xref: /openbmc/linux/fs/ext4/inode.c (revision 110e6f26)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *	(jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20 
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40 
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45 
46 #include <trace/events/ext4.h>
47 
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49 
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 			      struct ext4_inode_info *ei)
52 {
53 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 	__u16 csum_lo;
55 	__u16 csum_hi = 0;
56 	__u32 csum;
57 
58 	csum_lo = le16_to_cpu(raw->i_checksum_lo);
59 	raw->i_checksum_lo = 0;
60 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62 		csum_hi = le16_to_cpu(raw->i_checksum_hi);
63 		raw->i_checksum_hi = 0;
64 	}
65 
66 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67 			   EXT4_INODE_SIZE(inode->i_sb));
68 
69 	raw->i_checksum_lo = cpu_to_le16(csum_lo);
70 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72 		raw->i_checksum_hi = cpu_to_le16(csum_hi);
73 
74 	return csum;
75 }
76 
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78 				  struct ext4_inode_info *ei)
79 {
80 	__u32 provided, calculated;
81 
82 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83 	    cpu_to_le32(EXT4_OS_LINUX) ||
84 	    !ext4_has_metadata_csum(inode->i_sb))
85 		return 1;
86 
87 	provided = le16_to_cpu(raw->i_checksum_lo);
88 	calculated = ext4_inode_csum(inode, raw, ei);
89 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
90 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
91 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
92 	else
93 		calculated &= 0xFFFF;
94 
95 	return provided == calculated;
96 }
97 
98 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
99 				struct ext4_inode_info *ei)
100 {
101 	__u32 csum;
102 
103 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
104 	    cpu_to_le32(EXT4_OS_LINUX) ||
105 	    !ext4_has_metadata_csum(inode->i_sb))
106 		return;
107 
108 	csum = ext4_inode_csum(inode, raw, ei);
109 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
110 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
111 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
112 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
113 }
114 
115 static inline int ext4_begin_ordered_truncate(struct inode *inode,
116 					      loff_t new_size)
117 {
118 	trace_ext4_begin_ordered_truncate(inode, new_size);
119 	/*
120 	 * If jinode is zero, then we never opened the file for
121 	 * writing, so there's no need to call
122 	 * jbd2_journal_begin_ordered_truncate() since there's no
123 	 * outstanding writes we need to flush.
124 	 */
125 	if (!EXT4_I(inode)->jinode)
126 		return 0;
127 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
128 						   EXT4_I(inode)->jinode,
129 						   new_size);
130 }
131 
132 static void ext4_invalidatepage(struct page *page, unsigned int offset,
133 				unsigned int length);
134 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
135 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
136 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
137 				  int pextents);
138 
139 /*
140  * Test whether an inode is a fast symlink.
141  */
142 int ext4_inode_is_fast_symlink(struct inode *inode)
143 {
144         int ea_blocks = EXT4_I(inode)->i_file_acl ?
145 		EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
146 
147 	if (ext4_has_inline_data(inode))
148 		return 0;
149 
150 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151 }
152 
153 /*
154  * Restart the transaction associated with *handle.  This does a commit,
155  * so before we call here everything must be consistently dirtied against
156  * this transaction.
157  */
158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
159 				 int nblocks)
160 {
161 	int ret;
162 
163 	/*
164 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
165 	 * moment, get_block can be called only for blocks inside i_size since
166 	 * page cache has been already dropped and writes are blocked by
167 	 * i_mutex. So we can safely drop the i_data_sem here.
168 	 */
169 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
170 	jbd_debug(2, "restarting handle %p\n", handle);
171 	up_write(&EXT4_I(inode)->i_data_sem);
172 	ret = ext4_journal_restart(handle, nblocks);
173 	down_write(&EXT4_I(inode)->i_data_sem);
174 	ext4_discard_preallocations(inode);
175 
176 	return ret;
177 }
178 
179 /*
180  * Called at the last iput() if i_nlink is zero.
181  */
182 void ext4_evict_inode(struct inode *inode)
183 {
184 	handle_t *handle;
185 	int err;
186 
187 	trace_ext4_evict_inode(inode);
188 
189 	if (inode->i_nlink) {
190 		/*
191 		 * When journalling data dirty buffers are tracked only in the
192 		 * journal. So although mm thinks everything is clean and
193 		 * ready for reaping the inode might still have some pages to
194 		 * write in the running transaction or waiting to be
195 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
196 		 * (via truncate_inode_pages()) to discard these buffers can
197 		 * cause data loss. Also even if we did not discard these
198 		 * buffers, we would have no way to find them after the inode
199 		 * is reaped and thus user could see stale data if he tries to
200 		 * read them before the transaction is checkpointed. So be
201 		 * careful and force everything to disk here... We use
202 		 * ei->i_datasync_tid to store the newest transaction
203 		 * containing inode's data.
204 		 *
205 		 * Note that directories do not have this problem because they
206 		 * don't use page cache.
207 		 */
208 		if (ext4_should_journal_data(inode) &&
209 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210 		    inode->i_ino != EXT4_JOURNAL_INO) {
211 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213 
214 			jbd2_complete_transaction(journal, commit_tid);
215 			filemap_write_and_wait(&inode->i_data);
216 		}
217 		truncate_inode_pages_final(&inode->i_data);
218 
219 		goto no_delete;
220 	}
221 
222 	if (is_bad_inode(inode))
223 		goto no_delete;
224 	dquot_initialize(inode);
225 
226 	if (ext4_should_order_data(inode))
227 		ext4_begin_ordered_truncate(inode, 0);
228 	truncate_inode_pages_final(&inode->i_data);
229 
230 	/*
231 	 * Protect us against freezing - iput() caller didn't have to have any
232 	 * protection against it
233 	 */
234 	sb_start_intwrite(inode->i_sb);
235 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
236 				    ext4_blocks_for_truncate(inode)+3);
237 	if (IS_ERR(handle)) {
238 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
239 		/*
240 		 * If we're going to skip the normal cleanup, we still need to
241 		 * make sure that the in-core orphan linked list is properly
242 		 * cleaned up.
243 		 */
244 		ext4_orphan_del(NULL, inode);
245 		sb_end_intwrite(inode->i_sb);
246 		goto no_delete;
247 	}
248 
249 	if (IS_SYNC(inode))
250 		ext4_handle_sync(handle);
251 	inode->i_size = 0;
252 	err = ext4_mark_inode_dirty(handle, inode);
253 	if (err) {
254 		ext4_warning(inode->i_sb,
255 			     "couldn't mark inode dirty (err %d)", err);
256 		goto stop_handle;
257 	}
258 	if (inode->i_blocks)
259 		ext4_truncate(inode);
260 
261 	/*
262 	 * ext4_ext_truncate() doesn't reserve any slop when it
263 	 * restarts journal transactions; therefore there may not be
264 	 * enough credits left in the handle to remove the inode from
265 	 * the orphan list and set the dtime field.
266 	 */
267 	if (!ext4_handle_has_enough_credits(handle, 3)) {
268 		err = ext4_journal_extend(handle, 3);
269 		if (err > 0)
270 			err = ext4_journal_restart(handle, 3);
271 		if (err != 0) {
272 			ext4_warning(inode->i_sb,
273 				     "couldn't extend journal (err %d)", err);
274 		stop_handle:
275 			ext4_journal_stop(handle);
276 			ext4_orphan_del(NULL, inode);
277 			sb_end_intwrite(inode->i_sb);
278 			goto no_delete;
279 		}
280 	}
281 
282 	/*
283 	 * Kill off the orphan record which ext4_truncate created.
284 	 * AKPM: I think this can be inside the above `if'.
285 	 * Note that ext4_orphan_del() has to be able to cope with the
286 	 * deletion of a non-existent orphan - this is because we don't
287 	 * know if ext4_truncate() actually created an orphan record.
288 	 * (Well, we could do this if we need to, but heck - it works)
289 	 */
290 	ext4_orphan_del(handle, inode);
291 	EXT4_I(inode)->i_dtime	= get_seconds();
292 
293 	/*
294 	 * One subtle ordering requirement: if anything has gone wrong
295 	 * (transaction abort, IO errors, whatever), then we can still
296 	 * do these next steps (the fs will already have been marked as
297 	 * having errors), but we can't free the inode if the mark_dirty
298 	 * fails.
299 	 */
300 	if (ext4_mark_inode_dirty(handle, inode))
301 		/* If that failed, just do the required in-core inode clear. */
302 		ext4_clear_inode(inode);
303 	else
304 		ext4_free_inode(handle, inode);
305 	ext4_journal_stop(handle);
306 	sb_end_intwrite(inode->i_sb);
307 	return;
308 no_delete:
309 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
310 }
311 
312 #ifdef CONFIG_QUOTA
313 qsize_t *ext4_get_reserved_space(struct inode *inode)
314 {
315 	return &EXT4_I(inode)->i_reserved_quota;
316 }
317 #endif
318 
319 /*
320  * Called with i_data_sem down, which is important since we can call
321  * ext4_discard_preallocations() from here.
322  */
323 void ext4_da_update_reserve_space(struct inode *inode,
324 					int used, int quota_claim)
325 {
326 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
327 	struct ext4_inode_info *ei = EXT4_I(inode);
328 
329 	spin_lock(&ei->i_block_reservation_lock);
330 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
331 	if (unlikely(used > ei->i_reserved_data_blocks)) {
332 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
333 			 "with only %d reserved data blocks",
334 			 __func__, inode->i_ino, used,
335 			 ei->i_reserved_data_blocks);
336 		WARN_ON(1);
337 		used = ei->i_reserved_data_blocks;
338 	}
339 
340 	/* Update per-inode reservations */
341 	ei->i_reserved_data_blocks -= used;
342 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
343 
344 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
345 
346 	/* Update quota subsystem for data blocks */
347 	if (quota_claim)
348 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
349 	else {
350 		/*
351 		 * We did fallocate with an offset that is already delayed
352 		 * allocated. So on delayed allocated writeback we should
353 		 * not re-claim the quota for fallocated blocks.
354 		 */
355 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
356 	}
357 
358 	/*
359 	 * If we have done all the pending block allocations and if
360 	 * there aren't any writers on the inode, we can discard the
361 	 * inode's preallocations.
362 	 */
363 	if ((ei->i_reserved_data_blocks == 0) &&
364 	    (atomic_read(&inode->i_writecount) == 0))
365 		ext4_discard_preallocations(inode);
366 }
367 
368 static int __check_block_validity(struct inode *inode, const char *func,
369 				unsigned int line,
370 				struct ext4_map_blocks *map)
371 {
372 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
373 				   map->m_len)) {
374 		ext4_error_inode(inode, func, line, map->m_pblk,
375 				 "lblock %lu mapped to illegal pblock "
376 				 "(length %d)", (unsigned long) map->m_lblk,
377 				 map->m_len);
378 		return -EFSCORRUPTED;
379 	}
380 	return 0;
381 }
382 
383 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
384 		       ext4_lblk_t len)
385 {
386 	int ret;
387 
388 	if (ext4_encrypted_inode(inode))
389 		return ext4_encrypted_zeroout(inode, lblk, pblk, len);
390 
391 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
392 	if (ret > 0)
393 		ret = 0;
394 
395 	return ret;
396 }
397 
398 #define check_block_validity(inode, map)	\
399 	__check_block_validity((inode), __func__, __LINE__, (map))
400 
401 #ifdef ES_AGGRESSIVE_TEST
402 static void ext4_map_blocks_es_recheck(handle_t *handle,
403 				       struct inode *inode,
404 				       struct ext4_map_blocks *es_map,
405 				       struct ext4_map_blocks *map,
406 				       int flags)
407 {
408 	int retval;
409 
410 	map->m_flags = 0;
411 	/*
412 	 * There is a race window that the result is not the same.
413 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
414 	 * is that we lookup a block mapping in extent status tree with
415 	 * out taking i_data_sem.  So at the time the unwritten extent
416 	 * could be converted.
417 	 */
418 	down_read(&EXT4_I(inode)->i_data_sem);
419 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
420 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
421 					     EXT4_GET_BLOCKS_KEEP_SIZE);
422 	} else {
423 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
424 					     EXT4_GET_BLOCKS_KEEP_SIZE);
425 	}
426 	up_read((&EXT4_I(inode)->i_data_sem));
427 
428 	/*
429 	 * We don't check m_len because extent will be collpased in status
430 	 * tree.  So the m_len might not equal.
431 	 */
432 	if (es_map->m_lblk != map->m_lblk ||
433 	    es_map->m_flags != map->m_flags ||
434 	    es_map->m_pblk != map->m_pblk) {
435 		printk("ES cache assertion failed for inode: %lu "
436 		       "es_cached ex [%d/%d/%llu/%x] != "
437 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
438 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
439 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
440 		       map->m_len, map->m_pblk, map->m_flags,
441 		       retval, flags);
442 	}
443 }
444 #endif /* ES_AGGRESSIVE_TEST */
445 
446 /*
447  * The ext4_map_blocks() function tries to look up the requested blocks,
448  * and returns if the blocks are already mapped.
449  *
450  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
451  * and store the allocated blocks in the result buffer head and mark it
452  * mapped.
453  *
454  * If file type is extents based, it will call ext4_ext_map_blocks(),
455  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
456  * based files
457  *
458  * On success, it returns the number of blocks being mapped or allocated.  if
459  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
460  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
461  *
462  * It returns 0 if plain look up failed (blocks have not been allocated), in
463  * that case, @map is returned as unmapped but we still do fill map->m_len to
464  * indicate the length of a hole starting at map->m_lblk.
465  *
466  * It returns the error in case of allocation failure.
467  */
468 int ext4_map_blocks(handle_t *handle, struct inode *inode,
469 		    struct ext4_map_blocks *map, int flags)
470 {
471 	struct extent_status es;
472 	int retval;
473 	int ret = 0;
474 #ifdef ES_AGGRESSIVE_TEST
475 	struct ext4_map_blocks orig_map;
476 
477 	memcpy(&orig_map, map, sizeof(*map));
478 #endif
479 
480 	map->m_flags = 0;
481 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
482 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
483 		  (unsigned long) map->m_lblk);
484 
485 	/*
486 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
487 	 */
488 	if (unlikely(map->m_len > INT_MAX))
489 		map->m_len = INT_MAX;
490 
491 	/* We can handle the block number less than EXT_MAX_BLOCKS */
492 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
493 		return -EFSCORRUPTED;
494 
495 	/* Lookup extent status tree firstly */
496 	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
497 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
498 			map->m_pblk = ext4_es_pblock(&es) +
499 					map->m_lblk - es.es_lblk;
500 			map->m_flags |= ext4_es_is_written(&es) ?
501 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
502 			retval = es.es_len - (map->m_lblk - es.es_lblk);
503 			if (retval > map->m_len)
504 				retval = map->m_len;
505 			map->m_len = retval;
506 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
507 			map->m_pblk = 0;
508 			retval = es.es_len - (map->m_lblk - es.es_lblk);
509 			if (retval > map->m_len)
510 				retval = map->m_len;
511 			map->m_len = retval;
512 			retval = 0;
513 		} else {
514 			BUG_ON(1);
515 		}
516 #ifdef ES_AGGRESSIVE_TEST
517 		ext4_map_blocks_es_recheck(handle, inode, map,
518 					   &orig_map, flags);
519 #endif
520 		goto found;
521 	}
522 
523 	/*
524 	 * Try to see if we can get the block without requesting a new
525 	 * file system block.
526 	 */
527 	down_read(&EXT4_I(inode)->i_data_sem);
528 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
529 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
530 					     EXT4_GET_BLOCKS_KEEP_SIZE);
531 	} else {
532 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
533 					     EXT4_GET_BLOCKS_KEEP_SIZE);
534 	}
535 	if (retval > 0) {
536 		unsigned int status;
537 
538 		if (unlikely(retval != map->m_len)) {
539 			ext4_warning(inode->i_sb,
540 				     "ES len assertion failed for inode "
541 				     "%lu: retval %d != map->m_len %d",
542 				     inode->i_ino, retval, map->m_len);
543 			WARN_ON(1);
544 		}
545 
546 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
547 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
548 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
549 		    !(status & EXTENT_STATUS_WRITTEN) &&
550 		    ext4_find_delalloc_range(inode, map->m_lblk,
551 					     map->m_lblk + map->m_len - 1))
552 			status |= EXTENT_STATUS_DELAYED;
553 		ret = ext4_es_insert_extent(inode, map->m_lblk,
554 					    map->m_len, map->m_pblk, status);
555 		if (ret < 0)
556 			retval = ret;
557 	}
558 	up_read((&EXT4_I(inode)->i_data_sem));
559 
560 found:
561 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
562 		ret = check_block_validity(inode, map);
563 		if (ret != 0)
564 			return ret;
565 	}
566 
567 	/* If it is only a block(s) look up */
568 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
569 		return retval;
570 
571 	/*
572 	 * Returns if the blocks have already allocated
573 	 *
574 	 * Note that if blocks have been preallocated
575 	 * ext4_ext_get_block() returns the create = 0
576 	 * with buffer head unmapped.
577 	 */
578 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
579 		/*
580 		 * If we need to convert extent to unwritten
581 		 * we continue and do the actual work in
582 		 * ext4_ext_map_blocks()
583 		 */
584 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
585 			return retval;
586 
587 	/*
588 	 * Here we clear m_flags because after allocating an new extent,
589 	 * it will be set again.
590 	 */
591 	map->m_flags &= ~EXT4_MAP_FLAGS;
592 
593 	/*
594 	 * New blocks allocate and/or writing to unwritten extent
595 	 * will possibly result in updating i_data, so we take
596 	 * the write lock of i_data_sem, and call get_block()
597 	 * with create == 1 flag.
598 	 */
599 	down_write(&EXT4_I(inode)->i_data_sem);
600 
601 	/*
602 	 * We need to check for EXT4 here because migrate
603 	 * could have changed the inode type in between
604 	 */
605 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
606 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
607 	} else {
608 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
609 
610 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
611 			/*
612 			 * We allocated new blocks which will result in
613 			 * i_data's format changing.  Force the migrate
614 			 * to fail by clearing migrate flags
615 			 */
616 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
617 		}
618 
619 		/*
620 		 * Update reserved blocks/metadata blocks after successful
621 		 * block allocation which had been deferred till now. We don't
622 		 * support fallocate for non extent files. So we can update
623 		 * reserve space here.
624 		 */
625 		if ((retval > 0) &&
626 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
627 			ext4_da_update_reserve_space(inode, retval, 1);
628 	}
629 
630 	if (retval > 0) {
631 		unsigned int status;
632 
633 		if (unlikely(retval != map->m_len)) {
634 			ext4_warning(inode->i_sb,
635 				     "ES len assertion failed for inode "
636 				     "%lu: retval %d != map->m_len %d",
637 				     inode->i_ino, retval, map->m_len);
638 			WARN_ON(1);
639 		}
640 
641 		/*
642 		 * We have to zeroout blocks before inserting them into extent
643 		 * status tree. Otherwise someone could look them up there and
644 		 * use them before they are really zeroed.
645 		 */
646 		if (flags & EXT4_GET_BLOCKS_ZERO &&
647 		    map->m_flags & EXT4_MAP_MAPPED &&
648 		    map->m_flags & EXT4_MAP_NEW) {
649 			ret = ext4_issue_zeroout(inode, map->m_lblk,
650 						 map->m_pblk, map->m_len);
651 			if (ret) {
652 				retval = ret;
653 				goto out_sem;
654 			}
655 		}
656 
657 		/*
658 		 * If the extent has been zeroed out, we don't need to update
659 		 * extent status tree.
660 		 */
661 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
662 		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
663 			if (ext4_es_is_written(&es))
664 				goto out_sem;
665 		}
666 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
667 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
668 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
669 		    !(status & EXTENT_STATUS_WRITTEN) &&
670 		    ext4_find_delalloc_range(inode, map->m_lblk,
671 					     map->m_lblk + map->m_len - 1))
672 			status |= EXTENT_STATUS_DELAYED;
673 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
674 					    map->m_pblk, status);
675 		if (ret < 0) {
676 			retval = ret;
677 			goto out_sem;
678 		}
679 	}
680 
681 out_sem:
682 	up_write((&EXT4_I(inode)->i_data_sem));
683 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
684 		ret = check_block_validity(inode, map);
685 		if (ret != 0)
686 			return ret;
687 	}
688 	return retval;
689 }
690 
691 /*
692  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
693  * we have to be careful as someone else may be manipulating b_state as well.
694  */
695 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
696 {
697 	unsigned long old_state;
698 	unsigned long new_state;
699 
700 	flags &= EXT4_MAP_FLAGS;
701 
702 	/* Dummy buffer_head? Set non-atomically. */
703 	if (!bh->b_page) {
704 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
705 		return;
706 	}
707 	/*
708 	 * Someone else may be modifying b_state. Be careful! This is ugly but
709 	 * once we get rid of using bh as a container for mapping information
710 	 * to pass to / from get_block functions, this can go away.
711 	 */
712 	do {
713 		old_state = READ_ONCE(bh->b_state);
714 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
715 	} while (unlikely(
716 		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
717 }
718 
719 static int _ext4_get_block(struct inode *inode, sector_t iblock,
720 			   struct buffer_head *bh, int flags)
721 {
722 	struct ext4_map_blocks map;
723 	int ret = 0;
724 
725 	if (ext4_has_inline_data(inode))
726 		return -ERANGE;
727 
728 	map.m_lblk = iblock;
729 	map.m_len = bh->b_size >> inode->i_blkbits;
730 
731 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
732 			      flags);
733 	if (ret > 0) {
734 		map_bh(bh, inode->i_sb, map.m_pblk);
735 		ext4_update_bh_state(bh, map.m_flags);
736 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
737 		ret = 0;
738 	}
739 	return ret;
740 }
741 
742 int ext4_get_block(struct inode *inode, sector_t iblock,
743 		   struct buffer_head *bh, int create)
744 {
745 	return _ext4_get_block(inode, iblock, bh,
746 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
747 }
748 
749 /*
750  * Get block function used when preparing for buffered write if we require
751  * creating an unwritten extent if blocks haven't been allocated.  The extent
752  * will be converted to written after the IO is complete.
753  */
754 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
755 			     struct buffer_head *bh_result, int create)
756 {
757 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
758 		   inode->i_ino, create);
759 	return _ext4_get_block(inode, iblock, bh_result,
760 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
761 }
762 
763 /* Maximum number of blocks we map for direct IO at once. */
764 #define DIO_MAX_BLOCKS 4096
765 
766 /*
767  * Get blocks function for the cases that need to start a transaction -
768  * generally difference cases of direct IO and DAX IO. It also handles retries
769  * in case of ENOSPC.
770  */
771 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
772 				struct buffer_head *bh_result, int flags)
773 {
774 	int dio_credits;
775 	handle_t *handle;
776 	int retries = 0;
777 	int ret;
778 
779 	/* Trim mapping request to maximum we can map at once for DIO */
780 	if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
781 		bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
782 	dio_credits = ext4_chunk_trans_blocks(inode,
783 				      bh_result->b_size >> inode->i_blkbits);
784 retry:
785 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
786 	if (IS_ERR(handle))
787 		return PTR_ERR(handle);
788 
789 	ret = _ext4_get_block(inode, iblock, bh_result, flags);
790 	ext4_journal_stop(handle);
791 
792 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
793 		goto retry;
794 	return ret;
795 }
796 
797 /* Get block function for DIO reads and writes to inodes without extents */
798 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
799 		       struct buffer_head *bh, int create)
800 {
801 	/* We don't expect handle for direct IO */
802 	WARN_ON_ONCE(ext4_journal_current_handle());
803 
804 	if (!create)
805 		return _ext4_get_block(inode, iblock, bh, 0);
806 	return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
807 }
808 
809 /*
810  * Get block function for AIO DIO writes when we create unwritten extent if
811  * blocks are not allocated yet. The extent will be converted to written
812  * after IO is complete.
813  */
814 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
815 		sector_t iblock, struct buffer_head *bh_result,	int create)
816 {
817 	int ret;
818 
819 	/* We don't expect handle for direct IO */
820 	WARN_ON_ONCE(ext4_journal_current_handle());
821 
822 	ret = ext4_get_block_trans(inode, iblock, bh_result,
823 				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
824 
825 	/*
826 	 * When doing DIO using unwritten extents, we need io_end to convert
827 	 * unwritten extents to written on IO completion. We allocate io_end
828 	 * once we spot unwritten extent and store it in b_private. Generic
829 	 * DIO code keeps b_private set and furthermore passes the value to
830 	 * our completion callback in 'private' argument.
831 	 */
832 	if (!ret && buffer_unwritten(bh_result)) {
833 		if (!bh_result->b_private) {
834 			ext4_io_end_t *io_end;
835 
836 			io_end = ext4_init_io_end(inode, GFP_KERNEL);
837 			if (!io_end)
838 				return -ENOMEM;
839 			bh_result->b_private = io_end;
840 			ext4_set_io_unwritten_flag(inode, io_end);
841 		}
842 		set_buffer_defer_completion(bh_result);
843 	}
844 
845 	return ret;
846 }
847 
848 /*
849  * Get block function for non-AIO DIO writes when we create unwritten extent if
850  * blocks are not allocated yet. The extent will be converted to written
851  * after IO is complete from ext4_ext_direct_IO() function.
852  */
853 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
854 		sector_t iblock, struct buffer_head *bh_result,	int create)
855 {
856 	int ret;
857 
858 	/* We don't expect handle for direct IO */
859 	WARN_ON_ONCE(ext4_journal_current_handle());
860 
861 	ret = ext4_get_block_trans(inode, iblock, bh_result,
862 				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
863 
864 	/*
865 	 * Mark inode as having pending DIO writes to unwritten extents.
866 	 * ext4_ext_direct_IO() checks this flag and converts extents to
867 	 * written.
868 	 */
869 	if (!ret && buffer_unwritten(bh_result))
870 		ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
871 
872 	return ret;
873 }
874 
875 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
876 		   struct buffer_head *bh_result, int create)
877 {
878 	int ret;
879 
880 	ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
881 		   inode->i_ino, create);
882 	/* We don't expect handle for direct IO */
883 	WARN_ON_ONCE(ext4_journal_current_handle());
884 
885 	ret = _ext4_get_block(inode, iblock, bh_result, 0);
886 	/*
887 	 * Blocks should have been preallocated! ext4_file_write_iter() checks
888 	 * that.
889 	 */
890 	WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
891 
892 	return ret;
893 }
894 
895 
896 /*
897  * `handle' can be NULL if create is zero
898  */
899 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
900 				ext4_lblk_t block, int map_flags)
901 {
902 	struct ext4_map_blocks map;
903 	struct buffer_head *bh;
904 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
905 	int err;
906 
907 	J_ASSERT(handle != NULL || create == 0);
908 
909 	map.m_lblk = block;
910 	map.m_len = 1;
911 	err = ext4_map_blocks(handle, inode, &map, map_flags);
912 
913 	if (err == 0)
914 		return create ? ERR_PTR(-ENOSPC) : NULL;
915 	if (err < 0)
916 		return ERR_PTR(err);
917 
918 	bh = sb_getblk(inode->i_sb, map.m_pblk);
919 	if (unlikely(!bh))
920 		return ERR_PTR(-ENOMEM);
921 	if (map.m_flags & EXT4_MAP_NEW) {
922 		J_ASSERT(create != 0);
923 		J_ASSERT(handle != NULL);
924 
925 		/*
926 		 * Now that we do not always journal data, we should
927 		 * keep in mind whether this should always journal the
928 		 * new buffer as metadata.  For now, regular file
929 		 * writes use ext4_get_block instead, so it's not a
930 		 * problem.
931 		 */
932 		lock_buffer(bh);
933 		BUFFER_TRACE(bh, "call get_create_access");
934 		err = ext4_journal_get_create_access(handle, bh);
935 		if (unlikely(err)) {
936 			unlock_buffer(bh);
937 			goto errout;
938 		}
939 		if (!buffer_uptodate(bh)) {
940 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
941 			set_buffer_uptodate(bh);
942 		}
943 		unlock_buffer(bh);
944 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
945 		err = ext4_handle_dirty_metadata(handle, inode, bh);
946 		if (unlikely(err))
947 			goto errout;
948 	} else
949 		BUFFER_TRACE(bh, "not a new buffer");
950 	return bh;
951 errout:
952 	brelse(bh);
953 	return ERR_PTR(err);
954 }
955 
956 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
957 			       ext4_lblk_t block, int map_flags)
958 {
959 	struct buffer_head *bh;
960 
961 	bh = ext4_getblk(handle, inode, block, map_flags);
962 	if (IS_ERR(bh))
963 		return bh;
964 	if (!bh || buffer_uptodate(bh))
965 		return bh;
966 	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
967 	wait_on_buffer(bh);
968 	if (buffer_uptodate(bh))
969 		return bh;
970 	put_bh(bh);
971 	return ERR_PTR(-EIO);
972 }
973 
974 int ext4_walk_page_buffers(handle_t *handle,
975 			   struct buffer_head *head,
976 			   unsigned from,
977 			   unsigned to,
978 			   int *partial,
979 			   int (*fn)(handle_t *handle,
980 				     struct buffer_head *bh))
981 {
982 	struct buffer_head *bh;
983 	unsigned block_start, block_end;
984 	unsigned blocksize = head->b_size;
985 	int err, ret = 0;
986 	struct buffer_head *next;
987 
988 	for (bh = head, block_start = 0;
989 	     ret == 0 && (bh != head || !block_start);
990 	     block_start = block_end, bh = next) {
991 		next = bh->b_this_page;
992 		block_end = block_start + blocksize;
993 		if (block_end <= from || block_start >= to) {
994 			if (partial && !buffer_uptodate(bh))
995 				*partial = 1;
996 			continue;
997 		}
998 		err = (*fn)(handle, bh);
999 		if (!ret)
1000 			ret = err;
1001 	}
1002 	return ret;
1003 }
1004 
1005 /*
1006  * To preserve ordering, it is essential that the hole instantiation and
1007  * the data write be encapsulated in a single transaction.  We cannot
1008  * close off a transaction and start a new one between the ext4_get_block()
1009  * and the commit_write().  So doing the jbd2_journal_start at the start of
1010  * prepare_write() is the right place.
1011  *
1012  * Also, this function can nest inside ext4_writepage().  In that case, we
1013  * *know* that ext4_writepage() has generated enough buffer credits to do the
1014  * whole page.  So we won't block on the journal in that case, which is good,
1015  * because the caller may be PF_MEMALLOC.
1016  *
1017  * By accident, ext4 can be reentered when a transaction is open via
1018  * quota file writes.  If we were to commit the transaction while thus
1019  * reentered, there can be a deadlock - we would be holding a quota
1020  * lock, and the commit would never complete if another thread had a
1021  * transaction open and was blocking on the quota lock - a ranking
1022  * violation.
1023  *
1024  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1025  * will _not_ run commit under these circumstances because handle->h_ref
1026  * is elevated.  We'll still have enough credits for the tiny quotafile
1027  * write.
1028  */
1029 int do_journal_get_write_access(handle_t *handle,
1030 				struct buffer_head *bh)
1031 {
1032 	int dirty = buffer_dirty(bh);
1033 	int ret;
1034 
1035 	if (!buffer_mapped(bh) || buffer_freed(bh))
1036 		return 0;
1037 	/*
1038 	 * __block_write_begin() could have dirtied some buffers. Clean
1039 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1040 	 * otherwise about fs integrity issues. Setting of the dirty bit
1041 	 * by __block_write_begin() isn't a real problem here as we clear
1042 	 * the bit before releasing a page lock and thus writeback cannot
1043 	 * ever write the buffer.
1044 	 */
1045 	if (dirty)
1046 		clear_buffer_dirty(bh);
1047 	BUFFER_TRACE(bh, "get write access");
1048 	ret = ext4_journal_get_write_access(handle, bh);
1049 	if (!ret && dirty)
1050 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1051 	return ret;
1052 }
1053 
1054 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1055 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1056 				  get_block_t *get_block)
1057 {
1058 	unsigned from = pos & (PAGE_SIZE - 1);
1059 	unsigned to = from + len;
1060 	struct inode *inode = page->mapping->host;
1061 	unsigned block_start, block_end;
1062 	sector_t block;
1063 	int err = 0;
1064 	unsigned blocksize = inode->i_sb->s_blocksize;
1065 	unsigned bbits;
1066 	struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1067 	bool decrypt = false;
1068 
1069 	BUG_ON(!PageLocked(page));
1070 	BUG_ON(from > PAGE_SIZE);
1071 	BUG_ON(to > PAGE_SIZE);
1072 	BUG_ON(from > to);
1073 
1074 	if (!page_has_buffers(page))
1075 		create_empty_buffers(page, blocksize, 0);
1076 	head = page_buffers(page);
1077 	bbits = ilog2(blocksize);
1078 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1079 
1080 	for (bh = head, block_start = 0; bh != head || !block_start;
1081 	    block++, block_start = block_end, bh = bh->b_this_page) {
1082 		block_end = block_start + blocksize;
1083 		if (block_end <= from || block_start >= to) {
1084 			if (PageUptodate(page)) {
1085 				if (!buffer_uptodate(bh))
1086 					set_buffer_uptodate(bh);
1087 			}
1088 			continue;
1089 		}
1090 		if (buffer_new(bh))
1091 			clear_buffer_new(bh);
1092 		if (!buffer_mapped(bh)) {
1093 			WARN_ON(bh->b_size != blocksize);
1094 			err = get_block(inode, block, bh, 1);
1095 			if (err)
1096 				break;
1097 			if (buffer_new(bh)) {
1098 				unmap_underlying_metadata(bh->b_bdev,
1099 							  bh->b_blocknr);
1100 				if (PageUptodate(page)) {
1101 					clear_buffer_new(bh);
1102 					set_buffer_uptodate(bh);
1103 					mark_buffer_dirty(bh);
1104 					continue;
1105 				}
1106 				if (block_end > to || block_start < from)
1107 					zero_user_segments(page, to, block_end,
1108 							   block_start, from);
1109 				continue;
1110 			}
1111 		}
1112 		if (PageUptodate(page)) {
1113 			if (!buffer_uptodate(bh))
1114 				set_buffer_uptodate(bh);
1115 			continue;
1116 		}
1117 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1118 		    !buffer_unwritten(bh) &&
1119 		    (block_start < from || block_end > to)) {
1120 			ll_rw_block(READ, 1, &bh);
1121 			*wait_bh++ = bh;
1122 			decrypt = ext4_encrypted_inode(inode) &&
1123 				S_ISREG(inode->i_mode);
1124 		}
1125 	}
1126 	/*
1127 	 * If we issued read requests, let them complete.
1128 	 */
1129 	while (wait_bh > wait) {
1130 		wait_on_buffer(*--wait_bh);
1131 		if (!buffer_uptodate(*wait_bh))
1132 			err = -EIO;
1133 	}
1134 	if (unlikely(err))
1135 		page_zero_new_buffers(page, from, to);
1136 	else if (decrypt)
1137 		err = ext4_decrypt(page);
1138 	return err;
1139 }
1140 #endif
1141 
1142 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1143 			    loff_t pos, unsigned len, unsigned flags,
1144 			    struct page **pagep, void **fsdata)
1145 {
1146 	struct inode *inode = mapping->host;
1147 	int ret, needed_blocks;
1148 	handle_t *handle;
1149 	int retries = 0;
1150 	struct page *page;
1151 	pgoff_t index;
1152 	unsigned from, to;
1153 
1154 	trace_ext4_write_begin(inode, pos, len, flags);
1155 	/*
1156 	 * Reserve one block more for addition to orphan list in case
1157 	 * we allocate blocks but write fails for some reason
1158 	 */
1159 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1160 	index = pos >> PAGE_SHIFT;
1161 	from = pos & (PAGE_SIZE - 1);
1162 	to = from + len;
1163 
1164 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1165 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1166 						    flags, pagep);
1167 		if (ret < 0)
1168 			return ret;
1169 		if (ret == 1)
1170 			return 0;
1171 	}
1172 
1173 	/*
1174 	 * grab_cache_page_write_begin() can take a long time if the
1175 	 * system is thrashing due to memory pressure, or if the page
1176 	 * is being written back.  So grab it first before we start
1177 	 * the transaction handle.  This also allows us to allocate
1178 	 * the page (if needed) without using GFP_NOFS.
1179 	 */
1180 retry_grab:
1181 	page = grab_cache_page_write_begin(mapping, index, flags);
1182 	if (!page)
1183 		return -ENOMEM;
1184 	unlock_page(page);
1185 
1186 retry_journal:
1187 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1188 	if (IS_ERR(handle)) {
1189 		put_page(page);
1190 		return PTR_ERR(handle);
1191 	}
1192 
1193 	lock_page(page);
1194 	if (page->mapping != mapping) {
1195 		/* The page got truncated from under us */
1196 		unlock_page(page);
1197 		put_page(page);
1198 		ext4_journal_stop(handle);
1199 		goto retry_grab;
1200 	}
1201 	/* In case writeback began while the page was unlocked */
1202 	wait_for_stable_page(page);
1203 
1204 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1205 	if (ext4_should_dioread_nolock(inode))
1206 		ret = ext4_block_write_begin(page, pos, len,
1207 					     ext4_get_block_unwritten);
1208 	else
1209 		ret = ext4_block_write_begin(page, pos, len,
1210 					     ext4_get_block);
1211 #else
1212 	if (ext4_should_dioread_nolock(inode))
1213 		ret = __block_write_begin(page, pos, len,
1214 					  ext4_get_block_unwritten);
1215 	else
1216 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1217 #endif
1218 	if (!ret && ext4_should_journal_data(inode)) {
1219 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1220 					     from, to, NULL,
1221 					     do_journal_get_write_access);
1222 	}
1223 
1224 	if (ret) {
1225 		unlock_page(page);
1226 		/*
1227 		 * __block_write_begin may have instantiated a few blocks
1228 		 * outside i_size.  Trim these off again. Don't need
1229 		 * i_size_read because we hold i_mutex.
1230 		 *
1231 		 * Add inode to orphan list in case we crash before
1232 		 * truncate finishes
1233 		 */
1234 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1235 			ext4_orphan_add(handle, inode);
1236 
1237 		ext4_journal_stop(handle);
1238 		if (pos + len > inode->i_size) {
1239 			ext4_truncate_failed_write(inode);
1240 			/*
1241 			 * If truncate failed early the inode might
1242 			 * still be on the orphan list; we need to
1243 			 * make sure the inode is removed from the
1244 			 * orphan list in that case.
1245 			 */
1246 			if (inode->i_nlink)
1247 				ext4_orphan_del(NULL, inode);
1248 		}
1249 
1250 		if (ret == -ENOSPC &&
1251 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1252 			goto retry_journal;
1253 		put_page(page);
1254 		return ret;
1255 	}
1256 	*pagep = page;
1257 	return ret;
1258 }
1259 
1260 /* For write_end() in data=journal mode */
1261 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1262 {
1263 	int ret;
1264 	if (!buffer_mapped(bh) || buffer_freed(bh))
1265 		return 0;
1266 	set_buffer_uptodate(bh);
1267 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1268 	clear_buffer_meta(bh);
1269 	clear_buffer_prio(bh);
1270 	return ret;
1271 }
1272 
1273 /*
1274  * We need to pick up the new inode size which generic_commit_write gave us
1275  * `file' can be NULL - eg, when called from page_symlink().
1276  *
1277  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1278  * buffers are managed internally.
1279  */
1280 static int ext4_write_end(struct file *file,
1281 			  struct address_space *mapping,
1282 			  loff_t pos, unsigned len, unsigned copied,
1283 			  struct page *page, void *fsdata)
1284 {
1285 	handle_t *handle = ext4_journal_current_handle();
1286 	struct inode *inode = mapping->host;
1287 	loff_t old_size = inode->i_size;
1288 	int ret = 0, ret2;
1289 	int i_size_changed = 0;
1290 
1291 	trace_ext4_write_end(inode, pos, len, copied);
1292 	if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1293 		ret = ext4_jbd2_file_inode(handle, inode);
1294 		if (ret) {
1295 			unlock_page(page);
1296 			put_page(page);
1297 			goto errout;
1298 		}
1299 	}
1300 
1301 	if (ext4_has_inline_data(inode)) {
1302 		ret = ext4_write_inline_data_end(inode, pos, len,
1303 						 copied, page);
1304 		if (ret < 0)
1305 			goto errout;
1306 		copied = ret;
1307 	} else
1308 		copied = block_write_end(file, mapping, pos,
1309 					 len, copied, page, fsdata);
1310 	/*
1311 	 * it's important to update i_size while still holding page lock:
1312 	 * page writeout could otherwise come in and zero beyond i_size.
1313 	 */
1314 	i_size_changed = ext4_update_inode_size(inode, pos + copied);
1315 	unlock_page(page);
1316 	put_page(page);
1317 
1318 	if (old_size < pos)
1319 		pagecache_isize_extended(inode, old_size, pos);
1320 	/*
1321 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1322 	 * makes the holding time of page lock longer. Second, it forces lock
1323 	 * ordering of page lock and transaction start for journaling
1324 	 * filesystems.
1325 	 */
1326 	if (i_size_changed)
1327 		ext4_mark_inode_dirty(handle, inode);
1328 
1329 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1330 		/* if we have allocated more blocks and copied
1331 		 * less. We will have blocks allocated outside
1332 		 * inode->i_size. So truncate them
1333 		 */
1334 		ext4_orphan_add(handle, inode);
1335 errout:
1336 	ret2 = ext4_journal_stop(handle);
1337 	if (!ret)
1338 		ret = ret2;
1339 
1340 	if (pos + len > inode->i_size) {
1341 		ext4_truncate_failed_write(inode);
1342 		/*
1343 		 * If truncate failed early the inode might still be
1344 		 * on the orphan list; we need to make sure the inode
1345 		 * is removed from the orphan list in that case.
1346 		 */
1347 		if (inode->i_nlink)
1348 			ext4_orphan_del(NULL, inode);
1349 	}
1350 
1351 	return ret ? ret : copied;
1352 }
1353 
1354 /*
1355  * This is a private version of page_zero_new_buffers() which doesn't
1356  * set the buffer to be dirty, since in data=journalled mode we need
1357  * to call ext4_handle_dirty_metadata() instead.
1358  */
1359 static void zero_new_buffers(struct page *page, unsigned from, unsigned to)
1360 {
1361 	unsigned int block_start = 0, block_end;
1362 	struct buffer_head *head, *bh;
1363 
1364 	bh = head = page_buffers(page);
1365 	do {
1366 		block_end = block_start + bh->b_size;
1367 		if (buffer_new(bh)) {
1368 			if (block_end > from && block_start < to) {
1369 				if (!PageUptodate(page)) {
1370 					unsigned start, size;
1371 
1372 					start = max(from, block_start);
1373 					size = min(to, block_end) - start;
1374 
1375 					zero_user(page, start, size);
1376 					set_buffer_uptodate(bh);
1377 				}
1378 				clear_buffer_new(bh);
1379 			}
1380 		}
1381 		block_start = block_end;
1382 		bh = bh->b_this_page;
1383 	} while (bh != head);
1384 }
1385 
1386 static int ext4_journalled_write_end(struct file *file,
1387 				     struct address_space *mapping,
1388 				     loff_t pos, unsigned len, unsigned copied,
1389 				     struct page *page, void *fsdata)
1390 {
1391 	handle_t *handle = ext4_journal_current_handle();
1392 	struct inode *inode = mapping->host;
1393 	loff_t old_size = inode->i_size;
1394 	int ret = 0, ret2;
1395 	int partial = 0;
1396 	unsigned from, to;
1397 	int size_changed = 0;
1398 
1399 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1400 	from = pos & (PAGE_SIZE - 1);
1401 	to = from + len;
1402 
1403 	BUG_ON(!ext4_handle_valid(handle));
1404 
1405 	if (ext4_has_inline_data(inode))
1406 		copied = ext4_write_inline_data_end(inode, pos, len,
1407 						    copied, page);
1408 	else {
1409 		if (copied < len) {
1410 			if (!PageUptodate(page))
1411 				copied = 0;
1412 			zero_new_buffers(page, from+copied, to);
1413 		}
1414 
1415 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1416 					     to, &partial, write_end_fn);
1417 		if (!partial)
1418 			SetPageUptodate(page);
1419 	}
1420 	size_changed = ext4_update_inode_size(inode, pos + copied);
1421 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1422 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1423 	unlock_page(page);
1424 	put_page(page);
1425 
1426 	if (old_size < pos)
1427 		pagecache_isize_extended(inode, old_size, pos);
1428 
1429 	if (size_changed) {
1430 		ret2 = ext4_mark_inode_dirty(handle, inode);
1431 		if (!ret)
1432 			ret = ret2;
1433 	}
1434 
1435 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1436 		/* if we have allocated more blocks and copied
1437 		 * less. We will have blocks allocated outside
1438 		 * inode->i_size. So truncate them
1439 		 */
1440 		ext4_orphan_add(handle, inode);
1441 
1442 	ret2 = ext4_journal_stop(handle);
1443 	if (!ret)
1444 		ret = ret2;
1445 	if (pos + len > inode->i_size) {
1446 		ext4_truncate_failed_write(inode);
1447 		/*
1448 		 * If truncate failed early the inode might still be
1449 		 * on the orphan list; we need to make sure the inode
1450 		 * is removed from the orphan list in that case.
1451 		 */
1452 		if (inode->i_nlink)
1453 			ext4_orphan_del(NULL, inode);
1454 	}
1455 
1456 	return ret ? ret : copied;
1457 }
1458 
1459 /*
1460  * Reserve space for a single cluster
1461  */
1462 static int ext4_da_reserve_space(struct inode *inode)
1463 {
1464 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1465 	struct ext4_inode_info *ei = EXT4_I(inode);
1466 	int ret;
1467 
1468 	/*
1469 	 * We will charge metadata quota at writeout time; this saves
1470 	 * us from metadata over-estimation, though we may go over by
1471 	 * a small amount in the end.  Here we just reserve for data.
1472 	 */
1473 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1474 	if (ret)
1475 		return ret;
1476 
1477 	spin_lock(&ei->i_block_reservation_lock);
1478 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1479 		spin_unlock(&ei->i_block_reservation_lock);
1480 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1481 		return -ENOSPC;
1482 	}
1483 	ei->i_reserved_data_blocks++;
1484 	trace_ext4_da_reserve_space(inode);
1485 	spin_unlock(&ei->i_block_reservation_lock);
1486 
1487 	return 0;       /* success */
1488 }
1489 
1490 static void ext4_da_release_space(struct inode *inode, int to_free)
1491 {
1492 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1493 	struct ext4_inode_info *ei = EXT4_I(inode);
1494 
1495 	if (!to_free)
1496 		return;		/* Nothing to release, exit */
1497 
1498 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1499 
1500 	trace_ext4_da_release_space(inode, to_free);
1501 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1502 		/*
1503 		 * if there aren't enough reserved blocks, then the
1504 		 * counter is messed up somewhere.  Since this
1505 		 * function is called from invalidate page, it's
1506 		 * harmless to return without any action.
1507 		 */
1508 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1509 			 "ino %lu, to_free %d with only %d reserved "
1510 			 "data blocks", inode->i_ino, to_free,
1511 			 ei->i_reserved_data_blocks);
1512 		WARN_ON(1);
1513 		to_free = ei->i_reserved_data_blocks;
1514 	}
1515 	ei->i_reserved_data_blocks -= to_free;
1516 
1517 	/* update fs dirty data blocks counter */
1518 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1519 
1520 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1521 
1522 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1523 }
1524 
1525 static void ext4_da_page_release_reservation(struct page *page,
1526 					     unsigned int offset,
1527 					     unsigned int length)
1528 {
1529 	int to_release = 0, contiguous_blks = 0;
1530 	struct buffer_head *head, *bh;
1531 	unsigned int curr_off = 0;
1532 	struct inode *inode = page->mapping->host;
1533 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1534 	unsigned int stop = offset + length;
1535 	int num_clusters;
1536 	ext4_fsblk_t lblk;
1537 
1538 	BUG_ON(stop > PAGE_SIZE || stop < length);
1539 
1540 	head = page_buffers(page);
1541 	bh = head;
1542 	do {
1543 		unsigned int next_off = curr_off + bh->b_size;
1544 
1545 		if (next_off > stop)
1546 			break;
1547 
1548 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1549 			to_release++;
1550 			contiguous_blks++;
1551 			clear_buffer_delay(bh);
1552 		} else if (contiguous_blks) {
1553 			lblk = page->index <<
1554 			       (PAGE_SHIFT - inode->i_blkbits);
1555 			lblk += (curr_off >> inode->i_blkbits) -
1556 				contiguous_blks;
1557 			ext4_es_remove_extent(inode, lblk, contiguous_blks);
1558 			contiguous_blks = 0;
1559 		}
1560 		curr_off = next_off;
1561 	} while ((bh = bh->b_this_page) != head);
1562 
1563 	if (contiguous_blks) {
1564 		lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1565 		lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1566 		ext4_es_remove_extent(inode, lblk, contiguous_blks);
1567 	}
1568 
1569 	/* If we have released all the blocks belonging to a cluster, then we
1570 	 * need to release the reserved space for that cluster. */
1571 	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1572 	while (num_clusters > 0) {
1573 		lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1574 			((num_clusters - 1) << sbi->s_cluster_bits);
1575 		if (sbi->s_cluster_ratio == 1 ||
1576 		    !ext4_find_delalloc_cluster(inode, lblk))
1577 			ext4_da_release_space(inode, 1);
1578 
1579 		num_clusters--;
1580 	}
1581 }
1582 
1583 /*
1584  * Delayed allocation stuff
1585  */
1586 
1587 struct mpage_da_data {
1588 	struct inode *inode;
1589 	struct writeback_control *wbc;
1590 
1591 	pgoff_t first_page;	/* The first page to write */
1592 	pgoff_t next_page;	/* Current page to examine */
1593 	pgoff_t last_page;	/* Last page to examine */
1594 	/*
1595 	 * Extent to map - this can be after first_page because that can be
1596 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1597 	 * is delalloc or unwritten.
1598 	 */
1599 	struct ext4_map_blocks map;
1600 	struct ext4_io_submit io_submit;	/* IO submission data */
1601 };
1602 
1603 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1604 				       bool invalidate)
1605 {
1606 	int nr_pages, i;
1607 	pgoff_t index, end;
1608 	struct pagevec pvec;
1609 	struct inode *inode = mpd->inode;
1610 	struct address_space *mapping = inode->i_mapping;
1611 
1612 	/* This is necessary when next_page == 0. */
1613 	if (mpd->first_page >= mpd->next_page)
1614 		return;
1615 
1616 	index = mpd->first_page;
1617 	end   = mpd->next_page - 1;
1618 	if (invalidate) {
1619 		ext4_lblk_t start, last;
1620 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1621 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1622 		ext4_es_remove_extent(inode, start, last - start + 1);
1623 	}
1624 
1625 	pagevec_init(&pvec, 0);
1626 	while (index <= end) {
1627 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1628 		if (nr_pages == 0)
1629 			break;
1630 		for (i = 0; i < nr_pages; i++) {
1631 			struct page *page = pvec.pages[i];
1632 			if (page->index > end)
1633 				break;
1634 			BUG_ON(!PageLocked(page));
1635 			BUG_ON(PageWriteback(page));
1636 			if (invalidate) {
1637 				block_invalidatepage(page, 0, PAGE_SIZE);
1638 				ClearPageUptodate(page);
1639 			}
1640 			unlock_page(page);
1641 		}
1642 		index = pvec.pages[nr_pages - 1]->index + 1;
1643 		pagevec_release(&pvec);
1644 	}
1645 }
1646 
1647 static void ext4_print_free_blocks(struct inode *inode)
1648 {
1649 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1650 	struct super_block *sb = inode->i_sb;
1651 	struct ext4_inode_info *ei = EXT4_I(inode);
1652 
1653 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1654 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1655 			ext4_count_free_clusters(sb)));
1656 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1657 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1658 	       (long long) EXT4_C2B(EXT4_SB(sb),
1659 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1660 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1661 	       (long long) EXT4_C2B(EXT4_SB(sb),
1662 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1663 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1664 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1665 		 ei->i_reserved_data_blocks);
1666 	return;
1667 }
1668 
1669 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1670 {
1671 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1672 }
1673 
1674 /*
1675  * This function is grabs code from the very beginning of
1676  * ext4_map_blocks, but assumes that the caller is from delayed write
1677  * time. This function looks up the requested blocks and sets the
1678  * buffer delay bit under the protection of i_data_sem.
1679  */
1680 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1681 			      struct ext4_map_blocks *map,
1682 			      struct buffer_head *bh)
1683 {
1684 	struct extent_status es;
1685 	int retval;
1686 	sector_t invalid_block = ~((sector_t) 0xffff);
1687 #ifdef ES_AGGRESSIVE_TEST
1688 	struct ext4_map_blocks orig_map;
1689 
1690 	memcpy(&orig_map, map, sizeof(*map));
1691 #endif
1692 
1693 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1694 		invalid_block = ~0;
1695 
1696 	map->m_flags = 0;
1697 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1698 		  "logical block %lu\n", inode->i_ino, map->m_len,
1699 		  (unsigned long) map->m_lblk);
1700 
1701 	/* Lookup extent status tree firstly */
1702 	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1703 		if (ext4_es_is_hole(&es)) {
1704 			retval = 0;
1705 			down_read(&EXT4_I(inode)->i_data_sem);
1706 			goto add_delayed;
1707 		}
1708 
1709 		/*
1710 		 * Delayed extent could be allocated by fallocate.
1711 		 * So we need to check it.
1712 		 */
1713 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1714 			map_bh(bh, inode->i_sb, invalid_block);
1715 			set_buffer_new(bh);
1716 			set_buffer_delay(bh);
1717 			return 0;
1718 		}
1719 
1720 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1721 		retval = es.es_len - (iblock - es.es_lblk);
1722 		if (retval > map->m_len)
1723 			retval = map->m_len;
1724 		map->m_len = retval;
1725 		if (ext4_es_is_written(&es))
1726 			map->m_flags |= EXT4_MAP_MAPPED;
1727 		else if (ext4_es_is_unwritten(&es))
1728 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1729 		else
1730 			BUG_ON(1);
1731 
1732 #ifdef ES_AGGRESSIVE_TEST
1733 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1734 #endif
1735 		return retval;
1736 	}
1737 
1738 	/*
1739 	 * Try to see if we can get the block without requesting a new
1740 	 * file system block.
1741 	 */
1742 	down_read(&EXT4_I(inode)->i_data_sem);
1743 	if (ext4_has_inline_data(inode))
1744 		retval = 0;
1745 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1746 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1747 	else
1748 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1749 
1750 add_delayed:
1751 	if (retval == 0) {
1752 		int ret;
1753 		/*
1754 		 * XXX: __block_prepare_write() unmaps passed block,
1755 		 * is it OK?
1756 		 */
1757 		/*
1758 		 * If the block was allocated from previously allocated cluster,
1759 		 * then we don't need to reserve it again. However we still need
1760 		 * to reserve metadata for every block we're going to write.
1761 		 */
1762 		if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1763 		    !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1764 			ret = ext4_da_reserve_space(inode);
1765 			if (ret) {
1766 				/* not enough space to reserve */
1767 				retval = ret;
1768 				goto out_unlock;
1769 			}
1770 		}
1771 
1772 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1773 					    ~0, EXTENT_STATUS_DELAYED);
1774 		if (ret) {
1775 			retval = ret;
1776 			goto out_unlock;
1777 		}
1778 
1779 		map_bh(bh, inode->i_sb, invalid_block);
1780 		set_buffer_new(bh);
1781 		set_buffer_delay(bh);
1782 	} else if (retval > 0) {
1783 		int ret;
1784 		unsigned int status;
1785 
1786 		if (unlikely(retval != map->m_len)) {
1787 			ext4_warning(inode->i_sb,
1788 				     "ES len assertion failed for inode "
1789 				     "%lu: retval %d != map->m_len %d",
1790 				     inode->i_ino, retval, map->m_len);
1791 			WARN_ON(1);
1792 		}
1793 
1794 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1795 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1796 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1797 					    map->m_pblk, status);
1798 		if (ret != 0)
1799 			retval = ret;
1800 	}
1801 
1802 out_unlock:
1803 	up_read((&EXT4_I(inode)->i_data_sem));
1804 
1805 	return retval;
1806 }
1807 
1808 /*
1809  * This is a special get_block_t callback which is used by
1810  * ext4_da_write_begin().  It will either return mapped block or
1811  * reserve space for a single block.
1812  *
1813  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1814  * We also have b_blocknr = -1 and b_bdev initialized properly
1815  *
1816  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1817  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1818  * initialized properly.
1819  */
1820 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1821 			   struct buffer_head *bh, int create)
1822 {
1823 	struct ext4_map_blocks map;
1824 	int ret = 0;
1825 
1826 	BUG_ON(create == 0);
1827 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1828 
1829 	map.m_lblk = iblock;
1830 	map.m_len = 1;
1831 
1832 	/*
1833 	 * first, we need to know whether the block is allocated already
1834 	 * preallocated blocks are unmapped but should treated
1835 	 * the same as allocated blocks.
1836 	 */
1837 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1838 	if (ret <= 0)
1839 		return ret;
1840 
1841 	map_bh(bh, inode->i_sb, map.m_pblk);
1842 	ext4_update_bh_state(bh, map.m_flags);
1843 
1844 	if (buffer_unwritten(bh)) {
1845 		/* A delayed write to unwritten bh should be marked
1846 		 * new and mapped.  Mapped ensures that we don't do
1847 		 * get_block multiple times when we write to the same
1848 		 * offset and new ensures that we do proper zero out
1849 		 * for partial write.
1850 		 */
1851 		set_buffer_new(bh);
1852 		set_buffer_mapped(bh);
1853 	}
1854 	return 0;
1855 }
1856 
1857 static int bget_one(handle_t *handle, struct buffer_head *bh)
1858 {
1859 	get_bh(bh);
1860 	return 0;
1861 }
1862 
1863 static int bput_one(handle_t *handle, struct buffer_head *bh)
1864 {
1865 	put_bh(bh);
1866 	return 0;
1867 }
1868 
1869 static int __ext4_journalled_writepage(struct page *page,
1870 				       unsigned int len)
1871 {
1872 	struct address_space *mapping = page->mapping;
1873 	struct inode *inode = mapping->host;
1874 	struct buffer_head *page_bufs = NULL;
1875 	handle_t *handle = NULL;
1876 	int ret = 0, err = 0;
1877 	int inline_data = ext4_has_inline_data(inode);
1878 	struct buffer_head *inode_bh = NULL;
1879 
1880 	ClearPageChecked(page);
1881 
1882 	if (inline_data) {
1883 		BUG_ON(page->index != 0);
1884 		BUG_ON(len > ext4_get_max_inline_size(inode));
1885 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1886 		if (inode_bh == NULL)
1887 			goto out;
1888 	} else {
1889 		page_bufs = page_buffers(page);
1890 		if (!page_bufs) {
1891 			BUG();
1892 			goto out;
1893 		}
1894 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1895 				       NULL, bget_one);
1896 	}
1897 	/*
1898 	 * We need to release the page lock before we start the
1899 	 * journal, so grab a reference so the page won't disappear
1900 	 * out from under us.
1901 	 */
1902 	get_page(page);
1903 	unlock_page(page);
1904 
1905 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1906 				    ext4_writepage_trans_blocks(inode));
1907 	if (IS_ERR(handle)) {
1908 		ret = PTR_ERR(handle);
1909 		put_page(page);
1910 		goto out_no_pagelock;
1911 	}
1912 	BUG_ON(!ext4_handle_valid(handle));
1913 
1914 	lock_page(page);
1915 	put_page(page);
1916 	if (page->mapping != mapping) {
1917 		/* The page got truncated from under us */
1918 		ext4_journal_stop(handle);
1919 		ret = 0;
1920 		goto out;
1921 	}
1922 
1923 	if (inline_data) {
1924 		BUFFER_TRACE(inode_bh, "get write access");
1925 		ret = ext4_journal_get_write_access(handle, inode_bh);
1926 
1927 		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1928 
1929 	} else {
1930 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1931 					     do_journal_get_write_access);
1932 
1933 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1934 					     write_end_fn);
1935 	}
1936 	if (ret == 0)
1937 		ret = err;
1938 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1939 	err = ext4_journal_stop(handle);
1940 	if (!ret)
1941 		ret = err;
1942 
1943 	if (!ext4_has_inline_data(inode))
1944 		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1945 				       NULL, bput_one);
1946 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1947 out:
1948 	unlock_page(page);
1949 out_no_pagelock:
1950 	brelse(inode_bh);
1951 	return ret;
1952 }
1953 
1954 /*
1955  * Note that we don't need to start a transaction unless we're journaling data
1956  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1957  * need to file the inode to the transaction's list in ordered mode because if
1958  * we are writing back data added by write(), the inode is already there and if
1959  * we are writing back data modified via mmap(), no one guarantees in which
1960  * transaction the data will hit the disk. In case we are journaling data, we
1961  * cannot start transaction directly because transaction start ranks above page
1962  * lock so we have to do some magic.
1963  *
1964  * This function can get called via...
1965  *   - ext4_writepages after taking page lock (have journal handle)
1966  *   - journal_submit_inode_data_buffers (no journal handle)
1967  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1968  *   - grab_page_cache when doing write_begin (have journal handle)
1969  *
1970  * We don't do any block allocation in this function. If we have page with
1971  * multiple blocks we need to write those buffer_heads that are mapped. This
1972  * is important for mmaped based write. So if we do with blocksize 1K
1973  * truncate(f, 1024);
1974  * a = mmap(f, 0, 4096);
1975  * a[0] = 'a';
1976  * truncate(f, 4096);
1977  * we have in the page first buffer_head mapped via page_mkwrite call back
1978  * but other buffer_heads would be unmapped but dirty (dirty done via the
1979  * do_wp_page). So writepage should write the first block. If we modify
1980  * the mmap area beyond 1024 we will again get a page_fault and the
1981  * page_mkwrite callback will do the block allocation and mark the
1982  * buffer_heads mapped.
1983  *
1984  * We redirty the page if we have any buffer_heads that is either delay or
1985  * unwritten in the page.
1986  *
1987  * We can get recursively called as show below.
1988  *
1989  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1990  *		ext4_writepage()
1991  *
1992  * But since we don't do any block allocation we should not deadlock.
1993  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1994  */
1995 static int ext4_writepage(struct page *page,
1996 			  struct writeback_control *wbc)
1997 {
1998 	int ret = 0;
1999 	loff_t size;
2000 	unsigned int len;
2001 	struct buffer_head *page_bufs = NULL;
2002 	struct inode *inode = page->mapping->host;
2003 	struct ext4_io_submit io_submit;
2004 	bool keep_towrite = false;
2005 
2006 	trace_ext4_writepage(page);
2007 	size = i_size_read(inode);
2008 	if (page->index == size >> PAGE_SHIFT)
2009 		len = size & ~PAGE_MASK;
2010 	else
2011 		len = PAGE_SIZE;
2012 
2013 	page_bufs = page_buffers(page);
2014 	/*
2015 	 * We cannot do block allocation or other extent handling in this
2016 	 * function. If there are buffers needing that, we have to redirty
2017 	 * the page. But we may reach here when we do a journal commit via
2018 	 * journal_submit_inode_data_buffers() and in that case we must write
2019 	 * allocated buffers to achieve data=ordered mode guarantees.
2020 	 *
2021 	 * Also, if there is only one buffer per page (the fs block
2022 	 * size == the page size), if one buffer needs block
2023 	 * allocation or needs to modify the extent tree to clear the
2024 	 * unwritten flag, we know that the page can't be written at
2025 	 * all, so we might as well refuse the write immediately.
2026 	 * Unfortunately if the block size != page size, we can't as
2027 	 * easily detect this case using ext4_walk_page_buffers(), but
2028 	 * for the extremely common case, this is an optimization that
2029 	 * skips a useless round trip through ext4_bio_write_page().
2030 	 */
2031 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2032 				   ext4_bh_delay_or_unwritten)) {
2033 		redirty_page_for_writepage(wbc, page);
2034 		if ((current->flags & PF_MEMALLOC) ||
2035 		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2036 			/*
2037 			 * For memory cleaning there's no point in writing only
2038 			 * some buffers. So just bail out. Warn if we came here
2039 			 * from direct reclaim.
2040 			 */
2041 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2042 							== PF_MEMALLOC);
2043 			unlock_page(page);
2044 			return 0;
2045 		}
2046 		keep_towrite = true;
2047 	}
2048 
2049 	if (PageChecked(page) && ext4_should_journal_data(inode))
2050 		/*
2051 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2052 		 * doesn't seem much point in redirtying the page here.
2053 		 */
2054 		return __ext4_journalled_writepage(page, len);
2055 
2056 	ext4_io_submit_init(&io_submit, wbc);
2057 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2058 	if (!io_submit.io_end) {
2059 		redirty_page_for_writepage(wbc, page);
2060 		unlock_page(page);
2061 		return -ENOMEM;
2062 	}
2063 	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2064 	ext4_io_submit(&io_submit);
2065 	/* Drop io_end reference we got from init */
2066 	ext4_put_io_end_defer(io_submit.io_end);
2067 	return ret;
2068 }
2069 
2070 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2071 {
2072 	int len;
2073 	loff_t size = i_size_read(mpd->inode);
2074 	int err;
2075 
2076 	BUG_ON(page->index != mpd->first_page);
2077 	if (page->index == size >> PAGE_SHIFT)
2078 		len = size & ~PAGE_MASK;
2079 	else
2080 		len = PAGE_SIZE;
2081 	clear_page_dirty_for_io(page);
2082 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2083 	if (!err)
2084 		mpd->wbc->nr_to_write--;
2085 	mpd->first_page++;
2086 
2087 	return err;
2088 }
2089 
2090 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2091 
2092 /*
2093  * mballoc gives us at most this number of blocks...
2094  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2095  * The rest of mballoc seems to handle chunks up to full group size.
2096  */
2097 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2098 
2099 /*
2100  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2101  *
2102  * @mpd - extent of blocks
2103  * @lblk - logical number of the block in the file
2104  * @bh - buffer head we want to add to the extent
2105  *
2106  * The function is used to collect contig. blocks in the same state. If the
2107  * buffer doesn't require mapping for writeback and we haven't started the
2108  * extent of buffers to map yet, the function returns 'true' immediately - the
2109  * caller can write the buffer right away. Otherwise the function returns true
2110  * if the block has been added to the extent, false if the block couldn't be
2111  * added.
2112  */
2113 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2114 				   struct buffer_head *bh)
2115 {
2116 	struct ext4_map_blocks *map = &mpd->map;
2117 
2118 	/* Buffer that doesn't need mapping for writeback? */
2119 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2120 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2121 		/* So far no extent to map => we write the buffer right away */
2122 		if (map->m_len == 0)
2123 			return true;
2124 		return false;
2125 	}
2126 
2127 	/* First block in the extent? */
2128 	if (map->m_len == 0) {
2129 		map->m_lblk = lblk;
2130 		map->m_len = 1;
2131 		map->m_flags = bh->b_state & BH_FLAGS;
2132 		return true;
2133 	}
2134 
2135 	/* Don't go larger than mballoc is willing to allocate */
2136 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2137 		return false;
2138 
2139 	/* Can we merge the block to our big extent? */
2140 	if (lblk == map->m_lblk + map->m_len &&
2141 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2142 		map->m_len++;
2143 		return true;
2144 	}
2145 	return false;
2146 }
2147 
2148 /*
2149  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2150  *
2151  * @mpd - extent of blocks for mapping
2152  * @head - the first buffer in the page
2153  * @bh - buffer we should start processing from
2154  * @lblk - logical number of the block in the file corresponding to @bh
2155  *
2156  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2157  * the page for IO if all buffers in this page were mapped and there's no
2158  * accumulated extent of buffers to map or add buffers in the page to the
2159  * extent of buffers to map. The function returns 1 if the caller can continue
2160  * by processing the next page, 0 if it should stop adding buffers to the
2161  * extent to map because we cannot extend it anymore. It can also return value
2162  * < 0 in case of error during IO submission.
2163  */
2164 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2165 				   struct buffer_head *head,
2166 				   struct buffer_head *bh,
2167 				   ext4_lblk_t lblk)
2168 {
2169 	struct inode *inode = mpd->inode;
2170 	int err;
2171 	ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2172 							>> inode->i_blkbits;
2173 
2174 	do {
2175 		BUG_ON(buffer_locked(bh));
2176 
2177 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2178 			/* Found extent to map? */
2179 			if (mpd->map.m_len)
2180 				return 0;
2181 			/* Everything mapped so far and we hit EOF */
2182 			break;
2183 		}
2184 	} while (lblk++, (bh = bh->b_this_page) != head);
2185 	/* So far everything mapped? Submit the page for IO. */
2186 	if (mpd->map.m_len == 0) {
2187 		err = mpage_submit_page(mpd, head->b_page);
2188 		if (err < 0)
2189 			return err;
2190 	}
2191 	return lblk < blocks;
2192 }
2193 
2194 /*
2195  * mpage_map_buffers - update buffers corresponding to changed extent and
2196  *		       submit fully mapped pages for IO
2197  *
2198  * @mpd - description of extent to map, on return next extent to map
2199  *
2200  * Scan buffers corresponding to changed extent (we expect corresponding pages
2201  * to be already locked) and update buffer state according to new extent state.
2202  * We map delalloc buffers to their physical location, clear unwritten bits,
2203  * and mark buffers as uninit when we perform writes to unwritten extents
2204  * and do extent conversion after IO is finished. If the last page is not fully
2205  * mapped, we update @map to the next extent in the last page that needs
2206  * mapping. Otherwise we submit the page for IO.
2207  */
2208 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2209 {
2210 	struct pagevec pvec;
2211 	int nr_pages, i;
2212 	struct inode *inode = mpd->inode;
2213 	struct buffer_head *head, *bh;
2214 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2215 	pgoff_t start, end;
2216 	ext4_lblk_t lblk;
2217 	sector_t pblock;
2218 	int err;
2219 
2220 	start = mpd->map.m_lblk >> bpp_bits;
2221 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2222 	lblk = start << bpp_bits;
2223 	pblock = mpd->map.m_pblk;
2224 
2225 	pagevec_init(&pvec, 0);
2226 	while (start <= end) {
2227 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2228 					  PAGEVEC_SIZE);
2229 		if (nr_pages == 0)
2230 			break;
2231 		for (i = 0; i < nr_pages; i++) {
2232 			struct page *page = pvec.pages[i];
2233 
2234 			if (page->index > end)
2235 				break;
2236 			/* Up to 'end' pages must be contiguous */
2237 			BUG_ON(page->index != start);
2238 			bh = head = page_buffers(page);
2239 			do {
2240 				if (lblk < mpd->map.m_lblk)
2241 					continue;
2242 				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2243 					/*
2244 					 * Buffer after end of mapped extent.
2245 					 * Find next buffer in the page to map.
2246 					 */
2247 					mpd->map.m_len = 0;
2248 					mpd->map.m_flags = 0;
2249 					/*
2250 					 * FIXME: If dioread_nolock supports
2251 					 * blocksize < pagesize, we need to make
2252 					 * sure we add size mapped so far to
2253 					 * io_end->size as the following call
2254 					 * can submit the page for IO.
2255 					 */
2256 					err = mpage_process_page_bufs(mpd, head,
2257 								      bh, lblk);
2258 					pagevec_release(&pvec);
2259 					if (err > 0)
2260 						err = 0;
2261 					return err;
2262 				}
2263 				if (buffer_delay(bh)) {
2264 					clear_buffer_delay(bh);
2265 					bh->b_blocknr = pblock++;
2266 				}
2267 				clear_buffer_unwritten(bh);
2268 			} while (lblk++, (bh = bh->b_this_page) != head);
2269 
2270 			/*
2271 			 * FIXME: This is going to break if dioread_nolock
2272 			 * supports blocksize < pagesize as we will try to
2273 			 * convert potentially unmapped parts of inode.
2274 			 */
2275 			mpd->io_submit.io_end->size += PAGE_SIZE;
2276 			/* Page fully mapped - let IO run! */
2277 			err = mpage_submit_page(mpd, page);
2278 			if (err < 0) {
2279 				pagevec_release(&pvec);
2280 				return err;
2281 			}
2282 			start++;
2283 		}
2284 		pagevec_release(&pvec);
2285 	}
2286 	/* Extent fully mapped and matches with page boundary. We are done. */
2287 	mpd->map.m_len = 0;
2288 	mpd->map.m_flags = 0;
2289 	return 0;
2290 }
2291 
2292 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2293 {
2294 	struct inode *inode = mpd->inode;
2295 	struct ext4_map_blocks *map = &mpd->map;
2296 	int get_blocks_flags;
2297 	int err, dioread_nolock;
2298 
2299 	trace_ext4_da_write_pages_extent(inode, map);
2300 	/*
2301 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2302 	 * to convert an unwritten extent to be initialized (in the case
2303 	 * where we have written into one or more preallocated blocks).  It is
2304 	 * possible that we're going to need more metadata blocks than
2305 	 * previously reserved. However we must not fail because we're in
2306 	 * writeback and there is nothing we can do about it so it might result
2307 	 * in data loss.  So use reserved blocks to allocate metadata if
2308 	 * possible.
2309 	 *
2310 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2311 	 * the blocks in question are delalloc blocks.  This indicates
2312 	 * that the blocks and quotas has already been checked when
2313 	 * the data was copied into the page cache.
2314 	 */
2315 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2316 			   EXT4_GET_BLOCKS_METADATA_NOFAIL;
2317 	dioread_nolock = ext4_should_dioread_nolock(inode);
2318 	if (dioread_nolock)
2319 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2320 	if (map->m_flags & (1 << BH_Delay))
2321 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2322 
2323 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2324 	if (err < 0)
2325 		return err;
2326 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2327 		if (!mpd->io_submit.io_end->handle &&
2328 		    ext4_handle_valid(handle)) {
2329 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2330 			handle->h_rsv_handle = NULL;
2331 		}
2332 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2333 	}
2334 
2335 	BUG_ON(map->m_len == 0);
2336 	if (map->m_flags & EXT4_MAP_NEW) {
2337 		struct block_device *bdev = inode->i_sb->s_bdev;
2338 		int i;
2339 
2340 		for (i = 0; i < map->m_len; i++)
2341 			unmap_underlying_metadata(bdev, map->m_pblk + i);
2342 	}
2343 	return 0;
2344 }
2345 
2346 /*
2347  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2348  *				 mpd->len and submit pages underlying it for IO
2349  *
2350  * @handle - handle for journal operations
2351  * @mpd - extent to map
2352  * @give_up_on_write - we set this to true iff there is a fatal error and there
2353  *                     is no hope of writing the data. The caller should discard
2354  *                     dirty pages to avoid infinite loops.
2355  *
2356  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2357  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2358  * them to initialized or split the described range from larger unwritten
2359  * extent. Note that we need not map all the described range since allocation
2360  * can return less blocks or the range is covered by more unwritten extents. We
2361  * cannot map more because we are limited by reserved transaction credits. On
2362  * the other hand we always make sure that the last touched page is fully
2363  * mapped so that it can be written out (and thus forward progress is
2364  * guaranteed). After mapping we submit all mapped pages for IO.
2365  */
2366 static int mpage_map_and_submit_extent(handle_t *handle,
2367 				       struct mpage_da_data *mpd,
2368 				       bool *give_up_on_write)
2369 {
2370 	struct inode *inode = mpd->inode;
2371 	struct ext4_map_blocks *map = &mpd->map;
2372 	int err;
2373 	loff_t disksize;
2374 	int progress = 0;
2375 
2376 	mpd->io_submit.io_end->offset =
2377 				((loff_t)map->m_lblk) << inode->i_blkbits;
2378 	do {
2379 		err = mpage_map_one_extent(handle, mpd);
2380 		if (err < 0) {
2381 			struct super_block *sb = inode->i_sb;
2382 
2383 			if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2384 				goto invalidate_dirty_pages;
2385 			/*
2386 			 * Let the uper layers retry transient errors.
2387 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2388 			 * is non-zero, a commit should free up blocks.
2389 			 */
2390 			if ((err == -ENOMEM) ||
2391 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2392 				if (progress)
2393 					goto update_disksize;
2394 				return err;
2395 			}
2396 			ext4_msg(sb, KERN_CRIT,
2397 				 "Delayed block allocation failed for "
2398 				 "inode %lu at logical offset %llu with"
2399 				 " max blocks %u with error %d",
2400 				 inode->i_ino,
2401 				 (unsigned long long)map->m_lblk,
2402 				 (unsigned)map->m_len, -err);
2403 			ext4_msg(sb, KERN_CRIT,
2404 				 "This should not happen!! Data will "
2405 				 "be lost\n");
2406 			if (err == -ENOSPC)
2407 				ext4_print_free_blocks(inode);
2408 		invalidate_dirty_pages:
2409 			*give_up_on_write = true;
2410 			return err;
2411 		}
2412 		progress = 1;
2413 		/*
2414 		 * Update buffer state, submit mapped pages, and get us new
2415 		 * extent to map
2416 		 */
2417 		err = mpage_map_and_submit_buffers(mpd);
2418 		if (err < 0)
2419 			goto update_disksize;
2420 	} while (map->m_len);
2421 
2422 update_disksize:
2423 	/*
2424 	 * Update on-disk size after IO is submitted.  Races with
2425 	 * truncate are avoided by checking i_size under i_data_sem.
2426 	 */
2427 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2428 	if (disksize > EXT4_I(inode)->i_disksize) {
2429 		int err2;
2430 		loff_t i_size;
2431 
2432 		down_write(&EXT4_I(inode)->i_data_sem);
2433 		i_size = i_size_read(inode);
2434 		if (disksize > i_size)
2435 			disksize = i_size;
2436 		if (disksize > EXT4_I(inode)->i_disksize)
2437 			EXT4_I(inode)->i_disksize = disksize;
2438 		err2 = ext4_mark_inode_dirty(handle, inode);
2439 		up_write(&EXT4_I(inode)->i_data_sem);
2440 		if (err2)
2441 			ext4_error(inode->i_sb,
2442 				   "Failed to mark inode %lu dirty",
2443 				   inode->i_ino);
2444 		if (!err)
2445 			err = err2;
2446 	}
2447 	return err;
2448 }
2449 
2450 /*
2451  * Calculate the total number of credits to reserve for one writepages
2452  * iteration. This is called from ext4_writepages(). We map an extent of
2453  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2454  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2455  * bpp - 1 blocks in bpp different extents.
2456  */
2457 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2458 {
2459 	int bpp = ext4_journal_blocks_per_page(inode);
2460 
2461 	return ext4_meta_trans_blocks(inode,
2462 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2463 }
2464 
2465 /*
2466  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2467  * 				 and underlying extent to map
2468  *
2469  * @mpd - where to look for pages
2470  *
2471  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2472  * IO immediately. When we find a page which isn't mapped we start accumulating
2473  * extent of buffers underlying these pages that needs mapping (formed by
2474  * either delayed or unwritten buffers). We also lock the pages containing
2475  * these buffers. The extent found is returned in @mpd structure (starting at
2476  * mpd->lblk with length mpd->len blocks).
2477  *
2478  * Note that this function can attach bios to one io_end structure which are
2479  * neither logically nor physically contiguous. Although it may seem as an
2480  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2481  * case as we need to track IO to all buffers underlying a page in one io_end.
2482  */
2483 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2484 {
2485 	struct address_space *mapping = mpd->inode->i_mapping;
2486 	struct pagevec pvec;
2487 	unsigned int nr_pages;
2488 	long left = mpd->wbc->nr_to_write;
2489 	pgoff_t index = mpd->first_page;
2490 	pgoff_t end = mpd->last_page;
2491 	int tag;
2492 	int i, err = 0;
2493 	int blkbits = mpd->inode->i_blkbits;
2494 	ext4_lblk_t lblk;
2495 	struct buffer_head *head;
2496 
2497 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2498 		tag = PAGECACHE_TAG_TOWRITE;
2499 	else
2500 		tag = PAGECACHE_TAG_DIRTY;
2501 
2502 	pagevec_init(&pvec, 0);
2503 	mpd->map.m_len = 0;
2504 	mpd->next_page = index;
2505 	while (index <= end) {
2506 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2507 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2508 		if (nr_pages == 0)
2509 			goto out;
2510 
2511 		for (i = 0; i < nr_pages; i++) {
2512 			struct page *page = pvec.pages[i];
2513 
2514 			/*
2515 			 * At this point, the page may be truncated or
2516 			 * invalidated (changing page->mapping to NULL), or
2517 			 * even swizzled back from swapper_space to tmpfs file
2518 			 * mapping. However, page->index will not change
2519 			 * because we have a reference on the page.
2520 			 */
2521 			if (page->index > end)
2522 				goto out;
2523 
2524 			/*
2525 			 * Accumulated enough dirty pages? This doesn't apply
2526 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2527 			 * keep going because someone may be concurrently
2528 			 * dirtying pages, and we might have synced a lot of
2529 			 * newly appeared dirty pages, but have not synced all
2530 			 * of the old dirty pages.
2531 			 */
2532 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2533 				goto out;
2534 
2535 			/* If we can't merge this page, we are done. */
2536 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2537 				goto out;
2538 
2539 			lock_page(page);
2540 			/*
2541 			 * If the page is no longer dirty, or its mapping no
2542 			 * longer corresponds to inode we are writing (which
2543 			 * means it has been truncated or invalidated), or the
2544 			 * page is already under writeback and we are not doing
2545 			 * a data integrity writeback, skip the page
2546 			 */
2547 			if (!PageDirty(page) ||
2548 			    (PageWriteback(page) &&
2549 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2550 			    unlikely(page->mapping != mapping)) {
2551 				unlock_page(page);
2552 				continue;
2553 			}
2554 
2555 			wait_on_page_writeback(page);
2556 			BUG_ON(PageWriteback(page));
2557 
2558 			if (mpd->map.m_len == 0)
2559 				mpd->first_page = page->index;
2560 			mpd->next_page = page->index + 1;
2561 			/* Add all dirty buffers to mpd */
2562 			lblk = ((ext4_lblk_t)page->index) <<
2563 				(PAGE_SHIFT - blkbits);
2564 			head = page_buffers(page);
2565 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2566 			if (err <= 0)
2567 				goto out;
2568 			err = 0;
2569 			left--;
2570 		}
2571 		pagevec_release(&pvec);
2572 		cond_resched();
2573 	}
2574 	return 0;
2575 out:
2576 	pagevec_release(&pvec);
2577 	return err;
2578 }
2579 
2580 static int __writepage(struct page *page, struct writeback_control *wbc,
2581 		       void *data)
2582 {
2583 	struct address_space *mapping = data;
2584 	int ret = ext4_writepage(page, wbc);
2585 	mapping_set_error(mapping, ret);
2586 	return ret;
2587 }
2588 
2589 static int ext4_writepages(struct address_space *mapping,
2590 			   struct writeback_control *wbc)
2591 {
2592 	pgoff_t	writeback_index = 0;
2593 	long nr_to_write = wbc->nr_to_write;
2594 	int range_whole = 0;
2595 	int cycled = 1;
2596 	handle_t *handle = NULL;
2597 	struct mpage_da_data mpd;
2598 	struct inode *inode = mapping->host;
2599 	int needed_blocks, rsv_blocks = 0, ret = 0;
2600 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2601 	bool done;
2602 	struct blk_plug plug;
2603 	bool give_up_on_write = false;
2604 
2605 	trace_ext4_writepages(inode, wbc);
2606 
2607 	if (dax_mapping(mapping))
2608 		return dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2609 						   wbc);
2610 
2611 	/*
2612 	 * No pages to write? This is mainly a kludge to avoid starting
2613 	 * a transaction for special inodes like journal inode on last iput()
2614 	 * because that could violate lock ordering on umount
2615 	 */
2616 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2617 		goto out_writepages;
2618 
2619 	if (ext4_should_journal_data(inode)) {
2620 		struct blk_plug plug;
2621 
2622 		blk_start_plug(&plug);
2623 		ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2624 		blk_finish_plug(&plug);
2625 		goto out_writepages;
2626 	}
2627 
2628 	/*
2629 	 * If the filesystem has aborted, it is read-only, so return
2630 	 * right away instead of dumping stack traces later on that
2631 	 * will obscure the real source of the problem.  We test
2632 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2633 	 * the latter could be true if the filesystem is mounted
2634 	 * read-only, and in that case, ext4_writepages should
2635 	 * *never* be called, so if that ever happens, we would want
2636 	 * the stack trace.
2637 	 */
2638 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2639 		ret = -EROFS;
2640 		goto out_writepages;
2641 	}
2642 
2643 	if (ext4_should_dioread_nolock(inode)) {
2644 		/*
2645 		 * We may need to convert up to one extent per block in
2646 		 * the page and we may dirty the inode.
2647 		 */
2648 		rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2649 	}
2650 
2651 	/*
2652 	 * If we have inline data and arrive here, it means that
2653 	 * we will soon create the block for the 1st page, so
2654 	 * we'd better clear the inline data here.
2655 	 */
2656 	if (ext4_has_inline_data(inode)) {
2657 		/* Just inode will be modified... */
2658 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2659 		if (IS_ERR(handle)) {
2660 			ret = PTR_ERR(handle);
2661 			goto out_writepages;
2662 		}
2663 		BUG_ON(ext4_test_inode_state(inode,
2664 				EXT4_STATE_MAY_INLINE_DATA));
2665 		ext4_destroy_inline_data(handle, inode);
2666 		ext4_journal_stop(handle);
2667 	}
2668 
2669 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2670 		range_whole = 1;
2671 
2672 	if (wbc->range_cyclic) {
2673 		writeback_index = mapping->writeback_index;
2674 		if (writeback_index)
2675 			cycled = 0;
2676 		mpd.first_page = writeback_index;
2677 		mpd.last_page = -1;
2678 	} else {
2679 		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2680 		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2681 	}
2682 
2683 	mpd.inode = inode;
2684 	mpd.wbc = wbc;
2685 	ext4_io_submit_init(&mpd.io_submit, wbc);
2686 retry:
2687 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2688 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2689 	done = false;
2690 	blk_start_plug(&plug);
2691 	while (!done && mpd.first_page <= mpd.last_page) {
2692 		/* For each extent of pages we use new io_end */
2693 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2694 		if (!mpd.io_submit.io_end) {
2695 			ret = -ENOMEM;
2696 			break;
2697 		}
2698 
2699 		/*
2700 		 * We have two constraints: We find one extent to map and we
2701 		 * must always write out whole page (makes a difference when
2702 		 * blocksize < pagesize) so that we don't block on IO when we
2703 		 * try to write out the rest of the page. Journalled mode is
2704 		 * not supported by delalloc.
2705 		 */
2706 		BUG_ON(ext4_should_journal_data(inode));
2707 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2708 
2709 		/* start a new transaction */
2710 		handle = ext4_journal_start_with_reserve(inode,
2711 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2712 		if (IS_ERR(handle)) {
2713 			ret = PTR_ERR(handle);
2714 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2715 			       "%ld pages, ino %lu; err %d", __func__,
2716 				wbc->nr_to_write, inode->i_ino, ret);
2717 			/* Release allocated io_end */
2718 			ext4_put_io_end(mpd.io_submit.io_end);
2719 			break;
2720 		}
2721 
2722 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2723 		ret = mpage_prepare_extent_to_map(&mpd);
2724 		if (!ret) {
2725 			if (mpd.map.m_len)
2726 				ret = mpage_map_and_submit_extent(handle, &mpd,
2727 					&give_up_on_write);
2728 			else {
2729 				/*
2730 				 * We scanned the whole range (or exhausted
2731 				 * nr_to_write), submitted what was mapped and
2732 				 * didn't find anything needing mapping. We are
2733 				 * done.
2734 				 */
2735 				done = true;
2736 			}
2737 		}
2738 		ext4_journal_stop(handle);
2739 		/* Submit prepared bio */
2740 		ext4_io_submit(&mpd.io_submit);
2741 		/* Unlock pages we didn't use */
2742 		mpage_release_unused_pages(&mpd, give_up_on_write);
2743 		/* Drop our io_end reference we got from init */
2744 		ext4_put_io_end(mpd.io_submit.io_end);
2745 
2746 		if (ret == -ENOSPC && sbi->s_journal) {
2747 			/*
2748 			 * Commit the transaction which would
2749 			 * free blocks released in the transaction
2750 			 * and try again
2751 			 */
2752 			jbd2_journal_force_commit_nested(sbi->s_journal);
2753 			ret = 0;
2754 			continue;
2755 		}
2756 		/* Fatal error - ENOMEM, EIO... */
2757 		if (ret)
2758 			break;
2759 	}
2760 	blk_finish_plug(&plug);
2761 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2762 		cycled = 1;
2763 		mpd.last_page = writeback_index - 1;
2764 		mpd.first_page = 0;
2765 		goto retry;
2766 	}
2767 
2768 	/* Update index */
2769 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2770 		/*
2771 		 * Set the writeback_index so that range_cyclic
2772 		 * mode will write it back later
2773 		 */
2774 		mapping->writeback_index = mpd.first_page;
2775 
2776 out_writepages:
2777 	trace_ext4_writepages_result(inode, wbc, ret,
2778 				     nr_to_write - wbc->nr_to_write);
2779 	return ret;
2780 }
2781 
2782 static int ext4_nonda_switch(struct super_block *sb)
2783 {
2784 	s64 free_clusters, dirty_clusters;
2785 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2786 
2787 	/*
2788 	 * switch to non delalloc mode if we are running low
2789 	 * on free block. The free block accounting via percpu
2790 	 * counters can get slightly wrong with percpu_counter_batch getting
2791 	 * accumulated on each CPU without updating global counters
2792 	 * Delalloc need an accurate free block accounting. So switch
2793 	 * to non delalloc when we are near to error range.
2794 	 */
2795 	free_clusters =
2796 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2797 	dirty_clusters =
2798 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2799 	/*
2800 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2801 	 */
2802 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2803 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2804 
2805 	if (2 * free_clusters < 3 * dirty_clusters ||
2806 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2807 		/*
2808 		 * free block count is less than 150% of dirty blocks
2809 		 * or free blocks is less than watermark
2810 		 */
2811 		return 1;
2812 	}
2813 	return 0;
2814 }
2815 
2816 /* We always reserve for an inode update; the superblock could be there too */
2817 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2818 {
2819 	if (likely(ext4_has_feature_large_file(inode->i_sb)))
2820 		return 1;
2821 
2822 	if (pos + len <= 0x7fffffffULL)
2823 		return 1;
2824 
2825 	/* We might need to update the superblock to set LARGE_FILE */
2826 	return 2;
2827 }
2828 
2829 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2830 			       loff_t pos, unsigned len, unsigned flags,
2831 			       struct page **pagep, void **fsdata)
2832 {
2833 	int ret, retries = 0;
2834 	struct page *page;
2835 	pgoff_t index;
2836 	struct inode *inode = mapping->host;
2837 	handle_t *handle;
2838 
2839 	index = pos >> PAGE_SHIFT;
2840 
2841 	if (ext4_nonda_switch(inode->i_sb)) {
2842 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2843 		return ext4_write_begin(file, mapping, pos,
2844 					len, flags, pagep, fsdata);
2845 	}
2846 	*fsdata = (void *)0;
2847 	trace_ext4_da_write_begin(inode, pos, len, flags);
2848 
2849 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2850 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2851 						      pos, len, flags,
2852 						      pagep, fsdata);
2853 		if (ret < 0)
2854 			return ret;
2855 		if (ret == 1)
2856 			return 0;
2857 	}
2858 
2859 	/*
2860 	 * grab_cache_page_write_begin() can take a long time if the
2861 	 * system is thrashing due to memory pressure, or if the page
2862 	 * is being written back.  So grab it first before we start
2863 	 * the transaction handle.  This also allows us to allocate
2864 	 * the page (if needed) without using GFP_NOFS.
2865 	 */
2866 retry_grab:
2867 	page = grab_cache_page_write_begin(mapping, index, flags);
2868 	if (!page)
2869 		return -ENOMEM;
2870 	unlock_page(page);
2871 
2872 	/*
2873 	 * With delayed allocation, we don't log the i_disksize update
2874 	 * if there is delayed block allocation. But we still need
2875 	 * to journalling the i_disksize update if writes to the end
2876 	 * of file which has an already mapped buffer.
2877 	 */
2878 retry_journal:
2879 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2880 				ext4_da_write_credits(inode, pos, len));
2881 	if (IS_ERR(handle)) {
2882 		put_page(page);
2883 		return PTR_ERR(handle);
2884 	}
2885 
2886 	lock_page(page);
2887 	if (page->mapping != mapping) {
2888 		/* The page got truncated from under us */
2889 		unlock_page(page);
2890 		put_page(page);
2891 		ext4_journal_stop(handle);
2892 		goto retry_grab;
2893 	}
2894 	/* In case writeback began while the page was unlocked */
2895 	wait_for_stable_page(page);
2896 
2897 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2898 	ret = ext4_block_write_begin(page, pos, len,
2899 				     ext4_da_get_block_prep);
2900 #else
2901 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2902 #endif
2903 	if (ret < 0) {
2904 		unlock_page(page);
2905 		ext4_journal_stop(handle);
2906 		/*
2907 		 * block_write_begin may have instantiated a few blocks
2908 		 * outside i_size.  Trim these off again. Don't need
2909 		 * i_size_read because we hold i_mutex.
2910 		 */
2911 		if (pos + len > inode->i_size)
2912 			ext4_truncate_failed_write(inode);
2913 
2914 		if (ret == -ENOSPC &&
2915 		    ext4_should_retry_alloc(inode->i_sb, &retries))
2916 			goto retry_journal;
2917 
2918 		put_page(page);
2919 		return ret;
2920 	}
2921 
2922 	*pagep = page;
2923 	return ret;
2924 }
2925 
2926 /*
2927  * Check if we should update i_disksize
2928  * when write to the end of file but not require block allocation
2929  */
2930 static int ext4_da_should_update_i_disksize(struct page *page,
2931 					    unsigned long offset)
2932 {
2933 	struct buffer_head *bh;
2934 	struct inode *inode = page->mapping->host;
2935 	unsigned int idx;
2936 	int i;
2937 
2938 	bh = page_buffers(page);
2939 	idx = offset >> inode->i_blkbits;
2940 
2941 	for (i = 0; i < idx; i++)
2942 		bh = bh->b_this_page;
2943 
2944 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2945 		return 0;
2946 	return 1;
2947 }
2948 
2949 static int ext4_da_write_end(struct file *file,
2950 			     struct address_space *mapping,
2951 			     loff_t pos, unsigned len, unsigned copied,
2952 			     struct page *page, void *fsdata)
2953 {
2954 	struct inode *inode = mapping->host;
2955 	int ret = 0, ret2;
2956 	handle_t *handle = ext4_journal_current_handle();
2957 	loff_t new_i_size;
2958 	unsigned long start, end;
2959 	int write_mode = (int)(unsigned long)fsdata;
2960 
2961 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
2962 		return ext4_write_end(file, mapping, pos,
2963 				      len, copied, page, fsdata);
2964 
2965 	trace_ext4_da_write_end(inode, pos, len, copied);
2966 	start = pos & (PAGE_SIZE - 1);
2967 	end = start + copied - 1;
2968 
2969 	/*
2970 	 * generic_write_end() will run mark_inode_dirty() if i_size
2971 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2972 	 * into that.
2973 	 */
2974 	new_i_size = pos + copied;
2975 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2976 		if (ext4_has_inline_data(inode) ||
2977 		    ext4_da_should_update_i_disksize(page, end)) {
2978 			ext4_update_i_disksize(inode, new_i_size);
2979 			/* We need to mark inode dirty even if
2980 			 * new_i_size is less that inode->i_size
2981 			 * bu greater than i_disksize.(hint delalloc)
2982 			 */
2983 			ext4_mark_inode_dirty(handle, inode);
2984 		}
2985 	}
2986 
2987 	if (write_mode != CONVERT_INLINE_DATA &&
2988 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2989 	    ext4_has_inline_data(inode))
2990 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2991 						     page);
2992 	else
2993 		ret2 = generic_write_end(file, mapping, pos, len, copied,
2994 							page, fsdata);
2995 
2996 	copied = ret2;
2997 	if (ret2 < 0)
2998 		ret = ret2;
2999 	ret2 = ext4_journal_stop(handle);
3000 	if (!ret)
3001 		ret = ret2;
3002 
3003 	return ret ? ret : copied;
3004 }
3005 
3006 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3007 				   unsigned int length)
3008 {
3009 	/*
3010 	 * Drop reserved blocks
3011 	 */
3012 	BUG_ON(!PageLocked(page));
3013 	if (!page_has_buffers(page))
3014 		goto out;
3015 
3016 	ext4_da_page_release_reservation(page, offset, length);
3017 
3018 out:
3019 	ext4_invalidatepage(page, offset, length);
3020 
3021 	return;
3022 }
3023 
3024 /*
3025  * Force all delayed allocation blocks to be allocated for a given inode.
3026  */
3027 int ext4_alloc_da_blocks(struct inode *inode)
3028 {
3029 	trace_ext4_alloc_da_blocks(inode);
3030 
3031 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3032 		return 0;
3033 
3034 	/*
3035 	 * We do something simple for now.  The filemap_flush() will
3036 	 * also start triggering a write of the data blocks, which is
3037 	 * not strictly speaking necessary (and for users of
3038 	 * laptop_mode, not even desirable).  However, to do otherwise
3039 	 * would require replicating code paths in:
3040 	 *
3041 	 * ext4_writepages() ->
3042 	 *    write_cache_pages() ---> (via passed in callback function)
3043 	 *        __mpage_da_writepage() -->
3044 	 *           mpage_add_bh_to_extent()
3045 	 *           mpage_da_map_blocks()
3046 	 *
3047 	 * The problem is that write_cache_pages(), located in
3048 	 * mm/page-writeback.c, marks pages clean in preparation for
3049 	 * doing I/O, which is not desirable if we're not planning on
3050 	 * doing I/O at all.
3051 	 *
3052 	 * We could call write_cache_pages(), and then redirty all of
3053 	 * the pages by calling redirty_page_for_writepage() but that
3054 	 * would be ugly in the extreme.  So instead we would need to
3055 	 * replicate parts of the code in the above functions,
3056 	 * simplifying them because we wouldn't actually intend to
3057 	 * write out the pages, but rather only collect contiguous
3058 	 * logical block extents, call the multi-block allocator, and
3059 	 * then update the buffer heads with the block allocations.
3060 	 *
3061 	 * For now, though, we'll cheat by calling filemap_flush(),
3062 	 * which will map the blocks, and start the I/O, but not
3063 	 * actually wait for the I/O to complete.
3064 	 */
3065 	return filemap_flush(inode->i_mapping);
3066 }
3067 
3068 /*
3069  * bmap() is special.  It gets used by applications such as lilo and by
3070  * the swapper to find the on-disk block of a specific piece of data.
3071  *
3072  * Naturally, this is dangerous if the block concerned is still in the
3073  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3074  * filesystem and enables swap, then they may get a nasty shock when the
3075  * data getting swapped to that swapfile suddenly gets overwritten by
3076  * the original zero's written out previously to the journal and
3077  * awaiting writeback in the kernel's buffer cache.
3078  *
3079  * So, if we see any bmap calls here on a modified, data-journaled file,
3080  * take extra steps to flush any blocks which might be in the cache.
3081  */
3082 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3083 {
3084 	struct inode *inode = mapping->host;
3085 	journal_t *journal;
3086 	int err;
3087 
3088 	/*
3089 	 * We can get here for an inline file via the FIBMAP ioctl
3090 	 */
3091 	if (ext4_has_inline_data(inode))
3092 		return 0;
3093 
3094 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3095 			test_opt(inode->i_sb, DELALLOC)) {
3096 		/*
3097 		 * With delalloc we want to sync the file
3098 		 * so that we can make sure we allocate
3099 		 * blocks for file
3100 		 */
3101 		filemap_write_and_wait(mapping);
3102 	}
3103 
3104 	if (EXT4_JOURNAL(inode) &&
3105 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3106 		/*
3107 		 * This is a REALLY heavyweight approach, but the use of
3108 		 * bmap on dirty files is expected to be extremely rare:
3109 		 * only if we run lilo or swapon on a freshly made file
3110 		 * do we expect this to happen.
3111 		 *
3112 		 * (bmap requires CAP_SYS_RAWIO so this does not
3113 		 * represent an unprivileged user DOS attack --- we'd be
3114 		 * in trouble if mortal users could trigger this path at
3115 		 * will.)
3116 		 *
3117 		 * NB. EXT4_STATE_JDATA is not set on files other than
3118 		 * regular files.  If somebody wants to bmap a directory
3119 		 * or symlink and gets confused because the buffer
3120 		 * hasn't yet been flushed to disk, they deserve
3121 		 * everything they get.
3122 		 */
3123 
3124 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3125 		journal = EXT4_JOURNAL(inode);
3126 		jbd2_journal_lock_updates(journal);
3127 		err = jbd2_journal_flush(journal);
3128 		jbd2_journal_unlock_updates(journal);
3129 
3130 		if (err)
3131 			return 0;
3132 	}
3133 
3134 	return generic_block_bmap(mapping, block, ext4_get_block);
3135 }
3136 
3137 static int ext4_readpage(struct file *file, struct page *page)
3138 {
3139 	int ret = -EAGAIN;
3140 	struct inode *inode = page->mapping->host;
3141 
3142 	trace_ext4_readpage(page);
3143 
3144 	if (ext4_has_inline_data(inode))
3145 		ret = ext4_readpage_inline(inode, page);
3146 
3147 	if (ret == -EAGAIN)
3148 		return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3149 
3150 	return ret;
3151 }
3152 
3153 static int
3154 ext4_readpages(struct file *file, struct address_space *mapping,
3155 		struct list_head *pages, unsigned nr_pages)
3156 {
3157 	struct inode *inode = mapping->host;
3158 
3159 	/* If the file has inline data, no need to do readpages. */
3160 	if (ext4_has_inline_data(inode))
3161 		return 0;
3162 
3163 	return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3164 }
3165 
3166 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3167 				unsigned int length)
3168 {
3169 	trace_ext4_invalidatepage(page, offset, length);
3170 
3171 	/* No journalling happens on data buffers when this function is used */
3172 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3173 
3174 	block_invalidatepage(page, offset, length);
3175 }
3176 
3177 static int __ext4_journalled_invalidatepage(struct page *page,
3178 					    unsigned int offset,
3179 					    unsigned int length)
3180 {
3181 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3182 
3183 	trace_ext4_journalled_invalidatepage(page, offset, length);
3184 
3185 	/*
3186 	 * If it's a full truncate we just forget about the pending dirtying
3187 	 */
3188 	if (offset == 0 && length == PAGE_SIZE)
3189 		ClearPageChecked(page);
3190 
3191 	return jbd2_journal_invalidatepage(journal, page, offset, length);
3192 }
3193 
3194 /* Wrapper for aops... */
3195 static void ext4_journalled_invalidatepage(struct page *page,
3196 					   unsigned int offset,
3197 					   unsigned int length)
3198 {
3199 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3200 }
3201 
3202 static int ext4_releasepage(struct page *page, gfp_t wait)
3203 {
3204 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3205 
3206 	trace_ext4_releasepage(page);
3207 
3208 	/* Page has dirty journalled data -> cannot release */
3209 	if (PageChecked(page))
3210 		return 0;
3211 	if (journal)
3212 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3213 	else
3214 		return try_to_free_buffers(page);
3215 }
3216 
3217 #ifdef CONFIG_FS_DAX
3218 int ext4_dax_mmap_get_block(struct inode *inode, sector_t iblock,
3219 			    struct buffer_head *bh_result, int create)
3220 {
3221 	int ret, err;
3222 	int credits;
3223 	struct ext4_map_blocks map;
3224 	handle_t *handle = NULL;
3225 	int flags = 0;
3226 
3227 	ext4_debug("ext4_dax_mmap_get_block: inode %lu, create flag %d\n",
3228 		   inode->i_ino, create);
3229 	map.m_lblk = iblock;
3230 	map.m_len = bh_result->b_size >> inode->i_blkbits;
3231 	credits = ext4_chunk_trans_blocks(inode, map.m_len);
3232 	if (create) {
3233 		flags |= EXT4_GET_BLOCKS_PRE_IO | EXT4_GET_BLOCKS_CREATE_ZERO;
3234 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits);
3235 		if (IS_ERR(handle)) {
3236 			ret = PTR_ERR(handle);
3237 			return ret;
3238 		}
3239 	}
3240 
3241 	ret = ext4_map_blocks(handle, inode, &map, flags);
3242 	if (create) {
3243 		err = ext4_journal_stop(handle);
3244 		if (ret >= 0 && err < 0)
3245 			ret = err;
3246 	}
3247 	if (ret <= 0)
3248 		goto out;
3249 	if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3250 		int err2;
3251 
3252 		/*
3253 		 * We are protected by i_mmap_sem so we know block cannot go
3254 		 * away from under us even though we dropped i_data_sem.
3255 		 * Convert extent to written and write zeros there.
3256 		 *
3257 		 * Note: We may get here even when create == 0.
3258 		 */
3259 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits);
3260 		if (IS_ERR(handle)) {
3261 			ret = PTR_ERR(handle);
3262 			goto out;
3263 		}
3264 
3265 		err = ext4_map_blocks(handle, inode, &map,
3266 		      EXT4_GET_BLOCKS_CONVERT | EXT4_GET_BLOCKS_CREATE_ZERO);
3267 		if (err < 0)
3268 			ret = err;
3269 		err2 = ext4_journal_stop(handle);
3270 		if (err2 < 0 && ret > 0)
3271 			ret = err2;
3272 	}
3273 out:
3274 	WARN_ON_ONCE(ret == 0 && create);
3275 	if (ret > 0) {
3276 		map_bh(bh_result, inode->i_sb, map.m_pblk);
3277 		/*
3278 		 * At least for now we have to clear BH_New so that DAX code
3279 		 * doesn't attempt to zero blocks again in a racy way.
3280 		 */
3281 		map.m_flags &= ~EXT4_MAP_NEW;
3282 		ext4_update_bh_state(bh_result, map.m_flags);
3283 		bh_result->b_size = map.m_len << inode->i_blkbits;
3284 		ret = 0;
3285 	}
3286 	return ret;
3287 }
3288 #endif
3289 
3290 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3291 			    ssize_t size, void *private)
3292 {
3293         ext4_io_end_t *io_end = private;
3294 
3295 	/* if not async direct IO just return */
3296 	if (!io_end)
3297 		return 0;
3298 
3299 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3300 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3301 		  io_end, io_end->inode->i_ino, iocb, offset, size);
3302 
3303 	/*
3304 	 * Error during AIO DIO. We cannot convert unwritten extents as the
3305 	 * data was not written. Just clear the unwritten flag and drop io_end.
3306 	 */
3307 	if (size <= 0) {
3308 		ext4_clear_io_unwritten_flag(io_end);
3309 		size = 0;
3310 	}
3311 	io_end->offset = offset;
3312 	io_end->size = size;
3313 	ext4_put_io_end(io_end);
3314 
3315 	return 0;
3316 }
3317 
3318 /*
3319  * For ext4 extent files, ext4 will do direct-io write to holes,
3320  * preallocated extents, and those write extend the file, no need to
3321  * fall back to buffered IO.
3322  *
3323  * For holes, we fallocate those blocks, mark them as unwritten
3324  * If those blocks were preallocated, we mark sure they are split, but
3325  * still keep the range to write as unwritten.
3326  *
3327  * The unwritten extents will be converted to written when DIO is completed.
3328  * For async direct IO, since the IO may still pending when return, we
3329  * set up an end_io call back function, which will do the conversion
3330  * when async direct IO completed.
3331  *
3332  * If the O_DIRECT write will extend the file then add this inode to the
3333  * orphan list.  So recovery will truncate it back to the original size
3334  * if the machine crashes during the write.
3335  *
3336  */
3337 static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3338 				  loff_t offset)
3339 {
3340 	struct file *file = iocb->ki_filp;
3341 	struct inode *inode = file->f_mapping->host;
3342 	ssize_t ret;
3343 	size_t count = iov_iter_count(iter);
3344 	int overwrite = 0;
3345 	get_block_t *get_block_func = NULL;
3346 	int dio_flags = 0;
3347 	loff_t final_size = offset + count;
3348 
3349 	/* Use the old path for reads and writes beyond i_size. */
3350 	if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size)
3351 		return ext4_ind_direct_IO(iocb, iter, offset);
3352 
3353 	BUG_ON(iocb->private == NULL);
3354 
3355 	/*
3356 	 * Make all waiters for direct IO properly wait also for extent
3357 	 * conversion. This also disallows race between truncate() and
3358 	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3359 	 */
3360 	if (iov_iter_rw(iter) == WRITE)
3361 		inode_dio_begin(inode);
3362 
3363 	/* If we do a overwrite dio, i_mutex locking can be released */
3364 	overwrite = *((int *)iocb->private);
3365 
3366 	if (overwrite)
3367 		inode_unlock(inode);
3368 
3369 	/*
3370 	 * We could direct write to holes and fallocate.
3371 	 *
3372 	 * Allocated blocks to fill the hole are marked as unwritten to prevent
3373 	 * parallel buffered read to expose the stale data before DIO complete
3374 	 * the data IO.
3375 	 *
3376 	 * As to previously fallocated extents, ext4 get_block will just simply
3377 	 * mark the buffer mapped but still keep the extents unwritten.
3378 	 *
3379 	 * For non AIO case, we will convert those unwritten extents to written
3380 	 * after return back from blockdev_direct_IO. That way we save us from
3381 	 * allocating io_end structure and also the overhead of offloading
3382 	 * the extent convertion to a workqueue.
3383 	 *
3384 	 * For async DIO, the conversion needs to be deferred when the
3385 	 * IO is completed. The ext4 end_io callback function will be
3386 	 * called to take care of the conversion work.  Here for async
3387 	 * case, we allocate an io_end structure to hook to the iocb.
3388 	 */
3389 	iocb->private = NULL;
3390 	if (overwrite)
3391 		get_block_func = ext4_dio_get_block_overwrite;
3392 	else if (is_sync_kiocb(iocb)) {
3393 		get_block_func = ext4_dio_get_block_unwritten_sync;
3394 		dio_flags = DIO_LOCKING;
3395 	} else {
3396 		get_block_func = ext4_dio_get_block_unwritten_async;
3397 		dio_flags = DIO_LOCKING;
3398 	}
3399 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3400 	BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3401 #endif
3402 	if (IS_DAX(inode))
3403 		ret = dax_do_io(iocb, inode, iter, offset, get_block_func,
3404 				ext4_end_io_dio, dio_flags);
3405 	else
3406 		ret = __blockdev_direct_IO(iocb, inode,
3407 					   inode->i_sb->s_bdev, iter, offset,
3408 					   get_block_func,
3409 					   ext4_end_io_dio, NULL, dio_flags);
3410 
3411 	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3412 						EXT4_STATE_DIO_UNWRITTEN)) {
3413 		int err;
3414 		/*
3415 		 * for non AIO case, since the IO is already
3416 		 * completed, we could do the conversion right here
3417 		 */
3418 		err = ext4_convert_unwritten_extents(NULL, inode,
3419 						     offset, ret);
3420 		if (err < 0)
3421 			ret = err;
3422 		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3423 	}
3424 
3425 	if (iov_iter_rw(iter) == WRITE)
3426 		inode_dio_end(inode);
3427 	/* take i_mutex locking again if we do a ovewrite dio */
3428 	if (overwrite)
3429 		inode_lock(inode);
3430 
3431 	return ret;
3432 }
3433 
3434 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3435 			      loff_t offset)
3436 {
3437 	struct file *file = iocb->ki_filp;
3438 	struct inode *inode = file->f_mapping->host;
3439 	size_t count = iov_iter_count(iter);
3440 	ssize_t ret;
3441 
3442 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3443 	if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3444 		return 0;
3445 #endif
3446 
3447 	/*
3448 	 * If we are doing data journalling we don't support O_DIRECT
3449 	 */
3450 	if (ext4_should_journal_data(inode))
3451 		return 0;
3452 
3453 	/* Let buffer I/O handle the inline data case. */
3454 	if (ext4_has_inline_data(inode))
3455 		return 0;
3456 
3457 	trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3458 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3459 		ret = ext4_ext_direct_IO(iocb, iter, offset);
3460 	else
3461 		ret = ext4_ind_direct_IO(iocb, iter, offset);
3462 	trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3463 	return ret;
3464 }
3465 
3466 /*
3467  * Pages can be marked dirty completely asynchronously from ext4's journalling
3468  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3469  * much here because ->set_page_dirty is called under VFS locks.  The page is
3470  * not necessarily locked.
3471  *
3472  * We cannot just dirty the page and leave attached buffers clean, because the
3473  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3474  * or jbddirty because all the journalling code will explode.
3475  *
3476  * So what we do is to mark the page "pending dirty" and next time writepage
3477  * is called, propagate that into the buffers appropriately.
3478  */
3479 static int ext4_journalled_set_page_dirty(struct page *page)
3480 {
3481 	SetPageChecked(page);
3482 	return __set_page_dirty_nobuffers(page);
3483 }
3484 
3485 static const struct address_space_operations ext4_aops = {
3486 	.readpage		= ext4_readpage,
3487 	.readpages		= ext4_readpages,
3488 	.writepage		= ext4_writepage,
3489 	.writepages		= ext4_writepages,
3490 	.write_begin		= ext4_write_begin,
3491 	.write_end		= ext4_write_end,
3492 	.bmap			= ext4_bmap,
3493 	.invalidatepage		= ext4_invalidatepage,
3494 	.releasepage		= ext4_releasepage,
3495 	.direct_IO		= ext4_direct_IO,
3496 	.migratepage		= buffer_migrate_page,
3497 	.is_partially_uptodate  = block_is_partially_uptodate,
3498 	.error_remove_page	= generic_error_remove_page,
3499 };
3500 
3501 static const struct address_space_operations ext4_journalled_aops = {
3502 	.readpage		= ext4_readpage,
3503 	.readpages		= ext4_readpages,
3504 	.writepage		= ext4_writepage,
3505 	.writepages		= ext4_writepages,
3506 	.write_begin		= ext4_write_begin,
3507 	.write_end		= ext4_journalled_write_end,
3508 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3509 	.bmap			= ext4_bmap,
3510 	.invalidatepage		= ext4_journalled_invalidatepage,
3511 	.releasepage		= ext4_releasepage,
3512 	.direct_IO		= ext4_direct_IO,
3513 	.is_partially_uptodate  = block_is_partially_uptodate,
3514 	.error_remove_page	= generic_error_remove_page,
3515 };
3516 
3517 static const struct address_space_operations ext4_da_aops = {
3518 	.readpage		= ext4_readpage,
3519 	.readpages		= ext4_readpages,
3520 	.writepage		= ext4_writepage,
3521 	.writepages		= ext4_writepages,
3522 	.write_begin		= ext4_da_write_begin,
3523 	.write_end		= ext4_da_write_end,
3524 	.bmap			= ext4_bmap,
3525 	.invalidatepage		= ext4_da_invalidatepage,
3526 	.releasepage		= ext4_releasepage,
3527 	.direct_IO		= ext4_direct_IO,
3528 	.migratepage		= buffer_migrate_page,
3529 	.is_partially_uptodate  = block_is_partially_uptodate,
3530 	.error_remove_page	= generic_error_remove_page,
3531 };
3532 
3533 void ext4_set_aops(struct inode *inode)
3534 {
3535 	switch (ext4_inode_journal_mode(inode)) {
3536 	case EXT4_INODE_ORDERED_DATA_MODE:
3537 		ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3538 		break;
3539 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3540 		ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3541 		break;
3542 	case EXT4_INODE_JOURNAL_DATA_MODE:
3543 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3544 		return;
3545 	default:
3546 		BUG();
3547 	}
3548 	if (test_opt(inode->i_sb, DELALLOC))
3549 		inode->i_mapping->a_ops = &ext4_da_aops;
3550 	else
3551 		inode->i_mapping->a_ops = &ext4_aops;
3552 }
3553 
3554 static int __ext4_block_zero_page_range(handle_t *handle,
3555 		struct address_space *mapping, loff_t from, loff_t length)
3556 {
3557 	ext4_fsblk_t index = from >> PAGE_SHIFT;
3558 	unsigned offset = from & (PAGE_SIZE-1);
3559 	unsigned blocksize, pos;
3560 	ext4_lblk_t iblock;
3561 	struct inode *inode = mapping->host;
3562 	struct buffer_head *bh;
3563 	struct page *page;
3564 	int err = 0;
3565 
3566 	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3567 				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3568 	if (!page)
3569 		return -ENOMEM;
3570 
3571 	blocksize = inode->i_sb->s_blocksize;
3572 
3573 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3574 
3575 	if (!page_has_buffers(page))
3576 		create_empty_buffers(page, blocksize, 0);
3577 
3578 	/* Find the buffer that contains "offset" */
3579 	bh = page_buffers(page);
3580 	pos = blocksize;
3581 	while (offset >= pos) {
3582 		bh = bh->b_this_page;
3583 		iblock++;
3584 		pos += blocksize;
3585 	}
3586 	if (buffer_freed(bh)) {
3587 		BUFFER_TRACE(bh, "freed: skip");
3588 		goto unlock;
3589 	}
3590 	if (!buffer_mapped(bh)) {
3591 		BUFFER_TRACE(bh, "unmapped");
3592 		ext4_get_block(inode, iblock, bh, 0);
3593 		/* unmapped? It's a hole - nothing to do */
3594 		if (!buffer_mapped(bh)) {
3595 			BUFFER_TRACE(bh, "still unmapped");
3596 			goto unlock;
3597 		}
3598 	}
3599 
3600 	/* Ok, it's mapped. Make sure it's up-to-date */
3601 	if (PageUptodate(page))
3602 		set_buffer_uptodate(bh);
3603 
3604 	if (!buffer_uptodate(bh)) {
3605 		err = -EIO;
3606 		ll_rw_block(READ, 1, &bh);
3607 		wait_on_buffer(bh);
3608 		/* Uhhuh. Read error. Complain and punt. */
3609 		if (!buffer_uptodate(bh))
3610 			goto unlock;
3611 		if (S_ISREG(inode->i_mode) &&
3612 		    ext4_encrypted_inode(inode)) {
3613 			/* We expect the key to be set. */
3614 			BUG_ON(!ext4_has_encryption_key(inode));
3615 			BUG_ON(blocksize != PAGE_SIZE);
3616 			WARN_ON_ONCE(ext4_decrypt(page));
3617 		}
3618 	}
3619 	if (ext4_should_journal_data(inode)) {
3620 		BUFFER_TRACE(bh, "get write access");
3621 		err = ext4_journal_get_write_access(handle, bh);
3622 		if (err)
3623 			goto unlock;
3624 	}
3625 	zero_user(page, offset, length);
3626 	BUFFER_TRACE(bh, "zeroed end of block");
3627 
3628 	if (ext4_should_journal_data(inode)) {
3629 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3630 	} else {
3631 		err = 0;
3632 		mark_buffer_dirty(bh);
3633 		if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3634 			err = ext4_jbd2_file_inode(handle, inode);
3635 	}
3636 
3637 unlock:
3638 	unlock_page(page);
3639 	put_page(page);
3640 	return err;
3641 }
3642 
3643 /*
3644  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3645  * starting from file offset 'from'.  The range to be zero'd must
3646  * be contained with in one block.  If the specified range exceeds
3647  * the end of the block it will be shortened to end of the block
3648  * that cooresponds to 'from'
3649  */
3650 static int ext4_block_zero_page_range(handle_t *handle,
3651 		struct address_space *mapping, loff_t from, loff_t length)
3652 {
3653 	struct inode *inode = mapping->host;
3654 	unsigned offset = from & (PAGE_SIZE-1);
3655 	unsigned blocksize = inode->i_sb->s_blocksize;
3656 	unsigned max = blocksize - (offset & (blocksize - 1));
3657 
3658 	/*
3659 	 * correct length if it does not fall between
3660 	 * 'from' and the end of the block
3661 	 */
3662 	if (length > max || length < 0)
3663 		length = max;
3664 
3665 	if (IS_DAX(inode))
3666 		return dax_zero_page_range(inode, from, length, ext4_get_block);
3667 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3668 }
3669 
3670 /*
3671  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3672  * up to the end of the block which corresponds to `from'.
3673  * This required during truncate. We need to physically zero the tail end
3674  * of that block so it doesn't yield old data if the file is later grown.
3675  */
3676 static int ext4_block_truncate_page(handle_t *handle,
3677 		struct address_space *mapping, loff_t from)
3678 {
3679 	unsigned offset = from & (PAGE_SIZE-1);
3680 	unsigned length;
3681 	unsigned blocksize;
3682 	struct inode *inode = mapping->host;
3683 
3684 	blocksize = inode->i_sb->s_blocksize;
3685 	length = blocksize - (offset & (blocksize - 1));
3686 
3687 	return ext4_block_zero_page_range(handle, mapping, from, length);
3688 }
3689 
3690 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3691 			     loff_t lstart, loff_t length)
3692 {
3693 	struct super_block *sb = inode->i_sb;
3694 	struct address_space *mapping = inode->i_mapping;
3695 	unsigned partial_start, partial_end;
3696 	ext4_fsblk_t start, end;
3697 	loff_t byte_end = (lstart + length - 1);
3698 	int err = 0;
3699 
3700 	partial_start = lstart & (sb->s_blocksize - 1);
3701 	partial_end = byte_end & (sb->s_blocksize - 1);
3702 
3703 	start = lstart >> sb->s_blocksize_bits;
3704 	end = byte_end >> sb->s_blocksize_bits;
3705 
3706 	/* Handle partial zero within the single block */
3707 	if (start == end &&
3708 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3709 		err = ext4_block_zero_page_range(handle, mapping,
3710 						 lstart, length);
3711 		return err;
3712 	}
3713 	/* Handle partial zero out on the start of the range */
3714 	if (partial_start) {
3715 		err = ext4_block_zero_page_range(handle, mapping,
3716 						 lstart, sb->s_blocksize);
3717 		if (err)
3718 			return err;
3719 	}
3720 	/* Handle partial zero out on the end of the range */
3721 	if (partial_end != sb->s_blocksize - 1)
3722 		err = ext4_block_zero_page_range(handle, mapping,
3723 						 byte_end - partial_end,
3724 						 partial_end + 1);
3725 	return err;
3726 }
3727 
3728 int ext4_can_truncate(struct inode *inode)
3729 {
3730 	if (S_ISREG(inode->i_mode))
3731 		return 1;
3732 	if (S_ISDIR(inode->i_mode))
3733 		return 1;
3734 	if (S_ISLNK(inode->i_mode))
3735 		return !ext4_inode_is_fast_symlink(inode);
3736 	return 0;
3737 }
3738 
3739 /*
3740  * We have to make sure i_disksize gets properly updated before we truncate
3741  * page cache due to hole punching or zero range. Otherwise i_disksize update
3742  * can get lost as it may have been postponed to submission of writeback but
3743  * that will never happen after we truncate page cache.
3744  */
3745 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3746 				      loff_t len)
3747 {
3748 	handle_t *handle;
3749 	loff_t size = i_size_read(inode);
3750 
3751 	WARN_ON(!inode_is_locked(inode));
3752 	if (offset > size || offset + len < size)
3753 		return 0;
3754 
3755 	if (EXT4_I(inode)->i_disksize >= size)
3756 		return 0;
3757 
3758 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3759 	if (IS_ERR(handle))
3760 		return PTR_ERR(handle);
3761 	ext4_update_i_disksize(inode, size);
3762 	ext4_mark_inode_dirty(handle, inode);
3763 	ext4_journal_stop(handle);
3764 
3765 	return 0;
3766 }
3767 
3768 /*
3769  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3770  * associated with the given offset and length
3771  *
3772  * @inode:  File inode
3773  * @offset: The offset where the hole will begin
3774  * @len:    The length of the hole
3775  *
3776  * Returns: 0 on success or negative on failure
3777  */
3778 
3779 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3780 {
3781 	struct super_block *sb = inode->i_sb;
3782 	ext4_lblk_t first_block, stop_block;
3783 	struct address_space *mapping = inode->i_mapping;
3784 	loff_t first_block_offset, last_block_offset;
3785 	handle_t *handle;
3786 	unsigned int credits;
3787 	int ret = 0;
3788 
3789 	if (!S_ISREG(inode->i_mode))
3790 		return -EOPNOTSUPP;
3791 
3792 	trace_ext4_punch_hole(inode, offset, length, 0);
3793 
3794 	/*
3795 	 * Write out all dirty pages to avoid race conditions
3796 	 * Then release them.
3797 	 */
3798 	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3799 		ret = filemap_write_and_wait_range(mapping, offset,
3800 						   offset + length - 1);
3801 		if (ret)
3802 			return ret;
3803 	}
3804 
3805 	inode_lock(inode);
3806 
3807 	/* No need to punch hole beyond i_size */
3808 	if (offset >= inode->i_size)
3809 		goto out_mutex;
3810 
3811 	/*
3812 	 * If the hole extends beyond i_size, set the hole
3813 	 * to end after the page that contains i_size
3814 	 */
3815 	if (offset + length > inode->i_size) {
3816 		length = inode->i_size +
3817 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3818 		   offset;
3819 	}
3820 
3821 	if (offset & (sb->s_blocksize - 1) ||
3822 	    (offset + length) & (sb->s_blocksize - 1)) {
3823 		/*
3824 		 * Attach jinode to inode for jbd2 if we do any zeroing of
3825 		 * partial block
3826 		 */
3827 		ret = ext4_inode_attach_jinode(inode);
3828 		if (ret < 0)
3829 			goto out_mutex;
3830 
3831 	}
3832 
3833 	/* Wait all existing dio workers, newcomers will block on i_mutex */
3834 	ext4_inode_block_unlocked_dio(inode);
3835 	inode_dio_wait(inode);
3836 
3837 	/*
3838 	 * Prevent page faults from reinstantiating pages we have released from
3839 	 * page cache.
3840 	 */
3841 	down_write(&EXT4_I(inode)->i_mmap_sem);
3842 	first_block_offset = round_up(offset, sb->s_blocksize);
3843 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3844 
3845 	/* Now release the pages and zero block aligned part of pages*/
3846 	if (last_block_offset > first_block_offset) {
3847 		ret = ext4_update_disksize_before_punch(inode, offset, length);
3848 		if (ret)
3849 			goto out_dio;
3850 		truncate_pagecache_range(inode, first_block_offset,
3851 					 last_block_offset);
3852 	}
3853 
3854 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3855 		credits = ext4_writepage_trans_blocks(inode);
3856 	else
3857 		credits = ext4_blocks_for_truncate(inode);
3858 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3859 	if (IS_ERR(handle)) {
3860 		ret = PTR_ERR(handle);
3861 		ext4_std_error(sb, ret);
3862 		goto out_dio;
3863 	}
3864 
3865 	ret = ext4_zero_partial_blocks(handle, inode, offset,
3866 				       length);
3867 	if (ret)
3868 		goto out_stop;
3869 
3870 	first_block = (offset + sb->s_blocksize - 1) >>
3871 		EXT4_BLOCK_SIZE_BITS(sb);
3872 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3873 
3874 	/* If there are no blocks to remove, return now */
3875 	if (first_block >= stop_block)
3876 		goto out_stop;
3877 
3878 	down_write(&EXT4_I(inode)->i_data_sem);
3879 	ext4_discard_preallocations(inode);
3880 
3881 	ret = ext4_es_remove_extent(inode, first_block,
3882 				    stop_block - first_block);
3883 	if (ret) {
3884 		up_write(&EXT4_I(inode)->i_data_sem);
3885 		goto out_stop;
3886 	}
3887 
3888 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3889 		ret = ext4_ext_remove_space(inode, first_block,
3890 					    stop_block - 1);
3891 	else
3892 		ret = ext4_ind_remove_space(handle, inode, first_block,
3893 					    stop_block);
3894 
3895 	up_write(&EXT4_I(inode)->i_data_sem);
3896 	if (IS_SYNC(inode))
3897 		ext4_handle_sync(handle);
3898 
3899 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3900 	ext4_mark_inode_dirty(handle, inode);
3901 out_stop:
3902 	ext4_journal_stop(handle);
3903 out_dio:
3904 	up_write(&EXT4_I(inode)->i_mmap_sem);
3905 	ext4_inode_resume_unlocked_dio(inode);
3906 out_mutex:
3907 	inode_unlock(inode);
3908 	return ret;
3909 }
3910 
3911 int ext4_inode_attach_jinode(struct inode *inode)
3912 {
3913 	struct ext4_inode_info *ei = EXT4_I(inode);
3914 	struct jbd2_inode *jinode;
3915 
3916 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3917 		return 0;
3918 
3919 	jinode = jbd2_alloc_inode(GFP_KERNEL);
3920 	spin_lock(&inode->i_lock);
3921 	if (!ei->jinode) {
3922 		if (!jinode) {
3923 			spin_unlock(&inode->i_lock);
3924 			return -ENOMEM;
3925 		}
3926 		ei->jinode = jinode;
3927 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
3928 		jinode = NULL;
3929 	}
3930 	spin_unlock(&inode->i_lock);
3931 	if (unlikely(jinode != NULL))
3932 		jbd2_free_inode(jinode);
3933 	return 0;
3934 }
3935 
3936 /*
3937  * ext4_truncate()
3938  *
3939  * We block out ext4_get_block() block instantiations across the entire
3940  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3941  * simultaneously on behalf of the same inode.
3942  *
3943  * As we work through the truncate and commit bits of it to the journal there
3944  * is one core, guiding principle: the file's tree must always be consistent on
3945  * disk.  We must be able to restart the truncate after a crash.
3946  *
3947  * The file's tree may be transiently inconsistent in memory (although it
3948  * probably isn't), but whenever we close off and commit a journal transaction,
3949  * the contents of (the filesystem + the journal) must be consistent and
3950  * restartable.  It's pretty simple, really: bottom up, right to left (although
3951  * left-to-right works OK too).
3952  *
3953  * Note that at recovery time, journal replay occurs *before* the restart of
3954  * truncate against the orphan inode list.
3955  *
3956  * The committed inode has the new, desired i_size (which is the same as
3957  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3958  * that this inode's truncate did not complete and it will again call
3959  * ext4_truncate() to have another go.  So there will be instantiated blocks
3960  * to the right of the truncation point in a crashed ext4 filesystem.  But
3961  * that's fine - as long as they are linked from the inode, the post-crash
3962  * ext4_truncate() run will find them and release them.
3963  */
3964 void ext4_truncate(struct inode *inode)
3965 {
3966 	struct ext4_inode_info *ei = EXT4_I(inode);
3967 	unsigned int credits;
3968 	handle_t *handle;
3969 	struct address_space *mapping = inode->i_mapping;
3970 
3971 	/*
3972 	 * There is a possibility that we're either freeing the inode
3973 	 * or it's a completely new inode. In those cases we might not
3974 	 * have i_mutex locked because it's not necessary.
3975 	 */
3976 	if (!(inode->i_state & (I_NEW|I_FREEING)))
3977 		WARN_ON(!inode_is_locked(inode));
3978 	trace_ext4_truncate_enter(inode);
3979 
3980 	if (!ext4_can_truncate(inode))
3981 		return;
3982 
3983 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3984 
3985 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3986 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3987 
3988 	if (ext4_has_inline_data(inode)) {
3989 		int has_inline = 1;
3990 
3991 		ext4_inline_data_truncate(inode, &has_inline);
3992 		if (has_inline)
3993 			return;
3994 	}
3995 
3996 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
3997 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3998 		if (ext4_inode_attach_jinode(inode) < 0)
3999 			return;
4000 	}
4001 
4002 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4003 		credits = ext4_writepage_trans_blocks(inode);
4004 	else
4005 		credits = ext4_blocks_for_truncate(inode);
4006 
4007 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4008 	if (IS_ERR(handle)) {
4009 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
4010 		return;
4011 	}
4012 
4013 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4014 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4015 
4016 	/*
4017 	 * We add the inode to the orphan list, so that if this
4018 	 * truncate spans multiple transactions, and we crash, we will
4019 	 * resume the truncate when the filesystem recovers.  It also
4020 	 * marks the inode dirty, to catch the new size.
4021 	 *
4022 	 * Implication: the file must always be in a sane, consistent
4023 	 * truncatable state while each transaction commits.
4024 	 */
4025 	if (ext4_orphan_add(handle, inode))
4026 		goto out_stop;
4027 
4028 	down_write(&EXT4_I(inode)->i_data_sem);
4029 
4030 	ext4_discard_preallocations(inode);
4031 
4032 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4033 		ext4_ext_truncate(handle, inode);
4034 	else
4035 		ext4_ind_truncate(handle, inode);
4036 
4037 	up_write(&ei->i_data_sem);
4038 
4039 	if (IS_SYNC(inode))
4040 		ext4_handle_sync(handle);
4041 
4042 out_stop:
4043 	/*
4044 	 * If this was a simple ftruncate() and the file will remain alive,
4045 	 * then we need to clear up the orphan record which we created above.
4046 	 * However, if this was a real unlink then we were called by
4047 	 * ext4_evict_inode(), and we allow that function to clean up the
4048 	 * orphan info for us.
4049 	 */
4050 	if (inode->i_nlink)
4051 		ext4_orphan_del(handle, inode);
4052 
4053 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4054 	ext4_mark_inode_dirty(handle, inode);
4055 	ext4_journal_stop(handle);
4056 
4057 	trace_ext4_truncate_exit(inode);
4058 }
4059 
4060 /*
4061  * ext4_get_inode_loc returns with an extra refcount against the inode's
4062  * underlying buffer_head on success. If 'in_mem' is true, we have all
4063  * data in memory that is needed to recreate the on-disk version of this
4064  * inode.
4065  */
4066 static int __ext4_get_inode_loc(struct inode *inode,
4067 				struct ext4_iloc *iloc, int in_mem)
4068 {
4069 	struct ext4_group_desc	*gdp;
4070 	struct buffer_head	*bh;
4071 	struct super_block	*sb = inode->i_sb;
4072 	ext4_fsblk_t		block;
4073 	int			inodes_per_block, inode_offset;
4074 
4075 	iloc->bh = NULL;
4076 	if (!ext4_valid_inum(sb, inode->i_ino))
4077 		return -EFSCORRUPTED;
4078 
4079 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4080 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4081 	if (!gdp)
4082 		return -EIO;
4083 
4084 	/*
4085 	 * Figure out the offset within the block group inode table
4086 	 */
4087 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4088 	inode_offset = ((inode->i_ino - 1) %
4089 			EXT4_INODES_PER_GROUP(sb));
4090 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4091 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4092 
4093 	bh = sb_getblk(sb, block);
4094 	if (unlikely(!bh))
4095 		return -ENOMEM;
4096 	if (!buffer_uptodate(bh)) {
4097 		lock_buffer(bh);
4098 
4099 		/*
4100 		 * If the buffer has the write error flag, we have failed
4101 		 * to write out another inode in the same block.  In this
4102 		 * case, we don't have to read the block because we may
4103 		 * read the old inode data successfully.
4104 		 */
4105 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4106 			set_buffer_uptodate(bh);
4107 
4108 		if (buffer_uptodate(bh)) {
4109 			/* someone brought it uptodate while we waited */
4110 			unlock_buffer(bh);
4111 			goto has_buffer;
4112 		}
4113 
4114 		/*
4115 		 * If we have all information of the inode in memory and this
4116 		 * is the only valid inode in the block, we need not read the
4117 		 * block.
4118 		 */
4119 		if (in_mem) {
4120 			struct buffer_head *bitmap_bh;
4121 			int i, start;
4122 
4123 			start = inode_offset & ~(inodes_per_block - 1);
4124 
4125 			/* Is the inode bitmap in cache? */
4126 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4127 			if (unlikely(!bitmap_bh))
4128 				goto make_io;
4129 
4130 			/*
4131 			 * If the inode bitmap isn't in cache then the
4132 			 * optimisation may end up performing two reads instead
4133 			 * of one, so skip it.
4134 			 */
4135 			if (!buffer_uptodate(bitmap_bh)) {
4136 				brelse(bitmap_bh);
4137 				goto make_io;
4138 			}
4139 			for (i = start; i < start + inodes_per_block; i++) {
4140 				if (i == inode_offset)
4141 					continue;
4142 				if (ext4_test_bit(i, bitmap_bh->b_data))
4143 					break;
4144 			}
4145 			brelse(bitmap_bh);
4146 			if (i == start + inodes_per_block) {
4147 				/* all other inodes are free, so skip I/O */
4148 				memset(bh->b_data, 0, bh->b_size);
4149 				set_buffer_uptodate(bh);
4150 				unlock_buffer(bh);
4151 				goto has_buffer;
4152 			}
4153 		}
4154 
4155 make_io:
4156 		/*
4157 		 * If we need to do any I/O, try to pre-readahead extra
4158 		 * blocks from the inode table.
4159 		 */
4160 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4161 			ext4_fsblk_t b, end, table;
4162 			unsigned num;
4163 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4164 
4165 			table = ext4_inode_table(sb, gdp);
4166 			/* s_inode_readahead_blks is always a power of 2 */
4167 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4168 			if (table > b)
4169 				b = table;
4170 			end = b + ra_blks;
4171 			num = EXT4_INODES_PER_GROUP(sb);
4172 			if (ext4_has_group_desc_csum(sb))
4173 				num -= ext4_itable_unused_count(sb, gdp);
4174 			table += num / inodes_per_block;
4175 			if (end > table)
4176 				end = table;
4177 			while (b <= end)
4178 				sb_breadahead(sb, b++);
4179 		}
4180 
4181 		/*
4182 		 * There are other valid inodes in the buffer, this inode
4183 		 * has in-inode xattrs, or we don't have this inode in memory.
4184 		 * Read the block from disk.
4185 		 */
4186 		trace_ext4_load_inode(inode);
4187 		get_bh(bh);
4188 		bh->b_end_io = end_buffer_read_sync;
4189 		submit_bh(READ | REQ_META | REQ_PRIO, bh);
4190 		wait_on_buffer(bh);
4191 		if (!buffer_uptodate(bh)) {
4192 			EXT4_ERROR_INODE_BLOCK(inode, block,
4193 					       "unable to read itable block");
4194 			brelse(bh);
4195 			return -EIO;
4196 		}
4197 	}
4198 has_buffer:
4199 	iloc->bh = bh;
4200 	return 0;
4201 }
4202 
4203 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4204 {
4205 	/* We have all inode data except xattrs in memory here. */
4206 	return __ext4_get_inode_loc(inode, iloc,
4207 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4208 }
4209 
4210 void ext4_set_inode_flags(struct inode *inode)
4211 {
4212 	unsigned int flags = EXT4_I(inode)->i_flags;
4213 	unsigned int new_fl = 0;
4214 
4215 	if (flags & EXT4_SYNC_FL)
4216 		new_fl |= S_SYNC;
4217 	if (flags & EXT4_APPEND_FL)
4218 		new_fl |= S_APPEND;
4219 	if (flags & EXT4_IMMUTABLE_FL)
4220 		new_fl |= S_IMMUTABLE;
4221 	if (flags & EXT4_NOATIME_FL)
4222 		new_fl |= S_NOATIME;
4223 	if (flags & EXT4_DIRSYNC_FL)
4224 		new_fl |= S_DIRSYNC;
4225 	if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode))
4226 		new_fl |= S_DAX;
4227 	inode_set_flags(inode, new_fl,
4228 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4229 }
4230 
4231 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4232 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4233 {
4234 	unsigned int vfs_fl;
4235 	unsigned long old_fl, new_fl;
4236 
4237 	do {
4238 		vfs_fl = ei->vfs_inode.i_flags;
4239 		old_fl = ei->i_flags;
4240 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4241 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4242 				EXT4_DIRSYNC_FL);
4243 		if (vfs_fl & S_SYNC)
4244 			new_fl |= EXT4_SYNC_FL;
4245 		if (vfs_fl & S_APPEND)
4246 			new_fl |= EXT4_APPEND_FL;
4247 		if (vfs_fl & S_IMMUTABLE)
4248 			new_fl |= EXT4_IMMUTABLE_FL;
4249 		if (vfs_fl & S_NOATIME)
4250 			new_fl |= EXT4_NOATIME_FL;
4251 		if (vfs_fl & S_DIRSYNC)
4252 			new_fl |= EXT4_DIRSYNC_FL;
4253 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4254 }
4255 
4256 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4257 				  struct ext4_inode_info *ei)
4258 {
4259 	blkcnt_t i_blocks ;
4260 	struct inode *inode = &(ei->vfs_inode);
4261 	struct super_block *sb = inode->i_sb;
4262 
4263 	if (ext4_has_feature_huge_file(sb)) {
4264 		/* we are using combined 48 bit field */
4265 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4266 					le32_to_cpu(raw_inode->i_blocks_lo);
4267 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4268 			/* i_blocks represent file system block size */
4269 			return i_blocks  << (inode->i_blkbits - 9);
4270 		} else {
4271 			return i_blocks;
4272 		}
4273 	} else {
4274 		return le32_to_cpu(raw_inode->i_blocks_lo);
4275 	}
4276 }
4277 
4278 static inline void ext4_iget_extra_inode(struct inode *inode,
4279 					 struct ext4_inode *raw_inode,
4280 					 struct ext4_inode_info *ei)
4281 {
4282 	__le32 *magic = (void *)raw_inode +
4283 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4284 	if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4285 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4286 		ext4_find_inline_data_nolock(inode);
4287 	} else
4288 		EXT4_I(inode)->i_inline_off = 0;
4289 }
4290 
4291 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4292 {
4293 	if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, EXT4_FEATURE_RO_COMPAT_PROJECT))
4294 		return -EOPNOTSUPP;
4295 	*projid = EXT4_I(inode)->i_projid;
4296 	return 0;
4297 }
4298 
4299 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4300 {
4301 	struct ext4_iloc iloc;
4302 	struct ext4_inode *raw_inode;
4303 	struct ext4_inode_info *ei;
4304 	struct inode *inode;
4305 	journal_t *journal = EXT4_SB(sb)->s_journal;
4306 	long ret;
4307 	int block;
4308 	uid_t i_uid;
4309 	gid_t i_gid;
4310 	projid_t i_projid;
4311 
4312 	inode = iget_locked(sb, ino);
4313 	if (!inode)
4314 		return ERR_PTR(-ENOMEM);
4315 	if (!(inode->i_state & I_NEW))
4316 		return inode;
4317 
4318 	ei = EXT4_I(inode);
4319 	iloc.bh = NULL;
4320 
4321 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4322 	if (ret < 0)
4323 		goto bad_inode;
4324 	raw_inode = ext4_raw_inode(&iloc);
4325 
4326 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4327 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4328 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4329 		    EXT4_INODE_SIZE(inode->i_sb)) {
4330 			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4331 				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4332 				EXT4_INODE_SIZE(inode->i_sb));
4333 			ret = -EFSCORRUPTED;
4334 			goto bad_inode;
4335 		}
4336 	} else
4337 		ei->i_extra_isize = 0;
4338 
4339 	/* Precompute checksum seed for inode metadata */
4340 	if (ext4_has_metadata_csum(sb)) {
4341 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4342 		__u32 csum;
4343 		__le32 inum = cpu_to_le32(inode->i_ino);
4344 		__le32 gen = raw_inode->i_generation;
4345 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4346 				   sizeof(inum));
4347 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4348 					      sizeof(gen));
4349 	}
4350 
4351 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4352 		EXT4_ERROR_INODE(inode, "checksum invalid");
4353 		ret = -EFSBADCRC;
4354 		goto bad_inode;
4355 	}
4356 
4357 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4358 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4359 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4360 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_PROJECT) &&
4361 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4362 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4363 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4364 	else
4365 		i_projid = EXT4_DEF_PROJID;
4366 
4367 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4368 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4369 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4370 	}
4371 	i_uid_write(inode, i_uid);
4372 	i_gid_write(inode, i_gid);
4373 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4374 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4375 
4376 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4377 	ei->i_inline_off = 0;
4378 	ei->i_dir_start_lookup = 0;
4379 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4380 	/* We now have enough fields to check if the inode was active or not.
4381 	 * This is needed because nfsd might try to access dead inodes
4382 	 * the test is that same one that e2fsck uses
4383 	 * NeilBrown 1999oct15
4384 	 */
4385 	if (inode->i_nlink == 0) {
4386 		if ((inode->i_mode == 0 ||
4387 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4388 		    ino != EXT4_BOOT_LOADER_INO) {
4389 			/* this inode is deleted */
4390 			ret = -ESTALE;
4391 			goto bad_inode;
4392 		}
4393 		/* The only unlinked inodes we let through here have
4394 		 * valid i_mode and are being read by the orphan
4395 		 * recovery code: that's fine, we're about to complete
4396 		 * the process of deleting those.
4397 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4398 		 * not initialized on a new filesystem. */
4399 	}
4400 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4401 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4402 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4403 	if (ext4_has_feature_64bit(sb))
4404 		ei->i_file_acl |=
4405 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4406 	inode->i_size = ext4_isize(raw_inode);
4407 	ei->i_disksize = inode->i_size;
4408 #ifdef CONFIG_QUOTA
4409 	ei->i_reserved_quota = 0;
4410 #endif
4411 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4412 	ei->i_block_group = iloc.block_group;
4413 	ei->i_last_alloc_group = ~0;
4414 	/*
4415 	 * NOTE! The in-memory inode i_data array is in little-endian order
4416 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4417 	 */
4418 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4419 		ei->i_data[block] = raw_inode->i_block[block];
4420 	INIT_LIST_HEAD(&ei->i_orphan);
4421 
4422 	/*
4423 	 * Set transaction id's of transactions that have to be committed
4424 	 * to finish f[data]sync. We set them to currently running transaction
4425 	 * as we cannot be sure that the inode or some of its metadata isn't
4426 	 * part of the transaction - the inode could have been reclaimed and
4427 	 * now it is reread from disk.
4428 	 */
4429 	if (journal) {
4430 		transaction_t *transaction;
4431 		tid_t tid;
4432 
4433 		read_lock(&journal->j_state_lock);
4434 		if (journal->j_running_transaction)
4435 			transaction = journal->j_running_transaction;
4436 		else
4437 			transaction = journal->j_committing_transaction;
4438 		if (transaction)
4439 			tid = transaction->t_tid;
4440 		else
4441 			tid = journal->j_commit_sequence;
4442 		read_unlock(&journal->j_state_lock);
4443 		ei->i_sync_tid = tid;
4444 		ei->i_datasync_tid = tid;
4445 	}
4446 
4447 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4448 		if (ei->i_extra_isize == 0) {
4449 			/* The extra space is currently unused. Use it. */
4450 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4451 					    EXT4_GOOD_OLD_INODE_SIZE;
4452 		} else {
4453 			ext4_iget_extra_inode(inode, raw_inode, ei);
4454 		}
4455 	}
4456 
4457 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4458 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4459 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4460 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4461 
4462 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4463 		inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4464 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4465 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4466 				inode->i_version |=
4467 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4468 		}
4469 	}
4470 
4471 	ret = 0;
4472 	if (ei->i_file_acl &&
4473 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4474 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4475 				 ei->i_file_acl);
4476 		ret = -EFSCORRUPTED;
4477 		goto bad_inode;
4478 	} else if (!ext4_has_inline_data(inode)) {
4479 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4480 			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4481 			    (S_ISLNK(inode->i_mode) &&
4482 			     !ext4_inode_is_fast_symlink(inode))))
4483 				/* Validate extent which is part of inode */
4484 				ret = ext4_ext_check_inode(inode);
4485 		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4486 			   (S_ISLNK(inode->i_mode) &&
4487 			    !ext4_inode_is_fast_symlink(inode))) {
4488 			/* Validate block references which are part of inode */
4489 			ret = ext4_ind_check_inode(inode);
4490 		}
4491 	}
4492 	if (ret)
4493 		goto bad_inode;
4494 
4495 	if (S_ISREG(inode->i_mode)) {
4496 		inode->i_op = &ext4_file_inode_operations;
4497 		inode->i_fop = &ext4_file_operations;
4498 		ext4_set_aops(inode);
4499 	} else if (S_ISDIR(inode->i_mode)) {
4500 		inode->i_op = &ext4_dir_inode_operations;
4501 		inode->i_fop = &ext4_dir_operations;
4502 	} else if (S_ISLNK(inode->i_mode)) {
4503 		if (ext4_encrypted_inode(inode)) {
4504 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4505 			ext4_set_aops(inode);
4506 		} else if (ext4_inode_is_fast_symlink(inode)) {
4507 			inode->i_link = (char *)ei->i_data;
4508 			inode->i_op = &ext4_fast_symlink_inode_operations;
4509 			nd_terminate_link(ei->i_data, inode->i_size,
4510 				sizeof(ei->i_data) - 1);
4511 		} else {
4512 			inode->i_op = &ext4_symlink_inode_operations;
4513 			ext4_set_aops(inode);
4514 		}
4515 		inode_nohighmem(inode);
4516 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4517 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4518 		inode->i_op = &ext4_special_inode_operations;
4519 		if (raw_inode->i_block[0])
4520 			init_special_inode(inode, inode->i_mode,
4521 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4522 		else
4523 			init_special_inode(inode, inode->i_mode,
4524 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4525 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4526 		make_bad_inode(inode);
4527 	} else {
4528 		ret = -EFSCORRUPTED;
4529 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4530 		goto bad_inode;
4531 	}
4532 	brelse(iloc.bh);
4533 	ext4_set_inode_flags(inode);
4534 	unlock_new_inode(inode);
4535 	return inode;
4536 
4537 bad_inode:
4538 	brelse(iloc.bh);
4539 	iget_failed(inode);
4540 	return ERR_PTR(ret);
4541 }
4542 
4543 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4544 {
4545 	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4546 		return ERR_PTR(-EFSCORRUPTED);
4547 	return ext4_iget(sb, ino);
4548 }
4549 
4550 static int ext4_inode_blocks_set(handle_t *handle,
4551 				struct ext4_inode *raw_inode,
4552 				struct ext4_inode_info *ei)
4553 {
4554 	struct inode *inode = &(ei->vfs_inode);
4555 	u64 i_blocks = inode->i_blocks;
4556 	struct super_block *sb = inode->i_sb;
4557 
4558 	if (i_blocks <= ~0U) {
4559 		/*
4560 		 * i_blocks can be represented in a 32 bit variable
4561 		 * as multiple of 512 bytes
4562 		 */
4563 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4564 		raw_inode->i_blocks_high = 0;
4565 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4566 		return 0;
4567 	}
4568 	if (!ext4_has_feature_huge_file(sb))
4569 		return -EFBIG;
4570 
4571 	if (i_blocks <= 0xffffffffffffULL) {
4572 		/*
4573 		 * i_blocks can be represented in a 48 bit variable
4574 		 * as multiple of 512 bytes
4575 		 */
4576 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4577 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4578 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4579 	} else {
4580 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4581 		/* i_block is stored in file system block size */
4582 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4583 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4584 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4585 	}
4586 	return 0;
4587 }
4588 
4589 struct other_inode {
4590 	unsigned long		orig_ino;
4591 	struct ext4_inode	*raw_inode;
4592 };
4593 
4594 static int other_inode_match(struct inode * inode, unsigned long ino,
4595 			     void *data)
4596 {
4597 	struct other_inode *oi = (struct other_inode *) data;
4598 
4599 	if ((inode->i_ino != ino) ||
4600 	    (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4601 			       I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4602 	    ((inode->i_state & I_DIRTY_TIME) == 0))
4603 		return 0;
4604 	spin_lock(&inode->i_lock);
4605 	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4606 				I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4607 	    (inode->i_state & I_DIRTY_TIME)) {
4608 		struct ext4_inode_info	*ei = EXT4_I(inode);
4609 
4610 		inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4611 		spin_unlock(&inode->i_lock);
4612 
4613 		spin_lock(&ei->i_raw_lock);
4614 		EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4615 		EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4616 		EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4617 		ext4_inode_csum_set(inode, oi->raw_inode, ei);
4618 		spin_unlock(&ei->i_raw_lock);
4619 		trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4620 		return -1;
4621 	}
4622 	spin_unlock(&inode->i_lock);
4623 	return -1;
4624 }
4625 
4626 /*
4627  * Opportunistically update the other time fields for other inodes in
4628  * the same inode table block.
4629  */
4630 static void ext4_update_other_inodes_time(struct super_block *sb,
4631 					  unsigned long orig_ino, char *buf)
4632 {
4633 	struct other_inode oi;
4634 	unsigned long ino;
4635 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4636 	int inode_size = EXT4_INODE_SIZE(sb);
4637 
4638 	oi.orig_ino = orig_ino;
4639 	/*
4640 	 * Calculate the first inode in the inode table block.  Inode
4641 	 * numbers are one-based.  That is, the first inode in a block
4642 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4643 	 */
4644 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4645 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4646 		if (ino == orig_ino)
4647 			continue;
4648 		oi.raw_inode = (struct ext4_inode *) buf;
4649 		(void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4650 	}
4651 }
4652 
4653 /*
4654  * Post the struct inode info into an on-disk inode location in the
4655  * buffer-cache.  This gobbles the caller's reference to the
4656  * buffer_head in the inode location struct.
4657  *
4658  * The caller must have write access to iloc->bh.
4659  */
4660 static int ext4_do_update_inode(handle_t *handle,
4661 				struct inode *inode,
4662 				struct ext4_iloc *iloc)
4663 {
4664 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4665 	struct ext4_inode_info *ei = EXT4_I(inode);
4666 	struct buffer_head *bh = iloc->bh;
4667 	struct super_block *sb = inode->i_sb;
4668 	int err = 0, rc, block;
4669 	int need_datasync = 0, set_large_file = 0;
4670 	uid_t i_uid;
4671 	gid_t i_gid;
4672 	projid_t i_projid;
4673 
4674 	spin_lock(&ei->i_raw_lock);
4675 
4676 	/* For fields not tracked in the in-memory inode,
4677 	 * initialise them to zero for new inodes. */
4678 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4679 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4680 
4681 	ext4_get_inode_flags(ei);
4682 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4683 	i_uid = i_uid_read(inode);
4684 	i_gid = i_gid_read(inode);
4685 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4686 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4687 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4688 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4689 /*
4690  * Fix up interoperability with old kernels. Otherwise, old inodes get
4691  * re-used with the upper 16 bits of the uid/gid intact
4692  */
4693 		if (!ei->i_dtime) {
4694 			raw_inode->i_uid_high =
4695 				cpu_to_le16(high_16_bits(i_uid));
4696 			raw_inode->i_gid_high =
4697 				cpu_to_le16(high_16_bits(i_gid));
4698 		} else {
4699 			raw_inode->i_uid_high = 0;
4700 			raw_inode->i_gid_high = 0;
4701 		}
4702 	} else {
4703 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4704 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4705 		raw_inode->i_uid_high = 0;
4706 		raw_inode->i_gid_high = 0;
4707 	}
4708 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4709 
4710 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4711 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4712 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4713 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4714 
4715 	err = ext4_inode_blocks_set(handle, raw_inode, ei);
4716 	if (err) {
4717 		spin_unlock(&ei->i_raw_lock);
4718 		goto out_brelse;
4719 	}
4720 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4721 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4722 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4723 		raw_inode->i_file_acl_high =
4724 			cpu_to_le16(ei->i_file_acl >> 32);
4725 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4726 	if (ei->i_disksize != ext4_isize(raw_inode)) {
4727 		ext4_isize_set(raw_inode, ei->i_disksize);
4728 		need_datasync = 1;
4729 	}
4730 	if (ei->i_disksize > 0x7fffffffULL) {
4731 		if (!ext4_has_feature_large_file(sb) ||
4732 				EXT4_SB(sb)->s_es->s_rev_level ==
4733 		    cpu_to_le32(EXT4_GOOD_OLD_REV))
4734 			set_large_file = 1;
4735 	}
4736 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4737 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4738 		if (old_valid_dev(inode->i_rdev)) {
4739 			raw_inode->i_block[0] =
4740 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4741 			raw_inode->i_block[1] = 0;
4742 		} else {
4743 			raw_inode->i_block[0] = 0;
4744 			raw_inode->i_block[1] =
4745 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4746 			raw_inode->i_block[2] = 0;
4747 		}
4748 	} else if (!ext4_has_inline_data(inode)) {
4749 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4750 			raw_inode->i_block[block] = ei->i_data[block];
4751 	}
4752 
4753 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4754 		raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4755 		if (ei->i_extra_isize) {
4756 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4757 				raw_inode->i_version_hi =
4758 					cpu_to_le32(inode->i_version >> 32);
4759 			raw_inode->i_extra_isize =
4760 				cpu_to_le16(ei->i_extra_isize);
4761 		}
4762 	}
4763 
4764 	BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
4765 			EXT4_FEATURE_RO_COMPAT_PROJECT) &&
4766 	       i_projid != EXT4_DEF_PROJID);
4767 
4768 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4769 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4770 		raw_inode->i_projid = cpu_to_le32(i_projid);
4771 
4772 	ext4_inode_csum_set(inode, raw_inode, ei);
4773 	spin_unlock(&ei->i_raw_lock);
4774 	if (inode->i_sb->s_flags & MS_LAZYTIME)
4775 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4776 					      bh->b_data);
4777 
4778 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4779 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4780 	if (!err)
4781 		err = rc;
4782 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4783 	if (set_large_file) {
4784 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4785 		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4786 		if (err)
4787 			goto out_brelse;
4788 		ext4_update_dynamic_rev(sb);
4789 		ext4_set_feature_large_file(sb);
4790 		ext4_handle_sync(handle);
4791 		err = ext4_handle_dirty_super(handle, sb);
4792 	}
4793 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4794 out_brelse:
4795 	brelse(bh);
4796 	ext4_std_error(inode->i_sb, err);
4797 	return err;
4798 }
4799 
4800 /*
4801  * ext4_write_inode()
4802  *
4803  * We are called from a few places:
4804  *
4805  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4806  *   Here, there will be no transaction running. We wait for any running
4807  *   transaction to commit.
4808  *
4809  * - Within flush work (sys_sync(), kupdate and such).
4810  *   We wait on commit, if told to.
4811  *
4812  * - Within iput_final() -> write_inode_now()
4813  *   We wait on commit, if told to.
4814  *
4815  * In all cases it is actually safe for us to return without doing anything,
4816  * because the inode has been copied into a raw inode buffer in
4817  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4818  * writeback.
4819  *
4820  * Note that we are absolutely dependent upon all inode dirtiers doing the
4821  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4822  * which we are interested.
4823  *
4824  * It would be a bug for them to not do this.  The code:
4825  *
4826  *	mark_inode_dirty(inode)
4827  *	stuff();
4828  *	inode->i_size = expr;
4829  *
4830  * is in error because write_inode() could occur while `stuff()' is running,
4831  * and the new i_size will be lost.  Plus the inode will no longer be on the
4832  * superblock's dirty inode list.
4833  */
4834 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4835 {
4836 	int err;
4837 
4838 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4839 		return 0;
4840 
4841 	if (EXT4_SB(inode->i_sb)->s_journal) {
4842 		if (ext4_journal_current_handle()) {
4843 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4844 			dump_stack();
4845 			return -EIO;
4846 		}
4847 
4848 		/*
4849 		 * No need to force transaction in WB_SYNC_NONE mode. Also
4850 		 * ext4_sync_fs() will force the commit after everything is
4851 		 * written.
4852 		 */
4853 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4854 			return 0;
4855 
4856 		err = ext4_force_commit(inode->i_sb);
4857 	} else {
4858 		struct ext4_iloc iloc;
4859 
4860 		err = __ext4_get_inode_loc(inode, &iloc, 0);
4861 		if (err)
4862 			return err;
4863 		/*
4864 		 * sync(2) will flush the whole buffer cache. No need to do
4865 		 * it here separately for each inode.
4866 		 */
4867 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4868 			sync_dirty_buffer(iloc.bh);
4869 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4870 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4871 					 "IO error syncing inode");
4872 			err = -EIO;
4873 		}
4874 		brelse(iloc.bh);
4875 	}
4876 	return err;
4877 }
4878 
4879 /*
4880  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4881  * buffers that are attached to a page stradding i_size and are undergoing
4882  * commit. In that case we have to wait for commit to finish and try again.
4883  */
4884 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4885 {
4886 	struct page *page;
4887 	unsigned offset;
4888 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4889 	tid_t commit_tid = 0;
4890 	int ret;
4891 
4892 	offset = inode->i_size & (PAGE_SIZE - 1);
4893 	/*
4894 	 * All buffers in the last page remain valid? Then there's nothing to
4895 	 * do. We do the check mainly to optimize the common PAGE_SIZE ==
4896 	 * blocksize case
4897 	 */
4898 	if (offset > PAGE_SIZE - (1 << inode->i_blkbits))
4899 		return;
4900 	while (1) {
4901 		page = find_lock_page(inode->i_mapping,
4902 				      inode->i_size >> PAGE_SHIFT);
4903 		if (!page)
4904 			return;
4905 		ret = __ext4_journalled_invalidatepage(page, offset,
4906 						PAGE_SIZE - offset);
4907 		unlock_page(page);
4908 		put_page(page);
4909 		if (ret != -EBUSY)
4910 			return;
4911 		commit_tid = 0;
4912 		read_lock(&journal->j_state_lock);
4913 		if (journal->j_committing_transaction)
4914 			commit_tid = journal->j_committing_transaction->t_tid;
4915 		read_unlock(&journal->j_state_lock);
4916 		if (commit_tid)
4917 			jbd2_log_wait_commit(journal, commit_tid);
4918 	}
4919 }
4920 
4921 /*
4922  * ext4_setattr()
4923  *
4924  * Called from notify_change.
4925  *
4926  * We want to trap VFS attempts to truncate the file as soon as
4927  * possible.  In particular, we want to make sure that when the VFS
4928  * shrinks i_size, we put the inode on the orphan list and modify
4929  * i_disksize immediately, so that during the subsequent flushing of
4930  * dirty pages and freeing of disk blocks, we can guarantee that any
4931  * commit will leave the blocks being flushed in an unused state on
4932  * disk.  (On recovery, the inode will get truncated and the blocks will
4933  * be freed, so we have a strong guarantee that no future commit will
4934  * leave these blocks visible to the user.)
4935  *
4936  * Another thing we have to assure is that if we are in ordered mode
4937  * and inode is still attached to the committing transaction, we must
4938  * we start writeout of all the dirty pages which are being truncated.
4939  * This way we are sure that all the data written in the previous
4940  * transaction are already on disk (truncate waits for pages under
4941  * writeback).
4942  *
4943  * Called with inode->i_mutex down.
4944  */
4945 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4946 {
4947 	struct inode *inode = d_inode(dentry);
4948 	int error, rc = 0;
4949 	int orphan = 0;
4950 	const unsigned int ia_valid = attr->ia_valid;
4951 
4952 	error = inode_change_ok(inode, attr);
4953 	if (error)
4954 		return error;
4955 
4956 	if (is_quota_modification(inode, attr)) {
4957 		error = dquot_initialize(inode);
4958 		if (error)
4959 			return error;
4960 	}
4961 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4962 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4963 		handle_t *handle;
4964 
4965 		/* (user+group)*(old+new) structure, inode write (sb,
4966 		 * inode block, ? - but truncate inode update has it) */
4967 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4968 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4969 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4970 		if (IS_ERR(handle)) {
4971 			error = PTR_ERR(handle);
4972 			goto err_out;
4973 		}
4974 		error = dquot_transfer(inode, attr);
4975 		if (error) {
4976 			ext4_journal_stop(handle);
4977 			return error;
4978 		}
4979 		/* Update corresponding info in inode so that everything is in
4980 		 * one transaction */
4981 		if (attr->ia_valid & ATTR_UID)
4982 			inode->i_uid = attr->ia_uid;
4983 		if (attr->ia_valid & ATTR_GID)
4984 			inode->i_gid = attr->ia_gid;
4985 		error = ext4_mark_inode_dirty(handle, inode);
4986 		ext4_journal_stop(handle);
4987 	}
4988 
4989 	if (attr->ia_valid & ATTR_SIZE) {
4990 		handle_t *handle;
4991 		loff_t oldsize = inode->i_size;
4992 		int shrink = (attr->ia_size <= inode->i_size);
4993 
4994 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4995 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4996 
4997 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
4998 				return -EFBIG;
4999 		}
5000 		if (!S_ISREG(inode->i_mode))
5001 			return -EINVAL;
5002 
5003 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5004 			inode_inc_iversion(inode);
5005 
5006 		if (ext4_should_order_data(inode) &&
5007 		    (attr->ia_size < inode->i_size)) {
5008 			error = ext4_begin_ordered_truncate(inode,
5009 							    attr->ia_size);
5010 			if (error)
5011 				goto err_out;
5012 		}
5013 		if (attr->ia_size != inode->i_size) {
5014 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5015 			if (IS_ERR(handle)) {
5016 				error = PTR_ERR(handle);
5017 				goto err_out;
5018 			}
5019 			if (ext4_handle_valid(handle) && shrink) {
5020 				error = ext4_orphan_add(handle, inode);
5021 				orphan = 1;
5022 			}
5023 			/*
5024 			 * Update c/mtime on truncate up, ext4_truncate() will
5025 			 * update c/mtime in shrink case below
5026 			 */
5027 			if (!shrink) {
5028 				inode->i_mtime = ext4_current_time(inode);
5029 				inode->i_ctime = inode->i_mtime;
5030 			}
5031 			down_write(&EXT4_I(inode)->i_data_sem);
5032 			EXT4_I(inode)->i_disksize = attr->ia_size;
5033 			rc = ext4_mark_inode_dirty(handle, inode);
5034 			if (!error)
5035 				error = rc;
5036 			/*
5037 			 * We have to update i_size under i_data_sem together
5038 			 * with i_disksize to avoid races with writeback code
5039 			 * running ext4_wb_update_i_disksize().
5040 			 */
5041 			if (!error)
5042 				i_size_write(inode, attr->ia_size);
5043 			up_write(&EXT4_I(inode)->i_data_sem);
5044 			ext4_journal_stop(handle);
5045 			if (error) {
5046 				if (orphan)
5047 					ext4_orphan_del(NULL, inode);
5048 				goto err_out;
5049 			}
5050 		}
5051 		if (!shrink)
5052 			pagecache_isize_extended(inode, oldsize, inode->i_size);
5053 
5054 		/*
5055 		 * Blocks are going to be removed from the inode. Wait
5056 		 * for dio in flight.  Temporarily disable
5057 		 * dioread_nolock to prevent livelock.
5058 		 */
5059 		if (orphan) {
5060 			if (!ext4_should_journal_data(inode)) {
5061 				ext4_inode_block_unlocked_dio(inode);
5062 				inode_dio_wait(inode);
5063 				ext4_inode_resume_unlocked_dio(inode);
5064 			} else
5065 				ext4_wait_for_tail_page_commit(inode);
5066 		}
5067 		down_write(&EXT4_I(inode)->i_mmap_sem);
5068 		/*
5069 		 * Truncate pagecache after we've waited for commit
5070 		 * in data=journal mode to make pages freeable.
5071 		 */
5072 		truncate_pagecache(inode, inode->i_size);
5073 		if (shrink)
5074 			ext4_truncate(inode);
5075 		up_write(&EXT4_I(inode)->i_mmap_sem);
5076 	}
5077 
5078 	if (!rc) {
5079 		setattr_copy(inode, attr);
5080 		mark_inode_dirty(inode);
5081 	}
5082 
5083 	/*
5084 	 * If the call to ext4_truncate failed to get a transaction handle at
5085 	 * all, we need to clean up the in-core orphan list manually.
5086 	 */
5087 	if (orphan && inode->i_nlink)
5088 		ext4_orphan_del(NULL, inode);
5089 
5090 	if (!rc && (ia_valid & ATTR_MODE))
5091 		rc = posix_acl_chmod(inode, inode->i_mode);
5092 
5093 err_out:
5094 	ext4_std_error(inode->i_sb, error);
5095 	if (!error)
5096 		error = rc;
5097 	return error;
5098 }
5099 
5100 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5101 		 struct kstat *stat)
5102 {
5103 	struct inode *inode;
5104 	unsigned long long delalloc_blocks;
5105 
5106 	inode = d_inode(dentry);
5107 	generic_fillattr(inode, stat);
5108 
5109 	/*
5110 	 * If there is inline data in the inode, the inode will normally not
5111 	 * have data blocks allocated (it may have an external xattr block).
5112 	 * Report at least one sector for such files, so tools like tar, rsync,
5113 	 * others doen't incorrectly think the file is completely sparse.
5114 	 */
5115 	if (unlikely(ext4_has_inline_data(inode)))
5116 		stat->blocks += (stat->size + 511) >> 9;
5117 
5118 	/*
5119 	 * We can't update i_blocks if the block allocation is delayed
5120 	 * otherwise in the case of system crash before the real block
5121 	 * allocation is done, we will have i_blocks inconsistent with
5122 	 * on-disk file blocks.
5123 	 * We always keep i_blocks updated together with real
5124 	 * allocation. But to not confuse with user, stat
5125 	 * will return the blocks that include the delayed allocation
5126 	 * blocks for this file.
5127 	 */
5128 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5129 				   EXT4_I(inode)->i_reserved_data_blocks);
5130 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5131 	return 0;
5132 }
5133 
5134 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5135 				   int pextents)
5136 {
5137 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5138 		return ext4_ind_trans_blocks(inode, lblocks);
5139 	return ext4_ext_index_trans_blocks(inode, pextents);
5140 }
5141 
5142 /*
5143  * Account for index blocks, block groups bitmaps and block group
5144  * descriptor blocks if modify datablocks and index blocks
5145  * worse case, the indexs blocks spread over different block groups
5146  *
5147  * If datablocks are discontiguous, they are possible to spread over
5148  * different block groups too. If they are contiguous, with flexbg,
5149  * they could still across block group boundary.
5150  *
5151  * Also account for superblock, inode, quota and xattr blocks
5152  */
5153 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5154 				  int pextents)
5155 {
5156 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5157 	int gdpblocks;
5158 	int idxblocks;
5159 	int ret = 0;
5160 
5161 	/*
5162 	 * How many index blocks need to touch to map @lblocks logical blocks
5163 	 * to @pextents physical extents?
5164 	 */
5165 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5166 
5167 	ret = idxblocks;
5168 
5169 	/*
5170 	 * Now let's see how many group bitmaps and group descriptors need
5171 	 * to account
5172 	 */
5173 	groups = idxblocks + pextents;
5174 	gdpblocks = groups;
5175 	if (groups > ngroups)
5176 		groups = ngroups;
5177 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5178 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5179 
5180 	/* bitmaps and block group descriptor blocks */
5181 	ret += groups + gdpblocks;
5182 
5183 	/* Blocks for super block, inode, quota and xattr blocks */
5184 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5185 
5186 	return ret;
5187 }
5188 
5189 /*
5190  * Calculate the total number of credits to reserve to fit
5191  * the modification of a single pages into a single transaction,
5192  * which may include multiple chunks of block allocations.
5193  *
5194  * This could be called via ext4_write_begin()
5195  *
5196  * We need to consider the worse case, when
5197  * one new block per extent.
5198  */
5199 int ext4_writepage_trans_blocks(struct inode *inode)
5200 {
5201 	int bpp = ext4_journal_blocks_per_page(inode);
5202 	int ret;
5203 
5204 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5205 
5206 	/* Account for data blocks for journalled mode */
5207 	if (ext4_should_journal_data(inode))
5208 		ret += bpp;
5209 	return ret;
5210 }
5211 
5212 /*
5213  * Calculate the journal credits for a chunk of data modification.
5214  *
5215  * This is called from DIO, fallocate or whoever calling
5216  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5217  *
5218  * journal buffers for data blocks are not included here, as DIO
5219  * and fallocate do no need to journal data buffers.
5220  */
5221 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5222 {
5223 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5224 }
5225 
5226 /*
5227  * The caller must have previously called ext4_reserve_inode_write().
5228  * Give this, we know that the caller already has write access to iloc->bh.
5229  */
5230 int ext4_mark_iloc_dirty(handle_t *handle,
5231 			 struct inode *inode, struct ext4_iloc *iloc)
5232 {
5233 	int err = 0;
5234 
5235 	if (IS_I_VERSION(inode))
5236 		inode_inc_iversion(inode);
5237 
5238 	/* the do_update_inode consumes one bh->b_count */
5239 	get_bh(iloc->bh);
5240 
5241 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5242 	err = ext4_do_update_inode(handle, inode, iloc);
5243 	put_bh(iloc->bh);
5244 	return err;
5245 }
5246 
5247 /*
5248  * On success, We end up with an outstanding reference count against
5249  * iloc->bh.  This _must_ be cleaned up later.
5250  */
5251 
5252 int
5253 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5254 			 struct ext4_iloc *iloc)
5255 {
5256 	int err;
5257 
5258 	err = ext4_get_inode_loc(inode, iloc);
5259 	if (!err) {
5260 		BUFFER_TRACE(iloc->bh, "get_write_access");
5261 		err = ext4_journal_get_write_access(handle, iloc->bh);
5262 		if (err) {
5263 			brelse(iloc->bh);
5264 			iloc->bh = NULL;
5265 		}
5266 	}
5267 	ext4_std_error(inode->i_sb, err);
5268 	return err;
5269 }
5270 
5271 /*
5272  * Expand an inode by new_extra_isize bytes.
5273  * Returns 0 on success or negative error number on failure.
5274  */
5275 static int ext4_expand_extra_isize(struct inode *inode,
5276 				   unsigned int new_extra_isize,
5277 				   struct ext4_iloc iloc,
5278 				   handle_t *handle)
5279 {
5280 	struct ext4_inode *raw_inode;
5281 	struct ext4_xattr_ibody_header *header;
5282 
5283 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5284 		return 0;
5285 
5286 	raw_inode = ext4_raw_inode(&iloc);
5287 
5288 	header = IHDR(inode, raw_inode);
5289 
5290 	/* No extended attributes present */
5291 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5292 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5293 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5294 			new_extra_isize);
5295 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5296 		return 0;
5297 	}
5298 
5299 	/* try to expand with EAs present */
5300 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5301 					  raw_inode, handle);
5302 }
5303 
5304 /*
5305  * What we do here is to mark the in-core inode as clean with respect to inode
5306  * dirtiness (it may still be data-dirty).
5307  * This means that the in-core inode may be reaped by prune_icache
5308  * without having to perform any I/O.  This is a very good thing,
5309  * because *any* task may call prune_icache - even ones which
5310  * have a transaction open against a different journal.
5311  *
5312  * Is this cheating?  Not really.  Sure, we haven't written the
5313  * inode out, but prune_icache isn't a user-visible syncing function.
5314  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5315  * we start and wait on commits.
5316  */
5317 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5318 {
5319 	struct ext4_iloc iloc;
5320 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5321 	static unsigned int mnt_count;
5322 	int err, ret;
5323 
5324 	might_sleep();
5325 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5326 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5327 	if (err)
5328 		return err;
5329 	if (ext4_handle_valid(handle) &&
5330 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5331 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5332 		/*
5333 		 * We need extra buffer credits since we may write into EA block
5334 		 * with this same handle. If journal_extend fails, then it will
5335 		 * only result in a minor loss of functionality for that inode.
5336 		 * If this is felt to be critical, then e2fsck should be run to
5337 		 * force a large enough s_min_extra_isize.
5338 		 */
5339 		if ((jbd2_journal_extend(handle,
5340 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5341 			ret = ext4_expand_extra_isize(inode,
5342 						      sbi->s_want_extra_isize,
5343 						      iloc, handle);
5344 			if (ret) {
5345 				ext4_set_inode_state(inode,
5346 						     EXT4_STATE_NO_EXPAND);
5347 				if (mnt_count !=
5348 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5349 					ext4_warning(inode->i_sb,
5350 					"Unable to expand inode %lu. Delete"
5351 					" some EAs or run e2fsck.",
5352 					inode->i_ino);
5353 					mnt_count =
5354 					  le16_to_cpu(sbi->s_es->s_mnt_count);
5355 				}
5356 			}
5357 		}
5358 	}
5359 	return ext4_mark_iloc_dirty(handle, inode, &iloc);
5360 }
5361 
5362 /*
5363  * ext4_dirty_inode() is called from __mark_inode_dirty()
5364  *
5365  * We're really interested in the case where a file is being extended.
5366  * i_size has been changed by generic_commit_write() and we thus need
5367  * to include the updated inode in the current transaction.
5368  *
5369  * Also, dquot_alloc_block() will always dirty the inode when blocks
5370  * are allocated to the file.
5371  *
5372  * If the inode is marked synchronous, we don't honour that here - doing
5373  * so would cause a commit on atime updates, which we don't bother doing.
5374  * We handle synchronous inodes at the highest possible level.
5375  *
5376  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5377  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5378  * to copy into the on-disk inode structure are the timestamp files.
5379  */
5380 void ext4_dirty_inode(struct inode *inode, int flags)
5381 {
5382 	handle_t *handle;
5383 
5384 	if (flags == I_DIRTY_TIME)
5385 		return;
5386 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5387 	if (IS_ERR(handle))
5388 		goto out;
5389 
5390 	ext4_mark_inode_dirty(handle, inode);
5391 
5392 	ext4_journal_stop(handle);
5393 out:
5394 	return;
5395 }
5396 
5397 #if 0
5398 /*
5399  * Bind an inode's backing buffer_head into this transaction, to prevent
5400  * it from being flushed to disk early.  Unlike
5401  * ext4_reserve_inode_write, this leaves behind no bh reference and
5402  * returns no iloc structure, so the caller needs to repeat the iloc
5403  * lookup to mark the inode dirty later.
5404  */
5405 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5406 {
5407 	struct ext4_iloc iloc;
5408 
5409 	int err = 0;
5410 	if (handle) {
5411 		err = ext4_get_inode_loc(inode, &iloc);
5412 		if (!err) {
5413 			BUFFER_TRACE(iloc.bh, "get_write_access");
5414 			err = jbd2_journal_get_write_access(handle, iloc.bh);
5415 			if (!err)
5416 				err = ext4_handle_dirty_metadata(handle,
5417 								 NULL,
5418 								 iloc.bh);
5419 			brelse(iloc.bh);
5420 		}
5421 	}
5422 	ext4_std_error(inode->i_sb, err);
5423 	return err;
5424 }
5425 #endif
5426 
5427 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5428 {
5429 	journal_t *journal;
5430 	handle_t *handle;
5431 	int err;
5432 
5433 	/*
5434 	 * We have to be very careful here: changing a data block's
5435 	 * journaling status dynamically is dangerous.  If we write a
5436 	 * data block to the journal, change the status and then delete
5437 	 * that block, we risk forgetting to revoke the old log record
5438 	 * from the journal and so a subsequent replay can corrupt data.
5439 	 * So, first we make sure that the journal is empty and that
5440 	 * nobody is changing anything.
5441 	 */
5442 
5443 	journal = EXT4_JOURNAL(inode);
5444 	if (!journal)
5445 		return 0;
5446 	if (is_journal_aborted(journal))
5447 		return -EROFS;
5448 	/* We have to allocate physical blocks for delalloc blocks
5449 	 * before flushing journal. otherwise delalloc blocks can not
5450 	 * be allocated any more. even more truncate on delalloc blocks
5451 	 * could trigger BUG by flushing delalloc blocks in journal.
5452 	 * There is no delalloc block in non-journal data mode.
5453 	 */
5454 	if (val && test_opt(inode->i_sb, DELALLOC)) {
5455 		err = ext4_alloc_da_blocks(inode);
5456 		if (err < 0)
5457 			return err;
5458 	}
5459 
5460 	/* Wait for all existing dio workers */
5461 	ext4_inode_block_unlocked_dio(inode);
5462 	inode_dio_wait(inode);
5463 
5464 	jbd2_journal_lock_updates(journal);
5465 
5466 	/*
5467 	 * OK, there are no updates running now, and all cached data is
5468 	 * synced to disk.  We are now in a completely consistent state
5469 	 * which doesn't have anything in the journal, and we know that
5470 	 * no filesystem updates are running, so it is safe to modify
5471 	 * the inode's in-core data-journaling state flag now.
5472 	 */
5473 
5474 	if (val)
5475 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5476 	else {
5477 		err = jbd2_journal_flush(journal);
5478 		if (err < 0) {
5479 			jbd2_journal_unlock_updates(journal);
5480 			ext4_inode_resume_unlocked_dio(inode);
5481 			return err;
5482 		}
5483 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5484 	}
5485 	ext4_set_aops(inode);
5486 
5487 	jbd2_journal_unlock_updates(journal);
5488 	ext4_inode_resume_unlocked_dio(inode);
5489 
5490 	/* Finally we can mark the inode as dirty. */
5491 
5492 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5493 	if (IS_ERR(handle))
5494 		return PTR_ERR(handle);
5495 
5496 	err = ext4_mark_inode_dirty(handle, inode);
5497 	ext4_handle_sync(handle);
5498 	ext4_journal_stop(handle);
5499 	ext4_std_error(inode->i_sb, err);
5500 
5501 	return err;
5502 }
5503 
5504 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5505 {
5506 	return !buffer_mapped(bh);
5507 }
5508 
5509 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5510 {
5511 	struct page *page = vmf->page;
5512 	loff_t size;
5513 	unsigned long len;
5514 	int ret;
5515 	struct file *file = vma->vm_file;
5516 	struct inode *inode = file_inode(file);
5517 	struct address_space *mapping = inode->i_mapping;
5518 	handle_t *handle;
5519 	get_block_t *get_block;
5520 	int retries = 0;
5521 
5522 	sb_start_pagefault(inode->i_sb);
5523 	file_update_time(vma->vm_file);
5524 
5525 	down_read(&EXT4_I(inode)->i_mmap_sem);
5526 	/* Delalloc case is easy... */
5527 	if (test_opt(inode->i_sb, DELALLOC) &&
5528 	    !ext4_should_journal_data(inode) &&
5529 	    !ext4_nonda_switch(inode->i_sb)) {
5530 		do {
5531 			ret = block_page_mkwrite(vma, vmf,
5532 						   ext4_da_get_block_prep);
5533 		} while (ret == -ENOSPC &&
5534 		       ext4_should_retry_alloc(inode->i_sb, &retries));
5535 		goto out_ret;
5536 	}
5537 
5538 	lock_page(page);
5539 	size = i_size_read(inode);
5540 	/* Page got truncated from under us? */
5541 	if (page->mapping != mapping || page_offset(page) > size) {
5542 		unlock_page(page);
5543 		ret = VM_FAULT_NOPAGE;
5544 		goto out;
5545 	}
5546 
5547 	if (page->index == size >> PAGE_SHIFT)
5548 		len = size & ~PAGE_MASK;
5549 	else
5550 		len = PAGE_SIZE;
5551 	/*
5552 	 * Return if we have all the buffers mapped. This avoids the need to do
5553 	 * journal_start/journal_stop which can block and take a long time
5554 	 */
5555 	if (page_has_buffers(page)) {
5556 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5557 					    0, len, NULL,
5558 					    ext4_bh_unmapped)) {
5559 			/* Wait so that we don't change page under IO */
5560 			wait_for_stable_page(page);
5561 			ret = VM_FAULT_LOCKED;
5562 			goto out;
5563 		}
5564 	}
5565 	unlock_page(page);
5566 	/* OK, we need to fill the hole... */
5567 	if (ext4_should_dioread_nolock(inode))
5568 		get_block = ext4_get_block_unwritten;
5569 	else
5570 		get_block = ext4_get_block;
5571 retry_alloc:
5572 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5573 				    ext4_writepage_trans_blocks(inode));
5574 	if (IS_ERR(handle)) {
5575 		ret = VM_FAULT_SIGBUS;
5576 		goto out;
5577 	}
5578 	ret = block_page_mkwrite(vma, vmf, get_block);
5579 	if (!ret && ext4_should_journal_data(inode)) {
5580 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5581 			  PAGE_SIZE, NULL, do_journal_get_write_access)) {
5582 			unlock_page(page);
5583 			ret = VM_FAULT_SIGBUS;
5584 			ext4_journal_stop(handle);
5585 			goto out;
5586 		}
5587 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5588 	}
5589 	ext4_journal_stop(handle);
5590 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5591 		goto retry_alloc;
5592 out_ret:
5593 	ret = block_page_mkwrite_return(ret);
5594 out:
5595 	up_read(&EXT4_I(inode)->i_mmap_sem);
5596 	sb_end_pagefault(inode->i_sb);
5597 	return ret;
5598 }
5599 
5600 int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5601 {
5602 	struct inode *inode = file_inode(vma->vm_file);
5603 	int err;
5604 
5605 	down_read(&EXT4_I(inode)->i_mmap_sem);
5606 	err = filemap_fault(vma, vmf);
5607 	up_read(&EXT4_I(inode)->i_mmap_sem);
5608 
5609 	return err;
5610 }
5611 
5612 /*
5613  * Find the first extent at or after @lblk in an inode that is not a hole.
5614  * Search for @map_len blocks at most. The extent is returned in @result.
5615  *
5616  * The function returns 1 if we found an extent. The function returns 0 in
5617  * case there is no extent at or after @lblk and in that case also sets
5618  * @result->es_len to 0. In case of error, the error code is returned.
5619  */
5620 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
5621 			 unsigned int map_len, struct extent_status *result)
5622 {
5623 	struct ext4_map_blocks map;
5624 	struct extent_status es = {};
5625 	int ret;
5626 
5627 	map.m_lblk = lblk;
5628 	map.m_len = map_len;
5629 
5630 	/*
5631 	 * For non-extent based files this loop may iterate several times since
5632 	 * we do not determine full hole size.
5633 	 */
5634 	while (map.m_len > 0) {
5635 		ret = ext4_map_blocks(NULL, inode, &map, 0);
5636 		if (ret < 0)
5637 			return ret;
5638 		/* There's extent covering m_lblk? Just return it. */
5639 		if (ret > 0) {
5640 			int status;
5641 
5642 			ext4_es_store_pblock(result, map.m_pblk);
5643 			result->es_lblk = map.m_lblk;
5644 			result->es_len = map.m_len;
5645 			if (map.m_flags & EXT4_MAP_UNWRITTEN)
5646 				status = EXTENT_STATUS_UNWRITTEN;
5647 			else
5648 				status = EXTENT_STATUS_WRITTEN;
5649 			ext4_es_store_status(result, status);
5650 			return 1;
5651 		}
5652 		ext4_es_find_delayed_extent_range(inode, map.m_lblk,
5653 						  map.m_lblk + map.m_len - 1,
5654 						  &es);
5655 		/* Is delalloc data before next block in extent tree? */
5656 		if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
5657 			ext4_lblk_t offset = 0;
5658 
5659 			if (es.es_lblk < lblk)
5660 				offset = lblk - es.es_lblk;
5661 			result->es_lblk = es.es_lblk + offset;
5662 			ext4_es_store_pblock(result,
5663 					     ext4_es_pblock(&es) + offset);
5664 			result->es_len = es.es_len - offset;
5665 			ext4_es_store_status(result, ext4_es_status(&es));
5666 
5667 			return 1;
5668 		}
5669 		/* There's a hole at m_lblk, advance us after it */
5670 		map.m_lblk += map.m_len;
5671 		map_len -= map.m_len;
5672 		map.m_len = map_len;
5673 		cond_resched();
5674 	}
5675 	result->es_len = 0;
5676 	return 0;
5677 }
5678