (!journal) 5382 return 0; 5383 if (is_journal_aborted(journal)) 5384 return -EROFS; 5385 /* We have to allocate physical blocks for delalloc blocks 5386 * before flushing journal. otherwise delalloc blocks can not 5387 * be allocated any more. even more truncate on delalloc blocks 5388 * could trigger BUG by flushing delalloc blocks in journal. 5389 * There is no delalloc block in non-journal data mode. 5390 */ 5391 if (val && test_opt(inode->i_sb, DELALLOC)) { 5392 err = ext4_alloc_da_blocks(inode); 5393 if (err < 0) 5394 return err; 5395 } 5396 5397 /* Wait for all existing dio workers */ 5398 ext4_inode_block_unlocked_dio(inode); 5399 inode_dio_wait(inode); 5400 5401 jbd2_journal_lock_updates(journal); 5402 5403 /* 5404 * OK, there are no updates running now, and all cached data is 5405 * synced to disk. We are now in a completely consistent state 5406 * which doesn't have anything in the journal, and we know that 5407 * no filesystem updates are running, so it is safe to modify 5408 * the inode's in-core data-journaling state flag now. 5409 */ 5410 5411 if (val) 5412 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5413 else { 5414 err = jbd2_journal_flush(journal); 5415 if (err < 0) { 5416 jbd2_journal_unlock_updates(journal); 5417 ext4_inode_resume_unlocked_dio(inode); 5418 return err; 5419 } 5420 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5421 } 5422 ext4_set_aops(inode); 5423 5424 jbd2_journal_unlock_updates(journal); 5425 ext4_inode_resume_unlocked_dio(inode); 5426 5427 /* Finally we can mark the inode as dirty. */ 5428 5429 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 5430 if (IS_ERR(handle)) 5431 return PTR_ERR(handle); 5432 5433 err = ext4_mark_inode_dirty(handle, inode); 5434 ext4_handle_sync(handle); 5435 ext4_journal_stop(handle); 5436 ext4_std_error(inode->i_sb, err); 5437 5438 return err; 5439 } 5440 5441 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 5442 { 5443 return !buffer_mapped(bh); 5444 } 5445 5446 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 5447 { 5448 struct page *page = vmf->page; 5449 loff_t size; 5450 unsigned long len; 5451 int ret; 5452 struct file *file = vma->vm_file; 5453 struct inode *inode = file_inode(file); 5454 struct address_space *mapping = inode->i_mapping; 5455 handle_t *handle; 5456 get_block_t *get_block; 5457 int retries = 0; 5458 5459 sb_start_pagefault(inode->i_sb); 5460 file_update_time(vma->vm_file); 5461 5462 down_read(&EXT4_I(inode)->i_mmap_sem); 5463 /* Delalloc case is easy... */ 5464 if (test_opt(inode->i_sb, DELALLOC) && 5465 !ext4_should_journal_data(inode) && 5466 !ext4_nonda_switch(inode->i_sb)) { 5467 do { 5468 ret = block_page_mkwrite(vma, vmf, 5469 ext4_da_get_block_prep); 5470 } while (ret == -ENOSPC && 5471 ext4_should_retry_alloc(inode->i_sb, &retries)); 5472 goto out_ret; 5473 } 5474 5475 lock_page(page); 5476 size = i_size_read(inode); 5477 /* Page got truncated from under us? */ 5478 if (page->mapping != mapping || page_offset(page) > size) { 5479 unlock_page(page); 5480 ret = VM_FAULT_NOPAGE; 5481 goto out; 5482 } 5483 5484 if (page->index == size >> PAGE_CACHE_SHIFT) 5485 len = size & ~PAGE_CACHE_MASK; 5486 else 5487 len = PAGE_CACHE_SIZE; 5488 /* 5489 * Return if we have all the buffers mapped. This avoids the need to do 5490 * journal_start/journal_stop which can block and take a long time 5491 */ 5492 if (page_has_buffers(page)) { 5493 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 5494 0, len, NULL, 5495 ext4_bh_unmapped)) { 5496 /* Wait so that we don't change page under IO */ 5497 wait_for_stable_page(page); 5498 ret = VM_FAULT_LOCKED; 5499 goto out; 5500 } 5501 } 5502 unlock_page(page); 5503 /* OK, we need to fill the hole... */ 5504 if (ext4_should_dioread_nolock(inode)) 5505 get_block = ext4_get_block_write; 5506 else 5507 get_block = ext4_get_block; 5508 retry_alloc: 5509 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 5510 ext4_writepage_trans_blocks(inode)); 5511 if (IS_ERR(handle)) { 5512 ret = VM_FAULT_SIGBUS; 5513 goto out; 5514 } 5515 ret = block_page_mkwrite(vma, vmf, get_block); 5516 if (!ret && ext4_should_journal_data(inode)) { 5517 if (ext4_walk_page_buffers(handle, page_buffers(page), 0, 5518 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) { 5519 unlock_page(page); 5520 ret = VM_FAULT_SIGBUS; 5521 ext4_journal_stop(handle); 5522 goto out; 5523 } 5524 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 5525 } 5526 ext4_journal_stop(handle); 5527 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 5528 goto retry_alloc; 5529 out_ret: 5530 ret = block_page_mkwrite_return(ret); 5531 out: 5532 up_read(&EXT4_I(inode)->i_mmap_sem); 5533 sb_end_pagefault(inode->i_sb); 5534 return ret; 5535 } 5536 5537 int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 5538 { 5539 struct inode *inode = file_inode(vma->vm_file); 5540 int err; 5541 5542 down_read(&EXT4_I(inode)->i_mmap_sem); 5543 err = filemap_fault(vma, vmf); 5544 up_read(&EXT4_I(inode)->i_mmap_sem); 5545 5546 return err; 5547 } 5548