1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/inode.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * 64-bit file support on 64-bit platforms by Jakub Jelinek 17 * (jj@sunsite.ms.mff.cuni.cz) 18 * 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/highuid.h> 25 #include <linux/pagemap.h> 26 #include <linux/dax.h> 27 #include <linux/quotaops.h> 28 #include <linux/string.h> 29 #include <linux/buffer_head.h> 30 #include <linux/writeback.h> 31 #include <linux/pagevec.h> 32 #include <linux/mpage.h> 33 #include <linux/namei.h> 34 #include <linux/uio.h> 35 #include <linux/bio.h> 36 #include <linux/workqueue.h> 37 #include <linux/kernel.h> 38 #include <linux/printk.h> 39 #include <linux/slab.h> 40 #include <linux/bitops.h> 41 #include <linux/iomap.h> 42 #include <linux/iversion.h> 43 44 #include "ext4_jbd2.h" 45 #include "xattr.h" 46 #include "acl.h" 47 #include "truncate.h" 48 49 #include <trace/events/ext4.h> 50 51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 52 struct ext4_inode_info *ei) 53 { 54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 55 __u32 csum; 56 __u16 dummy_csum = 0; 57 int offset = offsetof(struct ext4_inode, i_checksum_lo); 58 unsigned int csum_size = sizeof(dummy_csum); 59 60 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset); 61 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size); 62 offset += csum_size; 63 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 64 EXT4_GOOD_OLD_INODE_SIZE - offset); 65 66 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 67 offset = offsetof(struct ext4_inode, i_checksum_hi); 68 csum = ext4_chksum(sbi, csum, (__u8 *)raw + 69 EXT4_GOOD_OLD_INODE_SIZE, 70 offset - EXT4_GOOD_OLD_INODE_SIZE); 71 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 72 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, 73 csum_size); 74 offset += csum_size; 75 } 76 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 77 EXT4_INODE_SIZE(inode->i_sb) - offset); 78 } 79 80 return csum; 81 } 82 83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 84 struct ext4_inode_info *ei) 85 { 86 __u32 provided, calculated; 87 88 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 89 cpu_to_le32(EXT4_OS_LINUX) || 90 !ext4_has_metadata_csum(inode->i_sb)) 91 return 1; 92 93 provided = le16_to_cpu(raw->i_checksum_lo); 94 calculated = ext4_inode_csum(inode, raw, ei); 95 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 96 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 97 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 98 else 99 calculated &= 0xFFFF; 100 101 return provided == calculated; 102 } 103 104 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 105 struct ext4_inode_info *ei) 106 { 107 __u32 csum; 108 109 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 110 cpu_to_le32(EXT4_OS_LINUX) || 111 !ext4_has_metadata_csum(inode->i_sb)) 112 return; 113 114 csum = ext4_inode_csum(inode, raw, ei); 115 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 116 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 117 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 118 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 119 } 120 121 static inline int ext4_begin_ordered_truncate(struct inode *inode, 122 loff_t new_size) 123 { 124 trace_ext4_begin_ordered_truncate(inode, new_size); 125 /* 126 * If jinode is zero, then we never opened the file for 127 * writing, so there's no need to call 128 * jbd2_journal_begin_ordered_truncate() since there's no 129 * outstanding writes we need to flush. 130 */ 131 if (!EXT4_I(inode)->jinode) 132 return 0; 133 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 134 EXT4_I(inode)->jinode, 135 new_size); 136 } 137 138 static void ext4_invalidatepage(struct page *page, unsigned int offset, 139 unsigned int length); 140 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 143 int pextents); 144 145 /* 146 * Test whether an inode is a fast symlink. 147 * A fast symlink has its symlink data stored in ext4_inode_info->i_data. 148 */ 149 int ext4_inode_is_fast_symlink(struct inode *inode) 150 { 151 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 152 int ea_blocks = EXT4_I(inode)->i_file_acl ? 153 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 154 155 if (ext4_has_inline_data(inode)) 156 return 0; 157 158 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 159 } 160 return S_ISLNK(inode->i_mode) && inode->i_size && 161 (inode->i_size < EXT4_N_BLOCKS * 4); 162 } 163 164 /* 165 * Called at the last iput() if i_nlink is zero. 166 */ 167 void ext4_evict_inode(struct inode *inode) 168 { 169 handle_t *handle; 170 int err; 171 /* 172 * Credits for final inode cleanup and freeing: 173 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor 174 * (xattr block freeing), bitmap, group descriptor (inode freeing) 175 */ 176 int extra_credits = 6; 177 struct ext4_xattr_inode_array *ea_inode_array = NULL; 178 179 trace_ext4_evict_inode(inode); 180 181 if (inode->i_nlink) { 182 /* 183 * When journalling data dirty buffers are tracked only in the 184 * journal. So although mm thinks everything is clean and 185 * ready for reaping the inode might still have some pages to 186 * write in the running transaction or waiting to be 187 * checkpointed. Thus calling jbd2_journal_invalidatepage() 188 * (via truncate_inode_pages()) to discard these buffers can 189 * cause data loss. Also even if we did not discard these 190 * buffers, we would have no way to find them after the inode 191 * is reaped and thus user could see stale data if he tries to 192 * read them before the transaction is checkpointed. So be 193 * careful and force everything to disk here... We use 194 * ei->i_datasync_tid to store the newest transaction 195 * containing inode's data. 196 * 197 * Note that directories do not have this problem because they 198 * don't use page cache. 199 */ 200 if (inode->i_ino != EXT4_JOURNAL_INO && 201 ext4_should_journal_data(inode) && 202 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 203 inode->i_data.nrpages) { 204 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 205 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 206 207 jbd2_complete_transaction(journal, commit_tid); 208 filemap_write_and_wait(&inode->i_data); 209 } 210 truncate_inode_pages_final(&inode->i_data); 211 212 goto no_delete; 213 } 214 215 if (is_bad_inode(inode)) 216 goto no_delete; 217 dquot_initialize(inode); 218 219 if (ext4_should_order_data(inode)) 220 ext4_begin_ordered_truncate(inode, 0); 221 truncate_inode_pages_final(&inode->i_data); 222 223 /* 224 * For inodes with journalled data, transaction commit could have 225 * dirtied the inode. Flush worker is ignoring it because of I_FREEING 226 * flag but we still need to remove the inode from the writeback lists. 227 */ 228 if (!list_empty_careful(&inode->i_io_list)) { 229 WARN_ON_ONCE(!ext4_should_journal_data(inode)); 230 inode_io_list_del(inode); 231 } 232 233 /* 234 * Protect us against freezing - iput() caller didn't have to have any 235 * protection against it 236 */ 237 sb_start_intwrite(inode->i_sb); 238 239 if (!IS_NOQUOTA(inode)) 240 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); 241 242 /* 243 * Block bitmap, group descriptor, and inode are accounted in both 244 * ext4_blocks_for_truncate() and extra_credits. So subtract 3. 245 */ 246 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 247 ext4_blocks_for_truncate(inode) + extra_credits - 3); 248 if (IS_ERR(handle)) { 249 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 250 /* 251 * If we're going to skip the normal cleanup, we still need to 252 * make sure that the in-core orphan linked list is properly 253 * cleaned up. 254 */ 255 ext4_orphan_del(NULL, inode); 256 sb_end_intwrite(inode->i_sb); 257 goto no_delete; 258 } 259 260 if (IS_SYNC(inode)) 261 ext4_handle_sync(handle); 262 263 /* 264 * Set inode->i_size to 0 before calling ext4_truncate(). We need 265 * special handling of symlinks here because i_size is used to 266 * determine whether ext4_inode_info->i_data contains symlink data or 267 * block mappings. Setting i_size to 0 will remove its fast symlink 268 * status. Erase i_data so that it becomes a valid empty block map. 269 */ 270 if (ext4_inode_is_fast_symlink(inode)) 271 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data)); 272 inode->i_size = 0; 273 err = ext4_mark_inode_dirty(handle, inode); 274 if (err) { 275 ext4_warning(inode->i_sb, 276 "couldn't mark inode dirty (err %d)", err); 277 goto stop_handle; 278 } 279 if (inode->i_blocks) { 280 err = ext4_truncate(inode); 281 if (err) { 282 ext4_error_err(inode->i_sb, -err, 283 "couldn't truncate inode %lu (err %d)", 284 inode->i_ino, err); 285 goto stop_handle; 286 } 287 } 288 289 /* Remove xattr references. */ 290 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array, 291 extra_credits); 292 if (err) { 293 ext4_warning(inode->i_sb, "xattr delete (err %d)", err); 294 stop_handle: 295 ext4_journal_stop(handle); 296 ext4_orphan_del(NULL, inode); 297 sb_end_intwrite(inode->i_sb); 298 ext4_xattr_inode_array_free(ea_inode_array); 299 goto no_delete; 300 } 301 302 /* 303 * Kill off the orphan record which ext4_truncate created. 304 * AKPM: I think this can be inside the above `if'. 305 * Note that ext4_orphan_del() has to be able to cope with the 306 * deletion of a non-existent orphan - this is because we don't 307 * know if ext4_truncate() actually created an orphan record. 308 * (Well, we could do this if we need to, but heck - it works) 309 */ 310 ext4_orphan_del(handle, inode); 311 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds(); 312 313 /* 314 * One subtle ordering requirement: if anything has gone wrong 315 * (transaction abort, IO errors, whatever), then we can still 316 * do these next steps (the fs will already have been marked as 317 * having errors), but we can't free the inode if the mark_dirty 318 * fails. 319 */ 320 if (ext4_mark_inode_dirty(handle, inode)) 321 /* If that failed, just do the required in-core inode clear. */ 322 ext4_clear_inode(inode); 323 else 324 ext4_free_inode(handle, inode); 325 ext4_journal_stop(handle); 326 sb_end_intwrite(inode->i_sb); 327 ext4_xattr_inode_array_free(ea_inode_array); 328 return; 329 no_delete: 330 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 331 } 332 333 #ifdef CONFIG_QUOTA 334 qsize_t *ext4_get_reserved_space(struct inode *inode) 335 { 336 return &EXT4_I(inode)->i_reserved_quota; 337 } 338 #endif 339 340 /* 341 * Called with i_data_sem down, which is important since we can call 342 * ext4_discard_preallocations() from here. 343 */ 344 void ext4_da_update_reserve_space(struct inode *inode, 345 int used, int quota_claim) 346 { 347 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 348 struct ext4_inode_info *ei = EXT4_I(inode); 349 350 spin_lock(&ei->i_block_reservation_lock); 351 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 352 if (unlikely(used > ei->i_reserved_data_blocks)) { 353 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 354 "with only %d reserved data blocks", 355 __func__, inode->i_ino, used, 356 ei->i_reserved_data_blocks); 357 WARN_ON(1); 358 used = ei->i_reserved_data_blocks; 359 } 360 361 /* Update per-inode reservations */ 362 ei->i_reserved_data_blocks -= used; 363 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 364 365 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 366 367 /* Update quota subsystem for data blocks */ 368 if (quota_claim) 369 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 370 else { 371 /* 372 * We did fallocate with an offset that is already delayed 373 * allocated. So on delayed allocated writeback we should 374 * not re-claim the quota for fallocated blocks. 375 */ 376 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 377 } 378 379 /* 380 * If we have done all the pending block allocations and if 381 * there aren't any writers on the inode, we can discard the 382 * inode's preallocations. 383 */ 384 if ((ei->i_reserved_data_blocks == 0) && 385 !inode_is_open_for_write(inode)) 386 ext4_discard_preallocations(inode, 0); 387 } 388 389 static int __check_block_validity(struct inode *inode, const char *func, 390 unsigned int line, 391 struct ext4_map_blocks *map) 392 { 393 if (ext4_has_feature_journal(inode->i_sb) && 394 (inode->i_ino == 395 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum))) 396 return 0; 397 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) { 398 ext4_error_inode(inode, func, line, map->m_pblk, 399 "lblock %lu mapped to illegal pblock %llu " 400 "(length %d)", (unsigned long) map->m_lblk, 401 map->m_pblk, map->m_len); 402 return -EFSCORRUPTED; 403 } 404 return 0; 405 } 406 407 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 408 ext4_lblk_t len) 409 { 410 int ret; 411 412 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) 413 return fscrypt_zeroout_range(inode, lblk, pblk, len); 414 415 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 416 if (ret > 0) 417 ret = 0; 418 419 return ret; 420 } 421 422 #define check_block_validity(inode, map) \ 423 __check_block_validity((inode), __func__, __LINE__, (map)) 424 425 #ifdef ES_AGGRESSIVE_TEST 426 static void ext4_map_blocks_es_recheck(handle_t *handle, 427 struct inode *inode, 428 struct ext4_map_blocks *es_map, 429 struct ext4_map_blocks *map, 430 int flags) 431 { 432 int retval; 433 434 map->m_flags = 0; 435 /* 436 * There is a race window that the result is not the same. 437 * e.g. xfstests #223 when dioread_nolock enables. The reason 438 * is that we lookup a block mapping in extent status tree with 439 * out taking i_data_sem. So at the time the unwritten extent 440 * could be converted. 441 */ 442 down_read(&EXT4_I(inode)->i_data_sem); 443 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 444 retval = ext4_ext_map_blocks(handle, inode, map, 0); 445 } else { 446 retval = ext4_ind_map_blocks(handle, inode, map, 0); 447 } 448 up_read((&EXT4_I(inode)->i_data_sem)); 449 450 /* 451 * We don't check m_len because extent will be collpased in status 452 * tree. So the m_len might not equal. 453 */ 454 if (es_map->m_lblk != map->m_lblk || 455 es_map->m_flags != map->m_flags || 456 es_map->m_pblk != map->m_pblk) { 457 printk("ES cache assertion failed for inode: %lu " 458 "es_cached ex [%d/%d/%llu/%x] != " 459 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 460 inode->i_ino, es_map->m_lblk, es_map->m_len, 461 es_map->m_pblk, es_map->m_flags, map->m_lblk, 462 map->m_len, map->m_pblk, map->m_flags, 463 retval, flags); 464 } 465 } 466 #endif /* ES_AGGRESSIVE_TEST */ 467 468 /* 469 * The ext4_map_blocks() function tries to look up the requested blocks, 470 * and returns if the blocks are already mapped. 471 * 472 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 473 * and store the allocated blocks in the result buffer head and mark it 474 * mapped. 475 * 476 * If file type is extents based, it will call ext4_ext_map_blocks(), 477 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 478 * based files 479 * 480 * On success, it returns the number of blocks being mapped or allocated. if 481 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map 482 * is marked as unwritten. If the create == 1, it will mark @map as mapped. 483 * 484 * It returns 0 if plain look up failed (blocks have not been allocated), in 485 * that case, @map is returned as unmapped but we still do fill map->m_len to 486 * indicate the length of a hole starting at map->m_lblk. 487 * 488 * It returns the error in case of allocation failure. 489 */ 490 int ext4_map_blocks(handle_t *handle, struct inode *inode, 491 struct ext4_map_blocks *map, int flags) 492 { 493 struct extent_status es; 494 int retval; 495 int ret = 0; 496 #ifdef ES_AGGRESSIVE_TEST 497 struct ext4_map_blocks orig_map; 498 499 memcpy(&orig_map, map, sizeof(*map)); 500 #endif 501 502 map->m_flags = 0; 503 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n", 504 flags, map->m_len, (unsigned long) map->m_lblk); 505 506 /* 507 * ext4_map_blocks returns an int, and m_len is an unsigned int 508 */ 509 if (unlikely(map->m_len > INT_MAX)) 510 map->m_len = INT_MAX; 511 512 /* We can handle the block number less than EXT_MAX_BLOCKS */ 513 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 514 return -EFSCORRUPTED; 515 516 /* Lookup extent status tree firstly */ 517 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) && 518 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 519 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 520 map->m_pblk = ext4_es_pblock(&es) + 521 map->m_lblk - es.es_lblk; 522 map->m_flags |= ext4_es_is_written(&es) ? 523 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 524 retval = es.es_len - (map->m_lblk - es.es_lblk); 525 if (retval > map->m_len) 526 retval = map->m_len; 527 map->m_len = retval; 528 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 529 map->m_pblk = 0; 530 retval = es.es_len - (map->m_lblk - es.es_lblk); 531 if (retval > map->m_len) 532 retval = map->m_len; 533 map->m_len = retval; 534 retval = 0; 535 } else { 536 BUG(); 537 } 538 #ifdef ES_AGGRESSIVE_TEST 539 ext4_map_blocks_es_recheck(handle, inode, map, 540 &orig_map, flags); 541 #endif 542 goto found; 543 } 544 545 /* 546 * Try to see if we can get the block without requesting a new 547 * file system block. 548 */ 549 down_read(&EXT4_I(inode)->i_data_sem); 550 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 551 retval = ext4_ext_map_blocks(handle, inode, map, 0); 552 } else { 553 retval = ext4_ind_map_blocks(handle, inode, map, 0); 554 } 555 if (retval > 0) { 556 unsigned int status; 557 558 if (unlikely(retval != map->m_len)) { 559 ext4_warning(inode->i_sb, 560 "ES len assertion failed for inode " 561 "%lu: retval %d != map->m_len %d", 562 inode->i_ino, retval, map->m_len); 563 WARN_ON(1); 564 } 565 566 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 567 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 568 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 569 !(status & EXTENT_STATUS_WRITTEN) && 570 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 571 map->m_lblk + map->m_len - 1)) 572 status |= EXTENT_STATUS_DELAYED; 573 ret = ext4_es_insert_extent(inode, map->m_lblk, 574 map->m_len, map->m_pblk, status); 575 if (ret < 0) 576 retval = ret; 577 } 578 up_read((&EXT4_I(inode)->i_data_sem)); 579 580 found: 581 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 582 ret = check_block_validity(inode, map); 583 if (ret != 0) 584 return ret; 585 } 586 587 /* If it is only a block(s) look up */ 588 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 589 return retval; 590 591 /* 592 * Returns if the blocks have already allocated 593 * 594 * Note that if blocks have been preallocated 595 * ext4_ext_get_block() returns the create = 0 596 * with buffer head unmapped. 597 */ 598 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 599 /* 600 * If we need to convert extent to unwritten 601 * we continue and do the actual work in 602 * ext4_ext_map_blocks() 603 */ 604 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 605 return retval; 606 607 /* 608 * Here we clear m_flags because after allocating an new extent, 609 * it will be set again. 610 */ 611 map->m_flags &= ~EXT4_MAP_FLAGS; 612 613 /* 614 * New blocks allocate and/or writing to unwritten extent 615 * will possibly result in updating i_data, so we take 616 * the write lock of i_data_sem, and call get_block() 617 * with create == 1 flag. 618 */ 619 down_write(&EXT4_I(inode)->i_data_sem); 620 621 /* 622 * We need to check for EXT4 here because migrate 623 * could have changed the inode type in between 624 */ 625 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 626 retval = ext4_ext_map_blocks(handle, inode, map, flags); 627 } else { 628 retval = ext4_ind_map_blocks(handle, inode, map, flags); 629 630 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 631 /* 632 * We allocated new blocks which will result in 633 * i_data's format changing. Force the migrate 634 * to fail by clearing migrate flags 635 */ 636 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 637 } 638 639 /* 640 * Update reserved blocks/metadata blocks after successful 641 * block allocation which had been deferred till now. We don't 642 * support fallocate for non extent files. So we can update 643 * reserve space here. 644 */ 645 if ((retval > 0) && 646 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 647 ext4_da_update_reserve_space(inode, retval, 1); 648 } 649 650 if (retval > 0) { 651 unsigned int status; 652 653 if (unlikely(retval != map->m_len)) { 654 ext4_warning(inode->i_sb, 655 "ES len assertion failed for inode " 656 "%lu: retval %d != map->m_len %d", 657 inode->i_ino, retval, map->m_len); 658 WARN_ON(1); 659 } 660 661 /* 662 * We have to zeroout blocks before inserting them into extent 663 * status tree. Otherwise someone could look them up there and 664 * use them before they are really zeroed. We also have to 665 * unmap metadata before zeroing as otherwise writeback can 666 * overwrite zeros with stale data from block device. 667 */ 668 if (flags & EXT4_GET_BLOCKS_ZERO && 669 map->m_flags & EXT4_MAP_MAPPED && 670 map->m_flags & EXT4_MAP_NEW) { 671 ret = ext4_issue_zeroout(inode, map->m_lblk, 672 map->m_pblk, map->m_len); 673 if (ret) { 674 retval = ret; 675 goto out_sem; 676 } 677 } 678 679 /* 680 * If the extent has been zeroed out, we don't need to update 681 * extent status tree. 682 */ 683 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 684 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 685 if (ext4_es_is_written(&es)) 686 goto out_sem; 687 } 688 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 689 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 690 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 691 !(status & EXTENT_STATUS_WRITTEN) && 692 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 693 map->m_lblk + map->m_len - 1)) 694 status |= EXTENT_STATUS_DELAYED; 695 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 696 map->m_pblk, status); 697 if (ret < 0) { 698 retval = ret; 699 goto out_sem; 700 } 701 } 702 703 out_sem: 704 up_write((&EXT4_I(inode)->i_data_sem)); 705 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 706 ret = check_block_validity(inode, map); 707 if (ret != 0) 708 return ret; 709 710 /* 711 * Inodes with freshly allocated blocks where contents will be 712 * visible after transaction commit must be on transaction's 713 * ordered data list. 714 */ 715 if (map->m_flags & EXT4_MAP_NEW && 716 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 717 !(flags & EXT4_GET_BLOCKS_ZERO) && 718 !ext4_is_quota_file(inode) && 719 ext4_should_order_data(inode)) { 720 loff_t start_byte = 721 (loff_t)map->m_lblk << inode->i_blkbits; 722 loff_t length = (loff_t)map->m_len << inode->i_blkbits; 723 724 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 725 ret = ext4_jbd2_inode_add_wait(handle, inode, 726 start_byte, length); 727 else 728 ret = ext4_jbd2_inode_add_write(handle, inode, 729 start_byte, length); 730 if (ret) 731 return ret; 732 } 733 ext4_fc_track_range(inode, map->m_lblk, 734 map->m_lblk + map->m_len - 1); 735 } 736 737 if (retval < 0) 738 ext_debug(inode, "failed with err %d\n", retval); 739 return retval; 740 } 741 742 /* 743 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 744 * we have to be careful as someone else may be manipulating b_state as well. 745 */ 746 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 747 { 748 unsigned long old_state; 749 unsigned long new_state; 750 751 flags &= EXT4_MAP_FLAGS; 752 753 /* Dummy buffer_head? Set non-atomically. */ 754 if (!bh->b_page) { 755 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 756 return; 757 } 758 /* 759 * Someone else may be modifying b_state. Be careful! This is ugly but 760 * once we get rid of using bh as a container for mapping information 761 * to pass to / from get_block functions, this can go away. 762 */ 763 do { 764 old_state = READ_ONCE(bh->b_state); 765 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 766 } while (unlikely( 767 cmpxchg(&bh->b_state, old_state, new_state) != old_state)); 768 } 769 770 static int _ext4_get_block(struct inode *inode, sector_t iblock, 771 struct buffer_head *bh, int flags) 772 { 773 struct ext4_map_blocks map; 774 int ret = 0; 775 776 if (ext4_has_inline_data(inode)) 777 return -ERANGE; 778 779 map.m_lblk = iblock; 780 map.m_len = bh->b_size >> inode->i_blkbits; 781 782 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 783 flags); 784 if (ret > 0) { 785 map_bh(bh, inode->i_sb, map.m_pblk); 786 ext4_update_bh_state(bh, map.m_flags); 787 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 788 ret = 0; 789 } else if (ret == 0) { 790 /* hole case, need to fill in bh->b_size */ 791 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 792 } 793 return ret; 794 } 795 796 int ext4_get_block(struct inode *inode, sector_t iblock, 797 struct buffer_head *bh, int create) 798 { 799 return _ext4_get_block(inode, iblock, bh, 800 create ? EXT4_GET_BLOCKS_CREATE : 0); 801 } 802 803 /* 804 * Get block function used when preparing for buffered write if we require 805 * creating an unwritten extent if blocks haven't been allocated. The extent 806 * will be converted to written after the IO is complete. 807 */ 808 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 809 struct buffer_head *bh_result, int create) 810 { 811 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 812 inode->i_ino, create); 813 return _ext4_get_block(inode, iblock, bh_result, 814 EXT4_GET_BLOCKS_IO_CREATE_EXT); 815 } 816 817 /* Maximum number of blocks we map for direct IO at once. */ 818 #define DIO_MAX_BLOCKS 4096 819 820 /* 821 * `handle' can be NULL if create is zero 822 */ 823 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 824 ext4_lblk_t block, int map_flags) 825 { 826 struct ext4_map_blocks map; 827 struct buffer_head *bh; 828 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 829 int err; 830 831 J_ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 832 || handle != NULL || create == 0); 833 834 map.m_lblk = block; 835 map.m_len = 1; 836 err = ext4_map_blocks(handle, inode, &map, map_flags); 837 838 if (err == 0) 839 return create ? ERR_PTR(-ENOSPC) : NULL; 840 if (err < 0) 841 return ERR_PTR(err); 842 843 bh = sb_getblk(inode->i_sb, map.m_pblk); 844 if (unlikely(!bh)) 845 return ERR_PTR(-ENOMEM); 846 if (map.m_flags & EXT4_MAP_NEW) { 847 J_ASSERT(create != 0); 848 J_ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 849 || (handle != NULL)); 850 851 /* 852 * Now that we do not always journal data, we should 853 * keep in mind whether this should always journal the 854 * new buffer as metadata. For now, regular file 855 * writes use ext4_get_block instead, so it's not a 856 * problem. 857 */ 858 lock_buffer(bh); 859 BUFFER_TRACE(bh, "call get_create_access"); 860 err = ext4_journal_get_create_access(handle, bh); 861 if (unlikely(err)) { 862 unlock_buffer(bh); 863 goto errout; 864 } 865 if (!buffer_uptodate(bh)) { 866 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 867 set_buffer_uptodate(bh); 868 } 869 unlock_buffer(bh); 870 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 871 err = ext4_handle_dirty_metadata(handle, inode, bh); 872 if (unlikely(err)) 873 goto errout; 874 } else 875 BUFFER_TRACE(bh, "not a new buffer"); 876 return bh; 877 errout: 878 brelse(bh); 879 return ERR_PTR(err); 880 } 881 882 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 883 ext4_lblk_t block, int map_flags) 884 { 885 struct buffer_head *bh; 886 int ret; 887 888 bh = ext4_getblk(handle, inode, block, map_flags); 889 if (IS_ERR(bh)) 890 return bh; 891 if (!bh || ext4_buffer_uptodate(bh)) 892 return bh; 893 894 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true); 895 if (ret) { 896 put_bh(bh); 897 return ERR_PTR(ret); 898 } 899 return bh; 900 } 901 902 /* Read a contiguous batch of blocks. */ 903 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, 904 bool wait, struct buffer_head **bhs) 905 { 906 int i, err; 907 908 for (i = 0; i < bh_count; i++) { 909 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */); 910 if (IS_ERR(bhs[i])) { 911 err = PTR_ERR(bhs[i]); 912 bh_count = i; 913 goto out_brelse; 914 } 915 } 916 917 for (i = 0; i < bh_count; i++) 918 /* Note that NULL bhs[i] is valid because of holes. */ 919 if (bhs[i] && !ext4_buffer_uptodate(bhs[i])) 920 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false); 921 922 if (!wait) 923 return 0; 924 925 for (i = 0; i < bh_count; i++) 926 if (bhs[i]) 927 wait_on_buffer(bhs[i]); 928 929 for (i = 0; i < bh_count; i++) { 930 if (bhs[i] && !buffer_uptodate(bhs[i])) { 931 err = -EIO; 932 goto out_brelse; 933 } 934 } 935 return 0; 936 937 out_brelse: 938 for (i = 0; i < bh_count; i++) { 939 brelse(bhs[i]); 940 bhs[i] = NULL; 941 } 942 return err; 943 } 944 945 int ext4_walk_page_buffers(handle_t *handle, 946 struct buffer_head *head, 947 unsigned from, 948 unsigned to, 949 int *partial, 950 int (*fn)(handle_t *handle, 951 struct buffer_head *bh)) 952 { 953 struct buffer_head *bh; 954 unsigned block_start, block_end; 955 unsigned blocksize = head->b_size; 956 int err, ret = 0; 957 struct buffer_head *next; 958 959 for (bh = head, block_start = 0; 960 ret == 0 && (bh != head || !block_start); 961 block_start = block_end, bh = next) { 962 next = bh->b_this_page; 963 block_end = block_start + blocksize; 964 if (block_end <= from || block_start >= to) { 965 if (partial && !buffer_uptodate(bh)) 966 *partial = 1; 967 continue; 968 } 969 err = (*fn)(handle, bh); 970 if (!ret) 971 ret = err; 972 } 973 return ret; 974 } 975 976 /* 977 * To preserve ordering, it is essential that the hole instantiation and 978 * the data write be encapsulated in a single transaction. We cannot 979 * close off a transaction and start a new one between the ext4_get_block() 980 * and the commit_write(). So doing the jbd2_journal_start at the start of 981 * prepare_write() is the right place. 982 * 983 * Also, this function can nest inside ext4_writepage(). In that case, we 984 * *know* that ext4_writepage() has generated enough buffer credits to do the 985 * whole page. So we won't block on the journal in that case, which is good, 986 * because the caller may be PF_MEMALLOC. 987 * 988 * By accident, ext4 can be reentered when a transaction is open via 989 * quota file writes. If we were to commit the transaction while thus 990 * reentered, there can be a deadlock - we would be holding a quota 991 * lock, and the commit would never complete if another thread had a 992 * transaction open and was blocking on the quota lock - a ranking 993 * violation. 994 * 995 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 996 * will _not_ run commit under these circumstances because handle->h_ref 997 * is elevated. We'll still have enough credits for the tiny quotafile 998 * write. 999 */ 1000 int do_journal_get_write_access(handle_t *handle, 1001 struct buffer_head *bh) 1002 { 1003 int dirty = buffer_dirty(bh); 1004 int ret; 1005 1006 if (!buffer_mapped(bh) || buffer_freed(bh)) 1007 return 0; 1008 /* 1009 * __block_write_begin() could have dirtied some buffers. Clean 1010 * the dirty bit as jbd2_journal_get_write_access() could complain 1011 * otherwise about fs integrity issues. Setting of the dirty bit 1012 * by __block_write_begin() isn't a real problem here as we clear 1013 * the bit before releasing a page lock and thus writeback cannot 1014 * ever write the buffer. 1015 */ 1016 if (dirty) 1017 clear_buffer_dirty(bh); 1018 BUFFER_TRACE(bh, "get write access"); 1019 ret = ext4_journal_get_write_access(handle, bh); 1020 if (!ret && dirty) 1021 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1022 return ret; 1023 } 1024 1025 #ifdef CONFIG_FS_ENCRYPTION 1026 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len, 1027 get_block_t *get_block) 1028 { 1029 unsigned from = pos & (PAGE_SIZE - 1); 1030 unsigned to = from + len; 1031 struct inode *inode = page->mapping->host; 1032 unsigned block_start, block_end; 1033 sector_t block; 1034 int err = 0; 1035 unsigned blocksize = inode->i_sb->s_blocksize; 1036 unsigned bbits; 1037 struct buffer_head *bh, *head, *wait[2]; 1038 int nr_wait = 0; 1039 int i; 1040 1041 BUG_ON(!PageLocked(page)); 1042 BUG_ON(from > PAGE_SIZE); 1043 BUG_ON(to > PAGE_SIZE); 1044 BUG_ON(from > to); 1045 1046 if (!page_has_buffers(page)) 1047 create_empty_buffers(page, blocksize, 0); 1048 head = page_buffers(page); 1049 bbits = ilog2(blocksize); 1050 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1051 1052 for (bh = head, block_start = 0; bh != head || !block_start; 1053 block++, block_start = block_end, bh = bh->b_this_page) { 1054 block_end = block_start + blocksize; 1055 if (block_end <= from || block_start >= to) { 1056 if (PageUptodate(page)) { 1057 if (!buffer_uptodate(bh)) 1058 set_buffer_uptodate(bh); 1059 } 1060 continue; 1061 } 1062 if (buffer_new(bh)) 1063 clear_buffer_new(bh); 1064 if (!buffer_mapped(bh)) { 1065 WARN_ON(bh->b_size != blocksize); 1066 err = get_block(inode, block, bh, 1); 1067 if (err) 1068 break; 1069 if (buffer_new(bh)) { 1070 if (PageUptodate(page)) { 1071 clear_buffer_new(bh); 1072 set_buffer_uptodate(bh); 1073 mark_buffer_dirty(bh); 1074 continue; 1075 } 1076 if (block_end > to || block_start < from) 1077 zero_user_segments(page, to, block_end, 1078 block_start, from); 1079 continue; 1080 } 1081 } 1082 if (PageUptodate(page)) { 1083 if (!buffer_uptodate(bh)) 1084 set_buffer_uptodate(bh); 1085 continue; 1086 } 1087 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1088 !buffer_unwritten(bh) && 1089 (block_start < from || block_end > to)) { 1090 ext4_read_bh_lock(bh, 0, false); 1091 wait[nr_wait++] = bh; 1092 } 1093 } 1094 /* 1095 * If we issued read requests, let them complete. 1096 */ 1097 for (i = 0; i < nr_wait; i++) { 1098 wait_on_buffer(wait[i]); 1099 if (!buffer_uptodate(wait[i])) 1100 err = -EIO; 1101 } 1102 if (unlikely(err)) { 1103 page_zero_new_buffers(page, from, to); 1104 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 1105 for (i = 0; i < nr_wait; i++) { 1106 int err2; 1107 1108 err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize, 1109 bh_offset(wait[i])); 1110 if (err2) { 1111 clear_buffer_uptodate(wait[i]); 1112 err = err2; 1113 } 1114 } 1115 } 1116 1117 return err; 1118 } 1119 #endif 1120 1121 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1122 loff_t pos, unsigned len, unsigned flags, 1123 struct page **pagep, void **fsdata) 1124 { 1125 struct inode *inode = mapping->host; 1126 int ret, needed_blocks; 1127 handle_t *handle; 1128 int retries = 0; 1129 struct page *page; 1130 pgoff_t index; 1131 unsigned from, to; 1132 1133 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 1134 return -EIO; 1135 1136 trace_ext4_write_begin(inode, pos, len, flags); 1137 /* 1138 * Reserve one block more for addition to orphan list in case 1139 * we allocate blocks but write fails for some reason 1140 */ 1141 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1142 index = pos >> PAGE_SHIFT; 1143 from = pos & (PAGE_SIZE - 1); 1144 to = from + len; 1145 1146 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1147 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1148 flags, pagep); 1149 if (ret < 0) 1150 return ret; 1151 if (ret == 1) 1152 return 0; 1153 } 1154 1155 /* 1156 * grab_cache_page_write_begin() can take a long time if the 1157 * system is thrashing due to memory pressure, or if the page 1158 * is being written back. So grab it first before we start 1159 * the transaction handle. This also allows us to allocate 1160 * the page (if needed) without using GFP_NOFS. 1161 */ 1162 retry_grab: 1163 page = grab_cache_page_write_begin(mapping, index, flags); 1164 if (!page) 1165 return -ENOMEM; 1166 unlock_page(page); 1167 1168 retry_journal: 1169 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1170 if (IS_ERR(handle)) { 1171 put_page(page); 1172 return PTR_ERR(handle); 1173 } 1174 1175 lock_page(page); 1176 if (page->mapping != mapping) { 1177 /* The page got truncated from under us */ 1178 unlock_page(page); 1179 put_page(page); 1180 ext4_journal_stop(handle); 1181 goto retry_grab; 1182 } 1183 /* In case writeback began while the page was unlocked */ 1184 wait_for_stable_page(page); 1185 1186 #ifdef CONFIG_FS_ENCRYPTION 1187 if (ext4_should_dioread_nolock(inode)) 1188 ret = ext4_block_write_begin(page, pos, len, 1189 ext4_get_block_unwritten); 1190 else 1191 ret = ext4_block_write_begin(page, pos, len, 1192 ext4_get_block); 1193 #else 1194 if (ext4_should_dioread_nolock(inode)) 1195 ret = __block_write_begin(page, pos, len, 1196 ext4_get_block_unwritten); 1197 else 1198 ret = __block_write_begin(page, pos, len, ext4_get_block); 1199 #endif 1200 if (!ret && ext4_should_journal_data(inode)) { 1201 ret = ext4_walk_page_buffers(handle, page_buffers(page), 1202 from, to, NULL, 1203 do_journal_get_write_access); 1204 } 1205 1206 if (ret) { 1207 bool extended = (pos + len > inode->i_size) && 1208 !ext4_verity_in_progress(inode); 1209 1210 unlock_page(page); 1211 /* 1212 * __block_write_begin may have instantiated a few blocks 1213 * outside i_size. Trim these off again. Don't need 1214 * i_size_read because we hold i_mutex. 1215 * 1216 * Add inode to orphan list in case we crash before 1217 * truncate finishes 1218 */ 1219 if (extended && ext4_can_truncate(inode)) 1220 ext4_orphan_add(handle, inode); 1221 1222 ext4_journal_stop(handle); 1223 if (extended) { 1224 ext4_truncate_failed_write(inode); 1225 /* 1226 * If truncate failed early the inode might 1227 * still be on the orphan list; we need to 1228 * make sure the inode is removed from the 1229 * orphan list in that case. 1230 */ 1231 if (inode->i_nlink) 1232 ext4_orphan_del(NULL, inode); 1233 } 1234 1235 if (ret == -ENOSPC && 1236 ext4_should_retry_alloc(inode->i_sb, &retries)) 1237 goto retry_journal; 1238 put_page(page); 1239 return ret; 1240 } 1241 *pagep = page; 1242 return ret; 1243 } 1244 1245 /* For write_end() in data=journal mode */ 1246 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1247 { 1248 int ret; 1249 if (!buffer_mapped(bh) || buffer_freed(bh)) 1250 return 0; 1251 set_buffer_uptodate(bh); 1252 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1253 clear_buffer_meta(bh); 1254 clear_buffer_prio(bh); 1255 return ret; 1256 } 1257 1258 /* 1259 * We need to pick up the new inode size which generic_commit_write gave us 1260 * `file' can be NULL - eg, when called from page_symlink(). 1261 * 1262 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1263 * buffers are managed internally. 1264 */ 1265 static int ext4_write_end(struct file *file, 1266 struct address_space *mapping, 1267 loff_t pos, unsigned len, unsigned copied, 1268 struct page *page, void *fsdata) 1269 { 1270 handle_t *handle = ext4_journal_current_handle(); 1271 struct inode *inode = mapping->host; 1272 loff_t old_size = inode->i_size; 1273 int ret = 0, ret2; 1274 int i_size_changed = 0; 1275 int inline_data = ext4_has_inline_data(inode); 1276 bool verity = ext4_verity_in_progress(inode); 1277 1278 trace_ext4_write_end(inode, pos, len, copied); 1279 if (inline_data) { 1280 ret = ext4_write_inline_data_end(inode, pos, len, 1281 copied, page); 1282 if (ret < 0) { 1283 unlock_page(page); 1284 put_page(page); 1285 goto errout; 1286 } 1287 copied = ret; 1288 } else 1289 copied = block_write_end(file, mapping, pos, 1290 len, copied, page, fsdata); 1291 /* 1292 * it's important to update i_size while still holding page lock: 1293 * page writeout could otherwise come in and zero beyond i_size. 1294 * 1295 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree 1296 * blocks are being written past EOF, so skip the i_size update. 1297 */ 1298 if (!verity) 1299 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1300 unlock_page(page); 1301 put_page(page); 1302 1303 if (old_size < pos && !verity) 1304 pagecache_isize_extended(inode, old_size, pos); 1305 /* 1306 * Don't mark the inode dirty under page lock. First, it unnecessarily 1307 * makes the holding time of page lock longer. Second, it forces lock 1308 * ordering of page lock and transaction start for journaling 1309 * filesystems. 1310 */ 1311 if (i_size_changed || inline_data) 1312 ret = ext4_mark_inode_dirty(handle, inode); 1313 1314 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1315 /* if we have allocated more blocks and copied 1316 * less. We will have blocks allocated outside 1317 * inode->i_size. So truncate them 1318 */ 1319 ext4_orphan_add(handle, inode); 1320 errout: 1321 ret2 = ext4_journal_stop(handle); 1322 if (!ret) 1323 ret = ret2; 1324 1325 if (pos + len > inode->i_size && !verity) { 1326 ext4_truncate_failed_write(inode); 1327 /* 1328 * If truncate failed early the inode might still be 1329 * on the orphan list; we need to make sure the inode 1330 * is removed from the orphan list in that case. 1331 */ 1332 if (inode->i_nlink) 1333 ext4_orphan_del(NULL, inode); 1334 } 1335 1336 return ret ? ret : copied; 1337 } 1338 1339 /* 1340 * This is a private version of page_zero_new_buffers() which doesn't 1341 * set the buffer to be dirty, since in data=journalled mode we need 1342 * to call ext4_handle_dirty_metadata() instead. 1343 */ 1344 static void ext4_journalled_zero_new_buffers(handle_t *handle, 1345 struct page *page, 1346 unsigned from, unsigned to) 1347 { 1348 unsigned int block_start = 0, block_end; 1349 struct buffer_head *head, *bh; 1350 1351 bh = head = page_buffers(page); 1352 do { 1353 block_end = block_start + bh->b_size; 1354 if (buffer_new(bh)) { 1355 if (block_end > from && block_start < to) { 1356 if (!PageUptodate(page)) { 1357 unsigned start, size; 1358 1359 start = max(from, block_start); 1360 size = min(to, block_end) - start; 1361 1362 zero_user(page, start, size); 1363 write_end_fn(handle, bh); 1364 } 1365 clear_buffer_new(bh); 1366 } 1367 } 1368 block_start = block_end; 1369 bh = bh->b_this_page; 1370 } while (bh != head); 1371 } 1372 1373 static int ext4_journalled_write_end(struct file *file, 1374 struct address_space *mapping, 1375 loff_t pos, unsigned len, unsigned copied, 1376 struct page *page, void *fsdata) 1377 { 1378 handle_t *handle = ext4_journal_current_handle(); 1379 struct inode *inode = mapping->host; 1380 loff_t old_size = inode->i_size; 1381 int ret = 0, ret2; 1382 int partial = 0; 1383 unsigned from, to; 1384 int size_changed = 0; 1385 int inline_data = ext4_has_inline_data(inode); 1386 bool verity = ext4_verity_in_progress(inode); 1387 1388 trace_ext4_journalled_write_end(inode, pos, len, copied); 1389 from = pos & (PAGE_SIZE - 1); 1390 to = from + len; 1391 1392 BUG_ON(!ext4_handle_valid(handle)); 1393 1394 if (inline_data) { 1395 ret = ext4_write_inline_data_end(inode, pos, len, 1396 copied, page); 1397 if (ret < 0) { 1398 unlock_page(page); 1399 put_page(page); 1400 goto errout; 1401 } 1402 copied = ret; 1403 } else if (unlikely(copied < len) && !PageUptodate(page)) { 1404 copied = 0; 1405 ext4_journalled_zero_new_buffers(handle, page, from, to); 1406 } else { 1407 if (unlikely(copied < len)) 1408 ext4_journalled_zero_new_buffers(handle, page, 1409 from + copied, to); 1410 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1411 from + copied, &partial, 1412 write_end_fn); 1413 if (!partial) 1414 SetPageUptodate(page); 1415 } 1416 if (!verity) 1417 size_changed = ext4_update_inode_size(inode, pos + copied); 1418 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1419 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1420 unlock_page(page); 1421 put_page(page); 1422 1423 if (old_size < pos && !verity) 1424 pagecache_isize_extended(inode, old_size, pos); 1425 1426 if (size_changed || inline_data) { 1427 ret2 = ext4_mark_inode_dirty(handle, inode); 1428 if (!ret) 1429 ret = ret2; 1430 } 1431 1432 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1433 /* if we have allocated more blocks and copied 1434 * less. We will have blocks allocated outside 1435 * inode->i_size. So truncate them 1436 */ 1437 ext4_orphan_add(handle, inode); 1438 1439 errout: 1440 ret2 = ext4_journal_stop(handle); 1441 if (!ret) 1442 ret = ret2; 1443 if (pos + len > inode->i_size && !verity) { 1444 ext4_truncate_failed_write(inode); 1445 /* 1446 * If truncate failed early the inode might still be 1447 * on the orphan list; we need to make sure the inode 1448 * is removed from the orphan list in that case. 1449 */ 1450 if (inode->i_nlink) 1451 ext4_orphan_del(NULL, inode); 1452 } 1453 1454 return ret ? ret : copied; 1455 } 1456 1457 /* 1458 * Reserve space for a single cluster 1459 */ 1460 static int ext4_da_reserve_space(struct inode *inode) 1461 { 1462 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1463 struct ext4_inode_info *ei = EXT4_I(inode); 1464 int ret; 1465 1466 /* 1467 * We will charge metadata quota at writeout time; this saves 1468 * us from metadata over-estimation, though we may go over by 1469 * a small amount in the end. Here we just reserve for data. 1470 */ 1471 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1472 if (ret) 1473 return ret; 1474 1475 spin_lock(&ei->i_block_reservation_lock); 1476 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1477 spin_unlock(&ei->i_block_reservation_lock); 1478 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1479 return -ENOSPC; 1480 } 1481 ei->i_reserved_data_blocks++; 1482 trace_ext4_da_reserve_space(inode); 1483 spin_unlock(&ei->i_block_reservation_lock); 1484 1485 return 0; /* success */ 1486 } 1487 1488 void ext4_da_release_space(struct inode *inode, int to_free) 1489 { 1490 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1491 struct ext4_inode_info *ei = EXT4_I(inode); 1492 1493 if (!to_free) 1494 return; /* Nothing to release, exit */ 1495 1496 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1497 1498 trace_ext4_da_release_space(inode, to_free); 1499 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1500 /* 1501 * if there aren't enough reserved blocks, then the 1502 * counter is messed up somewhere. Since this 1503 * function is called from invalidate page, it's 1504 * harmless to return without any action. 1505 */ 1506 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1507 "ino %lu, to_free %d with only %d reserved " 1508 "data blocks", inode->i_ino, to_free, 1509 ei->i_reserved_data_blocks); 1510 WARN_ON(1); 1511 to_free = ei->i_reserved_data_blocks; 1512 } 1513 ei->i_reserved_data_blocks -= to_free; 1514 1515 /* update fs dirty data blocks counter */ 1516 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1517 1518 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1519 1520 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1521 } 1522 1523 /* 1524 * Delayed allocation stuff 1525 */ 1526 1527 struct mpage_da_data { 1528 struct inode *inode; 1529 struct writeback_control *wbc; 1530 1531 pgoff_t first_page; /* The first page to write */ 1532 pgoff_t next_page; /* Current page to examine */ 1533 pgoff_t last_page; /* Last page to examine */ 1534 /* 1535 * Extent to map - this can be after first_page because that can be 1536 * fully mapped. We somewhat abuse m_flags to store whether the extent 1537 * is delalloc or unwritten. 1538 */ 1539 struct ext4_map_blocks map; 1540 struct ext4_io_submit io_submit; /* IO submission data */ 1541 unsigned int do_map:1; 1542 unsigned int scanned_until_end:1; 1543 }; 1544 1545 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1546 bool invalidate) 1547 { 1548 int nr_pages, i; 1549 pgoff_t index, end; 1550 struct pagevec pvec; 1551 struct inode *inode = mpd->inode; 1552 struct address_space *mapping = inode->i_mapping; 1553 1554 /* This is necessary when next_page == 0. */ 1555 if (mpd->first_page >= mpd->next_page) 1556 return; 1557 1558 mpd->scanned_until_end = 0; 1559 index = mpd->first_page; 1560 end = mpd->next_page - 1; 1561 if (invalidate) { 1562 ext4_lblk_t start, last; 1563 start = index << (PAGE_SHIFT - inode->i_blkbits); 1564 last = end << (PAGE_SHIFT - inode->i_blkbits); 1565 ext4_es_remove_extent(inode, start, last - start + 1); 1566 } 1567 1568 pagevec_init(&pvec); 1569 while (index <= end) { 1570 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end); 1571 if (nr_pages == 0) 1572 break; 1573 for (i = 0; i < nr_pages; i++) { 1574 struct page *page = pvec.pages[i]; 1575 1576 BUG_ON(!PageLocked(page)); 1577 BUG_ON(PageWriteback(page)); 1578 if (invalidate) { 1579 if (page_mapped(page)) 1580 clear_page_dirty_for_io(page); 1581 block_invalidatepage(page, 0, PAGE_SIZE); 1582 ClearPageUptodate(page); 1583 } 1584 unlock_page(page); 1585 } 1586 pagevec_release(&pvec); 1587 } 1588 } 1589 1590 static void ext4_print_free_blocks(struct inode *inode) 1591 { 1592 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1593 struct super_block *sb = inode->i_sb; 1594 struct ext4_inode_info *ei = EXT4_I(inode); 1595 1596 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1597 EXT4_C2B(EXT4_SB(inode->i_sb), 1598 ext4_count_free_clusters(sb))); 1599 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1600 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1601 (long long) EXT4_C2B(EXT4_SB(sb), 1602 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1603 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1604 (long long) EXT4_C2B(EXT4_SB(sb), 1605 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1606 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1607 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1608 ei->i_reserved_data_blocks); 1609 return; 1610 } 1611 1612 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1613 { 1614 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1615 } 1616 1617 /* 1618 * ext4_insert_delayed_block - adds a delayed block to the extents status 1619 * tree, incrementing the reserved cluster/block 1620 * count or making a pending reservation 1621 * where needed 1622 * 1623 * @inode - file containing the newly added block 1624 * @lblk - logical block to be added 1625 * 1626 * Returns 0 on success, negative error code on failure. 1627 */ 1628 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk) 1629 { 1630 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1631 int ret; 1632 bool allocated = false; 1633 1634 /* 1635 * If the cluster containing lblk is shared with a delayed, 1636 * written, or unwritten extent in a bigalloc file system, it's 1637 * already been accounted for and does not need to be reserved. 1638 * A pending reservation must be made for the cluster if it's 1639 * shared with a written or unwritten extent and doesn't already 1640 * have one. Written and unwritten extents can be purged from the 1641 * extents status tree if the system is under memory pressure, so 1642 * it's necessary to examine the extent tree if a search of the 1643 * extents status tree doesn't get a match. 1644 */ 1645 if (sbi->s_cluster_ratio == 1) { 1646 ret = ext4_da_reserve_space(inode); 1647 if (ret != 0) /* ENOSPC */ 1648 goto errout; 1649 } else { /* bigalloc */ 1650 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) { 1651 if (!ext4_es_scan_clu(inode, 1652 &ext4_es_is_mapped, lblk)) { 1653 ret = ext4_clu_mapped(inode, 1654 EXT4_B2C(sbi, lblk)); 1655 if (ret < 0) 1656 goto errout; 1657 if (ret == 0) { 1658 ret = ext4_da_reserve_space(inode); 1659 if (ret != 0) /* ENOSPC */ 1660 goto errout; 1661 } else { 1662 allocated = true; 1663 } 1664 } else { 1665 allocated = true; 1666 } 1667 } 1668 } 1669 1670 ret = ext4_es_insert_delayed_block(inode, lblk, allocated); 1671 1672 errout: 1673 return ret; 1674 } 1675 1676 /* 1677 * This function is grabs code from the very beginning of 1678 * ext4_map_blocks, but assumes that the caller is from delayed write 1679 * time. This function looks up the requested blocks and sets the 1680 * buffer delay bit under the protection of i_data_sem. 1681 */ 1682 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1683 struct ext4_map_blocks *map, 1684 struct buffer_head *bh) 1685 { 1686 struct extent_status es; 1687 int retval; 1688 sector_t invalid_block = ~((sector_t) 0xffff); 1689 #ifdef ES_AGGRESSIVE_TEST 1690 struct ext4_map_blocks orig_map; 1691 1692 memcpy(&orig_map, map, sizeof(*map)); 1693 #endif 1694 1695 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1696 invalid_block = ~0; 1697 1698 map->m_flags = 0; 1699 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len, 1700 (unsigned long) map->m_lblk); 1701 1702 /* Lookup extent status tree firstly */ 1703 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) { 1704 if (ext4_es_is_hole(&es)) { 1705 retval = 0; 1706 down_read(&EXT4_I(inode)->i_data_sem); 1707 goto add_delayed; 1708 } 1709 1710 /* 1711 * Delayed extent could be allocated by fallocate. 1712 * So we need to check it. 1713 */ 1714 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1715 map_bh(bh, inode->i_sb, invalid_block); 1716 set_buffer_new(bh); 1717 set_buffer_delay(bh); 1718 return 0; 1719 } 1720 1721 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1722 retval = es.es_len - (iblock - es.es_lblk); 1723 if (retval > map->m_len) 1724 retval = map->m_len; 1725 map->m_len = retval; 1726 if (ext4_es_is_written(&es)) 1727 map->m_flags |= EXT4_MAP_MAPPED; 1728 else if (ext4_es_is_unwritten(&es)) 1729 map->m_flags |= EXT4_MAP_UNWRITTEN; 1730 else 1731 BUG(); 1732 1733 #ifdef ES_AGGRESSIVE_TEST 1734 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1735 #endif 1736 return retval; 1737 } 1738 1739 /* 1740 * Try to see if we can get the block without requesting a new 1741 * file system block. 1742 */ 1743 down_read(&EXT4_I(inode)->i_data_sem); 1744 if (ext4_has_inline_data(inode)) 1745 retval = 0; 1746 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1747 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1748 else 1749 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1750 1751 add_delayed: 1752 if (retval == 0) { 1753 int ret; 1754 1755 /* 1756 * XXX: __block_prepare_write() unmaps passed block, 1757 * is it OK? 1758 */ 1759 1760 ret = ext4_insert_delayed_block(inode, map->m_lblk); 1761 if (ret != 0) { 1762 retval = ret; 1763 goto out_unlock; 1764 } 1765 1766 map_bh(bh, inode->i_sb, invalid_block); 1767 set_buffer_new(bh); 1768 set_buffer_delay(bh); 1769 } else if (retval > 0) { 1770 int ret; 1771 unsigned int status; 1772 1773 if (unlikely(retval != map->m_len)) { 1774 ext4_warning(inode->i_sb, 1775 "ES len assertion failed for inode " 1776 "%lu: retval %d != map->m_len %d", 1777 inode->i_ino, retval, map->m_len); 1778 WARN_ON(1); 1779 } 1780 1781 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1782 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1783 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1784 map->m_pblk, status); 1785 if (ret != 0) 1786 retval = ret; 1787 } 1788 1789 out_unlock: 1790 up_read((&EXT4_I(inode)->i_data_sem)); 1791 1792 return retval; 1793 } 1794 1795 /* 1796 * This is a special get_block_t callback which is used by 1797 * ext4_da_write_begin(). It will either return mapped block or 1798 * reserve space for a single block. 1799 * 1800 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1801 * We also have b_blocknr = -1 and b_bdev initialized properly 1802 * 1803 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1804 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1805 * initialized properly. 1806 */ 1807 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1808 struct buffer_head *bh, int create) 1809 { 1810 struct ext4_map_blocks map; 1811 int ret = 0; 1812 1813 BUG_ON(create == 0); 1814 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1815 1816 map.m_lblk = iblock; 1817 map.m_len = 1; 1818 1819 /* 1820 * first, we need to know whether the block is allocated already 1821 * preallocated blocks are unmapped but should treated 1822 * the same as allocated blocks. 1823 */ 1824 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1825 if (ret <= 0) 1826 return ret; 1827 1828 map_bh(bh, inode->i_sb, map.m_pblk); 1829 ext4_update_bh_state(bh, map.m_flags); 1830 1831 if (buffer_unwritten(bh)) { 1832 /* A delayed write to unwritten bh should be marked 1833 * new and mapped. Mapped ensures that we don't do 1834 * get_block multiple times when we write to the same 1835 * offset and new ensures that we do proper zero out 1836 * for partial write. 1837 */ 1838 set_buffer_new(bh); 1839 set_buffer_mapped(bh); 1840 } 1841 return 0; 1842 } 1843 1844 static int bget_one(handle_t *handle, struct buffer_head *bh) 1845 { 1846 get_bh(bh); 1847 return 0; 1848 } 1849 1850 static int bput_one(handle_t *handle, struct buffer_head *bh) 1851 { 1852 put_bh(bh); 1853 return 0; 1854 } 1855 1856 static int __ext4_journalled_writepage(struct page *page, 1857 unsigned int len) 1858 { 1859 struct address_space *mapping = page->mapping; 1860 struct inode *inode = mapping->host; 1861 struct buffer_head *page_bufs = NULL; 1862 handle_t *handle = NULL; 1863 int ret = 0, err = 0; 1864 int inline_data = ext4_has_inline_data(inode); 1865 struct buffer_head *inode_bh = NULL; 1866 1867 ClearPageChecked(page); 1868 1869 if (inline_data) { 1870 BUG_ON(page->index != 0); 1871 BUG_ON(len > ext4_get_max_inline_size(inode)); 1872 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1873 if (inode_bh == NULL) 1874 goto out; 1875 } else { 1876 page_bufs = page_buffers(page); 1877 if (!page_bufs) { 1878 BUG(); 1879 goto out; 1880 } 1881 ext4_walk_page_buffers(handle, page_bufs, 0, len, 1882 NULL, bget_one); 1883 } 1884 /* 1885 * We need to release the page lock before we start the 1886 * journal, so grab a reference so the page won't disappear 1887 * out from under us. 1888 */ 1889 get_page(page); 1890 unlock_page(page); 1891 1892 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1893 ext4_writepage_trans_blocks(inode)); 1894 if (IS_ERR(handle)) { 1895 ret = PTR_ERR(handle); 1896 put_page(page); 1897 goto out_no_pagelock; 1898 } 1899 BUG_ON(!ext4_handle_valid(handle)); 1900 1901 lock_page(page); 1902 put_page(page); 1903 if (page->mapping != mapping) { 1904 /* The page got truncated from under us */ 1905 ext4_journal_stop(handle); 1906 ret = 0; 1907 goto out; 1908 } 1909 1910 if (inline_data) { 1911 ret = ext4_mark_inode_dirty(handle, inode); 1912 } else { 1913 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1914 do_journal_get_write_access); 1915 1916 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1917 write_end_fn); 1918 } 1919 if (ret == 0) 1920 ret = err; 1921 err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len); 1922 if (ret == 0) 1923 ret = err; 1924 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1925 err = ext4_journal_stop(handle); 1926 if (!ret) 1927 ret = err; 1928 1929 if (!ext4_has_inline_data(inode)) 1930 ext4_walk_page_buffers(NULL, page_bufs, 0, len, 1931 NULL, bput_one); 1932 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1933 out: 1934 unlock_page(page); 1935 out_no_pagelock: 1936 brelse(inode_bh); 1937 return ret; 1938 } 1939 1940 /* 1941 * Note that we don't need to start a transaction unless we're journaling data 1942 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1943 * need to file the inode to the transaction's list in ordered mode because if 1944 * we are writing back data added by write(), the inode is already there and if 1945 * we are writing back data modified via mmap(), no one guarantees in which 1946 * transaction the data will hit the disk. In case we are journaling data, we 1947 * cannot start transaction directly because transaction start ranks above page 1948 * lock so we have to do some magic. 1949 * 1950 * This function can get called via... 1951 * - ext4_writepages after taking page lock (have journal handle) 1952 * - journal_submit_inode_data_buffers (no journal handle) 1953 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 1954 * - grab_page_cache when doing write_begin (have journal handle) 1955 * 1956 * We don't do any block allocation in this function. If we have page with 1957 * multiple blocks we need to write those buffer_heads that are mapped. This 1958 * is important for mmaped based write. So if we do with blocksize 1K 1959 * truncate(f, 1024); 1960 * a = mmap(f, 0, 4096); 1961 * a[0] = 'a'; 1962 * truncate(f, 4096); 1963 * we have in the page first buffer_head mapped via page_mkwrite call back 1964 * but other buffer_heads would be unmapped but dirty (dirty done via the 1965 * do_wp_page). So writepage should write the first block. If we modify 1966 * the mmap area beyond 1024 we will again get a page_fault and the 1967 * page_mkwrite callback will do the block allocation and mark the 1968 * buffer_heads mapped. 1969 * 1970 * We redirty the page if we have any buffer_heads that is either delay or 1971 * unwritten in the page. 1972 * 1973 * We can get recursively called as show below. 1974 * 1975 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1976 * ext4_writepage() 1977 * 1978 * But since we don't do any block allocation we should not deadlock. 1979 * Page also have the dirty flag cleared so we don't get recurive page_lock. 1980 */ 1981 static int ext4_writepage(struct page *page, 1982 struct writeback_control *wbc) 1983 { 1984 int ret = 0; 1985 loff_t size; 1986 unsigned int len; 1987 struct buffer_head *page_bufs = NULL; 1988 struct inode *inode = page->mapping->host; 1989 struct ext4_io_submit io_submit; 1990 bool keep_towrite = false; 1991 1992 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 1993 inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE); 1994 unlock_page(page); 1995 return -EIO; 1996 } 1997 1998 trace_ext4_writepage(page); 1999 size = i_size_read(inode); 2000 if (page->index == size >> PAGE_SHIFT && 2001 !ext4_verity_in_progress(inode)) 2002 len = size & ~PAGE_MASK; 2003 else 2004 len = PAGE_SIZE; 2005 2006 page_bufs = page_buffers(page); 2007 /* 2008 * We cannot do block allocation or other extent handling in this 2009 * function. If there are buffers needing that, we have to redirty 2010 * the page. But we may reach here when we do a journal commit via 2011 * journal_submit_inode_data_buffers() and in that case we must write 2012 * allocated buffers to achieve data=ordered mode guarantees. 2013 * 2014 * Also, if there is only one buffer per page (the fs block 2015 * size == the page size), if one buffer needs block 2016 * allocation or needs to modify the extent tree to clear the 2017 * unwritten flag, we know that the page can't be written at 2018 * all, so we might as well refuse the write immediately. 2019 * Unfortunately if the block size != page size, we can't as 2020 * easily detect this case using ext4_walk_page_buffers(), but 2021 * for the extremely common case, this is an optimization that 2022 * skips a useless round trip through ext4_bio_write_page(). 2023 */ 2024 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2025 ext4_bh_delay_or_unwritten)) { 2026 redirty_page_for_writepage(wbc, page); 2027 if ((current->flags & PF_MEMALLOC) || 2028 (inode->i_sb->s_blocksize == PAGE_SIZE)) { 2029 /* 2030 * For memory cleaning there's no point in writing only 2031 * some buffers. So just bail out. Warn if we came here 2032 * from direct reclaim. 2033 */ 2034 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 2035 == PF_MEMALLOC); 2036 unlock_page(page); 2037 return 0; 2038 } 2039 keep_towrite = true; 2040 } 2041 2042 if (PageChecked(page) && ext4_should_journal_data(inode)) 2043 /* 2044 * It's mmapped pagecache. Add buffers and journal it. There 2045 * doesn't seem much point in redirtying the page here. 2046 */ 2047 return __ext4_journalled_writepage(page, len); 2048 2049 ext4_io_submit_init(&io_submit, wbc); 2050 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 2051 if (!io_submit.io_end) { 2052 redirty_page_for_writepage(wbc, page); 2053 unlock_page(page); 2054 return -ENOMEM; 2055 } 2056 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite); 2057 ext4_io_submit(&io_submit); 2058 /* Drop io_end reference we got from init */ 2059 ext4_put_io_end_defer(io_submit.io_end); 2060 return ret; 2061 } 2062 2063 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 2064 { 2065 int len; 2066 loff_t size; 2067 int err; 2068 2069 BUG_ON(page->index != mpd->first_page); 2070 clear_page_dirty_for_io(page); 2071 /* 2072 * We have to be very careful here! Nothing protects writeback path 2073 * against i_size changes and the page can be writeably mapped into 2074 * page tables. So an application can be growing i_size and writing 2075 * data through mmap while writeback runs. clear_page_dirty_for_io() 2076 * write-protects our page in page tables and the page cannot get 2077 * written to again until we release page lock. So only after 2078 * clear_page_dirty_for_io() we are safe to sample i_size for 2079 * ext4_bio_write_page() to zero-out tail of the written page. We rely 2080 * on the barrier provided by TestClearPageDirty in 2081 * clear_page_dirty_for_io() to make sure i_size is really sampled only 2082 * after page tables are updated. 2083 */ 2084 size = i_size_read(mpd->inode); 2085 if (page->index == size >> PAGE_SHIFT && 2086 !ext4_verity_in_progress(mpd->inode)) 2087 len = size & ~PAGE_MASK; 2088 else 2089 len = PAGE_SIZE; 2090 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false); 2091 if (!err) 2092 mpd->wbc->nr_to_write--; 2093 mpd->first_page++; 2094 2095 return err; 2096 } 2097 2098 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay)) 2099 2100 /* 2101 * mballoc gives us at most this number of blocks... 2102 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 2103 * The rest of mballoc seems to handle chunks up to full group size. 2104 */ 2105 #define MAX_WRITEPAGES_EXTENT_LEN 2048 2106 2107 /* 2108 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 2109 * 2110 * @mpd - extent of blocks 2111 * @lblk - logical number of the block in the file 2112 * @bh - buffer head we want to add to the extent 2113 * 2114 * The function is used to collect contig. blocks in the same state. If the 2115 * buffer doesn't require mapping for writeback and we haven't started the 2116 * extent of buffers to map yet, the function returns 'true' immediately - the 2117 * caller can write the buffer right away. Otherwise the function returns true 2118 * if the block has been added to the extent, false if the block couldn't be 2119 * added. 2120 */ 2121 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 2122 struct buffer_head *bh) 2123 { 2124 struct ext4_map_blocks *map = &mpd->map; 2125 2126 /* Buffer that doesn't need mapping for writeback? */ 2127 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 2128 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 2129 /* So far no extent to map => we write the buffer right away */ 2130 if (map->m_len == 0) 2131 return true; 2132 return false; 2133 } 2134 2135 /* First block in the extent? */ 2136 if (map->m_len == 0) { 2137 /* We cannot map unless handle is started... */ 2138 if (!mpd->do_map) 2139 return false; 2140 map->m_lblk = lblk; 2141 map->m_len = 1; 2142 map->m_flags = bh->b_state & BH_FLAGS; 2143 return true; 2144 } 2145 2146 /* Don't go larger than mballoc is willing to allocate */ 2147 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 2148 return false; 2149 2150 /* Can we merge the block to our big extent? */ 2151 if (lblk == map->m_lblk + map->m_len && 2152 (bh->b_state & BH_FLAGS) == map->m_flags) { 2153 map->m_len++; 2154 return true; 2155 } 2156 return false; 2157 } 2158 2159 /* 2160 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 2161 * 2162 * @mpd - extent of blocks for mapping 2163 * @head - the first buffer in the page 2164 * @bh - buffer we should start processing from 2165 * @lblk - logical number of the block in the file corresponding to @bh 2166 * 2167 * Walk through page buffers from @bh upto @head (exclusive) and either submit 2168 * the page for IO if all buffers in this page were mapped and there's no 2169 * accumulated extent of buffers to map or add buffers in the page to the 2170 * extent of buffers to map. The function returns 1 if the caller can continue 2171 * by processing the next page, 0 if it should stop adding buffers to the 2172 * extent to map because we cannot extend it anymore. It can also return value 2173 * < 0 in case of error during IO submission. 2174 */ 2175 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 2176 struct buffer_head *head, 2177 struct buffer_head *bh, 2178 ext4_lblk_t lblk) 2179 { 2180 struct inode *inode = mpd->inode; 2181 int err; 2182 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) 2183 >> inode->i_blkbits; 2184 2185 if (ext4_verity_in_progress(inode)) 2186 blocks = EXT_MAX_BLOCKS; 2187 2188 do { 2189 BUG_ON(buffer_locked(bh)); 2190 2191 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2192 /* Found extent to map? */ 2193 if (mpd->map.m_len) 2194 return 0; 2195 /* Buffer needs mapping and handle is not started? */ 2196 if (!mpd->do_map) 2197 return 0; 2198 /* Everything mapped so far and we hit EOF */ 2199 break; 2200 } 2201 } while (lblk++, (bh = bh->b_this_page) != head); 2202 /* So far everything mapped? Submit the page for IO. */ 2203 if (mpd->map.m_len == 0) { 2204 err = mpage_submit_page(mpd, head->b_page); 2205 if (err < 0) 2206 return err; 2207 } 2208 if (lblk >= blocks) { 2209 mpd->scanned_until_end = 1; 2210 return 0; 2211 } 2212 return 1; 2213 } 2214 2215 /* 2216 * mpage_process_page - update page buffers corresponding to changed extent and 2217 * may submit fully mapped page for IO 2218 * 2219 * @mpd - description of extent to map, on return next extent to map 2220 * @m_lblk - logical block mapping. 2221 * @m_pblk - corresponding physical mapping. 2222 * @map_bh - determines on return whether this page requires any further 2223 * mapping or not. 2224 * Scan given page buffers corresponding to changed extent and update buffer 2225 * state according to new extent state. 2226 * We map delalloc buffers to their physical location, clear unwritten bits. 2227 * If the given page is not fully mapped, we update @map to the next extent in 2228 * the given page that needs mapping & return @map_bh as true. 2229 */ 2230 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page, 2231 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk, 2232 bool *map_bh) 2233 { 2234 struct buffer_head *head, *bh; 2235 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2236 ext4_lblk_t lblk = *m_lblk; 2237 ext4_fsblk_t pblock = *m_pblk; 2238 int err = 0; 2239 int blkbits = mpd->inode->i_blkbits; 2240 ssize_t io_end_size = 0; 2241 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end); 2242 2243 bh = head = page_buffers(page); 2244 do { 2245 if (lblk < mpd->map.m_lblk) 2246 continue; 2247 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2248 /* 2249 * Buffer after end of mapped extent. 2250 * Find next buffer in the page to map. 2251 */ 2252 mpd->map.m_len = 0; 2253 mpd->map.m_flags = 0; 2254 io_end_vec->size += io_end_size; 2255 io_end_size = 0; 2256 2257 err = mpage_process_page_bufs(mpd, head, bh, lblk); 2258 if (err > 0) 2259 err = 0; 2260 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) { 2261 io_end_vec = ext4_alloc_io_end_vec(io_end); 2262 if (IS_ERR(io_end_vec)) { 2263 err = PTR_ERR(io_end_vec); 2264 goto out; 2265 } 2266 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits; 2267 } 2268 *map_bh = true; 2269 goto out; 2270 } 2271 if (buffer_delay(bh)) { 2272 clear_buffer_delay(bh); 2273 bh->b_blocknr = pblock++; 2274 } 2275 clear_buffer_unwritten(bh); 2276 io_end_size += (1 << blkbits); 2277 } while (lblk++, (bh = bh->b_this_page) != head); 2278 2279 io_end_vec->size += io_end_size; 2280 io_end_size = 0; 2281 *map_bh = false; 2282 out: 2283 *m_lblk = lblk; 2284 *m_pblk = pblock; 2285 return err; 2286 } 2287 2288 /* 2289 * mpage_map_buffers - update buffers corresponding to changed extent and 2290 * submit fully mapped pages for IO 2291 * 2292 * @mpd - description of extent to map, on return next extent to map 2293 * 2294 * Scan buffers corresponding to changed extent (we expect corresponding pages 2295 * to be already locked) and update buffer state according to new extent state. 2296 * We map delalloc buffers to their physical location, clear unwritten bits, 2297 * and mark buffers as uninit when we perform writes to unwritten extents 2298 * and do extent conversion after IO is finished. If the last page is not fully 2299 * mapped, we update @map to the next extent in the last page that needs 2300 * mapping. Otherwise we submit the page for IO. 2301 */ 2302 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2303 { 2304 struct pagevec pvec; 2305 int nr_pages, i; 2306 struct inode *inode = mpd->inode; 2307 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2308 pgoff_t start, end; 2309 ext4_lblk_t lblk; 2310 ext4_fsblk_t pblock; 2311 int err; 2312 bool map_bh = false; 2313 2314 start = mpd->map.m_lblk >> bpp_bits; 2315 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2316 lblk = start << bpp_bits; 2317 pblock = mpd->map.m_pblk; 2318 2319 pagevec_init(&pvec); 2320 while (start <= end) { 2321 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, 2322 &start, end); 2323 if (nr_pages == 0) 2324 break; 2325 for (i = 0; i < nr_pages; i++) { 2326 struct page *page = pvec.pages[i]; 2327 2328 err = mpage_process_page(mpd, page, &lblk, &pblock, 2329 &map_bh); 2330 /* 2331 * If map_bh is true, means page may require further bh 2332 * mapping, or maybe the page was submitted for IO. 2333 * So we return to call further extent mapping. 2334 */ 2335 if (err < 0 || map_bh) 2336 goto out; 2337 /* Page fully mapped - let IO run! */ 2338 err = mpage_submit_page(mpd, page); 2339 if (err < 0) 2340 goto out; 2341 } 2342 pagevec_release(&pvec); 2343 } 2344 /* Extent fully mapped and matches with page boundary. We are done. */ 2345 mpd->map.m_len = 0; 2346 mpd->map.m_flags = 0; 2347 return 0; 2348 out: 2349 pagevec_release(&pvec); 2350 return err; 2351 } 2352 2353 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2354 { 2355 struct inode *inode = mpd->inode; 2356 struct ext4_map_blocks *map = &mpd->map; 2357 int get_blocks_flags; 2358 int err, dioread_nolock; 2359 2360 trace_ext4_da_write_pages_extent(inode, map); 2361 /* 2362 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2363 * to convert an unwritten extent to be initialized (in the case 2364 * where we have written into one or more preallocated blocks). It is 2365 * possible that we're going to need more metadata blocks than 2366 * previously reserved. However we must not fail because we're in 2367 * writeback and there is nothing we can do about it so it might result 2368 * in data loss. So use reserved blocks to allocate metadata if 2369 * possible. 2370 * 2371 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2372 * the blocks in question are delalloc blocks. This indicates 2373 * that the blocks and quotas has already been checked when 2374 * the data was copied into the page cache. 2375 */ 2376 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2377 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2378 EXT4_GET_BLOCKS_IO_SUBMIT; 2379 dioread_nolock = ext4_should_dioread_nolock(inode); 2380 if (dioread_nolock) 2381 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2382 if (map->m_flags & BIT(BH_Delay)) 2383 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2384 2385 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2386 if (err < 0) 2387 return err; 2388 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2389 if (!mpd->io_submit.io_end->handle && 2390 ext4_handle_valid(handle)) { 2391 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2392 handle->h_rsv_handle = NULL; 2393 } 2394 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2395 } 2396 2397 BUG_ON(map->m_len == 0); 2398 return 0; 2399 } 2400 2401 /* 2402 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2403 * mpd->len and submit pages underlying it for IO 2404 * 2405 * @handle - handle for journal operations 2406 * @mpd - extent to map 2407 * @give_up_on_write - we set this to true iff there is a fatal error and there 2408 * is no hope of writing the data. The caller should discard 2409 * dirty pages to avoid infinite loops. 2410 * 2411 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2412 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2413 * them to initialized or split the described range from larger unwritten 2414 * extent. Note that we need not map all the described range since allocation 2415 * can return less blocks or the range is covered by more unwritten extents. We 2416 * cannot map more because we are limited by reserved transaction credits. On 2417 * the other hand we always make sure that the last touched page is fully 2418 * mapped so that it can be written out (and thus forward progress is 2419 * guaranteed). After mapping we submit all mapped pages for IO. 2420 */ 2421 static int mpage_map_and_submit_extent(handle_t *handle, 2422 struct mpage_da_data *mpd, 2423 bool *give_up_on_write) 2424 { 2425 struct inode *inode = mpd->inode; 2426 struct ext4_map_blocks *map = &mpd->map; 2427 int err; 2428 loff_t disksize; 2429 int progress = 0; 2430 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2431 struct ext4_io_end_vec *io_end_vec; 2432 2433 io_end_vec = ext4_alloc_io_end_vec(io_end); 2434 if (IS_ERR(io_end_vec)) 2435 return PTR_ERR(io_end_vec); 2436 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits; 2437 do { 2438 err = mpage_map_one_extent(handle, mpd); 2439 if (err < 0) { 2440 struct super_block *sb = inode->i_sb; 2441 2442 if (ext4_forced_shutdown(EXT4_SB(sb)) || 2443 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 2444 goto invalidate_dirty_pages; 2445 /* 2446 * Let the uper layers retry transient errors. 2447 * In the case of ENOSPC, if ext4_count_free_blocks() 2448 * is non-zero, a commit should free up blocks. 2449 */ 2450 if ((err == -ENOMEM) || 2451 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2452 if (progress) 2453 goto update_disksize; 2454 return err; 2455 } 2456 ext4_msg(sb, KERN_CRIT, 2457 "Delayed block allocation failed for " 2458 "inode %lu at logical offset %llu with" 2459 " max blocks %u with error %d", 2460 inode->i_ino, 2461 (unsigned long long)map->m_lblk, 2462 (unsigned)map->m_len, -err); 2463 ext4_msg(sb, KERN_CRIT, 2464 "This should not happen!! Data will " 2465 "be lost\n"); 2466 if (err == -ENOSPC) 2467 ext4_print_free_blocks(inode); 2468 invalidate_dirty_pages: 2469 *give_up_on_write = true; 2470 return err; 2471 } 2472 progress = 1; 2473 /* 2474 * Update buffer state, submit mapped pages, and get us new 2475 * extent to map 2476 */ 2477 err = mpage_map_and_submit_buffers(mpd); 2478 if (err < 0) 2479 goto update_disksize; 2480 } while (map->m_len); 2481 2482 update_disksize: 2483 /* 2484 * Update on-disk size after IO is submitted. Races with 2485 * truncate are avoided by checking i_size under i_data_sem. 2486 */ 2487 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2488 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) { 2489 int err2; 2490 loff_t i_size; 2491 2492 down_write(&EXT4_I(inode)->i_data_sem); 2493 i_size = i_size_read(inode); 2494 if (disksize > i_size) 2495 disksize = i_size; 2496 if (disksize > EXT4_I(inode)->i_disksize) 2497 EXT4_I(inode)->i_disksize = disksize; 2498 up_write(&EXT4_I(inode)->i_data_sem); 2499 err2 = ext4_mark_inode_dirty(handle, inode); 2500 if (err2) { 2501 ext4_error_err(inode->i_sb, -err2, 2502 "Failed to mark inode %lu dirty", 2503 inode->i_ino); 2504 } 2505 if (!err) 2506 err = err2; 2507 } 2508 return err; 2509 } 2510 2511 /* 2512 * Calculate the total number of credits to reserve for one writepages 2513 * iteration. This is called from ext4_writepages(). We map an extent of 2514 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2515 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2516 * bpp - 1 blocks in bpp different extents. 2517 */ 2518 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2519 { 2520 int bpp = ext4_journal_blocks_per_page(inode); 2521 2522 return ext4_meta_trans_blocks(inode, 2523 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2524 } 2525 2526 /* 2527 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2528 * and underlying extent to map 2529 * 2530 * @mpd - where to look for pages 2531 * 2532 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2533 * IO immediately. When we find a page which isn't mapped we start accumulating 2534 * extent of buffers underlying these pages that needs mapping (formed by 2535 * either delayed or unwritten buffers). We also lock the pages containing 2536 * these buffers. The extent found is returned in @mpd structure (starting at 2537 * mpd->lblk with length mpd->len blocks). 2538 * 2539 * Note that this function can attach bios to one io_end structure which are 2540 * neither logically nor physically contiguous. Although it may seem as an 2541 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2542 * case as we need to track IO to all buffers underlying a page in one io_end. 2543 */ 2544 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2545 { 2546 struct address_space *mapping = mpd->inode->i_mapping; 2547 struct pagevec pvec; 2548 unsigned int nr_pages; 2549 long left = mpd->wbc->nr_to_write; 2550 pgoff_t index = mpd->first_page; 2551 pgoff_t end = mpd->last_page; 2552 xa_mark_t tag; 2553 int i, err = 0; 2554 int blkbits = mpd->inode->i_blkbits; 2555 ext4_lblk_t lblk; 2556 struct buffer_head *head; 2557 2558 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2559 tag = PAGECACHE_TAG_TOWRITE; 2560 else 2561 tag = PAGECACHE_TAG_DIRTY; 2562 2563 pagevec_init(&pvec); 2564 mpd->map.m_len = 0; 2565 mpd->next_page = index; 2566 while (index <= end) { 2567 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2568 tag); 2569 if (nr_pages == 0) 2570 break; 2571 2572 for (i = 0; i < nr_pages; i++) { 2573 struct page *page = pvec.pages[i]; 2574 2575 /* 2576 * Accumulated enough dirty pages? This doesn't apply 2577 * to WB_SYNC_ALL mode. For integrity sync we have to 2578 * keep going because someone may be concurrently 2579 * dirtying pages, and we might have synced a lot of 2580 * newly appeared dirty pages, but have not synced all 2581 * of the old dirty pages. 2582 */ 2583 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2584 goto out; 2585 2586 /* If we can't merge this page, we are done. */ 2587 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2588 goto out; 2589 2590 lock_page(page); 2591 /* 2592 * If the page is no longer dirty, or its mapping no 2593 * longer corresponds to inode we are writing (which 2594 * means it has been truncated or invalidated), or the 2595 * page is already under writeback and we are not doing 2596 * a data integrity writeback, skip the page 2597 */ 2598 if (!PageDirty(page) || 2599 (PageWriteback(page) && 2600 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2601 unlikely(page->mapping != mapping)) { 2602 unlock_page(page); 2603 continue; 2604 } 2605 2606 wait_on_page_writeback(page); 2607 BUG_ON(PageWriteback(page)); 2608 2609 if (mpd->map.m_len == 0) 2610 mpd->first_page = page->index; 2611 mpd->next_page = page->index + 1; 2612 /* Add all dirty buffers to mpd */ 2613 lblk = ((ext4_lblk_t)page->index) << 2614 (PAGE_SHIFT - blkbits); 2615 head = page_buffers(page); 2616 err = mpage_process_page_bufs(mpd, head, head, lblk); 2617 if (err <= 0) 2618 goto out; 2619 err = 0; 2620 left--; 2621 } 2622 pagevec_release(&pvec); 2623 cond_resched(); 2624 } 2625 mpd->scanned_until_end = 1; 2626 return 0; 2627 out: 2628 pagevec_release(&pvec); 2629 return err; 2630 } 2631 2632 static int ext4_writepages(struct address_space *mapping, 2633 struct writeback_control *wbc) 2634 { 2635 pgoff_t writeback_index = 0; 2636 long nr_to_write = wbc->nr_to_write; 2637 int range_whole = 0; 2638 int cycled = 1; 2639 handle_t *handle = NULL; 2640 struct mpage_da_data mpd; 2641 struct inode *inode = mapping->host; 2642 int needed_blocks, rsv_blocks = 0, ret = 0; 2643 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2644 struct blk_plug plug; 2645 bool give_up_on_write = false; 2646 2647 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2648 return -EIO; 2649 2650 percpu_down_read(&sbi->s_writepages_rwsem); 2651 trace_ext4_writepages(inode, wbc); 2652 2653 /* 2654 * No pages to write? This is mainly a kludge to avoid starting 2655 * a transaction for special inodes like journal inode on last iput() 2656 * because that could violate lock ordering on umount 2657 */ 2658 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2659 goto out_writepages; 2660 2661 if (ext4_should_journal_data(inode)) { 2662 ret = generic_writepages(mapping, wbc); 2663 goto out_writepages; 2664 } 2665 2666 /* 2667 * If the filesystem has aborted, it is read-only, so return 2668 * right away instead of dumping stack traces later on that 2669 * will obscure the real source of the problem. We test 2670 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because 2671 * the latter could be true if the filesystem is mounted 2672 * read-only, and in that case, ext4_writepages should 2673 * *never* be called, so if that ever happens, we would want 2674 * the stack trace. 2675 */ 2676 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) || 2677 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) { 2678 ret = -EROFS; 2679 goto out_writepages; 2680 } 2681 2682 /* 2683 * If we have inline data and arrive here, it means that 2684 * we will soon create the block for the 1st page, so 2685 * we'd better clear the inline data here. 2686 */ 2687 if (ext4_has_inline_data(inode)) { 2688 /* Just inode will be modified... */ 2689 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2690 if (IS_ERR(handle)) { 2691 ret = PTR_ERR(handle); 2692 goto out_writepages; 2693 } 2694 BUG_ON(ext4_test_inode_state(inode, 2695 EXT4_STATE_MAY_INLINE_DATA)); 2696 ext4_destroy_inline_data(handle, inode); 2697 ext4_journal_stop(handle); 2698 } 2699 2700 if (ext4_should_dioread_nolock(inode)) { 2701 /* 2702 * We may need to convert up to one extent per block in 2703 * the page and we may dirty the inode. 2704 */ 2705 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode, 2706 PAGE_SIZE >> inode->i_blkbits); 2707 } 2708 2709 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2710 range_whole = 1; 2711 2712 if (wbc->range_cyclic) { 2713 writeback_index = mapping->writeback_index; 2714 if (writeback_index) 2715 cycled = 0; 2716 mpd.first_page = writeback_index; 2717 mpd.last_page = -1; 2718 } else { 2719 mpd.first_page = wbc->range_start >> PAGE_SHIFT; 2720 mpd.last_page = wbc->range_end >> PAGE_SHIFT; 2721 } 2722 2723 mpd.inode = inode; 2724 mpd.wbc = wbc; 2725 ext4_io_submit_init(&mpd.io_submit, wbc); 2726 retry: 2727 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2728 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2729 blk_start_plug(&plug); 2730 2731 /* 2732 * First writeback pages that don't need mapping - we can avoid 2733 * starting a transaction unnecessarily and also avoid being blocked 2734 * in the block layer on device congestion while having transaction 2735 * started. 2736 */ 2737 mpd.do_map = 0; 2738 mpd.scanned_until_end = 0; 2739 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2740 if (!mpd.io_submit.io_end) { 2741 ret = -ENOMEM; 2742 goto unplug; 2743 } 2744 ret = mpage_prepare_extent_to_map(&mpd); 2745 /* Unlock pages we didn't use */ 2746 mpage_release_unused_pages(&mpd, false); 2747 /* Submit prepared bio */ 2748 ext4_io_submit(&mpd.io_submit); 2749 ext4_put_io_end_defer(mpd.io_submit.io_end); 2750 mpd.io_submit.io_end = NULL; 2751 if (ret < 0) 2752 goto unplug; 2753 2754 while (!mpd.scanned_until_end && wbc->nr_to_write > 0) { 2755 /* For each extent of pages we use new io_end */ 2756 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2757 if (!mpd.io_submit.io_end) { 2758 ret = -ENOMEM; 2759 break; 2760 } 2761 2762 /* 2763 * We have two constraints: We find one extent to map and we 2764 * must always write out whole page (makes a difference when 2765 * blocksize < pagesize) so that we don't block on IO when we 2766 * try to write out the rest of the page. Journalled mode is 2767 * not supported by delalloc. 2768 */ 2769 BUG_ON(ext4_should_journal_data(inode)); 2770 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2771 2772 /* start a new transaction */ 2773 handle = ext4_journal_start_with_reserve(inode, 2774 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2775 if (IS_ERR(handle)) { 2776 ret = PTR_ERR(handle); 2777 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2778 "%ld pages, ino %lu; err %d", __func__, 2779 wbc->nr_to_write, inode->i_ino, ret); 2780 /* Release allocated io_end */ 2781 ext4_put_io_end(mpd.io_submit.io_end); 2782 mpd.io_submit.io_end = NULL; 2783 break; 2784 } 2785 mpd.do_map = 1; 2786 2787 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2788 ret = mpage_prepare_extent_to_map(&mpd); 2789 if (!ret && mpd.map.m_len) 2790 ret = mpage_map_and_submit_extent(handle, &mpd, 2791 &give_up_on_write); 2792 /* 2793 * Caution: If the handle is synchronous, 2794 * ext4_journal_stop() can wait for transaction commit 2795 * to finish which may depend on writeback of pages to 2796 * complete or on page lock to be released. In that 2797 * case, we have to wait until after we have 2798 * submitted all the IO, released page locks we hold, 2799 * and dropped io_end reference (for extent conversion 2800 * to be able to complete) before stopping the handle. 2801 */ 2802 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2803 ext4_journal_stop(handle); 2804 handle = NULL; 2805 mpd.do_map = 0; 2806 } 2807 /* Unlock pages we didn't use */ 2808 mpage_release_unused_pages(&mpd, give_up_on_write); 2809 /* Submit prepared bio */ 2810 ext4_io_submit(&mpd.io_submit); 2811 2812 /* 2813 * Drop our io_end reference we got from init. We have 2814 * to be careful and use deferred io_end finishing if 2815 * we are still holding the transaction as we can 2816 * release the last reference to io_end which may end 2817 * up doing unwritten extent conversion. 2818 */ 2819 if (handle) { 2820 ext4_put_io_end_defer(mpd.io_submit.io_end); 2821 ext4_journal_stop(handle); 2822 } else 2823 ext4_put_io_end(mpd.io_submit.io_end); 2824 mpd.io_submit.io_end = NULL; 2825 2826 if (ret == -ENOSPC && sbi->s_journal) { 2827 /* 2828 * Commit the transaction which would 2829 * free blocks released in the transaction 2830 * and try again 2831 */ 2832 jbd2_journal_force_commit_nested(sbi->s_journal); 2833 ret = 0; 2834 continue; 2835 } 2836 /* Fatal error - ENOMEM, EIO... */ 2837 if (ret) 2838 break; 2839 } 2840 unplug: 2841 blk_finish_plug(&plug); 2842 if (!ret && !cycled && wbc->nr_to_write > 0) { 2843 cycled = 1; 2844 mpd.last_page = writeback_index - 1; 2845 mpd.first_page = 0; 2846 goto retry; 2847 } 2848 2849 /* Update index */ 2850 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2851 /* 2852 * Set the writeback_index so that range_cyclic 2853 * mode will write it back later 2854 */ 2855 mapping->writeback_index = mpd.first_page; 2856 2857 out_writepages: 2858 trace_ext4_writepages_result(inode, wbc, ret, 2859 nr_to_write - wbc->nr_to_write); 2860 percpu_up_read(&sbi->s_writepages_rwsem); 2861 return ret; 2862 } 2863 2864 static int ext4_dax_writepages(struct address_space *mapping, 2865 struct writeback_control *wbc) 2866 { 2867 int ret; 2868 long nr_to_write = wbc->nr_to_write; 2869 struct inode *inode = mapping->host; 2870 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2871 2872 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2873 return -EIO; 2874 2875 percpu_down_read(&sbi->s_writepages_rwsem); 2876 trace_ext4_writepages(inode, wbc); 2877 2878 ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc); 2879 trace_ext4_writepages_result(inode, wbc, ret, 2880 nr_to_write - wbc->nr_to_write); 2881 percpu_up_read(&sbi->s_writepages_rwsem); 2882 return ret; 2883 } 2884 2885 static int ext4_nonda_switch(struct super_block *sb) 2886 { 2887 s64 free_clusters, dirty_clusters; 2888 struct ext4_sb_info *sbi = EXT4_SB(sb); 2889 2890 /* 2891 * switch to non delalloc mode if we are running low 2892 * on free block. The free block accounting via percpu 2893 * counters can get slightly wrong with percpu_counter_batch getting 2894 * accumulated on each CPU without updating global counters 2895 * Delalloc need an accurate free block accounting. So switch 2896 * to non delalloc when we are near to error range. 2897 */ 2898 free_clusters = 2899 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2900 dirty_clusters = 2901 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2902 /* 2903 * Start pushing delalloc when 1/2 of free blocks are dirty. 2904 */ 2905 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2906 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2907 2908 if (2 * free_clusters < 3 * dirty_clusters || 2909 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2910 /* 2911 * free block count is less than 150% of dirty blocks 2912 * or free blocks is less than watermark 2913 */ 2914 return 1; 2915 } 2916 return 0; 2917 } 2918 2919 /* We always reserve for an inode update; the superblock could be there too */ 2920 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len) 2921 { 2922 if (likely(ext4_has_feature_large_file(inode->i_sb))) 2923 return 1; 2924 2925 if (pos + len <= 0x7fffffffULL) 2926 return 1; 2927 2928 /* We might need to update the superblock to set LARGE_FILE */ 2929 return 2; 2930 } 2931 2932 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2933 loff_t pos, unsigned len, unsigned flags, 2934 struct page **pagep, void **fsdata) 2935 { 2936 int ret, retries = 0; 2937 struct page *page; 2938 pgoff_t index; 2939 struct inode *inode = mapping->host; 2940 handle_t *handle; 2941 2942 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2943 return -EIO; 2944 2945 index = pos >> PAGE_SHIFT; 2946 2947 if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) || 2948 ext4_verity_in_progress(inode)) { 2949 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2950 return ext4_write_begin(file, mapping, pos, 2951 len, flags, pagep, fsdata); 2952 } 2953 *fsdata = (void *)0; 2954 trace_ext4_da_write_begin(inode, pos, len, flags); 2955 2956 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2957 ret = ext4_da_write_inline_data_begin(mapping, inode, 2958 pos, len, flags, 2959 pagep, fsdata); 2960 if (ret < 0) 2961 return ret; 2962 if (ret == 1) 2963 return 0; 2964 } 2965 2966 /* 2967 * grab_cache_page_write_begin() can take a long time if the 2968 * system is thrashing due to memory pressure, or if the page 2969 * is being written back. So grab it first before we start 2970 * the transaction handle. This also allows us to allocate 2971 * the page (if needed) without using GFP_NOFS. 2972 */ 2973 retry_grab: 2974 page = grab_cache_page_write_begin(mapping, index, flags); 2975 if (!page) 2976 return -ENOMEM; 2977 unlock_page(page); 2978 2979 /* 2980 * With delayed allocation, we don't log the i_disksize update 2981 * if there is delayed block allocation. But we still need 2982 * to journalling the i_disksize update if writes to the end 2983 * of file which has an already mapped buffer. 2984 */ 2985 retry_journal: 2986 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 2987 ext4_da_write_credits(inode, pos, len)); 2988 if (IS_ERR(handle)) { 2989 put_page(page); 2990 return PTR_ERR(handle); 2991 } 2992 2993 lock_page(page); 2994 if (page->mapping != mapping) { 2995 /* The page got truncated from under us */ 2996 unlock_page(page); 2997 put_page(page); 2998 ext4_journal_stop(handle); 2999 goto retry_grab; 3000 } 3001 /* In case writeback began while the page was unlocked */ 3002 wait_for_stable_page(page); 3003 3004 #ifdef CONFIG_FS_ENCRYPTION 3005 ret = ext4_block_write_begin(page, pos, len, 3006 ext4_da_get_block_prep); 3007 #else 3008 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 3009 #endif 3010 if (ret < 0) { 3011 unlock_page(page); 3012 ext4_journal_stop(handle); 3013 /* 3014 * block_write_begin may have instantiated a few blocks 3015 * outside i_size. Trim these off again. Don't need 3016 * i_size_read because we hold i_mutex. 3017 */ 3018 if (pos + len > inode->i_size) 3019 ext4_truncate_failed_write(inode); 3020 3021 if (ret == -ENOSPC && 3022 ext4_should_retry_alloc(inode->i_sb, &retries)) 3023 goto retry_journal; 3024 3025 put_page(page); 3026 return ret; 3027 } 3028 3029 *pagep = page; 3030 return ret; 3031 } 3032 3033 /* 3034 * Check if we should update i_disksize 3035 * when write to the end of file but not require block allocation 3036 */ 3037 static int ext4_da_should_update_i_disksize(struct page *page, 3038 unsigned long offset) 3039 { 3040 struct buffer_head *bh; 3041 struct inode *inode = page->mapping->host; 3042 unsigned int idx; 3043 int i; 3044 3045 bh = page_buffers(page); 3046 idx = offset >> inode->i_blkbits; 3047 3048 for (i = 0; i < idx; i++) 3049 bh = bh->b_this_page; 3050 3051 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 3052 return 0; 3053 return 1; 3054 } 3055 3056 static int ext4_da_write_end(struct file *file, 3057 struct address_space *mapping, 3058 loff_t pos, unsigned len, unsigned copied, 3059 struct page *page, void *fsdata) 3060 { 3061 struct inode *inode = mapping->host; 3062 int ret = 0, ret2; 3063 handle_t *handle = ext4_journal_current_handle(); 3064 loff_t new_i_size; 3065 unsigned long start, end; 3066 int write_mode = (int)(unsigned long)fsdata; 3067 3068 if (write_mode == FALL_BACK_TO_NONDELALLOC) 3069 return ext4_write_end(file, mapping, pos, 3070 len, copied, page, fsdata); 3071 3072 trace_ext4_da_write_end(inode, pos, len, copied); 3073 start = pos & (PAGE_SIZE - 1); 3074 end = start + copied - 1; 3075 3076 /* 3077 * generic_write_end() will run mark_inode_dirty() if i_size 3078 * changes. So let's piggyback the i_disksize mark_inode_dirty 3079 * into that. 3080 */ 3081 new_i_size = pos + copied; 3082 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 3083 if (ext4_has_inline_data(inode) || 3084 ext4_da_should_update_i_disksize(page, end)) { 3085 ext4_update_i_disksize(inode, new_i_size); 3086 /* We need to mark inode dirty even if 3087 * new_i_size is less that inode->i_size 3088 * bu greater than i_disksize.(hint delalloc) 3089 */ 3090 ret = ext4_mark_inode_dirty(handle, inode); 3091 } 3092 } 3093 3094 if (write_mode != CONVERT_INLINE_DATA && 3095 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3096 ext4_has_inline_data(inode)) 3097 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 3098 page); 3099 else 3100 ret2 = generic_write_end(file, mapping, pos, len, copied, 3101 page, fsdata); 3102 3103 copied = ret2; 3104 if (ret2 < 0) 3105 ret = ret2; 3106 ret2 = ext4_journal_stop(handle); 3107 if (unlikely(ret2 && !ret)) 3108 ret = ret2; 3109 3110 return ret ? ret : copied; 3111 } 3112 3113 /* 3114 * Force all delayed allocation blocks to be allocated for a given inode. 3115 */ 3116 int ext4_alloc_da_blocks(struct inode *inode) 3117 { 3118 trace_ext4_alloc_da_blocks(inode); 3119 3120 if (!EXT4_I(inode)->i_reserved_data_blocks) 3121 return 0; 3122 3123 /* 3124 * We do something simple for now. The filemap_flush() will 3125 * also start triggering a write of the data blocks, which is 3126 * not strictly speaking necessary (and for users of 3127 * laptop_mode, not even desirable). However, to do otherwise 3128 * would require replicating code paths in: 3129 * 3130 * ext4_writepages() -> 3131 * write_cache_pages() ---> (via passed in callback function) 3132 * __mpage_da_writepage() --> 3133 * mpage_add_bh_to_extent() 3134 * mpage_da_map_blocks() 3135 * 3136 * The problem is that write_cache_pages(), located in 3137 * mm/page-writeback.c, marks pages clean in preparation for 3138 * doing I/O, which is not desirable if we're not planning on 3139 * doing I/O at all. 3140 * 3141 * We could call write_cache_pages(), and then redirty all of 3142 * the pages by calling redirty_page_for_writepage() but that 3143 * would be ugly in the extreme. So instead we would need to 3144 * replicate parts of the code in the above functions, 3145 * simplifying them because we wouldn't actually intend to 3146 * write out the pages, but rather only collect contiguous 3147 * logical block extents, call the multi-block allocator, and 3148 * then update the buffer heads with the block allocations. 3149 * 3150 * For now, though, we'll cheat by calling filemap_flush(), 3151 * which will map the blocks, and start the I/O, but not 3152 * actually wait for the I/O to complete. 3153 */ 3154 return filemap_flush(inode->i_mapping); 3155 } 3156 3157 /* 3158 * bmap() is special. It gets used by applications such as lilo and by 3159 * the swapper to find the on-disk block of a specific piece of data. 3160 * 3161 * Naturally, this is dangerous if the block concerned is still in the 3162 * journal. If somebody makes a swapfile on an ext4 data-journaling 3163 * filesystem and enables swap, then they may get a nasty shock when the 3164 * data getting swapped to that swapfile suddenly gets overwritten by 3165 * the original zero's written out previously to the journal and 3166 * awaiting writeback in the kernel's buffer cache. 3167 * 3168 * So, if we see any bmap calls here on a modified, data-journaled file, 3169 * take extra steps to flush any blocks which might be in the cache. 3170 */ 3171 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3172 { 3173 struct inode *inode = mapping->host; 3174 journal_t *journal; 3175 int err; 3176 3177 /* 3178 * We can get here for an inline file via the FIBMAP ioctl 3179 */ 3180 if (ext4_has_inline_data(inode)) 3181 return 0; 3182 3183 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3184 test_opt(inode->i_sb, DELALLOC)) { 3185 /* 3186 * With delalloc we want to sync the file 3187 * so that we can make sure we allocate 3188 * blocks for file 3189 */ 3190 filemap_write_and_wait(mapping); 3191 } 3192 3193 if (EXT4_JOURNAL(inode) && 3194 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 3195 /* 3196 * This is a REALLY heavyweight approach, but the use of 3197 * bmap on dirty files is expected to be extremely rare: 3198 * only if we run lilo or swapon on a freshly made file 3199 * do we expect this to happen. 3200 * 3201 * (bmap requires CAP_SYS_RAWIO so this does not 3202 * represent an unprivileged user DOS attack --- we'd be 3203 * in trouble if mortal users could trigger this path at 3204 * will.) 3205 * 3206 * NB. EXT4_STATE_JDATA is not set on files other than 3207 * regular files. If somebody wants to bmap a directory 3208 * or symlink and gets confused because the buffer 3209 * hasn't yet been flushed to disk, they deserve 3210 * everything they get. 3211 */ 3212 3213 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 3214 journal = EXT4_JOURNAL(inode); 3215 jbd2_journal_lock_updates(journal); 3216 err = jbd2_journal_flush(journal); 3217 jbd2_journal_unlock_updates(journal); 3218 3219 if (err) 3220 return 0; 3221 } 3222 3223 return iomap_bmap(mapping, block, &ext4_iomap_ops); 3224 } 3225 3226 static int ext4_readpage(struct file *file, struct page *page) 3227 { 3228 int ret = -EAGAIN; 3229 struct inode *inode = page->mapping->host; 3230 3231 trace_ext4_readpage(page); 3232 3233 if (ext4_has_inline_data(inode)) 3234 ret = ext4_readpage_inline(inode, page); 3235 3236 if (ret == -EAGAIN) 3237 return ext4_mpage_readpages(inode, NULL, page); 3238 3239 return ret; 3240 } 3241 3242 static void ext4_readahead(struct readahead_control *rac) 3243 { 3244 struct inode *inode = rac->mapping->host; 3245 3246 /* If the file has inline data, no need to do readahead. */ 3247 if (ext4_has_inline_data(inode)) 3248 return; 3249 3250 ext4_mpage_readpages(inode, rac, NULL); 3251 } 3252 3253 static void ext4_invalidatepage(struct page *page, unsigned int offset, 3254 unsigned int length) 3255 { 3256 trace_ext4_invalidatepage(page, offset, length); 3257 3258 /* No journalling happens on data buffers when this function is used */ 3259 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 3260 3261 block_invalidatepage(page, offset, length); 3262 } 3263 3264 static int __ext4_journalled_invalidatepage(struct page *page, 3265 unsigned int offset, 3266 unsigned int length) 3267 { 3268 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3269 3270 trace_ext4_journalled_invalidatepage(page, offset, length); 3271 3272 /* 3273 * If it's a full truncate we just forget about the pending dirtying 3274 */ 3275 if (offset == 0 && length == PAGE_SIZE) 3276 ClearPageChecked(page); 3277 3278 return jbd2_journal_invalidatepage(journal, page, offset, length); 3279 } 3280 3281 /* Wrapper for aops... */ 3282 static void ext4_journalled_invalidatepage(struct page *page, 3283 unsigned int offset, 3284 unsigned int length) 3285 { 3286 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 3287 } 3288 3289 static int ext4_releasepage(struct page *page, gfp_t wait) 3290 { 3291 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3292 3293 trace_ext4_releasepage(page); 3294 3295 /* Page has dirty journalled data -> cannot release */ 3296 if (PageChecked(page)) 3297 return 0; 3298 if (journal) 3299 return jbd2_journal_try_to_free_buffers(journal, page); 3300 else 3301 return try_to_free_buffers(page); 3302 } 3303 3304 static bool ext4_inode_datasync_dirty(struct inode *inode) 3305 { 3306 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 3307 3308 if (journal) { 3309 if (jbd2_transaction_committed(journal, 3310 EXT4_I(inode)->i_datasync_tid)) 3311 return false; 3312 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT)) 3313 return atomic_read(&EXT4_SB(inode->i_sb)->s_fc_subtid) < 3314 EXT4_I(inode)->i_fc_committed_subtid; 3315 return true; 3316 } 3317 3318 /* Any metadata buffers to write? */ 3319 if (!list_empty(&inode->i_mapping->private_list)) 3320 return true; 3321 return inode->i_state & I_DIRTY_DATASYNC; 3322 } 3323 3324 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap, 3325 struct ext4_map_blocks *map, loff_t offset, 3326 loff_t length) 3327 { 3328 u8 blkbits = inode->i_blkbits; 3329 3330 /* 3331 * Writes that span EOF might trigger an I/O size update on completion, 3332 * so consider them to be dirty for the purpose of O_DSYNC, even if 3333 * there is no other metadata changes being made or are pending. 3334 */ 3335 iomap->flags = 0; 3336 if (ext4_inode_datasync_dirty(inode) || 3337 offset + length > i_size_read(inode)) 3338 iomap->flags |= IOMAP_F_DIRTY; 3339 3340 if (map->m_flags & EXT4_MAP_NEW) 3341 iomap->flags |= IOMAP_F_NEW; 3342 3343 iomap->bdev = inode->i_sb->s_bdev; 3344 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev; 3345 iomap->offset = (u64) map->m_lblk << blkbits; 3346 iomap->length = (u64) map->m_len << blkbits; 3347 3348 if ((map->m_flags & EXT4_MAP_MAPPED) && 3349 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3350 iomap->flags |= IOMAP_F_MERGED; 3351 3352 /* 3353 * Flags passed to ext4_map_blocks() for direct I/O writes can result 3354 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits 3355 * set. In order for any allocated unwritten extents to be converted 3356 * into written extents correctly within the ->end_io() handler, we 3357 * need to ensure that the iomap->type is set appropriately. Hence, the 3358 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has 3359 * been set first. 3360 */ 3361 if (map->m_flags & EXT4_MAP_UNWRITTEN) { 3362 iomap->type = IOMAP_UNWRITTEN; 3363 iomap->addr = (u64) map->m_pblk << blkbits; 3364 } else if (map->m_flags & EXT4_MAP_MAPPED) { 3365 iomap->type = IOMAP_MAPPED; 3366 iomap->addr = (u64) map->m_pblk << blkbits; 3367 } else { 3368 iomap->type = IOMAP_HOLE; 3369 iomap->addr = IOMAP_NULL_ADDR; 3370 } 3371 } 3372 3373 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map, 3374 unsigned int flags) 3375 { 3376 handle_t *handle; 3377 u8 blkbits = inode->i_blkbits; 3378 int ret, dio_credits, m_flags = 0, retries = 0; 3379 3380 /* 3381 * Trim the mapping request to the maximum value that we can map at 3382 * once for direct I/O. 3383 */ 3384 if (map->m_len > DIO_MAX_BLOCKS) 3385 map->m_len = DIO_MAX_BLOCKS; 3386 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len); 3387 3388 retry: 3389 /* 3390 * Either we allocate blocks and then don't get an unwritten extent, so 3391 * in that case we have reserved enough credits. Or, the blocks are 3392 * already allocated and unwritten. In that case, the extent conversion 3393 * fits into the credits as well. 3394 */ 3395 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 3396 if (IS_ERR(handle)) 3397 return PTR_ERR(handle); 3398 3399 /* 3400 * DAX and direct I/O are the only two operations that are currently 3401 * supported with IOMAP_WRITE. 3402 */ 3403 WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT)); 3404 if (IS_DAX(inode)) 3405 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO; 3406 /* 3407 * We use i_size instead of i_disksize here because delalloc writeback 3408 * can complete at any point during the I/O and subsequently push the 3409 * i_disksize out to i_size. This could be beyond where direct I/O is 3410 * happening and thus expose allocated blocks to direct I/O reads. 3411 */ 3412 else if ((map->m_lblk * (1 << blkbits)) >= i_size_read(inode)) 3413 m_flags = EXT4_GET_BLOCKS_CREATE; 3414 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3415 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT; 3416 3417 ret = ext4_map_blocks(handle, inode, map, m_flags); 3418 3419 /* 3420 * We cannot fill holes in indirect tree based inodes as that could 3421 * expose stale data in the case of a crash. Use the magic error code 3422 * to fallback to buffered I/O. 3423 */ 3424 if (!m_flags && !ret) 3425 ret = -ENOTBLK; 3426 3427 ext4_journal_stop(handle); 3428 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3429 goto retry; 3430 3431 return ret; 3432 } 3433 3434 3435 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3436 unsigned flags, struct iomap *iomap, struct iomap *srcmap) 3437 { 3438 int ret; 3439 struct ext4_map_blocks map; 3440 u8 blkbits = inode->i_blkbits; 3441 3442 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3443 return -EINVAL; 3444 3445 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3446 return -ERANGE; 3447 3448 /* 3449 * Calculate the first and last logical blocks respectively. 3450 */ 3451 map.m_lblk = offset >> blkbits; 3452 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3453 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3454 3455 if (flags & IOMAP_WRITE) { 3456 /* 3457 * We check here if the blocks are already allocated, then we 3458 * don't need to start a journal txn and we can directly return 3459 * the mapping information. This could boost performance 3460 * especially in multi-threaded overwrite requests. 3461 */ 3462 if (offset + length <= i_size_read(inode)) { 3463 ret = ext4_map_blocks(NULL, inode, &map, 0); 3464 if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED)) 3465 goto out; 3466 } 3467 ret = ext4_iomap_alloc(inode, &map, flags); 3468 } else { 3469 ret = ext4_map_blocks(NULL, inode, &map, 0); 3470 } 3471 3472 if (ret < 0) 3473 return ret; 3474 out: 3475 ext4_set_iomap(inode, iomap, &map, offset, length); 3476 3477 return 0; 3478 } 3479 3480 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset, 3481 loff_t length, unsigned flags, struct iomap *iomap, 3482 struct iomap *srcmap) 3483 { 3484 int ret; 3485 3486 /* 3487 * Even for writes we don't need to allocate blocks, so just pretend 3488 * we are reading to save overhead of starting a transaction. 3489 */ 3490 flags &= ~IOMAP_WRITE; 3491 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap); 3492 WARN_ON_ONCE(iomap->type != IOMAP_MAPPED); 3493 return ret; 3494 } 3495 3496 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, 3497 ssize_t written, unsigned flags, struct iomap *iomap) 3498 { 3499 /* 3500 * Check to see whether an error occurred while writing out the data to 3501 * the allocated blocks. If so, return the magic error code so that we 3502 * fallback to buffered I/O and attempt to complete the remainder of 3503 * the I/O. Any blocks that may have been allocated in preparation for 3504 * the direct I/O will be reused during buffered I/O. 3505 */ 3506 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0) 3507 return -ENOTBLK; 3508 3509 return 0; 3510 } 3511 3512 const struct iomap_ops ext4_iomap_ops = { 3513 .iomap_begin = ext4_iomap_begin, 3514 .iomap_end = ext4_iomap_end, 3515 }; 3516 3517 const struct iomap_ops ext4_iomap_overwrite_ops = { 3518 .iomap_begin = ext4_iomap_overwrite_begin, 3519 .iomap_end = ext4_iomap_end, 3520 }; 3521 3522 static bool ext4_iomap_is_delalloc(struct inode *inode, 3523 struct ext4_map_blocks *map) 3524 { 3525 struct extent_status es; 3526 ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1; 3527 3528 ext4_es_find_extent_range(inode, &ext4_es_is_delayed, 3529 map->m_lblk, end, &es); 3530 3531 if (!es.es_len || es.es_lblk > end) 3532 return false; 3533 3534 if (es.es_lblk > map->m_lblk) { 3535 map->m_len = es.es_lblk - map->m_lblk; 3536 return false; 3537 } 3538 3539 offset = map->m_lblk - es.es_lblk; 3540 map->m_len = es.es_len - offset; 3541 3542 return true; 3543 } 3544 3545 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset, 3546 loff_t length, unsigned int flags, 3547 struct iomap *iomap, struct iomap *srcmap) 3548 { 3549 int ret; 3550 bool delalloc = false; 3551 struct ext4_map_blocks map; 3552 u8 blkbits = inode->i_blkbits; 3553 3554 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3555 return -EINVAL; 3556 3557 if (ext4_has_inline_data(inode)) { 3558 ret = ext4_inline_data_iomap(inode, iomap); 3559 if (ret != -EAGAIN) { 3560 if (ret == 0 && offset >= iomap->length) 3561 ret = -ENOENT; 3562 return ret; 3563 } 3564 } 3565 3566 /* 3567 * Calculate the first and last logical block respectively. 3568 */ 3569 map.m_lblk = offset >> blkbits; 3570 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3571 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3572 3573 /* 3574 * Fiemap callers may call for offset beyond s_bitmap_maxbytes. 3575 * So handle it here itself instead of querying ext4_map_blocks(). 3576 * Since ext4_map_blocks() will warn about it and will return 3577 * -EIO error. 3578 */ 3579 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 3580 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3581 3582 if (offset >= sbi->s_bitmap_maxbytes) { 3583 map.m_flags = 0; 3584 goto set_iomap; 3585 } 3586 } 3587 3588 ret = ext4_map_blocks(NULL, inode, &map, 0); 3589 if (ret < 0) 3590 return ret; 3591 if (ret == 0) 3592 delalloc = ext4_iomap_is_delalloc(inode, &map); 3593 3594 set_iomap: 3595 ext4_set_iomap(inode, iomap, &map, offset, length); 3596 if (delalloc && iomap->type == IOMAP_HOLE) 3597 iomap->type = IOMAP_DELALLOC; 3598 3599 return 0; 3600 } 3601 3602 const struct iomap_ops ext4_iomap_report_ops = { 3603 .iomap_begin = ext4_iomap_begin_report, 3604 }; 3605 3606 /* 3607 * Pages can be marked dirty completely asynchronously from ext4's journalling 3608 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3609 * much here because ->set_page_dirty is called under VFS locks. The page is 3610 * not necessarily locked. 3611 * 3612 * We cannot just dirty the page and leave attached buffers clean, because the 3613 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3614 * or jbddirty because all the journalling code will explode. 3615 * 3616 * So what we do is to mark the page "pending dirty" and next time writepage 3617 * is called, propagate that into the buffers appropriately. 3618 */ 3619 static int ext4_journalled_set_page_dirty(struct page *page) 3620 { 3621 SetPageChecked(page); 3622 return __set_page_dirty_nobuffers(page); 3623 } 3624 3625 static int ext4_set_page_dirty(struct page *page) 3626 { 3627 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page)); 3628 WARN_ON_ONCE(!page_has_buffers(page)); 3629 return __set_page_dirty_buffers(page); 3630 } 3631 3632 static int ext4_iomap_swap_activate(struct swap_info_struct *sis, 3633 struct file *file, sector_t *span) 3634 { 3635 return iomap_swapfile_activate(sis, file, span, 3636 &ext4_iomap_report_ops); 3637 } 3638 3639 static const struct address_space_operations ext4_aops = { 3640 .readpage = ext4_readpage, 3641 .readahead = ext4_readahead, 3642 .writepage = ext4_writepage, 3643 .writepages = ext4_writepages, 3644 .write_begin = ext4_write_begin, 3645 .write_end = ext4_write_end, 3646 .set_page_dirty = ext4_set_page_dirty, 3647 .bmap = ext4_bmap, 3648 .invalidatepage = ext4_invalidatepage, 3649 .releasepage = ext4_releasepage, 3650 .direct_IO = noop_direct_IO, 3651 .migratepage = buffer_migrate_page, 3652 .is_partially_uptodate = block_is_partially_uptodate, 3653 .error_remove_page = generic_error_remove_page, 3654 .swap_activate = ext4_iomap_swap_activate, 3655 }; 3656 3657 static const struct address_space_operations ext4_journalled_aops = { 3658 .readpage = ext4_readpage, 3659 .readahead = ext4_readahead, 3660 .writepage = ext4_writepage, 3661 .writepages = ext4_writepages, 3662 .write_begin = ext4_write_begin, 3663 .write_end = ext4_journalled_write_end, 3664 .set_page_dirty = ext4_journalled_set_page_dirty, 3665 .bmap = ext4_bmap, 3666 .invalidatepage = ext4_journalled_invalidatepage, 3667 .releasepage = ext4_releasepage, 3668 .direct_IO = noop_direct_IO, 3669 .is_partially_uptodate = block_is_partially_uptodate, 3670 .error_remove_page = generic_error_remove_page, 3671 .swap_activate = ext4_iomap_swap_activate, 3672 }; 3673 3674 static const struct address_space_operations ext4_da_aops = { 3675 .readpage = ext4_readpage, 3676 .readahead = ext4_readahead, 3677 .writepage = ext4_writepage, 3678 .writepages = ext4_writepages, 3679 .write_begin = ext4_da_write_begin, 3680 .write_end = ext4_da_write_end, 3681 .set_page_dirty = ext4_set_page_dirty, 3682 .bmap = ext4_bmap, 3683 .invalidatepage = ext4_invalidatepage, 3684 .releasepage = ext4_releasepage, 3685 .direct_IO = noop_direct_IO, 3686 .migratepage = buffer_migrate_page, 3687 .is_partially_uptodate = block_is_partially_uptodate, 3688 .error_remove_page = generic_error_remove_page, 3689 .swap_activate = ext4_iomap_swap_activate, 3690 }; 3691 3692 static const struct address_space_operations ext4_dax_aops = { 3693 .writepages = ext4_dax_writepages, 3694 .direct_IO = noop_direct_IO, 3695 .set_page_dirty = noop_set_page_dirty, 3696 .bmap = ext4_bmap, 3697 .invalidatepage = noop_invalidatepage, 3698 .swap_activate = ext4_iomap_swap_activate, 3699 }; 3700 3701 void ext4_set_aops(struct inode *inode) 3702 { 3703 switch (ext4_inode_journal_mode(inode)) { 3704 case EXT4_INODE_ORDERED_DATA_MODE: 3705 case EXT4_INODE_WRITEBACK_DATA_MODE: 3706 break; 3707 case EXT4_INODE_JOURNAL_DATA_MODE: 3708 inode->i_mapping->a_ops = &ext4_journalled_aops; 3709 return; 3710 default: 3711 BUG(); 3712 } 3713 if (IS_DAX(inode)) 3714 inode->i_mapping->a_ops = &ext4_dax_aops; 3715 else if (test_opt(inode->i_sb, DELALLOC)) 3716 inode->i_mapping->a_ops = &ext4_da_aops; 3717 else 3718 inode->i_mapping->a_ops = &ext4_aops; 3719 } 3720 3721 static int __ext4_block_zero_page_range(handle_t *handle, 3722 struct address_space *mapping, loff_t from, loff_t length) 3723 { 3724 ext4_fsblk_t index = from >> PAGE_SHIFT; 3725 unsigned offset = from & (PAGE_SIZE-1); 3726 unsigned blocksize, pos; 3727 ext4_lblk_t iblock; 3728 struct inode *inode = mapping->host; 3729 struct buffer_head *bh; 3730 struct page *page; 3731 int err = 0; 3732 3733 page = find_or_create_page(mapping, from >> PAGE_SHIFT, 3734 mapping_gfp_constraint(mapping, ~__GFP_FS)); 3735 if (!page) 3736 return -ENOMEM; 3737 3738 blocksize = inode->i_sb->s_blocksize; 3739 3740 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 3741 3742 if (!page_has_buffers(page)) 3743 create_empty_buffers(page, blocksize, 0); 3744 3745 /* Find the buffer that contains "offset" */ 3746 bh = page_buffers(page); 3747 pos = blocksize; 3748 while (offset >= pos) { 3749 bh = bh->b_this_page; 3750 iblock++; 3751 pos += blocksize; 3752 } 3753 if (buffer_freed(bh)) { 3754 BUFFER_TRACE(bh, "freed: skip"); 3755 goto unlock; 3756 } 3757 if (!buffer_mapped(bh)) { 3758 BUFFER_TRACE(bh, "unmapped"); 3759 ext4_get_block(inode, iblock, bh, 0); 3760 /* unmapped? It's a hole - nothing to do */ 3761 if (!buffer_mapped(bh)) { 3762 BUFFER_TRACE(bh, "still unmapped"); 3763 goto unlock; 3764 } 3765 } 3766 3767 /* Ok, it's mapped. Make sure it's up-to-date */ 3768 if (PageUptodate(page)) 3769 set_buffer_uptodate(bh); 3770 3771 if (!buffer_uptodate(bh)) { 3772 err = ext4_read_bh_lock(bh, 0, true); 3773 if (err) 3774 goto unlock; 3775 if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 3776 /* We expect the key to be set. */ 3777 BUG_ON(!fscrypt_has_encryption_key(inode)); 3778 err = fscrypt_decrypt_pagecache_blocks(page, blocksize, 3779 bh_offset(bh)); 3780 if (err) { 3781 clear_buffer_uptodate(bh); 3782 goto unlock; 3783 } 3784 } 3785 } 3786 if (ext4_should_journal_data(inode)) { 3787 BUFFER_TRACE(bh, "get write access"); 3788 err = ext4_journal_get_write_access(handle, bh); 3789 if (err) 3790 goto unlock; 3791 } 3792 zero_user(page, offset, length); 3793 BUFFER_TRACE(bh, "zeroed end of block"); 3794 3795 if (ext4_should_journal_data(inode)) { 3796 err = ext4_handle_dirty_metadata(handle, inode, bh); 3797 } else { 3798 err = 0; 3799 mark_buffer_dirty(bh); 3800 if (ext4_should_order_data(inode)) 3801 err = ext4_jbd2_inode_add_write(handle, inode, from, 3802 length); 3803 } 3804 3805 unlock: 3806 unlock_page(page); 3807 put_page(page); 3808 return err; 3809 } 3810 3811 /* 3812 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3813 * starting from file offset 'from'. The range to be zero'd must 3814 * be contained with in one block. If the specified range exceeds 3815 * the end of the block it will be shortened to end of the block 3816 * that cooresponds to 'from' 3817 */ 3818 static int ext4_block_zero_page_range(handle_t *handle, 3819 struct address_space *mapping, loff_t from, loff_t length) 3820 { 3821 struct inode *inode = mapping->host; 3822 unsigned offset = from & (PAGE_SIZE-1); 3823 unsigned blocksize = inode->i_sb->s_blocksize; 3824 unsigned max = blocksize - (offset & (blocksize - 1)); 3825 3826 /* 3827 * correct length if it does not fall between 3828 * 'from' and the end of the block 3829 */ 3830 if (length > max || length < 0) 3831 length = max; 3832 3833 if (IS_DAX(inode)) { 3834 return iomap_zero_range(inode, from, length, NULL, 3835 &ext4_iomap_ops); 3836 } 3837 return __ext4_block_zero_page_range(handle, mapping, from, length); 3838 } 3839 3840 /* 3841 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3842 * up to the end of the block which corresponds to `from'. 3843 * This required during truncate. We need to physically zero the tail end 3844 * of that block so it doesn't yield old data if the file is later grown. 3845 */ 3846 static int ext4_block_truncate_page(handle_t *handle, 3847 struct address_space *mapping, loff_t from) 3848 { 3849 unsigned offset = from & (PAGE_SIZE-1); 3850 unsigned length; 3851 unsigned blocksize; 3852 struct inode *inode = mapping->host; 3853 3854 /* If we are processing an encrypted inode during orphan list handling */ 3855 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode)) 3856 return 0; 3857 3858 blocksize = inode->i_sb->s_blocksize; 3859 length = blocksize - (offset & (blocksize - 1)); 3860 3861 return ext4_block_zero_page_range(handle, mapping, from, length); 3862 } 3863 3864 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3865 loff_t lstart, loff_t length) 3866 { 3867 struct super_block *sb = inode->i_sb; 3868 struct address_space *mapping = inode->i_mapping; 3869 unsigned partial_start, partial_end; 3870 ext4_fsblk_t start, end; 3871 loff_t byte_end = (lstart + length - 1); 3872 int err = 0; 3873 3874 partial_start = lstart & (sb->s_blocksize - 1); 3875 partial_end = byte_end & (sb->s_blocksize - 1); 3876 3877 start = lstart >> sb->s_blocksize_bits; 3878 end = byte_end >> sb->s_blocksize_bits; 3879 3880 /* Handle partial zero within the single block */ 3881 if (start == end && 3882 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3883 err = ext4_block_zero_page_range(handle, mapping, 3884 lstart, length); 3885 return err; 3886 } 3887 /* Handle partial zero out on the start of the range */ 3888 if (partial_start) { 3889 err = ext4_block_zero_page_range(handle, mapping, 3890 lstart, sb->s_blocksize); 3891 if (err) 3892 return err; 3893 } 3894 /* Handle partial zero out on the end of the range */ 3895 if (partial_end != sb->s_blocksize - 1) 3896 err = ext4_block_zero_page_range(handle, mapping, 3897 byte_end - partial_end, 3898 partial_end + 1); 3899 return err; 3900 } 3901 3902 int ext4_can_truncate(struct inode *inode) 3903 { 3904 if (S_ISREG(inode->i_mode)) 3905 return 1; 3906 if (S_ISDIR(inode->i_mode)) 3907 return 1; 3908 if (S_ISLNK(inode->i_mode)) 3909 return !ext4_inode_is_fast_symlink(inode); 3910 return 0; 3911 } 3912 3913 /* 3914 * We have to make sure i_disksize gets properly updated before we truncate 3915 * page cache due to hole punching or zero range. Otherwise i_disksize update 3916 * can get lost as it may have been postponed to submission of writeback but 3917 * that will never happen after we truncate page cache. 3918 */ 3919 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 3920 loff_t len) 3921 { 3922 handle_t *handle; 3923 int ret; 3924 3925 loff_t size = i_size_read(inode); 3926 3927 WARN_ON(!inode_is_locked(inode)); 3928 if (offset > size || offset + len < size) 3929 return 0; 3930 3931 if (EXT4_I(inode)->i_disksize >= size) 3932 return 0; 3933 3934 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 3935 if (IS_ERR(handle)) 3936 return PTR_ERR(handle); 3937 ext4_update_i_disksize(inode, size); 3938 ret = ext4_mark_inode_dirty(handle, inode); 3939 ext4_journal_stop(handle); 3940 3941 return ret; 3942 } 3943 3944 static void ext4_wait_dax_page(struct ext4_inode_info *ei) 3945 { 3946 up_write(&ei->i_mmap_sem); 3947 schedule(); 3948 down_write(&ei->i_mmap_sem); 3949 } 3950 3951 int ext4_break_layouts(struct inode *inode) 3952 { 3953 struct ext4_inode_info *ei = EXT4_I(inode); 3954 struct page *page; 3955 int error; 3956 3957 if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem))) 3958 return -EINVAL; 3959 3960 do { 3961 page = dax_layout_busy_page(inode->i_mapping); 3962 if (!page) 3963 return 0; 3964 3965 error = ___wait_var_event(&page->_refcount, 3966 atomic_read(&page->_refcount) == 1, 3967 TASK_INTERRUPTIBLE, 0, 0, 3968 ext4_wait_dax_page(ei)); 3969 } while (error == 0); 3970 3971 return error; 3972 } 3973 3974 /* 3975 * ext4_punch_hole: punches a hole in a file by releasing the blocks 3976 * associated with the given offset and length 3977 * 3978 * @inode: File inode 3979 * @offset: The offset where the hole will begin 3980 * @len: The length of the hole 3981 * 3982 * Returns: 0 on success or negative on failure 3983 */ 3984 3985 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 3986 { 3987 struct super_block *sb = inode->i_sb; 3988 ext4_lblk_t first_block, stop_block; 3989 struct address_space *mapping = inode->i_mapping; 3990 loff_t first_block_offset, last_block_offset; 3991 handle_t *handle; 3992 unsigned int credits; 3993 int ret = 0, ret2 = 0; 3994 3995 trace_ext4_punch_hole(inode, offset, length, 0); 3996 3997 ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 3998 if (ext4_has_inline_data(inode)) { 3999 down_write(&EXT4_I(inode)->i_mmap_sem); 4000 ret = ext4_convert_inline_data(inode); 4001 up_write(&EXT4_I(inode)->i_mmap_sem); 4002 if (ret) 4003 return ret; 4004 } 4005 4006 /* 4007 * Write out all dirty pages to avoid race conditions 4008 * Then release them. 4009 */ 4010 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 4011 ret = filemap_write_and_wait_range(mapping, offset, 4012 offset + length - 1); 4013 if (ret) 4014 return ret; 4015 } 4016 4017 inode_lock(inode); 4018 4019 /* No need to punch hole beyond i_size */ 4020 if (offset >= inode->i_size) 4021 goto out_mutex; 4022 4023 /* 4024 * If the hole extends beyond i_size, set the hole 4025 * to end after the page that contains i_size 4026 */ 4027 if (offset + length > inode->i_size) { 4028 length = inode->i_size + 4029 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) - 4030 offset; 4031 } 4032 4033 if (offset & (sb->s_blocksize - 1) || 4034 (offset + length) & (sb->s_blocksize - 1)) { 4035 /* 4036 * Attach jinode to inode for jbd2 if we do any zeroing of 4037 * partial block 4038 */ 4039 ret = ext4_inode_attach_jinode(inode); 4040 if (ret < 0) 4041 goto out_mutex; 4042 4043 } 4044 4045 /* Wait all existing dio workers, newcomers will block on i_mutex */ 4046 inode_dio_wait(inode); 4047 4048 /* 4049 * Prevent page faults from reinstantiating pages we have released from 4050 * page cache. 4051 */ 4052 down_write(&EXT4_I(inode)->i_mmap_sem); 4053 4054 ret = ext4_break_layouts(inode); 4055 if (ret) 4056 goto out_dio; 4057 4058 first_block_offset = round_up(offset, sb->s_blocksize); 4059 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 4060 4061 /* Now release the pages and zero block aligned part of pages*/ 4062 if (last_block_offset > first_block_offset) { 4063 ret = ext4_update_disksize_before_punch(inode, offset, length); 4064 if (ret) 4065 goto out_dio; 4066 truncate_pagecache_range(inode, first_block_offset, 4067 last_block_offset); 4068 } 4069 4070 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4071 credits = ext4_writepage_trans_blocks(inode); 4072 else 4073 credits = ext4_blocks_for_truncate(inode); 4074 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4075 if (IS_ERR(handle)) { 4076 ret = PTR_ERR(handle); 4077 ext4_std_error(sb, ret); 4078 goto out_dio; 4079 } 4080 4081 ret = ext4_zero_partial_blocks(handle, inode, offset, 4082 length); 4083 if (ret) 4084 goto out_stop; 4085 4086 first_block = (offset + sb->s_blocksize - 1) >> 4087 EXT4_BLOCK_SIZE_BITS(sb); 4088 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 4089 4090 /* If there are blocks to remove, do it */ 4091 if (stop_block > first_block) { 4092 4093 down_write(&EXT4_I(inode)->i_data_sem); 4094 ext4_discard_preallocations(inode, 0); 4095 4096 ret = ext4_es_remove_extent(inode, first_block, 4097 stop_block - first_block); 4098 if (ret) { 4099 up_write(&EXT4_I(inode)->i_data_sem); 4100 goto out_stop; 4101 } 4102 4103 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4104 ret = ext4_ext_remove_space(inode, first_block, 4105 stop_block - 1); 4106 else 4107 ret = ext4_ind_remove_space(handle, inode, first_block, 4108 stop_block); 4109 4110 up_write(&EXT4_I(inode)->i_data_sem); 4111 } 4112 ext4_fc_track_range(inode, first_block, stop_block); 4113 if (IS_SYNC(inode)) 4114 ext4_handle_sync(handle); 4115 4116 inode->i_mtime = inode->i_ctime = current_time(inode); 4117 ret2 = ext4_mark_inode_dirty(handle, inode); 4118 if (unlikely(ret2)) 4119 ret = ret2; 4120 if (ret >= 0) 4121 ext4_update_inode_fsync_trans(handle, inode, 1); 4122 out_stop: 4123 ext4_journal_stop(handle); 4124 out_dio: 4125 up_write(&EXT4_I(inode)->i_mmap_sem); 4126 out_mutex: 4127 inode_unlock(inode); 4128 return ret; 4129 } 4130 4131 int ext4_inode_attach_jinode(struct inode *inode) 4132 { 4133 struct ext4_inode_info *ei = EXT4_I(inode); 4134 struct jbd2_inode *jinode; 4135 4136 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4137 return 0; 4138 4139 jinode = jbd2_alloc_inode(GFP_KERNEL); 4140 spin_lock(&inode->i_lock); 4141 if (!ei->jinode) { 4142 if (!jinode) { 4143 spin_unlock(&inode->i_lock); 4144 return -ENOMEM; 4145 } 4146 ei->jinode = jinode; 4147 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4148 jinode = NULL; 4149 } 4150 spin_unlock(&inode->i_lock); 4151 if (unlikely(jinode != NULL)) 4152 jbd2_free_inode(jinode); 4153 return 0; 4154 } 4155 4156 /* 4157 * ext4_truncate() 4158 * 4159 * We block out ext4_get_block() block instantiations across the entire 4160 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4161 * simultaneously on behalf of the same inode. 4162 * 4163 * As we work through the truncate and commit bits of it to the journal there 4164 * is one core, guiding principle: the file's tree must always be consistent on 4165 * disk. We must be able to restart the truncate after a crash. 4166 * 4167 * The file's tree may be transiently inconsistent in memory (although it 4168 * probably isn't), but whenever we close off and commit a journal transaction, 4169 * the contents of (the filesystem + the journal) must be consistent and 4170 * restartable. It's pretty simple, really: bottom up, right to left (although 4171 * left-to-right works OK too). 4172 * 4173 * Note that at recovery time, journal replay occurs *before* the restart of 4174 * truncate against the orphan inode list. 4175 * 4176 * The committed inode has the new, desired i_size (which is the same as 4177 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4178 * that this inode's truncate did not complete and it will again call 4179 * ext4_truncate() to have another go. So there will be instantiated blocks 4180 * to the right of the truncation point in a crashed ext4 filesystem. But 4181 * that's fine - as long as they are linked from the inode, the post-crash 4182 * ext4_truncate() run will find them and release them. 4183 */ 4184 int ext4_truncate(struct inode *inode) 4185 { 4186 struct ext4_inode_info *ei = EXT4_I(inode); 4187 unsigned int credits; 4188 int err = 0, err2; 4189 handle_t *handle; 4190 struct address_space *mapping = inode->i_mapping; 4191 4192 /* 4193 * There is a possibility that we're either freeing the inode 4194 * or it's a completely new inode. In those cases we might not 4195 * have i_mutex locked because it's not necessary. 4196 */ 4197 if (!(inode->i_state & (I_NEW|I_FREEING))) 4198 WARN_ON(!inode_is_locked(inode)); 4199 trace_ext4_truncate_enter(inode); 4200 4201 if (!ext4_can_truncate(inode)) 4202 goto out_trace; 4203 4204 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4205 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4206 4207 if (ext4_has_inline_data(inode)) { 4208 int has_inline = 1; 4209 4210 err = ext4_inline_data_truncate(inode, &has_inline); 4211 if (err || has_inline) 4212 goto out_trace; 4213 } 4214 4215 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4216 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4217 if (ext4_inode_attach_jinode(inode) < 0) 4218 goto out_trace; 4219 } 4220 4221 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4222 credits = ext4_writepage_trans_blocks(inode); 4223 else 4224 credits = ext4_blocks_for_truncate(inode); 4225 4226 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4227 if (IS_ERR(handle)) { 4228 err = PTR_ERR(handle); 4229 goto out_trace; 4230 } 4231 4232 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4233 ext4_block_truncate_page(handle, mapping, inode->i_size); 4234 4235 /* 4236 * We add the inode to the orphan list, so that if this 4237 * truncate spans multiple transactions, and we crash, we will 4238 * resume the truncate when the filesystem recovers. It also 4239 * marks the inode dirty, to catch the new size. 4240 * 4241 * Implication: the file must always be in a sane, consistent 4242 * truncatable state while each transaction commits. 4243 */ 4244 err = ext4_orphan_add(handle, inode); 4245 if (err) 4246 goto out_stop; 4247 4248 down_write(&EXT4_I(inode)->i_data_sem); 4249 4250 ext4_discard_preallocations(inode, 0); 4251 4252 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4253 err = ext4_ext_truncate(handle, inode); 4254 else 4255 ext4_ind_truncate(handle, inode); 4256 4257 up_write(&ei->i_data_sem); 4258 if (err) 4259 goto out_stop; 4260 4261 if (IS_SYNC(inode)) 4262 ext4_handle_sync(handle); 4263 4264 out_stop: 4265 /* 4266 * If this was a simple ftruncate() and the file will remain alive, 4267 * then we need to clear up the orphan record which we created above. 4268 * However, if this was a real unlink then we were called by 4269 * ext4_evict_inode(), and we allow that function to clean up the 4270 * orphan info for us. 4271 */ 4272 if (inode->i_nlink) 4273 ext4_orphan_del(handle, inode); 4274 4275 inode->i_mtime = inode->i_ctime = current_time(inode); 4276 err2 = ext4_mark_inode_dirty(handle, inode); 4277 if (unlikely(err2 && !err)) 4278 err = err2; 4279 ext4_journal_stop(handle); 4280 4281 out_trace: 4282 trace_ext4_truncate_exit(inode); 4283 return err; 4284 } 4285 4286 /* 4287 * ext4_get_inode_loc returns with an extra refcount against the inode's 4288 * underlying buffer_head on success. If 'in_mem' is true, we have all 4289 * data in memory that is needed to recreate the on-disk version of this 4290 * inode. 4291 */ 4292 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino, 4293 struct ext4_iloc *iloc, int in_mem, 4294 ext4_fsblk_t *ret_block) 4295 { 4296 struct ext4_group_desc *gdp; 4297 struct buffer_head *bh; 4298 ext4_fsblk_t block; 4299 struct blk_plug plug; 4300 int inodes_per_block, inode_offset; 4301 4302 iloc->bh = NULL; 4303 if (ino < EXT4_ROOT_INO || 4304 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 4305 return -EFSCORRUPTED; 4306 4307 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 4308 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4309 if (!gdp) 4310 return -EIO; 4311 4312 /* 4313 * Figure out the offset within the block group inode table 4314 */ 4315 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4316 inode_offset = ((ino - 1) % 4317 EXT4_INODES_PER_GROUP(sb)); 4318 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 4319 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4320 4321 bh = sb_getblk(sb, block); 4322 if (unlikely(!bh)) 4323 return -ENOMEM; 4324 if (ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO)) 4325 goto simulate_eio; 4326 if (!buffer_uptodate(bh)) { 4327 lock_buffer(bh); 4328 4329 if (ext4_buffer_uptodate(bh)) { 4330 /* someone brought it uptodate while we waited */ 4331 unlock_buffer(bh); 4332 goto has_buffer; 4333 } 4334 4335 /* 4336 * If we have all information of the inode in memory and this 4337 * is the only valid inode in the block, we need not read the 4338 * block. 4339 */ 4340 if (in_mem) { 4341 struct buffer_head *bitmap_bh; 4342 int i, start; 4343 4344 start = inode_offset & ~(inodes_per_block - 1); 4345 4346 /* Is the inode bitmap in cache? */ 4347 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4348 if (unlikely(!bitmap_bh)) 4349 goto make_io; 4350 4351 /* 4352 * If the inode bitmap isn't in cache then the 4353 * optimisation may end up performing two reads instead 4354 * of one, so skip it. 4355 */ 4356 if (!buffer_uptodate(bitmap_bh)) { 4357 brelse(bitmap_bh); 4358 goto make_io; 4359 } 4360 for (i = start; i < start + inodes_per_block; i++) { 4361 if (i == inode_offset) 4362 continue; 4363 if (ext4_test_bit(i, bitmap_bh->b_data)) 4364 break; 4365 } 4366 brelse(bitmap_bh); 4367 if (i == start + inodes_per_block) { 4368 /* all other inodes are free, so skip I/O */ 4369 memset(bh->b_data, 0, bh->b_size); 4370 set_buffer_uptodate(bh); 4371 unlock_buffer(bh); 4372 goto has_buffer; 4373 } 4374 } 4375 4376 make_io: 4377 /* 4378 * If we need to do any I/O, try to pre-readahead extra 4379 * blocks from the inode table. 4380 */ 4381 blk_start_plug(&plug); 4382 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4383 ext4_fsblk_t b, end, table; 4384 unsigned num; 4385 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4386 4387 table = ext4_inode_table(sb, gdp); 4388 /* s_inode_readahead_blks is always a power of 2 */ 4389 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4390 if (table > b) 4391 b = table; 4392 end = b + ra_blks; 4393 num = EXT4_INODES_PER_GROUP(sb); 4394 if (ext4_has_group_desc_csum(sb)) 4395 num -= ext4_itable_unused_count(sb, gdp); 4396 table += num / inodes_per_block; 4397 if (end > table) 4398 end = table; 4399 while (b <= end) 4400 ext4_sb_breadahead_unmovable(sb, b++); 4401 } 4402 4403 /* 4404 * There are other valid inodes in the buffer, this inode 4405 * has in-inode xattrs, or we don't have this inode in memory. 4406 * Read the block from disk. 4407 */ 4408 trace_ext4_load_inode(sb, ino); 4409 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL); 4410 blk_finish_plug(&plug); 4411 wait_on_buffer(bh); 4412 if (!buffer_uptodate(bh)) { 4413 simulate_eio: 4414 if (ret_block) 4415 *ret_block = block; 4416 brelse(bh); 4417 return -EIO; 4418 } 4419 } 4420 has_buffer: 4421 iloc->bh = bh; 4422 return 0; 4423 } 4424 4425 static int __ext4_get_inode_loc_noinmem(struct inode *inode, 4426 struct ext4_iloc *iloc) 4427 { 4428 ext4_fsblk_t err_blk; 4429 int ret; 4430 4431 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc, 0, 4432 &err_blk); 4433 4434 if (ret == -EIO) 4435 ext4_error_inode_block(inode, err_blk, EIO, 4436 "unable to read itable block"); 4437 4438 return ret; 4439 } 4440 4441 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4442 { 4443 ext4_fsblk_t err_blk; 4444 int ret; 4445 4446 /* We have all inode data except xattrs in memory here. */ 4447 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc, 4448 !ext4_test_inode_state(inode, EXT4_STATE_XATTR), &err_blk); 4449 4450 if (ret == -EIO) 4451 ext4_error_inode_block(inode, err_blk, EIO, 4452 "unable to read itable block"); 4453 4454 return ret; 4455 } 4456 4457 4458 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino, 4459 struct ext4_iloc *iloc) 4460 { 4461 return __ext4_get_inode_loc(sb, ino, iloc, 0, NULL); 4462 } 4463 4464 static bool ext4_should_enable_dax(struct inode *inode) 4465 { 4466 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4467 4468 if (test_opt2(inode->i_sb, DAX_NEVER)) 4469 return false; 4470 if (!S_ISREG(inode->i_mode)) 4471 return false; 4472 if (ext4_should_journal_data(inode)) 4473 return false; 4474 if (ext4_has_inline_data(inode)) 4475 return false; 4476 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT)) 4477 return false; 4478 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY)) 4479 return false; 4480 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) 4481 return false; 4482 if (test_opt(inode->i_sb, DAX_ALWAYS)) 4483 return true; 4484 4485 return ext4_test_inode_flag(inode, EXT4_INODE_DAX); 4486 } 4487 4488 void ext4_set_inode_flags(struct inode *inode, bool init) 4489 { 4490 unsigned int flags = EXT4_I(inode)->i_flags; 4491 unsigned int new_fl = 0; 4492 4493 WARN_ON_ONCE(IS_DAX(inode) && init); 4494 4495 if (flags & EXT4_SYNC_FL) 4496 new_fl |= S_SYNC; 4497 if (flags & EXT4_APPEND_FL) 4498 new_fl |= S_APPEND; 4499 if (flags & EXT4_IMMUTABLE_FL) 4500 new_fl |= S_IMMUTABLE; 4501 if (flags & EXT4_NOATIME_FL) 4502 new_fl |= S_NOATIME; 4503 if (flags & EXT4_DIRSYNC_FL) 4504 new_fl |= S_DIRSYNC; 4505 4506 /* Because of the way inode_set_flags() works we must preserve S_DAX 4507 * here if already set. */ 4508 new_fl |= (inode->i_flags & S_DAX); 4509 if (init && ext4_should_enable_dax(inode)) 4510 new_fl |= S_DAX; 4511 4512 if (flags & EXT4_ENCRYPT_FL) 4513 new_fl |= S_ENCRYPTED; 4514 if (flags & EXT4_CASEFOLD_FL) 4515 new_fl |= S_CASEFOLD; 4516 if (flags & EXT4_VERITY_FL) 4517 new_fl |= S_VERITY; 4518 inode_set_flags(inode, new_fl, 4519 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX| 4520 S_ENCRYPTED|S_CASEFOLD|S_VERITY); 4521 } 4522 4523 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4524 struct ext4_inode_info *ei) 4525 { 4526 blkcnt_t i_blocks ; 4527 struct inode *inode = &(ei->vfs_inode); 4528 struct super_block *sb = inode->i_sb; 4529 4530 if (ext4_has_feature_huge_file(sb)) { 4531 /* we are using combined 48 bit field */ 4532 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4533 le32_to_cpu(raw_inode->i_blocks_lo); 4534 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4535 /* i_blocks represent file system block size */ 4536 return i_blocks << (inode->i_blkbits - 9); 4537 } else { 4538 return i_blocks; 4539 } 4540 } else { 4541 return le32_to_cpu(raw_inode->i_blocks_lo); 4542 } 4543 } 4544 4545 static inline int ext4_iget_extra_inode(struct inode *inode, 4546 struct ext4_inode *raw_inode, 4547 struct ext4_inode_info *ei) 4548 { 4549 __le32 *magic = (void *)raw_inode + 4550 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4551 4552 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <= 4553 EXT4_INODE_SIZE(inode->i_sb) && 4554 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4555 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4556 return ext4_find_inline_data_nolock(inode); 4557 } else 4558 EXT4_I(inode)->i_inline_off = 0; 4559 return 0; 4560 } 4561 4562 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4563 { 4564 if (!ext4_has_feature_project(inode->i_sb)) 4565 return -EOPNOTSUPP; 4566 *projid = EXT4_I(inode)->i_projid; 4567 return 0; 4568 } 4569 4570 /* 4571 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of 4572 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag 4573 * set. 4574 */ 4575 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val) 4576 { 4577 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4578 inode_set_iversion_raw(inode, val); 4579 else 4580 inode_set_iversion_queried(inode, val); 4581 } 4582 static inline u64 ext4_inode_peek_iversion(const struct inode *inode) 4583 { 4584 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4585 return inode_peek_iversion_raw(inode); 4586 else 4587 return inode_peek_iversion(inode); 4588 } 4589 4590 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino, 4591 ext4_iget_flags flags, const char *function, 4592 unsigned int line) 4593 { 4594 struct ext4_iloc iloc; 4595 struct ext4_inode *raw_inode; 4596 struct ext4_inode_info *ei; 4597 struct inode *inode; 4598 journal_t *journal = EXT4_SB(sb)->s_journal; 4599 long ret; 4600 loff_t size; 4601 int block; 4602 uid_t i_uid; 4603 gid_t i_gid; 4604 projid_t i_projid; 4605 4606 if ((!(flags & EXT4_IGET_SPECIAL) && 4607 (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) || 4608 (ino < EXT4_ROOT_INO) || 4609 (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) { 4610 if (flags & EXT4_IGET_HANDLE) 4611 return ERR_PTR(-ESTALE); 4612 __ext4_error(sb, function, line, EFSCORRUPTED, 0, 4613 "inode #%lu: comm %s: iget: illegal inode #", 4614 ino, current->comm); 4615 return ERR_PTR(-EFSCORRUPTED); 4616 } 4617 4618 inode = iget_locked(sb, ino); 4619 if (!inode) 4620 return ERR_PTR(-ENOMEM); 4621 if (!(inode->i_state & I_NEW)) 4622 return inode; 4623 4624 ei = EXT4_I(inode); 4625 iloc.bh = NULL; 4626 4627 ret = __ext4_get_inode_loc_noinmem(inode, &iloc); 4628 if (ret < 0) 4629 goto bad_inode; 4630 raw_inode = ext4_raw_inode(&iloc); 4631 4632 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) { 4633 ext4_error_inode(inode, function, line, 0, 4634 "iget: root inode unallocated"); 4635 ret = -EFSCORRUPTED; 4636 goto bad_inode; 4637 } 4638 4639 if ((flags & EXT4_IGET_HANDLE) && 4640 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) { 4641 ret = -ESTALE; 4642 goto bad_inode; 4643 } 4644 4645 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4646 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4647 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4648 EXT4_INODE_SIZE(inode->i_sb) || 4649 (ei->i_extra_isize & 3)) { 4650 ext4_error_inode(inode, function, line, 0, 4651 "iget: bad extra_isize %u " 4652 "(inode size %u)", 4653 ei->i_extra_isize, 4654 EXT4_INODE_SIZE(inode->i_sb)); 4655 ret = -EFSCORRUPTED; 4656 goto bad_inode; 4657 } 4658 } else 4659 ei->i_extra_isize = 0; 4660 4661 /* Precompute checksum seed for inode metadata */ 4662 if (ext4_has_metadata_csum(sb)) { 4663 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4664 __u32 csum; 4665 __le32 inum = cpu_to_le32(inode->i_ino); 4666 __le32 gen = raw_inode->i_generation; 4667 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4668 sizeof(inum)); 4669 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4670 sizeof(gen)); 4671 } 4672 4673 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) || 4674 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) && 4675 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) { 4676 ext4_error_inode_err(inode, function, line, 0, 4677 EFSBADCRC, "iget: checksum invalid"); 4678 ret = -EFSBADCRC; 4679 goto bad_inode; 4680 } 4681 4682 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4683 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4684 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4685 if (ext4_has_feature_project(sb) && 4686 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4687 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4688 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4689 else 4690 i_projid = EXT4_DEF_PROJID; 4691 4692 if (!(test_opt(inode->i_sb, NO_UID32))) { 4693 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4694 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4695 } 4696 i_uid_write(inode, i_uid); 4697 i_gid_write(inode, i_gid); 4698 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4699 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4700 4701 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4702 ei->i_inline_off = 0; 4703 ei->i_dir_start_lookup = 0; 4704 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4705 /* We now have enough fields to check if the inode was active or not. 4706 * This is needed because nfsd might try to access dead inodes 4707 * the test is that same one that e2fsck uses 4708 * NeilBrown 1999oct15 4709 */ 4710 if (inode->i_nlink == 0) { 4711 if ((inode->i_mode == 0 || 4712 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4713 ino != EXT4_BOOT_LOADER_INO) { 4714 /* this inode is deleted */ 4715 ret = -ESTALE; 4716 goto bad_inode; 4717 } 4718 /* The only unlinked inodes we let through here have 4719 * valid i_mode and are being read by the orphan 4720 * recovery code: that's fine, we're about to complete 4721 * the process of deleting those. 4722 * OR it is the EXT4_BOOT_LOADER_INO which is 4723 * not initialized on a new filesystem. */ 4724 } 4725 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4726 ext4_set_inode_flags(inode, true); 4727 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4728 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4729 if (ext4_has_feature_64bit(sb)) 4730 ei->i_file_acl |= 4731 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4732 inode->i_size = ext4_isize(sb, raw_inode); 4733 if ((size = i_size_read(inode)) < 0) { 4734 ext4_error_inode(inode, function, line, 0, 4735 "iget: bad i_size value: %lld", size); 4736 ret = -EFSCORRUPTED; 4737 goto bad_inode; 4738 } 4739 /* 4740 * If dir_index is not enabled but there's dir with INDEX flag set, 4741 * we'd normally treat htree data as empty space. But with metadata 4742 * checksumming that corrupts checksums so forbid that. 4743 */ 4744 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) && 4745 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) { 4746 ext4_error_inode(inode, function, line, 0, 4747 "iget: Dir with htree data on filesystem without dir_index feature."); 4748 ret = -EFSCORRUPTED; 4749 goto bad_inode; 4750 } 4751 ei->i_disksize = inode->i_size; 4752 #ifdef CONFIG_QUOTA 4753 ei->i_reserved_quota = 0; 4754 #endif 4755 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4756 ei->i_block_group = iloc.block_group; 4757 ei->i_last_alloc_group = ~0; 4758 /* 4759 * NOTE! The in-memory inode i_data array is in little-endian order 4760 * even on big-endian machines: we do NOT byteswap the block numbers! 4761 */ 4762 for (block = 0; block < EXT4_N_BLOCKS; block++) 4763 ei->i_data[block] = raw_inode->i_block[block]; 4764 INIT_LIST_HEAD(&ei->i_orphan); 4765 ext4_fc_init_inode(&ei->vfs_inode); 4766 4767 /* 4768 * Set transaction id's of transactions that have to be committed 4769 * to finish f[data]sync. We set them to currently running transaction 4770 * as we cannot be sure that the inode or some of its metadata isn't 4771 * part of the transaction - the inode could have been reclaimed and 4772 * now it is reread from disk. 4773 */ 4774 if (journal) { 4775 transaction_t *transaction; 4776 tid_t tid; 4777 4778 read_lock(&journal->j_state_lock); 4779 if (journal->j_running_transaction) 4780 transaction = journal->j_running_transaction; 4781 else 4782 transaction = journal->j_committing_transaction; 4783 if (transaction) 4784 tid = transaction->t_tid; 4785 else 4786 tid = journal->j_commit_sequence; 4787 read_unlock(&journal->j_state_lock); 4788 ei->i_sync_tid = tid; 4789 ei->i_datasync_tid = tid; 4790 } 4791 4792 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4793 if (ei->i_extra_isize == 0) { 4794 /* The extra space is currently unused. Use it. */ 4795 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 4796 ei->i_extra_isize = sizeof(struct ext4_inode) - 4797 EXT4_GOOD_OLD_INODE_SIZE; 4798 } else { 4799 ret = ext4_iget_extra_inode(inode, raw_inode, ei); 4800 if (ret) 4801 goto bad_inode; 4802 } 4803 } 4804 4805 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4806 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4807 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4808 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4809 4810 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4811 u64 ivers = le32_to_cpu(raw_inode->i_disk_version); 4812 4813 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4814 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4815 ivers |= 4816 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4817 } 4818 ext4_inode_set_iversion_queried(inode, ivers); 4819 } 4820 4821 ret = 0; 4822 if (ei->i_file_acl && 4823 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) { 4824 ext4_error_inode(inode, function, line, 0, 4825 "iget: bad extended attribute block %llu", 4826 ei->i_file_acl); 4827 ret = -EFSCORRUPTED; 4828 goto bad_inode; 4829 } else if (!ext4_has_inline_data(inode)) { 4830 /* validate the block references in the inode */ 4831 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) && 4832 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4833 (S_ISLNK(inode->i_mode) && 4834 !ext4_inode_is_fast_symlink(inode)))) { 4835 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4836 ret = ext4_ext_check_inode(inode); 4837 else 4838 ret = ext4_ind_check_inode(inode); 4839 } 4840 } 4841 if (ret) 4842 goto bad_inode; 4843 4844 if (S_ISREG(inode->i_mode)) { 4845 inode->i_op = &ext4_file_inode_operations; 4846 inode->i_fop = &ext4_file_operations; 4847 ext4_set_aops(inode); 4848 } else if (S_ISDIR(inode->i_mode)) { 4849 inode->i_op = &ext4_dir_inode_operations; 4850 inode->i_fop = &ext4_dir_operations; 4851 } else if (S_ISLNK(inode->i_mode)) { 4852 /* VFS does not allow setting these so must be corruption */ 4853 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 4854 ext4_error_inode(inode, function, line, 0, 4855 "iget: immutable or append flags " 4856 "not allowed on symlinks"); 4857 ret = -EFSCORRUPTED; 4858 goto bad_inode; 4859 } 4860 if (IS_ENCRYPTED(inode)) { 4861 inode->i_op = &ext4_encrypted_symlink_inode_operations; 4862 ext4_set_aops(inode); 4863 } else if (ext4_inode_is_fast_symlink(inode)) { 4864 inode->i_link = (char *)ei->i_data; 4865 inode->i_op = &ext4_fast_symlink_inode_operations; 4866 nd_terminate_link(ei->i_data, inode->i_size, 4867 sizeof(ei->i_data) - 1); 4868 } else { 4869 inode->i_op = &ext4_symlink_inode_operations; 4870 ext4_set_aops(inode); 4871 } 4872 inode_nohighmem(inode); 4873 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4874 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4875 inode->i_op = &ext4_special_inode_operations; 4876 if (raw_inode->i_block[0]) 4877 init_special_inode(inode, inode->i_mode, 4878 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4879 else 4880 init_special_inode(inode, inode->i_mode, 4881 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4882 } else if (ino == EXT4_BOOT_LOADER_INO) { 4883 make_bad_inode(inode); 4884 } else { 4885 ret = -EFSCORRUPTED; 4886 ext4_error_inode(inode, function, line, 0, 4887 "iget: bogus i_mode (%o)", inode->i_mode); 4888 goto bad_inode; 4889 } 4890 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) 4891 ext4_error_inode(inode, function, line, 0, 4892 "casefold flag without casefold feature"); 4893 brelse(iloc.bh); 4894 4895 unlock_new_inode(inode); 4896 return inode; 4897 4898 bad_inode: 4899 brelse(iloc.bh); 4900 iget_failed(inode); 4901 return ERR_PTR(ret); 4902 } 4903 4904 static int ext4_inode_blocks_set(handle_t *handle, 4905 struct ext4_inode *raw_inode, 4906 struct ext4_inode_info *ei) 4907 { 4908 struct inode *inode = &(ei->vfs_inode); 4909 u64 i_blocks = READ_ONCE(inode->i_blocks); 4910 struct super_block *sb = inode->i_sb; 4911 4912 if (i_blocks <= ~0U) { 4913 /* 4914 * i_blocks can be represented in a 32 bit variable 4915 * as multiple of 512 bytes 4916 */ 4917 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4918 raw_inode->i_blocks_high = 0; 4919 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4920 return 0; 4921 } 4922 if (!ext4_has_feature_huge_file(sb)) 4923 return -EFBIG; 4924 4925 if (i_blocks <= 0xffffffffffffULL) { 4926 /* 4927 * i_blocks can be represented in a 48 bit variable 4928 * as multiple of 512 bytes 4929 */ 4930 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4931 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4932 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4933 } else { 4934 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4935 /* i_block is stored in file system block size */ 4936 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4937 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4938 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4939 } 4940 return 0; 4941 } 4942 4943 static void __ext4_update_other_inode_time(struct super_block *sb, 4944 unsigned long orig_ino, 4945 unsigned long ino, 4946 struct ext4_inode *raw_inode) 4947 { 4948 struct inode *inode; 4949 4950 inode = find_inode_by_ino_rcu(sb, ino); 4951 if (!inode) 4952 return; 4953 4954 if ((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4955 I_DIRTY_INODE)) || 4956 ((inode->i_state & I_DIRTY_TIME) == 0)) 4957 return; 4958 4959 spin_lock(&inode->i_lock); 4960 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4961 I_DIRTY_INODE)) == 0) && 4962 (inode->i_state & I_DIRTY_TIME)) { 4963 struct ext4_inode_info *ei = EXT4_I(inode); 4964 4965 inode->i_state &= ~I_DIRTY_TIME; 4966 spin_unlock(&inode->i_lock); 4967 4968 spin_lock(&ei->i_raw_lock); 4969 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4970 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4971 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4972 ext4_inode_csum_set(inode, raw_inode, ei); 4973 spin_unlock(&ei->i_raw_lock); 4974 trace_ext4_other_inode_update_time(inode, orig_ino); 4975 return; 4976 } 4977 spin_unlock(&inode->i_lock); 4978 } 4979 4980 /* 4981 * Opportunistically update the other time fields for other inodes in 4982 * the same inode table block. 4983 */ 4984 static void ext4_update_other_inodes_time(struct super_block *sb, 4985 unsigned long orig_ino, char *buf) 4986 { 4987 unsigned long ino; 4988 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4989 int inode_size = EXT4_INODE_SIZE(sb); 4990 4991 /* 4992 * Calculate the first inode in the inode table block. Inode 4993 * numbers are one-based. That is, the first inode in a block 4994 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 4995 */ 4996 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 4997 rcu_read_lock(); 4998 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 4999 if (ino == orig_ino) 5000 continue; 5001 __ext4_update_other_inode_time(sb, orig_ino, ino, 5002 (struct ext4_inode *)buf); 5003 } 5004 rcu_read_unlock(); 5005 } 5006 5007 /* 5008 * Post the struct inode info into an on-disk inode location in the 5009 * buffer-cache. This gobbles the caller's reference to the 5010 * buffer_head in the inode location struct. 5011 * 5012 * The caller must have write access to iloc->bh. 5013 */ 5014 static int ext4_do_update_inode(handle_t *handle, 5015 struct inode *inode, 5016 struct ext4_iloc *iloc) 5017 { 5018 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5019 struct ext4_inode_info *ei = EXT4_I(inode); 5020 struct buffer_head *bh = iloc->bh; 5021 struct super_block *sb = inode->i_sb; 5022 int err = 0, rc, block; 5023 int need_datasync = 0, set_large_file = 0; 5024 uid_t i_uid; 5025 gid_t i_gid; 5026 projid_t i_projid; 5027 5028 spin_lock(&ei->i_raw_lock); 5029 5030 /* For fields not tracked in the in-memory inode, 5031 * initialise them to zero for new inodes. */ 5032 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5033 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5034 5035 err = ext4_inode_blocks_set(handle, raw_inode, ei); 5036 if (err) { 5037 spin_unlock(&ei->i_raw_lock); 5038 goto out_brelse; 5039 } 5040 5041 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 5042 i_uid = i_uid_read(inode); 5043 i_gid = i_gid_read(inode); 5044 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 5045 if (!(test_opt(inode->i_sb, NO_UID32))) { 5046 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 5047 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 5048 /* 5049 * Fix up interoperability with old kernels. Otherwise, old inodes get 5050 * re-used with the upper 16 bits of the uid/gid intact 5051 */ 5052 if (ei->i_dtime && list_empty(&ei->i_orphan)) { 5053 raw_inode->i_uid_high = 0; 5054 raw_inode->i_gid_high = 0; 5055 } else { 5056 raw_inode->i_uid_high = 5057 cpu_to_le16(high_16_bits(i_uid)); 5058 raw_inode->i_gid_high = 5059 cpu_to_le16(high_16_bits(i_gid)); 5060 } 5061 } else { 5062 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 5063 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 5064 raw_inode->i_uid_high = 0; 5065 raw_inode->i_gid_high = 0; 5066 } 5067 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 5068 5069 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 5070 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 5071 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 5072 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 5073 5074 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 5075 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 5076 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 5077 raw_inode->i_file_acl_high = 5078 cpu_to_le16(ei->i_file_acl >> 32); 5079 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 5080 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) { 5081 ext4_isize_set(raw_inode, ei->i_disksize); 5082 need_datasync = 1; 5083 } 5084 if (ei->i_disksize > 0x7fffffffULL) { 5085 if (!ext4_has_feature_large_file(sb) || 5086 EXT4_SB(sb)->s_es->s_rev_level == 5087 cpu_to_le32(EXT4_GOOD_OLD_REV)) 5088 set_large_file = 1; 5089 } 5090 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 5091 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 5092 if (old_valid_dev(inode->i_rdev)) { 5093 raw_inode->i_block[0] = 5094 cpu_to_le32(old_encode_dev(inode->i_rdev)); 5095 raw_inode->i_block[1] = 0; 5096 } else { 5097 raw_inode->i_block[0] = 0; 5098 raw_inode->i_block[1] = 5099 cpu_to_le32(new_encode_dev(inode->i_rdev)); 5100 raw_inode->i_block[2] = 0; 5101 } 5102 } else if (!ext4_has_inline_data(inode)) { 5103 for (block = 0; block < EXT4_N_BLOCKS; block++) 5104 raw_inode->i_block[block] = ei->i_data[block]; 5105 } 5106 5107 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 5108 u64 ivers = ext4_inode_peek_iversion(inode); 5109 5110 raw_inode->i_disk_version = cpu_to_le32(ivers); 5111 if (ei->i_extra_isize) { 5112 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 5113 raw_inode->i_version_hi = 5114 cpu_to_le32(ivers >> 32); 5115 raw_inode->i_extra_isize = 5116 cpu_to_le16(ei->i_extra_isize); 5117 } 5118 } 5119 5120 BUG_ON(!ext4_has_feature_project(inode->i_sb) && 5121 i_projid != EXT4_DEF_PROJID); 5122 5123 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 5124 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 5125 raw_inode->i_projid = cpu_to_le32(i_projid); 5126 5127 ext4_inode_csum_set(inode, raw_inode, ei); 5128 spin_unlock(&ei->i_raw_lock); 5129 if (inode->i_sb->s_flags & SB_LAZYTIME) 5130 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 5131 bh->b_data); 5132 5133 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5134 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 5135 if (!err) 5136 err = rc; 5137 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5138 if (set_large_file) { 5139 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 5140 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh); 5141 if (err) 5142 goto out_brelse; 5143 ext4_set_feature_large_file(sb); 5144 ext4_handle_sync(handle); 5145 err = ext4_handle_dirty_super(handle, sb); 5146 } 5147 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5148 out_brelse: 5149 brelse(bh); 5150 ext4_std_error(inode->i_sb, err); 5151 return err; 5152 } 5153 5154 /* 5155 * ext4_write_inode() 5156 * 5157 * We are called from a few places: 5158 * 5159 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5160 * Here, there will be no transaction running. We wait for any running 5161 * transaction to commit. 5162 * 5163 * - Within flush work (sys_sync(), kupdate and such). 5164 * We wait on commit, if told to. 5165 * 5166 * - Within iput_final() -> write_inode_now() 5167 * We wait on commit, if told to. 5168 * 5169 * In all cases it is actually safe for us to return without doing anything, 5170 * because the inode has been copied into a raw inode buffer in 5171 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5172 * writeback. 5173 * 5174 * Note that we are absolutely dependent upon all inode dirtiers doing the 5175 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5176 * which we are interested. 5177 * 5178 * It would be a bug for them to not do this. The code: 5179 * 5180 * mark_inode_dirty(inode) 5181 * stuff(); 5182 * inode->i_size = expr; 5183 * 5184 * is in error because write_inode() could occur while `stuff()' is running, 5185 * and the new i_size will be lost. Plus the inode will no longer be on the 5186 * superblock's dirty inode list. 5187 */ 5188 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5189 { 5190 int err; 5191 5192 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) || 5193 sb_rdonly(inode->i_sb)) 5194 return 0; 5195 5196 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5197 return -EIO; 5198 5199 if (EXT4_SB(inode->i_sb)->s_journal) { 5200 if (ext4_journal_current_handle()) { 5201 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 5202 dump_stack(); 5203 return -EIO; 5204 } 5205 5206 /* 5207 * No need to force transaction in WB_SYNC_NONE mode. Also 5208 * ext4_sync_fs() will force the commit after everything is 5209 * written. 5210 */ 5211 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5212 return 0; 5213 5214 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal, 5215 EXT4_I(inode)->i_sync_tid); 5216 } else { 5217 struct ext4_iloc iloc; 5218 5219 err = __ext4_get_inode_loc_noinmem(inode, &iloc); 5220 if (err) 5221 return err; 5222 /* 5223 * sync(2) will flush the whole buffer cache. No need to do 5224 * it here separately for each inode. 5225 */ 5226 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5227 sync_dirty_buffer(iloc.bh); 5228 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5229 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO, 5230 "IO error syncing inode"); 5231 err = -EIO; 5232 } 5233 brelse(iloc.bh); 5234 } 5235 return err; 5236 } 5237 5238 /* 5239 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 5240 * buffers that are attached to a page stradding i_size and are undergoing 5241 * commit. In that case we have to wait for commit to finish and try again. 5242 */ 5243 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5244 { 5245 struct page *page; 5246 unsigned offset; 5247 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5248 tid_t commit_tid = 0; 5249 int ret; 5250 5251 offset = inode->i_size & (PAGE_SIZE - 1); 5252 /* 5253 * If the page is fully truncated, we don't need to wait for any commit 5254 * (and we even should not as __ext4_journalled_invalidatepage() may 5255 * strip all buffers from the page but keep the page dirty which can then 5256 * confuse e.g. concurrent ext4_writepage() seeing dirty page without 5257 * buffers). Also we don't need to wait for any commit if all buffers in 5258 * the page remain valid. This is most beneficial for the common case of 5259 * blocksize == PAGESIZE. 5260 */ 5261 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode))) 5262 return; 5263 while (1) { 5264 page = find_lock_page(inode->i_mapping, 5265 inode->i_size >> PAGE_SHIFT); 5266 if (!page) 5267 return; 5268 ret = __ext4_journalled_invalidatepage(page, offset, 5269 PAGE_SIZE - offset); 5270 unlock_page(page); 5271 put_page(page); 5272 if (ret != -EBUSY) 5273 return; 5274 commit_tid = 0; 5275 read_lock(&journal->j_state_lock); 5276 if (journal->j_committing_transaction) 5277 commit_tid = journal->j_committing_transaction->t_tid; 5278 read_unlock(&journal->j_state_lock); 5279 if (commit_tid) 5280 jbd2_log_wait_commit(journal, commit_tid); 5281 } 5282 } 5283 5284 /* 5285 * ext4_setattr() 5286 * 5287 * Called from notify_change. 5288 * 5289 * We want to trap VFS attempts to truncate the file as soon as 5290 * possible. In particular, we want to make sure that when the VFS 5291 * shrinks i_size, we put the inode on the orphan list and modify 5292 * i_disksize immediately, so that during the subsequent flushing of 5293 * dirty pages and freeing of disk blocks, we can guarantee that any 5294 * commit will leave the blocks being flushed in an unused state on 5295 * disk. (On recovery, the inode will get truncated and the blocks will 5296 * be freed, so we have a strong guarantee that no future commit will 5297 * leave these blocks visible to the user.) 5298 * 5299 * Another thing we have to assure is that if we are in ordered mode 5300 * and inode is still attached to the committing transaction, we must 5301 * we start writeout of all the dirty pages which are being truncated. 5302 * This way we are sure that all the data written in the previous 5303 * transaction are already on disk (truncate waits for pages under 5304 * writeback). 5305 * 5306 * Called with inode->i_mutex down. 5307 */ 5308 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 5309 { 5310 struct inode *inode = d_inode(dentry); 5311 int error, rc = 0; 5312 int orphan = 0; 5313 const unsigned int ia_valid = attr->ia_valid; 5314 5315 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5316 return -EIO; 5317 5318 if (unlikely(IS_IMMUTABLE(inode))) 5319 return -EPERM; 5320 5321 if (unlikely(IS_APPEND(inode) && 5322 (ia_valid & (ATTR_MODE | ATTR_UID | 5323 ATTR_GID | ATTR_TIMES_SET)))) 5324 return -EPERM; 5325 5326 error = setattr_prepare(dentry, attr); 5327 if (error) 5328 return error; 5329 5330 error = fscrypt_prepare_setattr(dentry, attr); 5331 if (error) 5332 return error; 5333 5334 error = fsverity_prepare_setattr(dentry, attr); 5335 if (error) 5336 return error; 5337 5338 if (is_quota_modification(inode, attr)) { 5339 error = dquot_initialize(inode); 5340 if (error) 5341 return error; 5342 } 5343 ext4_fc_start_update(inode); 5344 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 5345 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 5346 handle_t *handle; 5347 5348 /* (user+group)*(old+new) structure, inode write (sb, 5349 * inode block, ? - but truncate inode update has it) */ 5350 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5351 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5352 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5353 if (IS_ERR(handle)) { 5354 error = PTR_ERR(handle); 5355 goto err_out; 5356 } 5357 5358 /* dquot_transfer() calls back ext4_get_inode_usage() which 5359 * counts xattr inode references. 5360 */ 5361 down_read(&EXT4_I(inode)->xattr_sem); 5362 error = dquot_transfer(inode, attr); 5363 up_read(&EXT4_I(inode)->xattr_sem); 5364 5365 if (error) { 5366 ext4_journal_stop(handle); 5367 ext4_fc_stop_update(inode); 5368 return error; 5369 } 5370 /* Update corresponding info in inode so that everything is in 5371 * one transaction */ 5372 if (attr->ia_valid & ATTR_UID) 5373 inode->i_uid = attr->ia_uid; 5374 if (attr->ia_valid & ATTR_GID) 5375 inode->i_gid = attr->ia_gid; 5376 error = ext4_mark_inode_dirty(handle, inode); 5377 ext4_journal_stop(handle); 5378 if (unlikely(error)) 5379 return error; 5380 } 5381 5382 if (attr->ia_valid & ATTR_SIZE) { 5383 handle_t *handle; 5384 loff_t oldsize = inode->i_size; 5385 int shrink = (attr->ia_size < inode->i_size); 5386 5387 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5388 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5389 5390 if (attr->ia_size > sbi->s_bitmap_maxbytes) { 5391 ext4_fc_stop_update(inode); 5392 return -EFBIG; 5393 } 5394 } 5395 if (!S_ISREG(inode->i_mode)) { 5396 ext4_fc_stop_update(inode); 5397 return -EINVAL; 5398 } 5399 5400 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size) 5401 inode_inc_iversion(inode); 5402 5403 if (shrink) { 5404 if (ext4_should_order_data(inode)) { 5405 error = ext4_begin_ordered_truncate(inode, 5406 attr->ia_size); 5407 if (error) 5408 goto err_out; 5409 } 5410 /* 5411 * Blocks are going to be removed from the inode. Wait 5412 * for dio in flight. 5413 */ 5414 inode_dio_wait(inode); 5415 } 5416 5417 down_write(&EXT4_I(inode)->i_mmap_sem); 5418 5419 rc = ext4_break_layouts(inode); 5420 if (rc) { 5421 up_write(&EXT4_I(inode)->i_mmap_sem); 5422 goto err_out; 5423 } 5424 5425 if (attr->ia_size != inode->i_size) { 5426 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5427 if (IS_ERR(handle)) { 5428 error = PTR_ERR(handle); 5429 goto out_mmap_sem; 5430 } 5431 if (ext4_handle_valid(handle) && shrink) { 5432 error = ext4_orphan_add(handle, inode); 5433 orphan = 1; 5434 } 5435 /* 5436 * Update c/mtime on truncate up, ext4_truncate() will 5437 * update c/mtime in shrink case below 5438 */ 5439 if (!shrink) { 5440 inode->i_mtime = current_time(inode); 5441 inode->i_ctime = inode->i_mtime; 5442 } 5443 5444 if (shrink) 5445 ext4_fc_track_range(inode, 5446 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5447 inode->i_sb->s_blocksize_bits, 5448 (oldsize > 0 ? oldsize - 1 : 0) >> 5449 inode->i_sb->s_blocksize_bits); 5450 else 5451 ext4_fc_track_range( 5452 inode, 5453 (oldsize > 0 ? oldsize - 1 : oldsize) >> 5454 inode->i_sb->s_blocksize_bits, 5455 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5456 inode->i_sb->s_blocksize_bits); 5457 5458 down_write(&EXT4_I(inode)->i_data_sem); 5459 EXT4_I(inode)->i_disksize = attr->ia_size; 5460 rc = ext4_mark_inode_dirty(handle, inode); 5461 if (!error) 5462 error = rc; 5463 /* 5464 * We have to update i_size under i_data_sem together 5465 * with i_disksize to avoid races with writeback code 5466 * running ext4_wb_update_i_disksize(). 5467 */ 5468 if (!error) 5469 i_size_write(inode, attr->ia_size); 5470 up_write(&EXT4_I(inode)->i_data_sem); 5471 ext4_journal_stop(handle); 5472 if (error) 5473 goto out_mmap_sem; 5474 if (!shrink) { 5475 pagecache_isize_extended(inode, oldsize, 5476 inode->i_size); 5477 } else if (ext4_should_journal_data(inode)) { 5478 ext4_wait_for_tail_page_commit(inode); 5479 } 5480 } 5481 5482 /* 5483 * Truncate pagecache after we've waited for commit 5484 * in data=journal mode to make pages freeable. 5485 */ 5486 truncate_pagecache(inode, inode->i_size); 5487 /* 5488 * Call ext4_truncate() even if i_size didn't change to 5489 * truncate possible preallocated blocks. 5490 */ 5491 if (attr->ia_size <= oldsize) { 5492 rc = ext4_truncate(inode); 5493 if (rc) 5494 error = rc; 5495 } 5496 out_mmap_sem: 5497 up_write(&EXT4_I(inode)->i_mmap_sem); 5498 } 5499 5500 if (!error) { 5501 setattr_copy(inode, attr); 5502 mark_inode_dirty(inode); 5503 } 5504 5505 /* 5506 * If the call to ext4_truncate failed to get a transaction handle at 5507 * all, we need to clean up the in-core orphan list manually. 5508 */ 5509 if (orphan && inode->i_nlink) 5510 ext4_orphan_del(NULL, inode); 5511 5512 if (!error && (ia_valid & ATTR_MODE)) 5513 rc = posix_acl_chmod(inode, inode->i_mode); 5514 5515 err_out: 5516 if (error) 5517 ext4_std_error(inode->i_sb, error); 5518 if (!error) 5519 error = rc; 5520 ext4_fc_stop_update(inode); 5521 return error; 5522 } 5523 5524 int ext4_getattr(const struct path *path, struct kstat *stat, 5525 u32 request_mask, unsigned int query_flags) 5526 { 5527 struct inode *inode = d_inode(path->dentry); 5528 struct ext4_inode *raw_inode; 5529 struct ext4_inode_info *ei = EXT4_I(inode); 5530 unsigned int flags; 5531 5532 if ((request_mask & STATX_BTIME) && 5533 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { 5534 stat->result_mask |= STATX_BTIME; 5535 stat->btime.tv_sec = ei->i_crtime.tv_sec; 5536 stat->btime.tv_nsec = ei->i_crtime.tv_nsec; 5537 } 5538 5539 flags = ei->i_flags & EXT4_FL_USER_VISIBLE; 5540 if (flags & EXT4_APPEND_FL) 5541 stat->attributes |= STATX_ATTR_APPEND; 5542 if (flags & EXT4_COMPR_FL) 5543 stat->attributes |= STATX_ATTR_COMPRESSED; 5544 if (flags & EXT4_ENCRYPT_FL) 5545 stat->attributes |= STATX_ATTR_ENCRYPTED; 5546 if (flags & EXT4_IMMUTABLE_FL) 5547 stat->attributes |= STATX_ATTR_IMMUTABLE; 5548 if (flags & EXT4_NODUMP_FL) 5549 stat->attributes |= STATX_ATTR_NODUMP; 5550 if (flags & EXT4_VERITY_FL) 5551 stat->attributes |= STATX_ATTR_VERITY; 5552 5553 stat->attributes_mask |= (STATX_ATTR_APPEND | 5554 STATX_ATTR_COMPRESSED | 5555 STATX_ATTR_ENCRYPTED | 5556 STATX_ATTR_IMMUTABLE | 5557 STATX_ATTR_NODUMP | 5558 STATX_ATTR_VERITY); 5559 5560 generic_fillattr(inode, stat); 5561 return 0; 5562 } 5563 5564 int ext4_file_getattr(const struct path *path, struct kstat *stat, 5565 u32 request_mask, unsigned int query_flags) 5566 { 5567 struct inode *inode = d_inode(path->dentry); 5568 u64 delalloc_blocks; 5569 5570 ext4_getattr(path, stat, request_mask, query_flags); 5571 5572 /* 5573 * If there is inline data in the inode, the inode will normally not 5574 * have data blocks allocated (it may have an external xattr block). 5575 * Report at least one sector for such files, so tools like tar, rsync, 5576 * others don't incorrectly think the file is completely sparse. 5577 */ 5578 if (unlikely(ext4_has_inline_data(inode))) 5579 stat->blocks += (stat->size + 511) >> 9; 5580 5581 /* 5582 * We can't update i_blocks if the block allocation is delayed 5583 * otherwise in the case of system crash before the real block 5584 * allocation is done, we will have i_blocks inconsistent with 5585 * on-disk file blocks. 5586 * We always keep i_blocks updated together with real 5587 * allocation. But to not confuse with user, stat 5588 * will return the blocks that include the delayed allocation 5589 * blocks for this file. 5590 */ 5591 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5592 EXT4_I(inode)->i_reserved_data_blocks); 5593 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5594 return 0; 5595 } 5596 5597 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5598 int pextents) 5599 { 5600 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5601 return ext4_ind_trans_blocks(inode, lblocks); 5602 return ext4_ext_index_trans_blocks(inode, pextents); 5603 } 5604 5605 /* 5606 * Account for index blocks, block groups bitmaps and block group 5607 * descriptor blocks if modify datablocks and index blocks 5608 * worse case, the indexs blocks spread over different block groups 5609 * 5610 * If datablocks are discontiguous, they are possible to spread over 5611 * different block groups too. If they are contiguous, with flexbg, 5612 * they could still across block group boundary. 5613 * 5614 * Also account for superblock, inode, quota and xattr blocks 5615 */ 5616 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5617 int pextents) 5618 { 5619 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5620 int gdpblocks; 5621 int idxblocks; 5622 int ret = 0; 5623 5624 /* 5625 * How many index blocks need to touch to map @lblocks logical blocks 5626 * to @pextents physical extents? 5627 */ 5628 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5629 5630 ret = idxblocks; 5631 5632 /* 5633 * Now let's see how many group bitmaps and group descriptors need 5634 * to account 5635 */ 5636 groups = idxblocks + pextents; 5637 gdpblocks = groups; 5638 if (groups > ngroups) 5639 groups = ngroups; 5640 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5641 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5642 5643 /* bitmaps and block group descriptor blocks */ 5644 ret += groups + gdpblocks; 5645 5646 /* Blocks for super block, inode, quota and xattr blocks */ 5647 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5648 5649 return ret; 5650 } 5651 5652 /* 5653 * Calculate the total number of credits to reserve to fit 5654 * the modification of a single pages into a single transaction, 5655 * which may include multiple chunks of block allocations. 5656 * 5657 * This could be called via ext4_write_begin() 5658 * 5659 * We need to consider the worse case, when 5660 * one new block per extent. 5661 */ 5662 int ext4_writepage_trans_blocks(struct inode *inode) 5663 { 5664 int bpp = ext4_journal_blocks_per_page(inode); 5665 int ret; 5666 5667 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5668 5669 /* Account for data blocks for journalled mode */ 5670 if (ext4_should_journal_data(inode)) 5671 ret += bpp; 5672 return ret; 5673 } 5674 5675 /* 5676 * Calculate the journal credits for a chunk of data modification. 5677 * 5678 * This is called from DIO, fallocate or whoever calling 5679 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5680 * 5681 * journal buffers for data blocks are not included here, as DIO 5682 * and fallocate do no need to journal data buffers. 5683 */ 5684 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5685 { 5686 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5687 } 5688 5689 /* 5690 * The caller must have previously called ext4_reserve_inode_write(). 5691 * Give this, we know that the caller already has write access to iloc->bh. 5692 */ 5693 int ext4_mark_iloc_dirty(handle_t *handle, 5694 struct inode *inode, struct ext4_iloc *iloc) 5695 { 5696 int err = 0; 5697 5698 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 5699 put_bh(iloc->bh); 5700 return -EIO; 5701 } 5702 ext4_fc_track_inode(inode); 5703 5704 if (IS_I_VERSION(inode)) 5705 inode_inc_iversion(inode); 5706 5707 /* the do_update_inode consumes one bh->b_count */ 5708 get_bh(iloc->bh); 5709 5710 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5711 err = ext4_do_update_inode(handle, inode, iloc); 5712 put_bh(iloc->bh); 5713 return err; 5714 } 5715 5716 /* 5717 * On success, We end up with an outstanding reference count against 5718 * iloc->bh. This _must_ be cleaned up later. 5719 */ 5720 5721 int 5722 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5723 struct ext4_iloc *iloc) 5724 { 5725 int err; 5726 5727 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5728 return -EIO; 5729 5730 err = ext4_get_inode_loc(inode, iloc); 5731 if (!err) { 5732 BUFFER_TRACE(iloc->bh, "get_write_access"); 5733 err = ext4_journal_get_write_access(handle, iloc->bh); 5734 if (err) { 5735 brelse(iloc->bh); 5736 iloc->bh = NULL; 5737 } 5738 } 5739 ext4_std_error(inode->i_sb, err); 5740 return err; 5741 } 5742 5743 static int __ext4_expand_extra_isize(struct inode *inode, 5744 unsigned int new_extra_isize, 5745 struct ext4_iloc *iloc, 5746 handle_t *handle, int *no_expand) 5747 { 5748 struct ext4_inode *raw_inode; 5749 struct ext4_xattr_ibody_header *header; 5750 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb); 5751 struct ext4_inode_info *ei = EXT4_I(inode); 5752 int error; 5753 5754 /* this was checked at iget time, but double check for good measure */ 5755 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) || 5756 (ei->i_extra_isize & 3)) { 5757 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)", 5758 ei->i_extra_isize, 5759 EXT4_INODE_SIZE(inode->i_sb)); 5760 return -EFSCORRUPTED; 5761 } 5762 if ((new_extra_isize < ei->i_extra_isize) || 5763 (new_extra_isize < 4) || 5764 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE)) 5765 return -EINVAL; /* Should never happen */ 5766 5767 raw_inode = ext4_raw_inode(iloc); 5768 5769 header = IHDR(inode, raw_inode); 5770 5771 /* No extended attributes present */ 5772 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5773 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5774 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + 5775 EXT4_I(inode)->i_extra_isize, 0, 5776 new_extra_isize - EXT4_I(inode)->i_extra_isize); 5777 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5778 return 0; 5779 } 5780 5781 /* try to expand with EAs present */ 5782 error = ext4_expand_extra_isize_ea(inode, new_extra_isize, 5783 raw_inode, handle); 5784 if (error) { 5785 /* 5786 * Inode size expansion failed; don't try again 5787 */ 5788 *no_expand = 1; 5789 } 5790 5791 return error; 5792 } 5793 5794 /* 5795 * Expand an inode by new_extra_isize bytes. 5796 * Returns 0 on success or negative error number on failure. 5797 */ 5798 static int ext4_try_to_expand_extra_isize(struct inode *inode, 5799 unsigned int new_extra_isize, 5800 struct ext4_iloc iloc, 5801 handle_t *handle) 5802 { 5803 int no_expand; 5804 int error; 5805 5806 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) 5807 return -EOVERFLOW; 5808 5809 /* 5810 * In nojournal mode, we can immediately attempt to expand 5811 * the inode. When journaled, we first need to obtain extra 5812 * buffer credits since we may write into the EA block 5813 * with this same handle. If journal_extend fails, then it will 5814 * only result in a minor loss of functionality for that inode. 5815 * If this is felt to be critical, then e2fsck should be run to 5816 * force a large enough s_min_extra_isize. 5817 */ 5818 if (ext4_journal_extend(handle, 5819 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0) 5820 return -ENOSPC; 5821 5822 if (ext4_write_trylock_xattr(inode, &no_expand) == 0) 5823 return -EBUSY; 5824 5825 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc, 5826 handle, &no_expand); 5827 ext4_write_unlock_xattr(inode, &no_expand); 5828 5829 return error; 5830 } 5831 5832 int ext4_expand_extra_isize(struct inode *inode, 5833 unsigned int new_extra_isize, 5834 struct ext4_iloc *iloc) 5835 { 5836 handle_t *handle; 5837 int no_expand; 5838 int error, rc; 5839 5840 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5841 brelse(iloc->bh); 5842 return -EOVERFLOW; 5843 } 5844 5845 handle = ext4_journal_start(inode, EXT4_HT_INODE, 5846 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)); 5847 if (IS_ERR(handle)) { 5848 error = PTR_ERR(handle); 5849 brelse(iloc->bh); 5850 return error; 5851 } 5852 5853 ext4_write_lock_xattr(inode, &no_expand); 5854 5855 BUFFER_TRACE(iloc->bh, "get_write_access"); 5856 error = ext4_journal_get_write_access(handle, iloc->bh); 5857 if (error) { 5858 brelse(iloc->bh); 5859 goto out_unlock; 5860 } 5861 5862 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc, 5863 handle, &no_expand); 5864 5865 rc = ext4_mark_iloc_dirty(handle, inode, iloc); 5866 if (!error) 5867 error = rc; 5868 5869 out_unlock: 5870 ext4_write_unlock_xattr(inode, &no_expand); 5871 ext4_journal_stop(handle); 5872 return error; 5873 } 5874 5875 /* 5876 * What we do here is to mark the in-core inode as clean with respect to inode 5877 * dirtiness (it may still be data-dirty). 5878 * This means that the in-core inode may be reaped by prune_icache 5879 * without having to perform any I/O. This is a very good thing, 5880 * because *any* task may call prune_icache - even ones which 5881 * have a transaction open against a different journal. 5882 * 5883 * Is this cheating? Not really. Sure, we haven't written the 5884 * inode out, but prune_icache isn't a user-visible syncing function. 5885 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5886 * we start and wait on commits. 5887 */ 5888 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode, 5889 const char *func, unsigned int line) 5890 { 5891 struct ext4_iloc iloc; 5892 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5893 int err; 5894 5895 might_sleep(); 5896 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5897 err = ext4_reserve_inode_write(handle, inode, &iloc); 5898 if (err) 5899 goto out; 5900 5901 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize) 5902 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize, 5903 iloc, handle); 5904 5905 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 5906 out: 5907 if (unlikely(err)) 5908 ext4_error_inode_err(inode, func, line, 0, err, 5909 "mark_inode_dirty error"); 5910 return err; 5911 } 5912 5913 /* 5914 * ext4_dirty_inode() is called from __mark_inode_dirty() 5915 * 5916 * We're really interested in the case where a file is being extended. 5917 * i_size has been changed by generic_commit_write() and we thus need 5918 * to include the updated inode in the current transaction. 5919 * 5920 * Also, dquot_alloc_block() will always dirty the inode when blocks 5921 * are allocated to the file. 5922 * 5923 * If the inode is marked synchronous, we don't honour that here - doing 5924 * so would cause a commit on atime updates, which we don't bother doing. 5925 * We handle synchronous inodes at the highest possible level. 5926 * 5927 * If only the I_DIRTY_TIME flag is set, we can skip everything. If 5928 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need 5929 * to copy into the on-disk inode structure are the timestamp files. 5930 */ 5931 void ext4_dirty_inode(struct inode *inode, int flags) 5932 { 5933 handle_t *handle; 5934 5935 if (flags == I_DIRTY_TIME) 5936 return; 5937 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 5938 if (IS_ERR(handle)) 5939 goto out; 5940 5941 ext4_mark_inode_dirty(handle, inode); 5942 5943 ext4_journal_stop(handle); 5944 out: 5945 return; 5946 } 5947 5948 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5949 { 5950 journal_t *journal; 5951 handle_t *handle; 5952 int err; 5953 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5954 5955 /* 5956 * We have to be very careful here: changing a data block's 5957 * journaling status dynamically is dangerous. If we write a 5958 * data block to the journal, change the status and then delete 5959 * that block, we risk forgetting to revoke the old log record 5960 * from the journal and so a subsequent replay can corrupt data. 5961 * So, first we make sure that the journal is empty and that 5962 * nobody is changing anything. 5963 */ 5964 5965 journal = EXT4_JOURNAL(inode); 5966 if (!journal) 5967 return 0; 5968 if (is_journal_aborted(journal)) 5969 return -EROFS; 5970 5971 /* Wait for all existing dio workers */ 5972 inode_dio_wait(inode); 5973 5974 /* 5975 * Before flushing the journal and switching inode's aops, we have 5976 * to flush all dirty data the inode has. There can be outstanding 5977 * delayed allocations, there can be unwritten extents created by 5978 * fallocate or buffered writes in dioread_nolock mode covered by 5979 * dirty data which can be converted only after flushing the dirty 5980 * data (and journalled aops don't know how to handle these cases). 5981 */ 5982 if (val) { 5983 down_write(&EXT4_I(inode)->i_mmap_sem); 5984 err = filemap_write_and_wait(inode->i_mapping); 5985 if (err < 0) { 5986 up_write(&EXT4_I(inode)->i_mmap_sem); 5987 return err; 5988 } 5989 } 5990 5991 percpu_down_write(&sbi->s_writepages_rwsem); 5992 jbd2_journal_lock_updates(journal); 5993 5994 /* 5995 * OK, there are no updates running now, and all cached data is 5996 * synced to disk. We are now in a completely consistent state 5997 * which doesn't have anything in the journal, and we know that 5998 * no filesystem updates are running, so it is safe to modify 5999 * the inode's in-core data-journaling state flag now. 6000 */ 6001 6002 if (val) 6003 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6004 else { 6005 err = jbd2_journal_flush(journal); 6006 if (err < 0) { 6007 jbd2_journal_unlock_updates(journal); 6008 percpu_up_write(&sbi->s_writepages_rwsem); 6009 return err; 6010 } 6011 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6012 } 6013 ext4_set_aops(inode); 6014 6015 jbd2_journal_unlock_updates(journal); 6016 percpu_up_write(&sbi->s_writepages_rwsem); 6017 6018 if (val) 6019 up_write(&EXT4_I(inode)->i_mmap_sem); 6020 6021 /* Finally we can mark the inode as dirty. */ 6022 6023 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 6024 if (IS_ERR(handle)) 6025 return PTR_ERR(handle); 6026 6027 ext4_fc_mark_ineligible(inode->i_sb, 6028 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE); 6029 err = ext4_mark_inode_dirty(handle, inode); 6030 ext4_handle_sync(handle); 6031 ext4_journal_stop(handle); 6032 ext4_std_error(inode->i_sb, err); 6033 6034 return err; 6035 } 6036 6037 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 6038 { 6039 return !buffer_mapped(bh); 6040 } 6041 6042 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf) 6043 { 6044 struct vm_area_struct *vma = vmf->vma; 6045 struct page *page = vmf->page; 6046 loff_t size; 6047 unsigned long len; 6048 int err; 6049 vm_fault_t ret; 6050 struct file *file = vma->vm_file; 6051 struct inode *inode = file_inode(file); 6052 struct address_space *mapping = inode->i_mapping; 6053 handle_t *handle; 6054 get_block_t *get_block; 6055 int retries = 0; 6056 6057 if (unlikely(IS_IMMUTABLE(inode))) 6058 return VM_FAULT_SIGBUS; 6059 6060 sb_start_pagefault(inode->i_sb); 6061 file_update_time(vma->vm_file); 6062 6063 down_read(&EXT4_I(inode)->i_mmap_sem); 6064 6065 err = ext4_convert_inline_data(inode); 6066 if (err) 6067 goto out_ret; 6068 6069 /* 6070 * On data journalling we skip straight to the transaction handle: 6071 * there's no delalloc; page truncated will be checked later; the 6072 * early return w/ all buffers mapped (calculates size/len) can't 6073 * be used; and there's no dioread_nolock, so only ext4_get_block. 6074 */ 6075 if (ext4_should_journal_data(inode)) 6076 goto retry_alloc; 6077 6078 /* Delalloc case is easy... */ 6079 if (test_opt(inode->i_sb, DELALLOC) && 6080 !ext4_nonda_switch(inode->i_sb)) { 6081 do { 6082 err = block_page_mkwrite(vma, vmf, 6083 ext4_da_get_block_prep); 6084 } while (err == -ENOSPC && 6085 ext4_should_retry_alloc(inode->i_sb, &retries)); 6086 goto out_ret; 6087 } 6088 6089 lock_page(page); 6090 size = i_size_read(inode); 6091 /* Page got truncated from under us? */ 6092 if (page->mapping != mapping || page_offset(page) > size) { 6093 unlock_page(page); 6094 ret = VM_FAULT_NOPAGE; 6095 goto out; 6096 } 6097 6098 if (page->index == size >> PAGE_SHIFT) 6099 len = size & ~PAGE_MASK; 6100 else 6101 len = PAGE_SIZE; 6102 /* 6103 * Return if we have all the buffers mapped. This avoids the need to do 6104 * journal_start/journal_stop which can block and take a long time 6105 * 6106 * This cannot be done for data journalling, as we have to add the 6107 * inode to the transaction's list to writeprotect pages on commit. 6108 */ 6109 if (page_has_buffers(page)) { 6110 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 6111 0, len, NULL, 6112 ext4_bh_unmapped)) { 6113 /* Wait so that we don't change page under IO */ 6114 wait_for_stable_page(page); 6115 ret = VM_FAULT_LOCKED; 6116 goto out; 6117 } 6118 } 6119 unlock_page(page); 6120 /* OK, we need to fill the hole... */ 6121 if (ext4_should_dioread_nolock(inode)) 6122 get_block = ext4_get_block_unwritten; 6123 else 6124 get_block = ext4_get_block; 6125 retry_alloc: 6126 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 6127 ext4_writepage_trans_blocks(inode)); 6128 if (IS_ERR(handle)) { 6129 ret = VM_FAULT_SIGBUS; 6130 goto out; 6131 } 6132 /* 6133 * Data journalling can't use block_page_mkwrite() because it 6134 * will set_buffer_dirty() before do_journal_get_write_access() 6135 * thus might hit warning messages for dirty metadata buffers. 6136 */ 6137 if (!ext4_should_journal_data(inode)) { 6138 err = block_page_mkwrite(vma, vmf, get_block); 6139 } else { 6140 lock_page(page); 6141 size = i_size_read(inode); 6142 /* Page got truncated from under us? */ 6143 if (page->mapping != mapping || page_offset(page) > size) { 6144 ret = VM_FAULT_NOPAGE; 6145 goto out_error; 6146 } 6147 6148 if (page->index == size >> PAGE_SHIFT) 6149 len = size & ~PAGE_MASK; 6150 else 6151 len = PAGE_SIZE; 6152 6153 err = __block_write_begin(page, 0, len, ext4_get_block); 6154 if (!err) { 6155 ret = VM_FAULT_SIGBUS; 6156 if (ext4_walk_page_buffers(handle, page_buffers(page), 6157 0, len, NULL, do_journal_get_write_access)) 6158 goto out_error; 6159 if (ext4_walk_page_buffers(handle, page_buffers(page), 6160 0, len, NULL, write_end_fn)) 6161 goto out_error; 6162 if (ext4_jbd2_inode_add_write(handle, inode, 6163 page_offset(page), len)) 6164 goto out_error; 6165 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 6166 } else { 6167 unlock_page(page); 6168 } 6169 } 6170 ext4_journal_stop(handle); 6171 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 6172 goto retry_alloc; 6173 out_ret: 6174 ret = block_page_mkwrite_return(err); 6175 out: 6176 up_read(&EXT4_I(inode)->i_mmap_sem); 6177 sb_end_pagefault(inode->i_sb); 6178 return ret; 6179 out_error: 6180 unlock_page(page); 6181 ext4_journal_stop(handle); 6182 goto out; 6183 } 6184 6185 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf) 6186 { 6187 struct inode *inode = file_inode(vmf->vma->vm_file); 6188 vm_fault_t ret; 6189 6190 down_read(&EXT4_I(inode)->i_mmap_sem); 6191 ret = filemap_fault(vmf); 6192 up_read(&EXT4_I(inode)->i_mmap_sem); 6193 6194 return ret; 6195 } 6196