1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/inode.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * 64-bit file support on 64-bit platforms by Jakub Jelinek 17 * (jj@sunsite.ms.mff.cuni.cz) 18 * 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/mount.h> 24 #include <linux/time.h> 25 #include <linux/highuid.h> 26 #include <linux/pagemap.h> 27 #include <linux/dax.h> 28 #include <linux/quotaops.h> 29 #include <linux/string.h> 30 #include <linux/buffer_head.h> 31 #include <linux/writeback.h> 32 #include <linux/pagevec.h> 33 #include <linux/mpage.h> 34 #include <linux/namei.h> 35 #include <linux/uio.h> 36 #include <linux/bio.h> 37 #include <linux/workqueue.h> 38 #include <linux/kernel.h> 39 #include <linux/printk.h> 40 #include <linux/slab.h> 41 #include <linux/bitops.h> 42 #include <linux/iomap.h> 43 #include <linux/iversion.h> 44 45 #include "ext4_jbd2.h" 46 #include "xattr.h" 47 #include "acl.h" 48 #include "truncate.h" 49 50 #include <trace/events/ext4.h> 51 52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 53 struct ext4_inode_info *ei) 54 { 55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 56 __u32 csum; 57 __u16 dummy_csum = 0; 58 int offset = offsetof(struct ext4_inode, i_checksum_lo); 59 unsigned int csum_size = sizeof(dummy_csum); 60 61 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset); 62 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size); 63 offset += csum_size; 64 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 65 EXT4_GOOD_OLD_INODE_SIZE - offset); 66 67 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 68 offset = offsetof(struct ext4_inode, i_checksum_hi); 69 csum = ext4_chksum(sbi, csum, (__u8 *)raw + 70 EXT4_GOOD_OLD_INODE_SIZE, 71 offset - EXT4_GOOD_OLD_INODE_SIZE); 72 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 73 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, 74 csum_size); 75 offset += csum_size; 76 } 77 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 78 EXT4_INODE_SIZE(inode->i_sb) - offset); 79 } 80 81 return csum; 82 } 83 84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 85 struct ext4_inode_info *ei) 86 { 87 __u32 provided, calculated; 88 89 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 90 cpu_to_le32(EXT4_OS_LINUX) || 91 !ext4_has_metadata_csum(inode->i_sb)) 92 return 1; 93 94 provided = le16_to_cpu(raw->i_checksum_lo); 95 calculated = ext4_inode_csum(inode, raw, ei); 96 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 97 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 98 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 99 else 100 calculated &= 0xFFFF; 101 102 return provided == calculated; 103 } 104 105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 106 struct ext4_inode_info *ei) 107 { 108 __u32 csum; 109 110 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 111 cpu_to_le32(EXT4_OS_LINUX) || 112 !ext4_has_metadata_csum(inode->i_sb)) 113 return; 114 115 csum = ext4_inode_csum(inode, raw, ei); 116 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 117 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 118 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 119 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 120 } 121 122 static inline int ext4_begin_ordered_truncate(struct inode *inode, 123 loff_t new_size) 124 { 125 trace_ext4_begin_ordered_truncate(inode, new_size); 126 /* 127 * If jinode is zero, then we never opened the file for 128 * writing, so there's no need to call 129 * jbd2_journal_begin_ordered_truncate() since there's no 130 * outstanding writes we need to flush. 131 */ 132 if (!EXT4_I(inode)->jinode) 133 return 0; 134 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 135 EXT4_I(inode)->jinode, 136 new_size); 137 } 138 139 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 140 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 141 int pextents); 142 143 /* 144 * Test whether an inode is a fast symlink. 145 * A fast symlink has its symlink data stored in ext4_inode_info->i_data. 146 */ 147 int ext4_inode_is_fast_symlink(struct inode *inode) 148 { 149 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 150 int ea_blocks = EXT4_I(inode)->i_file_acl ? 151 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 152 153 if (ext4_has_inline_data(inode)) 154 return 0; 155 156 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 157 } 158 return S_ISLNK(inode->i_mode) && inode->i_size && 159 (inode->i_size < EXT4_N_BLOCKS * 4); 160 } 161 162 /* 163 * Called at the last iput() if i_nlink is zero. 164 */ 165 void ext4_evict_inode(struct inode *inode) 166 { 167 handle_t *handle; 168 int err; 169 /* 170 * Credits for final inode cleanup and freeing: 171 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor 172 * (xattr block freeing), bitmap, group descriptor (inode freeing) 173 */ 174 int extra_credits = 6; 175 struct ext4_xattr_inode_array *ea_inode_array = NULL; 176 bool freeze_protected = false; 177 178 trace_ext4_evict_inode(inode); 179 180 if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL) 181 ext4_evict_ea_inode(inode); 182 if (inode->i_nlink) { 183 /* 184 * When journalling data dirty buffers are tracked only in the 185 * journal. So although mm thinks everything is clean and 186 * ready for reaping the inode might still have some pages to 187 * write in the running transaction or waiting to be 188 * checkpointed. Thus calling jbd2_journal_invalidate_folio() 189 * (via truncate_inode_pages()) to discard these buffers can 190 * cause data loss. Also even if we did not discard these 191 * buffers, we would have no way to find them after the inode 192 * is reaped and thus user could see stale data if he tries to 193 * read them before the transaction is checkpointed. So be 194 * careful and force everything to disk here... We use 195 * ei->i_datasync_tid to store the newest transaction 196 * containing inode's data. 197 * 198 * Note that directories do not have this problem because they 199 * don't use page cache. 200 */ 201 if (inode->i_ino != EXT4_JOURNAL_INO && 202 ext4_should_journal_data(inode) && 203 S_ISREG(inode->i_mode) && inode->i_data.nrpages) { 204 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 205 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 206 207 jbd2_complete_transaction(journal, commit_tid); 208 filemap_write_and_wait(&inode->i_data); 209 } 210 truncate_inode_pages_final(&inode->i_data); 211 212 goto no_delete; 213 } 214 215 if (is_bad_inode(inode)) 216 goto no_delete; 217 dquot_initialize(inode); 218 219 if (ext4_should_order_data(inode)) 220 ext4_begin_ordered_truncate(inode, 0); 221 truncate_inode_pages_final(&inode->i_data); 222 223 /* 224 * For inodes with journalled data, transaction commit could have 225 * dirtied the inode. And for inodes with dioread_nolock, unwritten 226 * extents converting worker could merge extents and also have dirtied 227 * the inode. Flush worker is ignoring it because of I_FREEING flag but 228 * we still need to remove the inode from the writeback lists. 229 */ 230 if (!list_empty_careful(&inode->i_io_list)) 231 inode_io_list_del(inode); 232 233 /* 234 * Protect us against freezing - iput() caller didn't have to have any 235 * protection against it. When we are in a running transaction though, 236 * we are already protected against freezing and we cannot grab further 237 * protection due to lock ordering constraints. 238 */ 239 if (!ext4_journal_current_handle()) { 240 sb_start_intwrite(inode->i_sb); 241 freeze_protected = true; 242 } 243 244 if (!IS_NOQUOTA(inode)) 245 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); 246 247 /* 248 * Block bitmap, group descriptor, and inode are accounted in both 249 * ext4_blocks_for_truncate() and extra_credits. So subtract 3. 250 */ 251 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 252 ext4_blocks_for_truncate(inode) + extra_credits - 3); 253 if (IS_ERR(handle)) { 254 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 255 /* 256 * If we're going to skip the normal cleanup, we still need to 257 * make sure that the in-core orphan linked list is properly 258 * cleaned up. 259 */ 260 ext4_orphan_del(NULL, inode); 261 if (freeze_protected) 262 sb_end_intwrite(inode->i_sb); 263 goto no_delete; 264 } 265 266 if (IS_SYNC(inode)) 267 ext4_handle_sync(handle); 268 269 /* 270 * Set inode->i_size to 0 before calling ext4_truncate(). We need 271 * special handling of symlinks here because i_size is used to 272 * determine whether ext4_inode_info->i_data contains symlink data or 273 * block mappings. Setting i_size to 0 will remove its fast symlink 274 * status. Erase i_data so that it becomes a valid empty block map. 275 */ 276 if (ext4_inode_is_fast_symlink(inode)) 277 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data)); 278 inode->i_size = 0; 279 err = ext4_mark_inode_dirty(handle, inode); 280 if (err) { 281 ext4_warning(inode->i_sb, 282 "couldn't mark inode dirty (err %d)", err); 283 goto stop_handle; 284 } 285 if (inode->i_blocks) { 286 err = ext4_truncate(inode); 287 if (err) { 288 ext4_error_err(inode->i_sb, -err, 289 "couldn't truncate inode %lu (err %d)", 290 inode->i_ino, err); 291 goto stop_handle; 292 } 293 } 294 295 /* Remove xattr references. */ 296 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array, 297 extra_credits); 298 if (err) { 299 ext4_warning(inode->i_sb, "xattr delete (err %d)", err); 300 stop_handle: 301 ext4_journal_stop(handle); 302 ext4_orphan_del(NULL, inode); 303 if (freeze_protected) 304 sb_end_intwrite(inode->i_sb); 305 ext4_xattr_inode_array_free(ea_inode_array); 306 goto no_delete; 307 } 308 309 /* 310 * Kill off the orphan record which ext4_truncate created. 311 * AKPM: I think this can be inside the above `if'. 312 * Note that ext4_orphan_del() has to be able to cope with the 313 * deletion of a non-existent orphan - this is because we don't 314 * know if ext4_truncate() actually created an orphan record. 315 * (Well, we could do this if we need to, but heck - it works) 316 */ 317 ext4_orphan_del(handle, inode); 318 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds(); 319 320 /* 321 * One subtle ordering requirement: if anything has gone wrong 322 * (transaction abort, IO errors, whatever), then we can still 323 * do these next steps (the fs will already have been marked as 324 * having errors), but we can't free the inode if the mark_dirty 325 * fails. 326 */ 327 if (ext4_mark_inode_dirty(handle, inode)) 328 /* If that failed, just do the required in-core inode clear. */ 329 ext4_clear_inode(inode); 330 else 331 ext4_free_inode(handle, inode); 332 ext4_journal_stop(handle); 333 if (freeze_protected) 334 sb_end_intwrite(inode->i_sb); 335 ext4_xattr_inode_array_free(ea_inode_array); 336 return; 337 no_delete: 338 /* 339 * Check out some where else accidentally dirty the evicting inode, 340 * which may probably cause inode use-after-free issues later. 341 */ 342 WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list)); 343 344 if (!list_empty(&EXT4_I(inode)->i_fc_list)) 345 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL); 346 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 347 } 348 349 #ifdef CONFIG_QUOTA 350 qsize_t *ext4_get_reserved_space(struct inode *inode) 351 { 352 return &EXT4_I(inode)->i_reserved_quota; 353 } 354 #endif 355 356 /* 357 * Called with i_data_sem down, which is important since we can call 358 * ext4_discard_preallocations() from here. 359 */ 360 void ext4_da_update_reserve_space(struct inode *inode, 361 int used, int quota_claim) 362 { 363 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 364 struct ext4_inode_info *ei = EXT4_I(inode); 365 366 spin_lock(&ei->i_block_reservation_lock); 367 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 368 if (unlikely(used > ei->i_reserved_data_blocks)) { 369 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 370 "with only %d reserved data blocks", 371 __func__, inode->i_ino, used, 372 ei->i_reserved_data_blocks); 373 WARN_ON(1); 374 used = ei->i_reserved_data_blocks; 375 } 376 377 /* Update per-inode reservations */ 378 ei->i_reserved_data_blocks -= used; 379 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 380 381 spin_unlock(&ei->i_block_reservation_lock); 382 383 /* Update quota subsystem for data blocks */ 384 if (quota_claim) 385 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 386 else { 387 /* 388 * We did fallocate with an offset that is already delayed 389 * allocated. So on delayed allocated writeback we should 390 * not re-claim the quota for fallocated blocks. 391 */ 392 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 393 } 394 395 /* 396 * If we have done all the pending block allocations and if 397 * there aren't any writers on the inode, we can discard the 398 * inode's preallocations. 399 */ 400 if ((ei->i_reserved_data_blocks == 0) && 401 !inode_is_open_for_write(inode)) 402 ext4_discard_preallocations(inode, 0); 403 } 404 405 static int __check_block_validity(struct inode *inode, const char *func, 406 unsigned int line, 407 struct ext4_map_blocks *map) 408 { 409 if (ext4_has_feature_journal(inode->i_sb) && 410 (inode->i_ino == 411 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum))) 412 return 0; 413 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) { 414 ext4_error_inode(inode, func, line, map->m_pblk, 415 "lblock %lu mapped to illegal pblock %llu " 416 "(length %d)", (unsigned long) map->m_lblk, 417 map->m_pblk, map->m_len); 418 return -EFSCORRUPTED; 419 } 420 return 0; 421 } 422 423 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 424 ext4_lblk_t len) 425 { 426 int ret; 427 428 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) 429 return fscrypt_zeroout_range(inode, lblk, pblk, len); 430 431 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 432 if (ret > 0) 433 ret = 0; 434 435 return ret; 436 } 437 438 #define check_block_validity(inode, map) \ 439 __check_block_validity((inode), __func__, __LINE__, (map)) 440 441 #ifdef ES_AGGRESSIVE_TEST 442 static void ext4_map_blocks_es_recheck(handle_t *handle, 443 struct inode *inode, 444 struct ext4_map_blocks *es_map, 445 struct ext4_map_blocks *map, 446 int flags) 447 { 448 int retval; 449 450 map->m_flags = 0; 451 /* 452 * There is a race window that the result is not the same. 453 * e.g. xfstests #223 when dioread_nolock enables. The reason 454 * is that we lookup a block mapping in extent status tree with 455 * out taking i_data_sem. So at the time the unwritten extent 456 * could be converted. 457 */ 458 down_read(&EXT4_I(inode)->i_data_sem); 459 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 460 retval = ext4_ext_map_blocks(handle, inode, map, 0); 461 } else { 462 retval = ext4_ind_map_blocks(handle, inode, map, 0); 463 } 464 up_read((&EXT4_I(inode)->i_data_sem)); 465 466 /* 467 * We don't check m_len because extent will be collpased in status 468 * tree. So the m_len might not equal. 469 */ 470 if (es_map->m_lblk != map->m_lblk || 471 es_map->m_flags != map->m_flags || 472 es_map->m_pblk != map->m_pblk) { 473 printk("ES cache assertion failed for inode: %lu " 474 "es_cached ex [%d/%d/%llu/%x] != " 475 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 476 inode->i_ino, es_map->m_lblk, es_map->m_len, 477 es_map->m_pblk, es_map->m_flags, map->m_lblk, 478 map->m_len, map->m_pblk, map->m_flags, 479 retval, flags); 480 } 481 } 482 #endif /* ES_AGGRESSIVE_TEST */ 483 484 /* 485 * The ext4_map_blocks() function tries to look up the requested blocks, 486 * and returns if the blocks are already mapped. 487 * 488 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 489 * and store the allocated blocks in the result buffer head and mark it 490 * mapped. 491 * 492 * If file type is extents based, it will call ext4_ext_map_blocks(), 493 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 494 * based files 495 * 496 * On success, it returns the number of blocks being mapped or allocated. if 497 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map 498 * is marked as unwritten. If the create == 1, it will mark @map as mapped. 499 * 500 * It returns 0 if plain look up failed (blocks have not been allocated), in 501 * that case, @map is returned as unmapped but we still do fill map->m_len to 502 * indicate the length of a hole starting at map->m_lblk. 503 * 504 * It returns the error in case of allocation failure. 505 */ 506 int ext4_map_blocks(handle_t *handle, struct inode *inode, 507 struct ext4_map_blocks *map, int flags) 508 { 509 struct extent_status es; 510 int retval; 511 int ret = 0; 512 #ifdef ES_AGGRESSIVE_TEST 513 struct ext4_map_blocks orig_map; 514 515 memcpy(&orig_map, map, sizeof(*map)); 516 #endif 517 518 map->m_flags = 0; 519 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n", 520 flags, map->m_len, (unsigned long) map->m_lblk); 521 522 /* 523 * ext4_map_blocks returns an int, and m_len is an unsigned int 524 */ 525 if (unlikely(map->m_len > INT_MAX)) 526 map->m_len = INT_MAX; 527 528 /* We can handle the block number less than EXT_MAX_BLOCKS */ 529 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 530 return -EFSCORRUPTED; 531 532 /* Lookup extent status tree firstly */ 533 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) && 534 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 535 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 536 map->m_pblk = ext4_es_pblock(&es) + 537 map->m_lblk - es.es_lblk; 538 map->m_flags |= ext4_es_is_written(&es) ? 539 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 540 retval = es.es_len - (map->m_lblk - es.es_lblk); 541 if (retval > map->m_len) 542 retval = map->m_len; 543 map->m_len = retval; 544 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 545 map->m_pblk = 0; 546 retval = es.es_len - (map->m_lblk - es.es_lblk); 547 if (retval > map->m_len) 548 retval = map->m_len; 549 map->m_len = retval; 550 retval = 0; 551 } else { 552 BUG(); 553 } 554 555 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT) 556 return retval; 557 #ifdef ES_AGGRESSIVE_TEST 558 ext4_map_blocks_es_recheck(handle, inode, map, 559 &orig_map, flags); 560 #endif 561 goto found; 562 } 563 /* 564 * In the query cache no-wait mode, nothing we can do more if we 565 * cannot find extent in the cache. 566 */ 567 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT) 568 return 0; 569 570 /* 571 * Try to see if we can get the block without requesting a new 572 * file system block. 573 */ 574 down_read(&EXT4_I(inode)->i_data_sem); 575 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 576 retval = ext4_ext_map_blocks(handle, inode, map, 0); 577 } else { 578 retval = ext4_ind_map_blocks(handle, inode, map, 0); 579 } 580 if (retval > 0) { 581 unsigned int status; 582 583 if (unlikely(retval != map->m_len)) { 584 ext4_warning(inode->i_sb, 585 "ES len assertion failed for inode " 586 "%lu: retval %d != map->m_len %d", 587 inode->i_ino, retval, map->m_len); 588 WARN_ON(1); 589 } 590 591 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 592 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 593 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 594 !(status & EXTENT_STATUS_WRITTEN) && 595 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 596 map->m_lblk + map->m_len - 1)) 597 status |= EXTENT_STATUS_DELAYED; 598 ret = ext4_es_insert_extent(inode, map->m_lblk, 599 map->m_len, map->m_pblk, status); 600 if (ret < 0) 601 retval = ret; 602 } 603 up_read((&EXT4_I(inode)->i_data_sem)); 604 605 found: 606 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 607 ret = check_block_validity(inode, map); 608 if (ret != 0) 609 return ret; 610 } 611 612 /* If it is only a block(s) look up */ 613 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 614 return retval; 615 616 /* 617 * Returns if the blocks have already allocated 618 * 619 * Note that if blocks have been preallocated 620 * ext4_ext_get_block() returns the create = 0 621 * with buffer head unmapped. 622 */ 623 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 624 /* 625 * If we need to convert extent to unwritten 626 * we continue and do the actual work in 627 * ext4_ext_map_blocks() 628 */ 629 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 630 return retval; 631 632 /* 633 * Here we clear m_flags because after allocating an new extent, 634 * it will be set again. 635 */ 636 map->m_flags &= ~EXT4_MAP_FLAGS; 637 638 /* 639 * New blocks allocate and/or writing to unwritten extent 640 * will possibly result in updating i_data, so we take 641 * the write lock of i_data_sem, and call get_block() 642 * with create == 1 flag. 643 */ 644 down_write(&EXT4_I(inode)->i_data_sem); 645 646 /* 647 * We need to check for EXT4 here because migrate 648 * could have changed the inode type in between 649 */ 650 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 651 retval = ext4_ext_map_blocks(handle, inode, map, flags); 652 } else { 653 retval = ext4_ind_map_blocks(handle, inode, map, flags); 654 655 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 656 /* 657 * We allocated new blocks which will result in 658 * i_data's format changing. Force the migrate 659 * to fail by clearing migrate flags 660 */ 661 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 662 } 663 664 /* 665 * Update reserved blocks/metadata blocks after successful 666 * block allocation which had been deferred till now. We don't 667 * support fallocate for non extent files. So we can update 668 * reserve space here. 669 */ 670 if ((retval > 0) && 671 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 672 ext4_da_update_reserve_space(inode, retval, 1); 673 } 674 675 if (retval > 0) { 676 unsigned int status; 677 678 if (unlikely(retval != map->m_len)) { 679 ext4_warning(inode->i_sb, 680 "ES len assertion failed for inode " 681 "%lu: retval %d != map->m_len %d", 682 inode->i_ino, retval, map->m_len); 683 WARN_ON(1); 684 } 685 686 /* 687 * We have to zeroout blocks before inserting them into extent 688 * status tree. Otherwise someone could look them up there and 689 * use them before they are really zeroed. We also have to 690 * unmap metadata before zeroing as otherwise writeback can 691 * overwrite zeros with stale data from block device. 692 */ 693 if (flags & EXT4_GET_BLOCKS_ZERO && 694 map->m_flags & EXT4_MAP_MAPPED && 695 map->m_flags & EXT4_MAP_NEW) { 696 ret = ext4_issue_zeroout(inode, map->m_lblk, 697 map->m_pblk, map->m_len); 698 if (ret) { 699 retval = ret; 700 goto out_sem; 701 } 702 } 703 704 /* 705 * If the extent has been zeroed out, we don't need to update 706 * extent status tree. 707 */ 708 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 709 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 710 if (ext4_es_is_written(&es)) 711 goto out_sem; 712 } 713 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 714 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 715 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 716 !(status & EXTENT_STATUS_WRITTEN) && 717 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 718 map->m_lblk + map->m_len - 1)) 719 status |= EXTENT_STATUS_DELAYED; 720 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 721 map->m_pblk, status); 722 if (ret < 0) { 723 retval = ret; 724 goto out_sem; 725 } 726 } 727 728 out_sem: 729 up_write((&EXT4_I(inode)->i_data_sem)); 730 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 731 ret = check_block_validity(inode, map); 732 if (ret != 0) 733 return ret; 734 735 /* 736 * Inodes with freshly allocated blocks where contents will be 737 * visible after transaction commit must be on transaction's 738 * ordered data list. 739 */ 740 if (map->m_flags & EXT4_MAP_NEW && 741 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 742 !(flags & EXT4_GET_BLOCKS_ZERO) && 743 !ext4_is_quota_file(inode) && 744 ext4_should_order_data(inode)) { 745 loff_t start_byte = 746 (loff_t)map->m_lblk << inode->i_blkbits; 747 loff_t length = (loff_t)map->m_len << inode->i_blkbits; 748 749 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 750 ret = ext4_jbd2_inode_add_wait(handle, inode, 751 start_byte, length); 752 else 753 ret = ext4_jbd2_inode_add_write(handle, inode, 754 start_byte, length); 755 if (ret) 756 return ret; 757 } 758 } 759 if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN || 760 map->m_flags & EXT4_MAP_MAPPED)) 761 ext4_fc_track_range(handle, inode, map->m_lblk, 762 map->m_lblk + map->m_len - 1); 763 if (retval < 0) 764 ext_debug(inode, "failed with err %d\n", retval); 765 return retval; 766 } 767 768 /* 769 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 770 * we have to be careful as someone else may be manipulating b_state as well. 771 */ 772 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 773 { 774 unsigned long old_state; 775 unsigned long new_state; 776 777 flags &= EXT4_MAP_FLAGS; 778 779 /* Dummy buffer_head? Set non-atomically. */ 780 if (!bh->b_page) { 781 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 782 return; 783 } 784 /* 785 * Someone else may be modifying b_state. Be careful! This is ugly but 786 * once we get rid of using bh as a container for mapping information 787 * to pass to / from get_block functions, this can go away. 788 */ 789 old_state = READ_ONCE(bh->b_state); 790 do { 791 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 792 } while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state))); 793 } 794 795 static int _ext4_get_block(struct inode *inode, sector_t iblock, 796 struct buffer_head *bh, int flags) 797 { 798 struct ext4_map_blocks map; 799 int ret = 0; 800 801 if (ext4_has_inline_data(inode)) 802 return -ERANGE; 803 804 map.m_lblk = iblock; 805 map.m_len = bh->b_size >> inode->i_blkbits; 806 807 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 808 flags); 809 if (ret > 0) { 810 map_bh(bh, inode->i_sb, map.m_pblk); 811 ext4_update_bh_state(bh, map.m_flags); 812 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 813 ret = 0; 814 } else if (ret == 0) { 815 /* hole case, need to fill in bh->b_size */ 816 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 817 } 818 return ret; 819 } 820 821 int ext4_get_block(struct inode *inode, sector_t iblock, 822 struct buffer_head *bh, int create) 823 { 824 return _ext4_get_block(inode, iblock, bh, 825 create ? EXT4_GET_BLOCKS_CREATE : 0); 826 } 827 828 /* 829 * Get block function used when preparing for buffered write if we require 830 * creating an unwritten extent if blocks haven't been allocated. The extent 831 * will be converted to written after the IO is complete. 832 */ 833 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 834 struct buffer_head *bh_result, int create) 835 { 836 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 837 inode->i_ino, create); 838 return _ext4_get_block(inode, iblock, bh_result, 839 EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT); 840 } 841 842 /* Maximum number of blocks we map for direct IO at once. */ 843 #define DIO_MAX_BLOCKS 4096 844 845 /* 846 * `handle' can be NULL if create is zero 847 */ 848 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 849 ext4_lblk_t block, int map_flags) 850 { 851 struct ext4_map_blocks map; 852 struct buffer_head *bh; 853 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 854 bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT; 855 int err; 856 857 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 858 || handle != NULL || create == 0); 859 ASSERT(create == 0 || !nowait); 860 861 map.m_lblk = block; 862 map.m_len = 1; 863 err = ext4_map_blocks(handle, inode, &map, map_flags); 864 865 if (err == 0) 866 return create ? ERR_PTR(-ENOSPC) : NULL; 867 if (err < 0) 868 return ERR_PTR(err); 869 870 if (nowait) 871 return sb_find_get_block(inode->i_sb, map.m_pblk); 872 873 bh = sb_getblk(inode->i_sb, map.m_pblk); 874 if (unlikely(!bh)) 875 return ERR_PTR(-ENOMEM); 876 if (map.m_flags & EXT4_MAP_NEW) { 877 ASSERT(create != 0); 878 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 879 || (handle != NULL)); 880 881 /* 882 * Now that we do not always journal data, we should 883 * keep in mind whether this should always journal the 884 * new buffer as metadata. For now, regular file 885 * writes use ext4_get_block instead, so it's not a 886 * problem. 887 */ 888 lock_buffer(bh); 889 BUFFER_TRACE(bh, "call get_create_access"); 890 err = ext4_journal_get_create_access(handle, inode->i_sb, bh, 891 EXT4_JTR_NONE); 892 if (unlikely(err)) { 893 unlock_buffer(bh); 894 goto errout; 895 } 896 if (!buffer_uptodate(bh)) { 897 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 898 set_buffer_uptodate(bh); 899 } 900 unlock_buffer(bh); 901 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 902 err = ext4_handle_dirty_metadata(handle, inode, bh); 903 if (unlikely(err)) 904 goto errout; 905 } else 906 BUFFER_TRACE(bh, "not a new buffer"); 907 return bh; 908 errout: 909 brelse(bh); 910 return ERR_PTR(err); 911 } 912 913 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 914 ext4_lblk_t block, int map_flags) 915 { 916 struct buffer_head *bh; 917 int ret; 918 919 bh = ext4_getblk(handle, inode, block, map_flags); 920 if (IS_ERR(bh)) 921 return bh; 922 if (!bh || ext4_buffer_uptodate(bh)) 923 return bh; 924 925 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true); 926 if (ret) { 927 put_bh(bh); 928 return ERR_PTR(ret); 929 } 930 return bh; 931 } 932 933 /* Read a contiguous batch of blocks. */ 934 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, 935 bool wait, struct buffer_head **bhs) 936 { 937 int i, err; 938 939 for (i = 0; i < bh_count; i++) { 940 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */); 941 if (IS_ERR(bhs[i])) { 942 err = PTR_ERR(bhs[i]); 943 bh_count = i; 944 goto out_brelse; 945 } 946 } 947 948 for (i = 0; i < bh_count; i++) 949 /* Note that NULL bhs[i] is valid because of holes. */ 950 if (bhs[i] && !ext4_buffer_uptodate(bhs[i])) 951 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false); 952 953 if (!wait) 954 return 0; 955 956 for (i = 0; i < bh_count; i++) 957 if (bhs[i]) 958 wait_on_buffer(bhs[i]); 959 960 for (i = 0; i < bh_count; i++) { 961 if (bhs[i] && !buffer_uptodate(bhs[i])) { 962 err = -EIO; 963 goto out_brelse; 964 } 965 } 966 return 0; 967 968 out_brelse: 969 for (i = 0; i < bh_count; i++) { 970 brelse(bhs[i]); 971 bhs[i] = NULL; 972 } 973 return err; 974 } 975 976 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode, 977 struct buffer_head *head, 978 unsigned from, 979 unsigned to, 980 int *partial, 981 int (*fn)(handle_t *handle, struct inode *inode, 982 struct buffer_head *bh)) 983 { 984 struct buffer_head *bh; 985 unsigned block_start, block_end; 986 unsigned blocksize = head->b_size; 987 int err, ret = 0; 988 struct buffer_head *next; 989 990 for (bh = head, block_start = 0; 991 ret == 0 && (bh != head || !block_start); 992 block_start = block_end, bh = next) { 993 next = bh->b_this_page; 994 block_end = block_start + blocksize; 995 if (block_end <= from || block_start >= to) { 996 if (partial && !buffer_uptodate(bh)) 997 *partial = 1; 998 continue; 999 } 1000 err = (*fn)(handle, inode, bh); 1001 if (!ret) 1002 ret = err; 1003 } 1004 return ret; 1005 } 1006 1007 /* 1008 * To preserve ordering, it is essential that the hole instantiation and 1009 * the data write be encapsulated in a single transaction. We cannot 1010 * close off a transaction and start a new one between the ext4_get_block() 1011 * and the commit_write(). So doing the jbd2_journal_start at the start of 1012 * prepare_write() is the right place. 1013 * 1014 * Also, this function can nest inside ext4_writepage(). In that case, we 1015 * *know* that ext4_writepage() has generated enough buffer credits to do the 1016 * whole page. So we won't block on the journal in that case, which is good, 1017 * because the caller may be PF_MEMALLOC. 1018 * 1019 * By accident, ext4 can be reentered when a transaction is open via 1020 * quota file writes. If we were to commit the transaction while thus 1021 * reentered, there can be a deadlock - we would be holding a quota 1022 * lock, and the commit would never complete if another thread had a 1023 * transaction open and was blocking on the quota lock - a ranking 1024 * violation. 1025 * 1026 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1027 * will _not_ run commit under these circumstances because handle->h_ref 1028 * is elevated. We'll still have enough credits for the tiny quotafile 1029 * write. 1030 */ 1031 int do_journal_get_write_access(handle_t *handle, struct inode *inode, 1032 struct buffer_head *bh) 1033 { 1034 int dirty = buffer_dirty(bh); 1035 int ret; 1036 1037 if (!buffer_mapped(bh) || buffer_freed(bh)) 1038 return 0; 1039 /* 1040 * __block_write_begin() could have dirtied some buffers. Clean 1041 * the dirty bit as jbd2_journal_get_write_access() could complain 1042 * otherwise about fs integrity issues. Setting of the dirty bit 1043 * by __block_write_begin() isn't a real problem here as we clear 1044 * the bit before releasing a page lock and thus writeback cannot 1045 * ever write the buffer. 1046 */ 1047 if (dirty) 1048 clear_buffer_dirty(bh); 1049 BUFFER_TRACE(bh, "get write access"); 1050 ret = ext4_journal_get_write_access(handle, inode->i_sb, bh, 1051 EXT4_JTR_NONE); 1052 if (!ret && dirty) 1053 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1054 return ret; 1055 } 1056 1057 #ifdef CONFIG_FS_ENCRYPTION 1058 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len, 1059 get_block_t *get_block) 1060 { 1061 unsigned from = pos & (PAGE_SIZE - 1); 1062 unsigned to = from + len; 1063 struct inode *inode = page->mapping->host; 1064 unsigned block_start, block_end; 1065 sector_t block; 1066 int err = 0; 1067 unsigned blocksize = inode->i_sb->s_blocksize; 1068 unsigned bbits; 1069 struct buffer_head *bh, *head, *wait[2]; 1070 int nr_wait = 0; 1071 int i; 1072 1073 BUG_ON(!PageLocked(page)); 1074 BUG_ON(from > PAGE_SIZE); 1075 BUG_ON(to > PAGE_SIZE); 1076 BUG_ON(from > to); 1077 1078 if (!page_has_buffers(page)) 1079 create_empty_buffers(page, blocksize, 0); 1080 head = page_buffers(page); 1081 bbits = ilog2(blocksize); 1082 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1083 1084 for (bh = head, block_start = 0; bh != head || !block_start; 1085 block++, block_start = block_end, bh = bh->b_this_page) { 1086 block_end = block_start + blocksize; 1087 if (block_end <= from || block_start >= to) { 1088 if (PageUptodate(page)) { 1089 set_buffer_uptodate(bh); 1090 } 1091 continue; 1092 } 1093 if (buffer_new(bh)) 1094 clear_buffer_new(bh); 1095 if (!buffer_mapped(bh)) { 1096 WARN_ON(bh->b_size != blocksize); 1097 err = get_block(inode, block, bh, 1); 1098 if (err) 1099 break; 1100 if (buffer_new(bh)) { 1101 if (PageUptodate(page)) { 1102 clear_buffer_new(bh); 1103 set_buffer_uptodate(bh); 1104 mark_buffer_dirty(bh); 1105 continue; 1106 } 1107 if (block_end > to || block_start < from) 1108 zero_user_segments(page, to, block_end, 1109 block_start, from); 1110 continue; 1111 } 1112 } 1113 if (PageUptodate(page)) { 1114 set_buffer_uptodate(bh); 1115 continue; 1116 } 1117 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1118 !buffer_unwritten(bh) && 1119 (block_start < from || block_end > to)) { 1120 ext4_read_bh_lock(bh, 0, false); 1121 wait[nr_wait++] = bh; 1122 } 1123 } 1124 /* 1125 * If we issued read requests, let them complete. 1126 */ 1127 for (i = 0; i < nr_wait; i++) { 1128 wait_on_buffer(wait[i]); 1129 if (!buffer_uptodate(wait[i])) 1130 err = -EIO; 1131 } 1132 if (unlikely(err)) { 1133 page_zero_new_buffers(page, from, to); 1134 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 1135 for (i = 0; i < nr_wait; i++) { 1136 int err2; 1137 1138 err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize, 1139 bh_offset(wait[i])); 1140 if (err2) { 1141 clear_buffer_uptodate(wait[i]); 1142 err = err2; 1143 } 1144 } 1145 } 1146 1147 return err; 1148 } 1149 #endif 1150 1151 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1152 loff_t pos, unsigned len, 1153 struct page **pagep, void **fsdata) 1154 { 1155 struct inode *inode = mapping->host; 1156 int ret, needed_blocks; 1157 handle_t *handle; 1158 int retries = 0; 1159 struct page *page; 1160 pgoff_t index; 1161 unsigned from, to; 1162 1163 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 1164 return -EIO; 1165 1166 trace_ext4_write_begin(inode, pos, len); 1167 /* 1168 * Reserve one block more for addition to orphan list in case 1169 * we allocate blocks but write fails for some reason 1170 */ 1171 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1172 index = pos >> PAGE_SHIFT; 1173 from = pos & (PAGE_SIZE - 1); 1174 to = from + len; 1175 1176 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1177 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1178 pagep); 1179 if (ret < 0) 1180 return ret; 1181 if (ret == 1) 1182 return 0; 1183 } 1184 1185 /* 1186 * grab_cache_page_write_begin() can take a long time if the 1187 * system is thrashing due to memory pressure, or if the page 1188 * is being written back. So grab it first before we start 1189 * the transaction handle. This also allows us to allocate 1190 * the page (if needed) without using GFP_NOFS. 1191 */ 1192 retry_grab: 1193 page = grab_cache_page_write_begin(mapping, index); 1194 if (!page) 1195 return -ENOMEM; 1196 /* 1197 * The same as page allocation, we prealloc buffer heads before 1198 * starting the handle. 1199 */ 1200 if (!page_has_buffers(page)) 1201 create_empty_buffers(page, inode->i_sb->s_blocksize, 0); 1202 1203 unlock_page(page); 1204 1205 retry_journal: 1206 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1207 if (IS_ERR(handle)) { 1208 put_page(page); 1209 return PTR_ERR(handle); 1210 } 1211 1212 lock_page(page); 1213 if (page->mapping != mapping) { 1214 /* The page got truncated from under us */ 1215 unlock_page(page); 1216 put_page(page); 1217 ext4_journal_stop(handle); 1218 goto retry_grab; 1219 } 1220 /* In case writeback began while the page was unlocked */ 1221 wait_for_stable_page(page); 1222 1223 #ifdef CONFIG_FS_ENCRYPTION 1224 if (ext4_should_dioread_nolock(inode)) 1225 ret = ext4_block_write_begin(page, pos, len, 1226 ext4_get_block_unwritten); 1227 else 1228 ret = ext4_block_write_begin(page, pos, len, 1229 ext4_get_block); 1230 #else 1231 if (ext4_should_dioread_nolock(inode)) 1232 ret = __block_write_begin(page, pos, len, 1233 ext4_get_block_unwritten); 1234 else 1235 ret = __block_write_begin(page, pos, len, ext4_get_block); 1236 #endif 1237 if (!ret && ext4_should_journal_data(inode)) { 1238 ret = ext4_walk_page_buffers(handle, inode, 1239 page_buffers(page), from, to, NULL, 1240 do_journal_get_write_access); 1241 } 1242 1243 if (ret) { 1244 bool extended = (pos + len > inode->i_size) && 1245 !ext4_verity_in_progress(inode); 1246 1247 unlock_page(page); 1248 /* 1249 * __block_write_begin may have instantiated a few blocks 1250 * outside i_size. Trim these off again. Don't need 1251 * i_size_read because we hold i_rwsem. 1252 * 1253 * Add inode to orphan list in case we crash before 1254 * truncate finishes 1255 */ 1256 if (extended && ext4_can_truncate(inode)) 1257 ext4_orphan_add(handle, inode); 1258 1259 ext4_journal_stop(handle); 1260 if (extended) { 1261 ext4_truncate_failed_write(inode); 1262 /* 1263 * If truncate failed early the inode might 1264 * still be on the orphan list; we need to 1265 * make sure the inode is removed from the 1266 * orphan list in that case. 1267 */ 1268 if (inode->i_nlink) 1269 ext4_orphan_del(NULL, inode); 1270 } 1271 1272 if (ret == -ENOSPC && 1273 ext4_should_retry_alloc(inode->i_sb, &retries)) 1274 goto retry_journal; 1275 put_page(page); 1276 return ret; 1277 } 1278 *pagep = page; 1279 return ret; 1280 } 1281 1282 /* For write_end() in data=journal mode */ 1283 static int write_end_fn(handle_t *handle, struct inode *inode, 1284 struct buffer_head *bh) 1285 { 1286 int ret; 1287 if (!buffer_mapped(bh) || buffer_freed(bh)) 1288 return 0; 1289 set_buffer_uptodate(bh); 1290 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1291 clear_buffer_meta(bh); 1292 clear_buffer_prio(bh); 1293 return ret; 1294 } 1295 1296 /* 1297 * We need to pick up the new inode size which generic_commit_write gave us 1298 * `file' can be NULL - eg, when called from page_symlink(). 1299 * 1300 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1301 * buffers are managed internally. 1302 */ 1303 static int ext4_write_end(struct file *file, 1304 struct address_space *mapping, 1305 loff_t pos, unsigned len, unsigned copied, 1306 struct page *page, void *fsdata) 1307 { 1308 handle_t *handle = ext4_journal_current_handle(); 1309 struct inode *inode = mapping->host; 1310 loff_t old_size = inode->i_size; 1311 int ret = 0, ret2; 1312 int i_size_changed = 0; 1313 bool verity = ext4_verity_in_progress(inode); 1314 1315 trace_ext4_write_end(inode, pos, len, copied); 1316 1317 if (ext4_has_inline_data(inode) && 1318 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) 1319 return ext4_write_inline_data_end(inode, pos, len, copied, page); 1320 1321 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 1322 /* 1323 * it's important to update i_size while still holding page lock: 1324 * page writeout could otherwise come in and zero beyond i_size. 1325 * 1326 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree 1327 * blocks are being written past EOF, so skip the i_size update. 1328 */ 1329 if (!verity) 1330 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1331 unlock_page(page); 1332 put_page(page); 1333 1334 if (old_size < pos && !verity) 1335 pagecache_isize_extended(inode, old_size, pos); 1336 /* 1337 * Don't mark the inode dirty under page lock. First, it unnecessarily 1338 * makes the holding time of page lock longer. Second, it forces lock 1339 * ordering of page lock and transaction start for journaling 1340 * filesystems. 1341 */ 1342 if (i_size_changed) 1343 ret = ext4_mark_inode_dirty(handle, inode); 1344 1345 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1346 /* if we have allocated more blocks and copied 1347 * less. We will have blocks allocated outside 1348 * inode->i_size. So truncate them 1349 */ 1350 ext4_orphan_add(handle, inode); 1351 1352 ret2 = ext4_journal_stop(handle); 1353 if (!ret) 1354 ret = ret2; 1355 1356 if (pos + len > inode->i_size && !verity) { 1357 ext4_truncate_failed_write(inode); 1358 /* 1359 * If truncate failed early the inode might still be 1360 * on the orphan list; we need to make sure the inode 1361 * is removed from the orphan list in that case. 1362 */ 1363 if (inode->i_nlink) 1364 ext4_orphan_del(NULL, inode); 1365 } 1366 1367 return ret ? ret : copied; 1368 } 1369 1370 /* 1371 * This is a private version of page_zero_new_buffers() which doesn't 1372 * set the buffer to be dirty, since in data=journalled mode we need 1373 * to call ext4_handle_dirty_metadata() instead. 1374 */ 1375 static void ext4_journalled_zero_new_buffers(handle_t *handle, 1376 struct inode *inode, 1377 struct page *page, 1378 unsigned from, unsigned to) 1379 { 1380 unsigned int block_start = 0, block_end; 1381 struct buffer_head *head, *bh; 1382 1383 bh = head = page_buffers(page); 1384 do { 1385 block_end = block_start + bh->b_size; 1386 if (buffer_new(bh)) { 1387 if (block_end > from && block_start < to) { 1388 if (!PageUptodate(page)) { 1389 unsigned start, size; 1390 1391 start = max(from, block_start); 1392 size = min(to, block_end) - start; 1393 1394 zero_user(page, start, size); 1395 write_end_fn(handle, inode, bh); 1396 } 1397 clear_buffer_new(bh); 1398 } 1399 } 1400 block_start = block_end; 1401 bh = bh->b_this_page; 1402 } while (bh != head); 1403 } 1404 1405 static int ext4_journalled_write_end(struct file *file, 1406 struct address_space *mapping, 1407 loff_t pos, unsigned len, unsigned copied, 1408 struct page *page, void *fsdata) 1409 { 1410 handle_t *handle = ext4_journal_current_handle(); 1411 struct inode *inode = mapping->host; 1412 loff_t old_size = inode->i_size; 1413 int ret = 0, ret2; 1414 int partial = 0; 1415 unsigned from, to; 1416 int size_changed = 0; 1417 bool verity = ext4_verity_in_progress(inode); 1418 1419 trace_ext4_journalled_write_end(inode, pos, len, copied); 1420 from = pos & (PAGE_SIZE - 1); 1421 to = from + len; 1422 1423 BUG_ON(!ext4_handle_valid(handle)); 1424 1425 if (ext4_has_inline_data(inode)) 1426 return ext4_write_inline_data_end(inode, pos, len, copied, page); 1427 1428 if (unlikely(copied < len) && !PageUptodate(page)) { 1429 copied = 0; 1430 ext4_journalled_zero_new_buffers(handle, inode, page, from, to); 1431 } else { 1432 if (unlikely(copied < len)) 1433 ext4_journalled_zero_new_buffers(handle, inode, page, 1434 from + copied, to); 1435 ret = ext4_walk_page_buffers(handle, inode, page_buffers(page), 1436 from, from + copied, &partial, 1437 write_end_fn); 1438 if (!partial) 1439 SetPageUptodate(page); 1440 } 1441 if (!verity) 1442 size_changed = ext4_update_inode_size(inode, pos + copied); 1443 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1444 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1445 unlock_page(page); 1446 put_page(page); 1447 1448 if (old_size < pos && !verity) 1449 pagecache_isize_extended(inode, old_size, pos); 1450 1451 if (size_changed) { 1452 ret2 = ext4_mark_inode_dirty(handle, inode); 1453 if (!ret) 1454 ret = ret2; 1455 } 1456 1457 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1458 /* if we have allocated more blocks and copied 1459 * less. We will have blocks allocated outside 1460 * inode->i_size. So truncate them 1461 */ 1462 ext4_orphan_add(handle, inode); 1463 1464 ret2 = ext4_journal_stop(handle); 1465 if (!ret) 1466 ret = ret2; 1467 if (pos + len > inode->i_size && !verity) { 1468 ext4_truncate_failed_write(inode); 1469 /* 1470 * If truncate failed early the inode might still be 1471 * on the orphan list; we need to make sure the inode 1472 * is removed from the orphan list in that case. 1473 */ 1474 if (inode->i_nlink) 1475 ext4_orphan_del(NULL, inode); 1476 } 1477 1478 return ret ? ret : copied; 1479 } 1480 1481 /* 1482 * Reserve space for a single cluster 1483 */ 1484 static int ext4_da_reserve_space(struct inode *inode) 1485 { 1486 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1487 struct ext4_inode_info *ei = EXT4_I(inode); 1488 int ret; 1489 1490 /* 1491 * We will charge metadata quota at writeout time; this saves 1492 * us from metadata over-estimation, though we may go over by 1493 * a small amount in the end. Here we just reserve for data. 1494 */ 1495 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1496 if (ret) 1497 return ret; 1498 1499 spin_lock(&ei->i_block_reservation_lock); 1500 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1501 spin_unlock(&ei->i_block_reservation_lock); 1502 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1503 return -ENOSPC; 1504 } 1505 ei->i_reserved_data_blocks++; 1506 trace_ext4_da_reserve_space(inode); 1507 spin_unlock(&ei->i_block_reservation_lock); 1508 1509 return 0; /* success */ 1510 } 1511 1512 void ext4_da_release_space(struct inode *inode, int to_free) 1513 { 1514 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1515 struct ext4_inode_info *ei = EXT4_I(inode); 1516 1517 if (!to_free) 1518 return; /* Nothing to release, exit */ 1519 1520 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1521 1522 trace_ext4_da_release_space(inode, to_free); 1523 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1524 /* 1525 * if there aren't enough reserved blocks, then the 1526 * counter is messed up somewhere. Since this 1527 * function is called from invalidate page, it's 1528 * harmless to return without any action. 1529 */ 1530 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1531 "ino %lu, to_free %d with only %d reserved " 1532 "data blocks", inode->i_ino, to_free, 1533 ei->i_reserved_data_blocks); 1534 WARN_ON(1); 1535 to_free = ei->i_reserved_data_blocks; 1536 } 1537 ei->i_reserved_data_blocks -= to_free; 1538 1539 /* update fs dirty data blocks counter */ 1540 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1541 1542 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1543 1544 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1545 } 1546 1547 /* 1548 * Delayed allocation stuff 1549 */ 1550 1551 struct mpage_da_data { 1552 /* These are input fields for ext4_do_writepages() */ 1553 struct inode *inode; 1554 struct writeback_control *wbc; 1555 unsigned int can_map:1; /* Can writepages call map blocks? */ 1556 1557 /* These are internal state of ext4_do_writepages() */ 1558 pgoff_t first_page; /* The first page to write */ 1559 pgoff_t next_page; /* Current page to examine */ 1560 pgoff_t last_page; /* Last page to examine */ 1561 /* 1562 * Extent to map - this can be after first_page because that can be 1563 * fully mapped. We somewhat abuse m_flags to store whether the extent 1564 * is delalloc or unwritten. 1565 */ 1566 struct ext4_map_blocks map; 1567 struct ext4_io_submit io_submit; /* IO submission data */ 1568 unsigned int do_map:1; 1569 unsigned int scanned_until_end:1; 1570 }; 1571 1572 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1573 bool invalidate) 1574 { 1575 unsigned nr, i; 1576 pgoff_t index, end; 1577 struct folio_batch fbatch; 1578 struct inode *inode = mpd->inode; 1579 struct address_space *mapping = inode->i_mapping; 1580 1581 /* This is necessary when next_page == 0. */ 1582 if (mpd->first_page >= mpd->next_page) 1583 return; 1584 1585 mpd->scanned_until_end = 0; 1586 index = mpd->first_page; 1587 end = mpd->next_page - 1; 1588 if (invalidate) { 1589 ext4_lblk_t start, last; 1590 start = index << (PAGE_SHIFT - inode->i_blkbits); 1591 last = end << (PAGE_SHIFT - inode->i_blkbits); 1592 1593 /* 1594 * avoid racing with extent status tree scans made by 1595 * ext4_insert_delayed_block() 1596 */ 1597 down_write(&EXT4_I(inode)->i_data_sem); 1598 ext4_es_remove_extent(inode, start, last - start + 1); 1599 up_write(&EXT4_I(inode)->i_data_sem); 1600 } 1601 1602 folio_batch_init(&fbatch); 1603 while (index <= end) { 1604 nr = filemap_get_folios(mapping, &index, end, &fbatch); 1605 if (nr == 0) 1606 break; 1607 for (i = 0; i < nr; i++) { 1608 struct folio *folio = fbatch.folios[i]; 1609 1610 if (folio->index < mpd->first_page) 1611 continue; 1612 if (folio->index + folio_nr_pages(folio) - 1 > end) 1613 continue; 1614 BUG_ON(!folio_test_locked(folio)); 1615 BUG_ON(folio_test_writeback(folio)); 1616 if (invalidate) { 1617 if (folio_mapped(folio)) 1618 folio_clear_dirty_for_io(folio); 1619 block_invalidate_folio(folio, 0, 1620 folio_size(folio)); 1621 folio_clear_uptodate(folio); 1622 } 1623 folio_unlock(folio); 1624 } 1625 folio_batch_release(&fbatch); 1626 } 1627 } 1628 1629 static void ext4_print_free_blocks(struct inode *inode) 1630 { 1631 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1632 struct super_block *sb = inode->i_sb; 1633 struct ext4_inode_info *ei = EXT4_I(inode); 1634 1635 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1636 EXT4_C2B(EXT4_SB(inode->i_sb), 1637 ext4_count_free_clusters(sb))); 1638 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1639 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1640 (long long) EXT4_C2B(EXT4_SB(sb), 1641 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1642 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1643 (long long) EXT4_C2B(EXT4_SB(sb), 1644 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1645 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1646 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1647 ei->i_reserved_data_blocks); 1648 return; 1649 } 1650 1651 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct inode *inode, 1652 struct buffer_head *bh) 1653 { 1654 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1655 } 1656 1657 /* 1658 * ext4_insert_delayed_block - adds a delayed block to the extents status 1659 * tree, incrementing the reserved cluster/block 1660 * count or making a pending reservation 1661 * where needed 1662 * 1663 * @inode - file containing the newly added block 1664 * @lblk - logical block to be added 1665 * 1666 * Returns 0 on success, negative error code on failure. 1667 */ 1668 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk) 1669 { 1670 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1671 int ret; 1672 bool allocated = false; 1673 bool reserved = false; 1674 1675 /* 1676 * If the cluster containing lblk is shared with a delayed, 1677 * written, or unwritten extent in a bigalloc file system, it's 1678 * already been accounted for and does not need to be reserved. 1679 * A pending reservation must be made for the cluster if it's 1680 * shared with a written or unwritten extent and doesn't already 1681 * have one. Written and unwritten extents can be purged from the 1682 * extents status tree if the system is under memory pressure, so 1683 * it's necessary to examine the extent tree if a search of the 1684 * extents status tree doesn't get a match. 1685 */ 1686 if (sbi->s_cluster_ratio == 1) { 1687 ret = ext4_da_reserve_space(inode); 1688 if (ret != 0) /* ENOSPC */ 1689 goto errout; 1690 reserved = true; 1691 } else { /* bigalloc */ 1692 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) { 1693 if (!ext4_es_scan_clu(inode, 1694 &ext4_es_is_mapped, lblk)) { 1695 ret = ext4_clu_mapped(inode, 1696 EXT4_B2C(sbi, lblk)); 1697 if (ret < 0) 1698 goto errout; 1699 if (ret == 0) { 1700 ret = ext4_da_reserve_space(inode); 1701 if (ret != 0) /* ENOSPC */ 1702 goto errout; 1703 reserved = true; 1704 } else { 1705 allocated = true; 1706 } 1707 } else { 1708 allocated = true; 1709 } 1710 } 1711 } 1712 1713 ret = ext4_es_insert_delayed_block(inode, lblk, allocated); 1714 if (ret && reserved) 1715 ext4_da_release_space(inode, 1); 1716 1717 errout: 1718 return ret; 1719 } 1720 1721 /* 1722 * This function is grabs code from the very beginning of 1723 * ext4_map_blocks, but assumes that the caller is from delayed write 1724 * time. This function looks up the requested blocks and sets the 1725 * buffer delay bit under the protection of i_data_sem. 1726 */ 1727 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1728 struct ext4_map_blocks *map, 1729 struct buffer_head *bh) 1730 { 1731 struct extent_status es; 1732 int retval; 1733 sector_t invalid_block = ~((sector_t) 0xffff); 1734 #ifdef ES_AGGRESSIVE_TEST 1735 struct ext4_map_blocks orig_map; 1736 1737 memcpy(&orig_map, map, sizeof(*map)); 1738 #endif 1739 1740 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1741 invalid_block = ~0; 1742 1743 map->m_flags = 0; 1744 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len, 1745 (unsigned long) map->m_lblk); 1746 1747 /* Lookup extent status tree firstly */ 1748 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) { 1749 if (ext4_es_is_hole(&es)) { 1750 retval = 0; 1751 down_read(&EXT4_I(inode)->i_data_sem); 1752 goto add_delayed; 1753 } 1754 1755 /* 1756 * Delayed extent could be allocated by fallocate. 1757 * So we need to check it. 1758 */ 1759 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1760 map_bh(bh, inode->i_sb, invalid_block); 1761 set_buffer_new(bh); 1762 set_buffer_delay(bh); 1763 return 0; 1764 } 1765 1766 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1767 retval = es.es_len - (iblock - es.es_lblk); 1768 if (retval > map->m_len) 1769 retval = map->m_len; 1770 map->m_len = retval; 1771 if (ext4_es_is_written(&es)) 1772 map->m_flags |= EXT4_MAP_MAPPED; 1773 else if (ext4_es_is_unwritten(&es)) 1774 map->m_flags |= EXT4_MAP_UNWRITTEN; 1775 else 1776 BUG(); 1777 1778 #ifdef ES_AGGRESSIVE_TEST 1779 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1780 #endif 1781 return retval; 1782 } 1783 1784 /* 1785 * Try to see if we can get the block without requesting a new 1786 * file system block. 1787 */ 1788 down_read(&EXT4_I(inode)->i_data_sem); 1789 if (ext4_has_inline_data(inode)) 1790 retval = 0; 1791 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1792 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1793 else 1794 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1795 1796 add_delayed: 1797 if (retval == 0) { 1798 int ret; 1799 1800 /* 1801 * XXX: __block_prepare_write() unmaps passed block, 1802 * is it OK? 1803 */ 1804 1805 ret = ext4_insert_delayed_block(inode, map->m_lblk); 1806 if (ret != 0) { 1807 retval = ret; 1808 goto out_unlock; 1809 } 1810 1811 map_bh(bh, inode->i_sb, invalid_block); 1812 set_buffer_new(bh); 1813 set_buffer_delay(bh); 1814 } else if (retval > 0) { 1815 int ret; 1816 unsigned int status; 1817 1818 if (unlikely(retval != map->m_len)) { 1819 ext4_warning(inode->i_sb, 1820 "ES len assertion failed for inode " 1821 "%lu: retval %d != map->m_len %d", 1822 inode->i_ino, retval, map->m_len); 1823 WARN_ON(1); 1824 } 1825 1826 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1827 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1828 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1829 map->m_pblk, status); 1830 if (ret != 0) 1831 retval = ret; 1832 } 1833 1834 out_unlock: 1835 up_read((&EXT4_I(inode)->i_data_sem)); 1836 1837 return retval; 1838 } 1839 1840 /* 1841 * This is a special get_block_t callback which is used by 1842 * ext4_da_write_begin(). It will either return mapped block or 1843 * reserve space for a single block. 1844 * 1845 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1846 * We also have b_blocknr = -1 and b_bdev initialized properly 1847 * 1848 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1849 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1850 * initialized properly. 1851 */ 1852 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1853 struct buffer_head *bh, int create) 1854 { 1855 struct ext4_map_blocks map; 1856 int ret = 0; 1857 1858 BUG_ON(create == 0); 1859 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1860 1861 map.m_lblk = iblock; 1862 map.m_len = 1; 1863 1864 /* 1865 * first, we need to know whether the block is allocated already 1866 * preallocated blocks are unmapped but should treated 1867 * the same as allocated blocks. 1868 */ 1869 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1870 if (ret <= 0) 1871 return ret; 1872 1873 map_bh(bh, inode->i_sb, map.m_pblk); 1874 ext4_update_bh_state(bh, map.m_flags); 1875 1876 if (buffer_unwritten(bh)) { 1877 /* A delayed write to unwritten bh should be marked 1878 * new and mapped. Mapped ensures that we don't do 1879 * get_block multiple times when we write to the same 1880 * offset and new ensures that we do proper zero out 1881 * for partial write. 1882 */ 1883 set_buffer_new(bh); 1884 set_buffer_mapped(bh); 1885 } 1886 return 0; 1887 } 1888 1889 static int __ext4_journalled_writepage(struct page *page, 1890 unsigned int len) 1891 { 1892 struct address_space *mapping = page->mapping; 1893 struct inode *inode = mapping->host; 1894 handle_t *handle = NULL; 1895 int ret = 0, err = 0; 1896 int inline_data = ext4_has_inline_data(inode); 1897 struct buffer_head *inode_bh = NULL; 1898 loff_t size; 1899 1900 ClearPageChecked(page); 1901 1902 if (inline_data) { 1903 BUG_ON(page->index != 0); 1904 BUG_ON(len > ext4_get_max_inline_size(inode)); 1905 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1906 if (inode_bh == NULL) 1907 goto out; 1908 } 1909 /* 1910 * We need to release the page lock before we start the 1911 * journal, so grab a reference so the page won't disappear 1912 * out from under us. 1913 */ 1914 get_page(page); 1915 unlock_page(page); 1916 1917 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1918 ext4_writepage_trans_blocks(inode)); 1919 if (IS_ERR(handle)) { 1920 ret = PTR_ERR(handle); 1921 put_page(page); 1922 goto out_no_pagelock; 1923 } 1924 BUG_ON(!ext4_handle_valid(handle)); 1925 1926 lock_page(page); 1927 put_page(page); 1928 size = i_size_read(inode); 1929 if (page->mapping != mapping || page_offset(page) > size) { 1930 /* The page got truncated from under us */ 1931 ext4_journal_stop(handle); 1932 ret = 0; 1933 goto out; 1934 } 1935 1936 if (inline_data) { 1937 ret = ext4_mark_inode_dirty(handle, inode); 1938 } else { 1939 struct buffer_head *page_bufs = page_buffers(page); 1940 1941 if (page->index == size >> PAGE_SHIFT) 1942 len = size & ~PAGE_MASK; 1943 else 1944 len = PAGE_SIZE; 1945 1946 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 1947 NULL, do_journal_get_write_access); 1948 1949 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 1950 NULL, write_end_fn); 1951 } 1952 if (ret == 0) 1953 ret = err; 1954 err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len); 1955 if (ret == 0) 1956 ret = err; 1957 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1958 err = ext4_journal_stop(handle); 1959 if (!ret) 1960 ret = err; 1961 1962 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1963 out: 1964 unlock_page(page); 1965 out_no_pagelock: 1966 brelse(inode_bh); 1967 return ret; 1968 } 1969 1970 /* 1971 * Note that we don't need to start a transaction unless we're journaling data 1972 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1973 * need to file the inode to the transaction's list in ordered mode because if 1974 * we are writing back data added by write(), the inode is already there and if 1975 * we are writing back data modified via mmap(), no one guarantees in which 1976 * transaction the data will hit the disk. In case we are journaling data, we 1977 * cannot start transaction directly because transaction start ranks above page 1978 * lock so we have to do some magic. 1979 * 1980 * This function can get called via... 1981 * - ext4_writepages after taking page lock (have journal handle) 1982 * - journal_submit_inode_data_buffers (no journal handle) 1983 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 1984 * - grab_page_cache when doing write_begin (have journal handle) 1985 * 1986 * We don't do any block allocation in this function. If we have page with 1987 * multiple blocks we need to write those buffer_heads that are mapped. This 1988 * is important for mmaped based write. So if we do with blocksize 1K 1989 * truncate(f, 1024); 1990 * a = mmap(f, 0, 4096); 1991 * a[0] = 'a'; 1992 * truncate(f, 4096); 1993 * we have in the page first buffer_head mapped via page_mkwrite call back 1994 * but other buffer_heads would be unmapped but dirty (dirty done via the 1995 * do_wp_page). So writepage should write the first block. If we modify 1996 * the mmap area beyond 1024 we will again get a page_fault and the 1997 * page_mkwrite callback will do the block allocation and mark the 1998 * buffer_heads mapped. 1999 * 2000 * We redirty the page if we have any buffer_heads that is either delay or 2001 * unwritten in the page. 2002 * 2003 * We can get recursively called as show below. 2004 * 2005 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 2006 * ext4_writepage() 2007 * 2008 * But since we don't do any block allocation we should not deadlock. 2009 * Page also have the dirty flag cleared so we don't get recurive page_lock. 2010 */ 2011 static int ext4_writepage(struct page *page, 2012 struct writeback_control *wbc) 2013 { 2014 struct folio *folio = page_folio(page); 2015 int ret = 0; 2016 loff_t size; 2017 unsigned int len; 2018 struct buffer_head *page_bufs = NULL; 2019 struct inode *inode = page->mapping->host; 2020 struct ext4_io_submit io_submit; 2021 2022 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 2023 folio_invalidate(folio, 0, folio_size(folio)); 2024 folio_unlock(folio); 2025 return -EIO; 2026 } 2027 2028 trace_ext4_writepage(page); 2029 size = i_size_read(inode); 2030 if (page->index == size >> PAGE_SHIFT && 2031 !ext4_verity_in_progress(inode)) 2032 len = size & ~PAGE_MASK; 2033 else 2034 len = PAGE_SIZE; 2035 2036 /* Should never happen but for bugs in other kernel subsystems */ 2037 if (!page_has_buffers(page)) { 2038 ext4_warning_inode(inode, 2039 "page %lu does not have buffers attached", page->index); 2040 ClearPageDirty(page); 2041 unlock_page(page); 2042 return 0; 2043 } 2044 2045 page_bufs = page_buffers(page); 2046 /* 2047 * We cannot do block allocation or other extent handling in this 2048 * function. If there are buffers needing that, we have to redirty 2049 * the page. But we may reach here when we do a journal commit via 2050 * journal_submit_inode_data_buffers() and in that case we must write 2051 * allocated buffers to achieve data=ordered mode guarantees. 2052 * 2053 * Also, if there is only one buffer per page (the fs block 2054 * size == the page size), if one buffer needs block 2055 * allocation or needs to modify the extent tree to clear the 2056 * unwritten flag, we know that the page can't be written at 2057 * all, so we might as well refuse the write immediately. 2058 * Unfortunately if the block size != page size, we can't as 2059 * easily detect this case using ext4_walk_page_buffers(), but 2060 * for the extremely common case, this is an optimization that 2061 * skips a useless round trip through ext4_bio_write_page(). 2062 */ 2063 if (ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len, NULL, 2064 ext4_bh_delay_or_unwritten)) { 2065 redirty_page_for_writepage(wbc, page); 2066 if ((current->flags & PF_MEMALLOC) || 2067 (inode->i_sb->s_blocksize == PAGE_SIZE)) { 2068 /* 2069 * For memory cleaning there's no point in writing only 2070 * some buffers. So just bail out. Warn if we came here 2071 * from direct reclaim. 2072 */ 2073 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 2074 == PF_MEMALLOC); 2075 unlock_page(page); 2076 return 0; 2077 } 2078 } 2079 2080 if (PageChecked(page) && ext4_should_journal_data(inode)) 2081 /* 2082 * It's mmapped pagecache. Add buffers and journal it. There 2083 * doesn't seem much point in redirtying the page here. 2084 */ 2085 return __ext4_journalled_writepage(page, len); 2086 2087 ext4_io_submit_init(&io_submit, wbc); 2088 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 2089 if (!io_submit.io_end) { 2090 redirty_page_for_writepage(wbc, page); 2091 unlock_page(page); 2092 return -ENOMEM; 2093 } 2094 ret = ext4_bio_write_page(&io_submit, page, len); 2095 ext4_io_submit(&io_submit); 2096 /* Drop io_end reference we got from init */ 2097 ext4_put_io_end_defer(io_submit.io_end); 2098 return ret; 2099 } 2100 2101 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 2102 { 2103 int len; 2104 loff_t size; 2105 int err; 2106 2107 BUG_ON(page->index != mpd->first_page); 2108 clear_page_dirty_for_io(page); 2109 /* 2110 * We have to be very careful here! Nothing protects writeback path 2111 * against i_size changes and the page can be writeably mapped into 2112 * page tables. So an application can be growing i_size and writing 2113 * data through mmap while writeback runs. clear_page_dirty_for_io() 2114 * write-protects our page in page tables and the page cannot get 2115 * written to again until we release page lock. So only after 2116 * clear_page_dirty_for_io() we are safe to sample i_size for 2117 * ext4_bio_write_page() to zero-out tail of the written page. We rely 2118 * on the barrier provided by TestClearPageDirty in 2119 * clear_page_dirty_for_io() to make sure i_size is really sampled only 2120 * after page tables are updated. 2121 */ 2122 size = i_size_read(mpd->inode); 2123 if (page->index == size >> PAGE_SHIFT && 2124 !ext4_verity_in_progress(mpd->inode)) 2125 len = size & ~PAGE_MASK; 2126 else 2127 len = PAGE_SIZE; 2128 err = ext4_bio_write_page(&mpd->io_submit, page, len); 2129 if (!err) 2130 mpd->wbc->nr_to_write--; 2131 mpd->first_page++; 2132 2133 return err; 2134 } 2135 2136 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay)) 2137 2138 /* 2139 * mballoc gives us at most this number of blocks... 2140 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 2141 * The rest of mballoc seems to handle chunks up to full group size. 2142 */ 2143 #define MAX_WRITEPAGES_EXTENT_LEN 2048 2144 2145 /* 2146 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 2147 * 2148 * @mpd - extent of blocks 2149 * @lblk - logical number of the block in the file 2150 * @bh - buffer head we want to add to the extent 2151 * 2152 * The function is used to collect contig. blocks in the same state. If the 2153 * buffer doesn't require mapping for writeback and we haven't started the 2154 * extent of buffers to map yet, the function returns 'true' immediately - the 2155 * caller can write the buffer right away. Otherwise the function returns true 2156 * if the block has been added to the extent, false if the block couldn't be 2157 * added. 2158 */ 2159 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 2160 struct buffer_head *bh) 2161 { 2162 struct ext4_map_blocks *map = &mpd->map; 2163 2164 /* Buffer that doesn't need mapping for writeback? */ 2165 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 2166 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 2167 /* So far no extent to map => we write the buffer right away */ 2168 if (map->m_len == 0) 2169 return true; 2170 return false; 2171 } 2172 2173 /* First block in the extent? */ 2174 if (map->m_len == 0) { 2175 /* We cannot map unless handle is started... */ 2176 if (!mpd->do_map) 2177 return false; 2178 map->m_lblk = lblk; 2179 map->m_len = 1; 2180 map->m_flags = bh->b_state & BH_FLAGS; 2181 return true; 2182 } 2183 2184 /* Don't go larger than mballoc is willing to allocate */ 2185 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 2186 return false; 2187 2188 /* Can we merge the block to our big extent? */ 2189 if (lblk == map->m_lblk + map->m_len && 2190 (bh->b_state & BH_FLAGS) == map->m_flags) { 2191 map->m_len++; 2192 return true; 2193 } 2194 return false; 2195 } 2196 2197 /* 2198 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 2199 * 2200 * @mpd - extent of blocks for mapping 2201 * @head - the first buffer in the page 2202 * @bh - buffer we should start processing from 2203 * @lblk - logical number of the block in the file corresponding to @bh 2204 * 2205 * Walk through page buffers from @bh upto @head (exclusive) and either submit 2206 * the page for IO if all buffers in this page were mapped and there's no 2207 * accumulated extent of buffers to map or add buffers in the page to the 2208 * extent of buffers to map. The function returns 1 if the caller can continue 2209 * by processing the next page, 0 if it should stop adding buffers to the 2210 * extent to map because we cannot extend it anymore. It can also return value 2211 * < 0 in case of error during IO submission. 2212 */ 2213 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 2214 struct buffer_head *head, 2215 struct buffer_head *bh, 2216 ext4_lblk_t lblk) 2217 { 2218 struct inode *inode = mpd->inode; 2219 int err; 2220 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) 2221 >> inode->i_blkbits; 2222 2223 if (ext4_verity_in_progress(inode)) 2224 blocks = EXT_MAX_BLOCKS; 2225 2226 do { 2227 BUG_ON(buffer_locked(bh)); 2228 2229 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2230 /* Found extent to map? */ 2231 if (mpd->map.m_len) 2232 return 0; 2233 /* Buffer needs mapping and handle is not started? */ 2234 if (!mpd->do_map) 2235 return 0; 2236 /* Everything mapped so far and we hit EOF */ 2237 break; 2238 } 2239 } while (lblk++, (bh = bh->b_this_page) != head); 2240 /* So far everything mapped? Submit the page for IO. */ 2241 if (mpd->map.m_len == 0) { 2242 err = mpage_submit_page(mpd, head->b_page); 2243 if (err < 0) 2244 return err; 2245 } 2246 if (lblk >= blocks) { 2247 mpd->scanned_until_end = 1; 2248 return 0; 2249 } 2250 return 1; 2251 } 2252 2253 /* 2254 * mpage_process_page - update page buffers corresponding to changed extent and 2255 * may submit fully mapped page for IO 2256 * 2257 * @mpd - description of extent to map, on return next extent to map 2258 * @m_lblk - logical block mapping. 2259 * @m_pblk - corresponding physical mapping. 2260 * @map_bh - determines on return whether this page requires any further 2261 * mapping or not. 2262 * Scan given page buffers corresponding to changed extent and update buffer 2263 * state according to new extent state. 2264 * We map delalloc buffers to their physical location, clear unwritten bits. 2265 * If the given page is not fully mapped, we update @map to the next extent in 2266 * the given page that needs mapping & return @map_bh as true. 2267 */ 2268 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page, 2269 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk, 2270 bool *map_bh) 2271 { 2272 struct buffer_head *head, *bh; 2273 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2274 ext4_lblk_t lblk = *m_lblk; 2275 ext4_fsblk_t pblock = *m_pblk; 2276 int err = 0; 2277 int blkbits = mpd->inode->i_blkbits; 2278 ssize_t io_end_size = 0; 2279 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end); 2280 2281 bh = head = page_buffers(page); 2282 do { 2283 if (lblk < mpd->map.m_lblk) 2284 continue; 2285 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2286 /* 2287 * Buffer after end of mapped extent. 2288 * Find next buffer in the page to map. 2289 */ 2290 mpd->map.m_len = 0; 2291 mpd->map.m_flags = 0; 2292 io_end_vec->size += io_end_size; 2293 2294 err = mpage_process_page_bufs(mpd, head, bh, lblk); 2295 if (err > 0) 2296 err = 0; 2297 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) { 2298 io_end_vec = ext4_alloc_io_end_vec(io_end); 2299 if (IS_ERR(io_end_vec)) { 2300 err = PTR_ERR(io_end_vec); 2301 goto out; 2302 } 2303 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits; 2304 } 2305 *map_bh = true; 2306 goto out; 2307 } 2308 if (buffer_delay(bh)) { 2309 clear_buffer_delay(bh); 2310 bh->b_blocknr = pblock++; 2311 } 2312 clear_buffer_unwritten(bh); 2313 io_end_size += (1 << blkbits); 2314 } while (lblk++, (bh = bh->b_this_page) != head); 2315 2316 io_end_vec->size += io_end_size; 2317 *map_bh = false; 2318 out: 2319 *m_lblk = lblk; 2320 *m_pblk = pblock; 2321 return err; 2322 } 2323 2324 /* 2325 * mpage_map_buffers - update buffers corresponding to changed extent and 2326 * submit fully mapped pages for IO 2327 * 2328 * @mpd - description of extent to map, on return next extent to map 2329 * 2330 * Scan buffers corresponding to changed extent (we expect corresponding pages 2331 * to be already locked) and update buffer state according to new extent state. 2332 * We map delalloc buffers to their physical location, clear unwritten bits, 2333 * and mark buffers as uninit when we perform writes to unwritten extents 2334 * and do extent conversion after IO is finished. If the last page is not fully 2335 * mapped, we update @map to the next extent in the last page that needs 2336 * mapping. Otherwise we submit the page for IO. 2337 */ 2338 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2339 { 2340 struct folio_batch fbatch; 2341 unsigned nr, i; 2342 struct inode *inode = mpd->inode; 2343 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2344 pgoff_t start, end; 2345 ext4_lblk_t lblk; 2346 ext4_fsblk_t pblock; 2347 int err; 2348 bool map_bh = false; 2349 2350 start = mpd->map.m_lblk >> bpp_bits; 2351 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2352 lblk = start << bpp_bits; 2353 pblock = mpd->map.m_pblk; 2354 2355 folio_batch_init(&fbatch); 2356 while (start <= end) { 2357 nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch); 2358 if (nr == 0) 2359 break; 2360 for (i = 0; i < nr; i++) { 2361 struct page *page = &fbatch.folios[i]->page; 2362 2363 err = mpage_process_page(mpd, page, &lblk, &pblock, 2364 &map_bh); 2365 /* 2366 * If map_bh is true, means page may require further bh 2367 * mapping, or maybe the page was submitted for IO. 2368 * So we return to call further extent mapping. 2369 */ 2370 if (err < 0 || map_bh) 2371 goto out; 2372 /* Page fully mapped - let IO run! */ 2373 err = mpage_submit_page(mpd, page); 2374 if (err < 0) 2375 goto out; 2376 } 2377 folio_batch_release(&fbatch); 2378 } 2379 /* Extent fully mapped and matches with page boundary. We are done. */ 2380 mpd->map.m_len = 0; 2381 mpd->map.m_flags = 0; 2382 return 0; 2383 out: 2384 folio_batch_release(&fbatch); 2385 return err; 2386 } 2387 2388 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2389 { 2390 struct inode *inode = mpd->inode; 2391 struct ext4_map_blocks *map = &mpd->map; 2392 int get_blocks_flags; 2393 int err, dioread_nolock; 2394 2395 trace_ext4_da_write_pages_extent(inode, map); 2396 /* 2397 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2398 * to convert an unwritten extent to be initialized (in the case 2399 * where we have written into one or more preallocated blocks). It is 2400 * possible that we're going to need more metadata blocks than 2401 * previously reserved. However we must not fail because we're in 2402 * writeback and there is nothing we can do about it so it might result 2403 * in data loss. So use reserved blocks to allocate metadata if 2404 * possible. 2405 * 2406 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2407 * the blocks in question are delalloc blocks. This indicates 2408 * that the blocks and quotas has already been checked when 2409 * the data was copied into the page cache. 2410 */ 2411 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2412 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2413 EXT4_GET_BLOCKS_IO_SUBMIT; 2414 dioread_nolock = ext4_should_dioread_nolock(inode); 2415 if (dioread_nolock) 2416 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2417 if (map->m_flags & BIT(BH_Delay)) 2418 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2419 2420 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2421 if (err < 0) 2422 return err; 2423 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2424 if (!mpd->io_submit.io_end->handle && 2425 ext4_handle_valid(handle)) { 2426 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2427 handle->h_rsv_handle = NULL; 2428 } 2429 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2430 } 2431 2432 BUG_ON(map->m_len == 0); 2433 return 0; 2434 } 2435 2436 /* 2437 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2438 * mpd->len and submit pages underlying it for IO 2439 * 2440 * @handle - handle for journal operations 2441 * @mpd - extent to map 2442 * @give_up_on_write - we set this to true iff there is a fatal error and there 2443 * is no hope of writing the data. The caller should discard 2444 * dirty pages to avoid infinite loops. 2445 * 2446 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2447 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2448 * them to initialized or split the described range from larger unwritten 2449 * extent. Note that we need not map all the described range since allocation 2450 * can return less blocks or the range is covered by more unwritten extents. We 2451 * cannot map more because we are limited by reserved transaction credits. On 2452 * the other hand we always make sure that the last touched page is fully 2453 * mapped so that it can be written out (and thus forward progress is 2454 * guaranteed). After mapping we submit all mapped pages for IO. 2455 */ 2456 static int mpage_map_and_submit_extent(handle_t *handle, 2457 struct mpage_da_data *mpd, 2458 bool *give_up_on_write) 2459 { 2460 struct inode *inode = mpd->inode; 2461 struct ext4_map_blocks *map = &mpd->map; 2462 int err; 2463 loff_t disksize; 2464 int progress = 0; 2465 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2466 struct ext4_io_end_vec *io_end_vec; 2467 2468 io_end_vec = ext4_alloc_io_end_vec(io_end); 2469 if (IS_ERR(io_end_vec)) 2470 return PTR_ERR(io_end_vec); 2471 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits; 2472 do { 2473 err = mpage_map_one_extent(handle, mpd); 2474 if (err < 0) { 2475 struct super_block *sb = inode->i_sb; 2476 2477 if (ext4_forced_shutdown(EXT4_SB(sb)) || 2478 ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) 2479 goto invalidate_dirty_pages; 2480 /* 2481 * Let the uper layers retry transient errors. 2482 * In the case of ENOSPC, if ext4_count_free_blocks() 2483 * is non-zero, a commit should free up blocks. 2484 */ 2485 if ((err == -ENOMEM) || 2486 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2487 if (progress) 2488 goto update_disksize; 2489 return err; 2490 } 2491 ext4_msg(sb, KERN_CRIT, 2492 "Delayed block allocation failed for " 2493 "inode %lu at logical offset %llu with" 2494 " max blocks %u with error %d", 2495 inode->i_ino, 2496 (unsigned long long)map->m_lblk, 2497 (unsigned)map->m_len, -err); 2498 ext4_msg(sb, KERN_CRIT, 2499 "This should not happen!! Data will " 2500 "be lost\n"); 2501 if (err == -ENOSPC) 2502 ext4_print_free_blocks(inode); 2503 invalidate_dirty_pages: 2504 *give_up_on_write = true; 2505 return err; 2506 } 2507 progress = 1; 2508 /* 2509 * Update buffer state, submit mapped pages, and get us new 2510 * extent to map 2511 */ 2512 err = mpage_map_and_submit_buffers(mpd); 2513 if (err < 0) 2514 goto update_disksize; 2515 } while (map->m_len); 2516 2517 update_disksize: 2518 /* 2519 * Update on-disk size after IO is submitted. Races with 2520 * truncate are avoided by checking i_size under i_data_sem. 2521 */ 2522 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2523 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) { 2524 int err2; 2525 loff_t i_size; 2526 2527 down_write(&EXT4_I(inode)->i_data_sem); 2528 i_size = i_size_read(inode); 2529 if (disksize > i_size) 2530 disksize = i_size; 2531 if (disksize > EXT4_I(inode)->i_disksize) 2532 EXT4_I(inode)->i_disksize = disksize; 2533 up_write(&EXT4_I(inode)->i_data_sem); 2534 err2 = ext4_mark_inode_dirty(handle, inode); 2535 if (err2) { 2536 ext4_error_err(inode->i_sb, -err2, 2537 "Failed to mark inode %lu dirty", 2538 inode->i_ino); 2539 } 2540 if (!err) 2541 err = err2; 2542 } 2543 return err; 2544 } 2545 2546 /* 2547 * Calculate the total number of credits to reserve for one writepages 2548 * iteration. This is called from ext4_writepages(). We map an extent of 2549 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2550 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2551 * bpp - 1 blocks in bpp different extents. 2552 */ 2553 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2554 { 2555 int bpp = ext4_journal_blocks_per_page(inode); 2556 2557 return ext4_meta_trans_blocks(inode, 2558 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2559 } 2560 2561 /* Return true if the page needs to be written as part of transaction commit */ 2562 static bool ext4_page_nomap_can_writeout(struct page *page) 2563 { 2564 struct buffer_head *bh, *head; 2565 2566 bh = head = page_buffers(page); 2567 do { 2568 if (buffer_dirty(bh) && buffer_mapped(bh) && !buffer_delay(bh)) 2569 return true; 2570 } while ((bh = bh->b_this_page) != head); 2571 return false; 2572 } 2573 2574 /* 2575 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2576 * needing mapping, submit mapped pages 2577 * 2578 * @mpd - where to look for pages 2579 * 2580 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2581 * IO immediately. If we cannot map blocks, we submit just already mapped 2582 * buffers in the page for IO and keep page dirty. When we can map blocks and 2583 * we find a page which isn't mapped we start accumulating extent of buffers 2584 * underlying these pages that needs mapping (formed by either delayed or 2585 * unwritten buffers). We also lock the pages containing these buffers. The 2586 * extent found is returned in @mpd structure (starting at mpd->lblk with 2587 * length mpd->len blocks). 2588 * 2589 * Note that this function can attach bios to one io_end structure which are 2590 * neither logically nor physically contiguous. Although it may seem as an 2591 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2592 * case as we need to track IO to all buffers underlying a page in one io_end. 2593 */ 2594 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2595 { 2596 struct address_space *mapping = mpd->inode->i_mapping; 2597 struct pagevec pvec; 2598 unsigned int nr_pages; 2599 long left = mpd->wbc->nr_to_write; 2600 pgoff_t index = mpd->first_page; 2601 pgoff_t end = mpd->last_page; 2602 xa_mark_t tag; 2603 int i, err = 0; 2604 int blkbits = mpd->inode->i_blkbits; 2605 ext4_lblk_t lblk; 2606 struct buffer_head *head; 2607 2608 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2609 tag = PAGECACHE_TAG_TOWRITE; 2610 else 2611 tag = PAGECACHE_TAG_DIRTY; 2612 2613 pagevec_init(&pvec); 2614 mpd->map.m_len = 0; 2615 mpd->next_page = index; 2616 while (index <= end) { 2617 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2618 tag); 2619 if (nr_pages == 0) 2620 break; 2621 2622 for (i = 0; i < nr_pages; i++) { 2623 struct page *page = pvec.pages[i]; 2624 2625 /* 2626 * Accumulated enough dirty pages? This doesn't apply 2627 * to WB_SYNC_ALL mode. For integrity sync we have to 2628 * keep going because someone may be concurrently 2629 * dirtying pages, and we might have synced a lot of 2630 * newly appeared dirty pages, but have not synced all 2631 * of the old dirty pages. 2632 */ 2633 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2634 goto out; 2635 2636 /* If we can't merge this page, we are done. */ 2637 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2638 goto out; 2639 2640 lock_page(page); 2641 /* 2642 * If the page is no longer dirty, or its mapping no 2643 * longer corresponds to inode we are writing (which 2644 * means it has been truncated or invalidated), or the 2645 * page is already under writeback and we are not doing 2646 * a data integrity writeback, skip the page 2647 */ 2648 if (!PageDirty(page) || 2649 (PageWriteback(page) && 2650 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2651 unlikely(page->mapping != mapping)) { 2652 unlock_page(page); 2653 continue; 2654 } 2655 2656 wait_on_page_writeback(page); 2657 BUG_ON(PageWriteback(page)); 2658 2659 /* 2660 * Should never happen but for buggy code in 2661 * other subsystems that call 2662 * set_page_dirty() without properly warning 2663 * the file system first. See [1] for more 2664 * information. 2665 * 2666 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz 2667 */ 2668 if (!page_has_buffers(page)) { 2669 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", page->index); 2670 ClearPageDirty(page); 2671 unlock_page(page); 2672 continue; 2673 } 2674 2675 if (mpd->map.m_len == 0) 2676 mpd->first_page = page->index; 2677 mpd->next_page = page->index + 1; 2678 /* 2679 * Writeout for transaction commit where we cannot 2680 * modify metadata is simple. Just submit the page. 2681 */ 2682 if (!mpd->can_map) { 2683 if (ext4_page_nomap_can_writeout(page)) { 2684 err = mpage_submit_page(mpd, page); 2685 if (err < 0) 2686 goto out; 2687 } else { 2688 unlock_page(page); 2689 mpd->first_page++; 2690 } 2691 } else { 2692 /* Add all dirty buffers to mpd */ 2693 lblk = ((ext4_lblk_t)page->index) << 2694 (PAGE_SHIFT - blkbits); 2695 head = page_buffers(page); 2696 err = mpage_process_page_bufs(mpd, head, head, 2697 lblk); 2698 if (err <= 0) 2699 goto out; 2700 err = 0; 2701 } 2702 left--; 2703 } 2704 pagevec_release(&pvec); 2705 cond_resched(); 2706 } 2707 mpd->scanned_until_end = 1; 2708 return 0; 2709 out: 2710 pagevec_release(&pvec); 2711 return err; 2712 } 2713 2714 static int ext4_writepage_cb(struct page *page, struct writeback_control *wbc, 2715 void *data) 2716 { 2717 return ext4_writepage(page, wbc); 2718 } 2719 2720 static int ext4_do_writepages(struct mpage_da_data *mpd) 2721 { 2722 struct writeback_control *wbc = mpd->wbc; 2723 pgoff_t writeback_index = 0; 2724 long nr_to_write = wbc->nr_to_write; 2725 int range_whole = 0; 2726 int cycled = 1; 2727 handle_t *handle = NULL; 2728 struct inode *inode = mpd->inode; 2729 struct address_space *mapping = inode->i_mapping; 2730 int needed_blocks, rsv_blocks = 0, ret = 0; 2731 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2732 struct blk_plug plug; 2733 bool give_up_on_write = false; 2734 2735 trace_ext4_writepages(inode, wbc); 2736 2737 /* 2738 * No pages to write? This is mainly a kludge to avoid starting 2739 * a transaction for special inodes like journal inode on last iput() 2740 * because that could violate lock ordering on umount 2741 */ 2742 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2743 goto out_writepages; 2744 2745 if (ext4_should_journal_data(inode)) { 2746 blk_start_plug(&plug); 2747 ret = write_cache_pages(mapping, wbc, ext4_writepage_cb, NULL); 2748 blk_finish_plug(&plug); 2749 goto out_writepages; 2750 } 2751 2752 /* 2753 * If the filesystem has aborted, it is read-only, so return 2754 * right away instead of dumping stack traces later on that 2755 * will obscure the real source of the problem. We test 2756 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because 2757 * the latter could be true if the filesystem is mounted 2758 * read-only, and in that case, ext4_writepages should 2759 * *never* be called, so if that ever happens, we would want 2760 * the stack trace. 2761 */ 2762 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) || 2763 ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) { 2764 ret = -EROFS; 2765 goto out_writepages; 2766 } 2767 2768 /* 2769 * If we have inline data and arrive here, it means that 2770 * we will soon create the block for the 1st page, so 2771 * we'd better clear the inline data here. 2772 */ 2773 if (ext4_has_inline_data(inode)) { 2774 /* Just inode will be modified... */ 2775 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2776 if (IS_ERR(handle)) { 2777 ret = PTR_ERR(handle); 2778 goto out_writepages; 2779 } 2780 BUG_ON(ext4_test_inode_state(inode, 2781 EXT4_STATE_MAY_INLINE_DATA)); 2782 ext4_destroy_inline_data(handle, inode); 2783 ext4_journal_stop(handle); 2784 } 2785 2786 if (ext4_should_dioread_nolock(inode)) { 2787 /* 2788 * We may need to convert up to one extent per block in 2789 * the page and we may dirty the inode. 2790 */ 2791 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode, 2792 PAGE_SIZE >> inode->i_blkbits); 2793 } 2794 2795 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2796 range_whole = 1; 2797 2798 if (wbc->range_cyclic) { 2799 writeback_index = mapping->writeback_index; 2800 if (writeback_index) 2801 cycled = 0; 2802 mpd->first_page = writeback_index; 2803 mpd->last_page = -1; 2804 } else { 2805 mpd->first_page = wbc->range_start >> PAGE_SHIFT; 2806 mpd->last_page = wbc->range_end >> PAGE_SHIFT; 2807 } 2808 2809 ext4_io_submit_init(&mpd->io_submit, wbc); 2810 retry: 2811 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2812 tag_pages_for_writeback(mapping, mpd->first_page, 2813 mpd->last_page); 2814 blk_start_plug(&plug); 2815 2816 /* 2817 * First writeback pages that don't need mapping - we can avoid 2818 * starting a transaction unnecessarily and also avoid being blocked 2819 * in the block layer on device congestion while having transaction 2820 * started. 2821 */ 2822 mpd->do_map = 0; 2823 mpd->scanned_until_end = 0; 2824 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2825 if (!mpd->io_submit.io_end) { 2826 ret = -ENOMEM; 2827 goto unplug; 2828 } 2829 ret = mpage_prepare_extent_to_map(mpd); 2830 /* Unlock pages we didn't use */ 2831 mpage_release_unused_pages(mpd, false); 2832 /* Submit prepared bio */ 2833 ext4_io_submit(&mpd->io_submit); 2834 ext4_put_io_end_defer(mpd->io_submit.io_end); 2835 mpd->io_submit.io_end = NULL; 2836 if (ret < 0) 2837 goto unplug; 2838 2839 while (!mpd->scanned_until_end && wbc->nr_to_write > 0) { 2840 /* For each extent of pages we use new io_end */ 2841 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2842 if (!mpd->io_submit.io_end) { 2843 ret = -ENOMEM; 2844 break; 2845 } 2846 2847 WARN_ON_ONCE(!mpd->can_map); 2848 /* 2849 * We have two constraints: We find one extent to map and we 2850 * must always write out whole page (makes a difference when 2851 * blocksize < pagesize) so that we don't block on IO when we 2852 * try to write out the rest of the page. Journalled mode is 2853 * not supported by delalloc. 2854 */ 2855 BUG_ON(ext4_should_journal_data(inode)); 2856 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2857 2858 /* start a new transaction */ 2859 handle = ext4_journal_start_with_reserve(inode, 2860 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2861 if (IS_ERR(handle)) { 2862 ret = PTR_ERR(handle); 2863 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2864 "%ld pages, ino %lu; err %d", __func__, 2865 wbc->nr_to_write, inode->i_ino, ret); 2866 /* Release allocated io_end */ 2867 ext4_put_io_end(mpd->io_submit.io_end); 2868 mpd->io_submit.io_end = NULL; 2869 break; 2870 } 2871 mpd->do_map = 1; 2872 2873 trace_ext4_da_write_pages(inode, mpd->first_page, wbc); 2874 ret = mpage_prepare_extent_to_map(mpd); 2875 if (!ret && mpd->map.m_len) 2876 ret = mpage_map_and_submit_extent(handle, mpd, 2877 &give_up_on_write); 2878 /* 2879 * Caution: If the handle is synchronous, 2880 * ext4_journal_stop() can wait for transaction commit 2881 * to finish which may depend on writeback of pages to 2882 * complete or on page lock to be released. In that 2883 * case, we have to wait until after we have 2884 * submitted all the IO, released page locks we hold, 2885 * and dropped io_end reference (for extent conversion 2886 * to be able to complete) before stopping the handle. 2887 */ 2888 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2889 ext4_journal_stop(handle); 2890 handle = NULL; 2891 mpd->do_map = 0; 2892 } 2893 /* Unlock pages we didn't use */ 2894 mpage_release_unused_pages(mpd, give_up_on_write); 2895 /* Submit prepared bio */ 2896 ext4_io_submit(&mpd->io_submit); 2897 2898 /* 2899 * Drop our io_end reference we got from init. We have 2900 * to be careful and use deferred io_end finishing if 2901 * we are still holding the transaction as we can 2902 * release the last reference to io_end which may end 2903 * up doing unwritten extent conversion. 2904 */ 2905 if (handle) { 2906 ext4_put_io_end_defer(mpd->io_submit.io_end); 2907 ext4_journal_stop(handle); 2908 } else 2909 ext4_put_io_end(mpd->io_submit.io_end); 2910 mpd->io_submit.io_end = NULL; 2911 2912 if (ret == -ENOSPC && sbi->s_journal) { 2913 /* 2914 * Commit the transaction which would 2915 * free blocks released in the transaction 2916 * and try again 2917 */ 2918 jbd2_journal_force_commit_nested(sbi->s_journal); 2919 ret = 0; 2920 continue; 2921 } 2922 /* Fatal error - ENOMEM, EIO... */ 2923 if (ret) 2924 break; 2925 } 2926 unplug: 2927 blk_finish_plug(&plug); 2928 if (!ret && !cycled && wbc->nr_to_write > 0) { 2929 cycled = 1; 2930 mpd->last_page = writeback_index - 1; 2931 mpd->first_page = 0; 2932 goto retry; 2933 } 2934 2935 /* Update index */ 2936 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2937 /* 2938 * Set the writeback_index so that range_cyclic 2939 * mode will write it back later 2940 */ 2941 mapping->writeback_index = mpd->first_page; 2942 2943 out_writepages: 2944 trace_ext4_writepages_result(inode, wbc, ret, 2945 nr_to_write - wbc->nr_to_write); 2946 return ret; 2947 } 2948 2949 static int ext4_writepages(struct address_space *mapping, 2950 struct writeback_control *wbc) 2951 { 2952 struct super_block *sb = mapping->host->i_sb; 2953 struct mpage_da_data mpd = { 2954 .inode = mapping->host, 2955 .wbc = wbc, 2956 .can_map = 1, 2957 }; 2958 int ret; 2959 2960 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 2961 return -EIO; 2962 2963 percpu_down_read(&EXT4_SB(sb)->s_writepages_rwsem); 2964 ret = ext4_do_writepages(&mpd); 2965 percpu_up_read(&EXT4_SB(sb)->s_writepages_rwsem); 2966 2967 return ret; 2968 } 2969 2970 int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode) 2971 { 2972 struct writeback_control wbc = { 2973 .sync_mode = WB_SYNC_ALL, 2974 .nr_to_write = LONG_MAX, 2975 .range_start = jinode->i_dirty_start, 2976 .range_end = jinode->i_dirty_end, 2977 }; 2978 struct mpage_da_data mpd = { 2979 .inode = jinode->i_vfs_inode, 2980 .wbc = &wbc, 2981 .can_map = 0, 2982 }; 2983 return ext4_do_writepages(&mpd); 2984 } 2985 2986 static int ext4_dax_writepages(struct address_space *mapping, 2987 struct writeback_control *wbc) 2988 { 2989 int ret; 2990 long nr_to_write = wbc->nr_to_write; 2991 struct inode *inode = mapping->host; 2992 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2993 2994 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2995 return -EIO; 2996 2997 percpu_down_read(&sbi->s_writepages_rwsem); 2998 trace_ext4_writepages(inode, wbc); 2999 3000 ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc); 3001 trace_ext4_writepages_result(inode, wbc, ret, 3002 nr_to_write - wbc->nr_to_write); 3003 percpu_up_read(&sbi->s_writepages_rwsem); 3004 return ret; 3005 } 3006 3007 static int ext4_nonda_switch(struct super_block *sb) 3008 { 3009 s64 free_clusters, dirty_clusters; 3010 struct ext4_sb_info *sbi = EXT4_SB(sb); 3011 3012 /* 3013 * switch to non delalloc mode if we are running low 3014 * on free block. The free block accounting via percpu 3015 * counters can get slightly wrong with percpu_counter_batch getting 3016 * accumulated on each CPU without updating global counters 3017 * Delalloc need an accurate free block accounting. So switch 3018 * to non delalloc when we are near to error range. 3019 */ 3020 free_clusters = 3021 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 3022 dirty_clusters = 3023 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 3024 /* 3025 * Start pushing delalloc when 1/2 of free blocks are dirty. 3026 */ 3027 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 3028 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 3029 3030 if (2 * free_clusters < 3 * dirty_clusters || 3031 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 3032 /* 3033 * free block count is less than 150% of dirty blocks 3034 * or free blocks is less than watermark 3035 */ 3036 return 1; 3037 } 3038 return 0; 3039 } 3040 3041 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 3042 loff_t pos, unsigned len, 3043 struct page **pagep, void **fsdata) 3044 { 3045 int ret, retries = 0; 3046 struct page *page; 3047 pgoff_t index; 3048 struct inode *inode = mapping->host; 3049 3050 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 3051 return -EIO; 3052 3053 index = pos >> PAGE_SHIFT; 3054 3055 if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) { 3056 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 3057 return ext4_write_begin(file, mapping, pos, 3058 len, pagep, fsdata); 3059 } 3060 *fsdata = (void *)0; 3061 trace_ext4_da_write_begin(inode, pos, len); 3062 3063 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 3064 ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len, 3065 pagep, fsdata); 3066 if (ret < 0) 3067 return ret; 3068 if (ret == 1) 3069 return 0; 3070 } 3071 3072 retry: 3073 page = grab_cache_page_write_begin(mapping, index); 3074 if (!page) 3075 return -ENOMEM; 3076 3077 /* In case writeback began while the page was unlocked */ 3078 wait_for_stable_page(page); 3079 3080 #ifdef CONFIG_FS_ENCRYPTION 3081 ret = ext4_block_write_begin(page, pos, len, 3082 ext4_da_get_block_prep); 3083 #else 3084 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 3085 #endif 3086 if (ret < 0) { 3087 unlock_page(page); 3088 put_page(page); 3089 /* 3090 * block_write_begin may have instantiated a few blocks 3091 * outside i_size. Trim these off again. Don't need 3092 * i_size_read because we hold inode lock. 3093 */ 3094 if (pos + len > inode->i_size) 3095 ext4_truncate_failed_write(inode); 3096 3097 if (ret == -ENOSPC && 3098 ext4_should_retry_alloc(inode->i_sb, &retries)) 3099 goto retry; 3100 return ret; 3101 } 3102 3103 *pagep = page; 3104 return ret; 3105 } 3106 3107 /* 3108 * Check if we should update i_disksize 3109 * when write to the end of file but not require block allocation 3110 */ 3111 static int ext4_da_should_update_i_disksize(struct page *page, 3112 unsigned long offset) 3113 { 3114 struct buffer_head *bh; 3115 struct inode *inode = page->mapping->host; 3116 unsigned int idx; 3117 int i; 3118 3119 bh = page_buffers(page); 3120 idx = offset >> inode->i_blkbits; 3121 3122 for (i = 0; i < idx; i++) 3123 bh = bh->b_this_page; 3124 3125 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 3126 return 0; 3127 return 1; 3128 } 3129 3130 static int ext4_da_write_end(struct file *file, 3131 struct address_space *mapping, 3132 loff_t pos, unsigned len, unsigned copied, 3133 struct page *page, void *fsdata) 3134 { 3135 struct inode *inode = mapping->host; 3136 loff_t new_i_size; 3137 unsigned long start, end; 3138 int write_mode = (int)(unsigned long)fsdata; 3139 3140 if (write_mode == FALL_BACK_TO_NONDELALLOC) 3141 return ext4_write_end(file, mapping, pos, 3142 len, copied, page, fsdata); 3143 3144 trace_ext4_da_write_end(inode, pos, len, copied); 3145 3146 if (write_mode != CONVERT_INLINE_DATA && 3147 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3148 ext4_has_inline_data(inode)) 3149 return ext4_write_inline_data_end(inode, pos, len, copied, page); 3150 3151 start = pos & (PAGE_SIZE - 1); 3152 end = start + copied - 1; 3153 3154 /* 3155 * Since we are holding inode lock, we are sure i_disksize <= 3156 * i_size. We also know that if i_disksize < i_size, there are 3157 * delalloc writes pending in the range upto i_size. If the end of 3158 * the current write is <= i_size, there's no need to touch 3159 * i_disksize since writeback will push i_disksize upto i_size 3160 * eventually. If the end of the current write is > i_size and 3161 * inside an allocated block (ext4_da_should_update_i_disksize() 3162 * check), we need to update i_disksize here as neither 3163 * ext4_writepage() nor certain ext4_writepages() paths not 3164 * allocating blocks update i_disksize. 3165 * 3166 * Note that we defer inode dirtying to generic_write_end() / 3167 * ext4_da_write_inline_data_end(). 3168 */ 3169 new_i_size = pos + copied; 3170 if (copied && new_i_size > inode->i_size && 3171 ext4_da_should_update_i_disksize(page, end)) 3172 ext4_update_i_disksize(inode, new_i_size); 3173 3174 return generic_write_end(file, mapping, pos, len, copied, page, fsdata); 3175 } 3176 3177 /* 3178 * Force all delayed allocation blocks to be allocated for a given inode. 3179 */ 3180 int ext4_alloc_da_blocks(struct inode *inode) 3181 { 3182 trace_ext4_alloc_da_blocks(inode); 3183 3184 if (!EXT4_I(inode)->i_reserved_data_blocks) 3185 return 0; 3186 3187 /* 3188 * We do something simple for now. The filemap_flush() will 3189 * also start triggering a write of the data blocks, which is 3190 * not strictly speaking necessary (and for users of 3191 * laptop_mode, not even desirable). However, to do otherwise 3192 * would require replicating code paths in: 3193 * 3194 * ext4_writepages() -> 3195 * write_cache_pages() ---> (via passed in callback function) 3196 * __mpage_da_writepage() --> 3197 * mpage_add_bh_to_extent() 3198 * mpage_da_map_blocks() 3199 * 3200 * The problem is that write_cache_pages(), located in 3201 * mm/page-writeback.c, marks pages clean in preparation for 3202 * doing I/O, which is not desirable if we're not planning on 3203 * doing I/O at all. 3204 * 3205 * We could call write_cache_pages(), and then redirty all of 3206 * the pages by calling redirty_page_for_writepage() but that 3207 * would be ugly in the extreme. So instead we would need to 3208 * replicate parts of the code in the above functions, 3209 * simplifying them because we wouldn't actually intend to 3210 * write out the pages, but rather only collect contiguous 3211 * logical block extents, call the multi-block allocator, and 3212 * then update the buffer heads with the block allocations. 3213 * 3214 * For now, though, we'll cheat by calling filemap_flush(), 3215 * which will map the blocks, and start the I/O, but not 3216 * actually wait for the I/O to complete. 3217 */ 3218 return filemap_flush(inode->i_mapping); 3219 } 3220 3221 /* 3222 * bmap() is special. It gets used by applications such as lilo and by 3223 * the swapper to find the on-disk block of a specific piece of data. 3224 * 3225 * Naturally, this is dangerous if the block concerned is still in the 3226 * journal. If somebody makes a swapfile on an ext4 data-journaling 3227 * filesystem and enables swap, then they may get a nasty shock when the 3228 * data getting swapped to that swapfile suddenly gets overwritten by 3229 * the original zero's written out previously to the journal and 3230 * awaiting writeback in the kernel's buffer cache. 3231 * 3232 * So, if we see any bmap calls here on a modified, data-journaled file, 3233 * take extra steps to flush any blocks which might be in the cache. 3234 */ 3235 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3236 { 3237 struct inode *inode = mapping->host; 3238 journal_t *journal; 3239 sector_t ret = 0; 3240 int err; 3241 3242 inode_lock_shared(inode); 3243 /* 3244 * We can get here for an inline file via the FIBMAP ioctl 3245 */ 3246 if (ext4_has_inline_data(inode)) 3247 goto out; 3248 3249 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3250 test_opt(inode->i_sb, DELALLOC)) { 3251 /* 3252 * With delalloc we want to sync the file 3253 * so that we can make sure we allocate 3254 * blocks for file 3255 */ 3256 filemap_write_and_wait(mapping); 3257 } 3258 3259 if (EXT4_JOURNAL(inode) && 3260 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 3261 /* 3262 * This is a REALLY heavyweight approach, but the use of 3263 * bmap on dirty files is expected to be extremely rare: 3264 * only if we run lilo or swapon on a freshly made file 3265 * do we expect this to happen. 3266 * 3267 * (bmap requires CAP_SYS_RAWIO so this does not 3268 * represent an unprivileged user DOS attack --- we'd be 3269 * in trouble if mortal users could trigger this path at 3270 * will.) 3271 * 3272 * NB. EXT4_STATE_JDATA is not set on files other than 3273 * regular files. If somebody wants to bmap a directory 3274 * or symlink and gets confused because the buffer 3275 * hasn't yet been flushed to disk, they deserve 3276 * everything they get. 3277 */ 3278 3279 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 3280 journal = EXT4_JOURNAL(inode); 3281 jbd2_journal_lock_updates(journal); 3282 err = jbd2_journal_flush(journal, 0); 3283 jbd2_journal_unlock_updates(journal); 3284 3285 if (err) 3286 goto out; 3287 } 3288 3289 ret = iomap_bmap(mapping, block, &ext4_iomap_ops); 3290 3291 out: 3292 inode_unlock_shared(inode); 3293 return ret; 3294 } 3295 3296 static int ext4_read_folio(struct file *file, struct folio *folio) 3297 { 3298 struct page *page = &folio->page; 3299 int ret = -EAGAIN; 3300 struct inode *inode = page->mapping->host; 3301 3302 trace_ext4_readpage(page); 3303 3304 if (ext4_has_inline_data(inode)) 3305 ret = ext4_readpage_inline(inode, page); 3306 3307 if (ret == -EAGAIN) 3308 return ext4_mpage_readpages(inode, NULL, page); 3309 3310 return ret; 3311 } 3312 3313 static void ext4_readahead(struct readahead_control *rac) 3314 { 3315 struct inode *inode = rac->mapping->host; 3316 3317 /* If the file has inline data, no need to do readahead. */ 3318 if (ext4_has_inline_data(inode)) 3319 return; 3320 3321 ext4_mpage_readpages(inode, rac, NULL); 3322 } 3323 3324 static void ext4_invalidate_folio(struct folio *folio, size_t offset, 3325 size_t length) 3326 { 3327 trace_ext4_invalidate_folio(folio, offset, length); 3328 3329 /* No journalling happens on data buffers when this function is used */ 3330 WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio))); 3331 3332 block_invalidate_folio(folio, offset, length); 3333 } 3334 3335 static int __ext4_journalled_invalidate_folio(struct folio *folio, 3336 size_t offset, size_t length) 3337 { 3338 journal_t *journal = EXT4_JOURNAL(folio->mapping->host); 3339 3340 trace_ext4_journalled_invalidate_folio(folio, offset, length); 3341 3342 /* 3343 * If it's a full truncate we just forget about the pending dirtying 3344 */ 3345 if (offset == 0 && length == folio_size(folio)) 3346 folio_clear_checked(folio); 3347 3348 return jbd2_journal_invalidate_folio(journal, folio, offset, length); 3349 } 3350 3351 /* Wrapper for aops... */ 3352 static void ext4_journalled_invalidate_folio(struct folio *folio, 3353 size_t offset, 3354 size_t length) 3355 { 3356 WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0); 3357 } 3358 3359 static bool ext4_release_folio(struct folio *folio, gfp_t wait) 3360 { 3361 journal_t *journal = EXT4_JOURNAL(folio->mapping->host); 3362 3363 trace_ext4_releasepage(&folio->page); 3364 3365 /* Page has dirty journalled data -> cannot release */ 3366 if (folio_test_checked(folio)) 3367 return false; 3368 if (journal) 3369 return jbd2_journal_try_to_free_buffers(journal, folio); 3370 else 3371 return try_to_free_buffers(folio); 3372 } 3373 3374 static bool ext4_inode_datasync_dirty(struct inode *inode) 3375 { 3376 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 3377 3378 if (journal) { 3379 if (jbd2_transaction_committed(journal, 3380 EXT4_I(inode)->i_datasync_tid)) 3381 return false; 3382 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT)) 3383 return !list_empty(&EXT4_I(inode)->i_fc_list); 3384 return true; 3385 } 3386 3387 /* Any metadata buffers to write? */ 3388 if (!list_empty(&inode->i_mapping->private_list)) 3389 return true; 3390 return inode->i_state & I_DIRTY_DATASYNC; 3391 } 3392 3393 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap, 3394 struct ext4_map_blocks *map, loff_t offset, 3395 loff_t length, unsigned int flags) 3396 { 3397 u8 blkbits = inode->i_blkbits; 3398 3399 /* 3400 * Writes that span EOF might trigger an I/O size update on completion, 3401 * so consider them to be dirty for the purpose of O_DSYNC, even if 3402 * there is no other metadata changes being made or are pending. 3403 */ 3404 iomap->flags = 0; 3405 if (ext4_inode_datasync_dirty(inode) || 3406 offset + length > i_size_read(inode)) 3407 iomap->flags |= IOMAP_F_DIRTY; 3408 3409 if (map->m_flags & EXT4_MAP_NEW) 3410 iomap->flags |= IOMAP_F_NEW; 3411 3412 if (flags & IOMAP_DAX) 3413 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev; 3414 else 3415 iomap->bdev = inode->i_sb->s_bdev; 3416 iomap->offset = (u64) map->m_lblk << blkbits; 3417 iomap->length = (u64) map->m_len << blkbits; 3418 3419 if ((map->m_flags & EXT4_MAP_MAPPED) && 3420 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3421 iomap->flags |= IOMAP_F_MERGED; 3422 3423 /* 3424 * Flags passed to ext4_map_blocks() for direct I/O writes can result 3425 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits 3426 * set. In order for any allocated unwritten extents to be converted 3427 * into written extents correctly within the ->end_io() handler, we 3428 * need to ensure that the iomap->type is set appropriately. Hence, the 3429 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has 3430 * been set first. 3431 */ 3432 if (map->m_flags & EXT4_MAP_UNWRITTEN) { 3433 iomap->type = IOMAP_UNWRITTEN; 3434 iomap->addr = (u64) map->m_pblk << blkbits; 3435 if (flags & IOMAP_DAX) 3436 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; 3437 } else if (map->m_flags & EXT4_MAP_MAPPED) { 3438 iomap->type = IOMAP_MAPPED; 3439 iomap->addr = (u64) map->m_pblk << blkbits; 3440 if (flags & IOMAP_DAX) 3441 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; 3442 } else { 3443 iomap->type = IOMAP_HOLE; 3444 iomap->addr = IOMAP_NULL_ADDR; 3445 } 3446 } 3447 3448 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map, 3449 unsigned int flags) 3450 { 3451 handle_t *handle; 3452 u8 blkbits = inode->i_blkbits; 3453 int ret, dio_credits, m_flags = 0, retries = 0; 3454 3455 /* 3456 * Trim the mapping request to the maximum value that we can map at 3457 * once for direct I/O. 3458 */ 3459 if (map->m_len > DIO_MAX_BLOCKS) 3460 map->m_len = DIO_MAX_BLOCKS; 3461 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len); 3462 3463 retry: 3464 /* 3465 * Either we allocate blocks and then don't get an unwritten extent, so 3466 * in that case we have reserved enough credits. Or, the blocks are 3467 * already allocated and unwritten. In that case, the extent conversion 3468 * fits into the credits as well. 3469 */ 3470 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 3471 if (IS_ERR(handle)) 3472 return PTR_ERR(handle); 3473 3474 /* 3475 * DAX and direct I/O are the only two operations that are currently 3476 * supported with IOMAP_WRITE. 3477 */ 3478 WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT))); 3479 if (flags & IOMAP_DAX) 3480 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO; 3481 /* 3482 * We use i_size instead of i_disksize here because delalloc writeback 3483 * can complete at any point during the I/O and subsequently push the 3484 * i_disksize out to i_size. This could be beyond where direct I/O is 3485 * happening and thus expose allocated blocks to direct I/O reads. 3486 */ 3487 else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode)) 3488 m_flags = EXT4_GET_BLOCKS_CREATE; 3489 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3490 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT; 3491 3492 ret = ext4_map_blocks(handle, inode, map, m_flags); 3493 3494 /* 3495 * We cannot fill holes in indirect tree based inodes as that could 3496 * expose stale data in the case of a crash. Use the magic error code 3497 * to fallback to buffered I/O. 3498 */ 3499 if (!m_flags && !ret) 3500 ret = -ENOTBLK; 3501 3502 ext4_journal_stop(handle); 3503 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3504 goto retry; 3505 3506 return ret; 3507 } 3508 3509 3510 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3511 unsigned flags, struct iomap *iomap, struct iomap *srcmap) 3512 { 3513 int ret; 3514 struct ext4_map_blocks map; 3515 u8 blkbits = inode->i_blkbits; 3516 3517 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3518 return -EINVAL; 3519 3520 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3521 return -ERANGE; 3522 3523 /* 3524 * Calculate the first and last logical blocks respectively. 3525 */ 3526 map.m_lblk = offset >> blkbits; 3527 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3528 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3529 3530 if (flags & IOMAP_WRITE) { 3531 /* 3532 * We check here if the blocks are already allocated, then we 3533 * don't need to start a journal txn and we can directly return 3534 * the mapping information. This could boost performance 3535 * especially in multi-threaded overwrite requests. 3536 */ 3537 if (offset + length <= i_size_read(inode)) { 3538 ret = ext4_map_blocks(NULL, inode, &map, 0); 3539 if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED)) 3540 goto out; 3541 } 3542 ret = ext4_iomap_alloc(inode, &map, flags); 3543 } else { 3544 ret = ext4_map_blocks(NULL, inode, &map, 0); 3545 } 3546 3547 if (ret < 0) 3548 return ret; 3549 out: 3550 /* 3551 * When inline encryption is enabled, sometimes I/O to an encrypted file 3552 * has to be broken up to guarantee DUN contiguity. Handle this by 3553 * limiting the length of the mapping returned. 3554 */ 3555 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len); 3556 3557 ext4_set_iomap(inode, iomap, &map, offset, length, flags); 3558 3559 return 0; 3560 } 3561 3562 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset, 3563 loff_t length, unsigned flags, struct iomap *iomap, 3564 struct iomap *srcmap) 3565 { 3566 int ret; 3567 3568 /* 3569 * Even for writes we don't need to allocate blocks, so just pretend 3570 * we are reading to save overhead of starting a transaction. 3571 */ 3572 flags &= ~IOMAP_WRITE; 3573 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap); 3574 WARN_ON_ONCE(iomap->type != IOMAP_MAPPED); 3575 return ret; 3576 } 3577 3578 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, 3579 ssize_t written, unsigned flags, struct iomap *iomap) 3580 { 3581 /* 3582 * Check to see whether an error occurred while writing out the data to 3583 * the allocated blocks. If so, return the magic error code so that we 3584 * fallback to buffered I/O and attempt to complete the remainder of 3585 * the I/O. Any blocks that may have been allocated in preparation for 3586 * the direct I/O will be reused during buffered I/O. 3587 */ 3588 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0) 3589 return -ENOTBLK; 3590 3591 return 0; 3592 } 3593 3594 const struct iomap_ops ext4_iomap_ops = { 3595 .iomap_begin = ext4_iomap_begin, 3596 .iomap_end = ext4_iomap_end, 3597 }; 3598 3599 const struct iomap_ops ext4_iomap_overwrite_ops = { 3600 .iomap_begin = ext4_iomap_overwrite_begin, 3601 .iomap_end = ext4_iomap_end, 3602 }; 3603 3604 static bool ext4_iomap_is_delalloc(struct inode *inode, 3605 struct ext4_map_blocks *map) 3606 { 3607 struct extent_status es; 3608 ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1; 3609 3610 ext4_es_find_extent_range(inode, &ext4_es_is_delayed, 3611 map->m_lblk, end, &es); 3612 3613 if (!es.es_len || es.es_lblk > end) 3614 return false; 3615 3616 if (es.es_lblk > map->m_lblk) { 3617 map->m_len = es.es_lblk - map->m_lblk; 3618 return false; 3619 } 3620 3621 offset = map->m_lblk - es.es_lblk; 3622 map->m_len = es.es_len - offset; 3623 3624 return true; 3625 } 3626 3627 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset, 3628 loff_t length, unsigned int flags, 3629 struct iomap *iomap, struct iomap *srcmap) 3630 { 3631 int ret; 3632 bool delalloc = false; 3633 struct ext4_map_blocks map; 3634 u8 blkbits = inode->i_blkbits; 3635 3636 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3637 return -EINVAL; 3638 3639 if (ext4_has_inline_data(inode)) { 3640 ret = ext4_inline_data_iomap(inode, iomap); 3641 if (ret != -EAGAIN) { 3642 if (ret == 0 && offset >= iomap->length) 3643 ret = -ENOENT; 3644 return ret; 3645 } 3646 } 3647 3648 /* 3649 * Calculate the first and last logical block respectively. 3650 */ 3651 map.m_lblk = offset >> blkbits; 3652 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3653 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3654 3655 /* 3656 * Fiemap callers may call for offset beyond s_bitmap_maxbytes. 3657 * So handle it here itself instead of querying ext4_map_blocks(). 3658 * Since ext4_map_blocks() will warn about it and will return 3659 * -EIO error. 3660 */ 3661 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 3662 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3663 3664 if (offset >= sbi->s_bitmap_maxbytes) { 3665 map.m_flags = 0; 3666 goto set_iomap; 3667 } 3668 } 3669 3670 ret = ext4_map_blocks(NULL, inode, &map, 0); 3671 if (ret < 0) 3672 return ret; 3673 if (ret == 0) 3674 delalloc = ext4_iomap_is_delalloc(inode, &map); 3675 3676 set_iomap: 3677 ext4_set_iomap(inode, iomap, &map, offset, length, flags); 3678 if (delalloc && iomap->type == IOMAP_HOLE) 3679 iomap->type = IOMAP_DELALLOC; 3680 3681 return 0; 3682 } 3683 3684 const struct iomap_ops ext4_iomap_report_ops = { 3685 .iomap_begin = ext4_iomap_begin_report, 3686 }; 3687 3688 /* 3689 * Whenever the folio is being dirtied, corresponding buffers should already 3690 * be attached to the transaction (we take care of this in ext4_page_mkwrite() 3691 * and ext4_write_begin()). However we cannot move buffers to dirty transaction 3692 * lists here because ->dirty_folio is called under VFS locks and the folio 3693 * is not necessarily locked. 3694 * 3695 * We cannot just dirty the folio and leave attached buffers clean, because the 3696 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3697 * or jbddirty because all the journalling code will explode. 3698 * 3699 * So what we do is to mark the folio "pending dirty" and next time writepage 3700 * is called, propagate that into the buffers appropriately. 3701 */ 3702 static bool ext4_journalled_dirty_folio(struct address_space *mapping, 3703 struct folio *folio) 3704 { 3705 WARN_ON_ONCE(!folio_buffers(folio)); 3706 folio_set_checked(folio); 3707 return filemap_dirty_folio(mapping, folio); 3708 } 3709 3710 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio) 3711 { 3712 WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio)); 3713 WARN_ON_ONCE(!folio_buffers(folio)); 3714 return block_dirty_folio(mapping, folio); 3715 } 3716 3717 static int ext4_iomap_swap_activate(struct swap_info_struct *sis, 3718 struct file *file, sector_t *span) 3719 { 3720 return iomap_swapfile_activate(sis, file, span, 3721 &ext4_iomap_report_ops); 3722 } 3723 3724 static const struct address_space_operations ext4_aops = { 3725 .read_folio = ext4_read_folio, 3726 .readahead = ext4_readahead, 3727 .writepages = ext4_writepages, 3728 .write_begin = ext4_write_begin, 3729 .write_end = ext4_write_end, 3730 .dirty_folio = ext4_dirty_folio, 3731 .bmap = ext4_bmap, 3732 .invalidate_folio = ext4_invalidate_folio, 3733 .release_folio = ext4_release_folio, 3734 .direct_IO = noop_direct_IO, 3735 .migrate_folio = buffer_migrate_folio, 3736 .is_partially_uptodate = block_is_partially_uptodate, 3737 .error_remove_page = generic_error_remove_page, 3738 .swap_activate = ext4_iomap_swap_activate, 3739 }; 3740 3741 static const struct address_space_operations ext4_journalled_aops = { 3742 .read_folio = ext4_read_folio, 3743 .readahead = ext4_readahead, 3744 .writepages = ext4_writepages, 3745 .write_begin = ext4_write_begin, 3746 .write_end = ext4_journalled_write_end, 3747 .dirty_folio = ext4_journalled_dirty_folio, 3748 .bmap = ext4_bmap, 3749 .invalidate_folio = ext4_journalled_invalidate_folio, 3750 .release_folio = ext4_release_folio, 3751 .direct_IO = noop_direct_IO, 3752 .migrate_folio = buffer_migrate_folio_norefs, 3753 .is_partially_uptodate = block_is_partially_uptodate, 3754 .error_remove_page = generic_error_remove_page, 3755 .swap_activate = ext4_iomap_swap_activate, 3756 }; 3757 3758 static const struct address_space_operations ext4_da_aops = { 3759 .read_folio = ext4_read_folio, 3760 .readahead = ext4_readahead, 3761 .writepages = ext4_writepages, 3762 .write_begin = ext4_da_write_begin, 3763 .write_end = ext4_da_write_end, 3764 .dirty_folio = ext4_dirty_folio, 3765 .bmap = ext4_bmap, 3766 .invalidate_folio = ext4_invalidate_folio, 3767 .release_folio = ext4_release_folio, 3768 .direct_IO = noop_direct_IO, 3769 .migrate_folio = buffer_migrate_folio, 3770 .is_partially_uptodate = block_is_partially_uptodate, 3771 .error_remove_page = generic_error_remove_page, 3772 .swap_activate = ext4_iomap_swap_activate, 3773 }; 3774 3775 static const struct address_space_operations ext4_dax_aops = { 3776 .writepages = ext4_dax_writepages, 3777 .direct_IO = noop_direct_IO, 3778 .dirty_folio = noop_dirty_folio, 3779 .bmap = ext4_bmap, 3780 .swap_activate = ext4_iomap_swap_activate, 3781 }; 3782 3783 void ext4_set_aops(struct inode *inode) 3784 { 3785 switch (ext4_inode_journal_mode(inode)) { 3786 case EXT4_INODE_ORDERED_DATA_MODE: 3787 case EXT4_INODE_WRITEBACK_DATA_MODE: 3788 break; 3789 case EXT4_INODE_JOURNAL_DATA_MODE: 3790 inode->i_mapping->a_ops = &ext4_journalled_aops; 3791 return; 3792 default: 3793 BUG(); 3794 } 3795 if (IS_DAX(inode)) 3796 inode->i_mapping->a_ops = &ext4_dax_aops; 3797 else if (test_opt(inode->i_sb, DELALLOC)) 3798 inode->i_mapping->a_ops = &ext4_da_aops; 3799 else 3800 inode->i_mapping->a_ops = &ext4_aops; 3801 } 3802 3803 static int __ext4_block_zero_page_range(handle_t *handle, 3804 struct address_space *mapping, loff_t from, loff_t length) 3805 { 3806 ext4_fsblk_t index = from >> PAGE_SHIFT; 3807 unsigned offset = from & (PAGE_SIZE-1); 3808 unsigned blocksize, pos; 3809 ext4_lblk_t iblock; 3810 struct inode *inode = mapping->host; 3811 struct buffer_head *bh; 3812 struct page *page; 3813 int err = 0; 3814 3815 page = find_or_create_page(mapping, from >> PAGE_SHIFT, 3816 mapping_gfp_constraint(mapping, ~__GFP_FS)); 3817 if (!page) 3818 return -ENOMEM; 3819 3820 blocksize = inode->i_sb->s_blocksize; 3821 3822 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 3823 3824 if (!page_has_buffers(page)) 3825 create_empty_buffers(page, blocksize, 0); 3826 3827 /* Find the buffer that contains "offset" */ 3828 bh = page_buffers(page); 3829 pos = blocksize; 3830 while (offset >= pos) { 3831 bh = bh->b_this_page; 3832 iblock++; 3833 pos += blocksize; 3834 } 3835 if (buffer_freed(bh)) { 3836 BUFFER_TRACE(bh, "freed: skip"); 3837 goto unlock; 3838 } 3839 if (!buffer_mapped(bh)) { 3840 BUFFER_TRACE(bh, "unmapped"); 3841 ext4_get_block(inode, iblock, bh, 0); 3842 /* unmapped? It's a hole - nothing to do */ 3843 if (!buffer_mapped(bh)) { 3844 BUFFER_TRACE(bh, "still unmapped"); 3845 goto unlock; 3846 } 3847 } 3848 3849 /* Ok, it's mapped. Make sure it's up-to-date */ 3850 if (PageUptodate(page)) 3851 set_buffer_uptodate(bh); 3852 3853 if (!buffer_uptodate(bh)) { 3854 err = ext4_read_bh_lock(bh, 0, true); 3855 if (err) 3856 goto unlock; 3857 if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 3858 /* We expect the key to be set. */ 3859 BUG_ON(!fscrypt_has_encryption_key(inode)); 3860 err = fscrypt_decrypt_pagecache_blocks(page, blocksize, 3861 bh_offset(bh)); 3862 if (err) { 3863 clear_buffer_uptodate(bh); 3864 goto unlock; 3865 } 3866 } 3867 } 3868 if (ext4_should_journal_data(inode)) { 3869 BUFFER_TRACE(bh, "get write access"); 3870 err = ext4_journal_get_write_access(handle, inode->i_sb, bh, 3871 EXT4_JTR_NONE); 3872 if (err) 3873 goto unlock; 3874 } 3875 zero_user(page, offset, length); 3876 BUFFER_TRACE(bh, "zeroed end of block"); 3877 3878 if (ext4_should_journal_data(inode)) { 3879 err = ext4_handle_dirty_metadata(handle, inode, bh); 3880 } else { 3881 err = 0; 3882 mark_buffer_dirty(bh); 3883 if (ext4_should_order_data(inode)) 3884 err = ext4_jbd2_inode_add_write(handle, inode, from, 3885 length); 3886 } 3887 3888 unlock: 3889 unlock_page(page); 3890 put_page(page); 3891 return err; 3892 } 3893 3894 /* 3895 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3896 * starting from file offset 'from'. The range to be zero'd must 3897 * be contained with in one block. If the specified range exceeds 3898 * the end of the block it will be shortened to end of the block 3899 * that corresponds to 'from' 3900 */ 3901 static int ext4_block_zero_page_range(handle_t *handle, 3902 struct address_space *mapping, loff_t from, loff_t length) 3903 { 3904 struct inode *inode = mapping->host; 3905 unsigned offset = from & (PAGE_SIZE-1); 3906 unsigned blocksize = inode->i_sb->s_blocksize; 3907 unsigned max = blocksize - (offset & (blocksize - 1)); 3908 3909 /* 3910 * correct length if it does not fall between 3911 * 'from' and the end of the block 3912 */ 3913 if (length > max || length < 0) 3914 length = max; 3915 3916 if (IS_DAX(inode)) { 3917 return dax_zero_range(inode, from, length, NULL, 3918 &ext4_iomap_ops); 3919 } 3920 return __ext4_block_zero_page_range(handle, mapping, from, length); 3921 } 3922 3923 /* 3924 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3925 * up to the end of the block which corresponds to `from'. 3926 * This required during truncate. We need to physically zero the tail end 3927 * of that block so it doesn't yield old data if the file is later grown. 3928 */ 3929 static int ext4_block_truncate_page(handle_t *handle, 3930 struct address_space *mapping, loff_t from) 3931 { 3932 unsigned offset = from & (PAGE_SIZE-1); 3933 unsigned length; 3934 unsigned blocksize; 3935 struct inode *inode = mapping->host; 3936 3937 /* If we are processing an encrypted inode during orphan list handling */ 3938 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode)) 3939 return 0; 3940 3941 blocksize = inode->i_sb->s_blocksize; 3942 length = blocksize - (offset & (blocksize - 1)); 3943 3944 return ext4_block_zero_page_range(handle, mapping, from, length); 3945 } 3946 3947 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3948 loff_t lstart, loff_t length) 3949 { 3950 struct super_block *sb = inode->i_sb; 3951 struct address_space *mapping = inode->i_mapping; 3952 unsigned partial_start, partial_end; 3953 ext4_fsblk_t start, end; 3954 loff_t byte_end = (lstart + length - 1); 3955 int err = 0; 3956 3957 partial_start = lstart & (sb->s_blocksize - 1); 3958 partial_end = byte_end & (sb->s_blocksize - 1); 3959 3960 start = lstart >> sb->s_blocksize_bits; 3961 end = byte_end >> sb->s_blocksize_bits; 3962 3963 /* Handle partial zero within the single block */ 3964 if (start == end && 3965 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3966 err = ext4_block_zero_page_range(handle, mapping, 3967 lstart, length); 3968 return err; 3969 } 3970 /* Handle partial zero out on the start of the range */ 3971 if (partial_start) { 3972 err = ext4_block_zero_page_range(handle, mapping, 3973 lstart, sb->s_blocksize); 3974 if (err) 3975 return err; 3976 } 3977 /* Handle partial zero out on the end of the range */ 3978 if (partial_end != sb->s_blocksize - 1) 3979 err = ext4_block_zero_page_range(handle, mapping, 3980 byte_end - partial_end, 3981 partial_end + 1); 3982 return err; 3983 } 3984 3985 int ext4_can_truncate(struct inode *inode) 3986 { 3987 if (S_ISREG(inode->i_mode)) 3988 return 1; 3989 if (S_ISDIR(inode->i_mode)) 3990 return 1; 3991 if (S_ISLNK(inode->i_mode)) 3992 return !ext4_inode_is_fast_symlink(inode); 3993 return 0; 3994 } 3995 3996 /* 3997 * We have to make sure i_disksize gets properly updated before we truncate 3998 * page cache due to hole punching or zero range. Otherwise i_disksize update 3999 * can get lost as it may have been postponed to submission of writeback but 4000 * that will never happen after we truncate page cache. 4001 */ 4002 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 4003 loff_t len) 4004 { 4005 handle_t *handle; 4006 int ret; 4007 4008 loff_t size = i_size_read(inode); 4009 4010 WARN_ON(!inode_is_locked(inode)); 4011 if (offset > size || offset + len < size) 4012 return 0; 4013 4014 if (EXT4_I(inode)->i_disksize >= size) 4015 return 0; 4016 4017 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 4018 if (IS_ERR(handle)) 4019 return PTR_ERR(handle); 4020 ext4_update_i_disksize(inode, size); 4021 ret = ext4_mark_inode_dirty(handle, inode); 4022 ext4_journal_stop(handle); 4023 4024 return ret; 4025 } 4026 4027 static void ext4_wait_dax_page(struct inode *inode) 4028 { 4029 filemap_invalidate_unlock(inode->i_mapping); 4030 schedule(); 4031 filemap_invalidate_lock(inode->i_mapping); 4032 } 4033 4034 int ext4_break_layouts(struct inode *inode) 4035 { 4036 struct page *page; 4037 int error; 4038 4039 if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock))) 4040 return -EINVAL; 4041 4042 do { 4043 page = dax_layout_busy_page(inode->i_mapping); 4044 if (!page) 4045 return 0; 4046 4047 error = ___wait_var_event(&page->_refcount, 4048 atomic_read(&page->_refcount) == 1, 4049 TASK_INTERRUPTIBLE, 0, 0, 4050 ext4_wait_dax_page(inode)); 4051 } while (error == 0); 4052 4053 return error; 4054 } 4055 4056 /* 4057 * ext4_punch_hole: punches a hole in a file by releasing the blocks 4058 * associated with the given offset and length 4059 * 4060 * @inode: File inode 4061 * @offset: The offset where the hole will begin 4062 * @len: The length of the hole 4063 * 4064 * Returns: 0 on success or negative on failure 4065 */ 4066 4067 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length) 4068 { 4069 struct inode *inode = file_inode(file); 4070 struct super_block *sb = inode->i_sb; 4071 ext4_lblk_t first_block, stop_block; 4072 struct address_space *mapping = inode->i_mapping; 4073 loff_t first_block_offset, last_block_offset, max_length; 4074 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4075 handle_t *handle; 4076 unsigned int credits; 4077 int ret = 0, ret2 = 0; 4078 4079 trace_ext4_punch_hole(inode, offset, length, 0); 4080 4081 /* 4082 * Write out all dirty pages to avoid race conditions 4083 * Then release them. 4084 */ 4085 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 4086 ret = filemap_write_and_wait_range(mapping, offset, 4087 offset + length - 1); 4088 if (ret) 4089 return ret; 4090 } 4091 4092 inode_lock(inode); 4093 4094 /* No need to punch hole beyond i_size */ 4095 if (offset >= inode->i_size) 4096 goto out_mutex; 4097 4098 /* 4099 * If the hole extends beyond i_size, set the hole 4100 * to end after the page that contains i_size 4101 */ 4102 if (offset + length > inode->i_size) { 4103 length = inode->i_size + 4104 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) - 4105 offset; 4106 } 4107 4108 /* 4109 * For punch hole the length + offset needs to be within one block 4110 * before last range. Adjust the length if it goes beyond that limit. 4111 */ 4112 max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize; 4113 if (offset + length > max_length) 4114 length = max_length - offset; 4115 4116 if (offset & (sb->s_blocksize - 1) || 4117 (offset + length) & (sb->s_blocksize - 1)) { 4118 /* 4119 * Attach jinode to inode for jbd2 if we do any zeroing of 4120 * partial block 4121 */ 4122 ret = ext4_inode_attach_jinode(inode); 4123 if (ret < 0) 4124 goto out_mutex; 4125 4126 } 4127 4128 /* Wait all existing dio workers, newcomers will block on i_rwsem */ 4129 inode_dio_wait(inode); 4130 4131 ret = file_modified(file); 4132 if (ret) 4133 goto out_mutex; 4134 4135 /* 4136 * Prevent page faults from reinstantiating pages we have released from 4137 * page cache. 4138 */ 4139 filemap_invalidate_lock(mapping); 4140 4141 ret = ext4_break_layouts(inode); 4142 if (ret) 4143 goto out_dio; 4144 4145 first_block_offset = round_up(offset, sb->s_blocksize); 4146 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 4147 4148 /* Now release the pages and zero block aligned part of pages*/ 4149 if (last_block_offset > first_block_offset) { 4150 ret = ext4_update_disksize_before_punch(inode, offset, length); 4151 if (ret) 4152 goto out_dio; 4153 truncate_pagecache_range(inode, first_block_offset, 4154 last_block_offset); 4155 } 4156 4157 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4158 credits = ext4_writepage_trans_blocks(inode); 4159 else 4160 credits = ext4_blocks_for_truncate(inode); 4161 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4162 if (IS_ERR(handle)) { 4163 ret = PTR_ERR(handle); 4164 ext4_std_error(sb, ret); 4165 goto out_dio; 4166 } 4167 4168 ret = ext4_zero_partial_blocks(handle, inode, offset, 4169 length); 4170 if (ret) 4171 goto out_stop; 4172 4173 first_block = (offset + sb->s_blocksize - 1) >> 4174 EXT4_BLOCK_SIZE_BITS(sb); 4175 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 4176 4177 /* If there are blocks to remove, do it */ 4178 if (stop_block > first_block) { 4179 4180 down_write(&EXT4_I(inode)->i_data_sem); 4181 ext4_discard_preallocations(inode, 0); 4182 4183 ret = ext4_es_remove_extent(inode, first_block, 4184 stop_block - first_block); 4185 if (ret) { 4186 up_write(&EXT4_I(inode)->i_data_sem); 4187 goto out_stop; 4188 } 4189 4190 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4191 ret = ext4_ext_remove_space(inode, first_block, 4192 stop_block - 1); 4193 else 4194 ret = ext4_ind_remove_space(handle, inode, first_block, 4195 stop_block); 4196 4197 up_write(&EXT4_I(inode)->i_data_sem); 4198 } 4199 ext4_fc_track_range(handle, inode, first_block, stop_block); 4200 if (IS_SYNC(inode)) 4201 ext4_handle_sync(handle); 4202 4203 inode->i_mtime = inode->i_ctime = current_time(inode); 4204 ret2 = ext4_mark_inode_dirty(handle, inode); 4205 if (unlikely(ret2)) 4206 ret = ret2; 4207 if (ret >= 0) 4208 ext4_update_inode_fsync_trans(handle, inode, 1); 4209 out_stop: 4210 ext4_journal_stop(handle); 4211 out_dio: 4212 filemap_invalidate_unlock(mapping); 4213 out_mutex: 4214 inode_unlock(inode); 4215 return ret; 4216 } 4217 4218 int ext4_inode_attach_jinode(struct inode *inode) 4219 { 4220 struct ext4_inode_info *ei = EXT4_I(inode); 4221 struct jbd2_inode *jinode; 4222 4223 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4224 return 0; 4225 4226 jinode = jbd2_alloc_inode(GFP_KERNEL); 4227 spin_lock(&inode->i_lock); 4228 if (!ei->jinode) { 4229 if (!jinode) { 4230 spin_unlock(&inode->i_lock); 4231 return -ENOMEM; 4232 } 4233 ei->jinode = jinode; 4234 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4235 jinode = NULL; 4236 } 4237 spin_unlock(&inode->i_lock); 4238 if (unlikely(jinode != NULL)) 4239 jbd2_free_inode(jinode); 4240 return 0; 4241 } 4242 4243 /* 4244 * ext4_truncate() 4245 * 4246 * We block out ext4_get_block() block instantiations across the entire 4247 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4248 * simultaneously on behalf of the same inode. 4249 * 4250 * As we work through the truncate and commit bits of it to the journal there 4251 * is one core, guiding principle: the file's tree must always be consistent on 4252 * disk. We must be able to restart the truncate after a crash. 4253 * 4254 * The file's tree may be transiently inconsistent in memory (although it 4255 * probably isn't), but whenever we close off and commit a journal transaction, 4256 * the contents of (the filesystem + the journal) must be consistent and 4257 * restartable. It's pretty simple, really: bottom up, right to left (although 4258 * left-to-right works OK too). 4259 * 4260 * Note that at recovery time, journal replay occurs *before* the restart of 4261 * truncate against the orphan inode list. 4262 * 4263 * The committed inode has the new, desired i_size (which is the same as 4264 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4265 * that this inode's truncate did not complete and it will again call 4266 * ext4_truncate() to have another go. So there will be instantiated blocks 4267 * to the right of the truncation point in a crashed ext4 filesystem. But 4268 * that's fine - as long as they are linked from the inode, the post-crash 4269 * ext4_truncate() run will find them and release them. 4270 */ 4271 int ext4_truncate(struct inode *inode) 4272 { 4273 struct ext4_inode_info *ei = EXT4_I(inode); 4274 unsigned int credits; 4275 int err = 0, err2; 4276 handle_t *handle; 4277 struct address_space *mapping = inode->i_mapping; 4278 4279 /* 4280 * There is a possibility that we're either freeing the inode 4281 * or it's a completely new inode. In those cases we might not 4282 * have i_rwsem locked because it's not necessary. 4283 */ 4284 if (!(inode->i_state & (I_NEW|I_FREEING))) 4285 WARN_ON(!inode_is_locked(inode)); 4286 trace_ext4_truncate_enter(inode); 4287 4288 if (!ext4_can_truncate(inode)) 4289 goto out_trace; 4290 4291 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4292 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4293 4294 if (ext4_has_inline_data(inode)) { 4295 int has_inline = 1; 4296 4297 err = ext4_inline_data_truncate(inode, &has_inline); 4298 if (err || has_inline) 4299 goto out_trace; 4300 } 4301 4302 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4303 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4304 err = ext4_inode_attach_jinode(inode); 4305 if (err) 4306 goto out_trace; 4307 } 4308 4309 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4310 credits = ext4_writepage_trans_blocks(inode); 4311 else 4312 credits = ext4_blocks_for_truncate(inode); 4313 4314 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4315 if (IS_ERR(handle)) { 4316 err = PTR_ERR(handle); 4317 goto out_trace; 4318 } 4319 4320 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4321 ext4_block_truncate_page(handle, mapping, inode->i_size); 4322 4323 /* 4324 * We add the inode to the orphan list, so that if this 4325 * truncate spans multiple transactions, and we crash, we will 4326 * resume the truncate when the filesystem recovers. It also 4327 * marks the inode dirty, to catch the new size. 4328 * 4329 * Implication: the file must always be in a sane, consistent 4330 * truncatable state while each transaction commits. 4331 */ 4332 err = ext4_orphan_add(handle, inode); 4333 if (err) 4334 goto out_stop; 4335 4336 down_write(&EXT4_I(inode)->i_data_sem); 4337 4338 ext4_discard_preallocations(inode, 0); 4339 4340 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4341 err = ext4_ext_truncate(handle, inode); 4342 else 4343 ext4_ind_truncate(handle, inode); 4344 4345 up_write(&ei->i_data_sem); 4346 if (err) 4347 goto out_stop; 4348 4349 if (IS_SYNC(inode)) 4350 ext4_handle_sync(handle); 4351 4352 out_stop: 4353 /* 4354 * If this was a simple ftruncate() and the file will remain alive, 4355 * then we need to clear up the orphan record which we created above. 4356 * However, if this was a real unlink then we were called by 4357 * ext4_evict_inode(), and we allow that function to clean up the 4358 * orphan info for us. 4359 */ 4360 if (inode->i_nlink) 4361 ext4_orphan_del(handle, inode); 4362 4363 inode->i_mtime = inode->i_ctime = current_time(inode); 4364 err2 = ext4_mark_inode_dirty(handle, inode); 4365 if (unlikely(err2 && !err)) 4366 err = err2; 4367 ext4_journal_stop(handle); 4368 4369 out_trace: 4370 trace_ext4_truncate_exit(inode); 4371 return err; 4372 } 4373 4374 static inline u64 ext4_inode_peek_iversion(const struct inode *inode) 4375 { 4376 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4377 return inode_peek_iversion_raw(inode); 4378 else 4379 return inode_peek_iversion(inode); 4380 } 4381 4382 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode, 4383 struct ext4_inode_info *ei) 4384 { 4385 struct inode *inode = &(ei->vfs_inode); 4386 u64 i_blocks = READ_ONCE(inode->i_blocks); 4387 struct super_block *sb = inode->i_sb; 4388 4389 if (i_blocks <= ~0U) { 4390 /* 4391 * i_blocks can be represented in a 32 bit variable 4392 * as multiple of 512 bytes 4393 */ 4394 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4395 raw_inode->i_blocks_high = 0; 4396 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4397 return 0; 4398 } 4399 4400 /* 4401 * This should never happen since sb->s_maxbytes should not have 4402 * allowed this, sb->s_maxbytes was set according to the huge_file 4403 * feature in ext4_fill_super(). 4404 */ 4405 if (!ext4_has_feature_huge_file(sb)) 4406 return -EFSCORRUPTED; 4407 4408 if (i_blocks <= 0xffffffffffffULL) { 4409 /* 4410 * i_blocks can be represented in a 48 bit variable 4411 * as multiple of 512 bytes 4412 */ 4413 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4414 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4415 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4416 } else { 4417 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4418 /* i_block is stored in file system block size */ 4419 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4420 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4421 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4422 } 4423 return 0; 4424 } 4425 4426 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode) 4427 { 4428 struct ext4_inode_info *ei = EXT4_I(inode); 4429 uid_t i_uid; 4430 gid_t i_gid; 4431 projid_t i_projid; 4432 int block; 4433 int err; 4434 4435 err = ext4_inode_blocks_set(raw_inode, ei); 4436 4437 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4438 i_uid = i_uid_read(inode); 4439 i_gid = i_gid_read(inode); 4440 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 4441 if (!(test_opt(inode->i_sb, NO_UID32))) { 4442 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4443 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4444 /* 4445 * Fix up interoperability with old kernels. Otherwise, 4446 * old inodes get re-used with the upper 16 bits of the 4447 * uid/gid intact. 4448 */ 4449 if (ei->i_dtime && list_empty(&ei->i_orphan)) { 4450 raw_inode->i_uid_high = 0; 4451 raw_inode->i_gid_high = 0; 4452 } else { 4453 raw_inode->i_uid_high = 4454 cpu_to_le16(high_16_bits(i_uid)); 4455 raw_inode->i_gid_high = 4456 cpu_to_le16(high_16_bits(i_gid)); 4457 } 4458 } else { 4459 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4460 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4461 raw_inode->i_uid_high = 0; 4462 raw_inode->i_gid_high = 0; 4463 } 4464 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4465 4466 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4467 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4468 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4469 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4470 4471 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4472 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4473 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 4474 raw_inode->i_file_acl_high = 4475 cpu_to_le16(ei->i_file_acl >> 32); 4476 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4477 ext4_isize_set(raw_inode, ei->i_disksize); 4478 4479 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4480 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4481 if (old_valid_dev(inode->i_rdev)) { 4482 raw_inode->i_block[0] = 4483 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4484 raw_inode->i_block[1] = 0; 4485 } else { 4486 raw_inode->i_block[0] = 0; 4487 raw_inode->i_block[1] = 4488 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4489 raw_inode->i_block[2] = 0; 4490 } 4491 } else if (!ext4_has_inline_data(inode)) { 4492 for (block = 0; block < EXT4_N_BLOCKS; block++) 4493 raw_inode->i_block[block] = ei->i_data[block]; 4494 } 4495 4496 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4497 u64 ivers = ext4_inode_peek_iversion(inode); 4498 4499 raw_inode->i_disk_version = cpu_to_le32(ivers); 4500 if (ei->i_extra_isize) { 4501 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4502 raw_inode->i_version_hi = 4503 cpu_to_le32(ivers >> 32); 4504 raw_inode->i_extra_isize = 4505 cpu_to_le16(ei->i_extra_isize); 4506 } 4507 } 4508 4509 if (i_projid != EXT4_DEF_PROJID && 4510 !ext4_has_feature_project(inode->i_sb)) 4511 err = err ?: -EFSCORRUPTED; 4512 4513 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 4514 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4515 raw_inode->i_projid = cpu_to_le32(i_projid); 4516 4517 ext4_inode_csum_set(inode, raw_inode, ei); 4518 return err; 4519 } 4520 4521 /* 4522 * ext4_get_inode_loc returns with an extra refcount against the inode's 4523 * underlying buffer_head on success. If we pass 'inode' and it does not 4524 * have in-inode xattr, we have all inode data in memory that is needed 4525 * to recreate the on-disk version of this inode. 4526 */ 4527 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino, 4528 struct inode *inode, struct ext4_iloc *iloc, 4529 ext4_fsblk_t *ret_block) 4530 { 4531 struct ext4_group_desc *gdp; 4532 struct buffer_head *bh; 4533 ext4_fsblk_t block; 4534 struct blk_plug plug; 4535 int inodes_per_block, inode_offset; 4536 4537 iloc->bh = NULL; 4538 if (ino < EXT4_ROOT_INO || 4539 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 4540 return -EFSCORRUPTED; 4541 4542 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 4543 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4544 if (!gdp) 4545 return -EIO; 4546 4547 /* 4548 * Figure out the offset within the block group inode table 4549 */ 4550 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4551 inode_offset = ((ino - 1) % 4552 EXT4_INODES_PER_GROUP(sb)); 4553 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4554 4555 block = ext4_inode_table(sb, gdp); 4556 if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) || 4557 (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) { 4558 ext4_error(sb, "Invalid inode table block %llu in " 4559 "block_group %u", block, iloc->block_group); 4560 return -EFSCORRUPTED; 4561 } 4562 block += (inode_offset / inodes_per_block); 4563 4564 bh = sb_getblk(sb, block); 4565 if (unlikely(!bh)) 4566 return -ENOMEM; 4567 if (ext4_buffer_uptodate(bh)) 4568 goto has_buffer; 4569 4570 lock_buffer(bh); 4571 if (ext4_buffer_uptodate(bh)) { 4572 /* Someone brought it uptodate while we waited */ 4573 unlock_buffer(bh); 4574 goto has_buffer; 4575 } 4576 4577 /* 4578 * If we have all information of the inode in memory and this 4579 * is the only valid inode in the block, we need not read the 4580 * block. 4581 */ 4582 if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { 4583 struct buffer_head *bitmap_bh; 4584 int i, start; 4585 4586 start = inode_offset & ~(inodes_per_block - 1); 4587 4588 /* Is the inode bitmap in cache? */ 4589 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4590 if (unlikely(!bitmap_bh)) 4591 goto make_io; 4592 4593 /* 4594 * If the inode bitmap isn't in cache then the 4595 * optimisation may end up performing two reads instead 4596 * of one, so skip it. 4597 */ 4598 if (!buffer_uptodate(bitmap_bh)) { 4599 brelse(bitmap_bh); 4600 goto make_io; 4601 } 4602 for (i = start; i < start + inodes_per_block; i++) { 4603 if (i == inode_offset) 4604 continue; 4605 if (ext4_test_bit(i, bitmap_bh->b_data)) 4606 break; 4607 } 4608 brelse(bitmap_bh); 4609 if (i == start + inodes_per_block) { 4610 struct ext4_inode *raw_inode = 4611 (struct ext4_inode *) (bh->b_data + iloc->offset); 4612 4613 /* all other inodes are free, so skip I/O */ 4614 memset(bh->b_data, 0, bh->b_size); 4615 if (!ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4616 ext4_fill_raw_inode(inode, raw_inode); 4617 set_buffer_uptodate(bh); 4618 unlock_buffer(bh); 4619 goto has_buffer; 4620 } 4621 } 4622 4623 make_io: 4624 /* 4625 * If we need to do any I/O, try to pre-readahead extra 4626 * blocks from the inode table. 4627 */ 4628 blk_start_plug(&plug); 4629 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4630 ext4_fsblk_t b, end, table; 4631 unsigned num; 4632 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4633 4634 table = ext4_inode_table(sb, gdp); 4635 /* s_inode_readahead_blks is always a power of 2 */ 4636 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4637 if (table > b) 4638 b = table; 4639 end = b + ra_blks; 4640 num = EXT4_INODES_PER_GROUP(sb); 4641 if (ext4_has_group_desc_csum(sb)) 4642 num -= ext4_itable_unused_count(sb, gdp); 4643 table += num / inodes_per_block; 4644 if (end > table) 4645 end = table; 4646 while (b <= end) 4647 ext4_sb_breadahead_unmovable(sb, b++); 4648 } 4649 4650 /* 4651 * There are other valid inodes in the buffer, this inode 4652 * has in-inode xattrs, or we don't have this inode in memory. 4653 * Read the block from disk. 4654 */ 4655 trace_ext4_load_inode(sb, ino); 4656 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL); 4657 blk_finish_plug(&plug); 4658 wait_on_buffer(bh); 4659 ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO); 4660 if (!buffer_uptodate(bh)) { 4661 if (ret_block) 4662 *ret_block = block; 4663 brelse(bh); 4664 return -EIO; 4665 } 4666 has_buffer: 4667 iloc->bh = bh; 4668 return 0; 4669 } 4670 4671 static int __ext4_get_inode_loc_noinmem(struct inode *inode, 4672 struct ext4_iloc *iloc) 4673 { 4674 ext4_fsblk_t err_blk = 0; 4675 int ret; 4676 4677 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc, 4678 &err_blk); 4679 4680 if (ret == -EIO) 4681 ext4_error_inode_block(inode, err_blk, EIO, 4682 "unable to read itable block"); 4683 4684 return ret; 4685 } 4686 4687 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4688 { 4689 ext4_fsblk_t err_blk = 0; 4690 int ret; 4691 4692 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc, 4693 &err_blk); 4694 4695 if (ret == -EIO) 4696 ext4_error_inode_block(inode, err_blk, EIO, 4697 "unable to read itable block"); 4698 4699 return ret; 4700 } 4701 4702 4703 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino, 4704 struct ext4_iloc *iloc) 4705 { 4706 return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL); 4707 } 4708 4709 static bool ext4_should_enable_dax(struct inode *inode) 4710 { 4711 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4712 4713 if (test_opt2(inode->i_sb, DAX_NEVER)) 4714 return false; 4715 if (!S_ISREG(inode->i_mode)) 4716 return false; 4717 if (ext4_should_journal_data(inode)) 4718 return false; 4719 if (ext4_has_inline_data(inode)) 4720 return false; 4721 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT)) 4722 return false; 4723 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY)) 4724 return false; 4725 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) 4726 return false; 4727 if (test_opt(inode->i_sb, DAX_ALWAYS)) 4728 return true; 4729 4730 return ext4_test_inode_flag(inode, EXT4_INODE_DAX); 4731 } 4732 4733 void ext4_set_inode_flags(struct inode *inode, bool init) 4734 { 4735 unsigned int flags = EXT4_I(inode)->i_flags; 4736 unsigned int new_fl = 0; 4737 4738 WARN_ON_ONCE(IS_DAX(inode) && init); 4739 4740 if (flags & EXT4_SYNC_FL) 4741 new_fl |= S_SYNC; 4742 if (flags & EXT4_APPEND_FL) 4743 new_fl |= S_APPEND; 4744 if (flags & EXT4_IMMUTABLE_FL) 4745 new_fl |= S_IMMUTABLE; 4746 if (flags & EXT4_NOATIME_FL) 4747 new_fl |= S_NOATIME; 4748 if (flags & EXT4_DIRSYNC_FL) 4749 new_fl |= S_DIRSYNC; 4750 4751 /* Because of the way inode_set_flags() works we must preserve S_DAX 4752 * here if already set. */ 4753 new_fl |= (inode->i_flags & S_DAX); 4754 if (init && ext4_should_enable_dax(inode)) 4755 new_fl |= S_DAX; 4756 4757 if (flags & EXT4_ENCRYPT_FL) 4758 new_fl |= S_ENCRYPTED; 4759 if (flags & EXT4_CASEFOLD_FL) 4760 new_fl |= S_CASEFOLD; 4761 if (flags & EXT4_VERITY_FL) 4762 new_fl |= S_VERITY; 4763 inode_set_flags(inode, new_fl, 4764 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX| 4765 S_ENCRYPTED|S_CASEFOLD|S_VERITY); 4766 } 4767 4768 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4769 struct ext4_inode_info *ei) 4770 { 4771 blkcnt_t i_blocks ; 4772 struct inode *inode = &(ei->vfs_inode); 4773 struct super_block *sb = inode->i_sb; 4774 4775 if (ext4_has_feature_huge_file(sb)) { 4776 /* we are using combined 48 bit field */ 4777 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4778 le32_to_cpu(raw_inode->i_blocks_lo); 4779 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4780 /* i_blocks represent file system block size */ 4781 return i_blocks << (inode->i_blkbits - 9); 4782 } else { 4783 return i_blocks; 4784 } 4785 } else { 4786 return le32_to_cpu(raw_inode->i_blocks_lo); 4787 } 4788 } 4789 4790 static inline int ext4_iget_extra_inode(struct inode *inode, 4791 struct ext4_inode *raw_inode, 4792 struct ext4_inode_info *ei) 4793 { 4794 __le32 *magic = (void *)raw_inode + 4795 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4796 4797 if (EXT4_INODE_HAS_XATTR_SPACE(inode) && 4798 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4799 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4800 return ext4_find_inline_data_nolock(inode); 4801 } else 4802 EXT4_I(inode)->i_inline_off = 0; 4803 return 0; 4804 } 4805 4806 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4807 { 4808 if (!ext4_has_feature_project(inode->i_sb)) 4809 return -EOPNOTSUPP; 4810 *projid = EXT4_I(inode)->i_projid; 4811 return 0; 4812 } 4813 4814 /* 4815 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of 4816 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag 4817 * set. 4818 */ 4819 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val) 4820 { 4821 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4822 inode_set_iversion_raw(inode, val); 4823 else 4824 inode_set_iversion_queried(inode, val); 4825 } 4826 4827 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino, 4828 ext4_iget_flags flags, const char *function, 4829 unsigned int line) 4830 { 4831 struct ext4_iloc iloc; 4832 struct ext4_inode *raw_inode; 4833 struct ext4_inode_info *ei; 4834 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4835 struct inode *inode; 4836 journal_t *journal = EXT4_SB(sb)->s_journal; 4837 long ret; 4838 loff_t size; 4839 int block; 4840 uid_t i_uid; 4841 gid_t i_gid; 4842 projid_t i_projid; 4843 4844 if ((!(flags & EXT4_IGET_SPECIAL) && 4845 ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) || 4846 ino == le32_to_cpu(es->s_usr_quota_inum) || 4847 ino == le32_to_cpu(es->s_grp_quota_inum) || 4848 ino == le32_to_cpu(es->s_prj_quota_inum) || 4849 ino == le32_to_cpu(es->s_orphan_file_inum))) || 4850 (ino < EXT4_ROOT_INO) || 4851 (ino > le32_to_cpu(es->s_inodes_count))) { 4852 if (flags & EXT4_IGET_HANDLE) 4853 return ERR_PTR(-ESTALE); 4854 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0, 4855 "inode #%lu: comm %s: iget: illegal inode #", 4856 ino, current->comm); 4857 return ERR_PTR(-EFSCORRUPTED); 4858 } 4859 4860 inode = iget_locked(sb, ino); 4861 if (!inode) 4862 return ERR_PTR(-ENOMEM); 4863 if (!(inode->i_state & I_NEW)) 4864 return inode; 4865 4866 ei = EXT4_I(inode); 4867 iloc.bh = NULL; 4868 4869 ret = __ext4_get_inode_loc_noinmem(inode, &iloc); 4870 if (ret < 0) 4871 goto bad_inode; 4872 raw_inode = ext4_raw_inode(&iloc); 4873 4874 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) { 4875 ext4_error_inode(inode, function, line, 0, 4876 "iget: root inode unallocated"); 4877 ret = -EFSCORRUPTED; 4878 goto bad_inode; 4879 } 4880 4881 if ((flags & EXT4_IGET_HANDLE) && 4882 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) { 4883 ret = -ESTALE; 4884 goto bad_inode; 4885 } 4886 4887 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4888 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4889 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4890 EXT4_INODE_SIZE(inode->i_sb) || 4891 (ei->i_extra_isize & 3)) { 4892 ext4_error_inode(inode, function, line, 0, 4893 "iget: bad extra_isize %u " 4894 "(inode size %u)", 4895 ei->i_extra_isize, 4896 EXT4_INODE_SIZE(inode->i_sb)); 4897 ret = -EFSCORRUPTED; 4898 goto bad_inode; 4899 } 4900 } else 4901 ei->i_extra_isize = 0; 4902 4903 /* Precompute checksum seed for inode metadata */ 4904 if (ext4_has_metadata_csum(sb)) { 4905 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4906 __u32 csum; 4907 __le32 inum = cpu_to_le32(inode->i_ino); 4908 __le32 gen = raw_inode->i_generation; 4909 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4910 sizeof(inum)); 4911 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4912 sizeof(gen)); 4913 } 4914 4915 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) || 4916 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) && 4917 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) { 4918 ext4_error_inode_err(inode, function, line, 0, 4919 EFSBADCRC, "iget: checksum invalid"); 4920 ret = -EFSBADCRC; 4921 goto bad_inode; 4922 } 4923 4924 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4925 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4926 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4927 if (ext4_has_feature_project(sb) && 4928 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4929 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4930 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4931 else 4932 i_projid = EXT4_DEF_PROJID; 4933 4934 if (!(test_opt(inode->i_sb, NO_UID32))) { 4935 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4936 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4937 } 4938 i_uid_write(inode, i_uid); 4939 i_gid_write(inode, i_gid); 4940 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4941 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4942 4943 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4944 ei->i_inline_off = 0; 4945 ei->i_dir_start_lookup = 0; 4946 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4947 /* We now have enough fields to check if the inode was active or not. 4948 * This is needed because nfsd might try to access dead inodes 4949 * the test is that same one that e2fsck uses 4950 * NeilBrown 1999oct15 4951 */ 4952 if (inode->i_nlink == 0) { 4953 if ((inode->i_mode == 0 || 4954 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4955 ino != EXT4_BOOT_LOADER_INO) { 4956 /* this inode is deleted */ 4957 ret = -ESTALE; 4958 goto bad_inode; 4959 } 4960 /* The only unlinked inodes we let through here have 4961 * valid i_mode and are being read by the orphan 4962 * recovery code: that's fine, we're about to complete 4963 * the process of deleting those. 4964 * OR it is the EXT4_BOOT_LOADER_INO which is 4965 * not initialized on a new filesystem. */ 4966 } 4967 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4968 ext4_set_inode_flags(inode, true); 4969 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4970 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4971 if (ext4_has_feature_64bit(sb)) 4972 ei->i_file_acl |= 4973 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4974 inode->i_size = ext4_isize(sb, raw_inode); 4975 if ((size = i_size_read(inode)) < 0) { 4976 ext4_error_inode(inode, function, line, 0, 4977 "iget: bad i_size value: %lld", size); 4978 ret = -EFSCORRUPTED; 4979 goto bad_inode; 4980 } 4981 /* 4982 * If dir_index is not enabled but there's dir with INDEX flag set, 4983 * we'd normally treat htree data as empty space. But with metadata 4984 * checksumming that corrupts checksums so forbid that. 4985 */ 4986 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) && 4987 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) { 4988 ext4_error_inode(inode, function, line, 0, 4989 "iget: Dir with htree data on filesystem without dir_index feature."); 4990 ret = -EFSCORRUPTED; 4991 goto bad_inode; 4992 } 4993 ei->i_disksize = inode->i_size; 4994 #ifdef CONFIG_QUOTA 4995 ei->i_reserved_quota = 0; 4996 #endif 4997 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4998 ei->i_block_group = iloc.block_group; 4999 ei->i_last_alloc_group = ~0; 5000 /* 5001 * NOTE! The in-memory inode i_data array is in little-endian order 5002 * even on big-endian machines: we do NOT byteswap the block numbers! 5003 */ 5004 for (block = 0; block < EXT4_N_BLOCKS; block++) 5005 ei->i_data[block] = raw_inode->i_block[block]; 5006 INIT_LIST_HEAD(&ei->i_orphan); 5007 ext4_fc_init_inode(&ei->vfs_inode); 5008 5009 /* 5010 * Set transaction id's of transactions that have to be committed 5011 * to finish f[data]sync. We set them to currently running transaction 5012 * as we cannot be sure that the inode or some of its metadata isn't 5013 * part of the transaction - the inode could have been reclaimed and 5014 * now it is reread from disk. 5015 */ 5016 if (journal) { 5017 transaction_t *transaction; 5018 tid_t tid; 5019 5020 read_lock(&journal->j_state_lock); 5021 if (journal->j_running_transaction) 5022 transaction = journal->j_running_transaction; 5023 else 5024 transaction = journal->j_committing_transaction; 5025 if (transaction) 5026 tid = transaction->t_tid; 5027 else 5028 tid = journal->j_commit_sequence; 5029 read_unlock(&journal->j_state_lock); 5030 ei->i_sync_tid = tid; 5031 ei->i_datasync_tid = tid; 5032 } 5033 5034 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 5035 if (ei->i_extra_isize == 0) { 5036 /* The extra space is currently unused. Use it. */ 5037 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 5038 ei->i_extra_isize = sizeof(struct ext4_inode) - 5039 EXT4_GOOD_OLD_INODE_SIZE; 5040 } else { 5041 ret = ext4_iget_extra_inode(inode, raw_inode, ei); 5042 if (ret) 5043 goto bad_inode; 5044 } 5045 } 5046 5047 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 5048 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 5049 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 5050 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 5051 5052 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 5053 u64 ivers = le32_to_cpu(raw_inode->i_disk_version); 5054 5055 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 5056 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 5057 ivers |= 5058 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 5059 } 5060 ext4_inode_set_iversion_queried(inode, ivers); 5061 } 5062 5063 ret = 0; 5064 if (ei->i_file_acl && 5065 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) { 5066 ext4_error_inode(inode, function, line, 0, 5067 "iget: bad extended attribute block %llu", 5068 ei->i_file_acl); 5069 ret = -EFSCORRUPTED; 5070 goto bad_inode; 5071 } else if (!ext4_has_inline_data(inode)) { 5072 /* validate the block references in the inode */ 5073 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) && 5074 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 5075 (S_ISLNK(inode->i_mode) && 5076 !ext4_inode_is_fast_symlink(inode)))) { 5077 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 5078 ret = ext4_ext_check_inode(inode); 5079 else 5080 ret = ext4_ind_check_inode(inode); 5081 } 5082 } 5083 if (ret) 5084 goto bad_inode; 5085 5086 if (S_ISREG(inode->i_mode)) { 5087 inode->i_op = &ext4_file_inode_operations; 5088 inode->i_fop = &ext4_file_operations; 5089 ext4_set_aops(inode); 5090 } else if (S_ISDIR(inode->i_mode)) { 5091 inode->i_op = &ext4_dir_inode_operations; 5092 inode->i_fop = &ext4_dir_operations; 5093 } else if (S_ISLNK(inode->i_mode)) { 5094 /* VFS does not allow setting these so must be corruption */ 5095 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 5096 ext4_error_inode(inode, function, line, 0, 5097 "iget: immutable or append flags " 5098 "not allowed on symlinks"); 5099 ret = -EFSCORRUPTED; 5100 goto bad_inode; 5101 } 5102 if (IS_ENCRYPTED(inode)) { 5103 inode->i_op = &ext4_encrypted_symlink_inode_operations; 5104 } else if (ext4_inode_is_fast_symlink(inode)) { 5105 inode->i_link = (char *)ei->i_data; 5106 inode->i_op = &ext4_fast_symlink_inode_operations; 5107 nd_terminate_link(ei->i_data, inode->i_size, 5108 sizeof(ei->i_data) - 1); 5109 } else { 5110 inode->i_op = &ext4_symlink_inode_operations; 5111 } 5112 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 5113 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 5114 inode->i_op = &ext4_special_inode_operations; 5115 if (raw_inode->i_block[0]) 5116 init_special_inode(inode, inode->i_mode, 5117 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 5118 else 5119 init_special_inode(inode, inode->i_mode, 5120 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 5121 } else if (ino == EXT4_BOOT_LOADER_INO) { 5122 make_bad_inode(inode); 5123 } else { 5124 ret = -EFSCORRUPTED; 5125 ext4_error_inode(inode, function, line, 0, 5126 "iget: bogus i_mode (%o)", inode->i_mode); 5127 goto bad_inode; 5128 } 5129 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) 5130 ext4_error_inode(inode, function, line, 0, 5131 "casefold flag without casefold feature"); 5132 if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD)) { 5133 ext4_error_inode(inode, function, line, 0, 5134 "bad inode without EXT4_IGET_BAD flag"); 5135 ret = -EUCLEAN; 5136 goto bad_inode; 5137 } 5138 5139 brelse(iloc.bh); 5140 unlock_new_inode(inode); 5141 return inode; 5142 5143 bad_inode: 5144 brelse(iloc.bh); 5145 iget_failed(inode); 5146 return ERR_PTR(ret); 5147 } 5148 5149 static void __ext4_update_other_inode_time(struct super_block *sb, 5150 unsigned long orig_ino, 5151 unsigned long ino, 5152 struct ext4_inode *raw_inode) 5153 { 5154 struct inode *inode; 5155 5156 inode = find_inode_by_ino_rcu(sb, ino); 5157 if (!inode) 5158 return; 5159 5160 if (!inode_is_dirtytime_only(inode)) 5161 return; 5162 5163 spin_lock(&inode->i_lock); 5164 if (inode_is_dirtytime_only(inode)) { 5165 struct ext4_inode_info *ei = EXT4_I(inode); 5166 5167 inode->i_state &= ~I_DIRTY_TIME; 5168 spin_unlock(&inode->i_lock); 5169 5170 spin_lock(&ei->i_raw_lock); 5171 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 5172 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 5173 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 5174 ext4_inode_csum_set(inode, raw_inode, ei); 5175 spin_unlock(&ei->i_raw_lock); 5176 trace_ext4_other_inode_update_time(inode, orig_ino); 5177 return; 5178 } 5179 spin_unlock(&inode->i_lock); 5180 } 5181 5182 /* 5183 * Opportunistically update the other time fields for other inodes in 5184 * the same inode table block. 5185 */ 5186 static void ext4_update_other_inodes_time(struct super_block *sb, 5187 unsigned long orig_ino, char *buf) 5188 { 5189 unsigned long ino; 5190 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 5191 int inode_size = EXT4_INODE_SIZE(sb); 5192 5193 /* 5194 * Calculate the first inode in the inode table block. Inode 5195 * numbers are one-based. That is, the first inode in a block 5196 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 5197 */ 5198 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 5199 rcu_read_lock(); 5200 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 5201 if (ino == orig_ino) 5202 continue; 5203 __ext4_update_other_inode_time(sb, orig_ino, ino, 5204 (struct ext4_inode *)buf); 5205 } 5206 rcu_read_unlock(); 5207 } 5208 5209 /* 5210 * Post the struct inode info into an on-disk inode location in the 5211 * buffer-cache. This gobbles the caller's reference to the 5212 * buffer_head in the inode location struct. 5213 * 5214 * The caller must have write access to iloc->bh. 5215 */ 5216 static int ext4_do_update_inode(handle_t *handle, 5217 struct inode *inode, 5218 struct ext4_iloc *iloc) 5219 { 5220 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5221 struct ext4_inode_info *ei = EXT4_I(inode); 5222 struct buffer_head *bh = iloc->bh; 5223 struct super_block *sb = inode->i_sb; 5224 int err; 5225 int need_datasync = 0, set_large_file = 0; 5226 5227 spin_lock(&ei->i_raw_lock); 5228 5229 /* 5230 * For fields not tracked in the in-memory inode, initialise them 5231 * to zero for new inodes. 5232 */ 5233 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5234 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5235 5236 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) 5237 need_datasync = 1; 5238 if (ei->i_disksize > 0x7fffffffULL) { 5239 if (!ext4_has_feature_large_file(sb) || 5240 EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV)) 5241 set_large_file = 1; 5242 } 5243 5244 err = ext4_fill_raw_inode(inode, raw_inode); 5245 spin_unlock(&ei->i_raw_lock); 5246 if (err) { 5247 EXT4_ERROR_INODE(inode, "corrupted inode contents"); 5248 goto out_brelse; 5249 } 5250 5251 if (inode->i_sb->s_flags & SB_LAZYTIME) 5252 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 5253 bh->b_data); 5254 5255 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5256 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5257 if (err) 5258 goto out_error; 5259 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5260 if (set_large_file) { 5261 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 5262 err = ext4_journal_get_write_access(handle, sb, 5263 EXT4_SB(sb)->s_sbh, 5264 EXT4_JTR_NONE); 5265 if (err) 5266 goto out_error; 5267 lock_buffer(EXT4_SB(sb)->s_sbh); 5268 ext4_set_feature_large_file(sb); 5269 ext4_superblock_csum_set(sb); 5270 unlock_buffer(EXT4_SB(sb)->s_sbh); 5271 ext4_handle_sync(handle); 5272 err = ext4_handle_dirty_metadata(handle, NULL, 5273 EXT4_SB(sb)->s_sbh); 5274 } 5275 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5276 out_error: 5277 ext4_std_error(inode->i_sb, err); 5278 out_brelse: 5279 brelse(bh); 5280 return err; 5281 } 5282 5283 /* 5284 * ext4_write_inode() 5285 * 5286 * We are called from a few places: 5287 * 5288 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5289 * Here, there will be no transaction running. We wait for any running 5290 * transaction to commit. 5291 * 5292 * - Within flush work (sys_sync(), kupdate and such). 5293 * We wait on commit, if told to. 5294 * 5295 * - Within iput_final() -> write_inode_now() 5296 * We wait on commit, if told to. 5297 * 5298 * In all cases it is actually safe for us to return without doing anything, 5299 * because the inode has been copied into a raw inode buffer in 5300 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5301 * writeback. 5302 * 5303 * Note that we are absolutely dependent upon all inode dirtiers doing the 5304 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5305 * which we are interested. 5306 * 5307 * It would be a bug for them to not do this. The code: 5308 * 5309 * mark_inode_dirty(inode) 5310 * stuff(); 5311 * inode->i_size = expr; 5312 * 5313 * is in error because write_inode() could occur while `stuff()' is running, 5314 * and the new i_size will be lost. Plus the inode will no longer be on the 5315 * superblock's dirty inode list. 5316 */ 5317 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5318 { 5319 int err; 5320 5321 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) || 5322 sb_rdonly(inode->i_sb)) 5323 return 0; 5324 5325 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5326 return -EIO; 5327 5328 if (EXT4_SB(inode->i_sb)->s_journal) { 5329 if (ext4_journal_current_handle()) { 5330 ext4_debug("called recursively, non-PF_MEMALLOC!\n"); 5331 dump_stack(); 5332 return -EIO; 5333 } 5334 5335 /* 5336 * No need to force transaction in WB_SYNC_NONE mode. Also 5337 * ext4_sync_fs() will force the commit after everything is 5338 * written. 5339 */ 5340 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5341 return 0; 5342 5343 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal, 5344 EXT4_I(inode)->i_sync_tid); 5345 } else { 5346 struct ext4_iloc iloc; 5347 5348 err = __ext4_get_inode_loc_noinmem(inode, &iloc); 5349 if (err) 5350 return err; 5351 /* 5352 * sync(2) will flush the whole buffer cache. No need to do 5353 * it here separately for each inode. 5354 */ 5355 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5356 sync_dirty_buffer(iloc.bh); 5357 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5358 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO, 5359 "IO error syncing inode"); 5360 err = -EIO; 5361 } 5362 brelse(iloc.bh); 5363 } 5364 return err; 5365 } 5366 5367 /* 5368 * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate 5369 * buffers that are attached to a folio straddling i_size and are undergoing 5370 * commit. In that case we have to wait for commit to finish and try again. 5371 */ 5372 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5373 { 5374 unsigned offset; 5375 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5376 tid_t commit_tid = 0; 5377 int ret; 5378 5379 offset = inode->i_size & (PAGE_SIZE - 1); 5380 /* 5381 * If the folio is fully truncated, we don't need to wait for any commit 5382 * (and we even should not as __ext4_journalled_invalidate_folio() may 5383 * strip all buffers from the folio but keep the folio dirty which can then 5384 * confuse e.g. concurrent ext4_writepage() seeing dirty folio without 5385 * buffers). Also we don't need to wait for any commit if all buffers in 5386 * the folio remain valid. This is most beneficial for the common case of 5387 * blocksize == PAGESIZE. 5388 */ 5389 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode))) 5390 return; 5391 while (1) { 5392 struct folio *folio = filemap_lock_folio(inode->i_mapping, 5393 inode->i_size >> PAGE_SHIFT); 5394 if (!folio) 5395 return; 5396 ret = __ext4_journalled_invalidate_folio(folio, offset, 5397 folio_size(folio) - offset); 5398 folio_unlock(folio); 5399 folio_put(folio); 5400 if (ret != -EBUSY) 5401 return; 5402 commit_tid = 0; 5403 read_lock(&journal->j_state_lock); 5404 if (journal->j_committing_transaction) 5405 commit_tid = journal->j_committing_transaction->t_tid; 5406 read_unlock(&journal->j_state_lock); 5407 if (commit_tid) 5408 jbd2_log_wait_commit(journal, commit_tid); 5409 } 5410 } 5411 5412 /* 5413 * ext4_setattr() 5414 * 5415 * Called from notify_change. 5416 * 5417 * We want to trap VFS attempts to truncate the file as soon as 5418 * possible. In particular, we want to make sure that when the VFS 5419 * shrinks i_size, we put the inode on the orphan list and modify 5420 * i_disksize immediately, so that during the subsequent flushing of 5421 * dirty pages and freeing of disk blocks, we can guarantee that any 5422 * commit will leave the blocks being flushed in an unused state on 5423 * disk. (On recovery, the inode will get truncated and the blocks will 5424 * be freed, so we have a strong guarantee that no future commit will 5425 * leave these blocks visible to the user.) 5426 * 5427 * Another thing we have to assure is that if we are in ordered mode 5428 * and inode is still attached to the committing transaction, we must 5429 * we start writeout of all the dirty pages which are being truncated. 5430 * This way we are sure that all the data written in the previous 5431 * transaction are already on disk (truncate waits for pages under 5432 * writeback). 5433 * 5434 * Called with inode->i_rwsem down. 5435 */ 5436 int ext4_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, 5437 struct iattr *attr) 5438 { 5439 struct inode *inode = d_inode(dentry); 5440 int error, rc = 0; 5441 int orphan = 0; 5442 const unsigned int ia_valid = attr->ia_valid; 5443 bool inc_ivers = true; 5444 5445 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5446 return -EIO; 5447 5448 if (unlikely(IS_IMMUTABLE(inode))) 5449 return -EPERM; 5450 5451 if (unlikely(IS_APPEND(inode) && 5452 (ia_valid & (ATTR_MODE | ATTR_UID | 5453 ATTR_GID | ATTR_TIMES_SET)))) 5454 return -EPERM; 5455 5456 error = setattr_prepare(mnt_userns, dentry, attr); 5457 if (error) 5458 return error; 5459 5460 error = fscrypt_prepare_setattr(dentry, attr); 5461 if (error) 5462 return error; 5463 5464 error = fsverity_prepare_setattr(dentry, attr); 5465 if (error) 5466 return error; 5467 5468 if (is_quota_modification(mnt_userns, inode, attr)) { 5469 error = dquot_initialize(inode); 5470 if (error) 5471 return error; 5472 } 5473 5474 if (i_uid_needs_update(mnt_userns, attr, inode) || 5475 i_gid_needs_update(mnt_userns, attr, inode)) { 5476 handle_t *handle; 5477 5478 /* (user+group)*(old+new) structure, inode write (sb, 5479 * inode block, ? - but truncate inode update has it) */ 5480 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5481 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5482 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5483 if (IS_ERR(handle)) { 5484 error = PTR_ERR(handle); 5485 goto err_out; 5486 } 5487 5488 /* dquot_transfer() calls back ext4_get_inode_usage() which 5489 * counts xattr inode references. 5490 */ 5491 down_read(&EXT4_I(inode)->xattr_sem); 5492 error = dquot_transfer(mnt_userns, inode, attr); 5493 up_read(&EXT4_I(inode)->xattr_sem); 5494 5495 if (error) { 5496 ext4_journal_stop(handle); 5497 return error; 5498 } 5499 /* Update corresponding info in inode so that everything is in 5500 * one transaction */ 5501 i_uid_update(mnt_userns, attr, inode); 5502 i_gid_update(mnt_userns, attr, inode); 5503 error = ext4_mark_inode_dirty(handle, inode); 5504 ext4_journal_stop(handle); 5505 if (unlikely(error)) { 5506 return error; 5507 } 5508 } 5509 5510 if (attr->ia_valid & ATTR_SIZE) { 5511 handle_t *handle; 5512 loff_t oldsize = inode->i_size; 5513 loff_t old_disksize; 5514 int shrink = (attr->ia_size < inode->i_size); 5515 5516 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5517 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5518 5519 if (attr->ia_size > sbi->s_bitmap_maxbytes) { 5520 return -EFBIG; 5521 } 5522 } 5523 if (!S_ISREG(inode->i_mode)) { 5524 return -EINVAL; 5525 } 5526 5527 if (attr->ia_size == inode->i_size) 5528 inc_ivers = false; 5529 5530 if (shrink) { 5531 if (ext4_should_order_data(inode)) { 5532 error = ext4_begin_ordered_truncate(inode, 5533 attr->ia_size); 5534 if (error) 5535 goto err_out; 5536 } 5537 /* 5538 * Blocks are going to be removed from the inode. Wait 5539 * for dio in flight. 5540 */ 5541 inode_dio_wait(inode); 5542 } 5543 5544 filemap_invalidate_lock(inode->i_mapping); 5545 5546 rc = ext4_break_layouts(inode); 5547 if (rc) { 5548 filemap_invalidate_unlock(inode->i_mapping); 5549 goto err_out; 5550 } 5551 5552 if (attr->ia_size != inode->i_size) { 5553 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5554 if (IS_ERR(handle)) { 5555 error = PTR_ERR(handle); 5556 goto out_mmap_sem; 5557 } 5558 if (ext4_handle_valid(handle) && shrink) { 5559 error = ext4_orphan_add(handle, inode); 5560 orphan = 1; 5561 } 5562 /* 5563 * Update c/mtime on truncate up, ext4_truncate() will 5564 * update c/mtime in shrink case below 5565 */ 5566 if (!shrink) { 5567 inode->i_mtime = current_time(inode); 5568 inode->i_ctime = inode->i_mtime; 5569 } 5570 5571 if (shrink) 5572 ext4_fc_track_range(handle, inode, 5573 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5574 inode->i_sb->s_blocksize_bits, 5575 EXT_MAX_BLOCKS - 1); 5576 else 5577 ext4_fc_track_range( 5578 handle, inode, 5579 (oldsize > 0 ? oldsize - 1 : oldsize) >> 5580 inode->i_sb->s_blocksize_bits, 5581 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5582 inode->i_sb->s_blocksize_bits); 5583 5584 down_write(&EXT4_I(inode)->i_data_sem); 5585 old_disksize = EXT4_I(inode)->i_disksize; 5586 EXT4_I(inode)->i_disksize = attr->ia_size; 5587 rc = ext4_mark_inode_dirty(handle, inode); 5588 if (!error) 5589 error = rc; 5590 /* 5591 * We have to update i_size under i_data_sem together 5592 * with i_disksize to avoid races with writeback code 5593 * running ext4_wb_update_i_disksize(). 5594 */ 5595 if (!error) 5596 i_size_write(inode, attr->ia_size); 5597 else 5598 EXT4_I(inode)->i_disksize = old_disksize; 5599 up_write(&EXT4_I(inode)->i_data_sem); 5600 ext4_journal_stop(handle); 5601 if (error) 5602 goto out_mmap_sem; 5603 if (!shrink) { 5604 pagecache_isize_extended(inode, oldsize, 5605 inode->i_size); 5606 } else if (ext4_should_journal_data(inode)) { 5607 ext4_wait_for_tail_page_commit(inode); 5608 } 5609 } 5610 5611 /* 5612 * Truncate pagecache after we've waited for commit 5613 * in data=journal mode to make pages freeable. 5614 */ 5615 truncate_pagecache(inode, inode->i_size); 5616 /* 5617 * Call ext4_truncate() even if i_size didn't change to 5618 * truncate possible preallocated blocks. 5619 */ 5620 if (attr->ia_size <= oldsize) { 5621 rc = ext4_truncate(inode); 5622 if (rc) 5623 error = rc; 5624 } 5625 out_mmap_sem: 5626 filemap_invalidate_unlock(inode->i_mapping); 5627 } 5628 5629 if (!error) { 5630 if (inc_ivers) 5631 inode_inc_iversion(inode); 5632 setattr_copy(mnt_userns, inode, attr); 5633 mark_inode_dirty(inode); 5634 } 5635 5636 /* 5637 * If the call to ext4_truncate failed to get a transaction handle at 5638 * all, we need to clean up the in-core orphan list manually. 5639 */ 5640 if (orphan && inode->i_nlink) 5641 ext4_orphan_del(NULL, inode); 5642 5643 if (!error && (ia_valid & ATTR_MODE)) 5644 rc = posix_acl_chmod(mnt_userns, dentry, inode->i_mode); 5645 5646 err_out: 5647 if (error) 5648 ext4_std_error(inode->i_sb, error); 5649 if (!error) 5650 error = rc; 5651 return error; 5652 } 5653 5654 u32 ext4_dio_alignment(struct inode *inode) 5655 { 5656 if (fsverity_active(inode)) 5657 return 0; 5658 if (ext4_should_journal_data(inode)) 5659 return 0; 5660 if (ext4_has_inline_data(inode)) 5661 return 0; 5662 if (IS_ENCRYPTED(inode)) { 5663 if (!fscrypt_dio_supported(inode)) 5664 return 0; 5665 return i_blocksize(inode); 5666 } 5667 return 1; /* use the iomap defaults */ 5668 } 5669 5670 int ext4_getattr(struct user_namespace *mnt_userns, const struct path *path, 5671 struct kstat *stat, u32 request_mask, unsigned int query_flags) 5672 { 5673 struct inode *inode = d_inode(path->dentry); 5674 struct ext4_inode *raw_inode; 5675 struct ext4_inode_info *ei = EXT4_I(inode); 5676 unsigned int flags; 5677 5678 if ((request_mask & STATX_BTIME) && 5679 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { 5680 stat->result_mask |= STATX_BTIME; 5681 stat->btime.tv_sec = ei->i_crtime.tv_sec; 5682 stat->btime.tv_nsec = ei->i_crtime.tv_nsec; 5683 } 5684 5685 /* 5686 * Return the DIO alignment restrictions if requested. We only return 5687 * this information when requested, since on encrypted files it might 5688 * take a fair bit of work to get if the file wasn't opened recently. 5689 */ 5690 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) { 5691 u32 dio_align = ext4_dio_alignment(inode); 5692 5693 stat->result_mask |= STATX_DIOALIGN; 5694 if (dio_align == 1) { 5695 struct block_device *bdev = inode->i_sb->s_bdev; 5696 5697 /* iomap defaults */ 5698 stat->dio_mem_align = bdev_dma_alignment(bdev) + 1; 5699 stat->dio_offset_align = bdev_logical_block_size(bdev); 5700 } else { 5701 stat->dio_mem_align = dio_align; 5702 stat->dio_offset_align = dio_align; 5703 } 5704 } 5705 5706 flags = ei->i_flags & EXT4_FL_USER_VISIBLE; 5707 if (flags & EXT4_APPEND_FL) 5708 stat->attributes |= STATX_ATTR_APPEND; 5709 if (flags & EXT4_COMPR_FL) 5710 stat->attributes |= STATX_ATTR_COMPRESSED; 5711 if (flags & EXT4_ENCRYPT_FL) 5712 stat->attributes |= STATX_ATTR_ENCRYPTED; 5713 if (flags & EXT4_IMMUTABLE_FL) 5714 stat->attributes |= STATX_ATTR_IMMUTABLE; 5715 if (flags & EXT4_NODUMP_FL) 5716 stat->attributes |= STATX_ATTR_NODUMP; 5717 if (flags & EXT4_VERITY_FL) 5718 stat->attributes |= STATX_ATTR_VERITY; 5719 5720 stat->attributes_mask |= (STATX_ATTR_APPEND | 5721 STATX_ATTR_COMPRESSED | 5722 STATX_ATTR_ENCRYPTED | 5723 STATX_ATTR_IMMUTABLE | 5724 STATX_ATTR_NODUMP | 5725 STATX_ATTR_VERITY); 5726 5727 generic_fillattr(mnt_userns, inode, stat); 5728 return 0; 5729 } 5730 5731 int ext4_file_getattr(struct user_namespace *mnt_userns, 5732 const struct path *path, struct kstat *stat, 5733 u32 request_mask, unsigned int query_flags) 5734 { 5735 struct inode *inode = d_inode(path->dentry); 5736 u64 delalloc_blocks; 5737 5738 ext4_getattr(mnt_userns, path, stat, request_mask, query_flags); 5739 5740 /* 5741 * If there is inline data in the inode, the inode will normally not 5742 * have data blocks allocated (it may have an external xattr block). 5743 * Report at least one sector for such files, so tools like tar, rsync, 5744 * others don't incorrectly think the file is completely sparse. 5745 */ 5746 if (unlikely(ext4_has_inline_data(inode))) 5747 stat->blocks += (stat->size + 511) >> 9; 5748 5749 /* 5750 * We can't update i_blocks if the block allocation is delayed 5751 * otherwise in the case of system crash before the real block 5752 * allocation is done, we will have i_blocks inconsistent with 5753 * on-disk file blocks. 5754 * We always keep i_blocks updated together with real 5755 * allocation. But to not confuse with user, stat 5756 * will return the blocks that include the delayed allocation 5757 * blocks for this file. 5758 */ 5759 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5760 EXT4_I(inode)->i_reserved_data_blocks); 5761 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5762 return 0; 5763 } 5764 5765 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5766 int pextents) 5767 { 5768 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5769 return ext4_ind_trans_blocks(inode, lblocks); 5770 return ext4_ext_index_trans_blocks(inode, pextents); 5771 } 5772 5773 /* 5774 * Account for index blocks, block groups bitmaps and block group 5775 * descriptor blocks if modify datablocks and index blocks 5776 * worse case, the indexs blocks spread over different block groups 5777 * 5778 * If datablocks are discontiguous, they are possible to spread over 5779 * different block groups too. If they are contiguous, with flexbg, 5780 * they could still across block group boundary. 5781 * 5782 * Also account for superblock, inode, quota and xattr blocks 5783 */ 5784 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5785 int pextents) 5786 { 5787 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5788 int gdpblocks; 5789 int idxblocks; 5790 int ret = 0; 5791 5792 /* 5793 * How many index blocks need to touch to map @lblocks logical blocks 5794 * to @pextents physical extents? 5795 */ 5796 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5797 5798 ret = idxblocks; 5799 5800 /* 5801 * Now let's see how many group bitmaps and group descriptors need 5802 * to account 5803 */ 5804 groups = idxblocks + pextents; 5805 gdpblocks = groups; 5806 if (groups > ngroups) 5807 groups = ngroups; 5808 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5809 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5810 5811 /* bitmaps and block group descriptor blocks */ 5812 ret += groups + gdpblocks; 5813 5814 /* Blocks for super block, inode, quota and xattr blocks */ 5815 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5816 5817 return ret; 5818 } 5819 5820 /* 5821 * Calculate the total number of credits to reserve to fit 5822 * the modification of a single pages into a single transaction, 5823 * which may include multiple chunks of block allocations. 5824 * 5825 * This could be called via ext4_write_begin() 5826 * 5827 * We need to consider the worse case, when 5828 * one new block per extent. 5829 */ 5830 int ext4_writepage_trans_blocks(struct inode *inode) 5831 { 5832 int bpp = ext4_journal_blocks_per_page(inode); 5833 int ret; 5834 5835 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5836 5837 /* Account for data blocks for journalled mode */ 5838 if (ext4_should_journal_data(inode)) 5839 ret += bpp; 5840 return ret; 5841 } 5842 5843 /* 5844 * Calculate the journal credits for a chunk of data modification. 5845 * 5846 * This is called from DIO, fallocate or whoever calling 5847 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5848 * 5849 * journal buffers for data blocks are not included here, as DIO 5850 * and fallocate do no need to journal data buffers. 5851 */ 5852 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5853 { 5854 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5855 } 5856 5857 /* 5858 * The caller must have previously called ext4_reserve_inode_write(). 5859 * Give this, we know that the caller already has write access to iloc->bh. 5860 */ 5861 int ext4_mark_iloc_dirty(handle_t *handle, 5862 struct inode *inode, struct ext4_iloc *iloc) 5863 { 5864 int err = 0; 5865 5866 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 5867 put_bh(iloc->bh); 5868 return -EIO; 5869 } 5870 ext4_fc_track_inode(handle, inode); 5871 5872 /* the do_update_inode consumes one bh->b_count */ 5873 get_bh(iloc->bh); 5874 5875 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5876 err = ext4_do_update_inode(handle, inode, iloc); 5877 put_bh(iloc->bh); 5878 return err; 5879 } 5880 5881 /* 5882 * On success, We end up with an outstanding reference count against 5883 * iloc->bh. This _must_ be cleaned up later. 5884 */ 5885 5886 int 5887 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5888 struct ext4_iloc *iloc) 5889 { 5890 int err; 5891 5892 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5893 return -EIO; 5894 5895 err = ext4_get_inode_loc(inode, iloc); 5896 if (!err) { 5897 BUFFER_TRACE(iloc->bh, "get_write_access"); 5898 err = ext4_journal_get_write_access(handle, inode->i_sb, 5899 iloc->bh, EXT4_JTR_NONE); 5900 if (err) { 5901 brelse(iloc->bh); 5902 iloc->bh = NULL; 5903 } 5904 } 5905 ext4_std_error(inode->i_sb, err); 5906 return err; 5907 } 5908 5909 static int __ext4_expand_extra_isize(struct inode *inode, 5910 unsigned int new_extra_isize, 5911 struct ext4_iloc *iloc, 5912 handle_t *handle, int *no_expand) 5913 { 5914 struct ext4_inode *raw_inode; 5915 struct ext4_xattr_ibody_header *header; 5916 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb); 5917 struct ext4_inode_info *ei = EXT4_I(inode); 5918 int error; 5919 5920 /* this was checked at iget time, but double check for good measure */ 5921 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) || 5922 (ei->i_extra_isize & 3)) { 5923 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)", 5924 ei->i_extra_isize, 5925 EXT4_INODE_SIZE(inode->i_sb)); 5926 return -EFSCORRUPTED; 5927 } 5928 if ((new_extra_isize < ei->i_extra_isize) || 5929 (new_extra_isize < 4) || 5930 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE)) 5931 return -EINVAL; /* Should never happen */ 5932 5933 raw_inode = ext4_raw_inode(iloc); 5934 5935 header = IHDR(inode, raw_inode); 5936 5937 /* No extended attributes present */ 5938 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5939 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5940 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + 5941 EXT4_I(inode)->i_extra_isize, 0, 5942 new_extra_isize - EXT4_I(inode)->i_extra_isize); 5943 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5944 return 0; 5945 } 5946 5947 /* 5948 * We may need to allocate external xattr block so we need quotas 5949 * initialized. Here we can be called with various locks held so we 5950 * cannot affort to initialize quotas ourselves. So just bail. 5951 */ 5952 if (dquot_initialize_needed(inode)) 5953 return -EAGAIN; 5954 5955 /* try to expand with EAs present */ 5956 error = ext4_expand_extra_isize_ea(inode, new_extra_isize, 5957 raw_inode, handle); 5958 if (error) { 5959 /* 5960 * Inode size expansion failed; don't try again 5961 */ 5962 *no_expand = 1; 5963 } 5964 5965 return error; 5966 } 5967 5968 /* 5969 * Expand an inode by new_extra_isize bytes. 5970 * Returns 0 on success or negative error number on failure. 5971 */ 5972 static int ext4_try_to_expand_extra_isize(struct inode *inode, 5973 unsigned int new_extra_isize, 5974 struct ext4_iloc iloc, 5975 handle_t *handle) 5976 { 5977 int no_expand; 5978 int error; 5979 5980 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) 5981 return -EOVERFLOW; 5982 5983 /* 5984 * In nojournal mode, we can immediately attempt to expand 5985 * the inode. When journaled, we first need to obtain extra 5986 * buffer credits since we may write into the EA block 5987 * with this same handle. If journal_extend fails, then it will 5988 * only result in a minor loss of functionality for that inode. 5989 * If this is felt to be critical, then e2fsck should be run to 5990 * force a large enough s_min_extra_isize. 5991 */ 5992 if (ext4_journal_extend(handle, 5993 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0) 5994 return -ENOSPC; 5995 5996 if (ext4_write_trylock_xattr(inode, &no_expand) == 0) 5997 return -EBUSY; 5998 5999 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc, 6000 handle, &no_expand); 6001 ext4_write_unlock_xattr(inode, &no_expand); 6002 6003 return error; 6004 } 6005 6006 int ext4_expand_extra_isize(struct inode *inode, 6007 unsigned int new_extra_isize, 6008 struct ext4_iloc *iloc) 6009 { 6010 handle_t *handle; 6011 int no_expand; 6012 int error, rc; 6013 6014 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 6015 brelse(iloc->bh); 6016 return -EOVERFLOW; 6017 } 6018 6019 handle = ext4_journal_start(inode, EXT4_HT_INODE, 6020 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)); 6021 if (IS_ERR(handle)) { 6022 error = PTR_ERR(handle); 6023 brelse(iloc->bh); 6024 return error; 6025 } 6026 6027 ext4_write_lock_xattr(inode, &no_expand); 6028 6029 BUFFER_TRACE(iloc->bh, "get_write_access"); 6030 error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh, 6031 EXT4_JTR_NONE); 6032 if (error) { 6033 brelse(iloc->bh); 6034 goto out_unlock; 6035 } 6036 6037 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc, 6038 handle, &no_expand); 6039 6040 rc = ext4_mark_iloc_dirty(handle, inode, iloc); 6041 if (!error) 6042 error = rc; 6043 6044 out_unlock: 6045 ext4_write_unlock_xattr(inode, &no_expand); 6046 ext4_journal_stop(handle); 6047 return error; 6048 } 6049 6050 /* 6051 * What we do here is to mark the in-core inode as clean with respect to inode 6052 * dirtiness (it may still be data-dirty). 6053 * This means that the in-core inode may be reaped by prune_icache 6054 * without having to perform any I/O. This is a very good thing, 6055 * because *any* task may call prune_icache - even ones which 6056 * have a transaction open against a different journal. 6057 * 6058 * Is this cheating? Not really. Sure, we haven't written the 6059 * inode out, but prune_icache isn't a user-visible syncing function. 6060 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 6061 * we start and wait on commits. 6062 */ 6063 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode, 6064 const char *func, unsigned int line) 6065 { 6066 struct ext4_iloc iloc; 6067 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 6068 int err; 6069 6070 might_sleep(); 6071 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 6072 err = ext4_reserve_inode_write(handle, inode, &iloc); 6073 if (err) 6074 goto out; 6075 6076 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize) 6077 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize, 6078 iloc, handle); 6079 6080 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 6081 out: 6082 if (unlikely(err)) 6083 ext4_error_inode_err(inode, func, line, 0, err, 6084 "mark_inode_dirty error"); 6085 return err; 6086 } 6087 6088 /* 6089 * ext4_dirty_inode() is called from __mark_inode_dirty() 6090 * 6091 * We're really interested in the case where a file is being extended. 6092 * i_size has been changed by generic_commit_write() and we thus need 6093 * to include the updated inode in the current transaction. 6094 * 6095 * Also, dquot_alloc_block() will always dirty the inode when blocks 6096 * are allocated to the file. 6097 * 6098 * If the inode is marked synchronous, we don't honour that here - doing 6099 * so would cause a commit on atime updates, which we don't bother doing. 6100 * We handle synchronous inodes at the highest possible level. 6101 */ 6102 void ext4_dirty_inode(struct inode *inode, int flags) 6103 { 6104 handle_t *handle; 6105 6106 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 6107 if (IS_ERR(handle)) 6108 return; 6109 ext4_mark_inode_dirty(handle, inode); 6110 ext4_journal_stop(handle); 6111 } 6112 6113 int ext4_change_inode_journal_flag(struct inode *inode, int val) 6114 { 6115 journal_t *journal; 6116 handle_t *handle; 6117 int err; 6118 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 6119 6120 /* 6121 * We have to be very careful here: changing a data block's 6122 * journaling status dynamically is dangerous. If we write a 6123 * data block to the journal, change the status and then delete 6124 * that block, we risk forgetting to revoke the old log record 6125 * from the journal and so a subsequent replay can corrupt data. 6126 * So, first we make sure that the journal is empty and that 6127 * nobody is changing anything. 6128 */ 6129 6130 journal = EXT4_JOURNAL(inode); 6131 if (!journal) 6132 return 0; 6133 if (is_journal_aborted(journal)) 6134 return -EROFS; 6135 6136 /* Wait for all existing dio workers */ 6137 inode_dio_wait(inode); 6138 6139 /* 6140 * Before flushing the journal and switching inode's aops, we have 6141 * to flush all dirty data the inode has. There can be outstanding 6142 * delayed allocations, there can be unwritten extents created by 6143 * fallocate or buffered writes in dioread_nolock mode covered by 6144 * dirty data which can be converted only after flushing the dirty 6145 * data (and journalled aops don't know how to handle these cases). 6146 */ 6147 if (val) { 6148 filemap_invalidate_lock(inode->i_mapping); 6149 err = filemap_write_and_wait(inode->i_mapping); 6150 if (err < 0) { 6151 filemap_invalidate_unlock(inode->i_mapping); 6152 return err; 6153 } 6154 } 6155 6156 percpu_down_write(&sbi->s_writepages_rwsem); 6157 jbd2_journal_lock_updates(journal); 6158 6159 /* 6160 * OK, there are no updates running now, and all cached data is 6161 * synced to disk. We are now in a completely consistent state 6162 * which doesn't have anything in the journal, and we know that 6163 * no filesystem updates are running, so it is safe to modify 6164 * the inode's in-core data-journaling state flag now. 6165 */ 6166 6167 if (val) 6168 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6169 else { 6170 err = jbd2_journal_flush(journal, 0); 6171 if (err < 0) { 6172 jbd2_journal_unlock_updates(journal); 6173 percpu_up_write(&sbi->s_writepages_rwsem); 6174 return err; 6175 } 6176 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6177 } 6178 ext4_set_aops(inode); 6179 6180 jbd2_journal_unlock_updates(journal); 6181 percpu_up_write(&sbi->s_writepages_rwsem); 6182 6183 if (val) 6184 filemap_invalidate_unlock(inode->i_mapping); 6185 6186 /* Finally we can mark the inode as dirty. */ 6187 6188 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 6189 if (IS_ERR(handle)) 6190 return PTR_ERR(handle); 6191 6192 ext4_fc_mark_ineligible(inode->i_sb, 6193 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle); 6194 err = ext4_mark_inode_dirty(handle, inode); 6195 ext4_handle_sync(handle); 6196 ext4_journal_stop(handle); 6197 ext4_std_error(inode->i_sb, err); 6198 6199 return err; 6200 } 6201 6202 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode, 6203 struct buffer_head *bh) 6204 { 6205 return !buffer_mapped(bh); 6206 } 6207 6208 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf) 6209 { 6210 struct vm_area_struct *vma = vmf->vma; 6211 struct page *page = vmf->page; 6212 loff_t size; 6213 unsigned long len; 6214 int err; 6215 vm_fault_t ret; 6216 struct file *file = vma->vm_file; 6217 struct inode *inode = file_inode(file); 6218 struct address_space *mapping = inode->i_mapping; 6219 handle_t *handle; 6220 get_block_t *get_block; 6221 int retries = 0; 6222 6223 if (unlikely(IS_IMMUTABLE(inode))) 6224 return VM_FAULT_SIGBUS; 6225 6226 sb_start_pagefault(inode->i_sb); 6227 file_update_time(vma->vm_file); 6228 6229 filemap_invalidate_lock_shared(mapping); 6230 6231 err = ext4_convert_inline_data(inode); 6232 if (err) 6233 goto out_ret; 6234 6235 /* 6236 * On data journalling we skip straight to the transaction handle: 6237 * there's no delalloc; page truncated will be checked later; the 6238 * early return w/ all buffers mapped (calculates size/len) can't 6239 * be used; and there's no dioread_nolock, so only ext4_get_block. 6240 */ 6241 if (ext4_should_journal_data(inode)) 6242 goto retry_alloc; 6243 6244 /* Delalloc case is easy... */ 6245 if (test_opt(inode->i_sb, DELALLOC) && 6246 !ext4_nonda_switch(inode->i_sb)) { 6247 do { 6248 err = block_page_mkwrite(vma, vmf, 6249 ext4_da_get_block_prep); 6250 } while (err == -ENOSPC && 6251 ext4_should_retry_alloc(inode->i_sb, &retries)); 6252 goto out_ret; 6253 } 6254 6255 lock_page(page); 6256 size = i_size_read(inode); 6257 /* Page got truncated from under us? */ 6258 if (page->mapping != mapping || page_offset(page) > size) { 6259 unlock_page(page); 6260 ret = VM_FAULT_NOPAGE; 6261 goto out; 6262 } 6263 6264 if (page->index == size >> PAGE_SHIFT) 6265 len = size & ~PAGE_MASK; 6266 else 6267 len = PAGE_SIZE; 6268 /* 6269 * Return if we have all the buffers mapped. This avoids the need to do 6270 * journal_start/journal_stop which can block and take a long time 6271 * 6272 * This cannot be done for data journalling, as we have to add the 6273 * inode to the transaction's list to writeprotect pages on commit. 6274 */ 6275 if (page_has_buffers(page)) { 6276 if (!ext4_walk_page_buffers(NULL, inode, page_buffers(page), 6277 0, len, NULL, 6278 ext4_bh_unmapped)) { 6279 /* Wait so that we don't change page under IO */ 6280 wait_for_stable_page(page); 6281 ret = VM_FAULT_LOCKED; 6282 goto out; 6283 } 6284 } 6285 unlock_page(page); 6286 /* OK, we need to fill the hole... */ 6287 if (ext4_should_dioread_nolock(inode)) 6288 get_block = ext4_get_block_unwritten; 6289 else 6290 get_block = ext4_get_block; 6291 retry_alloc: 6292 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 6293 ext4_writepage_trans_blocks(inode)); 6294 if (IS_ERR(handle)) { 6295 ret = VM_FAULT_SIGBUS; 6296 goto out; 6297 } 6298 /* 6299 * Data journalling can't use block_page_mkwrite() because it 6300 * will set_buffer_dirty() before do_journal_get_write_access() 6301 * thus might hit warning messages for dirty metadata buffers. 6302 */ 6303 if (!ext4_should_journal_data(inode)) { 6304 err = block_page_mkwrite(vma, vmf, get_block); 6305 } else { 6306 lock_page(page); 6307 size = i_size_read(inode); 6308 /* Page got truncated from under us? */ 6309 if (page->mapping != mapping || page_offset(page) > size) { 6310 ret = VM_FAULT_NOPAGE; 6311 goto out_error; 6312 } 6313 6314 if (page->index == size >> PAGE_SHIFT) 6315 len = size & ~PAGE_MASK; 6316 else 6317 len = PAGE_SIZE; 6318 6319 err = __block_write_begin(page, 0, len, ext4_get_block); 6320 if (!err) { 6321 ret = VM_FAULT_SIGBUS; 6322 if (ext4_walk_page_buffers(handle, inode, 6323 page_buffers(page), 0, len, NULL, 6324 do_journal_get_write_access)) 6325 goto out_error; 6326 if (ext4_walk_page_buffers(handle, inode, 6327 page_buffers(page), 0, len, NULL, 6328 write_end_fn)) 6329 goto out_error; 6330 if (ext4_jbd2_inode_add_write(handle, inode, 6331 page_offset(page), len)) 6332 goto out_error; 6333 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 6334 } else { 6335 unlock_page(page); 6336 } 6337 } 6338 ext4_journal_stop(handle); 6339 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 6340 goto retry_alloc; 6341 out_ret: 6342 ret = block_page_mkwrite_return(err); 6343 out: 6344 filemap_invalidate_unlock_shared(mapping); 6345 sb_end_pagefault(inode->i_sb); 6346 return ret; 6347 out_error: 6348 unlock_page(page); 6349 ext4_journal_stop(handle); 6350 goto out; 6351 } 6352