xref: /openbmc/linux/fs/ext4/inode.c (revision 17846485)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *	(jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/namei.h>
35 #include <linux/uio.h>
36 #include <linux/bio.h>
37 #include <linux/workqueue.h>
38 #include <linux/kernel.h>
39 #include <linux/printk.h>
40 #include <linux/slab.h>
41 #include <linux/bitops.h>
42 #include <linux/iomap.h>
43 #include <linux/iversion.h>
44 #include <linux/dax.h>
45 
46 #include "ext4_jbd2.h"
47 #include "xattr.h"
48 #include "acl.h"
49 #include "truncate.h"
50 
51 #include <trace/events/ext4.h>
52 
53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54 			      struct ext4_inode_info *ei)
55 {
56 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
57 	__u32 csum;
58 	__u16 dummy_csum = 0;
59 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
60 	unsigned int csum_size = sizeof(dummy_csum);
61 
62 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
63 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
64 	offset += csum_size;
65 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
66 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
67 
68 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
69 		offset = offsetof(struct ext4_inode, i_checksum_hi);
70 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
71 				   EXT4_GOOD_OLD_INODE_SIZE,
72 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
73 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
74 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
75 					   csum_size);
76 			offset += csum_size;
77 		}
78 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
79 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
80 	}
81 
82 	return csum;
83 }
84 
85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
86 				  struct ext4_inode_info *ei)
87 {
88 	__u32 provided, calculated;
89 
90 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
91 	    cpu_to_le32(EXT4_OS_LINUX) ||
92 	    !ext4_has_metadata_csum(inode->i_sb))
93 		return 1;
94 
95 	provided = le16_to_cpu(raw->i_checksum_lo);
96 	calculated = ext4_inode_csum(inode, raw, ei);
97 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
98 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
99 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
100 	else
101 		calculated &= 0xFFFF;
102 
103 	return provided == calculated;
104 }
105 
106 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
107 			 struct ext4_inode_info *ei)
108 {
109 	__u32 csum;
110 
111 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
112 	    cpu_to_le32(EXT4_OS_LINUX) ||
113 	    !ext4_has_metadata_csum(inode->i_sb))
114 		return;
115 
116 	csum = ext4_inode_csum(inode, raw, ei);
117 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
118 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
119 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
120 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
121 }
122 
123 static inline int ext4_begin_ordered_truncate(struct inode *inode,
124 					      loff_t new_size)
125 {
126 	trace_ext4_begin_ordered_truncate(inode, new_size);
127 	/*
128 	 * If jinode is zero, then we never opened the file for
129 	 * writing, so there's no need to call
130 	 * jbd2_journal_begin_ordered_truncate() since there's no
131 	 * outstanding writes we need to flush.
132 	 */
133 	if (!EXT4_I(inode)->jinode)
134 		return 0;
135 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
136 						   EXT4_I(inode)->jinode,
137 						   new_size);
138 }
139 
140 static void ext4_invalidatepage(struct page *page, unsigned int offset,
141 				unsigned int length);
142 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
143 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
144 				  int pextents);
145 
146 /*
147  * Test whether an inode is a fast symlink.
148  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
149  */
150 int ext4_inode_is_fast_symlink(struct inode *inode)
151 {
152 	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
153 		int ea_blocks = EXT4_I(inode)->i_file_acl ?
154 				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
155 
156 		if (ext4_has_inline_data(inode))
157 			return 0;
158 
159 		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
160 	}
161 	return S_ISLNK(inode->i_mode) && inode->i_size &&
162 	       (inode->i_size < EXT4_N_BLOCKS * 4);
163 }
164 
165 /*
166  * Called at the last iput() if i_nlink is zero.
167  */
168 void ext4_evict_inode(struct inode *inode)
169 {
170 	handle_t *handle;
171 	int err;
172 	/*
173 	 * Credits for final inode cleanup and freeing:
174 	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
175 	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
176 	 */
177 	int extra_credits = 6;
178 	struct ext4_xattr_inode_array *ea_inode_array = NULL;
179 	bool freeze_protected = false;
180 
181 	trace_ext4_evict_inode(inode);
182 
183 	if (inode->i_nlink) {
184 		/*
185 		 * When journalling data dirty buffers are tracked only in the
186 		 * journal. So although mm thinks everything is clean and
187 		 * ready for reaping the inode might still have some pages to
188 		 * write in the running transaction or waiting to be
189 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
190 		 * (via truncate_inode_pages()) to discard these buffers can
191 		 * cause data loss. Also even if we did not discard these
192 		 * buffers, we would have no way to find them after the inode
193 		 * is reaped and thus user could see stale data if he tries to
194 		 * read them before the transaction is checkpointed. So be
195 		 * careful and force everything to disk here... We use
196 		 * ei->i_datasync_tid to store the newest transaction
197 		 * containing inode's data.
198 		 *
199 		 * Note that directories do not have this problem because they
200 		 * don't use page cache.
201 		 */
202 		if (inode->i_ino != EXT4_JOURNAL_INO &&
203 		    ext4_should_journal_data(inode) &&
204 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
205 		    inode->i_data.nrpages) {
206 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
207 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
208 
209 			jbd2_complete_transaction(journal, commit_tid);
210 			filemap_write_and_wait(&inode->i_data);
211 		}
212 		truncate_inode_pages_final(&inode->i_data);
213 
214 		goto no_delete;
215 	}
216 
217 	if (is_bad_inode(inode))
218 		goto no_delete;
219 	dquot_initialize(inode);
220 
221 	if (ext4_should_order_data(inode))
222 		ext4_begin_ordered_truncate(inode, 0);
223 	truncate_inode_pages_final(&inode->i_data);
224 
225 	/*
226 	 * For inodes with journalled data, transaction commit could have
227 	 * dirtied the inode. Flush worker is ignoring it because of I_FREEING
228 	 * flag but we still need to remove the inode from the writeback lists.
229 	 */
230 	if (!list_empty_careful(&inode->i_io_list)) {
231 		WARN_ON_ONCE(!ext4_should_journal_data(inode));
232 		inode_io_list_del(inode);
233 	}
234 
235 	/*
236 	 * Protect us against freezing - iput() caller didn't have to have any
237 	 * protection against it. When we are in a running transaction though,
238 	 * we are already protected against freezing and we cannot grab further
239 	 * protection due to lock ordering constraints.
240 	 */
241 	if (!ext4_journal_current_handle()) {
242 		sb_start_intwrite(inode->i_sb);
243 		freeze_protected = true;
244 	}
245 
246 	if (!IS_NOQUOTA(inode))
247 		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
248 
249 	/*
250 	 * Block bitmap, group descriptor, and inode are accounted in both
251 	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
252 	 */
253 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
254 			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
255 	if (IS_ERR(handle)) {
256 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
257 		/*
258 		 * If we're going to skip the normal cleanup, we still need to
259 		 * make sure that the in-core orphan linked list is properly
260 		 * cleaned up.
261 		 */
262 		ext4_orphan_del(NULL, inode);
263 		if (freeze_protected)
264 			sb_end_intwrite(inode->i_sb);
265 		goto no_delete;
266 	}
267 
268 	if (IS_SYNC(inode))
269 		ext4_handle_sync(handle);
270 
271 	/*
272 	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
273 	 * special handling of symlinks here because i_size is used to
274 	 * determine whether ext4_inode_info->i_data contains symlink data or
275 	 * block mappings. Setting i_size to 0 will remove its fast symlink
276 	 * status. Erase i_data so that it becomes a valid empty block map.
277 	 */
278 	if (ext4_inode_is_fast_symlink(inode))
279 		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
280 	inode->i_size = 0;
281 	err = ext4_mark_inode_dirty(handle, inode);
282 	if (err) {
283 		ext4_warning(inode->i_sb,
284 			     "couldn't mark inode dirty (err %d)", err);
285 		goto stop_handle;
286 	}
287 	if (inode->i_blocks) {
288 		err = ext4_truncate(inode);
289 		if (err) {
290 			ext4_error_err(inode->i_sb, -err,
291 				       "couldn't truncate inode %lu (err %d)",
292 				       inode->i_ino, err);
293 			goto stop_handle;
294 		}
295 	}
296 
297 	/* Remove xattr references. */
298 	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
299 				      extra_credits);
300 	if (err) {
301 		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
302 stop_handle:
303 		ext4_journal_stop(handle);
304 		ext4_orphan_del(NULL, inode);
305 		if (freeze_protected)
306 			sb_end_intwrite(inode->i_sb);
307 		ext4_xattr_inode_array_free(ea_inode_array);
308 		goto no_delete;
309 	}
310 
311 	/*
312 	 * Kill off the orphan record which ext4_truncate created.
313 	 * AKPM: I think this can be inside the above `if'.
314 	 * Note that ext4_orphan_del() has to be able to cope with the
315 	 * deletion of a non-existent orphan - this is because we don't
316 	 * know if ext4_truncate() actually created an orphan record.
317 	 * (Well, we could do this if we need to, but heck - it works)
318 	 */
319 	ext4_orphan_del(handle, inode);
320 	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
321 
322 	/*
323 	 * One subtle ordering requirement: if anything has gone wrong
324 	 * (transaction abort, IO errors, whatever), then we can still
325 	 * do these next steps (the fs will already have been marked as
326 	 * having errors), but we can't free the inode if the mark_dirty
327 	 * fails.
328 	 */
329 	if (ext4_mark_inode_dirty(handle, inode))
330 		/* If that failed, just do the required in-core inode clear. */
331 		ext4_clear_inode(inode);
332 	else
333 		ext4_free_inode(handle, inode);
334 	ext4_journal_stop(handle);
335 	if (freeze_protected)
336 		sb_end_intwrite(inode->i_sb);
337 	ext4_xattr_inode_array_free(ea_inode_array);
338 	return;
339 no_delete:
340 	if (!list_empty(&EXT4_I(inode)->i_fc_list))
341 		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM);
342 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
343 }
344 
345 #ifdef CONFIG_QUOTA
346 qsize_t *ext4_get_reserved_space(struct inode *inode)
347 {
348 	return &EXT4_I(inode)->i_reserved_quota;
349 }
350 #endif
351 
352 /*
353  * Called with i_data_sem down, which is important since we can call
354  * ext4_discard_preallocations() from here.
355  */
356 void ext4_da_update_reserve_space(struct inode *inode,
357 					int used, int quota_claim)
358 {
359 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
360 	struct ext4_inode_info *ei = EXT4_I(inode);
361 
362 	spin_lock(&ei->i_block_reservation_lock);
363 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
364 	if (unlikely(used > ei->i_reserved_data_blocks)) {
365 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
366 			 "with only %d reserved data blocks",
367 			 __func__, inode->i_ino, used,
368 			 ei->i_reserved_data_blocks);
369 		WARN_ON(1);
370 		used = ei->i_reserved_data_blocks;
371 	}
372 
373 	/* Update per-inode reservations */
374 	ei->i_reserved_data_blocks -= used;
375 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
376 
377 	spin_unlock(&ei->i_block_reservation_lock);
378 
379 	/* Update quota subsystem for data blocks */
380 	if (quota_claim)
381 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
382 	else {
383 		/*
384 		 * We did fallocate with an offset that is already delayed
385 		 * allocated. So on delayed allocated writeback we should
386 		 * not re-claim the quota for fallocated blocks.
387 		 */
388 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
389 	}
390 
391 	/*
392 	 * If we have done all the pending block allocations and if
393 	 * there aren't any writers on the inode, we can discard the
394 	 * inode's preallocations.
395 	 */
396 	if ((ei->i_reserved_data_blocks == 0) &&
397 	    !inode_is_open_for_write(inode))
398 		ext4_discard_preallocations(inode, 0);
399 }
400 
401 static int __check_block_validity(struct inode *inode, const char *func,
402 				unsigned int line,
403 				struct ext4_map_blocks *map)
404 {
405 	if (ext4_has_feature_journal(inode->i_sb) &&
406 	    (inode->i_ino ==
407 	     le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
408 		return 0;
409 	if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
410 		ext4_error_inode(inode, func, line, map->m_pblk,
411 				 "lblock %lu mapped to illegal pblock %llu "
412 				 "(length %d)", (unsigned long) map->m_lblk,
413 				 map->m_pblk, map->m_len);
414 		return -EFSCORRUPTED;
415 	}
416 	return 0;
417 }
418 
419 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
420 		       ext4_lblk_t len)
421 {
422 	int ret;
423 
424 	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
425 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
426 
427 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
428 	if (ret > 0)
429 		ret = 0;
430 
431 	return ret;
432 }
433 
434 #define check_block_validity(inode, map)	\
435 	__check_block_validity((inode), __func__, __LINE__, (map))
436 
437 #ifdef ES_AGGRESSIVE_TEST
438 static void ext4_map_blocks_es_recheck(handle_t *handle,
439 				       struct inode *inode,
440 				       struct ext4_map_blocks *es_map,
441 				       struct ext4_map_blocks *map,
442 				       int flags)
443 {
444 	int retval;
445 
446 	map->m_flags = 0;
447 	/*
448 	 * There is a race window that the result is not the same.
449 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
450 	 * is that we lookup a block mapping in extent status tree with
451 	 * out taking i_data_sem.  So at the time the unwritten extent
452 	 * could be converted.
453 	 */
454 	down_read(&EXT4_I(inode)->i_data_sem);
455 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
456 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
457 	} else {
458 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
459 	}
460 	up_read((&EXT4_I(inode)->i_data_sem));
461 
462 	/*
463 	 * We don't check m_len because extent will be collpased in status
464 	 * tree.  So the m_len might not equal.
465 	 */
466 	if (es_map->m_lblk != map->m_lblk ||
467 	    es_map->m_flags != map->m_flags ||
468 	    es_map->m_pblk != map->m_pblk) {
469 		printk("ES cache assertion failed for inode: %lu "
470 		       "es_cached ex [%d/%d/%llu/%x] != "
471 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
472 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
473 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
474 		       map->m_len, map->m_pblk, map->m_flags,
475 		       retval, flags);
476 	}
477 }
478 #endif /* ES_AGGRESSIVE_TEST */
479 
480 /*
481  * The ext4_map_blocks() function tries to look up the requested blocks,
482  * and returns if the blocks are already mapped.
483  *
484  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
485  * and store the allocated blocks in the result buffer head and mark it
486  * mapped.
487  *
488  * If file type is extents based, it will call ext4_ext_map_blocks(),
489  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
490  * based files
491  *
492  * On success, it returns the number of blocks being mapped or allocated.  if
493  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
494  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
495  *
496  * It returns 0 if plain look up failed (blocks have not been allocated), in
497  * that case, @map is returned as unmapped but we still do fill map->m_len to
498  * indicate the length of a hole starting at map->m_lblk.
499  *
500  * It returns the error in case of allocation failure.
501  */
502 int ext4_map_blocks(handle_t *handle, struct inode *inode,
503 		    struct ext4_map_blocks *map, int flags)
504 {
505 	struct extent_status es;
506 	int retval;
507 	int ret = 0;
508 #ifdef ES_AGGRESSIVE_TEST
509 	struct ext4_map_blocks orig_map;
510 
511 	memcpy(&orig_map, map, sizeof(*map));
512 #endif
513 
514 	map->m_flags = 0;
515 	ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
516 		  flags, map->m_len, (unsigned long) map->m_lblk);
517 
518 	/*
519 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
520 	 */
521 	if (unlikely(map->m_len > INT_MAX))
522 		map->m_len = INT_MAX;
523 
524 	/* We can handle the block number less than EXT_MAX_BLOCKS */
525 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
526 		return -EFSCORRUPTED;
527 
528 	/* Lookup extent status tree firstly */
529 	if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
530 	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
531 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
532 			map->m_pblk = ext4_es_pblock(&es) +
533 					map->m_lblk - es.es_lblk;
534 			map->m_flags |= ext4_es_is_written(&es) ?
535 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
536 			retval = es.es_len - (map->m_lblk - es.es_lblk);
537 			if (retval > map->m_len)
538 				retval = map->m_len;
539 			map->m_len = retval;
540 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
541 			map->m_pblk = 0;
542 			retval = es.es_len - (map->m_lblk - es.es_lblk);
543 			if (retval > map->m_len)
544 				retval = map->m_len;
545 			map->m_len = retval;
546 			retval = 0;
547 		} else {
548 			BUG();
549 		}
550 #ifdef ES_AGGRESSIVE_TEST
551 		ext4_map_blocks_es_recheck(handle, inode, map,
552 					   &orig_map, flags);
553 #endif
554 		goto found;
555 	}
556 
557 	/*
558 	 * Try to see if we can get the block without requesting a new
559 	 * file system block.
560 	 */
561 	down_read(&EXT4_I(inode)->i_data_sem);
562 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
563 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
564 	} else {
565 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
566 	}
567 	if (retval > 0) {
568 		unsigned int status;
569 
570 		if (unlikely(retval != map->m_len)) {
571 			ext4_warning(inode->i_sb,
572 				     "ES len assertion failed for inode "
573 				     "%lu: retval %d != map->m_len %d",
574 				     inode->i_ino, retval, map->m_len);
575 			WARN_ON(1);
576 		}
577 
578 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
579 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
580 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
581 		    !(status & EXTENT_STATUS_WRITTEN) &&
582 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
583 				       map->m_lblk + map->m_len - 1))
584 			status |= EXTENT_STATUS_DELAYED;
585 		ret = ext4_es_insert_extent(inode, map->m_lblk,
586 					    map->m_len, map->m_pblk, status);
587 		if (ret < 0)
588 			retval = ret;
589 	}
590 	up_read((&EXT4_I(inode)->i_data_sem));
591 
592 found:
593 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
594 		ret = check_block_validity(inode, map);
595 		if (ret != 0)
596 			return ret;
597 	}
598 
599 	/* If it is only a block(s) look up */
600 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
601 		return retval;
602 
603 	/*
604 	 * Returns if the blocks have already allocated
605 	 *
606 	 * Note that if blocks have been preallocated
607 	 * ext4_ext_get_block() returns the create = 0
608 	 * with buffer head unmapped.
609 	 */
610 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
611 		/*
612 		 * If we need to convert extent to unwritten
613 		 * we continue and do the actual work in
614 		 * ext4_ext_map_blocks()
615 		 */
616 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
617 			return retval;
618 
619 	/*
620 	 * Here we clear m_flags because after allocating an new extent,
621 	 * it will be set again.
622 	 */
623 	map->m_flags &= ~EXT4_MAP_FLAGS;
624 
625 	/*
626 	 * New blocks allocate and/or writing to unwritten extent
627 	 * will possibly result in updating i_data, so we take
628 	 * the write lock of i_data_sem, and call get_block()
629 	 * with create == 1 flag.
630 	 */
631 	down_write(&EXT4_I(inode)->i_data_sem);
632 
633 	/*
634 	 * We need to check for EXT4 here because migrate
635 	 * could have changed the inode type in between
636 	 */
637 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
638 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
639 	} else {
640 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
641 
642 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
643 			/*
644 			 * We allocated new blocks which will result in
645 			 * i_data's format changing.  Force the migrate
646 			 * to fail by clearing migrate flags
647 			 */
648 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
649 		}
650 
651 		/*
652 		 * Update reserved blocks/metadata blocks after successful
653 		 * block allocation which had been deferred till now. We don't
654 		 * support fallocate for non extent files. So we can update
655 		 * reserve space here.
656 		 */
657 		if ((retval > 0) &&
658 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
659 			ext4_da_update_reserve_space(inode, retval, 1);
660 	}
661 
662 	if (retval > 0) {
663 		unsigned int status;
664 
665 		if (unlikely(retval != map->m_len)) {
666 			ext4_warning(inode->i_sb,
667 				     "ES len assertion failed for inode "
668 				     "%lu: retval %d != map->m_len %d",
669 				     inode->i_ino, retval, map->m_len);
670 			WARN_ON(1);
671 		}
672 
673 		/*
674 		 * We have to zeroout blocks before inserting them into extent
675 		 * status tree. Otherwise someone could look them up there and
676 		 * use them before they are really zeroed. We also have to
677 		 * unmap metadata before zeroing as otherwise writeback can
678 		 * overwrite zeros with stale data from block device.
679 		 */
680 		if (flags & EXT4_GET_BLOCKS_ZERO &&
681 		    map->m_flags & EXT4_MAP_MAPPED &&
682 		    map->m_flags & EXT4_MAP_NEW) {
683 			ret = ext4_issue_zeroout(inode, map->m_lblk,
684 						 map->m_pblk, map->m_len);
685 			if (ret) {
686 				retval = ret;
687 				goto out_sem;
688 			}
689 		}
690 
691 		/*
692 		 * If the extent has been zeroed out, we don't need to update
693 		 * extent status tree.
694 		 */
695 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
696 		    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
697 			if (ext4_es_is_written(&es))
698 				goto out_sem;
699 		}
700 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
701 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
702 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
703 		    !(status & EXTENT_STATUS_WRITTEN) &&
704 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
705 				       map->m_lblk + map->m_len - 1))
706 			status |= EXTENT_STATUS_DELAYED;
707 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
708 					    map->m_pblk, status);
709 		if (ret < 0) {
710 			retval = ret;
711 			goto out_sem;
712 		}
713 	}
714 
715 out_sem:
716 	up_write((&EXT4_I(inode)->i_data_sem));
717 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
718 		ret = check_block_validity(inode, map);
719 		if (ret != 0)
720 			return ret;
721 
722 		/*
723 		 * Inodes with freshly allocated blocks where contents will be
724 		 * visible after transaction commit must be on transaction's
725 		 * ordered data list.
726 		 */
727 		if (map->m_flags & EXT4_MAP_NEW &&
728 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
729 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
730 		    !ext4_is_quota_file(inode) &&
731 		    ext4_should_order_data(inode)) {
732 			loff_t start_byte =
733 				(loff_t)map->m_lblk << inode->i_blkbits;
734 			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
735 
736 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
737 				ret = ext4_jbd2_inode_add_wait(handle, inode,
738 						start_byte, length);
739 			else
740 				ret = ext4_jbd2_inode_add_write(handle, inode,
741 						start_byte, length);
742 			if (ret)
743 				return ret;
744 		}
745 	}
746 	if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
747 				map->m_flags & EXT4_MAP_MAPPED))
748 		ext4_fc_track_range(handle, inode, map->m_lblk,
749 					map->m_lblk + map->m_len - 1);
750 	if (retval < 0)
751 		ext_debug(inode, "failed with err %d\n", retval);
752 	return retval;
753 }
754 
755 /*
756  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
757  * we have to be careful as someone else may be manipulating b_state as well.
758  */
759 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
760 {
761 	unsigned long old_state;
762 	unsigned long new_state;
763 
764 	flags &= EXT4_MAP_FLAGS;
765 
766 	/* Dummy buffer_head? Set non-atomically. */
767 	if (!bh->b_page) {
768 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
769 		return;
770 	}
771 	/*
772 	 * Someone else may be modifying b_state. Be careful! This is ugly but
773 	 * once we get rid of using bh as a container for mapping information
774 	 * to pass to / from get_block functions, this can go away.
775 	 */
776 	do {
777 		old_state = READ_ONCE(bh->b_state);
778 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
779 	} while (unlikely(
780 		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
781 }
782 
783 static int _ext4_get_block(struct inode *inode, sector_t iblock,
784 			   struct buffer_head *bh, int flags)
785 {
786 	struct ext4_map_blocks map;
787 	int ret = 0;
788 
789 	if (ext4_has_inline_data(inode))
790 		return -ERANGE;
791 
792 	map.m_lblk = iblock;
793 	map.m_len = bh->b_size >> inode->i_blkbits;
794 
795 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
796 			      flags);
797 	if (ret > 0) {
798 		map_bh(bh, inode->i_sb, map.m_pblk);
799 		ext4_update_bh_state(bh, map.m_flags);
800 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
801 		ret = 0;
802 	} else if (ret == 0) {
803 		/* hole case, need to fill in bh->b_size */
804 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
805 	}
806 	return ret;
807 }
808 
809 int ext4_get_block(struct inode *inode, sector_t iblock,
810 		   struct buffer_head *bh, int create)
811 {
812 	return _ext4_get_block(inode, iblock, bh,
813 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
814 }
815 
816 /*
817  * Get block function used when preparing for buffered write if we require
818  * creating an unwritten extent if blocks haven't been allocated.  The extent
819  * will be converted to written after the IO is complete.
820  */
821 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
822 			     struct buffer_head *bh_result, int create)
823 {
824 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
825 		   inode->i_ino, create);
826 	return _ext4_get_block(inode, iblock, bh_result,
827 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
828 }
829 
830 /* Maximum number of blocks we map for direct IO at once. */
831 #define DIO_MAX_BLOCKS 4096
832 
833 /*
834  * `handle' can be NULL if create is zero
835  */
836 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
837 				ext4_lblk_t block, int map_flags)
838 {
839 	struct ext4_map_blocks map;
840 	struct buffer_head *bh;
841 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
842 	int err;
843 
844 	ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
845 		    || handle != NULL || create == 0);
846 
847 	map.m_lblk = block;
848 	map.m_len = 1;
849 	err = ext4_map_blocks(handle, inode, &map, map_flags);
850 
851 	if (err == 0)
852 		return create ? ERR_PTR(-ENOSPC) : NULL;
853 	if (err < 0)
854 		return ERR_PTR(err);
855 
856 	bh = sb_getblk(inode->i_sb, map.m_pblk);
857 	if (unlikely(!bh))
858 		return ERR_PTR(-ENOMEM);
859 	if (map.m_flags & EXT4_MAP_NEW) {
860 		ASSERT(create != 0);
861 		ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
862 			    || (handle != NULL));
863 
864 		/*
865 		 * Now that we do not always journal data, we should
866 		 * keep in mind whether this should always journal the
867 		 * new buffer as metadata.  For now, regular file
868 		 * writes use ext4_get_block instead, so it's not a
869 		 * problem.
870 		 */
871 		lock_buffer(bh);
872 		BUFFER_TRACE(bh, "call get_create_access");
873 		err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
874 						     EXT4_JTR_NONE);
875 		if (unlikely(err)) {
876 			unlock_buffer(bh);
877 			goto errout;
878 		}
879 		if (!buffer_uptodate(bh)) {
880 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
881 			set_buffer_uptodate(bh);
882 		}
883 		unlock_buffer(bh);
884 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
885 		err = ext4_handle_dirty_metadata(handle, inode, bh);
886 		if (unlikely(err))
887 			goto errout;
888 	} else
889 		BUFFER_TRACE(bh, "not a new buffer");
890 	return bh;
891 errout:
892 	brelse(bh);
893 	return ERR_PTR(err);
894 }
895 
896 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
897 			       ext4_lblk_t block, int map_flags)
898 {
899 	struct buffer_head *bh;
900 	int ret;
901 
902 	bh = ext4_getblk(handle, inode, block, map_flags);
903 	if (IS_ERR(bh))
904 		return bh;
905 	if (!bh || ext4_buffer_uptodate(bh))
906 		return bh;
907 
908 	ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
909 	if (ret) {
910 		put_bh(bh);
911 		return ERR_PTR(ret);
912 	}
913 	return bh;
914 }
915 
916 /* Read a contiguous batch of blocks. */
917 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
918 		     bool wait, struct buffer_head **bhs)
919 {
920 	int i, err;
921 
922 	for (i = 0; i < bh_count; i++) {
923 		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
924 		if (IS_ERR(bhs[i])) {
925 			err = PTR_ERR(bhs[i]);
926 			bh_count = i;
927 			goto out_brelse;
928 		}
929 	}
930 
931 	for (i = 0; i < bh_count; i++)
932 		/* Note that NULL bhs[i] is valid because of holes. */
933 		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
934 			ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
935 
936 	if (!wait)
937 		return 0;
938 
939 	for (i = 0; i < bh_count; i++)
940 		if (bhs[i])
941 			wait_on_buffer(bhs[i]);
942 
943 	for (i = 0; i < bh_count; i++) {
944 		if (bhs[i] && !buffer_uptodate(bhs[i])) {
945 			err = -EIO;
946 			goto out_brelse;
947 		}
948 	}
949 	return 0;
950 
951 out_brelse:
952 	for (i = 0; i < bh_count; i++) {
953 		brelse(bhs[i]);
954 		bhs[i] = NULL;
955 	}
956 	return err;
957 }
958 
959 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
960 			   struct buffer_head *head,
961 			   unsigned from,
962 			   unsigned to,
963 			   int *partial,
964 			   int (*fn)(handle_t *handle, struct inode *inode,
965 				     struct buffer_head *bh))
966 {
967 	struct buffer_head *bh;
968 	unsigned block_start, block_end;
969 	unsigned blocksize = head->b_size;
970 	int err, ret = 0;
971 	struct buffer_head *next;
972 
973 	for (bh = head, block_start = 0;
974 	     ret == 0 && (bh != head || !block_start);
975 	     block_start = block_end, bh = next) {
976 		next = bh->b_this_page;
977 		block_end = block_start + blocksize;
978 		if (block_end <= from || block_start >= to) {
979 			if (partial && !buffer_uptodate(bh))
980 				*partial = 1;
981 			continue;
982 		}
983 		err = (*fn)(handle, inode, bh);
984 		if (!ret)
985 			ret = err;
986 	}
987 	return ret;
988 }
989 
990 /*
991  * To preserve ordering, it is essential that the hole instantiation and
992  * the data write be encapsulated in a single transaction.  We cannot
993  * close off a transaction and start a new one between the ext4_get_block()
994  * and the commit_write().  So doing the jbd2_journal_start at the start of
995  * prepare_write() is the right place.
996  *
997  * Also, this function can nest inside ext4_writepage().  In that case, we
998  * *know* that ext4_writepage() has generated enough buffer credits to do the
999  * whole page.  So we won't block on the journal in that case, which is good,
1000  * because the caller may be PF_MEMALLOC.
1001  *
1002  * By accident, ext4 can be reentered when a transaction is open via
1003  * quota file writes.  If we were to commit the transaction while thus
1004  * reentered, there can be a deadlock - we would be holding a quota
1005  * lock, and the commit would never complete if another thread had a
1006  * transaction open and was blocking on the quota lock - a ranking
1007  * violation.
1008  *
1009  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1010  * will _not_ run commit under these circumstances because handle->h_ref
1011  * is elevated.  We'll still have enough credits for the tiny quotafile
1012  * write.
1013  */
1014 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1015 				struct buffer_head *bh)
1016 {
1017 	int dirty = buffer_dirty(bh);
1018 	int ret;
1019 
1020 	if (!buffer_mapped(bh) || buffer_freed(bh))
1021 		return 0;
1022 	/*
1023 	 * __block_write_begin() could have dirtied some buffers. Clean
1024 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1025 	 * otherwise about fs integrity issues. Setting of the dirty bit
1026 	 * by __block_write_begin() isn't a real problem here as we clear
1027 	 * the bit before releasing a page lock and thus writeback cannot
1028 	 * ever write the buffer.
1029 	 */
1030 	if (dirty)
1031 		clear_buffer_dirty(bh);
1032 	BUFFER_TRACE(bh, "get write access");
1033 	ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1034 					    EXT4_JTR_NONE);
1035 	if (!ret && dirty)
1036 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1037 	return ret;
1038 }
1039 
1040 #ifdef CONFIG_FS_ENCRYPTION
1041 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1042 				  get_block_t *get_block)
1043 {
1044 	unsigned from = pos & (PAGE_SIZE - 1);
1045 	unsigned to = from + len;
1046 	struct inode *inode = page->mapping->host;
1047 	unsigned block_start, block_end;
1048 	sector_t block;
1049 	int err = 0;
1050 	unsigned blocksize = inode->i_sb->s_blocksize;
1051 	unsigned bbits;
1052 	struct buffer_head *bh, *head, *wait[2];
1053 	int nr_wait = 0;
1054 	int i;
1055 
1056 	BUG_ON(!PageLocked(page));
1057 	BUG_ON(from > PAGE_SIZE);
1058 	BUG_ON(to > PAGE_SIZE);
1059 	BUG_ON(from > to);
1060 
1061 	if (!page_has_buffers(page))
1062 		create_empty_buffers(page, blocksize, 0);
1063 	head = page_buffers(page);
1064 	bbits = ilog2(blocksize);
1065 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1066 
1067 	for (bh = head, block_start = 0; bh != head || !block_start;
1068 	    block++, block_start = block_end, bh = bh->b_this_page) {
1069 		block_end = block_start + blocksize;
1070 		if (block_end <= from || block_start >= to) {
1071 			if (PageUptodate(page)) {
1072 				set_buffer_uptodate(bh);
1073 			}
1074 			continue;
1075 		}
1076 		if (buffer_new(bh))
1077 			clear_buffer_new(bh);
1078 		if (!buffer_mapped(bh)) {
1079 			WARN_ON(bh->b_size != blocksize);
1080 			err = get_block(inode, block, bh, 1);
1081 			if (err)
1082 				break;
1083 			if (buffer_new(bh)) {
1084 				if (PageUptodate(page)) {
1085 					clear_buffer_new(bh);
1086 					set_buffer_uptodate(bh);
1087 					mark_buffer_dirty(bh);
1088 					continue;
1089 				}
1090 				if (block_end > to || block_start < from)
1091 					zero_user_segments(page, to, block_end,
1092 							   block_start, from);
1093 				continue;
1094 			}
1095 		}
1096 		if (PageUptodate(page)) {
1097 			set_buffer_uptodate(bh);
1098 			continue;
1099 		}
1100 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1101 		    !buffer_unwritten(bh) &&
1102 		    (block_start < from || block_end > to)) {
1103 			ext4_read_bh_lock(bh, 0, false);
1104 			wait[nr_wait++] = bh;
1105 		}
1106 	}
1107 	/*
1108 	 * If we issued read requests, let them complete.
1109 	 */
1110 	for (i = 0; i < nr_wait; i++) {
1111 		wait_on_buffer(wait[i]);
1112 		if (!buffer_uptodate(wait[i]))
1113 			err = -EIO;
1114 	}
1115 	if (unlikely(err)) {
1116 		page_zero_new_buffers(page, from, to);
1117 	} else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1118 		for (i = 0; i < nr_wait; i++) {
1119 			int err2;
1120 
1121 			err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1122 								bh_offset(wait[i]));
1123 			if (err2) {
1124 				clear_buffer_uptodate(wait[i]);
1125 				err = err2;
1126 			}
1127 		}
1128 	}
1129 
1130 	return err;
1131 }
1132 #endif
1133 
1134 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1135 			    loff_t pos, unsigned len, unsigned flags,
1136 			    struct page **pagep, void **fsdata)
1137 {
1138 	struct inode *inode = mapping->host;
1139 	int ret, needed_blocks;
1140 	handle_t *handle;
1141 	int retries = 0;
1142 	struct page *page;
1143 	pgoff_t index;
1144 	unsigned from, to;
1145 
1146 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1147 		return -EIO;
1148 
1149 	trace_ext4_write_begin(inode, pos, len, flags);
1150 	/*
1151 	 * Reserve one block more for addition to orphan list in case
1152 	 * we allocate blocks but write fails for some reason
1153 	 */
1154 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1155 	index = pos >> PAGE_SHIFT;
1156 	from = pos & (PAGE_SIZE - 1);
1157 	to = from + len;
1158 
1159 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1160 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1161 						    flags, pagep);
1162 		if (ret < 0)
1163 			return ret;
1164 		if (ret == 1)
1165 			return 0;
1166 	}
1167 
1168 	/*
1169 	 * grab_cache_page_write_begin() can take a long time if the
1170 	 * system is thrashing due to memory pressure, or if the page
1171 	 * is being written back.  So grab it first before we start
1172 	 * the transaction handle.  This also allows us to allocate
1173 	 * the page (if needed) without using GFP_NOFS.
1174 	 */
1175 retry_grab:
1176 	page = grab_cache_page_write_begin(mapping, index, flags);
1177 	if (!page)
1178 		return -ENOMEM;
1179 	unlock_page(page);
1180 
1181 retry_journal:
1182 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1183 	if (IS_ERR(handle)) {
1184 		put_page(page);
1185 		return PTR_ERR(handle);
1186 	}
1187 
1188 	lock_page(page);
1189 	if (page->mapping != mapping) {
1190 		/* The page got truncated from under us */
1191 		unlock_page(page);
1192 		put_page(page);
1193 		ext4_journal_stop(handle);
1194 		goto retry_grab;
1195 	}
1196 	/* In case writeback began while the page was unlocked */
1197 	wait_for_stable_page(page);
1198 
1199 #ifdef CONFIG_FS_ENCRYPTION
1200 	if (ext4_should_dioread_nolock(inode))
1201 		ret = ext4_block_write_begin(page, pos, len,
1202 					     ext4_get_block_unwritten);
1203 	else
1204 		ret = ext4_block_write_begin(page, pos, len,
1205 					     ext4_get_block);
1206 #else
1207 	if (ext4_should_dioread_nolock(inode))
1208 		ret = __block_write_begin(page, pos, len,
1209 					  ext4_get_block_unwritten);
1210 	else
1211 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1212 #endif
1213 	if (!ret && ext4_should_journal_data(inode)) {
1214 		ret = ext4_walk_page_buffers(handle, inode,
1215 					     page_buffers(page), from, to, NULL,
1216 					     do_journal_get_write_access);
1217 	}
1218 
1219 	if (ret) {
1220 		bool extended = (pos + len > inode->i_size) &&
1221 				!ext4_verity_in_progress(inode);
1222 
1223 		unlock_page(page);
1224 		/*
1225 		 * __block_write_begin may have instantiated a few blocks
1226 		 * outside i_size.  Trim these off again. Don't need
1227 		 * i_size_read because we hold i_mutex.
1228 		 *
1229 		 * Add inode to orphan list in case we crash before
1230 		 * truncate finishes
1231 		 */
1232 		if (extended && ext4_can_truncate(inode))
1233 			ext4_orphan_add(handle, inode);
1234 
1235 		ext4_journal_stop(handle);
1236 		if (extended) {
1237 			ext4_truncate_failed_write(inode);
1238 			/*
1239 			 * If truncate failed early the inode might
1240 			 * still be on the orphan list; we need to
1241 			 * make sure the inode is removed from the
1242 			 * orphan list in that case.
1243 			 */
1244 			if (inode->i_nlink)
1245 				ext4_orphan_del(NULL, inode);
1246 		}
1247 
1248 		if (ret == -ENOSPC &&
1249 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1250 			goto retry_journal;
1251 		put_page(page);
1252 		return ret;
1253 	}
1254 	*pagep = page;
1255 	return ret;
1256 }
1257 
1258 /* For write_end() in data=journal mode */
1259 static int write_end_fn(handle_t *handle, struct inode *inode,
1260 			struct buffer_head *bh)
1261 {
1262 	int ret;
1263 	if (!buffer_mapped(bh) || buffer_freed(bh))
1264 		return 0;
1265 	set_buffer_uptodate(bh);
1266 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1267 	clear_buffer_meta(bh);
1268 	clear_buffer_prio(bh);
1269 	return ret;
1270 }
1271 
1272 /*
1273  * We need to pick up the new inode size which generic_commit_write gave us
1274  * `file' can be NULL - eg, when called from page_symlink().
1275  *
1276  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1277  * buffers are managed internally.
1278  */
1279 static int ext4_write_end(struct file *file,
1280 			  struct address_space *mapping,
1281 			  loff_t pos, unsigned len, unsigned copied,
1282 			  struct page *page, void *fsdata)
1283 {
1284 	handle_t *handle = ext4_journal_current_handle();
1285 	struct inode *inode = mapping->host;
1286 	loff_t old_size = inode->i_size;
1287 	int ret = 0, ret2;
1288 	int i_size_changed = 0;
1289 	bool verity = ext4_verity_in_progress(inode);
1290 
1291 	trace_ext4_write_end(inode, pos, len, copied);
1292 
1293 	if (ext4_has_inline_data(inode))
1294 		return ext4_write_inline_data_end(inode, pos, len, copied, page);
1295 
1296 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1297 	/*
1298 	 * it's important to update i_size while still holding page lock:
1299 	 * page writeout could otherwise come in and zero beyond i_size.
1300 	 *
1301 	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1302 	 * blocks are being written past EOF, so skip the i_size update.
1303 	 */
1304 	if (!verity)
1305 		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1306 	unlock_page(page);
1307 	put_page(page);
1308 
1309 	if (old_size < pos && !verity)
1310 		pagecache_isize_extended(inode, old_size, pos);
1311 	/*
1312 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1313 	 * makes the holding time of page lock longer. Second, it forces lock
1314 	 * ordering of page lock and transaction start for journaling
1315 	 * filesystems.
1316 	 */
1317 	if (i_size_changed)
1318 		ret = ext4_mark_inode_dirty(handle, inode);
1319 
1320 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1321 		/* if we have allocated more blocks and copied
1322 		 * less. We will have blocks allocated outside
1323 		 * inode->i_size. So truncate them
1324 		 */
1325 		ext4_orphan_add(handle, inode);
1326 
1327 	ret2 = ext4_journal_stop(handle);
1328 	if (!ret)
1329 		ret = ret2;
1330 
1331 	if (pos + len > inode->i_size && !verity) {
1332 		ext4_truncate_failed_write(inode);
1333 		/*
1334 		 * If truncate failed early the inode might still be
1335 		 * on the orphan list; we need to make sure the inode
1336 		 * is removed from the orphan list in that case.
1337 		 */
1338 		if (inode->i_nlink)
1339 			ext4_orphan_del(NULL, inode);
1340 	}
1341 
1342 	return ret ? ret : copied;
1343 }
1344 
1345 /*
1346  * This is a private version of page_zero_new_buffers() which doesn't
1347  * set the buffer to be dirty, since in data=journalled mode we need
1348  * to call ext4_handle_dirty_metadata() instead.
1349  */
1350 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1351 					    struct inode *inode,
1352 					    struct page *page,
1353 					    unsigned from, unsigned to)
1354 {
1355 	unsigned int block_start = 0, block_end;
1356 	struct buffer_head *head, *bh;
1357 
1358 	bh = head = page_buffers(page);
1359 	do {
1360 		block_end = block_start + bh->b_size;
1361 		if (buffer_new(bh)) {
1362 			if (block_end > from && block_start < to) {
1363 				if (!PageUptodate(page)) {
1364 					unsigned start, size;
1365 
1366 					start = max(from, block_start);
1367 					size = min(to, block_end) - start;
1368 
1369 					zero_user(page, start, size);
1370 					write_end_fn(handle, inode, bh);
1371 				}
1372 				clear_buffer_new(bh);
1373 			}
1374 		}
1375 		block_start = block_end;
1376 		bh = bh->b_this_page;
1377 	} while (bh != head);
1378 }
1379 
1380 static int ext4_journalled_write_end(struct file *file,
1381 				     struct address_space *mapping,
1382 				     loff_t pos, unsigned len, unsigned copied,
1383 				     struct page *page, void *fsdata)
1384 {
1385 	handle_t *handle = ext4_journal_current_handle();
1386 	struct inode *inode = mapping->host;
1387 	loff_t old_size = inode->i_size;
1388 	int ret = 0, ret2;
1389 	int partial = 0;
1390 	unsigned from, to;
1391 	int size_changed = 0;
1392 	bool verity = ext4_verity_in_progress(inode);
1393 
1394 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1395 	from = pos & (PAGE_SIZE - 1);
1396 	to = from + len;
1397 
1398 	BUG_ON(!ext4_handle_valid(handle));
1399 
1400 	if (ext4_has_inline_data(inode))
1401 		return ext4_write_inline_data_end(inode, pos, len, copied, page);
1402 
1403 	if (unlikely(copied < len) && !PageUptodate(page)) {
1404 		copied = 0;
1405 		ext4_journalled_zero_new_buffers(handle, inode, page, from, to);
1406 	} else {
1407 		if (unlikely(copied < len))
1408 			ext4_journalled_zero_new_buffers(handle, inode, page,
1409 							 from + copied, to);
1410 		ret = ext4_walk_page_buffers(handle, inode, page_buffers(page),
1411 					     from, from + copied, &partial,
1412 					     write_end_fn);
1413 		if (!partial)
1414 			SetPageUptodate(page);
1415 	}
1416 	if (!verity)
1417 		size_changed = ext4_update_inode_size(inode, pos + copied);
1418 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1419 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1420 	unlock_page(page);
1421 	put_page(page);
1422 
1423 	if (old_size < pos && !verity)
1424 		pagecache_isize_extended(inode, old_size, pos);
1425 
1426 	if (size_changed) {
1427 		ret2 = ext4_mark_inode_dirty(handle, inode);
1428 		if (!ret)
1429 			ret = ret2;
1430 	}
1431 
1432 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1433 		/* if we have allocated more blocks and copied
1434 		 * less. We will have blocks allocated outside
1435 		 * inode->i_size. So truncate them
1436 		 */
1437 		ext4_orphan_add(handle, inode);
1438 
1439 	ret2 = ext4_journal_stop(handle);
1440 	if (!ret)
1441 		ret = ret2;
1442 	if (pos + len > inode->i_size && !verity) {
1443 		ext4_truncate_failed_write(inode);
1444 		/*
1445 		 * If truncate failed early the inode might still be
1446 		 * on the orphan list; we need to make sure the inode
1447 		 * is removed from the orphan list in that case.
1448 		 */
1449 		if (inode->i_nlink)
1450 			ext4_orphan_del(NULL, inode);
1451 	}
1452 
1453 	return ret ? ret : copied;
1454 }
1455 
1456 /*
1457  * Reserve space for a single cluster
1458  */
1459 static int ext4_da_reserve_space(struct inode *inode)
1460 {
1461 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1462 	struct ext4_inode_info *ei = EXT4_I(inode);
1463 	int ret;
1464 
1465 	/*
1466 	 * We will charge metadata quota at writeout time; this saves
1467 	 * us from metadata over-estimation, though we may go over by
1468 	 * a small amount in the end.  Here we just reserve for data.
1469 	 */
1470 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1471 	if (ret)
1472 		return ret;
1473 
1474 	spin_lock(&ei->i_block_reservation_lock);
1475 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1476 		spin_unlock(&ei->i_block_reservation_lock);
1477 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1478 		return -ENOSPC;
1479 	}
1480 	ei->i_reserved_data_blocks++;
1481 	trace_ext4_da_reserve_space(inode);
1482 	spin_unlock(&ei->i_block_reservation_lock);
1483 
1484 	return 0;       /* success */
1485 }
1486 
1487 void ext4_da_release_space(struct inode *inode, int to_free)
1488 {
1489 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1490 	struct ext4_inode_info *ei = EXT4_I(inode);
1491 
1492 	if (!to_free)
1493 		return;		/* Nothing to release, exit */
1494 
1495 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1496 
1497 	trace_ext4_da_release_space(inode, to_free);
1498 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1499 		/*
1500 		 * if there aren't enough reserved blocks, then the
1501 		 * counter is messed up somewhere.  Since this
1502 		 * function is called from invalidate page, it's
1503 		 * harmless to return without any action.
1504 		 */
1505 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1506 			 "ino %lu, to_free %d with only %d reserved "
1507 			 "data blocks", inode->i_ino, to_free,
1508 			 ei->i_reserved_data_blocks);
1509 		WARN_ON(1);
1510 		to_free = ei->i_reserved_data_blocks;
1511 	}
1512 	ei->i_reserved_data_blocks -= to_free;
1513 
1514 	/* update fs dirty data blocks counter */
1515 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1516 
1517 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1518 
1519 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1520 }
1521 
1522 /*
1523  * Delayed allocation stuff
1524  */
1525 
1526 struct mpage_da_data {
1527 	struct inode *inode;
1528 	struct writeback_control *wbc;
1529 
1530 	pgoff_t first_page;	/* The first page to write */
1531 	pgoff_t next_page;	/* Current page to examine */
1532 	pgoff_t last_page;	/* Last page to examine */
1533 	/*
1534 	 * Extent to map - this can be after first_page because that can be
1535 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1536 	 * is delalloc or unwritten.
1537 	 */
1538 	struct ext4_map_blocks map;
1539 	struct ext4_io_submit io_submit;	/* IO submission data */
1540 	unsigned int do_map:1;
1541 	unsigned int scanned_until_end:1;
1542 };
1543 
1544 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1545 				       bool invalidate)
1546 {
1547 	int nr_pages, i;
1548 	pgoff_t index, end;
1549 	struct pagevec pvec;
1550 	struct inode *inode = mpd->inode;
1551 	struct address_space *mapping = inode->i_mapping;
1552 
1553 	/* This is necessary when next_page == 0. */
1554 	if (mpd->first_page >= mpd->next_page)
1555 		return;
1556 
1557 	mpd->scanned_until_end = 0;
1558 	index = mpd->first_page;
1559 	end   = mpd->next_page - 1;
1560 	if (invalidate) {
1561 		ext4_lblk_t start, last;
1562 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1563 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1564 		ext4_es_remove_extent(inode, start, last - start + 1);
1565 	}
1566 
1567 	pagevec_init(&pvec);
1568 	while (index <= end) {
1569 		nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1570 		if (nr_pages == 0)
1571 			break;
1572 		for (i = 0; i < nr_pages; i++) {
1573 			struct page *page = pvec.pages[i];
1574 
1575 			BUG_ON(!PageLocked(page));
1576 			BUG_ON(PageWriteback(page));
1577 			if (invalidate) {
1578 				if (page_mapped(page))
1579 					clear_page_dirty_for_io(page);
1580 				block_invalidatepage(page, 0, PAGE_SIZE);
1581 				ClearPageUptodate(page);
1582 			}
1583 			unlock_page(page);
1584 		}
1585 		pagevec_release(&pvec);
1586 	}
1587 }
1588 
1589 static void ext4_print_free_blocks(struct inode *inode)
1590 {
1591 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1592 	struct super_block *sb = inode->i_sb;
1593 	struct ext4_inode_info *ei = EXT4_I(inode);
1594 
1595 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1596 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1597 			ext4_count_free_clusters(sb)));
1598 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1599 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1600 	       (long long) EXT4_C2B(EXT4_SB(sb),
1601 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1602 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1603 	       (long long) EXT4_C2B(EXT4_SB(sb),
1604 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1605 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1606 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1607 		 ei->i_reserved_data_blocks);
1608 	return;
1609 }
1610 
1611 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct inode *inode,
1612 				      struct buffer_head *bh)
1613 {
1614 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1615 }
1616 
1617 /*
1618  * ext4_insert_delayed_block - adds a delayed block to the extents status
1619  *                             tree, incrementing the reserved cluster/block
1620  *                             count or making a pending reservation
1621  *                             where needed
1622  *
1623  * @inode - file containing the newly added block
1624  * @lblk - logical block to be added
1625  *
1626  * Returns 0 on success, negative error code on failure.
1627  */
1628 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1629 {
1630 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1631 	int ret;
1632 	bool allocated = false;
1633 	bool reserved = false;
1634 
1635 	/*
1636 	 * If the cluster containing lblk is shared with a delayed,
1637 	 * written, or unwritten extent in a bigalloc file system, it's
1638 	 * already been accounted for and does not need to be reserved.
1639 	 * A pending reservation must be made for the cluster if it's
1640 	 * shared with a written or unwritten extent and doesn't already
1641 	 * have one.  Written and unwritten extents can be purged from the
1642 	 * extents status tree if the system is under memory pressure, so
1643 	 * it's necessary to examine the extent tree if a search of the
1644 	 * extents status tree doesn't get a match.
1645 	 */
1646 	if (sbi->s_cluster_ratio == 1) {
1647 		ret = ext4_da_reserve_space(inode);
1648 		if (ret != 0)   /* ENOSPC */
1649 			goto errout;
1650 		reserved = true;
1651 	} else {   /* bigalloc */
1652 		if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1653 			if (!ext4_es_scan_clu(inode,
1654 					      &ext4_es_is_mapped, lblk)) {
1655 				ret = ext4_clu_mapped(inode,
1656 						      EXT4_B2C(sbi, lblk));
1657 				if (ret < 0)
1658 					goto errout;
1659 				if (ret == 0) {
1660 					ret = ext4_da_reserve_space(inode);
1661 					if (ret != 0)   /* ENOSPC */
1662 						goto errout;
1663 					reserved = true;
1664 				} else {
1665 					allocated = true;
1666 				}
1667 			} else {
1668 				allocated = true;
1669 			}
1670 		}
1671 	}
1672 
1673 	ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1674 	if (ret && reserved)
1675 		ext4_da_release_space(inode, 1);
1676 
1677 errout:
1678 	return ret;
1679 }
1680 
1681 /*
1682  * This function is grabs code from the very beginning of
1683  * ext4_map_blocks, but assumes that the caller is from delayed write
1684  * time. This function looks up the requested blocks and sets the
1685  * buffer delay bit under the protection of i_data_sem.
1686  */
1687 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1688 			      struct ext4_map_blocks *map,
1689 			      struct buffer_head *bh)
1690 {
1691 	struct extent_status es;
1692 	int retval;
1693 	sector_t invalid_block = ~((sector_t) 0xffff);
1694 #ifdef ES_AGGRESSIVE_TEST
1695 	struct ext4_map_blocks orig_map;
1696 
1697 	memcpy(&orig_map, map, sizeof(*map));
1698 #endif
1699 
1700 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1701 		invalid_block = ~0;
1702 
1703 	map->m_flags = 0;
1704 	ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1705 		  (unsigned long) map->m_lblk);
1706 
1707 	/* Lookup extent status tree firstly */
1708 	if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1709 		if (ext4_es_is_hole(&es)) {
1710 			retval = 0;
1711 			down_read(&EXT4_I(inode)->i_data_sem);
1712 			goto add_delayed;
1713 		}
1714 
1715 		/*
1716 		 * Delayed extent could be allocated by fallocate.
1717 		 * So we need to check it.
1718 		 */
1719 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1720 			map_bh(bh, inode->i_sb, invalid_block);
1721 			set_buffer_new(bh);
1722 			set_buffer_delay(bh);
1723 			return 0;
1724 		}
1725 
1726 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1727 		retval = es.es_len - (iblock - es.es_lblk);
1728 		if (retval > map->m_len)
1729 			retval = map->m_len;
1730 		map->m_len = retval;
1731 		if (ext4_es_is_written(&es))
1732 			map->m_flags |= EXT4_MAP_MAPPED;
1733 		else if (ext4_es_is_unwritten(&es))
1734 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1735 		else
1736 			BUG();
1737 
1738 #ifdef ES_AGGRESSIVE_TEST
1739 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1740 #endif
1741 		return retval;
1742 	}
1743 
1744 	/*
1745 	 * Try to see if we can get the block without requesting a new
1746 	 * file system block.
1747 	 */
1748 	down_read(&EXT4_I(inode)->i_data_sem);
1749 	if (ext4_has_inline_data(inode))
1750 		retval = 0;
1751 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1752 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1753 	else
1754 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1755 
1756 add_delayed:
1757 	if (retval == 0) {
1758 		int ret;
1759 
1760 		/*
1761 		 * XXX: __block_prepare_write() unmaps passed block,
1762 		 * is it OK?
1763 		 */
1764 
1765 		ret = ext4_insert_delayed_block(inode, map->m_lblk);
1766 		if (ret != 0) {
1767 			retval = ret;
1768 			goto out_unlock;
1769 		}
1770 
1771 		map_bh(bh, inode->i_sb, invalid_block);
1772 		set_buffer_new(bh);
1773 		set_buffer_delay(bh);
1774 	} else if (retval > 0) {
1775 		int ret;
1776 		unsigned int status;
1777 
1778 		if (unlikely(retval != map->m_len)) {
1779 			ext4_warning(inode->i_sb,
1780 				     "ES len assertion failed for inode "
1781 				     "%lu: retval %d != map->m_len %d",
1782 				     inode->i_ino, retval, map->m_len);
1783 			WARN_ON(1);
1784 		}
1785 
1786 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1787 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1788 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1789 					    map->m_pblk, status);
1790 		if (ret != 0)
1791 			retval = ret;
1792 	}
1793 
1794 out_unlock:
1795 	up_read((&EXT4_I(inode)->i_data_sem));
1796 
1797 	return retval;
1798 }
1799 
1800 /*
1801  * This is a special get_block_t callback which is used by
1802  * ext4_da_write_begin().  It will either return mapped block or
1803  * reserve space for a single block.
1804  *
1805  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1806  * We also have b_blocknr = -1 and b_bdev initialized properly
1807  *
1808  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1809  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1810  * initialized properly.
1811  */
1812 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1813 			   struct buffer_head *bh, int create)
1814 {
1815 	struct ext4_map_blocks map;
1816 	int ret = 0;
1817 
1818 	BUG_ON(create == 0);
1819 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1820 
1821 	map.m_lblk = iblock;
1822 	map.m_len = 1;
1823 
1824 	/*
1825 	 * first, we need to know whether the block is allocated already
1826 	 * preallocated blocks are unmapped but should treated
1827 	 * the same as allocated blocks.
1828 	 */
1829 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1830 	if (ret <= 0)
1831 		return ret;
1832 
1833 	map_bh(bh, inode->i_sb, map.m_pblk);
1834 	ext4_update_bh_state(bh, map.m_flags);
1835 
1836 	if (buffer_unwritten(bh)) {
1837 		/* A delayed write to unwritten bh should be marked
1838 		 * new and mapped.  Mapped ensures that we don't do
1839 		 * get_block multiple times when we write to the same
1840 		 * offset and new ensures that we do proper zero out
1841 		 * for partial write.
1842 		 */
1843 		set_buffer_new(bh);
1844 		set_buffer_mapped(bh);
1845 	}
1846 	return 0;
1847 }
1848 
1849 static int __ext4_journalled_writepage(struct page *page,
1850 				       unsigned int len)
1851 {
1852 	struct address_space *mapping = page->mapping;
1853 	struct inode *inode = mapping->host;
1854 	handle_t *handle = NULL;
1855 	int ret = 0, err = 0;
1856 	int inline_data = ext4_has_inline_data(inode);
1857 	struct buffer_head *inode_bh = NULL;
1858 	loff_t size;
1859 
1860 	ClearPageChecked(page);
1861 
1862 	if (inline_data) {
1863 		BUG_ON(page->index != 0);
1864 		BUG_ON(len > ext4_get_max_inline_size(inode));
1865 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1866 		if (inode_bh == NULL)
1867 			goto out;
1868 	}
1869 	/*
1870 	 * We need to release the page lock before we start the
1871 	 * journal, so grab a reference so the page won't disappear
1872 	 * out from under us.
1873 	 */
1874 	get_page(page);
1875 	unlock_page(page);
1876 
1877 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1878 				    ext4_writepage_trans_blocks(inode));
1879 	if (IS_ERR(handle)) {
1880 		ret = PTR_ERR(handle);
1881 		put_page(page);
1882 		goto out_no_pagelock;
1883 	}
1884 	BUG_ON(!ext4_handle_valid(handle));
1885 
1886 	lock_page(page);
1887 	put_page(page);
1888 	size = i_size_read(inode);
1889 	if (page->mapping != mapping || page_offset(page) > size) {
1890 		/* The page got truncated from under us */
1891 		ext4_journal_stop(handle);
1892 		ret = 0;
1893 		goto out;
1894 	}
1895 
1896 	if (inline_data) {
1897 		ret = ext4_mark_inode_dirty(handle, inode);
1898 	} else {
1899 		struct buffer_head *page_bufs = page_buffers(page);
1900 
1901 		if (page->index == size >> PAGE_SHIFT)
1902 			len = size & ~PAGE_MASK;
1903 		else
1904 			len = PAGE_SIZE;
1905 
1906 		ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1907 					     NULL, do_journal_get_write_access);
1908 
1909 		err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1910 					     NULL, write_end_fn);
1911 	}
1912 	if (ret == 0)
1913 		ret = err;
1914 	err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
1915 	if (ret == 0)
1916 		ret = err;
1917 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1918 	err = ext4_journal_stop(handle);
1919 	if (!ret)
1920 		ret = err;
1921 
1922 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1923 out:
1924 	unlock_page(page);
1925 out_no_pagelock:
1926 	brelse(inode_bh);
1927 	return ret;
1928 }
1929 
1930 /*
1931  * Note that we don't need to start a transaction unless we're journaling data
1932  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1933  * need to file the inode to the transaction's list in ordered mode because if
1934  * we are writing back data added by write(), the inode is already there and if
1935  * we are writing back data modified via mmap(), no one guarantees in which
1936  * transaction the data will hit the disk. In case we are journaling data, we
1937  * cannot start transaction directly because transaction start ranks above page
1938  * lock so we have to do some magic.
1939  *
1940  * This function can get called via...
1941  *   - ext4_writepages after taking page lock (have journal handle)
1942  *   - journal_submit_inode_data_buffers (no journal handle)
1943  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1944  *   - grab_page_cache when doing write_begin (have journal handle)
1945  *
1946  * We don't do any block allocation in this function. If we have page with
1947  * multiple blocks we need to write those buffer_heads that are mapped. This
1948  * is important for mmaped based write. So if we do with blocksize 1K
1949  * truncate(f, 1024);
1950  * a = mmap(f, 0, 4096);
1951  * a[0] = 'a';
1952  * truncate(f, 4096);
1953  * we have in the page first buffer_head mapped via page_mkwrite call back
1954  * but other buffer_heads would be unmapped but dirty (dirty done via the
1955  * do_wp_page). So writepage should write the first block. If we modify
1956  * the mmap area beyond 1024 we will again get a page_fault and the
1957  * page_mkwrite callback will do the block allocation and mark the
1958  * buffer_heads mapped.
1959  *
1960  * We redirty the page if we have any buffer_heads that is either delay or
1961  * unwritten in the page.
1962  *
1963  * We can get recursively called as show below.
1964  *
1965  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1966  *		ext4_writepage()
1967  *
1968  * But since we don't do any block allocation we should not deadlock.
1969  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1970  */
1971 static int ext4_writepage(struct page *page,
1972 			  struct writeback_control *wbc)
1973 {
1974 	int ret = 0;
1975 	loff_t size;
1976 	unsigned int len;
1977 	struct buffer_head *page_bufs = NULL;
1978 	struct inode *inode = page->mapping->host;
1979 	struct ext4_io_submit io_submit;
1980 	bool keep_towrite = false;
1981 
1982 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
1983 		inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
1984 		unlock_page(page);
1985 		return -EIO;
1986 	}
1987 
1988 	trace_ext4_writepage(page);
1989 	size = i_size_read(inode);
1990 	if (page->index == size >> PAGE_SHIFT &&
1991 	    !ext4_verity_in_progress(inode))
1992 		len = size & ~PAGE_MASK;
1993 	else
1994 		len = PAGE_SIZE;
1995 
1996 	page_bufs = page_buffers(page);
1997 	/*
1998 	 * We cannot do block allocation or other extent handling in this
1999 	 * function. If there are buffers needing that, we have to redirty
2000 	 * the page. But we may reach here when we do a journal commit via
2001 	 * journal_submit_inode_data_buffers() and in that case we must write
2002 	 * allocated buffers to achieve data=ordered mode guarantees.
2003 	 *
2004 	 * Also, if there is only one buffer per page (the fs block
2005 	 * size == the page size), if one buffer needs block
2006 	 * allocation or needs to modify the extent tree to clear the
2007 	 * unwritten flag, we know that the page can't be written at
2008 	 * all, so we might as well refuse the write immediately.
2009 	 * Unfortunately if the block size != page size, we can't as
2010 	 * easily detect this case using ext4_walk_page_buffers(), but
2011 	 * for the extremely common case, this is an optimization that
2012 	 * skips a useless round trip through ext4_bio_write_page().
2013 	 */
2014 	if (ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len, NULL,
2015 				   ext4_bh_delay_or_unwritten)) {
2016 		redirty_page_for_writepage(wbc, page);
2017 		if ((current->flags & PF_MEMALLOC) ||
2018 		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2019 			/*
2020 			 * For memory cleaning there's no point in writing only
2021 			 * some buffers. So just bail out. Warn if we came here
2022 			 * from direct reclaim.
2023 			 */
2024 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2025 							== PF_MEMALLOC);
2026 			unlock_page(page);
2027 			return 0;
2028 		}
2029 		keep_towrite = true;
2030 	}
2031 
2032 	if (PageChecked(page) && ext4_should_journal_data(inode))
2033 		/*
2034 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2035 		 * doesn't seem much point in redirtying the page here.
2036 		 */
2037 		return __ext4_journalled_writepage(page, len);
2038 
2039 	ext4_io_submit_init(&io_submit, wbc);
2040 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2041 	if (!io_submit.io_end) {
2042 		redirty_page_for_writepage(wbc, page);
2043 		unlock_page(page);
2044 		return -ENOMEM;
2045 	}
2046 	ret = ext4_bio_write_page(&io_submit, page, len, keep_towrite);
2047 	ext4_io_submit(&io_submit);
2048 	/* Drop io_end reference we got from init */
2049 	ext4_put_io_end_defer(io_submit.io_end);
2050 	return ret;
2051 }
2052 
2053 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2054 {
2055 	int len;
2056 	loff_t size;
2057 	int err;
2058 
2059 	BUG_ON(page->index != mpd->first_page);
2060 	clear_page_dirty_for_io(page);
2061 	/*
2062 	 * We have to be very careful here!  Nothing protects writeback path
2063 	 * against i_size changes and the page can be writeably mapped into
2064 	 * page tables. So an application can be growing i_size and writing
2065 	 * data through mmap while writeback runs. clear_page_dirty_for_io()
2066 	 * write-protects our page in page tables and the page cannot get
2067 	 * written to again until we release page lock. So only after
2068 	 * clear_page_dirty_for_io() we are safe to sample i_size for
2069 	 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2070 	 * on the barrier provided by TestClearPageDirty in
2071 	 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2072 	 * after page tables are updated.
2073 	 */
2074 	size = i_size_read(mpd->inode);
2075 	if (page->index == size >> PAGE_SHIFT &&
2076 	    !ext4_verity_in_progress(mpd->inode))
2077 		len = size & ~PAGE_MASK;
2078 	else
2079 		len = PAGE_SIZE;
2080 	err = ext4_bio_write_page(&mpd->io_submit, page, len, false);
2081 	if (!err)
2082 		mpd->wbc->nr_to_write--;
2083 	mpd->first_page++;
2084 
2085 	return err;
2086 }
2087 
2088 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2089 
2090 /*
2091  * mballoc gives us at most this number of blocks...
2092  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2093  * The rest of mballoc seems to handle chunks up to full group size.
2094  */
2095 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2096 
2097 /*
2098  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2099  *
2100  * @mpd - extent of blocks
2101  * @lblk - logical number of the block in the file
2102  * @bh - buffer head we want to add to the extent
2103  *
2104  * The function is used to collect contig. blocks in the same state. If the
2105  * buffer doesn't require mapping for writeback and we haven't started the
2106  * extent of buffers to map yet, the function returns 'true' immediately - the
2107  * caller can write the buffer right away. Otherwise the function returns true
2108  * if the block has been added to the extent, false if the block couldn't be
2109  * added.
2110  */
2111 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2112 				   struct buffer_head *bh)
2113 {
2114 	struct ext4_map_blocks *map = &mpd->map;
2115 
2116 	/* Buffer that doesn't need mapping for writeback? */
2117 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2118 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2119 		/* So far no extent to map => we write the buffer right away */
2120 		if (map->m_len == 0)
2121 			return true;
2122 		return false;
2123 	}
2124 
2125 	/* First block in the extent? */
2126 	if (map->m_len == 0) {
2127 		/* We cannot map unless handle is started... */
2128 		if (!mpd->do_map)
2129 			return false;
2130 		map->m_lblk = lblk;
2131 		map->m_len = 1;
2132 		map->m_flags = bh->b_state & BH_FLAGS;
2133 		return true;
2134 	}
2135 
2136 	/* Don't go larger than mballoc is willing to allocate */
2137 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2138 		return false;
2139 
2140 	/* Can we merge the block to our big extent? */
2141 	if (lblk == map->m_lblk + map->m_len &&
2142 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2143 		map->m_len++;
2144 		return true;
2145 	}
2146 	return false;
2147 }
2148 
2149 /*
2150  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2151  *
2152  * @mpd - extent of blocks for mapping
2153  * @head - the first buffer in the page
2154  * @bh - buffer we should start processing from
2155  * @lblk - logical number of the block in the file corresponding to @bh
2156  *
2157  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2158  * the page for IO if all buffers in this page were mapped and there's no
2159  * accumulated extent of buffers to map or add buffers in the page to the
2160  * extent of buffers to map. The function returns 1 if the caller can continue
2161  * by processing the next page, 0 if it should stop adding buffers to the
2162  * extent to map because we cannot extend it anymore. It can also return value
2163  * < 0 in case of error during IO submission.
2164  */
2165 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2166 				   struct buffer_head *head,
2167 				   struct buffer_head *bh,
2168 				   ext4_lblk_t lblk)
2169 {
2170 	struct inode *inode = mpd->inode;
2171 	int err;
2172 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2173 							>> inode->i_blkbits;
2174 
2175 	if (ext4_verity_in_progress(inode))
2176 		blocks = EXT_MAX_BLOCKS;
2177 
2178 	do {
2179 		BUG_ON(buffer_locked(bh));
2180 
2181 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2182 			/* Found extent to map? */
2183 			if (mpd->map.m_len)
2184 				return 0;
2185 			/* Buffer needs mapping and handle is not started? */
2186 			if (!mpd->do_map)
2187 				return 0;
2188 			/* Everything mapped so far and we hit EOF */
2189 			break;
2190 		}
2191 	} while (lblk++, (bh = bh->b_this_page) != head);
2192 	/* So far everything mapped? Submit the page for IO. */
2193 	if (mpd->map.m_len == 0) {
2194 		err = mpage_submit_page(mpd, head->b_page);
2195 		if (err < 0)
2196 			return err;
2197 	}
2198 	if (lblk >= blocks) {
2199 		mpd->scanned_until_end = 1;
2200 		return 0;
2201 	}
2202 	return 1;
2203 }
2204 
2205 /*
2206  * mpage_process_page - update page buffers corresponding to changed extent and
2207  *		       may submit fully mapped page for IO
2208  *
2209  * @mpd		- description of extent to map, on return next extent to map
2210  * @m_lblk	- logical block mapping.
2211  * @m_pblk	- corresponding physical mapping.
2212  * @map_bh	- determines on return whether this page requires any further
2213  *		  mapping or not.
2214  * Scan given page buffers corresponding to changed extent and update buffer
2215  * state according to new extent state.
2216  * We map delalloc buffers to their physical location, clear unwritten bits.
2217  * If the given page is not fully mapped, we update @map to the next extent in
2218  * the given page that needs mapping & return @map_bh as true.
2219  */
2220 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2221 			      ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2222 			      bool *map_bh)
2223 {
2224 	struct buffer_head *head, *bh;
2225 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2226 	ext4_lblk_t lblk = *m_lblk;
2227 	ext4_fsblk_t pblock = *m_pblk;
2228 	int err = 0;
2229 	int blkbits = mpd->inode->i_blkbits;
2230 	ssize_t io_end_size = 0;
2231 	struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2232 
2233 	bh = head = page_buffers(page);
2234 	do {
2235 		if (lblk < mpd->map.m_lblk)
2236 			continue;
2237 		if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2238 			/*
2239 			 * Buffer after end of mapped extent.
2240 			 * Find next buffer in the page to map.
2241 			 */
2242 			mpd->map.m_len = 0;
2243 			mpd->map.m_flags = 0;
2244 			io_end_vec->size += io_end_size;
2245 
2246 			err = mpage_process_page_bufs(mpd, head, bh, lblk);
2247 			if (err > 0)
2248 				err = 0;
2249 			if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2250 				io_end_vec = ext4_alloc_io_end_vec(io_end);
2251 				if (IS_ERR(io_end_vec)) {
2252 					err = PTR_ERR(io_end_vec);
2253 					goto out;
2254 				}
2255 				io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2256 			}
2257 			*map_bh = true;
2258 			goto out;
2259 		}
2260 		if (buffer_delay(bh)) {
2261 			clear_buffer_delay(bh);
2262 			bh->b_blocknr = pblock++;
2263 		}
2264 		clear_buffer_unwritten(bh);
2265 		io_end_size += (1 << blkbits);
2266 	} while (lblk++, (bh = bh->b_this_page) != head);
2267 
2268 	io_end_vec->size += io_end_size;
2269 	*map_bh = false;
2270 out:
2271 	*m_lblk = lblk;
2272 	*m_pblk = pblock;
2273 	return err;
2274 }
2275 
2276 /*
2277  * mpage_map_buffers - update buffers corresponding to changed extent and
2278  *		       submit fully mapped pages for IO
2279  *
2280  * @mpd - description of extent to map, on return next extent to map
2281  *
2282  * Scan buffers corresponding to changed extent (we expect corresponding pages
2283  * to be already locked) and update buffer state according to new extent state.
2284  * We map delalloc buffers to their physical location, clear unwritten bits,
2285  * and mark buffers as uninit when we perform writes to unwritten extents
2286  * and do extent conversion after IO is finished. If the last page is not fully
2287  * mapped, we update @map to the next extent in the last page that needs
2288  * mapping. Otherwise we submit the page for IO.
2289  */
2290 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2291 {
2292 	struct pagevec pvec;
2293 	int nr_pages, i;
2294 	struct inode *inode = mpd->inode;
2295 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2296 	pgoff_t start, end;
2297 	ext4_lblk_t lblk;
2298 	ext4_fsblk_t pblock;
2299 	int err;
2300 	bool map_bh = false;
2301 
2302 	start = mpd->map.m_lblk >> bpp_bits;
2303 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2304 	lblk = start << bpp_bits;
2305 	pblock = mpd->map.m_pblk;
2306 
2307 	pagevec_init(&pvec);
2308 	while (start <= end) {
2309 		nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2310 						&start, end);
2311 		if (nr_pages == 0)
2312 			break;
2313 		for (i = 0; i < nr_pages; i++) {
2314 			struct page *page = pvec.pages[i];
2315 
2316 			err = mpage_process_page(mpd, page, &lblk, &pblock,
2317 						 &map_bh);
2318 			/*
2319 			 * If map_bh is true, means page may require further bh
2320 			 * mapping, or maybe the page was submitted for IO.
2321 			 * So we return to call further extent mapping.
2322 			 */
2323 			if (err < 0 || map_bh)
2324 				goto out;
2325 			/* Page fully mapped - let IO run! */
2326 			err = mpage_submit_page(mpd, page);
2327 			if (err < 0)
2328 				goto out;
2329 		}
2330 		pagevec_release(&pvec);
2331 	}
2332 	/* Extent fully mapped and matches with page boundary. We are done. */
2333 	mpd->map.m_len = 0;
2334 	mpd->map.m_flags = 0;
2335 	return 0;
2336 out:
2337 	pagevec_release(&pvec);
2338 	return err;
2339 }
2340 
2341 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2342 {
2343 	struct inode *inode = mpd->inode;
2344 	struct ext4_map_blocks *map = &mpd->map;
2345 	int get_blocks_flags;
2346 	int err, dioread_nolock;
2347 
2348 	trace_ext4_da_write_pages_extent(inode, map);
2349 	/*
2350 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2351 	 * to convert an unwritten extent to be initialized (in the case
2352 	 * where we have written into one or more preallocated blocks).  It is
2353 	 * possible that we're going to need more metadata blocks than
2354 	 * previously reserved. However we must not fail because we're in
2355 	 * writeback and there is nothing we can do about it so it might result
2356 	 * in data loss.  So use reserved blocks to allocate metadata if
2357 	 * possible.
2358 	 *
2359 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2360 	 * the blocks in question are delalloc blocks.  This indicates
2361 	 * that the blocks and quotas has already been checked when
2362 	 * the data was copied into the page cache.
2363 	 */
2364 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2365 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2366 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2367 	dioread_nolock = ext4_should_dioread_nolock(inode);
2368 	if (dioread_nolock)
2369 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2370 	if (map->m_flags & BIT(BH_Delay))
2371 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2372 
2373 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2374 	if (err < 0)
2375 		return err;
2376 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2377 		if (!mpd->io_submit.io_end->handle &&
2378 		    ext4_handle_valid(handle)) {
2379 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2380 			handle->h_rsv_handle = NULL;
2381 		}
2382 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2383 	}
2384 
2385 	BUG_ON(map->m_len == 0);
2386 	return 0;
2387 }
2388 
2389 /*
2390  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2391  *				 mpd->len and submit pages underlying it for IO
2392  *
2393  * @handle - handle for journal operations
2394  * @mpd - extent to map
2395  * @give_up_on_write - we set this to true iff there is a fatal error and there
2396  *                     is no hope of writing the data. The caller should discard
2397  *                     dirty pages to avoid infinite loops.
2398  *
2399  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2400  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2401  * them to initialized or split the described range from larger unwritten
2402  * extent. Note that we need not map all the described range since allocation
2403  * can return less blocks or the range is covered by more unwritten extents. We
2404  * cannot map more because we are limited by reserved transaction credits. On
2405  * the other hand we always make sure that the last touched page is fully
2406  * mapped so that it can be written out (and thus forward progress is
2407  * guaranteed). After mapping we submit all mapped pages for IO.
2408  */
2409 static int mpage_map_and_submit_extent(handle_t *handle,
2410 				       struct mpage_da_data *mpd,
2411 				       bool *give_up_on_write)
2412 {
2413 	struct inode *inode = mpd->inode;
2414 	struct ext4_map_blocks *map = &mpd->map;
2415 	int err;
2416 	loff_t disksize;
2417 	int progress = 0;
2418 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2419 	struct ext4_io_end_vec *io_end_vec;
2420 
2421 	io_end_vec = ext4_alloc_io_end_vec(io_end);
2422 	if (IS_ERR(io_end_vec))
2423 		return PTR_ERR(io_end_vec);
2424 	io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2425 	do {
2426 		err = mpage_map_one_extent(handle, mpd);
2427 		if (err < 0) {
2428 			struct super_block *sb = inode->i_sb;
2429 
2430 			if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2431 			    ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
2432 				goto invalidate_dirty_pages;
2433 			/*
2434 			 * Let the uper layers retry transient errors.
2435 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2436 			 * is non-zero, a commit should free up blocks.
2437 			 */
2438 			if ((err == -ENOMEM) ||
2439 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2440 				if (progress)
2441 					goto update_disksize;
2442 				return err;
2443 			}
2444 			ext4_msg(sb, KERN_CRIT,
2445 				 "Delayed block allocation failed for "
2446 				 "inode %lu at logical offset %llu with"
2447 				 " max blocks %u with error %d",
2448 				 inode->i_ino,
2449 				 (unsigned long long)map->m_lblk,
2450 				 (unsigned)map->m_len, -err);
2451 			ext4_msg(sb, KERN_CRIT,
2452 				 "This should not happen!! Data will "
2453 				 "be lost\n");
2454 			if (err == -ENOSPC)
2455 				ext4_print_free_blocks(inode);
2456 		invalidate_dirty_pages:
2457 			*give_up_on_write = true;
2458 			return err;
2459 		}
2460 		progress = 1;
2461 		/*
2462 		 * Update buffer state, submit mapped pages, and get us new
2463 		 * extent to map
2464 		 */
2465 		err = mpage_map_and_submit_buffers(mpd);
2466 		if (err < 0)
2467 			goto update_disksize;
2468 	} while (map->m_len);
2469 
2470 update_disksize:
2471 	/*
2472 	 * Update on-disk size after IO is submitted.  Races with
2473 	 * truncate are avoided by checking i_size under i_data_sem.
2474 	 */
2475 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2476 	if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2477 		int err2;
2478 		loff_t i_size;
2479 
2480 		down_write(&EXT4_I(inode)->i_data_sem);
2481 		i_size = i_size_read(inode);
2482 		if (disksize > i_size)
2483 			disksize = i_size;
2484 		if (disksize > EXT4_I(inode)->i_disksize)
2485 			EXT4_I(inode)->i_disksize = disksize;
2486 		up_write(&EXT4_I(inode)->i_data_sem);
2487 		err2 = ext4_mark_inode_dirty(handle, inode);
2488 		if (err2) {
2489 			ext4_error_err(inode->i_sb, -err2,
2490 				       "Failed to mark inode %lu dirty",
2491 				       inode->i_ino);
2492 		}
2493 		if (!err)
2494 			err = err2;
2495 	}
2496 	return err;
2497 }
2498 
2499 /*
2500  * Calculate the total number of credits to reserve for one writepages
2501  * iteration. This is called from ext4_writepages(). We map an extent of
2502  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2503  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2504  * bpp - 1 blocks in bpp different extents.
2505  */
2506 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2507 {
2508 	int bpp = ext4_journal_blocks_per_page(inode);
2509 
2510 	return ext4_meta_trans_blocks(inode,
2511 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2512 }
2513 
2514 /*
2515  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2516  * 				 and underlying extent to map
2517  *
2518  * @mpd - where to look for pages
2519  *
2520  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2521  * IO immediately. When we find a page which isn't mapped we start accumulating
2522  * extent of buffers underlying these pages that needs mapping (formed by
2523  * either delayed or unwritten buffers). We also lock the pages containing
2524  * these buffers. The extent found is returned in @mpd structure (starting at
2525  * mpd->lblk with length mpd->len blocks).
2526  *
2527  * Note that this function can attach bios to one io_end structure which are
2528  * neither logically nor physically contiguous. Although it may seem as an
2529  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2530  * case as we need to track IO to all buffers underlying a page in one io_end.
2531  */
2532 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2533 {
2534 	struct address_space *mapping = mpd->inode->i_mapping;
2535 	struct pagevec pvec;
2536 	unsigned int nr_pages;
2537 	long left = mpd->wbc->nr_to_write;
2538 	pgoff_t index = mpd->first_page;
2539 	pgoff_t end = mpd->last_page;
2540 	xa_mark_t tag;
2541 	int i, err = 0;
2542 	int blkbits = mpd->inode->i_blkbits;
2543 	ext4_lblk_t lblk;
2544 	struct buffer_head *head;
2545 
2546 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2547 		tag = PAGECACHE_TAG_TOWRITE;
2548 	else
2549 		tag = PAGECACHE_TAG_DIRTY;
2550 
2551 	pagevec_init(&pvec);
2552 	mpd->map.m_len = 0;
2553 	mpd->next_page = index;
2554 	while (index <= end) {
2555 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2556 				tag);
2557 		if (nr_pages == 0)
2558 			break;
2559 
2560 		for (i = 0; i < nr_pages; i++) {
2561 			struct page *page = pvec.pages[i];
2562 
2563 			/*
2564 			 * Accumulated enough dirty pages? This doesn't apply
2565 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2566 			 * keep going because someone may be concurrently
2567 			 * dirtying pages, and we might have synced a lot of
2568 			 * newly appeared dirty pages, but have not synced all
2569 			 * of the old dirty pages.
2570 			 */
2571 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2572 				goto out;
2573 
2574 			/* If we can't merge this page, we are done. */
2575 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2576 				goto out;
2577 
2578 			lock_page(page);
2579 			/*
2580 			 * If the page is no longer dirty, or its mapping no
2581 			 * longer corresponds to inode we are writing (which
2582 			 * means it has been truncated or invalidated), or the
2583 			 * page is already under writeback and we are not doing
2584 			 * a data integrity writeback, skip the page
2585 			 */
2586 			if (!PageDirty(page) ||
2587 			    (PageWriteback(page) &&
2588 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2589 			    unlikely(page->mapping != mapping)) {
2590 				unlock_page(page);
2591 				continue;
2592 			}
2593 
2594 			wait_on_page_writeback(page);
2595 			BUG_ON(PageWriteback(page));
2596 
2597 			if (mpd->map.m_len == 0)
2598 				mpd->first_page = page->index;
2599 			mpd->next_page = page->index + 1;
2600 			/* Add all dirty buffers to mpd */
2601 			lblk = ((ext4_lblk_t)page->index) <<
2602 				(PAGE_SHIFT - blkbits);
2603 			head = page_buffers(page);
2604 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2605 			if (err <= 0)
2606 				goto out;
2607 			err = 0;
2608 			left--;
2609 		}
2610 		pagevec_release(&pvec);
2611 		cond_resched();
2612 	}
2613 	mpd->scanned_until_end = 1;
2614 	return 0;
2615 out:
2616 	pagevec_release(&pvec);
2617 	return err;
2618 }
2619 
2620 static int ext4_writepages(struct address_space *mapping,
2621 			   struct writeback_control *wbc)
2622 {
2623 	pgoff_t	writeback_index = 0;
2624 	long nr_to_write = wbc->nr_to_write;
2625 	int range_whole = 0;
2626 	int cycled = 1;
2627 	handle_t *handle = NULL;
2628 	struct mpage_da_data mpd;
2629 	struct inode *inode = mapping->host;
2630 	int needed_blocks, rsv_blocks = 0, ret = 0;
2631 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2632 	struct blk_plug plug;
2633 	bool give_up_on_write = false;
2634 
2635 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2636 		return -EIO;
2637 
2638 	percpu_down_read(&sbi->s_writepages_rwsem);
2639 	trace_ext4_writepages(inode, wbc);
2640 
2641 	/*
2642 	 * No pages to write? This is mainly a kludge to avoid starting
2643 	 * a transaction for special inodes like journal inode on last iput()
2644 	 * because that could violate lock ordering on umount
2645 	 */
2646 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2647 		goto out_writepages;
2648 
2649 	if (ext4_should_journal_data(inode)) {
2650 		ret = generic_writepages(mapping, wbc);
2651 		goto out_writepages;
2652 	}
2653 
2654 	/*
2655 	 * If the filesystem has aborted, it is read-only, so return
2656 	 * right away instead of dumping stack traces later on that
2657 	 * will obscure the real source of the problem.  We test
2658 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2659 	 * the latter could be true if the filesystem is mounted
2660 	 * read-only, and in that case, ext4_writepages should
2661 	 * *never* be called, so if that ever happens, we would want
2662 	 * the stack trace.
2663 	 */
2664 	if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2665 		     ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
2666 		ret = -EROFS;
2667 		goto out_writepages;
2668 	}
2669 
2670 	/*
2671 	 * If we have inline data and arrive here, it means that
2672 	 * we will soon create the block for the 1st page, so
2673 	 * we'd better clear the inline data here.
2674 	 */
2675 	if (ext4_has_inline_data(inode)) {
2676 		/* Just inode will be modified... */
2677 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2678 		if (IS_ERR(handle)) {
2679 			ret = PTR_ERR(handle);
2680 			goto out_writepages;
2681 		}
2682 		BUG_ON(ext4_test_inode_state(inode,
2683 				EXT4_STATE_MAY_INLINE_DATA));
2684 		ext4_destroy_inline_data(handle, inode);
2685 		ext4_journal_stop(handle);
2686 	}
2687 
2688 	if (ext4_should_dioread_nolock(inode)) {
2689 		/*
2690 		 * We may need to convert up to one extent per block in
2691 		 * the page and we may dirty the inode.
2692 		 */
2693 		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2694 						PAGE_SIZE >> inode->i_blkbits);
2695 	}
2696 
2697 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2698 		range_whole = 1;
2699 
2700 	if (wbc->range_cyclic) {
2701 		writeback_index = mapping->writeback_index;
2702 		if (writeback_index)
2703 			cycled = 0;
2704 		mpd.first_page = writeback_index;
2705 		mpd.last_page = -1;
2706 	} else {
2707 		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2708 		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2709 	}
2710 
2711 	mpd.inode = inode;
2712 	mpd.wbc = wbc;
2713 	ext4_io_submit_init(&mpd.io_submit, wbc);
2714 retry:
2715 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2716 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2717 	blk_start_plug(&plug);
2718 
2719 	/*
2720 	 * First writeback pages that don't need mapping - we can avoid
2721 	 * starting a transaction unnecessarily and also avoid being blocked
2722 	 * in the block layer on device congestion while having transaction
2723 	 * started.
2724 	 */
2725 	mpd.do_map = 0;
2726 	mpd.scanned_until_end = 0;
2727 	mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2728 	if (!mpd.io_submit.io_end) {
2729 		ret = -ENOMEM;
2730 		goto unplug;
2731 	}
2732 	ret = mpage_prepare_extent_to_map(&mpd);
2733 	/* Unlock pages we didn't use */
2734 	mpage_release_unused_pages(&mpd, false);
2735 	/* Submit prepared bio */
2736 	ext4_io_submit(&mpd.io_submit);
2737 	ext4_put_io_end_defer(mpd.io_submit.io_end);
2738 	mpd.io_submit.io_end = NULL;
2739 	if (ret < 0)
2740 		goto unplug;
2741 
2742 	while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2743 		/* For each extent of pages we use new io_end */
2744 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2745 		if (!mpd.io_submit.io_end) {
2746 			ret = -ENOMEM;
2747 			break;
2748 		}
2749 
2750 		/*
2751 		 * We have two constraints: We find one extent to map and we
2752 		 * must always write out whole page (makes a difference when
2753 		 * blocksize < pagesize) so that we don't block on IO when we
2754 		 * try to write out the rest of the page. Journalled mode is
2755 		 * not supported by delalloc.
2756 		 */
2757 		BUG_ON(ext4_should_journal_data(inode));
2758 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2759 
2760 		/* start a new transaction */
2761 		handle = ext4_journal_start_with_reserve(inode,
2762 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2763 		if (IS_ERR(handle)) {
2764 			ret = PTR_ERR(handle);
2765 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2766 			       "%ld pages, ino %lu; err %d", __func__,
2767 				wbc->nr_to_write, inode->i_ino, ret);
2768 			/* Release allocated io_end */
2769 			ext4_put_io_end(mpd.io_submit.io_end);
2770 			mpd.io_submit.io_end = NULL;
2771 			break;
2772 		}
2773 		mpd.do_map = 1;
2774 
2775 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2776 		ret = mpage_prepare_extent_to_map(&mpd);
2777 		if (!ret && mpd.map.m_len)
2778 			ret = mpage_map_and_submit_extent(handle, &mpd,
2779 					&give_up_on_write);
2780 		/*
2781 		 * Caution: If the handle is synchronous,
2782 		 * ext4_journal_stop() can wait for transaction commit
2783 		 * to finish which may depend on writeback of pages to
2784 		 * complete or on page lock to be released.  In that
2785 		 * case, we have to wait until after we have
2786 		 * submitted all the IO, released page locks we hold,
2787 		 * and dropped io_end reference (for extent conversion
2788 		 * to be able to complete) before stopping the handle.
2789 		 */
2790 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2791 			ext4_journal_stop(handle);
2792 			handle = NULL;
2793 			mpd.do_map = 0;
2794 		}
2795 		/* Unlock pages we didn't use */
2796 		mpage_release_unused_pages(&mpd, give_up_on_write);
2797 		/* Submit prepared bio */
2798 		ext4_io_submit(&mpd.io_submit);
2799 
2800 		/*
2801 		 * Drop our io_end reference we got from init. We have
2802 		 * to be careful and use deferred io_end finishing if
2803 		 * we are still holding the transaction as we can
2804 		 * release the last reference to io_end which may end
2805 		 * up doing unwritten extent conversion.
2806 		 */
2807 		if (handle) {
2808 			ext4_put_io_end_defer(mpd.io_submit.io_end);
2809 			ext4_journal_stop(handle);
2810 		} else
2811 			ext4_put_io_end(mpd.io_submit.io_end);
2812 		mpd.io_submit.io_end = NULL;
2813 
2814 		if (ret == -ENOSPC && sbi->s_journal) {
2815 			/*
2816 			 * Commit the transaction which would
2817 			 * free blocks released in the transaction
2818 			 * and try again
2819 			 */
2820 			jbd2_journal_force_commit_nested(sbi->s_journal);
2821 			ret = 0;
2822 			continue;
2823 		}
2824 		/* Fatal error - ENOMEM, EIO... */
2825 		if (ret)
2826 			break;
2827 	}
2828 unplug:
2829 	blk_finish_plug(&plug);
2830 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2831 		cycled = 1;
2832 		mpd.last_page = writeback_index - 1;
2833 		mpd.first_page = 0;
2834 		goto retry;
2835 	}
2836 
2837 	/* Update index */
2838 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2839 		/*
2840 		 * Set the writeback_index so that range_cyclic
2841 		 * mode will write it back later
2842 		 */
2843 		mapping->writeback_index = mpd.first_page;
2844 
2845 out_writepages:
2846 	trace_ext4_writepages_result(inode, wbc, ret,
2847 				     nr_to_write - wbc->nr_to_write);
2848 	percpu_up_read(&sbi->s_writepages_rwsem);
2849 	return ret;
2850 }
2851 
2852 static int ext4_dax_writepages(struct address_space *mapping,
2853 			       struct writeback_control *wbc)
2854 {
2855 	int ret;
2856 	long nr_to_write = wbc->nr_to_write;
2857 	struct inode *inode = mapping->host;
2858 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2859 
2860 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2861 		return -EIO;
2862 
2863 	percpu_down_read(&sbi->s_writepages_rwsem);
2864 	trace_ext4_writepages(inode, wbc);
2865 
2866 	ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2867 	trace_ext4_writepages_result(inode, wbc, ret,
2868 				     nr_to_write - wbc->nr_to_write);
2869 	percpu_up_read(&sbi->s_writepages_rwsem);
2870 	return ret;
2871 }
2872 
2873 static int ext4_nonda_switch(struct super_block *sb)
2874 {
2875 	s64 free_clusters, dirty_clusters;
2876 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2877 
2878 	/*
2879 	 * switch to non delalloc mode if we are running low
2880 	 * on free block. The free block accounting via percpu
2881 	 * counters can get slightly wrong with percpu_counter_batch getting
2882 	 * accumulated on each CPU without updating global counters
2883 	 * Delalloc need an accurate free block accounting. So switch
2884 	 * to non delalloc when we are near to error range.
2885 	 */
2886 	free_clusters =
2887 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2888 	dirty_clusters =
2889 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2890 	/*
2891 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2892 	 */
2893 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2894 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2895 
2896 	if (2 * free_clusters < 3 * dirty_clusters ||
2897 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2898 		/*
2899 		 * free block count is less than 150% of dirty blocks
2900 		 * or free blocks is less than watermark
2901 		 */
2902 		return 1;
2903 	}
2904 	return 0;
2905 }
2906 
2907 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2908 			       loff_t pos, unsigned len, unsigned flags,
2909 			       struct page **pagep, void **fsdata)
2910 {
2911 	int ret, retries = 0;
2912 	struct page *page;
2913 	pgoff_t index;
2914 	struct inode *inode = mapping->host;
2915 
2916 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2917 		return -EIO;
2918 
2919 	index = pos >> PAGE_SHIFT;
2920 
2921 	if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2922 	    ext4_verity_in_progress(inode)) {
2923 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2924 		return ext4_write_begin(file, mapping, pos,
2925 					len, flags, pagep, fsdata);
2926 	}
2927 	*fsdata = (void *)0;
2928 	trace_ext4_da_write_begin(inode, pos, len, flags);
2929 
2930 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2931 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2932 						      pos, len, flags,
2933 						      pagep, fsdata);
2934 		if (ret < 0)
2935 			return ret;
2936 		if (ret == 1)
2937 			return 0;
2938 	}
2939 
2940 retry:
2941 	page = grab_cache_page_write_begin(mapping, index, flags);
2942 	if (!page)
2943 		return -ENOMEM;
2944 
2945 	/* In case writeback began while the page was unlocked */
2946 	wait_for_stable_page(page);
2947 
2948 #ifdef CONFIG_FS_ENCRYPTION
2949 	ret = ext4_block_write_begin(page, pos, len,
2950 				     ext4_da_get_block_prep);
2951 #else
2952 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2953 #endif
2954 	if (ret < 0) {
2955 		unlock_page(page);
2956 		put_page(page);
2957 		/*
2958 		 * block_write_begin may have instantiated a few blocks
2959 		 * outside i_size.  Trim these off again. Don't need
2960 		 * i_size_read because we hold inode lock.
2961 		 */
2962 		if (pos + len > inode->i_size)
2963 			ext4_truncate_failed_write(inode);
2964 
2965 		if (ret == -ENOSPC &&
2966 		    ext4_should_retry_alloc(inode->i_sb, &retries))
2967 			goto retry;
2968 		return ret;
2969 	}
2970 
2971 	*pagep = page;
2972 	return ret;
2973 }
2974 
2975 /*
2976  * Check if we should update i_disksize
2977  * when write to the end of file but not require block allocation
2978  */
2979 static int ext4_da_should_update_i_disksize(struct page *page,
2980 					    unsigned long offset)
2981 {
2982 	struct buffer_head *bh;
2983 	struct inode *inode = page->mapping->host;
2984 	unsigned int idx;
2985 	int i;
2986 
2987 	bh = page_buffers(page);
2988 	idx = offset >> inode->i_blkbits;
2989 
2990 	for (i = 0; i < idx; i++)
2991 		bh = bh->b_this_page;
2992 
2993 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2994 		return 0;
2995 	return 1;
2996 }
2997 
2998 static int ext4_da_write_end(struct file *file,
2999 			     struct address_space *mapping,
3000 			     loff_t pos, unsigned len, unsigned copied,
3001 			     struct page *page, void *fsdata)
3002 {
3003 	struct inode *inode = mapping->host;
3004 	loff_t new_i_size;
3005 	unsigned long start, end;
3006 	int write_mode = (int)(unsigned long)fsdata;
3007 
3008 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3009 		return ext4_write_end(file, mapping, pos,
3010 				      len, copied, page, fsdata);
3011 
3012 	trace_ext4_da_write_end(inode, pos, len, copied);
3013 
3014 	if (write_mode != CONVERT_INLINE_DATA &&
3015 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3016 	    ext4_has_inline_data(inode))
3017 		return ext4_write_inline_data_end(inode, pos, len, copied, page);
3018 
3019 	start = pos & (PAGE_SIZE - 1);
3020 	end = start + copied - 1;
3021 
3022 	/*
3023 	 * Since we are holding inode lock, we are sure i_disksize <=
3024 	 * i_size. We also know that if i_disksize < i_size, there are
3025 	 * delalloc writes pending in the range upto i_size. If the end of
3026 	 * the current write is <= i_size, there's no need to touch
3027 	 * i_disksize since writeback will push i_disksize upto i_size
3028 	 * eventually. If the end of the current write is > i_size and
3029 	 * inside an allocated block (ext4_da_should_update_i_disksize()
3030 	 * check), we need to update i_disksize here as neither
3031 	 * ext4_writepage() nor certain ext4_writepages() paths not
3032 	 * allocating blocks update i_disksize.
3033 	 *
3034 	 * Note that we defer inode dirtying to generic_write_end() /
3035 	 * ext4_da_write_inline_data_end().
3036 	 */
3037 	new_i_size = pos + copied;
3038 	if (copied && new_i_size > inode->i_size &&
3039 	    ext4_da_should_update_i_disksize(page, end))
3040 		ext4_update_i_disksize(inode, new_i_size);
3041 
3042 	return generic_write_end(file, mapping, pos, len, copied, page, fsdata);
3043 }
3044 
3045 /*
3046  * Force all delayed allocation blocks to be allocated for a given inode.
3047  */
3048 int ext4_alloc_da_blocks(struct inode *inode)
3049 {
3050 	trace_ext4_alloc_da_blocks(inode);
3051 
3052 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3053 		return 0;
3054 
3055 	/*
3056 	 * We do something simple for now.  The filemap_flush() will
3057 	 * also start triggering a write of the data blocks, which is
3058 	 * not strictly speaking necessary (and for users of
3059 	 * laptop_mode, not even desirable).  However, to do otherwise
3060 	 * would require replicating code paths in:
3061 	 *
3062 	 * ext4_writepages() ->
3063 	 *    write_cache_pages() ---> (via passed in callback function)
3064 	 *        __mpage_da_writepage() -->
3065 	 *           mpage_add_bh_to_extent()
3066 	 *           mpage_da_map_blocks()
3067 	 *
3068 	 * The problem is that write_cache_pages(), located in
3069 	 * mm/page-writeback.c, marks pages clean in preparation for
3070 	 * doing I/O, which is not desirable if we're not planning on
3071 	 * doing I/O at all.
3072 	 *
3073 	 * We could call write_cache_pages(), and then redirty all of
3074 	 * the pages by calling redirty_page_for_writepage() but that
3075 	 * would be ugly in the extreme.  So instead we would need to
3076 	 * replicate parts of the code in the above functions,
3077 	 * simplifying them because we wouldn't actually intend to
3078 	 * write out the pages, but rather only collect contiguous
3079 	 * logical block extents, call the multi-block allocator, and
3080 	 * then update the buffer heads with the block allocations.
3081 	 *
3082 	 * For now, though, we'll cheat by calling filemap_flush(),
3083 	 * which will map the blocks, and start the I/O, but not
3084 	 * actually wait for the I/O to complete.
3085 	 */
3086 	return filemap_flush(inode->i_mapping);
3087 }
3088 
3089 /*
3090  * bmap() is special.  It gets used by applications such as lilo and by
3091  * the swapper to find the on-disk block of a specific piece of data.
3092  *
3093  * Naturally, this is dangerous if the block concerned is still in the
3094  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3095  * filesystem and enables swap, then they may get a nasty shock when the
3096  * data getting swapped to that swapfile suddenly gets overwritten by
3097  * the original zero's written out previously to the journal and
3098  * awaiting writeback in the kernel's buffer cache.
3099  *
3100  * So, if we see any bmap calls here on a modified, data-journaled file,
3101  * take extra steps to flush any blocks which might be in the cache.
3102  */
3103 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3104 {
3105 	struct inode *inode = mapping->host;
3106 	journal_t *journal;
3107 	int err;
3108 
3109 	/*
3110 	 * We can get here for an inline file via the FIBMAP ioctl
3111 	 */
3112 	if (ext4_has_inline_data(inode))
3113 		return 0;
3114 
3115 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3116 			test_opt(inode->i_sb, DELALLOC)) {
3117 		/*
3118 		 * With delalloc we want to sync the file
3119 		 * so that we can make sure we allocate
3120 		 * blocks for file
3121 		 */
3122 		filemap_write_and_wait(mapping);
3123 	}
3124 
3125 	if (EXT4_JOURNAL(inode) &&
3126 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3127 		/*
3128 		 * This is a REALLY heavyweight approach, but the use of
3129 		 * bmap on dirty files is expected to be extremely rare:
3130 		 * only if we run lilo or swapon on a freshly made file
3131 		 * do we expect this to happen.
3132 		 *
3133 		 * (bmap requires CAP_SYS_RAWIO so this does not
3134 		 * represent an unprivileged user DOS attack --- we'd be
3135 		 * in trouble if mortal users could trigger this path at
3136 		 * will.)
3137 		 *
3138 		 * NB. EXT4_STATE_JDATA is not set on files other than
3139 		 * regular files.  If somebody wants to bmap a directory
3140 		 * or symlink and gets confused because the buffer
3141 		 * hasn't yet been flushed to disk, they deserve
3142 		 * everything they get.
3143 		 */
3144 
3145 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3146 		journal = EXT4_JOURNAL(inode);
3147 		jbd2_journal_lock_updates(journal);
3148 		err = jbd2_journal_flush(journal, 0);
3149 		jbd2_journal_unlock_updates(journal);
3150 
3151 		if (err)
3152 			return 0;
3153 	}
3154 
3155 	return iomap_bmap(mapping, block, &ext4_iomap_ops);
3156 }
3157 
3158 static int ext4_readpage(struct file *file, struct page *page)
3159 {
3160 	int ret = -EAGAIN;
3161 	struct inode *inode = page->mapping->host;
3162 
3163 	trace_ext4_readpage(page);
3164 
3165 	if (ext4_has_inline_data(inode))
3166 		ret = ext4_readpage_inline(inode, page);
3167 
3168 	if (ret == -EAGAIN)
3169 		return ext4_mpage_readpages(inode, NULL, page);
3170 
3171 	return ret;
3172 }
3173 
3174 static void ext4_readahead(struct readahead_control *rac)
3175 {
3176 	struct inode *inode = rac->mapping->host;
3177 
3178 	/* If the file has inline data, no need to do readahead. */
3179 	if (ext4_has_inline_data(inode))
3180 		return;
3181 
3182 	ext4_mpage_readpages(inode, rac, NULL);
3183 }
3184 
3185 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3186 				unsigned int length)
3187 {
3188 	trace_ext4_invalidatepage(page, offset, length);
3189 
3190 	/* No journalling happens on data buffers when this function is used */
3191 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3192 
3193 	block_invalidatepage(page, offset, length);
3194 }
3195 
3196 static int __ext4_journalled_invalidatepage(struct page *page,
3197 					    unsigned int offset,
3198 					    unsigned int length)
3199 {
3200 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3201 
3202 	trace_ext4_journalled_invalidatepage(page, offset, length);
3203 
3204 	/*
3205 	 * If it's a full truncate we just forget about the pending dirtying
3206 	 */
3207 	if (offset == 0 && length == PAGE_SIZE)
3208 		ClearPageChecked(page);
3209 
3210 	return jbd2_journal_invalidatepage(journal, page, offset, length);
3211 }
3212 
3213 /* Wrapper for aops... */
3214 static void ext4_journalled_invalidatepage(struct page *page,
3215 					   unsigned int offset,
3216 					   unsigned int length)
3217 {
3218 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3219 }
3220 
3221 static int ext4_releasepage(struct page *page, gfp_t wait)
3222 {
3223 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3224 
3225 	trace_ext4_releasepage(page);
3226 
3227 	/* Page has dirty journalled data -> cannot release */
3228 	if (PageChecked(page))
3229 		return 0;
3230 	if (journal)
3231 		return jbd2_journal_try_to_free_buffers(journal, page);
3232 	else
3233 		return try_to_free_buffers(page);
3234 }
3235 
3236 static bool ext4_inode_datasync_dirty(struct inode *inode)
3237 {
3238 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3239 
3240 	if (journal) {
3241 		if (jbd2_transaction_committed(journal,
3242 			EXT4_I(inode)->i_datasync_tid))
3243 			return false;
3244 		if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3245 			return !list_empty(&EXT4_I(inode)->i_fc_list);
3246 		return true;
3247 	}
3248 
3249 	/* Any metadata buffers to write? */
3250 	if (!list_empty(&inode->i_mapping->private_list))
3251 		return true;
3252 	return inode->i_state & I_DIRTY_DATASYNC;
3253 }
3254 
3255 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3256 			   struct ext4_map_blocks *map, loff_t offset,
3257 			   loff_t length, unsigned int flags)
3258 {
3259 	u8 blkbits = inode->i_blkbits;
3260 
3261 	/*
3262 	 * Writes that span EOF might trigger an I/O size update on completion,
3263 	 * so consider them to be dirty for the purpose of O_DSYNC, even if
3264 	 * there is no other metadata changes being made or are pending.
3265 	 */
3266 	iomap->flags = 0;
3267 	if (ext4_inode_datasync_dirty(inode) ||
3268 	    offset + length > i_size_read(inode))
3269 		iomap->flags |= IOMAP_F_DIRTY;
3270 
3271 	if (map->m_flags & EXT4_MAP_NEW)
3272 		iomap->flags |= IOMAP_F_NEW;
3273 
3274 	if (flags & IOMAP_DAX)
3275 		iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3276 	else
3277 		iomap->bdev = inode->i_sb->s_bdev;
3278 	iomap->offset = (u64) map->m_lblk << blkbits;
3279 	iomap->length = (u64) map->m_len << blkbits;
3280 
3281 	if ((map->m_flags & EXT4_MAP_MAPPED) &&
3282 	    !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3283 		iomap->flags |= IOMAP_F_MERGED;
3284 
3285 	/*
3286 	 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3287 	 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3288 	 * set. In order for any allocated unwritten extents to be converted
3289 	 * into written extents correctly within the ->end_io() handler, we
3290 	 * need to ensure that the iomap->type is set appropriately. Hence, the
3291 	 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3292 	 * been set first.
3293 	 */
3294 	if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3295 		iomap->type = IOMAP_UNWRITTEN;
3296 		iomap->addr = (u64) map->m_pblk << blkbits;
3297 		if (flags & IOMAP_DAX)
3298 			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3299 	} else if (map->m_flags & EXT4_MAP_MAPPED) {
3300 		iomap->type = IOMAP_MAPPED;
3301 		iomap->addr = (u64) map->m_pblk << blkbits;
3302 		if (flags & IOMAP_DAX)
3303 			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3304 	} else {
3305 		iomap->type = IOMAP_HOLE;
3306 		iomap->addr = IOMAP_NULL_ADDR;
3307 	}
3308 }
3309 
3310 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3311 			    unsigned int flags)
3312 {
3313 	handle_t *handle;
3314 	u8 blkbits = inode->i_blkbits;
3315 	int ret, dio_credits, m_flags = 0, retries = 0;
3316 
3317 	/*
3318 	 * Trim the mapping request to the maximum value that we can map at
3319 	 * once for direct I/O.
3320 	 */
3321 	if (map->m_len > DIO_MAX_BLOCKS)
3322 		map->m_len = DIO_MAX_BLOCKS;
3323 	dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3324 
3325 retry:
3326 	/*
3327 	 * Either we allocate blocks and then don't get an unwritten extent, so
3328 	 * in that case we have reserved enough credits. Or, the blocks are
3329 	 * already allocated and unwritten. In that case, the extent conversion
3330 	 * fits into the credits as well.
3331 	 */
3332 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3333 	if (IS_ERR(handle))
3334 		return PTR_ERR(handle);
3335 
3336 	/*
3337 	 * DAX and direct I/O are the only two operations that are currently
3338 	 * supported with IOMAP_WRITE.
3339 	 */
3340 	WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3341 	if (flags & IOMAP_DAX)
3342 		m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3343 	/*
3344 	 * We use i_size instead of i_disksize here because delalloc writeback
3345 	 * can complete at any point during the I/O and subsequently push the
3346 	 * i_disksize out to i_size. This could be beyond where direct I/O is
3347 	 * happening and thus expose allocated blocks to direct I/O reads.
3348 	 */
3349 	else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3350 		m_flags = EXT4_GET_BLOCKS_CREATE;
3351 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3352 		m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3353 
3354 	ret = ext4_map_blocks(handle, inode, map, m_flags);
3355 
3356 	/*
3357 	 * We cannot fill holes in indirect tree based inodes as that could
3358 	 * expose stale data in the case of a crash. Use the magic error code
3359 	 * to fallback to buffered I/O.
3360 	 */
3361 	if (!m_flags && !ret)
3362 		ret = -ENOTBLK;
3363 
3364 	ext4_journal_stop(handle);
3365 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3366 		goto retry;
3367 
3368 	return ret;
3369 }
3370 
3371 
3372 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3373 		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3374 {
3375 	int ret;
3376 	struct ext4_map_blocks map;
3377 	u8 blkbits = inode->i_blkbits;
3378 
3379 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3380 		return -EINVAL;
3381 
3382 	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3383 		return -ERANGE;
3384 
3385 	/*
3386 	 * Calculate the first and last logical blocks respectively.
3387 	 */
3388 	map.m_lblk = offset >> blkbits;
3389 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3390 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3391 
3392 	if (flags & IOMAP_WRITE) {
3393 		/*
3394 		 * We check here if the blocks are already allocated, then we
3395 		 * don't need to start a journal txn and we can directly return
3396 		 * the mapping information. This could boost performance
3397 		 * especially in multi-threaded overwrite requests.
3398 		 */
3399 		if (offset + length <= i_size_read(inode)) {
3400 			ret = ext4_map_blocks(NULL, inode, &map, 0);
3401 			if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3402 				goto out;
3403 		}
3404 		ret = ext4_iomap_alloc(inode, &map, flags);
3405 	} else {
3406 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3407 	}
3408 
3409 	if (ret < 0)
3410 		return ret;
3411 out:
3412 	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3413 
3414 	return 0;
3415 }
3416 
3417 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3418 		loff_t length, unsigned flags, struct iomap *iomap,
3419 		struct iomap *srcmap)
3420 {
3421 	int ret;
3422 
3423 	/*
3424 	 * Even for writes we don't need to allocate blocks, so just pretend
3425 	 * we are reading to save overhead of starting a transaction.
3426 	 */
3427 	flags &= ~IOMAP_WRITE;
3428 	ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3429 	WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3430 	return ret;
3431 }
3432 
3433 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3434 			  ssize_t written, unsigned flags, struct iomap *iomap)
3435 {
3436 	/*
3437 	 * Check to see whether an error occurred while writing out the data to
3438 	 * the allocated blocks. If so, return the magic error code so that we
3439 	 * fallback to buffered I/O and attempt to complete the remainder of
3440 	 * the I/O. Any blocks that may have been allocated in preparation for
3441 	 * the direct I/O will be reused during buffered I/O.
3442 	 */
3443 	if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3444 		return -ENOTBLK;
3445 
3446 	return 0;
3447 }
3448 
3449 const struct iomap_ops ext4_iomap_ops = {
3450 	.iomap_begin		= ext4_iomap_begin,
3451 	.iomap_end		= ext4_iomap_end,
3452 };
3453 
3454 const struct iomap_ops ext4_iomap_overwrite_ops = {
3455 	.iomap_begin		= ext4_iomap_overwrite_begin,
3456 	.iomap_end		= ext4_iomap_end,
3457 };
3458 
3459 static bool ext4_iomap_is_delalloc(struct inode *inode,
3460 				   struct ext4_map_blocks *map)
3461 {
3462 	struct extent_status es;
3463 	ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3464 
3465 	ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3466 				  map->m_lblk, end, &es);
3467 
3468 	if (!es.es_len || es.es_lblk > end)
3469 		return false;
3470 
3471 	if (es.es_lblk > map->m_lblk) {
3472 		map->m_len = es.es_lblk - map->m_lblk;
3473 		return false;
3474 	}
3475 
3476 	offset = map->m_lblk - es.es_lblk;
3477 	map->m_len = es.es_len - offset;
3478 
3479 	return true;
3480 }
3481 
3482 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3483 				   loff_t length, unsigned int flags,
3484 				   struct iomap *iomap, struct iomap *srcmap)
3485 {
3486 	int ret;
3487 	bool delalloc = false;
3488 	struct ext4_map_blocks map;
3489 	u8 blkbits = inode->i_blkbits;
3490 
3491 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3492 		return -EINVAL;
3493 
3494 	if (ext4_has_inline_data(inode)) {
3495 		ret = ext4_inline_data_iomap(inode, iomap);
3496 		if (ret != -EAGAIN) {
3497 			if (ret == 0 && offset >= iomap->length)
3498 				ret = -ENOENT;
3499 			return ret;
3500 		}
3501 	}
3502 
3503 	/*
3504 	 * Calculate the first and last logical block respectively.
3505 	 */
3506 	map.m_lblk = offset >> blkbits;
3507 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3508 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3509 
3510 	/*
3511 	 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3512 	 * So handle it here itself instead of querying ext4_map_blocks().
3513 	 * Since ext4_map_blocks() will warn about it and will return
3514 	 * -EIO error.
3515 	 */
3516 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3517 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3518 
3519 		if (offset >= sbi->s_bitmap_maxbytes) {
3520 			map.m_flags = 0;
3521 			goto set_iomap;
3522 		}
3523 	}
3524 
3525 	ret = ext4_map_blocks(NULL, inode, &map, 0);
3526 	if (ret < 0)
3527 		return ret;
3528 	if (ret == 0)
3529 		delalloc = ext4_iomap_is_delalloc(inode, &map);
3530 
3531 set_iomap:
3532 	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3533 	if (delalloc && iomap->type == IOMAP_HOLE)
3534 		iomap->type = IOMAP_DELALLOC;
3535 
3536 	return 0;
3537 }
3538 
3539 const struct iomap_ops ext4_iomap_report_ops = {
3540 	.iomap_begin = ext4_iomap_begin_report,
3541 };
3542 
3543 /*
3544  * Pages can be marked dirty completely asynchronously from ext4's journalling
3545  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3546  * much here because ->set_page_dirty is called under VFS locks.  The page is
3547  * not necessarily locked.
3548  *
3549  * We cannot just dirty the page and leave attached buffers clean, because the
3550  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3551  * or jbddirty because all the journalling code will explode.
3552  *
3553  * So what we do is to mark the page "pending dirty" and next time writepage
3554  * is called, propagate that into the buffers appropriately.
3555  */
3556 static int ext4_journalled_set_page_dirty(struct page *page)
3557 {
3558 	SetPageChecked(page);
3559 	return __set_page_dirty_nobuffers(page);
3560 }
3561 
3562 static int ext4_set_page_dirty(struct page *page)
3563 {
3564 	WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3565 	WARN_ON_ONCE(!page_has_buffers(page));
3566 	return __set_page_dirty_buffers(page);
3567 }
3568 
3569 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3570 				    struct file *file, sector_t *span)
3571 {
3572 	return iomap_swapfile_activate(sis, file, span,
3573 				       &ext4_iomap_report_ops);
3574 }
3575 
3576 static const struct address_space_operations ext4_aops = {
3577 	.readpage		= ext4_readpage,
3578 	.readahead		= ext4_readahead,
3579 	.writepage		= ext4_writepage,
3580 	.writepages		= ext4_writepages,
3581 	.write_begin		= ext4_write_begin,
3582 	.write_end		= ext4_write_end,
3583 	.set_page_dirty		= ext4_set_page_dirty,
3584 	.bmap			= ext4_bmap,
3585 	.invalidatepage		= ext4_invalidatepage,
3586 	.releasepage		= ext4_releasepage,
3587 	.direct_IO		= noop_direct_IO,
3588 	.migratepage		= buffer_migrate_page,
3589 	.is_partially_uptodate  = block_is_partially_uptodate,
3590 	.error_remove_page	= generic_error_remove_page,
3591 	.swap_activate		= ext4_iomap_swap_activate,
3592 };
3593 
3594 static const struct address_space_operations ext4_journalled_aops = {
3595 	.readpage		= ext4_readpage,
3596 	.readahead		= ext4_readahead,
3597 	.writepage		= ext4_writepage,
3598 	.writepages		= ext4_writepages,
3599 	.write_begin		= ext4_write_begin,
3600 	.write_end		= ext4_journalled_write_end,
3601 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3602 	.bmap			= ext4_bmap,
3603 	.invalidatepage		= ext4_journalled_invalidatepage,
3604 	.releasepage		= ext4_releasepage,
3605 	.direct_IO		= noop_direct_IO,
3606 	.is_partially_uptodate  = block_is_partially_uptodate,
3607 	.error_remove_page	= generic_error_remove_page,
3608 	.swap_activate		= ext4_iomap_swap_activate,
3609 };
3610 
3611 static const struct address_space_operations ext4_da_aops = {
3612 	.readpage		= ext4_readpage,
3613 	.readahead		= ext4_readahead,
3614 	.writepage		= ext4_writepage,
3615 	.writepages		= ext4_writepages,
3616 	.write_begin		= ext4_da_write_begin,
3617 	.write_end		= ext4_da_write_end,
3618 	.set_page_dirty		= ext4_set_page_dirty,
3619 	.bmap			= ext4_bmap,
3620 	.invalidatepage		= ext4_invalidatepage,
3621 	.releasepage		= ext4_releasepage,
3622 	.direct_IO		= noop_direct_IO,
3623 	.migratepage		= buffer_migrate_page,
3624 	.is_partially_uptodate  = block_is_partially_uptodate,
3625 	.error_remove_page	= generic_error_remove_page,
3626 	.swap_activate		= ext4_iomap_swap_activate,
3627 };
3628 
3629 static const struct address_space_operations ext4_dax_aops = {
3630 	.writepages		= ext4_dax_writepages,
3631 	.direct_IO		= noop_direct_IO,
3632 	.set_page_dirty		= __set_page_dirty_no_writeback,
3633 	.bmap			= ext4_bmap,
3634 	.invalidatepage		= noop_invalidatepage,
3635 	.swap_activate		= ext4_iomap_swap_activate,
3636 };
3637 
3638 void ext4_set_aops(struct inode *inode)
3639 {
3640 	switch (ext4_inode_journal_mode(inode)) {
3641 	case EXT4_INODE_ORDERED_DATA_MODE:
3642 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3643 		break;
3644 	case EXT4_INODE_JOURNAL_DATA_MODE:
3645 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3646 		return;
3647 	default:
3648 		BUG();
3649 	}
3650 	if (IS_DAX(inode))
3651 		inode->i_mapping->a_ops = &ext4_dax_aops;
3652 	else if (test_opt(inode->i_sb, DELALLOC))
3653 		inode->i_mapping->a_ops = &ext4_da_aops;
3654 	else
3655 		inode->i_mapping->a_ops = &ext4_aops;
3656 }
3657 
3658 static int __ext4_block_zero_page_range(handle_t *handle,
3659 		struct address_space *mapping, loff_t from, loff_t length)
3660 {
3661 	ext4_fsblk_t index = from >> PAGE_SHIFT;
3662 	unsigned offset = from & (PAGE_SIZE-1);
3663 	unsigned blocksize, pos;
3664 	ext4_lblk_t iblock;
3665 	struct inode *inode = mapping->host;
3666 	struct buffer_head *bh;
3667 	struct page *page;
3668 	int err = 0;
3669 
3670 	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3671 				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3672 	if (!page)
3673 		return -ENOMEM;
3674 
3675 	blocksize = inode->i_sb->s_blocksize;
3676 
3677 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3678 
3679 	if (!page_has_buffers(page))
3680 		create_empty_buffers(page, blocksize, 0);
3681 
3682 	/* Find the buffer that contains "offset" */
3683 	bh = page_buffers(page);
3684 	pos = blocksize;
3685 	while (offset >= pos) {
3686 		bh = bh->b_this_page;
3687 		iblock++;
3688 		pos += blocksize;
3689 	}
3690 	if (buffer_freed(bh)) {
3691 		BUFFER_TRACE(bh, "freed: skip");
3692 		goto unlock;
3693 	}
3694 	if (!buffer_mapped(bh)) {
3695 		BUFFER_TRACE(bh, "unmapped");
3696 		ext4_get_block(inode, iblock, bh, 0);
3697 		/* unmapped? It's a hole - nothing to do */
3698 		if (!buffer_mapped(bh)) {
3699 			BUFFER_TRACE(bh, "still unmapped");
3700 			goto unlock;
3701 		}
3702 	}
3703 
3704 	/* Ok, it's mapped. Make sure it's up-to-date */
3705 	if (PageUptodate(page))
3706 		set_buffer_uptodate(bh);
3707 
3708 	if (!buffer_uptodate(bh)) {
3709 		err = ext4_read_bh_lock(bh, 0, true);
3710 		if (err)
3711 			goto unlock;
3712 		if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3713 			/* We expect the key to be set. */
3714 			BUG_ON(!fscrypt_has_encryption_key(inode));
3715 			err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3716 							       bh_offset(bh));
3717 			if (err) {
3718 				clear_buffer_uptodate(bh);
3719 				goto unlock;
3720 			}
3721 		}
3722 	}
3723 	if (ext4_should_journal_data(inode)) {
3724 		BUFFER_TRACE(bh, "get write access");
3725 		err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3726 						    EXT4_JTR_NONE);
3727 		if (err)
3728 			goto unlock;
3729 	}
3730 	zero_user(page, offset, length);
3731 	BUFFER_TRACE(bh, "zeroed end of block");
3732 
3733 	if (ext4_should_journal_data(inode)) {
3734 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3735 	} else {
3736 		err = 0;
3737 		mark_buffer_dirty(bh);
3738 		if (ext4_should_order_data(inode))
3739 			err = ext4_jbd2_inode_add_write(handle, inode, from,
3740 					length);
3741 	}
3742 
3743 unlock:
3744 	unlock_page(page);
3745 	put_page(page);
3746 	return err;
3747 }
3748 
3749 /*
3750  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3751  * starting from file offset 'from'.  The range to be zero'd must
3752  * be contained with in one block.  If the specified range exceeds
3753  * the end of the block it will be shortened to end of the block
3754  * that corresponds to 'from'
3755  */
3756 static int ext4_block_zero_page_range(handle_t *handle,
3757 		struct address_space *mapping, loff_t from, loff_t length)
3758 {
3759 	struct inode *inode = mapping->host;
3760 	unsigned offset = from & (PAGE_SIZE-1);
3761 	unsigned blocksize = inode->i_sb->s_blocksize;
3762 	unsigned max = blocksize - (offset & (blocksize - 1));
3763 
3764 	/*
3765 	 * correct length if it does not fall between
3766 	 * 'from' and the end of the block
3767 	 */
3768 	if (length > max || length < 0)
3769 		length = max;
3770 
3771 	if (IS_DAX(inode)) {
3772 		return dax_zero_range(inode, from, length, NULL,
3773 				      &ext4_iomap_ops);
3774 	}
3775 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3776 }
3777 
3778 /*
3779  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3780  * up to the end of the block which corresponds to `from'.
3781  * This required during truncate. We need to physically zero the tail end
3782  * of that block so it doesn't yield old data if the file is later grown.
3783  */
3784 static int ext4_block_truncate_page(handle_t *handle,
3785 		struct address_space *mapping, loff_t from)
3786 {
3787 	unsigned offset = from & (PAGE_SIZE-1);
3788 	unsigned length;
3789 	unsigned blocksize;
3790 	struct inode *inode = mapping->host;
3791 
3792 	/* If we are processing an encrypted inode during orphan list handling */
3793 	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3794 		return 0;
3795 
3796 	blocksize = inode->i_sb->s_blocksize;
3797 	length = blocksize - (offset & (blocksize - 1));
3798 
3799 	return ext4_block_zero_page_range(handle, mapping, from, length);
3800 }
3801 
3802 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3803 			     loff_t lstart, loff_t length)
3804 {
3805 	struct super_block *sb = inode->i_sb;
3806 	struct address_space *mapping = inode->i_mapping;
3807 	unsigned partial_start, partial_end;
3808 	ext4_fsblk_t start, end;
3809 	loff_t byte_end = (lstart + length - 1);
3810 	int err = 0;
3811 
3812 	partial_start = lstart & (sb->s_blocksize - 1);
3813 	partial_end = byte_end & (sb->s_blocksize - 1);
3814 
3815 	start = lstart >> sb->s_blocksize_bits;
3816 	end = byte_end >> sb->s_blocksize_bits;
3817 
3818 	/* Handle partial zero within the single block */
3819 	if (start == end &&
3820 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3821 		err = ext4_block_zero_page_range(handle, mapping,
3822 						 lstart, length);
3823 		return err;
3824 	}
3825 	/* Handle partial zero out on the start of the range */
3826 	if (partial_start) {
3827 		err = ext4_block_zero_page_range(handle, mapping,
3828 						 lstart, sb->s_blocksize);
3829 		if (err)
3830 			return err;
3831 	}
3832 	/* Handle partial zero out on the end of the range */
3833 	if (partial_end != sb->s_blocksize - 1)
3834 		err = ext4_block_zero_page_range(handle, mapping,
3835 						 byte_end - partial_end,
3836 						 partial_end + 1);
3837 	return err;
3838 }
3839 
3840 int ext4_can_truncate(struct inode *inode)
3841 {
3842 	if (S_ISREG(inode->i_mode))
3843 		return 1;
3844 	if (S_ISDIR(inode->i_mode))
3845 		return 1;
3846 	if (S_ISLNK(inode->i_mode))
3847 		return !ext4_inode_is_fast_symlink(inode);
3848 	return 0;
3849 }
3850 
3851 /*
3852  * We have to make sure i_disksize gets properly updated before we truncate
3853  * page cache due to hole punching or zero range. Otherwise i_disksize update
3854  * can get lost as it may have been postponed to submission of writeback but
3855  * that will never happen after we truncate page cache.
3856  */
3857 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3858 				      loff_t len)
3859 {
3860 	handle_t *handle;
3861 	int ret;
3862 
3863 	loff_t size = i_size_read(inode);
3864 
3865 	WARN_ON(!inode_is_locked(inode));
3866 	if (offset > size || offset + len < size)
3867 		return 0;
3868 
3869 	if (EXT4_I(inode)->i_disksize >= size)
3870 		return 0;
3871 
3872 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3873 	if (IS_ERR(handle))
3874 		return PTR_ERR(handle);
3875 	ext4_update_i_disksize(inode, size);
3876 	ret = ext4_mark_inode_dirty(handle, inode);
3877 	ext4_journal_stop(handle);
3878 
3879 	return ret;
3880 }
3881 
3882 static void ext4_wait_dax_page(struct inode *inode)
3883 {
3884 	filemap_invalidate_unlock(inode->i_mapping);
3885 	schedule();
3886 	filemap_invalidate_lock(inode->i_mapping);
3887 }
3888 
3889 int ext4_break_layouts(struct inode *inode)
3890 {
3891 	struct page *page;
3892 	int error;
3893 
3894 	if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3895 		return -EINVAL;
3896 
3897 	do {
3898 		page = dax_layout_busy_page(inode->i_mapping);
3899 		if (!page)
3900 			return 0;
3901 
3902 		error = ___wait_var_event(&page->_refcount,
3903 				atomic_read(&page->_refcount) == 1,
3904 				TASK_INTERRUPTIBLE, 0, 0,
3905 				ext4_wait_dax_page(inode));
3906 	} while (error == 0);
3907 
3908 	return error;
3909 }
3910 
3911 /*
3912  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3913  * associated with the given offset and length
3914  *
3915  * @inode:  File inode
3916  * @offset: The offset where the hole will begin
3917  * @len:    The length of the hole
3918  *
3919  * Returns: 0 on success or negative on failure
3920  */
3921 
3922 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3923 {
3924 	struct super_block *sb = inode->i_sb;
3925 	ext4_lblk_t first_block, stop_block;
3926 	struct address_space *mapping = inode->i_mapping;
3927 	loff_t first_block_offset, last_block_offset;
3928 	handle_t *handle;
3929 	unsigned int credits;
3930 	int ret = 0, ret2 = 0;
3931 
3932 	trace_ext4_punch_hole(inode, offset, length, 0);
3933 
3934 	ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
3935 	if (ext4_has_inline_data(inode)) {
3936 		filemap_invalidate_lock(mapping);
3937 		ret = ext4_convert_inline_data(inode);
3938 		filemap_invalidate_unlock(mapping);
3939 		if (ret)
3940 			return ret;
3941 	}
3942 
3943 	/*
3944 	 * Write out all dirty pages to avoid race conditions
3945 	 * Then release them.
3946 	 */
3947 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3948 		ret = filemap_write_and_wait_range(mapping, offset,
3949 						   offset + length - 1);
3950 		if (ret)
3951 			return ret;
3952 	}
3953 
3954 	inode_lock(inode);
3955 
3956 	/* No need to punch hole beyond i_size */
3957 	if (offset >= inode->i_size)
3958 		goto out_mutex;
3959 
3960 	/*
3961 	 * If the hole extends beyond i_size, set the hole
3962 	 * to end after the page that contains i_size
3963 	 */
3964 	if (offset + length > inode->i_size) {
3965 		length = inode->i_size +
3966 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3967 		   offset;
3968 	}
3969 
3970 	if (offset & (sb->s_blocksize - 1) ||
3971 	    (offset + length) & (sb->s_blocksize - 1)) {
3972 		/*
3973 		 * Attach jinode to inode for jbd2 if we do any zeroing of
3974 		 * partial block
3975 		 */
3976 		ret = ext4_inode_attach_jinode(inode);
3977 		if (ret < 0)
3978 			goto out_mutex;
3979 
3980 	}
3981 
3982 	/* Wait all existing dio workers, newcomers will block on i_mutex */
3983 	inode_dio_wait(inode);
3984 
3985 	/*
3986 	 * Prevent page faults from reinstantiating pages we have released from
3987 	 * page cache.
3988 	 */
3989 	filemap_invalidate_lock(mapping);
3990 
3991 	ret = ext4_break_layouts(inode);
3992 	if (ret)
3993 		goto out_dio;
3994 
3995 	first_block_offset = round_up(offset, sb->s_blocksize);
3996 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3997 
3998 	/* Now release the pages and zero block aligned part of pages*/
3999 	if (last_block_offset > first_block_offset) {
4000 		ret = ext4_update_disksize_before_punch(inode, offset, length);
4001 		if (ret)
4002 			goto out_dio;
4003 		truncate_pagecache_range(inode, first_block_offset,
4004 					 last_block_offset);
4005 	}
4006 
4007 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4008 		credits = ext4_writepage_trans_blocks(inode);
4009 	else
4010 		credits = ext4_blocks_for_truncate(inode);
4011 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4012 	if (IS_ERR(handle)) {
4013 		ret = PTR_ERR(handle);
4014 		ext4_std_error(sb, ret);
4015 		goto out_dio;
4016 	}
4017 
4018 	ret = ext4_zero_partial_blocks(handle, inode, offset,
4019 				       length);
4020 	if (ret)
4021 		goto out_stop;
4022 
4023 	first_block = (offset + sb->s_blocksize - 1) >>
4024 		EXT4_BLOCK_SIZE_BITS(sb);
4025 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4026 
4027 	/* If there are blocks to remove, do it */
4028 	if (stop_block > first_block) {
4029 
4030 		down_write(&EXT4_I(inode)->i_data_sem);
4031 		ext4_discard_preallocations(inode, 0);
4032 
4033 		ret = ext4_es_remove_extent(inode, first_block,
4034 					    stop_block - first_block);
4035 		if (ret) {
4036 			up_write(&EXT4_I(inode)->i_data_sem);
4037 			goto out_stop;
4038 		}
4039 
4040 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4041 			ret = ext4_ext_remove_space(inode, first_block,
4042 						    stop_block - 1);
4043 		else
4044 			ret = ext4_ind_remove_space(handle, inode, first_block,
4045 						    stop_block);
4046 
4047 		up_write(&EXT4_I(inode)->i_data_sem);
4048 	}
4049 	ext4_fc_track_range(handle, inode, first_block, stop_block);
4050 	if (IS_SYNC(inode))
4051 		ext4_handle_sync(handle);
4052 
4053 	inode->i_mtime = inode->i_ctime = current_time(inode);
4054 	ret2 = ext4_mark_inode_dirty(handle, inode);
4055 	if (unlikely(ret2))
4056 		ret = ret2;
4057 	if (ret >= 0)
4058 		ext4_update_inode_fsync_trans(handle, inode, 1);
4059 out_stop:
4060 	ext4_journal_stop(handle);
4061 out_dio:
4062 	filemap_invalidate_unlock(mapping);
4063 out_mutex:
4064 	inode_unlock(inode);
4065 	return ret;
4066 }
4067 
4068 int ext4_inode_attach_jinode(struct inode *inode)
4069 {
4070 	struct ext4_inode_info *ei = EXT4_I(inode);
4071 	struct jbd2_inode *jinode;
4072 
4073 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4074 		return 0;
4075 
4076 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4077 	spin_lock(&inode->i_lock);
4078 	if (!ei->jinode) {
4079 		if (!jinode) {
4080 			spin_unlock(&inode->i_lock);
4081 			return -ENOMEM;
4082 		}
4083 		ei->jinode = jinode;
4084 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4085 		jinode = NULL;
4086 	}
4087 	spin_unlock(&inode->i_lock);
4088 	if (unlikely(jinode != NULL))
4089 		jbd2_free_inode(jinode);
4090 	return 0;
4091 }
4092 
4093 /*
4094  * ext4_truncate()
4095  *
4096  * We block out ext4_get_block() block instantiations across the entire
4097  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4098  * simultaneously on behalf of the same inode.
4099  *
4100  * As we work through the truncate and commit bits of it to the journal there
4101  * is one core, guiding principle: the file's tree must always be consistent on
4102  * disk.  We must be able to restart the truncate after a crash.
4103  *
4104  * The file's tree may be transiently inconsistent in memory (although it
4105  * probably isn't), but whenever we close off and commit a journal transaction,
4106  * the contents of (the filesystem + the journal) must be consistent and
4107  * restartable.  It's pretty simple, really: bottom up, right to left (although
4108  * left-to-right works OK too).
4109  *
4110  * Note that at recovery time, journal replay occurs *before* the restart of
4111  * truncate against the orphan inode list.
4112  *
4113  * The committed inode has the new, desired i_size (which is the same as
4114  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4115  * that this inode's truncate did not complete and it will again call
4116  * ext4_truncate() to have another go.  So there will be instantiated blocks
4117  * to the right of the truncation point in a crashed ext4 filesystem.  But
4118  * that's fine - as long as they are linked from the inode, the post-crash
4119  * ext4_truncate() run will find them and release them.
4120  */
4121 int ext4_truncate(struct inode *inode)
4122 {
4123 	struct ext4_inode_info *ei = EXT4_I(inode);
4124 	unsigned int credits;
4125 	int err = 0, err2;
4126 	handle_t *handle;
4127 	struct address_space *mapping = inode->i_mapping;
4128 
4129 	/*
4130 	 * There is a possibility that we're either freeing the inode
4131 	 * or it's a completely new inode. In those cases we might not
4132 	 * have i_mutex locked because it's not necessary.
4133 	 */
4134 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4135 		WARN_ON(!inode_is_locked(inode));
4136 	trace_ext4_truncate_enter(inode);
4137 
4138 	if (!ext4_can_truncate(inode))
4139 		goto out_trace;
4140 
4141 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4142 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4143 
4144 	if (ext4_has_inline_data(inode)) {
4145 		int has_inline = 1;
4146 
4147 		err = ext4_inline_data_truncate(inode, &has_inline);
4148 		if (err || has_inline)
4149 			goto out_trace;
4150 	}
4151 
4152 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4153 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4154 		if (ext4_inode_attach_jinode(inode) < 0)
4155 			goto out_trace;
4156 	}
4157 
4158 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4159 		credits = ext4_writepage_trans_blocks(inode);
4160 	else
4161 		credits = ext4_blocks_for_truncate(inode);
4162 
4163 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4164 	if (IS_ERR(handle)) {
4165 		err = PTR_ERR(handle);
4166 		goto out_trace;
4167 	}
4168 
4169 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4170 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4171 
4172 	/*
4173 	 * We add the inode to the orphan list, so that if this
4174 	 * truncate spans multiple transactions, and we crash, we will
4175 	 * resume the truncate when the filesystem recovers.  It also
4176 	 * marks the inode dirty, to catch the new size.
4177 	 *
4178 	 * Implication: the file must always be in a sane, consistent
4179 	 * truncatable state while each transaction commits.
4180 	 */
4181 	err = ext4_orphan_add(handle, inode);
4182 	if (err)
4183 		goto out_stop;
4184 
4185 	down_write(&EXT4_I(inode)->i_data_sem);
4186 
4187 	ext4_discard_preallocations(inode, 0);
4188 
4189 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4190 		err = ext4_ext_truncate(handle, inode);
4191 	else
4192 		ext4_ind_truncate(handle, inode);
4193 
4194 	up_write(&ei->i_data_sem);
4195 	if (err)
4196 		goto out_stop;
4197 
4198 	if (IS_SYNC(inode))
4199 		ext4_handle_sync(handle);
4200 
4201 out_stop:
4202 	/*
4203 	 * If this was a simple ftruncate() and the file will remain alive,
4204 	 * then we need to clear up the orphan record which we created above.
4205 	 * However, if this was a real unlink then we were called by
4206 	 * ext4_evict_inode(), and we allow that function to clean up the
4207 	 * orphan info for us.
4208 	 */
4209 	if (inode->i_nlink)
4210 		ext4_orphan_del(handle, inode);
4211 
4212 	inode->i_mtime = inode->i_ctime = current_time(inode);
4213 	err2 = ext4_mark_inode_dirty(handle, inode);
4214 	if (unlikely(err2 && !err))
4215 		err = err2;
4216 	ext4_journal_stop(handle);
4217 
4218 out_trace:
4219 	trace_ext4_truncate_exit(inode);
4220 	return err;
4221 }
4222 
4223 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4224 {
4225 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4226 		return inode_peek_iversion_raw(inode);
4227 	else
4228 		return inode_peek_iversion(inode);
4229 }
4230 
4231 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4232 				 struct ext4_inode_info *ei)
4233 {
4234 	struct inode *inode = &(ei->vfs_inode);
4235 	u64 i_blocks = READ_ONCE(inode->i_blocks);
4236 	struct super_block *sb = inode->i_sb;
4237 
4238 	if (i_blocks <= ~0U) {
4239 		/*
4240 		 * i_blocks can be represented in a 32 bit variable
4241 		 * as multiple of 512 bytes
4242 		 */
4243 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4244 		raw_inode->i_blocks_high = 0;
4245 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4246 		return 0;
4247 	}
4248 
4249 	/*
4250 	 * This should never happen since sb->s_maxbytes should not have
4251 	 * allowed this, sb->s_maxbytes was set according to the huge_file
4252 	 * feature in ext4_fill_super().
4253 	 */
4254 	if (!ext4_has_feature_huge_file(sb))
4255 		return -EFSCORRUPTED;
4256 
4257 	if (i_blocks <= 0xffffffffffffULL) {
4258 		/*
4259 		 * i_blocks can be represented in a 48 bit variable
4260 		 * as multiple of 512 bytes
4261 		 */
4262 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4263 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4264 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4265 	} else {
4266 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4267 		/* i_block is stored in file system block size */
4268 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4269 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4270 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4271 	}
4272 	return 0;
4273 }
4274 
4275 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4276 {
4277 	struct ext4_inode_info *ei = EXT4_I(inode);
4278 	uid_t i_uid;
4279 	gid_t i_gid;
4280 	projid_t i_projid;
4281 	int block;
4282 	int err;
4283 
4284 	err = ext4_inode_blocks_set(raw_inode, ei);
4285 
4286 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4287 	i_uid = i_uid_read(inode);
4288 	i_gid = i_gid_read(inode);
4289 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4290 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4291 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4292 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4293 		/*
4294 		 * Fix up interoperability with old kernels. Otherwise,
4295 		 * old inodes get re-used with the upper 16 bits of the
4296 		 * uid/gid intact.
4297 		 */
4298 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4299 			raw_inode->i_uid_high = 0;
4300 			raw_inode->i_gid_high = 0;
4301 		} else {
4302 			raw_inode->i_uid_high =
4303 				cpu_to_le16(high_16_bits(i_uid));
4304 			raw_inode->i_gid_high =
4305 				cpu_to_le16(high_16_bits(i_gid));
4306 		}
4307 	} else {
4308 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4309 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4310 		raw_inode->i_uid_high = 0;
4311 		raw_inode->i_gid_high = 0;
4312 	}
4313 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4314 
4315 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4316 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4317 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4318 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4319 
4320 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4321 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4322 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4323 		raw_inode->i_file_acl_high =
4324 			cpu_to_le16(ei->i_file_acl >> 32);
4325 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4326 	ext4_isize_set(raw_inode, ei->i_disksize);
4327 
4328 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4329 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4330 		if (old_valid_dev(inode->i_rdev)) {
4331 			raw_inode->i_block[0] =
4332 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4333 			raw_inode->i_block[1] = 0;
4334 		} else {
4335 			raw_inode->i_block[0] = 0;
4336 			raw_inode->i_block[1] =
4337 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4338 			raw_inode->i_block[2] = 0;
4339 		}
4340 	} else if (!ext4_has_inline_data(inode)) {
4341 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4342 			raw_inode->i_block[block] = ei->i_data[block];
4343 	}
4344 
4345 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4346 		u64 ivers = ext4_inode_peek_iversion(inode);
4347 
4348 		raw_inode->i_disk_version = cpu_to_le32(ivers);
4349 		if (ei->i_extra_isize) {
4350 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4351 				raw_inode->i_version_hi =
4352 					cpu_to_le32(ivers >> 32);
4353 			raw_inode->i_extra_isize =
4354 				cpu_to_le16(ei->i_extra_isize);
4355 		}
4356 	}
4357 
4358 	if (i_projid != EXT4_DEF_PROJID &&
4359 	    !ext4_has_feature_project(inode->i_sb))
4360 		err = err ?: -EFSCORRUPTED;
4361 
4362 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4363 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4364 		raw_inode->i_projid = cpu_to_le32(i_projid);
4365 
4366 	ext4_inode_csum_set(inode, raw_inode, ei);
4367 	return err;
4368 }
4369 
4370 /*
4371  * ext4_get_inode_loc returns with an extra refcount against the inode's
4372  * underlying buffer_head on success. If we pass 'inode' and it does not
4373  * have in-inode xattr, we have all inode data in memory that is needed
4374  * to recreate the on-disk version of this inode.
4375  */
4376 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4377 				struct inode *inode, struct ext4_iloc *iloc,
4378 				ext4_fsblk_t *ret_block)
4379 {
4380 	struct ext4_group_desc	*gdp;
4381 	struct buffer_head	*bh;
4382 	ext4_fsblk_t		block;
4383 	struct blk_plug		plug;
4384 	int			inodes_per_block, inode_offset;
4385 
4386 	iloc->bh = NULL;
4387 	if (ino < EXT4_ROOT_INO ||
4388 	    ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4389 		return -EFSCORRUPTED;
4390 
4391 	iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4392 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4393 	if (!gdp)
4394 		return -EIO;
4395 
4396 	/*
4397 	 * Figure out the offset within the block group inode table
4398 	 */
4399 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4400 	inode_offset = ((ino - 1) %
4401 			EXT4_INODES_PER_GROUP(sb));
4402 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4403 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4404 
4405 	bh = sb_getblk(sb, block);
4406 	if (unlikely(!bh))
4407 		return -ENOMEM;
4408 	if (ext4_buffer_uptodate(bh))
4409 		goto has_buffer;
4410 
4411 	lock_buffer(bh);
4412 	if (ext4_buffer_uptodate(bh)) {
4413 		/* Someone brought it uptodate while we waited */
4414 		unlock_buffer(bh);
4415 		goto has_buffer;
4416 	}
4417 
4418 	/*
4419 	 * If we have all information of the inode in memory and this
4420 	 * is the only valid inode in the block, we need not read the
4421 	 * block.
4422 	 */
4423 	if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4424 		struct buffer_head *bitmap_bh;
4425 		int i, start;
4426 
4427 		start = inode_offset & ~(inodes_per_block - 1);
4428 
4429 		/* Is the inode bitmap in cache? */
4430 		bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4431 		if (unlikely(!bitmap_bh))
4432 			goto make_io;
4433 
4434 		/*
4435 		 * If the inode bitmap isn't in cache then the
4436 		 * optimisation may end up performing two reads instead
4437 		 * of one, so skip it.
4438 		 */
4439 		if (!buffer_uptodate(bitmap_bh)) {
4440 			brelse(bitmap_bh);
4441 			goto make_io;
4442 		}
4443 		for (i = start; i < start + inodes_per_block; i++) {
4444 			if (i == inode_offset)
4445 				continue;
4446 			if (ext4_test_bit(i, bitmap_bh->b_data))
4447 				break;
4448 		}
4449 		brelse(bitmap_bh);
4450 		if (i == start + inodes_per_block) {
4451 			struct ext4_inode *raw_inode =
4452 				(struct ext4_inode *) (bh->b_data + iloc->offset);
4453 
4454 			/* all other inodes are free, so skip I/O */
4455 			memset(bh->b_data, 0, bh->b_size);
4456 			if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4457 				ext4_fill_raw_inode(inode, raw_inode);
4458 			set_buffer_uptodate(bh);
4459 			unlock_buffer(bh);
4460 			goto has_buffer;
4461 		}
4462 	}
4463 
4464 make_io:
4465 	/*
4466 	 * If we need to do any I/O, try to pre-readahead extra
4467 	 * blocks from the inode table.
4468 	 */
4469 	blk_start_plug(&plug);
4470 	if (EXT4_SB(sb)->s_inode_readahead_blks) {
4471 		ext4_fsblk_t b, end, table;
4472 		unsigned num;
4473 		__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4474 
4475 		table = ext4_inode_table(sb, gdp);
4476 		/* s_inode_readahead_blks is always a power of 2 */
4477 		b = block & ~((ext4_fsblk_t) ra_blks - 1);
4478 		if (table > b)
4479 			b = table;
4480 		end = b + ra_blks;
4481 		num = EXT4_INODES_PER_GROUP(sb);
4482 		if (ext4_has_group_desc_csum(sb))
4483 			num -= ext4_itable_unused_count(sb, gdp);
4484 		table += num / inodes_per_block;
4485 		if (end > table)
4486 			end = table;
4487 		while (b <= end)
4488 			ext4_sb_breadahead_unmovable(sb, b++);
4489 	}
4490 
4491 	/*
4492 	 * There are other valid inodes in the buffer, this inode
4493 	 * has in-inode xattrs, or we don't have this inode in memory.
4494 	 * Read the block from disk.
4495 	 */
4496 	trace_ext4_load_inode(sb, ino);
4497 	ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4498 	blk_finish_plug(&plug);
4499 	wait_on_buffer(bh);
4500 	ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4501 	if (!buffer_uptodate(bh)) {
4502 		if (ret_block)
4503 			*ret_block = block;
4504 		brelse(bh);
4505 		return -EIO;
4506 	}
4507 has_buffer:
4508 	iloc->bh = bh;
4509 	return 0;
4510 }
4511 
4512 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4513 					struct ext4_iloc *iloc)
4514 {
4515 	ext4_fsblk_t err_blk = 0;
4516 	int ret;
4517 
4518 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4519 					&err_blk);
4520 
4521 	if (ret == -EIO)
4522 		ext4_error_inode_block(inode, err_blk, EIO,
4523 					"unable to read itable block");
4524 
4525 	return ret;
4526 }
4527 
4528 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4529 {
4530 	ext4_fsblk_t err_blk = 0;
4531 	int ret;
4532 
4533 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4534 					&err_blk);
4535 
4536 	if (ret == -EIO)
4537 		ext4_error_inode_block(inode, err_blk, EIO,
4538 					"unable to read itable block");
4539 
4540 	return ret;
4541 }
4542 
4543 
4544 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4545 			  struct ext4_iloc *iloc)
4546 {
4547 	return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4548 }
4549 
4550 static bool ext4_should_enable_dax(struct inode *inode)
4551 {
4552 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4553 
4554 	if (test_opt2(inode->i_sb, DAX_NEVER))
4555 		return false;
4556 	if (!S_ISREG(inode->i_mode))
4557 		return false;
4558 	if (ext4_should_journal_data(inode))
4559 		return false;
4560 	if (ext4_has_inline_data(inode))
4561 		return false;
4562 	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4563 		return false;
4564 	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4565 		return false;
4566 	if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4567 		return false;
4568 	if (test_opt(inode->i_sb, DAX_ALWAYS))
4569 		return true;
4570 
4571 	return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4572 }
4573 
4574 void ext4_set_inode_flags(struct inode *inode, bool init)
4575 {
4576 	unsigned int flags = EXT4_I(inode)->i_flags;
4577 	unsigned int new_fl = 0;
4578 
4579 	WARN_ON_ONCE(IS_DAX(inode) && init);
4580 
4581 	if (flags & EXT4_SYNC_FL)
4582 		new_fl |= S_SYNC;
4583 	if (flags & EXT4_APPEND_FL)
4584 		new_fl |= S_APPEND;
4585 	if (flags & EXT4_IMMUTABLE_FL)
4586 		new_fl |= S_IMMUTABLE;
4587 	if (flags & EXT4_NOATIME_FL)
4588 		new_fl |= S_NOATIME;
4589 	if (flags & EXT4_DIRSYNC_FL)
4590 		new_fl |= S_DIRSYNC;
4591 
4592 	/* Because of the way inode_set_flags() works we must preserve S_DAX
4593 	 * here if already set. */
4594 	new_fl |= (inode->i_flags & S_DAX);
4595 	if (init && ext4_should_enable_dax(inode))
4596 		new_fl |= S_DAX;
4597 
4598 	if (flags & EXT4_ENCRYPT_FL)
4599 		new_fl |= S_ENCRYPTED;
4600 	if (flags & EXT4_CASEFOLD_FL)
4601 		new_fl |= S_CASEFOLD;
4602 	if (flags & EXT4_VERITY_FL)
4603 		new_fl |= S_VERITY;
4604 	inode_set_flags(inode, new_fl,
4605 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4606 			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4607 }
4608 
4609 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4610 				  struct ext4_inode_info *ei)
4611 {
4612 	blkcnt_t i_blocks ;
4613 	struct inode *inode = &(ei->vfs_inode);
4614 	struct super_block *sb = inode->i_sb;
4615 
4616 	if (ext4_has_feature_huge_file(sb)) {
4617 		/* we are using combined 48 bit field */
4618 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4619 					le32_to_cpu(raw_inode->i_blocks_lo);
4620 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4621 			/* i_blocks represent file system block size */
4622 			return i_blocks  << (inode->i_blkbits - 9);
4623 		} else {
4624 			return i_blocks;
4625 		}
4626 	} else {
4627 		return le32_to_cpu(raw_inode->i_blocks_lo);
4628 	}
4629 }
4630 
4631 static inline int ext4_iget_extra_inode(struct inode *inode,
4632 					 struct ext4_inode *raw_inode,
4633 					 struct ext4_inode_info *ei)
4634 {
4635 	__le32 *magic = (void *)raw_inode +
4636 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4637 
4638 	if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4639 	    EXT4_INODE_SIZE(inode->i_sb) &&
4640 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4641 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4642 		return ext4_find_inline_data_nolock(inode);
4643 	} else
4644 		EXT4_I(inode)->i_inline_off = 0;
4645 	return 0;
4646 }
4647 
4648 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4649 {
4650 	if (!ext4_has_feature_project(inode->i_sb))
4651 		return -EOPNOTSUPP;
4652 	*projid = EXT4_I(inode)->i_projid;
4653 	return 0;
4654 }
4655 
4656 /*
4657  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4658  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4659  * set.
4660  */
4661 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4662 {
4663 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4664 		inode_set_iversion_raw(inode, val);
4665 	else
4666 		inode_set_iversion_queried(inode, val);
4667 }
4668 
4669 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4670 			  ext4_iget_flags flags, const char *function,
4671 			  unsigned int line)
4672 {
4673 	struct ext4_iloc iloc;
4674 	struct ext4_inode *raw_inode;
4675 	struct ext4_inode_info *ei;
4676 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4677 	struct inode *inode;
4678 	journal_t *journal = EXT4_SB(sb)->s_journal;
4679 	long ret;
4680 	loff_t size;
4681 	int block;
4682 	uid_t i_uid;
4683 	gid_t i_gid;
4684 	projid_t i_projid;
4685 
4686 	if ((!(flags & EXT4_IGET_SPECIAL) &&
4687 	     ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4688 	      ino == le32_to_cpu(es->s_usr_quota_inum) ||
4689 	      ino == le32_to_cpu(es->s_grp_quota_inum) ||
4690 	      ino == le32_to_cpu(es->s_prj_quota_inum) ||
4691 	      ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4692 	    (ino < EXT4_ROOT_INO) ||
4693 	    (ino > le32_to_cpu(es->s_inodes_count))) {
4694 		if (flags & EXT4_IGET_HANDLE)
4695 			return ERR_PTR(-ESTALE);
4696 		__ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4697 			     "inode #%lu: comm %s: iget: illegal inode #",
4698 			     ino, current->comm);
4699 		return ERR_PTR(-EFSCORRUPTED);
4700 	}
4701 
4702 	inode = iget_locked(sb, ino);
4703 	if (!inode)
4704 		return ERR_PTR(-ENOMEM);
4705 	if (!(inode->i_state & I_NEW))
4706 		return inode;
4707 
4708 	ei = EXT4_I(inode);
4709 	iloc.bh = NULL;
4710 
4711 	ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4712 	if (ret < 0)
4713 		goto bad_inode;
4714 	raw_inode = ext4_raw_inode(&iloc);
4715 
4716 	if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4717 		ext4_error_inode(inode, function, line, 0,
4718 				 "iget: root inode unallocated");
4719 		ret = -EFSCORRUPTED;
4720 		goto bad_inode;
4721 	}
4722 
4723 	if ((flags & EXT4_IGET_HANDLE) &&
4724 	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4725 		ret = -ESTALE;
4726 		goto bad_inode;
4727 	}
4728 
4729 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4730 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4731 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4732 			EXT4_INODE_SIZE(inode->i_sb) ||
4733 		    (ei->i_extra_isize & 3)) {
4734 			ext4_error_inode(inode, function, line, 0,
4735 					 "iget: bad extra_isize %u "
4736 					 "(inode size %u)",
4737 					 ei->i_extra_isize,
4738 					 EXT4_INODE_SIZE(inode->i_sb));
4739 			ret = -EFSCORRUPTED;
4740 			goto bad_inode;
4741 		}
4742 	} else
4743 		ei->i_extra_isize = 0;
4744 
4745 	/* Precompute checksum seed for inode metadata */
4746 	if (ext4_has_metadata_csum(sb)) {
4747 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4748 		__u32 csum;
4749 		__le32 inum = cpu_to_le32(inode->i_ino);
4750 		__le32 gen = raw_inode->i_generation;
4751 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4752 				   sizeof(inum));
4753 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4754 					      sizeof(gen));
4755 	}
4756 
4757 	if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4758 	    ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4759 	     (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4760 		ext4_error_inode_err(inode, function, line, 0,
4761 				EFSBADCRC, "iget: checksum invalid");
4762 		ret = -EFSBADCRC;
4763 		goto bad_inode;
4764 	}
4765 
4766 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4767 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4768 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4769 	if (ext4_has_feature_project(sb) &&
4770 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4771 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4772 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4773 	else
4774 		i_projid = EXT4_DEF_PROJID;
4775 
4776 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4777 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4778 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4779 	}
4780 	i_uid_write(inode, i_uid);
4781 	i_gid_write(inode, i_gid);
4782 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4783 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4784 
4785 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4786 	ei->i_inline_off = 0;
4787 	ei->i_dir_start_lookup = 0;
4788 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4789 	/* We now have enough fields to check if the inode was active or not.
4790 	 * This is needed because nfsd might try to access dead inodes
4791 	 * the test is that same one that e2fsck uses
4792 	 * NeilBrown 1999oct15
4793 	 */
4794 	if (inode->i_nlink == 0) {
4795 		if ((inode->i_mode == 0 ||
4796 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4797 		    ino != EXT4_BOOT_LOADER_INO) {
4798 			/* this inode is deleted */
4799 			ret = -ESTALE;
4800 			goto bad_inode;
4801 		}
4802 		/* The only unlinked inodes we let through here have
4803 		 * valid i_mode and are being read by the orphan
4804 		 * recovery code: that's fine, we're about to complete
4805 		 * the process of deleting those.
4806 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4807 		 * not initialized on a new filesystem. */
4808 	}
4809 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4810 	ext4_set_inode_flags(inode, true);
4811 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4812 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4813 	if (ext4_has_feature_64bit(sb))
4814 		ei->i_file_acl |=
4815 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4816 	inode->i_size = ext4_isize(sb, raw_inode);
4817 	if ((size = i_size_read(inode)) < 0) {
4818 		ext4_error_inode(inode, function, line, 0,
4819 				 "iget: bad i_size value: %lld", size);
4820 		ret = -EFSCORRUPTED;
4821 		goto bad_inode;
4822 	}
4823 	/*
4824 	 * If dir_index is not enabled but there's dir with INDEX flag set,
4825 	 * we'd normally treat htree data as empty space. But with metadata
4826 	 * checksumming that corrupts checksums so forbid that.
4827 	 */
4828 	if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4829 	    ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4830 		ext4_error_inode(inode, function, line, 0,
4831 			 "iget: Dir with htree data on filesystem without dir_index feature.");
4832 		ret = -EFSCORRUPTED;
4833 		goto bad_inode;
4834 	}
4835 	ei->i_disksize = inode->i_size;
4836 #ifdef CONFIG_QUOTA
4837 	ei->i_reserved_quota = 0;
4838 #endif
4839 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4840 	ei->i_block_group = iloc.block_group;
4841 	ei->i_last_alloc_group = ~0;
4842 	/*
4843 	 * NOTE! The in-memory inode i_data array is in little-endian order
4844 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4845 	 */
4846 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4847 		ei->i_data[block] = raw_inode->i_block[block];
4848 	INIT_LIST_HEAD(&ei->i_orphan);
4849 	ext4_fc_init_inode(&ei->vfs_inode);
4850 
4851 	/*
4852 	 * Set transaction id's of transactions that have to be committed
4853 	 * to finish f[data]sync. We set them to currently running transaction
4854 	 * as we cannot be sure that the inode or some of its metadata isn't
4855 	 * part of the transaction - the inode could have been reclaimed and
4856 	 * now it is reread from disk.
4857 	 */
4858 	if (journal) {
4859 		transaction_t *transaction;
4860 		tid_t tid;
4861 
4862 		read_lock(&journal->j_state_lock);
4863 		if (journal->j_running_transaction)
4864 			transaction = journal->j_running_transaction;
4865 		else
4866 			transaction = journal->j_committing_transaction;
4867 		if (transaction)
4868 			tid = transaction->t_tid;
4869 		else
4870 			tid = journal->j_commit_sequence;
4871 		read_unlock(&journal->j_state_lock);
4872 		ei->i_sync_tid = tid;
4873 		ei->i_datasync_tid = tid;
4874 	}
4875 
4876 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4877 		if (ei->i_extra_isize == 0) {
4878 			/* The extra space is currently unused. Use it. */
4879 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4880 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4881 					    EXT4_GOOD_OLD_INODE_SIZE;
4882 		} else {
4883 			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4884 			if (ret)
4885 				goto bad_inode;
4886 		}
4887 	}
4888 
4889 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4890 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4891 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4892 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4893 
4894 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4895 		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4896 
4897 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4898 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4899 				ivers |=
4900 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4901 		}
4902 		ext4_inode_set_iversion_queried(inode, ivers);
4903 	}
4904 
4905 	ret = 0;
4906 	if (ei->i_file_acl &&
4907 	    !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4908 		ext4_error_inode(inode, function, line, 0,
4909 				 "iget: bad extended attribute block %llu",
4910 				 ei->i_file_acl);
4911 		ret = -EFSCORRUPTED;
4912 		goto bad_inode;
4913 	} else if (!ext4_has_inline_data(inode)) {
4914 		/* validate the block references in the inode */
4915 		if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4916 			(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4917 			(S_ISLNK(inode->i_mode) &&
4918 			!ext4_inode_is_fast_symlink(inode)))) {
4919 			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4920 				ret = ext4_ext_check_inode(inode);
4921 			else
4922 				ret = ext4_ind_check_inode(inode);
4923 		}
4924 	}
4925 	if (ret)
4926 		goto bad_inode;
4927 
4928 	if (S_ISREG(inode->i_mode)) {
4929 		inode->i_op = &ext4_file_inode_operations;
4930 		inode->i_fop = &ext4_file_operations;
4931 		ext4_set_aops(inode);
4932 	} else if (S_ISDIR(inode->i_mode)) {
4933 		inode->i_op = &ext4_dir_inode_operations;
4934 		inode->i_fop = &ext4_dir_operations;
4935 	} else if (S_ISLNK(inode->i_mode)) {
4936 		/* VFS does not allow setting these so must be corruption */
4937 		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4938 			ext4_error_inode(inode, function, line, 0,
4939 					 "iget: immutable or append flags "
4940 					 "not allowed on symlinks");
4941 			ret = -EFSCORRUPTED;
4942 			goto bad_inode;
4943 		}
4944 		if (IS_ENCRYPTED(inode)) {
4945 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4946 			ext4_set_aops(inode);
4947 		} else if (ext4_inode_is_fast_symlink(inode)) {
4948 			inode->i_link = (char *)ei->i_data;
4949 			inode->i_op = &ext4_fast_symlink_inode_operations;
4950 			nd_terminate_link(ei->i_data, inode->i_size,
4951 				sizeof(ei->i_data) - 1);
4952 		} else {
4953 			inode->i_op = &ext4_symlink_inode_operations;
4954 			ext4_set_aops(inode);
4955 		}
4956 		inode_nohighmem(inode);
4957 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4958 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4959 		inode->i_op = &ext4_special_inode_operations;
4960 		if (raw_inode->i_block[0])
4961 			init_special_inode(inode, inode->i_mode,
4962 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4963 		else
4964 			init_special_inode(inode, inode->i_mode,
4965 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4966 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4967 		make_bad_inode(inode);
4968 	} else {
4969 		ret = -EFSCORRUPTED;
4970 		ext4_error_inode(inode, function, line, 0,
4971 				 "iget: bogus i_mode (%o)", inode->i_mode);
4972 		goto bad_inode;
4973 	}
4974 	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
4975 		ext4_error_inode(inode, function, line, 0,
4976 				 "casefold flag without casefold feature");
4977 	brelse(iloc.bh);
4978 
4979 	unlock_new_inode(inode);
4980 	return inode;
4981 
4982 bad_inode:
4983 	brelse(iloc.bh);
4984 	iget_failed(inode);
4985 	return ERR_PTR(ret);
4986 }
4987 
4988 static void __ext4_update_other_inode_time(struct super_block *sb,
4989 					   unsigned long orig_ino,
4990 					   unsigned long ino,
4991 					   struct ext4_inode *raw_inode)
4992 {
4993 	struct inode *inode;
4994 
4995 	inode = find_inode_by_ino_rcu(sb, ino);
4996 	if (!inode)
4997 		return;
4998 
4999 	if (!inode_is_dirtytime_only(inode))
5000 		return;
5001 
5002 	spin_lock(&inode->i_lock);
5003 	if (inode_is_dirtytime_only(inode)) {
5004 		struct ext4_inode_info	*ei = EXT4_I(inode);
5005 
5006 		inode->i_state &= ~I_DIRTY_TIME;
5007 		spin_unlock(&inode->i_lock);
5008 
5009 		spin_lock(&ei->i_raw_lock);
5010 		EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5011 		EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5012 		EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5013 		ext4_inode_csum_set(inode, raw_inode, ei);
5014 		spin_unlock(&ei->i_raw_lock);
5015 		trace_ext4_other_inode_update_time(inode, orig_ino);
5016 		return;
5017 	}
5018 	spin_unlock(&inode->i_lock);
5019 }
5020 
5021 /*
5022  * Opportunistically update the other time fields for other inodes in
5023  * the same inode table block.
5024  */
5025 static void ext4_update_other_inodes_time(struct super_block *sb,
5026 					  unsigned long orig_ino, char *buf)
5027 {
5028 	unsigned long ino;
5029 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5030 	int inode_size = EXT4_INODE_SIZE(sb);
5031 
5032 	/*
5033 	 * Calculate the first inode in the inode table block.  Inode
5034 	 * numbers are one-based.  That is, the first inode in a block
5035 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5036 	 */
5037 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5038 	rcu_read_lock();
5039 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5040 		if (ino == orig_ino)
5041 			continue;
5042 		__ext4_update_other_inode_time(sb, orig_ino, ino,
5043 					       (struct ext4_inode *)buf);
5044 	}
5045 	rcu_read_unlock();
5046 }
5047 
5048 /*
5049  * Post the struct inode info into an on-disk inode location in the
5050  * buffer-cache.  This gobbles the caller's reference to the
5051  * buffer_head in the inode location struct.
5052  *
5053  * The caller must have write access to iloc->bh.
5054  */
5055 static int ext4_do_update_inode(handle_t *handle,
5056 				struct inode *inode,
5057 				struct ext4_iloc *iloc)
5058 {
5059 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5060 	struct ext4_inode_info *ei = EXT4_I(inode);
5061 	struct buffer_head *bh = iloc->bh;
5062 	struct super_block *sb = inode->i_sb;
5063 	int err;
5064 	int need_datasync = 0, set_large_file = 0;
5065 
5066 	spin_lock(&ei->i_raw_lock);
5067 
5068 	/*
5069 	 * For fields not tracked in the in-memory inode, initialise them
5070 	 * to zero for new inodes.
5071 	 */
5072 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5073 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5074 
5075 	if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5076 		need_datasync = 1;
5077 	if (ei->i_disksize > 0x7fffffffULL) {
5078 		if (!ext4_has_feature_large_file(sb) ||
5079 		    EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5080 			set_large_file = 1;
5081 	}
5082 
5083 	err = ext4_fill_raw_inode(inode, raw_inode);
5084 	spin_unlock(&ei->i_raw_lock);
5085 	if (err) {
5086 		EXT4_ERROR_INODE(inode, "corrupted inode contents");
5087 		goto out_brelse;
5088 	}
5089 
5090 	if (inode->i_sb->s_flags & SB_LAZYTIME)
5091 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5092 					      bh->b_data);
5093 
5094 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5095 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5096 	if (err)
5097 		goto out_error;
5098 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5099 	if (set_large_file) {
5100 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5101 		err = ext4_journal_get_write_access(handle, sb,
5102 						    EXT4_SB(sb)->s_sbh,
5103 						    EXT4_JTR_NONE);
5104 		if (err)
5105 			goto out_error;
5106 		lock_buffer(EXT4_SB(sb)->s_sbh);
5107 		ext4_set_feature_large_file(sb);
5108 		ext4_superblock_csum_set(sb);
5109 		unlock_buffer(EXT4_SB(sb)->s_sbh);
5110 		ext4_handle_sync(handle);
5111 		err = ext4_handle_dirty_metadata(handle, NULL,
5112 						 EXT4_SB(sb)->s_sbh);
5113 	}
5114 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5115 out_error:
5116 	ext4_std_error(inode->i_sb, err);
5117 out_brelse:
5118 	brelse(bh);
5119 	return err;
5120 }
5121 
5122 /*
5123  * ext4_write_inode()
5124  *
5125  * We are called from a few places:
5126  *
5127  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5128  *   Here, there will be no transaction running. We wait for any running
5129  *   transaction to commit.
5130  *
5131  * - Within flush work (sys_sync(), kupdate and such).
5132  *   We wait on commit, if told to.
5133  *
5134  * - Within iput_final() -> write_inode_now()
5135  *   We wait on commit, if told to.
5136  *
5137  * In all cases it is actually safe for us to return without doing anything,
5138  * because the inode has been copied into a raw inode buffer in
5139  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5140  * writeback.
5141  *
5142  * Note that we are absolutely dependent upon all inode dirtiers doing the
5143  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5144  * which we are interested.
5145  *
5146  * It would be a bug for them to not do this.  The code:
5147  *
5148  *	mark_inode_dirty(inode)
5149  *	stuff();
5150  *	inode->i_size = expr;
5151  *
5152  * is in error because write_inode() could occur while `stuff()' is running,
5153  * and the new i_size will be lost.  Plus the inode will no longer be on the
5154  * superblock's dirty inode list.
5155  */
5156 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5157 {
5158 	int err;
5159 
5160 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5161 	    sb_rdonly(inode->i_sb))
5162 		return 0;
5163 
5164 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5165 		return -EIO;
5166 
5167 	if (EXT4_SB(inode->i_sb)->s_journal) {
5168 		if (ext4_journal_current_handle()) {
5169 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5170 			dump_stack();
5171 			return -EIO;
5172 		}
5173 
5174 		/*
5175 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5176 		 * ext4_sync_fs() will force the commit after everything is
5177 		 * written.
5178 		 */
5179 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5180 			return 0;
5181 
5182 		err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5183 						EXT4_I(inode)->i_sync_tid);
5184 	} else {
5185 		struct ext4_iloc iloc;
5186 
5187 		err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5188 		if (err)
5189 			return err;
5190 		/*
5191 		 * sync(2) will flush the whole buffer cache. No need to do
5192 		 * it here separately for each inode.
5193 		 */
5194 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5195 			sync_dirty_buffer(iloc.bh);
5196 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5197 			ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5198 					       "IO error syncing inode");
5199 			err = -EIO;
5200 		}
5201 		brelse(iloc.bh);
5202 	}
5203 	return err;
5204 }
5205 
5206 /*
5207  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5208  * buffers that are attached to a page stradding i_size and are undergoing
5209  * commit. In that case we have to wait for commit to finish and try again.
5210  */
5211 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5212 {
5213 	struct page *page;
5214 	unsigned offset;
5215 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5216 	tid_t commit_tid = 0;
5217 	int ret;
5218 
5219 	offset = inode->i_size & (PAGE_SIZE - 1);
5220 	/*
5221 	 * If the page is fully truncated, we don't need to wait for any commit
5222 	 * (and we even should not as __ext4_journalled_invalidatepage() may
5223 	 * strip all buffers from the page but keep the page dirty which can then
5224 	 * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5225 	 * buffers). Also we don't need to wait for any commit if all buffers in
5226 	 * the page remain valid. This is most beneficial for the common case of
5227 	 * blocksize == PAGESIZE.
5228 	 */
5229 	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5230 		return;
5231 	while (1) {
5232 		page = find_lock_page(inode->i_mapping,
5233 				      inode->i_size >> PAGE_SHIFT);
5234 		if (!page)
5235 			return;
5236 		ret = __ext4_journalled_invalidatepage(page, offset,
5237 						PAGE_SIZE - offset);
5238 		unlock_page(page);
5239 		put_page(page);
5240 		if (ret != -EBUSY)
5241 			return;
5242 		commit_tid = 0;
5243 		read_lock(&journal->j_state_lock);
5244 		if (journal->j_committing_transaction)
5245 			commit_tid = journal->j_committing_transaction->t_tid;
5246 		read_unlock(&journal->j_state_lock);
5247 		if (commit_tid)
5248 			jbd2_log_wait_commit(journal, commit_tid);
5249 	}
5250 }
5251 
5252 /*
5253  * ext4_setattr()
5254  *
5255  * Called from notify_change.
5256  *
5257  * We want to trap VFS attempts to truncate the file as soon as
5258  * possible.  In particular, we want to make sure that when the VFS
5259  * shrinks i_size, we put the inode on the orphan list and modify
5260  * i_disksize immediately, so that during the subsequent flushing of
5261  * dirty pages and freeing of disk blocks, we can guarantee that any
5262  * commit will leave the blocks being flushed in an unused state on
5263  * disk.  (On recovery, the inode will get truncated and the blocks will
5264  * be freed, so we have a strong guarantee that no future commit will
5265  * leave these blocks visible to the user.)
5266  *
5267  * Another thing we have to assure is that if we are in ordered mode
5268  * and inode is still attached to the committing transaction, we must
5269  * we start writeout of all the dirty pages which are being truncated.
5270  * This way we are sure that all the data written in the previous
5271  * transaction are already on disk (truncate waits for pages under
5272  * writeback).
5273  *
5274  * Called with inode->i_mutex down.
5275  */
5276 int ext4_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5277 		 struct iattr *attr)
5278 {
5279 	struct inode *inode = d_inode(dentry);
5280 	int error, rc = 0;
5281 	int orphan = 0;
5282 	const unsigned int ia_valid = attr->ia_valid;
5283 
5284 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5285 		return -EIO;
5286 
5287 	if (unlikely(IS_IMMUTABLE(inode)))
5288 		return -EPERM;
5289 
5290 	if (unlikely(IS_APPEND(inode) &&
5291 		     (ia_valid & (ATTR_MODE | ATTR_UID |
5292 				  ATTR_GID | ATTR_TIMES_SET))))
5293 		return -EPERM;
5294 
5295 	error = setattr_prepare(mnt_userns, dentry, attr);
5296 	if (error)
5297 		return error;
5298 
5299 	error = fscrypt_prepare_setattr(dentry, attr);
5300 	if (error)
5301 		return error;
5302 
5303 	error = fsverity_prepare_setattr(dentry, attr);
5304 	if (error)
5305 		return error;
5306 
5307 	if (is_quota_modification(inode, attr)) {
5308 		error = dquot_initialize(inode);
5309 		if (error)
5310 			return error;
5311 	}
5312 
5313 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5314 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5315 		handle_t *handle;
5316 
5317 		/* (user+group)*(old+new) structure, inode write (sb,
5318 		 * inode block, ? - but truncate inode update has it) */
5319 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5320 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5321 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5322 		if (IS_ERR(handle)) {
5323 			error = PTR_ERR(handle);
5324 			goto err_out;
5325 		}
5326 
5327 		/* dquot_transfer() calls back ext4_get_inode_usage() which
5328 		 * counts xattr inode references.
5329 		 */
5330 		down_read(&EXT4_I(inode)->xattr_sem);
5331 		error = dquot_transfer(inode, attr);
5332 		up_read(&EXT4_I(inode)->xattr_sem);
5333 
5334 		if (error) {
5335 			ext4_journal_stop(handle);
5336 			return error;
5337 		}
5338 		/* Update corresponding info in inode so that everything is in
5339 		 * one transaction */
5340 		if (attr->ia_valid & ATTR_UID)
5341 			inode->i_uid = attr->ia_uid;
5342 		if (attr->ia_valid & ATTR_GID)
5343 			inode->i_gid = attr->ia_gid;
5344 		error = ext4_mark_inode_dirty(handle, inode);
5345 		ext4_journal_stop(handle);
5346 		if (unlikely(error)) {
5347 			return error;
5348 		}
5349 	}
5350 
5351 	if (attr->ia_valid & ATTR_SIZE) {
5352 		handle_t *handle;
5353 		loff_t oldsize = inode->i_size;
5354 		int shrink = (attr->ia_size < inode->i_size);
5355 
5356 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5357 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5358 
5359 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5360 				return -EFBIG;
5361 			}
5362 		}
5363 		if (!S_ISREG(inode->i_mode)) {
5364 			return -EINVAL;
5365 		}
5366 
5367 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5368 			inode_inc_iversion(inode);
5369 
5370 		if (shrink) {
5371 			if (ext4_should_order_data(inode)) {
5372 				error = ext4_begin_ordered_truncate(inode,
5373 							    attr->ia_size);
5374 				if (error)
5375 					goto err_out;
5376 			}
5377 			/*
5378 			 * Blocks are going to be removed from the inode. Wait
5379 			 * for dio in flight.
5380 			 */
5381 			inode_dio_wait(inode);
5382 		}
5383 
5384 		filemap_invalidate_lock(inode->i_mapping);
5385 
5386 		rc = ext4_break_layouts(inode);
5387 		if (rc) {
5388 			filemap_invalidate_unlock(inode->i_mapping);
5389 			goto err_out;
5390 		}
5391 
5392 		if (attr->ia_size != inode->i_size) {
5393 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5394 			if (IS_ERR(handle)) {
5395 				error = PTR_ERR(handle);
5396 				goto out_mmap_sem;
5397 			}
5398 			if (ext4_handle_valid(handle) && shrink) {
5399 				error = ext4_orphan_add(handle, inode);
5400 				orphan = 1;
5401 			}
5402 			/*
5403 			 * Update c/mtime on truncate up, ext4_truncate() will
5404 			 * update c/mtime in shrink case below
5405 			 */
5406 			if (!shrink) {
5407 				inode->i_mtime = current_time(inode);
5408 				inode->i_ctime = inode->i_mtime;
5409 			}
5410 
5411 			if (shrink)
5412 				ext4_fc_track_range(handle, inode,
5413 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5414 					inode->i_sb->s_blocksize_bits,
5415 					EXT_MAX_BLOCKS - 1);
5416 			else
5417 				ext4_fc_track_range(
5418 					handle, inode,
5419 					(oldsize > 0 ? oldsize - 1 : oldsize) >>
5420 					inode->i_sb->s_blocksize_bits,
5421 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5422 					inode->i_sb->s_blocksize_bits);
5423 
5424 			down_write(&EXT4_I(inode)->i_data_sem);
5425 			EXT4_I(inode)->i_disksize = attr->ia_size;
5426 			rc = ext4_mark_inode_dirty(handle, inode);
5427 			if (!error)
5428 				error = rc;
5429 			/*
5430 			 * We have to update i_size under i_data_sem together
5431 			 * with i_disksize to avoid races with writeback code
5432 			 * running ext4_wb_update_i_disksize().
5433 			 */
5434 			if (!error)
5435 				i_size_write(inode, attr->ia_size);
5436 			up_write(&EXT4_I(inode)->i_data_sem);
5437 			ext4_journal_stop(handle);
5438 			if (error)
5439 				goto out_mmap_sem;
5440 			if (!shrink) {
5441 				pagecache_isize_extended(inode, oldsize,
5442 							 inode->i_size);
5443 			} else if (ext4_should_journal_data(inode)) {
5444 				ext4_wait_for_tail_page_commit(inode);
5445 			}
5446 		}
5447 
5448 		/*
5449 		 * Truncate pagecache after we've waited for commit
5450 		 * in data=journal mode to make pages freeable.
5451 		 */
5452 		truncate_pagecache(inode, inode->i_size);
5453 		/*
5454 		 * Call ext4_truncate() even if i_size didn't change to
5455 		 * truncate possible preallocated blocks.
5456 		 */
5457 		if (attr->ia_size <= oldsize) {
5458 			rc = ext4_truncate(inode);
5459 			if (rc)
5460 				error = rc;
5461 		}
5462 out_mmap_sem:
5463 		filemap_invalidate_unlock(inode->i_mapping);
5464 	}
5465 
5466 	if (!error) {
5467 		setattr_copy(mnt_userns, inode, attr);
5468 		mark_inode_dirty(inode);
5469 	}
5470 
5471 	/*
5472 	 * If the call to ext4_truncate failed to get a transaction handle at
5473 	 * all, we need to clean up the in-core orphan list manually.
5474 	 */
5475 	if (orphan && inode->i_nlink)
5476 		ext4_orphan_del(NULL, inode);
5477 
5478 	if (!error && (ia_valid & ATTR_MODE))
5479 		rc = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
5480 
5481 err_out:
5482 	if  (error)
5483 		ext4_std_error(inode->i_sb, error);
5484 	if (!error)
5485 		error = rc;
5486 	return error;
5487 }
5488 
5489 int ext4_getattr(struct user_namespace *mnt_userns, const struct path *path,
5490 		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5491 {
5492 	struct inode *inode = d_inode(path->dentry);
5493 	struct ext4_inode *raw_inode;
5494 	struct ext4_inode_info *ei = EXT4_I(inode);
5495 	unsigned int flags;
5496 
5497 	if ((request_mask & STATX_BTIME) &&
5498 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5499 		stat->result_mask |= STATX_BTIME;
5500 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5501 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5502 	}
5503 
5504 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5505 	if (flags & EXT4_APPEND_FL)
5506 		stat->attributes |= STATX_ATTR_APPEND;
5507 	if (flags & EXT4_COMPR_FL)
5508 		stat->attributes |= STATX_ATTR_COMPRESSED;
5509 	if (flags & EXT4_ENCRYPT_FL)
5510 		stat->attributes |= STATX_ATTR_ENCRYPTED;
5511 	if (flags & EXT4_IMMUTABLE_FL)
5512 		stat->attributes |= STATX_ATTR_IMMUTABLE;
5513 	if (flags & EXT4_NODUMP_FL)
5514 		stat->attributes |= STATX_ATTR_NODUMP;
5515 	if (flags & EXT4_VERITY_FL)
5516 		stat->attributes |= STATX_ATTR_VERITY;
5517 
5518 	stat->attributes_mask |= (STATX_ATTR_APPEND |
5519 				  STATX_ATTR_COMPRESSED |
5520 				  STATX_ATTR_ENCRYPTED |
5521 				  STATX_ATTR_IMMUTABLE |
5522 				  STATX_ATTR_NODUMP |
5523 				  STATX_ATTR_VERITY);
5524 
5525 	generic_fillattr(mnt_userns, inode, stat);
5526 	return 0;
5527 }
5528 
5529 int ext4_file_getattr(struct user_namespace *mnt_userns,
5530 		      const struct path *path, struct kstat *stat,
5531 		      u32 request_mask, unsigned int query_flags)
5532 {
5533 	struct inode *inode = d_inode(path->dentry);
5534 	u64 delalloc_blocks;
5535 
5536 	ext4_getattr(mnt_userns, path, stat, request_mask, query_flags);
5537 
5538 	/*
5539 	 * If there is inline data in the inode, the inode will normally not
5540 	 * have data blocks allocated (it may have an external xattr block).
5541 	 * Report at least one sector for such files, so tools like tar, rsync,
5542 	 * others don't incorrectly think the file is completely sparse.
5543 	 */
5544 	if (unlikely(ext4_has_inline_data(inode)))
5545 		stat->blocks += (stat->size + 511) >> 9;
5546 
5547 	/*
5548 	 * We can't update i_blocks if the block allocation is delayed
5549 	 * otherwise in the case of system crash before the real block
5550 	 * allocation is done, we will have i_blocks inconsistent with
5551 	 * on-disk file blocks.
5552 	 * We always keep i_blocks updated together with real
5553 	 * allocation. But to not confuse with user, stat
5554 	 * will return the blocks that include the delayed allocation
5555 	 * blocks for this file.
5556 	 */
5557 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5558 				   EXT4_I(inode)->i_reserved_data_blocks);
5559 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5560 	return 0;
5561 }
5562 
5563 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5564 				   int pextents)
5565 {
5566 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5567 		return ext4_ind_trans_blocks(inode, lblocks);
5568 	return ext4_ext_index_trans_blocks(inode, pextents);
5569 }
5570 
5571 /*
5572  * Account for index blocks, block groups bitmaps and block group
5573  * descriptor blocks if modify datablocks and index blocks
5574  * worse case, the indexs blocks spread over different block groups
5575  *
5576  * If datablocks are discontiguous, they are possible to spread over
5577  * different block groups too. If they are contiguous, with flexbg,
5578  * they could still across block group boundary.
5579  *
5580  * Also account for superblock, inode, quota and xattr blocks
5581  */
5582 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5583 				  int pextents)
5584 {
5585 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5586 	int gdpblocks;
5587 	int idxblocks;
5588 	int ret = 0;
5589 
5590 	/*
5591 	 * How many index blocks need to touch to map @lblocks logical blocks
5592 	 * to @pextents physical extents?
5593 	 */
5594 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5595 
5596 	ret = idxblocks;
5597 
5598 	/*
5599 	 * Now let's see how many group bitmaps and group descriptors need
5600 	 * to account
5601 	 */
5602 	groups = idxblocks + pextents;
5603 	gdpblocks = groups;
5604 	if (groups > ngroups)
5605 		groups = ngroups;
5606 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5607 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5608 
5609 	/* bitmaps and block group descriptor blocks */
5610 	ret += groups + gdpblocks;
5611 
5612 	/* Blocks for super block, inode, quota and xattr blocks */
5613 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5614 
5615 	return ret;
5616 }
5617 
5618 /*
5619  * Calculate the total number of credits to reserve to fit
5620  * the modification of a single pages into a single transaction,
5621  * which may include multiple chunks of block allocations.
5622  *
5623  * This could be called via ext4_write_begin()
5624  *
5625  * We need to consider the worse case, when
5626  * one new block per extent.
5627  */
5628 int ext4_writepage_trans_blocks(struct inode *inode)
5629 {
5630 	int bpp = ext4_journal_blocks_per_page(inode);
5631 	int ret;
5632 
5633 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5634 
5635 	/* Account for data blocks for journalled mode */
5636 	if (ext4_should_journal_data(inode))
5637 		ret += bpp;
5638 	return ret;
5639 }
5640 
5641 /*
5642  * Calculate the journal credits for a chunk of data modification.
5643  *
5644  * This is called from DIO, fallocate or whoever calling
5645  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5646  *
5647  * journal buffers for data blocks are not included here, as DIO
5648  * and fallocate do no need to journal data buffers.
5649  */
5650 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5651 {
5652 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5653 }
5654 
5655 /*
5656  * The caller must have previously called ext4_reserve_inode_write().
5657  * Give this, we know that the caller already has write access to iloc->bh.
5658  */
5659 int ext4_mark_iloc_dirty(handle_t *handle,
5660 			 struct inode *inode, struct ext4_iloc *iloc)
5661 {
5662 	int err = 0;
5663 
5664 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5665 		put_bh(iloc->bh);
5666 		return -EIO;
5667 	}
5668 	ext4_fc_track_inode(handle, inode);
5669 
5670 	if (IS_I_VERSION(inode))
5671 		inode_inc_iversion(inode);
5672 
5673 	/* the do_update_inode consumes one bh->b_count */
5674 	get_bh(iloc->bh);
5675 
5676 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5677 	err = ext4_do_update_inode(handle, inode, iloc);
5678 	put_bh(iloc->bh);
5679 	return err;
5680 }
5681 
5682 /*
5683  * On success, We end up with an outstanding reference count against
5684  * iloc->bh.  This _must_ be cleaned up later.
5685  */
5686 
5687 int
5688 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5689 			 struct ext4_iloc *iloc)
5690 {
5691 	int err;
5692 
5693 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5694 		return -EIO;
5695 
5696 	err = ext4_get_inode_loc(inode, iloc);
5697 	if (!err) {
5698 		BUFFER_TRACE(iloc->bh, "get_write_access");
5699 		err = ext4_journal_get_write_access(handle, inode->i_sb,
5700 						    iloc->bh, EXT4_JTR_NONE);
5701 		if (err) {
5702 			brelse(iloc->bh);
5703 			iloc->bh = NULL;
5704 		}
5705 	}
5706 	ext4_std_error(inode->i_sb, err);
5707 	return err;
5708 }
5709 
5710 static int __ext4_expand_extra_isize(struct inode *inode,
5711 				     unsigned int new_extra_isize,
5712 				     struct ext4_iloc *iloc,
5713 				     handle_t *handle, int *no_expand)
5714 {
5715 	struct ext4_inode *raw_inode;
5716 	struct ext4_xattr_ibody_header *header;
5717 	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5718 	struct ext4_inode_info *ei = EXT4_I(inode);
5719 	int error;
5720 
5721 	/* this was checked at iget time, but double check for good measure */
5722 	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5723 	    (ei->i_extra_isize & 3)) {
5724 		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5725 				 ei->i_extra_isize,
5726 				 EXT4_INODE_SIZE(inode->i_sb));
5727 		return -EFSCORRUPTED;
5728 	}
5729 	if ((new_extra_isize < ei->i_extra_isize) ||
5730 	    (new_extra_isize < 4) ||
5731 	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5732 		return -EINVAL;	/* Should never happen */
5733 
5734 	raw_inode = ext4_raw_inode(iloc);
5735 
5736 	header = IHDR(inode, raw_inode);
5737 
5738 	/* No extended attributes present */
5739 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5740 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5741 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5742 		       EXT4_I(inode)->i_extra_isize, 0,
5743 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5744 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5745 		return 0;
5746 	}
5747 
5748 	/* try to expand with EAs present */
5749 	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5750 					   raw_inode, handle);
5751 	if (error) {
5752 		/*
5753 		 * Inode size expansion failed; don't try again
5754 		 */
5755 		*no_expand = 1;
5756 	}
5757 
5758 	return error;
5759 }
5760 
5761 /*
5762  * Expand an inode by new_extra_isize bytes.
5763  * Returns 0 on success or negative error number on failure.
5764  */
5765 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5766 					  unsigned int new_extra_isize,
5767 					  struct ext4_iloc iloc,
5768 					  handle_t *handle)
5769 {
5770 	int no_expand;
5771 	int error;
5772 
5773 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5774 		return -EOVERFLOW;
5775 
5776 	/*
5777 	 * In nojournal mode, we can immediately attempt to expand
5778 	 * the inode.  When journaled, we first need to obtain extra
5779 	 * buffer credits since we may write into the EA block
5780 	 * with this same handle. If journal_extend fails, then it will
5781 	 * only result in a minor loss of functionality for that inode.
5782 	 * If this is felt to be critical, then e2fsck should be run to
5783 	 * force a large enough s_min_extra_isize.
5784 	 */
5785 	if (ext4_journal_extend(handle,
5786 				EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5787 		return -ENOSPC;
5788 
5789 	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5790 		return -EBUSY;
5791 
5792 	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5793 					  handle, &no_expand);
5794 	ext4_write_unlock_xattr(inode, &no_expand);
5795 
5796 	return error;
5797 }
5798 
5799 int ext4_expand_extra_isize(struct inode *inode,
5800 			    unsigned int new_extra_isize,
5801 			    struct ext4_iloc *iloc)
5802 {
5803 	handle_t *handle;
5804 	int no_expand;
5805 	int error, rc;
5806 
5807 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5808 		brelse(iloc->bh);
5809 		return -EOVERFLOW;
5810 	}
5811 
5812 	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5813 				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5814 	if (IS_ERR(handle)) {
5815 		error = PTR_ERR(handle);
5816 		brelse(iloc->bh);
5817 		return error;
5818 	}
5819 
5820 	ext4_write_lock_xattr(inode, &no_expand);
5821 
5822 	BUFFER_TRACE(iloc->bh, "get_write_access");
5823 	error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5824 					      EXT4_JTR_NONE);
5825 	if (error) {
5826 		brelse(iloc->bh);
5827 		goto out_unlock;
5828 	}
5829 
5830 	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5831 					  handle, &no_expand);
5832 
5833 	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5834 	if (!error)
5835 		error = rc;
5836 
5837 out_unlock:
5838 	ext4_write_unlock_xattr(inode, &no_expand);
5839 	ext4_journal_stop(handle);
5840 	return error;
5841 }
5842 
5843 /*
5844  * What we do here is to mark the in-core inode as clean with respect to inode
5845  * dirtiness (it may still be data-dirty).
5846  * This means that the in-core inode may be reaped by prune_icache
5847  * without having to perform any I/O.  This is a very good thing,
5848  * because *any* task may call prune_icache - even ones which
5849  * have a transaction open against a different journal.
5850  *
5851  * Is this cheating?  Not really.  Sure, we haven't written the
5852  * inode out, but prune_icache isn't a user-visible syncing function.
5853  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5854  * we start and wait on commits.
5855  */
5856 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5857 				const char *func, unsigned int line)
5858 {
5859 	struct ext4_iloc iloc;
5860 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5861 	int err;
5862 
5863 	might_sleep();
5864 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5865 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5866 	if (err)
5867 		goto out;
5868 
5869 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5870 		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5871 					       iloc, handle);
5872 
5873 	err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5874 out:
5875 	if (unlikely(err))
5876 		ext4_error_inode_err(inode, func, line, 0, err,
5877 					"mark_inode_dirty error");
5878 	return err;
5879 }
5880 
5881 /*
5882  * ext4_dirty_inode() is called from __mark_inode_dirty()
5883  *
5884  * We're really interested in the case where a file is being extended.
5885  * i_size has been changed by generic_commit_write() and we thus need
5886  * to include the updated inode in the current transaction.
5887  *
5888  * Also, dquot_alloc_block() will always dirty the inode when blocks
5889  * are allocated to the file.
5890  *
5891  * If the inode is marked synchronous, we don't honour that here - doing
5892  * so would cause a commit on atime updates, which we don't bother doing.
5893  * We handle synchronous inodes at the highest possible level.
5894  */
5895 void ext4_dirty_inode(struct inode *inode, int flags)
5896 {
5897 	handle_t *handle;
5898 
5899 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5900 	if (IS_ERR(handle))
5901 		return;
5902 	ext4_mark_inode_dirty(handle, inode);
5903 	ext4_journal_stop(handle);
5904 }
5905 
5906 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5907 {
5908 	journal_t *journal;
5909 	handle_t *handle;
5910 	int err;
5911 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5912 
5913 	/*
5914 	 * We have to be very careful here: changing a data block's
5915 	 * journaling status dynamically is dangerous.  If we write a
5916 	 * data block to the journal, change the status and then delete
5917 	 * that block, we risk forgetting to revoke the old log record
5918 	 * from the journal and so a subsequent replay can corrupt data.
5919 	 * So, first we make sure that the journal is empty and that
5920 	 * nobody is changing anything.
5921 	 */
5922 
5923 	journal = EXT4_JOURNAL(inode);
5924 	if (!journal)
5925 		return 0;
5926 	if (is_journal_aborted(journal))
5927 		return -EROFS;
5928 
5929 	/* Wait for all existing dio workers */
5930 	inode_dio_wait(inode);
5931 
5932 	/*
5933 	 * Before flushing the journal and switching inode's aops, we have
5934 	 * to flush all dirty data the inode has. There can be outstanding
5935 	 * delayed allocations, there can be unwritten extents created by
5936 	 * fallocate or buffered writes in dioread_nolock mode covered by
5937 	 * dirty data which can be converted only after flushing the dirty
5938 	 * data (and journalled aops don't know how to handle these cases).
5939 	 */
5940 	if (val) {
5941 		filemap_invalidate_lock(inode->i_mapping);
5942 		err = filemap_write_and_wait(inode->i_mapping);
5943 		if (err < 0) {
5944 			filemap_invalidate_unlock(inode->i_mapping);
5945 			return err;
5946 		}
5947 	}
5948 
5949 	percpu_down_write(&sbi->s_writepages_rwsem);
5950 	jbd2_journal_lock_updates(journal);
5951 
5952 	/*
5953 	 * OK, there are no updates running now, and all cached data is
5954 	 * synced to disk.  We are now in a completely consistent state
5955 	 * which doesn't have anything in the journal, and we know that
5956 	 * no filesystem updates are running, so it is safe to modify
5957 	 * the inode's in-core data-journaling state flag now.
5958 	 */
5959 
5960 	if (val)
5961 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5962 	else {
5963 		err = jbd2_journal_flush(journal, 0);
5964 		if (err < 0) {
5965 			jbd2_journal_unlock_updates(journal);
5966 			percpu_up_write(&sbi->s_writepages_rwsem);
5967 			return err;
5968 		}
5969 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5970 	}
5971 	ext4_set_aops(inode);
5972 
5973 	jbd2_journal_unlock_updates(journal);
5974 	percpu_up_write(&sbi->s_writepages_rwsem);
5975 
5976 	if (val)
5977 		filemap_invalidate_unlock(inode->i_mapping);
5978 
5979 	/* Finally we can mark the inode as dirty. */
5980 
5981 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5982 	if (IS_ERR(handle))
5983 		return PTR_ERR(handle);
5984 
5985 	ext4_fc_mark_ineligible(inode->i_sb,
5986 		EXT4_FC_REASON_JOURNAL_FLAG_CHANGE);
5987 	err = ext4_mark_inode_dirty(handle, inode);
5988 	ext4_handle_sync(handle);
5989 	ext4_journal_stop(handle);
5990 	ext4_std_error(inode->i_sb, err);
5991 
5992 	return err;
5993 }
5994 
5995 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
5996 			    struct buffer_head *bh)
5997 {
5998 	return !buffer_mapped(bh);
5999 }
6000 
6001 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6002 {
6003 	struct vm_area_struct *vma = vmf->vma;
6004 	struct page *page = vmf->page;
6005 	loff_t size;
6006 	unsigned long len;
6007 	int err;
6008 	vm_fault_t ret;
6009 	struct file *file = vma->vm_file;
6010 	struct inode *inode = file_inode(file);
6011 	struct address_space *mapping = inode->i_mapping;
6012 	handle_t *handle;
6013 	get_block_t *get_block;
6014 	int retries = 0;
6015 
6016 	if (unlikely(IS_IMMUTABLE(inode)))
6017 		return VM_FAULT_SIGBUS;
6018 
6019 	sb_start_pagefault(inode->i_sb);
6020 	file_update_time(vma->vm_file);
6021 
6022 	filemap_invalidate_lock_shared(mapping);
6023 
6024 	err = ext4_convert_inline_data(inode);
6025 	if (err)
6026 		goto out_ret;
6027 
6028 	/*
6029 	 * On data journalling we skip straight to the transaction handle:
6030 	 * there's no delalloc; page truncated will be checked later; the
6031 	 * early return w/ all buffers mapped (calculates size/len) can't
6032 	 * be used; and there's no dioread_nolock, so only ext4_get_block.
6033 	 */
6034 	if (ext4_should_journal_data(inode))
6035 		goto retry_alloc;
6036 
6037 	/* Delalloc case is easy... */
6038 	if (test_opt(inode->i_sb, DELALLOC) &&
6039 	    !ext4_nonda_switch(inode->i_sb)) {
6040 		do {
6041 			err = block_page_mkwrite(vma, vmf,
6042 						   ext4_da_get_block_prep);
6043 		} while (err == -ENOSPC &&
6044 		       ext4_should_retry_alloc(inode->i_sb, &retries));
6045 		goto out_ret;
6046 	}
6047 
6048 	lock_page(page);
6049 	size = i_size_read(inode);
6050 	/* Page got truncated from under us? */
6051 	if (page->mapping != mapping || page_offset(page) > size) {
6052 		unlock_page(page);
6053 		ret = VM_FAULT_NOPAGE;
6054 		goto out;
6055 	}
6056 
6057 	if (page->index == size >> PAGE_SHIFT)
6058 		len = size & ~PAGE_MASK;
6059 	else
6060 		len = PAGE_SIZE;
6061 	/*
6062 	 * Return if we have all the buffers mapped. This avoids the need to do
6063 	 * journal_start/journal_stop which can block and take a long time
6064 	 *
6065 	 * This cannot be done for data journalling, as we have to add the
6066 	 * inode to the transaction's list to writeprotect pages on commit.
6067 	 */
6068 	if (page_has_buffers(page)) {
6069 		if (!ext4_walk_page_buffers(NULL, inode, page_buffers(page),
6070 					    0, len, NULL,
6071 					    ext4_bh_unmapped)) {
6072 			/* Wait so that we don't change page under IO */
6073 			wait_for_stable_page(page);
6074 			ret = VM_FAULT_LOCKED;
6075 			goto out;
6076 		}
6077 	}
6078 	unlock_page(page);
6079 	/* OK, we need to fill the hole... */
6080 	if (ext4_should_dioread_nolock(inode))
6081 		get_block = ext4_get_block_unwritten;
6082 	else
6083 		get_block = ext4_get_block;
6084 retry_alloc:
6085 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6086 				    ext4_writepage_trans_blocks(inode));
6087 	if (IS_ERR(handle)) {
6088 		ret = VM_FAULT_SIGBUS;
6089 		goto out;
6090 	}
6091 	/*
6092 	 * Data journalling can't use block_page_mkwrite() because it
6093 	 * will set_buffer_dirty() before do_journal_get_write_access()
6094 	 * thus might hit warning messages for dirty metadata buffers.
6095 	 */
6096 	if (!ext4_should_journal_data(inode)) {
6097 		err = block_page_mkwrite(vma, vmf, get_block);
6098 	} else {
6099 		lock_page(page);
6100 		size = i_size_read(inode);
6101 		/* Page got truncated from under us? */
6102 		if (page->mapping != mapping || page_offset(page) > size) {
6103 			ret = VM_FAULT_NOPAGE;
6104 			goto out_error;
6105 		}
6106 
6107 		if (page->index == size >> PAGE_SHIFT)
6108 			len = size & ~PAGE_MASK;
6109 		else
6110 			len = PAGE_SIZE;
6111 
6112 		err = __block_write_begin(page, 0, len, ext4_get_block);
6113 		if (!err) {
6114 			ret = VM_FAULT_SIGBUS;
6115 			if (ext4_walk_page_buffers(handle, inode,
6116 					page_buffers(page), 0, len, NULL,
6117 					do_journal_get_write_access))
6118 				goto out_error;
6119 			if (ext4_walk_page_buffers(handle, inode,
6120 					page_buffers(page), 0, len, NULL,
6121 					write_end_fn))
6122 				goto out_error;
6123 			if (ext4_jbd2_inode_add_write(handle, inode,
6124 						      page_offset(page), len))
6125 				goto out_error;
6126 			ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6127 		} else {
6128 			unlock_page(page);
6129 		}
6130 	}
6131 	ext4_journal_stop(handle);
6132 	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6133 		goto retry_alloc;
6134 out_ret:
6135 	ret = block_page_mkwrite_return(err);
6136 out:
6137 	filemap_invalidate_unlock_shared(mapping);
6138 	sb_end_pagefault(inode->i_sb);
6139 	return ret;
6140 out_error:
6141 	unlock_page(page);
6142 	ext4_journal_stop(handle);
6143 	goto out;
6144 }
6145