1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/inode.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * 64-bit file support on 64-bit platforms by Jakub Jelinek 17 * (jj@sunsite.ms.mff.cuni.cz) 18 * 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/mount.h> 24 #include <linux/time.h> 25 #include <linux/highuid.h> 26 #include <linux/pagemap.h> 27 #include <linux/dax.h> 28 #include <linux/quotaops.h> 29 #include <linux/string.h> 30 #include <linux/buffer_head.h> 31 #include <linux/writeback.h> 32 #include <linux/pagevec.h> 33 #include <linux/mpage.h> 34 #include <linux/namei.h> 35 #include <linux/uio.h> 36 #include <linux/bio.h> 37 #include <linux/workqueue.h> 38 #include <linux/kernel.h> 39 #include <linux/printk.h> 40 #include <linux/slab.h> 41 #include <linux/bitops.h> 42 #include <linux/iomap.h> 43 #include <linux/iversion.h> 44 45 #include "ext4_jbd2.h" 46 #include "xattr.h" 47 #include "acl.h" 48 #include "truncate.h" 49 50 #include <trace/events/ext4.h> 51 52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 53 struct ext4_inode_info *ei) 54 { 55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 56 __u32 csum; 57 __u16 dummy_csum = 0; 58 int offset = offsetof(struct ext4_inode, i_checksum_lo); 59 unsigned int csum_size = sizeof(dummy_csum); 60 61 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset); 62 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size); 63 offset += csum_size; 64 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 65 EXT4_GOOD_OLD_INODE_SIZE - offset); 66 67 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 68 offset = offsetof(struct ext4_inode, i_checksum_hi); 69 csum = ext4_chksum(sbi, csum, (__u8 *)raw + 70 EXT4_GOOD_OLD_INODE_SIZE, 71 offset - EXT4_GOOD_OLD_INODE_SIZE); 72 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 73 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, 74 csum_size); 75 offset += csum_size; 76 } 77 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 78 EXT4_INODE_SIZE(inode->i_sb) - offset); 79 } 80 81 return csum; 82 } 83 84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 85 struct ext4_inode_info *ei) 86 { 87 __u32 provided, calculated; 88 89 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 90 cpu_to_le32(EXT4_OS_LINUX) || 91 !ext4_has_metadata_csum(inode->i_sb)) 92 return 1; 93 94 provided = le16_to_cpu(raw->i_checksum_lo); 95 calculated = ext4_inode_csum(inode, raw, ei); 96 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 97 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 98 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 99 else 100 calculated &= 0xFFFF; 101 102 return provided == calculated; 103 } 104 105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 106 struct ext4_inode_info *ei) 107 { 108 __u32 csum; 109 110 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 111 cpu_to_le32(EXT4_OS_LINUX) || 112 !ext4_has_metadata_csum(inode->i_sb)) 113 return; 114 115 csum = ext4_inode_csum(inode, raw, ei); 116 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 117 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 118 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 119 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 120 } 121 122 static inline int ext4_begin_ordered_truncate(struct inode *inode, 123 loff_t new_size) 124 { 125 trace_ext4_begin_ordered_truncate(inode, new_size); 126 /* 127 * If jinode is zero, then we never opened the file for 128 * writing, so there's no need to call 129 * jbd2_journal_begin_ordered_truncate() since there's no 130 * outstanding writes we need to flush. 131 */ 132 if (!EXT4_I(inode)->jinode) 133 return 0; 134 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 135 EXT4_I(inode)->jinode, 136 new_size); 137 } 138 139 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 140 int pextents); 141 142 /* 143 * Test whether an inode is a fast symlink. 144 * A fast symlink has its symlink data stored in ext4_inode_info->i_data. 145 */ 146 int ext4_inode_is_fast_symlink(struct inode *inode) 147 { 148 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 149 int ea_blocks = EXT4_I(inode)->i_file_acl ? 150 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 151 152 if (ext4_has_inline_data(inode)) 153 return 0; 154 155 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 156 } 157 return S_ISLNK(inode->i_mode) && inode->i_size && 158 (inode->i_size < EXT4_N_BLOCKS * 4); 159 } 160 161 /* 162 * Called at the last iput() if i_nlink is zero. 163 */ 164 void ext4_evict_inode(struct inode *inode) 165 { 166 handle_t *handle; 167 int err; 168 /* 169 * Credits for final inode cleanup and freeing: 170 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor 171 * (xattr block freeing), bitmap, group descriptor (inode freeing) 172 */ 173 int extra_credits = 6; 174 struct ext4_xattr_inode_array *ea_inode_array = NULL; 175 bool freeze_protected = false; 176 177 trace_ext4_evict_inode(inode); 178 179 if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL) 180 ext4_evict_ea_inode(inode); 181 if (inode->i_nlink) { 182 truncate_inode_pages_final(&inode->i_data); 183 184 goto no_delete; 185 } 186 187 if (is_bad_inode(inode)) 188 goto no_delete; 189 dquot_initialize(inode); 190 191 if (ext4_should_order_data(inode)) 192 ext4_begin_ordered_truncate(inode, 0); 193 truncate_inode_pages_final(&inode->i_data); 194 195 /* 196 * For inodes with journalled data, transaction commit could have 197 * dirtied the inode. And for inodes with dioread_nolock, unwritten 198 * extents converting worker could merge extents and also have dirtied 199 * the inode. Flush worker is ignoring it because of I_FREEING flag but 200 * we still need to remove the inode from the writeback lists. 201 */ 202 if (!list_empty_careful(&inode->i_io_list)) 203 inode_io_list_del(inode); 204 205 /* 206 * Protect us against freezing - iput() caller didn't have to have any 207 * protection against it. When we are in a running transaction though, 208 * we are already protected against freezing and we cannot grab further 209 * protection due to lock ordering constraints. 210 */ 211 if (!ext4_journal_current_handle()) { 212 sb_start_intwrite(inode->i_sb); 213 freeze_protected = true; 214 } 215 216 if (!IS_NOQUOTA(inode)) 217 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); 218 219 /* 220 * Block bitmap, group descriptor, and inode are accounted in both 221 * ext4_blocks_for_truncate() and extra_credits. So subtract 3. 222 */ 223 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 224 ext4_blocks_for_truncate(inode) + extra_credits - 3); 225 if (IS_ERR(handle)) { 226 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 227 /* 228 * If we're going to skip the normal cleanup, we still need to 229 * make sure that the in-core orphan linked list is properly 230 * cleaned up. 231 */ 232 ext4_orphan_del(NULL, inode); 233 if (freeze_protected) 234 sb_end_intwrite(inode->i_sb); 235 goto no_delete; 236 } 237 238 if (IS_SYNC(inode)) 239 ext4_handle_sync(handle); 240 241 /* 242 * Set inode->i_size to 0 before calling ext4_truncate(). We need 243 * special handling of symlinks here because i_size is used to 244 * determine whether ext4_inode_info->i_data contains symlink data or 245 * block mappings. Setting i_size to 0 will remove its fast symlink 246 * status. Erase i_data so that it becomes a valid empty block map. 247 */ 248 if (ext4_inode_is_fast_symlink(inode)) 249 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data)); 250 inode->i_size = 0; 251 err = ext4_mark_inode_dirty(handle, inode); 252 if (err) { 253 ext4_warning(inode->i_sb, 254 "couldn't mark inode dirty (err %d)", err); 255 goto stop_handle; 256 } 257 if (inode->i_blocks) { 258 err = ext4_truncate(inode); 259 if (err) { 260 ext4_error_err(inode->i_sb, -err, 261 "couldn't truncate inode %lu (err %d)", 262 inode->i_ino, err); 263 goto stop_handle; 264 } 265 } 266 267 /* Remove xattr references. */ 268 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array, 269 extra_credits); 270 if (err) { 271 ext4_warning(inode->i_sb, "xattr delete (err %d)", err); 272 stop_handle: 273 ext4_journal_stop(handle); 274 ext4_orphan_del(NULL, inode); 275 if (freeze_protected) 276 sb_end_intwrite(inode->i_sb); 277 ext4_xattr_inode_array_free(ea_inode_array); 278 goto no_delete; 279 } 280 281 /* 282 * Kill off the orphan record which ext4_truncate created. 283 * AKPM: I think this can be inside the above `if'. 284 * Note that ext4_orphan_del() has to be able to cope with the 285 * deletion of a non-existent orphan - this is because we don't 286 * know if ext4_truncate() actually created an orphan record. 287 * (Well, we could do this if we need to, but heck - it works) 288 */ 289 ext4_orphan_del(handle, inode); 290 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds(); 291 292 /* 293 * One subtle ordering requirement: if anything has gone wrong 294 * (transaction abort, IO errors, whatever), then we can still 295 * do these next steps (the fs will already have been marked as 296 * having errors), but we can't free the inode if the mark_dirty 297 * fails. 298 */ 299 if (ext4_mark_inode_dirty(handle, inode)) 300 /* If that failed, just do the required in-core inode clear. */ 301 ext4_clear_inode(inode); 302 else 303 ext4_free_inode(handle, inode); 304 ext4_journal_stop(handle); 305 if (freeze_protected) 306 sb_end_intwrite(inode->i_sb); 307 ext4_xattr_inode_array_free(ea_inode_array); 308 return; 309 no_delete: 310 /* 311 * Check out some where else accidentally dirty the evicting inode, 312 * which may probably cause inode use-after-free issues later. 313 */ 314 WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list)); 315 316 if (!list_empty(&EXT4_I(inode)->i_fc_list)) 317 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL); 318 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 319 } 320 321 #ifdef CONFIG_QUOTA 322 qsize_t *ext4_get_reserved_space(struct inode *inode) 323 { 324 return &EXT4_I(inode)->i_reserved_quota; 325 } 326 #endif 327 328 /* 329 * Called with i_data_sem down, which is important since we can call 330 * ext4_discard_preallocations() from here. 331 */ 332 void ext4_da_update_reserve_space(struct inode *inode, 333 int used, int quota_claim) 334 { 335 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 336 struct ext4_inode_info *ei = EXT4_I(inode); 337 338 spin_lock(&ei->i_block_reservation_lock); 339 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 340 if (unlikely(used > ei->i_reserved_data_blocks)) { 341 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 342 "with only %d reserved data blocks", 343 __func__, inode->i_ino, used, 344 ei->i_reserved_data_blocks); 345 WARN_ON(1); 346 used = ei->i_reserved_data_blocks; 347 } 348 349 /* Update per-inode reservations */ 350 ei->i_reserved_data_blocks -= used; 351 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 352 353 spin_unlock(&ei->i_block_reservation_lock); 354 355 /* Update quota subsystem for data blocks */ 356 if (quota_claim) 357 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 358 else { 359 /* 360 * We did fallocate with an offset that is already delayed 361 * allocated. So on delayed allocated writeback we should 362 * not re-claim the quota for fallocated blocks. 363 */ 364 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 365 } 366 367 /* 368 * If we have done all the pending block allocations and if 369 * there aren't any writers on the inode, we can discard the 370 * inode's preallocations. 371 */ 372 if ((ei->i_reserved_data_blocks == 0) && 373 !inode_is_open_for_write(inode)) 374 ext4_discard_preallocations(inode, 0); 375 } 376 377 static int __check_block_validity(struct inode *inode, const char *func, 378 unsigned int line, 379 struct ext4_map_blocks *map) 380 { 381 if (ext4_has_feature_journal(inode->i_sb) && 382 (inode->i_ino == 383 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum))) 384 return 0; 385 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) { 386 ext4_error_inode(inode, func, line, map->m_pblk, 387 "lblock %lu mapped to illegal pblock %llu " 388 "(length %d)", (unsigned long) map->m_lblk, 389 map->m_pblk, map->m_len); 390 return -EFSCORRUPTED; 391 } 392 return 0; 393 } 394 395 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 396 ext4_lblk_t len) 397 { 398 int ret; 399 400 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) 401 return fscrypt_zeroout_range(inode, lblk, pblk, len); 402 403 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 404 if (ret > 0) 405 ret = 0; 406 407 return ret; 408 } 409 410 #define check_block_validity(inode, map) \ 411 __check_block_validity((inode), __func__, __LINE__, (map)) 412 413 #ifdef ES_AGGRESSIVE_TEST 414 static void ext4_map_blocks_es_recheck(handle_t *handle, 415 struct inode *inode, 416 struct ext4_map_blocks *es_map, 417 struct ext4_map_blocks *map, 418 int flags) 419 { 420 int retval; 421 422 map->m_flags = 0; 423 /* 424 * There is a race window that the result is not the same. 425 * e.g. xfstests #223 when dioread_nolock enables. The reason 426 * is that we lookup a block mapping in extent status tree with 427 * out taking i_data_sem. So at the time the unwritten extent 428 * could be converted. 429 */ 430 down_read(&EXT4_I(inode)->i_data_sem); 431 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 432 retval = ext4_ext_map_blocks(handle, inode, map, 0); 433 } else { 434 retval = ext4_ind_map_blocks(handle, inode, map, 0); 435 } 436 up_read((&EXT4_I(inode)->i_data_sem)); 437 438 /* 439 * We don't check m_len because extent will be collpased in status 440 * tree. So the m_len might not equal. 441 */ 442 if (es_map->m_lblk != map->m_lblk || 443 es_map->m_flags != map->m_flags || 444 es_map->m_pblk != map->m_pblk) { 445 printk("ES cache assertion failed for inode: %lu " 446 "es_cached ex [%d/%d/%llu/%x] != " 447 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 448 inode->i_ino, es_map->m_lblk, es_map->m_len, 449 es_map->m_pblk, es_map->m_flags, map->m_lblk, 450 map->m_len, map->m_pblk, map->m_flags, 451 retval, flags); 452 } 453 } 454 #endif /* ES_AGGRESSIVE_TEST */ 455 456 /* 457 * The ext4_map_blocks() function tries to look up the requested blocks, 458 * and returns if the blocks are already mapped. 459 * 460 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 461 * and store the allocated blocks in the result buffer head and mark it 462 * mapped. 463 * 464 * If file type is extents based, it will call ext4_ext_map_blocks(), 465 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 466 * based files 467 * 468 * On success, it returns the number of blocks being mapped or allocated. if 469 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map 470 * is marked as unwritten. If the create == 1, it will mark @map as mapped. 471 * 472 * It returns 0 if plain look up failed (blocks have not been allocated), in 473 * that case, @map is returned as unmapped but we still do fill map->m_len to 474 * indicate the length of a hole starting at map->m_lblk. 475 * 476 * It returns the error in case of allocation failure. 477 */ 478 int ext4_map_blocks(handle_t *handle, struct inode *inode, 479 struct ext4_map_blocks *map, int flags) 480 { 481 struct extent_status es; 482 int retval; 483 int ret = 0; 484 #ifdef ES_AGGRESSIVE_TEST 485 struct ext4_map_blocks orig_map; 486 487 memcpy(&orig_map, map, sizeof(*map)); 488 #endif 489 490 map->m_flags = 0; 491 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n", 492 flags, map->m_len, (unsigned long) map->m_lblk); 493 494 /* 495 * ext4_map_blocks returns an int, and m_len is an unsigned int 496 */ 497 if (unlikely(map->m_len > INT_MAX)) 498 map->m_len = INT_MAX; 499 500 /* We can handle the block number less than EXT_MAX_BLOCKS */ 501 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 502 return -EFSCORRUPTED; 503 504 /* Lookup extent status tree firstly */ 505 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) && 506 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 507 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 508 map->m_pblk = ext4_es_pblock(&es) + 509 map->m_lblk - es.es_lblk; 510 map->m_flags |= ext4_es_is_written(&es) ? 511 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 512 retval = es.es_len - (map->m_lblk - es.es_lblk); 513 if (retval > map->m_len) 514 retval = map->m_len; 515 map->m_len = retval; 516 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 517 map->m_pblk = 0; 518 retval = es.es_len - (map->m_lblk - es.es_lblk); 519 if (retval > map->m_len) 520 retval = map->m_len; 521 map->m_len = retval; 522 retval = 0; 523 } else { 524 BUG(); 525 } 526 527 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT) 528 return retval; 529 #ifdef ES_AGGRESSIVE_TEST 530 ext4_map_blocks_es_recheck(handle, inode, map, 531 &orig_map, flags); 532 #endif 533 goto found; 534 } 535 /* 536 * In the query cache no-wait mode, nothing we can do more if we 537 * cannot find extent in the cache. 538 */ 539 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT) 540 return 0; 541 542 /* 543 * Try to see if we can get the block without requesting a new 544 * file system block. 545 */ 546 down_read(&EXT4_I(inode)->i_data_sem); 547 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 548 retval = ext4_ext_map_blocks(handle, inode, map, 0); 549 } else { 550 retval = ext4_ind_map_blocks(handle, inode, map, 0); 551 } 552 if (retval > 0) { 553 unsigned int status; 554 555 if (unlikely(retval != map->m_len)) { 556 ext4_warning(inode->i_sb, 557 "ES len assertion failed for inode " 558 "%lu: retval %d != map->m_len %d", 559 inode->i_ino, retval, map->m_len); 560 WARN_ON(1); 561 } 562 563 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 564 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 565 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 566 !(status & EXTENT_STATUS_WRITTEN) && 567 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 568 map->m_lblk + map->m_len - 1)) 569 status |= EXTENT_STATUS_DELAYED; 570 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 571 map->m_pblk, status); 572 } 573 up_read((&EXT4_I(inode)->i_data_sem)); 574 575 found: 576 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 577 ret = check_block_validity(inode, map); 578 if (ret != 0) 579 return ret; 580 } 581 582 /* If it is only a block(s) look up */ 583 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 584 return retval; 585 586 /* 587 * Returns if the blocks have already allocated 588 * 589 * Note that if blocks have been preallocated 590 * ext4_ext_get_block() returns the create = 0 591 * with buffer head unmapped. 592 */ 593 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 594 /* 595 * If we need to convert extent to unwritten 596 * we continue and do the actual work in 597 * ext4_ext_map_blocks() 598 */ 599 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 600 return retval; 601 602 /* 603 * Here we clear m_flags because after allocating an new extent, 604 * it will be set again. 605 */ 606 map->m_flags &= ~EXT4_MAP_FLAGS; 607 608 /* 609 * New blocks allocate and/or writing to unwritten extent 610 * will possibly result in updating i_data, so we take 611 * the write lock of i_data_sem, and call get_block() 612 * with create == 1 flag. 613 */ 614 down_write(&EXT4_I(inode)->i_data_sem); 615 616 /* 617 * We need to check for EXT4 here because migrate 618 * could have changed the inode type in between 619 */ 620 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 621 retval = ext4_ext_map_blocks(handle, inode, map, flags); 622 } else { 623 retval = ext4_ind_map_blocks(handle, inode, map, flags); 624 625 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 626 /* 627 * We allocated new blocks which will result in 628 * i_data's format changing. Force the migrate 629 * to fail by clearing migrate flags 630 */ 631 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 632 } 633 } 634 635 if (retval > 0) { 636 unsigned int status; 637 638 if (unlikely(retval != map->m_len)) { 639 ext4_warning(inode->i_sb, 640 "ES len assertion failed for inode " 641 "%lu: retval %d != map->m_len %d", 642 inode->i_ino, retval, map->m_len); 643 WARN_ON(1); 644 } 645 646 /* 647 * We have to zeroout blocks before inserting them into extent 648 * status tree. Otherwise someone could look them up there and 649 * use them before they are really zeroed. We also have to 650 * unmap metadata before zeroing as otherwise writeback can 651 * overwrite zeros with stale data from block device. 652 */ 653 if (flags & EXT4_GET_BLOCKS_ZERO && 654 map->m_flags & EXT4_MAP_MAPPED && 655 map->m_flags & EXT4_MAP_NEW) { 656 ret = ext4_issue_zeroout(inode, map->m_lblk, 657 map->m_pblk, map->m_len); 658 if (ret) { 659 retval = ret; 660 goto out_sem; 661 } 662 } 663 664 /* 665 * If the extent has been zeroed out, we don't need to update 666 * extent status tree. 667 */ 668 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 669 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 670 if (ext4_es_is_written(&es)) 671 goto out_sem; 672 } 673 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 674 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 675 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 676 !(status & EXTENT_STATUS_WRITTEN) && 677 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 678 map->m_lblk + map->m_len - 1)) 679 status |= EXTENT_STATUS_DELAYED; 680 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 681 map->m_pblk, status); 682 } 683 684 out_sem: 685 up_write((&EXT4_I(inode)->i_data_sem)); 686 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 687 ret = check_block_validity(inode, map); 688 if (ret != 0) 689 return ret; 690 691 /* 692 * Inodes with freshly allocated blocks where contents will be 693 * visible after transaction commit must be on transaction's 694 * ordered data list. 695 */ 696 if (map->m_flags & EXT4_MAP_NEW && 697 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 698 !(flags & EXT4_GET_BLOCKS_ZERO) && 699 !ext4_is_quota_file(inode) && 700 ext4_should_order_data(inode)) { 701 loff_t start_byte = 702 (loff_t)map->m_lblk << inode->i_blkbits; 703 loff_t length = (loff_t)map->m_len << inode->i_blkbits; 704 705 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 706 ret = ext4_jbd2_inode_add_wait(handle, inode, 707 start_byte, length); 708 else 709 ret = ext4_jbd2_inode_add_write(handle, inode, 710 start_byte, length); 711 if (ret) 712 return ret; 713 } 714 } 715 if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN || 716 map->m_flags & EXT4_MAP_MAPPED)) 717 ext4_fc_track_range(handle, inode, map->m_lblk, 718 map->m_lblk + map->m_len - 1); 719 if (retval < 0) 720 ext_debug(inode, "failed with err %d\n", retval); 721 return retval; 722 } 723 724 /* 725 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 726 * we have to be careful as someone else may be manipulating b_state as well. 727 */ 728 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 729 { 730 unsigned long old_state; 731 unsigned long new_state; 732 733 flags &= EXT4_MAP_FLAGS; 734 735 /* Dummy buffer_head? Set non-atomically. */ 736 if (!bh->b_page) { 737 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 738 return; 739 } 740 /* 741 * Someone else may be modifying b_state. Be careful! This is ugly but 742 * once we get rid of using bh as a container for mapping information 743 * to pass to / from get_block functions, this can go away. 744 */ 745 old_state = READ_ONCE(bh->b_state); 746 do { 747 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 748 } while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state))); 749 } 750 751 static int _ext4_get_block(struct inode *inode, sector_t iblock, 752 struct buffer_head *bh, int flags) 753 { 754 struct ext4_map_blocks map; 755 int ret = 0; 756 757 if (ext4_has_inline_data(inode)) 758 return -ERANGE; 759 760 map.m_lblk = iblock; 761 map.m_len = bh->b_size >> inode->i_blkbits; 762 763 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 764 flags); 765 if (ret > 0) { 766 map_bh(bh, inode->i_sb, map.m_pblk); 767 ext4_update_bh_state(bh, map.m_flags); 768 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 769 ret = 0; 770 } else if (ret == 0) { 771 /* hole case, need to fill in bh->b_size */ 772 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 773 } 774 return ret; 775 } 776 777 int ext4_get_block(struct inode *inode, sector_t iblock, 778 struct buffer_head *bh, int create) 779 { 780 return _ext4_get_block(inode, iblock, bh, 781 create ? EXT4_GET_BLOCKS_CREATE : 0); 782 } 783 784 /* 785 * Get block function used when preparing for buffered write if we require 786 * creating an unwritten extent if blocks haven't been allocated. The extent 787 * will be converted to written after the IO is complete. 788 */ 789 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 790 struct buffer_head *bh_result, int create) 791 { 792 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 793 inode->i_ino, create); 794 return _ext4_get_block(inode, iblock, bh_result, 795 EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT); 796 } 797 798 /* Maximum number of blocks we map for direct IO at once. */ 799 #define DIO_MAX_BLOCKS 4096 800 801 /* 802 * `handle' can be NULL if create is zero 803 */ 804 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 805 ext4_lblk_t block, int map_flags) 806 { 807 struct ext4_map_blocks map; 808 struct buffer_head *bh; 809 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 810 bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT; 811 int err; 812 813 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 814 || handle != NULL || create == 0); 815 ASSERT(create == 0 || !nowait); 816 817 map.m_lblk = block; 818 map.m_len = 1; 819 err = ext4_map_blocks(handle, inode, &map, map_flags); 820 821 if (err == 0) 822 return create ? ERR_PTR(-ENOSPC) : NULL; 823 if (err < 0) 824 return ERR_PTR(err); 825 826 if (nowait) 827 return sb_find_get_block(inode->i_sb, map.m_pblk); 828 829 bh = sb_getblk(inode->i_sb, map.m_pblk); 830 if (unlikely(!bh)) 831 return ERR_PTR(-ENOMEM); 832 if (map.m_flags & EXT4_MAP_NEW) { 833 ASSERT(create != 0); 834 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 835 || (handle != NULL)); 836 837 /* 838 * Now that we do not always journal data, we should 839 * keep in mind whether this should always journal the 840 * new buffer as metadata. For now, regular file 841 * writes use ext4_get_block instead, so it's not a 842 * problem. 843 */ 844 lock_buffer(bh); 845 BUFFER_TRACE(bh, "call get_create_access"); 846 err = ext4_journal_get_create_access(handle, inode->i_sb, bh, 847 EXT4_JTR_NONE); 848 if (unlikely(err)) { 849 unlock_buffer(bh); 850 goto errout; 851 } 852 if (!buffer_uptodate(bh)) { 853 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 854 set_buffer_uptodate(bh); 855 } 856 unlock_buffer(bh); 857 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 858 err = ext4_handle_dirty_metadata(handle, inode, bh); 859 if (unlikely(err)) 860 goto errout; 861 } else 862 BUFFER_TRACE(bh, "not a new buffer"); 863 return bh; 864 errout: 865 brelse(bh); 866 return ERR_PTR(err); 867 } 868 869 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 870 ext4_lblk_t block, int map_flags) 871 { 872 struct buffer_head *bh; 873 int ret; 874 875 bh = ext4_getblk(handle, inode, block, map_flags); 876 if (IS_ERR(bh)) 877 return bh; 878 if (!bh || ext4_buffer_uptodate(bh)) 879 return bh; 880 881 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true); 882 if (ret) { 883 put_bh(bh); 884 return ERR_PTR(ret); 885 } 886 return bh; 887 } 888 889 /* Read a contiguous batch of blocks. */ 890 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, 891 bool wait, struct buffer_head **bhs) 892 { 893 int i, err; 894 895 for (i = 0; i < bh_count; i++) { 896 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */); 897 if (IS_ERR(bhs[i])) { 898 err = PTR_ERR(bhs[i]); 899 bh_count = i; 900 goto out_brelse; 901 } 902 } 903 904 for (i = 0; i < bh_count; i++) 905 /* Note that NULL bhs[i] is valid because of holes. */ 906 if (bhs[i] && !ext4_buffer_uptodate(bhs[i])) 907 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false); 908 909 if (!wait) 910 return 0; 911 912 for (i = 0; i < bh_count; i++) 913 if (bhs[i]) 914 wait_on_buffer(bhs[i]); 915 916 for (i = 0; i < bh_count; i++) { 917 if (bhs[i] && !buffer_uptodate(bhs[i])) { 918 err = -EIO; 919 goto out_brelse; 920 } 921 } 922 return 0; 923 924 out_brelse: 925 for (i = 0; i < bh_count; i++) { 926 brelse(bhs[i]); 927 bhs[i] = NULL; 928 } 929 return err; 930 } 931 932 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode, 933 struct buffer_head *head, 934 unsigned from, 935 unsigned to, 936 int *partial, 937 int (*fn)(handle_t *handle, struct inode *inode, 938 struct buffer_head *bh)) 939 { 940 struct buffer_head *bh; 941 unsigned block_start, block_end; 942 unsigned blocksize = head->b_size; 943 int err, ret = 0; 944 struct buffer_head *next; 945 946 for (bh = head, block_start = 0; 947 ret == 0 && (bh != head || !block_start); 948 block_start = block_end, bh = next) { 949 next = bh->b_this_page; 950 block_end = block_start + blocksize; 951 if (block_end <= from || block_start >= to) { 952 if (partial && !buffer_uptodate(bh)) 953 *partial = 1; 954 continue; 955 } 956 err = (*fn)(handle, inode, bh); 957 if (!ret) 958 ret = err; 959 } 960 return ret; 961 } 962 963 /* 964 * Helper for handling dirtying of journalled data. We also mark the folio as 965 * dirty so that writeback code knows about this page (and inode) contains 966 * dirty data. ext4_writepages() then commits appropriate transaction to 967 * make data stable. 968 */ 969 static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh) 970 { 971 folio_mark_dirty(bh->b_folio); 972 return ext4_handle_dirty_metadata(handle, NULL, bh); 973 } 974 975 int do_journal_get_write_access(handle_t *handle, struct inode *inode, 976 struct buffer_head *bh) 977 { 978 int dirty = buffer_dirty(bh); 979 int ret; 980 981 if (!buffer_mapped(bh) || buffer_freed(bh)) 982 return 0; 983 /* 984 * __block_write_begin() could have dirtied some buffers. Clean 985 * the dirty bit as jbd2_journal_get_write_access() could complain 986 * otherwise about fs integrity issues. Setting of the dirty bit 987 * by __block_write_begin() isn't a real problem here as we clear 988 * the bit before releasing a page lock and thus writeback cannot 989 * ever write the buffer. 990 */ 991 if (dirty) 992 clear_buffer_dirty(bh); 993 BUFFER_TRACE(bh, "get write access"); 994 ret = ext4_journal_get_write_access(handle, inode->i_sb, bh, 995 EXT4_JTR_NONE); 996 if (!ret && dirty) 997 ret = ext4_dirty_journalled_data(handle, bh); 998 return ret; 999 } 1000 1001 #ifdef CONFIG_FS_ENCRYPTION 1002 static int ext4_block_write_begin(struct folio *folio, loff_t pos, unsigned len, 1003 get_block_t *get_block) 1004 { 1005 unsigned from = pos & (PAGE_SIZE - 1); 1006 unsigned to = from + len; 1007 struct inode *inode = folio->mapping->host; 1008 unsigned block_start, block_end; 1009 sector_t block; 1010 int err = 0; 1011 unsigned blocksize = inode->i_sb->s_blocksize; 1012 unsigned bbits; 1013 struct buffer_head *bh, *head, *wait[2]; 1014 int nr_wait = 0; 1015 int i; 1016 1017 BUG_ON(!folio_test_locked(folio)); 1018 BUG_ON(from > PAGE_SIZE); 1019 BUG_ON(to > PAGE_SIZE); 1020 BUG_ON(from > to); 1021 1022 head = folio_buffers(folio); 1023 if (!head) { 1024 create_empty_buffers(&folio->page, blocksize, 0); 1025 head = folio_buffers(folio); 1026 } 1027 bbits = ilog2(blocksize); 1028 block = (sector_t)folio->index << (PAGE_SHIFT - bbits); 1029 1030 for (bh = head, block_start = 0; bh != head || !block_start; 1031 block++, block_start = block_end, bh = bh->b_this_page) { 1032 block_end = block_start + blocksize; 1033 if (block_end <= from || block_start >= to) { 1034 if (folio_test_uptodate(folio)) { 1035 set_buffer_uptodate(bh); 1036 } 1037 continue; 1038 } 1039 if (buffer_new(bh)) 1040 clear_buffer_new(bh); 1041 if (!buffer_mapped(bh)) { 1042 WARN_ON(bh->b_size != blocksize); 1043 err = get_block(inode, block, bh, 1); 1044 if (err) 1045 break; 1046 if (buffer_new(bh)) { 1047 if (folio_test_uptodate(folio)) { 1048 clear_buffer_new(bh); 1049 set_buffer_uptodate(bh); 1050 mark_buffer_dirty(bh); 1051 continue; 1052 } 1053 if (block_end > to || block_start < from) 1054 folio_zero_segments(folio, to, 1055 block_end, 1056 block_start, from); 1057 continue; 1058 } 1059 } 1060 if (folio_test_uptodate(folio)) { 1061 set_buffer_uptodate(bh); 1062 continue; 1063 } 1064 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1065 !buffer_unwritten(bh) && 1066 (block_start < from || block_end > to)) { 1067 ext4_read_bh_lock(bh, 0, false); 1068 wait[nr_wait++] = bh; 1069 } 1070 } 1071 /* 1072 * If we issued read requests, let them complete. 1073 */ 1074 for (i = 0; i < nr_wait; i++) { 1075 wait_on_buffer(wait[i]); 1076 if (!buffer_uptodate(wait[i])) 1077 err = -EIO; 1078 } 1079 if (unlikely(err)) { 1080 folio_zero_new_buffers(folio, from, to); 1081 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 1082 for (i = 0; i < nr_wait; i++) { 1083 int err2; 1084 1085 err2 = fscrypt_decrypt_pagecache_blocks(folio, 1086 blocksize, bh_offset(wait[i])); 1087 if (err2) { 1088 clear_buffer_uptodate(wait[i]); 1089 err = err2; 1090 } 1091 } 1092 } 1093 1094 return err; 1095 } 1096 #endif 1097 1098 /* 1099 * To preserve ordering, it is essential that the hole instantiation and 1100 * the data write be encapsulated in a single transaction. We cannot 1101 * close off a transaction and start a new one between the ext4_get_block() 1102 * and the ext4_write_end(). So doing the jbd2_journal_start at the start of 1103 * ext4_write_begin() is the right place. 1104 */ 1105 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1106 loff_t pos, unsigned len, 1107 struct page **pagep, void **fsdata) 1108 { 1109 struct inode *inode = mapping->host; 1110 int ret, needed_blocks; 1111 handle_t *handle; 1112 int retries = 0; 1113 struct folio *folio; 1114 pgoff_t index; 1115 unsigned from, to; 1116 1117 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 1118 return -EIO; 1119 1120 trace_ext4_write_begin(inode, pos, len); 1121 /* 1122 * Reserve one block more for addition to orphan list in case 1123 * we allocate blocks but write fails for some reason 1124 */ 1125 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1126 index = pos >> PAGE_SHIFT; 1127 from = pos & (PAGE_SIZE - 1); 1128 to = from + len; 1129 1130 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1131 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1132 pagep); 1133 if (ret < 0) 1134 return ret; 1135 if (ret == 1) 1136 return 0; 1137 } 1138 1139 /* 1140 * __filemap_get_folio() can take a long time if the 1141 * system is thrashing due to memory pressure, or if the folio 1142 * is being written back. So grab it first before we start 1143 * the transaction handle. This also allows us to allocate 1144 * the folio (if needed) without using GFP_NOFS. 1145 */ 1146 retry_grab: 1147 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN, 1148 mapping_gfp_mask(mapping)); 1149 if (IS_ERR(folio)) 1150 return PTR_ERR(folio); 1151 /* 1152 * The same as page allocation, we prealloc buffer heads before 1153 * starting the handle. 1154 */ 1155 if (!folio_buffers(folio)) 1156 create_empty_buffers(&folio->page, inode->i_sb->s_blocksize, 0); 1157 1158 folio_unlock(folio); 1159 1160 retry_journal: 1161 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1162 if (IS_ERR(handle)) { 1163 folio_put(folio); 1164 return PTR_ERR(handle); 1165 } 1166 1167 folio_lock(folio); 1168 if (folio->mapping != mapping) { 1169 /* The folio got truncated from under us */ 1170 folio_unlock(folio); 1171 folio_put(folio); 1172 ext4_journal_stop(handle); 1173 goto retry_grab; 1174 } 1175 /* In case writeback began while the folio was unlocked */ 1176 folio_wait_stable(folio); 1177 1178 #ifdef CONFIG_FS_ENCRYPTION 1179 if (ext4_should_dioread_nolock(inode)) 1180 ret = ext4_block_write_begin(folio, pos, len, 1181 ext4_get_block_unwritten); 1182 else 1183 ret = ext4_block_write_begin(folio, pos, len, ext4_get_block); 1184 #else 1185 if (ext4_should_dioread_nolock(inode)) 1186 ret = __block_write_begin(&folio->page, pos, len, 1187 ext4_get_block_unwritten); 1188 else 1189 ret = __block_write_begin(&folio->page, pos, len, ext4_get_block); 1190 #endif 1191 if (!ret && ext4_should_journal_data(inode)) { 1192 ret = ext4_walk_page_buffers(handle, inode, 1193 folio_buffers(folio), from, to, 1194 NULL, do_journal_get_write_access); 1195 } 1196 1197 if (ret) { 1198 bool extended = (pos + len > inode->i_size) && 1199 !ext4_verity_in_progress(inode); 1200 1201 folio_unlock(folio); 1202 /* 1203 * __block_write_begin may have instantiated a few blocks 1204 * outside i_size. Trim these off again. Don't need 1205 * i_size_read because we hold i_rwsem. 1206 * 1207 * Add inode to orphan list in case we crash before 1208 * truncate finishes 1209 */ 1210 if (extended && ext4_can_truncate(inode)) 1211 ext4_orphan_add(handle, inode); 1212 1213 ext4_journal_stop(handle); 1214 if (extended) { 1215 ext4_truncate_failed_write(inode); 1216 /* 1217 * If truncate failed early the inode might 1218 * still be on the orphan list; we need to 1219 * make sure the inode is removed from the 1220 * orphan list in that case. 1221 */ 1222 if (inode->i_nlink) 1223 ext4_orphan_del(NULL, inode); 1224 } 1225 1226 if (ret == -ENOSPC && 1227 ext4_should_retry_alloc(inode->i_sb, &retries)) 1228 goto retry_journal; 1229 folio_put(folio); 1230 return ret; 1231 } 1232 *pagep = &folio->page; 1233 return ret; 1234 } 1235 1236 /* For write_end() in data=journal mode */ 1237 static int write_end_fn(handle_t *handle, struct inode *inode, 1238 struct buffer_head *bh) 1239 { 1240 int ret; 1241 if (!buffer_mapped(bh) || buffer_freed(bh)) 1242 return 0; 1243 set_buffer_uptodate(bh); 1244 ret = ext4_dirty_journalled_data(handle, bh); 1245 clear_buffer_meta(bh); 1246 clear_buffer_prio(bh); 1247 return ret; 1248 } 1249 1250 /* 1251 * We need to pick up the new inode size which generic_commit_write gave us 1252 * `file' can be NULL - eg, when called from page_symlink(). 1253 * 1254 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1255 * buffers are managed internally. 1256 */ 1257 static int ext4_write_end(struct file *file, 1258 struct address_space *mapping, 1259 loff_t pos, unsigned len, unsigned copied, 1260 struct page *page, void *fsdata) 1261 { 1262 struct folio *folio = page_folio(page); 1263 handle_t *handle = ext4_journal_current_handle(); 1264 struct inode *inode = mapping->host; 1265 loff_t old_size = inode->i_size; 1266 int ret = 0, ret2; 1267 int i_size_changed = 0; 1268 bool verity = ext4_verity_in_progress(inode); 1269 1270 trace_ext4_write_end(inode, pos, len, copied); 1271 1272 if (ext4_has_inline_data(inode) && 1273 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) 1274 return ext4_write_inline_data_end(inode, pos, len, copied, 1275 folio); 1276 1277 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 1278 /* 1279 * it's important to update i_size while still holding folio lock: 1280 * page writeout could otherwise come in and zero beyond i_size. 1281 * 1282 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree 1283 * blocks are being written past EOF, so skip the i_size update. 1284 */ 1285 if (!verity) 1286 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1287 folio_unlock(folio); 1288 folio_put(folio); 1289 1290 if (old_size < pos && !verity) 1291 pagecache_isize_extended(inode, old_size, pos); 1292 /* 1293 * Don't mark the inode dirty under folio lock. First, it unnecessarily 1294 * makes the holding time of folio lock longer. Second, it forces lock 1295 * ordering of folio lock and transaction start for journaling 1296 * filesystems. 1297 */ 1298 if (i_size_changed) 1299 ret = ext4_mark_inode_dirty(handle, inode); 1300 1301 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1302 /* if we have allocated more blocks and copied 1303 * less. We will have blocks allocated outside 1304 * inode->i_size. So truncate them 1305 */ 1306 ext4_orphan_add(handle, inode); 1307 1308 ret2 = ext4_journal_stop(handle); 1309 if (!ret) 1310 ret = ret2; 1311 1312 if (pos + len > inode->i_size && !verity) { 1313 ext4_truncate_failed_write(inode); 1314 /* 1315 * If truncate failed early the inode might still be 1316 * on the orphan list; we need to make sure the inode 1317 * is removed from the orphan list in that case. 1318 */ 1319 if (inode->i_nlink) 1320 ext4_orphan_del(NULL, inode); 1321 } 1322 1323 return ret ? ret : copied; 1324 } 1325 1326 /* 1327 * This is a private version of folio_zero_new_buffers() which doesn't 1328 * set the buffer to be dirty, since in data=journalled mode we need 1329 * to call ext4_dirty_journalled_data() instead. 1330 */ 1331 static void ext4_journalled_zero_new_buffers(handle_t *handle, 1332 struct inode *inode, 1333 struct folio *folio, 1334 unsigned from, unsigned to) 1335 { 1336 unsigned int block_start = 0, block_end; 1337 struct buffer_head *head, *bh; 1338 1339 bh = head = folio_buffers(folio); 1340 do { 1341 block_end = block_start + bh->b_size; 1342 if (buffer_new(bh)) { 1343 if (block_end > from && block_start < to) { 1344 if (!folio_test_uptodate(folio)) { 1345 unsigned start, size; 1346 1347 start = max(from, block_start); 1348 size = min(to, block_end) - start; 1349 1350 folio_zero_range(folio, start, size); 1351 write_end_fn(handle, inode, bh); 1352 } 1353 clear_buffer_new(bh); 1354 } 1355 } 1356 block_start = block_end; 1357 bh = bh->b_this_page; 1358 } while (bh != head); 1359 } 1360 1361 static int ext4_journalled_write_end(struct file *file, 1362 struct address_space *mapping, 1363 loff_t pos, unsigned len, unsigned copied, 1364 struct page *page, void *fsdata) 1365 { 1366 struct folio *folio = page_folio(page); 1367 handle_t *handle = ext4_journal_current_handle(); 1368 struct inode *inode = mapping->host; 1369 loff_t old_size = inode->i_size; 1370 int ret = 0, ret2; 1371 int partial = 0; 1372 unsigned from, to; 1373 int size_changed = 0; 1374 bool verity = ext4_verity_in_progress(inode); 1375 1376 trace_ext4_journalled_write_end(inode, pos, len, copied); 1377 from = pos & (PAGE_SIZE - 1); 1378 to = from + len; 1379 1380 BUG_ON(!ext4_handle_valid(handle)); 1381 1382 if (ext4_has_inline_data(inode)) 1383 return ext4_write_inline_data_end(inode, pos, len, copied, 1384 folio); 1385 1386 if (unlikely(copied < len) && !folio_test_uptodate(folio)) { 1387 copied = 0; 1388 ext4_journalled_zero_new_buffers(handle, inode, folio, 1389 from, to); 1390 } else { 1391 if (unlikely(copied < len)) 1392 ext4_journalled_zero_new_buffers(handle, inode, folio, 1393 from + copied, to); 1394 ret = ext4_walk_page_buffers(handle, inode, 1395 folio_buffers(folio), 1396 from, from + copied, &partial, 1397 write_end_fn); 1398 if (!partial) 1399 folio_mark_uptodate(folio); 1400 } 1401 if (!verity) 1402 size_changed = ext4_update_inode_size(inode, pos + copied); 1403 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1404 folio_unlock(folio); 1405 folio_put(folio); 1406 1407 if (old_size < pos && !verity) 1408 pagecache_isize_extended(inode, old_size, pos); 1409 1410 if (size_changed) { 1411 ret2 = ext4_mark_inode_dirty(handle, inode); 1412 if (!ret) 1413 ret = ret2; 1414 } 1415 1416 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1417 /* if we have allocated more blocks and copied 1418 * less. We will have blocks allocated outside 1419 * inode->i_size. So truncate them 1420 */ 1421 ext4_orphan_add(handle, inode); 1422 1423 ret2 = ext4_journal_stop(handle); 1424 if (!ret) 1425 ret = ret2; 1426 if (pos + len > inode->i_size && !verity) { 1427 ext4_truncate_failed_write(inode); 1428 /* 1429 * If truncate failed early the inode might still be 1430 * on the orphan list; we need to make sure the inode 1431 * is removed from the orphan list in that case. 1432 */ 1433 if (inode->i_nlink) 1434 ext4_orphan_del(NULL, inode); 1435 } 1436 1437 return ret ? ret : copied; 1438 } 1439 1440 /* 1441 * Reserve space for a single cluster 1442 */ 1443 static int ext4_da_reserve_space(struct inode *inode) 1444 { 1445 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1446 struct ext4_inode_info *ei = EXT4_I(inode); 1447 int ret; 1448 1449 /* 1450 * We will charge metadata quota at writeout time; this saves 1451 * us from metadata over-estimation, though we may go over by 1452 * a small amount in the end. Here we just reserve for data. 1453 */ 1454 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1455 if (ret) 1456 return ret; 1457 1458 spin_lock(&ei->i_block_reservation_lock); 1459 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1460 spin_unlock(&ei->i_block_reservation_lock); 1461 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1462 return -ENOSPC; 1463 } 1464 ei->i_reserved_data_blocks++; 1465 trace_ext4_da_reserve_space(inode); 1466 spin_unlock(&ei->i_block_reservation_lock); 1467 1468 return 0; /* success */ 1469 } 1470 1471 void ext4_da_release_space(struct inode *inode, int to_free) 1472 { 1473 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1474 struct ext4_inode_info *ei = EXT4_I(inode); 1475 1476 if (!to_free) 1477 return; /* Nothing to release, exit */ 1478 1479 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1480 1481 trace_ext4_da_release_space(inode, to_free); 1482 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1483 /* 1484 * if there aren't enough reserved blocks, then the 1485 * counter is messed up somewhere. Since this 1486 * function is called from invalidate page, it's 1487 * harmless to return without any action. 1488 */ 1489 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1490 "ino %lu, to_free %d with only %d reserved " 1491 "data blocks", inode->i_ino, to_free, 1492 ei->i_reserved_data_blocks); 1493 WARN_ON(1); 1494 to_free = ei->i_reserved_data_blocks; 1495 } 1496 ei->i_reserved_data_blocks -= to_free; 1497 1498 /* update fs dirty data blocks counter */ 1499 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1500 1501 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1502 1503 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1504 } 1505 1506 /* 1507 * Delayed allocation stuff 1508 */ 1509 1510 struct mpage_da_data { 1511 /* These are input fields for ext4_do_writepages() */ 1512 struct inode *inode; 1513 struct writeback_control *wbc; 1514 unsigned int can_map:1; /* Can writepages call map blocks? */ 1515 1516 /* These are internal state of ext4_do_writepages() */ 1517 pgoff_t first_page; /* The first page to write */ 1518 pgoff_t next_page; /* Current page to examine */ 1519 pgoff_t last_page; /* Last page to examine */ 1520 /* 1521 * Extent to map - this can be after first_page because that can be 1522 * fully mapped. We somewhat abuse m_flags to store whether the extent 1523 * is delalloc or unwritten. 1524 */ 1525 struct ext4_map_blocks map; 1526 struct ext4_io_submit io_submit; /* IO submission data */ 1527 unsigned int do_map:1; 1528 unsigned int scanned_until_end:1; 1529 unsigned int journalled_more_data:1; 1530 }; 1531 1532 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1533 bool invalidate) 1534 { 1535 unsigned nr, i; 1536 pgoff_t index, end; 1537 struct folio_batch fbatch; 1538 struct inode *inode = mpd->inode; 1539 struct address_space *mapping = inode->i_mapping; 1540 1541 /* This is necessary when next_page == 0. */ 1542 if (mpd->first_page >= mpd->next_page) 1543 return; 1544 1545 mpd->scanned_until_end = 0; 1546 index = mpd->first_page; 1547 end = mpd->next_page - 1; 1548 if (invalidate) { 1549 ext4_lblk_t start, last; 1550 start = index << (PAGE_SHIFT - inode->i_blkbits); 1551 last = end << (PAGE_SHIFT - inode->i_blkbits); 1552 1553 /* 1554 * avoid racing with extent status tree scans made by 1555 * ext4_insert_delayed_block() 1556 */ 1557 down_write(&EXT4_I(inode)->i_data_sem); 1558 ext4_es_remove_extent(inode, start, last - start + 1); 1559 up_write(&EXT4_I(inode)->i_data_sem); 1560 } 1561 1562 folio_batch_init(&fbatch); 1563 while (index <= end) { 1564 nr = filemap_get_folios(mapping, &index, end, &fbatch); 1565 if (nr == 0) 1566 break; 1567 for (i = 0; i < nr; i++) { 1568 struct folio *folio = fbatch.folios[i]; 1569 1570 if (folio->index < mpd->first_page) 1571 continue; 1572 if (folio->index + folio_nr_pages(folio) - 1 > end) 1573 continue; 1574 BUG_ON(!folio_test_locked(folio)); 1575 BUG_ON(folio_test_writeback(folio)); 1576 if (invalidate) { 1577 if (folio_mapped(folio)) 1578 folio_clear_dirty_for_io(folio); 1579 block_invalidate_folio(folio, 0, 1580 folio_size(folio)); 1581 folio_clear_uptodate(folio); 1582 } 1583 folio_unlock(folio); 1584 } 1585 folio_batch_release(&fbatch); 1586 } 1587 } 1588 1589 static void ext4_print_free_blocks(struct inode *inode) 1590 { 1591 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1592 struct super_block *sb = inode->i_sb; 1593 struct ext4_inode_info *ei = EXT4_I(inode); 1594 1595 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1596 EXT4_C2B(EXT4_SB(inode->i_sb), 1597 ext4_count_free_clusters(sb))); 1598 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1599 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1600 (long long) EXT4_C2B(EXT4_SB(sb), 1601 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1602 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1603 (long long) EXT4_C2B(EXT4_SB(sb), 1604 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1605 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1606 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1607 ei->i_reserved_data_blocks); 1608 return; 1609 } 1610 1611 /* 1612 * ext4_insert_delayed_block - adds a delayed block to the extents status 1613 * tree, incrementing the reserved cluster/block 1614 * count or making a pending reservation 1615 * where needed 1616 * 1617 * @inode - file containing the newly added block 1618 * @lblk - logical block to be added 1619 * 1620 * Returns 0 on success, negative error code on failure. 1621 */ 1622 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk) 1623 { 1624 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1625 int ret; 1626 bool allocated = false; 1627 1628 /* 1629 * If the cluster containing lblk is shared with a delayed, 1630 * written, or unwritten extent in a bigalloc file system, it's 1631 * already been accounted for and does not need to be reserved. 1632 * A pending reservation must be made for the cluster if it's 1633 * shared with a written or unwritten extent and doesn't already 1634 * have one. Written and unwritten extents can be purged from the 1635 * extents status tree if the system is under memory pressure, so 1636 * it's necessary to examine the extent tree if a search of the 1637 * extents status tree doesn't get a match. 1638 */ 1639 if (sbi->s_cluster_ratio == 1) { 1640 ret = ext4_da_reserve_space(inode); 1641 if (ret != 0) /* ENOSPC */ 1642 return ret; 1643 } else { /* bigalloc */ 1644 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) { 1645 if (!ext4_es_scan_clu(inode, 1646 &ext4_es_is_mapped, lblk)) { 1647 ret = ext4_clu_mapped(inode, 1648 EXT4_B2C(sbi, lblk)); 1649 if (ret < 0) 1650 return ret; 1651 if (ret == 0) { 1652 ret = ext4_da_reserve_space(inode); 1653 if (ret != 0) /* ENOSPC */ 1654 return ret; 1655 } else { 1656 allocated = true; 1657 } 1658 } else { 1659 allocated = true; 1660 } 1661 } 1662 } 1663 1664 ext4_es_insert_delayed_block(inode, lblk, allocated); 1665 return 0; 1666 } 1667 1668 /* 1669 * This function is grabs code from the very beginning of 1670 * ext4_map_blocks, but assumes that the caller is from delayed write 1671 * time. This function looks up the requested blocks and sets the 1672 * buffer delay bit under the protection of i_data_sem. 1673 */ 1674 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1675 struct ext4_map_blocks *map, 1676 struct buffer_head *bh) 1677 { 1678 struct extent_status es; 1679 int retval; 1680 sector_t invalid_block = ~((sector_t) 0xffff); 1681 #ifdef ES_AGGRESSIVE_TEST 1682 struct ext4_map_blocks orig_map; 1683 1684 memcpy(&orig_map, map, sizeof(*map)); 1685 #endif 1686 1687 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1688 invalid_block = ~0; 1689 1690 map->m_flags = 0; 1691 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len, 1692 (unsigned long) map->m_lblk); 1693 1694 /* Lookup extent status tree firstly */ 1695 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) { 1696 if (ext4_es_is_hole(&es)) { 1697 retval = 0; 1698 down_read(&EXT4_I(inode)->i_data_sem); 1699 goto add_delayed; 1700 } 1701 1702 /* 1703 * Delayed extent could be allocated by fallocate. 1704 * So we need to check it. 1705 */ 1706 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1707 map_bh(bh, inode->i_sb, invalid_block); 1708 set_buffer_new(bh); 1709 set_buffer_delay(bh); 1710 return 0; 1711 } 1712 1713 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1714 retval = es.es_len - (iblock - es.es_lblk); 1715 if (retval > map->m_len) 1716 retval = map->m_len; 1717 map->m_len = retval; 1718 if (ext4_es_is_written(&es)) 1719 map->m_flags |= EXT4_MAP_MAPPED; 1720 else if (ext4_es_is_unwritten(&es)) 1721 map->m_flags |= EXT4_MAP_UNWRITTEN; 1722 else 1723 BUG(); 1724 1725 #ifdef ES_AGGRESSIVE_TEST 1726 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1727 #endif 1728 return retval; 1729 } 1730 1731 /* 1732 * Try to see if we can get the block without requesting a new 1733 * file system block. 1734 */ 1735 down_read(&EXT4_I(inode)->i_data_sem); 1736 if (ext4_has_inline_data(inode)) 1737 retval = 0; 1738 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1739 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1740 else 1741 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1742 1743 add_delayed: 1744 if (retval == 0) { 1745 int ret; 1746 1747 /* 1748 * XXX: __block_prepare_write() unmaps passed block, 1749 * is it OK? 1750 */ 1751 1752 ret = ext4_insert_delayed_block(inode, map->m_lblk); 1753 if (ret != 0) { 1754 retval = ret; 1755 goto out_unlock; 1756 } 1757 1758 map_bh(bh, inode->i_sb, invalid_block); 1759 set_buffer_new(bh); 1760 set_buffer_delay(bh); 1761 } else if (retval > 0) { 1762 unsigned int status; 1763 1764 if (unlikely(retval != map->m_len)) { 1765 ext4_warning(inode->i_sb, 1766 "ES len assertion failed for inode " 1767 "%lu: retval %d != map->m_len %d", 1768 inode->i_ino, retval, map->m_len); 1769 WARN_ON(1); 1770 } 1771 1772 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1773 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1774 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1775 map->m_pblk, status); 1776 } 1777 1778 out_unlock: 1779 up_read((&EXT4_I(inode)->i_data_sem)); 1780 1781 return retval; 1782 } 1783 1784 /* 1785 * This is a special get_block_t callback which is used by 1786 * ext4_da_write_begin(). It will either return mapped block or 1787 * reserve space for a single block. 1788 * 1789 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1790 * We also have b_blocknr = -1 and b_bdev initialized properly 1791 * 1792 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1793 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1794 * initialized properly. 1795 */ 1796 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1797 struct buffer_head *bh, int create) 1798 { 1799 struct ext4_map_blocks map; 1800 int ret = 0; 1801 1802 BUG_ON(create == 0); 1803 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1804 1805 map.m_lblk = iblock; 1806 map.m_len = 1; 1807 1808 /* 1809 * first, we need to know whether the block is allocated already 1810 * preallocated blocks are unmapped but should treated 1811 * the same as allocated blocks. 1812 */ 1813 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1814 if (ret <= 0) 1815 return ret; 1816 1817 map_bh(bh, inode->i_sb, map.m_pblk); 1818 ext4_update_bh_state(bh, map.m_flags); 1819 1820 if (buffer_unwritten(bh)) { 1821 /* A delayed write to unwritten bh should be marked 1822 * new and mapped. Mapped ensures that we don't do 1823 * get_block multiple times when we write to the same 1824 * offset and new ensures that we do proper zero out 1825 * for partial write. 1826 */ 1827 set_buffer_new(bh); 1828 set_buffer_mapped(bh); 1829 } 1830 return 0; 1831 } 1832 1833 static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio) 1834 { 1835 mpd->first_page += folio_nr_pages(folio); 1836 folio_unlock(folio); 1837 } 1838 1839 static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio) 1840 { 1841 size_t len; 1842 loff_t size; 1843 int err; 1844 1845 BUG_ON(folio->index != mpd->first_page); 1846 folio_clear_dirty_for_io(folio); 1847 /* 1848 * We have to be very careful here! Nothing protects writeback path 1849 * against i_size changes and the page can be writeably mapped into 1850 * page tables. So an application can be growing i_size and writing 1851 * data through mmap while writeback runs. folio_clear_dirty_for_io() 1852 * write-protects our page in page tables and the page cannot get 1853 * written to again until we release folio lock. So only after 1854 * folio_clear_dirty_for_io() we are safe to sample i_size for 1855 * ext4_bio_write_folio() to zero-out tail of the written page. We rely 1856 * on the barrier provided by folio_test_clear_dirty() in 1857 * folio_clear_dirty_for_io() to make sure i_size is really sampled only 1858 * after page tables are updated. 1859 */ 1860 size = i_size_read(mpd->inode); 1861 len = folio_size(folio); 1862 if (folio_pos(folio) + len > size && 1863 !ext4_verity_in_progress(mpd->inode)) 1864 len = size & ~PAGE_MASK; 1865 err = ext4_bio_write_folio(&mpd->io_submit, folio, len); 1866 if (!err) 1867 mpd->wbc->nr_to_write--; 1868 1869 return err; 1870 } 1871 1872 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay)) 1873 1874 /* 1875 * mballoc gives us at most this number of blocks... 1876 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 1877 * The rest of mballoc seems to handle chunks up to full group size. 1878 */ 1879 #define MAX_WRITEPAGES_EXTENT_LEN 2048 1880 1881 /* 1882 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 1883 * 1884 * @mpd - extent of blocks 1885 * @lblk - logical number of the block in the file 1886 * @bh - buffer head we want to add to the extent 1887 * 1888 * The function is used to collect contig. blocks in the same state. If the 1889 * buffer doesn't require mapping for writeback and we haven't started the 1890 * extent of buffers to map yet, the function returns 'true' immediately - the 1891 * caller can write the buffer right away. Otherwise the function returns true 1892 * if the block has been added to the extent, false if the block couldn't be 1893 * added. 1894 */ 1895 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 1896 struct buffer_head *bh) 1897 { 1898 struct ext4_map_blocks *map = &mpd->map; 1899 1900 /* Buffer that doesn't need mapping for writeback? */ 1901 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 1902 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 1903 /* So far no extent to map => we write the buffer right away */ 1904 if (map->m_len == 0) 1905 return true; 1906 return false; 1907 } 1908 1909 /* First block in the extent? */ 1910 if (map->m_len == 0) { 1911 /* We cannot map unless handle is started... */ 1912 if (!mpd->do_map) 1913 return false; 1914 map->m_lblk = lblk; 1915 map->m_len = 1; 1916 map->m_flags = bh->b_state & BH_FLAGS; 1917 return true; 1918 } 1919 1920 /* Don't go larger than mballoc is willing to allocate */ 1921 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 1922 return false; 1923 1924 /* Can we merge the block to our big extent? */ 1925 if (lblk == map->m_lblk + map->m_len && 1926 (bh->b_state & BH_FLAGS) == map->m_flags) { 1927 map->m_len++; 1928 return true; 1929 } 1930 return false; 1931 } 1932 1933 /* 1934 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 1935 * 1936 * @mpd - extent of blocks for mapping 1937 * @head - the first buffer in the page 1938 * @bh - buffer we should start processing from 1939 * @lblk - logical number of the block in the file corresponding to @bh 1940 * 1941 * Walk through page buffers from @bh upto @head (exclusive) and either submit 1942 * the page for IO if all buffers in this page were mapped and there's no 1943 * accumulated extent of buffers to map or add buffers in the page to the 1944 * extent of buffers to map. The function returns 1 if the caller can continue 1945 * by processing the next page, 0 if it should stop adding buffers to the 1946 * extent to map because we cannot extend it anymore. It can also return value 1947 * < 0 in case of error during IO submission. 1948 */ 1949 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 1950 struct buffer_head *head, 1951 struct buffer_head *bh, 1952 ext4_lblk_t lblk) 1953 { 1954 struct inode *inode = mpd->inode; 1955 int err; 1956 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) 1957 >> inode->i_blkbits; 1958 1959 if (ext4_verity_in_progress(inode)) 1960 blocks = EXT_MAX_BLOCKS; 1961 1962 do { 1963 BUG_ON(buffer_locked(bh)); 1964 1965 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 1966 /* Found extent to map? */ 1967 if (mpd->map.m_len) 1968 return 0; 1969 /* Buffer needs mapping and handle is not started? */ 1970 if (!mpd->do_map) 1971 return 0; 1972 /* Everything mapped so far and we hit EOF */ 1973 break; 1974 } 1975 } while (lblk++, (bh = bh->b_this_page) != head); 1976 /* So far everything mapped? Submit the page for IO. */ 1977 if (mpd->map.m_len == 0) { 1978 err = mpage_submit_folio(mpd, head->b_folio); 1979 if (err < 0) 1980 return err; 1981 mpage_folio_done(mpd, head->b_folio); 1982 } 1983 if (lblk >= blocks) { 1984 mpd->scanned_until_end = 1; 1985 return 0; 1986 } 1987 return 1; 1988 } 1989 1990 /* 1991 * mpage_process_folio - update folio buffers corresponding to changed extent 1992 * and may submit fully mapped page for IO 1993 * @mpd: description of extent to map, on return next extent to map 1994 * @folio: Contains these buffers. 1995 * @m_lblk: logical block mapping. 1996 * @m_pblk: corresponding physical mapping. 1997 * @map_bh: determines on return whether this page requires any further 1998 * mapping or not. 1999 * 2000 * Scan given folio buffers corresponding to changed extent and update buffer 2001 * state according to new extent state. 2002 * We map delalloc buffers to their physical location, clear unwritten bits. 2003 * If the given folio is not fully mapped, we update @mpd to the next extent in 2004 * the given folio that needs mapping & return @map_bh as true. 2005 */ 2006 static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio, 2007 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk, 2008 bool *map_bh) 2009 { 2010 struct buffer_head *head, *bh; 2011 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2012 ext4_lblk_t lblk = *m_lblk; 2013 ext4_fsblk_t pblock = *m_pblk; 2014 int err = 0; 2015 int blkbits = mpd->inode->i_blkbits; 2016 ssize_t io_end_size = 0; 2017 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end); 2018 2019 bh = head = folio_buffers(folio); 2020 do { 2021 if (lblk < mpd->map.m_lblk) 2022 continue; 2023 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2024 /* 2025 * Buffer after end of mapped extent. 2026 * Find next buffer in the folio to map. 2027 */ 2028 mpd->map.m_len = 0; 2029 mpd->map.m_flags = 0; 2030 io_end_vec->size += io_end_size; 2031 2032 err = mpage_process_page_bufs(mpd, head, bh, lblk); 2033 if (err > 0) 2034 err = 0; 2035 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) { 2036 io_end_vec = ext4_alloc_io_end_vec(io_end); 2037 if (IS_ERR(io_end_vec)) { 2038 err = PTR_ERR(io_end_vec); 2039 goto out; 2040 } 2041 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits; 2042 } 2043 *map_bh = true; 2044 goto out; 2045 } 2046 if (buffer_delay(bh)) { 2047 clear_buffer_delay(bh); 2048 bh->b_blocknr = pblock++; 2049 } 2050 clear_buffer_unwritten(bh); 2051 io_end_size += (1 << blkbits); 2052 } while (lblk++, (bh = bh->b_this_page) != head); 2053 2054 io_end_vec->size += io_end_size; 2055 *map_bh = false; 2056 out: 2057 *m_lblk = lblk; 2058 *m_pblk = pblock; 2059 return err; 2060 } 2061 2062 /* 2063 * mpage_map_buffers - update buffers corresponding to changed extent and 2064 * submit fully mapped pages for IO 2065 * 2066 * @mpd - description of extent to map, on return next extent to map 2067 * 2068 * Scan buffers corresponding to changed extent (we expect corresponding pages 2069 * to be already locked) and update buffer state according to new extent state. 2070 * We map delalloc buffers to their physical location, clear unwritten bits, 2071 * and mark buffers as uninit when we perform writes to unwritten extents 2072 * and do extent conversion after IO is finished. If the last page is not fully 2073 * mapped, we update @map to the next extent in the last page that needs 2074 * mapping. Otherwise we submit the page for IO. 2075 */ 2076 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2077 { 2078 struct folio_batch fbatch; 2079 unsigned nr, i; 2080 struct inode *inode = mpd->inode; 2081 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2082 pgoff_t start, end; 2083 ext4_lblk_t lblk; 2084 ext4_fsblk_t pblock; 2085 int err; 2086 bool map_bh = false; 2087 2088 start = mpd->map.m_lblk >> bpp_bits; 2089 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2090 lblk = start << bpp_bits; 2091 pblock = mpd->map.m_pblk; 2092 2093 folio_batch_init(&fbatch); 2094 while (start <= end) { 2095 nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch); 2096 if (nr == 0) 2097 break; 2098 for (i = 0; i < nr; i++) { 2099 struct folio *folio = fbatch.folios[i]; 2100 2101 err = mpage_process_folio(mpd, folio, &lblk, &pblock, 2102 &map_bh); 2103 /* 2104 * If map_bh is true, means page may require further bh 2105 * mapping, or maybe the page was submitted for IO. 2106 * So we return to call further extent mapping. 2107 */ 2108 if (err < 0 || map_bh) 2109 goto out; 2110 /* Page fully mapped - let IO run! */ 2111 err = mpage_submit_folio(mpd, folio); 2112 if (err < 0) 2113 goto out; 2114 mpage_folio_done(mpd, folio); 2115 } 2116 folio_batch_release(&fbatch); 2117 } 2118 /* Extent fully mapped and matches with page boundary. We are done. */ 2119 mpd->map.m_len = 0; 2120 mpd->map.m_flags = 0; 2121 return 0; 2122 out: 2123 folio_batch_release(&fbatch); 2124 return err; 2125 } 2126 2127 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2128 { 2129 struct inode *inode = mpd->inode; 2130 struct ext4_map_blocks *map = &mpd->map; 2131 int get_blocks_flags; 2132 int err, dioread_nolock; 2133 2134 trace_ext4_da_write_pages_extent(inode, map); 2135 /* 2136 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2137 * to convert an unwritten extent to be initialized (in the case 2138 * where we have written into one or more preallocated blocks). It is 2139 * possible that we're going to need more metadata blocks than 2140 * previously reserved. However we must not fail because we're in 2141 * writeback and there is nothing we can do about it so it might result 2142 * in data loss. So use reserved blocks to allocate metadata if 2143 * possible. 2144 * 2145 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2146 * the blocks in question are delalloc blocks. This indicates 2147 * that the blocks and quotas has already been checked when 2148 * the data was copied into the page cache. 2149 */ 2150 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2151 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2152 EXT4_GET_BLOCKS_IO_SUBMIT; 2153 dioread_nolock = ext4_should_dioread_nolock(inode); 2154 if (dioread_nolock) 2155 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2156 if (map->m_flags & BIT(BH_Delay)) 2157 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2158 2159 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2160 if (err < 0) 2161 return err; 2162 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2163 if (!mpd->io_submit.io_end->handle && 2164 ext4_handle_valid(handle)) { 2165 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2166 handle->h_rsv_handle = NULL; 2167 } 2168 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2169 } 2170 2171 BUG_ON(map->m_len == 0); 2172 return 0; 2173 } 2174 2175 /* 2176 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2177 * mpd->len and submit pages underlying it for IO 2178 * 2179 * @handle - handle for journal operations 2180 * @mpd - extent to map 2181 * @give_up_on_write - we set this to true iff there is a fatal error and there 2182 * is no hope of writing the data. The caller should discard 2183 * dirty pages to avoid infinite loops. 2184 * 2185 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2186 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2187 * them to initialized or split the described range from larger unwritten 2188 * extent. Note that we need not map all the described range since allocation 2189 * can return less blocks or the range is covered by more unwritten extents. We 2190 * cannot map more because we are limited by reserved transaction credits. On 2191 * the other hand we always make sure that the last touched page is fully 2192 * mapped so that it can be written out (and thus forward progress is 2193 * guaranteed). After mapping we submit all mapped pages for IO. 2194 */ 2195 static int mpage_map_and_submit_extent(handle_t *handle, 2196 struct mpage_da_data *mpd, 2197 bool *give_up_on_write) 2198 { 2199 struct inode *inode = mpd->inode; 2200 struct ext4_map_blocks *map = &mpd->map; 2201 int err; 2202 loff_t disksize; 2203 int progress = 0; 2204 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2205 struct ext4_io_end_vec *io_end_vec; 2206 2207 io_end_vec = ext4_alloc_io_end_vec(io_end); 2208 if (IS_ERR(io_end_vec)) 2209 return PTR_ERR(io_end_vec); 2210 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits; 2211 do { 2212 err = mpage_map_one_extent(handle, mpd); 2213 if (err < 0) { 2214 struct super_block *sb = inode->i_sb; 2215 2216 if (ext4_forced_shutdown(EXT4_SB(sb)) || 2217 ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) 2218 goto invalidate_dirty_pages; 2219 /* 2220 * Let the uper layers retry transient errors. 2221 * In the case of ENOSPC, if ext4_count_free_blocks() 2222 * is non-zero, a commit should free up blocks. 2223 */ 2224 if ((err == -ENOMEM) || 2225 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2226 if (progress) 2227 goto update_disksize; 2228 return err; 2229 } 2230 ext4_msg(sb, KERN_CRIT, 2231 "Delayed block allocation failed for " 2232 "inode %lu at logical offset %llu with" 2233 " max blocks %u with error %d", 2234 inode->i_ino, 2235 (unsigned long long)map->m_lblk, 2236 (unsigned)map->m_len, -err); 2237 ext4_msg(sb, KERN_CRIT, 2238 "This should not happen!! Data will " 2239 "be lost\n"); 2240 if (err == -ENOSPC) 2241 ext4_print_free_blocks(inode); 2242 invalidate_dirty_pages: 2243 *give_up_on_write = true; 2244 return err; 2245 } 2246 progress = 1; 2247 /* 2248 * Update buffer state, submit mapped pages, and get us new 2249 * extent to map 2250 */ 2251 err = mpage_map_and_submit_buffers(mpd); 2252 if (err < 0) 2253 goto update_disksize; 2254 } while (map->m_len); 2255 2256 update_disksize: 2257 /* 2258 * Update on-disk size after IO is submitted. Races with 2259 * truncate are avoided by checking i_size under i_data_sem. 2260 */ 2261 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2262 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) { 2263 int err2; 2264 loff_t i_size; 2265 2266 down_write(&EXT4_I(inode)->i_data_sem); 2267 i_size = i_size_read(inode); 2268 if (disksize > i_size) 2269 disksize = i_size; 2270 if (disksize > EXT4_I(inode)->i_disksize) 2271 EXT4_I(inode)->i_disksize = disksize; 2272 up_write(&EXT4_I(inode)->i_data_sem); 2273 err2 = ext4_mark_inode_dirty(handle, inode); 2274 if (err2) { 2275 ext4_error_err(inode->i_sb, -err2, 2276 "Failed to mark inode %lu dirty", 2277 inode->i_ino); 2278 } 2279 if (!err) 2280 err = err2; 2281 } 2282 return err; 2283 } 2284 2285 /* 2286 * Calculate the total number of credits to reserve for one writepages 2287 * iteration. This is called from ext4_writepages(). We map an extent of 2288 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2289 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2290 * bpp - 1 blocks in bpp different extents. 2291 */ 2292 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2293 { 2294 int bpp = ext4_journal_blocks_per_page(inode); 2295 2296 return ext4_meta_trans_blocks(inode, 2297 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2298 } 2299 2300 static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio, 2301 size_t len) 2302 { 2303 struct buffer_head *page_bufs = folio_buffers(folio); 2304 struct inode *inode = folio->mapping->host; 2305 int ret, err; 2306 2307 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 2308 NULL, do_journal_get_write_access); 2309 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 2310 NULL, write_end_fn); 2311 if (ret == 0) 2312 ret = err; 2313 err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len); 2314 if (ret == 0) 2315 ret = err; 2316 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 2317 2318 return ret; 2319 } 2320 2321 static int mpage_journal_page_buffers(handle_t *handle, 2322 struct mpage_da_data *mpd, 2323 struct folio *folio) 2324 { 2325 struct inode *inode = mpd->inode; 2326 loff_t size = i_size_read(inode); 2327 size_t len = folio_size(folio); 2328 2329 folio_clear_checked(folio); 2330 mpd->wbc->nr_to_write--; 2331 2332 if (folio_pos(folio) + len > size && 2333 !ext4_verity_in_progress(inode)) 2334 len = size - folio_pos(folio); 2335 2336 return ext4_journal_folio_buffers(handle, folio, len); 2337 } 2338 2339 /* 2340 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2341 * needing mapping, submit mapped pages 2342 * 2343 * @mpd - where to look for pages 2344 * 2345 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2346 * IO immediately. If we cannot map blocks, we submit just already mapped 2347 * buffers in the page for IO and keep page dirty. When we can map blocks and 2348 * we find a page which isn't mapped we start accumulating extent of buffers 2349 * underlying these pages that needs mapping (formed by either delayed or 2350 * unwritten buffers). We also lock the pages containing these buffers. The 2351 * extent found is returned in @mpd structure (starting at mpd->lblk with 2352 * length mpd->len blocks). 2353 * 2354 * Note that this function can attach bios to one io_end structure which are 2355 * neither logically nor physically contiguous. Although it may seem as an 2356 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2357 * case as we need to track IO to all buffers underlying a page in one io_end. 2358 */ 2359 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2360 { 2361 struct address_space *mapping = mpd->inode->i_mapping; 2362 struct folio_batch fbatch; 2363 unsigned int nr_folios; 2364 pgoff_t index = mpd->first_page; 2365 pgoff_t end = mpd->last_page; 2366 xa_mark_t tag; 2367 int i, err = 0; 2368 int blkbits = mpd->inode->i_blkbits; 2369 ext4_lblk_t lblk; 2370 struct buffer_head *head; 2371 handle_t *handle = NULL; 2372 int bpp = ext4_journal_blocks_per_page(mpd->inode); 2373 2374 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2375 tag = PAGECACHE_TAG_TOWRITE; 2376 else 2377 tag = PAGECACHE_TAG_DIRTY; 2378 2379 mpd->map.m_len = 0; 2380 mpd->next_page = index; 2381 if (ext4_should_journal_data(mpd->inode)) { 2382 handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE, 2383 bpp); 2384 if (IS_ERR(handle)) 2385 return PTR_ERR(handle); 2386 } 2387 folio_batch_init(&fbatch); 2388 while (index <= end) { 2389 nr_folios = filemap_get_folios_tag(mapping, &index, end, 2390 tag, &fbatch); 2391 if (nr_folios == 0) 2392 break; 2393 2394 for (i = 0; i < nr_folios; i++) { 2395 struct folio *folio = fbatch.folios[i]; 2396 2397 /* 2398 * Accumulated enough dirty pages? This doesn't apply 2399 * to WB_SYNC_ALL mode. For integrity sync we have to 2400 * keep going because someone may be concurrently 2401 * dirtying pages, and we might have synced a lot of 2402 * newly appeared dirty pages, but have not synced all 2403 * of the old dirty pages. 2404 */ 2405 if (mpd->wbc->sync_mode == WB_SYNC_NONE && 2406 mpd->wbc->nr_to_write <= 2407 mpd->map.m_len >> (PAGE_SHIFT - blkbits)) 2408 goto out; 2409 2410 /* If we can't merge this page, we are done. */ 2411 if (mpd->map.m_len > 0 && mpd->next_page != folio->index) 2412 goto out; 2413 2414 if (handle) { 2415 err = ext4_journal_ensure_credits(handle, bpp, 2416 0); 2417 if (err < 0) 2418 goto out; 2419 } 2420 2421 folio_lock(folio); 2422 /* 2423 * If the page is no longer dirty, or its mapping no 2424 * longer corresponds to inode we are writing (which 2425 * means it has been truncated or invalidated), or the 2426 * page is already under writeback and we are not doing 2427 * a data integrity writeback, skip the page 2428 */ 2429 if (!folio_test_dirty(folio) || 2430 (folio_test_writeback(folio) && 2431 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2432 unlikely(folio->mapping != mapping)) { 2433 folio_unlock(folio); 2434 continue; 2435 } 2436 2437 folio_wait_writeback(folio); 2438 BUG_ON(folio_test_writeback(folio)); 2439 2440 /* 2441 * Should never happen but for buggy code in 2442 * other subsystems that call 2443 * set_page_dirty() without properly warning 2444 * the file system first. See [1] for more 2445 * information. 2446 * 2447 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz 2448 */ 2449 if (!folio_buffers(folio)) { 2450 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index); 2451 folio_clear_dirty(folio); 2452 folio_unlock(folio); 2453 continue; 2454 } 2455 2456 if (mpd->map.m_len == 0) 2457 mpd->first_page = folio->index; 2458 mpd->next_page = folio->index + folio_nr_pages(folio); 2459 /* 2460 * Writeout when we cannot modify metadata is simple. 2461 * Just submit the page. For data=journal mode we 2462 * first handle writeout of the page for checkpoint and 2463 * only after that handle delayed page dirtying. This 2464 * makes sure current data is checkpointed to the final 2465 * location before possibly journalling it again which 2466 * is desirable when the page is frequently dirtied 2467 * through a pin. 2468 */ 2469 if (!mpd->can_map) { 2470 err = mpage_submit_folio(mpd, folio); 2471 if (err < 0) 2472 goto out; 2473 /* Pending dirtying of journalled data? */ 2474 if (folio_test_checked(folio)) { 2475 err = mpage_journal_page_buffers(handle, 2476 mpd, folio); 2477 if (err < 0) 2478 goto out; 2479 mpd->journalled_more_data = 1; 2480 } 2481 mpage_folio_done(mpd, folio); 2482 } else { 2483 /* Add all dirty buffers to mpd */ 2484 lblk = ((ext4_lblk_t)folio->index) << 2485 (PAGE_SHIFT - blkbits); 2486 head = folio_buffers(folio); 2487 err = mpage_process_page_bufs(mpd, head, head, 2488 lblk); 2489 if (err <= 0) 2490 goto out; 2491 err = 0; 2492 } 2493 } 2494 folio_batch_release(&fbatch); 2495 cond_resched(); 2496 } 2497 mpd->scanned_until_end = 1; 2498 if (handle) 2499 ext4_journal_stop(handle); 2500 return 0; 2501 out: 2502 folio_batch_release(&fbatch); 2503 if (handle) 2504 ext4_journal_stop(handle); 2505 return err; 2506 } 2507 2508 static int ext4_do_writepages(struct mpage_da_data *mpd) 2509 { 2510 struct writeback_control *wbc = mpd->wbc; 2511 pgoff_t writeback_index = 0; 2512 long nr_to_write = wbc->nr_to_write; 2513 int range_whole = 0; 2514 int cycled = 1; 2515 handle_t *handle = NULL; 2516 struct inode *inode = mpd->inode; 2517 struct address_space *mapping = inode->i_mapping; 2518 int needed_blocks, rsv_blocks = 0, ret = 0; 2519 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2520 struct blk_plug plug; 2521 bool give_up_on_write = false; 2522 2523 trace_ext4_writepages(inode, wbc); 2524 2525 /* 2526 * No pages to write? This is mainly a kludge to avoid starting 2527 * a transaction for special inodes like journal inode on last iput() 2528 * because that could violate lock ordering on umount 2529 */ 2530 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2531 goto out_writepages; 2532 2533 /* 2534 * If the filesystem has aborted, it is read-only, so return 2535 * right away instead of dumping stack traces later on that 2536 * will obscure the real source of the problem. We test 2537 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because 2538 * the latter could be true if the filesystem is mounted 2539 * read-only, and in that case, ext4_writepages should 2540 * *never* be called, so if that ever happens, we would want 2541 * the stack trace. 2542 */ 2543 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) || 2544 ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) { 2545 ret = -EROFS; 2546 goto out_writepages; 2547 } 2548 2549 /* 2550 * If we have inline data and arrive here, it means that 2551 * we will soon create the block for the 1st page, so 2552 * we'd better clear the inline data here. 2553 */ 2554 if (ext4_has_inline_data(inode)) { 2555 /* Just inode will be modified... */ 2556 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2557 if (IS_ERR(handle)) { 2558 ret = PTR_ERR(handle); 2559 goto out_writepages; 2560 } 2561 BUG_ON(ext4_test_inode_state(inode, 2562 EXT4_STATE_MAY_INLINE_DATA)); 2563 ext4_destroy_inline_data(handle, inode); 2564 ext4_journal_stop(handle); 2565 } 2566 2567 /* 2568 * data=journal mode does not do delalloc so we just need to writeout / 2569 * journal already mapped buffers. On the other hand we need to commit 2570 * transaction to make data stable. We expect all the data to be 2571 * already in the journal (the only exception are DMA pinned pages 2572 * dirtied behind our back) so we commit transaction here and run the 2573 * writeback loop to checkpoint them. The checkpointing is not actually 2574 * necessary to make data persistent *but* quite a few places (extent 2575 * shifting operations, fsverity, ...) depend on being able to drop 2576 * pagecache pages after calling filemap_write_and_wait() and for that 2577 * checkpointing needs to happen. 2578 */ 2579 if (ext4_should_journal_data(inode)) { 2580 mpd->can_map = 0; 2581 if (wbc->sync_mode == WB_SYNC_ALL) 2582 ext4_fc_commit(sbi->s_journal, 2583 EXT4_I(inode)->i_datasync_tid); 2584 } 2585 mpd->journalled_more_data = 0; 2586 2587 if (ext4_should_dioread_nolock(inode)) { 2588 /* 2589 * We may need to convert up to one extent per block in 2590 * the page and we may dirty the inode. 2591 */ 2592 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode, 2593 PAGE_SIZE >> inode->i_blkbits); 2594 } 2595 2596 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2597 range_whole = 1; 2598 2599 if (wbc->range_cyclic) { 2600 writeback_index = mapping->writeback_index; 2601 if (writeback_index) 2602 cycled = 0; 2603 mpd->first_page = writeback_index; 2604 mpd->last_page = -1; 2605 } else { 2606 mpd->first_page = wbc->range_start >> PAGE_SHIFT; 2607 mpd->last_page = wbc->range_end >> PAGE_SHIFT; 2608 } 2609 2610 ext4_io_submit_init(&mpd->io_submit, wbc); 2611 retry: 2612 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2613 tag_pages_for_writeback(mapping, mpd->first_page, 2614 mpd->last_page); 2615 blk_start_plug(&plug); 2616 2617 /* 2618 * First writeback pages that don't need mapping - we can avoid 2619 * starting a transaction unnecessarily and also avoid being blocked 2620 * in the block layer on device congestion while having transaction 2621 * started. 2622 */ 2623 mpd->do_map = 0; 2624 mpd->scanned_until_end = 0; 2625 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2626 if (!mpd->io_submit.io_end) { 2627 ret = -ENOMEM; 2628 goto unplug; 2629 } 2630 ret = mpage_prepare_extent_to_map(mpd); 2631 /* Unlock pages we didn't use */ 2632 mpage_release_unused_pages(mpd, false); 2633 /* Submit prepared bio */ 2634 ext4_io_submit(&mpd->io_submit); 2635 ext4_put_io_end_defer(mpd->io_submit.io_end); 2636 mpd->io_submit.io_end = NULL; 2637 if (ret < 0) 2638 goto unplug; 2639 2640 while (!mpd->scanned_until_end && wbc->nr_to_write > 0) { 2641 /* For each extent of pages we use new io_end */ 2642 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2643 if (!mpd->io_submit.io_end) { 2644 ret = -ENOMEM; 2645 break; 2646 } 2647 2648 WARN_ON_ONCE(!mpd->can_map); 2649 /* 2650 * We have two constraints: We find one extent to map and we 2651 * must always write out whole page (makes a difference when 2652 * blocksize < pagesize) so that we don't block on IO when we 2653 * try to write out the rest of the page. Journalled mode is 2654 * not supported by delalloc. 2655 */ 2656 BUG_ON(ext4_should_journal_data(inode)); 2657 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2658 2659 /* start a new transaction */ 2660 handle = ext4_journal_start_with_reserve(inode, 2661 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2662 if (IS_ERR(handle)) { 2663 ret = PTR_ERR(handle); 2664 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2665 "%ld pages, ino %lu; err %d", __func__, 2666 wbc->nr_to_write, inode->i_ino, ret); 2667 /* Release allocated io_end */ 2668 ext4_put_io_end(mpd->io_submit.io_end); 2669 mpd->io_submit.io_end = NULL; 2670 break; 2671 } 2672 mpd->do_map = 1; 2673 2674 trace_ext4_da_write_pages(inode, mpd->first_page, wbc); 2675 ret = mpage_prepare_extent_to_map(mpd); 2676 if (!ret && mpd->map.m_len) 2677 ret = mpage_map_and_submit_extent(handle, mpd, 2678 &give_up_on_write); 2679 /* 2680 * Caution: If the handle is synchronous, 2681 * ext4_journal_stop() can wait for transaction commit 2682 * to finish which may depend on writeback of pages to 2683 * complete or on page lock to be released. In that 2684 * case, we have to wait until after we have 2685 * submitted all the IO, released page locks we hold, 2686 * and dropped io_end reference (for extent conversion 2687 * to be able to complete) before stopping the handle. 2688 */ 2689 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2690 ext4_journal_stop(handle); 2691 handle = NULL; 2692 mpd->do_map = 0; 2693 } 2694 /* Unlock pages we didn't use */ 2695 mpage_release_unused_pages(mpd, give_up_on_write); 2696 /* Submit prepared bio */ 2697 ext4_io_submit(&mpd->io_submit); 2698 2699 /* 2700 * Drop our io_end reference we got from init. We have 2701 * to be careful and use deferred io_end finishing if 2702 * we are still holding the transaction as we can 2703 * release the last reference to io_end which may end 2704 * up doing unwritten extent conversion. 2705 */ 2706 if (handle) { 2707 ext4_put_io_end_defer(mpd->io_submit.io_end); 2708 ext4_journal_stop(handle); 2709 } else 2710 ext4_put_io_end(mpd->io_submit.io_end); 2711 mpd->io_submit.io_end = NULL; 2712 2713 if (ret == -ENOSPC && sbi->s_journal) { 2714 /* 2715 * Commit the transaction which would 2716 * free blocks released in the transaction 2717 * and try again 2718 */ 2719 jbd2_journal_force_commit_nested(sbi->s_journal); 2720 ret = 0; 2721 continue; 2722 } 2723 /* Fatal error - ENOMEM, EIO... */ 2724 if (ret) 2725 break; 2726 } 2727 unplug: 2728 blk_finish_plug(&plug); 2729 if (!ret && !cycled && wbc->nr_to_write > 0) { 2730 cycled = 1; 2731 mpd->last_page = writeback_index - 1; 2732 mpd->first_page = 0; 2733 goto retry; 2734 } 2735 2736 /* Update index */ 2737 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2738 /* 2739 * Set the writeback_index so that range_cyclic 2740 * mode will write it back later 2741 */ 2742 mapping->writeback_index = mpd->first_page; 2743 2744 out_writepages: 2745 trace_ext4_writepages_result(inode, wbc, ret, 2746 nr_to_write - wbc->nr_to_write); 2747 return ret; 2748 } 2749 2750 static int ext4_writepages(struct address_space *mapping, 2751 struct writeback_control *wbc) 2752 { 2753 struct super_block *sb = mapping->host->i_sb; 2754 struct mpage_da_data mpd = { 2755 .inode = mapping->host, 2756 .wbc = wbc, 2757 .can_map = 1, 2758 }; 2759 int ret; 2760 int alloc_ctx; 2761 2762 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 2763 return -EIO; 2764 2765 alloc_ctx = ext4_writepages_down_read(sb); 2766 ret = ext4_do_writepages(&mpd); 2767 /* 2768 * For data=journal writeback we could have come across pages marked 2769 * for delayed dirtying (PageChecked) which were just added to the 2770 * running transaction. Try once more to get them to stable storage. 2771 */ 2772 if (!ret && mpd.journalled_more_data) 2773 ret = ext4_do_writepages(&mpd); 2774 ext4_writepages_up_read(sb, alloc_ctx); 2775 2776 return ret; 2777 } 2778 2779 int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode) 2780 { 2781 struct writeback_control wbc = { 2782 .sync_mode = WB_SYNC_ALL, 2783 .nr_to_write = LONG_MAX, 2784 .range_start = jinode->i_dirty_start, 2785 .range_end = jinode->i_dirty_end, 2786 }; 2787 struct mpage_da_data mpd = { 2788 .inode = jinode->i_vfs_inode, 2789 .wbc = &wbc, 2790 .can_map = 0, 2791 }; 2792 return ext4_do_writepages(&mpd); 2793 } 2794 2795 static int ext4_dax_writepages(struct address_space *mapping, 2796 struct writeback_control *wbc) 2797 { 2798 int ret; 2799 long nr_to_write = wbc->nr_to_write; 2800 struct inode *inode = mapping->host; 2801 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2802 int alloc_ctx; 2803 2804 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2805 return -EIO; 2806 2807 alloc_ctx = ext4_writepages_down_read(inode->i_sb); 2808 trace_ext4_writepages(inode, wbc); 2809 2810 ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc); 2811 trace_ext4_writepages_result(inode, wbc, ret, 2812 nr_to_write - wbc->nr_to_write); 2813 ext4_writepages_up_read(inode->i_sb, alloc_ctx); 2814 return ret; 2815 } 2816 2817 static int ext4_nonda_switch(struct super_block *sb) 2818 { 2819 s64 free_clusters, dirty_clusters; 2820 struct ext4_sb_info *sbi = EXT4_SB(sb); 2821 2822 /* 2823 * switch to non delalloc mode if we are running low 2824 * on free block. The free block accounting via percpu 2825 * counters can get slightly wrong with percpu_counter_batch getting 2826 * accumulated on each CPU without updating global counters 2827 * Delalloc need an accurate free block accounting. So switch 2828 * to non delalloc when we are near to error range. 2829 */ 2830 free_clusters = 2831 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2832 dirty_clusters = 2833 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2834 /* 2835 * Start pushing delalloc when 1/2 of free blocks are dirty. 2836 */ 2837 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2838 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2839 2840 if (2 * free_clusters < 3 * dirty_clusters || 2841 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2842 /* 2843 * free block count is less than 150% of dirty blocks 2844 * or free blocks is less than watermark 2845 */ 2846 return 1; 2847 } 2848 return 0; 2849 } 2850 2851 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2852 loff_t pos, unsigned len, 2853 struct page **pagep, void **fsdata) 2854 { 2855 int ret, retries = 0; 2856 struct folio *folio; 2857 pgoff_t index; 2858 struct inode *inode = mapping->host; 2859 2860 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2861 return -EIO; 2862 2863 index = pos >> PAGE_SHIFT; 2864 2865 if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) { 2866 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2867 return ext4_write_begin(file, mapping, pos, 2868 len, pagep, fsdata); 2869 } 2870 *fsdata = (void *)0; 2871 trace_ext4_da_write_begin(inode, pos, len); 2872 2873 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2874 ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len, 2875 pagep, fsdata); 2876 if (ret < 0) 2877 return ret; 2878 if (ret == 1) 2879 return 0; 2880 } 2881 2882 retry: 2883 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN, 2884 mapping_gfp_mask(mapping)); 2885 if (IS_ERR(folio)) 2886 return PTR_ERR(folio); 2887 2888 /* In case writeback began while the folio was unlocked */ 2889 folio_wait_stable(folio); 2890 2891 #ifdef CONFIG_FS_ENCRYPTION 2892 ret = ext4_block_write_begin(folio, pos, len, ext4_da_get_block_prep); 2893 #else 2894 ret = __block_write_begin(&folio->page, pos, len, ext4_da_get_block_prep); 2895 #endif 2896 if (ret < 0) { 2897 folio_unlock(folio); 2898 folio_put(folio); 2899 /* 2900 * block_write_begin may have instantiated a few blocks 2901 * outside i_size. Trim these off again. Don't need 2902 * i_size_read because we hold inode lock. 2903 */ 2904 if (pos + len > inode->i_size) 2905 ext4_truncate_failed_write(inode); 2906 2907 if (ret == -ENOSPC && 2908 ext4_should_retry_alloc(inode->i_sb, &retries)) 2909 goto retry; 2910 return ret; 2911 } 2912 2913 *pagep = &folio->page; 2914 return ret; 2915 } 2916 2917 /* 2918 * Check if we should update i_disksize 2919 * when write to the end of file but not require block allocation 2920 */ 2921 static int ext4_da_should_update_i_disksize(struct folio *folio, 2922 unsigned long offset) 2923 { 2924 struct buffer_head *bh; 2925 struct inode *inode = folio->mapping->host; 2926 unsigned int idx; 2927 int i; 2928 2929 bh = folio_buffers(folio); 2930 idx = offset >> inode->i_blkbits; 2931 2932 for (i = 0; i < idx; i++) 2933 bh = bh->b_this_page; 2934 2935 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2936 return 0; 2937 return 1; 2938 } 2939 2940 static int ext4_da_write_end(struct file *file, 2941 struct address_space *mapping, 2942 loff_t pos, unsigned len, unsigned copied, 2943 struct page *page, void *fsdata) 2944 { 2945 struct inode *inode = mapping->host; 2946 loff_t new_i_size; 2947 unsigned long start, end; 2948 int write_mode = (int)(unsigned long)fsdata; 2949 struct folio *folio = page_folio(page); 2950 2951 if (write_mode == FALL_BACK_TO_NONDELALLOC) 2952 return ext4_write_end(file, mapping, pos, 2953 len, copied, &folio->page, fsdata); 2954 2955 trace_ext4_da_write_end(inode, pos, len, copied); 2956 2957 if (write_mode != CONVERT_INLINE_DATA && 2958 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 2959 ext4_has_inline_data(inode)) 2960 return ext4_write_inline_data_end(inode, pos, len, copied, 2961 folio); 2962 2963 if (unlikely(copied < len) && !PageUptodate(page)) 2964 copied = 0; 2965 2966 start = pos & (PAGE_SIZE - 1); 2967 end = start + copied - 1; 2968 2969 /* 2970 * Since we are holding inode lock, we are sure i_disksize <= 2971 * i_size. We also know that if i_disksize < i_size, there are 2972 * delalloc writes pending in the range upto i_size. If the end of 2973 * the current write is <= i_size, there's no need to touch 2974 * i_disksize since writeback will push i_disksize upto i_size 2975 * eventually. If the end of the current write is > i_size and 2976 * inside an allocated block (ext4_da_should_update_i_disksize() 2977 * check), we need to update i_disksize here as certain 2978 * ext4_writepages() paths not allocating blocks update i_disksize. 2979 * 2980 * Note that we defer inode dirtying to generic_write_end() / 2981 * ext4_da_write_inline_data_end(). 2982 */ 2983 new_i_size = pos + copied; 2984 if (copied && new_i_size > inode->i_size && 2985 ext4_da_should_update_i_disksize(folio, end)) 2986 ext4_update_i_disksize(inode, new_i_size); 2987 2988 return generic_write_end(file, mapping, pos, len, copied, &folio->page, 2989 fsdata); 2990 } 2991 2992 /* 2993 * Force all delayed allocation blocks to be allocated for a given inode. 2994 */ 2995 int ext4_alloc_da_blocks(struct inode *inode) 2996 { 2997 trace_ext4_alloc_da_blocks(inode); 2998 2999 if (!EXT4_I(inode)->i_reserved_data_blocks) 3000 return 0; 3001 3002 /* 3003 * We do something simple for now. The filemap_flush() will 3004 * also start triggering a write of the data blocks, which is 3005 * not strictly speaking necessary (and for users of 3006 * laptop_mode, not even desirable). However, to do otherwise 3007 * would require replicating code paths in: 3008 * 3009 * ext4_writepages() -> 3010 * write_cache_pages() ---> (via passed in callback function) 3011 * __mpage_da_writepage() --> 3012 * mpage_add_bh_to_extent() 3013 * mpage_da_map_blocks() 3014 * 3015 * The problem is that write_cache_pages(), located in 3016 * mm/page-writeback.c, marks pages clean in preparation for 3017 * doing I/O, which is not desirable if we're not planning on 3018 * doing I/O at all. 3019 * 3020 * We could call write_cache_pages(), and then redirty all of 3021 * the pages by calling redirty_page_for_writepage() but that 3022 * would be ugly in the extreme. So instead we would need to 3023 * replicate parts of the code in the above functions, 3024 * simplifying them because we wouldn't actually intend to 3025 * write out the pages, but rather only collect contiguous 3026 * logical block extents, call the multi-block allocator, and 3027 * then update the buffer heads with the block allocations. 3028 * 3029 * For now, though, we'll cheat by calling filemap_flush(), 3030 * which will map the blocks, and start the I/O, but not 3031 * actually wait for the I/O to complete. 3032 */ 3033 return filemap_flush(inode->i_mapping); 3034 } 3035 3036 /* 3037 * bmap() is special. It gets used by applications such as lilo and by 3038 * the swapper to find the on-disk block of a specific piece of data. 3039 * 3040 * Naturally, this is dangerous if the block concerned is still in the 3041 * journal. If somebody makes a swapfile on an ext4 data-journaling 3042 * filesystem and enables swap, then they may get a nasty shock when the 3043 * data getting swapped to that swapfile suddenly gets overwritten by 3044 * the original zero's written out previously to the journal and 3045 * awaiting writeback in the kernel's buffer cache. 3046 * 3047 * So, if we see any bmap calls here on a modified, data-journaled file, 3048 * take extra steps to flush any blocks which might be in the cache. 3049 */ 3050 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3051 { 3052 struct inode *inode = mapping->host; 3053 sector_t ret = 0; 3054 3055 inode_lock_shared(inode); 3056 /* 3057 * We can get here for an inline file via the FIBMAP ioctl 3058 */ 3059 if (ext4_has_inline_data(inode)) 3060 goto out; 3061 3062 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3063 (test_opt(inode->i_sb, DELALLOC) || 3064 ext4_should_journal_data(inode))) { 3065 /* 3066 * With delalloc or journalled data we want to sync the file so 3067 * that we can make sure we allocate blocks for file and data 3068 * is in place for the user to see it 3069 */ 3070 filemap_write_and_wait(mapping); 3071 } 3072 3073 ret = iomap_bmap(mapping, block, &ext4_iomap_ops); 3074 3075 out: 3076 inode_unlock_shared(inode); 3077 return ret; 3078 } 3079 3080 static int ext4_read_folio(struct file *file, struct folio *folio) 3081 { 3082 int ret = -EAGAIN; 3083 struct inode *inode = folio->mapping->host; 3084 3085 trace_ext4_read_folio(inode, folio); 3086 3087 if (ext4_has_inline_data(inode)) 3088 ret = ext4_readpage_inline(inode, folio); 3089 3090 if (ret == -EAGAIN) 3091 return ext4_mpage_readpages(inode, NULL, folio); 3092 3093 return ret; 3094 } 3095 3096 static void ext4_readahead(struct readahead_control *rac) 3097 { 3098 struct inode *inode = rac->mapping->host; 3099 3100 /* If the file has inline data, no need to do readahead. */ 3101 if (ext4_has_inline_data(inode)) 3102 return; 3103 3104 ext4_mpage_readpages(inode, rac, NULL); 3105 } 3106 3107 static void ext4_invalidate_folio(struct folio *folio, size_t offset, 3108 size_t length) 3109 { 3110 trace_ext4_invalidate_folio(folio, offset, length); 3111 3112 /* No journalling happens on data buffers when this function is used */ 3113 WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio))); 3114 3115 block_invalidate_folio(folio, offset, length); 3116 } 3117 3118 static int __ext4_journalled_invalidate_folio(struct folio *folio, 3119 size_t offset, size_t length) 3120 { 3121 journal_t *journal = EXT4_JOURNAL(folio->mapping->host); 3122 3123 trace_ext4_journalled_invalidate_folio(folio, offset, length); 3124 3125 /* 3126 * If it's a full truncate we just forget about the pending dirtying 3127 */ 3128 if (offset == 0 && length == folio_size(folio)) 3129 folio_clear_checked(folio); 3130 3131 return jbd2_journal_invalidate_folio(journal, folio, offset, length); 3132 } 3133 3134 /* Wrapper for aops... */ 3135 static void ext4_journalled_invalidate_folio(struct folio *folio, 3136 size_t offset, 3137 size_t length) 3138 { 3139 WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0); 3140 } 3141 3142 static bool ext4_release_folio(struct folio *folio, gfp_t wait) 3143 { 3144 struct inode *inode = folio->mapping->host; 3145 journal_t *journal = EXT4_JOURNAL(inode); 3146 3147 trace_ext4_release_folio(inode, folio); 3148 3149 /* Page has dirty journalled data -> cannot release */ 3150 if (folio_test_checked(folio)) 3151 return false; 3152 if (journal) 3153 return jbd2_journal_try_to_free_buffers(journal, folio); 3154 else 3155 return try_to_free_buffers(folio); 3156 } 3157 3158 static bool ext4_inode_datasync_dirty(struct inode *inode) 3159 { 3160 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 3161 3162 if (journal) { 3163 if (jbd2_transaction_committed(journal, 3164 EXT4_I(inode)->i_datasync_tid)) 3165 return false; 3166 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT)) 3167 return !list_empty(&EXT4_I(inode)->i_fc_list); 3168 return true; 3169 } 3170 3171 /* Any metadata buffers to write? */ 3172 if (!list_empty(&inode->i_mapping->private_list)) 3173 return true; 3174 return inode->i_state & I_DIRTY_DATASYNC; 3175 } 3176 3177 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap, 3178 struct ext4_map_blocks *map, loff_t offset, 3179 loff_t length, unsigned int flags) 3180 { 3181 u8 blkbits = inode->i_blkbits; 3182 3183 /* 3184 * Writes that span EOF might trigger an I/O size update on completion, 3185 * so consider them to be dirty for the purpose of O_DSYNC, even if 3186 * there is no other metadata changes being made or are pending. 3187 */ 3188 iomap->flags = 0; 3189 if (ext4_inode_datasync_dirty(inode) || 3190 offset + length > i_size_read(inode)) 3191 iomap->flags |= IOMAP_F_DIRTY; 3192 3193 if (map->m_flags & EXT4_MAP_NEW) 3194 iomap->flags |= IOMAP_F_NEW; 3195 3196 if (flags & IOMAP_DAX) 3197 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev; 3198 else 3199 iomap->bdev = inode->i_sb->s_bdev; 3200 iomap->offset = (u64) map->m_lblk << blkbits; 3201 iomap->length = (u64) map->m_len << blkbits; 3202 3203 if ((map->m_flags & EXT4_MAP_MAPPED) && 3204 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3205 iomap->flags |= IOMAP_F_MERGED; 3206 3207 /* 3208 * Flags passed to ext4_map_blocks() for direct I/O writes can result 3209 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits 3210 * set. In order for any allocated unwritten extents to be converted 3211 * into written extents correctly within the ->end_io() handler, we 3212 * need to ensure that the iomap->type is set appropriately. Hence, the 3213 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has 3214 * been set first. 3215 */ 3216 if (map->m_flags & EXT4_MAP_UNWRITTEN) { 3217 iomap->type = IOMAP_UNWRITTEN; 3218 iomap->addr = (u64) map->m_pblk << blkbits; 3219 if (flags & IOMAP_DAX) 3220 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; 3221 } else if (map->m_flags & EXT4_MAP_MAPPED) { 3222 iomap->type = IOMAP_MAPPED; 3223 iomap->addr = (u64) map->m_pblk << blkbits; 3224 if (flags & IOMAP_DAX) 3225 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; 3226 } else { 3227 iomap->type = IOMAP_HOLE; 3228 iomap->addr = IOMAP_NULL_ADDR; 3229 } 3230 } 3231 3232 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map, 3233 unsigned int flags) 3234 { 3235 handle_t *handle; 3236 u8 blkbits = inode->i_blkbits; 3237 int ret, dio_credits, m_flags = 0, retries = 0; 3238 3239 /* 3240 * Trim the mapping request to the maximum value that we can map at 3241 * once for direct I/O. 3242 */ 3243 if (map->m_len > DIO_MAX_BLOCKS) 3244 map->m_len = DIO_MAX_BLOCKS; 3245 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len); 3246 3247 retry: 3248 /* 3249 * Either we allocate blocks and then don't get an unwritten extent, so 3250 * in that case we have reserved enough credits. Or, the blocks are 3251 * already allocated and unwritten. In that case, the extent conversion 3252 * fits into the credits as well. 3253 */ 3254 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 3255 if (IS_ERR(handle)) 3256 return PTR_ERR(handle); 3257 3258 /* 3259 * DAX and direct I/O are the only two operations that are currently 3260 * supported with IOMAP_WRITE. 3261 */ 3262 WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT))); 3263 if (flags & IOMAP_DAX) 3264 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO; 3265 /* 3266 * We use i_size instead of i_disksize here because delalloc writeback 3267 * can complete at any point during the I/O and subsequently push the 3268 * i_disksize out to i_size. This could be beyond where direct I/O is 3269 * happening and thus expose allocated blocks to direct I/O reads. 3270 */ 3271 else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode)) 3272 m_flags = EXT4_GET_BLOCKS_CREATE; 3273 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3274 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT; 3275 3276 ret = ext4_map_blocks(handle, inode, map, m_flags); 3277 3278 /* 3279 * We cannot fill holes in indirect tree based inodes as that could 3280 * expose stale data in the case of a crash. Use the magic error code 3281 * to fallback to buffered I/O. 3282 */ 3283 if (!m_flags && !ret) 3284 ret = -ENOTBLK; 3285 3286 ext4_journal_stop(handle); 3287 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3288 goto retry; 3289 3290 return ret; 3291 } 3292 3293 3294 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3295 unsigned flags, struct iomap *iomap, struct iomap *srcmap) 3296 { 3297 int ret; 3298 struct ext4_map_blocks map; 3299 u8 blkbits = inode->i_blkbits; 3300 3301 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3302 return -EINVAL; 3303 3304 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3305 return -ERANGE; 3306 3307 /* 3308 * Calculate the first and last logical blocks respectively. 3309 */ 3310 map.m_lblk = offset >> blkbits; 3311 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3312 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3313 3314 if (flags & IOMAP_WRITE) { 3315 /* 3316 * We check here if the blocks are already allocated, then we 3317 * don't need to start a journal txn and we can directly return 3318 * the mapping information. This could boost performance 3319 * especially in multi-threaded overwrite requests. 3320 */ 3321 if (offset + length <= i_size_read(inode)) { 3322 ret = ext4_map_blocks(NULL, inode, &map, 0); 3323 if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED)) 3324 goto out; 3325 } 3326 ret = ext4_iomap_alloc(inode, &map, flags); 3327 } else { 3328 ret = ext4_map_blocks(NULL, inode, &map, 0); 3329 } 3330 3331 if (ret < 0) 3332 return ret; 3333 out: 3334 /* 3335 * When inline encryption is enabled, sometimes I/O to an encrypted file 3336 * has to be broken up to guarantee DUN contiguity. Handle this by 3337 * limiting the length of the mapping returned. 3338 */ 3339 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len); 3340 3341 ext4_set_iomap(inode, iomap, &map, offset, length, flags); 3342 3343 return 0; 3344 } 3345 3346 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset, 3347 loff_t length, unsigned flags, struct iomap *iomap, 3348 struct iomap *srcmap) 3349 { 3350 int ret; 3351 3352 /* 3353 * Even for writes we don't need to allocate blocks, so just pretend 3354 * we are reading to save overhead of starting a transaction. 3355 */ 3356 flags &= ~IOMAP_WRITE; 3357 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap); 3358 WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED); 3359 return ret; 3360 } 3361 3362 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, 3363 ssize_t written, unsigned flags, struct iomap *iomap) 3364 { 3365 /* 3366 * Check to see whether an error occurred while writing out the data to 3367 * the allocated blocks. If so, return the magic error code so that we 3368 * fallback to buffered I/O and attempt to complete the remainder of 3369 * the I/O. Any blocks that may have been allocated in preparation for 3370 * the direct I/O will be reused during buffered I/O. 3371 */ 3372 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0) 3373 return -ENOTBLK; 3374 3375 return 0; 3376 } 3377 3378 const struct iomap_ops ext4_iomap_ops = { 3379 .iomap_begin = ext4_iomap_begin, 3380 .iomap_end = ext4_iomap_end, 3381 }; 3382 3383 const struct iomap_ops ext4_iomap_overwrite_ops = { 3384 .iomap_begin = ext4_iomap_overwrite_begin, 3385 .iomap_end = ext4_iomap_end, 3386 }; 3387 3388 static bool ext4_iomap_is_delalloc(struct inode *inode, 3389 struct ext4_map_blocks *map) 3390 { 3391 struct extent_status es; 3392 ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1; 3393 3394 ext4_es_find_extent_range(inode, &ext4_es_is_delayed, 3395 map->m_lblk, end, &es); 3396 3397 if (!es.es_len || es.es_lblk > end) 3398 return false; 3399 3400 if (es.es_lblk > map->m_lblk) { 3401 map->m_len = es.es_lblk - map->m_lblk; 3402 return false; 3403 } 3404 3405 offset = map->m_lblk - es.es_lblk; 3406 map->m_len = es.es_len - offset; 3407 3408 return true; 3409 } 3410 3411 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset, 3412 loff_t length, unsigned int flags, 3413 struct iomap *iomap, struct iomap *srcmap) 3414 { 3415 int ret; 3416 bool delalloc = false; 3417 struct ext4_map_blocks map; 3418 u8 blkbits = inode->i_blkbits; 3419 3420 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3421 return -EINVAL; 3422 3423 if (ext4_has_inline_data(inode)) { 3424 ret = ext4_inline_data_iomap(inode, iomap); 3425 if (ret != -EAGAIN) { 3426 if (ret == 0 && offset >= iomap->length) 3427 ret = -ENOENT; 3428 return ret; 3429 } 3430 } 3431 3432 /* 3433 * Calculate the first and last logical block respectively. 3434 */ 3435 map.m_lblk = offset >> blkbits; 3436 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3437 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3438 3439 /* 3440 * Fiemap callers may call for offset beyond s_bitmap_maxbytes. 3441 * So handle it here itself instead of querying ext4_map_blocks(). 3442 * Since ext4_map_blocks() will warn about it and will return 3443 * -EIO error. 3444 */ 3445 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 3446 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3447 3448 if (offset >= sbi->s_bitmap_maxbytes) { 3449 map.m_flags = 0; 3450 goto set_iomap; 3451 } 3452 } 3453 3454 ret = ext4_map_blocks(NULL, inode, &map, 0); 3455 if (ret < 0) 3456 return ret; 3457 if (ret == 0) 3458 delalloc = ext4_iomap_is_delalloc(inode, &map); 3459 3460 set_iomap: 3461 ext4_set_iomap(inode, iomap, &map, offset, length, flags); 3462 if (delalloc && iomap->type == IOMAP_HOLE) 3463 iomap->type = IOMAP_DELALLOC; 3464 3465 return 0; 3466 } 3467 3468 const struct iomap_ops ext4_iomap_report_ops = { 3469 .iomap_begin = ext4_iomap_begin_report, 3470 }; 3471 3472 /* 3473 * For data=journal mode, folio should be marked dirty only when it was 3474 * writeably mapped. When that happens, it was already attached to the 3475 * transaction and marked as jbddirty (we take care of this in 3476 * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings 3477 * so we should have nothing to do here, except for the case when someone 3478 * had the page pinned and dirtied the page through this pin (e.g. by doing 3479 * direct IO to it). In that case we'd need to attach buffers here to the 3480 * transaction but we cannot due to lock ordering. We cannot just dirty the 3481 * folio and leave attached buffers clean, because the buffers' dirty state is 3482 * "definitive". We cannot just set the buffers dirty or jbddirty because all 3483 * the journalling code will explode. So what we do is to mark the folio 3484 * "pending dirty" and next time ext4_writepages() is called, attach buffers 3485 * to the transaction appropriately. 3486 */ 3487 static bool ext4_journalled_dirty_folio(struct address_space *mapping, 3488 struct folio *folio) 3489 { 3490 WARN_ON_ONCE(!folio_buffers(folio)); 3491 if (folio_maybe_dma_pinned(folio)) 3492 folio_set_checked(folio); 3493 return filemap_dirty_folio(mapping, folio); 3494 } 3495 3496 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio) 3497 { 3498 WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio)); 3499 WARN_ON_ONCE(!folio_buffers(folio)); 3500 return block_dirty_folio(mapping, folio); 3501 } 3502 3503 static int ext4_iomap_swap_activate(struct swap_info_struct *sis, 3504 struct file *file, sector_t *span) 3505 { 3506 return iomap_swapfile_activate(sis, file, span, 3507 &ext4_iomap_report_ops); 3508 } 3509 3510 static const struct address_space_operations ext4_aops = { 3511 .read_folio = ext4_read_folio, 3512 .readahead = ext4_readahead, 3513 .writepages = ext4_writepages, 3514 .write_begin = ext4_write_begin, 3515 .write_end = ext4_write_end, 3516 .dirty_folio = ext4_dirty_folio, 3517 .bmap = ext4_bmap, 3518 .invalidate_folio = ext4_invalidate_folio, 3519 .release_folio = ext4_release_folio, 3520 .direct_IO = noop_direct_IO, 3521 .migrate_folio = buffer_migrate_folio, 3522 .is_partially_uptodate = block_is_partially_uptodate, 3523 .error_remove_page = generic_error_remove_page, 3524 .swap_activate = ext4_iomap_swap_activate, 3525 }; 3526 3527 static const struct address_space_operations ext4_journalled_aops = { 3528 .read_folio = ext4_read_folio, 3529 .readahead = ext4_readahead, 3530 .writepages = ext4_writepages, 3531 .write_begin = ext4_write_begin, 3532 .write_end = ext4_journalled_write_end, 3533 .dirty_folio = ext4_journalled_dirty_folio, 3534 .bmap = ext4_bmap, 3535 .invalidate_folio = ext4_journalled_invalidate_folio, 3536 .release_folio = ext4_release_folio, 3537 .direct_IO = noop_direct_IO, 3538 .migrate_folio = buffer_migrate_folio_norefs, 3539 .is_partially_uptodate = block_is_partially_uptodate, 3540 .error_remove_page = generic_error_remove_page, 3541 .swap_activate = ext4_iomap_swap_activate, 3542 }; 3543 3544 static const struct address_space_operations ext4_da_aops = { 3545 .read_folio = ext4_read_folio, 3546 .readahead = ext4_readahead, 3547 .writepages = ext4_writepages, 3548 .write_begin = ext4_da_write_begin, 3549 .write_end = ext4_da_write_end, 3550 .dirty_folio = ext4_dirty_folio, 3551 .bmap = ext4_bmap, 3552 .invalidate_folio = ext4_invalidate_folio, 3553 .release_folio = ext4_release_folio, 3554 .direct_IO = noop_direct_IO, 3555 .migrate_folio = buffer_migrate_folio, 3556 .is_partially_uptodate = block_is_partially_uptodate, 3557 .error_remove_page = generic_error_remove_page, 3558 .swap_activate = ext4_iomap_swap_activate, 3559 }; 3560 3561 static const struct address_space_operations ext4_dax_aops = { 3562 .writepages = ext4_dax_writepages, 3563 .direct_IO = noop_direct_IO, 3564 .dirty_folio = noop_dirty_folio, 3565 .bmap = ext4_bmap, 3566 .swap_activate = ext4_iomap_swap_activate, 3567 }; 3568 3569 void ext4_set_aops(struct inode *inode) 3570 { 3571 switch (ext4_inode_journal_mode(inode)) { 3572 case EXT4_INODE_ORDERED_DATA_MODE: 3573 case EXT4_INODE_WRITEBACK_DATA_MODE: 3574 break; 3575 case EXT4_INODE_JOURNAL_DATA_MODE: 3576 inode->i_mapping->a_ops = &ext4_journalled_aops; 3577 return; 3578 default: 3579 BUG(); 3580 } 3581 if (IS_DAX(inode)) 3582 inode->i_mapping->a_ops = &ext4_dax_aops; 3583 else if (test_opt(inode->i_sb, DELALLOC)) 3584 inode->i_mapping->a_ops = &ext4_da_aops; 3585 else 3586 inode->i_mapping->a_ops = &ext4_aops; 3587 } 3588 3589 static int __ext4_block_zero_page_range(handle_t *handle, 3590 struct address_space *mapping, loff_t from, loff_t length) 3591 { 3592 ext4_fsblk_t index = from >> PAGE_SHIFT; 3593 unsigned offset = from & (PAGE_SIZE-1); 3594 unsigned blocksize, pos; 3595 ext4_lblk_t iblock; 3596 struct inode *inode = mapping->host; 3597 struct buffer_head *bh; 3598 struct folio *folio; 3599 int err = 0; 3600 3601 folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT, 3602 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, 3603 mapping_gfp_constraint(mapping, ~__GFP_FS)); 3604 if (IS_ERR(folio)) 3605 return PTR_ERR(folio); 3606 3607 blocksize = inode->i_sb->s_blocksize; 3608 3609 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 3610 3611 bh = folio_buffers(folio); 3612 if (!bh) { 3613 create_empty_buffers(&folio->page, blocksize, 0); 3614 bh = folio_buffers(folio); 3615 } 3616 3617 /* Find the buffer that contains "offset" */ 3618 pos = blocksize; 3619 while (offset >= pos) { 3620 bh = bh->b_this_page; 3621 iblock++; 3622 pos += blocksize; 3623 } 3624 if (buffer_freed(bh)) { 3625 BUFFER_TRACE(bh, "freed: skip"); 3626 goto unlock; 3627 } 3628 if (!buffer_mapped(bh)) { 3629 BUFFER_TRACE(bh, "unmapped"); 3630 ext4_get_block(inode, iblock, bh, 0); 3631 /* unmapped? It's a hole - nothing to do */ 3632 if (!buffer_mapped(bh)) { 3633 BUFFER_TRACE(bh, "still unmapped"); 3634 goto unlock; 3635 } 3636 } 3637 3638 /* Ok, it's mapped. Make sure it's up-to-date */ 3639 if (folio_test_uptodate(folio)) 3640 set_buffer_uptodate(bh); 3641 3642 if (!buffer_uptodate(bh)) { 3643 err = ext4_read_bh_lock(bh, 0, true); 3644 if (err) 3645 goto unlock; 3646 if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 3647 /* We expect the key to be set. */ 3648 BUG_ON(!fscrypt_has_encryption_key(inode)); 3649 err = fscrypt_decrypt_pagecache_blocks(folio, 3650 blocksize, 3651 bh_offset(bh)); 3652 if (err) { 3653 clear_buffer_uptodate(bh); 3654 goto unlock; 3655 } 3656 } 3657 } 3658 if (ext4_should_journal_data(inode)) { 3659 BUFFER_TRACE(bh, "get write access"); 3660 err = ext4_journal_get_write_access(handle, inode->i_sb, bh, 3661 EXT4_JTR_NONE); 3662 if (err) 3663 goto unlock; 3664 } 3665 folio_zero_range(folio, offset, length); 3666 BUFFER_TRACE(bh, "zeroed end of block"); 3667 3668 if (ext4_should_journal_data(inode)) { 3669 err = ext4_dirty_journalled_data(handle, bh); 3670 } else { 3671 err = 0; 3672 mark_buffer_dirty(bh); 3673 if (ext4_should_order_data(inode)) 3674 err = ext4_jbd2_inode_add_write(handle, inode, from, 3675 length); 3676 } 3677 3678 unlock: 3679 folio_unlock(folio); 3680 folio_put(folio); 3681 return err; 3682 } 3683 3684 /* 3685 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3686 * starting from file offset 'from'. The range to be zero'd must 3687 * be contained with in one block. If the specified range exceeds 3688 * the end of the block it will be shortened to end of the block 3689 * that corresponds to 'from' 3690 */ 3691 static int ext4_block_zero_page_range(handle_t *handle, 3692 struct address_space *mapping, loff_t from, loff_t length) 3693 { 3694 struct inode *inode = mapping->host; 3695 unsigned offset = from & (PAGE_SIZE-1); 3696 unsigned blocksize = inode->i_sb->s_blocksize; 3697 unsigned max = blocksize - (offset & (blocksize - 1)); 3698 3699 /* 3700 * correct length if it does not fall between 3701 * 'from' and the end of the block 3702 */ 3703 if (length > max || length < 0) 3704 length = max; 3705 3706 if (IS_DAX(inode)) { 3707 return dax_zero_range(inode, from, length, NULL, 3708 &ext4_iomap_ops); 3709 } 3710 return __ext4_block_zero_page_range(handle, mapping, from, length); 3711 } 3712 3713 /* 3714 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3715 * up to the end of the block which corresponds to `from'. 3716 * This required during truncate. We need to physically zero the tail end 3717 * of that block so it doesn't yield old data if the file is later grown. 3718 */ 3719 static int ext4_block_truncate_page(handle_t *handle, 3720 struct address_space *mapping, loff_t from) 3721 { 3722 unsigned offset = from & (PAGE_SIZE-1); 3723 unsigned length; 3724 unsigned blocksize; 3725 struct inode *inode = mapping->host; 3726 3727 /* If we are processing an encrypted inode during orphan list handling */ 3728 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode)) 3729 return 0; 3730 3731 blocksize = inode->i_sb->s_blocksize; 3732 length = blocksize - (offset & (blocksize - 1)); 3733 3734 return ext4_block_zero_page_range(handle, mapping, from, length); 3735 } 3736 3737 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3738 loff_t lstart, loff_t length) 3739 { 3740 struct super_block *sb = inode->i_sb; 3741 struct address_space *mapping = inode->i_mapping; 3742 unsigned partial_start, partial_end; 3743 ext4_fsblk_t start, end; 3744 loff_t byte_end = (lstart + length - 1); 3745 int err = 0; 3746 3747 partial_start = lstart & (sb->s_blocksize - 1); 3748 partial_end = byte_end & (sb->s_blocksize - 1); 3749 3750 start = lstart >> sb->s_blocksize_bits; 3751 end = byte_end >> sb->s_blocksize_bits; 3752 3753 /* Handle partial zero within the single block */ 3754 if (start == end && 3755 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3756 err = ext4_block_zero_page_range(handle, mapping, 3757 lstart, length); 3758 return err; 3759 } 3760 /* Handle partial zero out on the start of the range */ 3761 if (partial_start) { 3762 err = ext4_block_zero_page_range(handle, mapping, 3763 lstart, sb->s_blocksize); 3764 if (err) 3765 return err; 3766 } 3767 /* Handle partial zero out on the end of the range */ 3768 if (partial_end != sb->s_blocksize - 1) 3769 err = ext4_block_zero_page_range(handle, mapping, 3770 byte_end - partial_end, 3771 partial_end + 1); 3772 return err; 3773 } 3774 3775 int ext4_can_truncate(struct inode *inode) 3776 { 3777 if (S_ISREG(inode->i_mode)) 3778 return 1; 3779 if (S_ISDIR(inode->i_mode)) 3780 return 1; 3781 if (S_ISLNK(inode->i_mode)) 3782 return !ext4_inode_is_fast_symlink(inode); 3783 return 0; 3784 } 3785 3786 /* 3787 * We have to make sure i_disksize gets properly updated before we truncate 3788 * page cache due to hole punching or zero range. Otherwise i_disksize update 3789 * can get lost as it may have been postponed to submission of writeback but 3790 * that will never happen after we truncate page cache. 3791 */ 3792 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 3793 loff_t len) 3794 { 3795 handle_t *handle; 3796 int ret; 3797 3798 loff_t size = i_size_read(inode); 3799 3800 WARN_ON(!inode_is_locked(inode)); 3801 if (offset > size || offset + len < size) 3802 return 0; 3803 3804 if (EXT4_I(inode)->i_disksize >= size) 3805 return 0; 3806 3807 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 3808 if (IS_ERR(handle)) 3809 return PTR_ERR(handle); 3810 ext4_update_i_disksize(inode, size); 3811 ret = ext4_mark_inode_dirty(handle, inode); 3812 ext4_journal_stop(handle); 3813 3814 return ret; 3815 } 3816 3817 static void ext4_wait_dax_page(struct inode *inode) 3818 { 3819 filemap_invalidate_unlock(inode->i_mapping); 3820 schedule(); 3821 filemap_invalidate_lock(inode->i_mapping); 3822 } 3823 3824 int ext4_break_layouts(struct inode *inode) 3825 { 3826 struct page *page; 3827 int error; 3828 3829 if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock))) 3830 return -EINVAL; 3831 3832 do { 3833 page = dax_layout_busy_page(inode->i_mapping); 3834 if (!page) 3835 return 0; 3836 3837 error = ___wait_var_event(&page->_refcount, 3838 atomic_read(&page->_refcount) == 1, 3839 TASK_INTERRUPTIBLE, 0, 0, 3840 ext4_wait_dax_page(inode)); 3841 } while (error == 0); 3842 3843 return error; 3844 } 3845 3846 /* 3847 * ext4_punch_hole: punches a hole in a file by releasing the blocks 3848 * associated with the given offset and length 3849 * 3850 * @inode: File inode 3851 * @offset: The offset where the hole will begin 3852 * @len: The length of the hole 3853 * 3854 * Returns: 0 on success or negative on failure 3855 */ 3856 3857 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length) 3858 { 3859 struct inode *inode = file_inode(file); 3860 struct super_block *sb = inode->i_sb; 3861 ext4_lblk_t first_block, stop_block; 3862 struct address_space *mapping = inode->i_mapping; 3863 loff_t first_block_offset, last_block_offset, max_length; 3864 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3865 handle_t *handle; 3866 unsigned int credits; 3867 int ret = 0, ret2 = 0; 3868 3869 trace_ext4_punch_hole(inode, offset, length, 0); 3870 3871 /* 3872 * Write out all dirty pages to avoid race conditions 3873 * Then release them. 3874 */ 3875 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 3876 ret = filemap_write_and_wait_range(mapping, offset, 3877 offset + length - 1); 3878 if (ret) 3879 return ret; 3880 } 3881 3882 inode_lock(inode); 3883 3884 /* No need to punch hole beyond i_size */ 3885 if (offset >= inode->i_size) 3886 goto out_mutex; 3887 3888 /* 3889 * If the hole extends beyond i_size, set the hole 3890 * to end after the page that contains i_size 3891 */ 3892 if (offset + length > inode->i_size) { 3893 length = inode->i_size + 3894 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) - 3895 offset; 3896 } 3897 3898 /* 3899 * For punch hole the length + offset needs to be within one block 3900 * before last range. Adjust the length if it goes beyond that limit. 3901 */ 3902 max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize; 3903 if (offset + length > max_length) 3904 length = max_length - offset; 3905 3906 if (offset & (sb->s_blocksize - 1) || 3907 (offset + length) & (sb->s_blocksize - 1)) { 3908 /* 3909 * Attach jinode to inode for jbd2 if we do any zeroing of 3910 * partial block 3911 */ 3912 ret = ext4_inode_attach_jinode(inode); 3913 if (ret < 0) 3914 goto out_mutex; 3915 3916 } 3917 3918 /* Wait all existing dio workers, newcomers will block on i_rwsem */ 3919 inode_dio_wait(inode); 3920 3921 ret = file_modified(file); 3922 if (ret) 3923 goto out_mutex; 3924 3925 /* 3926 * Prevent page faults from reinstantiating pages we have released from 3927 * page cache. 3928 */ 3929 filemap_invalidate_lock(mapping); 3930 3931 ret = ext4_break_layouts(inode); 3932 if (ret) 3933 goto out_dio; 3934 3935 first_block_offset = round_up(offset, sb->s_blocksize); 3936 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 3937 3938 /* Now release the pages and zero block aligned part of pages*/ 3939 if (last_block_offset > first_block_offset) { 3940 ret = ext4_update_disksize_before_punch(inode, offset, length); 3941 if (ret) 3942 goto out_dio; 3943 truncate_pagecache_range(inode, first_block_offset, 3944 last_block_offset); 3945 } 3946 3947 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3948 credits = ext4_writepage_trans_blocks(inode); 3949 else 3950 credits = ext4_blocks_for_truncate(inode); 3951 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3952 if (IS_ERR(handle)) { 3953 ret = PTR_ERR(handle); 3954 ext4_std_error(sb, ret); 3955 goto out_dio; 3956 } 3957 3958 ret = ext4_zero_partial_blocks(handle, inode, offset, 3959 length); 3960 if (ret) 3961 goto out_stop; 3962 3963 first_block = (offset + sb->s_blocksize - 1) >> 3964 EXT4_BLOCK_SIZE_BITS(sb); 3965 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 3966 3967 /* If there are blocks to remove, do it */ 3968 if (stop_block > first_block) { 3969 3970 down_write(&EXT4_I(inode)->i_data_sem); 3971 ext4_discard_preallocations(inode, 0); 3972 3973 ext4_es_remove_extent(inode, first_block, 3974 stop_block - first_block); 3975 3976 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3977 ret = ext4_ext_remove_space(inode, first_block, 3978 stop_block - 1); 3979 else 3980 ret = ext4_ind_remove_space(handle, inode, first_block, 3981 stop_block); 3982 3983 up_write(&EXT4_I(inode)->i_data_sem); 3984 } 3985 ext4_fc_track_range(handle, inode, first_block, stop_block); 3986 if (IS_SYNC(inode)) 3987 ext4_handle_sync(handle); 3988 3989 inode->i_mtime = inode_set_ctime_current(inode); 3990 ret2 = ext4_mark_inode_dirty(handle, inode); 3991 if (unlikely(ret2)) 3992 ret = ret2; 3993 if (ret >= 0) 3994 ext4_update_inode_fsync_trans(handle, inode, 1); 3995 out_stop: 3996 ext4_journal_stop(handle); 3997 out_dio: 3998 filemap_invalidate_unlock(mapping); 3999 out_mutex: 4000 inode_unlock(inode); 4001 return ret; 4002 } 4003 4004 int ext4_inode_attach_jinode(struct inode *inode) 4005 { 4006 struct ext4_inode_info *ei = EXT4_I(inode); 4007 struct jbd2_inode *jinode; 4008 4009 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4010 return 0; 4011 4012 jinode = jbd2_alloc_inode(GFP_KERNEL); 4013 spin_lock(&inode->i_lock); 4014 if (!ei->jinode) { 4015 if (!jinode) { 4016 spin_unlock(&inode->i_lock); 4017 return -ENOMEM; 4018 } 4019 ei->jinode = jinode; 4020 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4021 jinode = NULL; 4022 } 4023 spin_unlock(&inode->i_lock); 4024 if (unlikely(jinode != NULL)) 4025 jbd2_free_inode(jinode); 4026 return 0; 4027 } 4028 4029 /* 4030 * ext4_truncate() 4031 * 4032 * We block out ext4_get_block() block instantiations across the entire 4033 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4034 * simultaneously on behalf of the same inode. 4035 * 4036 * As we work through the truncate and commit bits of it to the journal there 4037 * is one core, guiding principle: the file's tree must always be consistent on 4038 * disk. We must be able to restart the truncate after a crash. 4039 * 4040 * The file's tree may be transiently inconsistent in memory (although it 4041 * probably isn't), but whenever we close off and commit a journal transaction, 4042 * the contents of (the filesystem + the journal) must be consistent and 4043 * restartable. It's pretty simple, really: bottom up, right to left (although 4044 * left-to-right works OK too). 4045 * 4046 * Note that at recovery time, journal replay occurs *before* the restart of 4047 * truncate against the orphan inode list. 4048 * 4049 * The committed inode has the new, desired i_size (which is the same as 4050 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4051 * that this inode's truncate did not complete and it will again call 4052 * ext4_truncate() to have another go. So there will be instantiated blocks 4053 * to the right of the truncation point in a crashed ext4 filesystem. But 4054 * that's fine - as long as they are linked from the inode, the post-crash 4055 * ext4_truncate() run will find them and release them. 4056 */ 4057 int ext4_truncate(struct inode *inode) 4058 { 4059 struct ext4_inode_info *ei = EXT4_I(inode); 4060 unsigned int credits; 4061 int err = 0, err2; 4062 handle_t *handle; 4063 struct address_space *mapping = inode->i_mapping; 4064 4065 /* 4066 * There is a possibility that we're either freeing the inode 4067 * or it's a completely new inode. In those cases we might not 4068 * have i_rwsem locked because it's not necessary. 4069 */ 4070 if (!(inode->i_state & (I_NEW|I_FREEING))) 4071 WARN_ON(!inode_is_locked(inode)); 4072 trace_ext4_truncate_enter(inode); 4073 4074 if (!ext4_can_truncate(inode)) 4075 goto out_trace; 4076 4077 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4078 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4079 4080 if (ext4_has_inline_data(inode)) { 4081 int has_inline = 1; 4082 4083 err = ext4_inline_data_truncate(inode, &has_inline); 4084 if (err || has_inline) 4085 goto out_trace; 4086 } 4087 4088 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4089 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4090 err = ext4_inode_attach_jinode(inode); 4091 if (err) 4092 goto out_trace; 4093 } 4094 4095 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4096 credits = ext4_writepage_trans_blocks(inode); 4097 else 4098 credits = ext4_blocks_for_truncate(inode); 4099 4100 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4101 if (IS_ERR(handle)) { 4102 err = PTR_ERR(handle); 4103 goto out_trace; 4104 } 4105 4106 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4107 ext4_block_truncate_page(handle, mapping, inode->i_size); 4108 4109 /* 4110 * We add the inode to the orphan list, so that if this 4111 * truncate spans multiple transactions, and we crash, we will 4112 * resume the truncate when the filesystem recovers. It also 4113 * marks the inode dirty, to catch the new size. 4114 * 4115 * Implication: the file must always be in a sane, consistent 4116 * truncatable state while each transaction commits. 4117 */ 4118 err = ext4_orphan_add(handle, inode); 4119 if (err) 4120 goto out_stop; 4121 4122 down_write(&EXT4_I(inode)->i_data_sem); 4123 4124 ext4_discard_preallocations(inode, 0); 4125 4126 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4127 err = ext4_ext_truncate(handle, inode); 4128 else 4129 ext4_ind_truncate(handle, inode); 4130 4131 up_write(&ei->i_data_sem); 4132 if (err) 4133 goto out_stop; 4134 4135 if (IS_SYNC(inode)) 4136 ext4_handle_sync(handle); 4137 4138 out_stop: 4139 /* 4140 * If this was a simple ftruncate() and the file will remain alive, 4141 * then we need to clear up the orphan record which we created above. 4142 * However, if this was a real unlink then we were called by 4143 * ext4_evict_inode(), and we allow that function to clean up the 4144 * orphan info for us. 4145 */ 4146 if (inode->i_nlink) 4147 ext4_orphan_del(handle, inode); 4148 4149 inode->i_mtime = inode_set_ctime_current(inode); 4150 err2 = ext4_mark_inode_dirty(handle, inode); 4151 if (unlikely(err2 && !err)) 4152 err = err2; 4153 ext4_journal_stop(handle); 4154 4155 out_trace: 4156 trace_ext4_truncate_exit(inode); 4157 return err; 4158 } 4159 4160 static inline u64 ext4_inode_peek_iversion(const struct inode *inode) 4161 { 4162 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4163 return inode_peek_iversion_raw(inode); 4164 else 4165 return inode_peek_iversion(inode); 4166 } 4167 4168 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode, 4169 struct ext4_inode_info *ei) 4170 { 4171 struct inode *inode = &(ei->vfs_inode); 4172 u64 i_blocks = READ_ONCE(inode->i_blocks); 4173 struct super_block *sb = inode->i_sb; 4174 4175 if (i_blocks <= ~0U) { 4176 /* 4177 * i_blocks can be represented in a 32 bit variable 4178 * as multiple of 512 bytes 4179 */ 4180 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4181 raw_inode->i_blocks_high = 0; 4182 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4183 return 0; 4184 } 4185 4186 /* 4187 * This should never happen since sb->s_maxbytes should not have 4188 * allowed this, sb->s_maxbytes was set according to the huge_file 4189 * feature in ext4_fill_super(). 4190 */ 4191 if (!ext4_has_feature_huge_file(sb)) 4192 return -EFSCORRUPTED; 4193 4194 if (i_blocks <= 0xffffffffffffULL) { 4195 /* 4196 * i_blocks can be represented in a 48 bit variable 4197 * as multiple of 512 bytes 4198 */ 4199 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4200 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4201 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4202 } else { 4203 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4204 /* i_block is stored in file system block size */ 4205 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4206 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4207 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4208 } 4209 return 0; 4210 } 4211 4212 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode) 4213 { 4214 struct ext4_inode_info *ei = EXT4_I(inode); 4215 uid_t i_uid; 4216 gid_t i_gid; 4217 projid_t i_projid; 4218 int block; 4219 int err; 4220 4221 err = ext4_inode_blocks_set(raw_inode, ei); 4222 4223 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4224 i_uid = i_uid_read(inode); 4225 i_gid = i_gid_read(inode); 4226 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 4227 if (!(test_opt(inode->i_sb, NO_UID32))) { 4228 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4229 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4230 /* 4231 * Fix up interoperability with old kernels. Otherwise, 4232 * old inodes get re-used with the upper 16 bits of the 4233 * uid/gid intact. 4234 */ 4235 if (ei->i_dtime && list_empty(&ei->i_orphan)) { 4236 raw_inode->i_uid_high = 0; 4237 raw_inode->i_gid_high = 0; 4238 } else { 4239 raw_inode->i_uid_high = 4240 cpu_to_le16(high_16_bits(i_uid)); 4241 raw_inode->i_gid_high = 4242 cpu_to_le16(high_16_bits(i_gid)); 4243 } 4244 } else { 4245 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4246 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4247 raw_inode->i_uid_high = 0; 4248 raw_inode->i_gid_high = 0; 4249 } 4250 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4251 4252 EXT4_INODE_SET_CTIME(inode, raw_inode); 4253 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4254 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4255 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4256 4257 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4258 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4259 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 4260 raw_inode->i_file_acl_high = 4261 cpu_to_le16(ei->i_file_acl >> 32); 4262 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4263 ext4_isize_set(raw_inode, ei->i_disksize); 4264 4265 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4266 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4267 if (old_valid_dev(inode->i_rdev)) { 4268 raw_inode->i_block[0] = 4269 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4270 raw_inode->i_block[1] = 0; 4271 } else { 4272 raw_inode->i_block[0] = 0; 4273 raw_inode->i_block[1] = 4274 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4275 raw_inode->i_block[2] = 0; 4276 } 4277 } else if (!ext4_has_inline_data(inode)) { 4278 for (block = 0; block < EXT4_N_BLOCKS; block++) 4279 raw_inode->i_block[block] = ei->i_data[block]; 4280 } 4281 4282 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4283 u64 ivers = ext4_inode_peek_iversion(inode); 4284 4285 raw_inode->i_disk_version = cpu_to_le32(ivers); 4286 if (ei->i_extra_isize) { 4287 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4288 raw_inode->i_version_hi = 4289 cpu_to_le32(ivers >> 32); 4290 raw_inode->i_extra_isize = 4291 cpu_to_le16(ei->i_extra_isize); 4292 } 4293 } 4294 4295 if (i_projid != EXT4_DEF_PROJID && 4296 !ext4_has_feature_project(inode->i_sb)) 4297 err = err ?: -EFSCORRUPTED; 4298 4299 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 4300 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4301 raw_inode->i_projid = cpu_to_le32(i_projid); 4302 4303 ext4_inode_csum_set(inode, raw_inode, ei); 4304 return err; 4305 } 4306 4307 /* 4308 * ext4_get_inode_loc returns with an extra refcount against the inode's 4309 * underlying buffer_head on success. If we pass 'inode' and it does not 4310 * have in-inode xattr, we have all inode data in memory that is needed 4311 * to recreate the on-disk version of this inode. 4312 */ 4313 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino, 4314 struct inode *inode, struct ext4_iloc *iloc, 4315 ext4_fsblk_t *ret_block) 4316 { 4317 struct ext4_group_desc *gdp; 4318 struct buffer_head *bh; 4319 ext4_fsblk_t block; 4320 struct blk_plug plug; 4321 int inodes_per_block, inode_offset; 4322 4323 iloc->bh = NULL; 4324 if (ino < EXT4_ROOT_INO || 4325 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 4326 return -EFSCORRUPTED; 4327 4328 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 4329 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4330 if (!gdp) 4331 return -EIO; 4332 4333 /* 4334 * Figure out the offset within the block group inode table 4335 */ 4336 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4337 inode_offset = ((ino - 1) % 4338 EXT4_INODES_PER_GROUP(sb)); 4339 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4340 4341 block = ext4_inode_table(sb, gdp); 4342 if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) || 4343 (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) { 4344 ext4_error(sb, "Invalid inode table block %llu in " 4345 "block_group %u", block, iloc->block_group); 4346 return -EFSCORRUPTED; 4347 } 4348 block += (inode_offset / inodes_per_block); 4349 4350 bh = sb_getblk(sb, block); 4351 if (unlikely(!bh)) 4352 return -ENOMEM; 4353 if (ext4_buffer_uptodate(bh)) 4354 goto has_buffer; 4355 4356 lock_buffer(bh); 4357 if (ext4_buffer_uptodate(bh)) { 4358 /* Someone brought it uptodate while we waited */ 4359 unlock_buffer(bh); 4360 goto has_buffer; 4361 } 4362 4363 /* 4364 * If we have all information of the inode in memory and this 4365 * is the only valid inode in the block, we need not read the 4366 * block. 4367 */ 4368 if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { 4369 struct buffer_head *bitmap_bh; 4370 int i, start; 4371 4372 start = inode_offset & ~(inodes_per_block - 1); 4373 4374 /* Is the inode bitmap in cache? */ 4375 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4376 if (unlikely(!bitmap_bh)) 4377 goto make_io; 4378 4379 /* 4380 * If the inode bitmap isn't in cache then the 4381 * optimisation may end up performing two reads instead 4382 * of one, so skip it. 4383 */ 4384 if (!buffer_uptodate(bitmap_bh)) { 4385 brelse(bitmap_bh); 4386 goto make_io; 4387 } 4388 for (i = start; i < start + inodes_per_block; i++) { 4389 if (i == inode_offset) 4390 continue; 4391 if (ext4_test_bit(i, bitmap_bh->b_data)) 4392 break; 4393 } 4394 brelse(bitmap_bh); 4395 if (i == start + inodes_per_block) { 4396 struct ext4_inode *raw_inode = 4397 (struct ext4_inode *) (bh->b_data + iloc->offset); 4398 4399 /* all other inodes are free, so skip I/O */ 4400 memset(bh->b_data, 0, bh->b_size); 4401 if (!ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4402 ext4_fill_raw_inode(inode, raw_inode); 4403 set_buffer_uptodate(bh); 4404 unlock_buffer(bh); 4405 goto has_buffer; 4406 } 4407 } 4408 4409 make_io: 4410 /* 4411 * If we need to do any I/O, try to pre-readahead extra 4412 * blocks from the inode table. 4413 */ 4414 blk_start_plug(&plug); 4415 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4416 ext4_fsblk_t b, end, table; 4417 unsigned num; 4418 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4419 4420 table = ext4_inode_table(sb, gdp); 4421 /* s_inode_readahead_blks is always a power of 2 */ 4422 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4423 if (table > b) 4424 b = table; 4425 end = b + ra_blks; 4426 num = EXT4_INODES_PER_GROUP(sb); 4427 if (ext4_has_group_desc_csum(sb)) 4428 num -= ext4_itable_unused_count(sb, gdp); 4429 table += num / inodes_per_block; 4430 if (end > table) 4431 end = table; 4432 while (b <= end) 4433 ext4_sb_breadahead_unmovable(sb, b++); 4434 } 4435 4436 /* 4437 * There are other valid inodes in the buffer, this inode 4438 * has in-inode xattrs, or we don't have this inode in memory. 4439 * Read the block from disk. 4440 */ 4441 trace_ext4_load_inode(sb, ino); 4442 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL); 4443 blk_finish_plug(&plug); 4444 wait_on_buffer(bh); 4445 ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO); 4446 if (!buffer_uptodate(bh)) { 4447 if (ret_block) 4448 *ret_block = block; 4449 brelse(bh); 4450 return -EIO; 4451 } 4452 has_buffer: 4453 iloc->bh = bh; 4454 return 0; 4455 } 4456 4457 static int __ext4_get_inode_loc_noinmem(struct inode *inode, 4458 struct ext4_iloc *iloc) 4459 { 4460 ext4_fsblk_t err_blk = 0; 4461 int ret; 4462 4463 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc, 4464 &err_blk); 4465 4466 if (ret == -EIO) 4467 ext4_error_inode_block(inode, err_blk, EIO, 4468 "unable to read itable block"); 4469 4470 return ret; 4471 } 4472 4473 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4474 { 4475 ext4_fsblk_t err_blk = 0; 4476 int ret; 4477 4478 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc, 4479 &err_blk); 4480 4481 if (ret == -EIO) 4482 ext4_error_inode_block(inode, err_blk, EIO, 4483 "unable to read itable block"); 4484 4485 return ret; 4486 } 4487 4488 4489 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino, 4490 struct ext4_iloc *iloc) 4491 { 4492 return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL); 4493 } 4494 4495 static bool ext4_should_enable_dax(struct inode *inode) 4496 { 4497 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4498 4499 if (test_opt2(inode->i_sb, DAX_NEVER)) 4500 return false; 4501 if (!S_ISREG(inode->i_mode)) 4502 return false; 4503 if (ext4_should_journal_data(inode)) 4504 return false; 4505 if (ext4_has_inline_data(inode)) 4506 return false; 4507 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT)) 4508 return false; 4509 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY)) 4510 return false; 4511 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) 4512 return false; 4513 if (test_opt(inode->i_sb, DAX_ALWAYS)) 4514 return true; 4515 4516 return ext4_test_inode_flag(inode, EXT4_INODE_DAX); 4517 } 4518 4519 void ext4_set_inode_flags(struct inode *inode, bool init) 4520 { 4521 unsigned int flags = EXT4_I(inode)->i_flags; 4522 unsigned int new_fl = 0; 4523 4524 WARN_ON_ONCE(IS_DAX(inode) && init); 4525 4526 if (flags & EXT4_SYNC_FL) 4527 new_fl |= S_SYNC; 4528 if (flags & EXT4_APPEND_FL) 4529 new_fl |= S_APPEND; 4530 if (flags & EXT4_IMMUTABLE_FL) 4531 new_fl |= S_IMMUTABLE; 4532 if (flags & EXT4_NOATIME_FL) 4533 new_fl |= S_NOATIME; 4534 if (flags & EXT4_DIRSYNC_FL) 4535 new_fl |= S_DIRSYNC; 4536 4537 /* Because of the way inode_set_flags() works we must preserve S_DAX 4538 * here if already set. */ 4539 new_fl |= (inode->i_flags & S_DAX); 4540 if (init && ext4_should_enable_dax(inode)) 4541 new_fl |= S_DAX; 4542 4543 if (flags & EXT4_ENCRYPT_FL) 4544 new_fl |= S_ENCRYPTED; 4545 if (flags & EXT4_CASEFOLD_FL) 4546 new_fl |= S_CASEFOLD; 4547 if (flags & EXT4_VERITY_FL) 4548 new_fl |= S_VERITY; 4549 inode_set_flags(inode, new_fl, 4550 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX| 4551 S_ENCRYPTED|S_CASEFOLD|S_VERITY); 4552 } 4553 4554 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4555 struct ext4_inode_info *ei) 4556 { 4557 blkcnt_t i_blocks ; 4558 struct inode *inode = &(ei->vfs_inode); 4559 struct super_block *sb = inode->i_sb; 4560 4561 if (ext4_has_feature_huge_file(sb)) { 4562 /* we are using combined 48 bit field */ 4563 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4564 le32_to_cpu(raw_inode->i_blocks_lo); 4565 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4566 /* i_blocks represent file system block size */ 4567 return i_blocks << (inode->i_blkbits - 9); 4568 } else { 4569 return i_blocks; 4570 } 4571 } else { 4572 return le32_to_cpu(raw_inode->i_blocks_lo); 4573 } 4574 } 4575 4576 static inline int ext4_iget_extra_inode(struct inode *inode, 4577 struct ext4_inode *raw_inode, 4578 struct ext4_inode_info *ei) 4579 { 4580 __le32 *magic = (void *)raw_inode + 4581 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4582 4583 if (EXT4_INODE_HAS_XATTR_SPACE(inode) && 4584 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4585 int err; 4586 4587 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4588 err = ext4_find_inline_data_nolock(inode); 4589 if (!err && ext4_has_inline_data(inode)) 4590 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 4591 return err; 4592 } else 4593 EXT4_I(inode)->i_inline_off = 0; 4594 return 0; 4595 } 4596 4597 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4598 { 4599 if (!ext4_has_feature_project(inode->i_sb)) 4600 return -EOPNOTSUPP; 4601 *projid = EXT4_I(inode)->i_projid; 4602 return 0; 4603 } 4604 4605 /* 4606 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of 4607 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag 4608 * set. 4609 */ 4610 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val) 4611 { 4612 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4613 inode_set_iversion_raw(inode, val); 4614 else 4615 inode_set_iversion_queried(inode, val); 4616 } 4617 4618 static const char *check_igot_inode(struct inode *inode, ext4_iget_flags flags) 4619 4620 { 4621 if (flags & EXT4_IGET_EA_INODE) { 4622 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4623 return "missing EA_INODE flag"; 4624 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 4625 EXT4_I(inode)->i_file_acl) 4626 return "ea_inode with extended attributes"; 4627 } else { 4628 if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4629 return "unexpected EA_INODE flag"; 4630 } 4631 if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD)) 4632 return "unexpected bad inode w/o EXT4_IGET_BAD"; 4633 return NULL; 4634 } 4635 4636 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino, 4637 ext4_iget_flags flags, const char *function, 4638 unsigned int line) 4639 { 4640 struct ext4_iloc iloc; 4641 struct ext4_inode *raw_inode; 4642 struct ext4_inode_info *ei; 4643 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4644 struct inode *inode; 4645 const char *err_str; 4646 journal_t *journal = EXT4_SB(sb)->s_journal; 4647 long ret; 4648 loff_t size; 4649 int block; 4650 uid_t i_uid; 4651 gid_t i_gid; 4652 projid_t i_projid; 4653 4654 if ((!(flags & EXT4_IGET_SPECIAL) && 4655 ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) || 4656 ino == le32_to_cpu(es->s_usr_quota_inum) || 4657 ino == le32_to_cpu(es->s_grp_quota_inum) || 4658 ino == le32_to_cpu(es->s_prj_quota_inum) || 4659 ino == le32_to_cpu(es->s_orphan_file_inum))) || 4660 (ino < EXT4_ROOT_INO) || 4661 (ino > le32_to_cpu(es->s_inodes_count))) { 4662 if (flags & EXT4_IGET_HANDLE) 4663 return ERR_PTR(-ESTALE); 4664 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0, 4665 "inode #%lu: comm %s: iget: illegal inode #", 4666 ino, current->comm); 4667 return ERR_PTR(-EFSCORRUPTED); 4668 } 4669 4670 inode = iget_locked(sb, ino); 4671 if (!inode) 4672 return ERR_PTR(-ENOMEM); 4673 if (!(inode->i_state & I_NEW)) { 4674 if ((err_str = check_igot_inode(inode, flags)) != NULL) { 4675 ext4_error_inode(inode, function, line, 0, err_str); 4676 iput(inode); 4677 return ERR_PTR(-EFSCORRUPTED); 4678 } 4679 return inode; 4680 } 4681 4682 ei = EXT4_I(inode); 4683 iloc.bh = NULL; 4684 4685 ret = __ext4_get_inode_loc_noinmem(inode, &iloc); 4686 if (ret < 0) 4687 goto bad_inode; 4688 raw_inode = ext4_raw_inode(&iloc); 4689 4690 if ((flags & EXT4_IGET_HANDLE) && 4691 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) { 4692 ret = -ESTALE; 4693 goto bad_inode; 4694 } 4695 4696 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4697 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4698 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4699 EXT4_INODE_SIZE(inode->i_sb) || 4700 (ei->i_extra_isize & 3)) { 4701 ext4_error_inode(inode, function, line, 0, 4702 "iget: bad extra_isize %u " 4703 "(inode size %u)", 4704 ei->i_extra_isize, 4705 EXT4_INODE_SIZE(inode->i_sb)); 4706 ret = -EFSCORRUPTED; 4707 goto bad_inode; 4708 } 4709 } else 4710 ei->i_extra_isize = 0; 4711 4712 /* Precompute checksum seed for inode metadata */ 4713 if (ext4_has_metadata_csum(sb)) { 4714 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4715 __u32 csum; 4716 __le32 inum = cpu_to_le32(inode->i_ino); 4717 __le32 gen = raw_inode->i_generation; 4718 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4719 sizeof(inum)); 4720 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4721 sizeof(gen)); 4722 } 4723 4724 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) || 4725 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) && 4726 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) { 4727 ext4_error_inode_err(inode, function, line, 0, 4728 EFSBADCRC, "iget: checksum invalid"); 4729 ret = -EFSBADCRC; 4730 goto bad_inode; 4731 } 4732 4733 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4734 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4735 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4736 if (ext4_has_feature_project(sb) && 4737 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4738 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4739 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4740 else 4741 i_projid = EXT4_DEF_PROJID; 4742 4743 if (!(test_opt(inode->i_sb, NO_UID32))) { 4744 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4745 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4746 } 4747 i_uid_write(inode, i_uid); 4748 i_gid_write(inode, i_gid); 4749 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4750 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4751 4752 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4753 ei->i_inline_off = 0; 4754 ei->i_dir_start_lookup = 0; 4755 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4756 /* We now have enough fields to check if the inode was active or not. 4757 * This is needed because nfsd might try to access dead inodes 4758 * the test is that same one that e2fsck uses 4759 * NeilBrown 1999oct15 4760 */ 4761 if (inode->i_nlink == 0) { 4762 if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL || 4763 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4764 ino != EXT4_BOOT_LOADER_INO) { 4765 /* this inode is deleted or unallocated */ 4766 if (flags & EXT4_IGET_SPECIAL) { 4767 ext4_error_inode(inode, function, line, 0, 4768 "iget: special inode unallocated"); 4769 ret = -EFSCORRUPTED; 4770 } else 4771 ret = -ESTALE; 4772 goto bad_inode; 4773 } 4774 /* The only unlinked inodes we let through here have 4775 * valid i_mode and are being read by the orphan 4776 * recovery code: that's fine, we're about to complete 4777 * the process of deleting those. 4778 * OR it is the EXT4_BOOT_LOADER_INO which is 4779 * not initialized on a new filesystem. */ 4780 } 4781 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4782 ext4_set_inode_flags(inode, true); 4783 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4784 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4785 if (ext4_has_feature_64bit(sb)) 4786 ei->i_file_acl |= 4787 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4788 inode->i_size = ext4_isize(sb, raw_inode); 4789 if ((size = i_size_read(inode)) < 0) { 4790 ext4_error_inode(inode, function, line, 0, 4791 "iget: bad i_size value: %lld", size); 4792 ret = -EFSCORRUPTED; 4793 goto bad_inode; 4794 } 4795 /* 4796 * If dir_index is not enabled but there's dir with INDEX flag set, 4797 * we'd normally treat htree data as empty space. But with metadata 4798 * checksumming that corrupts checksums so forbid that. 4799 */ 4800 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) && 4801 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) { 4802 ext4_error_inode(inode, function, line, 0, 4803 "iget: Dir with htree data on filesystem without dir_index feature."); 4804 ret = -EFSCORRUPTED; 4805 goto bad_inode; 4806 } 4807 ei->i_disksize = inode->i_size; 4808 #ifdef CONFIG_QUOTA 4809 ei->i_reserved_quota = 0; 4810 #endif 4811 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4812 ei->i_block_group = iloc.block_group; 4813 ei->i_last_alloc_group = ~0; 4814 /* 4815 * NOTE! The in-memory inode i_data array is in little-endian order 4816 * even on big-endian machines: we do NOT byteswap the block numbers! 4817 */ 4818 for (block = 0; block < EXT4_N_BLOCKS; block++) 4819 ei->i_data[block] = raw_inode->i_block[block]; 4820 INIT_LIST_HEAD(&ei->i_orphan); 4821 ext4_fc_init_inode(&ei->vfs_inode); 4822 4823 /* 4824 * Set transaction id's of transactions that have to be committed 4825 * to finish f[data]sync. We set them to currently running transaction 4826 * as we cannot be sure that the inode or some of its metadata isn't 4827 * part of the transaction - the inode could have been reclaimed and 4828 * now it is reread from disk. 4829 */ 4830 if (journal) { 4831 transaction_t *transaction; 4832 tid_t tid; 4833 4834 read_lock(&journal->j_state_lock); 4835 if (journal->j_running_transaction) 4836 transaction = journal->j_running_transaction; 4837 else 4838 transaction = journal->j_committing_transaction; 4839 if (transaction) 4840 tid = transaction->t_tid; 4841 else 4842 tid = journal->j_commit_sequence; 4843 read_unlock(&journal->j_state_lock); 4844 ei->i_sync_tid = tid; 4845 ei->i_datasync_tid = tid; 4846 } 4847 4848 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4849 if (ei->i_extra_isize == 0) { 4850 /* The extra space is currently unused. Use it. */ 4851 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 4852 ei->i_extra_isize = sizeof(struct ext4_inode) - 4853 EXT4_GOOD_OLD_INODE_SIZE; 4854 } else { 4855 ret = ext4_iget_extra_inode(inode, raw_inode, ei); 4856 if (ret) 4857 goto bad_inode; 4858 } 4859 } 4860 4861 EXT4_INODE_GET_CTIME(inode, raw_inode); 4862 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4863 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4864 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4865 4866 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4867 u64 ivers = le32_to_cpu(raw_inode->i_disk_version); 4868 4869 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4870 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4871 ivers |= 4872 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4873 } 4874 ext4_inode_set_iversion_queried(inode, ivers); 4875 } 4876 4877 ret = 0; 4878 if (ei->i_file_acl && 4879 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) { 4880 ext4_error_inode(inode, function, line, 0, 4881 "iget: bad extended attribute block %llu", 4882 ei->i_file_acl); 4883 ret = -EFSCORRUPTED; 4884 goto bad_inode; 4885 } else if (!ext4_has_inline_data(inode)) { 4886 /* validate the block references in the inode */ 4887 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) && 4888 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4889 (S_ISLNK(inode->i_mode) && 4890 !ext4_inode_is_fast_symlink(inode)))) { 4891 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4892 ret = ext4_ext_check_inode(inode); 4893 else 4894 ret = ext4_ind_check_inode(inode); 4895 } 4896 } 4897 if (ret) 4898 goto bad_inode; 4899 4900 if (S_ISREG(inode->i_mode)) { 4901 inode->i_op = &ext4_file_inode_operations; 4902 inode->i_fop = &ext4_file_operations; 4903 ext4_set_aops(inode); 4904 } else if (S_ISDIR(inode->i_mode)) { 4905 inode->i_op = &ext4_dir_inode_operations; 4906 inode->i_fop = &ext4_dir_operations; 4907 } else if (S_ISLNK(inode->i_mode)) { 4908 /* VFS does not allow setting these so must be corruption */ 4909 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 4910 ext4_error_inode(inode, function, line, 0, 4911 "iget: immutable or append flags " 4912 "not allowed on symlinks"); 4913 ret = -EFSCORRUPTED; 4914 goto bad_inode; 4915 } 4916 if (IS_ENCRYPTED(inode)) { 4917 inode->i_op = &ext4_encrypted_symlink_inode_operations; 4918 } else if (ext4_inode_is_fast_symlink(inode)) { 4919 inode->i_link = (char *)ei->i_data; 4920 inode->i_op = &ext4_fast_symlink_inode_operations; 4921 nd_terminate_link(ei->i_data, inode->i_size, 4922 sizeof(ei->i_data) - 1); 4923 } else { 4924 inode->i_op = &ext4_symlink_inode_operations; 4925 } 4926 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4927 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4928 inode->i_op = &ext4_special_inode_operations; 4929 if (raw_inode->i_block[0]) 4930 init_special_inode(inode, inode->i_mode, 4931 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4932 else 4933 init_special_inode(inode, inode->i_mode, 4934 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4935 } else if (ino == EXT4_BOOT_LOADER_INO) { 4936 make_bad_inode(inode); 4937 } else { 4938 ret = -EFSCORRUPTED; 4939 ext4_error_inode(inode, function, line, 0, 4940 "iget: bogus i_mode (%o)", inode->i_mode); 4941 goto bad_inode; 4942 } 4943 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) 4944 ext4_error_inode(inode, function, line, 0, 4945 "casefold flag without casefold feature"); 4946 if ((err_str = check_igot_inode(inode, flags)) != NULL) { 4947 ext4_error_inode(inode, function, line, 0, err_str); 4948 ret = -EFSCORRUPTED; 4949 goto bad_inode; 4950 } 4951 4952 brelse(iloc.bh); 4953 unlock_new_inode(inode); 4954 return inode; 4955 4956 bad_inode: 4957 brelse(iloc.bh); 4958 iget_failed(inode); 4959 return ERR_PTR(ret); 4960 } 4961 4962 static void __ext4_update_other_inode_time(struct super_block *sb, 4963 unsigned long orig_ino, 4964 unsigned long ino, 4965 struct ext4_inode *raw_inode) 4966 { 4967 struct inode *inode; 4968 4969 inode = find_inode_by_ino_rcu(sb, ino); 4970 if (!inode) 4971 return; 4972 4973 if (!inode_is_dirtytime_only(inode)) 4974 return; 4975 4976 spin_lock(&inode->i_lock); 4977 if (inode_is_dirtytime_only(inode)) { 4978 struct ext4_inode_info *ei = EXT4_I(inode); 4979 4980 inode->i_state &= ~I_DIRTY_TIME; 4981 spin_unlock(&inode->i_lock); 4982 4983 spin_lock(&ei->i_raw_lock); 4984 EXT4_INODE_SET_CTIME(inode, raw_inode); 4985 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4986 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4987 ext4_inode_csum_set(inode, raw_inode, ei); 4988 spin_unlock(&ei->i_raw_lock); 4989 trace_ext4_other_inode_update_time(inode, orig_ino); 4990 return; 4991 } 4992 spin_unlock(&inode->i_lock); 4993 } 4994 4995 /* 4996 * Opportunistically update the other time fields for other inodes in 4997 * the same inode table block. 4998 */ 4999 static void ext4_update_other_inodes_time(struct super_block *sb, 5000 unsigned long orig_ino, char *buf) 5001 { 5002 unsigned long ino; 5003 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 5004 int inode_size = EXT4_INODE_SIZE(sb); 5005 5006 /* 5007 * Calculate the first inode in the inode table block. Inode 5008 * numbers are one-based. That is, the first inode in a block 5009 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 5010 */ 5011 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 5012 rcu_read_lock(); 5013 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 5014 if (ino == orig_ino) 5015 continue; 5016 __ext4_update_other_inode_time(sb, orig_ino, ino, 5017 (struct ext4_inode *)buf); 5018 } 5019 rcu_read_unlock(); 5020 } 5021 5022 /* 5023 * Post the struct inode info into an on-disk inode location in the 5024 * buffer-cache. This gobbles the caller's reference to the 5025 * buffer_head in the inode location struct. 5026 * 5027 * The caller must have write access to iloc->bh. 5028 */ 5029 static int ext4_do_update_inode(handle_t *handle, 5030 struct inode *inode, 5031 struct ext4_iloc *iloc) 5032 { 5033 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5034 struct ext4_inode_info *ei = EXT4_I(inode); 5035 struct buffer_head *bh = iloc->bh; 5036 struct super_block *sb = inode->i_sb; 5037 int err; 5038 int need_datasync = 0, set_large_file = 0; 5039 5040 spin_lock(&ei->i_raw_lock); 5041 5042 /* 5043 * For fields not tracked in the in-memory inode, initialise them 5044 * to zero for new inodes. 5045 */ 5046 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5047 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5048 5049 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) 5050 need_datasync = 1; 5051 if (ei->i_disksize > 0x7fffffffULL) { 5052 if (!ext4_has_feature_large_file(sb) || 5053 EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV)) 5054 set_large_file = 1; 5055 } 5056 5057 err = ext4_fill_raw_inode(inode, raw_inode); 5058 spin_unlock(&ei->i_raw_lock); 5059 if (err) { 5060 EXT4_ERROR_INODE(inode, "corrupted inode contents"); 5061 goto out_brelse; 5062 } 5063 5064 if (inode->i_sb->s_flags & SB_LAZYTIME) 5065 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 5066 bh->b_data); 5067 5068 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5069 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5070 if (err) 5071 goto out_error; 5072 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5073 if (set_large_file) { 5074 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 5075 err = ext4_journal_get_write_access(handle, sb, 5076 EXT4_SB(sb)->s_sbh, 5077 EXT4_JTR_NONE); 5078 if (err) 5079 goto out_error; 5080 lock_buffer(EXT4_SB(sb)->s_sbh); 5081 ext4_set_feature_large_file(sb); 5082 ext4_superblock_csum_set(sb); 5083 unlock_buffer(EXT4_SB(sb)->s_sbh); 5084 ext4_handle_sync(handle); 5085 err = ext4_handle_dirty_metadata(handle, NULL, 5086 EXT4_SB(sb)->s_sbh); 5087 } 5088 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5089 out_error: 5090 ext4_std_error(inode->i_sb, err); 5091 out_brelse: 5092 brelse(bh); 5093 return err; 5094 } 5095 5096 /* 5097 * ext4_write_inode() 5098 * 5099 * We are called from a few places: 5100 * 5101 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5102 * Here, there will be no transaction running. We wait for any running 5103 * transaction to commit. 5104 * 5105 * - Within flush work (sys_sync(), kupdate and such). 5106 * We wait on commit, if told to. 5107 * 5108 * - Within iput_final() -> write_inode_now() 5109 * We wait on commit, if told to. 5110 * 5111 * In all cases it is actually safe for us to return without doing anything, 5112 * because the inode has been copied into a raw inode buffer in 5113 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5114 * writeback. 5115 * 5116 * Note that we are absolutely dependent upon all inode dirtiers doing the 5117 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5118 * which we are interested. 5119 * 5120 * It would be a bug for them to not do this. The code: 5121 * 5122 * mark_inode_dirty(inode) 5123 * stuff(); 5124 * inode->i_size = expr; 5125 * 5126 * is in error because write_inode() could occur while `stuff()' is running, 5127 * and the new i_size will be lost. Plus the inode will no longer be on the 5128 * superblock's dirty inode list. 5129 */ 5130 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5131 { 5132 int err; 5133 5134 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) || 5135 sb_rdonly(inode->i_sb)) 5136 return 0; 5137 5138 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5139 return -EIO; 5140 5141 if (EXT4_SB(inode->i_sb)->s_journal) { 5142 if (ext4_journal_current_handle()) { 5143 ext4_debug("called recursively, non-PF_MEMALLOC!\n"); 5144 dump_stack(); 5145 return -EIO; 5146 } 5147 5148 /* 5149 * No need to force transaction in WB_SYNC_NONE mode. Also 5150 * ext4_sync_fs() will force the commit after everything is 5151 * written. 5152 */ 5153 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5154 return 0; 5155 5156 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal, 5157 EXT4_I(inode)->i_sync_tid); 5158 } else { 5159 struct ext4_iloc iloc; 5160 5161 err = __ext4_get_inode_loc_noinmem(inode, &iloc); 5162 if (err) 5163 return err; 5164 /* 5165 * sync(2) will flush the whole buffer cache. No need to do 5166 * it here separately for each inode. 5167 */ 5168 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5169 sync_dirty_buffer(iloc.bh); 5170 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5171 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO, 5172 "IO error syncing inode"); 5173 err = -EIO; 5174 } 5175 brelse(iloc.bh); 5176 } 5177 return err; 5178 } 5179 5180 /* 5181 * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate 5182 * buffers that are attached to a folio straddling i_size and are undergoing 5183 * commit. In that case we have to wait for commit to finish and try again. 5184 */ 5185 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5186 { 5187 unsigned offset; 5188 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5189 tid_t commit_tid = 0; 5190 int ret; 5191 5192 offset = inode->i_size & (PAGE_SIZE - 1); 5193 /* 5194 * If the folio is fully truncated, we don't need to wait for any commit 5195 * (and we even should not as __ext4_journalled_invalidate_folio() may 5196 * strip all buffers from the folio but keep the folio dirty which can then 5197 * confuse e.g. concurrent ext4_writepages() seeing dirty folio without 5198 * buffers). Also we don't need to wait for any commit if all buffers in 5199 * the folio remain valid. This is most beneficial for the common case of 5200 * blocksize == PAGESIZE. 5201 */ 5202 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode))) 5203 return; 5204 while (1) { 5205 struct folio *folio = filemap_lock_folio(inode->i_mapping, 5206 inode->i_size >> PAGE_SHIFT); 5207 if (IS_ERR(folio)) 5208 return; 5209 ret = __ext4_journalled_invalidate_folio(folio, offset, 5210 folio_size(folio) - offset); 5211 folio_unlock(folio); 5212 folio_put(folio); 5213 if (ret != -EBUSY) 5214 return; 5215 commit_tid = 0; 5216 read_lock(&journal->j_state_lock); 5217 if (journal->j_committing_transaction) 5218 commit_tid = journal->j_committing_transaction->t_tid; 5219 read_unlock(&journal->j_state_lock); 5220 if (commit_tid) 5221 jbd2_log_wait_commit(journal, commit_tid); 5222 } 5223 } 5224 5225 /* 5226 * ext4_setattr() 5227 * 5228 * Called from notify_change. 5229 * 5230 * We want to trap VFS attempts to truncate the file as soon as 5231 * possible. In particular, we want to make sure that when the VFS 5232 * shrinks i_size, we put the inode on the orphan list and modify 5233 * i_disksize immediately, so that during the subsequent flushing of 5234 * dirty pages and freeing of disk blocks, we can guarantee that any 5235 * commit will leave the blocks being flushed in an unused state on 5236 * disk. (On recovery, the inode will get truncated and the blocks will 5237 * be freed, so we have a strong guarantee that no future commit will 5238 * leave these blocks visible to the user.) 5239 * 5240 * Another thing we have to assure is that if we are in ordered mode 5241 * and inode is still attached to the committing transaction, we must 5242 * we start writeout of all the dirty pages which are being truncated. 5243 * This way we are sure that all the data written in the previous 5244 * transaction are already on disk (truncate waits for pages under 5245 * writeback). 5246 * 5247 * Called with inode->i_rwsem down. 5248 */ 5249 int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 5250 struct iattr *attr) 5251 { 5252 struct inode *inode = d_inode(dentry); 5253 int error, rc = 0; 5254 int orphan = 0; 5255 const unsigned int ia_valid = attr->ia_valid; 5256 bool inc_ivers = true; 5257 5258 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5259 return -EIO; 5260 5261 if (unlikely(IS_IMMUTABLE(inode))) 5262 return -EPERM; 5263 5264 if (unlikely(IS_APPEND(inode) && 5265 (ia_valid & (ATTR_MODE | ATTR_UID | 5266 ATTR_GID | ATTR_TIMES_SET)))) 5267 return -EPERM; 5268 5269 error = setattr_prepare(idmap, dentry, attr); 5270 if (error) 5271 return error; 5272 5273 error = fscrypt_prepare_setattr(dentry, attr); 5274 if (error) 5275 return error; 5276 5277 error = fsverity_prepare_setattr(dentry, attr); 5278 if (error) 5279 return error; 5280 5281 if (is_quota_modification(idmap, inode, attr)) { 5282 error = dquot_initialize(inode); 5283 if (error) 5284 return error; 5285 } 5286 5287 if (i_uid_needs_update(idmap, attr, inode) || 5288 i_gid_needs_update(idmap, attr, inode)) { 5289 handle_t *handle; 5290 5291 /* (user+group)*(old+new) structure, inode write (sb, 5292 * inode block, ? - but truncate inode update has it) */ 5293 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5294 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5295 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5296 if (IS_ERR(handle)) { 5297 error = PTR_ERR(handle); 5298 goto err_out; 5299 } 5300 5301 /* dquot_transfer() calls back ext4_get_inode_usage() which 5302 * counts xattr inode references. 5303 */ 5304 down_read(&EXT4_I(inode)->xattr_sem); 5305 error = dquot_transfer(idmap, inode, attr); 5306 up_read(&EXT4_I(inode)->xattr_sem); 5307 5308 if (error) { 5309 ext4_journal_stop(handle); 5310 return error; 5311 } 5312 /* Update corresponding info in inode so that everything is in 5313 * one transaction */ 5314 i_uid_update(idmap, attr, inode); 5315 i_gid_update(idmap, attr, inode); 5316 error = ext4_mark_inode_dirty(handle, inode); 5317 ext4_journal_stop(handle); 5318 if (unlikely(error)) { 5319 return error; 5320 } 5321 } 5322 5323 if (attr->ia_valid & ATTR_SIZE) { 5324 handle_t *handle; 5325 loff_t oldsize = inode->i_size; 5326 loff_t old_disksize; 5327 int shrink = (attr->ia_size < inode->i_size); 5328 5329 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5330 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5331 5332 if (attr->ia_size > sbi->s_bitmap_maxbytes) { 5333 return -EFBIG; 5334 } 5335 } 5336 if (!S_ISREG(inode->i_mode)) { 5337 return -EINVAL; 5338 } 5339 5340 if (attr->ia_size == inode->i_size) 5341 inc_ivers = false; 5342 5343 if (shrink) { 5344 if (ext4_should_order_data(inode)) { 5345 error = ext4_begin_ordered_truncate(inode, 5346 attr->ia_size); 5347 if (error) 5348 goto err_out; 5349 } 5350 /* 5351 * Blocks are going to be removed from the inode. Wait 5352 * for dio in flight. 5353 */ 5354 inode_dio_wait(inode); 5355 } 5356 5357 filemap_invalidate_lock(inode->i_mapping); 5358 5359 rc = ext4_break_layouts(inode); 5360 if (rc) { 5361 filemap_invalidate_unlock(inode->i_mapping); 5362 goto err_out; 5363 } 5364 5365 if (attr->ia_size != inode->i_size) { 5366 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5367 if (IS_ERR(handle)) { 5368 error = PTR_ERR(handle); 5369 goto out_mmap_sem; 5370 } 5371 if (ext4_handle_valid(handle) && shrink) { 5372 error = ext4_orphan_add(handle, inode); 5373 orphan = 1; 5374 } 5375 /* 5376 * Update c/mtime on truncate up, ext4_truncate() will 5377 * update c/mtime in shrink case below 5378 */ 5379 if (!shrink) 5380 inode->i_mtime = inode_set_ctime_current(inode); 5381 5382 if (shrink) 5383 ext4_fc_track_range(handle, inode, 5384 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5385 inode->i_sb->s_blocksize_bits, 5386 EXT_MAX_BLOCKS - 1); 5387 else 5388 ext4_fc_track_range( 5389 handle, inode, 5390 (oldsize > 0 ? oldsize - 1 : oldsize) >> 5391 inode->i_sb->s_blocksize_bits, 5392 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5393 inode->i_sb->s_blocksize_bits); 5394 5395 down_write(&EXT4_I(inode)->i_data_sem); 5396 old_disksize = EXT4_I(inode)->i_disksize; 5397 EXT4_I(inode)->i_disksize = attr->ia_size; 5398 rc = ext4_mark_inode_dirty(handle, inode); 5399 if (!error) 5400 error = rc; 5401 /* 5402 * We have to update i_size under i_data_sem together 5403 * with i_disksize to avoid races with writeback code 5404 * running ext4_wb_update_i_disksize(). 5405 */ 5406 if (!error) 5407 i_size_write(inode, attr->ia_size); 5408 else 5409 EXT4_I(inode)->i_disksize = old_disksize; 5410 up_write(&EXT4_I(inode)->i_data_sem); 5411 ext4_journal_stop(handle); 5412 if (error) 5413 goto out_mmap_sem; 5414 if (!shrink) { 5415 pagecache_isize_extended(inode, oldsize, 5416 inode->i_size); 5417 } else if (ext4_should_journal_data(inode)) { 5418 ext4_wait_for_tail_page_commit(inode); 5419 } 5420 } 5421 5422 /* 5423 * Truncate pagecache after we've waited for commit 5424 * in data=journal mode to make pages freeable. 5425 */ 5426 truncate_pagecache(inode, inode->i_size); 5427 /* 5428 * Call ext4_truncate() even if i_size didn't change to 5429 * truncate possible preallocated blocks. 5430 */ 5431 if (attr->ia_size <= oldsize) { 5432 rc = ext4_truncate(inode); 5433 if (rc) 5434 error = rc; 5435 } 5436 out_mmap_sem: 5437 filemap_invalidate_unlock(inode->i_mapping); 5438 } 5439 5440 if (!error) { 5441 if (inc_ivers) 5442 inode_inc_iversion(inode); 5443 setattr_copy(idmap, inode, attr); 5444 mark_inode_dirty(inode); 5445 } 5446 5447 /* 5448 * If the call to ext4_truncate failed to get a transaction handle at 5449 * all, we need to clean up the in-core orphan list manually. 5450 */ 5451 if (orphan && inode->i_nlink) 5452 ext4_orphan_del(NULL, inode); 5453 5454 if (!error && (ia_valid & ATTR_MODE)) 5455 rc = posix_acl_chmod(idmap, dentry, inode->i_mode); 5456 5457 err_out: 5458 if (error) 5459 ext4_std_error(inode->i_sb, error); 5460 if (!error) 5461 error = rc; 5462 return error; 5463 } 5464 5465 u32 ext4_dio_alignment(struct inode *inode) 5466 { 5467 if (fsverity_active(inode)) 5468 return 0; 5469 if (ext4_should_journal_data(inode)) 5470 return 0; 5471 if (ext4_has_inline_data(inode)) 5472 return 0; 5473 if (IS_ENCRYPTED(inode)) { 5474 if (!fscrypt_dio_supported(inode)) 5475 return 0; 5476 return i_blocksize(inode); 5477 } 5478 return 1; /* use the iomap defaults */ 5479 } 5480 5481 int ext4_getattr(struct mnt_idmap *idmap, const struct path *path, 5482 struct kstat *stat, u32 request_mask, unsigned int query_flags) 5483 { 5484 struct inode *inode = d_inode(path->dentry); 5485 struct ext4_inode *raw_inode; 5486 struct ext4_inode_info *ei = EXT4_I(inode); 5487 unsigned int flags; 5488 5489 if ((request_mask & STATX_BTIME) && 5490 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { 5491 stat->result_mask |= STATX_BTIME; 5492 stat->btime.tv_sec = ei->i_crtime.tv_sec; 5493 stat->btime.tv_nsec = ei->i_crtime.tv_nsec; 5494 } 5495 5496 /* 5497 * Return the DIO alignment restrictions if requested. We only return 5498 * this information when requested, since on encrypted files it might 5499 * take a fair bit of work to get if the file wasn't opened recently. 5500 */ 5501 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) { 5502 u32 dio_align = ext4_dio_alignment(inode); 5503 5504 stat->result_mask |= STATX_DIOALIGN; 5505 if (dio_align == 1) { 5506 struct block_device *bdev = inode->i_sb->s_bdev; 5507 5508 /* iomap defaults */ 5509 stat->dio_mem_align = bdev_dma_alignment(bdev) + 1; 5510 stat->dio_offset_align = bdev_logical_block_size(bdev); 5511 } else { 5512 stat->dio_mem_align = dio_align; 5513 stat->dio_offset_align = dio_align; 5514 } 5515 } 5516 5517 flags = ei->i_flags & EXT4_FL_USER_VISIBLE; 5518 if (flags & EXT4_APPEND_FL) 5519 stat->attributes |= STATX_ATTR_APPEND; 5520 if (flags & EXT4_COMPR_FL) 5521 stat->attributes |= STATX_ATTR_COMPRESSED; 5522 if (flags & EXT4_ENCRYPT_FL) 5523 stat->attributes |= STATX_ATTR_ENCRYPTED; 5524 if (flags & EXT4_IMMUTABLE_FL) 5525 stat->attributes |= STATX_ATTR_IMMUTABLE; 5526 if (flags & EXT4_NODUMP_FL) 5527 stat->attributes |= STATX_ATTR_NODUMP; 5528 if (flags & EXT4_VERITY_FL) 5529 stat->attributes |= STATX_ATTR_VERITY; 5530 5531 stat->attributes_mask |= (STATX_ATTR_APPEND | 5532 STATX_ATTR_COMPRESSED | 5533 STATX_ATTR_ENCRYPTED | 5534 STATX_ATTR_IMMUTABLE | 5535 STATX_ATTR_NODUMP | 5536 STATX_ATTR_VERITY); 5537 5538 generic_fillattr(idmap, request_mask, inode, stat); 5539 return 0; 5540 } 5541 5542 int ext4_file_getattr(struct mnt_idmap *idmap, 5543 const struct path *path, struct kstat *stat, 5544 u32 request_mask, unsigned int query_flags) 5545 { 5546 struct inode *inode = d_inode(path->dentry); 5547 u64 delalloc_blocks; 5548 5549 ext4_getattr(idmap, path, stat, request_mask, query_flags); 5550 5551 /* 5552 * If there is inline data in the inode, the inode will normally not 5553 * have data blocks allocated (it may have an external xattr block). 5554 * Report at least one sector for such files, so tools like tar, rsync, 5555 * others don't incorrectly think the file is completely sparse. 5556 */ 5557 if (unlikely(ext4_has_inline_data(inode))) 5558 stat->blocks += (stat->size + 511) >> 9; 5559 5560 /* 5561 * We can't update i_blocks if the block allocation is delayed 5562 * otherwise in the case of system crash before the real block 5563 * allocation is done, we will have i_blocks inconsistent with 5564 * on-disk file blocks. 5565 * We always keep i_blocks updated together with real 5566 * allocation. But to not confuse with user, stat 5567 * will return the blocks that include the delayed allocation 5568 * blocks for this file. 5569 */ 5570 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5571 EXT4_I(inode)->i_reserved_data_blocks); 5572 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5573 return 0; 5574 } 5575 5576 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5577 int pextents) 5578 { 5579 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5580 return ext4_ind_trans_blocks(inode, lblocks); 5581 return ext4_ext_index_trans_blocks(inode, pextents); 5582 } 5583 5584 /* 5585 * Account for index blocks, block groups bitmaps and block group 5586 * descriptor blocks if modify datablocks and index blocks 5587 * worse case, the indexs blocks spread over different block groups 5588 * 5589 * If datablocks are discontiguous, they are possible to spread over 5590 * different block groups too. If they are contiguous, with flexbg, 5591 * they could still across block group boundary. 5592 * 5593 * Also account for superblock, inode, quota and xattr blocks 5594 */ 5595 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5596 int pextents) 5597 { 5598 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5599 int gdpblocks; 5600 int idxblocks; 5601 int ret; 5602 5603 /* 5604 * How many index blocks need to touch to map @lblocks logical blocks 5605 * to @pextents physical extents? 5606 */ 5607 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5608 5609 ret = idxblocks; 5610 5611 /* 5612 * Now let's see how many group bitmaps and group descriptors need 5613 * to account 5614 */ 5615 groups = idxblocks + pextents; 5616 gdpblocks = groups; 5617 if (groups > ngroups) 5618 groups = ngroups; 5619 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5620 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5621 5622 /* bitmaps and block group descriptor blocks */ 5623 ret += groups + gdpblocks; 5624 5625 /* Blocks for super block, inode, quota and xattr blocks */ 5626 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5627 5628 return ret; 5629 } 5630 5631 /* 5632 * Calculate the total number of credits to reserve to fit 5633 * the modification of a single pages into a single transaction, 5634 * which may include multiple chunks of block allocations. 5635 * 5636 * This could be called via ext4_write_begin() 5637 * 5638 * We need to consider the worse case, when 5639 * one new block per extent. 5640 */ 5641 int ext4_writepage_trans_blocks(struct inode *inode) 5642 { 5643 int bpp = ext4_journal_blocks_per_page(inode); 5644 int ret; 5645 5646 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5647 5648 /* Account for data blocks for journalled mode */ 5649 if (ext4_should_journal_data(inode)) 5650 ret += bpp; 5651 return ret; 5652 } 5653 5654 /* 5655 * Calculate the journal credits for a chunk of data modification. 5656 * 5657 * This is called from DIO, fallocate or whoever calling 5658 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5659 * 5660 * journal buffers for data blocks are not included here, as DIO 5661 * and fallocate do no need to journal data buffers. 5662 */ 5663 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5664 { 5665 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5666 } 5667 5668 /* 5669 * The caller must have previously called ext4_reserve_inode_write(). 5670 * Give this, we know that the caller already has write access to iloc->bh. 5671 */ 5672 int ext4_mark_iloc_dirty(handle_t *handle, 5673 struct inode *inode, struct ext4_iloc *iloc) 5674 { 5675 int err = 0; 5676 5677 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 5678 put_bh(iloc->bh); 5679 return -EIO; 5680 } 5681 ext4_fc_track_inode(handle, inode); 5682 5683 /* the do_update_inode consumes one bh->b_count */ 5684 get_bh(iloc->bh); 5685 5686 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5687 err = ext4_do_update_inode(handle, inode, iloc); 5688 put_bh(iloc->bh); 5689 return err; 5690 } 5691 5692 /* 5693 * On success, We end up with an outstanding reference count against 5694 * iloc->bh. This _must_ be cleaned up later. 5695 */ 5696 5697 int 5698 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5699 struct ext4_iloc *iloc) 5700 { 5701 int err; 5702 5703 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5704 return -EIO; 5705 5706 err = ext4_get_inode_loc(inode, iloc); 5707 if (!err) { 5708 BUFFER_TRACE(iloc->bh, "get_write_access"); 5709 err = ext4_journal_get_write_access(handle, inode->i_sb, 5710 iloc->bh, EXT4_JTR_NONE); 5711 if (err) { 5712 brelse(iloc->bh); 5713 iloc->bh = NULL; 5714 } 5715 } 5716 ext4_std_error(inode->i_sb, err); 5717 return err; 5718 } 5719 5720 static int __ext4_expand_extra_isize(struct inode *inode, 5721 unsigned int new_extra_isize, 5722 struct ext4_iloc *iloc, 5723 handle_t *handle, int *no_expand) 5724 { 5725 struct ext4_inode *raw_inode; 5726 struct ext4_xattr_ibody_header *header; 5727 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb); 5728 struct ext4_inode_info *ei = EXT4_I(inode); 5729 int error; 5730 5731 /* this was checked at iget time, but double check for good measure */ 5732 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) || 5733 (ei->i_extra_isize & 3)) { 5734 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)", 5735 ei->i_extra_isize, 5736 EXT4_INODE_SIZE(inode->i_sb)); 5737 return -EFSCORRUPTED; 5738 } 5739 if ((new_extra_isize < ei->i_extra_isize) || 5740 (new_extra_isize < 4) || 5741 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE)) 5742 return -EINVAL; /* Should never happen */ 5743 5744 raw_inode = ext4_raw_inode(iloc); 5745 5746 header = IHDR(inode, raw_inode); 5747 5748 /* No extended attributes present */ 5749 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5750 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5751 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + 5752 EXT4_I(inode)->i_extra_isize, 0, 5753 new_extra_isize - EXT4_I(inode)->i_extra_isize); 5754 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5755 return 0; 5756 } 5757 5758 /* 5759 * We may need to allocate external xattr block so we need quotas 5760 * initialized. Here we can be called with various locks held so we 5761 * cannot affort to initialize quotas ourselves. So just bail. 5762 */ 5763 if (dquot_initialize_needed(inode)) 5764 return -EAGAIN; 5765 5766 /* try to expand with EAs present */ 5767 error = ext4_expand_extra_isize_ea(inode, new_extra_isize, 5768 raw_inode, handle); 5769 if (error) { 5770 /* 5771 * Inode size expansion failed; don't try again 5772 */ 5773 *no_expand = 1; 5774 } 5775 5776 return error; 5777 } 5778 5779 /* 5780 * Expand an inode by new_extra_isize bytes. 5781 * Returns 0 on success or negative error number on failure. 5782 */ 5783 static int ext4_try_to_expand_extra_isize(struct inode *inode, 5784 unsigned int new_extra_isize, 5785 struct ext4_iloc iloc, 5786 handle_t *handle) 5787 { 5788 int no_expand; 5789 int error; 5790 5791 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) 5792 return -EOVERFLOW; 5793 5794 /* 5795 * In nojournal mode, we can immediately attempt to expand 5796 * the inode. When journaled, we first need to obtain extra 5797 * buffer credits since we may write into the EA block 5798 * with this same handle. If journal_extend fails, then it will 5799 * only result in a minor loss of functionality for that inode. 5800 * If this is felt to be critical, then e2fsck should be run to 5801 * force a large enough s_min_extra_isize. 5802 */ 5803 if (ext4_journal_extend(handle, 5804 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0) 5805 return -ENOSPC; 5806 5807 if (ext4_write_trylock_xattr(inode, &no_expand) == 0) 5808 return -EBUSY; 5809 5810 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc, 5811 handle, &no_expand); 5812 ext4_write_unlock_xattr(inode, &no_expand); 5813 5814 return error; 5815 } 5816 5817 int ext4_expand_extra_isize(struct inode *inode, 5818 unsigned int new_extra_isize, 5819 struct ext4_iloc *iloc) 5820 { 5821 handle_t *handle; 5822 int no_expand; 5823 int error, rc; 5824 5825 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5826 brelse(iloc->bh); 5827 return -EOVERFLOW; 5828 } 5829 5830 handle = ext4_journal_start(inode, EXT4_HT_INODE, 5831 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)); 5832 if (IS_ERR(handle)) { 5833 error = PTR_ERR(handle); 5834 brelse(iloc->bh); 5835 return error; 5836 } 5837 5838 ext4_write_lock_xattr(inode, &no_expand); 5839 5840 BUFFER_TRACE(iloc->bh, "get_write_access"); 5841 error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh, 5842 EXT4_JTR_NONE); 5843 if (error) { 5844 brelse(iloc->bh); 5845 goto out_unlock; 5846 } 5847 5848 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc, 5849 handle, &no_expand); 5850 5851 rc = ext4_mark_iloc_dirty(handle, inode, iloc); 5852 if (!error) 5853 error = rc; 5854 5855 out_unlock: 5856 ext4_write_unlock_xattr(inode, &no_expand); 5857 ext4_journal_stop(handle); 5858 return error; 5859 } 5860 5861 /* 5862 * What we do here is to mark the in-core inode as clean with respect to inode 5863 * dirtiness (it may still be data-dirty). 5864 * This means that the in-core inode may be reaped by prune_icache 5865 * without having to perform any I/O. This is a very good thing, 5866 * because *any* task may call prune_icache - even ones which 5867 * have a transaction open against a different journal. 5868 * 5869 * Is this cheating? Not really. Sure, we haven't written the 5870 * inode out, but prune_icache isn't a user-visible syncing function. 5871 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5872 * we start and wait on commits. 5873 */ 5874 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode, 5875 const char *func, unsigned int line) 5876 { 5877 struct ext4_iloc iloc; 5878 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5879 int err; 5880 5881 might_sleep(); 5882 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5883 err = ext4_reserve_inode_write(handle, inode, &iloc); 5884 if (err) 5885 goto out; 5886 5887 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize) 5888 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize, 5889 iloc, handle); 5890 5891 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 5892 out: 5893 if (unlikely(err)) 5894 ext4_error_inode_err(inode, func, line, 0, err, 5895 "mark_inode_dirty error"); 5896 return err; 5897 } 5898 5899 /* 5900 * ext4_dirty_inode() is called from __mark_inode_dirty() 5901 * 5902 * We're really interested in the case where a file is being extended. 5903 * i_size has been changed by generic_commit_write() and we thus need 5904 * to include the updated inode in the current transaction. 5905 * 5906 * Also, dquot_alloc_block() will always dirty the inode when blocks 5907 * are allocated to the file. 5908 * 5909 * If the inode is marked synchronous, we don't honour that here - doing 5910 * so would cause a commit on atime updates, which we don't bother doing. 5911 * We handle synchronous inodes at the highest possible level. 5912 */ 5913 void ext4_dirty_inode(struct inode *inode, int flags) 5914 { 5915 handle_t *handle; 5916 5917 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 5918 if (IS_ERR(handle)) 5919 return; 5920 ext4_mark_inode_dirty(handle, inode); 5921 ext4_journal_stop(handle); 5922 } 5923 5924 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5925 { 5926 journal_t *journal; 5927 handle_t *handle; 5928 int err; 5929 int alloc_ctx; 5930 5931 /* 5932 * We have to be very careful here: changing a data block's 5933 * journaling status dynamically is dangerous. If we write a 5934 * data block to the journal, change the status and then delete 5935 * that block, we risk forgetting to revoke the old log record 5936 * from the journal and so a subsequent replay can corrupt data. 5937 * So, first we make sure that the journal is empty and that 5938 * nobody is changing anything. 5939 */ 5940 5941 journal = EXT4_JOURNAL(inode); 5942 if (!journal) 5943 return 0; 5944 if (is_journal_aborted(journal)) 5945 return -EROFS; 5946 5947 /* Wait for all existing dio workers */ 5948 inode_dio_wait(inode); 5949 5950 /* 5951 * Before flushing the journal and switching inode's aops, we have 5952 * to flush all dirty data the inode has. There can be outstanding 5953 * delayed allocations, there can be unwritten extents created by 5954 * fallocate or buffered writes in dioread_nolock mode covered by 5955 * dirty data which can be converted only after flushing the dirty 5956 * data (and journalled aops don't know how to handle these cases). 5957 */ 5958 if (val) { 5959 filemap_invalidate_lock(inode->i_mapping); 5960 err = filemap_write_and_wait(inode->i_mapping); 5961 if (err < 0) { 5962 filemap_invalidate_unlock(inode->i_mapping); 5963 return err; 5964 } 5965 } 5966 5967 alloc_ctx = ext4_writepages_down_write(inode->i_sb); 5968 jbd2_journal_lock_updates(journal); 5969 5970 /* 5971 * OK, there are no updates running now, and all cached data is 5972 * synced to disk. We are now in a completely consistent state 5973 * which doesn't have anything in the journal, and we know that 5974 * no filesystem updates are running, so it is safe to modify 5975 * the inode's in-core data-journaling state flag now. 5976 */ 5977 5978 if (val) 5979 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5980 else { 5981 err = jbd2_journal_flush(journal, 0); 5982 if (err < 0) { 5983 jbd2_journal_unlock_updates(journal); 5984 ext4_writepages_up_write(inode->i_sb, alloc_ctx); 5985 return err; 5986 } 5987 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5988 } 5989 ext4_set_aops(inode); 5990 5991 jbd2_journal_unlock_updates(journal); 5992 ext4_writepages_up_write(inode->i_sb, alloc_ctx); 5993 5994 if (val) 5995 filemap_invalidate_unlock(inode->i_mapping); 5996 5997 /* Finally we can mark the inode as dirty. */ 5998 5999 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 6000 if (IS_ERR(handle)) 6001 return PTR_ERR(handle); 6002 6003 ext4_fc_mark_ineligible(inode->i_sb, 6004 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle); 6005 err = ext4_mark_inode_dirty(handle, inode); 6006 ext4_handle_sync(handle); 6007 ext4_journal_stop(handle); 6008 ext4_std_error(inode->i_sb, err); 6009 6010 return err; 6011 } 6012 6013 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode, 6014 struct buffer_head *bh) 6015 { 6016 return !buffer_mapped(bh); 6017 } 6018 6019 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf) 6020 { 6021 struct vm_area_struct *vma = vmf->vma; 6022 struct folio *folio = page_folio(vmf->page); 6023 loff_t size; 6024 unsigned long len; 6025 int err; 6026 vm_fault_t ret; 6027 struct file *file = vma->vm_file; 6028 struct inode *inode = file_inode(file); 6029 struct address_space *mapping = inode->i_mapping; 6030 handle_t *handle; 6031 get_block_t *get_block; 6032 int retries = 0; 6033 6034 if (unlikely(IS_IMMUTABLE(inode))) 6035 return VM_FAULT_SIGBUS; 6036 6037 sb_start_pagefault(inode->i_sb); 6038 file_update_time(vma->vm_file); 6039 6040 filemap_invalidate_lock_shared(mapping); 6041 6042 err = ext4_convert_inline_data(inode); 6043 if (err) 6044 goto out_ret; 6045 6046 /* 6047 * On data journalling we skip straight to the transaction handle: 6048 * there's no delalloc; page truncated will be checked later; the 6049 * early return w/ all buffers mapped (calculates size/len) can't 6050 * be used; and there's no dioread_nolock, so only ext4_get_block. 6051 */ 6052 if (ext4_should_journal_data(inode)) 6053 goto retry_alloc; 6054 6055 /* Delalloc case is easy... */ 6056 if (test_opt(inode->i_sb, DELALLOC) && 6057 !ext4_nonda_switch(inode->i_sb)) { 6058 do { 6059 err = block_page_mkwrite(vma, vmf, 6060 ext4_da_get_block_prep); 6061 } while (err == -ENOSPC && 6062 ext4_should_retry_alloc(inode->i_sb, &retries)); 6063 goto out_ret; 6064 } 6065 6066 folio_lock(folio); 6067 size = i_size_read(inode); 6068 /* Page got truncated from under us? */ 6069 if (folio->mapping != mapping || folio_pos(folio) > size) { 6070 folio_unlock(folio); 6071 ret = VM_FAULT_NOPAGE; 6072 goto out; 6073 } 6074 6075 len = folio_size(folio); 6076 if (folio_pos(folio) + len > size) 6077 len = size - folio_pos(folio); 6078 /* 6079 * Return if we have all the buffers mapped. This avoids the need to do 6080 * journal_start/journal_stop which can block and take a long time 6081 * 6082 * This cannot be done for data journalling, as we have to add the 6083 * inode to the transaction's list to writeprotect pages on commit. 6084 */ 6085 if (folio_buffers(folio)) { 6086 if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio), 6087 0, len, NULL, 6088 ext4_bh_unmapped)) { 6089 /* Wait so that we don't change page under IO */ 6090 folio_wait_stable(folio); 6091 ret = VM_FAULT_LOCKED; 6092 goto out; 6093 } 6094 } 6095 folio_unlock(folio); 6096 /* OK, we need to fill the hole... */ 6097 if (ext4_should_dioread_nolock(inode)) 6098 get_block = ext4_get_block_unwritten; 6099 else 6100 get_block = ext4_get_block; 6101 retry_alloc: 6102 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 6103 ext4_writepage_trans_blocks(inode)); 6104 if (IS_ERR(handle)) { 6105 ret = VM_FAULT_SIGBUS; 6106 goto out; 6107 } 6108 /* 6109 * Data journalling can't use block_page_mkwrite() because it 6110 * will set_buffer_dirty() before do_journal_get_write_access() 6111 * thus might hit warning messages for dirty metadata buffers. 6112 */ 6113 if (!ext4_should_journal_data(inode)) { 6114 err = block_page_mkwrite(vma, vmf, get_block); 6115 } else { 6116 folio_lock(folio); 6117 size = i_size_read(inode); 6118 /* Page got truncated from under us? */ 6119 if (folio->mapping != mapping || folio_pos(folio) > size) { 6120 ret = VM_FAULT_NOPAGE; 6121 goto out_error; 6122 } 6123 6124 len = folio_size(folio); 6125 if (folio_pos(folio) + len > size) 6126 len = size - folio_pos(folio); 6127 6128 err = __block_write_begin(&folio->page, 0, len, ext4_get_block); 6129 if (!err) { 6130 ret = VM_FAULT_SIGBUS; 6131 if (ext4_journal_folio_buffers(handle, folio, len)) 6132 goto out_error; 6133 } else { 6134 folio_unlock(folio); 6135 } 6136 } 6137 ext4_journal_stop(handle); 6138 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 6139 goto retry_alloc; 6140 out_ret: 6141 ret = block_page_mkwrite_return(err); 6142 out: 6143 filemap_invalidate_unlock_shared(mapping); 6144 sb_end_pagefault(inode->i_sb); 6145 return ret; 6146 out_error: 6147 folio_unlock(folio); 6148 ext4_journal_stop(handle); 6149 goto out; 6150 } 6151