1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/inode.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * 64-bit file support on 64-bit platforms by Jakub Jelinek 17 * (jj@sunsite.ms.mff.cuni.cz) 18 * 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/mount.h> 24 #include <linux/time.h> 25 #include <linux/highuid.h> 26 #include <linux/pagemap.h> 27 #include <linux/dax.h> 28 #include <linux/quotaops.h> 29 #include <linux/string.h> 30 #include <linux/buffer_head.h> 31 #include <linux/writeback.h> 32 #include <linux/pagevec.h> 33 #include <linux/mpage.h> 34 #include <linux/namei.h> 35 #include <linux/uio.h> 36 #include <linux/bio.h> 37 #include <linux/workqueue.h> 38 #include <linux/kernel.h> 39 #include <linux/printk.h> 40 #include <linux/slab.h> 41 #include <linux/bitops.h> 42 #include <linux/iomap.h> 43 #include <linux/iversion.h> 44 45 #include "ext4_jbd2.h" 46 #include "xattr.h" 47 #include "acl.h" 48 #include "truncate.h" 49 50 #include <trace/events/ext4.h> 51 52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 53 struct ext4_inode_info *ei) 54 { 55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 56 __u32 csum; 57 __u16 dummy_csum = 0; 58 int offset = offsetof(struct ext4_inode, i_checksum_lo); 59 unsigned int csum_size = sizeof(dummy_csum); 60 61 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset); 62 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size); 63 offset += csum_size; 64 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 65 EXT4_GOOD_OLD_INODE_SIZE - offset); 66 67 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 68 offset = offsetof(struct ext4_inode, i_checksum_hi); 69 csum = ext4_chksum(sbi, csum, (__u8 *)raw + 70 EXT4_GOOD_OLD_INODE_SIZE, 71 offset - EXT4_GOOD_OLD_INODE_SIZE); 72 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 73 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, 74 csum_size); 75 offset += csum_size; 76 } 77 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 78 EXT4_INODE_SIZE(inode->i_sb) - offset); 79 } 80 81 return csum; 82 } 83 84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 85 struct ext4_inode_info *ei) 86 { 87 __u32 provided, calculated; 88 89 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 90 cpu_to_le32(EXT4_OS_LINUX) || 91 !ext4_has_metadata_csum(inode->i_sb)) 92 return 1; 93 94 provided = le16_to_cpu(raw->i_checksum_lo); 95 calculated = ext4_inode_csum(inode, raw, ei); 96 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 97 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 98 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 99 else 100 calculated &= 0xFFFF; 101 102 return provided == calculated; 103 } 104 105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 106 struct ext4_inode_info *ei) 107 { 108 __u32 csum; 109 110 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 111 cpu_to_le32(EXT4_OS_LINUX) || 112 !ext4_has_metadata_csum(inode->i_sb)) 113 return; 114 115 csum = ext4_inode_csum(inode, raw, ei); 116 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 117 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 118 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 119 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 120 } 121 122 static inline int ext4_begin_ordered_truncate(struct inode *inode, 123 loff_t new_size) 124 { 125 trace_ext4_begin_ordered_truncate(inode, new_size); 126 /* 127 * If jinode is zero, then we never opened the file for 128 * writing, so there's no need to call 129 * jbd2_journal_begin_ordered_truncate() since there's no 130 * outstanding writes we need to flush. 131 */ 132 if (!EXT4_I(inode)->jinode) 133 return 0; 134 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 135 EXT4_I(inode)->jinode, 136 new_size); 137 } 138 139 static void ext4_invalidatepage(struct page *page, unsigned int offset, 140 unsigned int length); 141 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 143 int pextents); 144 145 /* 146 * Test whether an inode is a fast symlink. 147 * A fast symlink has its symlink data stored in ext4_inode_info->i_data. 148 */ 149 int ext4_inode_is_fast_symlink(struct inode *inode) 150 { 151 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 152 int ea_blocks = EXT4_I(inode)->i_file_acl ? 153 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 154 155 if (ext4_has_inline_data(inode)) 156 return 0; 157 158 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 159 } 160 return S_ISLNK(inode->i_mode) && inode->i_size && 161 (inode->i_size < EXT4_N_BLOCKS * 4); 162 } 163 164 /* 165 * Called at the last iput() if i_nlink is zero. 166 */ 167 void ext4_evict_inode(struct inode *inode) 168 { 169 handle_t *handle; 170 int err; 171 /* 172 * Credits for final inode cleanup and freeing: 173 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor 174 * (xattr block freeing), bitmap, group descriptor (inode freeing) 175 */ 176 int extra_credits = 6; 177 struct ext4_xattr_inode_array *ea_inode_array = NULL; 178 bool freeze_protected = false; 179 180 trace_ext4_evict_inode(inode); 181 182 if (inode->i_nlink) { 183 /* 184 * When journalling data dirty buffers are tracked only in the 185 * journal. So although mm thinks everything is clean and 186 * ready for reaping the inode might still have some pages to 187 * write in the running transaction or waiting to be 188 * checkpointed. Thus calling jbd2_journal_invalidatepage() 189 * (via truncate_inode_pages()) to discard these buffers can 190 * cause data loss. Also even if we did not discard these 191 * buffers, we would have no way to find them after the inode 192 * is reaped and thus user could see stale data if he tries to 193 * read them before the transaction is checkpointed. So be 194 * careful and force everything to disk here... We use 195 * ei->i_datasync_tid to store the newest transaction 196 * containing inode's data. 197 * 198 * Note that directories do not have this problem because they 199 * don't use page cache. 200 */ 201 if (inode->i_ino != EXT4_JOURNAL_INO && 202 ext4_should_journal_data(inode) && 203 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 204 inode->i_data.nrpages) { 205 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 206 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 207 208 jbd2_complete_transaction(journal, commit_tid); 209 filemap_write_and_wait(&inode->i_data); 210 } 211 truncate_inode_pages_final(&inode->i_data); 212 213 goto no_delete; 214 } 215 216 if (is_bad_inode(inode)) 217 goto no_delete; 218 dquot_initialize(inode); 219 220 if (ext4_should_order_data(inode)) 221 ext4_begin_ordered_truncate(inode, 0); 222 truncate_inode_pages_final(&inode->i_data); 223 224 /* 225 * For inodes with journalled data, transaction commit could have 226 * dirtied the inode. Flush worker is ignoring it because of I_FREEING 227 * flag but we still need to remove the inode from the writeback lists. 228 */ 229 if (!list_empty_careful(&inode->i_io_list)) { 230 WARN_ON_ONCE(!ext4_should_journal_data(inode)); 231 inode_io_list_del(inode); 232 } 233 234 /* 235 * Protect us against freezing - iput() caller didn't have to have any 236 * protection against it. When we are in a running transaction though, 237 * we are already protected against freezing and we cannot grab further 238 * protection due to lock ordering constraints. 239 */ 240 if (!ext4_journal_current_handle()) { 241 sb_start_intwrite(inode->i_sb); 242 freeze_protected = true; 243 } 244 245 if (!IS_NOQUOTA(inode)) 246 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); 247 248 /* 249 * Block bitmap, group descriptor, and inode are accounted in both 250 * ext4_blocks_for_truncate() and extra_credits. So subtract 3. 251 */ 252 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 253 ext4_blocks_for_truncate(inode) + extra_credits - 3); 254 if (IS_ERR(handle)) { 255 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 256 /* 257 * If we're going to skip the normal cleanup, we still need to 258 * make sure that the in-core orphan linked list is properly 259 * cleaned up. 260 */ 261 ext4_orphan_del(NULL, inode); 262 if (freeze_protected) 263 sb_end_intwrite(inode->i_sb); 264 goto no_delete; 265 } 266 267 if (IS_SYNC(inode)) 268 ext4_handle_sync(handle); 269 270 /* 271 * Set inode->i_size to 0 before calling ext4_truncate(). We need 272 * special handling of symlinks here because i_size is used to 273 * determine whether ext4_inode_info->i_data contains symlink data or 274 * block mappings. Setting i_size to 0 will remove its fast symlink 275 * status. Erase i_data so that it becomes a valid empty block map. 276 */ 277 if (ext4_inode_is_fast_symlink(inode)) 278 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data)); 279 inode->i_size = 0; 280 err = ext4_mark_inode_dirty(handle, inode); 281 if (err) { 282 ext4_warning(inode->i_sb, 283 "couldn't mark inode dirty (err %d)", err); 284 goto stop_handle; 285 } 286 if (inode->i_blocks) { 287 err = ext4_truncate(inode); 288 if (err) { 289 ext4_error_err(inode->i_sb, -err, 290 "couldn't truncate inode %lu (err %d)", 291 inode->i_ino, err); 292 goto stop_handle; 293 } 294 } 295 296 /* Remove xattr references. */ 297 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array, 298 extra_credits); 299 if (err) { 300 ext4_warning(inode->i_sb, "xattr delete (err %d)", err); 301 stop_handle: 302 ext4_journal_stop(handle); 303 ext4_orphan_del(NULL, inode); 304 if (freeze_protected) 305 sb_end_intwrite(inode->i_sb); 306 ext4_xattr_inode_array_free(ea_inode_array); 307 goto no_delete; 308 } 309 310 /* 311 * Kill off the orphan record which ext4_truncate created. 312 * AKPM: I think this can be inside the above `if'. 313 * Note that ext4_orphan_del() has to be able to cope with the 314 * deletion of a non-existent orphan - this is because we don't 315 * know if ext4_truncate() actually created an orphan record. 316 * (Well, we could do this if we need to, but heck - it works) 317 */ 318 ext4_orphan_del(handle, inode); 319 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds(); 320 321 /* 322 * One subtle ordering requirement: if anything has gone wrong 323 * (transaction abort, IO errors, whatever), then we can still 324 * do these next steps (the fs will already have been marked as 325 * having errors), but we can't free the inode if the mark_dirty 326 * fails. 327 */ 328 if (ext4_mark_inode_dirty(handle, inode)) 329 /* If that failed, just do the required in-core inode clear. */ 330 ext4_clear_inode(inode); 331 else 332 ext4_free_inode(handle, inode); 333 ext4_journal_stop(handle); 334 if (freeze_protected) 335 sb_end_intwrite(inode->i_sb); 336 ext4_xattr_inode_array_free(ea_inode_array); 337 return; 338 no_delete: 339 if (!list_empty(&EXT4_I(inode)->i_fc_list)) 340 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM); 341 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 342 } 343 344 #ifdef CONFIG_QUOTA 345 qsize_t *ext4_get_reserved_space(struct inode *inode) 346 { 347 return &EXT4_I(inode)->i_reserved_quota; 348 } 349 #endif 350 351 /* 352 * Called with i_data_sem down, which is important since we can call 353 * ext4_discard_preallocations() from here. 354 */ 355 void ext4_da_update_reserve_space(struct inode *inode, 356 int used, int quota_claim) 357 { 358 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 359 struct ext4_inode_info *ei = EXT4_I(inode); 360 361 spin_lock(&ei->i_block_reservation_lock); 362 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 363 if (unlikely(used > ei->i_reserved_data_blocks)) { 364 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 365 "with only %d reserved data blocks", 366 __func__, inode->i_ino, used, 367 ei->i_reserved_data_blocks); 368 WARN_ON(1); 369 used = ei->i_reserved_data_blocks; 370 } 371 372 /* Update per-inode reservations */ 373 ei->i_reserved_data_blocks -= used; 374 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 375 376 spin_unlock(&ei->i_block_reservation_lock); 377 378 /* Update quota subsystem for data blocks */ 379 if (quota_claim) 380 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 381 else { 382 /* 383 * We did fallocate with an offset that is already delayed 384 * allocated. So on delayed allocated writeback we should 385 * not re-claim the quota for fallocated blocks. 386 */ 387 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 388 } 389 390 /* 391 * If we have done all the pending block allocations and if 392 * there aren't any writers on the inode, we can discard the 393 * inode's preallocations. 394 */ 395 if ((ei->i_reserved_data_blocks == 0) && 396 !inode_is_open_for_write(inode)) 397 ext4_discard_preallocations(inode, 0); 398 } 399 400 static int __check_block_validity(struct inode *inode, const char *func, 401 unsigned int line, 402 struct ext4_map_blocks *map) 403 { 404 if (ext4_has_feature_journal(inode->i_sb) && 405 (inode->i_ino == 406 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum))) 407 return 0; 408 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) { 409 ext4_error_inode(inode, func, line, map->m_pblk, 410 "lblock %lu mapped to illegal pblock %llu " 411 "(length %d)", (unsigned long) map->m_lblk, 412 map->m_pblk, map->m_len); 413 return -EFSCORRUPTED; 414 } 415 return 0; 416 } 417 418 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 419 ext4_lblk_t len) 420 { 421 int ret; 422 423 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) 424 return fscrypt_zeroout_range(inode, lblk, pblk, len); 425 426 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 427 if (ret > 0) 428 ret = 0; 429 430 return ret; 431 } 432 433 #define check_block_validity(inode, map) \ 434 __check_block_validity((inode), __func__, __LINE__, (map)) 435 436 #ifdef ES_AGGRESSIVE_TEST 437 static void ext4_map_blocks_es_recheck(handle_t *handle, 438 struct inode *inode, 439 struct ext4_map_blocks *es_map, 440 struct ext4_map_blocks *map, 441 int flags) 442 { 443 int retval; 444 445 map->m_flags = 0; 446 /* 447 * There is a race window that the result is not the same. 448 * e.g. xfstests #223 when dioread_nolock enables. The reason 449 * is that we lookup a block mapping in extent status tree with 450 * out taking i_data_sem. So at the time the unwritten extent 451 * could be converted. 452 */ 453 down_read(&EXT4_I(inode)->i_data_sem); 454 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 455 retval = ext4_ext_map_blocks(handle, inode, map, 0); 456 } else { 457 retval = ext4_ind_map_blocks(handle, inode, map, 0); 458 } 459 up_read((&EXT4_I(inode)->i_data_sem)); 460 461 /* 462 * We don't check m_len because extent will be collpased in status 463 * tree. So the m_len might not equal. 464 */ 465 if (es_map->m_lblk != map->m_lblk || 466 es_map->m_flags != map->m_flags || 467 es_map->m_pblk != map->m_pblk) { 468 printk("ES cache assertion failed for inode: %lu " 469 "es_cached ex [%d/%d/%llu/%x] != " 470 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 471 inode->i_ino, es_map->m_lblk, es_map->m_len, 472 es_map->m_pblk, es_map->m_flags, map->m_lblk, 473 map->m_len, map->m_pblk, map->m_flags, 474 retval, flags); 475 } 476 } 477 #endif /* ES_AGGRESSIVE_TEST */ 478 479 /* 480 * The ext4_map_blocks() function tries to look up the requested blocks, 481 * and returns if the blocks are already mapped. 482 * 483 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 484 * and store the allocated blocks in the result buffer head and mark it 485 * mapped. 486 * 487 * If file type is extents based, it will call ext4_ext_map_blocks(), 488 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 489 * based files 490 * 491 * On success, it returns the number of blocks being mapped or allocated. if 492 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map 493 * is marked as unwritten. If the create == 1, it will mark @map as mapped. 494 * 495 * It returns 0 if plain look up failed (blocks have not been allocated), in 496 * that case, @map is returned as unmapped but we still do fill map->m_len to 497 * indicate the length of a hole starting at map->m_lblk. 498 * 499 * It returns the error in case of allocation failure. 500 */ 501 int ext4_map_blocks(handle_t *handle, struct inode *inode, 502 struct ext4_map_blocks *map, int flags) 503 { 504 struct extent_status es; 505 int retval; 506 int ret = 0; 507 #ifdef ES_AGGRESSIVE_TEST 508 struct ext4_map_blocks orig_map; 509 510 memcpy(&orig_map, map, sizeof(*map)); 511 #endif 512 513 map->m_flags = 0; 514 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n", 515 flags, map->m_len, (unsigned long) map->m_lblk); 516 517 /* 518 * ext4_map_blocks returns an int, and m_len is an unsigned int 519 */ 520 if (unlikely(map->m_len > INT_MAX)) 521 map->m_len = INT_MAX; 522 523 /* We can handle the block number less than EXT_MAX_BLOCKS */ 524 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 525 return -EFSCORRUPTED; 526 527 /* Lookup extent status tree firstly */ 528 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) && 529 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 530 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 531 map->m_pblk = ext4_es_pblock(&es) + 532 map->m_lblk - es.es_lblk; 533 map->m_flags |= ext4_es_is_written(&es) ? 534 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 535 retval = es.es_len - (map->m_lblk - es.es_lblk); 536 if (retval > map->m_len) 537 retval = map->m_len; 538 map->m_len = retval; 539 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 540 map->m_pblk = 0; 541 retval = es.es_len - (map->m_lblk - es.es_lblk); 542 if (retval > map->m_len) 543 retval = map->m_len; 544 map->m_len = retval; 545 retval = 0; 546 } else { 547 BUG(); 548 } 549 #ifdef ES_AGGRESSIVE_TEST 550 ext4_map_blocks_es_recheck(handle, inode, map, 551 &orig_map, flags); 552 #endif 553 goto found; 554 } 555 556 /* 557 * Try to see if we can get the block without requesting a new 558 * file system block. 559 */ 560 down_read(&EXT4_I(inode)->i_data_sem); 561 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 562 retval = ext4_ext_map_blocks(handle, inode, map, 0); 563 } else { 564 retval = ext4_ind_map_blocks(handle, inode, map, 0); 565 } 566 if (retval > 0) { 567 unsigned int status; 568 569 if (unlikely(retval != map->m_len)) { 570 ext4_warning(inode->i_sb, 571 "ES len assertion failed for inode " 572 "%lu: retval %d != map->m_len %d", 573 inode->i_ino, retval, map->m_len); 574 WARN_ON(1); 575 } 576 577 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 578 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 579 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 580 !(status & EXTENT_STATUS_WRITTEN) && 581 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 582 map->m_lblk + map->m_len - 1)) 583 status |= EXTENT_STATUS_DELAYED; 584 ret = ext4_es_insert_extent(inode, map->m_lblk, 585 map->m_len, map->m_pblk, status); 586 if (ret < 0) 587 retval = ret; 588 } 589 up_read((&EXT4_I(inode)->i_data_sem)); 590 591 found: 592 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 593 ret = check_block_validity(inode, map); 594 if (ret != 0) 595 return ret; 596 } 597 598 /* If it is only a block(s) look up */ 599 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 600 return retval; 601 602 /* 603 * Returns if the blocks have already allocated 604 * 605 * Note that if blocks have been preallocated 606 * ext4_ext_get_block() returns the create = 0 607 * with buffer head unmapped. 608 */ 609 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 610 /* 611 * If we need to convert extent to unwritten 612 * we continue and do the actual work in 613 * ext4_ext_map_blocks() 614 */ 615 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 616 return retval; 617 618 /* 619 * Here we clear m_flags because after allocating an new extent, 620 * it will be set again. 621 */ 622 map->m_flags &= ~EXT4_MAP_FLAGS; 623 624 /* 625 * New blocks allocate and/or writing to unwritten extent 626 * will possibly result in updating i_data, so we take 627 * the write lock of i_data_sem, and call get_block() 628 * with create == 1 flag. 629 */ 630 down_write(&EXT4_I(inode)->i_data_sem); 631 632 /* 633 * We need to check for EXT4 here because migrate 634 * could have changed the inode type in between 635 */ 636 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 637 retval = ext4_ext_map_blocks(handle, inode, map, flags); 638 } else { 639 retval = ext4_ind_map_blocks(handle, inode, map, flags); 640 641 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 642 /* 643 * We allocated new blocks which will result in 644 * i_data's format changing. Force the migrate 645 * to fail by clearing migrate flags 646 */ 647 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 648 } 649 650 /* 651 * Update reserved blocks/metadata blocks after successful 652 * block allocation which had been deferred till now. We don't 653 * support fallocate for non extent files. So we can update 654 * reserve space here. 655 */ 656 if ((retval > 0) && 657 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 658 ext4_da_update_reserve_space(inode, retval, 1); 659 } 660 661 if (retval > 0) { 662 unsigned int status; 663 664 if (unlikely(retval != map->m_len)) { 665 ext4_warning(inode->i_sb, 666 "ES len assertion failed for inode " 667 "%lu: retval %d != map->m_len %d", 668 inode->i_ino, retval, map->m_len); 669 WARN_ON(1); 670 } 671 672 /* 673 * We have to zeroout blocks before inserting them into extent 674 * status tree. Otherwise someone could look them up there and 675 * use them before they are really zeroed. We also have to 676 * unmap metadata before zeroing as otherwise writeback can 677 * overwrite zeros with stale data from block device. 678 */ 679 if (flags & EXT4_GET_BLOCKS_ZERO && 680 map->m_flags & EXT4_MAP_MAPPED && 681 map->m_flags & EXT4_MAP_NEW) { 682 ret = ext4_issue_zeroout(inode, map->m_lblk, 683 map->m_pblk, map->m_len); 684 if (ret) { 685 retval = ret; 686 goto out_sem; 687 } 688 } 689 690 /* 691 * If the extent has been zeroed out, we don't need to update 692 * extent status tree. 693 */ 694 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 695 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 696 if (ext4_es_is_written(&es)) 697 goto out_sem; 698 } 699 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 700 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 701 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 702 !(status & EXTENT_STATUS_WRITTEN) && 703 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 704 map->m_lblk + map->m_len - 1)) 705 status |= EXTENT_STATUS_DELAYED; 706 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 707 map->m_pblk, status); 708 if (ret < 0) { 709 retval = ret; 710 goto out_sem; 711 } 712 } 713 714 out_sem: 715 up_write((&EXT4_I(inode)->i_data_sem)); 716 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 717 ret = check_block_validity(inode, map); 718 if (ret != 0) 719 return ret; 720 721 /* 722 * Inodes with freshly allocated blocks where contents will be 723 * visible after transaction commit must be on transaction's 724 * ordered data list. 725 */ 726 if (map->m_flags & EXT4_MAP_NEW && 727 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 728 !(flags & EXT4_GET_BLOCKS_ZERO) && 729 !ext4_is_quota_file(inode) && 730 ext4_should_order_data(inode)) { 731 loff_t start_byte = 732 (loff_t)map->m_lblk << inode->i_blkbits; 733 loff_t length = (loff_t)map->m_len << inode->i_blkbits; 734 735 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 736 ret = ext4_jbd2_inode_add_wait(handle, inode, 737 start_byte, length); 738 else 739 ret = ext4_jbd2_inode_add_write(handle, inode, 740 start_byte, length); 741 if (ret) 742 return ret; 743 } 744 ext4_fc_track_range(handle, inode, map->m_lblk, 745 map->m_lblk + map->m_len - 1); 746 } 747 748 if (retval < 0) 749 ext_debug(inode, "failed with err %d\n", retval); 750 return retval; 751 } 752 753 /* 754 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 755 * we have to be careful as someone else may be manipulating b_state as well. 756 */ 757 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 758 { 759 unsigned long old_state; 760 unsigned long new_state; 761 762 flags &= EXT4_MAP_FLAGS; 763 764 /* Dummy buffer_head? Set non-atomically. */ 765 if (!bh->b_page) { 766 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 767 return; 768 } 769 /* 770 * Someone else may be modifying b_state. Be careful! This is ugly but 771 * once we get rid of using bh as a container for mapping information 772 * to pass to / from get_block functions, this can go away. 773 */ 774 do { 775 old_state = READ_ONCE(bh->b_state); 776 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 777 } while (unlikely( 778 cmpxchg(&bh->b_state, old_state, new_state) != old_state)); 779 } 780 781 static int _ext4_get_block(struct inode *inode, sector_t iblock, 782 struct buffer_head *bh, int flags) 783 { 784 struct ext4_map_blocks map; 785 int ret = 0; 786 787 if (ext4_has_inline_data(inode)) 788 return -ERANGE; 789 790 map.m_lblk = iblock; 791 map.m_len = bh->b_size >> inode->i_blkbits; 792 793 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 794 flags); 795 if (ret > 0) { 796 map_bh(bh, inode->i_sb, map.m_pblk); 797 ext4_update_bh_state(bh, map.m_flags); 798 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 799 ret = 0; 800 } else if (ret == 0) { 801 /* hole case, need to fill in bh->b_size */ 802 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 803 } 804 return ret; 805 } 806 807 int ext4_get_block(struct inode *inode, sector_t iblock, 808 struct buffer_head *bh, int create) 809 { 810 return _ext4_get_block(inode, iblock, bh, 811 create ? EXT4_GET_BLOCKS_CREATE : 0); 812 } 813 814 /* 815 * Get block function used when preparing for buffered write if we require 816 * creating an unwritten extent if blocks haven't been allocated. The extent 817 * will be converted to written after the IO is complete. 818 */ 819 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 820 struct buffer_head *bh_result, int create) 821 { 822 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 823 inode->i_ino, create); 824 return _ext4_get_block(inode, iblock, bh_result, 825 EXT4_GET_BLOCKS_IO_CREATE_EXT); 826 } 827 828 /* Maximum number of blocks we map for direct IO at once. */ 829 #define DIO_MAX_BLOCKS 4096 830 831 /* 832 * `handle' can be NULL if create is zero 833 */ 834 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 835 ext4_lblk_t block, int map_flags) 836 { 837 struct ext4_map_blocks map; 838 struct buffer_head *bh; 839 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 840 int err; 841 842 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 843 || handle != NULL || create == 0); 844 845 map.m_lblk = block; 846 map.m_len = 1; 847 err = ext4_map_blocks(handle, inode, &map, map_flags); 848 849 if (err == 0) 850 return create ? ERR_PTR(-ENOSPC) : NULL; 851 if (err < 0) 852 return ERR_PTR(err); 853 854 bh = sb_getblk(inode->i_sb, map.m_pblk); 855 if (unlikely(!bh)) 856 return ERR_PTR(-ENOMEM); 857 if (map.m_flags & EXT4_MAP_NEW) { 858 ASSERT(create != 0); 859 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 860 || (handle != NULL)); 861 862 /* 863 * Now that we do not always journal data, we should 864 * keep in mind whether this should always journal the 865 * new buffer as metadata. For now, regular file 866 * writes use ext4_get_block instead, so it's not a 867 * problem. 868 */ 869 lock_buffer(bh); 870 BUFFER_TRACE(bh, "call get_create_access"); 871 err = ext4_journal_get_create_access(handle, inode->i_sb, bh, 872 EXT4_JTR_NONE); 873 if (unlikely(err)) { 874 unlock_buffer(bh); 875 goto errout; 876 } 877 if (!buffer_uptodate(bh)) { 878 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 879 set_buffer_uptodate(bh); 880 } 881 unlock_buffer(bh); 882 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 883 err = ext4_handle_dirty_metadata(handle, inode, bh); 884 if (unlikely(err)) 885 goto errout; 886 } else 887 BUFFER_TRACE(bh, "not a new buffer"); 888 return bh; 889 errout: 890 brelse(bh); 891 return ERR_PTR(err); 892 } 893 894 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 895 ext4_lblk_t block, int map_flags) 896 { 897 struct buffer_head *bh; 898 int ret; 899 900 bh = ext4_getblk(handle, inode, block, map_flags); 901 if (IS_ERR(bh)) 902 return bh; 903 if (!bh || ext4_buffer_uptodate(bh)) 904 return bh; 905 906 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true); 907 if (ret) { 908 put_bh(bh); 909 return ERR_PTR(ret); 910 } 911 return bh; 912 } 913 914 /* Read a contiguous batch of blocks. */ 915 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, 916 bool wait, struct buffer_head **bhs) 917 { 918 int i, err; 919 920 for (i = 0; i < bh_count; i++) { 921 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */); 922 if (IS_ERR(bhs[i])) { 923 err = PTR_ERR(bhs[i]); 924 bh_count = i; 925 goto out_brelse; 926 } 927 } 928 929 for (i = 0; i < bh_count; i++) 930 /* Note that NULL bhs[i] is valid because of holes. */ 931 if (bhs[i] && !ext4_buffer_uptodate(bhs[i])) 932 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false); 933 934 if (!wait) 935 return 0; 936 937 for (i = 0; i < bh_count; i++) 938 if (bhs[i]) 939 wait_on_buffer(bhs[i]); 940 941 for (i = 0; i < bh_count; i++) { 942 if (bhs[i] && !buffer_uptodate(bhs[i])) { 943 err = -EIO; 944 goto out_brelse; 945 } 946 } 947 return 0; 948 949 out_brelse: 950 for (i = 0; i < bh_count; i++) { 951 brelse(bhs[i]); 952 bhs[i] = NULL; 953 } 954 return err; 955 } 956 957 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode, 958 struct buffer_head *head, 959 unsigned from, 960 unsigned to, 961 int *partial, 962 int (*fn)(handle_t *handle, struct inode *inode, 963 struct buffer_head *bh)) 964 { 965 struct buffer_head *bh; 966 unsigned block_start, block_end; 967 unsigned blocksize = head->b_size; 968 int err, ret = 0; 969 struct buffer_head *next; 970 971 for (bh = head, block_start = 0; 972 ret == 0 && (bh != head || !block_start); 973 block_start = block_end, bh = next) { 974 next = bh->b_this_page; 975 block_end = block_start + blocksize; 976 if (block_end <= from || block_start >= to) { 977 if (partial && !buffer_uptodate(bh)) 978 *partial = 1; 979 continue; 980 } 981 err = (*fn)(handle, inode, bh); 982 if (!ret) 983 ret = err; 984 } 985 return ret; 986 } 987 988 /* 989 * To preserve ordering, it is essential that the hole instantiation and 990 * the data write be encapsulated in a single transaction. We cannot 991 * close off a transaction and start a new one between the ext4_get_block() 992 * and the commit_write(). So doing the jbd2_journal_start at the start of 993 * prepare_write() is the right place. 994 * 995 * Also, this function can nest inside ext4_writepage(). In that case, we 996 * *know* that ext4_writepage() has generated enough buffer credits to do the 997 * whole page. So we won't block on the journal in that case, which is good, 998 * because the caller may be PF_MEMALLOC. 999 * 1000 * By accident, ext4 can be reentered when a transaction is open via 1001 * quota file writes. If we were to commit the transaction while thus 1002 * reentered, there can be a deadlock - we would be holding a quota 1003 * lock, and the commit would never complete if another thread had a 1004 * transaction open and was blocking on the quota lock - a ranking 1005 * violation. 1006 * 1007 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1008 * will _not_ run commit under these circumstances because handle->h_ref 1009 * is elevated. We'll still have enough credits for the tiny quotafile 1010 * write. 1011 */ 1012 int do_journal_get_write_access(handle_t *handle, struct inode *inode, 1013 struct buffer_head *bh) 1014 { 1015 int dirty = buffer_dirty(bh); 1016 int ret; 1017 1018 if (!buffer_mapped(bh) || buffer_freed(bh)) 1019 return 0; 1020 /* 1021 * __block_write_begin() could have dirtied some buffers. Clean 1022 * the dirty bit as jbd2_journal_get_write_access() could complain 1023 * otherwise about fs integrity issues. Setting of the dirty bit 1024 * by __block_write_begin() isn't a real problem here as we clear 1025 * the bit before releasing a page lock and thus writeback cannot 1026 * ever write the buffer. 1027 */ 1028 if (dirty) 1029 clear_buffer_dirty(bh); 1030 BUFFER_TRACE(bh, "get write access"); 1031 ret = ext4_journal_get_write_access(handle, inode->i_sb, bh, 1032 EXT4_JTR_NONE); 1033 if (!ret && dirty) 1034 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1035 return ret; 1036 } 1037 1038 #ifdef CONFIG_FS_ENCRYPTION 1039 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len, 1040 get_block_t *get_block) 1041 { 1042 unsigned from = pos & (PAGE_SIZE - 1); 1043 unsigned to = from + len; 1044 struct inode *inode = page->mapping->host; 1045 unsigned block_start, block_end; 1046 sector_t block; 1047 int err = 0; 1048 unsigned blocksize = inode->i_sb->s_blocksize; 1049 unsigned bbits; 1050 struct buffer_head *bh, *head, *wait[2]; 1051 int nr_wait = 0; 1052 int i; 1053 1054 BUG_ON(!PageLocked(page)); 1055 BUG_ON(from > PAGE_SIZE); 1056 BUG_ON(to > PAGE_SIZE); 1057 BUG_ON(from > to); 1058 1059 if (!page_has_buffers(page)) 1060 create_empty_buffers(page, blocksize, 0); 1061 head = page_buffers(page); 1062 bbits = ilog2(blocksize); 1063 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1064 1065 for (bh = head, block_start = 0; bh != head || !block_start; 1066 block++, block_start = block_end, bh = bh->b_this_page) { 1067 block_end = block_start + blocksize; 1068 if (block_end <= from || block_start >= to) { 1069 if (PageUptodate(page)) { 1070 set_buffer_uptodate(bh); 1071 } 1072 continue; 1073 } 1074 if (buffer_new(bh)) 1075 clear_buffer_new(bh); 1076 if (!buffer_mapped(bh)) { 1077 WARN_ON(bh->b_size != blocksize); 1078 err = get_block(inode, block, bh, 1); 1079 if (err) 1080 break; 1081 if (buffer_new(bh)) { 1082 if (PageUptodate(page)) { 1083 clear_buffer_new(bh); 1084 set_buffer_uptodate(bh); 1085 mark_buffer_dirty(bh); 1086 continue; 1087 } 1088 if (block_end > to || block_start < from) 1089 zero_user_segments(page, to, block_end, 1090 block_start, from); 1091 continue; 1092 } 1093 } 1094 if (PageUptodate(page)) { 1095 set_buffer_uptodate(bh); 1096 continue; 1097 } 1098 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1099 !buffer_unwritten(bh) && 1100 (block_start < from || block_end > to)) { 1101 ext4_read_bh_lock(bh, 0, false); 1102 wait[nr_wait++] = bh; 1103 } 1104 } 1105 /* 1106 * If we issued read requests, let them complete. 1107 */ 1108 for (i = 0; i < nr_wait; i++) { 1109 wait_on_buffer(wait[i]); 1110 if (!buffer_uptodate(wait[i])) 1111 err = -EIO; 1112 } 1113 if (unlikely(err)) { 1114 page_zero_new_buffers(page, from, to); 1115 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 1116 for (i = 0; i < nr_wait; i++) { 1117 int err2; 1118 1119 err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize, 1120 bh_offset(wait[i])); 1121 if (err2) { 1122 clear_buffer_uptodate(wait[i]); 1123 err = err2; 1124 } 1125 } 1126 } 1127 1128 return err; 1129 } 1130 #endif 1131 1132 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1133 loff_t pos, unsigned len, unsigned flags, 1134 struct page **pagep, void **fsdata) 1135 { 1136 struct inode *inode = mapping->host; 1137 int ret, needed_blocks; 1138 handle_t *handle; 1139 int retries = 0; 1140 struct page *page; 1141 pgoff_t index; 1142 unsigned from, to; 1143 1144 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 1145 return -EIO; 1146 1147 trace_ext4_write_begin(inode, pos, len, flags); 1148 /* 1149 * Reserve one block more for addition to orphan list in case 1150 * we allocate blocks but write fails for some reason 1151 */ 1152 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1153 index = pos >> PAGE_SHIFT; 1154 from = pos & (PAGE_SIZE - 1); 1155 to = from + len; 1156 1157 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1158 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1159 flags, pagep); 1160 if (ret < 0) 1161 return ret; 1162 if (ret == 1) 1163 return 0; 1164 } 1165 1166 /* 1167 * grab_cache_page_write_begin() can take a long time if the 1168 * system is thrashing due to memory pressure, or if the page 1169 * is being written back. So grab it first before we start 1170 * the transaction handle. This also allows us to allocate 1171 * the page (if needed) without using GFP_NOFS. 1172 */ 1173 retry_grab: 1174 page = grab_cache_page_write_begin(mapping, index, flags); 1175 if (!page) 1176 return -ENOMEM; 1177 unlock_page(page); 1178 1179 retry_journal: 1180 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1181 if (IS_ERR(handle)) { 1182 put_page(page); 1183 return PTR_ERR(handle); 1184 } 1185 1186 lock_page(page); 1187 if (page->mapping != mapping) { 1188 /* The page got truncated from under us */ 1189 unlock_page(page); 1190 put_page(page); 1191 ext4_journal_stop(handle); 1192 goto retry_grab; 1193 } 1194 /* In case writeback began while the page was unlocked */ 1195 wait_for_stable_page(page); 1196 1197 #ifdef CONFIG_FS_ENCRYPTION 1198 if (ext4_should_dioread_nolock(inode)) 1199 ret = ext4_block_write_begin(page, pos, len, 1200 ext4_get_block_unwritten); 1201 else 1202 ret = ext4_block_write_begin(page, pos, len, 1203 ext4_get_block); 1204 #else 1205 if (ext4_should_dioread_nolock(inode)) 1206 ret = __block_write_begin(page, pos, len, 1207 ext4_get_block_unwritten); 1208 else 1209 ret = __block_write_begin(page, pos, len, ext4_get_block); 1210 #endif 1211 if (!ret && ext4_should_journal_data(inode)) { 1212 ret = ext4_walk_page_buffers(handle, inode, 1213 page_buffers(page), from, to, NULL, 1214 do_journal_get_write_access); 1215 } 1216 1217 if (ret) { 1218 bool extended = (pos + len > inode->i_size) && 1219 !ext4_verity_in_progress(inode); 1220 1221 unlock_page(page); 1222 /* 1223 * __block_write_begin may have instantiated a few blocks 1224 * outside i_size. Trim these off again. Don't need 1225 * i_size_read because we hold i_mutex. 1226 * 1227 * Add inode to orphan list in case we crash before 1228 * truncate finishes 1229 */ 1230 if (extended && ext4_can_truncate(inode)) 1231 ext4_orphan_add(handle, inode); 1232 1233 ext4_journal_stop(handle); 1234 if (extended) { 1235 ext4_truncate_failed_write(inode); 1236 /* 1237 * If truncate failed early the inode might 1238 * still be on the orphan list; we need to 1239 * make sure the inode is removed from the 1240 * orphan list in that case. 1241 */ 1242 if (inode->i_nlink) 1243 ext4_orphan_del(NULL, inode); 1244 } 1245 1246 if (ret == -ENOSPC && 1247 ext4_should_retry_alloc(inode->i_sb, &retries)) 1248 goto retry_journal; 1249 put_page(page); 1250 return ret; 1251 } 1252 *pagep = page; 1253 return ret; 1254 } 1255 1256 /* For write_end() in data=journal mode */ 1257 static int write_end_fn(handle_t *handle, struct inode *inode, 1258 struct buffer_head *bh) 1259 { 1260 int ret; 1261 if (!buffer_mapped(bh) || buffer_freed(bh)) 1262 return 0; 1263 set_buffer_uptodate(bh); 1264 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1265 clear_buffer_meta(bh); 1266 clear_buffer_prio(bh); 1267 return ret; 1268 } 1269 1270 /* 1271 * We need to pick up the new inode size which generic_commit_write gave us 1272 * `file' can be NULL - eg, when called from page_symlink(). 1273 * 1274 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1275 * buffers are managed internally. 1276 */ 1277 static int ext4_write_end(struct file *file, 1278 struct address_space *mapping, 1279 loff_t pos, unsigned len, unsigned copied, 1280 struct page *page, void *fsdata) 1281 { 1282 handle_t *handle = ext4_journal_current_handle(); 1283 struct inode *inode = mapping->host; 1284 loff_t old_size = inode->i_size; 1285 int ret = 0, ret2; 1286 int i_size_changed = 0; 1287 bool verity = ext4_verity_in_progress(inode); 1288 1289 trace_ext4_write_end(inode, pos, len, copied); 1290 1291 if (ext4_has_inline_data(inode)) 1292 return ext4_write_inline_data_end(inode, pos, len, copied, page); 1293 1294 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 1295 /* 1296 * it's important to update i_size while still holding page lock: 1297 * page writeout could otherwise come in and zero beyond i_size. 1298 * 1299 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree 1300 * blocks are being written past EOF, so skip the i_size update. 1301 */ 1302 if (!verity) 1303 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1304 unlock_page(page); 1305 put_page(page); 1306 1307 if (old_size < pos && !verity) 1308 pagecache_isize_extended(inode, old_size, pos); 1309 /* 1310 * Don't mark the inode dirty under page lock. First, it unnecessarily 1311 * makes the holding time of page lock longer. Second, it forces lock 1312 * ordering of page lock and transaction start for journaling 1313 * filesystems. 1314 */ 1315 if (i_size_changed) 1316 ret = ext4_mark_inode_dirty(handle, inode); 1317 1318 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1319 /* if we have allocated more blocks and copied 1320 * less. We will have blocks allocated outside 1321 * inode->i_size. So truncate them 1322 */ 1323 ext4_orphan_add(handle, inode); 1324 1325 ret2 = ext4_journal_stop(handle); 1326 if (!ret) 1327 ret = ret2; 1328 1329 if (pos + len > inode->i_size && !verity) { 1330 ext4_truncate_failed_write(inode); 1331 /* 1332 * If truncate failed early the inode might still be 1333 * on the orphan list; we need to make sure the inode 1334 * is removed from the orphan list in that case. 1335 */ 1336 if (inode->i_nlink) 1337 ext4_orphan_del(NULL, inode); 1338 } 1339 1340 return ret ? ret : copied; 1341 } 1342 1343 /* 1344 * This is a private version of page_zero_new_buffers() which doesn't 1345 * set the buffer to be dirty, since in data=journalled mode we need 1346 * to call ext4_handle_dirty_metadata() instead. 1347 */ 1348 static void ext4_journalled_zero_new_buffers(handle_t *handle, 1349 struct inode *inode, 1350 struct page *page, 1351 unsigned from, unsigned to) 1352 { 1353 unsigned int block_start = 0, block_end; 1354 struct buffer_head *head, *bh; 1355 1356 bh = head = page_buffers(page); 1357 do { 1358 block_end = block_start + bh->b_size; 1359 if (buffer_new(bh)) { 1360 if (block_end > from && block_start < to) { 1361 if (!PageUptodate(page)) { 1362 unsigned start, size; 1363 1364 start = max(from, block_start); 1365 size = min(to, block_end) - start; 1366 1367 zero_user(page, start, size); 1368 write_end_fn(handle, inode, bh); 1369 } 1370 clear_buffer_new(bh); 1371 } 1372 } 1373 block_start = block_end; 1374 bh = bh->b_this_page; 1375 } while (bh != head); 1376 } 1377 1378 static int ext4_journalled_write_end(struct file *file, 1379 struct address_space *mapping, 1380 loff_t pos, unsigned len, unsigned copied, 1381 struct page *page, void *fsdata) 1382 { 1383 handle_t *handle = ext4_journal_current_handle(); 1384 struct inode *inode = mapping->host; 1385 loff_t old_size = inode->i_size; 1386 int ret = 0, ret2; 1387 int partial = 0; 1388 unsigned from, to; 1389 int size_changed = 0; 1390 bool verity = ext4_verity_in_progress(inode); 1391 1392 trace_ext4_journalled_write_end(inode, pos, len, copied); 1393 from = pos & (PAGE_SIZE - 1); 1394 to = from + len; 1395 1396 BUG_ON(!ext4_handle_valid(handle)); 1397 1398 if (ext4_has_inline_data(inode)) 1399 return ext4_write_inline_data_end(inode, pos, len, copied, page); 1400 1401 if (unlikely(copied < len) && !PageUptodate(page)) { 1402 copied = 0; 1403 ext4_journalled_zero_new_buffers(handle, inode, page, from, to); 1404 } else { 1405 if (unlikely(copied < len)) 1406 ext4_journalled_zero_new_buffers(handle, inode, page, 1407 from + copied, to); 1408 ret = ext4_walk_page_buffers(handle, inode, page_buffers(page), 1409 from, from + copied, &partial, 1410 write_end_fn); 1411 if (!partial) 1412 SetPageUptodate(page); 1413 } 1414 if (!verity) 1415 size_changed = ext4_update_inode_size(inode, pos + copied); 1416 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1417 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1418 unlock_page(page); 1419 put_page(page); 1420 1421 if (old_size < pos && !verity) 1422 pagecache_isize_extended(inode, old_size, pos); 1423 1424 if (size_changed) { 1425 ret2 = ext4_mark_inode_dirty(handle, inode); 1426 if (!ret) 1427 ret = ret2; 1428 } 1429 1430 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1431 /* if we have allocated more blocks and copied 1432 * less. We will have blocks allocated outside 1433 * inode->i_size. So truncate them 1434 */ 1435 ext4_orphan_add(handle, inode); 1436 1437 ret2 = ext4_journal_stop(handle); 1438 if (!ret) 1439 ret = ret2; 1440 if (pos + len > inode->i_size && !verity) { 1441 ext4_truncate_failed_write(inode); 1442 /* 1443 * If truncate failed early the inode might still be 1444 * on the orphan list; we need to make sure the inode 1445 * is removed from the orphan list in that case. 1446 */ 1447 if (inode->i_nlink) 1448 ext4_orphan_del(NULL, inode); 1449 } 1450 1451 return ret ? ret : copied; 1452 } 1453 1454 /* 1455 * Reserve space for a single cluster 1456 */ 1457 static int ext4_da_reserve_space(struct inode *inode) 1458 { 1459 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1460 struct ext4_inode_info *ei = EXT4_I(inode); 1461 int ret; 1462 1463 /* 1464 * We will charge metadata quota at writeout time; this saves 1465 * us from metadata over-estimation, though we may go over by 1466 * a small amount in the end. Here we just reserve for data. 1467 */ 1468 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1469 if (ret) 1470 return ret; 1471 1472 spin_lock(&ei->i_block_reservation_lock); 1473 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1474 spin_unlock(&ei->i_block_reservation_lock); 1475 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1476 return -ENOSPC; 1477 } 1478 ei->i_reserved_data_blocks++; 1479 trace_ext4_da_reserve_space(inode); 1480 spin_unlock(&ei->i_block_reservation_lock); 1481 1482 return 0; /* success */ 1483 } 1484 1485 void ext4_da_release_space(struct inode *inode, int to_free) 1486 { 1487 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1488 struct ext4_inode_info *ei = EXT4_I(inode); 1489 1490 if (!to_free) 1491 return; /* Nothing to release, exit */ 1492 1493 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1494 1495 trace_ext4_da_release_space(inode, to_free); 1496 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1497 /* 1498 * if there aren't enough reserved blocks, then the 1499 * counter is messed up somewhere. Since this 1500 * function is called from invalidate page, it's 1501 * harmless to return without any action. 1502 */ 1503 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1504 "ino %lu, to_free %d with only %d reserved " 1505 "data blocks", inode->i_ino, to_free, 1506 ei->i_reserved_data_blocks); 1507 WARN_ON(1); 1508 to_free = ei->i_reserved_data_blocks; 1509 } 1510 ei->i_reserved_data_blocks -= to_free; 1511 1512 /* update fs dirty data blocks counter */ 1513 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1514 1515 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1516 1517 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1518 } 1519 1520 /* 1521 * Delayed allocation stuff 1522 */ 1523 1524 struct mpage_da_data { 1525 struct inode *inode; 1526 struct writeback_control *wbc; 1527 1528 pgoff_t first_page; /* The first page to write */ 1529 pgoff_t next_page; /* Current page to examine */ 1530 pgoff_t last_page; /* Last page to examine */ 1531 /* 1532 * Extent to map - this can be after first_page because that can be 1533 * fully mapped. We somewhat abuse m_flags to store whether the extent 1534 * is delalloc or unwritten. 1535 */ 1536 struct ext4_map_blocks map; 1537 struct ext4_io_submit io_submit; /* IO submission data */ 1538 unsigned int do_map:1; 1539 unsigned int scanned_until_end:1; 1540 }; 1541 1542 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1543 bool invalidate) 1544 { 1545 int nr_pages, i; 1546 pgoff_t index, end; 1547 struct pagevec pvec; 1548 struct inode *inode = mpd->inode; 1549 struct address_space *mapping = inode->i_mapping; 1550 1551 /* This is necessary when next_page == 0. */ 1552 if (mpd->first_page >= mpd->next_page) 1553 return; 1554 1555 mpd->scanned_until_end = 0; 1556 index = mpd->first_page; 1557 end = mpd->next_page - 1; 1558 if (invalidate) { 1559 ext4_lblk_t start, last; 1560 start = index << (PAGE_SHIFT - inode->i_blkbits); 1561 last = end << (PAGE_SHIFT - inode->i_blkbits); 1562 ext4_es_remove_extent(inode, start, last - start + 1); 1563 } 1564 1565 pagevec_init(&pvec); 1566 while (index <= end) { 1567 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end); 1568 if (nr_pages == 0) 1569 break; 1570 for (i = 0; i < nr_pages; i++) { 1571 struct page *page = pvec.pages[i]; 1572 1573 BUG_ON(!PageLocked(page)); 1574 BUG_ON(PageWriteback(page)); 1575 if (invalidate) { 1576 if (page_mapped(page)) 1577 clear_page_dirty_for_io(page); 1578 block_invalidatepage(page, 0, PAGE_SIZE); 1579 ClearPageUptodate(page); 1580 } 1581 unlock_page(page); 1582 } 1583 pagevec_release(&pvec); 1584 } 1585 } 1586 1587 static void ext4_print_free_blocks(struct inode *inode) 1588 { 1589 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1590 struct super_block *sb = inode->i_sb; 1591 struct ext4_inode_info *ei = EXT4_I(inode); 1592 1593 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1594 EXT4_C2B(EXT4_SB(inode->i_sb), 1595 ext4_count_free_clusters(sb))); 1596 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1597 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1598 (long long) EXT4_C2B(EXT4_SB(sb), 1599 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1600 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1601 (long long) EXT4_C2B(EXT4_SB(sb), 1602 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1603 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1604 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1605 ei->i_reserved_data_blocks); 1606 return; 1607 } 1608 1609 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct inode *inode, 1610 struct buffer_head *bh) 1611 { 1612 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1613 } 1614 1615 /* 1616 * ext4_insert_delayed_block - adds a delayed block to the extents status 1617 * tree, incrementing the reserved cluster/block 1618 * count or making a pending reservation 1619 * where needed 1620 * 1621 * @inode - file containing the newly added block 1622 * @lblk - logical block to be added 1623 * 1624 * Returns 0 on success, negative error code on failure. 1625 */ 1626 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk) 1627 { 1628 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1629 int ret; 1630 bool allocated = false; 1631 bool reserved = false; 1632 1633 /* 1634 * If the cluster containing lblk is shared with a delayed, 1635 * written, or unwritten extent in a bigalloc file system, it's 1636 * already been accounted for and does not need to be reserved. 1637 * A pending reservation must be made for the cluster if it's 1638 * shared with a written or unwritten extent and doesn't already 1639 * have one. Written and unwritten extents can be purged from the 1640 * extents status tree if the system is under memory pressure, so 1641 * it's necessary to examine the extent tree if a search of the 1642 * extents status tree doesn't get a match. 1643 */ 1644 if (sbi->s_cluster_ratio == 1) { 1645 ret = ext4_da_reserve_space(inode); 1646 if (ret != 0) /* ENOSPC */ 1647 goto errout; 1648 reserved = true; 1649 } else { /* bigalloc */ 1650 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) { 1651 if (!ext4_es_scan_clu(inode, 1652 &ext4_es_is_mapped, lblk)) { 1653 ret = ext4_clu_mapped(inode, 1654 EXT4_B2C(sbi, lblk)); 1655 if (ret < 0) 1656 goto errout; 1657 if (ret == 0) { 1658 ret = ext4_da_reserve_space(inode); 1659 if (ret != 0) /* ENOSPC */ 1660 goto errout; 1661 reserved = true; 1662 } else { 1663 allocated = true; 1664 } 1665 } else { 1666 allocated = true; 1667 } 1668 } 1669 } 1670 1671 ret = ext4_es_insert_delayed_block(inode, lblk, allocated); 1672 if (ret && reserved) 1673 ext4_da_release_space(inode, 1); 1674 1675 errout: 1676 return ret; 1677 } 1678 1679 /* 1680 * This function is grabs code from the very beginning of 1681 * ext4_map_blocks, but assumes that the caller is from delayed write 1682 * time. This function looks up the requested blocks and sets the 1683 * buffer delay bit under the protection of i_data_sem. 1684 */ 1685 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1686 struct ext4_map_blocks *map, 1687 struct buffer_head *bh) 1688 { 1689 struct extent_status es; 1690 int retval; 1691 sector_t invalid_block = ~((sector_t) 0xffff); 1692 #ifdef ES_AGGRESSIVE_TEST 1693 struct ext4_map_blocks orig_map; 1694 1695 memcpy(&orig_map, map, sizeof(*map)); 1696 #endif 1697 1698 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1699 invalid_block = ~0; 1700 1701 map->m_flags = 0; 1702 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len, 1703 (unsigned long) map->m_lblk); 1704 1705 /* Lookup extent status tree firstly */ 1706 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) { 1707 if (ext4_es_is_hole(&es)) { 1708 retval = 0; 1709 down_read(&EXT4_I(inode)->i_data_sem); 1710 goto add_delayed; 1711 } 1712 1713 /* 1714 * Delayed extent could be allocated by fallocate. 1715 * So we need to check it. 1716 */ 1717 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1718 map_bh(bh, inode->i_sb, invalid_block); 1719 set_buffer_new(bh); 1720 set_buffer_delay(bh); 1721 return 0; 1722 } 1723 1724 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1725 retval = es.es_len - (iblock - es.es_lblk); 1726 if (retval > map->m_len) 1727 retval = map->m_len; 1728 map->m_len = retval; 1729 if (ext4_es_is_written(&es)) 1730 map->m_flags |= EXT4_MAP_MAPPED; 1731 else if (ext4_es_is_unwritten(&es)) 1732 map->m_flags |= EXT4_MAP_UNWRITTEN; 1733 else 1734 BUG(); 1735 1736 #ifdef ES_AGGRESSIVE_TEST 1737 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1738 #endif 1739 return retval; 1740 } 1741 1742 /* 1743 * Try to see if we can get the block without requesting a new 1744 * file system block. 1745 */ 1746 down_read(&EXT4_I(inode)->i_data_sem); 1747 if (ext4_has_inline_data(inode)) 1748 retval = 0; 1749 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1750 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1751 else 1752 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1753 1754 add_delayed: 1755 if (retval == 0) { 1756 int ret; 1757 1758 /* 1759 * XXX: __block_prepare_write() unmaps passed block, 1760 * is it OK? 1761 */ 1762 1763 ret = ext4_insert_delayed_block(inode, map->m_lblk); 1764 if (ret != 0) { 1765 retval = ret; 1766 goto out_unlock; 1767 } 1768 1769 map_bh(bh, inode->i_sb, invalid_block); 1770 set_buffer_new(bh); 1771 set_buffer_delay(bh); 1772 } else if (retval > 0) { 1773 int ret; 1774 unsigned int status; 1775 1776 if (unlikely(retval != map->m_len)) { 1777 ext4_warning(inode->i_sb, 1778 "ES len assertion failed for inode " 1779 "%lu: retval %d != map->m_len %d", 1780 inode->i_ino, retval, map->m_len); 1781 WARN_ON(1); 1782 } 1783 1784 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1785 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1786 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1787 map->m_pblk, status); 1788 if (ret != 0) 1789 retval = ret; 1790 } 1791 1792 out_unlock: 1793 up_read((&EXT4_I(inode)->i_data_sem)); 1794 1795 return retval; 1796 } 1797 1798 /* 1799 * This is a special get_block_t callback which is used by 1800 * ext4_da_write_begin(). It will either return mapped block or 1801 * reserve space for a single block. 1802 * 1803 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1804 * We also have b_blocknr = -1 and b_bdev initialized properly 1805 * 1806 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1807 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1808 * initialized properly. 1809 */ 1810 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1811 struct buffer_head *bh, int create) 1812 { 1813 struct ext4_map_blocks map; 1814 int ret = 0; 1815 1816 BUG_ON(create == 0); 1817 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1818 1819 map.m_lblk = iblock; 1820 map.m_len = 1; 1821 1822 /* 1823 * first, we need to know whether the block is allocated already 1824 * preallocated blocks are unmapped but should treated 1825 * the same as allocated blocks. 1826 */ 1827 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1828 if (ret <= 0) 1829 return ret; 1830 1831 map_bh(bh, inode->i_sb, map.m_pblk); 1832 ext4_update_bh_state(bh, map.m_flags); 1833 1834 if (buffer_unwritten(bh)) { 1835 /* A delayed write to unwritten bh should be marked 1836 * new and mapped. Mapped ensures that we don't do 1837 * get_block multiple times when we write to the same 1838 * offset and new ensures that we do proper zero out 1839 * for partial write. 1840 */ 1841 set_buffer_new(bh); 1842 set_buffer_mapped(bh); 1843 } 1844 return 0; 1845 } 1846 1847 static int bget_one(handle_t *handle, struct inode *inode, 1848 struct buffer_head *bh) 1849 { 1850 get_bh(bh); 1851 return 0; 1852 } 1853 1854 static int bput_one(handle_t *handle, struct inode *inode, 1855 struct buffer_head *bh) 1856 { 1857 put_bh(bh); 1858 return 0; 1859 } 1860 1861 static int __ext4_journalled_writepage(struct page *page, 1862 unsigned int len) 1863 { 1864 struct address_space *mapping = page->mapping; 1865 struct inode *inode = mapping->host; 1866 struct buffer_head *page_bufs = NULL; 1867 handle_t *handle = NULL; 1868 int ret = 0, err = 0; 1869 int inline_data = ext4_has_inline_data(inode); 1870 struct buffer_head *inode_bh = NULL; 1871 1872 ClearPageChecked(page); 1873 1874 if (inline_data) { 1875 BUG_ON(page->index != 0); 1876 BUG_ON(len > ext4_get_max_inline_size(inode)); 1877 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1878 if (inode_bh == NULL) 1879 goto out; 1880 } else { 1881 page_bufs = page_buffers(page); 1882 if (!page_bufs) { 1883 BUG(); 1884 goto out; 1885 } 1886 ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 1887 NULL, bget_one); 1888 } 1889 /* 1890 * We need to release the page lock before we start the 1891 * journal, so grab a reference so the page won't disappear 1892 * out from under us. 1893 */ 1894 get_page(page); 1895 unlock_page(page); 1896 1897 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1898 ext4_writepage_trans_blocks(inode)); 1899 if (IS_ERR(handle)) { 1900 ret = PTR_ERR(handle); 1901 put_page(page); 1902 goto out_no_pagelock; 1903 } 1904 BUG_ON(!ext4_handle_valid(handle)); 1905 1906 lock_page(page); 1907 put_page(page); 1908 if (page->mapping != mapping) { 1909 /* The page got truncated from under us */ 1910 ext4_journal_stop(handle); 1911 ret = 0; 1912 goto out; 1913 } 1914 1915 if (inline_data) { 1916 ret = ext4_mark_inode_dirty(handle, inode); 1917 } else { 1918 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 1919 NULL, do_journal_get_write_access); 1920 1921 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 1922 NULL, write_end_fn); 1923 } 1924 if (ret == 0) 1925 ret = err; 1926 err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len); 1927 if (ret == 0) 1928 ret = err; 1929 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1930 err = ext4_journal_stop(handle); 1931 if (!ret) 1932 ret = err; 1933 1934 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1935 out: 1936 unlock_page(page); 1937 out_no_pagelock: 1938 if (!inline_data && page_bufs) 1939 ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len, 1940 NULL, bput_one); 1941 brelse(inode_bh); 1942 return ret; 1943 } 1944 1945 /* 1946 * Note that we don't need to start a transaction unless we're journaling data 1947 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1948 * need to file the inode to the transaction's list in ordered mode because if 1949 * we are writing back data added by write(), the inode is already there and if 1950 * we are writing back data modified via mmap(), no one guarantees in which 1951 * transaction the data will hit the disk. In case we are journaling data, we 1952 * cannot start transaction directly because transaction start ranks above page 1953 * lock so we have to do some magic. 1954 * 1955 * This function can get called via... 1956 * - ext4_writepages after taking page lock (have journal handle) 1957 * - journal_submit_inode_data_buffers (no journal handle) 1958 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 1959 * - grab_page_cache when doing write_begin (have journal handle) 1960 * 1961 * We don't do any block allocation in this function. If we have page with 1962 * multiple blocks we need to write those buffer_heads that are mapped. This 1963 * is important for mmaped based write. So if we do with blocksize 1K 1964 * truncate(f, 1024); 1965 * a = mmap(f, 0, 4096); 1966 * a[0] = 'a'; 1967 * truncate(f, 4096); 1968 * we have in the page first buffer_head mapped via page_mkwrite call back 1969 * but other buffer_heads would be unmapped but dirty (dirty done via the 1970 * do_wp_page). So writepage should write the first block. If we modify 1971 * the mmap area beyond 1024 we will again get a page_fault and the 1972 * page_mkwrite callback will do the block allocation and mark the 1973 * buffer_heads mapped. 1974 * 1975 * We redirty the page if we have any buffer_heads that is either delay or 1976 * unwritten in the page. 1977 * 1978 * We can get recursively called as show below. 1979 * 1980 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1981 * ext4_writepage() 1982 * 1983 * But since we don't do any block allocation we should not deadlock. 1984 * Page also have the dirty flag cleared so we don't get recurive page_lock. 1985 */ 1986 static int ext4_writepage(struct page *page, 1987 struct writeback_control *wbc) 1988 { 1989 int ret = 0; 1990 loff_t size; 1991 unsigned int len; 1992 struct buffer_head *page_bufs = NULL; 1993 struct inode *inode = page->mapping->host; 1994 struct ext4_io_submit io_submit; 1995 bool keep_towrite = false; 1996 1997 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 1998 inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE); 1999 unlock_page(page); 2000 return -EIO; 2001 } 2002 2003 trace_ext4_writepage(page); 2004 size = i_size_read(inode); 2005 if (page->index == size >> PAGE_SHIFT && 2006 !ext4_verity_in_progress(inode)) 2007 len = size & ~PAGE_MASK; 2008 else 2009 len = PAGE_SIZE; 2010 2011 page_bufs = page_buffers(page); 2012 /* 2013 * We cannot do block allocation or other extent handling in this 2014 * function. If there are buffers needing that, we have to redirty 2015 * the page. But we may reach here when we do a journal commit via 2016 * journal_submit_inode_data_buffers() and in that case we must write 2017 * allocated buffers to achieve data=ordered mode guarantees. 2018 * 2019 * Also, if there is only one buffer per page (the fs block 2020 * size == the page size), if one buffer needs block 2021 * allocation or needs to modify the extent tree to clear the 2022 * unwritten flag, we know that the page can't be written at 2023 * all, so we might as well refuse the write immediately. 2024 * Unfortunately if the block size != page size, we can't as 2025 * easily detect this case using ext4_walk_page_buffers(), but 2026 * for the extremely common case, this is an optimization that 2027 * skips a useless round trip through ext4_bio_write_page(). 2028 */ 2029 if (ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len, NULL, 2030 ext4_bh_delay_or_unwritten)) { 2031 redirty_page_for_writepage(wbc, page); 2032 if ((current->flags & PF_MEMALLOC) || 2033 (inode->i_sb->s_blocksize == PAGE_SIZE)) { 2034 /* 2035 * For memory cleaning there's no point in writing only 2036 * some buffers. So just bail out. Warn if we came here 2037 * from direct reclaim. 2038 */ 2039 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 2040 == PF_MEMALLOC); 2041 unlock_page(page); 2042 return 0; 2043 } 2044 keep_towrite = true; 2045 } 2046 2047 if (PageChecked(page) && ext4_should_journal_data(inode)) 2048 /* 2049 * It's mmapped pagecache. Add buffers and journal it. There 2050 * doesn't seem much point in redirtying the page here. 2051 */ 2052 return __ext4_journalled_writepage(page, len); 2053 2054 ext4_io_submit_init(&io_submit, wbc); 2055 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 2056 if (!io_submit.io_end) { 2057 redirty_page_for_writepage(wbc, page); 2058 unlock_page(page); 2059 return -ENOMEM; 2060 } 2061 ret = ext4_bio_write_page(&io_submit, page, len, keep_towrite); 2062 ext4_io_submit(&io_submit); 2063 /* Drop io_end reference we got from init */ 2064 ext4_put_io_end_defer(io_submit.io_end); 2065 return ret; 2066 } 2067 2068 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 2069 { 2070 int len; 2071 loff_t size; 2072 int err; 2073 2074 BUG_ON(page->index != mpd->first_page); 2075 clear_page_dirty_for_io(page); 2076 /* 2077 * We have to be very careful here! Nothing protects writeback path 2078 * against i_size changes and the page can be writeably mapped into 2079 * page tables. So an application can be growing i_size and writing 2080 * data through mmap while writeback runs. clear_page_dirty_for_io() 2081 * write-protects our page in page tables and the page cannot get 2082 * written to again until we release page lock. So only after 2083 * clear_page_dirty_for_io() we are safe to sample i_size for 2084 * ext4_bio_write_page() to zero-out tail of the written page. We rely 2085 * on the barrier provided by TestClearPageDirty in 2086 * clear_page_dirty_for_io() to make sure i_size is really sampled only 2087 * after page tables are updated. 2088 */ 2089 size = i_size_read(mpd->inode); 2090 if (page->index == size >> PAGE_SHIFT && 2091 !ext4_verity_in_progress(mpd->inode)) 2092 len = size & ~PAGE_MASK; 2093 else 2094 len = PAGE_SIZE; 2095 err = ext4_bio_write_page(&mpd->io_submit, page, len, false); 2096 if (!err) 2097 mpd->wbc->nr_to_write--; 2098 mpd->first_page++; 2099 2100 return err; 2101 } 2102 2103 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay)) 2104 2105 /* 2106 * mballoc gives us at most this number of blocks... 2107 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 2108 * The rest of mballoc seems to handle chunks up to full group size. 2109 */ 2110 #define MAX_WRITEPAGES_EXTENT_LEN 2048 2111 2112 /* 2113 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 2114 * 2115 * @mpd - extent of blocks 2116 * @lblk - logical number of the block in the file 2117 * @bh - buffer head we want to add to the extent 2118 * 2119 * The function is used to collect contig. blocks in the same state. If the 2120 * buffer doesn't require mapping for writeback and we haven't started the 2121 * extent of buffers to map yet, the function returns 'true' immediately - the 2122 * caller can write the buffer right away. Otherwise the function returns true 2123 * if the block has been added to the extent, false if the block couldn't be 2124 * added. 2125 */ 2126 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 2127 struct buffer_head *bh) 2128 { 2129 struct ext4_map_blocks *map = &mpd->map; 2130 2131 /* Buffer that doesn't need mapping for writeback? */ 2132 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 2133 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 2134 /* So far no extent to map => we write the buffer right away */ 2135 if (map->m_len == 0) 2136 return true; 2137 return false; 2138 } 2139 2140 /* First block in the extent? */ 2141 if (map->m_len == 0) { 2142 /* We cannot map unless handle is started... */ 2143 if (!mpd->do_map) 2144 return false; 2145 map->m_lblk = lblk; 2146 map->m_len = 1; 2147 map->m_flags = bh->b_state & BH_FLAGS; 2148 return true; 2149 } 2150 2151 /* Don't go larger than mballoc is willing to allocate */ 2152 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 2153 return false; 2154 2155 /* Can we merge the block to our big extent? */ 2156 if (lblk == map->m_lblk + map->m_len && 2157 (bh->b_state & BH_FLAGS) == map->m_flags) { 2158 map->m_len++; 2159 return true; 2160 } 2161 return false; 2162 } 2163 2164 /* 2165 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 2166 * 2167 * @mpd - extent of blocks for mapping 2168 * @head - the first buffer in the page 2169 * @bh - buffer we should start processing from 2170 * @lblk - logical number of the block in the file corresponding to @bh 2171 * 2172 * Walk through page buffers from @bh upto @head (exclusive) and either submit 2173 * the page for IO if all buffers in this page were mapped and there's no 2174 * accumulated extent of buffers to map or add buffers in the page to the 2175 * extent of buffers to map. The function returns 1 if the caller can continue 2176 * by processing the next page, 0 if it should stop adding buffers to the 2177 * extent to map because we cannot extend it anymore. It can also return value 2178 * < 0 in case of error during IO submission. 2179 */ 2180 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 2181 struct buffer_head *head, 2182 struct buffer_head *bh, 2183 ext4_lblk_t lblk) 2184 { 2185 struct inode *inode = mpd->inode; 2186 int err; 2187 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) 2188 >> inode->i_blkbits; 2189 2190 if (ext4_verity_in_progress(inode)) 2191 blocks = EXT_MAX_BLOCKS; 2192 2193 do { 2194 BUG_ON(buffer_locked(bh)); 2195 2196 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2197 /* Found extent to map? */ 2198 if (mpd->map.m_len) 2199 return 0; 2200 /* Buffer needs mapping and handle is not started? */ 2201 if (!mpd->do_map) 2202 return 0; 2203 /* Everything mapped so far and we hit EOF */ 2204 break; 2205 } 2206 } while (lblk++, (bh = bh->b_this_page) != head); 2207 /* So far everything mapped? Submit the page for IO. */ 2208 if (mpd->map.m_len == 0) { 2209 err = mpage_submit_page(mpd, head->b_page); 2210 if (err < 0) 2211 return err; 2212 } 2213 if (lblk >= blocks) { 2214 mpd->scanned_until_end = 1; 2215 return 0; 2216 } 2217 return 1; 2218 } 2219 2220 /* 2221 * mpage_process_page - update page buffers corresponding to changed extent and 2222 * may submit fully mapped page for IO 2223 * 2224 * @mpd - description of extent to map, on return next extent to map 2225 * @m_lblk - logical block mapping. 2226 * @m_pblk - corresponding physical mapping. 2227 * @map_bh - determines on return whether this page requires any further 2228 * mapping or not. 2229 * Scan given page buffers corresponding to changed extent and update buffer 2230 * state according to new extent state. 2231 * We map delalloc buffers to their physical location, clear unwritten bits. 2232 * If the given page is not fully mapped, we update @map to the next extent in 2233 * the given page that needs mapping & return @map_bh as true. 2234 */ 2235 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page, 2236 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk, 2237 bool *map_bh) 2238 { 2239 struct buffer_head *head, *bh; 2240 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2241 ext4_lblk_t lblk = *m_lblk; 2242 ext4_fsblk_t pblock = *m_pblk; 2243 int err = 0; 2244 int blkbits = mpd->inode->i_blkbits; 2245 ssize_t io_end_size = 0; 2246 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end); 2247 2248 bh = head = page_buffers(page); 2249 do { 2250 if (lblk < mpd->map.m_lblk) 2251 continue; 2252 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2253 /* 2254 * Buffer after end of mapped extent. 2255 * Find next buffer in the page to map. 2256 */ 2257 mpd->map.m_len = 0; 2258 mpd->map.m_flags = 0; 2259 io_end_vec->size += io_end_size; 2260 io_end_size = 0; 2261 2262 err = mpage_process_page_bufs(mpd, head, bh, lblk); 2263 if (err > 0) 2264 err = 0; 2265 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) { 2266 io_end_vec = ext4_alloc_io_end_vec(io_end); 2267 if (IS_ERR(io_end_vec)) { 2268 err = PTR_ERR(io_end_vec); 2269 goto out; 2270 } 2271 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits; 2272 } 2273 *map_bh = true; 2274 goto out; 2275 } 2276 if (buffer_delay(bh)) { 2277 clear_buffer_delay(bh); 2278 bh->b_blocknr = pblock++; 2279 } 2280 clear_buffer_unwritten(bh); 2281 io_end_size += (1 << blkbits); 2282 } while (lblk++, (bh = bh->b_this_page) != head); 2283 2284 io_end_vec->size += io_end_size; 2285 io_end_size = 0; 2286 *map_bh = false; 2287 out: 2288 *m_lblk = lblk; 2289 *m_pblk = pblock; 2290 return err; 2291 } 2292 2293 /* 2294 * mpage_map_buffers - update buffers corresponding to changed extent and 2295 * submit fully mapped pages for IO 2296 * 2297 * @mpd - description of extent to map, on return next extent to map 2298 * 2299 * Scan buffers corresponding to changed extent (we expect corresponding pages 2300 * to be already locked) and update buffer state according to new extent state. 2301 * We map delalloc buffers to their physical location, clear unwritten bits, 2302 * and mark buffers as uninit when we perform writes to unwritten extents 2303 * and do extent conversion after IO is finished. If the last page is not fully 2304 * mapped, we update @map to the next extent in the last page that needs 2305 * mapping. Otherwise we submit the page for IO. 2306 */ 2307 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2308 { 2309 struct pagevec pvec; 2310 int nr_pages, i; 2311 struct inode *inode = mpd->inode; 2312 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2313 pgoff_t start, end; 2314 ext4_lblk_t lblk; 2315 ext4_fsblk_t pblock; 2316 int err; 2317 bool map_bh = false; 2318 2319 start = mpd->map.m_lblk >> bpp_bits; 2320 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2321 lblk = start << bpp_bits; 2322 pblock = mpd->map.m_pblk; 2323 2324 pagevec_init(&pvec); 2325 while (start <= end) { 2326 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, 2327 &start, end); 2328 if (nr_pages == 0) 2329 break; 2330 for (i = 0; i < nr_pages; i++) { 2331 struct page *page = pvec.pages[i]; 2332 2333 err = mpage_process_page(mpd, page, &lblk, &pblock, 2334 &map_bh); 2335 /* 2336 * If map_bh is true, means page may require further bh 2337 * mapping, or maybe the page was submitted for IO. 2338 * So we return to call further extent mapping. 2339 */ 2340 if (err < 0 || map_bh) 2341 goto out; 2342 /* Page fully mapped - let IO run! */ 2343 err = mpage_submit_page(mpd, page); 2344 if (err < 0) 2345 goto out; 2346 } 2347 pagevec_release(&pvec); 2348 } 2349 /* Extent fully mapped and matches with page boundary. We are done. */ 2350 mpd->map.m_len = 0; 2351 mpd->map.m_flags = 0; 2352 return 0; 2353 out: 2354 pagevec_release(&pvec); 2355 return err; 2356 } 2357 2358 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2359 { 2360 struct inode *inode = mpd->inode; 2361 struct ext4_map_blocks *map = &mpd->map; 2362 int get_blocks_flags; 2363 int err, dioread_nolock; 2364 2365 trace_ext4_da_write_pages_extent(inode, map); 2366 /* 2367 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2368 * to convert an unwritten extent to be initialized (in the case 2369 * where we have written into one or more preallocated blocks). It is 2370 * possible that we're going to need more metadata blocks than 2371 * previously reserved. However we must not fail because we're in 2372 * writeback and there is nothing we can do about it so it might result 2373 * in data loss. So use reserved blocks to allocate metadata if 2374 * possible. 2375 * 2376 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2377 * the blocks in question are delalloc blocks. This indicates 2378 * that the blocks and quotas has already been checked when 2379 * the data was copied into the page cache. 2380 */ 2381 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2382 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2383 EXT4_GET_BLOCKS_IO_SUBMIT; 2384 dioread_nolock = ext4_should_dioread_nolock(inode); 2385 if (dioread_nolock) 2386 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2387 if (map->m_flags & BIT(BH_Delay)) 2388 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2389 2390 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2391 if (err < 0) 2392 return err; 2393 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2394 if (!mpd->io_submit.io_end->handle && 2395 ext4_handle_valid(handle)) { 2396 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2397 handle->h_rsv_handle = NULL; 2398 } 2399 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2400 } 2401 2402 BUG_ON(map->m_len == 0); 2403 return 0; 2404 } 2405 2406 /* 2407 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2408 * mpd->len and submit pages underlying it for IO 2409 * 2410 * @handle - handle for journal operations 2411 * @mpd - extent to map 2412 * @give_up_on_write - we set this to true iff there is a fatal error and there 2413 * is no hope of writing the data. The caller should discard 2414 * dirty pages to avoid infinite loops. 2415 * 2416 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2417 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2418 * them to initialized or split the described range from larger unwritten 2419 * extent. Note that we need not map all the described range since allocation 2420 * can return less blocks or the range is covered by more unwritten extents. We 2421 * cannot map more because we are limited by reserved transaction credits. On 2422 * the other hand we always make sure that the last touched page is fully 2423 * mapped so that it can be written out (and thus forward progress is 2424 * guaranteed). After mapping we submit all mapped pages for IO. 2425 */ 2426 static int mpage_map_and_submit_extent(handle_t *handle, 2427 struct mpage_da_data *mpd, 2428 bool *give_up_on_write) 2429 { 2430 struct inode *inode = mpd->inode; 2431 struct ext4_map_blocks *map = &mpd->map; 2432 int err; 2433 loff_t disksize; 2434 int progress = 0; 2435 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2436 struct ext4_io_end_vec *io_end_vec; 2437 2438 io_end_vec = ext4_alloc_io_end_vec(io_end); 2439 if (IS_ERR(io_end_vec)) 2440 return PTR_ERR(io_end_vec); 2441 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits; 2442 do { 2443 err = mpage_map_one_extent(handle, mpd); 2444 if (err < 0) { 2445 struct super_block *sb = inode->i_sb; 2446 2447 if (ext4_forced_shutdown(EXT4_SB(sb)) || 2448 ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) 2449 goto invalidate_dirty_pages; 2450 /* 2451 * Let the uper layers retry transient errors. 2452 * In the case of ENOSPC, if ext4_count_free_blocks() 2453 * is non-zero, a commit should free up blocks. 2454 */ 2455 if ((err == -ENOMEM) || 2456 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2457 if (progress) 2458 goto update_disksize; 2459 return err; 2460 } 2461 ext4_msg(sb, KERN_CRIT, 2462 "Delayed block allocation failed for " 2463 "inode %lu at logical offset %llu with" 2464 " max blocks %u with error %d", 2465 inode->i_ino, 2466 (unsigned long long)map->m_lblk, 2467 (unsigned)map->m_len, -err); 2468 ext4_msg(sb, KERN_CRIT, 2469 "This should not happen!! Data will " 2470 "be lost\n"); 2471 if (err == -ENOSPC) 2472 ext4_print_free_blocks(inode); 2473 invalidate_dirty_pages: 2474 *give_up_on_write = true; 2475 return err; 2476 } 2477 progress = 1; 2478 /* 2479 * Update buffer state, submit mapped pages, and get us new 2480 * extent to map 2481 */ 2482 err = mpage_map_and_submit_buffers(mpd); 2483 if (err < 0) 2484 goto update_disksize; 2485 } while (map->m_len); 2486 2487 update_disksize: 2488 /* 2489 * Update on-disk size after IO is submitted. Races with 2490 * truncate are avoided by checking i_size under i_data_sem. 2491 */ 2492 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2493 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) { 2494 int err2; 2495 loff_t i_size; 2496 2497 down_write(&EXT4_I(inode)->i_data_sem); 2498 i_size = i_size_read(inode); 2499 if (disksize > i_size) 2500 disksize = i_size; 2501 if (disksize > EXT4_I(inode)->i_disksize) 2502 EXT4_I(inode)->i_disksize = disksize; 2503 up_write(&EXT4_I(inode)->i_data_sem); 2504 err2 = ext4_mark_inode_dirty(handle, inode); 2505 if (err2) { 2506 ext4_error_err(inode->i_sb, -err2, 2507 "Failed to mark inode %lu dirty", 2508 inode->i_ino); 2509 } 2510 if (!err) 2511 err = err2; 2512 } 2513 return err; 2514 } 2515 2516 /* 2517 * Calculate the total number of credits to reserve for one writepages 2518 * iteration. This is called from ext4_writepages(). We map an extent of 2519 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2520 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2521 * bpp - 1 blocks in bpp different extents. 2522 */ 2523 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2524 { 2525 int bpp = ext4_journal_blocks_per_page(inode); 2526 2527 return ext4_meta_trans_blocks(inode, 2528 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2529 } 2530 2531 /* 2532 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2533 * and underlying extent to map 2534 * 2535 * @mpd - where to look for pages 2536 * 2537 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2538 * IO immediately. When we find a page which isn't mapped we start accumulating 2539 * extent of buffers underlying these pages that needs mapping (formed by 2540 * either delayed or unwritten buffers). We also lock the pages containing 2541 * these buffers. The extent found is returned in @mpd structure (starting at 2542 * mpd->lblk with length mpd->len blocks). 2543 * 2544 * Note that this function can attach bios to one io_end structure which are 2545 * neither logically nor physically contiguous. Although it may seem as an 2546 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2547 * case as we need to track IO to all buffers underlying a page in one io_end. 2548 */ 2549 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2550 { 2551 struct address_space *mapping = mpd->inode->i_mapping; 2552 struct pagevec pvec; 2553 unsigned int nr_pages; 2554 long left = mpd->wbc->nr_to_write; 2555 pgoff_t index = mpd->first_page; 2556 pgoff_t end = mpd->last_page; 2557 xa_mark_t tag; 2558 int i, err = 0; 2559 int blkbits = mpd->inode->i_blkbits; 2560 ext4_lblk_t lblk; 2561 struct buffer_head *head; 2562 2563 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2564 tag = PAGECACHE_TAG_TOWRITE; 2565 else 2566 tag = PAGECACHE_TAG_DIRTY; 2567 2568 pagevec_init(&pvec); 2569 mpd->map.m_len = 0; 2570 mpd->next_page = index; 2571 while (index <= end) { 2572 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2573 tag); 2574 if (nr_pages == 0) 2575 break; 2576 2577 for (i = 0; i < nr_pages; i++) { 2578 struct page *page = pvec.pages[i]; 2579 2580 /* 2581 * Accumulated enough dirty pages? This doesn't apply 2582 * to WB_SYNC_ALL mode. For integrity sync we have to 2583 * keep going because someone may be concurrently 2584 * dirtying pages, and we might have synced a lot of 2585 * newly appeared dirty pages, but have not synced all 2586 * of the old dirty pages. 2587 */ 2588 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2589 goto out; 2590 2591 /* If we can't merge this page, we are done. */ 2592 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2593 goto out; 2594 2595 lock_page(page); 2596 /* 2597 * If the page is no longer dirty, or its mapping no 2598 * longer corresponds to inode we are writing (which 2599 * means it has been truncated or invalidated), or the 2600 * page is already under writeback and we are not doing 2601 * a data integrity writeback, skip the page 2602 */ 2603 if (!PageDirty(page) || 2604 (PageWriteback(page) && 2605 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2606 unlikely(page->mapping != mapping)) { 2607 unlock_page(page); 2608 continue; 2609 } 2610 2611 wait_on_page_writeback(page); 2612 BUG_ON(PageWriteback(page)); 2613 2614 if (mpd->map.m_len == 0) 2615 mpd->first_page = page->index; 2616 mpd->next_page = page->index + 1; 2617 /* Add all dirty buffers to mpd */ 2618 lblk = ((ext4_lblk_t)page->index) << 2619 (PAGE_SHIFT - blkbits); 2620 head = page_buffers(page); 2621 err = mpage_process_page_bufs(mpd, head, head, lblk); 2622 if (err <= 0) 2623 goto out; 2624 err = 0; 2625 left--; 2626 } 2627 pagevec_release(&pvec); 2628 cond_resched(); 2629 } 2630 mpd->scanned_until_end = 1; 2631 return 0; 2632 out: 2633 pagevec_release(&pvec); 2634 return err; 2635 } 2636 2637 static int ext4_writepages(struct address_space *mapping, 2638 struct writeback_control *wbc) 2639 { 2640 pgoff_t writeback_index = 0; 2641 long nr_to_write = wbc->nr_to_write; 2642 int range_whole = 0; 2643 int cycled = 1; 2644 handle_t *handle = NULL; 2645 struct mpage_da_data mpd; 2646 struct inode *inode = mapping->host; 2647 int needed_blocks, rsv_blocks = 0, ret = 0; 2648 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2649 struct blk_plug plug; 2650 bool give_up_on_write = false; 2651 2652 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2653 return -EIO; 2654 2655 percpu_down_read(&sbi->s_writepages_rwsem); 2656 trace_ext4_writepages(inode, wbc); 2657 2658 /* 2659 * No pages to write? This is mainly a kludge to avoid starting 2660 * a transaction for special inodes like journal inode on last iput() 2661 * because that could violate lock ordering on umount 2662 */ 2663 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2664 goto out_writepages; 2665 2666 if (ext4_should_journal_data(inode)) { 2667 ret = generic_writepages(mapping, wbc); 2668 goto out_writepages; 2669 } 2670 2671 /* 2672 * If the filesystem has aborted, it is read-only, so return 2673 * right away instead of dumping stack traces later on that 2674 * will obscure the real source of the problem. We test 2675 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because 2676 * the latter could be true if the filesystem is mounted 2677 * read-only, and in that case, ext4_writepages should 2678 * *never* be called, so if that ever happens, we would want 2679 * the stack trace. 2680 */ 2681 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) || 2682 ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) { 2683 ret = -EROFS; 2684 goto out_writepages; 2685 } 2686 2687 /* 2688 * If we have inline data and arrive here, it means that 2689 * we will soon create the block for the 1st page, so 2690 * we'd better clear the inline data here. 2691 */ 2692 if (ext4_has_inline_data(inode)) { 2693 /* Just inode will be modified... */ 2694 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2695 if (IS_ERR(handle)) { 2696 ret = PTR_ERR(handle); 2697 goto out_writepages; 2698 } 2699 BUG_ON(ext4_test_inode_state(inode, 2700 EXT4_STATE_MAY_INLINE_DATA)); 2701 ext4_destroy_inline_data(handle, inode); 2702 ext4_journal_stop(handle); 2703 } 2704 2705 if (ext4_should_dioread_nolock(inode)) { 2706 /* 2707 * We may need to convert up to one extent per block in 2708 * the page and we may dirty the inode. 2709 */ 2710 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode, 2711 PAGE_SIZE >> inode->i_blkbits); 2712 } 2713 2714 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2715 range_whole = 1; 2716 2717 if (wbc->range_cyclic) { 2718 writeback_index = mapping->writeback_index; 2719 if (writeback_index) 2720 cycled = 0; 2721 mpd.first_page = writeback_index; 2722 mpd.last_page = -1; 2723 } else { 2724 mpd.first_page = wbc->range_start >> PAGE_SHIFT; 2725 mpd.last_page = wbc->range_end >> PAGE_SHIFT; 2726 } 2727 2728 mpd.inode = inode; 2729 mpd.wbc = wbc; 2730 ext4_io_submit_init(&mpd.io_submit, wbc); 2731 retry: 2732 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2733 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2734 blk_start_plug(&plug); 2735 2736 /* 2737 * First writeback pages that don't need mapping - we can avoid 2738 * starting a transaction unnecessarily and also avoid being blocked 2739 * in the block layer on device congestion while having transaction 2740 * started. 2741 */ 2742 mpd.do_map = 0; 2743 mpd.scanned_until_end = 0; 2744 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2745 if (!mpd.io_submit.io_end) { 2746 ret = -ENOMEM; 2747 goto unplug; 2748 } 2749 ret = mpage_prepare_extent_to_map(&mpd); 2750 /* Unlock pages we didn't use */ 2751 mpage_release_unused_pages(&mpd, false); 2752 /* Submit prepared bio */ 2753 ext4_io_submit(&mpd.io_submit); 2754 ext4_put_io_end_defer(mpd.io_submit.io_end); 2755 mpd.io_submit.io_end = NULL; 2756 if (ret < 0) 2757 goto unplug; 2758 2759 while (!mpd.scanned_until_end && wbc->nr_to_write > 0) { 2760 /* For each extent of pages we use new io_end */ 2761 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2762 if (!mpd.io_submit.io_end) { 2763 ret = -ENOMEM; 2764 break; 2765 } 2766 2767 /* 2768 * We have two constraints: We find one extent to map and we 2769 * must always write out whole page (makes a difference when 2770 * blocksize < pagesize) so that we don't block on IO when we 2771 * try to write out the rest of the page. Journalled mode is 2772 * not supported by delalloc. 2773 */ 2774 BUG_ON(ext4_should_journal_data(inode)); 2775 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2776 2777 /* start a new transaction */ 2778 handle = ext4_journal_start_with_reserve(inode, 2779 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2780 if (IS_ERR(handle)) { 2781 ret = PTR_ERR(handle); 2782 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2783 "%ld pages, ino %lu; err %d", __func__, 2784 wbc->nr_to_write, inode->i_ino, ret); 2785 /* Release allocated io_end */ 2786 ext4_put_io_end(mpd.io_submit.io_end); 2787 mpd.io_submit.io_end = NULL; 2788 break; 2789 } 2790 mpd.do_map = 1; 2791 2792 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2793 ret = mpage_prepare_extent_to_map(&mpd); 2794 if (!ret && mpd.map.m_len) 2795 ret = mpage_map_and_submit_extent(handle, &mpd, 2796 &give_up_on_write); 2797 /* 2798 * Caution: If the handle is synchronous, 2799 * ext4_journal_stop() can wait for transaction commit 2800 * to finish which may depend on writeback of pages to 2801 * complete or on page lock to be released. In that 2802 * case, we have to wait until after we have 2803 * submitted all the IO, released page locks we hold, 2804 * and dropped io_end reference (for extent conversion 2805 * to be able to complete) before stopping the handle. 2806 */ 2807 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2808 ext4_journal_stop(handle); 2809 handle = NULL; 2810 mpd.do_map = 0; 2811 } 2812 /* Unlock pages we didn't use */ 2813 mpage_release_unused_pages(&mpd, give_up_on_write); 2814 /* Submit prepared bio */ 2815 ext4_io_submit(&mpd.io_submit); 2816 2817 /* 2818 * Drop our io_end reference we got from init. We have 2819 * to be careful and use deferred io_end finishing if 2820 * we are still holding the transaction as we can 2821 * release the last reference to io_end which may end 2822 * up doing unwritten extent conversion. 2823 */ 2824 if (handle) { 2825 ext4_put_io_end_defer(mpd.io_submit.io_end); 2826 ext4_journal_stop(handle); 2827 } else 2828 ext4_put_io_end(mpd.io_submit.io_end); 2829 mpd.io_submit.io_end = NULL; 2830 2831 if (ret == -ENOSPC && sbi->s_journal) { 2832 /* 2833 * Commit the transaction which would 2834 * free blocks released in the transaction 2835 * and try again 2836 */ 2837 jbd2_journal_force_commit_nested(sbi->s_journal); 2838 ret = 0; 2839 continue; 2840 } 2841 /* Fatal error - ENOMEM, EIO... */ 2842 if (ret) 2843 break; 2844 } 2845 unplug: 2846 blk_finish_plug(&plug); 2847 if (!ret && !cycled && wbc->nr_to_write > 0) { 2848 cycled = 1; 2849 mpd.last_page = writeback_index - 1; 2850 mpd.first_page = 0; 2851 goto retry; 2852 } 2853 2854 /* Update index */ 2855 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2856 /* 2857 * Set the writeback_index so that range_cyclic 2858 * mode will write it back later 2859 */ 2860 mapping->writeback_index = mpd.first_page; 2861 2862 out_writepages: 2863 trace_ext4_writepages_result(inode, wbc, ret, 2864 nr_to_write - wbc->nr_to_write); 2865 percpu_up_read(&sbi->s_writepages_rwsem); 2866 return ret; 2867 } 2868 2869 static int ext4_dax_writepages(struct address_space *mapping, 2870 struct writeback_control *wbc) 2871 { 2872 int ret; 2873 long nr_to_write = wbc->nr_to_write; 2874 struct inode *inode = mapping->host; 2875 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2876 2877 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2878 return -EIO; 2879 2880 percpu_down_read(&sbi->s_writepages_rwsem); 2881 trace_ext4_writepages(inode, wbc); 2882 2883 ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc); 2884 trace_ext4_writepages_result(inode, wbc, ret, 2885 nr_to_write - wbc->nr_to_write); 2886 percpu_up_read(&sbi->s_writepages_rwsem); 2887 return ret; 2888 } 2889 2890 static int ext4_nonda_switch(struct super_block *sb) 2891 { 2892 s64 free_clusters, dirty_clusters; 2893 struct ext4_sb_info *sbi = EXT4_SB(sb); 2894 2895 /* 2896 * switch to non delalloc mode if we are running low 2897 * on free block. The free block accounting via percpu 2898 * counters can get slightly wrong with percpu_counter_batch getting 2899 * accumulated on each CPU without updating global counters 2900 * Delalloc need an accurate free block accounting. So switch 2901 * to non delalloc when we are near to error range. 2902 */ 2903 free_clusters = 2904 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2905 dirty_clusters = 2906 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2907 /* 2908 * Start pushing delalloc when 1/2 of free blocks are dirty. 2909 */ 2910 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2911 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2912 2913 if (2 * free_clusters < 3 * dirty_clusters || 2914 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2915 /* 2916 * free block count is less than 150% of dirty blocks 2917 * or free blocks is less than watermark 2918 */ 2919 return 1; 2920 } 2921 return 0; 2922 } 2923 2924 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2925 loff_t pos, unsigned len, unsigned flags, 2926 struct page **pagep, void **fsdata) 2927 { 2928 int ret, retries = 0; 2929 struct page *page; 2930 pgoff_t index; 2931 struct inode *inode = mapping->host; 2932 2933 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2934 return -EIO; 2935 2936 index = pos >> PAGE_SHIFT; 2937 2938 if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) || 2939 ext4_verity_in_progress(inode)) { 2940 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2941 return ext4_write_begin(file, mapping, pos, 2942 len, flags, pagep, fsdata); 2943 } 2944 *fsdata = (void *)0; 2945 trace_ext4_da_write_begin(inode, pos, len, flags); 2946 2947 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2948 ret = ext4_da_write_inline_data_begin(mapping, inode, 2949 pos, len, flags, 2950 pagep, fsdata); 2951 if (ret < 0) 2952 return ret; 2953 if (ret == 1) 2954 return 0; 2955 } 2956 2957 retry: 2958 page = grab_cache_page_write_begin(mapping, index, flags); 2959 if (!page) 2960 return -ENOMEM; 2961 2962 /* In case writeback began while the page was unlocked */ 2963 wait_for_stable_page(page); 2964 2965 #ifdef CONFIG_FS_ENCRYPTION 2966 ret = ext4_block_write_begin(page, pos, len, 2967 ext4_da_get_block_prep); 2968 #else 2969 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 2970 #endif 2971 if (ret < 0) { 2972 unlock_page(page); 2973 put_page(page); 2974 /* 2975 * block_write_begin may have instantiated a few blocks 2976 * outside i_size. Trim these off again. Don't need 2977 * i_size_read because we hold inode lock. 2978 */ 2979 if (pos + len > inode->i_size) 2980 ext4_truncate_failed_write(inode); 2981 2982 if (ret == -ENOSPC && 2983 ext4_should_retry_alloc(inode->i_sb, &retries)) 2984 goto retry; 2985 return ret; 2986 } 2987 2988 *pagep = page; 2989 return ret; 2990 } 2991 2992 /* 2993 * Check if we should update i_disksize 2994 * when write to the end of file but not require block allocation 2995 */ 2996 static int ext4_da_should_update_i_disksize(struct page *page, 2997 unsigned long offset) 2998 { 2999 struct buffer_head *bh; 3000 struct inode *inode = page->mapping->host; 3001 unsigned int idx; 3002 int i; 3003 3004 bh = page_buffers(page); 3005 idx = offset >> inode->i_blkbits; 3006 3007 for (i = 0; i < idx; i++) 3008 bh = bh->b_this_page; 3009 3010 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 3011 return 0; 3012 return 1; 3013 } 3014 3015 static int ext4_da_write_end(struct file *file, 3016 struct address_space *mapping, 3017 loff_t pos, unsigned len, unsigned copied, 3018 struct page *page, void *fsdata) 3019 { 3020 struct inode *inode = mapping->host; 3021 loff_t new_i_size; 3022 unsigned long start, end; 3023 int write_mode = (int)(unsigned long)fsdata; 3024 3025 if (write_mode == FALL_BACK_TO_NONDELALLOC) 3026 return ext4_write_end(file, mapping, pos, 3027 len, copied, page, fsdata); 3028 3029 trace_ext4_da_write_end(inode, pos, len, copied); 3030 3031 if (write_mode != CONVERT_INLINE_DATA && 3032 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3033 ext4_has_inline_data(inode)) 3034 return ext4_write_inline_data_end(inode, pos, len, copied, page); 3035 3036 start = pos & (PAGE_SIZE - 1); 3037 end = start + copied - 1; 3038 3039 /* 3040 * Since we are holding inode lock, we are sure i_disksize <= 3041 * i_size. We also know that if i_disksize < i_size, there are 3042 * delalloc writes pending in the range upto i_size. If the end of 3043 * the current write is <= i_size, there's no need to touch 3044 * i_disksize since writeback will push i_disksize upto i_size 3045 * eventually. If the end of the current write is > i_size and 3046 * inside an allocated block (ext4_da_should_update_i_disksize() 3047 * check), we need to update i_disksize here as neither 3048 * ext4_writepage() nor certain ext4_writepages() paths not 3049 * allocating blocks update i_disksize. 3050 * 3051 * Note that we defer inode dirtying to generic_write_end() / 3052 * ext4_da_write_inline_data_end(). 3053 */ 3054 new_i_size = pos + copied; 3055 if (copied && new_i_size > inode->i_size && 3056 ext4_da_should_update_i_disksize(page, end)) 3057 ext4_update_i_disksize(inode, new_i_size); 3058 3059 return generic_write_end(file, mapping, pos, len, copied, page, fsdata); 3060 } 3061 3062 /* 3063 * Force all delayed allocation blocks to be allocated for a given inode. 3064 */ 3065 int ext4_alloc_da_blocks(struct inode *inode) 3066 { 3067 trace_ext4_alloc_da_blocks(inode); 3068 3069 if (!EXT4_I(inode)->i_reserved_data_blocks) 3070 return 0; 3071 3072 /* 3073 * We do something simple for now. The filemap_flush() will 3074 * also start triggering a write of the data blocks, which is 3075 * not strictly speaking necessary (and for users of 3076 * laptop_mode, not even desirable). However, to do otherwise 3077 * would require replicating code paths in: 3078 * 3079 * ext4_writepages() -> 3080 * write_cache_pages() ---> (via passed in callback function) 3081 * __mpage_da_writepage() --> 3082 * mpage_add_bh_to_extent() 3083 * mpage_da_map_blocks() 3084 * 3085 * The problem is that write_cache_pages(), located in 3086 * mm/page-writeback.c, marks pages clean in preparation for 3087 * doing I/O, which is not desirable if we're not planning on 3088 * doing I/O at all. 3089 * 3090 * We could call write_cache_pages(), and then redirty all of 3091 * the pages by calling redirty_page_for_writepage() but that 3092 * would be ugly in the extreme. So instead we would need to 3093 * replicate parts of the code in the above functions, 3094 * simplifying them because we wouldn't actually intend to 3095 * write out the pages, but rather only collect contiguous 3096 * logical block extents, call the multi-block allocator, and 3097 * then update the buffer heads with the block allocations. 3098 * 3099 * For now, though, we'll cheat by calling filemap_flush(), 3100 * which will map the blocks, and start the I/O, but not 3101 * actually wait for the I/O to complete. 3102 */ 3103 return filemap_flush(inode->i_mapping); 3104 } 3105 3106 /* 3107 * bmap() is special. It gets used by applications such as lilo and by 3108 * the swapper to find the on-disk block of a specific piece of data. 3109 * 3110 * Naturally, this is dangerous if the block concerned is still in the 3111 * journal. If somebody makes a swapfile on an ext4 data-journaling 3112 * filesystem and enables swap, then they may get a nasty shock when the 3113 * data getting swapped to that swapfile suddenly gets overwritten by 3114 * the original zero's written out previously to the journal and 3115 * awaiting writeback in the kernel's buffer cache. 3116 * 3117 * So, if we see any bmap calls here on a modified, data-journaled file, 3118 * take extra steps to flush any blocks which might be in the cache. 3119 */ 3120 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3121 { 3122 struct inode *inode = mapping->host; 3123 journal_t *journal; 3124 int err; 3125 3126 /* 3127 * We can get here for an inline file via the FIBMAP ioctl 3128 */ 3129 if (ext4_has_inline_data(inode)) 3130 return 0; 3131 3132 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3133 test_opt(inode->i_sb, DELALLOC)) { 3134 /* 3135 * With delalloc we want to sync the file 3136 * so that we can make sure we allocate 3137 * blocks for file 3138 */ 3139 filemap_write_and_wait(mapping); 3140 } 3141 3142 if (EXT4_JOURNAL(inode) && 3143 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 3144 /* 3145 * This is a REALLY heavyweight approach, but the use of 3146 * bmap on dirty files is expected to be extremely rare: 3147 * only if we run lilo or swapon on a freshly made file 3148 * do we expect this to happen. 3149 * 3150 * (bmap requires CAP_SYS_RAWIO so this does not 3151 * represent an unprivileged user DOS attack --- we'd be 3152 * in trouble if mortal users could trigger this path at 3153 * will.) 3154 * 3155 * NB. EXT4_STATE_JDATA is not set on files other than 3156 * regular files. If somebody wants to bmap a directory 3157 * or symlink and gets confused because the buffer 3158 * hasn't yet been flushed to disk, they deserve 3159 * everything they get. 3160 */ 3161 3162 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 3163 journal = EXT4_JOURNAL(inode); 3164 jbd2_journal_lock_updates(journal); 3165 err = jbd2_journal_flush(journal, 0); 3166 jbd2_journal_unlock_updates(journal); 3167 3168 if (err) 3169 return 0; 3170 } 3171 3172 return iomap_bmap(mapping, block, &ext4_iomap_ops); 3173 } 3174 3175 static int ext4_readpage(struct file *file, struct page *page) 3176 { 3177 int ret = -EAGAIN; 3178 struct inode *inode = page->mapping->host; 3179 3180 trace_ext4_readpage(page); 3181 3182 if (ext4_has_inline_data(inode)) 3183 ret = ext4_readpage_inline(inode, page); 3184 3185 if (ret == -EAGAIN) 3186 return ext4_mpage_readpages(inode, NULL, page); 3187 3188 return ret; 3189 } 3190 3191 static void ext4_readahead(struct readahead_control *rac) 3192 { 3193 struct inode *inode = rac->mapping->host; 3194 3195 /* If the file has inline data, no need to do readahead. */ 3196 if (ext4_has_inline_data(inode)) 3197 return; 3198 3199 ext4_mpage_readpages(inode, rac, NULL); 3200 } 3201 3202 static void ext4_invalidatepage(struct page *page, unsigned int offset, 3203 unsigned int length) 3204 { 3205 trace_ext4_invalidatepage(page, offset, length); 3206 3207 /* No journalling happens on data buffers when this function is used */ 3208 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 3209 3210 block_invalidatepage(page, offset, length); 3211 } 3212 3213 static int __ext4_journalled_invalidatepage(struct page *page, 3214 unsigned int offset, 3215 unsigned int length) 3216 { 3217 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3218 3219 trace_ext4_journalled_invalidatepage(page, offset, length); 3220 3221 /* 3222 * If it's a full truncate we just forget about the pending dirtying 3223 */ 3224 if (offset == 0 && length == PAGE_SIZE) 3225 ClearPageChecked(page); 3226 3227 return jbd2_journal_invalidatepage(journal, page, offset, length); 3228 } 3229 3230 /* Wrapper for aops... */ 3231 static void ext4_journalled_invalidatepage(struct page *page, 3232 unsigned int offset, 3233 unsigned int length) 3234 { 3235 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 3236 } 3237 3238 static int ext4_releasepage(struct page *page, gfp_t wait) 3239 { 3240 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3241 3242 trace_ext4_releasepage(page); 3243 3244 /* Page has dirty journalled data -> cannot release */ 3245 if (PageChecked(page)) 3246 return 0; 3247 if (journal) 3248 return jbd2_journal_try_to_free_buffers(journal, page); 3249 else 3250 return try_to_free_buffers(page); 3251 } 3252 3253 static bool ext4_inode_datasync_dirty(struct inode *inode) 3254 { 3255 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 3256 3257 if (journal) { 3258 if (jbd2_transaction_committed(journal, 3259 EXT4_I(inode)->i_datasync_tid)) 3260 return false; 3261 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT)) 3262 return !list_empty(&EXT4_I(inode)->i_fc_list); 3263 return true; 3264 } 3265 3266 /* Any metadata buffers to write? */ 3267 if (!list_empty(&inode->i_mapping->private_list)) 3268 return true; 3269 return inode->i_state & I_DIRTY_DATASYNC; 3270 } 3271 3272 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap, 3273 struct ext4_map_blocks *map, loff_t offset, 3274 loff_t length) 3275 { 3276 u8 blkbits = inode->i_blkbits; 3277 3278 /* 3279 * Writes that span EOF might trigger an I/O size update on completion, 3280 * so consider them to be dirty for the purpose of O_DSYNC, even if 3281 * there is no other metadata changes being made or are pending. 3282 */ 3283 iomap->flags = 0; 3284 if (ext4_inode_datasync_dirty(inode) || 3285 offset + length > i_size_read(inode)) 3286 iomap->flags |= IOMAP_F_DIRTY; 3287 3288 if (map->m_flags & EXT4_MAP_NEW) 3289 iomap->flags |= IOMAP_F_NEW; 3290 3291 iomap->bdev = inode->i_sb->s_bdev; 3292 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev; 3293 iomap->offset = (u64) map->m_lblk << blkbits; 3294 iomap->length = (u64) map->m_len << blkbits; 3295 3296 if ((map->m_flags & EXT4_MAP_MAPPED) && 3297 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3298 iomap->flags |= IOMAP_F_MERGED; 3299 3300 /* 3301 * Flags passed to ext4_map_blocks() for direct I/O writes can result 3302 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits 3303 * set. In order for any allocated unwritten extents to be converted 3304 * into written extents correctly within the ->end_io() handler, we 3305 * need to ensure that the iomap->type is set appropriately. Hence, the 3306 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has 3307 * been set first. 3308 */ 3309 if (map->m_flags & EXT4_MAP_UNWRITTEN) { 3310 iomap->type = IOMAP_UNWRITTEN; 3311 iomap->addr = (u64) map->m_pblk << blkbits; 3312 } else if (map->m_flags & EXT4_MAP_MAPPED) { 3313 iomap->type = IOMAP_MAPPED; 3314 iomap->addr = (u64) map->m_pblk << blkbits; 3315 } else { 3316 iomap->type = IOMAP_HOLE; 3317 iomap->addr = IOMAP_NULL_ADDR; 3318 } 3319 } 3320 3321 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map, 3322 unsigned int flags) 3323 { 3324 handle_t *handle; 3325 u8 blkbits = inode->i_blkbits; 3326 int ret, dio_credits, m_flags = 0, retries = 0; 3327 3328 /* 3329 * Trim the mapping request to the maximum value that we can map at 3330 * once for direct I/O. 3331 */ 3332 if (map->m_len > DIO_MAX_BLOCKS) 3333 map->m_len = DIO_MAX_BLOCKS; 3334 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len); 3335 3336 retry: 3337 /* 3338 * Either we allocate blocks and then don't get an unwritten extent, so 3339 * in that case we have reserved enough credits. Or, the blocks are 3340 * already allocated and unwritten. In that case, the extent conversion 3341 * fits into the credits as well. 3342 */ 3343 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 3344 if (IS_ERR(handle)) 3345 return PTR_ERR(handle); 3346 3347 /* 3348 * DAX and direct I/O are the only two operations that are currently 3349 * supported with IOMAP_WRITE. 3350 */ 3351 WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT)); 3352 if (IS_DAX(inode)) 3353 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO; 3354 /* 3355 * We use i_size instead of i_disksize here because delalloc writeback 3356 * can complete at any point during the I/O and subsequently push the 3357 * i_disksize out to i_size. This could be beyond where direct I/O is 3358 * happening and thus expose allocated blocks to direct I/O reads. 3359 */ 3360 else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode)) 3361 m_flags = EXT4_GET_BLOCKS_CREATE; 3362 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3363 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT; 3364 3365 ret = ext4_map_blocks(handle, inode, map, m_flags); 3366 3367 /* 3368 * We cannot fill holes in indirect tree based inodes as that could 3369 * expose stale data in the case of a crash. Use the magic error code 3370 * to fallback to buffered I/O. 3371 */ 3372 if (!m_flags && !ret) 3373 ret = -ENOTBLK; 3374 3375 ext4_journal_stop(handle); 3376 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3377 goto retry; 3378 3379 return ret; 3380 } 3381 3382 3383 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3384 unsigned flags, struct iomap *iomap, struct iomap *srcmap) 3385 { 3386 int ret; 3387 struct ext4_map_blocks map; 3388 u8 blkbits = inode->i_blkbits; 3389 3390 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3391 return -EINVAL; 3392 3393 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3394 return -ERANGE; 3395 3396 /* 3397 * Calculate the first and last logical blocks respectively. 3398 */ 3399 map.m_lblk = offset >> blkbits; 3400 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3401 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3402 3403 if (flags & IOMAP_WRITE) { 3404 /* 3405 * We check here if the blocks are already allocated, then we 3406 * don't need to start a journal txn and we can directly return 3407 * the mapping information. This could boost performance 3408 * especially in multi-threaded overwrite requests. 3409 */ 3410 if (offset + length <= i_size_read(inode)) { 3411 ret = ext4_map_blocks(NULL, inode, &map, 0); 3412 if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED)) 3413 goto out; 3414 } 3415 ret = ext4_iomap_alloc(inode, &map, flags); 3416 } else { 3417 ret = ext4_map_blocks(NULL, inode, &map, 0); 3418 } 3419 3420 if (ret < 0) 3421 return ret; 3422 out: 3423 ext4_set_iomap(inode, iomap, &map, offset, length); 3424 3425 return 0; 3426 } 3427 3428 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset, 3429 loff_t length, unsigned flags, struct iomap *iomap, 3430 struct iomap *srcmap) 3431 { 3432 int ret; 3433 3434 /* 3435 * Even for writes we don't need to allocate blocks, so just pretend 3436 * we are reading to save overhead of starting a transaction. 3437 */ 3438 flags &= ~IOMAP_WRITE; 3439 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap); 3440 WARN_ON_ONCE(iomap->type != IOMAP_MAPPED); 3441 return ret; 3442 } 3443 3444 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, 3445 ssize_t written, unsigned flags, struct iomap *iomap) 3446 { 3447 /* 3448 * Check to see whether an error occurred while writing out the data to 3449 * the allocated blocks. If so, return the magic error code so that we 3450 * fallback to buffered I/O and attempt to complete the remainder of 3451 * the I/O. Any blocks that may have been allocated in preparation for 3452 * the direct I/O will be reused during buffered I/O. 3453 */ 3454 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0) 3455 return -ENOTBLK; 3456 3457 return 0; 3458 } 3459 3460 const struct iomap_ops ext4_iomap_ops = { 3461 .iomap_begin = ext4_iomap_begin, 3462 .iomap_end = ext4_iomap_end, 3463 }; 3464 3465 const struct iomap_ops ext4_iomap_overwrite_ops = { 3466 .iomap_begin = ext4_iomap_overwrite_begin, 3467 .iomap_end = ext4_iomap_end, 3468 }; 3469 3470 static bool ext4_iomap_is_delalloc(struct inode *inode, 3471 struct ext4_map_blocks *map) 3472 { 3473 struct extent_status es; 3474 ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1; 3475 3476 ext4_es_find_extent_range(inode, &ext4_es_is_delayed, 3477 map->m_lblk, end, &es); 3478 3479 if (!es.es_len || es.es_lblk > end) 3480 return false; 3481 3482 if (es.es_lblk > map->m_lblk) { 3483 map->m_len = es.es_lblk - map->m_lblk; 3484 return false; 3485 } 3486 3487 offset = map->m_lblk - es.es_lblk; 3488 map->m_len = es.es_len - offset; 3489 3490 return true; 3491 } 3492 3493 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset, 3494 loff_t length, unsigned int flags, 3495 struct iomap *iomap, struct iomap *srcmap) 3496 { 3497 int ret; 3498 bool delalloc = false; 3499 struct ext4_map_blocks map; 3500 u8 blkbits = inode->i_blkbits; 3501 3502 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3503 return -EINVAL; 3504 3505 if (ext4_has_inline_data(inode)) { 3506 ret = ext4_inline_data_iomap(inode, iomap); 3507 if (ret != -EAGAIN) { 3508 if (ret == 0 && offset >= iomap->length) 3509 ret = -ENOENT; 3510 return ret; 3511 } 3512 } 3513 3514 /* 3515 * Calculate the first and last logical block respectively. 3516 */ 3517 map.m_lblk = offset >> blkbits; 3518 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3519 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3520 3521 /* 3522 * Fiemap callers may call for offset beyond s_bitmap_maxbytes. 3523 * So handle it here itself instead of querying ext4_map_blocks(). 3524 * Since ext4_map_blocks() will warn about it and will return 3525 * -EIO error. 3526 */ 3527 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 3528 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3529 3530 if (offset >= sbi->s_bitmap_maxbytes) { 3531 map.m_flags = 0; 3532 goto set_iomap; 3533 } 3534 } 3535 3536 ret = ext4_map_blocks(NULL, inode, &map, 0); 3537 if (ret < 0) 3538 return ret; 3539 if (ret == 0) 3540 delalloc = ext4_iomap_is_delalloc(inode, &map); 3541 3542 set_iomap: 3543 ext4_set_iomap(inode, iomap, &map, offset, length); 3544 if (delalloc && iomap->type == IOMAP_HOLE) 3545 iomap->type = IOMAP_DELALLOC; 3546 3547 return 0; 3548 } 3549 3550 const struct iomap_ops ext4_iomap_report_ops = { 3551 .iomap_begin = ext4_iomap_begin_report, 3552 }; 3553 3554 /* 3555 * Pages can be marked dirty completely asynchronously from ext4's journalling 3556 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3557 * much here because ->set_page_dirty is called under VFS locks. The page is 3558 * not necessarily locked. 3559 * 3560 * We cannot just dirty the page and leave attached buffers clean, because the 3561 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3562 * or jbddirty because all the journalling code will explode. 3563 * 3564 * So what we do is to mark the page "pending dirty" and next time writepage 3565 * is called, propagate that into the buffers appropriately. 3566 */ 3567 static int ext4_journalled_set_page_dirty(struct page *page) 3568 { 3569 SetPageChecked(page); 3570 return __set_page_dirty_nobuffers(page); 3571 } 3572 3573 static int ext4_set_page_dirty(struct page *page) 3574 { 3575 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page)); 3576 WARN_ON_ONCE(!page_has_buffers(page)); 3577 return __set_page_dirty_buffers(page); 3578 } 3579 3580 static int ext4_iomap_swap_activate(struct swap_info_struct *sis, 3581 struct file *file, sector_t *span) 3582 { 3583 return iomap_swapfile_activate(sis, file, span, 3584 &ext4_iomap_report_ops); 3585 } 3586 3587 static const struct address_space_operations ext4_aops = { 3588 .readpage = ext4_readpage, 3589 .readahead = ext4_readahead, 3590 .writepage = ext4_writepage, 3591 .writepages = ext4_writepages, 3592 .write_begin = ext4_write_begin, 3593 .write_end = ext4_write_end, 3594 .set_page_dirty = ext4_set_page_dirty, 3595 .bmap = ext4_bmap, 3596 .invalidatepage = ext4_invalidatepage, 3597 .releasepage = ext4_releasepage, 3598 .direct_IO = noop_direct_IO, 3599 .migratepage = buffer_migrate_page, 3600 .is_partially_uptodate = block_is_partially_uptodate, 3601 .error_remove_page = generic_error_remove_page, 3602 .swap_activate = ext4_iomap_swap_activate, 3603 }; 3604 3605 static const struct address_space_operations ext4_journalled_aops = { 3606 .readpage = ext4_readpage, 3607 .readahead = ext4_readahead, 3608 .writepage = ext4_writepage, 3609 .writepages = ext4_writepages, 3610 .write_begin = ext4_write_begin, 3611 .write_end = ext4_journalled_write_end, 3612 .set_page_dirty = ext4_journalled_set_page_dirty, 3613 .bmap = ext4_bmap, 3614 .invalidatepage = ext4_journalled_invalidatepage, 3615 .releasepage = ext4_releasepage, 3616 .direct_IO = noop_direct_IO, 3617 .is_partially_uptodate = block_is_partially_uptodate, 3618 .error_remove_page = generic_error_remove_page, 3619 .swap_activate = ext4_iomap_swap_activate, 3620 }; 3621 3622 static const struct address_space_operations ext4_da_aops = { 3623 .readpage = ext4_readpage, 3624 .readahead = ext4_readahead, 3625 .writepage = ext4_writepage, 3626 .writepages = ext4_writepages, 3627 .write_begin = ext4_da_write_begin, 3628 .write_end = ext4_da_write_end, 3629 .set_page_dirty = ext4_set_page_dirty, 3630 .bmap = ext4_bmap, 3631 .invalidatepage = ext4_invalidatepage, 3632 .releasepage = ext4_releasepage, 3633 .direct_IO = noop_direct_IO, 3634 .migratepage = buffer_migrate_page, 3635 .is_partially_uptodate = block_is_partially_uptodate, 3636 .error_remove_page = generic_error_remove_page, 3637 .swap_activate = ext4_iomap_swap_activate, 3638 }; 3639 3640 static const struct address_space_operations ext4_dax_aops = { 3641 .writepages = ext4_dax_writepages, 3642 .direct_IO = noop_direct_IO, 3643 .set_page_dirty = __set_page_dirty_no_writeback, 3644 .bmap = ext4_bmap, 3645 .invalidatepage = noop_invalidatepage, 3646 .swap_activate = ext4_iomap_swap_activate, 3647 }; 3648 3649 void ext4_set_aops(struct inode *inode) 3650 { 3651 switch (ext4_inode_journal_mode(inode)) { 3652 case EXT4_INODE_ORDERED_DATA_MODE: 3653 case EXT4_INODE_WRITEBACK_DATA_MODE: 3654 break; 3655 case EXT4_INODE_JOURNAL_DATA_MODE: 3656 inode->i_mapping->a_ops = &ext4_journalled_aops; 3657 return; 3658 default: 3659 BUG(); 3660 } 3661 if (IS_DAX(inode)) 3662 inode->i_mapping->a_ops = &ext4_dax_aops; 3663 else if (test_opt(inode->i_sb, DELALLOC)) 3664 inode->i_mapping->a_ops = &ext4_da_aops; 3665 else 3666 inode->i_mapping->a_ops = &ext4_aops; 3667 } 3668 3669 static int __ext4_block_zero_page_range(handle_t *handle, 3670 struct address_space *mapping, loff_t from, loff_t length) 3671 { 3672 ext4_fsblk_t index = from >> PAGE_SHIFT; 3673 unsigned offset = from & (PAGE_SIZE-1); 3674 unsigned blocksize, pos; 3675 ext4_lblk_t iblock; 3676 struct inode *inode = mapping->host; 3677 struct buffer_head *bh; 3678 struct page *page; 3679 int err = 0; 3680 3681 page = find_or_create_page(mapping, from >> PAGE_SHIFT, 3682 mapping_gfp_constraint(mapping, ~__GFP_FS)); 3683 if (!page) 3684 return -ENOMEM; 3685 3686 blocksize = inode->i_sb->s_blocksize; 3687 3688 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 3689 3690 if (!page_has_buffers(page)) 3691 create_empty_buffers(page, blocksize, 0); 3692 3693 /* Find the buffer that contains "offset" */ 3694 bh = page_buffers(page); 3695 pos = blocksize; 3696 while (offset >= pos) { 3697 bh = bh->b_this_page; 3698 iblock++; 3699 pos += blocksize; 3700 } 3701 if (buffer_freed(bh)) { 3702 BUFFER_TRACE(bh, "freed: skip"); 3703 goto unlock; 3704 } 3705 if (!buffer_mapped(bh)) { 3706 BUFFER_TRACE(bh, "unmapped"); 3707 ext4_get_block(inode, iblock, bh, 0); 3708 /* unmapped? It's a hole - nothing to do */ 3709 if (!buffer_mapped(bh)) { 3710 BUFFER_TRACE(bh, "still unmapped"); 3711 goto unlock; 3712 } 3713 } 3714 3715 /* Ok, it's mapped. Make sure it's up-to-date */ 3716 if (PageUptodate(page)) 3717 set_buffer_uptodate(bh); 3718 3719 if (!buffer_uptodate(bh)) { 3720 err = ext4_read_bh_lock(bh, 0, true); 3721 if (err) 3722 goto unlock; 3723 if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 3724 /* We expect the key to be set. */ 3725 BUG_ON(!fscrypt_has_encryption_key(inode)); 3726 err = fscrypt_decrypt_pagecache_blocks(page, blocksize, 3727 bh_offset(bh)); 3728 if (err) { 3729 clear_buffer_uptodate(bh); 3730 goto unlock; 3731 } 3732 } 3733 } 3734 if (ext4_should_journal_data(inode)) { 3735 BUFFER_TRACE(bh, "get write access"); 3736 err = ext4_journal_get_write_access(handle, inode->i_sb, bh, 3737 EXT4_JTR_NONE); 3738 if (err) 3739 goto unlock; 3740 } 3741 zero_user(page, offset, length); 3742 BUFFER_TRACE(bh, "zeroed end of block"); 3743 3744 if (ext4_should_journal_data(inode)) { 3745 err = ext4_handle_dirty_metadata(handle, inode, bh); 3746 } else { 3747 err = 0; 3748 mark_buffer_dirty(bh); 3749 if (ext4_should_order_data(inode)) 3750 err = ext4_jbd2_inode_add_write(handle, inode, from, 3751 length); 3752 } 3753 3754 unlock: 3755 unlock_page(page); 3756 put_page(page); 3757 return err; 3758 } 3759 3760 /* 3761 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3762 * starting from file offset 'from'. The range to be zero'd must 3763 * be contained with in one block. If the specified range exceeds 3764 * the end of the block it will be shortened to end of the block 3765 * that corresponds to 'from' 3766 */ 3767 static int ext4_block_zero_page_range(handle_t *handle, 3768 struct address_space *mapping, loff_t from, loff_t length) 3769 { 3770 struct inode *inode = mapping->host; 3771 unsigned offset = from & (PAGE_SIZE-1); 3772 unsigned blocksize = inode->i_sb->s_blocksize; 3773 unsigned max = blocksize - (offset & (blocksize - 1)); 3774 3775 /* 3776 * correct length if it does not fall between 3777 * 'from' and the end of the block 3778 */ 3779 if (length > max || length < 0) 3780 length = max; 3781 3782 if (IS_DAX(inode)) { 3783 return iomap_zero_range(inode, from, length, NULL, 3784 &ext4_iomap_ops); 3785 } 3786 return __ext4_block_zero_page_range(handle, mapping, from, length); 3787 } 3788 3789 /* 3790 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3791 * up to the end of the block which corresponds to `from'. 3792 * This required during truncate. We need to physically zero the tail end 3793 * of that block so it doesn't yield old data if the file is later grown. 3794 */ 3795 static int ext4_block_truncate_page(handle_t *handle, 3796 struct address_space *mapping, loff_t from) 3797 { 3798 unsigned offset = from & (PAGE_SIZE-1); 3799 unsigned length; 3800 unsigned blocksize; 3801 struct inode *inode = mapping->host; 3802 3803 /* If we are processing an encrypted inode during orphan list handling */ 3804 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode)) 3805 return 0; 3806 3807 blocksize = inode->i_sb->s_blocksize; 3808 length = blocksize - (offset & (blocksize - 1)); 3809 3810 return ext4_block_zero_page_range(handle, mapping, from, length); 3811 } 3812 3813 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3814 loff_t lstart, loff_t length) 3815 { 3816 struct super_block *sb = inode->i_sb; 3817 struct address_space *mapping = inode->i_mapping; 3818 unsigned partial_start, partial_end; 3819 ext4_fsblk_t start, end; 3820 loff_t byte_end = (lstart + length - 1); 3821 int err = 0; 3822 3823 partial_start = lstart & (sb->s_blocksize - 1); 3824 partial_end = byte_end & (sb->s_blocksize - 1); 3825 3826 start = lstart >> sb->s_blocksize_bits; 3827 end = byte_end >> sb->s_blocksize_bits; 3828 3829 /* Handle partial zero within the single block */ 3830 if (start == end && 3831 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3832 err = ext4_block_zero_page_range(handle, mapping, 3833 lstart, length); 3834 return err; 3835 } 3836 /* Handle partial zero out on the start of the range */ 3837 if (partial_start) { 3838 err = ext4_block_zero_page_range(handle, mapping, 3839 lstart, sb->s_blocksize); 3840 if (err) 3841 return err; 3842 } 3843 /* Handle partial zero out on the end of the range */ 3844 if (partial_end != sb->s_blocksize - 1) 3845 err = ext4_block_zero_page_range(handle, mapping, 3846 byte_end - partial_end, 3847 partial_end + 1); 3848 return err; 3849 } 3850 3851 int ext4_can_truncate(struct inode *inode) 3852 { 3853 if (S_ISREG(inode->i_mode)) 3854 return 1; 3855 if (S_ISDIR(inode->i_mode)) 3856 return 1; 3857 if (S_ISLNK(inode->i_mode)) 3858 return !ext4_inode_is_fast_symlink(inode); 3859 return 0; 3860 } 3861 3862 /* 3863 * We have to make sure i_disksize gets properly updated before we truncate 3864 * page cache due to hole punching or zero range. Otherwise i_disksize update 3865 * can get lost as it may have been postponed to submission of writeback but 3866 * that will never happen after we truncate page cache. 3867 */ 3868 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 3869 loff_t len) 3870 { 3871 handle_t *handle; 3872 int ret; 3873 3874 loff_t size = i_size_read(inode); 3875 3876 WARN_ON(!inode_is_locked(inode)); 3877 if (offset > size || offset + len < size) 3878 return 0; 3879 3880 if (EXT4_I(inode)->i_disksize >= size) 3881 return 0; 3882 3883 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 3884 if (IS_ERR(handle)) 3885 return PTR_ERR(handle); 3886 ext4_update_i_disksize(inode, size); 3887 ret = ext4_mark_inode_dirty(handle, inode); 3888 ext4_journal_stop(handle); 3889 3890 return ret; 3891 } 3892 3893 static void ext4_wait_dax_page(struct inode *inode) 3894 { 3895 filemap_invalidate_unlock(inode->i_mapping); 3896 schedule(); 3897 filemap_invalidate_lock(inode->i_mapping); 3898 } 3899 3900 int ext4_break_layouts(struct inode *inode) 3901 { 3902 struct page *page; 3903 int error; 3904 3905 if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock))) 3906 return -EINVAL; 3907 3908 do { 3909 page = dax_layout_busy_page(inode->i_mapping); 3910 if (!page) 3911 return 0; 3912 3913 error = ___wait_var_event(&page->_refcount, 3914 atomic_read(&page->_refcount) == 1, 3915 TASK_INTERRUPTIBLE, 0, 0, 3916 ext4_wait_dax_page(inode)); 3917 } while (error == 0); 3918 3919 return error; 3920 } 3921 3922 /* 3923 * ext4_punch_hole: punches a hole in a file by releasing the blocks 3924 * associated with the given offset and length 3925 * 3926 * @inode: File inode 3927 * @offset: The offset where the hole will begin 3928 * @len: The length of the hole 3929 * 3930 * Returns: 0 on success or negative on failure 3931 */ 3932 3933 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 3934 { 3935 struct super_block *sb = inode->i_sb; 3936 ext4_lblk_t first_block, stop_block; 3937 struct address_space *mapping = inode->i_mapping; 3938 loff_t first_block_offset, last_block_offset; 3939 handle_t *handle; 3940 unsigned int credits; 3941 int ret = 0, ret2 = 0; 3942 3943 trace_ext4_punch_hole(inode, offset, length, 0); 3944 3945 ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 3946 if (ext4_has_inline_data(inode)) { 3947 filemap_invalidate_lock(mapping); 3948 ret = ext4_convert_inline_data(inode); 3949 filemap_invalidate_unlock(mapping); 3950 if (ret) 3951 return ret; 3952 } 3953 3954 /* 3955 * Write out all dirty pages to avoid race conditions 3956 * Then release them. 3957 */ 3958 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 3959 ret = filemap_write_and_wait_range(mapping, offset, 3960 offset + length - 1); 3961 if (ret) 3962 return ret; 3963 } 3964 3965 inode_lock(inode); 3966 3967 /* No need to punch hole beyond i_size */ 3968 if (offset >= inode->i_size) 3969 goto out_mutex; 3970 3971 /* 3972 * If the hole extends beyond i_size, set the hole 3973 * to end after the page that contains i_size 3974 */ 3975 if (offset + length > inode->i_size) { 3976 length = inode->i_size + 3977 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) - 3978 offset; 3979 } 3980 3981 if (offset & (sb->s_blocksize - 1) || 3982 (offset + length) & (sb->s_blocksize - 1)) { 3983 /* 3984 * Attach jinode to inode for jbd2 if we do any zeroing of 3985 * partial block 3986 */ 3987 ret = ext4_inode_attach_jinode(inode); 3988 if (ret < 0) 3989 goto out_mutex; 3990 3991 } 3992 3993 /* Wait all existing dio workers, newcomers will block on i_mutex */ 3994 inode_dio_wait(inode); 3995 3996 /* 3997 * Prevent page faults from reinstantiating pages we have released from 3998 * page cache. 3999 */ 4000 filemap_invalidate_lock(mapping); 4001 4002 ret = ext4_break_layouts(inode); 4003 if (ret) 4004 goto out_dio; 4005 4006 first_block_offset = round_up(offset, sb->s_blocksize); 4007 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 4008 4009 /* Now release the pages and zero block aligned part of pages*/ 4010 if (last_block_offset > first_block_offset) { 4011 ret = ext4_update_disksize_before_punch(inode, offset, length); 4012 if (ret) 4013 goto out_dio; 4014 truncate_pagecache_range(inode, first_block_offset, 4015 last_block_offset); 4016 } 4017 4018 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4019 credits = ext4_writepage_trans_blocks(inode); 4020 else 4021 credits = ext4_blocks_for_truncate(inode); 4022 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4023 if (IS_ERR(handle)) { 4024 ret = PTR_ERR(handle); 4025 ext4_std_error(sb, ret); 4026 goto out_dio; 4027 } 4028 4029 ret = ext4_zero_partial_blocks(handle, inode, offset, 4030 length); 4031 if (ret) 4032 goto out_stop; 4033 4034 first_block = (offset + sb->s_blocksize - 1) >> 4035 EXT4_BLOCK_SIZE_BITS(sb); 4036 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 4037 4038 /* If there are blocks to remove, do it */ 4039 if (stop_block > first_block) { 4040 4041 down_write(&EXT4_I(inode)->i_data_sem); 4042 ext4_discard_preallocations(inode, 0); 4043 4044 ret = ext4_es_remove_extent(inode, first_block, 4045 stop_block - first_block); 4046 if (ret) { 4047 up_write(&EXT4_I(inode)->i_data_sem); 4048 goto out_stop; 4049 } 4050 4051 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4052 ret = ext4_ext_remove_space(inode, first_block, 4053 stop_block - 1); 4054 else 4055 ret = ext4_ind_remove_space(handle, inode, first_block, 4056 stop_block); 4057 4058 up_write(&EXT4_I(inode)->i_data_sem); 4059 } 4060 ext4_fc_track_range(handle, inode, first_block, stop_block); 4061 if (IS_SYNC(inode)) 4062 ext4_handle_sync(handle); 4063 4064 inode->i_mtime = inode->i_ctime = current_time(inode); 4065 ret2 = ext4_mark_inode_dirty(handle, inode); 4066 if (unlikely(ret2)) 4067 ret = ret2; 4068 if (ret >= 0) 4069 ext4_update_inode_fsync_trans(handle, inode, 1); 4070 out_stop: 4071 ext4_journal_stop(handle); 4072 out_dio: 4073 filemap_invalidate_unlock(mapping); 4074 out_mutex: 4075 inode_unlock(inode); 4076 return ret; 4077 } 4078 4079 int ext4_inode_attach_jinode(struct inode *inode) 4080 { 4081 struct ext4_inode_info *ei = EXT4_I(inode); 4082 struct jbd2_inode *jinode; 4083 4084 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4085 return 0; 4086 4087 jinode = jbd2_alloc_inode(GFP_KERNEL); 4088 spin_lock(&inode->i_lock); 4089 if (!ei->jinode) { 4090 if (!jinode) { 4091 spin_unlock(&inode->i_lock); 4092 return -ENOMEM; 4093 } 4094 ei->jinode = jinode; 4095 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4096 jinode = NULL; 4097 } 4098 spin_unlock(&inode->i_lock); 4099 if (unlikely(jinode != NULL)) 4100 jbd2_free_inode(jinode); 4101 return 0; 4102 } 4103 4104 /* 4105 * ext4_truncate() 4106 * 4107 * We block out ext4_get_block() block instantiations across the entire 4108 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4109 * simultaneously on behalf of the same inode. 4110 * 4111 * As we work through the truncate and commit bits of it to the journal there 4112 * is one core, guiding principle: the file's tree must always be consistent on 4113 * disk. We must be able to restart the truncate after a crash. 4114 * 4115 * The file's tree may be transiently inconsistent in memory (although it 4116 * probably isn't), but whenever we close off and commit a journal transaction, 4117 * the contents of (the filesystem + the journal) must be consistent and 4118 * restartable. It's pretty simple, really: bottom up, right to left (although 4119 * left-to-right works OK too). 4120 * 4121 * Note that at recovery time, journal replay occurs *before* the restart of 4122 * truncate against the orphan inode list. 4123 * 4124 * The committed inode has the new, desired i_size (which is the same as 4125 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4126 * that this inode's truncate did not complete and it will again call 4127 * ext4_truncate() to have another go. So there will be instantiated blocks 4128 * to the right of the truncation point in a crashed ext4 filesystem. But 4129 * that's fine - as long as they are linked from the inode, the post-crash 4130 * ext4_truncate() run will find them and release them. 4131 */ 4132 int ext4_truncate(struct inode *inode) 4133 { 4134 struct ext4_inode_info *ei = EXT4_I(inode); 4135 unsigned int credits; 4136 int err = 0, err2; 4137 handle_t *handle; 4138 struct address_space *mapping = inode->i_mapping; 4139 4140 /* 4141 * There is a possibility that we're either freeing the inode 4142 * or it's a completely new inode. In those cases we might not 4143 * have i_mutex locked because it's not necessary. 4144 */ 4145 if (!(inode->i_state & (I_NEW|I_FREEING))) 4146 WARN_ON(!inode_is_locked(inode)); 4147 trace_ext4_truncate_enter(inode); 4148 4149 if (!ext4_can_truncate(inode)) 4150 goto out_trace; 4151 4152 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4153 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4154 4155 if (ext4_has_inline_data(inode)) { 4156 int has_inline = 1; 4157 4158 err = ext4_inline_data_truncate(inode, &has_inline); 4159 if (err || has_inline) 4160 goto out_trace; 4161 } 4162 4163 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4164 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4165 if (ext4_inode_attach_jinode(inode) < 0) 4166 goto out_trace; 4167 } 4168 4169 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4170 credits = ext4_writepage_trans_blocks(inode); 4171 else 4172 credits = ext4_blocks_for_truncate(inode); 4173 4174 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4175 if (IS_ERR(handle)) { 4176 err = PTR_ERR(handle); 4177 goto out_trace; 4178 } 4179 4180 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4181 ext4_block_truncate_page(handle, mapping, inode->i_size); 4182 4183 /* 4184 * We add the inode to the orphan list, so that if this 4185 * truncate spans multiple transactions, and we crash, we will 4186 * resume the truncate when the filesystem recovers. It also 4187 * marks the inode dirty, to catch the new size. 4188 * 4189 * Implication: the file must always be in a sane, consistent 4190 * truncatable state while each transaction commits. 4191 */ 4192 err = ext4_orphan_add(handle, inode); 4193 if (err) 4194 goto out_stop; 4195 4196 down_write(&EXT4_I(inode)->i_data_sem); 4197 4198 ext4_discard_preallocations(inode, 0); 4199 4200 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4201 err = ext4_ext_truncate(handle, inode); 4202 else 4203 ext4_ind_truncate(handle, inode); 4204 4205 up_write(&ei->i_data_sem); 4206 if (err) 4207 goto out_stop; 4208 4209 if (IS_SYNC(inode)) 4210 ext4_handle_sync(handle); 4211 4212 out_stop: 4213 /* 4214 * If this was a simple ftruncate() and the file will remain alive, 4215 * then we need to clear up the orphan record which we created above. 4216 * However, if this was a real unlink then we were called by 4217 * ext4_evict_inode(), and we allow that function to clean up the 4218 * orphan info for us. 4219 */ 4220 if (inode->i_nlink) 4221 ext4_orphan_del(handle, inode); 4222 4223 inode->i_mtime = inode->i_ctime = current_time(inode); 4224 err2 = ext4_mark_inode_dirty(handle, inode); 4225 if (unlikely(err2 && !err)) 4226 err = err2; 4227 ext4_journal_stop(handle); 4228 4229 out_trace: 4230 trace_ext4_truncate_exit(inode); 4231 return err; 4232 } 4233 4234 static inline u64 ext4_inode_peek_iversion(const struct inode *inode) 4235 { 4236 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4237 return inode_peek_iversion_raw(inode); 4238 else 4239 return inode_peek_iversion(inode); 4240 } 4241 4242 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode, 4243 struct ext4_inode_info *ei) 4244 { 4245 struct inode *inode = &(ei->vfs_inode); 4246 u64 i_blocks = READ_ONCE(inode->i_blocks); 4247 struct super_block *sb = inode->i_sb; 4248 4249 if (i_blocks <= ~0U) { 4250 /* 4251 * i_blocks can be represented in a 32 bit variable 4252 * as multiple of 512 bytes 4253 */ 4254 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4255 raw_inode->i_blocks_high = 0; 4256 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4257 return 0; 4258 } 4259 4260 /* 4261 * This should never happen since sb->s_maxbytes should not have 4262 * allowed this, sb->s_maxbytes was set according to the huge_file 4263 * feature in ext4_fill_super(). 4264 */ 4265 if (!ext4_has_feature_huge_file(sb)) 4266 return -EFSCORRUPTED; 4267 4268 if (i_blocks <= 0xffffffffffffULL) { 4269 /* 4270 * i_blocks can be represented in a 48 bit variable 4271 * as multiple of 512 bytes 4272 */ 4273 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4274 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4275 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4276 } else { 4277 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4278 /* i_block is stored in file system block size */ 4279 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4280 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4281 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4282 } 4283 return 0; 4284 } 4285 4286 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode) 4287 { 4288 struct ext4_inode_info *ei = EXT4_I(inode); 4289 uid_t i_uid; 4290 gid_t i_gid; 4291 projid_t i_projid; 4292 int block; 4293 int err; 4294 4295 err = ext4_inode_blocks_set(raw_inode, ei); 4296 4297 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4298 i_uid = i_uid_read(inode); 4299 i_gid = i_gid_read(inode); 4300 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 4301 if (!(test_opt(inode->i_sb, NO_UID32))) { 4302 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4303 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4304 /* 4305 * Fix up interoperability with old kernels. Otherwise, 4306 * old inodes get re-used with the upper 16 bits of the 4307 * uid/gid intact. 4308 */ 4309 if (ei->i_dtime && list_empty(&ei->i_orphan)) { 4310 raw_inode->i_uid_high = 0; 4311 raw_inode->i_gid_high = 0; 4312 } else { 4313 raw_inode->i_uid_high = 4314 cpu_to_le16(high_16_bits(i_uid)); 4315 raw_inode->i_gid_high = 4316 cpu_to_le16(high_16_bits(i_gid)); 4317 } 4318 } else { 4319 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4320 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4321 raw_inode->i_uid_high = 0; 4322 raw_inode->i_gid_high = 0; 4323 } 4324 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4325 4326 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4327 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4328 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4329 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4330 4331 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4332 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4333 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 4334 raw_inode->i_file_acl_high = 4335 cpu_to_le16(ei->i_file_acl >> 32); 4336 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4337 ext4_isize_set(raw_inode, ei->i_disksize); 4338 4339 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4340 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4341 if (old_valid_dev(inode->i_rdev)) { 4342 raw_inode->i_block[0] = 4343 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4344 raw_inode->i_block[1] = 0; 4345 } else { 4346 raw_inode->i_block[0] = 0; 4347 raw_inode->i_block[1] = 4348 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4349 raw_inode->i_block[2] = 0; 4350 } 4351 } else if (!ext4_has_inline_data(inode)) { 4352 for (block = 0; block < EXT4_N_BLOCKS; block++) 4353 raw_inode->i_block[block] = ei->i_data[block]; 4354 } 4355 4356 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4357 u64 ivers = ext4_inode_peek_iversion(inode); 4358 4359 raw_inode->i_disk_version = cpu_to_le32(ivers); 4360 if (ei->i_extra_isize) { 4361 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4362 raw_inode->i_version_hi = 4363 cpu_to_le32(ivers >> 32); 4364 raw_inode->i_extra_isize = 4365 cpu_to_le16(ei->i_extra_isize); 4366 } 4367 } 4368 4369 if (i_projid != EXT4_DEF_PROJID && 4370 !ext4_has_feature_project(inode->i_sb)) 4371 err = err ?: -EFSCORRUPTED; 4372 4373 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 4374 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4375 raw_inode->i_projid = cpu_to_le32(i_projid); 4376 4377 ext4_inode_csum_set(inode, raw_inode, ei); 4378 return err; 4379 } 4380 4381 /* 4382 * ext4_get_inode_loc returns with an extra refcount against the inode's 4383 * underlying buffer_head on success. If we pass 'inode' and it does not 4384 * have in-inode xattr, we have all inode data in memory that is needed 4385 * to recreate the on-disk version of this inode. 4386 */ 4387 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino, 4388 struct inode *inode, struct ext4_iloc *iloc, 4389 ext4_fsblk_t *ret_block) 4390 { 4391 struct ext4_group_desc *gdp; 4392 struct buffer_head *bh; 4393 ext4_fsblk_t block; 4394 struct blk_plug plug; 4395 int inodes_per_block, inode_offset; 4396 4397 iloc->bh = NULL; 4398 if (ino < EXT4_ROOT_INO || 4399 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 4400 return -EFSCORRUPTED; 4401 4402 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 4403 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4404 if (!gdp) 4405 return -EIO; 4406 4407 /* 4408 * Figure out the offset within the block group inode table 4409 */ 4410 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4411 inode_offset = ((ino - 1) % 4412 EXT4_INODES_PER_GROUP(sb)); 4413 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 4414 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4415 4416 bh = sb_getblk(sb, block); 4417 if (unlikely(!bh)) 4418 return -ENOMEM; 4419 if (ext4_buffer_uptodate(bh)) 4420 goto has_buffer; 4421 4422 lock_buffer(bh); 4423 if (ext4_buffer_uptodate(bh)) { 4424 /* Someone brought it uptodate while we waited */ 4425 unlock_buffer(bh); 4426 goto has_buffer; 4427 } 4428 4429 /* 4430 * If we have all information of the inode in memory and this 4431 * is the only valid inode in the block, we need not read the 4432 * block. 4433 */ 4434 if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { 4435 struct buffer_head *bitmap_bh; 4436 int i, start; 4437 4438 start = inode_offset & ~(inodes_per_block - 1); 4439 4440 /* Is the inode bitmap in cache? */ 4441 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4442 if (unlikely(!bitmap_bh)) 4443 goto make_io; 4444 4445 /* 4446 * If the inode bitmap isn't in cache then the 4447 * optimisation may end up performing two reads instead 4448 * of one, so skip it. 4449 */ 4450 if (!buffer_uptodate(bitmap_bh)) { 4451 brelse(bitmap_bh); 4452 goto make_io; 4453 } 4454 for (i = start; i < start + inodes_per_block; i++) { 4455 if (i == inode_offset) 4456 continue; 4457 if (ext4_test_bit(i, bitmap_bh->b_data)) 4458 break; 4459 } 4460 brelse(bitmap_bh); 4461 if (i == start + inodes_per_block) { 4462 struct ext4_inode *raw_inode = 4463 (struct ext4_inode *) (bh->b_data + iloc->offset); 4464 4465 /* all other inodes are free, so skip I/O */ 4466 memset(bh->b_data, 0, bh->b_size); 4467 if (!ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4468 ext4_fill_raw_inode(inode, raw_inode); 4469 set_buffer_uptodate(bh); 4470 unlock_buffer(bh); 4471 goto has_buffer; 4472 } 4473 } 4474 4475 make_io: 4476 /* 4477 * If we need to do any I/O, try to pre-readahead extra 4478 * blocks from the inode table. 4479 */ 4480 blk_start_plug(&plug); 4481 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4482 ext4_fsblk_t b, end, table; 4483 unsigned num; 4484 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4485 4486 table = ext4_inode_table(sb, gdp); 4487 /* s_inode_readahead_blks is always a power of 2 */ 4488 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4489 if (table > b) 4490 b = table; 4491 end = b + ra_blks; 4492 num = EXT4_INODES_PER_GROUP(sb); 4493 if (ext4_has_group_desc_csum(sb)) 4494 num -= ext4_itable_unused_count(sb, gdp); 4495 table += num / inodes_per_block; 4496 if (end > table) 4497 end = table; 4498 while (b <= end) 4499 ext4_sb_breadahead_unmovable(sb, b++); 4500 } 4501 4502 /* 4503 * There are other valid inodes in the buffer, this inode 4504 * has in-inode xattrs, or we don't have this inode in memory. 4505 * Read the block from disk. 4506 */ 4507 trace_ext4_load_inode(sb, ino); 4508 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL); 4509 blk_finish_plug(&plug); 4510 wait_on_buffer(bh); 4511 ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO); 4512 if (!buffer_uptodate(bh)) { 4513 if (ret_block) 4514 *ret_block = block; 4515 brelse(bh); 4516 return -EIO; 4517 } 4518 has_buffer: 4519 iloc->bh = bh; 4520 return 0; 4521 } 4522 4523 static int __ext4_get_inode_loc_noinmem(struct inode *inode, 4524 struct ext4_iloc *iloc) 4525 { 4526 ext4_fsblk_t err_blk; 4527 int ret; 4528 4529 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc, 4530 &err_blk); 4531 4532 if (ret == -EIO) 4533 ext4_error_inode_block(inode, err_blk, EIO, 4534 "unable to read itable block"); 4535 4536 return ret; 4537 } 4538 4539 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4540 { 4541 ext4_fsblk_t err_blk; 4542 int ret; 4543 4544 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc, 4545 &err_blk); 4546 4547 if (ret == -EIO) 4548 ext4_error_inode_block(inode, err_blk, EIO, 4549 "unable to read itable block"); 4550 4551 return ret; 4552 } 4553 4554 4555 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino, 4556 struct ext4_iloc *iloc) 4557 { 4558 return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL); 4559 } 4560 4561 static bool ext4_should_enable_dax(struct inode *inode) 4562 { 4563 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4564 4565 if (test_opt2(inode->i_sb, DAX_NEVER)) 4566 return false; 4567 if (!S_ISREG(inode->i_mode)) 4568 return false; 4569 if (ext4_should_journal_data(inode)) 4570 return false; 4571 if (ext4_has_inline_data(inode)) 4572 return false; 4573 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT)) 4574 return false; 4575 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY)) 4576 return false; 4577 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) 4578 return false; 4579 if (test_opt(inode->i_sb, DAX_ALWAYS)) 4580 return true; 4581 4582 return ext4_test_inode_flag(inode, EXT4_INODE_DAX); 4583 } 4584 4585 void ext4_set_inode_flags(struct inode *inode, bool init) 4586 { 4587 unsigned int flags = EXT4_I(inode)->i_flags; 4588 unsigned int new_fl = 0; 4589 4590 WARN_ON_ONCE(IS_DAX(inode) && init); 4591 4592 if (flags & EXT4_SYNC_FL) 4593 new_fl |= S_SYNC; 4594 if (flags & EXT4_APPEND_FL) 4595 new_fl |= S_APPEND; 4596 if (flags & EXT4_IMMUTABLE_FL) 4597 new_fl |= S_IMMUTABLE; 4598 if (flags & EXT4_NOATIME_FL) 4599 new_fl |= S_NOATIME; 4600 if (flags & EXT4_DIRSYNC_FL) 4601 new_fl |= S_DIRSYNC; 4602 4603 /* Because of the way inode_set_flags() works we must preserve S_DAX 4604 * here if already set. */ 4605 new_fl |= (inode->i_flags & S_DAX); 4606 if (init && ext4_should_enable_dax(inode)) 4607 new_fl |= S_DAX; 4608 4609 if (flags & EXT4_ENCRYPT_FL) 4610 new_fl |= S_ENCRYPTED; 4611 if (flags & EXT4_CASEFOLD_FL) 4612 new_fl |= S_CASEFOLD; 4613 if (flags & EXT4_VERITY_FL) 4614 new_fl |= S_VERITY; 4615 inode_set_flags(inode, new_fl, 4616 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX| 4617 S_ENCRYPTED|S_CASEFOLD|S_VERITY); 4618 } 4619 4620 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4621 struct ext4_inode_info *ei) 4622 { 4623 blkcnt_t i_blocks ; 4624 struct inode *inode = &(ei->vfs_inode); 4625 struct super_block *sb = inode->i_sb; 4626 4627 if (ext4_has_feature_huge_file(sb)) { 4628 /* we are using combined 48 bit field */ 4629 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4630 le32_to_cpu(raw_inode->i_blocks_lo); 4631 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4632 /* i_blocks represent file system block size */ 4633 return i_blocks << (inode->i_blkbits - 9); 4634 } else { 4635 return i_blocks; 4636 } 4637 } else { 4638 return le32_to_cpu(raw_inode->i_blocks_lo); 4639 } 4640 } 4641 4642 static inline int ext4_iget_extra_inode(struct inode *inode, 4643 struct ext4_inode *raw_inode, 4644 struct ext4_inode_info *ei) 4645 { 4646 __le32 *magic = (void *)raw_inode + 4647 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4648 4649 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <= 4650 EXT4_INODE_SIZE(inode->i_sb) && 4651 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4652 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4653 return ext4_find_inline_data_nolock(inode); 4654 } else 4655 EXT4_I(inode)->i_inline_off = 0; 4656 return 0; 4657 } 4658 4659 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4660 { 4661 if (!ext4_has_feature_project(inode->i_sb)) 4662 return -EOPNOTSUPP; 4663 *projid = EXT4_I(inode)->i_projid; 4664 return 0; 4665 } 4666 4667 /* 4668 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of 4669 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag 4670 * set. 4671 */ 4672 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val) 4673 { 4674 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4675 inode_set_iversion_raw(inode, val); 4676 else 4677 inode_set_iversion_queried(inode, val); 4678 } 4679 4680 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino, 4681 ext4_iget_flags flags, const char *function, 4682 unsigned int line) 4683 { 4684 struct ext4_iloc iloc; 4685 struct ext4_inode *raw_inode; 4686 struct ext4_inode_info *ei; 4687 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4688 struct inode *inode; 4689 journal_t *journal = EXT4_SB(sb)->s_journal; 4690 long ret; 4691 loff_t size; 4692 int block; 4693 uid_t i_uid; 4694 gid_t i_gid; 4695 projid_t i_projid; 4696 4697 if ((!(flags & EXT4_IGET_SPECIAL) && 4698 ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) || 4699 ino == le32_to_cpu(es->s_usr_quota_inum) || 4700 ino == le32_to_cpu(es->s_grp_quota_inum) || 4701 ino == le32_to_cpu(es->s_prj_quota_inum) || 4702 ino == le32_to_cpu(es->s_orphan_file_inum))) || 4703 (ino < EXT4_ROOT_INO) || 4704 (ino > le32_to_cpu(es->s_inodes_count))) { 4705 if (flags & EXT4_IGET_HANDLE) 4706 return ERR_PTR(-ESTALE); 4707 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0, 4708 "inode #%lu: comm %s: iget: illegal inode #", 4709 ino, current->comm); 4710 return ERR_PTR(-EFSCORRUPTED); 4711 } 4712 4713 inode = iget_locked(sb, ino); 4714 if (!inode) 4715 return ERR_PTR(-ENOMEM); 4716 if (!(inode->i_state & I_NEW)) 4717 return inode; 4718 4719 ei = EXT4_I(inode); 4720 iloc.bh = NULL; 4721 4722 ret = __ext4_get_inode_loc_noinmem(inode, &iloc); 4723 if (ret < 0) 4724 goto bad_inode; 4725 raw_inode = ext4_raw_inode(&iloc); 4726 4727 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) { 4728 ext4_error_inode(inode, function, line, 0, 4729 "iget: root inode unallocated"); 4730 ret = -EFSCORRUPTED; 4731 goto bad_inode; 4732 } 4733 4734 if ((flags & EXT4_IGET_HANDLE) && 4735 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) { 4736 ret = -ESTALE; 4737 goto bad_inode; 4738 } 4739 4740 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4741 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4742 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4743 EXT4_INODE_SIZE(inode->i_sb) || 4744 (ei->i_extra_isize & 3)) { 4745 ext4_error_inode(inode, function, line, 0, 4746 "iget: bad extra_isize %u " 4747 "(inode size %u)", 4748 ei->i_extra_isize, 4749 EXT4_INODE_SIZE(inode->i_sb)); 4750 ret = -EFSCORRUPTED; 4751 goto bad_inode; 4752 } 4753 } else 4754 ei->i_extra_isize = 0; 4755 4756 /* Precompute checksum seed for inode metadata */ 4757 if (ext4_has_metadata_csum(sb)) { 4758 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4759 __u32 csum; 4760 __le32 inum = cpu_to_le32(inode->i_ino); 4761 __le32 gen = raw_inode->i_generation; 4762 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4763 sizeof(inum)); 4764 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4765 sizeof(gen)); 4766 } 4767 4768 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) || 4769 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) && 4770 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) { 4771 ext4_error_inode_err(inode, function, line, 0, 4772 EFSBADCRC, "iget: checksum invalid"); 4773 ret = -EFSBADCRC; 4774 goto bad_inode; 4775 } 4776 4777 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4778 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4779 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4780 if (ext4_has_feature_project(sb) && 4781 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4782 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4783 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4784 else 4785 i_projid = EXT4_DEF_PROJID; 4786 4787 if (!(test_opt(inode->i_sb, NO_UID32))) { 4788 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4789 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4790 } 4791 i_uid_write(inode, i_uid); 4792 i_gid_write(inode, i_gid); 4793 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4794 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4795 4796 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4797 ei->i_inline_off = 0; 4798 ei->i_dir_start_lookup = 0; 4799 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4800 /* We now have enough fields to check if the inode was active or not. 4801 * This is needed because nfsd might try to access dead inodes 4802 * the test is that same one that e2fsck uses 4803 * NeilBrown 1999oct15 4804 */ 4805 if (inode->i_nlink == 0) { 4806 if ((inode->i_mode == 0 || 4807 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4808 ino != EXT4_BOOT_LOADER_INO) { 4809 /* this inode is deleted */ 4810 ret = -ESTALE; 4811 goto bad_inode; 4812 } 4813 /* The only unlinked inodes we let through here have 4814 * valid i_mode and are being read by the orphan 4815 * recovery code: that's fine, we're about to complete 4816 * the process of deleting those. 4817 * OR it is the EXT4_BOOT_LOADER_INO which is 4818 * not initialized on a new filesystem. */ 4819 } 4820 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4821 ext4_set_inode_flags(inode, true); 4822 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4823 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4824 if (ext4_has_feature_64bit(sb)) 4825 ei->i_file_acl |= 4826 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4827 inode->i_size = ext4_isize(sb, raw_inode); 4828 if ((size = i_size_read(inode)) < 0) { 4829 ext4_error_inode(inode, function, line, 0, 4830 "iget: bad i_size value: %lld", size); 4831 ret = -EFSCORRUPTED; 4832 goto bad_inode; 4833 } 4834 /* 4835 * If dir_index is not enabled but there's dir with INDEX flag set, 4836 * we'd normally treat htree data as empty space. But with metadata 4837 * checksumming that corrupts checksums so forbid that. 4838 */ 4839 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) && 4840 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) { 4841 ext4_error_inode(inode, function, line, 0, 4842 "iget: Dir with htree data on filesystem without dir_index feature."); 4843 ret = -EFSCORRUPTED; 4844 goto bad_inode; 4845 } 4846 ei->i_disksize = inode->i_size; 4847 #ifdef CONFIG_QUOTA 4848 ei->i_reserved_quota = 0; 4849 #endif 4850 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4851 ei->i_block_group = iloc.block_group; 4852 ei->i_last_alloc_group = ~0; 4853 /* 4854 * NOTE! The in-memory inode i_data array is in little-endian order 4855 * even on big-endian machines: we do NOT byteswap the block numbers! 4856 */ 4857 for (block = 0; block < EXT4_N_BLOCKS; block++) 4858 ei->i_data[block] = raw_inode->i_block[block]; 4859 INIT_LIST_HEAD(&ei->i_orphan); 4860 ext4_fc_init_inode(&ei->vfs_inode); 4861 4862 /* 4863 * Set transaction id's of transactions that have to be committed 4864 * to finish f[data]sync. We set them to currently running transaction 4865 * as we cannot be sure that the inode or some of its metadata isn't 4866 * part of the transaction - the inode could have been reclaimed and 4867 * now it is reread from disk. 4868 */ 4869 if (journal) { 4870 transaction_t *transaction; 4871 tid_t tid; 4872 4873 read_lock(&journal->j_state_lock); 4874 if (journal->j_running_transaction) 4875 transaction = journal->j_running_transaction; 4876 else 4877 transaction = journal->j_committing_transaction; 4878 if (transaction) 4879 tid = transaction->t_tid; 4880 else 4881 tid = journal->j_commit_sequence; 4882 read_unlock(&journal->j_state_lock); 4883 ei->i_sync_tid = tid; 4884 ei->i_datasync_tid = tid; 4885 } 4886 4887 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4888 if (ei->i_extra_isize == 0) { 4889 /* The extra space is currently unused. Use it. */ 4890 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 4891 ei->i_extra_isize = sizeof(struct ext4_inode) - 4892 EXT4_GOOD_OLD_INODE_SIZE; 4893 } else { 4894 ret = ext4_iget_extra_inode(inode, raw_inode, ei); 4895 if (ret) 4896 goto bad_inode; 4897 } 4898 } 4899 4900 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4901 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4902 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4903 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4904 4905 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4906 u64 ivers = le32_to_cpu(raw_inode->i_disk_version); 4907 4908 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4909 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4910 ivers |= 4911 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4912 } 4913 ext4_inode_set_iversion_queried(inode, ivers); 4914 } 4915 4916 ret = 0; 4917 if (ei->i_file_acl && 4918 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) { 4919 ext4_error_inode(inode, function, line, 0, 4920 "iget: bad extended attribute block %llu", 4921 ei->i_file_acl); 4922 ret = -EFSCORRUPTED; 4923 goto bad_inode; 4924 } else if (!ext4_has_inline_data(inode)) { 4925 /* validate the block references in the inode */ 4926 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) && 4927 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4928 (S_ISLNK(inode->i_mode) && 4929 !ext4_inode_is_fast_symlink(inode)))) { 4930 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4931 ret = ext4_ext_check_inode(inode); 4932 else 4933 ret = ext4_ind_check_inode(inode); 4934 } 4935 } 4936 if (ret) 4937 goto bad_inode; 4938 4939 if (S_ISREG(inode->i_mode)) { 4940 inode->i_op = &ext4_file_inode_operations; 4941 inode->i_fop = &ext4_file_operations; 4942 ext4_set_aops(inode); 4943 } else if (S_ISDIR(inode->i_mode)) { 4944 inode->i_op = &ext4_dir_inode_operations; 4945 inode->i_fop = &ext4_dir_operations; 4946 } else if (S_ISLNK(inode->i_mode)) { 4947 /* VFS does not allow setting these so must be corruption */ 4948 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 4949 ext4_error_inode(inode, function, line, 0, 4950 "iget: immutable or append flags " 4951 "not allowed on symlinks"); 4952 ret = -EFSCORRUPTED; 4953 goto bad_inode; 4954 } 4955 if (IS_ENCRYPTED(inode)) { 4956 inode->i_op = &ext4_encrypted_symlink_inode_operations; 4957 ext4_set_aops(inode); 4958 } else if (ext4_inode_is_fast_symlink(inode)) { 4959 inode->i_link = (char *)ei->i_data; 4960 inode->i_op = &ext4_fast_symlink_inode_operations; 4961 nd_terminate_link(ei->i_data, inode->i_size, 4962 sizeof(ei->i_data) - 1); 4963 } else { 4964 inode->i_op = &ext4_symlink_inode_operations; 4965 ext4_set_aops(inode); 4966 } 4967 inode_nohighmem(inode); 4968 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4969 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4970 inode->i_op = &ext4_special_inode_operations; 4971 if (raw_inode->i_block[0]) 4972 init_special_inode(inode, inode->i_mode, 4973 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4974 else 4975 init_special_inode(inode, inode->i_mode, 4976 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4977 } else if (ino == EXT4_BOOT_LOADER_INO) { 4978 make_bad_inode(inode); 4979 } else { 4980 ret = -EFSCORRUPTED; 4981 ext4_error_inode(inode, function, line, 0, 4982 "iget: bogus i_mode (%o)", inode->i_mode); 4983 goto bad_inode; 4984 } 4985 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) 4986 ext4_error_inode(inode, function, line, 0, 4987 "casefold flag without casefold feature"); 4988 brelse(iloc.bh); 4989 4990 unlock_new_inode(inode); 4991 return inode; 4992 4993 bad_inode: 4994 brelse(iloc.bh); 4995 iget_failed(inode); 4996 return ERR_PTR(ret); 4997 } 4998 4999 static void __ext4_update_other_inode_time(struct super_block *sb, 5000 unsigned long orig_ino, 5001 unsigned long ino, 5002 struct ext4_inode *raw_inode) 5003 { 5004 struct inode *inode; 5005 5006 inode = find_inode_by_ino_rcu(sb, ino); 5007 if (!inode) 5008 return; 5009 5010 if (!inode_is_dirtytime_only(inode)) 5011 return; 5012 5013 spin_lock(&inode->i_lock); 5014 if (inode_is_dirtytime_only(inode)) { 5015 struct ext4_inode_info *ei = EXT4_I(inode); 5016 5017 inode->i_state &= ~I_DIRTY_TIME; 5018 spin_unlock(&inode->i_lock); 5019 5020 spin_lock(&ei->i_raw_lock); 5021 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 5022 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 5023 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 5024 ext4_inode_csum_set(inode, raw_inode, ei); 5025 spin_unlock(&ei->i_raw_lock); 5026 trace_ext4_other_inode_update_time(inode, orig_ino); 5027 return; 5028 } 5029 spin_unlock(&inode->i_lock); 5030 } 5031 5032 /* 5033 * Opportunistically update the other time fields for other inodes in 5034 * the same inode table block. 5035 */ 5036 static void ext4_update_other_inodes_time(struct super_block *sb, 5037 unsigned long orig_ino, char *buf) 5038 { 5039 unsigned long ino; 5040 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 5041 int inode_size = EXT4_INODE_SIZE(sb); 5042 5043 /* 5044 * Calculate the first inode in the inode table block. Inode 5045 * numbers are one-based. That is, the first inode in a block 5046 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 5047 */ 5048 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 5049 rcu_read_lock(); 5050 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 5051 if (ino == orig_ino) 5052 continue; 5053 __ext4_update_other_inode_time(sb, orig_ino, ino, 5054 (struct ext4_inode *)buf); 5055 } 5056 rcu_read_unlock(); 5057 } 5058 5059 /* 5060 * Post the struct inode info into an on-disk inode location in the 5061 * buffer-cache. This gobbles the caller's reference to the 5062 * buffer_head in the inode location struct. 5063 * 5064 * The caller must have write access to iloc->bh. 5065 */ 5066 static int ext4_do_update_inode(handle_t *handle, 5067 struct inode *inode, 5068 struct ext4_iloc *iloc) 5069 { 5070 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5071 struct ext4_inode_info *ei = EXT4_I(inode); 5072 struct buffer_head *bh = iloc->bh; 5073 struct super_block *sb = inode->i_sb; 5074 int err; 5075 int need_datasync = 0, set_large_file = 0; 5076 5077 spin_lock(&ei->i_raw_lock); 5078 5079 /* 5080 * For fields not tracked in the in-memory inode, initialise them 5081 * to zero for new inodes. 5082 */ 5083 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5084 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5085 5086 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) 5087 need_datasync = 1; 5088 if (ei->i_disksize > 0x7fffffffULL) { 5089 if (!ext4_has_feature_large_file(sb) || 5090 EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV)) 5091 set_large_file = 1; 5092 } 5093 5094 err = ext4_fill_raw_inode(inode, raw_inode); 5095 spin_unlock(&ei->i_raw_lock); 5096 if (err) { 5097 EXT4_ERROR_INODE(inode, "corrupted inode contents"); 5098 goto out_brelse; 5099 } 5100 5101 if (inode->i_sb->s_flags & SB_LAZYTIME) 5102 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 5103 bh->b_data); 5104 5105 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5106 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5107 if (err) 5108 goto out_error; 5109 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5110 if (set_large_file) { 5111 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 5112 err = ext4_journal_get_write_access(handle, sb, 5113 EXT4_SB(sb)->s_sbh, 5114 EXT4_JTR_NONE); 5115 if (err) 5116 goto out_error; 5117 lock_buffer(EXT4_SB(sb)->s_sbh); 5118 ext4_set_feature_large_file(sb); 5119 ext4_superblock_csum_set(sb); 5120 unlock_buffer(EXT4_SB(sb)->s_sbh); 5121 ext4_handle_sync(handle); 5122 err = ext4_handle_dirty_metadata(handle, NULL, 5123 EXT4_SB(sb)->s_sbh); 5124 } 5125 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5126 out_error: 5127 ext4_std_error(inode->i_sb, err); 5128 out_brelse: 5129 brelse(bh); 5130 return err; 5131 } 5132 5133 /* 5134 * ext4_write_inode() 5135 * 5136 * We are called from a few places: 5137 * 5138 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5139 * Here, there will be no transaction running. We wait for any running 5140 * transaction to commit. 5141 * 5142 * - Within flush work (sys_sync(), kupdate and such). 5143 * We wait on commit, if told to. 5144 * 5145 * - Within iput_final() -> write_inode_now() 5146 * We wait on commit, if told to. 5147 * 5148 * In all cases it is actually safe for us to return without doing anything, 5149 * because the inode has been copied into a raw inode buffer in 5150 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5151 * writeback. 5152 * 5153 * Note that we are absolutely dependent upon all inode dirtiers doing the 5154 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5155 * which we are interested. 5156 * 5157 * It would be a bug for them to not do this. The code: 5158 * 5159 * mark_inode_dirty(inode) 5160 * stuff(); 5161 * inode->i_size = expr; 5162 * 5163 * is in error because write_inode() could occur while `stuff()' is running, 5164 * and the new i_size will be lost. Plus the inode will no longer be on the 5165 * superblock's dirty inode list. 5166 */ 5167 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5168 { 5169 int err; 5170 5171 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) || 5172 sb_rdonly(inode->i_sb)) 5173 return 0; 5174 5175 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5176 return -EIO; 5177 5178 if (EXT4_SB(inode->i_sb)->s_journal) { 5179 if (ext4_journal_current_handle()) { 5180 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 5181 dump_stack(); 5182 return -EIO; 5183 } 5184 5185 /* 5186 * No need to force transaction in WB_SYNC_NONE mode. Also 5187 * ext4_sync_fs() will force the commit after everything is 5188 * written. 5189 */ 5190 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5191 return 0; 5192 5193 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal, 5194 EXT4_I(inode)->i_sync_tid); 5195 } else { 5196 struct ext4_iloc iloc; 5197 5198 err = __ext4_get_inode_loc_noinmem(inode, &iloc); 5199 if (err) 5200 return err; 5201 /* 5202 * sync(2) will flush the whole buffer cache. No need to do 5203 * it here separately for each inode. 5204 */ 5205 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5206 sync_dirty_buffer(iloc.bh); 5207 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5208 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO, 5209 "IO error syncing inode"); 5210 err = -EIO; 5211 } 5212 brelse(iloc.bh); 5213 } 5214 return err; 5215 } 5216 5217 /* 5218 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 5219 * buffers that are attached to a page stradding i_size and are undergoing 5220 * commit. In that case we have to wait for commit to finish and try again. 5221 */ 5222 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5223 { 5224 struct page *page; 5225 unsigned offset; 5226 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5227 tid_t commit_tid = 0; 5228 int ret; 5229 5230 offset = inode->i_size & (PAGE_SIZE - 1); 5231 /* 5232 * If the page is fully truncated, we don't need to wait for any commit 5233 * (and we even should not as __ext4_journalled_invalidatepage() may 5234 * strip all buffers from the page but keep the page dirty which can then 5235 * confuse e.g. concurrent ext4_writepage() seeing dirty page without 5236 * buffers). Also we don't need to wait for any commit if all buffers in 5237 * the page remain valid. This is most beneficial for the common case of 5238 * blocksize == PAGESIZE. 5239 */ 5240 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode))) 5241 return; 5242 while (1) { 5243 page = find_lock_page(inode->i_mapping, 5244 inode->i_size >> PAGE_SHIFT); 5245 if (!page) 5246 return; 5247 ret = __ext4_journalled_invalidatepage(page, offset, 5248 PAGE_SIZE - offset); 5249 unlock_page(page); 5250 put_page(page); 5251 if (ret != -EBUSY) 5252 return; 5253 commit_tid = 0; 5254 read_lock(&journal->j_state_lock); 5255 if (journal->j_committing_transaction) 5256 commit_tid = journal->j_committing_transaction->t_tid; 5257 read_unlock(&journal->j_state_lock); 5258 if (commit_tid) 5259 jbd2_log_wait_commit(journal, commit_tid); 5260 } 5261 } 5262 5263 /* 5264 * ext4_setattr() 5265 * 5266 * Called from notify_change. 5267 * 5268 * We want to trap VFS attempts to truncate the file as soon as 5269 * possible. In particular, we want to make sure that when the VFS 5270 * shrinks i_size, we put the inode on the orphan list and modify 5271 * i_disksize immediately, so that during the subsequent flushing of 5272 * dirty pages and freeing of disk blocks, we can guarantee that any 5273 * commit will leave the blocks being flushed in an unused state on 5274 * disk. (On recovery, the inode will get truncated and the blocks will 5275 * be freed, so we have a strong guarantee that no future commit will 5276 * leave these blocks visible to the user.) 5277 * 5278 * Another thing we have to assure is that if we are in ordered mode 5279 * and inode is still attached to the committing transaction, we must 5280 * we start writeout of all the dirty pages which are being truncated. 5281 * This way we are sure that all the data written in the previous 5282 * transaction are already on disk (truncate waits for pages under 5283 * writeback). 5284 * 5285 * Called with inode->i_mutex down. 5286 */ 5287 int ext4_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, 5288 struct iattr *attr) 5289 { 5290 struct inode *inode = d_inode(dentry); 5291 int error, rc = 0; 5292 int orphan = 0; 5293 const unsigned int ia_valid = attr->ia_valid; 5294 5295 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5296 return -EIO; 5297 5298 if (unlikely(IS_IMMUTABLE(inode))) 5299 return -EPERM; 5300 5301 if (unlikely(IS_APPEND(inode) && 5302 (ia_valid & (ATTR_MODE | ATTR_UID | 5303 ATTR_GID | ATTR_TIMES_SET)))) 5304 return -EPERM; 5305 5306 error = setattr_prepare(mnt_userns, dentry, attr); 5307 if (error) 5308 return error; 5309 5310 error = fscrypt_prepare_setattr(dentry, attr); 5311 if (error) 5312 return error; 5313 5314 error = fsverity_prepare_setattr(dentry, attr); 5315 if (error) 5316 return error; 5317 5318 if (is_quota_modification(inode, attr)) { 5319 error = dquot_initialize(inode); 5320 if (error) 5321 return error; 5322 } 5323 ext4_fc_start_update(inode); 5324 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 5325 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 5326 handle_t *handle; 5327 5328 /* (user+group)*(old+new) structure, inode write (sb, 5329 * inode block, ? - but truncate inode update has it) */ 5330 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5331 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5332 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5333 if (IS_ERR(handle)) { 5334 error = PTR_ERR(handle); 5335 goto err_out; 5336 } 5337 5338 /* dquot_transfer() calls back ext4_get_inode_usage() which 5339 * counts xattr inode references. 5340 */ 5341 down_read(&EXT4_I(inode)->xattr_sem); 5342 error = dquot_transfer(inode, attr); 5343 up_read(&EXT4_I(inode)->xattr_sem); 5344 5345 if (error) { 5346 ext4_journal_stop(handle); 5347 ext4_fc_stop_update(inode); 5348 return error; 5349 } 5350 /* Update corresponding info in inode so that everything is in 5351 * one transaction */ 5352 if (attr->ia_valid & ATTR_UID) 5353 inode->i_uid = attr->ia_uid; 5354 if (attr->ia_valid & ATTR_GID) 5355 inode->i_gid = attr->ia_gid; 5356 error = ext4_mark_inode_dirty(handle, inode); 5357 ext4_journal_stop(handle); 5358 if (unlikely(error)) { 5359 ext4_fc_stop_update(inode); 5360 return error; 5361 } 5362 } 5363 5364 if (attr->ia_valid & ATTR_SIZE) { 5365 handle_t *handle; 5366 loff_t oldsize = inode->i_size; 5367 int shrink = (attr->ia_size < inode->i_size); 5368 5369 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5370 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5371 5372 if (attr->ia_size > sbi->s_bitmap_maxbytes) { 5373 ext4_fc_stop_update(inode); 5374 return -EFBIG; 5375 } 5376 } 5377 if (!S_ISREG(inode->i_mode)) { 5378 ext4_fc_stop_update(inode); 5379 return -EINVAL; 5380 } 5381 5382 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size) 5383 inode_inc_iversion(inode); 5384 5385 if (shrink) { 5386 if (ext4_should_order_data(inode)) { 5387 error = ext4_begin_ordered_truncate(inode, 5388 attr->ia_size); 5389 if (error) 5390 goto err_out; 5391 } 5392 /* 5393 * Blocks are going to be removed from the inode. Wait 5394 * for dio in flight. 5395 */ 5396 inode_dio_wait(inode); 5397 } 5398 5399 filemap_invalidate_lock(inode->i_mapping); 5400 5401 rc = ext4_break_layouts(inode); 5402 if (rc) { 5403 filemap_invalidate_unlock(inode->i_mapping); 5404 goto err_out; 5405 } 5406 5407 if (attr->ia_size != inode->i_size) { 5408 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5409 if (IS_ERR(handle)) { 5410 error = PTR_ERR(handle); 5411 goto out_mmap_sem; 5412 } 5413 if (ext4_handle_valid(handle) && shrink) { 5414 error = ext4_orphan_add(handle, inode); 5415 orphan = 1; 5416 } 5417 /* 5418 * Update c/mtime on truncate up, ext4_truncate() will 5419 * update c/mtime in shrink case below 5420 */ 5421 if (!shrink) { 5422 inode->i_mtime = current_time(inode); 5423 inode->i_ctime = inode->i_mtime; 5424 } 5425 5426 if (shrink) 5427 ext4_fc_track_range(handle, inode, 5428 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5429 inode->i_sb->s_blocksize_bits, 5430 (oldsize > 0 ? oldsize - 1 : 0) >> 5431 inode->i_sb->s_blocksize_bits); 5432 else 5433 ext4_fc_track_range( 5434 handle, inode, 5435 (oldsize > 0 ? oldsize - 1 : oldsize) >> 5436 inode->i_sb->s_blocksize_bits, 5437 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5438 inode->i_sb->s_blocksize_bits); 5439 5440 down_write(&EXT4_I(inode)->i_data_sem); 5441 EXT4_I(inode)->i_disksize = attr->ia_size; 5442 rc = ext4_mark_inode_dirty(handle, inode); 5443 if (!error) 5444 error = rc; 5445 /* 5446 * We have to update i_size under i_data_sem together 5447 * with i_disksize to avoid races with writeback code 5448 * running ext4_wb_update_i_disksize(). 5449 */ 5450 if (!error) 5451 i_size_write(inode, attr->ia_size); 5452 up_write(&EXT4_I(inode)->i_data_sem); 5453 ext4_journal_stop(handle); 5454 if (error) 5455 goto out_mmap_sem; 5456 if (!shrink) { 5457 pagecache_isize_extended(inode, oldsize, 5458 inode->i_size); 5459 } else if (ext4_should_journal_data(inode)) { 5460 ext4_wait_for_tail_page_commit(inode); 5461 } 5462 } 5463 5464 /* 5465 * Truncate pagecache after we've waited for commit 5466 * in data=journal mode to make pages freeable. 5467 */ 5468 truncate_pagecache(inode, inode->i_size); 5469 /* 5470 * Call ext4_truncate() even if i_size didn't change to 5471 * truncate possible preallocated blocks. 5472 */ 5473 if (attr->ia_size <= oldsize) { 5474 rc = ext4_truncate(inode); 5475 if (rc) 5476 error = rc; 5477 } 5478 out_mmap_sem: 5479 filemap_invalidate_unlock(inode->i_mapping); 5480 } 5481 5482 if (!error) { 5483 setattr_copy(mnt_userns, inode, attr); 5484 mark_inode_dirty(inode); 5485 } 5486 5487 /* 5488 * If the call to ext4_truncate failed to get a transaction handle at 5489 * all, we need to clean up the in-core orphan list manually. 5490 */ 5491 if (orphan && inode->i_nlink) 5492 ext4_orphan_del(NULL, inode); 5493 5494 if (!error && (ia_valid & ATTR_MODE)) 5495 rc = posix_acl_chmod(mnt_userns, inode, inode->i_mode); 5496 5497 err_out: 5498 if (error) 5499 ext4_std_error(inode->i_sb, error); 5500 if (!error) 5501 error = rc; 5502 ext4_fc_stop_update(inode); 5503 return error; 5504 } 5505 5506 int ext4_getattr(struct user_namespace *mnt_userns, const struct path *path, 5507 struct kstat *stat, u32 request_mask, unsigned int query_flags) 5508 { 5509 struct inode *inode = d_inode(path->dentry); 5510 struct ext4_inode *raw_inode; 5511 struct ext4_inode_info *ei = EXT4_I(inode); 5512 unsigned int flags; 5513 5514 if ((request_mask & STATX_BTIME) && 5515 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { 5516 stat->result_mask |= STATX_BTIME; 5517 stat->btime.tv_sec = ei->i_crtime.tv_sec; 5518 stat->btime.tv_nsec = ei->i_crtime.tv_nsec; 5519 } 5520 5521 flags = ei->i_flags & EXT4_FL_USER_VISIBLE; 5522 if (flags & EXT4_APPEND_FL) 5523 stat->attributes |= STATX_ATTR_APPEND; 5524 if (flags & EXT4_COMPR_FL) 5525 stat->attributes |= STATX_ATTR_COMPRESSED; 5526 if (flags & EXT4_ENCRYPT_FL) 5527 stat->attributes |= STATX_ATTR_ENCRYPTED; 5528 if (flags & EXT4_IMMUTABLE_FL) 5529 stat->attributes |= STATX_ATTR_IMMUTABLE; 5530 if (flags & EXT4_NODUMP_FL) 5531 stat->attributes |= STATX_ATTR_NODUMP; 5532 if (flags & EXT4_VERITY_FL) 5533 stat->attributes |= STATX_ATTR_VERITY; 5534 5535 stat->attributes_mask |= (STATX_ATTR_APPEND | 5536 STATX_ATTR_COMPRESSED | 5537 STATX_ATTR_ENCRYPTED | 5538 STATX_ATTR_IMMUTABLE | 5539 STATX_ATTR_NODUMP | 5540 STATX_ATTR_VERITY); 5541 5542 generic_fillattr(mnt_userns, inode, stat); 5543 return 0; 5544 } 5545 5546 int ext4_file_getattr(struct user_namespace *mnt_userns, 5547 const struct path *path, struct kstat *stat, 5548 u32 request_mask, unsigned int query_flags) 5549 { 5550 struct inode *inode = d_inode(path->dentry); 5551 u64 delalloc_blocks; 5552 5553 ext4_getattr(mnt_userns, path, stat, request_mask, query_flags); 5554 5555 /* 5556 * If there is inline data in the inode, the inode will normally not 5557 * have data blocks allocated (it may have an external xattr block). 5558 * Report at least one sector for such files, so tools like tar, rsync, 5559 * others don't incorrectly think the file is completely sparse. 5560 */ 5561 if (unlikely(ext4_has_inline_data(inode))) 5562 stat->blocks += (stat->size + 511) >> 9; 5563 5564 /* 5565 * We can't update i_blocks if the block allocation is delayed 5566 * otherwise in the case of system crash before the real block 5567 * allocation is done, we will have i_blocks inconsistent with 5568 * on-disk file blocks. 5569 * We always keep i_blocks updated together with real 5570 * allocation. But to not confuse with user, stat 5571 * will return the blocks that include the delayed allocation 5572 * blocks for this file. 5573 */ 5574 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5575 EXT4_I(inode)->i_reserved_data_blocks); 5576 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5577 return 0; 5578 } 5579 5580 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5581 int pextents) 5582 { 5583 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5584 return ext4_ind_trans_blocks(inode, lblocks); 5585 return ext4_ext_index_trans_blocks(inode, pextents); 5586 } 5587 5588 /* 5589 * Account for index blocks, block groups bitmaps and block group 5590 * descriptor blocks if modify datablocks and index blocks 5591 * worse case, the indexs blocks spread over different block groups 5592 * 5593 * If datablocks are discontiguous, they are possible to spread over 5594 * different block groups too. If they are contiguous, with flexbg, 5595 * they could still across block group boundary. 5596 * 5597 * Also account for superblock, inode, quota and xattr blocks 5598 */ 5599 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5600 int pextents) 5601 { 5602 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5603 int gdpblocks; 5604 int idxblocks; 5605 int ret = 0; 5606 5607 /* 5608 * How many index blocks need to touch to map @lblocks logical blocks 5609 * to @pextents physical extents? 5610 */ 5611 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5612 5613 ret = idxblocks; 5614 5615 /* 5616 * Now let's see how many group bitmaps and group descriptors need 5617 * to account 5618 */ 5619 groups = idxblocks + pextents; 5620 gdpblocks = groups; 5621 if (groups > ngroups) 5622 groups = ngroups; 5623 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5624 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5625 5626 /* bitmaps and block group descriptor blocks */ 5627 ret += groups + gdpblocks; 5628 5629 /* Blocks for super block, inode, quota and xattr blocks */ 5630 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5631 5632 return ret; 5633 } 5634 5635 /* 5636 * Calculate the total number of credits to reserve to fit 5637 * the modification of a single pages into a single transaction, 5638 * which may include multiple chunks of block allocations. 5639 * 5640 * This could be called via ext4_write_begin() 5641 * 5642 * We need to consider the worse case, when 5643 * one new block per extent. 5644 */ 5645 int ext4_writepage_trans_blocks(struct inode *inode) 5646 { 5647 int bpp = ext4_journal_blocks_per_page(inode); 5648 int ret; 5649 5650 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5651 5652 /* Account for data blocks for journalled mode */ 5653 if (ext4_should_journal_data(inode)) 5654 ret += bpp; 5655 return ret; 5656 } 5657 5658 /* 5659 * Calculate the journal credits for a chunk of data modification. 5660 * 5661 * This is called from DIO, fallocate or whoever calling 5662 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5663 * 5664 * journal buffers for data blocks are not included here, as DIO 5665 * and fallocate do no need to journal data buffers. 5666 */ 5667 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5668 { 5669 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5670 } 5671 5672 /* 5673 * The caller must have previously called ext4_reserve_inode_write(). 5674 * Give this, we know that the caller already has write access to iloc->bh. 5675 */ 5676 int ext4_mark_iloc_dirty(handle_t *handle, 5677 struct inode *inode, struct ext4_iloc *iloc) 5678 { 5679 int err = 0; 5680 5681 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 5682 put_bh(iloc->bh); 5683 return -EIO; 5684 } 5685 ext4_fc_track_inode(handle, inode); 5686 5687 if (IS_I_VERSION(inode)) 5688 inode_inc_iversion(inode); 5689 5690 /* the do_update_inode consumes one bh->b_count */ 5691 get_bh(iloc->bh); 5692 5693 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5694 err = ext4_do_update_inode(handle, inode, iloc); 5695 put_bh(iloc->bh); 5696 return err; 5697 } 5698 5699 /* 5700 * On success, We end up with an outstanding reference count against 5701 * iloc->bh. This _must_ be cleaned up later. 5702 */ 5703 5704 int 5705 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5706 struct ext4_iloc *iloc) 5707 { 5708 int err; 5709 5710 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5711 return -EIO; 5712 5713 err = ext4_get_inode_loc(inode, iloc); 5714 if (!err) { 5715 BUFFER_TRACE(iloc->bh, "get_write_access"); 5716 err = ext4_journal_get_write_access(handle, inode->i_sb, 5717 iloc->bh, EXT4_JTR_NONE); 5718 if (err) { 5719 brelse(iloc->bh); 5720 iloc->bh = NULL; 5721 } 5722 } 5723 ext4_std_error(inode->i_sb, err); 5724 return err; 5725 } 5726 5727 static int __ext4_expand_extra_isize(struct inode *inode, 5728 unsigned int new_extra_isize, 5729 struct ext4_iloc *iloc, 5730 handle_t *handle, int *no_expand) 5731 { 5732 struct ext4_inode *raw_inode; 5733 struct ext4_xattr_ibody_header *header; 5734 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb); 5735 struct ext4_inode_info *ei = EXT4_I(inode); 5736 int error; 5737 5738 /* this was checked at iget time, but double check for good measure */ 5739 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) || 5740 (ei->i_extra_isize & 3)) { 5741 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)", 5742 ei->i_extra_isize, 5743 EXT4_INODE_SIZE(inode->i_sb)); 5744 return -EFSCORRUPTED; 5745 } 5746 if ((new_extra_isize < ei->i_extra_isize) || 5747 (new_extra_isize < 4) || 5748 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE)) 5749 return -EINVAL; /* Should never happen */ 5750 5751 raw_inode = ext4_raw_inode(iloc); 5752 5753 header = IHDR(inode, raw_inode); 5754 5755 /* No extended attributes present */ 5756 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5757 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5758 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + 5759 EXT4_I(inode)->i_extra_isize, 0, 5760 new_extra_isize - EXT4_I(inode)->i_extra_isize); 5761 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5762 return 0; 5763 } 5764 5765 /* try to expand with EAs present */ 5766 error = ext4_expand_extra_isize_ea(inode, new_extra_isize, 5767 raw_inode, handle); 5768 if (error) { 5769 /* 5770 * Inode size expansion failed; don't try again 5771 */ 5772 *no_expand = 1; 5773 } 5774 5775 return error; 5776 } 5777 5778 /* 5779 * Expand an inode by new_extra_isize bytes. 5780 * Returns 0 on success or negative error number on failure. 5781 */ 5782 static int ext4_try_to_expand_extra_isize(struct inode *inode, 5783 unsigned int new_extra_isize, 5784 struct ext4_iloc iloc, 5785 handle_t *handle) 5786 { 5787 int no_expand; 5788 int error; 5789 5790 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) 5791 return -EOVERFLOW; 5792 5793 /* 5794 * In nojournal mode, we can immediately attempt to expand 5795 * the inode. When journaled, we first need to obtain extra 5796 * buffer credits since we may write into the EA block 5797 * with this same handle. If journal_extend fails, then it will 5798 * only result in a minor loss of functionality for that inode. 5799 * If this is felt to be critical, then e2fsck should be run to 5800 * force a large enough s_min_extra_isize. 5801 */ 5802 if (ext4_journal_extend(handle, 5803 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0) 5804 return -ENOSPC; 5805 5806 if (ext4_write_trylock_xattr(inode, &no_expand) == 0) 5807 return -EBUSY; 5808 5809 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc, 5810 handle, &no_expand); 5811 ext4_write_unlock_xattr(inode, &no_expand); 5812 5813 return error; 5814 } 5815 5816 int ext4_expand_extra_isize(struct inode *inode, 5817 unsigned int new_extra_isize, 5818 struct ext4_iloc *iloc) 5819 { 5820 handle_t *handle; 5821 int no_expand; 5822 int error, rc; 5823 5824 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5825 brelse(iloc->bh); 5826 return -EOVERFLOW; 5827 } 5828 5829 handle = ext4_journal_start(inode, EXT4_HT_INODE, 5830 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)); 5831 if (IS_ERR(handle)) { 5832 error = PTR_ERR(handle); 5833 brelse(iloc->bh); 5834 return error; 5835 } 5836 5837 ext4_write_lock_xattr(inode, &no_expand); 5838 5839 BUFFER_TRACE(iloc->bh, "get_write_access"); 5840 error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh, 5841 EXT4_JTR_NONE); 5842 if (error) { 5843 brelse(iloc->bh); 5844 goto out_unlock; 5845 } 5846 5847 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc, 5848 handle, &no_expand); 5849 5850 rc = ext4_mark_iloc_dirty(handle, inode, iloc); 5851 if (!error) 5852 error = rc; 5853 5854 out_unlock: 5855 ext4_write_unlock_xattr(inode, &no_expand); 5856 ext4_journal_stop(handle); 5857 return error; 5858 } 5859 5860 /* 5861 * What we do here is to mark the in-core inode as clean with respect to inode 5862 * dirtiness (it may still be data-dirty). 5863 * This means that the in-core inode may be reaped by prune_icache 5864 * without having to perform any I/O. This is a very good thing, 5865 * because *any* task may call prune_icache - even ones which 5866 * have a transaction open against a different journal. 5867 * 5868 * Is this cheating? Not really. Sure, we haven't written the 5869 * inode out, but prune_icache isn't a user-visible syncing function. 5870 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5871 * we start and wait on commits. 5872 */ 5873 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode, 5874 const char *func, unsigned int line) 5875 { 5876 struct ext4_iloc iloc; 5877 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5878 int err; 5879 5880 might_sleep(); 5881 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5882 err = ext4_reserve_inode_write(handle, inode, &iloc); 5883 if (err) 5884 goto out; 5885 5886 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize) 5887 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize, 5888 iloc, handle); 5889 5890 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 5891 out: 5892 if (unlikely(err)) 5893 ext4_error_inode_err(inode, func, line, 0, err, 5894 "mark_inode_dirty error"); 5895 return err; 5896 } 5897 5898 /* 5899 * ext4_dirty_inode() is called from __mark_inode_dirty() 5900 * 5901 * We're really interested in the case where a file is being extended. 5902 * i_size has been changed by generic_commit_write() and we thus need 5903 * to include the updated inode in the current transaction. 5904 * 5905 * Also, dquot_alloc_block() will always dirty the inode when blocks 5906 * are allocated to the file. 5907 * 5908 * If the inode is marked synchronous, we don't honour that here - doing 5909 * so would cause a commit on atime updates, which we don't bother doing. 5910 * We handle synchronous inodes at the highest possible level. 5911 */ 5912 void ext4_dirty_inode(struct inode *inode, int flags) 5913 { 5914 handle_t *handle; 5915 5916 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 5917 if (IS_ERR(handle)) 5918 return; 5919 ext4_mark_inode_dirty(handle, inode); 5920 ext4_journal_stop(handle); 5921 } 5922 5923 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5924 { 5925 journal_t *journal; 5926 handle_t *handle; 5927 int err; 5928 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5929 5930 /* 5931 * We have to be very careful here: changing a data block's 5932 * journaling status dynamically is dangerous. If we write a 5933 * data block to the journal, change the status and then delete 5934 * that block, we risk forgetting to revoke the old log record 5935 * from the journal and so a subsequent replay can corrupt data. 5936 * So, first we make sure that the journal is empty and that 5937 * nobody is changing anything. 5938 */ 5939 5940 journal = EXT4_JOURNAL(inode); 5941 if (!journal) 5942 return 0; 5943 if (is_journal_aborted(journal)) 5944 return -EROFS; 5945 5946 /* Wait for all existing dio workers */ 5947 inode_dio_wait(inode); 5948 5949 /* 5950 * Before flushing the journal and switching inode's aops, we have 5951 * to flush all dirty data the inode has. There can be outstanding 5952 * delayed allocations, there can be unwritten extents created by 5953 * fallocate or buffered writes in dioread_nolock mode covered by 5954 * dirty data which can be converted only after flushing the dirty 5955 * data (and journalled aops don't know how to handle these cases). 5956 */ 5957 if (val) { 5958 filemap_invalidate_lock(inode->i_mapping); 5959 err = filemap_write_and_wait(inode->i_mapping); 5960 if (err < 0) { 5961 filemap_invalidate_unlock(inode->i_mapping); 5962 return err; 5963 } 5964 } 5965 5966 percpu_down_write(&sbi->s_writepages_rwsem); 5967 jbd2_journal_lock_updates(journal); 5968 5969 /* 5970 * OK, there are no updates running now, and all cached data is 5971 * synced to disk. We are now in a completely consistent state 5972 * which doesn't have anything in the journal, and we know that 5973 * no filesystem updates are running, so it is safe to modify 5974 * the inode's in-core data-journaling state flag now. 5975 */ 5976 5977 if (val) 5978 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5979 else { 5980 err = jbd2_journal_flush(journal, 0); 5981 if (err < 0) { 5982 jbd2_journal_unlock_updates(journal); 5983 percpu_up_write(&sbi->s_writepages_rwsem); 5984 return err; 5985 } 5986 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5987 } 5988 ext4_set_aops(inode); 5989 5990 jbd2_journal_unlock_updates(journal); 5991 percpu_up_write(&sbi->s_writepages_rwsem); 5992 5993 if (val) 5994 filemap_invalidate_unlock(inode->i_mapping); 5995 5996 /* Finally we can mark the inode as dirty. */ 5997 5998 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 5999 if (IS_ERR(handle)) 6000 return PTR_ERR(handle); 6001 6002 ext4_fc_mark_ineligible(inode->i_sb, 6003 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE); 6004 err = ext4_mark_inode_dirty(handle, inode); 6005 ext4_handle_sync(handle); 6006 ext4_journal_stop(handle); 6007 ext4_std_error(inode->i_sb, err); 6008 6009 return err; 6010 } 6011 6012 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode, 6013 struct buffer_head *bh) 6014 { 6015 return !buffer_mapped(bh); 6016 } 6017 6018 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf) 6019 { 6020 struct vm_area_struct *vma = vmf->vma; 6021 struct page *page = vmf->page; 6022 loff_t size; 6023 unsigned long len; 6024 int err; 6025 vm_fault_t ret; 6026 struct file *file = vma->vm_file; 6027 struct inode *inode = file_inode(file); 6028 struct address_space *mapping = inode->i_mapping; 6029 handle_t *handle; 6030 get_block_t *get_block; 6031 int retries = 0; 6032 6033 if (unlikely(IS_IMMUTABLE(inode))) 6034 return VM_FAULT_SIGBUS; 6035 6036 sb_start_pagefault(inode->i_sb); 6037 file_update_time(vma->vm_file); 6038 6039 filemap_invalidate_lock_shared(mapping); 6040 6041 err = ext4_convert_inline_data(inode); 6042 if (err) 6043 goto out_ret; 6044 6045 /* 6046 * On data journalling we skip straight to the transaction handle: 6047 * there's no delalloc; page truncated will be checked later; the 6048 * early return w/ all buffers mapped (calculates size/len) can't 6049 * be used; and there's no dioread_nolock, so only ext4_get_block. 6050 */ 6051 if (ext4_should_journal_data(inode)) 6052 goto retry_alloc; 6053 6054 /* Delalloc case is easy... */ 6055 if (test_opt(inode->i_sb, DELALLOC) && 6056 !ext4_nonda_switch(inode->i_sb)) { 6057 do { 6058 err = block_page_mkwrite(vma, vmf, 6059 ext4_da_get_block_prep); 6060 } while (err == -ENOSPC && 6061 ext4_should_retry_alloc(inode->i_sb, &retries)); 6062 goto out_ret; 6063 } 6064 6065 lock_page(page); 6066 size = i_size_read(inode); 6067 /* Page got truncated from under us? */ 6068 if (page->mapping != mapping || page_offset(page) > size) { 6069 unlock_page(page); 6070 ret = VM_FAULT_NOPAGE; 6071 goto out; 6072 } 6073 6074 if (page->index == size >> PAGE_SHIFT) 6075 len = size & ~PAGE_MASK; 6076 else 6077 len = PAGE_SIZE; 6078 /* 6079 * Return if we have all the buffers mapped. This avoids the need to do 6080 * journal_start/journal_stop which can block and take a long time 6081 * 6082 * This cannot be done for data journalling, as we have to add the 6083 * inode to the transaction's list to writeprotect pages on commit. 6084 */ 6085 if (page_has_buffers(page)) { 6086 if (!ext4_walk_page_buffers(NULL, inode, page_buffers(page), 6087 0, len, NULL, 6088 ext4_bh_unmapped)) { 6089 /* Wait so that we don't change page under IO */ 6090 wait_for_stable_page(page); 6091 ret = VM_FAULT_LOCKED; 6092 goto out; 6093 } 6094 } 6095 unlock_page(page); 6096 /* OK, we need to fill the hole... */ 6097 if (ext4_should_dioread_nolock(inode)) 6098 get_block = ext4_get_block_unwritten; 6099 else 6100 get_block = ext4_get_block; 6101 retry_alloc: 6102 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 6103 ext4_writepage_trans_blocks(inode)); 6104 if (IS_ERR(handle)) { 6105 ret = VM_FAULT_SIGBUS; 6106 goto out; 6107 } 6108 /* 6109 * Data journalling can't use block_page_mkwrite() because it 6110 * will set_buffer_dirty() before do_journal_get_write_access() 6111 * thus might hit warning messages for dirty metadata buffers. 6112 */ 6113 if (!ext4_should_journal_data(inode)) { 6114 err = block_page_mkwrite(vma, vmf, get_block); 6115 } else { 6116 lock_page(page); 6117 size = i_size_read(inode); 6118 /* Page got truncated from under us? */ 6119 if (page->mapping != mapping || page_offset(page) > size) { 6120 ret = VM_FAULT_NOPAGE; 6121 goto out_error; 6122 } 6123 6124 if (page->index == size >> PAGE_SHIFT) 6125 len = size & ~PAGE_MASK; 6126 else 6127 len = PAGE_SIZE; 6128 6129 err = __block_write_begin(page, 0, len, ext4_get_block); 6130 if (!err) { 6131 ret = VM_FAULT_SIGBUS; 6132 if (ext4_walk_page_buffers(handle, inode, 6133 page_buffers(page), 0, len, NULL, 6134 do_journal_get_write_access)) 6135 goto out_error; 6136 if (ext4_walk_page_buffers(handle, inode, 6137 page_buffers(page), 0, len, NULL, 6138 write_end_fn)) 6139 goto out_error; 6140 if (ext4_jbd2_inode_add_write(handle, inode, 6141 page_offset(page), len)) 6142 goto out_error; 6143 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 6144 } else { 6145 unlock_page(page); 6146 } 6147 } 6148 ext4_journal_stop(handle); 6149 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 6150 goto retry_alloc; 6151 out_ret: 6152 ret = block_page_mkwrite_return(err); 6153 out: 6154 filemap_invalidate_unlock_shared(mapping); 6155 sb_end_pagefault(inode->i_sb); 6156 return ret; 6157 out_error: 6158 unlock_page(page); 6159 ext4_journal_stop(handle); 6160 goto out; 6161 } 6162