1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Goal-directed block allocation by Stephen Tweedie 16 * (sct@redhat.com), 1993, 1998 17 * Big-endian to little-endian byte-swapping/bitmaps by 18 * David S. Miller (davem@caip.rutgers.edu), 1995 19 * 64-bit file support on 64-bit platforms by Jakub Jelinek 20 * (jj@sunsite.ms.mff.cuni.cz) 21 * 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 23 */ 24 25 #include <linux/module.h> 26 #include <linux/fs.h> 27 #include <linux/time.h> 28 #include <linux/jbd2.h> 29 #include <linux/highuid.h> 30 #include <linux/pagemap.h> 31 #include <linux/quotaops.h> 32 #include <linux/string.h> 33 #include <linux/buffer_head.h> 34 #include <linux/writeback.h> 35 #include <linux/mpage.h> 36 #include <linux/uio.h> 37 #include <linux/bio.h> 38 #include "ext4_jbd2.h" 39 #include "xattr.h" 40 #include "acl.h" 41 42 /* 43 * Test whether an inode is a fast symlink. 44 */ 45 static int ext4_inode_is_fast_symlink(struct inode *inode) 46 { 47 int ea_blocks = EXT4_I(inode)->i_file_acl ? 48 (inode->i_sb->s_blocksize >> 9) : 0; 49 50 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 51 } 52 53 /* 54 * The ext4 forget function must perform a revoke if we are freeing data 55 * which has been journaled. Metadata (eg. indirect blocks) must be 56 * revoked in all cases. 57 * 58 * "bh" may be NULL: a metadata block may have been freed from memory 59 * but there may still be a record of it in the journal, and that record 60 * still needs to be revoked. 61 */ 62 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode, 63 struct buffer_head *bh, ext4_fsblk_t blocknr) 64 { 65 int err; 66 67 might_sleep(); 68 69 BUFFER_TRACE(bh, "enter"); 70 71 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, " 72 "data mode %lx\n", 73 bh, is_metadata, inode->i_mode, 74 test_opt(inode->i_sb, DATA_FLAGS)); 75 76 /* Never use the revoke function if we are doing full data 77 * journaling: there is no need to, and a V1 superblock won't 78 * support it. Otherwise, only skip the revoke on un-journaled 79 * data blocks. */ 80 81 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA || 82 (!is_metadata && !ext4_should_journal_data(inode))) { 83 if (bh) { 84 BUFFER_TRACE(bh, "call jbd2_journal_forget"); 85 return ext4_journal_forget(handle, bh); 86 } 87 return 0; 88 } 89 90 /* 91 * data!=journal && (is_metadata || should_journal_data(inode)) 92 */ 93 BUFFER_TRACE(bh, "call ext4_journal_revoke"); 94 err = ext4_journal_revoke(handle, blocknr, bh); 95 if (err) 96 ext4_abort(inode->i_sb, __func__, 97 "error %d when attempting revoke", err); 98 BUFFER_TRACE(bh, "exit"); 99 return err; 100 } 101 102 /* 103 * Work out how many blocks we need to proceed with the next chunk of a 104 * truncate transaction. 105 */ 106 static unsigned long blocks_for_truncate(struct inode *inode) 107 { 108 ext4_lblk_t needed; 109 110 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9); 111 112 /* Give ourselves just enough room to cope with inodes in which 113 * i_blocks is corrupt: we've seen disk corruptions in the past 114 * which resulted in random data in an inode which looked enough 115 * like a regular file for ext4 to try to delete it. Things 116 * will go a bit crazy if that happens, but at least we should 117 * try not to panic the whole kernel. */ 118 if (needed < 2) 119 needed = 2; 120 121 /* But we need to bound the transaction so we don't overflow the 122 * journal. */ 123 if (needed > EXT4_MAX_TRANS_DATA) 124 needed = EXT4_MAX_TRANS_DATA; 125 126 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed; 127 } 128 129 /* 130 * Truncate transactions can be complex and absolutely huge. So we need to 131 * be able to restart the transaction at a conventient checkpoint to make 132 * sure we don't overflow the journal. 133 * 134 * start_transaction gets us a new handle for a truncate transaction, 135 * and extend_transaction tries to extend the existing one a bit. If 136 * extend fails, we need to propagate the failure up and restart the 137 * transaction in the top-level truncate loop. --sct 138 */ 139 static handle_t *start_transaction(struct inode *inode) 140 { 141 handle_t *result; 142 143 result = ext4_journal_start(inode, blocks_for_truncate(inode)); 144 if (!IS_ERR(result)) 145 return result; 146 147 ext4_std_error(inode->i_sb, PTR_ERR(result)); 148 return result; 149 } 150 151 /* 152 * Try to extend this transaction for the purposes of truncation. 153 * 154 * Returns 0 if we managed to create more room. If we can't create more 155 * room, and the transaction must be restarted we return 1. 156 */ 157 static int try_to_extend_transaction(handle_t *handle, struct inode *inode) 158 { 159 if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS) 160 return 0; 161 if (!ext4_journal_extend(handle, blocks_for_truncate(inode))) 162 return 0; 163 return 1; 164 } 165 166 /* 167 * Restart the transaction associated with *handle. This does a commit, 168 * so before we call here everything must be consistently dirtied against 169 * this transaction. 170 */ 171 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode) 172 { 173 jbd_debug(2, "restarting handle %p\n", handle); 174 return ext4_journal_restart(handle, blocks_for_truncate(inode)); 175 } 176 177 /* 178 * Called at the last iput() if i_nlink is zero. 179 */ 180 void ext4_delete_inode (struct inode * inode) 181 { 182 handle_t *handle; 183 184 truncate_inode_pages(&inode->i_data, 0); 185 186 if (is_bad_inode(inode)) 187 goto no_delete; 188 189 handle = start_transaction(inode); 190 if (IS_ERR(handle)) { 191 /* 192 * If we're going to skip the normal cleanup, we still need to 193 * make sure that the in-core orphan linked list is properly 194 * cleaned up. 195 */ 196 ext4_orphan_del(NULL, inode); 197 goto no_delete; 198 } 199 200 if (IS_SYNC(inode)) 201 handle->h_sync = 1; 202 inode->i_size = 0; 203 if (inode->i_blocks) 204 ext4_truncate(inode); 205 /* 206 * Kill off the orphan record which ext4_truncate created. 207 * AKPM: I think this can be inside the above `if'. 208 * Note that ext4_orphan_del() has to be able to cope with the 209 * deletion of a non-existent orphan - this is because we don't 210 * know if ext4_truncate() actually created an orphan record. 211 * (Well, we could do this if we need to, but heck - it works) 212 */ 213 ext4_orphan_del(handle, inode); 214 EXT4_I(inode)->i_dtime = get_seconds(); 215 216 /* 217 * One subtle ordering requirement: if anything has gone wrong 218 * (transaction abort, IO errors, whatever), then we can still 219 * do these next steps (the fs will already have been marked as 220 * having errors), but we can't free the inode if the mark_dirty 221 * fails. 222 */ 223 if (ext4_mark_inode_dirty(handle, inode)) 224 /* If that failed, just do the required in-core inode clear. */ 225 clear_inode(inode); 226 else 227 ext4_free_inode(handle, inode); 228 ext4_journal_stop(handle); 229 return; 230 no_delete: 231 clear_inode(inode); /* We must guarantee clearing of inode... */ 232 } 233 234 typedef struct { 235 __le32 *p; 236 __le32 key; 237 struct buffer_head *bh; 238 } Indirect; 239 240 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v) 241 { 242 p->key = *(p->p = v); 243 p->bh = bh; 244 } 245 246 /** 247 * ext4_block_to_path - parse the block number into array of offsets 248 * @inode: inode in question (we are only interested in its superblock) 249 * @i_block: block number to be parsed 250 * @offsets: array to store the offsets in 251 * @boundary: set this non-zero if the referred-to block is likely to be 252 * followed (on disk) by an indirect block. 253 * 254 * To store the locations of file's data ext4 uses a data structure common 255 * for UNIX filesystems - tree of pointers anchored in the inode, with 256 * data blocks at leaves and indirect blocks in intermediate nodes. 257 * This function translates the block number into path in that tree - 258 * return value is the path length and @offsets[n] is the offset of 259 * pointer to (n+1)th node in the nth one. If @block is out of range 260 * (negative or too large) warning is printed and zero returned. 261 * 262 * Note: function doesn't find node addresses, so no IO is needed. All 263 * we need to know is the capacity of indirect blocks (taken from the 264 * inode->i_sb). 265 */ 266 267 /* 268 * Portability note: the last comparison (check that we fit into triple 269 * indirect block) is spelled differently, because otherwise on an 270 * architecture with 32-bit longs and 8Kb pages we might get into trouble 271 * if our filesystem had 8Kb blocks. We might use long long, but that would 272 * kill us on x86. Oh, well, at least the sign propagation does not matter - 273 * i_block would have to be negative in the very beginning, so we would not 274 * get there at all. 275 */ 276 277 static int ext4_block_to_path(struct inode *inode, 278 ext4_lblk_t i_block, 279 ext4_lblk_t offsets[4], int *boundary) 280 { 281 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb); 282 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb); 283 const long direct_blocks = EXT4_NDIR_BLOCKS, 284 indirect_blocks = ptrs, 285 double_blocks = (1 << (ptrs_bits * 2)); 286 int n = 0; 287 int final = 0; 288 289 if (i_block < 0) { 290 ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0"); 291 } else if (i_block < direct_blocks) { 292 offsets[n++] = i_block; 293 final = direct_blocks; 294 } else if ( (i_block -= direct_blocks) < indirect_blocks) { 295 offsets[n++] = EXT4_IND_BLOCK; 296 offsets[n++] = i_block; 297 final = ptrs; 298 } else if ((i_block -= indirect_blocks) < double_blocks) { 299 offsets[n++] = EXT4_DIND_BLOCK; 300 offsets[n++] = i_block >> ptrs_bits; 301 offsets[n++] = i_block & (ptrs - 1); 302 final = ptrs; 303 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { 304 offsets[n++] = EXT4_TIND_BLOCK; 305 offsets[n++] = i_block >> (ptrs_bits * 2); 306 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); 307 offsets[n++] = i_block & (ptrs - 1); 308 final = ptrs; 309 } else { 310 ext4_warning(inode->i_sb, "ext4_block_to_path", 311 "block %lu > max", 312 i_block + direct_blocks + 313 indirect_blocks + double_blocks); 314 } 315 if (boundary) 316 *boundary = final - 1 - (i_block & (ptrs - 1)); 317 return n; 318 } 319 320 /** 321 * ext4_get_branch - read the chain of indirect blocks leading to data 322 * @inode: inode in question 323 * @depth: depth of the chain (1 - direct pointer, etc.) 324 * @offsets: offsets of pointers in inode/indirect blocks 325 * @chain: place to store the result 326 * @err: here we store the error value 327 * 328 * Function fills the array of triples <key, p, bh> and returns %NULL 329 * if everything went OK or the pointer to the last filled triple 330 * (incomplete one) otherwise. Upon the return chain[i].key contains 331 * the number of (i+1)-th block in the chain (as it is stored in memory, 332 * i.e. little-endian 32-bit), chain[i].p contains the address of that 333 * number (it points into struct inode for i==0 and into the bh->b_data 334 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect 335 * block for i>0 and NULL for i==0. In other words, it holds the block 336 * numbers of the chain, addresses they were taken from (and where we can 337 * verify that chain did not change) and buffer_heads hosting these 338 * numbers. 339 * 340 * Function stops when it stumbles upon zero pointer (absent block) 341 * (pointer to last triple returned, *@err == 0) 342 * or when it gets an IO error reading an indirect block 343 * (ditto, *@err == -EIO) 344 * or when it reads all @depth-1 indirect blocks successfully and finds 345 * the whole chain, all way to the data (returns %NULL, *err == 0). 346 * 347 * Need to be called with 348 * down_read(&EXT4_I(inode)->i_data_sem) 349 */ 350 static Indirect *ext4_get_branch(struct inode *inode, int depth, 351 ext4_lblk_t *offsets, 352 Indirect chain[4], int *err) 353 { 354 struct super_block *sb = inode->i_sb; 355 Indirect *p = chain; 356 struct buffer_head *bh; 357 358 *err = 0; 359 /* i_data is not going away, no lock needed */ 360 add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets); 361 if (!p->key) 362 goto no_block; 363 while (--depth) { 364 bh = sb_bread(sb, le32_to_cpu(p->key)); 365 if (!bh) 366 goto failure; 367 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets); 368 /* Reader: end */ 369 if (!p->key) 370 goto no_block; 371 } 372 return NULL; 373 374 failure: 375 *err = -EIO; 376 no_block: 377 return p; 378 } 379 380 /** 381 * ext4_find_near - find a place for allocation with sufficient locality 382 * @inode: owner 383 * @ind: descriptor of indirect block. 384 * 385 * This function returns the preferred place for block allocation. 386 * It is used when heuristic for sequential allocation fails. 387 * Rules are: 388 * + if there is a block to the left of our position - allocate near it. 389 * + if pointer will live in indirect block - allocate near that block. 390 * + if pointer will live in inode - allocate in the same 391 * cylinder group. 392 * 393 * In the latter case we colour the starting block by the callers PID to 394 * prevent it from clashing with concurrent allocations for a different inode 395 * in the same block group. The PID is used here so that functionally related 396 * files will be close-by on-disk. 397 * 398 * Caller must make sure that @ind is valid and will stay that way. 399 */ 400 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind) 401 { 402 struct ext4_inode_info *ei = EXT4_I(inode); 403 __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data; 404 __le32 *p; 405 ext4_fsblk_t bg_start; 406 ext4_fsblk_t last_block; 407 ext4_grpblk_t colour; 408 409 /* Try to find previous block */ 410 for (p = ind->p - 1; p >= start; p--) { 411 if (*p) 412 return le32_to_cpu(*p); 413 } 414 415 /* No such thing, so let's try location of indirect block */ 416 if (ind->bh) 417 return ind->bh->b_blocknr; 418 419 /* 420 * It is going to be referred to from the inode itself? OK, just put it 421 * into the same cylinder group then. 422 */ 423 bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group); 424 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1; 425 426 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block) 427 colour = (current->pid % 16) * 428 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16); 429 else 430 colour = (current->pid % 16) * ((last_block - bg_start) / 16); 431 return bg_start + colour; 432 } 433 434 /** 435 * ext4_find_goal - find a preferred place for allocation. 436 * @inode: owner 437 * @block: block we want 438 * @partial: pointer to the last triple within a chain 439 * 440 * Normally this function find the preferred place for block allocation, 441 * returns it. 442 */ 443 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block, 444 Indirect *partial) 445 { 446 struct ext4_block_alloc_info *block_i; 447 448 block_i = EXT4_I(inode)->i_block_alloc_info; 449 450 /* 451 * try the heuristic for sequential allocation, 452 * failing that at least try to get decent locality. 453 */ 454 if (block_i && (block == block_i->last_alloc_logical_block + 1) 455 && (block_i->last_alloc_physical_block != 0)) { 456 return block_i->last_alloc_physical_block + 1; 457 } 458 459 return ext4_find_near(inode, partial); 460 } 461 462 /** 463 * ext4_blks_to_allocate: Look up the block map and count the number 464 * of direct blocks need to be allocated for the given branch. 465 * 466 * @branch: chain of indirect blocks 467 * @k: number of blocks need for indirect blocks 468 * @blks: number of data blocks to be mapped. 469 * @blocks_to_boundary: the offset in the indirect block 470 * 471 * return the total number of blocks to be allocate, including the 472 * direct and indirect blocks. 473 */ 474 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks, 475 int blocks_to_boundary) 476 { 477 unsigned long count = 0; 478 479 /* 480 * Simple case, [t,d]Indirect block(s) has not allocated yet 481 * then it's clear blocks on that path have not allocated 482 */ 483 if (k > 0) { 484 /* right now we don't handle cross boundary allocation */ 485 if (blks < blocks_to_boundary + 1) 486 count += blks; 487 else 488 count += blocks_to_boundary + 1; 489 return count; 490 } 491 492 count++; 493 while (count < blks && count <= blocks_to_boundary && 494 le32_to_cpu(*(branch[0].p + count)) == 0) { 495 count++; 496 } 497 return count; 498 } 499 500 /** 501 * ext4_alloc_blocks: multiple allocate blocks needed for a branch 502 * @indirect_blks: the number of blocks need to allocate for indirect 503 * blocks 504 * 505 * @new_blocks: on return it will store the new block numbers for 506 * the indirect blocks(if needed) and the first direct block, 507 * @blks: on return it will store the total number of allocated 508 * direct blocks 509 */ 510 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode, 511 ext4_fsblk_t goal, int indirect_blks, int blks, 512 ext4_fsblk_t new_blocks[4], int *err) 513 { 514 int target, i; 515 unsigned long count = 0; 516 int index = 0; 517 ext4_fsblk_t current_block = 0; 518 int ret = 0; 519 520 /* 521 * Here we try to allocate the requested multiple blocks at once, 522 * on a best-effort basis. 523 * To build a branch, we should allocate blocks for 524 * the indirect blocks(if not allocated yet), and at least 525 * the first direct block of this branch. That's the 526 * minimum number of blocks need to allocate(required) 527 */ 528 target = blks + indirect_blks; 529 530 while (1) { 531 count = target; 532 /* allocating blocks for indirect blocks and direct blocks */ 533 current_block = ext4_new_blocks(handle,inode,goal,&count,err); 534 if (*err) 535 goto failed_out; 536 537 target -= count; 538 /* allocate blocks for indirect blocks */ 539 while (index < indirect_blks && count) { 540 new_blocks[index++] = current_block++; 541 count--; 542 } 543 544 if (count > 0) 545 break; 546 } 547 548 /* save the new block number for the first direct block */ 549 new_blocks[index] = current_block; 550 551 /* total number of blocks allocated for direct blocks */ 552 ret = count; 553 *err = 0; 554 return ret; 555 failed_out: 556 for (i = 0; i <index; i++) 557 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0); 558 return ret; 559 } 560 561 /** 562 * ext4_alloc_branch - allocate and set up a chain of blocks. 563 * @inode: owner 564 * @indirect_blks: number of allocated indirect blocks 565 * @blks: number of allocated direct blocks 566 * @offsets: offsets (in the blocks) to store the pointers to next. 567 * @branch: place to store the chain in. 568 * 569 * This function allocates blocks, zeroes out all but the last one, 570 * links them into chain and (if we are synchronous) writes them to disk. 571 * In other words, it prepares a branch that can be spliced onto the 572 * inode. It stores the information about that chain in the branch[], in 573 * the same format as ext4_get_branch() would do. We are calling it after 574 * we had read the existing part of chain and partial points to the last 575 * triple of that (one with zero ->key). Upon the exit we have the same 576 * picture as after the successful ext4_get_block(), except that in one 577 * place chain is disconnected - *branch->p is still zero (we did not 578 * set the last link), but branch->key contains the number that should 579 * be placed into *branch->p to fill that gap. 580 * 581 * If allocation fails we free all blocks we've allocated (and forget 582 * their buffer_heads) and return the error value the from failed 583 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain 584 * as described above and return 0. 585 */ 586 static int ext4_alloc_branch(handle_t *handle, struct inode *inode, 587 int indirect_blks, int *blks, ext4_fsblk_t goal, 588 ext4_lblk_t *offsets, Indirect *branch) 589 { 590 int blocksize = inode->i_sb->s_blocksize; 591 int i, n = 0; 592 int err = 0; 593 struct buffer_head *bh; 594 int num; 595 ext4_fsblk_t new_blocks[4]; 596 ext4_fsblk_t current_block; 597 598 num = ext4_alloc_blocks(handle, inode, goal, indirect_blks, 599 *blks, new_blocks, &err); 600 if (err) 601 return err; 602 603 branch[0].key = cpu_to_le32(new_blocks[0]); 604 /* 605 * metadata blocks and data blocks are allocated. 606 */ 607 for (n = 1; n <= indirect_blks; n++) { 608 /* 609 * Get buffer_head for parent block, zero it out 610 * and set the pointer to new one, then send 611 * parent to disk. 612 */ 613 bh = sb_getblk(inode->i_sb, new_blocks[n-1]); 614 branch[n].bh = bh; 615 lock_buffer(bh); 616 BUFFER_TRACE(bh, "call get_create_access"); 617 err = ext4_journal_get_create_access(handle, bh); 618 if (err) { 619 unlock_buffer(bh); 620 brelse(bh); 621 goto failed; 622 } 623 624 memset(bh->b_data, 0, blocksize); 625 branch[n].p = (__le32 *) bh->b_data + offsets[n]; 626 branch[n].key = cpu_to_le32(new_blocks[n]); 627 *branch[n].p = branch[n].key; 628 if ( n == indirect_blks) { 629 current_block = new_blocks[n]; 630 /* 631 * End of chain, update the last new metablock of 632 * the chain to point to the new allocated 633 * data blocks numbers 634 */ 635 for (i=1; i < num; i++) 636 *(branch[n].p + i) = cpu_to_le32(++current_block); 637 } 638 BUFFER_TRACE(bh, "marking uptodate"); 639 set_buffer_uptodate(bh); 640 unlock_buffer(bh); 641 642 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata"); 643 err = ext4_journal_dirty_metadata(handle, bh); 644 if (err) 645 goto failed; 646 } 647 *blks = num; 648 return err; 649 failed: 650 /* Allocation failed, free what we already allocated */ 651 for (i = 1; i <= n ; i++) { 652 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget"); 653 ext4_journal_forget(handle, branch[i].bh); 654 } 655 for (i = 0; i <indirect_blks; i++) 656 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0); 657 658 ext4_free_blocks(handle, inode, new_blocks[i], num, 0); 659 660 return err; 661 } 662 663 /** 664 * ext4_splice_branch - splice the allocated branch onto inode. 665 * @inode: owner 666 * @block: (logical) number of block we are adding 667 * @chain: chain of indirect blocks (with a missing link - see 668 * ext4_alloc_branch) 669 * @where: location of missing link 670 * @num: number of indirect blocks we are adding 671 * @blks: number of direct blocks we are adding 672 * 673 * This function fills the missing link and does all housekeeping needed in 674 * inode (->i_blocks, etc.). In case of success we end up with the full 675 * chain to new block and return 0. 676 */ 677 static int ext4_splice_branch(handle_t *handle, struct inode *inode, 678 ext4_lblk_t block, Indirect *where, int num, int blks) 679 { 680 int i; 681 int err = 0; 682 struct ext4_block_alloc_info *block_i; 683 ext4_fsblk_t current_block; 684 685 block_i = EXT4_I(inode)->i_block_alloc_info; 686 /* 687 * If we're splicing into a [td]indirect block (as opposed to the 688 * inode) then we need to get write access to the [td]indirect block 689 * before the splice. 690 */ 691 if (where->bh) { 692 BUFFER_TRACE(where->bh, "get_write_access"); 693 err = ext4_journal_get_write_access(handle, where->bh); 694 if (err) 695 goto err_out; 696 } 697 /* That's it */ 698 699 *where->p = where->key; 700 701 /* 702 * Update the host buffer_head or inode to point to more just allocated 703 * direct blocks blocks 704 */ 705 if (num == 0 && blks > 1) { 706 current_block = le32_to_cpu(where->key) + 1; 707 for (i = 1; i < blks; i++) 708 *(where->p + i ) = cpu_to_le32(current_block++); 709 } 710 711 /* 712 * update the most recently allocated logical & physical block 713 * in i_block_alloc_info, to assist find the proper goal block for next 714 * allocation 715 */ 716 if (block_i) { 717 block_i->last_alloc_logical_block = block + blks - 1; 718 block_i->last_alloc_physical_block = 719 le32_to_cpu(where[num].key) + blks - 1; 720 } 721 722 /* We are done with atomic stuff, now do the rest of housekeeping */ 723 724 inode->i_ctime = ext4_current_time(inode); 725 ext4_mark_inode_dirty(handle, inode); 726 727 /* had we spliced it onto indirect block? */ 728 if (where->bh) { 729 /* 730 * If we spliced it onto an indirect block, we haven't 731 * altered the inode. Note however that if it is being spliced 732 * onto an indirect block at the very end of the file (the 733 * file is growing) then we *will* alter the inode to reflect 734 * the new i_size. But that is not done here - it is done in 735 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode. 736 */ 737 jbd_debug(5, "splicing indirect only\n"); 738 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata"); 739 err = ext4_journal_dirty_metadata(handle, where->bh); 740 if (err) 741 goto err_out; 742 } else { 743 /* 744 * OK, we spliced it into the inode itself on a direct block. 745 * Inode was dirtied above. 746 */ 747 jbd_debug(5, "splicing direct\n"); 748 } 749 return err; 750 751 err_out: 752 for (i = 1; i <= num; i++) { 753 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget"); 754 ext4_journal_forget(handle, where[i].bh); 755 ext4_free_blocks(handle, inode, 756 le32_to_cpu(where[i-1].key), 1, 0); 757 } 758 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0); 759 760 return err; 761 } 762 763 /* 764 * Allocation strategy is simple: if we have to allocate something, we will 765 * have to go the whole way to leaf. So let's do it before attaching anything 766 * to tree, set linkage between the newborn blocks, write them if sync is 767 * required, recheck the path, free and repeat if check fails, otherwise 768 * set the last missing link (that will protect us from any truncate-generated 769 * removals - all blocks on the path are immune now) and possibly force the 770 * write on the parent block. 771 * That has a nice additional property: no special recovery from the failed 772 * allocations is needed - we simply release blocks and do not touch anything 773 * reachable from inode. 774 * 775 * `handle' can be NULL if create == 0. 776 * 777 * return > 0, # of blocks mapped or allocated. 778 * return = 0, if plain lookup failed. 779 * return < 0, error case. 780 * 781 * 782 * Need to be called with 783 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block 784 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem) 785 */ 786 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode, 787 ext4_lblk_t iblock, unsigned long maxblocks, 788 struct buffer_head *bh_result, 789 int create, int extend_disksize) 790 { 791 int err = -EIO; 792 ext4_lblk_t offsets[4]; 793 Indirect chain[4]; 794 Indirect *partial; 795 ext4_fsblk_t goal; 796 int indirect_blks; 797 int blocks_to_boundary = 0; 798 int depth; 799 struct ext4_inode_info *ei = EXT4_I(inode); 800 int count = 0; 801 ext4_fsblk_t first_block = 0; 802 803 804 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)); 805 J_ASSERT(handle != NULL || create == 0); 806 depth = ext4_block_to_path(inode, iblock, offsets, 807 &blocks_to_boundary); 808 809 if (depth == 0) 810 goto out; 811 812 partial = ext4_get_branch(inode, depth, offsets, chain, &err); 813 814 /* Simplest case - block found, no allocation needed */ 815 if (!partial) { 816 first_block = le32_to_cpu(chain[depth - 1].key); 817 clear_buffer_new(bh_result); 818 count++; 819 /*map more blocks*/ 820 while (count < maxblocks && count <= blocks_to_boundary) { 821 ext4_fsblk_t blk; 822 823 blk = le32_to_cpu(*(chain[depth-1].p + count)); 824 825 if (blk == first_block + count) 826 count++; 827 else 828 break; 829 } 830 goto got_it; 831 } 832 833 /* Next simple case - plain lookup or failed read of indirect block */ 834 if (!create || err == -EIO) 835 goto cleanup; 836 837 /* 838 * Okay, we need to do block allocation. Lazily initialize the block 839 * allocation info here if necessary 840 */ 841 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info)) 842 ext4_init_block_alloc_info(inode); 843 844 goal = ext4_find_goal(inode, iblock, partial); 845 846 /* the number of blocks need to allocate for [d,t]indirect blocks */ 847 indirect_blks = (chain + depth) - partial - 1; 848 849 /* 850 * Next look up the indirect map to count the totoal number of 851 * direct blocks to allocate for this branch. 852 */ 853 count = ext4_blks_to_allocate(partial, indirect_blks, 854 maxblocks, blocks_to_boundary); 855 /* 856 * Block out ext4_truncate while we alter the tree 857 */ 858 err = ext4_alloc_branch(handle, inode, indirect_blks, &count, goal, 859 offsets + (partial - chain), partial); 860 861 /* 862 * The ext4_splice_branch call will free and forget any buffers 863 * on the new chain if there is a failure, but that risks using 864 * up transaction credits, especially for bitmaps where the 865 * credits cannot be returned. Can we handle this somehow? We 866 * may need to return -EAGAIN upwards in the worst case. --sct 867 */ 868 if (!err) 869 err = ext4_splice_branch(handle, inode, iblock, 870 partial, indirect_blks, count); 871 /* 872 * i_disksize growing is protected by i_data_sem. Don't forget to 873 * protect it if you're about to implement concurrent 874 * ext4_get_block() -bzzz 875 */ 876 if (!err && extend_disksize && inode->i_size > ei->i_disksize) 877 ei->i_disksize = inode->i_size; 878 if (err) 879 goto cleanup; 880 881 set_buffer_new(bh_result); 882 got_it: 883 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key)); 884 if (count > blocks_to_boundary) 885 set_buffer_boundary(bh_result); 886 err = count; 887 /* Clean up and exit */ 888 partial = chain + depth - 1; /* the whole chain */ 889 cleanup: 890 while (partial > chain) { 891 BUFFER_TRACE(partial->bh, "call brelse"); 892 brelse(partial->bh); 893 partial--; 894 } 895 BUFFER_TRACE(bh_result, "returned"); 896 out: 897 return err; 898 } 899 900 /* Maximum number of blocks we map for direct IO at once. */ 901 #define DIO_MAX_BLOCKS 4096 902 /* 903 * Number of credits we need for writing DIO_MAX_BLOCKS: 904 * We need sb + group descriptor + bitmap + inode -> 4 905 * For B blocks with A block pointers per block we need: 906 * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect). 907 * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25. 908 */ 909 #define DIO_CREDITS 25 910 911 912 /* 913 * 914 * 915 * ext4_ext4 get_block() wrapper function 916 * It will do a look up first, and returns if the blocks already mapped. 917 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 918 * and store the allocated blocks in the result buffer head and mark it 919 * mapped. 920 * 921 * If file type is extents based, it will call ext4_ext_get_blocks(), 922 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping 923 * based files 924 * 925 * On success, it returns the number of blocks being mapped or allocate. 926 * if create==0 and the blocks are pre-allocated and uninitialized block, 927 * the result buffer head is unmapped. If the create ==1, it will make sure 928 * the buffer head is mapped. 929 * 930 * It returns 0 if plain look up failed (blocks have not been allocated), in 931 * that casem, buffer head is unmapped 932 * 933 * It returns the error in case of allocation failure. 934 */ 935 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block, 936 unsigned long max_blocks, struct buffer_head *bh, 937 int create, int extend_disksize) 938 { 939 int retval; 940 941 clear_buffer_mapped(bh); 942 943 /* 944 * Try to see if we can get the block without requesting 945 * for new file system block. 946 */ 947 down_read((&EXT4_I(inode)->i_data_sem)); 948 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 949 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks, 950 bh, 0, 0); 951 } else { 952 retval = ext4_get_blocks_handle(handle, 953 inode, block, max_blocks, bh, 0, 0); 954 } 955 up_read((&EXT4_I(inode)->i_data_sem)); 956 957 /* If it is only a block(s) look up */ 958 if (!create) 959 return retval; 960 961 /* 962 * Returns if the blocks have already allocated 963 * 964 * Note that if blocks have been preallocated 965 * ext4_ext_get_block() returns th create = 0 966 * with buffer head unmapped. 967 */ 968 if (retval > 0 && buffer_mapped(bh)) 969 return retval; 970 971 /* 972 * New blocks allocate and/or writing to uninitialized extent 973 * will possibly result in updating i_data, so we take 974 * the write lock of i_data_sem, and call get_blocks() 975 * with create == 1 flag. 976 */ 977 down_write((&EXT4_I(inode)->i_data_sem)); 978 /* 979 * We need to check for EXT4 here because migrate 980 * could have changed the inode type in between 981 */ 982 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 983 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks, 984 bh, create, extend_disksize); 985 } else { 986 retval = ext4_get_blocks_handle(handle, inode, block, 987 max_blocks, bh, create, extend_disksize); 988 989 if (retval > 0 && buffer_new(bh)) { 990 /* 991 * We allocated new blocks which will result in 992 * i_data's format changing. Force the migrate 993 * to fail by clearing migrate flags 994 */ 995 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags & 996 ~EXT4_EXT_MIGRATE; 997 } 998 } 999 up_write((&EXT4_I(inode)->i_data_sem)); 1000 return retval; 1001 } 1002 1003 static int ext4_get_block(struct inode *inode, sector_t iblock, 1004 struct buffer_head *bh_result, int create) 1005 { 1006 handle_t *handle = ext4_journal_current_handle(); 1007 int ret = 0, started = 0; 1008 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; 1009 1010 if (create && !handle) { 1011 /* Direct IO write... */ 1012 if (max_blocks > DIO_MAX_BLOCKS) 1013 max_blocks = DIO_MAX_BLOCKS; 1014 handle = ext4_journal_start(inode, DIO_CREDITS + 1015 2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb)); 1016 if (IS_ERR(handle)) { 1017 ret = PTR_ERR(handle); 1018 goto out; 1019 } 1020 started = 1; 1021 } 1022 1023 ret = ext4_get_blocks_wrap(handle, inode, iblock, 1024 max_blocks, bh_result, create, 0); 1025 if (ret > 0) { 1026 bh_result->b_size = (ret << inode->i_blkbits); 1027 ret = 0; 1028 } 1029 if (started) 1030 ext4_journal_stop(handle); 1031 out: 1032 return ret; 1033 } 1034 1035 /* 1036 * `handle' can be NULL if create is zero 1037 */ 1038 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 1039 ext4_lblk_t block, int create, int *errp) 1040 { 1041 struct buffer_head dummy; 1042 int fatal = 0, err; 1043 1044 J_ASSERT(handle != NULL || create == 0); 1045 1046 dummy.b_state = 0; 1047 dummy.b_blocknr = -1000; 1048 buffer_trace_init(&dummy.b_history); 1049 err = ext4_get_blocks_wrap(handle, inode, block, 1, 1050 &dummy, create, 1); 1051 /* 1052 * ext4_get_blocks_handle() returns number of blocks 1053 * mapped. 0 in case of a HOLE. 1054 */ 1055 if (err > 0) { 1056 if (err > 1) 1057 WARN_ON(1); 1058 err = 0; 1059 } 1060 *errp = err; 1061 if (!err && buffer_mapped(&dummy)) { 1062 struct buffer_head *bh; 1063 bh = sb_getblk(inode->i_sb, dummy.b_blocknr); 1064 if (!bh) { 1065 *errp = -EIO; 1066 goto err; 1067 } 1068 if (buffer_new(&dummy)) { 1069 J_ASSERT(create != 0); 1070 J_ASSERT(handle != NULL); 1071 1072 /* 1073 * Now that we do not always journal data, we should 1074 * keep in mind whether this should always journal the 1075 * new buffer as metadata. For now, regular file 1076 * writes use ext4_get_block instead, so it's not a 1077 * problem. 1078 */ 1079 lock_buffer(bh); 1080 BUFFER_TRACE(bh, "call get_create_access"); 1081 fatal = ext4_journal_get_create_access(handle, bh); 1082 if (!fatal && !buffer_uptodate(bh)) { 1083 memset(bh->b_data,0,inode->i_sb->s_blocksize); 1084 set_buffer_uptodate(bh); 1085 } 1086 unlock_buffer(bh); 1087 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata"); 1088 err = ext4_journal_dirty_metadata(handle, bh); 1089 if (!fatal) 1090 fatal = err; 1091 } else { 1092 BUFFER_TRACE(bh, "not a new buffer"); 1093 } 1094 if (fatal) { 1095 *errp = fatal; 1096 brelse(bh); 1097 bh = NULL; 1098 } 1099 return bh; 1100 } 1101 err: 1102 return NULL; 1103 } 1104 1105 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 1106 ext4_lblk_t block, int create, int *err) 1107 { 1108 struct buffer_head * bh; 1109 1110 bh = ext4_getblk(handle, inode, block, create, err); 1111 if (!bh) 1112 return bh; 1113 if (buffer_uptodate(bh)) 1114 return bh; 1115 ll_rw_block(READ_META, 1, &bh); 1116 wait_on_buffer(bh); 1117 if (buffer_uptodate(bh)) 1118 return bh; 1119 put_bh(bh); 1120 *err = -EIO; 1121 return NULL; 1122 } 1123 1124 static int walk_page_buffers( handle_t *handle, 1125 struct buffer_head *head, 1126 unsigned from, 1127 unsigned to, 1128 int *partial, 1129 int (*fn)( handle_t *handle, 1130 struct buffer_head *bh)) 1131 { 1132 struct buffer_head *bh; 1133 unsigned block_start, block_end; 1134 unsigned blocksize = head->b_size; 1135 int err, ret = 0; 1136 struct buffer_head *next; 1137 1138 for ( bh = head, block_start = 0; 1139 ret == 0 && (bh != head || !block_start); 1140 block_start = block_end, bh = next) 1141 { 1142 next = bh->b_this_page; 1143 block_end = block_start + blocksize; 1144 if (block_end <= from || block_start >= to) { 1145 if (partial && !buffer_uptodate(bh)) 1146 *partial = 1; 1147 continue; 1148 } 1149 err = (*fn)(handle, bh); 1150 if (!ret) 1151 ret = err; 1152 } 1153 return ret; 1154 } 1155 1156 /* 1157 * To preserve ordering, it is essential that the hole instantiation and 1158 * the data write be encapsulated in a single transaction. We cannot 1159 * close off a transaction and start a new one between the ext4_get_block() 1160 * and the commit_write(). So doing the jbd2_journal_start at the start of 1161 * prepare_write() is the right place. 1162 * 1163 * Also, this function can nest inside ext4_writepage() -> 1164 * block_write_full_page(). In that case, we *know* that ext4_writepage() 1165 * has generated enough buffer credits to do the whole page. So we won't 1166 * block on the journal in that case, which is good, because the caller may 1167 * be PF_MEMALLOC. 1168 * 1169 * By accident, ext4 can be reentered when a transaction is open via 1170 * quota file writes. If we were to commit the transaction while thus 1171 * reentered, there can be a deadlock - we would be holding a quota 1172 * lock, and the commit would never complete if another thread had a 1173 * transaction open and was blocking on the quota lock - a ranking 1174 * violation. 1175 * 1176 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1177 * will _not_ run commit under these circumstances because handle->h_ref 1178 * is elevated. We'll still have enough credits for the tiny quotafile 1179 * write. 1180 */ 1181 static int do_journal_get_write_access(handle_t *handle, 1182 struct buffer_head *bh) 1183 { 1184 if (!buffer_mapped(bh) || buffer_freed(bh)) 1185 return 0; 1186 return ext4_journal_get_write_access(handle, bh); 1187 } 1188 1189 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1190 loff_t pos, unsigned len, unsigned flags, 1191 struct page **pagep, void **fsdata) 1192 { 1193 struct inode *inode = mapping->host; 1194 int ret, needed_blocks = ext4_writepage_trans_blocks(inode); 1195 handle_t *handle; 1196 int retries = 0; 1197 struct page *page; 1198 pgoff_t index; 1199 unsigned from, to; 1200 1201 index = pos >> PAGE_CACHE_SHIFT; 1202 from = pos & (PAGE_CACHE_SIZE - 1); 1203 to = from + len; 1204 1205 retry: 1206 page = __grab_cache_page(mapping, index); 1207 if (!page) 1208 return -ENOMEM; 1209 *pagep = page; 1210 1211 handle = ext4_journal_start(inode, needed_blocks); 1212 if (IS_ERR(handle)) { 1213 unlock_page(page); 1214 page_cache_release(page); 1215 ret = PTR_ERR(handle); 1216 goto out; 1217 } 1218 1219 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata, 1220 ext4_get_block); 1221 1222 if (!ret && ext4_should_journal_data(inode)) { 1223 ret = walk_page_buffers(handle, page_buffers(page), 1224 from, to, NULL, do_journal_get_write_access); 1225 } 1226 1227 if (ret) { 1228 ext4_journal_stop(handle); 1229 unlock_page(page); 1230 page_cache_release(page); 1231 } 1232 1233 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1234 goto retry; 1235 out: 1236 return ret; 1237 } 1238 1239 int ext4_journal_dirty_data(handle_t *handle, struct buffer_head *bh) 1240 { 1241 int err = jbd2_journal_dirty_data(handle, bh); 1242 if (err) 1243 ext4_journal_abort_handle(__func__, __func__, 1244 bh, handle, err); 1245 return err; 1246 } 1247 1248 /* For write_end() in data=journal mode */ 1249 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1250 { 1251 if (!buffer_mapped(bh) || buffer_freed(bh)) 1252 return 0; 1253 set_buffer_uptodate(bh); 1254 return ext4_journal_dirty_metadata(handle, bh); 1255 } 1256 1257 /* 1258 * Generic write_end handler for ordered and writeback ext4 journal modes. 1259 * We can't use generic_write_end, because that unlocks the page and we need to 1260 * unlock the page after ext4_journal_stop, but ext4_journal_stop must run 1261 * after block_write_end. 1262 */ 1263 static int ext4_generic_write_end(struct file *file, 1264 struct address_space *mapping, 1265 loff_t pos, unsigned len, unsigned copied, 1266 struct page *page, void *fsdata) 1267 { 1268 struct inode *inode = file->f_mapping->host; 1269 1270 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 1271 1272 if (pos+copied > inode->i_size) { 1273 i_size_write(inode, pos+copied); 1274 mark_inode_dirty(inode); 1275 } 1276 1277 return copied; 1278 } 1279 1280 /* 1281 * We need to pick up the new inode size which generic_commit_write gave us 1282 * `file' can be NULL - eg, when called from page_symlink(). 1283 * 1284 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1285 * buffers are managed internally. 1286 */ 1287 static int ext4_ordered_write_end(struct file *file, 1288 struct address_space *mapping, 1289 loff_t pos, unsigned len, unsigned copied, 1290 struct page *page, void *fsdata) 1291 { 1292 handle_t *handle = ext4_journal_current_handle(); 1293 struct inode *inode = file->f_mapping->host; 1294 unsigned from, to; 1295 int ret = 0, ret2; 1296 1297 from = pos & (PAGE_CACHE_SIZE - 1); 1298 to = from + len; 1299 1300 ret = walk_page_buffers(handle, page_buffers(page), 1301 from, to, NULL, ext4_journal_dirty_data); 1302 1303 if (ret == 0) { 1304 /* 1305 * generic_write_end() will run mark_inode_dirty() if i_size 1306 * changes. So let's piggyback the i_disksize mark_inode_dirty 1307 * into that. 1308 */ 1309 loff_t new_i_size; 1310 1311 new_i_size = pos + copied; 1312 if (new_i_size > EXT4_I(inode)->i_disksize) 1313 EXT4_I(inode)->i_disksize = new_i_size; 1314 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied, 1315 page, fsdata); 1316 copied = ret2; 1317 if (ret2 < 0) 1318 ret = ret2; 1319 } 1320 ret2 = ext4_journal_stop(handle); 1321 if (!ret) 1322 ret = ret2; 1323 unlock_page(page); 1324 page_cache_release(page); 1325 1326 return ret ? ret : copied; 1327 } 1328 1329 static int ext4_writeback_write_end(struct file *file, 1330 struct address_space *mapping, 1331 loff_t pos, unsigned len, unsigned copied, 1332 struct page *page, void *fsdata) 1333 { 1334 handle_t *handle = ext4_journal_current_handle(); 1335 struct inode *inode = file->f_mapping->host; 1336 int ret = 0, ret2; 1337 loff_t new_i_size; 1338 1339 new_i_size = pos + copied; 1340 if (new_i_size > EXT4_I(inode)->i_disksize) 1341 EXT4_I(inode)->i_disksize = new_i_size; 1342 1343 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied, 1344 page, fsdata); 1345 copied = ret2; 1346 if (ret2 < 0) 1347 ret = ret2; 1348 1349 ret2 = ext4_journal_stop(handle); 1350 if (!ret) 1351 ret = ret2; 1352 unlock_page(page); 1353 page_cache_release(page); 1354 1355 return ret ? ret : copied; 1356 } 1357 1358 static int ext4_journalled_write_end(struct file *file, 1359 struct address_space *mapping, 1360 loff_t pos, unsigned len, unsigned copied, 1361 struct page *page, void *fsdata) 1362 { 1363 handle_t *handle = ext4_journal_current_handle(); 1364 struct inode *inode = mapping->host; 1365 int ret = 0, ret2; 1366 int partial = 0; 1367 unsigned from, to; 1368 1369 from = pos & (PAGE_CACHE_SIZE - 1); 1370 to = from + len; 1371 1372 if (copied < len) { 1373 if (!PageUptodate(page)) 1374 copied = 0; 1375 page_zero_new_buffers(page, from+copied, to); 1376 } 1377 1378 ret = walk_page_buffers(handle, page_buffers(page), from, 1379 to, &partial, write_end_fn); 1380 if (!partial) 1381 SetPageUptodate(page); 1382 if (pos+copied > inode->i_size) 1383 i_size_write(inode, pos+copied); 1384 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA; 1385 if (inode->i_size > EXT4_I(inode)->i_disksize) { 1386 EXT4_I(inode)->i_disksize = inode->i_size; 1387 ret2 = ext4_mark_inode_dirty(handle, inode); 1388 if (!ret) 1389 ret = ret2; 1390 } 1391 1392 ret2 = ext4_journal_stop(handle); 1393 if (!ret) 1394 ret = ret2; 1395 unlock_page(page); 1396 page_cache_release(page); 1397 1398 return ret ? ret : copied; 1399 } 1400 1401 /* 1402 * bmap() is special. It gets used by applications such as lilo and by 1403 * the swapper to find the on-disk block of a specific piece of data. 1404 * 1405 * Naturally, this is dangerous if the block concerned is still in the 1406 * journal. If somebody makes a swapfile on an ext4 data-journaling 1407 * filesystem and enables swap, then they may get a nasty shock when the 1408 * data getting swapped to that swapfile suddenly gets overwritten by 1409 * the original zero's written out previously to the journal and 1410 * awaiting writeback in the kernel's buffer cache. 1411 * 1412 * So, if we see any bmap calls here on a modified, data-journaled file, 1413 * take extra steps to flush any blocks which might be in the cache. 1414 */ 1415 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 1416 { 1417 struct inode *inode = mapping->host; 1418 journal_t *journal; 1419 int err; 1420 1421 if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) { 1422 /* 1423 * This is a REALLY heavyweight approach, but the use of 1424 * bmap on dirty files is expected to be extremely rare: 1425 * only if we run lilo or swapon on a freshly made file 1426 * do we expect this to happen. 1427 * 1428 * (bmap requires CAP_SYS_RAWIO so this does not 1429 * represent an unprivileged user DOS attack --- we'd be 1430 * in trouble if mortal users could trigger this path at 1431 * will.) 1432 * 1433 * NB. EXT4_STATE_JDATA is not set on files other than 1434 * regular files. If somebody wants to bmap a directory 1435 * or symlink and gets confused because the buffer 1436 * hasn't yet been flushed to disk, they deserve 1437 * everything they get. 1438 */ 1439 1440 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA; 1441 journal = EXT4_JOURNAL(inode); 1442 jbd2_journal_lock_updates(journal); 1443 err = jbd2_journal_flush(journal); 1444 jbd2_journal_unlock_updates(journal); 1445 1446 if (err) 1447 return 0; 1448 } 1449 1450 return generic_block_bmap(mapping,block,ext4_get_block); 1451 } 1452 1453 static int bget_one(handle_t *handle, struct buffer_head *bh) 1454 { 1455 get_bh(bh); 1456 return 0; 1457 } 1458 1459 static int bput_one(handle_t *handle, struct buffer_head *bh) 1460 { 1461 put_bh(bh); 1462 return 0; 1463 } 1464 1465 static int jbd2_journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh) 1466 { 1467 if (buffer_mapped(bh)) 1468 return ext4_journal_dirty_data(handle, bh); 1469 return 0; 1470 } 1471 1472 /* 1473 * Note that we always start a transaction even if we're not journalling 1474 * data. This is to preserve ordering: any hole instantiation within 1475 * __block_write_full_page -> ext4_get_block() should be journalled 1476 * along with the data so we don't crash and then get metadata which 1477 * refers to old data. 1478 * 1479 * In all journalling modes block_write_full_page() will start the I/O. 1480 * 1481 * Problem: 1482 * 1483 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1484 * ext4_writepage() 1485 * 1486 * Similar for: 1487 * 1488 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ... 1489 * 1490 * Same applies to ext4_get_block(). We will deadlock on various things like 1491 * lock_journal and i_data_sem 1492 * 1493 * Setting PF_MEMALLOC here doesn't work - too many internal memory 1494 * allocations fail. 1495 * 1496 * 16May01: If we're reentered then journal_current_handle() will be 1497 * non-zero. We simply *return*. 1498 * 1499 * 1 July 2001: @@@ FIXME: 1500 * In journalled data mode, a data buffer may be metadata against the 1501 * current transaction. But the same file is part of a shared mapping 1502 * and someone does a writepage() on it. 1503 * 1504 * We will move the buffer onto the async_data list, but *after* it has 1505 * been dirtied. So there's a small window where we have dirty data on 1506 * BJ_Metadata. 1507 * 1508 * Note that this only applies to the last partial page in the file. The 1509 * bit which block_write_full_page() uses prepare/commit for. (That's 1510 * broken code anyway: it's wrong for msync()). 1511 * 1512 * It's a rare case: affects the final partial page, for journalled data 1513 * where the file is subject to bith write() and writepage() in the same 1514 * transction. To fix it we'll need a custom block_write_full_page(). 1515 * We'll probably need that anyway for journalling writepage() output. 1516 * 1517 * We don't honour synchronous mounts for writepage(). That would be 1518 * disastrous. Any write() or metadata operation will sync the fs for 1519 * us. 1520 * 1521 * AKPM2: if all the page's buffers are mapped to disk and !data=journal, 1522 * we don't need to open a transaction here. 1523 */ 1524 static int ext4_ordered_writepage(struct page *page, 1525 struct writeback_control *wbc) 1526 { 1527 struct inode *inode = page->mapping->host; 1528 struct buffer_head *page_bufs; 1529 handle_t *handle = NULL; 1530 int ret = 0; 1531 int err; 1532 1533 J_ASSERT(PageLocked(page)); 1534 1535 /* 1536 * We give up here if we're reentered, because it might be for a 1537 * different filesystem. 1538 */ 1539 if (ext4_journal_current_handle()) 1540 goto out_fail; 1541 1542 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 1543 1544 if (IS_ERR(handle)) { 1545 ret = PTR_ERR(handle); 1546 goto out_fail; 1547 } 1548 1549 if (!page_has_buffers(page)) { 1550 create_empty_buffers(page, inode->i_sb->s_blocksize, 1551 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1552 } 1553 page_bufs = page_buffers(page); 1554 walk_page_buffers(handle, page_bufs, 0, 1555 PAGE_CACHE_SIZE, NULL, bget_one); 1556 1557 ret = block_write_full_page(page, ext4_get_block, wbc); 1558 1559 /* 1560 * The page can become unlocked at any point now, and 1561 * truncate can then come in and change things. So we 1562 * can't touch *page from now on. But *page_bufs is 1563 * safe due to elevated refcount. 1564 */ 1565 1566 /* 1567 * And attach them to the current transaction. But only if 1568 * block_write_full_page() succeeded. Otherwise they are unmapped, 1569 * and generally junk. 1570 */ 1571 if (ret == 0) { 1572 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, 1573 NULL, jbd2_journal_dirty_data_fn); 1574 if (!ret) 1575 ret = err; 1576 } 1577 walk_page_buffers(handle, page_bufs, 0, 1578 PAGE_CACHE_SIZE, NULL, bput_one); 1579 err = ext4_journal_stop(handle); 1580 if (!ret) 1581 ret = err; 1582 return ret; 1583 1584 out_fail: 1585 redirty_page_for_writepage(wbc, page); 1586 unlock_page(page); 1587 return ret; 1588 } 1589 1590 static int ext4_writeback_writepage(struct page *page, 1591 struct writeback_control *wbc) 1592 { 1593 struct inode *inode = page->mapping->host; 1594 handle_t *handle = NULL; 1595 int ret = 0; 1596 int err; 1597 1598 if (ext4_journal_current_handle()) 1599 goto out_fail; 1600 1601 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 1602 if (IS_ERR(handle)) { 1603 ret = PTR_ERR(handle); 1604 goto out_fail; 1605 } 1606 1607 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode)) 1608 ret = nobh_writepage(page, ext4_get_block, wbc); 1609 else 1610 ret = block_write_full_page(page, ext4_get_block, wbc); 1611 1612 err = ext4_journal_stop(handle); 1613 if (!ret) 1614 ret = err; 1615 return ret; 1616 1617 out_fail: 1618 redirty_page_for_writepage(wbc, page); 1619 unlock_page(page); 1620 return ret; 1621 } 1622 1623 static int ext4_journalled_writepage(struct page *page, 1624 struct writeback_control *wbc) 1625 { 1626 struct inode *inode = page->mapping->host; 1627 handle_t *handle = NULL; 1628 int ret = 0; 1629 int err; 1630 1631 if (ext4_journal_current_handle()) 1632 goto no_write; 1633 1634 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 1635 if (IS_ERR(handle)) { 1636 ret = PTR_ERR(handle); 1637 goto no_write; 1638 } 1639 1640 if (!page_has_buffers(page) || PageChecked(page)) { 1641 /* 1642 * It's mmapped pagecache. Add buffers and journal it. There 1643 * doesn't seem much point in redirtying the page here. 1644 */ 1645 ClearPageChecked(page); 1646 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE, 1647 ext4_get_block); 1648 if (ret != 0) { 1649 ext4_journal_stop(handle); 1650 goto out_unlock; 1651 } 1652 ret = walk_page_buffers(handle, page_buffers(page), 0, 1653 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access); 1654 1655 err = walk_page_buffers(handle, page_buffers(page), 0, 1656 PAGE_CACHE_SIZE, NULL, write_end_fn); 1657 if (ret == 0) 1658 ret = err; 1659 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA; 1660 unlock_page(page); 1661 } else { 1662 /* 1663 * It may be a page full of checkpoint-mode buffers. We don't 1664 * really know unless we go poke around in the buffer_heads. 1665 * But block_write_full_page will do the right thing. 1666 */ 1667 ret = block_write_full_page(page, ext4_get_block, wbc); 1668 } 1669 err = ext4_journal_stop(handle); 1670 if (!ret) 1671 ret = err; 1672 out: 1673 return ret; 1674 1675 no_write: 1676 redirty_page_for_writepage(wbc, page); 1677 out_unlock: 1678 unlock_page(page); 1679 goto out; 1680 } 1681 1682 static int ext4_readpage(struct file *file, struct page *page) 1683 { 1684 return mpage_readpage(page, ext4_get_block); 1685 } 1686 1687 static int 1688 ext4_readpages(struct file *file, struct address_space *mapping, 1689 struct list_head *pages, unsigned nr_pages) 1690 { 1691 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 1692 } 1693 1694 static void ext4_invalidatepage(struct page *page, unsigned long offset) 1695 { 1696 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 1697 1698 /* 1699 * If it's a full truncate we just forget about the pending dirtying 1700 */ 1701 if (offset == 0) 1702 ClearPageChecked(page); 1703 1704 jbd2_journal_invalidatepage(journal, page, offset); 1705 } 1706 1707 static int ext4_releasepage(struct page *page, gfp_t wait) 1708 { 1709 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 1710 1711 WARN_ON(PageChecked(page)); 1712 if (!page_has_buffers(page)) 1713 return 0; 1714 return jbd2_journal_try_to_free_buffers(journal, page, wait); 1715 } 1716 1717 /* 1718 * If the O_DIRECT write will extend the file then add this inode to the 1719 * orphan list. So recovery will truncate it back to the original size 1720 * if the machine crashes during the write. 1721 * 1722 * If the O_DIRECT write is intantiating holes inside i_size and the machine 1723 * crashes then stale disk data _may_ be exposed inside the file. But current 1724 * VFS code falls back into buffered path in that case so we are safe. 1725 */ 1726 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 1727 const struct iovec *iov, loff_t offset, 1728 unsigned long nr_segs) 1729 { 1730 struct file *file = iocb->ki_filp; 1731 struct inode *inode = file->f_mapping->host; 1732 struct ext4_inode_info *ei = EXT4_I(inode); 1733 handle_t *handle; 1734 ssize_t ret; 1735 int orphan = 0; 1736 size_t count = iov_length(iov, nr_segs); 1737 1738 if (rw == WRITE) { 1739 loff_t final_size = offset + count; 1740 1741 if (final_size > inode->i_size) { 1742 /* Credits for sb + inode write */ 1743 handle = ext4_journal_start(inode, 2); 1744 if (IS_ERR(handle)) { 1745 ret = PTR_ERR(handle); 1746 goto out; 1747 } 1748 ret = ext4_orphan_add(handle, inode); 1749 if (ret) { 1750 ext4_journal_stop(handle); 1751 goto out; 1752 } 1753 orphan = 1; 1754 ei->i_disksize = inode->i_size; 1755 ext4_journal_stop(handle); 1756 } 1757 } 1758 1759 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov, 1760 offset, nr_segs, 1761 ext4_get_block, NULL); 1762 1763 if (orphan) { 1764 int err; 1765 1766 /* Credits for sb + inode write */ 1767 handle = ext4_journal_start(inode, 2); 1768 if (IS_ERR(handle)) { 1769 /* This is really bad luck. We've written the data 1770 * but cannot extend i_size. Bail out and pretend 1771 * the write failed... */ 1772 ret = PTR_ERR(handle); 1773 goto out; 1774 } 1775 if (inode->i_nlink) 1776 ext4_orphan_del(handle, inode); 1777 if (ret > 0) { 1778 loff_t end = offset + ret; 1779 if (end > inode->i_size) { 1780 ei->i_disksize = end; 1781 i_size_write(inode, end); 1782 /* 1783 * We're going to return a positive `ret' 1784 * here due to non-zero-length I/O, so there's 1785 * no way of reporting error returns from 1786 * ext4_mark_inode_dirty() to userspace. So 1787 * ignore it. 1788 */ 1789 ext4_mark_inode_dirty(handle, inode); 1790 } 1791 } 1792 err = ext4_journal_stop(handle); 1793 if (ret == 0) 1794 ret = err; 1795 } 1796 out: 1797 return ret; 1798 } 1799 1800 /* 1801 * Pages can be marked dirty completely asynchronously from ext4's journalling 1802 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 1803 * much here because ->set_page_dirty is called under VFS locks. The page is 1804 * not necessarily locked. 1805 * 1806 * We cannot just dirty the page and leave attached buffers clean, because the 1807 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 1808 * or jbddirty because all the journalling code will explode. 1809 * 1810 * So what we do is to mark the page "pending dirty" and next time writepage 1811 * is called, propagate that into the buffers appropriately. 1812 */ 1813 static int ext4_journalled_set_page_dirty(struct page *page) 1814 { 1815 SetPageChecked(page); 1816 return __set_page_dirty_nobuffers(page); 1817 } 1818 1819 static const struct address_space_operations ext4_ordered_aops = { 1820 .readpage = ext4_readpage, 1821 .readpages = ext4_readpages, 1822 .writepage = ext4_ordered_writepage, 1823 .sync_page = block_sync_page, 1824 .write_begin = ext4_write_begin, 1825 .write_end = ext4_ordered_write_end, 1826 .bmap = ext4_bmap, 1827 .invalidatepage = ext4_invalidatepage, 1828 .releasepage = ext4_releasepage, 1829 .direct_IO = ext4_direct_IO, 1830 .migratepage = buffer_migrate_page, 1831 }; 1832 1833 static const struct address_space_operations ext4_writeback_aops = { 1834 .readpage = ext4_readpage, 1835 .readpages = ext4_readpages, 1836 .writepage = ext4_writeback_writepage, 1837 .sync_page = block_sync_page, 1838 .write_begin = ext4_write_begin, 1839 .write_end = ext4_writeback_write_end, 1840 .bmap = ext4_bmap, 1841 .invalidatepage = ext4_invalidatepage, 1842 .releasepage = ext4_releasepage, 1843 .direct_IO = ext4_direct_IO, 1844 .migratepage = buffer_migrate_page, 1845 }; 1846 1847 static const struct address_space_operations ext4_journalled_aops = { 1848 .readpage = ext4_readpage, 1849 .readpages = ext4_readpages, 1850 .writepage = ext4_journalled_writepage, 1851 .sync_page = block_sync_page, 1852 .write_begin = ext4_write_begin, 1853 .write_end = ext4_journalled_write_end, 1854 .set_page_dirty = ext4_journalled_set_page_dirty, 1855 .bmap = ext4_bmap, 1856 .invalidatepage = ext4_invalidatepage, 1857 .releasepage = ext4_releasepage, 1858 }; 1859 1860 void ext4_set_aops(struct inode *inode) 1861 { 1862 if (ext4_should_order_data(inode)) 1863 inode->i_mapping->a_ops = &ext4_ordered_aops; 1864 else if (ext4_should_writeback_data(inode)) 1865 inode->i_mapping->a_ops = &ext4_writeback_aops; 1866 else 1867 inode->i_mapping->a_ops = &ext4_journalled_aops; 1868 } 1869 1870 /* 1871 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 1872 * up to the end of the block which corresponds to `from'. 1873 * This required during truncate. We need to physically zero the tail end 1874 * of that block so it doesn't yield old data if the file is later grown. 1875 */ 1876 int ext4_block_truncate_page(handle_t *handle, struct page *page, 1877 struct address_space *mapping, loff_t from) 1878 { 1879 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 1880 unsigned offset = from & (PAGE_CACHE_SIZE-1); 1881 unsigned blocksize, length, pos; 1882 ext4_lblk_t iblock; 1883 struct inode *inode = mapping->host; 1884 struct buffer_head *bh; 1885 int err = 0; 1886 1887 blocksize = inode->i_sb->s_blocksize; 1888 length = blocksize - (offset & (blocksize - 1)); 1889 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 1890 1891 /* 1892 * For "nobh" option, we can only work if we don't need to 1893 * read-in the page - otherwise we create buffers to do the IO. 1894 */ 1895 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) && 1896 ext4_should_writeback_data(inode) && PageUptodate(page)) { 1897 zero_user(page, offset, length); 1898 set_page_dirty(page); 1899 goto unlock; 1900 } 1901 1902 if (!page_has_buffers(page)) 1903 create_empty_buffers(page, blocksize, 0); 1904 1905 /* Find the buffer that contains "offset" */ 1906 bh = page_buffers(page); 1907 pos = blocksize; 1908 while (offset >= pos) { 1909 bh = bh->b_this_page; 1910 iblock++; 1911 pos += blocksize; 1912 } 1913 1914 err = 0; 1915 if (buffer_freed(bh)) { 1916 BUFFER_TRACE(bh, "freed: skip"); 1917 goto unlock; 1918 } 1919 1920 if (!buffer_mapped(bh)) { 1921 BUFFER_TRACE(bh, "unmapped"); 1922 ext4_get_block(inode, iblock, bh, 0); 1923 /* unmapped? It's a hole - nothing to do */ 1924 if (!buffer_mapped(bh)) { 1925 BUFFER_TRACE(bh, "still unmapped"); 1926 goto unlock; 1927 } 1928 } 1929 1930 /* Ok, it's mapped. Make sure it's up-to-date */ 1931 if (PageUptodate(page)) 1932 set_buffer_uptodate(bh); 1933 1934 if (!buffer_uptodate(bh)) { 1935 err = -EIO; 1936 ll_rw_block(READ, 1, &bh); 1937 wait_on_buffer(bh); 1938 /* Uhhuh. Read error. Complain and punt. */ 1939 if (!buffer_uptodate(bh)) 1940 goto unlock; 1941 } 1942 1943 if (ext4_should_journal_data(inode)) { 1944 BUFFER_TRACE(bh, "get write access"); 1945 err = ext4_journal_get_write_access(handle, bh); 1946 if (err) 1947 goto unlock; 1948 } 1949 1950 zero_user(page, offset, length); 1951 1952 BUFFER_TRACE(bh, "zeroed end of block"); 1953 1954 err = 0; 1955 if (ext4_should_journal_data(inode)) { 1956 err = ext4_journal_dirty_metadata(handle, bh); 1957 } else { 1958 if (ext4_should_order_data(inode)) 1959 err = ext4_journal_dirty_data(handle, bh); 1960 mark_buffer_dirty(bh); 1961 } 1962 1963 unlock: 1964 unlock_page(page); 1965 page_cache_release(page); 1966 return err; 1967 } 1968 1969 /* 1970 * Probably it should be a library function... search for first non-zero word 1971 * or memcmp with zero_page, whatever is better for particular architecture. 1972 * Linus? 1973 */ 1974 static inline int all_zeroes(__le32 *p, __le32 *q) 1975 { 1976 while (p < q) 1977 if (*p++) 1978 return 0; 1979 return 1; 1980 } 1981 1982 /** 1983 * ext4_find_shared - find the indirect blocks for partial truncation. 1984 * @inode: inode in question 1985 * @depth: depth of the affected branch 1986 * @offsets: offsets of pointers in that branch (see ext4_block_to_path) 1987 * @chain: place to store the pointers to partial indirect blocks 1988 * @top: place to the (detached) top of branch 1989 * 1990 * This is a helper function used by ext4_truncate(). 1991 * 1992 * When we do truncate() we may have to clean the ends of several 1993 * indirect blocks but leave the blocks themselves alive. Block is 1994 * partially truncated if some data below the new i_size is refered 1995 * from it (and it is on the path to the first completely truncated 1996 * data block, indeed). We have to free the top of that path along 1997 * with everything to the right of the path. Since no allocation 1998 * past the truncation point is possible until ext4_truncate() 1999 * finishes, we may safely do the latter, but top of branch may 2000 * require special attention - pageout below the truncation point 2001 * might try to populate it. 2002 * 2003 * We atomically detach the top of branch from the tree, store the 2004 * block number of its root in *@top, pointers to buffer_heads of 2005 * partially truncated blocks - in @chain[].bh and pointers to 2006 * their last elements that should not be removed - in 2007 * @chain[].p. Return value is the pointer to last filled element 2008 * of @chain. 2009 * 2010 * The work left to caller to do the actual freeing of subtrees: 2011 * a) free the subtree starting from *@top 2012 * b) free the subtrees whose roots are stored in 2013 * (@chain[i].p+1 .. end of @chain[i].bh->b_data) 2014 * c) free the subtrees growing from the inode past the @chain[0]. 2015 * (no partially truncated stuff there). */ 2016 2017 static Indirect *ext4_find_shared(struct inode *inode, int depth, 2018 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top) 2019 { 2020 Indirect *partial, *p; 2021 int k, err; 2022 2023 *top = 0; 2024 /* Make k index the deepest non-null offest + 1 */ 2025 for (k = depth; k > 1 && !offsets[k-1]; k--) 2026 ; 2027 partial = ext4_get_branch(inode, k, offsets, chain, &err); 2028 /* Writer: pointers */ 2029 if (!partial) 2030 partial = chain + k-1; 2031 /* 2032 * If the branch acquired continuation since we've looked at it - 2033 * fine, it should all survive and (new) top doesn't belong to us. 2034 */ 2035 if (!partial->key && *partial->p) 2036 /* Writer: end */ 2037 goto no_top; 2038 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--) 2039 ; 2040 /* 2041 * OK, we've found the last block that must survive. The rest of our 2042 * branch should be detached before unlocking. However, if that rest 2043 * of branch is all ours and does not grow immediately from the inode 2044 * it's easier to cheat and just decrement partial->p. 2045 */ 2046 if (p == chain + k - 1 && p > chain) { 2047 p->p--; 2048 } else { 2049 *top = *p->p; 2050 /* Nope, don't do this in ext4. Must leave the tree intact */ 2051 #if 0 2052 *p->p = 0; 2053 #endif 2054 } 2055 /* Writer: end */ 2056 2057 while(partial > p) { 2058 brelse(partial->bh); 2059 partial--; 2060 } 2061 no_top: 2062 return partial; 2063 } 2064 2065 /* 2066 * Zero a number of block pointers in either an inode or an indirect block. 2067 * If we restart the transaction we must again get write access to the 2068 * indirect block for further modification. 2069 * 2070 * We release `count' blocks on disk, but (last - first) may be greater 2071 * than `count' because there can be holes in there. 2072 */ 2073 static void ext4_clear_blocks(handle_t *handle, struct inode *inode, 2074 struct buffer_head *bh, ext4_fsblk_t block_to_free, 2075 unsigned long count, __le32 *first, __le32 *last) 2076 { 2077 __le32 *p; 2078 if (try_to_extend_transaction(handle, inode)) { 2079 if (bh) { 2080 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata"); 2081 ext4_journal_dirty_metadata(handle, bh); 2082 } 2083 ext4_mark_inode_dirty(handle, inode); 2084 ext4_journal_test_restart(handle, inode); 2085 if (bh) { 2086 BUFFER_TRACE(bh, "retaking write access"); 2087 ext4_journal_get_write_access(handle, bh); 2088 } 2089 } 2090 2091 /* 2092 * Any buffers which are on the journal will be in memory. We find 2093 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget() 2094 * on them. We've already detached each block from the file, so 2095 * bforget() in jbd2_journal_forget() should be safe. 2096 * 2097 * AKPM: turn on bforget in jbd2_journal_forget()!!! 2098 */ 2099 for (p = first; p < last; p++) { 2100 u32 nr = le32_to_cpu(*p); 2101 if (nr) { 2102 struct buffer_head *tbh; 2103 2104 *p = 0; 2105 tbh = sb_find_get_block(inode->i_sb, nr); 2106 ext4_forget(handle, 0, inode, tbh, nr); 2107 } 2108 } 2109 2110 ext4_free_blocks(handle, inode, block_to_free, count, 0); 2111 } 2112 2113 /** 2114 * ext4_free_data - free a list of data blocks 2115 * @handle: handle for this transaction 2116 * @inode: inode we are dealing with 2117 * @this_bh: indirect buffer_head which contains *@first and *@last 2118 * @first: array of block numbers 2119 * @last: points immediately past the end of array 2120 * 2121 * We are freeing all blocks refered from that array (numbers are stored as 2122 * little-endian 32-bit) and updating @inode->i_blocks appropriately. 2123 * 2124 * We accumulate contiguous runs of blocks to free. Conveniently, if these 2125 * blocks are contiguous then releasing them at one time will only affect one 2126 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't 2127 * actually use a lot of journal space. 2128 * 2129 * @this_bh will be %NULL if @first and @last point into the inode's direct 2130 * block pointers. 2131 */ 2132 static void ext4_free_data(handle_t *handle, struct inode *inode, 2133 struct buffer_head *this_bh, 2134 __le32 *first, __le32 *last) 2135 { 2136 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */ 2137 unsigned long count = 0; /* Number of blocks in the run */ 2138 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind 2139 corresponding to 2140 block_to_free */ 2141 ext4_fsblk_t nr; /* Current block # */ 2142 __le32 *p; /* Pointer into inode/ind 2143 for current block */ 2144 int err; 2145 2146 if (this_bh) { /* For indirect block */ 2147 BUFFER_TRACE(this_bh, "get_write_access"); 2148 err = ext4_journal_get_write_access(handle, this_bh); 2149 /* Important: if we can't update the indirect pointers 2150 * to the blocks, we can't free them. */ 2151 if (err) 2152 return; 2153 } 2154 2155 for (p = first; p < last; p++) { 2156 nr = le32_to_cpu(*p); 2157 if (nr) { 2158 /* accumulate blocks to free if they're contiguous */ 2159 if (count == 0) { 2160 block_to_free = nr; 2161 block_to_free_p = p; 2162 count = 1; 2163 } else if (nr == block_to_free + count) { 2164 count++; 2165 } else { 2166 ext4_clear_blocks(handle, inode, this_bh, 2167 block_to_free, 2168 count, block_to_free_p, p); 2169 block_to_free = nr; 2170 block_to_free_p = p; 2171 count = 1; 2172 } 2173 } 2174 } 2175 2176 if (count > 0) 2177 ext4_clear_blocks(handle, inode, this_bh, block_to_free, 2178 count, block_to_free_p, p); 2179 2180 if (this_bh) { 2181 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata"); 2182 ext4_journal_dirty_metadata(handle, this_bh); 2183 } 2184 } 2185 2186 /** 2187 * ext4_free_branches - free an array of branches 2188 * @handle: JBD handle for this transaction 2189 * @inode: inode we are dealing with 2190 * @parent_bh: the buffer_head which contains *@first and *@last 2191 * @first: array of block numbers 2192 * @last: pointer immediately past the end of array 2193 * @depth: depth of the branches to free 2194 * 2195 * We are freeing all blocks refered from these branches (numbers are 2196 * stored as little-endian 32-bit) and updating @inode->i_blocks 2197 * appropriately. 2198 */ 2199 static void ext4_free_branches(handle_t *handle, struct inode *inode, 2200 struct buffer_head *parent_bh, 2201 __le32 *first, __le32 *last, int depth) 2202 { 2203 ext4_fsblk_t nr; 2204 __le32 *p; 2205 2206 if (is_handle_aborted(handle)) 2207 return; 2208 2209 if (depth--) { 2210 struct buffer_head *bh; 2211 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 2212 p = last; 2213 while (--p >= first) { 2214 nr = le32_to_cpu(*p); 2215 if (!nr) 2216 continue; /* A hole */ 2217 2218 /* Go read the buffer for the next level down */ 2219 bh = sb_bread(inode->i_sb, nr); 2220 2221 /* 2222 * A read failure? Report error and clear slot 2223 * (should be rare). 2224 */ 2225 if (!bh) { 2226 ext4_error(inode->i_sb, "ext4_free_branches", 2227 "Read failure, inode=%lu, block=%llu", 2228 inode->i_ino, nr); 2229 continue; 2230 } 2231 2232 /* This zaps the entire block. Bottom up. */ 2233 BUFFER_TRACE(bh, "free child branches"); 2234 ext4_free_branches(handle, inode, bh, 2235 (__le32*)bh->b_data, 2236 (__le32*)bh->b_data + addr_per_block, 2237 depth); 2238 2239 /* 2240 * We've probably journalled the indirect block several 2241 * times during the truncate. But it's no longer 2242 * needed and we now drop it from the transaction via 2243 * jbd2_journal_revoke(). 2244 * 2245 * That's easy if it's exclusively part of this 2246 * transaction. But if it's part of the committing 2247 * transaction then jbd2_journal_forget() will simply 2248 * brelse() it. That means that if the underlying 2249 * block is reallocated in ext4_get_block(), 2250 * unmap_underlying_metadata() will find this block 2251 * and will try to get rid of it. damn, damn. 2252 * 2253 * If this block has already been committed to the 2254 * journal, a revoke record will be written. And 2255 * revoke records must be emitted *before* clearing 2256 * this block's bit in the bitmaps. 2257 */ 2258 ext4_forget(handle, 1, inode, bh, bh->b_blocknr); 2259 2260 /* 2261 * Everything below this this pointer has been 2262 * released. Now let this top-of-subtree go. 2263 * 2264 * We want the freeing of this indirect block to be 2265 * atomic in the journal with the updating of the 2266 * bitmap block which owns it. So make some room in 2267 * the journal. 2268 * 2269 * We zero the parent pointer *after* freeing its 2270 * pointee in the bitmaps, so if extend_transaction() 2271 * for some reason fails to put the bitmap changes and 2272 * the release into the same transaction, recovery 2273 * will merely complain about releasing a free block, 2274 * rather than leaking blocks. 2275 */ 2276 if (is_handle_aborted(handle)) 2277 return; 2278 if (try_to_extend_transaction(handle, inode)) { 2279 ext4_mark_inode_dirty(handle, inode); 2280 ext4_journal_test_restart(handle, inode); 2281 } 2282 2283 ext4_free_blocks(handle, inode, nr, 1, 1); 2284 2285 if (parent_bh) { 2286 /* 2287 * The block which we have just freed is 2288 * pointed to by an indirect block: journal it 2289 */ 2290 BUFFER_TRACE(parent_bh, "get_write_access"); 2291 if (!ext4_journal_get_write_access(handle, 2292 parent_bh)){ 2293 *p = 0; 2294 BUFFER_TRACE(parent_bh, 2295 "call ext4_journal_dirty_metadata"); 2296 ext4_journal_dirty_metadata(handle, 2297 parent_bh); 2298 } 2299 } 2300 } 2301 } else { 2302 /* We have reached the bottom of the tree. */ 2303 BUFFER_TRACE(parent_bh, "free data blocks"); 2304 ext4_free_data(handle, inode, parent_bh, first, last); 2305 } 2306 } 2307 2308 /* 2309 * ext4_truncate() 2310 * 2311 * We block out ext4_get_block() block instantiations across the entire 2312 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 2313 * simultaneously on behalf of the same inode. 2314 * 2315 * As we work through the truncate and commmit bits of it to the journal there 2316 * is one core, guiding principle: the file's tree must always be consistent on 2317 * disk. We must be able to restart the truncate after a crash. 2318 * 2319 * The file's tree may be transiently inconsistent in memory (although it 2320 * probably isn't), but whenever we close off and commit a journal transaction, 2321 * the contents of (the filesystem + the journal) must be consistent and 2322 * restartable. It's pretty simple, really: bottom up, right to left (although 2323 * left-to-right works OK too). 2324 * 2325 * Note that at recovery time, journal replay occurs *before* the restart of 2326 * truncate against the orphan inode list. 2327 * 2328 * The committed inode has the new, desired i_size (which is the same as 2329 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 2330 * that this inode's truncate did not complete and it will again call 2331 * ext4_truncate() to have another go. So there will be instantiated blocks 2332 * to the right of the truncation point in a crashed ext4 filesystem. But 2333 * that's fine - as long as they are linked from the inode, the post-crash 2334 * ext4_truncate() run will find them and release them. 2335 */ 2336 void ext4_truncate(struct inode *inode) 2337 { 2338 handle_t *handle; 2339 struct ext4_inode_info *ei = EXT4_I(inode); 2340 __le32 *i_data = ei->i_data; 2341 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 2342 struct address_space *mapping = inode->i_mapping; 2343 ext4_lblk_t offsets[4]; 2344 Indirect chain[4]; 2345 Indirect *partial; 2346 __le32 nr = 0; 2347 int n; 2348 ext4_lblk_t last_block; 2349 unsigned blocksize = inode->i_sb->s_blocksize; 2350 struct page *page; 2351 2352 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 2353 S_ISLNK(inode->i_mode))) 2354 return; 2355 if (ext4_inode_is_fast_symlink(inode)) 2356 return; 2357 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 2358 return; 2359 2360 /* 2361 * We have to lock the EOF page here, because lock_page() nests 2362 * outside jbd2_journal_start(). 2363 */ 2364 if ((inode->i_size & (blocksize - 1)) == 0) { 2365 /* Block boundary? Nothing to do */ 2366 page = NULL; 2367 } else { 2368 page = grab_cache_page(mapping, 2369 inode->i_size >> PAGE_CACHE_SHIFT); 2370 if (!page) 2371 return; 2372 } 2373 2374 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 2375 ext4_ext_truncate(inode, page); 2376 return; 2377 } 2378 2379 handle = start_transaction(inode); 2380 if (IS_ERR(handle)) { 2381 if (page) { 2382 clear_highpage(page); 2383 flush_dcache_page(page); 2384 unlock_page(page); 2385 page_cache_release(page); 2386 } 2387 return; /* AKPM: return what? */ 2388 } 2389 2390 last_block = (inode->i_size + blocksize-1) 2391 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 2392 2393 if (page) 2394 ext4_block_truncate_page(handle, page, mapping, inode->i_size); 2395 2396 n = ext4_block_to_path(inode, last_block, offsets, NULL); 2397 if (n == 0) 2398 goto out_stop; /* error */ 2399 2400 /* 2401 * OK. This truncate is going to happen. We add the inode to the 2402 * orphan list, so that if this truncate spans multiple transactions, 2403 * and we crash, we will resume the truncate when the filesystem 2404 * recovers. It also marks the inode dirty, to catch the new size. 2405 * 2406 * Implication: the file must always be in a sane, consistent 2407 * truncatable state while each transaction commits. 2408 */ 2409 if (ext4_orphan_add(handle, inode)) 2410 goto out_stop; 2411 2412 /* 2413 * The orphan list entry will now protect us from any crash which 2414 * occurs before the truncate completes, so it is now safe to propagate 2415 * the new, shorter inode size (held for now in i_size) into the 2416 * on-disk inode. We do this via i_disksize, which is the value which 2417 * ext4 *really* writes onto the disk inode. 2418 */ 2419 ei->i_disksize = inode->i_size; 2420 2421 /* 2422 * From here we block out all ext4_get_block() callers who want to 2423 * modify the block allocation tree. 2424 */ 2425 down_write(&ei->i_data_sem); 2426 2427 if (n == 1) { /* direct blocks */ 2428 ext4_free_data(handle, inode, NULL, i_data+offsets[0], 2429 i_data + EXT4_NDIR_BLOCKS); 2430 goto do_indirects; 2431 } 2432 2433 partial = ext4_find_shared(inode, n, offsets, chain, &nr); 2434 /* Kill the top of shared branch (not detached) */ 2435 if (nr) { 2436 if (partial == chain) { 2437 /* Shared branch grows from the inode */ 2438 ext4_free_branches(handle, inode, NULL, 2439 &nr, &nr+1, (chain+n-1) - partial); 2440 *partial->p = 0; 2441 /* 2442 * We mark the inode dirty prior to restart, 2443 * and prior to stop. No need for it here. 2444 */ 2445 } else { 2446 /* Shared branch grows from an indirect block */ 2447 BUFFER_TRACE(partial->bh, "get_write_access"); 2448 ext4_free_branches(handle, inode, partial->bh, 2449 partial->p, 2450 partial->p+1, (chain+n-1) - partial); 2451 } 2452 } 2453 /* Clear the ends of indirect blocks on the shared branch */ 2454 while (partial > chain) { 2455 ext4_free_branches(handle, inode, partial->bh, partial->p + 1, 2456 (__le32*)partial->bh->b_data+addr_per_block, 2457 (chain+n-1) - partial); 2458 BUFFER_TRACE(partial->bh, "call brelse"); 2459 brelse (partial->bh); 2460 partial--; 2461 } 2462 do_indirects: 2463 /* Kill the remaining (whole) subtrees */ 2464 switch (offsets[0]) { 2465 default: 2466 nr = i_data[EXT4_IND_BLOCK]; 2467 if (nr) { 2468 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1); 2469 i_data[EXT4_IND_BLOCK] = 0; 2470 } 2471 case EXT4_IND_BLOCK: 2472 nr = i_data[EXT4_DIND_BLOCK]; 2473 if (nr) { 2474 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2); 2475 i_data[EXT4_DIND_BLOCK] = 0; 2476 } 2477 case EXT4_DIND_BLOCK: 2478 nr = i_data[EXT4_TIND_BLOCK]; 2479 if (nr) { 2480 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3); 2481 i_data[EXT4_TIND_BLOCK] = 0; 2482 } 2483 case EXT4_TIND_BLOCK: 2484 ; 2485 } 2486 2487 ext4_discard_reservation(inode); 2488 2489 up_write(&ei->i_data_sem); 2490 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 2491 ext4_mark_inode_dirty(handle, inode); 2492 2493 /* 2494 * In a multi-transaction truncate, we only make the final transaction 2495 * synchronous 2496 */ 2497 if (IS_SYNC(inode)) 2498 handle->h_sync = 1; 2499 out_stop: 2500 /* 2501 * If this was a simple ftruncate(), and the file will remain alive 2502 * then we need to clear up the orphan record which we created above. 2503 * However, if this was a real unlink then we were called by 2504 * ext4_delete_inode(), and we allow that function to clean up the 2505 * orphan info for us. 2506 */ 2507 if (inode->i_nlink) 2508 ext4_orphan_del(handle, inode); 2509 2510 ext4_journal_stop(handle); 2511 } 2512 2513 static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb, 2514 unsigned long ino, struct ext4_iloc *iloc) 2515 { 2516 ext4_group_t block_group; 2517 unsigned long offset; 2518 ext4_fsblk_t block; 2519 struct ext4_group_desc *gdp; 2520 2521 if (!ext4_valid_inum(sb, ino)) { 2522 /* 2523 * This error is already checked for in namei.c unless we are 2524 * looking at an NFS filehandle, in which case no error 2525 * report is needed 2526 */ 2527 return 0; 2528 } 2529 2530 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 2531 gdp = ext4_get_group_desc(sb, block_group, NULL); 2532 if (!gdp) 2533 return 0; 2534 2535 /* 2536 * Figure out the offset within the block group inode table 2537 */ 2538 offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) * 2539 EXT4_INODE_SIZE(sb); 2540 block = ext4_inode_table(sb, gdp) + 2541 (offset >> EXT4_BLOCK_SIZE_BITS(sb)); 2542 2543 iloc->block_group = block_group; 2544 iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1); 2545 return block; 2546 } 2547 2548 /* 2549 * ext4_get_inode_loc returns with an extra refcount against the inode's 2550 * underlying buffer_head on success. If 'in_mem' is true, we have all 2551 * data in memory that is needed to recreate the on-disk version of this 2552 * inode. 2553 */ 2554 static int __ext4_get_inode_loc(struct inode *inode, 2555 struct ext4_iloc *iloc, int in_mem) 2556 { 2557 ext4_fsblk_t block; 2558 struct buffer_head *bh; 2559 2560 block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc); 2561 if (!block) 2562 return -EIO; 2563 2564 bh = sb_getblk(inode->i_sb, block); 2565 if (!bh) { 2566 ext4_error (inode->i_sb, "ext4_get_inode_loc", 2567 "unable to read inode block - " 2568 "inode=%lu, block=%llu", 2569 inode->i_ino, block); 2570 return -EIO; 2571 } 2572 if (!buffer_uptodate(bh)) { 2573 lock_buffer(bh); 2574 if (buffer_uptodate(bh)) { 2575 /* someone brought it uptodate while we waited */ 2576 unlock_buffer(bh); 2577 goto has_buffer; 2578 } 2579 2580 /* 2581 * If we have all information of the inode in memory and this 2582 * is the only valid inode in the block, we need not read the 2583 * block. 2584 */ 2585 if (in_mem) { 2586 struct buffer_head *bitmap_bh; 2587 struct ext4_group_desc *desc; 2588 int inodes_per_buffer; 2589 int inode_offset, i; 2590 ext4_group_t block_group; 2591 int start; 2592 2593 block_group = (inode->i_ino - 1) / 2594 EXT4_INODES_PER_GROUP(inode->i_sb); 2595 inodes_per_buffer = bh->b_size / 2596 EXT4_INODE_SIZE(inode->i_sb); 2597 inode_offset = ((inode->i_ino - 1) % 2598 EXT4_INODES_PER_GROUP(inode->i_sb)); 2599 start = inode_offset & ~(inodes_per_buffer - 1); 2600 2601 /* Is the inode bitmap in cache? */ 2602 desc = ext4_get_group_desc(inode->i_sb, 2603 block_group, NULL); 2604 if (!desc) 2605 goto make_io; 2606 2607 bitmap_bh = sb_getblk(inode->i_sb, 2608 ext4_inode_bitmap(inode->i_sb, desc)); 2609 if (!bitmap_bh) 2610 goto make_io; 2611 2612 /* 2613 * If the inode bitmap isn't in cache then the 2614 * optimisation may end up performing two reads instead 2615 * of one, so skip it. 2616 */ 2617 if (!buffer_uptodate(bitmap_bh)) { 2618 brelse(bitmap_bh); 2619 goto make_io; 2620 } 2621 for (i = start; i < start + inodes_per_buffer; i++) { 2622 if (i == inode_offset) 2623 continue; 2624 if (ext4_test_bit(i, bitmap_bh->b_data)) 2625 break; 2626 } 2627 brelse(bitmap_bh); 2628 if (i == start + inodes_per_buffer) { 2629 /* all other inodes are free, so skip I/O */ 2630 memset(bh->b_data, 0, bh->b_size); 2631 set_buffer_uptodate(bh); 2632 unlock_buffer(bh); 2633 goto has_buffer; 2634 } 2635 } 2636 2637 make_io: 2638 /* 2639 * There are other valid inodes in the buffer, this inode 2640 * has in-inode xattrs, or we don't have this inode in memory. 2641 * Read the block from disk. 2642 */ 2643 get_bh(bh); 2644 bh->b_end_io = end_buffer_read_sync; 2645 submit_bh(READ_META, bh); 2646 wait_on_buffer(bh); 2647 if (!buffer_uptodate(bh)) { 2648 ext4_error(inode->i_sb, "ext4_get_inode_loc", 2649 "unable to read inode block - " 2650 "inode=%lu, block=%llu", 2651 inode->i_ino, block); 2652 brelse(bh); 2653 return -EIO; 2654 } 2655 } 2656 has_buffer: 2657 iloc->bh = bh; 2658 return 0; 2659 } 2660 2661 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 2662 { 2663 /* We have all inode data except xattrs in memory here. */ 2664 return __ext4_get_inode_loc(inode, iloc, 2665 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR)); 2666 } 2667 2668 void ext4_set_inode_flags(struct inode *inode) 2669 { 2670 unsigned int flags = EXT4_I(inode)->i_flags; 2671 2672 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 2673 if (flags & EXT4_SYNC_FL) 2674 inode->i_flags |= S_SYNC; 2675 if (flags & EXT4_APPEND_FL) 2676 inode->i_flags |= S_APPEND; 2677 if (flags & EXT4_IMMUTABLE_FL) 2678 inode->i_flags |= S_IMMUTABLE; 2679 if (flags & EXT4_NOATIME_FL) 2680 inode->i_flags |= S_NOATIME; 2681 if (flags & EXT4_DIRSYNC_FL) 2682 inode->i_flags |= S_DIRSYNC; 2683 } 2684 2685 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 2686 void ext4_get_inode_flags(struct ext4_inode_info *ei) 2687 { 2688 unsigned int flags = ei->vfs_inode.i_flags; 2689 2690 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 2691 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL); 2692 if (flags & S_SYNC) 2693 ei->i_flags |= EXT4_SYNC_FL; 2694 if (flags & S_APPEND) 2695 ei->i_flags |= EXT4_APPEND_FL; 2696 if (flags & S_IMMUTABLE) 2697 ei->i_flags |= EXT4_IMMUTABLE_FL; 2698 if (flags & S_NOATIME) 2699 ei->i_flags |= EXT4_NOATIME_FL; 2700 if (flags & S_DIRSYNC) 2701 ei->i_flags |= EXT4_DIRSYNC_FL; 2702 } 2703 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 2704 struct ext4_inode_info *ei) 2705 { 2706 blkcnt_t i_blocks ; 2707 struct inode *inode = &(ei->vfs_inode); 2708 struct super_block *sb = inode->i_sb; 2709 2710 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 2711 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 2712 /* we are using combined 48 bit field */ 2713 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 2714 le32_to_cpu(raw_inode->i_blocks_lo); 2715 if (ei->i_flags & EXT4_HUGE_FILE_FL) { 2716 /* i_blocks represent file system block size */ 2717 return i_blocks << (inode->i_blkbits - 9); 2718 } else { 2719 return i_blocks; 2720 } 2721 } else { 2722 return le32_to_cpu(raw_inode->i_blocks_lo); 2723 } 2724 } 2725 2726 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 2727 { 2728 struct ext4_iloc iloc; 2729 struct ext4_inode *raw_inode; 2730 struct ext4_inode_info *ei; 2731 struct buffer_head *bh; 2732 struct inode *inode; 2733 long ret; 2734 int block; 2735 2736 inode = iget_locked(sb, ino); 2737 if (!inode) 2738 return ERR_PTR(-ENOMEM); 2739 if (!(inode->i_state & I_NEW)) 2740 return inode; 2741 2742 ei = EXT4_I(inode); 2743 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL 2744 ei->i_acl = EXT4_ACL_NOT_CACHED; 2745 ei->i_default_acl = EXT4_ACL_NOT_CACHED; 2746 #endif 2747 ei->i_block_alloc_info = NULL; 2748 2749 ret = __ext4_get_inode_loc(inode, &iloc, 0); 2750 if (ret < 0) 2751 goto bad_inode; 2752 bh = iloc.bh; 2753 raw_inode = ext4_raw_inode(&iloc); 2754 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 2755 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 2756 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 2757 if(!(test_opt (inode->i_sb, NO_UID32))) { 2758 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 2759 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 2760 } 2761 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count); 2762 2763 ei->i_state = 0; 2764 ei->i_dir_start_lookup = 0; 2765 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 2766 /* We now have enough fields to check if the inode was active or not. 2767 * This is needed because nfsd might try to access dead inodes 2768 * the test is that same one that e2fsck uses 2769 * NeilBrown 1999oct15 2770 */ 2771 if (inode->i_nlink == 0) { 2772 if (inode->i_mode == 0 || 2773 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) { 2774 /* this inode is deleted */ 2775 brelse (bh); 2776 ret = -ESTALE; 2777 goto bad_inode; 2778 } 2779 /* The only unlinked inodes we let through here have 2780 * valid i_mode and are being read by the orphan 2781 * recovery code: that's fine, we're about to complete 2782 * the process of deleting those. */ 2783 } 2784 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 2785 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 2786 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 2787 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 2788 cpu_to_le32(EXT4_OS_HURD)) { 2789 ei->i_file_acl |= 2790 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 2791 } 2792 inode->i_size = ext4_isize(raw_inode); 2793 ei->i_disksize = inode->i_size; 2794 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 2795 ei->i_block_group = iloc.block_group; 2796 /* 2797 * NOTE! The in-memory inode i_data array is in little-endian order 2798 * even on big-endian machines: we do NOT byteswap the block numbers! 2799 */ 2800 for (block = 0; block < EXT4_N_BLOCKS; block++) 2801 ei->i_data[block] = raw_inode->i_block[block]; 2802 INIT_LIST_HEAD(&ei->i_orphan); 2803 2804 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 2805 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 2806 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 2807 EXT4_INODE_SIZE(inode->i_sb)) { 2808 brelse (bh); 2809 ret = -EIO; 2810 goto bad_inode; 2811 } 2812 if (ei->i_extra_isize == 0) { 2813 /* The extra space is currently unused. Use it. */ 2814 ei->i_extra_isize = sizeof(struct ext4_inode) - 2815 EXT4_GOOD_OLD_INODE_SIZE; 2816 } else { 2817 __le32 *magic = (void *)raw_inode + 2818 EXT4_GOOD_OLD_INODE_SIZE + 2819 ei->i_extra_isize; 2820 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) 2821 ei->i_state |= EXT4_STATE_XATTR; 2822 } 2823 } else 2824 ei->i_extra_isize = 0; 2825 2826 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 2827 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 2828 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 2829 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 2830 2831 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 2832 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 2833 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 2834 inode->i_version |= 2835 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 2836 } 2837 2838 if (S_ISREG(inode->i_mode)) { 2839 inode->i_op = &ext4_file_inode_operations; 2840 inode->i_fop = &ext4_file_operations; 2841 ext4_set_aops(inode); 2842 } else if (S_ISDIR(inode->i_mode)) { 2843 inode->i_op = &ext4_dir_inode_operations; 2844 inode->i_fop = &ext4_dir_operations; 2845 } else if (S_ISLNK(inode->i_mode)) { 2846 if (ext4_inode_is_fast_symlink(inode)) 2847 inode->i_op = &ext4_fast_symlink_inode_operations; 2848 else { 2849 inode->i_op = &ext4_symlink_inode_operations; 2850 ext4_set_aops(inode); 2851 } 2852 } else { 2853 inode->i_op = &ext4_special_inode_operations; 2854 if (raw_inode->i_block[0]) 2855 init_special_inode(inode, inode->i_mode, 2856 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 2857 else 2858 init_special_inode(inode, inode->i_mode, 2859 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 2860 } 2861 brelse (iloc.bh); 2862 ext4_set_inode_flags(inode); 2863 unlock_new_inode(inode); 2864 return inode; 2865 2866 bad_inode: 2867 iget_failed(inode); 2868 return ERR_PTR(ret); 2869 } 2870 2871 static int ext4_inode_blocks_set(handle_t *handle, 2872 struct ext4_inode *raw_inode, 2873 struct ext4_inode_info *ei) 2874 { 2875 struct inode *inode = &(ei->vfs_inode); 2876 u64 i_blocks = inode->i_blocks; 2877 struct super_block *sb = inode->i_sb; 2878 int err = 0; 2879 2880 if (i_blocks <= ~0U) { 2881 /* 2882 * i_blocks can be represnted in a 32 bit variable 2883 * as multiple of 512 bytes 2884 */ 2885 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 2886 raw_inode->i_blocks_high = 0; 2887 ei->i_flags &= ~EXT4_HUGE_FILE_FL; 2888 } else if (i_blocks <= 0xffffffffffffULL) { 2889 /* 2890 * i_blocks can be represented in a 48 bit variable 2891 * as multiple of 512 bytes 2892 */ 2893 err = ext4_update_rocompat_feature(handle, sb, 2894 EXT4_FEATURE_RO_COMPAT_HUGE_FILE); 2895 if (err) 2896 goto err_out; 2897 /* i_block is stored in the split 48 bit fields */ 2898 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 2899 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 2900 ei->i_flags &= ~EXT4_HUGE_FILE_FL; 2901 } else { 2902 /* 2903 * i_blocks should be represented in a 48 bit variable 2904 * as multiple of file system block size 2905 */ 2906 err = ext4_update_rocompat_feature(handle, sb, 2907 EXT4_FEATURE_RO_COMPAT_HUGE_FILE); 2908 if (err) 2909 goto err_out; 2910 ei->i_flags |= EXT4_HUGE_FILE_FL; 2911 /* i_block is stored in file system block size */ 2912 i_blocks = i_blocks >> (inode->i_blkbits - 9); 2913 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 2914 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 2915 } 2916 err_out: 2917 return err; 2918 } 2919 2920 /* 2921 * Post the struct inode info into an on-disk inode location in the 2922 * buffer-cache. This gobbles the caller's reference to the 2923 * buffer_head in the inode location struct. 2924 * 2925 * The caller must have write access to iloc->bh. 2926 */ 2927 static int ext4_do_update_inode(handle_t *handle, 2928 struct inode *inode, 2929 struct ext4_iloc *iloc) 2930 { 2931 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 2932 struct ext4_inode_info *ei = EXT4_I(inode); 2933 struct buffer_head *bh = iloc->bh; 2934 int err = 0, rc, block; 2935 2936 /* For fields not not tracking in the in-memory inode, 2937 * initialise them to zero for new inodes. */ 2938 if (ei->i_state & EXT4_STATE_NEW) 2939 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 2940 2941 ext4_get_inode_flags(ei); 2942 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 2943 if(!(test_opt(inode->i_sb, NO_UID32))) { 2944 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid)); 2945 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid)); 2946 /* 2947 * Fix up interoperability with old kernels. Otherwise, old inodes get 2948 * re-used with the upper 16 bits of the uid/gid intact 2949 */ 2950 if(!ei->i_dtime) { 2951 raw_inode->i_uid_high = 2952 cpu_to_le16(high_16_bits(inode->i_uid)); 2953 raw_inode->i_gid_high = 2954 cpu_to_le16(high_16_bits(inode->i_gid)); 2955 } else { 2956 raw_inode->i_uid_high = 0; 2957 raw_inode->i_gid_high = 0; 2958 } 2959 } else { 2960 raw_inode->i_uid_low = 2961 cpu_to_le16(fs_high2lowuid(inode->i_uid)); 2962 raw_inode->i_gid_low = 2963 cpu_to_le16(fs_high2lowgid(inode->i_gid)); 2964 raw_inode->i_uid_high = 0; 2965 raw_inode->i_gid_high = 0; 2966 } 2967 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 2968 2969 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 2970 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 2971 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 2972 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 2973 2974 if (ext4_inode_blocks_set(handle, raw_inode, ei)) 2975 goto out_brelse; 2976 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 2977 /* clear the migrate flag in the raw_inode */ 2978 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE); 2979 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 2980 cpu_to_le32(EXT4_OS_HURD)) 2981 raw_inode->i_file_acl_high = 2982 cpu_to_le16(ei->i_file_acl >> 32); 2983 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 2984 ext4_isize_set(raw_inode, ei->i_disksize); 2985 if (ei->i_disksize > 0x7fffffffULL) { 2986 struct super_block *sb = inode->i_sb; 2987 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 2988 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 2989 EXT4_SB(sb)->s_es->s_rev_level == 2990 cpu_to_le32(EXT4_GOOD_OLD_REV)) { 2991 /* If this is the first large file 2992 * created, add a flag to the superblock. 2993 */ 2994 err = ext4_journal_get_write_access(handle, 2995 EXT4_SB(sb)->s_sbh); 2996 if (err) 2997 goto out_brelse; 2998 ext4_update_dynamic_rev(sb); 2999 EXT4_SET_RO_COMPAT_FEATURE(sb, 3000 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 3001 sb->s_dirt = 1; 3002 handle->h_sync = 1; 3003 err = ext4_journal_dirty_metadata(handle, 3004 EXT4_SB(sb)->s_sbh); 3005 } 3006 } 3007 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 3008 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 3009 if (old_valid_dev(inode->i_rdev)) { 3010 raw_inode->i_block[0] = 3011 cpu_to_le32(old_encode_dev(inode->i_rdev)); 3012 raw_inode->i_block[1] = 0; 3013 } else { 3014 raw_inode->i_block[0] = 0; 3015 raw_inode->i_block[1] = 3016 cpu_to_le32(new_encode_dev(inode->i_rdev)); 3017 raw_inode->i_block[2] = 0; 3018 } 3019 } else for (block = 0; block < EXT4_N_BLOCKS; block++) 3020 raw_inode->i_block[block] = ei->i_data[block]; 3021 3022 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 3023 if (ei->i_extra_isize) { 3024 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 3025 raw_inode->i_version_hi = 3026 cpu_to_le32(inode->i_version >> 32); 3027 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); 3028 } 3029 3030 3031 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata"); 3032 rc = ext4_journal_dirty_metadata(handle, bh); 3033 if (!err) 3034 err = rc; 3035 ei->i_state &= ~EXT4_STATE_NEW; 3036 3037 out_brelse: 3038 brelse (bh); 3039 ext4_std_error(inode->i_sb, err); 3040 return err; 3041 } 3042 3043 /* 3044 * ext4_write_inode() 3045 * 3046 * We are called from a few places: 3047 * 3048 * - Within generic_file_write() for O_SYNC files. 3049 * Here, there will be no transaction running. We wait for any running 3050 * trasnaction to commit. 3051 * 3052 * - Within sys_sync(), kupdate and such. 3053 * We wait on commit, if tol to. 3054 * 3055 * - Within prune_icache() (PF_MEMALLOC == true) 3056 * Here we simply return. We can't afford to block kswapd on the 3057 * journal commit. 3058 * 3059 * In all cases it is actually safe for us to return without doing anything, 3060 * because the inode has been copied into a raw inode buffer in 3061 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for 3062 * knfsd. 3063 * 3064 * Note that we are absolutely dependent upon all inode dirtiers doing the 3065 * right thing: they *must* call mark_inode_dirty() after dirtying info in 3066 * which we are interested. 3067 * 3068 * It would be a bug for them to not do this. The code: 3069 * 3070 * mark_inode_dirty(inode) 3071 * stuff(); 3072 * inode->i_size = expr; 3073 * 3074 * is in error because a kswapd-driven write_inode() could occur while 3075 * `stuff()' is running, and the new i_size will be lost. Plus the inode 3076 * will no longer be on the superblock's dirty inode list. 3077 */ 3078 int ext4_write_inode(struct inode *inode, int wait) 3079 { 3080 if (current->flags & PF_MEMALLOC) 3081 return 0; 3082 3083 if (ext4_journal_current_handle()) { 3084 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 3085 dump_stack(); 3086 return -EIO; 3087 } 3088 3089 if (!wait) 3090 return 0; 3091 3092 return ext4_force_commit(inode->i_sb); 3093 } 3094 3095 /* 3096 * ext4_setattr() 3097 * 3098 * Called from notify_change. 3099 * 3100 * We want to trap VFS attempts to truncate the file as soon as 3101 * possible. In particular, we want to make sure that when the VFS 3102 * shrinks i_size, we put the inode on the orphan list and modify 3103 * i_disksize immediately, so that during the subsequent flushing of 3104 * dirty pages and freeing of disk blocks, we can guarantee that any 3105 * commit will leave the blocks being flushed in an unused state on 3106 * disk. (On recovery, the inode will get truncated and the blocks will 3107 * be freed, so we have a strong guarantee that no future commit will 3108 * leave these blocks visible to the user.) 3109 * 3110 * Called with inode->sem down. 3111 */ 3112 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 3113 { 3114 struct inode *inode = dentry->d_inode; 3115 int error, rc = 0; 3116 const unsigned int ia_valid = attr->ia_valid; 3117 3118 error = inode_change_ok(inode, attr); 3119 if (error) 3120 return error; 3121 3122 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) || 3123 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) { 3124 handle_t *handle; 3125 3126 /* (user+group)*(old+new) structure, inode write (sb, 3127 * inode block, ? - but truncate inode update has it) */ 3128 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+ 3129 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3); 3130 if (IS_ERR(handle)) { 3131 error = PTR_ERR(handle); 3132 goto err_out; 3133 } 3134 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0; 3135 if (error) { 3136 ext4_journal_stop(handle); 3137 return error; 3138 } 3139 /* Update corresponding info in inode so that everything is in 3140 * one transaction */ 3141 if (attr->ia_valid & ATTR_UID) 3142 inode->i_uid = attr->ia_uid; 3143 if (attr->ia_valid & ATTR_GID) 3144 inode->i_gid = attr->ia_gid; 3145 error = ext4_mark_inode_dirty(handle, inode); 3146 ext4_journal_stop(handle); 3147 } 3148 3149 if (attr->ia_valid & ATTR_SIZE) { 3150 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) { 3151 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3152 3153 if (attr->ia_size > sbi->s_bitmap_maxbytes) { 3154 error = -EFBIG; 3155 goto err_out; 3156 } 3157 } 3158 } 3159 3160 if (S_ISREG(inode->i_mode) && 3161 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) { 3162 handle_t *handle; 3163 3164 handle = ext4_journal_start(inode, 3); 3165 if (IS_ERR(handle)) { 3166 error = PTR_ERR(handle); 3167 goto err_out; 3168 } 3169 3170 error = ext4_orphan_add(handle, inode); 3171 EXT4_I(inode)->i_disksize = attr->ia_size; 3172 rc = ext4_mark_inode_dirty(handle, inode); 3173 if (!error) 3174 error = rc; 3175 ext4_journal_stop(handle); 3176 } 3177 3178 rc = inode_setattr(inode, attr); 3179 3180 /* If inode_setattr's call to ext4_truncate failed to get a 3181 * transaction handle at all, we need to clean up the in-core 3182 * orphan list manually. */ 3183 if (inode->i_nlink) 3184 ext4_orphan_del(NULL, inode); 3185 3186 if (!rc && (ia_valid & ATTR_MODE)) 3187 rc = ext4_acl_chmod(inode); 3188 3189 err_out: 3190 ext4_std_error(inode->i_sb, error); 3191 if (!error) 3192 error = rc; 3193 return error; 3194 } 3195 3196 3197 /* 3198 * How many blocks doth make a writepage()? 3199 * 3200 * With N blocks per page, it may be: 3201 * N data blocks 3202 * 2 indirect block 3203 * 2 dindirect 3204 * 1 tindirect 3205 * N+5 bitmap blocks (from the above) 3206 * N+5 group descriptor summary blocks 3207 * 1 inode block 3208 * 1 superblock. 3209 * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files 3210 * 3211 * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS 3212 * 3213 * With ordered or writeback data it's the same, less the N data blocks. 3214 * 3215 * If the inode's direct blocks can hold an integral number of pages then a 3216 * page cannot straddle two indirect blocks, and we can only touch one indirect 3217 * and dindirect block, and the "5" above becomes "3". 3218 * 3219 * This still overestimates under most circumstances. If we were to pass the 3220 * start and end offsets in here as well we could do block_to_path() on each 3221 * block and work out the exact number of indirects which are touched. Pah. 3222 */ 3223 3224 int ext4_writepage_trans_blocks(struct inode *inode) 3225 { 3226 int bpp = ext4_journal_blocks_per_page(inode); 3227 int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3; 3228 int ret; 3229 3230 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) 3231 return ext4_ext_writepage_trans_blocks(inode, bpp); 3232 3233 if (ext4_should_journal_data(inode)) 3234 ret = 3 * (bpp + indirects) + 2; 3235 else 3236 ret = 2 * (bpp + indirects) + 2; 3237 3238 #ifdef CONFIG_QUOTA 3239 /* We know that structure was already allocated during DQUOT_INIT so 3240 * we will be updating only the data blocks + inodes */ 3241 ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb); 3242 #endif 3243 3244 return ret; 3245 } 3246 3247 /* 3248 * The caller must have previously called ext4_reserve_inode_write(). 3249 * Give this, we know that the caller already has write access to iloc->bh. 3250 */ 3251 int ext4_mark_iloc_dirty(handle_t *handle, 3252 struct inode *inode, struct ext4_iloc *iloc) 3253 { 3254 int err = 0; 3255 3256 if (test_opt(inode->i_sb, I_VERSION)) 3257 inode_inc_iversion(inode); 3258 3259 /* the do_update_inode consumes one bh->b_count */ 3260 get_bh(iloc->bh); 3261 3262 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 3263 err = ext4_do_update_inode(handle, inode, iloc); 3264 put_bh(iloc->bh); 3265 return err; 3266 } 3267 3268 /* 3269 * On success, We end up with an outstanding reference count against 3270 * iloc->bh. This _must_ be cleaned up later. 3271 */ 3272 3273 int 3274 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 3275 struct ext4_iloc *iloc) 3276 { 3277 int err = 0; 3278 if (handle) { 3279 err = ext4_get_inode_loc(inode, iloc); 3280 if (!err) { 3281 BUFFER_TRACE(iloc->bh, "get_write_access"); 3282 err = ext4_journal_get_write_access(handle, iloc->bh); 3283 if (err) { 3284 brelse(iloc->bh); 3285 iloc->bh = NULL; 3286 } 3287 } 3288 } 3289 ext4_std_error(inode->i_sb, err); 3290 return err; 3291 } 3292 3293 /* 3294 * Expand an inode by new_extra_isize bytes. 3295 * Returns 0 on success or negative error number on failure. 3296 */ 3297 static int ext4_expand_extra_isize(struct inode *inode, 3298 unsigned int new_extra_isize, 3299 struct ext4_iloc iloc, 3300 handle_t *handle) 3301 { 3302 struct ext4_inode *raw_inode; 3303 struct ext4_xattr_ibody_header *header; 3304 struct ext4_xattr_entry *entry; 3305 3306 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 3307 return 0; 3308 3309 raw_inode = ext4_raw_inode(&iloc); 3310 3311 header = IHDR(inode, raw_inode); 3312 entry = IFIRST(header); 3313 3314 /* No extended attributes present */ 3315 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) || 3316 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 3317 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 3318 new_extra_isize); 3319 EXT4_I(inode)->i_extra_isize = new_extra_isize; 3320 return 0; 3321 } 3322 3323 /* try to expand with EAs present */ 3324 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 3325 raw_inode, handle); 3326 } 3327 3328 /* 3329 * What we do here is to mark the in-core inode as clean with respect to inode 3330 * dirtiness (it may still be data-dirty). 3331 * This means that the in-core inode may be reaped by prune_icache 3332 * without having to perform any I/O. This is a very good thing, 3333 * because *any* task may call prune_icache - even ones which 3334 * have a transaction open against a different journal. 3335 * 3336 * Is this cheating? Not really. Sure, we haven't written the 3337 * inode out, but prune_icache isn't a user-visible syncing function. 3338 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 3339 * we start and wait on commits. 3340 * 3341 * Is this efficient/effective? Well, we're being nice to the system 3342 * by cleaning up our inodes proactively so they can be reaped 3343 * without I/O. But we are potentially leaving up to five seconds' 3344 * worth of inodes floating about which prune_icache wants us to 3345 * write out. One way to fix that would be to get prune_icache() 3346 * to do a write_super() to free up some memory. It has the desired 3347 * effect. 3348 */ 3349 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 3350 { 3351 struct ext4_iloc iloc; 3352 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3353 static unsigned int mnt_count; 3354 int err, ret; 3355 3356 might_sleep(); 3357 err = ext4_reserve_inode_write(handle, inode, &iloc); 3358 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 3359 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) { 3360 /* 3361 * We need extra buffer credits since we may write into EA block 3362 * with this same handle. If journal_extend fails, then it will 3363 * only result in a minor loss of functionality for that inode. 3364 * If this is felt to be critical, then e2fsck should be run to 3365 * force a large enough s_min_extra_isize. 3366 */ 3367 if ((jbd2_journal_extend(handle, 3368 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 3369 ret = ext4_expand_extra_isize(inode, 3370 sbi->s_want_extra_isize, 3371 iloc, handle); 3372 if (ret) { 3373 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND; 3374 if (mnt_count != 3375 le16_to_cpu(sbi->s_es->s_mnt_count)) { 3376 ext4_warning(inode->i_sb, __func__, 3377 "Unable to expand inode %lu. Delete" 3378 " some EAs or run e2fsck.", 3379 inode->i_ino); 3380 mnt_count = 3381 le16_to_cpu(sbi->s_es->s_mnt_count); 3382 } 3383 } 3384 } 3385 } 3386 if (!err) 3387 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 3388 return err; 3389 } 3390 3391 /* 3392 * ext4_dirty_inode() is called from __mark_inode_dirty() 3393 * 3394 * We're really interested in the case where a file is being extended. 3395 * i_size has been changed by generic_commit_write() and we thus need 3396 * to include the updated inode in the current transaction. 3397 * 3398 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks 3399 * are allocated to the file. 3400 * 3401 * If the inode is marked synchronous, we don't honour that here - doing 3402 * so would cause a commit on atime updates, which we don't bother doing. 3403 * We handle synchronous inodes at the highest possible level. 3404 */ 3405 void ext4_dirty_inode(struct inode *inode) 3406 { 3407 handle_t *current_handle = ext4_journal_current_handle(); 3408 handle_t *handle; 3409 3410 handle = ext4_journal_start(inode, 2); 3411 if (IS_ERR(handle)) 3412 goto out; 3413 if (current_handle && 3414 current_handle->h_transaction != handle->h_transaction) { 3415 /* This task has a transaction open against a different fs */ 3416 printk(KERN_EMERG "%s: transactions do not match!\n", 3417 __func__); 3418 } else { 3419 jbd_debug(5, "marking dirty. outer handle=%p\n", 3420 current_handle); 3421 ext4_mark_inode_dirty(handle, inode); 3422 } 3423 ext4_journal_stop(handle); 3424 out: 3425 return; 3426 } 3427 3428 #if 0 3429 /* 3430 * Bind an inode's backing buffer_head into this transaction, to prevent 3431 * it from being flushed to disk early. Unlike 3432 * ext4_reserve_inode_write, this leaves behind no bh reference and 3433 * returns no iloc structure, so the caller needs to repeat the iloc 3434 * lookup to mark the inode dirty later. 3435 */ 3436 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 3437 { 3438 struct ext4_iloc iloc; 3439 3440 int err = 0; 3441 if (handle) { 3442 err = ext4_get_inode_loc(inode, &iloc); 3443 if (!err) { 3444 BUFFER_TRACE(iloc.bh, "get_write_access"); 3445 err = jbd2_journal_get_write_access(handle, iloc.bh); 3446 if (!err) 3447 err = ext4_journal_dirty_metadata(handle, 3448 iloc.bh); 3449 brelse(iloc.bh); 3450 } 3451 } 3452 ext4_std_error(inode->i_sb, err); 3453 return err; 3454 } 3455 #endif 3456 3457 int ext4_change_inode_journal_flag(struct inode *inode, int val) 3458 { 3459 journal_t *journal; 3460 handle_t *handle; 3461 int err; 3462 3463 /* 3464 * We have to be very careful here: changing a data block's 3465 * journaling status dynamically is dangerous. If we write a 3466 * data block to the journal, change the status and then delete 3467 * that block, we risk forgetting to revoke the old log record 3468 * from the journal and so a subsequent replay can corrupt data. 3469 * So, first we make sure that the journal is empty and that 3470 * nobody is changing anything. 3471 */ 3472 3473 journal = EXT4_JOURNAL(inode); 3474 if (is_journal_aborted(journal)) 3475 return -EROFS; 3476 3477 jbd2_journal_lock_updates(journal); 3478 jbd2_journal_flush(journal); 3479 3480 /* 3481 * OK, there are no updates running now, and all cached data is 3482 * synced to disk. We are now in a completely consistent state 3483 * which doesn't have anything in the journal, and we know that 3484 * no filesystem updates are running, so it is safe to modify 3485 * the inode's in-core data-journaling state flag now. 3486 */ 3487 3488 if (val) 3489 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL; 3490 else 3491 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL; 3492 ext4_set_aops(inode); 3493 3494 jbd2_journal_unlock_updates(journal); 3495 3496 /* Finally we can mark the inode as dirty. */ 3497 3498 handle = ext4_journal_start(inode, 1); 3499 if (IS_ERR(handle)) 3500 return PTR_ERR(handle); 3501 3502 err = ext4_mark_inode_dirty(handle, inode); 3503 handle->h_sync = 1; 3504 ext4_journal_stop(handle); 3505 ext4_std_error(inode->i_sb, err); 3506 3507 return err; 3508 } 3509