xref: /openbmc/linux/fs/ext4/inode.c (revision 239480ab)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *	(jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20 
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40 #include <linux/iomap.h>
41 
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46 
47 #include <trace/events/ext4.h>
48 
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50 
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 			      struct ext4_inode_info *ei)
53 {
54 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 	__u32 csum;
56 	__u16 dummy_csum = 0;
57 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
58 	unsigned int csum_size = sizeof(dummy_csum);
59 
60 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62 	offset += csum_size;
63 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
65 
66 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67 		offset = offsetof(struct ext4_inode, i_checksum_hi);
68 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69 				   EXT4_GOOD_OLD_INODE_SIZE,
70 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
71 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73 					   csum_size);
74 			offset += csum_size;
75 		}
76 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
78 	}
79 
80 	return csum;
81 }
82 
83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84 				  struct ext4_inode_info *ei)
85 {
86 	__u32 provided, calculated;
87 
88 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89 	    cpu_to_le32(EXT4_OS_LINUX) ||
90 	    !ext4_has_metadata_csum(inode->i_sb))
91 		return 1;
92 
93 	provided = le16_to_cpu(raw->i_checksum_lo);
94 	calculated = ext4_inode_csum(inode, raw, ei);
95 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98 	else
99 		calculated &= 0xFFFF;
100 
101 	return provided == calculated;
102 }
103 
104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105 				struct ext4_inode_info *ei)
106 {
107 	__u32 csum;
108 
109 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110 	    cpu_to_le32(EXT4_OS_LINUX) ||
111 	    !ext4_has_metadata_csum(inode->i_sb))
112 		return;
113 
114 	csum = ext4_inode_csum(inode, raw, ei);
115 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119 }
120 
121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122 					      loff_t new_size)
123 {
124 	trace_ext4_begin_ordered_truncate(inode, new_size);
125 	/*
126 	 * If jinode is zero, then we never opened the file for
127 	 * writing, so there's no need to call
128 	 * jbd2_journal_begin_ordered_truncate() since there's no
129 	 * outstanding writes we need to flush.
130 	 */
131 	if (!EXT4_I(inode)->jinode)
132 		return 0;
133 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134 						   EXT4_I(inode)->jinode,
135 						   new_size);
136 }
137 
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139 				unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143 				  int pextents);
144 
145 /*
146  * Test whether an inode is a fast symlink.
147  */
148 int ext4_inode_is_fast_symlink(struct inode *inode)
149 {
150         int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 		EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
152 
153 	if (ext4_has_inline_data(inode))
154 		return 0;
155 
156 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
157 }
158 
159 /*
160  * Restart the transaction associated with *handle.  This does a commit,
161  * so before we call here everything must be consistently dirtied against
162  * this transaction.
163  */
164 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
165 				 int nblocks)
166 {
167 	int ret;
168 
169 	/*
170 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
171 	 * moment, get_block can be called only for blocks inside i_size since
172 	 * page cache has been already dropped and writes are blocked by
173 	 * i_mutex. So we can safely drop the i_data_sem here.
174 	 */
175 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
176 	jbd_debug(2, "restarting handle %p\n", handle);
177 	up_write(&EXT4_I(inode)->i_data_sem);
178 	ret = ext4_journal_restart(handle, nblocks);
179 	down_write(&EXT4_I(inode)->i_data_sem);
180 	ext4_discard_preallocations(inode);
181 
182 	return ret;
183 }
184 
185 /*
186  * Called at the last iput() if i_nlink is zero.
187  */
188 void ext4_evict_inode(struct inode *inode)
189 {
190 	handle_t *handle;
191 	int err;
192 
193 	trace_ext4_evict_inode(inode);
194 
195 	if (inode->i_nlink) {
196 		/*
197 		 * When journalling data dirty buffers are tracked only in the
198 		 * journal. So although mm thinks everything is clean and
199 		 * ready for reaping the inode might still have some pages to
200 		 * write in the running transaction or waiting to be
201 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
202 		 * (via truncate_inode_pages()) to discard these buffers can
203 		 * cause data loss. Also even if we did not discard these
204 		 * buffers, we would have no way to find them after the inode
205 		 * is reaped and thus user could see stale data if he tries to
206 		 * read them before the transaction is checkpointed. So be
207 		 * careful and force everything to disk here... We use
208 		 * ei->i_datasync_tid to store the newest transaction
209 		 * containing inode's data.
210 		 *
211 		 * Note that directories do not have this problem because they
212 		 * don't use page cache.
213 		 */
214 		if (inode->i_ino != EXT4_JOURNAL_INO &&
215 		    ext4_should_journal_data(inode) &&
216 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
217 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
218 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
219 
220 			jbd2_complete_transaction(journal, commit_tid);
221 			filemap_write_and_wait(&inode->i_data);
222 		}
223 		truncate_inode_pages_final(&inode->i_data);
224 
225 		goto no_delete;
226 	}
227 
228 	if (is_bad_inode(inode))
229 		goto no_delete;
230 	dquot_initialize(inode);
231 
232 	if (ext4_should_order_data(inode))
233 		ext4_begin_ordered_truncate(inode, 0);
234 	truncate_inode_pages_final(&inode->i_data);
235 
236 	/*
237 	 * Protect us against freezing - iput() caller didn't have to have any
238 	 * protection against it
239 	 */
240 	sb_start_intwrite(inode->i_sb);
241 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
242 				    ext4_blocks_for_truncate(inode)+3);
243 	if (IS_ERR(handle)) {
244 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
245 		/*
246 		 * If we're going to skip the normal cleanup, we still need to
247 		 * make sure that the in-core orphan linked list is properly
248 		 * cleaned up.
249 		 */
250 		ext4_orphan_del(NULL, inode);
251 		sb_end_intwrite(inode->i_sb);
252 		goto no_delete;
253 	}
254 
255 	if (IS_SYNC(inode))
256 		ext4_handle_sync(handle);
257 	inode->i_size = 0;
258 	err = ext4_mark_inode_dirty(handle, inode);
259 	if (err) {
260 		ext4_warning(inode->i_sb,
261 			     "couldn't mark inode dirty (err %d)", err);
262 		goto stop_handle;
263 	}
264 	if (inode->i_blocks) {
265 		err = ext4_truncate(inode);
266 		if (err) {
267 			ext4_error(inode->i_sb,
268 				   "couldn't truncate inode %lu (err %d)",
269 				   inode->i_ino, err);
270 			goto stop_handle;
271 		}
272 	}
273 
274 	/*
275 	 * ext4_ext_truncate() doesn't reserve any slop when it
276 	 * restarts journal transactions; therefore there may not be
277 	 * enough credits left in the handle to remove the inode from
278 	 * the orphan list and set the dtime field.
279 	 */
280 	if (!ext4_handle_has_enough_credits(handle, 3)) {
281 		err = ext4_journal_extend(handle, 3);
282 		if (err > 0)
283 			err = ext4_journal_restart(handle, 3);
284 		if (err != 0) {
285 			ext4_warning(inode->i_sb,
286 				     "couldn't extend journal (err %d)", err);
287 		stop_handle:
288 			ext4_journal_stop(handle);
289 			ext4_orphan_del(NULL, inode);
290 			sb_end_intwrite(inode->i_sb);
291 			goto no_delete;
292 		}
293 	}
294 
295 	/*
296 	 * Kill off the orphan record which ext4_truncate created.
297 	 * AKPM: I think this can be inside the above `if'.
298 	 * Note that ext4_orphan_del() has to be able to cope with the
299 	 * deletion of a non-existent orphan - this is because we don't
300 	 * know if ext4_truncate() actually created an orphan record.
301 	 * (Well, we could do this if we need to, but heck - it works)
302 	 */
303 	ext4_orphan_del(handle, inode);
304 	EXT4_I(inode)->i_dtime	= get_seconds();
305 
306 	/*
307 	 * One subtle ordering requirement: if anything has gone wrong
308 	 * (transaction abort, IO errors, whatever), then we can still
309 	 * do these next steps (the fs will already have been marked as
310 	 * having errors), but we can't free the inode if the mark_dirty
311 	 * fails.
312 	 */
313 	if (ext4_mark_inode_dirty(handle, inode))
314 		/* If that failed, just do the required in-core inode clear. */
315 		ext4_clear_inode(inode);
316 	else
317 		ext4_free_inode(handle, inode);
318 	ext4_journal_stop(handle);
319 	sb_end_intwrite(inode->i_sb);
320 	return;
321 no_delete:
322 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
323 }
324 
325 #ifdef CONFIG_QUOTA
326 qsize_t *ext4_get_reserved_space(struct inode *inode)
327 {
328 	return &EXT4_I(inode)->i_reserved_quota;
329 }
330 #endif
331 
332 /*
333  * Called with i_data_sem down, which is important since we can call
334  * ext4_discard_preallocations() from here.
335  */
336 void ext4_da_update_reserve_space(struct inode *inode,
337 					int used, int quota_claim)
338 {
339 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
340 	struct ext4_inode_info *ei = EXT4_I(inode);
341 
342 	spin_lock(&ei->i_block_reservation_lock);
343 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
344 	if (unlikely(used > ei->i_reserved_data_blocks)) {
345 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
346 			 "with only %d reserved data blocks",
347 			 __func__, inode->i_ino, used,
348 			 ei->i_reserved_data_blocks);
349 		WARN_ON(1);
350 		used = ei->i_reserved_data_blocks;
351 	}
352 
353 	/* Update per-inode reservations */
354 	ei->i_reserved_data_blocks -= used;
355 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
356 
357 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
358 
359 	/* Update quota subsystem for data blocks */
360 	if (quota_claim)
361 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
362 	else {
363 		/*
364 		 * We did fallocate with an offset that is already delayed
365 		 * allocated. So on delayed allocated writeback we should
366 		 * not re-claim the quota for fallocated blocks.
367 		 */
368 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
369 	}
370 
371 	/*
372 	 * If we have done all the pending block allocations and if
373 	 * there aren't any writers on the inode, we can discard the
374 	 * inode's preallocations.
375 	 */
376 	if ((ei->i_reserved_data_blocks == 0) &&
377 	    (atomic_read(&inode->i_writecount) == 0))
378 		ext4_discard_preallocations(inode);
379 }
380 
381 static int __check_block_validity(struct inode *inode, const char *func,
382 				unsigned int line,
383 				struct ext4_map_blocks *map)
384 {
385 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
386 				   map->m_len)) {
387 		ext4_error_inode(inode, func, line, map->m_pblk,
388 				 "lblock %lu mapped to illegal pblock "
389 				 "(length %d)", (unsigned long) map->m_lblk,
390 				 map->m_len);
391 		return -EFSCORRUPTED;
392 	}
393 	return 0;
394 }
395 
396 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
397 		       ext4_lblk_t len)
398 {
399 	int ret;
400 
401 	if (ext4_encrypted_inode(inode))
402 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
403 
404 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
405 	if (ret > 0)
406 		ret = 0;
407 
408 	return ret;
409 }
410 
411 #define check_block_validity(inode, map)	\
412 	__check_block_validity((inode), __func__, __LINE__, (map))
413 
414 #ifdef ES_AGGRESSIVE_TEST
415 static void ext4_map_blocks_es_recheck(handle_t *handle,
416 				       struct inode *inode,
417 				       struct ext4_map_blocks *es_map,
418 				       struct ext4_map_blocks *map,
419 				       int flags)
420 {
421 	int retval;
422 
423 	map->m_flags = 0;
424 	/*
425 	 * There is a race window that the result is not the same.
426 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
427 	 * is that we lookup a block mapping in extent status tree with
428 	 * out taking i_data_sem.  So at the time the unwritten extent
429 	 * could be converted.
430 	 */
431 	down_read(&EXT4_I(inode)->i_data_sem);
432 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
433 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
434 					     EXT4_GET_BLOCKS_KEEP_SIZE);
435 	} else {
436 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
437 					     EXT4_GET_BLOCKS_KEEP_SIZE);
438 	}
439 	up_read((&EXT4_I(inode)->i_data_sem));
440 
441 	/*
442 	 * We don't check m_len because extent will be collpased in status
443 	 * tree.  So the m_len might not equal.
444 	 */
445 	if (es_map->m_lblk != map->m_lblk ||
446 	    es_map->m_flags != map->m_flags ||
447 	    es_map->m_pblk != map->m_pblk) {
448 		printk("ES cache assertion failed for inode: %lu "
449 		       "es_cached ex [%d/%d/%llu/%x] != "
450 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
451 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
452 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
453 		       map->m_len, map->m_pblk, map->m_flags,
454 		       retval, flags);
455 	}
456 }
457 #endif /* ES_AGGRESSIVE_TEST */
458 
459 /*
460  * The ext4_map_blocks() function tries to look up the requested blocks,
461  * and returns if the blocks are already mapped.
462  *
463  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
464  * and store the allocated blocks in the result buffer head and mark it
465  * mapped.
466  *
467  * If file type is extents based, it will call ext4_ext_map_blocks(),
468  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
469  * based files
470  *
471  * On success, it returns the number of blocks being mapped or allocated.  if
472  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
473  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
474  *
475  * It returns 0 if plain look up failed (blocks have not been allocated), in
476  * that case, @map is returned as unmapped but we still do fill map->m_len to
477  * indicate the length of a hole starting at map->m_lblk.
478  *
479  * It returns the error in case of allocation failure.
480  */
481 int ext4_map_blocks(handle_t *handle, struct inode *inode,
482 		    struct ext4_map_blocks *map, int flags)
483 {
484 	struct extent_status es;
485 	int retval;
486 	int ret = 0;
487 #ifdef ES_AGGRESSIVE_TEST
488 	struct ext4_map_blocks orig_map;
489 
490 	memcpy(&orig_map, map, sizeof(*map));
491 #endif
492 
493 	map->m_flags = 0;
494 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
495 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
496 		  (unsigned long) map->m_lblk);
497 
498 	/*
499 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
500 	 */
501 	if (unlikely(map->m_len > INT_MAX))
502 		map->m_len = INT_MAX;
503 
504 	/* We can handle the block number less than EXT_MAX_BLOCKS */
505 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
506 		return -EFSCORRUPTED;
507 
508 	/* Lookup extent status tree firstly */
509 	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
510 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
511 			map->m_pblk = ext4_es_pblock(&es) +
512 					map->m_lblk - es.es_lblk;
513 			map->m_flags |= ext4_es_is_written(&es) ?
514 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
515 			retval = es.es_len - (map->m_lblk - es.es_lblk);
516 			if (retval > map->m_len)
517 				retval = map->m_len;
518 			map->m_len = retval;
519 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
520 			map->m_pblk = 0;
521 			retval = es.es_len - (map->m_lblk - es.es_lblk);
522 			if (retval > map->m_len)
523 				retval = map->m_len;
524 			map->m_len = retval;
525 			retval = 0;
526 		} else {
527 			BUG_ON(1);
528 		}
529 #ifdef ES_AGGRESSIVE_TEST
530 		ext4_map_blocks_es_recheck(handle, inode, map,
531 					   &orig_map, flags);
532 #endif
533 		goto found;
534 	}
535 
536 	/*
537 	 * Try to see if we can get the block without requesting a new
538 	 * file system block.
539 	 */
540 	down_read(&EXT4_I(inode)->i_data_sem);
541 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
542 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
543 					     EXT4_GET_BLOCKS_KEEP_SIZE);
544 	} else {
545 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
546 					     EXT4_GET_BLOCKS_KEEP_SIZE);
547 	}
548 	if (retval > 0) {
549 		unsigned int status;
550 
551 		if (unlikely(retval != map->m_len)) {
552 			ext4_warning(inode->i_sb,
553 				     "ES len assertion failed for inode "
554 				     "%lu: retval %d != map->m_len %d",
555 				     inode->i_ino, retval, map->m_len);
556 			WARN_ON(1);
557 		}
558 
559 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
560 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
561 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
562 		    !(status & EXTENT_STATUS_WRITTEN) &&
563 		    ext4_find_delalloc_range(inode, map->m_lblk,
564 					     map->m_lblk + map->m_len - 1))
565 			status |= EXTENT_STATUS_DELAYED;
566 		ret = ext4_es_insert_extent(inode, map->m_lblk,
567 					    map->m_len, map->m_pblk, status);
568 		if (ret < 0)
569 			retval = ret;
570 	}
571 	up_read((&EXT4_I(inode)->i_data_sem));
572 
573 found:
574 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
575 		ret = check_block_validity(inode, map);
576 		if (ret != 0)
577 			return ret;
578 	}
579 
580 	/* If it is only a block(s) look up */
581 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
582 		return retval;
583 
584 	/*
585 	 * Returns if the blocks have already allocated
586 	 *
587 	 * Note that if blocks have been preallocated
588 	 * ext4_ext_get_block() returns the create = 0
589 	 * with buffer head unmapped.
590 	 */
591 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
592 		/*
593 		 * If we need to convert extent to unwritten
594 		 * we continue and do the actual work in
595 		 * ext4_ext_map_blocks()
596 		 */
597 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
598 			return retval;
599 
600 	/*
601 	 * Here we clear m_flags because after allocating an new extent,
602 	 * it will be set again.
603 	 */
604 	map->m_flags &= ~EXT4_MAP_FLAGS;
605 
606 	/*
607 	 * New blocks allocate and/or writing to unwritten extent
608 	 * will possibly result in updating i_data, so we take
609 	 * the write lock of i_data_sem, and call get_block()
610 	 * with create == 1 flag.
611 	 */
612 	down_write(&EXT4_I(inode)->i_data_sem);
613 
614 	/*
615 	 * We need to check for EXT4 here because migrate
616 	 * could have changed the inode type in between
617 	 */
618 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
619 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
620 	} else {
621 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
622 
623 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
624 			/*
625 			 * We allocated new blocks which will result in
626 			 * i_data's format changing.  Force the migrate
627 			 * to fail by clearing migrate flags
628 			 */
629 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
630 		}
631 
632 		/*
633 		 * Update reserved blocks/metadata blocks after successful
634 		 * block allocation which had been deferred till now. We don't
635 		 * support fallocate for non extent files. So we can update
636 		 * reserve space here.
637 		 */
638 		if ((retval > 0) &&
639 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
640 			ext4_da_update_reserve_space(inode, retval, 1);
641 	}
642 
643 	if (retval > 0) {
644 		unsigned int status;
645 
646 		if (unlikely(retval != map->m_len)) {
647 			ext4_warning(inode->i_sb,
648 				     "ES len assertion failed for inode "
649 				     "%lu: retval %d != map->m_len %d",
650 				     inode->i_ino, retval, map->m_len);
651 			WARN_ON(1);
652 		}
653 
654 		/*
655 		 * We have to zeroout blocks before inserting them into extent
656 		 * status tree. Otherwise someone could look them up there and
657 		 * use them before they are really zeroed. We also have to
658 		 * unmap metadata before zeroing as otherwise writeback can
659 		 * overwrite zeros with stale data from block device.
660 		 */
661 		if (flags & EXT4_GET_BLOCKS_ZERO &&
662 		    map->m_flags & EXT4_MAP_MAPPED &&
663 		    map->m_flags & EXT4_MAP_NEW) {
664 			clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
665 					   map->m_len);
666 			ret = ext4_issue_zeroout(inode, map->m_lblk,
667 						 map->m_pblk, map->m_len);
668 			if (ret) {
669 				retval = ret;
670 				goto out_sem;
671 			}
672 		}
673 
674 		/*
675 		 * If the extent has been zeroed out, we don't need to update
676 		 * extent status tree.
677 		 */
678 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
679 		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
680 			if (ext4_es_is_written(&es))
681 				goto out_sem;
682 		}
683 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
684 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
685 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
686 		    !(status & EXTENT_STATUS_WRITTEN) &&
687 		    ext4_find_delalloc_range(inode, map->m_lblk,
688 					     map->m_lblk + map->m_len - 1))
689 			status |= EXTENT_STATUS_DELAYED;
690 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
691 					    map->m_pblk, status);
692 		if (ret < 0) {
693 			retval = ret;
694 			goto out_sem;
695 		}
696 	}
697 
698 out_sem:
699 	up_write((&EXT4_I(inode)->i_data_sem));
700 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
701 		ret = check_block_validity(inode, map);
702 		if (ret != 0)
703 			return ret;
704 
705 		/*
706 		 * Inodes with freshly allocated blocks where contents will be
707 		 * visible after transaction commit must be on transaction's
708 		 * ordered data list.
709 		 */
710 		if (map->m_flags & EXT4_MAP_NEW &&
711 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
712 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
713 		    !IS_NOQUOTA(inode) &&
714 		    ext4_should_order_data(inode)) {
715 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
716 				ret = ext4_jbd2_inode_add_wait(handle, inode);
717 			else
718 				ret = ext4_jbd2_inode_add_write(handle, inode);
719 			if (ret)
720 				return ret;
721 		}
722 	}
723 	return retval;
724 }
725 
726 /*
727  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
728  * we have to be careful as someone else may be manipulating b_state as well.
729  */
730 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
731 {
732 	unsigned long old_state;
733 	unsigned long new_state;
734 
735 	flags &= EXT4_MAP_FLAGS;
736 
737 	/* Dummy buffer_head? Set non-atomically. */
738 	if (!bh->b_page) {
739 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
740 		return;
741 	}
742 	/*
743 	 * Someone else may be modifying b_state. Be careful! This is ugly but
744 	 * once we get rid of using bh as a container for mapping information
745 	 * to pass to / from get_block functions, this can go away.
746 	 */
747 	do {
748 		old_state = READ_ONCE(bh->b_state);
749 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
750 	} while (unlikely(
751 		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
752 }
753 
754 static int _ext4_get_block(struct inode *inode, sector_t iblock,
755 			   struct buffer_head *bh, int flags)
756 {
757 	struct ext4_map_blocks map;
758 	int ret = 0;
759 
760 	if (ext4_has_inline_data(inode))
761 		return -ERANGE;
762 
763 	map.m_lblk = iblock;
764 	map.m_len = bh->b_size >> inode->i_blkbits;
765 
766 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
767 			      flags);
768 	if (ret > 0) {
769 		map_bh(bh, inode->i_sb, map.m_pblk);
770 		ext4_update_bh_state(bh, map.m_flags);
771 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
772 		ret = 0;
773 	} else if (ret == 0) {
774 		/* hole case, need to fill in bh->b_size */
775 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
776 	}
777 	return ret;
778 }
779 
780 int ext4_get_block(struct inode *inode, sector_t iblock,
781 		   struct buffer_head *bh, int create)
782 {
783 	return _ext4_get_block(inode, iblock, bh,
784 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
785 }
786 
787 /*
788  * Get block function used when preparing for buffered write if we require
789  * creating an unwritten extent if blocks haven't been allocated.  The extent
790  * will be converted to written after the IO is complete.
791  */
792 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
793 			     struct buffer_head *bh_result, int create)
794 {
795 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
796 		   inode->i_ino, create);
797 	return _ext4_get_block(inode, iblock, bh_result,
798 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
799 }
800 
801 /* Maximum number of blocks we map for direct IO at once. */
802 #define DIO_MAX_BLOCKS 4096
803 
804 /*
805  * Get blocks function for the cases that need to start a transaction -
806  * generally difference cases of direct IO and DAX IO. It also handles retries
807  * in case of ENOSPC.
808  */
809 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
810 				struct buffer_head *bh_result, int flags)
811 {
812 	int dio_credits;
813 	handle_t *handle;
814 	int retries = 0;
815 	int ret;
816 
817 	/* Trim mapping request to maximum we can map at once for DIO */
818 	if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
819 		bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
820 	dio_credits = ext4_chunk_trans_blocks(inode,
821 				      bh_result->b_size >> inode->i_blkbits);
822 retry:
823 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
824 	if (IS_ERR(handle))
825 		return PTR_ERR(handle);
826 
827 	ret = _ext4_get_block(inode, iblock, bh_result, flags);
828 	ext4_journal_stop(handle);
829 
830 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
831 		goto retry;
832 	return ret;
833 }
834 
835 /* Get block function for DIO reads and writes to inodes without extents */
836 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
837 		       struct buffer_head *bh, int create)
838 {
839 	/* We don't expect handle for direct IO */
840 	WARN_ON_ONCE(ext4_journal_current_handle());
841 
842 	if (!create)
843 		return _ext4_get_block(inode, iblock, bh, 0);
844 	return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
845 }
846 
847 /*
848  * Get block function for AIO DIO writes when we create unwritten extent if
849  * blocks are not allocated yet. The extent will be converted to written
850  * after IO is complete.
851  */
852 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
853 		sector_t iblock, struct buffer_head *bh_result,	int create)
854 {
855 	int ret;
856 
857 	/* We don't expect handle for direct IO */
858 	WARN_ON_ONCE(ext4_journal_current_handle());
859 
860 	ret = ext4_get_block_trans(inode, iblock, bh_result,
861 				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
862 
863 	/*
864 	 * When doing DIO using unwritten extents, we need io_end to convert
865 	 * unwritten extents to written on IO completion. We allocate io_end
866 	 * once we spot unwritten extent and store it in b_private. Generic
867 	 * DIO code keeps b_private set and furthermore passes the value to
868 	 * our completion callback in 'private' argument.
869 	 */
870 	if (!ret && buffer_unwritten(bh_result)) {
871 		if (!bh_result->b_private) {
872 			ext4_io_end_t *io_end;
873 
874 			io_end = ext4_init_io_end(inode, GFP_KERNEL);
875 			if (!io_end)
876 				return -ENOMEM;
877 			bh_result->b_private = io_end;
878 			ext4_set_io_unwritten_flag(inode, io_end);
879 		}
880 		set_buffer_defer_completion(bh_result);
881 	}
882 
883 	return ret;
884 }
885 
886 /*
887  * Get block function for non-AIO DIO writes when we create unwritten extent if
888  * blocks are not allocated yet. The extent will be converted to written
889  * after IO is complete from ext4_ext_direct_IO() function.
890  */
891 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
892 		sector_t iblock, struct buffer_head *bh_result,	int create)
893 {
894 	int ret;
895 
896 	/* We don't expect handle for direct IO */
897 	WARN_ON_ONCE(ext4_journal_current_handle());
898 
899 	ret = ext4_get_block_trans(inode, iblock, bh_result,
900 				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
901 
902 	/*
903 	 * Mark inode as having pending DIO writes to unwritten extents.
904 	 * ext4_ext_direct_IO() checks this flag and converts extents to
905 	 * written.
906 	 */
907 	if (!ret && buffer_unwritten(bh_result))
908 		ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
909 
910 	return ret;
911 }
912 
913 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
914 		   struct buffer_head *bh_result, int create)
915 {
916 	int ret;
917 
918 	ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
919 		   inode->i_ino, create);
920 	/* We don't expect handle for direct IO */
921 	WARN_ON_ONCE(ext4_journal_current_handle());
922 
923 	ret = _ext4_get_block(inode, iblock, bh_result, 0);
924 	/*
925 	 * Blocks should have been preallocated! ext4_file_write_iter() checks
926 	 * that.
927 	 */
928 	WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
929 
930 	return ret;
931 }
932 
933 
934 /*
935  * `handle' can be NULL if create is zero
936  */
937 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
938 				ext4_lblk_t block, int map_flags)
939 {
940 	struct ext4_map_blocks map;
941 	struct buffer_head *bh;
942 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
943 	int err;
944 
945 	J_ASSERT(handle != NULL || create == 0);
946 
947 	map.m_lblk = block;
948 	map.m_len = 1;
949 	err = ext4_map_blocks(handle, inode, &map, map_flags);
950 
951 	if (err == 0)
952 		return create ? ERR_PTR(-ENOSPC) : NULL;
953 	if (err < 0)
954 		return ERR_PTR(err);
955 
956 	bh = sb_getblk(inode->i_sb, map.m_pblk);
957 	if (unlikely(!bh))
958 		return ERR_PTR(-ENOMEM);
959 	if (map.m_flags & EXT4_MAP_NEW) {
960 		J_ASSERT(create != 0);
961 		J_ASSERT(handle != NULL);
962 
963 		/*
964 		 * Now that we do not always journal data, we should
965 		 * keep in mind whether this should always journal the
966 		 * new buffer as metadata.  For now, regular file
967 		 * writes use ext4_get_block instead, so it's not a
968 		 * problem.
969 		 */
970 		lock_buffer(bh);
971 		BUFFER_TRACE(bh, "call get_create_access");
972 		err = ext4_journal_get_create_access(handle, bh);
973 		if (unlikely(err)) {
974 			unlock_buffer(bh);
975 			goto errout;
976 		}
977 		if (!buffer_uptodate(bh)) {
978 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
979 			set_buffer_uptodate(bh);
980 		}
981 		unlock_buffer(bh);
982 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
983 		err = ext4_handle_dirty_metadata(handle, inode, bh);
984 		if (unlikely(err))
985 			goto errout;
986 	} else
987 		BUFFER_TRACE(bh, "not a new buffer");
988 	return bh;
989 errout:
990 	brelse(bh);
991 	return ERR_PTR(err);
992 }
993 
994 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
995 			       ext4_lblk_t block, int map_flags)
996 {
997 	struct buffer_head *bh;
998 
999 	bh = ext4_getblk(handle, inode, block, map_flags);
1000 	if (IS_ERR(bh))
1001 		return bh;
1002 	if (!bh || buffer_uptodate(bh))
1003 		return bh;
1004 	ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1005 	wait_on_buffer(bh);
1006 	if (buffer_uptodate(bh))
1007 		return bh;
1008 	put_bh(bh);
1009 	return ERR_PTR(-EIO);
1010 }
1011 
1012 int ext4_walk_page_buffers(handle_t *handle,
1013 			   struct buffer_head *head,
1014 			   unsigned from,
1015 			   unsigned to,
1016 			   int *partial,
1017 			   int (*fn)(handle_t *handle,
1018 				     struct buffer_head *bh))
1019 {
1020 	struct buffer_head *bh;
1021 	unsigned block_start, block_end;
1022 	unsigned blocksize = head->b_size;
1023 	int err, ret = 0;
1024 	struct buffer_head *next;
1025 
1026 	for (bh = head, block_start = 0;
1027 	     ret == 0 && (bh != head || !block_start);
1028 	     block_start = block_end, bh = next) {
1029 		next = bh->b_this_page;
1030 		block_end = block_start + blocksize;
1031 		if (block_end <= from || block_start >= to) {
1032 			if (partial && !buffer_uptodate(bh))
1033 				*partial = 1;
1034 			continue;
1035 		}
1036 		err = (*fn)(handle, bh);
1037 		if (!ret)
1038 			ret = err;
1039 	}
1040 	return ret;
1041 }
1042 
1043 /*
1044  * To preserve ordering, it is essential that the hole instantiation and
1045  * the data write be encapsulated in a single transaction.  We cannot
1046  * close off a transaction and start a new one between the ext4_get_block()
1047  * and the commit_write().  So doing the jbd2_journal_start at the start of
1048  * prepare_write() is the right place.
1049  *
1050  * Also, this function can nest inside ext4_writepage().  In that case, we
1051  * *know* that ext4_writepage() has generated enough buffer credits to do the
1052  * whole page.  So we won't block on the journal in that case, which is good,
1053  * because the caller may be PF_MEMALLOC.
1054  *
1055  * By accident, ext4 can be reentered when a transaction is open via
1056  * quota file writes.  If we were to commit the transaction while thus
1057  * reentered, there can be a deadlock - we would be holding a quota
1058  * lock, and the commit would never complete if another thread had a
1059  * transaction open and was blocking on the quota lock - a ranking
1060  * violation.
1061  *
1062  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1063  * will _not_ run commit under these circumstances because handle->h_ref
1064  * is elevated.  We'll still have enough credits for the tiny quotafile
1065  * write.
1066  */
1067 int do_journal_get_write_access(handle_t *handle,
1068 				struct buffer_head *bh)
1069 {
1070 	int dirty = buffer_dirty(bh);
1071 	int ret;
1072 
1073 	if (!buffer_mapped(bh) || buffer_freed(bh))
1074 		return 0;
1075 	/*
1076 	 * __block_write_begin() could have dirtied some buffers. Clean
1077 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1078 	 * otherwise about fs integrity issues. Setting of the dirty bit
1079 	 * by __block_write_begin() isn't a real problem here as we clear
1080 	 * the bit before releasing a page lock and thus writeback cannot
1081 	 * ever write the buffer.
1082 	 */
1083 	if (dirty)
1084 		clear_buffer_dirty(bh);
1085 	BUFFER_TRACE(bh, "get write access");
1086 	ret = ext4_journal_get_write_access(handle, bh);
1087 	if (!ret && dirty)
1088 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1089 	return ret;
1090 }
1091 
1092 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1093 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1094 				  get_block_t *get_block)
1095 {
1096 	unsigned from = pos & (PAGE_SIZE - 1);
1097 	unsigned to = from + len;
1098 	struct inode *inode = page->mapping->host;
1099 	unsigned block_start, block_end;
1100 	sector_t block;
1101 	int err = 0;
1102 	unsigned blocksize = inode->i_sb->s_blocksize;
1103 	unsigned bbits;
1104 	struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1105 	bool decrypt = false;
1106 
1107 	BUG_ON(!PageLocked(page));
1108 	BUG_ON(from > PAGE_SIZE);
1109 	BUG_ON(to > PAGE_SIZE);
1110 	BUG_ON(from > to);
1111 
1112 	if (!page_has_buffers(page))
1113 		create_empty_buffers(page, blocksize, 0);
1114 	head = page_buffers(page);
1115 	bbits = ilog2(blocksize);
1116 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1117 
1118 	for (bh = head, block_start = 0; bh != head || !block_start;
1119 	    block++, block_start = block_end, bh = bh->b_this_page) {
1120 		block_end = block_start + blocksize;
1121 		if (block_end <= from || block_start >= to) {
1122 			if (PageUptodate(page)) {
1123 				if (!buffer_uptodate(bh))
1124 					set_buffer_uptodate(bh);
1125 			}
1126 			continue;
1127 		}
1128 		if (buffer_new(bh))
1129 			clear_buffer_new(bh);
1130 		if (!buffer_mapped(bh)) {
1131 			WARN_ON(bh->b_size != blocksize);
1132 			err = get_block(inode, block, bh, 1);
1133 			if (err)
1134 				break;
1135 			if (buffer_new(bh)) {
1136 				clean_bdev_bh_alias(bh);
1137 				if (PageUptodate(page)) {
1138 					clear_buffer_new(bh);
1139 					set_buffer_uptodate(bh);
1140 					mark_buffer_dirty(bh);
1141 					continue;
1142 				}
1143 				if (block_end > to || block_start < from)
1144 					zero_user_segments(page, to, block_end,
1145 							   block_start, from);
1146 				continue;
1147 			}
1148 		}
1149 		if (PageUptodate(page)) {
1150 			if (!buffer_uptodate(bh))
1151 				set_buffer_uptodate(bh);
1152 			continue;
1153 		}
1154 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1155 		    !buffer_unwritten(bh) &&
1156 		    (block_start < from || block_end > to)) {
1157 			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1158 			*wait_bh++ = bh;
1159 			decrypt = ext4_encrypted_inode(inode) &&
1160 				S_ISREG(inode->i_mode);
1161 		}
1162 	}
1163 	/*
1164 	 * If we issued read requests, let them complete.
1165 	 */
1166 	while (wait_bh > wait) {
1167 		wait_on_buffer(*--wait_bh);
1168 		if (!buffer_uptodate(*wait_bh))
1169 			err = -EIO;
1170 	}
1171 	if (unlikely(err))
1172 		page_zero_new_buffers(page, from, to);
1173 	else if (decrypt)
1174 		err = fscrypt_decrypt_page(page->mapping->host, page,
1175 				PAGE_SIZE, 0, page->index);
1176 	return err;
1177 }
1178 #endif
1179 
1180 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1181 			    loff_t pos, unsigned len, unsigned flags,
1182 			    struct page **pagep, void **fsdata)
1183 {
1184 	struct inode *inode = mapping->host;
1185 	int ret, needed_blocks;
1186 	handle_t *handle;
1187 	int retries = 0;
1188 	struct page *page;
1189 	pgoff_t index;
1190 	unsigned from, to;
1191 
1192 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1193 		return -EIO;
1194 
1195 	trace_ext4_write_begin(inode, pos, len, flags);
1196 	/*
1197 	 * Reserve one block more for addition to orphan list in case
1198 	 * we allocate blocks but write fails for some reason
1199 	 */
1200 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1201 	index = pos >> PAGE_SHIFT;
1202 	from = pos & (PAGE_SIZE - 1);
1203 	to = from + len;
1204 
1205 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1206 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1207 						    flags, pagep);
1208 		if (ret < 0)
1209 			return ret;
1210 		if (ret == 1)
1211 			return 0;
1212 	}
1213 
1214 	/*
1215 	 * grab_cache_page_write_begin() can take a long time if the
1216 	 * system is thrashing due to memory pressure, or if the page
1217 	 * is being written back.  So grab it first before we start
1218 	 * the transaction handle.  This also allows us to allocate
1219 	 * the page (if needed) without using GFP_NOFS.
1220 	 */
1221 retry_grab:
1222 	page = grab_cache_page_write_begin(mapping, index, flags);
1223 	if (!page)
1224 		return -ENOMEM;
1225 	unlock_page(page);
1226 
1227 retry_journal:
1228 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1229 	if (IS_ERR(handle)) {
1230 		put_page(page);
1231 		return PTR_ERR(handle);
1232 	}
1233 
1234 	lock_page(page);
1235 	if (page->mapping != mapping) {
1236 		/* The page got truncated from under us */
1237 		unlock_page(page);
1238 		put_page(page);
1239 		ext4_journal_stop(handle);
1240 		goto retry_grab;
1241 	}
1242 	/* In case writeback began while the page was unlocked */
1243 	wait_for_stable_page(page);
1244 
1245 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1246 	if (ext4_should_dioread_nolock(inode))
1247 		ret = ext4_block_write_begin(page, pos, len,
1248 					     ext4_get_block_unwritten);
1249 	else
1250 		ret = ext4_block_write_begin(page, pos, len,
1251 					     ext4_get_block);
1252 #else
1253 	if (ext4_should_dioread_nolock(inode))
1254 		ret = __block_write_begin(page, pos, len,
1255 					  ext4_get_block_unwritten);
1256 	else
1257 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1258 #endif
1259 	if (!ret && ext4_should_journal_data(inode)) {
1260 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1261 					     from, to, NULL,
1262 					     do_journal_get_write_access);
1263 	}
1264 
1265 	if (ret) {
1266 		unlock_page(page);
1267 		/*
1268 		 * __block_write_begin may have instantiated a few blocks
1269 		 * outside i_size.  Trim these off again. Don't need
1270 		 * i_size_read because we hold i_mutex.
1271 		 *
1272 		 * Add inode to orphan list in case we crash before
1273 		 * truncate finishes
1274 		 */
1275 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1276 			ext4_orphan_add(handle, inode);
1277 
1278 		ext4_journal_stop(handle);
1279 		if (pos + len > inode->i_size) {
1280 			ext4_truncate_failed_write(inode);
1281 			/*
1282 			 * If truncate failed early the inode might
1283 			 * still be on the orphan list; we need to
1284 			 * make sure the inode is removed from the
1285 			 * orphan list in that case.
1286 			 */
1287 			if (inode->i_nlink)
1288 				ext4_orphan_del(NULL, inode);
1289 		}
1290 
1291 		if (ret == -ENOSPC &&
1292 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1293 			goto retry_journal;
1294 		put_page(page);
1295 		return ret;
1296 	}
1297 	*pagep = page;
1298 	return ret;
1299 }
1300 
1301 /* For write_end() in data=journal mode */
1302 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1303 {
1304 	int ret;
1305 	if (!buffer_mapped(bh) || buffer_freed(bh))
1306 		return 0;
1307 	set_buffer_uptodate(bh);
1308 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1309 	clear_buffer_meta(bh);
1310 	clear_buffer_prio(bh);
1311 	return ret;
1312 }
1313 
1314 /*
1315  * We need to pick up the new inode size which generic_commit_write gave us
1316  * `file' can be NULL - eg, when called from page_symlink().
1317  *
1318  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1319  * buffers are managed internally.
1320  */
1321 static int ext4_write_end(struct file *file,
1322 			  struct address_space *mapping,
1323 			  loff_t pos, unsigned len, unsigned copied,
1324 			  struct page *page, void *fsdata)
1325 {
1326 	handle_t *handle = ext4_journal_current_handle();
1327 	struct inode *inode = mapping->host;
1328 	loff_t old_size = inode->i_size;
1329 	int ret = 0, ret2;
1330 	int i_size_changed = 0;
1331 
1332 	trace_ext4_write_end(inode, pos, len, copied);
1333 	if (ext4_has_inline_data(inode)) {
1334 		ret = ext4_write_inline_data_end(inode, pos, len,
1335 						 copied, page);
1336 		if (ret < 0) {
1337 			unlock_page(page);
1338 			put_page(page);
1339 			goto errout;
1340 		}
1341 		copied = ret;
1342 	} else
1343 		copied = block_write_end(file, mapping, pos,
1344 					 len, copied, page, fsdata);
1345 	/*
1346 	 * it's important to update i_size while still holding page lock:
1347 	 * page writeout could otherwise come in and zero beyond i_size.
1348 	 */
1349 	i_size_changed = ext4_update_inode_size(inode, pos + copied);
1350 	unlock_page(page);
1351 	put_page(page);
1352 
1353 	if (old_size < pos)
1354 		pagecache_isize_extended(inode, old_size, pos);
1355 	/*
1356 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1357 	 * makes the holding time of page lock longer. Second, it forces lock
1358 	 * ordering of page lock and transaction start for journaling
1359 	 * filesystems.
1360 	 */
1361 	if (i_size_changed)
1362 		ext4_mark_inode_dirty(handle, inode);
1363 
1364 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1365 		/* if we have allocated more blocks and copied
1366 		 * less. We will have blocks allocated outside
1367 		 * inode->i_size. So truncate them
1368 		 */
1369 		ext4_orphan_add(handle, inode);
1370 errout:
1371 	ret2 = ext4_journal_stop(handle);
1372 	if (!ret)
1373 		ret = ret2;
1374 
1375 	if (pos + len > inode->i_size) {
1376 		ext4_truncate_failed_write(inode);
1377 		/*
1378 		 * If truncate failed early the inode might still be
1379 		 * on the orphan list; we need to make sure the inode
1380 		 * is removed from the orphan list in that case.
1381 		 */
1382 		if (inode->i_nlink)
1383 			ext4_orphan_del(NULL, inode);
1384 	}
1385 
1386 	return ret ? ret : copied;
1387 }
1388 
1389 /*
1390  * This is a private version of page_zero_new_buffers() which doesn't
1391  * set the buffer to be dirty, since in data=journalled mode we need
1392  * to call ext4_handle_dirty_metadata() instead.
1393  */
1394 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1395 					    struct page *page,
1396 					    unsigned from, unsigned to)
1397 {
1398 	unsigned int block_start = 0, block_end;
1399 	struct buffer_head *head, *bh;
1400 
1401 	bh = head = page_buffers(page);
1402 	do {
1403 		block_end = block_start + bh->b_size;
1404 		if (buffer_new(bh)) {
1405 			if (block_end > from && block_start < to) {
1406 				if (!PageUptodate(page)) {
1407 					unsigned start, size;
1408 
1409 					start = max(from, block_start);
1410 					size = min(to, block_end) - start;
1411 
1412 					zero_user(page, start, size);
1413 					write_end_fn(handle, bh);
1414 				}
1415 				clear_buffer_new(bh);
1416 			}
1417 		}
1418 		block_start = block_end;
1419 		bh = bh->b_this_page;
1420 	} while (bh != head);
1421 }
1422 
1423 static int ext4_journalled_write_end(struct file *file,
1424 				     struct address_space *mapping,
1425 				     loff_t pos, unsigned len, unsigned copied,
1426 				     struct page *page, void *fsdata)
1427 {
1428 	handle_t *handle = ext4_journal_current_handle();
1429 	struct inode *inode = mapping->host;
1430 	loff_t old_size = inode->i_size;
1431 	int ret = 0, ret2;
1432 	int partial = 0;
1433 	unsigned from, to;
1434 	int size_changed = 0;
1435 
1436 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1437 	from = pos & (PAGE_SIZE - 1);
1438 	to = from + len;
1439 
1440 	BUG_ON(!ext4_handle_valid(handle));
1441 
1442 	if (ext4_has_inline_data(inode)) {
1443 		ret = ext4_write_inline_data_end(inode, pos, len,
1444 						 copied, page);
1445 		if (ret < 0) {
1446 			unlock_page(page);
1447 			put_page(page);
1448 			goto errout;
1449 		}
1450 		copied = ret;
1451 	} else if (unlikely(copied < len) && !PageUptodate(page)) {
1452 		copied = 0;
1453 		ext4_journalled_zero_new_buffers(handle, page, from, to);
1454 	} else {
1455 		if (unlikely(copied < len))
1456 			ext4_journalled_zero_new_buffers(handle, page,
1457 							 from + copied, to);
1458 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1459 					     from + copied, &partial,
1460 					     write_end_fn);
1461 		if (!partial)
1462 			SetPageUptodate(page);
1463 	}
1464 	size_changed = ext4_update_inode_size(inode, pos + copied);
1465 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1466 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1467 	unlock_page(page);
1468 	put_page(page);
1469 
1470 	if (old_size < pos)
1471 		pagecache_isize_extended(inode, old_size, pos);
1472 
1473 	if (size_changed) {
1474 		ret2 = ext4_mark_inode_dirty(handle, inode);
1475 		if (!ret)
1476 			ret = ret2;
1477 	}
1478 
1479 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1480 		/* if we have allocated more blocks and copied
1481 		 * less. We will have blocks allocated outside
1482 		 * inode->i_size. So truncate them
1483 		 */
1484 		ext4_orphan_add(handle, inode);
1485 
1486 errout:
1487 	ret2 = ext4_journal_stop(handle);
1488 	if (!ret)
1489 		ret = ret2;
1490 	if (pos + len > inode->i_size) {
1491 		ext4_truncate_failed_write(inode);
1492 		/*
1493 		 * If truncate failed early the inode might still be
1494 		 * on the orphan list; we need to make sure the inode
1495 		 * is removed from the orphan list in that case.
1496 		 */
1497 		if (inode->i_nlink)
1498 			ext4_orphan_del(NULL, inode);
1499 	}
1500 
1501 	return ret ? ret : copied;
1502 }
1503 
1504 /*
1505  * Reserve space for a single cluster
1506  */
1507 static int ext4_da_reserve_space(struct inode *inode)
1508 {
1509 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1510 	struct ext4_inode_info *ei = EXT4_I(inode);
1511 	int ret;
1512 
1513 	/*
1514 	 * We will charge metadata quota at writeout time; this saves
1515 	 * us from metadata over-estimation, though we may go over by
1516 	 * a small amount in the end.  Here we just reserve for data.
1517 	 */
1518 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1519 	if (ret)
1520 		return ret;
1521 
1522 	spin_lock(&ei->i_block_reservation_lock);
1523 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1524 		spin_unlock(&ei->i_block_reservation_lock);
1525 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1526 		return -ENOSPC;
1527 	}
1528 	ei->i_reserved_data_blocks++;
1529 	trace_ext4_da_reserve_space(inode);
1530 	spin_unlock(&ei->i_block_reservation_lock);
1531 
1532 	return 0;       /* success */
1533 }
1534 
1535 static void ext4_da_release_space(struct inode *inode, int to_free)
1536 {
1537 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1538 	struct ext4_inode_info *ei = EXT4_I(inode);
1539 
1540 	if (!to_free)
1541 		return;		/* Nothing to release, exit */
1542 
1543 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1544 
1545 	trace_ext4_da_release_space(inode, to_free);
1546 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1547 		/*
1548 		 * if there aren't enough reserved blocks, then the
1549 		 * counter is messed up somewhere.  Since this
1550 		 * function is called from invalidate page, it's
1551 		 * harmless to return without any action.
1552 		 */
1553 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1554 			 "ino %lu, to_free %d with only %d reserved "
1555 			 "data blocks", inode->i_ino, to_free,
1556 			 ei->i_reserved_data_blocks);
1557 		WARN_ON(1);
1558 		to_free = ei->i_reserved_data_blocks;
1559 	}
1560 	ei->i_reserved_data_blocks -= to_free;
1561 
1562 	/* update fs dirty data blocks counter */
1563 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1564 
1565 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1566 
1567 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1568 }
1569 
1570 static void ext4_da_page_release_reservation(struct page *page,
1571 					     unsigned int offset,
1572 					     unsigned int length)
1573 {
1574 	int to_release = 0, contiguous_blks = 0;
1575 	struct buffer_head *head, *bh;
1576 	unsigned int curr_off = 0;
1577 	struct inode *inode = page->mapping->host;
1578 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1579 	unsigned int stop = offset + length;
1580 	int num_clusters;
1581 	ext4_fsblk_t lblk;
1582 
1583 	BUG_ON(stop > PAGE_SIZE || stop < length);
1584 
1585 	head = page_buffers(page);
1586 	bh = head;
1587 	do {
1588 		unsigned int next_off = curr_off + bh->b_size;
1589 
1590 		if (next_off > stop)
1591 			break;
1592 
1593 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1594 			to_release++;
1595 			contiguous_blks++;
1596 			clear_buffer_delay(bh);
1597 		} else if (contiguous_blks) {
1598 			lblk = page->index <<
1599 			       (PAGE_SHIFT - inode->i_blkbits);
1600 			lblk += (curr_off >> inode->i_blkbits) -
1601 				contiguous_blks;
1602 			ext4_es_remove_extent(inode, lblk, contiguous_blks);
1603 			contiguous_blks = 0;
1604 		}
1605 		curr_off = next_off;
1606 	} while ((bh = bh->b_this_page) != head);
1607 
1608 	if (contiguous_blks) {
1609 		lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1610 		lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1611 		ext4_es_remove_extent(inode, lblk, contiguous_blks);
1612 	}
1613 
1614 	/* If we have released all the blocks belonging to a cluster, then we
1615 	 * need to release the reserved space for that cluster. */
1616 	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1617 	while (num_clusters > 0) {
1618 		lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1619 			((num_clusters - 1) << sbi->s_cluster_bits);
1620 		if (sbi->s_cluster_ratio == 1 ||
1621 		    !ext4_find_delalloc_cluster(inode, lblk))
1622 			ext4_da_release_space(inode, 1);
1623 
1624 		num_clusters--;
1625 	}
1626 }
1627 
1628 /*
1629  * Delayed allocation stuff
1630  */
1631 
1632 struct mpage_da_data {
1633 	struct inode *inode;
1634 	struct writeback_control *wbc;
1635 
1636 	pgoff_t first_page;	/* The first page to write */
1637 	pgoff_t next_page;	/* Current page to examine */
1638 	pgoff_t last_page;	/* Last page to examine */
1639 	/*
1640 	 * Extent to map - this can be after first_page because that can be
1641 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1642 	 * is delalloc or unwritten.
1643 	 */
1644 	struct ext4_map_blocks map;
1645 	struct ext4_io_submit io_submit;	/* IO submission data */
1646 	unsigned int do_map:1;
1647 };
1648 
1649 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1650 				       bool invalidate)
1651 {
1652 	int nr_pages, i;
1653 	pgoff_t index, end;
1654 	struct pagevec pvec;
1655 	struct inode *inode = mpd->inode;
1656 	struct address_space *mapping = inode->i_mapping;
1657 
1658 	/* This is necessary when next_page == 0. */
1659 	if (mpd->first_page >= mpd->next_page)
1660 		return;
1661 
1662 	index = mpd->first_page;
1663 	end   = mpd->next_page - 1;
1664 	if (invalidate) {
1665 		ext4_lblk_t start, last;
1666 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1667 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1668 		ext4_es_remove_extent(inode, start, last - start + 1);
1669 	}
1670 
1671 	pagevec_init(&pvec, 0);
1672 	while (index <= end) {
1673 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1674 		if (nr_pages == 0)
1675 			break;
1676 		for (i = 0; i < nr_pages; i++) {
1677 			struct page *page = pvec.pages[i];
1678 			if (page->index > end)
1679 				break;
1680 			BUG_ON(!PageLocked(page));
1681 			BUG_ON(PageWriteback(page));
1682 			if (invalidate) {
1683 				if (page_mapped(page))
1684 					clear_page_dirty_for_io(page);
1685 				block_invalidatepage(page, 0, PAGE_SIZE);
1686 				ClearPageUptodate(page);
1687 			}
1688 			unlock_page(page);
1689 		}
1690 		index = pvec.pages[nr_pages - 1]->index + 1;
1691 		pagevec_release(&pvec);
1692 	}
1693 }
1694 
1695 static void ext4_print_free_blocks(struct inode *inode)
1696 {
1697 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1698 	struct super_block *sb = inode->i_sb;
1699 	struct ext4_inode_info *ei = EXT4_I(inode);
1700 
1701 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1702 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1703 			ext4_count_free_clusters(sb)));
1704 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1705 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1706 	       (long long) EXT4_C2B(EXT4_SB(sb),
1707 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1708 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1709 	       (long long) EXT4_C2B(EXT4_SB(sb),
1710 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1711 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1712 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1713 		 ei->i_reserved_data_blocks);
1714 	return;
1715 }
1716 
1717 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1718 {
1719 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1720 }
1721 
1722 /*
1723  * This function is grabs code from the very beginning of
1724  * ext4_map_blocks, but assumes that the caller is from delayed write
1725  * time. This function looks up the requested blocks and sets the
1726  * buffer delay bit under the protection of i_data_sem.
1727  */
1728 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1729 			      struct ext4_map_blocks *map,
1730 			      struct buffer_head *bh)
1731 {
1732 	struct extent_status es;
1733 	int retval;
1734 	sector_t invalid_block = ~((sector_t) 0xffff);
1735 #ifdef ES_AGGRESSIVE_TEST
1736 	struct ext4_map_blocks orig_map;
1737 
1738 	memcpy(&orig_map, map, sizeof(*map));
1739 #endif
1740 
1741 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1742 		invalid_block = ~0;
1743 
1744 	map->m_flags = 0;
1745 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1746 		  "logical block %lu\n", inode->i_ino, map->m_len,
1747 		  (unsigned long) map->m_lblk);
1748 
1749 	/* Lookup extent status tree firstly */
1750 	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1751 		if (ext4_es_is_hole(&es)) {
1752 			retval = 0;
1753 			down_read(&EXT4_I(inode)->i_data_sem);
1754 			goto add_delayed;
1755 		}
1756 
1757 		/*
1758 		 * Delayed extent could be allocated by fallocate.
1759 		 * So we need to check it.
1760 		 */
1761 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1762 			map_bh(bh, inode->i_sb, invalid_block);
1763 			set_buffer_new(bh);
1764 			set_buffer_delay(bh);
1765 			return 0;
1766 		}
1767 
1768 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1769 		retval = es.es_len - (iblock - es.es_lblk);
1770 		if (retval > map->m_len)
1771 			retval = map->m_len;
1772 		map->m_len = retval;
1773 		if (ext4_es_is_written(&es))
1774 			map->m_flags |= EXT4_MAP_MAPPED;
1775 		else if (ext4_es_is_unwritten(&es))
1776 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1777 		else
1778 			BUG_ON(1);
1779 
1780 #ifdef ES_AGGRESSIVE_TEST
1781 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1782 #endif
1783 		return retval;
1784 	}
1785 
1786 	/*
1787 	 * Try to see if we can get the block without requesting a new
1788 	 * file system block.
1789 	 */
1790 	down_read(&EXT4_I(inode)->i_data_sem);
1791 	if (ext4_has_inline_data(inode))
1792 		retval = 0;
1793 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1794 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1795 	else
1796 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1797 
1798 add_delayed:
1799 	if (retval == 0) {
1800 		int ret;
1801 		/*
1802 		 * XXX: __block_prepare_write() unmaps passed block,
1803 		 * is it OK?
1804 		 */
1805 		/*
1806 		 * If the block was allocated from previously allocated cluster,
1807 		 * then we don't need to reserve it again. However we still need
1808 		 * to reserve metadata for every block we're going to write.
1809 		 */
1810 		if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1811 		    !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1812 			ret = ext4_da_reserve_space(inode);
1813 			if (ret) {
1814 				/* not enough space to reserve */
1815 				retval = ret;
1816 				goto out_unlock;
1817 			}
1818 		}
1819 
1820 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1821 					    ~0, EXTENT_STATUS_DELAYED);
1822 		if (ret) {
1823 			retval = ret;
1824 			goto out_unlock;
1825 		}
1826 
1827 		map_bh(bh, inode->i_sb, invalid_block);
1828 		set_buffer_new(bh);
1829 		set_buffer_delay(bh);
1830 	} else if (retval > 0) {
1831 		int ret;
1832 		unsigned int status;
1833 
1834 		if (unlikely(retval != map->m_len)) {
1835 			ext4_warning(inode->i_sb,
1836 				     "ES len assertion failed for inode "
1837 				     "%lu: retval %d != map->m_len %d",
1838 				     inode->i_ino, retval, map->m_len);
1839 			WARN_ON(1);
1840 		}
1841 
1842 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1843 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1844 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1845 					    map->m_pblk, status);
1846 		if (ret != 0)
1847 			retval = ret;
1848 	}
1849 
1850 out_unlock:
1851 	up_read((&EXT4_I(inode)->i_data_sem));
1852 
1853 	return retval;
1854 }
1855 
1856 /*
1857  * This is a special get_block_t callback which is used by
1858  * ext4_da_write_begin().  It will either return mapped block or
1859  * reserve space for a single block.
1860  *
1861  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1862  * We also have b_blocknr = -1 and b_bdev initialized properly
1863  *
1864  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1865  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1866  * initialized properly.
1867  */
1868 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1869 			   struct buffer_head *bh, int create)
1870 {
1871 	struct ext4_map_blocks map;
1872 	int ret = 0;
1873 
1874 	BUG_ON(create == 0);
1875 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1876 
1877 	map.m_lblk = iblock;
1878 	map.m_len = 1;
1879 
1880 	/*
1881 	 * first, we need to know whether the block is allocated already
1882 	 * preallocated blocks are unmapped but should treated
1883 	 * the same as allocated blocks.
1884 	 */
1885 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1886 	if (ret <= 0)
1887 		return ret;
1888 
1889 	map_bh(bh, inode->i_sb, map.m_pblk);
1890 	ext4_update_bh_state(bh, map.m_flags);
1891 
1892 	if (buffer_unwritten(bh)) {
1893 		/* A delayed write to unwritten bh should be marked
1894 		 * new and mapped.  Mapped ensures that we don't do
1895 		 * get_block multiple times when we write to the same
1896 		 * offset and new ensures that we do proper zero out
1897 		 * for partial write.
1898 		 */
1899 		set_buffer_new(bh);
1900 		set_buffer_mapped(bh);
1901 	}
1902 	return 0;
1903 }
1904 
1905 static int bget_one(handle_t *handle, struct buffer_head *bh)
1906 {
1907 	get_bh(bh);
1908 	return 0;
1909 }
1910 
1911 static int bput_one(handle_t *handle, struct buffer_head *bh)
1912 {
1913 	put_bh(bh);
1914 	return 0;
1915 }
1916 
1917 static int __ext4_journalled_writepage(struct page *page,
1918 				       unsigned int len)
1919 {
1920 	struct address_space *mapping = page->mapping;
1921 	struct inode *inode = mapping->host;
1922 	struct buffer_head *page_bufs = NULL;
1923 	handle_t *handle = NULL;
1924 	int ret = 0, err = 0;
1925 	int inline_data = ext4_has_inline_data(inode);
1926 	struct buffer_head *inode_bh = NULL;
1927 
1928 	ClearPageChecked(page);
1929 
1930 	if (inline_data) {
1931 		BUG_ON(page->index != 0);
1932 		BUG_ON(len > ext4_get_max_inline_size(inode));
1933 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1934 		if (inode_bh == NULL)
1935 			goto out;
1936 	} else {
1937 		page_bufs = page_buffers(page);
1938 		if (!page_bufs) {
1939 			BUG();
1940 			goto out;
1941 		}
1942 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1943 				       NULL, bget_one);
1944 	}
1945 	/*
1946 	 * We need to release the page lock before we start the
1947 	 * journal, so grab a reference so the page won't disappear
1948 	 * out from under us.
1949 	 */
1950 	get_page(page);
1951 	unlock_page(page);
1952 
1953 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1954 				    ext4_writepage_trans_blocks(inode));
1955 	if (IS_ERR(handle)) {
1956 		ret = PTR_ERR(handle);
1957 		put_page(page);
1958 		goto out_no_pagelock;
1959 	}
1960 	BUG_ON(!ext4_handle_valid(handle));
1961 
1962 	lock_page(page);
1963 	put_page(page);
1964 	if (page->mapping != mapping) {
1965 		/* The page got truncated from under us */
1966 		ext4_journal_stop(handle);
1967 		ret = 0;
1968 		goto out;
1969 	}
1970 
1971 	if (inline_data) {
1972 		BUFFER_TRACE(inode_bh, "get write access");
1973 		ret = ext4_journal_get_write_access(handle, inode_bh);
1974 
1975 		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1976 
1977 	} else {
1978 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1979 					     do_journal_get_write_access);
1980 
1981 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1982 					     write_end_fn);
1983 	}
1984 	if (ret == 0)
1985 		ret = err;
1986 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1987 	err = ext4_journal_stop(handle);
1988 	if (!ret)
1989 		ret = err;
1990 
1991 	if (!ext4_has_inline_data(inode))
1992 		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1993 				       NULL, bput_one);
1994 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1995 out:
1996 	unlock_page(page);
1997 out_no_pagelock:
1998 	brelse(inode_bh);
1999 	return ret;
2000 }
2001 
2002 /*
2003  * Note that we don't need to start a transaction unless we're journaling data
2004  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2005  * need to file the inode to the transaction's list in ordered mode because if
2006  * we are writing back data added by write(), the inode is already there and if
2007  * we are writing back data modified via mmap(), no one guarantees in which
2008  * transaction the data will hit the disk. In case we are journaling data, we
2009  * cannot start transaction directly because transaction start ranks above page
2010  * lock so we have to do some magic.
2011  *
2012  * This function can get called via...
2013  *   - ext4_writepages after taking page lock (have journal handle)
2014  *   - journal_submit_inode_data_buffers (no journal handle)
2015  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2016  *   - grab_page_cache when doing write_begin (have journal handle)
2017  *
2018  * We don't do any block allocation in this function. If we have page with
2019  * multiple blocks we need to write those buffer_heads that are mapped. This
2020  * is important for mmaped based write. So if we do with blocksize 1K
2021  * truncate(f, 1024);
2022  * a = mmap(f, 0, 4096);
2023  * a[0] = 'a';
2024  * truncate(f, 4096);
2025  * we have in the page first buffer_head mapped via page_mkwrite call back
2026  * but other buffer_heads would be unmapped but dirty (dirty done via the
2027  * do_wp_page). So writepage should write the first block. If we modify
2028  * the mmap area beyond 1024 we will again get a page_fault and the
2029  * page_mkwrite callback will do the block allocation and mark the
2030  * buffer_heads mapped.
2031  *
2032  * We redirty the page if we have any buffer_heads that is either delay or
2033  * unwritten in the page.
2034  *
2035  * We can get recursively called as show below.
2036  *
2037  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2038  *		ext4_writepage()
2039  *
2040  * But since we don't do any block allocation we should not deadlock.
2041  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2042  */
2043 static int ext4_writepage(struct page *page,
2044 			  struct writeback_control *wbc)
2045 {
2046 	int ret = 0;
2047 	loff_t size;
2048 	unsigned int len;
2049 	struct buffer_head *page_bufs = NULL;
2050 	struct inode *inode = page->mapping->host;
2051 	struct ext4_io_submit io_submit;
2052 	bool keep_towrite = false;
2053 
2054 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2055 		ext4_invalidatepage(page, 0, PAGE_SIZE);
2056 		unlock_page(page);
2057 		return -EIO;
2058 	}
2059 
2060 	trace_ext4_writepage(page);
2061 	size = i_size_read(inode);
2062 	if (page->index == size >> PAGE_SHIFT)
2063 		len = size & ~PAGE_MASK;
2064 	else
2065 		len = PAGE_SIZE;
2066 
2067 	page_bufs = page_buffers(page);
2068 	/*
2069 	 * We cannot do block allocation or other extent handling in this
2070 	 * function. If there are buffers needing that, we have to redirty
2071 	 * the page. But we may reach here when we do a journal commit via
2072 	 * journal_submit_inode_data_buffers() and in that case we must write
2073 	 * allocated buffers to achieve data=ordered mode guarantees.
2074 	 *
2075 	 * Also, if there is only one buffer per page (the fs block
2076 	 * size == the page size), if one buffer needs block
2077 	 * allocation or needs to modify the extent tree to clear the
2078 	 * unwritten flag, we know that the page can't be written at
2079 	 * all, so we might as well refuse the write immediately.
2080 	 * Unfortunately if the block size != page size, we can't as
2081 	 * easily detect this case using ext4_walk_page_buffers(), but
2082 	 * for the extremely common case, this is an optimization that
2083 	 * skips a useless round trip through ext4_bio_write_page().
2084 	 */
2085 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2086 				   ext4_bh_delay_or_unwritten)) {
2087 		redirty_page_for_writepage(wbc, page);
2088 		if ((current->flags & PF_MEMALLOC) ||
2089 		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2090 			/*
2091 			 * For memory cleaning there's no point in writing only
2092 			 * some buffers. So just bail out. Warn if we came here
2093 			 * from direct reclaim.
2094 			 */
2095 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2096 							== PF_MEMALLOC);
2097 			unlock_page(page);
2098 			return 0;
2099 		}
2100 		keep_towrite = true;
2101 	}
2102 
2103 	if (PageChecked(page) && ext4_should_journal_data(inode))
2104 		/*
2105 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2106 		 * doesn't seem much point in redirtying the page here.
2107 		 */
2108 		return __ext4_journalled_writepage(page, len);
2109 
2110 	ext4_io_submit_init(&io_submit, wbc);
2111 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2112 	if (!io_submit.io_end) {
2113 		redirty_page_for_writepage(wbc, page);
2114 		unlock_page(page);
2115 		return -ENOMEM;
2116 	}
2117 	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2118 	ext4_io_submit(&io_submit);
2119 	/* Drop io_end reference we got from init */
2120 	ext4_put_io_end_defer(io_submit.io_end);
2121 	return ret;
2122 }
2123 
2124 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2125 {
2126 	int len;
2127 	loff_t size = i_size_read(mpd->inode);
2128 	int err;
2129 
2130 	BUG_ON(page->index != mpd->first_page);
2131 	if (page->index == size >> PAGE_SHIFT)
2132 		len = size & ~PAGE_MASK;
2133 	else
2134 		len = PAGE_SIZE;
2135 	clear_page_dirty_for_io(page);
2136 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2137 	if (!err)
2138 		mpd->wbc->nr_to_write--;
2139 	mpd->first_page++;
2140 
2141 	return err;
2142 }
2143 
2144 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2145 
2146 /*
2147  * mballoc gives us at most this number of blocks...
2148  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2149  * The rest of mballoc seems to handle chunks up to full group size.
2150  */
2151 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2152 
2153 /*
2154  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2155  *
2156  * @mpd - extent of blocks
2157  * @lblk - logical number of the block in the file
2158  * @bh - buffer head we want to add to the extent
2159  *
2160  * The function is used to collect contig. blocks in the same state. If the
2161  * buffer doesn't require mapping for writeback and we haven't started the
2162  * extent of buffers to map yet, the function returns 'true' immediately - the
2163  * caller can write the buffer right away. Otherwise the function returns true
2164  * if the block has been added to the extent, false if the block couldn't be
2165  * added.
2166  */
2167 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2168 				   struct buffer_head *bh)
2169 {
2170 	struct ext4_map_blocks *map = &mpd->map;
2171 
2172 	/* Buffer that doesn't need mapping for writeback? */
2173 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2174 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2175 		/* So far no extent to map => we write the buffer right away */
2176 		if (map->m_len == 0)
2177 			return true;
2178 		return false;
2179 	}
2180 
2181 	/* First block in the extent? */
2182 	if (map->m_len == 0) {
2183 		/* We cannot map unless handle is started... */
2184 		if (!mpd->do_map)
2185 			return false;
2186 		map->m_lblk = lblk;
2187 		map->m_len = 1;
2188 		map->m_flags = bh->b_state & BH_FLAGS;
2189 		return true;
2190 	}
2191 
2192 	/* Don't go larger than mballoc is willing to allocate */
2193 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2194 		return false;
2195 
2196 	/* Can we merge the block to our big extent? */
2197 	if (lblk == map->m_lblk + map->m_len &&
2198 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2199 		map->m_len++;
2200 		return true;
2201 	}
2202 	return false;
2203 }
2204 
2205 /*
2206  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2207  *
2208  * @mpd - extent of blocks for mapping
2209  * @head - the first buffer in the page
2210  * @bh - buffer we should start processing from
2211  * @lblk - logical number of the block in the file corresponding to @bh
2212  *
2213  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2214  * the page for IO if all buffers in this page were mapped and there's no
2215  * accumulated extent of buffers to map or add buffers in the page to the
2216  * extent of buffers to map. The function returns 1 if the caller can continue
2217  * by processing the next page, 0 if it should stop adding buffers to the
2218  * extent to map because we cannot extend it anymore. It can also return value
2219  * < 0 in case of error during IO submission.
2220  */
2221 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2222 				   struct buffer_head *head,
2223 				   struct buffer_head *bh,
2224 				   ext4_lblk_t lblk)
2225 {
2226 	struct inode *inode = mpd->inode;
2227 	int err;
2228 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2229 							>> inode->i_blkbits;
2230 
2231 	do {
2232 		BUG_ON(buffer_locked(bh));
2233 
2234 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2235 			/* Found extent to map? */
2236 			if (mpd->map.m_len)
2237 				return 0;
2238 			/* Buffer needs mapping and handle is not started? */
2239 			if (!mpd->do_map)
2240 				return 0;
2241 			/* Everything mapped so far and we hit EOF */
2242 			break;
2243 		}
2244 	} while (lblk++, (bh = bh->b_this_page) != head);
2245 	/* So far everything mapped? Submit the page for IO. */
2246 	if (mpd->map.m_len == 0) {
2247 		err = mpage_submit_page(mpd, head->b_page);
2248 		if (err < 0)
2249 			return err;
2250 	}
2251 	return lblk < blocks;
2252 }
2253 
2254 /*
2255  * mpage_map_buffers - update buffers corresponding to changed extent and
2256  *		       submit fully mapped pages for IO
2257  *
2258  * @mpd - description of extent to map, on return next extent to map
2259  *
2260  * Scan buffers corresponding to changed extent (we expect corresponding pages
2261  * to be already locked) and update buffer state according to new extent state.
2262  * We map delalloc buffers to their physical location, clear unwritten bits,
2263  * and mark buffers as uninit when we perform writes to unwritten extents
2264  * and do extent conversion after IO is finished. If the last page is not fully
2265  * mapped, we update @map to the next extent in the last page that needs
2266  * mapping. Otherwise we submit the page for IO.
2267  */
2268 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2269 {
2270 	struct pagevec pvec;
2271 	int nr_pages, i;
2272 	struct inode *inode = mpd->inode;
2273 	struct buffer_head *head, *bh;
2274 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2275 	pgoff_t start, end;
2276 	ext4_lblk_t lblk;
2277 	sector_t pblock;
2278 	int err;
2279 
2280 	start = mpd->map.m_lblk >> bpp_bits;
2281 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2282 	lblk = start << bpp_bits;
2283 	pblock = mpd->map.m_pblk;
2284 
2285 	pagevec_init(&pvec, 0);
2286 	while (start <= end) {
2287 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2288 					  PAGEVEC_SIZE);
2289 		if (nr_pages == 0)
2290 			break;
2291 		for (i = 0; i < nr_pages; i++) {
2292 			struct page *page = pvec.pages[i];
2293 
2294 			if (page->index > end)
2295 				break;
2296 			/* Up to 'end' pages must be contiguous */
2297 			BUG_ON(page->index != start);
2298 			bh = head = page_buffers(page);
2299 			do {
2300 				if (lblk < mpd->map.m_lblk)
2301 					continue;
2302 				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2303 					/*
2304 					 * Buffer after end of mapped extent.
2305 					 * Find next buffer in the page to map.
2306 					 */
2307 					mpd->map.m_len = 0;
2308 					mpd->map.m_flags = 0;
2309 					/*
2310 					 * FIXME: If dioread_nolock supports
2311 					 * blocksize < pagesize, we need to make
2312 					 * sure we add size mapped so far to
2313 					 * io_end->size as the following call
2314 					 * can submit the page for IO.
2315 					 */
2316 					err = mpage_process_page_bufs(mpd, head,
2317 								      bh, lblk);
2318 					pagevec_release(&pvec);
2319 					if (err > 0)
2320 						err = 0;
2321 					return err;
2322 				}
2323 				if (buffer_delay(bh)) {
2324 					clear_buffer_delay(bh);
2325 					bh->b_blocknr = pblock++;
2326 				}
2327 				clear_buffer_unwritten(bh);
2328 			} while (lblk++, (bh = bh->b_this_page) != head);
2329 
2330 			/*
2331 			 * FIXME: This is going to break if dioread_nolock
2332 			 * supports blocksize < pagesize as we will try to
2333 			 * convert potentially unmapped parts of inode.
2334 			 */
2335 			mpd->io_submit.io_end->size += PAGE_SIZE;
2336 			/* Page fully mapped - let IO run! */
2337 			err = mpage_submit_page(mpd, page);
2338 			if (err < 0) {
2339 				pagevec_release(&pvec);
2340 				return err;
2341 			}
2342 			start++;
2343 		}
2344 		pagevec_release(&pvec);
2345 	}
2346 	/* Extent fully mapped and matches with page boundary. We are done. */
2347 	mpd->map.m_len = 0;
2348 	mpd->map.m_flags = 0;
2349 	return 0;
2350 }
2351 
2352 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2353 {
2354 	struct inode *inode = mpd->inode;
2355 	struct ext4_map_blocks *map = &mpd->map;
2356 	int get_blocks_flags;
2357 	int err, dioread_nolock;
2358 
2359 	trace_ext4_da_write_pages_extent(inode, map);
2360 	/*
2361 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2362 	 * to convert an unwritten extent to be initialized (in the case
2363 	 * where we have written into one or more preallocated blocks).  It is
2364 	 * possible that we're going to need more metadata blocks than
2365 	 * previously reserved. However we must not fail because we're in
2366 	 * writeback and there is nothing we can do about it so it might result
2367 	 * in data loss.  So use reserved blocks to allocate metadata if
2368 	 * possible.
2369 	 *
2370 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2371 	 * the blocks in question are delalloc blocks.  This indicates
2372 	 * that the blocks and quotas has already been checked when
2373 	 * the data was copied into the page cache.
2374 	 */
2375 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2376 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2377 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2378 	dioread_nolock = ext4_should_dioread_nolock(inode);
2379 	if (dioread_nolock)
2380 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2381 	if (map->m_flags & (1 << BH_Delay))
2382 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2383 
2384 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2385 	if (err < 0)
2386 		return err;
2387 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2388 		if (!mpd->io_submit.io_end->handle &&
2389 		    ext4_handle_valid(handle)) {
2390 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2391 			handle->h_rsv_handle = NULL;
2392 		}
2393 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2394 	}
2395 
2396 	BUG_ON(map->m_len == 0);
2397 	if (map->m_flags & EXT4_MAP_NEW) {
2398 		clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2399 				   map->m_len);
2400 	}
2401 	return 0;
2402 }
2403 
2404 /*
2405  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2406  *				 mpd->len and submit pages underlying it for IO
2407  *
2408  * @handle - handle for journal operations
2409  * @mpd - extent to map
2410  * @give_up_on_write - we set this to true iff there is a fatal error and there
2411  *                     is no hope of writing the data. The caller should discard
2412  *                     dirty pages to avoid infinite loops.
2413  *
2414  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2415  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2416  * them to initialized or split the described range from larger unwritten
2417  * extent. Note that we need not map all the described range since allocation
2418  * can return less blocks or the range is covered by more unwritten extents. We
2419  * cannot map more because we are limited by reserved transaction credits. On
2420  * the other hand we always make sure that the last touched page is fully
2421  * mapped so that it can be written out (and thus forward progress is
2422  * guaranteed). After mapping we submit all mapped pages for IO.
2423  */
2424 static int mpage_map_and_submit_extent(handle_t *handle,
2425 				       struct mpage_da_data *mpd,
2426 				       bool *give_up_on_write)
2427 {
2428 	struct inode *inode = mpd->inode;
2429 	struct ext4_map_blocks *map = &mpd->map;
2430 	int err;
2431 	loff_t disksize;
2432 	int progress = 0;
2433 
2434 	mpd->io_submit.io_end->offset =
2435 				((loff_t)map->m_lblk) << inode->i_blkbits;
2436 	do {
2437 		err = mpage_map_one_extent(handle, mpd);
2438 		if (err < 0) {
2439 			struct super_block *sb = inode->i_sb;
2440 
2441 			if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2442 			    EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2443 				goto invalidate_dirty_pages;
2444 			/*
2445 			 * Let the uper layers retry transient errors.
2446 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2447 			 * is non-zero, a commit should free up blocks.
2448 			 */
2449 			if ((err == -ENOMEM) ||
2450 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2451 				if (progress)
2452 					goto update_disksize;
2453 				return err;
2454 			}
2455 			ext4_msg(sb, KERN_CRIT,
2456 				 "Delayed block allocation failed for "
2457 				 "inode %lu at logical offset %llu with"
2458 				 " max blocks %u with error %d",
2459 				 inode->i_ino,
2460 				 (unsigned long long)map->m_lblk,
2461 				 (unsigned)map->m_len, -err);
2462 			ext4_msg(sb, KERN_CRIT,
2463 				 "This should not happen!! Data will "
2464 				 "be lost\n");
2465 			if (err == -ENOSPC)
2466 				ext4_print_free_blocks(inode);
2467 		invalidate_dirty_pages:
2468 			*give_up_on_write = true;
2469 			return err;
2470 		}
2471 		progress = 1;
2472 		/*
2473 		 * Update buffer state, submit mapped pages, and get us new
2474 		 * extent to map
2475 		 */
2476 		err = mpage_map_and_submit_buffers(mpd);
2477 		if (err < 0)
2478 			goto update_disksize;
2479 	} while (map->m_len);
2480 
2481 update_disksize:
2482 	/*
2483 	 * Update on-disk size after IO is submitted.  Races with
2484 	 * truncate are avoided by checking i_size under i_data_sem.
2485 	 */
2486 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2487 	if (disksize > EXT4_I(inode)->i_disksize) {
2488 		int err2;
2489 		loff_t i_size;
2490 
2491 		down_write(&EXT4_I(inode)->i_data_sem);
2492 		i_size = i_size_read(inode);
2493 		if (disksize > i_size)
2494 			disksize = i_size;
2495 		if (disksize > EXT4_I(inode)->i_disksize)
2496 			EXT4_I(inode)->i_disksize = disksize;
2497 		up_write(&EXT4_I(inode)->i_data_sem);
2498 		err2 = ext4_mark_inode_dirty(handle, inode);
2499 		if (err2)
2500 			ext4_error(inode->i_sb,
2501 				   "Failed to mark inode %lu dirty",
2502 				   inode->i_ino);
2503 		if (!err)
2504 			err = err2;
2505 	}
2506 	return err;
2507 }
2508 
2509 /*
2510  * Calculate the total number of credits to reserve for one writepages
2511  * iteration. This is called from ext4_writepages(). We map an extent of
2512  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2513  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2514  * bpp - 1 blocks in bpp different extents.
2515  */
2516 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2517 {
2518 	int bpp = ext4_journal_blocks_per_page(inode);
2519 
2520 	return ext4_meta_trans_blocks(inode,
2521 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2522 }
2523 
2524 /*
2525  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2526  * 				 and underlying extent to map
2527  *
2528  * @mpd - where to look for pages
2529  *
2530  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2531  * IO immediately. When we find a page which isn't mapped we start accumulating
2532  * extent of buffers underlying these pages that needs mapping (formed by
2533  * either delayed or unwritten buffers). We also lock the pages containing
2534  * these buffers. The extent found is returned in @mpd structure (starting at
2535  * mpd->lblk with length mpd->len blocks).
2536  *
2537  * Note that this function can attach bios to one io_end structure which are
2538  * neither logically nor physically contiguous. Although it may seem as an
2539  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2540  * case as we need to track IO to all buffers underlying a page in one io_end.
2541  */
2542 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2543 {
2544 	struct address_space *mapping = mpd->inode->i_mapping;
2545 	struct pagevec pvec;
2546 	unsigned int nr_pages;
2547 	long left = mpd->wbc->nr_to_write;
2548 	pgoff_t index = mpd->first_page;
2549 	pgoff_t end = mpd->last_page;
2550 	int tag;
2551 	int i, err = 0;
2552 	int blkbits = mpd->inode->i_blkbits;
2553 	ext4_lblk_t lblk;
2554 	struct buffer_head *head;
2555 
2556 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2557 		tag = PAGECACHE_TAG_TOWRITE;
2558 	else
2559 		tag = PAGECACHE_TAG_DIRTY;
2560 
2561 	pagevec_init(&pvec, 0);
2562 	mpd->map.m_len = 0;
2563 	mpd->next_page = index;
2564 	while (index <= end) {
2565 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2566 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2567 		if (nr_pages == 0)
2568 			goto out;
2569 
2570 		for (i = 0; i < nr_pages; i++) {
2571 			struct page *page = pvec.pages[i];
2572 
2573 			/*
2574 			 * At this point, the page may be truncated or
2575 			 * invalidated (changing page->mapping to NULL), or
2576 			 * even swizzled back from swapper_space to tmpfs file
2577 			 * mapping. However, page->index will not change
2578 			 * because we have a reference on the page.
2579 			 */
2580 			if (page->index > end)
2581 				goto out;
2582 
2583 			/*
2584 			 * Accumulated enough dirty pages? This doesn't apply
2585 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2586 			 * keep going because someone may be concurrently
2587 			 * dirtying pages, and we might have synced a lot of
2588 			 * newly appeared dirty pages, but have not synced all
2589 			 * of the old dirty pages.
2590 			 */
2591 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2592 				goto out;
2593 
2594 			/* If we can't merge this page, we are done. */
2595 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2596 				goto out;
2597 
2598 			lock_page(page);
2599 			/*
2600 			 * If the page is no longer dirty, or its mapping no
2601 			 * longer corresponds to inode we are writing (which
2602 			 * means it has been truncated or invalidated), or the
2603 			 * page is already under writeback and we are not doing
2604 			 * a data integrity writeback, skip the page
2605 			 */
2606 			if (!PageDirty(page) ||
2607 			    (PageWriteback(page) &&
2608 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2609 			    unlikely(page->mapping != mapping)) {
2610 				unlock_page(page);
2611 				continue;
2612 			}
2613 
2614 			wait_on_page_writeback(page);
2615 			BUG_ON(PageWriteback(page));
2616 
2617 			if (mpd->map.m_len == 0)
2618 				mpd->first_page = page->index;
2619 			mpd->next_page = page->index + 1;
2620 			/* Add all dirty buffers to mpd */
2621 			lblk = ((ext4_lblk_t)page->index) <<
2622 				(PAGE_SHIFT - blkbits);
2623 			head = page_buffers(page);
2624 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2625 			if (err <= 0)
2626 				goto out;
2627 			err = 0;
2628 			left--;
2629 		}
2630 		pagevec_release(&pvec);
2631 		cond_resched();
2632 	}
2633 	return 0;
2634 out:
2635 	pagevec_release(&pvec);
2636 	return err;
2637 }
2638 
2639 static int __writepage(struct page *page, struct writeback_control *wbc,
2640 		       void *data)
2641 {
2642 	struct address_space *mapping = data;
2643 	int ret = ext4_writepage(page, wbc);
2644 	mapping_set_error(mapping, ret);
2645 	return ret;
2646 }
2647 
2648 static int ext4_writepages(struct address_space *mapping,
2649 			   struct writeback_control *wbc)
2650 {
2651 	pgoff_t	writeback_index = 0;
2652 	long nr_to_write = wbc->nr_to_write;
2653 	int range_whole = 0;
2654 	int cycled = 1;
2655 	handle_t *handle = NULL;
2656 	struct mpage_da_data mpd;
2657 	struct inode *inode = mapping->host;
2658 	int needed_blocks, rsv_blocks = 0, ret = 0;
2659 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2660 	bool done;
2661 	struct blk_plug plug;
2662 	bool give_up_on_write = false;
2663 
2664 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2665 		return -EIO;
2666 
2667 	percpu_down_read(&sbi->s_journal_flag_rwsem);
2668 	trace_ext4_writepages(inode, wbc);
2669 
2670 	if (dax_mapping(mapping)) {
2671 		ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2672 						  wbc);
2673 		goto out_writepages;
2674 	}
2675 
2676 	/*
2677 	 * No pages to write? This is mainly a kludge to avoid starting
2678 	 * a transaction for special inodes like journal inode on last iput()
2679 	 * because that could violate lock ordering on umount
2680 	 */
2681 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2682 		goto out_writepages;
2683 
2684 	if (ext4_should_journal_data(inode)) {
2685 		struct blk_plug plug;
2686 
2687 		blk_start_plug(&plug);
2688 		ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2689 		blk_finish_plug(&plug);
2690 		goto out_writepages;
2691 	}
2692 
2693 	/*
2694 	 * If the filesystem has aborted, it is read-only, so return
2695 	 * right away instead of dumping stack traces later on that
2696 	 * will obscure the real source of the problem.  We test
2697 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2698 	 * the latter could be true if the filesystem is mounted
2699 	 * read-only, and in that case, ext4_writepages should
2700 	 * *never* be called, so if that ever happens, we would want
2701 	 * the stack trace.
2702 	 */
2703 	if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2704 		     sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2705 		ret = -EROFS;
2706 		goto out_writepages;
2707 	}
2708 
2709 	if (ext4_should_dioread_nolock(inode)) {
2710 		/*
2711 		 * We may need to convert up to one extent per block in
2712 		 * the page and we may dirty the inode.
2713 		 */
2714 		rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2715 	}
2716 
2717 	/*
2718 	 * If we have inline data and arrive here, it means that
2719 	 * we will soon create the block for the 1st page, so
2720 	 * we'd better clear the inline data here.
2721 	 */
2722 	if (ext4_has_inline_data(inode)) {
2723 		/* Just inode will be modified... */
2724 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2725 		if (IS_ERR(handle)) {
2726 			ret = PTR_ERR(handle);
2727 			goto out_writepages;
2728 		}
2729 		BUG_ON(ext4_test_inode_state(inode,
2730 				EXT4_STATE_MAY_INLINE_DATA));
2731 		ext4_destroy_inline_data(handle, inode);
2732 		ext4_journal_stop(handle);
2733 	}
2734 
2735 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2736 		range_whole = 1;
2737 
2738 	if (wbc->range_cyclic) {
2739 		writeback_index = mapping->writeback_index;
2740 		if (writeback_index)
2741 			cycled = 0;
2742 		mpd.first_page = writeback_index;
2743 		mpd.last_page = -1;
2744 	} else {
2745 		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2746 		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2747 	}
2748 
2749 	mpd.inode = inode;
2750 	mpd.wbc = wbc;
2751 	ext4_io_submit_init(&mpd.io_submit, wbc);
2752 retry:
2753 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2754 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2755 	done = false;
2756 	blk_start_plug(&plug);
2757 
2758 	/*
2759 	 * First writeback pages that don't need mapping - we can avoid
2760 	 * starting a transaction unnecessarily and also avoid being blocked
2761 	 * in the block layer on device congestion while having transaction
2762 	 * started.
2763 	 */
2764 	mpd.do_map = 0;
2765 	mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2766 	if (!mpd.io_submit.io_end) {
2767 		ret = -ENOMEM;
2768 		goto unplug;
2769 	}
2770 	ret = mpage_prepare_extent_to_map(&mpd);
2771 	/* Submit prepared bio */
2772 	ext4_io_submit(&mpd.io_submit);
2773 	ext4_put_io_end_defer(mpd.io_submit.io_end);
2774 	mpd.io_submit.io_end = NULL;
2775 	/* Unlock pages we didn't use */
2776 	mpage_release_unused_pages(&mpd, false);
2777 	if (ret < 0)
2778 		goto unplug;
2779 
2780 	while (!done && mpd.first_page <= mpd.last_page) {
2781 		/* For each extent of pages we use new io_end */
2782 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2783 		if (!mpd.io_submit.io_end) {
2784 			ret = -ENOMEM;
2785 			break;
2786 		}
2787 
2788 		/*
2789 		 * We have two constraints: We find one extent to map and we
2790 		 * must always write out whole page (makes a difference when
2791 		 * blocksize < pagesize) so that we don't block on IO when we
2792 		 * try to write out the rest of the page. Journalled mode is
2793 		 * not supported by delalloc.
2794 		 */
2795 		BUG_ON(ext4_should_journal_data(inode));
2796 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2797 
2798 		/* start a new transaction */
2799 		handle = ext4_journal_start_with_reserve(inode,
2800 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2801 		if (IS_ERR(handle)) {
2802 			ret = PTR_ERR(handle);
2803 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2804 			       "%ld pages, ino %lu; err %d", __func__,
2805 				wbc->nr_to_write, inode->i_ino, ret);
2806 			/* Release allocated io_end */
2807 			ext4_put_io_end(mpd.io_submit.io_end);
2808 			mpd.io_submit.io_end = NULL;
2809 			break;
2810 		}
2811 		mpd.do_map = 1;
2812 
2813 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2814 		ret = mpage_prepare_extent_to_map(&mpd);
2815 		if (!ret) {
2816 			if (mpd.map.m_len)
2817 				ret = mpage_map_and_submit_extent(handle, &mpd,
2818 					&give_up_on_write);
2819 			else {
2820 				/*
2821 				 * We scanned the whole range (or exhausted
2822 				 * nr_to_write), submitted what was mapped and
2823 				 * didn't find anything needing mapping. We are
2824 				 * done.
2825 				 */
2826 				done = true;
2827 			}
2828 		}
2829 		/*
2830 		 * Caution: If the handle is synchronous,
2831 		 * ext4_journal_stop() can wait for transaction commit
2832 		 * to finish which may depend on writeback of pages to
2833 		 * complete or on page lock to be released.  In that
2834 		 * case, we have to wait until after after we have
2835 		 * submitted all the IO, released page locks we hold,
2836 		 * and dropped io_end reference (for extent conversion
2837 		 * to be able to complete) before stopping the handle.
2838 		 */
2839 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2840 			ext4_journal_stop(handle);
2841 			handle = NULL;
2842 			mpd.do_map = 0;
2843 		}
2844 		/* Submit prepared bio */
2845 		ext4_io_submit(&mpd.io_submit);
2846 		/* Unlock pages we didn't use */
2847 		mpage_release_unused_pages(&mpd, give_up_on_write);
2848 		/*
2849 		 * Drop our io_end reference we got from init. We have
2850 		 * to be careful and use deferred io_end finishing if
2851 		 * we are still holding the transaction as we can
2852 		 * release the last reference to io_end which may end
2853 		 * up doing unwritten extent conversion.
2854 		 */
2855 		if (handle) {
2856 			ext4_put_io_end_defer(mpd.io_submit.io_end);
2857 			ext4_journal_stop(handle);
2858 		} else
2859 			ext4_put_io_end(mpd.io_submit.io_end);
2860 		mpd.io_submit.io_end = NULL;
2861 
2862 		if (ret == -ENOSPC && sbi->s_journal) {
2863 			/*
2864 			 * Commit the transaction which would
2865 			 * free blocks released in the transaction
2866 			 * and try again
2867 			 */
2868 			jbd2_journal_force_commit_nested(sbi->s_journal);
2869 			ret = 0;
2870 			continue;
2871 		}
2872 		/* Fatal error - ENOMEM, EIO... */
2873 		if (ret)
2874 			break;
2875 	}
2876 unplug:
2877 	blk_finish_plug(&plug);
2878 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2879 		cycled = 1;
2880 		mpd.last_page = writeback_index - 1;
2881 		mpd.first_page = 0;
2882 		goto retry;
2883 	}
2884 
2885 	/* Update index */
2886 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2887 		/*
2888 		 * Set the writeback_index so that range_cyclic
2889 		 * mode will write it back later
2890 		 */
2891 		mapping->writeback_index = mpd.first_page;
2892 
2893 out_writepages:
2894 	trace_ext4_writepages_result(inode, wbc, ret,
2895 				     nr_to_write - wbc->nr_to_write);
2896 	percpu_up_read(&sbi->s_journal_flag_rwsem);
2897 	return ret;
2898 }
2899 
2900 static int ext4_nonda_switch(struct super_block *sb)
2901 {
2902 	s64 free_clusters, dirty_clusters;
2903 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2904 
2905 	/*
2906 	 * switch to non delalloc mode if we are running low
2907 	 * on free block. The free block accounting via percpu
2908 	 * counters can get slightly wrong with percpu_counter_batch getting
2909 	 * accumulated on each CPU without updating global counters
2910 	 * Delalloc need an accurate free block accounting. So switch
2911 	 * to non delalloc when we are near to error range.
2912 	 */
2913 	free_clusters =
2914 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2915 	dirty_clusters =
2916 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2917 	/*
2918 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2919 	 */
2920 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2921 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2922 
2923 	if (2 * free_clusters < 3 * dirty_clusters ||
2924 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2925 		/*
2926 		 * free block count is less than 150% of dirty blocks
2927 		 * or free blocks is less than watermark
2928 		 */
2929 		return 1;
2930 	}
2931 	return 0;
2932 }
2933 
2934 /* We always reserve for an inode update; the superblock could be there too */
2935 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2936 {
2937 	if (likely(ext4_has_feature_large_file(inode->i_sb)))
2938 		return 1;
2939 
2940 	if (pos + len <= 0x7fffffffULL)
2941 		return 1;
2942 
2943 	/* We might need to update the superblock to set LARGE_FILE */
2944 	return 2;
2945 }
2946 
2947 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2948 			       loff_t pos, unsigned len, unsigned flags,
2949 			       struct page **pagep, void **fsdata)
2950 {
2951 	int ret, retries = 0;
2952 	struct page *page;
2953 	pgoff_t index;
2954 	struct inode *inode = mapping->host;
2955 	handle_t *handle;
2956 
2957 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2958 		return -EIO;
2959 
2960 	index = pos >> PAGE_SHIFT;
2961 
2962 	if (ext4_nonda_switch(inode->i_sb) ||
2963 	    S_ISLNK(inode->i_mode)) {
2964 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2965 		return ext4_write_begin(file, mapping, pos,
2966 					len, flags, pagep, fsdata);
2967 	}
2968 	*fsdata = (void *)0;
2969 	trace_ext4_da_write_begin(inode, pos, len, flags);
2970 
2971 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2972 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2973 						      pos, len, flags,
2974 						      pagep, fsdata);
2975 		if (ret < 0)
2976 			return ret;
2977 		if (ret == 1)
2978 			return 0;
2979 	}
2980 
2981 	/*
2982 	 * grab_cache_page_write_begin() can take a long time if the
2983 	 * system is thrashing due to memory pressure, or if the page
2984 	 * is being written back.  So grab it first before we start
2985 	 * the transaction handle.  This also allows us to allocate
2986 	 * the page (if needed) without using GFP_NOFS.
2987 	 */
2988 retry_grab:
2989 	page = grab_cache_page_write_begin(mapping, index, flags);
2990 	if (!page)
2991 		return -ENOMEM;
2992 	unlock_page(page);
2993 
2994 	/*
2995 	 * With delayed allocation, we don't log the i_disksize update
2996 	 * if there is delayed block allocation. But we still need
2997 	 * to journalling the i_disksize update if writes to the end
2998 	 * of file which has an already mapped buffer.
2999 	 */
3000 retry_journal:
3001 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3002 				ext4_da_write_credits(inode, pos, len));
3003 	if (IS_ERR(handle)) {
3004 		put_page(page);
3005 		return PTR_ERR(handle);
3006 	}
3007 
3008 	lock_page(page);
3009 	if (page->mapping != mapping) {
3010 		/* The page got truncated from under us */
3011 		unlock_page(page);
3012 		put_page(page);
3013 		ext4_journal_stop(handle);
3014 		goto retry_grab;
3015 	}
3016 	/* In case writeback began while the page was unlocked */
3017 	wait_for_stable_page(page);
3018 
3019 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3020 	ret = ext4_block_write_begin(page, pos, len,
3021 				     ext4_da_get_block_prep);
3022 #else
3023 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3024 #endif
3025 	if (ret < 0) {
3026 		unlock_page(page);
3027 		ext4_journal_stop(handle);
3028 		/*
3029 		 * block_write_begin may have instantiated a few blocks
3030 		 * outside i_size.  Trim these off again. Don't need
3031 		 * i_size_read because we hold i_mutex.
3032 		 */
3033 		if (pos + len > inode->i_size)
3034 			ext4_truncate_failed_write(inode);
3035 
3036 		if (ret == -ENOSPC &&
3037 		    ext4_should_retry_alloc(inode->i_sb, &retries))
3038 			goto retry_journal;
3039 
3040 		put_page(page);
3041 		return ret;
3042 	}
3043 
3044 	*pagep = page;
3045 	return ret;
3046 }
3047 
3048 /*
3049  * Check if we should update i_disksize
3050  * when write to the end of file but not require block allocation
3051  */
3052 static int ext4_da_should_update_i_disksize(struct page *page,
3053 					    unsigned long offset)
3054 {
3055 	struct buffer_head *bh;
3056 	struct inode *inode = page->mapping->host;
3057 	unsigned int idx;
3058 	int i;
3059 
3060 	bh = page_buffers(page);
3061 	idx = offset >> inode->i_blkbits;
3062 
3063 	for (i = 0; i < idx; i++)
3064 		bh = bh->b_this_page;
3065 
3066 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3067 		return 0;
3068 	return 1;
3069 }
3070 
3071 static int ext4_da_write_end(struct file *file,
3072 			     struct address_space *mapping,
3073 			     loff_t pos, unsigned len, unsigned copied,
3074 			     struct page *page, void *fsdata)
3075 {
3076 	struct inode *inode = mapping->host;
3077 	int ret = 0, ret2;
3078 	handle_t *handle = ext4_journal_current_handle();
3079 	loff_t new_i_size;
3080 	unsigned long start, end;
3081 	int write_mode = (int)(unsigned long)fsdata;
3082 
3083 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3084 		return ext4_write_end(file, mapping, pos,
3085 				      len, copied, page, fsdata);
3086 
3087 	trace_ext4_da_write_end(inode, pos, len, copied);
3088 	start = pos & (PAGE_SIZE - 1);
3089 	end = start + copied - 1;
3090 
3091 	/*
3092 	 * generic_write_end() will run mark_inode_dirty() if i_size
3093 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
3094 	 * into that.
3095 	 */
3096 	new_i_size = pos + copied;
3097 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3098 		if (ext4_has_inline_data(inode) ||
3099 		    ext4_da_should_update_i_disksize(page, end)) {
3100 			ext4_update_i_disksize(inode, new_i_size);
3101 			/* We need to mark inode dirty even if
3102 			 * new_i_size is less that inode->i_size
3103 			 * bu greater than i_disksize.(hint delalloc)
3104 			 */
3105 			ext4_mark_inode_dirty(handle, inode);
3106 		}
3107 	}
3108 
3109 	if (write_mode != CONVERT_INLINE_DATA &&
3110 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3111 	    ext4_has_inline_data(inode))
3112 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3113 						     page);
3114 	else
3115 		ret2 = generic_write_end(file, mapping, pos, len, copied,
3116 							page, fsdata);
3117 
3118 	copied = ret2;
3119 	if (ret2 < 0)
3120 		ret = ret2;
3121 	ret2 = ext4_journal_stop(handle);
3122 	if (!ret)
3123 		ret = ret2;
3124 
3125 	return ret ? ret : copied;
3126 }
3127 
3128 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3129 				   unsigned int length)
3130 {
3131 	/*
3132 	 * Drop reserved blocks
3133 	 */
3134 	BUG_ON(!PageLocked(page));
3135 	if (!page_has_buffers(page))
3136 		goto out;
3137 
3138 	ext4_da_page_release_reservation(page, offset, length);
3139 
3140 out:
3141 	ext4_invalidatepage(page, offset, length);
3142 
3143 	return;
3144 }
3145 
3146 /*
3147  * Force all delayed allocation blocks to be allocated for a given inode.
3148  */
3149 int ext4_alloc_da_blocks(struct inode *inode)
3150 {
3151 	trace_ext4_alloc_da_blocks(inode);
3152 
3153 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3154 		return 0;
3155 
3156 	/*
3157 	 * We do something simple for now.  The filemap_flush() will
3158 	 * also start triggering a write of the data blocks, which is
3159 	 * not strictly speaking necessary (and for users of
3160 	 * laptop_mode, not even desirable).  However, to do otherwise
3161 	 * would require replicating code paths in:
3162 	 *
3163 	 * ext4_writepages() ->
3164 	 *    write_cache_pages() ---> (via passed in callback function)
3165 	 *        __mpage_da_writepage() -->
3166 	 *           mpage_add_bh_to_extent()
3167 	 *           mpage_da_map_blocks()
3168 	 *
3169 	 * The problem is that write_cache_pages(), located in
3170 	 * mm/page-writeback.c, marks pages clean in preparation for
3171 	 * doing I/O, which is not desirable if we're not planning on
3172 	 * doing I/O at all.
3173 	 *
3174 	 * We could call write_cache_pages(), and then redirty all of
3175 	 * the pages by calling redirty_page_for_writepage() but that
3176 	 * would be ugly in the extreme.  So instead we would need to
3177 	 * replicate parts of the code in the above functions,
3178 	 * simplifying them because we wouldn't actually intend to
3179 	 * write out the pages, but rather only collect contiguous
3180 	 * logical block extents, call the multi-block allocator, and
3181 	 * then update the buffer heads with the block allocations.
3182 	 *
3183 	 * For now, though, we'll cheat by calling filemap_flush(),
3184 	 * which will map the blocks, and start the I/O, but not
3185 	 * actually wait for the I/O to complete.
3186 	 */
3187 	return filemap_flush(inode->i_mapping);
3188 }
3189 
3190 /*
3191  * bmap() is special.  It gets used by applications such as lilo and by
3192  * the swapper to find the on-disk block of a specific piece of data.
3193  *
3194  * Naturally, this is dangerous if the block concerned is still in the
3195  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3196  * filesystem and enables swap, then they may get a nasty shock when the
3197  * data getting swapped to that swapfile suddenly gets overwritten by
3198  * the original zero's written out previously to the journal and
3199  * awaiting writeback in the kernel's buffer cache.
3200  *
3201  * So, if we see any bmap calls here on a modified, data-journaled file,
3202  * take extra steps to flush any blocks which might be in the cache.
3203  */
3204 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3205 {
3206 	struct inode *inode = mapping->host;
3207 	journal_t *journal;
3208 	int err;
3209 
3210 	/*
3211 	 * We can get here for an inline file via the FIBMAP ioctl
3212 	 */
3213 	if (ext4_has_inline_data(inode))
3214 		return 0;
3215 
3216 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3217 			test_opt(inode->i_sb, DELALLOC)) {
3218 		/*
3219 		 * With delalloc we want to sync the file
3220 		 * so that we can make sure we allocate
3221 		 * blocks for file
3222 		 */
3223 		filemap_write_and_wait(mapping);
3224 	}
3225 
3226 	if (EXT4_JOURNAL(inode) &&
3227 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3228 		/*
3229 		 * This is a REALLY heavyweight approach, but the use of
3230 		 * bmap on dirty files is expected to be extremely rare:
3231 		 * only if we run lilo or swapon on a freshly made file
3232 		 * do we expect this to happen.
3233 		 *
3234 		 * (bmap requires CAP_SYS_RAWIO so this does not
3235 		 * represent an unprivileged user DOS attack --- we'd be
3236 		 * in trouble if mortal users could trigger this path at
3237 		 * will.)
3238 		 *
3239 		 * NB. EXT4_STATE_JDATA is not set on files other than
3240 		 * regular files.  If somebody wants to bmap a directory
3241 		 * or symlink and gets confused because the buffer
3242 		 * hasn't yet been flushed to disk, they deserve
3243 		 * everything they get.
3244 		 */
3245 
3246 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3247 		journal = EXT4_JOURNAL(inode);
3248 		jbd2_journal_lock_updates(journal);
3249 		err = jbd2_journal_flush(journal);
3250 		jbd2_journal_unlock_updates(journal);
3251 
3252 		if (err)
3253 			return 0;
3254 	}
3255 
3256 	return generic_block_bmap(mapping, block, ext4_get_block);
3257 }
3258 
3259 static int ext4_readpage(struct file *file, struct page *page)
3260 {
3261 	int ret = -EAGAIN;
3262 	struct inode *inode = page->mapping->host;
3263 
3264 	trace_ext4_readpage(page);
3265 
3266 	if (ext4_has_inline_data(inode))
3267 		ret = ext4_readpage_inline(inode, page);
3268 
3269 	if (ret == -EAGAIN)
3270 		return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3271 
3272 	return ret;
3273 }
3274 
3275 static int
3276 ext4_readpages(struct file *file, struct address_space *mapping,
3277 		struct list_head *pages, unsigned nr_pages)
3278 {
3279 	struct inode *inode = mapping->host;
3280 
3281 	/* If the file has inline data, no need to do readpages. */
3282 	if (ext4_has_inline_data(inode))
3283 		return 0;
3284 
3285 	return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3286 }
3287 
3288 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3289 				unsigned int length)
3290 {
3291 	trace_ext4_invalidatepage(page, offset, length);
3292 
3293 	/* No journalling happens on data buffers when this function is used */
3294 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3295 
3296 	block_invalidatepage(page, offset, length);
3297 }
3298 
3299 static int __ext4_journalled_invalidatepage(struct page *page,
3300 					    unsigned int offset,
3301 					    unsigned int length)
3302 {
3303 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3304 
3305 	trace_ext4_journalled_invalidatepage(page, offset, length);
3306 
3307 	/*
3308 	 * If it's a full truncate we just forget about the pending dirtying
3309 	 */
3310 	if (offset == 0 && length == PAGE_SIZE)
3311 		ClearPageChecked(page);
3312 
3313 	return jbd2_journal_invalidatepage(journal, page, offset, length);
3314 }
3315 
3316 /* Wrapper for aops... */
3317 static void ext4_journalled_invalidatepage(struct page *page,
3318 					   unsigned int offset,
3319 					   unsigned int length)
3320 {
3321 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3322 }
3323 
3324 static int ext4_releasepage(struct page *page, gfp_t wait)
3325 {
3326 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3327 
3328 	trace_ext4_releasepage(page);
3329 
3330 	/* Page has dirty journalled data -> cannot release */
3331 	if (PageChecked(page))
3332 		return 0;
3333 	if (journal)
3334 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3335 	else
3336 		return try_to_free_buffers(page);
3337 }
3338 
3339 #ifdef CONFIG_FS_DAX
3340 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3341 			    unsigned flags, struct iomap *iomap)
3342 {
3343 	struct block_device *bdev;
3344 	unsigned int blkbits = inode->i_blkbits;
3345 	unsigned long first_block = offset >> blkbits;
3346 	unsigned long last_block = (offset + length - 1) >> blkbits;
3347 	struct ext4_map_blocks map;
3348 	int ret;
3349 
3350 	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3351 		return -ERANGE;
3352 
3353 	map.m_lblk = first_block;
3354 	map.m_len = last_block - first_block + 1;
3355 
3356 	if (!(flags & IOMAP_WRITE)) {
3357 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3358 	} else {
3359 		int dio_credits;
3360 		handle_t *handle;
3361 		int retries = 0;
3362 
3363 		/* Trim mapping request to maximum we can map at once for DIO */
3364 		if (map.m_len > DIO_MAX_BLOCKS)
3365 			map.m_len = DIO_MAX_BLOCKS;
3366 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3367 retry:
3368 		/*
3369 		 * Either we allocate blocks and then we don't get unwritten
3370 		 * extent so we have reserved enough credits, or the blocks
3371 		 * are already allocated and unwritten and in that case
3372 		 * extent conversion fits in the credits as well.
3373 		 */
3374 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3375 					    dio_credits);
3376 		if (IS_ERR(handle))
3377 			return PTR_ERR(handle);
3378 
3379 		ret = ext4_map_blocks(handle, inode, &map,
3380 				      EXT4_GET_BLOCKS_CREATE_ZERO);
3381 		if (ret < 0) {
3382 			ext4_journal_stop(handle);
3383 			if (ret == -ENOSPC &&
3384 			    ext4_should_retry_alloc(inode->i_sb, &retries))
3385 				goto retry;
3386 			return ret;
3387 		}
3388 
3389 		/*
3390 		 * If we added blocks beyond i_size, we need to make sure they
3391 		 * will get truncated if we crash before updating i_size in
3392 		 * ext4_iomap_end(). For faults we don't need to do that (and
3393 		 * even cannot because for orphan list operations inode_lock is
3394 		 * required) - if we happen to instantiate block beyond i_size,
3395 		 * it is because we race with truncate which has already added
3396 		 * the inode to the orphan list.
3397 		 */
3398 		if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3399 		    (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3400 			int err;
3401 
3402 			err = ext4_orphan_add(handle, inode);
3403 			if (err < 0) {
3404 				ext4_journal_stop(handle);
3405 				return err;
3406 			}
3407 		}
3408 		ext4_journal_stop(handle);
3409 	}
3410 
3411 	iomap->flags = 0;
3412 	bdev = inode->i_sb->s_bdev;
3413 	iomap->bdev = bdev;
3414 	if (blk_queue_dax(bdev->bd_queue))
3415 		iomap->dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
3416 	else
3417 		iomap->dax_dev = NULL;
3418 	iomap->offset = first_block << blkbits;
3419 
3420 	if (ret == 0) {
3421 		iomap->type = IOMAP_HOLE;
3422 		iomap->blkno = IOMAP_NULL_BLOCK;
3423 		iomap->length = (u64)map.m_len << blkbits;
3424 	} else {
3425 		if (map.m_flags & EXT4_MAP_MAPPED) {
3426 			iomap->type = IOMAP_MAPPED;
3427 		} else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3428 			iomap->type = IOMAP_UNWRITTEN;
3429 		} else {
3430 			WARN_ON_ONCE(1);
3431 			return -EIO;
3432 		}
3433 		iomap->blkno = (sector_t)map.m_pblk << (blkbits - 9);
3434 		iomap->length = (u64)map.m_len << blkbits;
3435 	}
3436 
3437 	if (map.m_flags & EXT4_MAP_NEW)
3438 		iomap->flags |= IOMAP_F_NEW;
3439 	return 0;
3440 }
3441 
3442 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3443 			  ssize_t written, unsigned flags, struct iomap *iomap)
3444 {
3445 	int ret = 0;
3446 	handle_t *handle;
3447 	int blkbits = inode->i_blkbits;
3448 	bool truncate = false;
3449 
3450 	put_dax(iomap->dax_dev);
3451 	if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3452 		return 0;
3453 
3454 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3455 	if (IS_ERR(handle)) {
3456 		ret = PTR_ERR(handle);
3457 		goto orphan_del;
3458 	}
3459 	if (ext4_update_inode_size(inode, offset + written))
3460 		ext4_mark_inode_dirty(handle, inode);
3461 	/*
3462 	 * We may need to truncate allocated but not written blocks beyond EOF.
3463 	 */
3464 	if (iomap->offset + iomap->length >
3465 	    ALIGN(inode->i_size, 1 << blkbits)) {
3466 		ext4_lblk_t written_blk, end_blk;
3467 
3468 		written_blk = (offset + written) >> blkbits;
3469 		end_blk = (offset + length) >> blkbits;
3470 		if (written_blk < end_blk && ext4_can_truncate(inode))
3471 			truncate = true;
3472 	}
3473 	/*
3474 	 * Remove inode from orphan list if we were extending a inode and
3475 	 * everything went fine.
3476 	 */
3477 	if (!truncate && inode->i_nlink &&
3478 	    !list_empty(&EXT4_I(inode)->i_orphan))
3479 		ext4_orphan_del(handle, inode);
3480 	ext4_journal_stop(handle);
3481 	if (truncate) {
3482 		ext4_truncate_failed_write(inode);
3483 orphan_del:
3484 		/*
3485 		 * If truncate failed early the inode might still be on the
3486 		 * orphan list; we need to make sure the inode is removed from
3487 		 * the orphan list in that case.
3488 		 */
3489 		if (inode->i_nlink)
3490 			ext4_orphan_del(NULL, inode);
3491 	}
3492 	return ret;
3493 }
3494 
3495 const struct iomap_ops ext4_iomap_ops = {
3496 	.iomap_begin		= ext4_iomap_begin,
3497 	.iomap_end		= ext4_iomap_end,
3498 };
3499 
3500 #endif
3501 
3502 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3503 			    ssize_t size, void *private)
3504 {
3505         ext4_io_end_t *io_end = private;
3506 
3507 	/* if not async direct IO just return */
3508 	if (!io_end)
3509 		return 0;
3510 
3511 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3512 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3513 		  io_end, io_end->inode->i_ino, iocb, offset, size);
3514 
3515 	/*
3516 	 * Error during AIO DIO. We cannot convert unwritten extents as the
3517 	 * data was not written. Just clear the unwritten flag and drop io_end.
3518 	 */
3519 	if (size <= 0) {
3520 		ext4_clear_io_unwritten_flag(io_end);
3521 		size = 0;
3522 	}
3523 	io_end->offset = offset;
3524 	io_end->size = size;
3525 	ext4_put_io_end(io_end);
3526 
3527 	return 0;
3528 }
3529 
3530 /*
3531  * Handling of direct IO writes.
3532  *
3533  * For ext4 extent files, ext4 will do direct-io write even to holes,
3534  * preallocated extents, and those write extend the file, no need to
3535  * fall back to buffered IO.
3536  *
3537  * For holes, we fallocate those blocks, mark them as unwritten
3538  * If those blocks were preallocated, we mark sure they are split, but
3539  * still keep the range to write as unwritten.
3540  *
3541  * The unwritten extents will be converted to written when DIO is completed.
3542  * For async direct IO, since the IO may still pending when return, we
3543  * set up an end_io call back function, which will do the conversion
3544  * when async direct IO completed.
3545  *
3546  * If the O_DIRECT write will extend the file then add this inode to the
3547  * orphan list.  So recovery will truncate it back to the original size
3548  * if the machine crashes during the write.
3549  *
3550  */
3551 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3552 {
3553 	struct file *file = iocb->ki_filp;
3554 	struct inode *inode = file->f_mapping->host;
3555 	struct ext4_inode_info *ei = EXT4_I(inode);
3556 	ssize_t ret;
3557 	loff_t offset = iocb->ki_pos;
3558 	size_t count = iov_iter_count(iter);
3559 	int overwrite = 0;
3560 	get_block_t *get_block_func = NULL;
3561 	int dio_flags = 0;
3562 	loff_t final_size = offset + count;
3563 	int orphan = 0;
3564 	handle_t *handle;
3565 
3566 	if (final_size > inode->i_size) {
3567 		/* Credits for sb + inode write */
3568 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3569 		if (IS_ERR(handle)) {
3570 			ret = PTR_ERR(handle);
3571 			goto out;
3572 		}
3573 		ret = ext4_orphan_add(handle, inode);
3574 		if (ret) {
3575 			ext4_journal_stop(handle);
3576 			goto out;
3577 		}
3578 		orphan = 1;
3579 		ei->i_disksize = inode->i_size;
3580 		ext4_journal_stop(handle);
3581 	}
3582 
3583 	BUG_ON(iocb->private == NULL);
3584 
3585 	/*
3586 	 * Make all waiters for direct IO properly wait also for extent
3587 	 * conversion. This also disallows race between truncate() and
3588 	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3589 	 */
3590 	inode_dio_begin(inode);
3591 
3592 	/* If we do a overwrite dio, i_mutex locking can be released */
3593 	overwrite = *((int *)iocb->private);
3594 
3595 	if (overwrite)
3596 		inode_unlock(inode);
3597 
3598 	/*
3599 	 * For extent mapped files we could direct write to holes and fallocate.
3600 	 *
3601 	 * Allocated blocks to fill the hole are marked as unwritten to prevent
3602 	 * parallel buffered read to expose the stale data before DIO complete
3603 	 * the data IO.
3604 	 *
3605 	 * As to previously fallocated extents, ext4 get_block will just simply
3606 	 * mark the buffer mapped but still keep the extents unwritten.
3607 	 *
3608 	 * For non AIO case, we will convert those unwritten extents to written
3609 	 * after return back from blockdev_direct_IO. That way we save us from
3610 	 * allocating io_end structure and also the overhead of offloading
3611 	 * the extent convertion to a workqueue.
3612 	 *
3613 	 * For async DIO, the conversion needs to be deferred when the
3614 	 * IO is completed. The ext4 end_io callback function will be
3615 	 * called to take care of the conversion work.  Here for async
3616 	 * case, we allocate an io_end structure to hook to the iocb.
3617 	 */
3618 	iocb->private = NULL;
3619 	if (overwrite)
3620 		get_block_func = ext4_dio_get_block_overwrite;
3621 	else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3622 		   round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3623 		get_block_func = ext4_dio_get_block;
3624 		dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3625 	} else if (is_sync_kiocb(iocb)) {
3626 		get_block_func = ext4_dio_get_block_unwritten_sync;
3627 		dio_flags = DIO_LOCKING;
3628 	} else {
3629 		get_block_func = ext4_dio_get_block_unwritten_async;
3630 		dio_flags = DIO_LOCKING;
3631 	}
3632 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3633 	BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3634 #endif
3635 	ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3636 				   get_block_func, ext4_end_io_dio, NULL,
3637 				   dio_flags);
3638 
3639 	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3640 						EXT4_STATE_DIO_UNWRITTEN)) {
3641 		int err;
3642 		/*
3643 		 * for non AIO case, since the IO is already
3644 		 * completed, we could do the conversion right here
3645 		 */
3646 		err = ext4_convert_unwritten_extents(NULL, inode,
3647 						     offset, ret);
3648 		if (err < 0)
3649 			ret = err;
3650 		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3651 	}
3652 
3653 	inode_dio_end(inode);
3654 	/* take i_mutex locking again if we do a ovewrite dio */
3655 	if (overwrite)
3656 		inode_lock(inode);
3657 
3658 	if (ret < 0 && final_size > inode->i_size)
3659 		ext4_truncate_failed_write(inode);
3660 
3661 	/* Handle extending of i_size after direct IO write */
3662 	if (orphan) {
3663 		int err;
3664 
3665 		/* Credits for sb + inode write */
3666 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3667 		if (IS_ERR(handle)) {
3668 			/* This is really bad luck. We've written the data
3669 			 * but cannot extend i_size. Bail out and pretend
3670 			 * the write failed... */
3671 			ret = PTR_ERR(handle);
3672 			if (inode->i_nlink)
3673 				ext4_orphan_del(NULL, inode);
3674 
3675 			goto out;
3676 		}
3677 		if (inode->i_nlink)
3678 			ext4_orphan_del(handle, inode);
3679 		if (ret > 0) {
3680 			loff_t end = offset + ret;
3681 			if (end > inode->i_size) {
3682 				ei->i_disksize = end;
3683 				i_size_write(inode, end);
3684 				/*
3685 				 * We're going to return a positive `ret'
3686 				 * here due to non-zero-length I/O, so there's
3687 				 * no way of reporting error returns from
3688 				 * ext4_mark_inode_dirty() to userspace.  So
3689 				 * ignore it.
3690 				 */
3691 				ext4_mark_inode_dirty(handle, inode);
3692 			}
3693 		}
3694 		err = ext4_journal_stop(handle);
3695 		if (ret == 0)
3696 			ret = err;
3697 	}
3698 out:
3699 	return ret;
3700 }
3701 
3702 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3703 {
3704 	struct address_space *mapping = iocb->ki_filp->f_mapping;
3705 	struct inode *inode = mapping->host;
3706 	size_t count = iov_iter_count(iter);
3707 	ssize_t ret;
3708 
3709 	/*
3710 	 * Shared inode_lock is enough for us - it protects against concurrent
3711 	 * writes & truncates and since we take care of writing back page cache,
3712 	 * we are protected against page writeback as well.
3713 	 */
3714 	inode_lock_shared(inode);
3715 	ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3716 					   iocb->ki_pos + count);
3717 	if (ret)
3718 		goto out_unlock;
3719 	ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3720 				   iter, ext4_dio_get_block, NULL, NULL, 0);
3721 out_unlock:
3722 	inode_unlock_shared(inode);
3723 	return ret;
3724 }
3725 
3726 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3727 {
3728 	struct file *file = iocb->ki_filp;
3729 	struct inode *inode = file->f_mapping->host;
3730 	size_t count = iov_iter_count(iter);
3731 	loff_t offset = iocb->ki_pos;
3732 	ssize_t ret;
3733 
3734 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3735 	if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3736 		return 0;
3737 #endif
3738 
3739 	/*
3740 	 * If we are doing data journalling we don't support O_DIRECT
3741 	 */
3742 	if (ext4_should_journal_data(inode))
3743 		return 0;
3744 
3745 	/* Let buffer I/O handle the inline data case. */
3746 	if (ext4_has_inline_data(inode))
3747 		return 0;
3748 
3749 	/* DAX uses iomap path now */
3750 	if (WARN_ON_ONCE(IS_DAX(inode)))
3751 		return 0;
3752 
3753 	trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3754 	if (iov_iter_rw(iter) == READ)
3755 		ret = ext4_direct_IO_read(iocb, iter);
3756 	else
3757 		ret = ext4_direct_IO_write(iocb, iter);
3758 	trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3759 	return ret;
3760 }
3761 
3762 /*
3763  * Pages can be marked dirty completely asynchronously from ext4's journalling
3764  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3765  * much here because ->set_page_dirty is called under VFS locks.  The page is
3766  * not necessarily locked.
3767  *
3768  * We cannot just dirty the page and leave attached buffers clean, because the
3769  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3770  * or jbddirty because all the journalling code will explode.
3771  *
3772  * So what we do is to mark the page "pending dirty" and next time writepage
3773  * is called, propagate that into the buffers appropriately.
3774  */
3775 static int ext4_journalled_set_page_dirty(struct page *page)
3776 {
3777 	SetPageChecked(page);
3778 	return __set_page_dirty_nobuffers(page);
3779 }
3780 
3781 static int ext4_set_page_dirty(struct page *page)
3782 {
3783 	WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3784 	WARN_ON_ONCE(!page_has_buffers(page));
3785 	return __set_page_dirty_buffers(page);
3786 }
3787 
3788 static const struct address_space_operations ext4_aops = {
3789 	.readpage		= ext4_readpage,
3790 	.readpages		= ext4_readpages,
3791 	.writepage		= ext4_writepage,
3792 	.writepages		= ext4_writepages,
3793 	.write_begin		= ext4_write_begin,
3794 	.write_end		= ext4_write_end,
3795 	.set_page_dirty		= ext4_set_page_dirty,
3796 	.bmap			= ext4_bmap,
3797 	.invalidatepage		= ext4_invalidatepage,
3798 	.releasepage		= ext4_releasepage,
3799 	.direct_IO		= ext4_direct_IO,
3800 	.migratepage		= buffer_migrate_page,
3801 	.is_partially_uptodate  = block_is_partially_uptodate,
3802 	.error_remove_page	= generic_error_remove_page,
3803 };
3804 
3805 static const struct address_space_operations ext4_journalled_aops = {
3806 	.readpage		= ext4_readpage,
3807 	.readpages		= ext4_readpages,
3808 	.writepage		= ext4_writepage,
3809 	.writepages		= ext4_writepages,
3810 	.write_begin		= ext4_write_begin,
3811 	.write_end		= ext4_journalled_write_end,
3812 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3813 	.bmap			= ext4_bmap,
3814 	.invalidatepage		= ext4_journalled_invalidatepage,
3815 	.releasepage		= ext4_releasepage,
3816 	.direct_IO		= ext4_direct_IO,
3817 	.is_partially_uptodate  = block_is_partially_uptodate,
3818 	.error_remove_page	= generic_error_remove_page,
3819 };
3820 
3821 static const struct address_space_operations ext4_da_aops = {
3822 	.readpage		= ext4_readpage,
3823 	.readpages		= ext4_readpages,
3824 	.writepage		= ext4_writepage,
3825 	.writepages		= ext4_writepages,
3826 	.write_begin		= ext4_da_write_begin,
3827 	.write_end		= ext4_da_write_end,
3828 	.set_page_dirty		= ext4_set_page_dirty,
3829 	.bmap			= ext4_bmap,
3830 	.invalidatepage		= ext4_da_invalidatepage,
3831 	.releasepage		= ext4_releasepage,
3832 	.direct_IO		= ext4_direct_IO,
3833 	.migratepage		= buffer_migrate_page,
3834 	.is_partially_uptodate  = block_is_partially_uptodate,
3835 	.error_remove_page	= generic_error_remove_page,
3836 };
3837 
3838 void ext4_set_aops(struct inode *inode)
3839 {
3840 	switch (ext4_inode_journal_mode(inode)) {
3841 	case EXT4_INODE_ORDERED_DATA_MODE:
3842 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3843 		break;
3844 	case EXT4_INODE_JOURNAL_DATA_MODE:
3845 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3846 		return;
3847 	default:
3848 		BUG();
3849 	}
3850 	if (test_opt(inode->i_sb, DELALLOC))
3851 		inode->i_mapping->a_ops = &ext4_da_aops;
3852 	else
3853 		inode->i_mapping->a_ops = &ext4_aops;
3854 }
3855 
3856 static int __ext4_block_zero_page_range(handle_t *handle,
3857 		struct address_space *mapping, loff_t from, loff_t length)
3858 {
3859 	ext4_fsblk_t index = from >> PAGE_SHIFT;
3860 	unsigned offset = from & (PAGE_SIZE-1);
3861 	unsigned blocksize, pos;
3862 	ext4_lblk_t iblock;
3863 	struct inode *inode = mapping->host;
3864 	struct buffer_head *bh;
3865 	struct page *page;
3866 	int err = 0;
3867 
3868 	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3869 				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3870 	if (!page)
3871 		return -ENOMEM;
3872 
3873 	blocksize = inode->i_sb->s_blocksize;
3874 
3875 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3876 
3877 	if (!page_has_buffers(page))
3878 		create_empty_buffers(page, blocksize, 0);
3879 
3880 	/* Find the buffer that contains "offset" */
3881 	bh = page_buffers(page);
3882 	pos = blocksize;
3883 	while (offset >= pos) {
3884 		bh = bh->b_this_page;
3885 		iblock++;
3886 		pos += blocksize;
3887 	}
3888 	if (buffer_freed(bh)) {
3889 		BUFFER_TRACE(bh, "freed: skip");
3890 		goto unlock;
3891 	}
3892 	if (!buffer_mapped(bh)) {
3893 		BUFFER_TRACE(bh, "unmapped");
3894 		ext4_get_block(inode, iblock, bh, 0);
3895 		/* unmapped? It's a hole - nothing to do */
3896 		if (!buffer_mapped(bh)) {
3897 			BUFFER_TRACE(bh, "still unmapped");
3898 			goto unlock;
3899 		}
3900 	}
3901 
3902 	/* Ok, it's mapped. Make sure it's up-to-date */
3903 	if (PageUptodate(page))
3904 		set_buffer_uptodate(bh);
3905 
3906 	if (!buffer_uptodate(bh)) {
3907 		err = -EIO;
3908 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3909 		wait_on_buffer(bh);
3910 		/* Uhhuh. Read error. Complain and punt. */
3911 		if (!buffer_uptodate(bh))
3912 			goto unlock;
3913 		if (S_ISREG(inode->i_mode) &&
3914 		    ext4_encrypted_inode(inode)) {
3915 			/* We expect the key to be set. */
3916 			BUG_ON(!fscrypt_has_encryption_key(inode));
3917 			BUG_ON(blocksize != PAGE_SIZE);
3918 			WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
3919 						page, PAGE_SIZE, 0, page->index));
3920 		}
3921 	}
3922 	if (ext4_should_journal_data(inode)) {
3923 		BUFFER_TRACE(bh, "get write access");
3924 		err = ext4_journal_get_write_access(handle, bh);
3925 		if (err)
3926 			goto unlock;
3927 	}
3928 	zero_user(page, offset, length);
3929 	BUFFER_TRACE(bh, "zeroed end of block");
3930 
3931 	if (ext4_should_journal_data(inode)) {
3932 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3933 	} else {
3934 		err = 0;
3935 		mark_buffer_dirty(bh);
3936 		if (ext4_should_order_data(inode))
3937 			err = ext4_jbd2_inode_add_write(handle, inode);
3938 	}
3939 
3940 unlock:
3941 	unlock_page(page);
3942 	put_page(page);
3943 	return err;
3944 }
3945 
3946 /*
3947  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3948  * starting from file offset 'from'.  The range to be zero'd must
3949  * be contained with in one block.  If the specified range exceeds
3950  * the end of the block it will be shortened to end of the block
3951  * that cooresponds to 'from'
3952  */
3953 static int ext4_block_zero_page_range(handle_t *handle,
3954 		struct address_space *mapping, loff_t from, loff_t length)
3955 {
3956 	struct inode *inode = mapping->host;
3957 	unsigned offset = from & (PAGE_SIZE-1);
3958 	unsigned blocksize = inode->i_sb->s_blocksize;
3959 	unsigned max = blocksize - (offset & (blocksize - 1));
3960 
3961 	/*
3962 	 * correct length if it does not fall between
3963 	 * 'from' and the end of the block
3964 	 */
3965 	if (length > max || length < 0)
3966 		length = max;
3967 
3968 	if (IS_DAX(inode)) {
3969 		return iomap_zero_range(inode, from, length, NULL,
3970 					&ext4_iomap_ops);
3971 	}
3972 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3973 }
3974 
3975 /*
3976  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3977  * up to the end of the block which corresponds to `from'.
3978  * This required during truncate. We need to physically zero the tail end
3979  * of that block so it doesn't yield old data if the file is later grown.
3980  */
3981 static int ext4_block_truncate_page(handle_t *handle,
3982 		struct address_space *mapping, loff_t from)
3983 {
3984 	unsigned offset = from & (PAGE_SIZE-1);
3985 	unsigned length;
3986 	unsigned blocksize;
3987 	struct inode *inode = mapping->host;
3988 
3989 	/* If we are processing an encrypted inode during orphan list handling */
3990 	if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
3991 		return 0;
3992 
3993 	blocksize = inode->i_sb->s_blocksize;
3994 	length = blocksize - (offset & (blocksize - 1));
3995 
3996 	return ext4_block_zero_page_range(handle, mapping, from, length);
3997 }
3998 
3999 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4000 			     loff_t lstart, loff_t length)
4001 {
4002 	struct super_block *sb = inode->i_sb;
4003 	struct address_space *mapping = inode->i_mapping;
4004 	unsigned partial_start, partial_end;
4005 	ext4_fsblk_t start, end;
4006 	loff_t byte_end = (lstart + length - 1);
4007 	int err = 0;
4008 
4009 	partial_start = lstart & (sb->s_blocksize - 1);
4010 	partial_end = byte_end & (sb->s_blocksize - 1);
4011 
4012 	start = lstart >> sb->s_blocksize_bits;
4013 	end = byte_end >> sb->s_blocksize_bits;
4014 
4015 	/* Handle partial zero within the single block */
4016 	if (start == end &&
4017 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
4018 		err = ext4_block_zero_page_range(handle, mapping,
4019 						 lstart, length);
4020 		return err;
4021 	}
4022 	/* Handle partial zero out on the start of the range */
4023 	if (partial_start) {
4024 		err = ext4_block_zero_page_range(handle, mapping,
4025 						 lstart, sb->s_blocksize);
4026 		if (err)
4027 			return err;
4028 	}
4029 	/* Handle partial zero out on the end of the range */
4030 	if (partial_end != sb->s_blocksize - 1)
4031 		err = ext4_block_zero_page_range(handle, mapping,
4032 						 byte_end - partial_end,
4033 						 partial_end + 1);
4034 	return err;
4035 }
4036 
4037 int ext4_can_truncate(struct inode *inode)
4038 {
4039 	if (S_ISREG(inode->i_mode))
4040 		return 1;
4041 	if (S_ISDIR(inode->i_mode))
4042 		return 1;
4043 	if (S_ISLNK(inode->i_mode))
4044 		return !ext4_inode_is_fast_symlink(inode);
4045 	return 0;
4046 }
4047 
4048 /*
4049  * We have to make sure i_disksize gets properly updated before we truncate
4050  * page cache due to hole punching or zero range. Otherwise i_disksize update
4051  * can get lost as it may have been postponed to submission of writeback but
4052  * that will never happen after we truncate page cache.
4053  */
4054 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4055 				      loff_t len)
4056 {
4057 	handle_t *handle;
4058 	loff_t size = i_size_read(inode);
4059 
4060 	WARN_ON(!inode_is_locked(inode));
4061 	if (offset > size || offset + len < size)
4062 		return 0;
4063 
4064 	if (EXT4_I(inode)->i_disksize >= size)
4065 		return 0;
4066 
4067 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4068 	if (IS_ERR(handle))
4069 		return PTR_ERR(handle);
4070 	ext4_update_i_disksize(inode, size);
4071 	ext4_mark_inode_dirty(handle, inode);
4072 	ext4_journal_stop(handle);
4073 
4074 	return 0;
4075 }
4076 
4077 /*
4078  * ext4_punch_hole: punches a hole in a file by releasing the blocks
4079  * associated with the given offset and length
4080  *
4081  * @inode:  File inode
4082  * @offset: The offset where the hole will begin
4083  * @len:    The length of the hole
4084  *
4085  * Returns: 0 on success or negative on failure
4086  */
4087 
4088 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4089 {
4090 	struct super_block *sb = inode->i_sb;
4091 	ext4_lblk_t first_block, stop_block;
4092 	struct address_space *mapping = inode->i_mapping;
4093 	loff_t first_block_offset, last_block_offset;
4094 	handle_t *handle;
4095 	unsigned int credits;
4096 	int ret = 0;
4097 
4098 	if (!S_ISREG(inode->i_mode))
4099 		return -EOPNOTSUPP;
4100 
4101 	trace_ext4_punch_hole(inode, offset, length, 0);
4102 
4103 	/*
4104 	 * Write out all dirty pages to avoid race conditions
4105 	 * Then release them.
4106 	 */
4107 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4108 		ret = filemap_write_and_wait_range(mapping, offset,
4109 						   offset + length - 1);
4110 		if (ret)
4111 			return ret;
4112 	}
4113 
4114 	inode_lock(inode);
4115 
4116 	/* No need to punch hole beyond i_size */
4117 	if (offset >= inode->i_size)
4118 		goto out_mutex;
4119 
4120 	/*
4121 	 * If the hole extends beyond i_size, set the hole
4122 	 * to end after the page that contains i_size
4123 	 */
4124 	if (offset + length > inode->i_size) {
4125 		length = inode->i_size +
4126 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4127 		   offset;
4128 	}
4129 
4130 	if (offset & (sb->s_blocksize - 1) ||
4131 	    (offset + length) & (sb->s_blocksize - 1)) {
4132 		/*
4133 		 * Attach jinode to inode for jbd2 if we do any zeroing of
4134 		 * partial block
4135 		 */
4136 		ret = ext4_inode_attach_jinode(inode);
4137 		if (ret < 0)
4138 			goto out_mutex;
4139 
4140 	}
4141 
4142 	/* Wait all existing dio workers, newcomers will block on i_mutex */
4143 	ext4_inode_block_unlocked_dio(inode);
4144 	inode_dio_wait(inode);
4145 
4146 	/*
4147 	 * Prevent page faults from reinstantiating pages we have released from
4148 	 * page cache.
4149 	 */
4150 	down_write(&EXT4_I(inode)->i_mmap_sem);
4151 	first_block_offset = round_up(offset, sb->s_blocksize);
4152 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4153 
4154 	/* Now release the pages and zero block aligned part of pages*/
4155 	if (last_block_offset > first_block_offset) {
4156 		ret = ext4_update_disksize_before_punch(inode, offset, length);
4157 		if (ret)
4158 			goto out_dio;
4159 		truncate_pagecache_range(inode, first_block_offset,
4160 					 last_block_offset);
4161 	}
4162 
4163 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4164 		credits = ext4_writepage_trans_blocks(inode);
4165 	else
4166 		credits = ext4_blocks_for_truncate(inode);
4167 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4168 	if (IS_ERR(handle)) {
4169 		ret = PTR_ERR(handle);
4170 		ext4_std_error(sb, ret);
4171 		goto out_dio;
4172 	}
4173 
4174 	ret = ext4_zero_partial_blocks(handle, inode, offset,
4175 				       length);
4176 	if (ret)
4177 		goto out_stop;
4178 
4179 	first_block = (offset + sb->s_blocksize - 1) >>
4180 		EXT4_BLOCK_SIZE_BITS(sb);
4181 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4182 
4183 	/* If there are no blocks to remove, return now */
4184 	if (first_block >= stop_block)
4185 		goto out_stop;
4186 
4187 	down_write(&EXT4_I(inode)->i_data_sem);
4188 	ext4_discard_preallocations(inode);
4189 
4190 	ret = ext4_es_remove_extent(inode, first_block,
4191 				    stop_block - first_block);
4192 	if (ret) {
4193 		up_write(&EXT4_I(inode)->i_data_sem);
4194 		goto out_stop;
4195 	}
4196 
4197 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4198 		ret = ext4_ext_remove_space(inode, first_block,
4199 					    stop_block - 1);
4200 	else
4201 		ret = ext4_ind_remove_space(handle, inode, first_block,
4202 					    stop_block);
4203 
4204 	up_write(&EXT4_I(inode)->i_data_sem);
4205 	if (IS_SYNC(inode))
4206 		ext4_handle_sync(handle);
4207 
4208 	inode->i_mtime = inode->i_ctime = current_time(inode);
4209 	ext4_mark_inode_dirty(handle, inode);
4210 out_stop:
4211 	ext4_journal_stop(handle);
4212 out_dio:
4213 	up_write(&EXT4_I(inode)->i_mmap_sem);
4214 	ext4_inode_resume_unlocked_dio(inode);
4215 out_mutex:
4216 	inode_unlock(inode);
4217 	return ret;
4218 }
4219 
4220 int ext4_inode_attach_jinode(struct inode *inode)
4221 {
4222 	struct ext4_inode_info *ei = EXT4_I(inode);
4223 	struct jbd2_inode *jinode;
4224 
4225 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4226 		return 0;
4227 
4228 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4229 	spin_lock(&inode->i_lock);
4230 	if (!ei->jinode) {
4231 		if (!jinode) {
4232 			spin_unlock(&inode->i_lock);
4233 			return -ENOMEM;
4234 		}
4235 		ei->jinode = jinode;
4236 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4237 		jinode = NULL;
4238 	}
4239 	spin_unlock(&inode->i_lock);
4240 	if (unlikely(jinode != NULL))
4241 		jbd2_free_inode(jinode);
4242 	return 0;
4243 }
4244 
4245 /*
4246  * ext4_truncate()
4247  *
4248  * We block out ext4_get_block() block instantiations across the entire
4249  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4250  * simultaneously on behalf of the same inode.
4251  *
4252  * As we work through the truncate and commit bits of it to the journal there
4253  * is one core, guiding principle: the file's tree must always be consistent on
4254  * disk.  We must be able to restart the truncate after a crash.
4255  *
4256  * The file's tree may be transiently inconsistent in memory (although it
4257  * probably isn't), but whenever we close off and commit a journal transaction,
4258  * the contents of (the filesystem + the journal) must be consistent and
4259  * restartable.  It's pretty simple, really: bottom up, right to left (although
4260  * left-to-right works OK too).
4261  *
4262  * Note that at recovery time, journal replay occurs *before* the restart of
4263  * truncate against the orphan inode list.
4264  *
4265  * The committed inode has the new, desired i_size (which is the same as
4266  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4267  * that this inode's truncate did not complete and it will again call
4268  * ext4_truncate() to have another go.  So there will be instantiated blocks
4269  * to the right of the truncation point in a crashed ext4 filesystem.  But
4270  * that's fine - as long as they are linked from the inode, the post-crash
4271  * ext4_truncate() run will find them and release them.
4272  */
4273 int ext4_truncate(struct inode *inode)
4274 {
4275 	struct ext4_inode_info *ei = EXT4_I(inode);
4276 	unsigned int credits;
4277 	int err = 0;
4278 	handle_t *handle;
4279 	struct address_space *mapping = inode->i_mapping;
4280 
4281 	/*
4282 	 * There is a possibility that we're either freeing the inode
4283 	 * or it's a completely new inode. In those cases we might not
4284 	 * have i_mutex locked because it's not necessary.
4285 	 */
4286 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4287 		WARN_ON(!inode_is_locked(inode));
4288 	trace_ext4_truncate_enter(inode);
4289 
4290 	if (!ext4_can_truncate(inode))
4291 		return 0;
4292 
4293 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4294 
4295 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4296 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4297 
4298 	if (ext4_has_inline_data(inode)) {
4299 		int has_inline = 1;
4300 
4301 		err = ext4_inline_data_truncate(inode, &has_inline);
4302 		if (err)
4303 			return err;
4304 		if (has_inline)
4305 			return 0;
4306 	}
4307 
4308 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4309 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4310 		if (ext4_inode_attach_jinode(inode) < 0)
4311 			return 0;
4312 	}
4313 
4314 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4315 		credits = ext4_writepage_trans_blocks(inode);
4316 	else
4317 		credits = ext4_blocks_for_truncate(inode);
4318 
4319 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4320 	if (IS_ERR(handle))
4321 		return PTR_ERR(handle);
4322 
4323 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4324 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4325 
4326 	/*
4327 	 * We add the inode to the orphan list, so that if this
4328 	 * truncate spans multiple transactions, and we crash, we will
4329 	 * resume the truncate when the filesystem recovers.  It also
4330 	 * marks the inode dirty, to catch the new size.
4331 	 *
4332 	 * Implication: the file must always be in a sane, consistent
4333 	 * truncatable state while each transaction commits.
4334 	 */
4335 	err = ext4_orphan_add(handle, inode);
4336 	if (err)
4337 		goto out_stop;
4338 
4339 	down_write(&EXT4_I(inode)->i_data_sem);
4340 
4341 	ext4_discard_preallocations(inode);
4342 
4343 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4344 		err = ext4_ext_truncate(handle, inode);
4345 	else
4346 		ext4_ind_truncate(handle, inode);
4347 
4348 	up_write(&ei->i_data_sem);
4349 	if (err)
4350 		goto out_stop;
4351 
4352 	if (IS_SYNC(inode))
4353 		ext4_handle_sync(handle);
4354 
4355 out_stop:
4356 	/*
4357 	 * If this was a simple ftruncate() and the file will remain alive,
4358 	 * then we need to clear up the orphan record which we created above.
4359 	 * However, if this was a real unlink then we were called by
4360 	 * ext4_evict_inode(), and we allow that function to clean up the
4361 	 * orphan info for us.
4362 	 */
4363 	if (inode->i_nlink)
4364 		ext4_orphan_del(handle, inode);
4365 
4366 	inode->i_mtime = inode->i_ctime = current_time(inode);
4367 	ext4_mark_inode_dirty(handle, inode);
4368 	ext4_journal_stop(handle);
4369 
4370 	trace_ext4_truncate_exit(inode);
4371 	return err;
4372 }
4373 
4374 /*
4375  * ext4_get_inode_loc returns with an extra refcount against the inode's
4376  * underlying buffer_head on success. If 'in_mem' is true, we have all
4377  * data in memory that is needed to recreate the on-disk version of this
4378  * inode.
4379  */
4380 static int __ext4_get_inode_loc(struct inode *inode,
4381 				struct ext4_iloc *iloc, int in_mem)
4382 {
4383 	struct ext4_group_desc	*gdp;
4384 	struct buffer_head	*bh;
4385 	struct super_block	*sb = inode->i_sb;
4386 	ext4_fsblk_t		block;
4387 	int			inodes_per_block, inode_offset;
4388 
4389 	iloc->bh = NULL;
4390 	if (!ext4_valid_inum(sb, inode->i_ino))
4391 		return -EFSCORRUPTED;
4392 
4393 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4394 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4395 	if (!gdp)
4396 		return -EIO;
4397 
4398 	/*
4399 	 * Figure out the offset within the block group inode table
4400 	 */
4401 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4402 	inode_offset = ((inode->i_ino - 1) %
4403 			EXT4_INODES_PER_GROUP(sb));
4404 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4405 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4406 
4407 	bh = sb_getblk(sb, block);
4408 	if (unlikely(!bh))
4409 		return -ENOMEM;
4410 	if (!buffer_uptodate(bh)) {
4411 		lock_buffer(bh);
4412 
4413 		/*
4414 		 * If the buffer has the write error flag, we have failed
4415 		 * to write out another inode in the same block.  In this
4416 		 * case, we don't have to read the block because we may
4417 		 * read the old inode data successfully.
4418 		 */
4419 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4420 			set_buffer_uptodate(bh);
4421 
4422 		if (buffer_uptodate(bh)) {
4423 			/* someone brought it uptodate while we waited */
4424 			unlock_buffer(bh);
4425 			goto has_buffer;
4426 		}
4427 
4428 		/*
4429 		 * If we have all information of the inode in memory and this
4430 		 * is the only valid inode in the block, we need not read the
4431 		 * block.
4432 		 */
4433 		if (in_mem) {
4434 			struct buffer_head *bitmap_bh;
4435 			int i, start;
4436 
4437 			start = inode_offset & ~(inodes_per_block - 1);
4438 
4439 			/* Is the inode bitmap in cache? */
4440 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4441 			if (unlikely(!bitmap_bh))
4442 				goto make_io;
4443 
4444 			/*
4445 			 * If the inode bitmap isn't in cache then the
4446 			 * optimisation may end up performing two reads instead
4447 			 * of one, so skip it.
4448 			 */
4449 			if (!buffer_uptodate(bitmap_bh)) {
4450 				brelse(bitmap_bh);
4451 				goto make_io;
4452 			}
4453 			for (i = start; i < start + inodes_per_block; i++) {
4454 				if (i == inode_offset)
4455 					continue;
4456 				if (ext4_test_bit(i, bitmap_bh->b_data))
4457 					break;
4458 			}
4459 			brelse(bitmap_bh);
4460 			if (i == start + inodes_per_block) {
4461 				/* all other inodes are free, so skip I/O */
4462 				memset(bh->b_data, 0, bh->b_size);
4463 				set_buffer_uptodate(bh);
4464 				unlock_buffer(bh);
4465 				goto has_buffer;
4466 			}
4467 		}
4468 
4469 make_io:
4470 		/*
4471 		 * If we need to do any I/O, try to pre-readahead extra
4472 		 * blocks from the inode table.
4473 		 */
4474 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4475 			ext4_fsblk_t b, end, table;
4476 			unsigned num;
4477 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4478 
4479 			table = ext4_inode_table(sb, gdp);
4480 			/* s_inode_readahead_blks is always a power of 2 */
4481 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4482 			if (table > b)
4483 				b = table;
4484 			end = b + ra_blks;
4485 			num = EXT4_INODES_PER_GROUP(sb);
4486 			if (ext4_has_group_desc_csum(sb))
4487 				num -= ext4_itable_unused_count(sb, gdp);
4488 			table += num / inodes_per_block;
4489 			if (end > table)
4490 				end = table;
4491 			while (b <= end)
4492 				sb_breadahead(sb, b++);
4493 		}
4494 
4495 		/*
4496 		 * There are other valid inodes in the buffer, this inode
4497 		 * has in-inode xattrs, or we don't have this inode in memory.
4498 		 * Read the block from disk.
4499 		 */
4500 		trace_ext4_load_inode(inode);
4501 		get_bh(bh);
4502 		bh->b_end_io = end_buffer_read_sync;
4503 		submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4504 		wait_on_buffer(bh);
4505 		if (!buffer_uptodate(bh)) {
4506 			EXT4_ERROR_INODE_BLOCK(inode, block,
4507 					       "unable to read itable block");
4508 			brelse(bh);
4509 			return -EIO;
4510 		}
4511 	}
4512 has_buffer:
4513 	iloc->bh = bh;
4514 	return 0;
4515 }
4516 
4517 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4518 {
4519 	/* We have all inode data except xattrs in memory here. */
4520 	return __ext4_get_inode_loc(inode, iloc,
4521 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4522 }
4523 
4524 void ext4_set_inode_flags(struct inode *inode)
4525 {
4526 	unsigned int flags = EXT4_I(inode)->i_flags;
4527 	unsigned int new_fl = 0;
4528 
4529 	if (flags & EXT4_SYNC_FL)
4530 		new_fl |= S_SYNC;
4531 	if (flags & EXT4_APPEND_FL)
4532 		new_fl |= S_APPEND;
4533 	if (flags & EXT4_IMMUTABLE_FL)
4534 		new_fl |= S_IMMUTABLE;
4535 	if (flags & EXT4_NOATIME_FL)
4536 		new_fl |= S_NOATIME;
4537 	if (flags & EXT4_DIRSYNC_FL)
4538 		new_fl |= S_DIRSYNC;
4539 	if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode) &&
4540 	    !ext4_should_journal_data(inode) && !ext4_has_inline_data(inode) &&
4541 	    !ext4_encrypted_inode(inode))
4542 		new_fl |= S_DAX;
4543 	inode_set_flags(inode, new_fl,
4544 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4545 }
4546 
4547 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4548 				  struct ext4_inode_info *ei)
4549 {
4550 	blkcnt_t i_blocks ;
4551 	struct inode *inode = &(ei->vfs_inode);
4552 	struct super_block *sb = inode->i_sb;
4553 
4554 	if (ext4_has_feature_huge_file(sb)) {
4555 		/* we are using combined 48 bit field */
4556 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4557 					le32_to_cpu(raw_inode->i_blocks_lo);
4558 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4559 			/* i_blocks represent file system block size */
4560 			return i_blocks  << (inode->i_blkbits - 9);
4561 		} else {
4562 			return i_blocks;
4563 		}
4564 	} else {
4565 		return le32_to_cpu(raw_inode->i_blocks_lo);
4566 	}
4567 }
4568 
4569 static inline void ext4_iget_extra_inode(struct inode *inode,
4570 					 struct ext4_inode *raw_inode,
4571 					 struct ext4_inode_info *ei)
4572 {
4573 	__le32 *magic = (void *)raw_inode +
4574 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4575 	if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4576 	    EXT4_INODE_SIZE(inode->i_sb) &&
4577 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4578 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4579 		ext4_find_inline_data_nolock(inode);
4580 	} else
4581 		EXT4_I(inode)->i_inline_off = 0;
4582 }
4583 
4584 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4585 {
4586 	if (!ext4_has_feature_project(inode->i_sb))
4587 		return -EOPNOTSUPP;
4588 	*projid = EXT4_I(inode)->i_projid;
4589 	return 0;
4590 }
4591 
4592 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4593 {
4594 	struct ext4_iloc iloc;
4595 	struct ext4_inode *raw_inode;
4596 	struct ext4_inode_info *ei;
4597 	struct inode *inode;
4598 	journal_t *journal = EXT4_SB(sb)->s_journal;
4599 	long ret;
4600 	loff_t size;
4601 	int block;
4602 	uid_t i_uid;
4603 	gid_t i_gid;
4604 	projid_t i_projid;
4605 
4606 	inode = iget_locked(sb, ino);
4607 	if (!inode)
4608 		return ERR_PTR(-ENOMEM);
4609 	if (!(inode->i_state & I_NEW))
4610 		return inode;
4611 
4612 	ei = EXT4_I(inode);
4613 	iloc.bh = NULL;
4614 
4615 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4616 	if (ret < 0)
4617 		goto bad_inode;
4618 	raw_inode = ext4_raw_inode(&iloc);
4619 
4620 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4621 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4622 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4623 			EXT4_INODE_SIZE(inode->i_sb) ||
4624 		    (ei->i_extra_isize & 3)) {
4625 			EXT4_ERROR_INODE(inode,
4626 					 "bad extra_isize %u (inode size %u)",
4627 					 ei->i_extra_isize,
4628 					 EXT4_INODE_SIZE(inode->i_sb));
4629 			ret = -EFSCORRUPTED;
4630 			goto bad_inode;
4631 		}
4632 	} else
4633 		ei->i_extra_isize = 0;
4634 
4635 	/* Precompute checksum seed for inode metadata */
4636 	if (ext4_has_metadata_csum(sb)) {
4637 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4638 		__u32 csum;
4639 		__le32 inum = cpu_to_le32(inode->i_ino);
4640 		__le32 gen = raw_inode->i_generation;
4641 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4642 				   sizeof(inum));
4643 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4644 					      sizeof(gen));
4645 	}
4646 
4647 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4648 		EXT4_ERROR_INODE(inode, "checksum invalid");
4649 		ret = -EFSBADCRC;
4650 		goto bad_inode;
4651 	}
4652 
4653 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4654 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4655 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4656 	if (ext4_has_feature_project(sb) &&
4657 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4658 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4659 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4660 	else
4661 		i_projid = EXT4_DEF_PROJID;
4662 
4663 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4664 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4665 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4666 	}
4667 	i_uid_write(inode, i_uid);
4668 	i_gid_write(inode, i_gid);
4669 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4670 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4671 
4672 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4673 	ei->i_inline_off = 0;
4674 	ei->i_dir_start_lookup = 0;
4675 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4676 	/* We now have enough fields to check if the inode was active or not.
4677 	 * This is needed because nfsd might try to access dead inodes
4678 	 * the test is that same one that e2fsck uses
4679 	 * NeilBrown 1999oct15
4680 	 */
4681 	if (inode->i_nlink == 0) {
4682 		if ((inode->i_mode == 0 ||
4683 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4684 		    ino != EXT4_BOOT_LOADER_INO) {
4685 			/* this inode is deleted */
4686 			ret = -ESTALE;
4687 			goto bad_inode;
4688 		}
4689 		/* The only unlinked inodes we let through here have
4690 		 * valid i_mode and are being read by the orphan
4691 		 * recovery code: that's fine, we're about to complete
4692 		 * the process of deleting those.
4693 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4694 		 * not initialized on a new filesystem. */
4695 	}
4696 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4697 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4698 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4699 	if (ext4_has_feature_64bit(sb))
4700 		ei->i_file_acl |=
4701 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4702 	inode->i_size = ext4_isize(raw_inode);
4703 	if ((size = i_size_read(inode)) < 0) {
4704 		EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4705 		ret = -EFSCORRUPTED;
4706 		goto bad_inode;
4707 	}
4708 	ei->i_disksize = inode->i_size;
4709 #ifdef CONFIG_QUOTA
4710 	ei->i_reserved_quota = 0;
4711 #endif
4712 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4713 	ei->i_block_group = iloc.block_group;
4714 	ei->i_last_alloc_group = ~0;
4715 	/*
4716 	 * NOTE! The in-memory inode i_data array is in little-endian order
4717 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4718 	 */
4719 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4720 		ei->i_data[block] = raw_inode->i_block[block];
4721 	INIT_LIST_HEAD(&ei->i_orphan);
4722 
4723 	/*
4724 	 * Set transaction id's of transactions that have to be committed
4725 	 * to finish f[data]sync. We set them to currently running transaction
4726 	 * as we cannot be sure that the inode or some of its metadata isn't
4727 	 * part of the transaction - the inode could have been reclaimed and
4728 	 * now it is reread from disk.
4729 	 */
4730 	if (journal) {
4731 		transaction_t *transaction;
4732 		tid_t tid;
4733 
4734 		read_lock(&journal->j_state_lock);
4735 		if (journal->j_running_transaction)
4736 			transaction = journal->j_running_transaction;
4737 		else
4738 			transaction = journal->j_committing_transaction;
4739 		if (transaction)
4740 			tid = transaction->t_tid;
4741 		else
4742 			tid = journal->j_commit_sequence;
4743 		read_unlock(&journal->j_state_lock);
4744 		ei->i_sync_tid = tid;
4745 		ei->i_datasync_tid = tid;
4746 	}
4747 
4748 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4749 		if (ei->i_extra_isize == 0) {
4750 			/* The extra space is currently unused. Use it. */
4751 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4752 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4753 					    EXT4_GOOD_OLD_INODE_SIZE;
4754 		} else {
4755 			ext4_iget_extra_inode(inode, raw_inode, ei);
4756 		}
4757 	}
4758 
4759 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4760 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4761 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4762 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4763 
4764 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4765 		inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4766 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4767 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4768 				inode->i_version |=
4769 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4770 		}
4771 	}
4772 
4773 	ret = 0;
4774 	if (ei->i_file_acl &&
4775 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4776 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4777 				 ei->i_file_acl);
4778 		ret = -EFSCORRUPTED;
4779 		goto bad_inode;
4780 	} else if (!ext4_has_inline_data(inode)) {
4781 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4782 			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4783 			    (S_ISLNK(inode->i_mode) &&
4784 			     !ext4_inode_is_fast_symlink(inode))))
4785 				/* Validate extent which is part of inode */
4786 				ret = ext4_ext_check_inode(inode);
4787 		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4788 			   (S_ISLNK(inode->i_mode) &&
4789 			    !ext4_inode_is_fast_symlink(inode))) {
4790 			/* Validate block references which are part of inode */
4791 			ret = ext4_ind_check_inode(inode);
4792 		}
4793 	}
4794 	if (ret)
4795 		goto bad_inode;
4796 
4797 	if (S_ISREG(inode->i_mode)) {
4798 		inode->i_op = &ext4_file_inode_operations;
4799 		inode->i_fop = &ext4_file_operations;
4800 		ext4_set_aops(inode);
4801 	} else if (S_ISDIR(inode->i_mode)) {
4802 		inode->i_op = &ext4_dir_inode_operations;
4803 		inode->i_fop = &ext4_dir_operations;
4804 	} else if (S_ISLNK(inode->i_mode)) {
4805 		if (ext4_encrypted_inode(inode)) {
4806 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4807 			ext4_set_aops(inode);
4808 		} else if (ext4_inode_is_fast_symlink(inode)) {
4809 			inode->i_link = (char *)ei->i_data;
4810 			inode->i_op = &ext4_fast_symlink_inode_operations;
4811 			nd_terminate_link(ei->i_data, inode->i_size,
4812 				sizeof(ei->i_data) - 1);
4813 		} else {
4814 			inode->i_op = &ext4_symlink_inode_operations;
4815 			ext4_set_aops(inode);
4816 		}
4817 		inode_nohighmem(inode);
4818 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4819 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4820 		inode->i_op = &ext4_special_inode_operations;
4821 		if (raw_inode->i_block[0])
4822 			init_special_inode(inode, inode->i_mode,
4823 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4824 		else
4825 			init_special_inode(inode, inode->i_mode,
4826 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4827 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4828 		make_bad_inode(inode);
4829 	} else {
4830 		ret = -EFSCORRUPTED;
4831 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4832 		goto bad_inode;
4833 	}
4834 	brelse(iloc.bh);
4835 	ext4_set_inode_flags(inode);
4836 	unlock_new_inode(inode);
4837 	return inode;
4838 
4839 bad_inode:
4840 	brelse(iloc.bh);
4841 	iget_failed(inode);
4842 	return ERR_PTR(ret);
4843 }
4844 
4845 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4846 {
4847 	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4848 		return ERR_PTR(-EFSCORRUPTED);
4849 	return ext4_iget(sb, ino);
4850 }
4851 
4852 static int ext4_inode_blocks_set(handle_t *handle,
4853 				struct ext4_inode *raw_inode,
4854 				struct ext4_inode_info *ei)
4855 {
4856 	struct inode *inode = &(ei->vfs_inode);
4857 	u64 i_blocks = inode->i_blocks;
4858 	struct super_block *sb = inode->i_sb;
4859 
4860 	if (i_blocks <= ~0U) {
4861 		/*
4862 		 * i_blocks can be represented in a 32 bit variable
4863 		 * as multiple of 512 bytes
4864 		 */
4865 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4866 		raw_inode->i_blocks_high = 0;
4867 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4868 		return 0;
4869 	}
4870 	if (!ext4_has_feature_huge_file(sb))
4871 		return -EFBIG;
4872 
4873 	if (i_blocks <= 0xffffffffffffULL) {
4874 		/*
4875 		 * i_blocks can be represented in a 48 bit variable
4876 		 * as multiple of 512 bytes
4877 		 */
4878 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4879 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4880 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4881 	} else {
4882 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4883 		/* i_block is stored in file system block size */
4884 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4885 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4886 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4887 	}
4888 	return 0;
4889 }
4890 
4891 struct other_inode {
4892 	unsigned long		orig_ino;
4893 	struct ext4_inode	*raw_inode;
4894 };
4895 
4896 static int other_inode_match(struct inode * inode, unsigned long ino,
4897 			     void *data)
4898 {
4899 	struct other_inode *oi = (struct other_inode *) data;
4900 
4901 	if ((inode->i_ino != ino) ||
4902 	    (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4903 			       I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4904 	    ((inode->i_state & I_DIRTY_TIME) == 0))
4905 		return 0;
4906 	spin_lock(&inode->i_lock);
4907 	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4908 				I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4909 	    (inode->i_state & I_DIRTY_TIME)) {
4910 		struct ext4_inode_info	*ei = EXT4_I(inode);
4911 
4912 		inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4913 		spin_unlock(&inode->i_lock);
4914 
4915 		spin_lock(&ei->i_raw_lock);
4916 		EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4917 		EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4918 		EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4919 		ext4_inode_csum_set(inode, oi->raw_inode, ei);
4920 		spin_unlock(&ei->i_raw_lock);
4921 		trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4922 		return -1;
4923 	}
4924 	spin_unlock(&inode->i_lock);
4925 	return -1;
4926 }
4927 
4928 /*
4929  * Opportunistically update the other time fields for other inodes in
4930  * the same inode table block.
4931  */
4932 static void ext4_update_other_inodes_time(struct super_block *sb,
4933 					  unsigned long orig_ino, char *buf)
4934 {
4935 	struct other_inode oi;
4936 	unsigned long ino;
4937 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4938 	int inode_size = EXT4_INODE_SIZE(sb);
4939 
4940 	oi.orig_ino = orig_ino;
4941 	/*
4942 	 * Calculate the first inode in the inode table block.  Inode
4943 	 * numbers are one-based.  That is, the first inode in a block
4944 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4945 	 */
4946 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4947 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4948 		if (ino == orig_ino)
4949 			continue;
4950 		oi.raw_inode = (struct ext4_inode *) buf;
4951 		(void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4952 	}
4953 }
4954 
4955 /*
4956  * Post the struct inode info into an on-disk inode location in the
4957  * buffer-cache.  This gobbles the caller's reference to the
4958  * buffer_head in the inode location struct.
4959  *
4960  * The caller must have write access to iloc->bh.
4961  */
4962 static int ext4_do_update_inode(handle_t *handle,
4963 				struct inode *inode,
4964 				struct ext4_iloc *iloc)
4965 {
4966 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4967 	struct ext4_inode_info *ei = EXT4_I(inode);
4968 	struct buffer_head *bh = iloc->bh;
4969 	struct super_block *sb = inode->i_sb;
4970 	int err = 0, rc, block;
4971 	int need_datasync = 0, set_large_file = 0;
4972 	uid_t i_uid;
4973 	gid_t i_gid;
4974 	projid_t i_projid;
4975 
4976 	spin_lock(&ei->i_raw_lock);
4977 
4978 	/* For fields not tracked in the in-memory inode,
4979 	 * initialise them to zero for new inodes. */
4980 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4981 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4982 
4983 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4984 	i_uid = i_uid_read(inode);
4985 	i_gid = i_gid_read(inode);
4986 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4987 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4988 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4989 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4990 /*
4991  * Fix up interoperability with old kernels. Otherwise, old inodes get
4992  * re-used with the upper 16 bits of the uid/gid intact
4993  */
4994 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4995 			raw_inode->i_uid_high = 0;
4996 			raw_inode->i_gid_high = 0;
4997 		} else {
4998 			raw_inode->i_uid_high =
4999 				cpu_to_le16(high_16_bits(i_uid));
5000 			raw_inode->i_gid_high =
5001 				cpu_to_le16(high_16_bits(i_gid));
5002 		}
5003 	} else {
5004 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5005 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5006 		raw_inode->i_uid_high = 0;
5007 		raw_inode->i_gid_high = 0;
5008 	}
5009 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5010 
5011 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5012 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5013 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5014 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5015 
5016 	err = ext4_inode_blocks_set(handle, raw_inode, ei);
5017 	if (err) {
5018 		spin_unlock(&ei->i_raw_lock);
5019 		goto out_brelse;
5020 	}
5021 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5022 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5023 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5024 		raw_inode->i_file_acl_high =
5025 			cpu_to_le16(ei->i_file_acl >> 32);
5026 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5027 	if (ei->i_disksize != ext4_isize(raw_inode)) {
5028 		ext4_isize_set(raw_inode, ei->i_disksize);
5029 		need_datasync = 1;
5030 	}
5031 	if (ei->i_disksize > 0x7fffffffULL) {
5032 		if (!ext4_has_feature_large_file(sb) ||
5033 				EXT4_SB(sb)->s_es->s_rev_level ==
5034 		    cpu_to_le32(EXT4_GOOD_OLD_REV))
5035 			set_large_file = 1;
5036 	}
5037 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5038 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5039 		if (old_valid_dev(inode->i_rdev)) {
5040 			raw_inode->i_block[0] =
5041 				cpu_to_le32(old_encode_dev(inode->i_rdev));
5042 			raw_inode->i_block[1] = 0;
5043 		} else {
5044 			raw_inode->i_block[0] = 0;
5045 			raw_inode->i_block[1] =
5046 				cpu_to_le32(new_encode_dev(inode->i_rdev));
5047 			raw_inode->i_block[2] = 0;
5048 		}
5049 	} else if (!ext4_has_inline_data(inode)) {
5050 		for (block = 0; block < EXT4_N_BLOCKS; block++)
5051 			raw_inode->i_block[block] = ei->i_data[block];
5052 	}
5053 
5054 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5055 		raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5056 		if (ei->i_extra_isize) {
5057 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5058 				raw_inode->i_version_hi =
5059 					cpu_to_le32(inode->i_version >> 32);
5060 			raw_inode->i_extra_isize =
5061 				cpu_to_le16(ei->i_extra_isize);
5062 		}
5063 	}
5064 
5065 	BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5066 	       i_projid != EXT4_DEF_PROJID);
5067 
5068 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5069 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5070 		raw_inode->i_projid = cpu_to_le32(i_projid);
5071 
5072 	ext4_inode_csum_set(inode, raw_inode, ei);
5073 	spin_unlock(&ei->i_raw_lock);
5074 	if (inode->i_sb->s_flags & MS_LAZYTIME)
5075 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5076 					      bh->b_data);
5077 
5078 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5079 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5080 	if (!err)
5081 		err = rc;
5082 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5083 	if (set_large_file) {
5084 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5085 		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5086 		if (err)
5087 			goto out_brelse;
5088 		ext4_update_dynamic_rev(sb);
5089 		ext4_set_feature_large_file(sb);
5090 		ext4_handle_sync(handle);
5091 		err = ext4_handle_dirty_super(handle, sb);
5092 	}
5093 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5094 out_brelse:
5095 	brelse(bh);
5096 	ext4_std_error(inode->i_sb, err);
5097 	return err;
5098 }
5099 
5100 /*
5101  * ext4_write_inode()
5102  *
5103  * We are called from a few places:
5104  *
5105  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5106  *   Here, there will be no transaction running. We wait for any running
5107  *   transaction to commit.
5108  *
5109  * - Within flush work (sys_sync(), kupdate and such).
5110  *   We wait on commit, if told to.
5111  *
5112  * - Within iput_final() -> write_inode_now()
5113  *   We wait on commit, if told to.
5114  *
5115  * In all cases it is actually safe for us to return without doing anything,
5116  * because the inode has been copied into a raw inode buffer in
5117  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5118  * writeback.
5119  *
5120  * Note that we are absolutely dependent upon all inode dirtiers doing the
5121  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5122  * which we are interested.
5123  *
5124  * It would be a bug for them to not do this.  The code:
5125  *
5126  *	mark_inode_dirty(inode)
5127  *	stuff();
5128  *	inode->i_size = expr;
5129  *
5130  * is in error because write_inode() could occur while `stuff()' is running,
5131  * and the new i_size will be lost.  Plus the inode will no longer be on the
5132  * superblock's dirty inode list.
5133  */
5134 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5135 {
5136 	int err;
5137 
5138 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5139 		return 0;
5140 
5141 	if (EXT4_SB(inode->i_sb)->s_journal) {
5142 		if (ext4_journal_current_handle()) {
5143 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5144 			dump_stack();
5145 			return -EIO;
5146 		}
5147 
5148 		/*
5149 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5150 		 * ext4_sync_fs() will force the commit after everything is
5151 		 * written.
5152 		 */
5153 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5154 			return 0;
5155 
5156 		err = ext4_force_commit(inode->i_sb);
5157 	} else {
5158 		struct ext4_iloc iloc;
5159 
5160 		err = __ext4_get_inode_loc(inode, &iloc, 0);
5161 		if (err)
5162 			return err;
5163 		/*
5164 		 * sync(2) will flush the whole buffer cache. No need to do
5165 		 * it here separately for each inode.
5166 		 */
5167 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5168 			sync_dirty_buffer(iloc.bh);
5169 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5170 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5171 					 "IO error syncing inode");
5172 			err = -EIO;
5173 		}
5174 		brelse(iloc.bh);
5175 	}
5176 	return err;
5177 }
5178 
5179 /*
5180  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5181  * buffers that are attached to a page stradding i_size and are undergoing
5182  * commit. In that case we have to wait for commit to finish and try again.
5183  */
5184 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5185 {
5186 	struct page *page;
5187 	unsigned offset;
5188 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5189 	tid_t commit_tid = 0;
5190 	int ret;
5191 
5192 	offset = inode->i_size & (PAGE_SIZE - 1);
5193 	/*
5194 	 * All buffers in the last page remain valid? Then there's nothing to
5195 	 * do. We do the check mainly to optimize the common PAGE_SIZE ==
5196 	 * blocksize case
5197 	 */
5198 	if (offset > PAGE_SIZE - i_blocksize(inode))
5199 		return;
5200 	while (1) {
5201 		page = find_lock_page(inode->i_mapping,
5202 				      inode->i_size >> PAGE_SHIFT);
5203 		if (!page)
5204 			return;
5205 		ret = __ext4_journalled_invalidatepage(page, offset,
5206 						PAGE_SIZE - offset);
5207 		unlock_page(page);
5208 		put_page(page);
5209 		if (ret != -EBUSY)
5210 			return;
5211 		commit_tid = 0;
5212 		read_lock(&journal->j_state_lock);
5213 		if (journal->j_committing_transaction)
5214 			commit_tid = journal->j_committing_transaction->t_tid;
5215 		read_unlock(&journal->j_state_lock);
5216 		if (commit_tid)
5217 			jbd2_log_wait_commit(journal, commit_tid);
5218 	}
5219 }
5220 
5221 /*
5222  * ext4_setattr()
5223  *
5224  * Called from notify_change.
5225  *
5226  * We want to trap VFS attempts to truncate the file as soon as
5227  * possible.  In particular, we want to make sure that when the VFS
5228  * shrinks i_size, we put the inode on the orphan list and modify
5229  * i_disksize immediately, so that during the subsequent flushing of
5230  * dirty pages and freeing of disk blocks, we can guarantee that any
5231  * commit will leave the blocks being flushed in an unused state on
5232  * disk.  (On recovery, the inode will get truncated and the blocks will
5233  * be freed, so we have a strong guarantee that no future commit will
5234  * leave these blocks visible to the user.)
5235  *
5236  * Another thing we have to assure is that if we are in ordered mode
5237  * and inode is still attached to the committing transaction, we must
5238  * we start writeout of all the dirty pages which are being truncated.
5239  * This way we are sure that all the data written in the previous
5240  * transaction are already on disk (truncate waits for pages under
5241  * writeback).
5242  *
5243  * Called with inode->i_mutex down.
5244  */
5245 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5246 {
5247 	struct inode *inode = d_inode(dentry);
5248 	int error, rc = 0;
5249 	int orphan = 0;
5250 	const unsigned int ia_valid = attr->ia_valid;
5251 
5252 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5253 		return -EIO;
5254 
5255 	error = setattr_prepare(dentry, attr);
5256 	if (error)
5257 		return error;
5258 
5259 	if (is_quota_modification(inode, attr)) {
5260 		error = dquot_initialize(inode);
5261 		if (error)
5262 			return error;
5263 	}
5264 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5265 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5266 		handle_t *handle;
5267 
5268 		/* (user+group)*(old+new) structure, inode write (sb,
5269 		 * inode block, ? - but truncate inode update has it) */
5270 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5271 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5272 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5273 		if (IS_ERR(handle)) {
5274 			error = PTR_ERR(handle);
5275 			goto err_out;
5276 		}
5277 		error = dquot_transfer(inode, attr);
5278 		if (error) {
5279 			ext4_journal_stop(handle);
5280 			return error;
5281 		}
5282 		/* Update corresponding info in inode so that everything is in
5283 		 * one transaction */
5284 		if (attr->ia_valid & ATTR_UID)
5285 			inode->i_uid = attr->ia_uid;
5286 		if (attr->ia_valid & ATTR_GID)
5287 			inode->i_gid = attr->ia_gid;
5288 		error = ext4_mark_inode_dirty(handle, inode);
5289 		ext4_journal_stop(handle);
5290 	}
5291 
5292 	if (attr->ia_valid & ATTR_SIZE) {
5293 		handle_t *handle;
5294 		loff_t oldsize = inode->i_size;
5295 		int shrink = (attr->ia_size <= inode->i_size);
5296 
5297 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5298 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5299 
5300 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
5301 				return -EFBIG;
5302 		}
5303 		if (!S_ISREG(inode->i_mode))
5304 			return -EINVAL;
5305 
5306 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5307 			inode_inc_iversion(inode);
5308 
5309 		if (ext4_should_order_data(inode) &&
5310 		    (attr->ia_size < inode->i_size)) {
5311 			error = ext4_begin_ordered_truncate(inode,
5312 							    attr->ia_size);
5313 			if (error)
5314 				goto err_out;
5315 		}
5316 		if (attr->ia_size != inode->i_size) {
5317 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5318 			if (IS_ERR(handle)) {
5319 				error = PTR_ERR(handle);
5320 				goto err_out;
5321 			}
5322 			if (ext4_handle_valid(handle) && shrink) {
5323 				error = ext4_orphan_add(handle, inode);
5324 				orphan = 1;
5325 			}
5326 			/*
5327 			 * Update c/mtime on truncate up, ext4_truncate() will
5328 			 * update c/mtime in shrink case below
5329 			 */
5330 			if (!shrink) {
5331 				inode->i_mtime = current_time(inode);
5332 				inode->i_ctime = inode->i_mtime;
5333 			}
5334 			down_write(&EXT4_I(inode)->i_data_sem);
5335 			EXT4_I(inode)->i_disksize = attr->ia_size;
5336 			rc = ext4_mark_inode_dirty(handle, inode);
5337 			if (!error)
5338 				error = rc;
5339 			/*
5340 			 * We have to update i_size under i_data_sem together
5341 			 * with i_disksize to avoid races with writeback code
5342 			 * running ext4_wb_update_i_disksize().
5343 			 */
5344 			if (!error)
5345 				i_size_write(inode, attr->ia_size);
5346 			up_write(&EXT4_I(inode)->i_data_sem);
5347 			ext4_journal_stop(handle);
5348 			if (error) {
5349 				if (orphan)
5350 					ext4_orphan_del(NULL, inode);
5351 				goto err_out;
5352 			}
5353 		}
5354 		if (!shrink)
5355 			pagecache_isize_extended(inode, oldsize, inode->i_size);
5356 
5357 		/*
5358 		 * Blocks are going to be removed from the inode. Wait
5359 		 * for dio in flight.  Temporarily disable
5360 		 * dioread_nolock to prevent livelock.
5361 		 */
5362 		if (orphan) {
5363 			if (!ext4_should_journal_data(inode)) {
5364 				ext4_inode_block_unlocked_dio(inode);
5365 				inode_dio_wait(inode);
5366 				ext4_inode_resume_unlocked_dio(inode);
5367 			} else
5368 				ext4_wait_for_tail_page_commit(inode);
5369 		}
5370 		down_write(&EXT4_I(inode)->i_mmap_sem);
5371 		/*
5372 		 * Truncate pagecache after we've waited for commit
5373 		 * in data=journal mode to make pages freeable.
5374 		 */
5375 		truncate_pagecache(inode, inode->i_size);
5376 		if (shrink) {
5377 			rc = ext4_truncate(inode);
5378 			if (rc)
5379 				error = rc;
5380 		}
5381 		up_write(&EXT4_I(inode)->i_mmap_sem);
5382 	}
5383 
5384 	if (!error) {
5385 		setattr_copy(inode, attr);
5386 		mark_inode_dirty(inode);
5387 	}
5388 
5389 	/*
5390 	 * If the call to ext4_truncate failed to get a transaction handle at
5391 	 * all, we need to clean up the in-core orphan list manually.
5392 	 */
5393 	if (orphan && inode->i_nlink)
5394 		ext4_orphan_del(NULL, inode);
5395 
5396 	if (!error && (ia_valid & ATTR_MODE))
5397 		rc = posix_acl_chmod(inode, inode->i_mode);
5398 
5399 err_out:
5400 	ext4_std_error(inode->i_sb, error);
5401 	if (!error)
5402 		error = rc;
5403 	return error;
5404 }
5405 
5406 int ext4_getattr(const struct path *path, struct kstat *stat,
5407 		 u32 request_mask, unsigned int query_flags)
5408 {
5409 	struct inode *inode = d_inode(path->dentry);
5410 	struct ext4_inode *raw_inode;
5411 	struct ext4_inode_info *ei = EXT4_I(inode);
5412 	unsigned int flags;
5413 
5414 	if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5415 		stat->result_mask |= STATX_BTIME;
5416 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5417 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5418 	}
5419 
5420 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5421 	if (flags & EXT4_APPEND_FL)
5422 		stat->attributes |= STATX_ATTR_APPEND;
5423 	if (flags & EXT4_COMPR_FL)
5424 		stat->attributes |= STATX_ATTR_COMPRESSED;
5425 	if (flags & EXT4_ENCRYPT_FL)
5426 		stat->attributes |= STATX_ATTR_ENCRYPTED;
5427 	if (flags & EXT4_IMMUTABLE_FL)
5428 		stat->attributes |= STATX_ATTR_IMMUTABLE;
5429 	if (flags & EXT4_NODUMP_FL)
5430 		stat->attributes |= STATX_ATTR_NODUMP;
5431 
5432 	stat->attributes_mask |= (STATX_ATTR_APPEND |
5433 				  STATX_ATTR_COMPRESSED |
5434 				  STATX_ATTR_ENCRYPTED |
5435 				  STATX_ATTR_IMMUTABLE |
5436 				  STATX_ATTR_NODUMP);
5437 
5438 	generic_fillattr(inode, stat);
5439 	return 0;
5440 }
5441 
5442 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5443 		      u32 request_mask, unsigned int query_flags)
5444 {
5445 	struct inode *inode = d_inode(path->dentry);
5446 	u64 delalloc_blocks;
5447 
5448 	ext4_getattr(path, stat, request_mask, query_flags);
5449 
5450 	/*
5451 	 * If there is inline data in the inode, the inode will normally not
5452 	 * have data blocks allocated (it may have an external xattr block).
5453 	 * Report at least one sector for such files, so tools like tar, rsync,
5454 	 * others don't incorrectly think the file is completely sparse.
5455 	 */
5456 	if (unlikely(ext4_has_inline_data(inode)))
5457 		stat->blocks += (stat->size + 511) >> 9;
5458 
5459 	/*
5460 	 * We can't update i_blocks if the block allocation is delayed
5461 	 * otherwise in the case of system crash before the real block
5462 	 * allocation is done, we will have i_blocks inconsistent with
5463 	 * on-disk file blocks.
5464 	 * We always keep i_blocks updated together with real
5465 	 * allocation. But to not confuse with user, stat
5466 	 * will return the blocks that include the delayed allocation
5467 	 * blocks for this file.
5468 	 */
5469 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5470 				   EXT4_I(inode)->i_reserved_data_blocks);
5471 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5472 	return 0;
5473 }
5474 
5475 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5476 				   int pextents)
5477 {
5478 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5479 		return ext4_ind_trans_blocks(inode, lblocks);
5480 	return ext4_ext_index_trans_blocks(inode, pextents);
5481 }
5482 
5483 /*
5484  * Account for index blocks, block groups bitmaps and block group
5485  * descriptor blocks if modify datablocks and index blocks
5486  * worse case, the indexs blocks spread over different block groups
5487  *
5488  * If datablocks are discontiguous, they are possible to spread over
5489  * different block groups too. If they are contiguous, with flexbg,
5490  * they could still across block group boundary.
5491  *
5492  * Also account for superblock, inode, quota and xattr blocks
5493  */
5494 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5495 				  int pextents)
5496 {
5497 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5498 	int gdpblocks;
5499 	int idxblocks;
5500 	int ret = 0;
5501 
5502 	/*
5503 	 * How many index blocks need to touch to map @lblocks logical blocks
5504 	 * to @pextents physical extents?
5505 	 */
5506 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5507 
5508 	ret = idxblocks;
5509 
5510 	/*
5511 	 * Now let's see how many group bitmaps and group descriptors need
5512 	 * to account
5513 	 */
5514 	groups = idxblocks + pextents;
5515 	gdpblocks = groups;
5516 	if (groups > ngroups)
5517 		groups = ngroups;
5518 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5519 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5520 
5521 	/* bitmaps and block group descriptor blocks */
5522 	ret += groups + gdpblocks;
5523 
5524 	/* Blocks for super block, inode, quota and xattr blocks */
5525 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5526 
5527 	return ret;
5528 }
5529 
5530 /*
5531  * Calculate the total number of credits to reserve to fit
5532  * the modification of a single pages into a single transaction,
5533  * which may include multiple chunks of block allocations.
5534  *
5535  * This could be called via ext4_write_begin()
5536  *
5537  * We need to consider the worse case, when
5538  * one new block per extent.
5539  */
5540 int ext4_writepage_trans_blocks(struct inode *inode)
5541 {
5542 	int bpp = ext4_journal_blocks_per_page(inode);
5543 	int ret;
5544 
5545 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5546 
5547 	/* Account for data blocks for journalled mode */
5548 	if (ext4_should_journal_data(inode))
5549 		ret += bpp;
5550 	return ret;
5551 }
5552 
5553 /*
5554  * Calculate the journal credits for a chunk of data modification.
5555  *
5556  * This is called from DIO, fallocate or whoever calling
5557  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5558  *
5559  * journal buffers for data blocks are not included here, as DIO
5560  * and fallocate do no need to journal data buffers.
5561  */
5562 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5563 {
5564 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5565 }
5566 
5567 /*
5568  * The caller must have previously called ext4_reserve_inode_write().
5569  * Give this, we know that the caller already has write access to iloc->bh.
5570  */
5571 int ext4_mark_iloc_dirty(handle_t *handle,
5572 			 struct inode *inode, struct ext4_iloc *iloc)
5573 {
5574 	int err = 0;
5575 
5576 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5577 		return -EIO;
5578 
5579 	if (IS_I_VERSION(inode))
5580 		inode_inc_iversion(inode);
5581 
5582 	/* the do_update_inode consumes one bh->b_count */
5583 	get_bh(iloc->bh);
5584 
5585 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5586 	err = ext4_do_update_inode(handle, inode, iloc);
5587 	put_bh(iloc->bh);
5588 	return err;
5589 }
5590 
5591 /*
5592  * On success, We end up with an outstanding reference count against
5593  * iloc->bh.  This _must_ be cleaned up later.
5594  */
5595 
5596 int
5597 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5598 			 struct ext4_iloc *iloc)
5599 {
5600 	int err;
5601 
5602 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5603 		return -EIO;
5604 
5605 	err = ext4_get_inode_loc(inode, iloc);
5606 	if (!err) {
5607 		BUFFER_TRACE(iloc->bh, "get_write_access");
5608 		err = ext4_journal_get_write_access(handle, iloc->bh);
5609 		if (err) {
5610 			brelse(iloc->bh);
5611 			iloc->bh = NULL;
5612 		}
5613 	}
5614 	ext4_std_error(inode->i_sb, err);
5615 	return err;
5616 }
5617 
5618 /*
5619  * Expand an inode by new_extra_isize bytes.
5620  * Returns 0 on success or negative error number on failure.
5621  */
5622 static int ext4_expand_extra_isize(struct inode *inode,
5623 				   unsigned int new_extra_isize,
5624 				   struct ext4_iloc iloc,
5625 				   handle_t *handle)
5626 {
5627 	struct ext4_inode *raw_inode;
5628 	struct ext4_xattr_ibody_header *header;
5629 
5630 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5631 		return 0;
5632 
5633 	raw_inode = ext4_raw_inode(&iloc);
5634 
5635 	header = IHDR(inode, raw_inode);
5636 
5637 	/* No extended attributes present */
5638 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5639 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5640 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5641 			new_extra_isize);
5642 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5643 		return 0;
5644 	}
5645 
5646 	/* try to expand with EAs present */
5647 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5648 					  raw_inode, handle);
5649 }
5650 
5651 /*
5652  * What we do here is to mark the in-core inode as clean with respect to inode
5653  * dirtiness (it may still be data-dirty).
5654  * This means that the in-core inode may be reaped by prune_icache
5655  * without having to perform any I/O.  This is a very good thing,
5656  * because *any* task may call prune_icache - even ones which
5657  * have a transaction open against a different journal.
5658  *
5659  * Is this cheating?  Not really.  Sure, we haven't written the
5660  * inode out, but prune_icache isn't a user-visible syncing function.
5661  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5662  * we start and wait on commits.
5663  */
5664 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5665 {
5666 	struct ext4_iloc iloc;
5667 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5668 	static unsigned int mnt_count;
5669 	int err, ret;
5670 
5671 	might_sleep();
5672 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5673 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5674 	if (err)
5675 		return err;
5676 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5677 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5678 		/*
5679 		 * In nojournal mode, we can immediately attempt to expand
5680 		 * the inode.  When journaled, we first need to obtain extra
5681 		 * buffer credits since we may write into the EA block
5682 		 * with this same handle. If journal_extend fails, then it will
5683 		 * only result in a minor loss of functionality for that inode.
5684 		 * If this is felt to be critical, then e2fsck should be run to
5685 		 * force a large enough s_min_extra_isize.
5686 		 */
5687 		if (!ext4_handle_valid(handle) ||
5688 		    jbd2_journal_extend(handle,
5689 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) == 0) {
5690 			ret = ext4_expand_extra_isize(inode,
5691 						      sbi->s_want_extra_isize,
5692 						      iloc, handle);
5693 			if (ret) {
5694 				if (mnt_count !=
5695 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5696 					ext4_warning(inode->i_sb,
5697 					"Unable to expand inode %lu. Delete"
5698 					" some EAs or run e2fsck.",
5699 					inode->i_ino);
5700 					mnt_count =
5701 					  le16_to_cpu(sbi->s_es->s_mnt_count);
5702 				}
5703 			}
5704 		}
5705 	}
5706 	return ext4_mark_iloc_dirty(handle, inode, &iloc);
5707 }
5708 
5709 /*
5710  * ext4_dirty_inode() is called from __mark_inode_dirty()
5711  *
5712  * We're really interested in the case where a file is being extended.
5713  * i_size has been changed by generic_commit_write() and we thus need
5714  * to include the updated inode in the current transaction.
5715  *
5716  * Also, dquot_alloc_block() will always dirty the inode when blocks
5717  * are allocated to the file.
5718  *
5719  * If the inode is marked synchronous, we don't honour that here - doing
5720  * so would cause a commit on atime updates, which we don't bother doing.
5721  * We handle synchronous inodes at the highest possible level.
5722  *
5723  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5724  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5725  * to copy into the on-disk inode structure are the timestamp files.
5726  */
5727 void ext4_dirty_inode(struct inode *inode, int flags)
5728 {
5729 	handle_t *handle;
5730 
5731 	if (flags == I_DIRTY_TIME)
5732 		return;
5733 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5734 	if (IS_ERR(handle))
5735 		goto out;
5736 
5737 	ext4_mark_inode_dirty(handle, inode);
5738 
5739 	ext4_journal_stop(handle);
5740 out:
5741 	return;
5742 }
5743 
5744 #if 0
5745 /*
5746  * Bind an inode's backing buffer_head into this transaction, to prevent
5747  * it from being flushed to disk early.  Unlike
5748  * ext4_reserve_inode_write, this leaves behind no bh reference and
5749  * returns no iloc structure, so the caller needs to repeat the iloc
5750  * lookup to mark the inode dirty later.
5751  */
5752 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5753 {
5754 	struct ext4_iloc iloc;
5755 
5756 	int err = 0;
5757 	if (handle) {
5758 		err = ext4_get_inode_loc(inode, &iloc);
5759 		if (!err) {
5760 			BUFFER_TRACE(iloc.bh, "get_write_access");
5761 			err = jbd2_journal_get_write_access(handle, iloc.bh);
5762 			if (!err)
5763 				err = ext4_handle_dirty_metadata(handle,
5764 								 NULL,
5765 								 iloc.bh);
5766 			brelse(iloc.bh);
5767 		}
5768 	}
5769 	ext4_std_error(inode->i_sb, err);
5770 	return err;
5771 }
5772 #endif
5773 
5774 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5775 {
5776 	journal_t *journal;
5777 	handle_t *handle;
5778 	int err;
5779 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5780 
5781 	/*
5782 	 * We have to be very careful here: changing a data block's
5783 	 * journaling status dynamically is dangerous.  If we write a
5784 	 * data block to the journal, change the status and then delete
5785 	 * that block, we risk forgetting to revoke the old log record
5786 	 * from the journal and so a subsequent replay can corrupt data.
5787 	 * So, first we make sure that the journal is empty and that
5788 	 * nobody is changing anything.
5789 	 */
5790 
5791 	journal = EXT4_JOURNAL(inode);
5792 	if (!journal)
5793 		return 0;
5794 	if (is_journal_aborted(journal))
5795 		return -EROFS;
5796 
5797 	/* Wait for all existing dio workers */
5798 	ext4_inode_block_unlocked_dio(inode);
5799 	inode_dio_wait(inode);
5800 
5801 	/*
5802 	 * Before flushing the journal and switching inode's aops, we have
5803 	 * to flush all dirty data the inode has. There can be outstanding
5804 	 * delayed allocations, there can be unwritten extents created by
5805 	 * fallocate or buffered writes in dioread_nolock mode covered by
5806 	 * dirty data which can be converted only after flushing the dirty
5807 	 * data (and journalled aops don't know how to handle these cases).
5808 	 */
5809 	if (val) {
5810 		down_write(&EXT4_I(inode)->i_mmap_sem);
5811 		err = filemap_write_and_wait(inode->i_mapping);
5812 		if (err < 0) {
5813 			up_write(&EXT4_I(inode)->i_mmap_sem);
5814 			ext4_inode_resume_unlocked_dio(inode);
5815 			return err;
5816 		}
5817 	}
5818 
5819 	percpu_down_write(&sbi->s_journal_flag_rwsem);
5820 	jbd2_journal_lock_updates(journal);
5821 
5822 	/*
5823 	 * OK, there are no updates running now, and all cached data is
5824 	 * synced to disk.  We are now in a completely consistent state
5825 	 * which doesn't have anything in the journal, and we know that
5826 	 * no filesystem updates are running, so it is safe to modify
5827 	 * the inode's in-core data-journaling state flag now.
5828 	 */
5829 
5830 	if (val)
5831 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5832 	else {
5833 		err = jbd2_journal_flush(journal);
5834 		if (err < 0) {
5835 			jbd2_journal_unlock_updates(journal);
5836 			percpu_up_write(&sbi->s_journal_flag_rwsem);
5837 			ext4_inode_resume_unlocked_dio(inode);
5838 			return err;
5839 		}
5840 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5841 	}
5842 	ext4_set_aops(inode);
5843 	/*
5844 	 * Update inode->i_flags after EXT4_INODE_JOURNAL_DATA was updated.
5845 	 * E.g. S_DAX may get cleared / set.
5846 	 */
5847 	ext4_set_inode_flags(inode);
5848 
5849 	jbd2_journal_unlock_updates(journal);
5850 	percpu_up_write(&sbi->s_journal_flag_rwsem);
5851 
5852 	if (val)
5853 		up_write(&EXT4_I(inode)->i_mmap_sem);
5854 	ext4_inode_resume_unlocked_dio(inode);
5855 
5856 	/* Finally we can mark the inode as dirty. */
5857 
5858 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5859 	if (IS_ERR(handle))
5860 		return PTR_ERR(handle);
5861 
5862 	err = ext4_mark_inode_dirty(handle, inode);
5863 	ext4_handle_sync(handle);
5864 	ext4_journal_stop(handle);
5865 	ext4_std_error(inode->i_sb, err);
5866 
5867 	return err;
5868 }
5869 
5870 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5871 {
5872 	return !buffer_mapped(bh);
5873 }
5874 
5875 int ext4_page_mkwrite(struct vm_fault *vmf)
5876 {
5877 	struct vm_area_struct *vma = vmf->vma;
5878 	struct page *page = vmf->page;
5879 	loff_t size;
5880 	unsigned long len;
5881 	int ret;
5882 	struct file *file = vma->vm_file;
5883 	struct inode *inode = file_inode(file);
5884 	struct address_space *mapping = inode->i_mapping;
5885 	handle_t *handle;
5886 	get_block_t *get_block;
5887 	int retries = 0;
5888 
5889 	sb_start_pagefault(inode->i_sb);
5890 	file_update_time(vma->vm_file);
5891 
5892 	down_read(&EXT4_I(inode)->i_mmap_sem);
5893 
5894 	ret = ext4_convert_inline_data(inode);
5895 	if (ret)
5896 		goto out_ret;
5897 
5898 	/* Delalloc case is easy... */
5899 	if (test_opt(inode->i_sb, DELALLOC) &&
5900 	    !ext4_should_journal_data(inode) &&
5901 	    !ext4_nonda_switch(inode->i_sb)) {
5902 		do {
5903 			ret = block_page_mkwrite(vma, vmf,
5904 						   ext4_da_get_block_prep);
5905 		} while (ret == -ENOSPC &&
5906 		       ext4_should_retry_alloc(inode->i_sb, &retries));
5907 		goto out_ret;
5908 	}
5909 
5910 	lock_page(page);
5911 	size = i_size_read(inode);
5912 	/* Page got truncated from under us? */
5913 	if (page->mapping != mapping || page_offset(page) > size) {
5914 		unlock_page(page);
5915 		ret = VM_FAULT_NOPAGE;
5916 		goto out;
5917 	}
5918 
5919 	if (page->index == size >> PAGE_SHIFT)
5920 		len = size & ~PAGE_MASK;
5921 	else
5922 		len = PAGE_SIZE;
5923 	/*
5924 	 * Return if we have all the buffers mapped. This avoids the need to do
5925 	 * journal_start/journal_stop which can block and take a long time
5926 	 */
5927 	if (page_has_buffers(page)) {
5928 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5929 					    0, len, NULL,
5930 					    ext4_bh_unmapped)) {
5931 			/* Wait so that we don't change page under IO */
5932 			wait_for_stable_page(page);
5933 			ret = VM_FAULT_LOCKED;
5934 			goto out;
5935 		}
5936 	}
5937 	unlock_page(page);
5938 	/* OK, we need to fill the hole... */
5939 	if (ext4_should_dioread_nolock(inode))
5940 		get_block = ext4_get_block_unwritten;
5941 	else
5942 		get_block = ext4_get_block;
5943 retry_alloc:
5944 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5945 				    ext4_writepage_trans_blocks(inode));
5946 	if (IS_ERR(handle)) {
5947 		ret = VM_FAULT_SIGBUS;
5948 		goto out;
5949 	}
5950 	ret = block_page_mkwrite(vma, vmf, get_block);
5951 	if (!ret && ext4_should_journal_data(inode)) {
5952 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5953 			  PAGE_SIZE, NULL, do_journal_get_write_access)) {
5954 			unlock_page(page);
5955 			ret = VM_FAULT_SIGBUS;
5956 			ext4_journal_stop(handle);
5957 			goto out;
5958 		}
5959 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5960 	}
5961 	ext4_journal_stop(handle);
5962 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5963 		goto retry_alloc;
5964 out_ret:
5965 	ret = block_page_mkwrite_return(ret);
5966 out:
5967 	up_read(&EXT4_I(inode)->i_mmap_sem);
5968 	sb_end_pagefault(inode->i_sb);
5969 	return ret;
5970 }
5971 
5972 int ext4_filemap_fault(struct vm_fault *vmf)
5973 {
5974 	struct inode *inode = file_inode(vmf->vma->vm_file);
5975 	int err;
5976 
5977 	down_read(&EXT4_I(inode)->i_mmap_sem);
5978 	err = filemap_fault(vmf);
5979 	up_read(&EXT4_I(inode)->i_mmap_sem);
5980 
5981 	return err;
5982 }
5983 
5984 /*
5985  * Find the first extent at or after @lblk in an inode that is not a hole.
5986  * Search for @map_len blocks at most. The extent is returned in @result.
5987  *
5988  * The function returns 1 if we found an extent. The function returns 0 in
5989  * case there is no extent at or after @lblk and in that case also sets
5990  * @result->es_len to 0. In case of error, the error code is returned.
5991  */
5992 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
5993 			 unsigned int map_len, struct extent_status *result)
5994 {
5995 	struct ext4_map_blocks map;
5996 	struct extent_status es = {};
5997 	int ret;
5998 
5999 	map.m_lblk = lblk;
6000 	map.m_len = map_len;
6001 
6002 	/*
6003 	 * For non-extent based files this loop may iterate several times since
6004 	 * we do not determine full hole size.
6005 	 */
6006 	while (map.m_len > 0) {
6007 		ret = ext4_map_blocks(NULL, inode, &map, 0);
6008 		if (ret < 0)
6009 			return ret;
6010 		/* There's extent covering m_lblk? Just return it. */
6011 		if (ret > 0) {
6012 			int status;
6013 
6014 			ext4_es_store_pblock(result, map.m_pblk);
6015 			result->es_lblk = map.m_lblk;
6016 			result->es_len = map.m_len;
6017 			if (map.m_flags & EXT4_MAP_UNWRITTEN)
6018 				status = EXTENT_STATUS_UNWRITTEN;
6019 			else
6020 				status = EXTENT_STATUS_WRITTEN;
6021 			ext4_es_store_status(result, status);
6022 			return 1;
6023 		}
6024 		ext4_es_find_delayed_extent_range(inode, map.m_lblk,
6025 						  map.m_lblk + map.m_len - 1,
6026 						  &es);
6027 		/* Is delalloc data before next block in extent tree? */
6028 		if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
6029 			ext4_lblk_t offset = 0;
6030 
6031 			if (es.es_lblk < lblk)
6032 				offset = lblk - es.es_lblk;
6033 			result->es_lblk = es.es_lblk + offset;
6034 			ext4_es_store_pblock(result,
6035 					     ext4_es_pblock(&es) + offset);
6036 			result->es_len = es.es_len - offset;
6037 			ext4_es_store_status(result, ext4_es_status(&es));
6038 
6039 			return 1;
6040 		}
6041 		/* There's a hole at m_lblk, advance us after it */
6042 		map.m_lblk += map.m_len;
6043 		map_len -= map.m_len;
6044 		map.m_len = map_len;
6045 		cond_resched();
6046 	}
6047 	result->es_len = 0;
6048 	return 0;
6049 }
6050