xref: /openbmc/linux/fs/ext4/inode.c (revision 06d352f2)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *	(sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *	(jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24 
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
41 
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "ext4_extents.h"
46 
47 #include <trace/events/ext4.h>
48 
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50 
51 static inline int ext4_begin_ordered_truncate(struct inode *inode,
52 					      loff_t new_size)
53 {
54 	return jbd2_journal_begin_ordered_truncate(
55 					EXT4_SB(inode->i_sb)->s_journal,
56 					&EXT4_I(inode)->jinode,
57 					new_size);
58 }
59 
60 static void ext4_invalidatepage(struct page *page, unsigned long offset);
61 
62 /*
63  * Test whether an inode is a fast symlink.
64  */
65 static int ext4_inode_is_fast_symlink(struct inode *inode)
66 {
67 	int ea_blocks = EXT4_I(inode)->i_file_acl ?
68 		(inode->i_sb->s_blocksize >> 9) : 0;
69 
70 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
71 }
72 
73 /*
74  * Work out how many blocks we need to proceed with the next chunk of a
75  * truncate transaction.
76  */
77 static unsigned long blocks_for_truncate(struct inode *inode)
78 {
79 	ext4_lblk_t needed;
80 
81 	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
82 
83 	/* Give ourselves just enough room to cope with inodes in which
84 	 * i_blocks is corrupt: we've seen disk corruptions in the past
85 	 * which resulted in random data in an inode which looked enough
86 	 * like a regular file for ext4 to try to delete it.  Things
87 	 * will go a bit crazy if that happens, but at least we should
88 	 * try not to panic the whole kernel. */
89 	if (needed < 2)
90 		needed = 2;
91 
92 	/* But we need to bound the transaction so we don't overflow the
93 	 * journal. */
94 	if (needed > EXT4_MAX_TRANS_DATA)
95 		needed = EXT4_MAX_TRANS_DATA;
96 
97 	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
98 }
99 
100 /*
101  * Truncate transactions can be complex and absolutely huge.  So we need to
102  * be able to restart the transaction at a conventient checkpoint to make
103  * sure we don't overflow the journal.
104  *
105  * start_transaction gets us a new handle for a truncate transaction,
106  * and extend_transaction tries to extend the existing one a bit.  If
107  * extend fails, we need to propagate the failure up and restart the
108  * transaction in the top-level truncate loop. --sct
109  */
110 static handle_t *start_transaction(struct inode *inode)
111 {
112 	handle_t *result;
113 
114 	result = ext4_journal_start(inode, blocks_for_truncate(inode));
115 	if (!IS_ERR(result))
116 		return result;
117 
118 	ext4_std_error(inode->i_sb, PTR_ERR(result));
119 	return result;
120 }
121 
122 /*
123  * Try to extend this transaction for the purposes of truncation.
124  *
125  * Returns 0 if we managed to create more room.  If we can't create more
126  * room, and the transaction must be restarted we return 1.
127  */
128 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
129 {
130 	if (!ext4_handle_valid(handle))
131 		return 0;
132 	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
133 		return 0;
134 	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
135 		return 0;
136 	return 1;
137 }
138 
139 /*
140  * Restart the transaction associated with *handle.  This does a commit,
141  * so before we call here everything must be consistently dirtied against
142  * this transaction.
143  */
144 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
145 				 int nblocks)
146 {
147 	int ret;
148 
149 	/*
150 	 * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
151 	 * moment, get_block can be called only for blocks inside i_size since
152 	 * page cache has been already dropped and writes are blocked by
153 	 * i_mutex. So we can safely drop the i_data_sem here.
154 	 */
155 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
156 	jbd_debug(2, "restarting handle %p\n", handle);
157 	up_write(&EXT4_I(inode)->i_data_sem);
158 	ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
159 	down_write(&EXT4_I(inode)->i_data_sem);
160 	ext4_discard_preallocations(inode);
161 
162 	return ret;
163 }
164 
165 /*
166  * Called at the last iput() if i_nlink is zero.
167  */
168 void ext4_delete_inode(struct inode *inode)
169 {
170 	handle_t *handle;
171 	int err;
172 
173 	if (ext4_should_order_data(inode))
174 		ext4_begin_ordered_truncate(inode, 0);
175 	truncate_inode_pages(&inode->i_data, 0);
176 
177 	if (is_bad_inode(inode))
178 		goto no_delete;
179 
180 	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
181 	if (IS_ERR(handle)) {
182 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
183 		/*
184 		 * If we're going to skip the normal cleanup, we still need to
185 		 * make sure that the in-core orphan linked list is properly
186 		 * cleaned up.
187 		 */
188 		ext4_orphan_del(NULL, inode);
189 		goto no_delete;
190 	}
191 
192 	if (IS_SYNC(inode))
193 		ext4_handle_sync(handle);
194 	inode->i_size = 0;
195 	err = ext4_mark_inode_dirty(handle, inode);
196 	if (err) {
197 		ext4_warning(inode->i_sb, __func__,
198 			     "couldn't mark inode dirty (err %d)", err);
199 		goto stop_handle;
200 	}
201 	if (inode->i_blocks)
202 		ext4_truncate(inode);
203 
204 	/*
205 	 * ext4_ext_truncate() doesn't reserve any slop when it
206 	 * restarts journal transactions; therefore there may not be
207 	 * enough credits left in the handle to remove the inode from
208 	 * the orphan list and set the dtime field.
209 	 */
210 	if (!ext4_handle_has_enough_credits(handle, 3)) {
211 		err = ext4_journal_extend(handle, 3);
212 		if (err > 0)
213 			err = ext4_journal_restart(handle, 3);
214 		if (err != 0) {
215 			ext4_warning(inode->i_sb, __func__,
216 				     "couldn't extend journal (err %d)", err);
217 		stop_handle:
218 			ext4_journal_stop(handle);
219 			goto no_delete;
220 		}
221 	}
222 
223 	/*
224 	 * Kill off the orphan record which ext4_truncate created.
225 	 * AKPM: I think this can be inside the above `if'.
226 	 * Note that ext4_orphan_del() has to be able to cope with the
227 	 * deletion of a non-existent orphan - this is because we don't
228 	 * know if ext4_truncate() actually created an orphan record.
229 	 * (Well, we could do this if we need to, but heck - it works)
230 	 */
231 	ext4_orphan_del(handle, inode);
232 	EXT4_I(inode)->i_dtime	= get_seconds();
233 
234 	/*
235 	 * One subtle ordering requirement: if anything has gone wrong
236 	 * (transaction abort, IO errors, whatever), then we can still
237 	 * do these next steps (the fs will already have been marked as
238 	 * having errors), but we can't free the inode if the mark_dirty
239 	 * fails.
240 	 */
241 	if (ext4_mark_inode_dirty(handle, inode))
242 		/* If that failed, just do the required in-core inode clear. */
243 		clear_inode(inode);
244 	else
245 		ext4_free_inode(handle, inode);
246 	ext4_journal_stop(handle);
247 	return;
248 no_delete:
249 	clear_inode(inode);	/* We must guarantee clearing of inode... */
250 }
251 
252 typedef struct {
253 	__le32	*p;
254 	__le32	key;
255 	struct buffer_head *bh;
256 } Indirect;
257 
258 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
259 {
260 	p->key = *(p->p = v);
261 	p->bh = bh;
262 }
263 
264 /**
265  *	ext4_block_to_path - parse the block number into array of offsets
266  *	@inode: inode in question (we are only interested in its superblock)
267  *	@i_block: block number to be parsed
268  *	@offsets: array to store the offsets in
269  *	@boundary: set this non-zero if the referred-to block is likely to be
270  *	       followed (on disk) by an indirect block.
271  *
272  *	To store the locations of file's data ext4 uses a data structure common
273  *	for UNIX filesystems - tree of pointers anchored in the inode, with
274  *	data blocks at leaves and indirect blocks in intermediate nodes.
275  *	This function translates the block number into path in that tree -
276  *	return value is the path length and @offsets[n] is the offset of
277  *	pointer to (n+1)th node in the nth one. If @block is out of range
278  *	(negative or too large) warning is printed and zero returned.
279  *
280  *	Note: function doesn't find node addresses, so no IO is needed. All
281  *	we need to know is the capacity of indirect blocks (taken from the
282  *	inode->i_sb).
283  */
284 
285 /*
286  * Portability note: the last comparison (check that we fit into triple
287  * indirect block) is spelled differently, because otherwise on an
288  * architecture with 32-bit longs and 8Kb pages we might get into trouble
289  * if our filesystem had 8Kb blocks. We might use long long, but that would
290  * kill us on x86. Oh, well, at least the sign propagation does not matter -
291  * i_block would have to be negative in the very beginning, so we would not
292  * get there at all.
293  */
294 
295 static int ext4_block_to_path(struct inode *inode,
296 			      ext4_lblk_t i_block,
297 			      ext4_lblk_t offsets[4], int *boundary)
298 {
299 	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
300 	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
301 	const long direct_blocks = EXT4_NDIR_BLOCKS,
302 		indirect_blocks = ptrs,
303 		double_blocks = (1 << (ptrs_bits * 2));
304 	int n = 0;
305 	int final = 0;
306 
307 	if (i_block < direct_blocks) {
308 		offsets[n++] = i_block;
309 		final = direct_blocks;
310 	} else if ((i_block -= direct_blocks) < indirect_blocks) {
311 		offsets[n++] = EXT4_IND_BLOCK;
312 		offsets[n++] = i_block;
313 		final = ptrs;
314 	} else if ((i_block -= indirect_blocks) < double_blocks) {
315 		offsets[n++] = EXT4_DIND_BLOCK;
316 		offsets[n++] = i_block >> ptrs_bits;
317 		offsets[n++] = i_block & (ptrs - 1);
318 		final = ptrs;
319 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
320 		offsets[n++] = EXT4_TIND_BLOCK;
321 		offsets[n++] = i_block >> (ptrs_bits * 2);
322 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
323 		offsets[n++] = i_block & (ptrs - 1);
324 		final = ptrs;
325 	} else {
326 		ext4_warning(inode->i_sb, "ext4_block_to_path",
327 			     "block %lu > max in inode %lu",
328 			     i_block + direct_blocks +
329 			     indirect_blocks + double_blocks, inode->i_ino);
330 	}
331 	if (boundary)
332 		*boundary = final - 1 - (i_block & (ptrs - 1));
333 	return n;
334 }
335 
336 static int __ext4_check_blockref(const char *function, struct inode *inode,
337 				 __le32 *p, unsigned int max)
338 {
339 	__le32 *bref = p;
340 	unsigned int blk;
341 
342 	while (bref < p+max) {
343 		blk = le32_to_cpu(*bref++);
344 		if (blk &&
345 		    unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
346 						    blk, 1))) {
347 			ext4_error(inode->i_sb, function,
348 				   "invalid block reference %u "
349 				   "in inode #%lu", blk, inode->i_ino);
350 			return -EIO;
351 		}
352 	}
353 	return 0;
354 }
355 
356 
357 #define ext4_check_indirect_blockref(inode, bh)                         \
358 	__ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data,  \
359 			      EXT4_ADDR_PER_BLOCK((inode)->i_sb))
360 
361 #define ext4_check_inode_blockref(inode)                                \
362 	__ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data,   \
363 			      EXT4_NDIR_BLOCKS)
364 
365 /**
366  *	ext4_get_branch - read the chain of indirect blocks leading to data
367  *	@inode: inode in question
368  *	@depth: depth of the chain (1 - direct pointer, etc.)
369  *	@offsets: offsets of pointers in inode/indirect blocks
370  *	@chain: place to store the result
371  *	@err: here we store the error value
372  *
373  *	Function fills the array of triples <key, p, bh> and returns %NULL
374  *	if everything went OK or the pointer to the last filled triple
375  *	(incomplete one) otherwise. Upon the return chain[i].key contains
376  *	the number of (i+1)-th block in the chain (as it is stored in memory,
377  *	i.e. little-endian 32-bit), chain[i].p contains the address of that
378  *	number (it points into struct inode for i==0 and into the bh->b_data
379  *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
380  *	block for i>0 and NULL for i==0. In other words, it holds the block
381  *	numbers of the chain, addresses they were taken from (and where we can
382  *	verify that chain did not change) and buffer_heads hosting these
383  *	numbers.
384  *
385  *	Function stops when it stumbles upon zero pointer (absent block)
386  *		(pointer to last triple returned, *@err == 0)
387  *	or when it gets an IO error reading an indirect block
388  *		(ditto, *@err == -EIO)
389  *	or when it reads all @depth-1 indirect blocks successfully and finds
390  *	the whole chain, all way to the data (returns %NULL, *err == 0).
391  *
392  *      Need to be called with
393  *      down_read(&EXT4_I(inode)->i_data_sem)
394  */
395 static Indirect *ext4_get_branch(struct inode *inode, int depth,
396 				 ext4_lblk_t  *offsets,
397 				 Indirect chain[4], int *err)
398 {
399 	struct super_block *sb = inode->i_sb;
400 	Indirect *p = chain;
401 	struct buffer_head *bh;
402 
403 	*err = 0;
404 	/* i_data is not going away, no lock needed */
405 	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
406 	if (!p->key)
407 		goto no_block;
408 	while (--depth) {
409 		bh = sb_getblk(sb, le32_to_cpu(p->key));
410 		if (unlikely(!bh))
411 			goto failure;
412 
413 		if (!bh_uptodate_or_lock(bh)) {
414 			if (bh_submit_read(bh) < 0) {
415 				put_bh(bh);
416 				goto failure;
417 			}
418 			/* validate block references */
419 			if (ext4_check_indirect_blockref(inode, bh)) {
420 				put_bh(bh);
421 				goto failure;
422 			}
423 		}
424 
425 		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
426 		/* Reader: end */
427 		if (!p->key)
428 			goto no_block;
429 	}
430 	return NULL;
431 
432 failure:
433 	*err = -EIO;
434 no_block:
435 	return p;
436 }
437 
438 /**
439  *	ext4_find_near - find a place for allocation with sufficient locality
440  *	@inode: owner
441  *	@ind: descriptor of indirect block.
442  *
443  *	This function returns the preferred place for block allocation.
444  *	It is used when heuristic for sequential allocation fails.
445  *	Rules are:
446  *	  + if there is a block to the left of our position - allocate near it.
447  *	  + if pointer will live in indirect block - allocate near that block.
448  *	  + if pointer will live in inode - allocate in the same
449  *	    cylinder group.
450  *
451  * In the latter case we colour the starting block by the callers PID to
452  * prevent it from clashing with concurrent allocations for a different inode
453  * in the same block group.   The PID is used here so that functionally related
454  * files will be close-by on-disk.
455  *
456  *	Caller must make sure that @ind is valid and will stay that way.
457  */
458 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
459 {
460 	struct ext4_inode_info *ei = EXT4_I(inode);
461 	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
462 	__le32 *p;
463 	ext4_fsblk_t bg_start;
464 	ext4_fsblk_t last_block;
465 	ext4_grpblk_t colour;
466 	ext4_group_t block_group;
467 	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
468 
469 	/* Try to find previous block */
470 	for (p = ind->p - 1; p >= start; p--) {
471 		if (*p)
472 			return le32_to_cpu(*p);
473 	}
474 
475 	/* No such thing, so let's try location of indirect block */
476 	if (ind->bh)
477 		return ind->bh->b_blocknr;
478 
479 	/*
480 	 * It is going to be referred to from the inode itself? OK, just put it
481 	 * into the same cylinder group then.
482 	 */
483 	block_group = ei->i_block_group;
484 	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
485 		block_group &= ~(flex_size-1);
486 		if (S_ISREG(inode->i_mode))
487 			block_group++;
488 	}
489 	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
490 	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
491 
492 	/*
493 	 * If we are doing delayed allocation, we don't need take
494 	 * colour into account.
495 	 */
496 	if (test_opt(inode->i_sb, DELALLOC))
497 		return bg_start;
498 
499 	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
500 		colour = (current->pid % 16) *
501 			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
502 	else
503 		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
504 	return bg_start + colour;
505 }
506 
507 /**
508  *	ext4_find_goal - find a preferred place for allocation.
509  *	@inode: owner
510  *	@block:  block we want
511  *	@partial: pointer to the last triple within a chain
512  *
513  *	Normally this function find the preferred place for block allocation,
514  *	returns it.
515  *	Because this is only used for non-extent files, we limit the block nr
516  *	to 32 bits.
517  */
518 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
519 				   Indirect *partial)
520 {
521 	ext4_fsblk_t goal;
522 
523 	/*
524 	 * XXX need to get goal block from mballoc's data structures
525 	 */
526 
527 	goal = ext4_find_near(inode, partial);
528 	goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
529 	return goal;
530 }
531 
532 /**
533  *	ext4_blks_to_allocate: Look up the block map and count the number
534  *	of direct blocks need to be allocated for the given branch.
535  *
536  *	@branch: chain of indirect blocks
537  *	@k: number of blocks need for indirect blocks
538  *	@blks: number of data blocks to be mapped.
539  *	@blocks_to_boundary:  the offset in the indirect block
540  *
541  *	return the total number of blocks to be allocate, including the
542  *	direct and indirect blocks.
543  */
544 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
545 				 int blocks_to_boundary)
546 {
547 	unsigned int count = 0;
548 
549 	/*
550 	 * Simple case, [t,d]Indirect block(s) has not allocated yet
551 	 * then it's clear blocks on that path have not allocated
552 	 */
553 	if (k > 0) {
554 		/* right now we don't handle cross boundary allocation */
555 		if (blks < blocks_to_boundary + 1)
556 			count += blks;
557 		else
558 			count += blocks_to_boundary + 1;
559 		return count;
560 	}
561 
562 	count++;
563 	while (count < blks && count <= blocks_to_boundary &&
564 		le32_to_cpu(*(branch[0].p + count)) == 0) {
565 		count++;
566 	}
567 	return count;
568 }
569 
570 /**
571  *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
572  *	@indirect_blks: the number of blocks need to allocate for indirect
573  *			blocks
574  *
575  *	@new_blocks: on return it will store the new block numbers for
576  *	the indirect blocks(if needed) and the first direct block,
577  *	@blks:	on return it will store the total number of allocated
578  *		direct blocks
579  */
580 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
581 			     ext4_lblk_t iblock, ext4_fsblk_t goal,
582 			     int indirect_blks, int blks,
583 			     ext4_fsblk_t new_blocks[4], int *err)
584 {
585 	struct ext4_allocation_request ar;
586 	int target, i;
587 	unsigned long count = 0, blk_allocated = 0;
588 	int index = 0;
589 	ext4_fsblk_t current_block = 0;
590 	int ret = 0;
591 
592 	/*
593 	 * Here we try to allocate the requested multiple blocks at once,
594 	 * on a best-effort basis.
595 	 * To build a branch, we should allocate blocks for
596 	 * the indirect blocks(if not allocated yet), and at least
597 	 * the first direct block of this branch.  That's the
598 	 * minimum number of blocks need to allocate(required)
599 	 */
600 	/* first we try to allocate the indirect blocks */
601 	target = indirect_blks;
602 	while (target > 0) {
603 		count = target;
604 		/* allocating blocks for indirect blocks and direct blocks */
605 		current_block = ext4_new_meta_blocks(handle, inode,
606 							goal, &count, err);
607 		if (*err)
608 			goto failed_out;
609 
610 		BUG_ON(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS);
611 
612 		target -= count;
613 		/* allocate blocks for indirect blocks */
614 		while (index < indirect_blks && count) {
615 			new_blocks[index++] = current_block++;
616 			count--;
617 		}
618 		if (count > 0) {
619 			/*
620 			 * save the new block number
621 			 * for the first direct block
622 			 */
623 			new_blocks[index] = current_block;
624 			printk(KERN_INFO "%s returned more blocks than "
625 						"requested\n", __func__);
626 			WARN_ON(1);
627 			break;
628 		}
629 	}
630 
631 	target = blks - count ;
632 	blk_allocated = count;
633 	if (!target)
634 		goto allocated;
635 	/* Now allocate data blocks */
636 	memset(&ar, 0, sizeof(ar));
637 	ar.inode = inode;
638 	ar.goal = goal;
639 	ar.len = target;
640 	ar.logical = iblock;
641 	if (S_ISREG(inode->i_mode))
642 		/* enable in-core preallocation only for regular files */
643 		ar.flags = EXT4_MB_HINT_DATA;
644 
645 	current_block = ext4_mb_new_blocks(handle, &ar, err);
646 	BUG_ON(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS);
647 
648 	if (*err && (target == blks)) {
649 		/*
650 		 * if the allocation failed and we didn't allocate
651 		 * any blocks before
652 		 */
653 		goto failed_out;
654 	}
655 	if (!*err) {
656 		if (target == blks) {
657 			/*
658 			 * save the new block number
659 			 * for the first direct block
660 			 */
661 			new_blocks[index] = current_block;
662 		}
663 		blk_allocated += ar.len;
664 	}
665 allocated:
666 	/* total number of blocks allocated for direct blocks */
667 	ret = blk_allocated;
668 	*err = 0;
669 	return ret;
670 failed_out:
671 	for (i = 0; i < index; i++)
672 		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
673 	return ret;
674 }
675 
676 /**
677  *	ext4_alloc_branch - allocate and set up a chain of blocks.
678  *	@inode: owner
679  *	@indirect_blks: number of allocated indirect blocks
680  *	@blks: number of allocated direct blocks
681  *	@offsets: offsets (in the blocks) to store the pointers to next.
682  *	@branch: place to store the chain in.
683  *
684  *	This function allocates blocks, zeroes out all but the last one,
685  *	links them into chain and (if we are synchronous) writes them to disk.
686  *	In other words, it prepares a branch that can be spliced onto the
687  *	inode. It stores the information about that chain in the branch[], in
688  *	the same format as ext4_get_branch() would do. We are calling it after
689  *	we had read the existing part of chain and partial points to the last
690  *	triple of that (one with zero ->key). Upon the exit we have the same
691  *	picture as after the successful ext4_get_block(), except that in one
692  *	place chain is disconnected - *branch->p is still zero (we did not
693  *	set the last link), but branch->key contains the number that should
694  *	be placed into *branch->p to fill that gap.
695  *
696  *	If allocation fails we free all blocks we've allocated (and forget
697  *	their buffer_heads) and return the error value the from failed
698  *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
699  *	as described above and return 0.
700  */
701 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
702 			     ext4_lblk_t iblock, int indirect_blks,
703 			     int *blks, ext4_fsblk_t goal,
704 			     ext4_lblk_t *offsets, Indirect *branch)
705 {
706 	int blocksize = inode->i_sb->s_blocksize;
707 	int i, n = 0;
708 	int err = 0;
709 	struct buffer_head *bh;
710 	int num;
711 	ext4_fsblk_t new_blocks[4];
712 	ext4_fsblk_t current_block;
713 
714 	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
715 				*blks, new_blocks, &err);
716 	if (err)
717 		return err;
718 
719 	branch[0].key = cpu_to_le32(new_blocks[0]);
720 	/*
721 	 * metadata blocks and data blocks are allocated.
722 	 */
723 	for (n = 1; n <= indirect_blks;  n++) {
724 		/*
725 		 * Get buffer_head for parent block, zero it out
726 		 * and set the pointer to new one, then send
727 		 * parent to disk.
728 		 */
729 		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
730 		branch[n].bh = bh;
731 		lock_buffer(bh);
732 		BUFFER_TRACE(bh, "call get_create_access");
733 		err = ext4_journal_get_create_access(handle, bh);
734 		if (err) {
735 			/* Don't brelse(bh) here; it's done in
736 			 * ext4_journal_forget() below */
737 			unlock_buffer(bh);
738 			goto failed;
739 		}
740 
741 		memset(bh->b_data, 0, blocksize);
742 		branch[n].p = (__le32 *) bh->b_data + offsets[n];
743 		branch[n].key = cpu_to_le32(new_blocks[n]);
744 		*branch[n].p = branch[n].key;
745 		if (n == indirect_blks) {
746 			current_block = new_blocks[n];
747 			/*
748 			 * End of chain, update the last new metablock of
749 			 * the chain to point to the new allocated
750 			 * data blocks numbers
751 			 */
752 			for (i = 1; i < num; i++)
753 				*(branch[n].p + i) = cpu_to_le32(++current_block);
754 		}
755 		BUFFER_TRACE(bh, "marking uptodate");
756 		set_buffer_uptodate(bh);
757 		unlock_buffer(bh);
758 
759 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
760 		err = ext4_handle_dirty_metadata(handle, inode, bh);
761 		if (err)
762 			goto failed;
763 	}
764 	*blks = num;
765 	return err;
766 failed:
767 	/* Allocation failed, free what we already allocated */
768 	ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
769 	for (i = 1; i <= n ; i++) {
770 		/*
771 		 * branch[i].bh is newly allocated, so there is no
772 		 * need to revoke the block, which is why we don't
773 		 * need to set EXT4_FREE_BLOCKS_METADATA.
774 		 */
775 		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
776 				 EXT4_FREE_BLOCKS_FORGET);
777 	}
778 	for (i = n+1; i < indirect_blks; i++)
779 		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
780 
781 	ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
782 
783 	return err;
784 }
785 
786 /**
787  * ext4_splice_branch - splice the allocated branch onto inode.
788  * @inode: owner
789  * @block: (logical) number of block we are adding
790  * @chain: chain of indirect blocks (with a missing link - see
791  *	ext4_alloc_branch)
792  * @where: location of missing link
793  * @num:   number of indirect blocks we are adding
794  * @blks:  number of direct blocks we are adding
795  *
796  * This function fills the missing link and does all housekeeping needed in
797  * inode (->i_blocks, etc.). In case of success we end up with the full
798  * chain to new block and return 0.
799  */
800 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
801 			      ext4_lblk_t block, Indirect *where, int num,
802 			      int blks)
803 {
804 	int i;
805 	int err = 0;
806 	ext4_fsblk_t current_block;
807 
808 	/*
809 	 * If we're splicing into a [td]indirect block (as opposed to the
810 	 * inode) then we need to get write access to the [td]indirect block
811 	 * before the splice.
812 	 */
813 	if (where->bh) {
814 		BUFFER_TRACE(where->bh, "get_write_access");
815 		err = ext4_journal_get_write_access(handle, where->bh);
816 		if (err)
817 			goto err_out;
818 	}
819 	/* That's it */
820 
821 	*where->p = where->key;
822 
823 	/*
824 	 * Update the host buffer_head or inode to point to more just allocated
825 	 * direct blocks blocks
826 	 */
827 	if (num == 0 && blks > 1) {
828 		current_block = le32_to_cpu(where->key) + 1;
829 		for (i = 1; i < blks; i++)
830 			*(where->p + i) = cpu_to_le32(current_block++);
831 	}
832 
833 	/* We are done with atomic stuff, now do the rest of housekeeping */
834 	/* had we spliced it onto indirect block? */
835 	if (where->bh) {
836 		/*
837 		 * If we spliced it onto an indirect block, we haven't
838 		 * altered the inode.  Note however that if it is being spliced
839 		 * onto an indirect block at the very end of the file (the
840 		 * file is growing) then we *will* alter the inode to reflect
841 		 * the new i_size.  But that is not done here - it is done in
842 		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
843 		 */
844 		jbd_debug(5, "splicing indirect only\n");
845 		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
846 		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
847 		if (err)
848 			goto err_out;
849 	} else {
850 		/*
851 		 * OK, we spliced it into the inode itself on a direct block.
852 		 */
853 		ext4_mark_inode_dirty(handle, inode);
854 		jbd_debug(5, "splicing direct\n");
855 	}
856 	return err;
857 
858 err_out:
859 	for (i = 1; i <= num; i++) {
860 		/*
861 		 * branch[i].bh is newly allocated, so there is no
862 		 * need to revoke the block, which is why we don't
863 		 * need to set EXT4_FREE_BLOCKS_METADATA.
864 		 */
865 		ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
866 				 EXT4_FREE_BLOCKS_FORGET);
867 	}
868 	ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
869 			 blks, 0);
870 
871 	return err;
872 }
873 
874 /*
875  * The ext4_ind_get_blocks() function handles non-extents inodes
876  * (i.e., using the traditional indirect/double-indirect i_blocks
877  * scheme) for ext4_get_blocks().
878  *
879  * Allocation strategy is simple: if we have to allocate something, we will
880  * have to go the whole way to leaf. So let's do it before attaching anything
881  * to tree, set linkage between the newborn blocks, write them if sync is
882  * required, recheck the path, free and repeat if check fails, otherwise
883  * set the last missing link (that will protect us from any truncate-generated
884  * removals - all blocks on the path are immune now) and possibly force the
885  * write on the parent block.
886  * That has a nice additional property: no special recovery from the failed
887  * allocations is needed - we simply release blocks and do not touch anything
888  * reachable from inode.
889  *
890  * `handle' can be NULL if create == 0.
891  *
892  * return > 0, # of blocks mapped or allocated.
893  * return = 0, if plain lookup failed.
894  * return < 0, error case.
895  *
896  * The ext4_ind_get_blocks() function should be called with
897  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
898  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
899  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
900  * blocks.
901  */
902 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
903 			       ext4_lblk_t iblock, unsigned int maxblocks,
904 			       struct buffer_head *bh_result,
905 			       int flags)
906 {
907 	int err = -EIO;
908 	ext4_lblk_t offsets[4];
909 	Indirect chain[4];
910 	Indirect *partial;
911 	ext4_fsblk_t goal;
912 	int indirect_blks;
913 	int blocks_to_boundary = 0;
914 	int depth;
915 	int count = 0;
916 	ext4_fsblk_t first_block = 0;
917 
918 	J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
919 	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
920 	depth = ext4_block_to_path(inode, iblock, offsets,
921 				   &blocks_to_boundary);
922 
923 	if (depth == 0)
924 		goto out;
925 
926 	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
927 
928 	/* Simplest case - block found, no allocation needed */
929 	if (!partial) {
930 		first_block = le32_to_cpu(chain[depth - 1].key);
931 		clear_buffer_new(bh_result);
932 		count++;
933 		/*map more blocks*/
934 		while (count < maxblocks && count <= blocks_to_boundary) {
935 			ext4_fsblk_t blk;
936 
937 			blk = le32_to_cpu(*(chain[depth-1].p + count));
938 
939 			if (blk == first_block + count)
940 				count++;
941 			else
942 				break;
943 		}
944 		goto got_it;
945 	}
946 
947 	/* Next simple case - plain lookup or failed read of indirect block */
948 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
949 		goto cleanup;
950 
951 	/*
952 	 * Okay, we need to do block allocation.
953 	*/
954 	goal = ext4_find_goal(inode, iblock, partial);
955 
956 	/* the number of blocks need to allocate for [d,t]indirect blocks */
957 	indirect_blks = (chain + depth) - partial - 1;
958 
959 	/*
960 	 * Next look up the indirect map to count the totoal number of
961 	 * direct blocks to allocate for this branch.
962 	 */
963 	count = ext4_blks_to_allocate(partial, indirect_blks,
964 					maxblocks, blocks_to_boundary);
965 	/*
966 	 * Block out ext4_truncate while we alter the tree
967 	 */
968 	err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
969 				&count, goal,
970 				offsets + (partial - chain), partial);
971 
972 	/*
973 	 * The ext4_splice_branch call will free and forget any buffers
974 	 * on the new chain if there is a failure, but that risks using
975 	 * up transaction credits, especially for bitmaps where the
976 	 * credits cannot be returned.  Can we handle this somehow?  We
977 	 * may need to return -EAGAIN upwards in the worst case.  --sct
978 	 */
979 	if (!err)
980 		err = ext4_splice_branch(handle, inode, iblock,
981 					 partial, indirect_blks, count);
982 	if (err)
983 		goto cleanup;
984 
985 	set_buffer_new(bh_result);
986 
987 	ext4_update_inode_fsync_trans(handle, inode, 1);
988 got_it:
989 	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
990 	if (count > blocks_to_boundary)
991 		set_buffer_boundary(bh_result);
992 	err = count;
993 	/* Clean up and exit */
994 	partial = chain + depth - 1;	/* the whole chain */
995 cleanup:
996 	while (partial > chain) {
997 		BUFFER_TRACE(partial->bh, "call brelse");
998 		brelse(partial->bh);
999 		partial--;
1000 	}
1001 	BUFFER_TRACE(bh_result, "returned");
1002 out:
1003 	return err;
1004 }
1005 
1006 #ifdef CONFIG_QUOTA
1007 qsize_t *ext4_get_reserved_space(struct inode *inode)
1008 {
1009 	return &EXT4_I(inode)->i_reserved_quota;
1010 }
1011 #endif
1012 /*
1013  * Calculate the number of metadata blocks need to reserve
1014  * to allocate @blocks for non extent file based file
1015  */
1016 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1017 {
1018 	int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1019 	int ind_blks, dind_blks, tind_blks;
1020 
1021 	/* number of new indirect blocks needed */
1022 	ind_blks = (blocks + icap - 1) / icap;
1023 
1024 	dind_blks = (ind_blks + icap - 1) / icap;
1025 
1026 	tind_blks = 1;
1027 
1028 	return ind_blks + dind_blks + tind_blks;
1029 }
1030 
1031 /*
1032  * Calculate the number of metadata blocks need to reserve
1033  * to allocate given number of blocks
1034  */
1035 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1036 {
1037 	if (!blocks)
1038 		return 0;
1039 
1040 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1041 		return ext4_ext_calc_metadata_amount(inode, blocks);
1042 
1043 	return ext4_indirect_calc_metadata_amount(inode, blocks);
1044 }
1045 
1046 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1047 {
1048 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1049 	int total, mdb, mdb_free, mdb_claim = 0;
1050 
1051 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1052 	/* recalculate the number of metablocks still need to be reserved */
1053 	total = EXT4_I(inode)->i_reserved_data_blocks - used;
1054 	mdb = ext4_calc_metadata_amount(inode, total);
1055 
1056 	/* figure out how many metablocks to release */
1057 	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1058 	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1059 
1060 	if (mdb_free) {
1061 		/* Account for allocated meta_blocks */
1062 		mdb_claim = EXT4_I(inode)->i_allocated_meta_blocks;
1063 		BUG_ON(mdb_free < mdb_claim);
1064 		mdb_free -= mdb_claim;
1065 
1066 		/* update fs dirty blocks counter */
1067 		percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1068 		EXT4_I(inode)->i_allocated_meta_blocks = 0;
1069 		EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1070 	}
1071 
1072 	/* update per-inode reservations */
1073 	BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
1074 	EXT4_I(inode)->i_reserved_data_blocks -= used;
1075 	percpu_counter_sub(&sbi->s_dirtyblocks_counter, used + mdb_claim);
1076 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1077 
1078 	vfs_dq_claim_block(inode, used + mdb_claim);
1079 
1080 	/*
1081 	 * free those over-booking quota for metadata blocks
1082 	 */
1083 	if (mdb_free)
1084 		vfs_dq_release_reservation_block(inode, mdb_free);
1085 
1086 	/*
1087 	 * If we have done all the pending block allocations and if
1088 	 * there aren't any writers on the inode, we can discard the
1089 	 * inode's preallocations.
1090 	 */
1091 	if (!total && (atomic_read(&inode->i_writecount) == 0))
1092 		ext4_discard_preallocations(inode);
1093 }
1094 
1095 static int check_block_validity(struct inode *inode, const char *msg,
1096 				sector_t logical, sector_t phys, int len)
1097 {
1098 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1099 		ext4_error(inode->i_sb, msg,
1100 			   "inode #%lu logical block %llu mapped to %llu "
1101 			   "(size %d)", inode->i_ino,
1102 			   (unsigned long long) logical,
1103 			   (unsigned long long) phys, len);
1104 		return -EIO;
1105 	}
1106 	return 0;
1107 }
1108 
1109 /*
1110  * Return the number of contiguous dirty pages in a given inode
1111  * starting at page frame idx.
1112  */
1113 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1114 				    unsigned int max_pages)
1115 {
1116 	struct address_space *mapping = inode->i_mapping;
1117 	pgoff_t	index;
1118 	struct pagevec pvec;
1119 	pgoff_t num = 0;
1120 	int i, nr_pages, done = 0;
1121 
1122 	if (max_pages == 0)
1123 		return 0;
1124 	pagevec_init(&pvec, 0);
1125 	while (!done) {
1126 		index = idx;
1127 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1128 					      PAGECACHE_TAG_DIRTY,
1129 					      (pgoff_t)PAGEVEC_SIZE);
1130 		if (nr_pages == 0)
1131 			break;
1132 		for (i = 0; i < nr_pages; i++) {
1133 			struct page *page = pvec.pages[i];
1134 			struct buffer_head *bh, *head;
1135 
1136 			lock_page(page);
1137 			if (unlikely(page->mapping != mapping) ||
1138 			    !PageDirty(page) ||
1139 			    PageWriteback(page) ||
1140 			    page->index != idx) {
1141 				done = 1;
1142 				unlock_page(page);
1143 				break;
1144 			}
1145 			if (page_has_buffers(page)) {
1146 				bh = head = page_buffers(page);
1147 				do {
1148 					if (!buffer_delay(bh) &&
1149 					    !buffer_unwritten(bh))
1150 						done = 1;
1151 					bh = bh->b_this_page;
1152 				} while (!done && (bh != head));
1153 			}
1154 			unlock_page(page);
1155 			if (done)
1156 				break;
1157 			idx++;
1158 			num++;
1159 			if (num >= max_pages)
1160 				break;
1161 		}
1162 		pagevec_release(&pvec);
1163 	}
1164 	return num;
1165 }
1166 
1167 /*
1168  * The ext4_get_blocks() function tries to look up the requested blocks,
1169  * and returns if the blocks are already mapped.
1170  *
1171  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1172  * and store the allocated blocks in the result buffer head and mark it
1173  * mapped.
1174  *
1175  * If file type is extents based, it will call ext4_ext_get_blocks(),
1176  * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1177  * based files
1178  *
1179  * On success, it returns the number of blocks being mapped or allocate.
1180  * if create==0 and the blocks are pre-allocated and uninitialized block,
1181  * the result buffer head is unmapped. If the create ==1, it will make sure
1182  * the buffer head is mapped.
1183  *
1184  * It returns 0 if plain look up failed (blocks have not been allocated), in
1185  * that casem, buffer head is unmapped
1186  *
1187  * It returns the error in case of allocation failure.
1188  */
1189 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1190 		    unsigned int max_blocks, struct buffer_head *bh,
1191 		    int flags)
1192 {
1193 	int retval;
1194 
1195 	clear_buffer_mapped(bh);
1196 	clear_buffer_unwritten(bh);
1197 
1198 	ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u,"
1199 		  "logical block %lu\n", inode->i_ino, flags, max_blocks,
1200 		  (unsigned long)block);
1201 	/*
1202 	 * Try to see if we can get the block without requesting a new
1203 	 * file system block.
1204 	 */
1205 	down_read((&EXT4_I(inode)->i_data_sem));
1206 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1207 		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1208 				bh, 0);
1209 	} else {
1210 		retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1211 					     bh, 0);
1212 	}
1213 	up_read((&EXT4_I(inode)->i_data_sem));
1214 
1215 	if (retval > 0 && buffer_mapped(bh)) {
1216 		int ret = check_block_validity(inode, "file system corruption",
1217 					       block, bh->b_blocknr, retval);
1218 		if (ret != 0)
1219 			return ret;
1220 	}
1221 
1222 	/* If it is only a block(s) look up */
1223 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1224 		return retval;
1225 
1226 	/*
1227 	 * Returns if the blocks have already allocated
1228 	 *
1229 	 * Note that if blocks have been preallocated
1230 	 * ext4_ext_get_block() returns th create = 0
1231 	 * with buffer head unmapped.
1232 	 */
1233 	if (retval > 0 && buffer_mapped(bh))
1234 		return retval;
1235 
1236 	/*
1237 	 * When we call get_blocks without the create flag, the
1238 	 * BH_Unwritten flag could have gotten set if the blocks
1239 	 * requested were part of a uninitialized extent.  We need to
1240 	 * clear this flag now that we are committed to convert all or
1241 	 * part of the uninitialized extent to be an initialized
1242 	 * extent.  This is because we need to avoid the combination
1243 	 * of BH_Unwritten and BH_Mapped flags being simultaneously
1244 	 * set on the buffer_head.
1245 	 */
1246 	clear_buffer_unwritten(bh);
1247 
1248 	/*
1249 	 * New blocks allocate and/or writing to uninitialized extent
1250 	 * will possibly result in updating i_data, so we take
1251 	 * the write lock of i_data_sem, and call get_blocks()
1252 	 * with create == 1 flag.
1253 	 */
1254 	down_write((&EXT4_I(inode)->i_data_sem));
1255 
1256 	/*
1257 	 * if the caller is from delayed allocation writeout path
1258 	 * we have already reserved fs blocks for allocation
1259 	 * let the underlying get_block() function know to
1260 	 * avoid double accounting
1261 	 */
1262 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1263 		EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1264 	/*
1265 	 * We need to check for EXT4 here because migrate
1266 	 * could have changed the inode type in between
1267 	 */
1268 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1269 		retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1270 					      bh, flags);
1271 	} else {
1272 		retval = ext4_ind_get_blocks(handle, inode, block,
1273 					     max_blocks, bh, flags);
1274 
1275 		if (retval > 0 && buffer_new(bh)) {
1276 			/*
1277 			 * We allocated new blocks which will result in
1278 			 * i_data's format changing.  Force the migrate
1279 			 * to fail by clearing migrate flags
1280 			 */
1281 			EXT4_I(inode)->i_state &= ~EXT4_STATE_EXT_MIGRATE;
1282 		}
1283 	}
1284 
1285 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1286 		EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1287 
1288 	/*
1289 	 * Update reserved blocks/metadata blocks after successful
1290 	 * block allocation which had been deferred till now.
1291 	 */
1292 	if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE))
1293 		ext4_da_update_reserve_space(inode, retval);
1294 
1295 	up_write((&EXT4_I(inode)->i_data_sem));
1296 	if (retval > 0 && buffer_mapped(bh)) {
1297 		int ret = check_block_validity(inode, "file system "
1298 					       "corruption after allocation",
1299 					       block, bh->b_blocknr, retval);
1300 		if (ret != 0)
1301 			return ret;
1302 	}
1303 	return retval;
1304 }
1305 
1306 /* Maximum number of blocks we map for direct IO at once. */
1307 #define DIO_MAX_BLOCKS 4096
1308 
1309 int ext4_get_block(struct inode *inode, sector_t iblock,
1310 		   struct buffer_head *bh_result, int create)
1311 {
1312 	handle_t *handle = ext4_journal_current_handle();
1313 	int ret = 0, started = 0;
1314 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1315 	int dio_credits;
1316 
1317 	if (create && !handle) {
1318 		/* Direct IO write... */
1319 		if (max_blocks > DIO_MAX_BLOCKS)
1320 			max_blocks = DIO_MAX_BLOCKS;
1321 		dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1322 		handle = ext4_journal_start(inode, dio_credits);
1323 		if (IS_ERR(handle)) {
1324 			ret = PTR_ERR(handle);
1325 			goto out;
1326 		}
1327 		started = 1;
1328 	}
1329 
1330 	ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1331 			      create ? EXT4_GET_BLOCKS_CREATE : 0);
1332 	if (ret > 0) {
1333 		bh_result->b_size = (ret << inode->i_blkbits);
1334 		ret = 0;
1335 	}
1336 	if (started)
1337 		ext4_journal_stop(handle);
1338 out:
1339 	return ret;
1340 }
1341 
1342 /*
1343  * `handle' can be NULL if create is zero
1344  */
1345 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1346 				ext4_lblk_t block, int create, int *errp)
1347 {
1348 	struct buffer_head dummy;
1349 	int fatal = 0, err;
1350 	int flags = 0;
1351 
1352 	J_ASSERT(handle != NULL || create == 0);
1353 
1354 	dummy.b_state = 0;
1355 	dummy.b_blocknr = -1000;
1356 	buffer_trace_init(&dummy.b_history);
1357 	if (create)
1358 		flags |= EXT4_GET_BLOCKS_CREATE;
1359 	err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1360 	/*
1361 	 * ext4_get_blocks() returns number of blocks mapped. 0 in
1362 	 * case of a HOLE.
1363 	 */
1364 	if (err > 0) {
1365 		if (err > 1)
1366 			WARN_ON(1);
1367 		err = 0;
1368 	}
1369 	*errp = err;
1370 	if (!err && buffer_mapped(&dummy)) {
1371 		struct buffer_head *bh;
1372 		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1373 		if (!bh) {
1374 			*errp = -EIO;
1375 			goto err;
1376 		}
1377 		if (buffer_new(&dummy)) {
1378 			J_ASSERT(create != 0);
1379 			J_ASSERT(handle != NULL);
1380 
1381 			/*
1382 			 * Now that we do not always journal data, we should
1383 			 * keep in mind whether this should always journal the
1384 			 * new buffer as metadata.  For now, regular file
1385 			 * writes use ext4_get_block instead, so it's not a
1386 			 * problem.
1387 			 */
1388 			lock_buffer(bh);
1389 			BUFFER_TRACE(bh, "call get_create_access");
1390 			fatal = ext4_journal_get_create_access(handle, bh);
1391 			if (!fatal && !buffer_uptodate(bh)) {
1392 				memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1393 				set_buffer_uptodate(bh);
1394 			}
1395 			unlock_buffer(bh);
1396 			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1397 			err = ext4_handle_dirty_metadata(handle, inode, bh);
1398 			if (!fatal)
1399 				fatal = err;
1400 		} else {
1401 			BUFFER_TRACE(bh, "not a new buffer");
1402 		}
1403 		if (fatal) {
1404 			*errp = fatal;
1405 			brelse(bh);
1406 			bh = NULL;
1407 		}
1408 		return bh;
1409 	}
1410 err:
1411 	return NULL;
1412 }
1413 
1414 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1415 			       ext4_lblk_t block, int create, int *err)
1416 {
1417 	struct buffer_head *bh;
1418 
1419 	bh = ext4_getblk(handle, inode, block, create, err);
1420 	if (!bh)
1421 		return bh;
1422 	if (buffer_uptodate(bh))
1423 		return bh;
1424 	ll_rw_block(READ_META, 1, &bh);
1425 	wait_on_buffer(bh);
1426 	if (buffer_uptodate(bh))
1427 		return bh;
1428 	put_bh(bh);
1429 	*err = -EIO;
1430 	return NULL;
1431 }
1432 
1433 static int walk_page_buffers(handle_t *handle,
1434 			     struct buffer_head *head,
1435 			     unsigned from,
1436 			     unsigned to,
1437 			     int *partial,
1438 			     int (*fn)(handle_t *handle,
1439 				       struct buffer_head *bh))
1440 {
1441 	struct buffer_head *bh;
1442 	unsigned block_start, block_end;
1443 	unsigned blocksize = head->b_size;
1444 	int err, ret = 0;
1445 	struct buffer_head *next;
1446 
1447 	for (bh = head, block_start = 0;
1448 	     ret == 0 && (bh != head || !block_start);
1449 	     block_start = block_end, bh = next) {
1450 		next = bh->b_this_page;
1451 		block_end = block_start + blocksize;
1452 		if (block_end <= from || block_start >= to) {
1453 			if (partial && !buffer_uptodate(bh))
1454 				*partial = 1;
1455 			continue;
1456 		}
1457 		err = (*fn)(handle, bh);
1458 		if (!ret)
1459 			ret = err;
1460 	}
1461 	return ret;
1462 }
1463 
1464 /*
1465  * To preserve ordering, it is essential that the hole instantiation and
1466  * the data write be encapsulated in a single transaction.  We cannot
1467  * close off a transaction and start a new one between the ext4_get_block()
1468  * and the commit_write().  So doing the jbd2_journal_start at the start of
1469  * prepare_write() is the right place.
1470  *
1471  * Also, this function can nest inside ext4_writepage() ->
1472  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1473  * has generated enough buffer credits to do the whole page.  So we won't
1474  * block on the journal in that case, which is good, because the caller may
1475  * be PF_MEMALLOC.
1476  *
1477  * By accident, ext4 can be reentered when a transaction is open via
1478  * quota file writes.  If we were to commit the transaction while thus
1479  * reentered, there can be a deadlock - we would be holding a quota
1480  * lock, and the commit would never complete if another thread had a
1481  * transaction open and was blocking on the quota lock - a ranking
1482  * violation.
1483  *
1484  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1485  * will _not_ run commit under these circumstances because handle->h_ref
1486  * is elevated.  We'll still have enough credits for the tiny quotafile
1487  * write.
1488  */
1489 static int do_journal_get_write_access(handle_t *handle,
1490 				       struct buffer_head *bh)
1491 {
1492 	if (!buffer_mapped(bh) || buffer_freed(bh))
1493 		return 0;
1494 	return ext4_journal_get_write_access(handle, bh);
1495 }
1496 
1497 /*
1498  * Truncate blocks that were not used by write. We have to truncate the
1499  * pagecache as well so that corresponding buffers get properly unmapped.
1500  */
1501 static void ext4_truncate_failed_write(struct inode *inode)
1502 {
1503 	truncate_inode_pages(inode->i_mapping, inode->i_size);
1504 	ext4_truncate(inode);
1505 }
1506 
1507 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1508 			    loff_t pos, unsigned len, unsigned flags,
1509 			    struct page **pagep, void **fsdata)
1510 {
1511 	struct inode *inode = mapping->host;
1512 	int ret, needed_blocks;
1513 	handle_t *handle;
1514 	int retries = 0;
1515 	struct page *page;
1516 	pgoff_t index;
1517 	unsigned from, to;
1518 
1519 	trace_ext4_write_begin(inode, pos, len, flags);
1520 	/*
1521 	 * Reserve one block more for addition to orphan list in case
1522 	 * we allocate blocks but write fails for some reason
1523 	 */
1524 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1525 	index = pos >> PAGE_CACHE_SHIFT;
1526 	from = pos & (PAGE_CACHE_SIZE - 1);
1527 	to = from + len;
1528 
1529 retry:
1530 	handle = ext4_journal_start(inode, needed_blocks);
1531 	if (IS_ERR(handle)) {
1532 		ret = PTR_ERR(handle);
1533 		goto out;
1534 	}
1535 
1536 	/* We cannot recurse into the filesystem as the transaction is already
1537 	 * started */
1538 	flags |= AOP_FLAG_NOFS;
1539 
1540 	page = grab_cache_page_write_begin(mapping, index, flags);
1541 	if (!page) {
1542 		ext4_journal_stop(handle);
1543 		ret = -ENOMEM;
1544 		goto out;
1545 	}
1546 	*pagep = page;
1547 
1548 	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1549 				ext4_get_block);
1550 
1551 	if (!ret && ext4_should_journal_data(inode)) {
1552 		ret = walk_page_buffers(handle, page_buffers(page),
1553 				from, to, NULL, do_journal_get_write_access);
1554 	}
1555 
1556 	if (ret) {
1557 		unlock_page(page);
1558 		page_cache_release(page);
1559 		/*
1560 		 * block_write_begin may have instantiated a few blocks
1561 		 * outside i_size.  Trim these off again. Don't need
1562 		 * i_size_read because we hold i_mutex.
1563 		 *
1564 		 * Add inode to orphan list in case we crash before
1565 		 * truncate finishes
1566 		 */
1567 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1568 			ext4_orphan_add(handle, inode);
1569 
1570 		ext4_journal_stop(handle);
1571 		if (pos + len > inode->i_size) {
1572 			ext4_truncate_failed_write(inode);
1573 			/*
1574 			 * If truncate failed early the inode might
1575 			 * still be on the orphan list; we need to
1576 			 * make sure the inode is removed from the
1577 			 * orphan list in that case.
1578 			 */
1579 			if (inode->i_nlink)
1580 				ext4_orphan_del(NULL, inode);
1581 		}
1582 	}
1583 
1584 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1585 		goto retry;
1586 out:
1587 	return ret;
1588 }
1589 
1590 /* For write_end() in data=journal mode */
1591 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1592 {
1593 	if (!buffer_mapped(bh) || buffer_freed(bh))
1594 		return 0;
1595 	set_buffer_uptodate(bh);
1596 	return ext4_handle_dirty_metadata(handle, NULL, bh);
1597 }
1598 
1599 static int ext4_generic_write_end(struct file *file,
1600 				  struct address_space *mapping,
1601 				  loff_t pos, unsigned len, unsigned copied,
1602 				  struct page *page, void *fsdata)
1603 {
1604 	int i_size_changed = 0;
1605 	struct inode *inode = mapping->host;
1606 	handle_t *handle = ext4_journal_current_handle();
1607 
1608 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1609 
1610 	/*
1611 	 * No need to use i_size_read() here, the i_size
1612 	 * cannot change under us because we hold i_mutex.
1613 	 *
1614 	 * But it's important to update i_size while still holding page lock:
1615 	 * page writeout could otherwise come in and zero beyond i_size.
1616 	 */
1617 	if (pos + copied > inode->i_size) {
1618 		i_size_write(inode, pos + copied);
1619 		i_size_changed = 1;
1620 	}
1621 
1622 	if (pos + copied >  EXT4_I(inode)->i_disksize) {
1623 		/* We need to mark inode dirty even if
1624 		 * new_i_size is less that inode->i_size
1625 		 * bu greater than i_disksize.(hint delalloc)
1626 		 */
1627 		ext4_update_i_disksize(inode, (pos + copied));
1628 		i_size_changed = 1;
1629 	}
1630 	unlock_page(page);
1631 	page_cache_release(page);
1632 
1633 	/*
1634 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1635 	 * makes the holding time of page lock longer. Second, it forces lock
1636 	 * ordering of page lock and transaction start for journaling
1637 	 * filesystems.
1638 	 */
1639 	if (i_size_changed)
1640 		ext4_mark_inode_dirty(handle, inode);
1641 
1642 	return copied;
1643 }
1644 
1645 /*
1646  * We need to pick up the new inode size which generic_commit_write gave us
1647  * `file' can be NULL - eg, when called from page_symlink().
1648  *
1649  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1650  * buffers are managed internally.
1651  */
1652 static int ext4_ordered_write_end(struct file *file,
1653 				  struct address_space *mapping,
1654 				  loff_t pos, unsigned len, unsigned copied,
1655 				  struct page *page, void *fsdata)
1656 {
1657 	handle_t *handle = ext4_journal_current_handle();
1658 	struct inode *inode = mapping->host;
1659 	int ret = 0, ret2;
1660 
1661 	trace_ext4_ordered_write_end(inode, pos, len, copied);
1662 	ret = ext4_jbd2_file_inode(handle, inode);
1663 
1664 	if (ret == 0) {
1665 		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1666 							page, fsdata);
1667 		copied = ret2;
1668 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1669 			/* if we have allocated more blocks and copied
1670 			 * less. We will have blocks allocated outside
1671 			 * inode->i_size. So truncate them
1672 			 */
1673 			ext4_orphan_add(handle, inode);
1674 		if (ret2 < 0)
1675 			ret = ret2;
1676 	}
1677 	ret2 = ext4_journal_stop(handle);
1678 	if (!ret)
1679 		ret = ret2;
1680 
1681 	if (pos + len > inode->i_size) {
1682 		ext4_truncate_failed_write(inode);
1683 		/*
1684 		 * If truncate failed early the inode might still be
1685 		 * on the orphan list; we need to make sure the inode
1686 		 * is removed from the orphan list in that case.
1687 		 */
1688 		if (inode->i_nlink)
1689 			ext4_orphan_del(NULL, inode);
1690 	}
1691 
1692 
1693 	return ret ? ret : copied;
1694 }
1695 
1696 static int ext4_writeback_write_end(struct file *file,
1697 				    struct address_space *mapping,
1698 				    loff_t pos, unsigned len, unsigned copied,
1699 				    struct page *page, void *fsdata)
1700 {
1701 	handle_t *handle = ext4_journal_current_handle();
1702 	struct inode *inode = mapping->host;
1703 	int ret = 0, ret2;
1704 
1705 	trace_ext4_writeback_write_end(inode, pos, len, copied);
1706 	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1707 							page, fsdata);
1708 	copied = ret2;
1709 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1710 		/* if we have allocated more blocks and copied
1711 		 * less. We will have blocks allocated outside
1712 		 * inode->i_size. So truncate them
1713 		 */
1714 		ext4_orphan_add(handle, inode);
1715 
1716 	if (ret2 < 0)
1717 		ret = ret2;
1718 
1719 	ret2 = ext4_journal_stop(handle);
1720 	if (!ret)
1721 		ret = ret2;
1722 
1723 	if (pos + len > inode->i_size) {
1724 		ext4_truncate_failed_write(inode);
1725 		/*
1726 		 * If truncate failed early the inode might still be
1727 		 * on the orphan list; we need to make sure the inode
1728 		 * is removed from the orphan list in that case.
1729 		 */
1730 		if (inode->i_nlink)
1731 			ext4_orphan_del(NULL, inode);
1732 	}
1733 
1734 	return ret ? ret : copied;
1735 }
1736 
1737 static int ext4_journalled_write_end(struct file *file,
1738 				     struct address_space *mapping,
1739 				     loff_t pos, unsigned len, unsigned copied,
1740 				     struct page *page, void *fsdata)
1741 {
1742 	handle_t *handle = ext4_journal_current_handle();
1743 	struct inode *inode = mapping->host;
1744 	int ret = 0, ret2;
1745 	int partial = 0;
1746 	unsigned from, to;
1747 	loff_t new_i_size;
1748 
1749 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1750 	from = pos & (PAGE_CACHE_SIZE - 1);
1751 	to = from + len;
1752 
1753 	if (copied < len) {
1754 		if (!PageUptodate(page))
1755 			copied = 0;
1756 		page_zero_new_buffers(page, from+copied, to);
1757 	}
1758 
1759 	ret = walk_page_buffers(handle, page_buffers(page), from,
1760 				to, &partial, write_end_fn);
1761 	if (!partial)
1762 		SetPageUptodate(page);
1763 	new_i_size = pos + copied;
1764 	if (new_i_size > inode->i_size)
1765 		i_size_write(inode, pos+copied);
1766 	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1767 	if (new_i_size > EXT4_I(inode)->i_disksize) {
1768 		ext4_update_i_disksize(inode, new_i_size);
1769 		ret2 = ext4_mark_inode_dirty(handle, inode);
1770 		if (!ret)
1771 			ret = ret2;
1772 	}
1773 
1774 	unlock_page(page);
1775 	page_cache_release(page);
1776 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1777 		/* if we have allocated more blocks and copied
1778 		 * less. We will have blocks allocated outside
1779 		 * inode->i_size. So truncate them
1780 		 */
1781 		ext4_orphan_add(handle, inode);
1782 
1783 	ret2 = ext4_journal_stop(handle);
1784 	if (!ret)
1785 		ret = ret2;
1786 	if (pos + len > inode->i_size) {
1787 		ext4_truncate_failed_write(inode);
1788 		/*
1789 		 * If truncate failed early the inode might still be
1790 		 * on the orphan list; we need to make sure the inode
1791 		 * is removed from the orphan list in that case.
1792 		 */
1793 		if (inode->i_nlink)
1794 			ext4_orphan_del(NULL, inode);
1795 	}
1796 
1797 	return ret ? ret : copied;
1798 }
1799 
1800 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1801 {
1802 	int retries = 0;
1803 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1804 	unsigned long md_needed, mdblocks, total = 0;
1805 
1806 	/*
1807 	 * recalculate the amount of metadata blocks to reserve
1808 	 * in order to allocate nrblocks
1809 	 * worse case is one extent per block
1810 	 */
1811 repeat:
1812 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1813 	total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1814 	mdblocks = ext4_calc_metadata_amount(inode, total);
1815 	BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1816 
1817 	md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1818 	total = md_needed + nrblocks;
1819 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1820 
1821 	/*
1822 	 * Make quota reservation here to prevent quota overflow
1823 	 * later. Real quota accounting is done at pages writeout
1824 	 * time.
1825 	 */
1826 	if (vfs_dq_reserve_block(inode, total))
1827 		return -EDQUOT;
1828 
1829 	if (ext4_claim_free_blocks(sbi, total)) {
1830 		vfs_dq_release_reservation_block(inode, total);
1831 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1832 			yield();
1833 			goto repeat;
1834 		}
1835 		return -ENOSPC;
1836 	}
1837 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1838 	EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1839 	EXT4_I(inode)->i_reserved_meta_blocks += md_needed;
1840 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1841 
1842 	return 0;       /* success */
1843 }
1844 
1845 static void ext4_da_release_space(struct inode *inode, int to_free)
1846 {
1847 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1848 	int total, mdb, mdb_free, release;
1849 
1850 	if (!to_free)
1851 		return;		/* Nothing to release, exit */
1852 
1853 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1854 
1855 	if (!EXT4_I(inode)->i_reserved_data_blocks) {
1856 		/*
1857 		 * if there is no reserved blocks, but we try to free some
1858 		 * then the counter is messed up somewhere.
1859 		 * but since this function is called from invalidate
1860 		 * page, it's harmless to return without any action
1861 		 */
1862 		printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1863 			    "blocks for inode %lu, but there is no reserved "
1864 			    "data blocks\n", to_free, inode->i_ino);
1865 		spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1866 		return;
1867 	}
1868 
1869 	/* recalculate the number of metablocks still need to be reserved */
1870 	total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1871 	mdb = ext4_calc_metadata_amount(inode, total);
1872 
1873 	/* figure out how many metablocks to release */
1874 	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1875 	mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1876 
1877 	release = to_free + mdb_free;
1878 
1879 	/* update fs dirty blocks counter for truncate case */
1880 	percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1881 
1882 	/* update per-inode reservations */
1883 	BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1884 	EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1885 
1886 	BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1887 	EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1888 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1889 
1890 	vfs_dq_release_reservation_block(inode, release);
1891 }
1892 
1893 static void ext4_da_page_release_reservation(struct page *page,
1894 					     unsigned long offset)
1895 {
1896 	int to_release = 0;
1897 	struct buffer_head *head, *bh;
1898 	unsigned int curr_off = 0;
1899 
1900 	head = page_buffers(page);
1901 	bh = head;
1902 	do {
1903 		unsigned int next_off = curr_off + bh->b_size;
1904 
1905 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1906 			to_release++;
1907 			clear_buffer_delay(bh);
1908 		}
1909 		curr_off = next_off;
1910 	} while ((bh = bh->b_this_page) != head);
1911 	ext4_da_release_space(page->mapping->host, to_release);
1912 }
1913 
1914 /*
1915  * Delayed allocation stuff
1916  */
1917 
1918 /*
1919  * mpage_da_submit_io - walks through extent of pages and try to write
1920  * them with writepage() call back
1921  *
1922  * @mpd->inode: inode
1923  * @mpd->first_page: first page of the extent
1924  * @mpd->next_page: page after the last page of the extent
1925  *
1926  * By the time mpage_da_submit_io() is called we expect all blocks
1927  * to be allocated. this may be wrong if allocation failed.
1928  *
1929  * As pages are already locked by write_cache_pages(), we can't use it
1930  */
1931 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1932 {
1933 	long pages_skipped;
1934 	struct pagevec pvec;
1935 	unsigned long index, end;
1936 	int ret = 0, err, nr_pages, i;
1937 	struct inode *inode = mpd->inode;
1938 	struct address_space *mapping = inode->i_mapping;
1939 
1940 	BUG_ON(mpd->next_page <= mpd->first_page);
1941 	/*
1942 	 * We need to start from the first_page to the next_page - 1
1943 	 * to make sure we also write the mapped dirty buffer_heads.
1944 	 * If we look at mpd->b_blocknr we would only be looking
1945 	 * at the currently mapped buffer_heads.
1946 	 */
1947 	index = mpd->first_page;
1948 	end = mpd->next_page - 1;
1949 
1950 	pagevec_init(&pvec, 0);
1951 	while (index <= end) {
1952 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1953 		if (nr_pages == 0)
1954 			break;
1955 		for (i = 0; i < nr_pages; i++) {
1956 			struct page *page = pvec.pages[i];
1957 
1958 			index = page->index;
1959 			if (index > end)
1960 				break;
1961 			index++;
1962 
1963 			BUG_ON(!PageLocked(page));
1964 			BUG_ON(PageWriteback(page));
1965 
1966 			pages_skipped = mpd->wbc->pages_skipped;
1967 			err = mapping->a_ops->writepage(page, mpd->wbc);
1968 			if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1969 				/*
1970 				 * have successfully written the page
1971 				 * without skipping the same
1972 				 */
1973 				mpd->pages_written++;
1974 			/*
1975 			 * In error case, we have to continue because
1976 			 * remaining pages are still locked
1977 			 * XXX: unlock and re-dirty them?
1978 			 */
1979 			if (ret == 0)
1980 				ret = err;
1981 		}
1982 		pagevec_release(&pvec);
1983 	}
1984 	return ret;
1985 }
1986 
1987 /*
1988  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1989  *
1990  * @mpd->inode - inode to walk through
1991  * @exbh->b_blocknr - first block on a disk
1992  * @exbh->b_size - amount of space in bytes
1993  * @logical - first logical block to start assignment with
1994  *
1995  * the function goes through all passed space and put actual disk
1996  * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
1997  */
1998 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1999 				 struct buffer_head *exbh)
2000 {
2001 	struct inode *inode = mpd->inode;
2002 	struct address_space *mapping = inode->i_mapping;
2003 	int blocks = exbh->b_size >> inode->i_blkbits;
2004 	sector_t pblock = exbh->b_blocknr, cur_logical;
2005 	struct buffer_head *head, *bh;
2006 	pgoff_t index, end;
2007 	struct pagevec pvec;
2008 	int nr_pages, i;
2009 
2010 	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2011 	end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2012 	cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2013 
2014 	pagevec_init(&pvec, 0);
2015 
2016 	while (index <= end) {
2017 		/* XXX: optimize tail */
2018 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2019 		if (nr_pages == 0)
2020 			break;
2021 		for (i = 0; i < nr_pages; i++) {
2022 			struct page *page = pvec.pages[i];
2023 
2024 			index = page->index;
2025 			if (index > end)
2026 				break;
2027 			index++;
2028 
2029 			BUG_ON(!PageLocked(page));
2030 			BUG_ON(PageWriteback(page));
2031 			BUG_ON(!page_has_buffers(page));
2032 
2033 			bh = page_buffers(page);
2034 			head = bh;
2035 
2036 			/* skip blocks out of the range */
2037 			do {
2038 				if (cur_logical >= logical)
2039 					break;
2040 				cur_logical++;
2041 			} while ((bh = bh->b_this_page) != head);
2042 
2043 			do {
2044 				if (cur_logical >= logical + blocks)
2045 					break;
2046 
2047 				if (buffer_delay(bh) ||
2048 						buffer_unwritten(bh)) {
2049 
2050 					BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2051 
2052 					if (buffer_delay(bh)) {
2053 						clear_buffer_delay(bh);
2054 						bh->b_blocknr = pblock;
2055 					} else {
2056 						/*
2057 						 * unwritten already should have
2058 						 * blocknr assigned. Verify that
2059 						 */
2060 						clear_buffer_unwritten(bh);
2061 						BUG_ON(bh->b_blocknr != pblock);
2062 					}
2063 
2064 				} else if (buffer_mapped(bh))
2065 					BUG_ON(bh->b_blocknr != pblock);
2066 
2067 				cur_logical++;
2068 				pblock++;
2069 			} while ((bh = bh->b_this_page) != head);
2070 		}
2071 		pagevec_release(&pvec);
2072 	}
2073 }
2074 
2075 
2076 /*
2077  * __unmap_underlying_blocks - just a helper function to unmap
2078  * set of blocks described by @bh
2079  */
2080 static inline void __unmap_underlying_blocks(struct inode *inode,
2081 					     struct buffer_head *bh)
2082 {
2083 	struct block_device *bdev = inode->i_sb->s_bdev;
2084 	int blocks, i;
2085 
2086 	blocks = bh->b_size >> inode->i_blkbits;
2087 	for (i = 0; i < blocks; i++)
2088 		unmap_underlying_metadata(bdev, bh->b_blocknr + i);
2089 }
2090 
2091 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2092 					sector_t logical, long blk_cnt)
2093 {
2094 	int nr_pages, i;
2095 	pgoff_t index, end;
2096 	struct pagevec pvec;
2097 	struct inode *inode = mpd->inode;
2098 	struct address_space *mapping = inode->i_mapping;
2099 
2100 	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2101 	end   = (logical + blk_cnt - 1) >>
2102 				(PAGE_CACHE_SHIFT - inode->i_blkbits);
2103 	while (index <= end) {
2104 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2105 		if (nr_pages == 0)
2106 			break;
2107 		for (i = 0; i < nr_pages; i++) {
2108 			struct page *page = pvec.pages[i];
2109 			index = page->index;
2110 			if (index > end)
2111 				break;
2112 			index++;
2113 
2114 			BUG_ON(!PageLocked(page));
2115 			BUG_ON(PageWriteback(page));
2116 			block_invalidatepage(page, 0);
2117 			ClearPageUptodate(page);
2118 			unlock_page(page);
2119 		}
2120 	}
2121 	return;
2122 }
2123 
2124 static void ext4_print_free_blocks(struct inode *inode)
2125 {
2126 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2127 	printk(KERN_CRIT "Total free blocks count %lld\n",
2128 	       ext4_count_free_blocks(inode->i_sb));
2129 	printk(KERN_CRIT "Free/Dirty block details\n");
2130 	printk(KERN_CRIT "free_blocks=%lld\n",
2131 	       (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2132 	printk(KERN_CRIT "dirty_blocks=%lld\n",
2133 	       (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2134 	printk(KERN_CRIT "Block reservation details\n");
2135 	printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2136 	       EXT4_I(inode)->i_reserved_data_blocks);
2137 	printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2138 	       EXT4_I(inode)->i_reserved_meta_blocks);
2139 	return;
2140 }
2141 
2142 /*
2143  * mpage_da_map_blocks - go through given space
2144  *
2145  * @mpd - bh describing space
2146  *
2147  * The function skips space we know is already mapped to disk blocks.
2148  *
2149  */
2150 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2151 {
2152 	int err, blks, get_blocks_flags;
2153 	struct buffer_head new;
2154 	sector_t next = mpd->b_blocknr;
2155 	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2156 	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2157 	handle_t *handle = NULL;
2158 
2159 	/*
2160 	 * We consider only non-mapped and non-allocated blocks
2161 	 */
2162 	if ((mpd->b_state  & (1 << BH_Mapped)) &&
2163 		!(mpd->b_state & (1 << BH_Delay)) &&
2164 		!(mpd->b_state & (1 << BH_Unwritten)))
2165 		return 0;
2166 
2167 	/*
2168 	 * If we didn't accumulate anything to write simply return
2169 	 */
2170 	if (!mpd->b_size)
2171 		return 0;
2172 
2173 	handle = ext4_journal_current_handle();
2174 	BUG_ON(!handle);
2175 
2176 	/*
2177 	 * Call ext4_get_blocks() to allocate any delayed allocation
2178 	 * blocks, or to convert an uninitialized extent to be
2179 	 * initialized (in the case where we have written into
2180 	 * one or more preallocated blocks).
2181 	 *
2182 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2183 	 * indicate that we are on the delayed allocation path.  This
2184 	 * affects functions in many different parts of the allocation
2185 	 * call path.  This flag exists primarily because we don't
2186 	 * want to change *many* call functions, so ext4_get_blocks()
2187 	 * will set the magic i_delalloc_reserved_flag once the
2188 	 * inode's allocation semaphore is taken.
2189 	 *
2190 	 * If the blocks in questions were delalloc blocks, set
2191 	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2192 	 * variables are updated after the blocks have been allocated.
2193 	 */
2194 	new.b_state = 0;
2195 	get_blocks_flags = (EXT4_GET_BLOCKS_CREATE |
2196 			    EXT4_GET_BLOCKS_DELALLOC_RESERVE);
2197 	if (mpd->b_state & (1 << BH_Delay))
2198 		get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE;
2199 	blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2200 			       &new, get_blocks_flags);
2201 	if (blks < 0) {
2202 		err = blks;
2203 		/*
2204 		 * If get block returns with error we simply
2205 		 * return. Later writepage will redirty the page and
2206 		 * writepages will find the dirty page again
2207 		 */
2208 		if (err == -EAGAIN)
2209 			return 0;
2210 
2211 		if (err == -ENOSPC &&
2212 		    ext4_count_free_blocks(mpd->inode->i_sb)) {
2213 			mpd->retval = err;
2214 			return 0;
2215 		}
2216 
2217 		/*
2218 		 * get block failure will cause us to loop in
2219 		 * writepages, because a_ops->writepage won't be able
2220 		 * to make progress. The page will be redirtied by
2221 		 * writepage and writepages will again try to write
2222 		 * the same.
2223 		 */
2224 		ext4_msg(mpd->inode->i_sb, KERN_CRIT,
2225 			 "delayed block allocation failed for inode %lu at "
2226 			 "logical offset %llu with max blocks %zd with "
2227 			 "error %d\n", mpd->inode->i_ino,
2228 			 (unsigned long long) next,
2229 			 mpd->b_size >> mpd->inode->i_blkbits, err);
2230 		printk(KERN_CRIT "This should not happen!!  "
2231 		       "Data will be lost\n");
2232 		if (err == -ENOSPC) {
2233 			ext4_print_free_blocks(mpd->inode);
2234 		}
2235 		/* invalidate all the pages */
2236 		ext4_da_block_invalidatepages(mpd, next,
2237 				mpd->b_size >> mpd->inode->i_blkbits);
2238 		return err;
2239 	}
2240 	BUG_ON(blks == 0);
2241 
2242 	new.b_size = (blks << mpd->inode->i_blkbits);
2243 
2244 	if (buffer_new(&new))
2245 		__unmap_underlying_blocks(mpd->inode, &new);
2246 
2247 	/*
2248 	 * If blocks are delayed marked, we need to
2249 	 * put actual blocknr and drop delayed bit
2250 	 */
2251 	if ((mpd->b_state & (1 << BH_Delay)) ||
2252 	    (mpd->b_state & (1 << BH_Unwritten)))
2253 		mpage_put_bnr_to_bhs(mpd, next, &new);
2254 
2255 	if (ext4_should_order_data(mpd->inode)) {
2256 		err = ext4_jbd2_file_inode(handle, mpd->inode);
2257 		if (err)
2258 			return err;
2259 	}
2260 
2261 	/*
2262 	 * Update on-disk size along with block allocation.
2263 	 */
2264 	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2265 	if (disksize > i_size_read(mpd->inode))
2266 		disksize = i_size_read(mpd->inode);
2267 	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2268 		ext4_update_i_disksize(mpd->inode, disksize);
2269 		return ext4_mark_inode_dirty(handle, mpd->inode);
2270 	}
2271 
2272 	return 0;
2273 }
2274 
2275 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2276 		(1 << BH_Delay) | (1 << BH_Unwritten))
2277 
2278 /*
2279  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2280  *
2281  * @mpd->lbh - extent of blocks
2282  * @logical - logical number of the block in the file
2283  * @bh - bh of the block (used to access block's state)
2284  *
2285  * the function is used to collect contig. blocks in same state
2286  */
2287 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2288 				   sector_t logical, size_t b_size,
2289 				   unsigned long b_state)
2290 {
2291 	sector_t next;
2292 	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2293 
2294 	/* check if thereserved journal credits might overflow */
2295 	if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2296 		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2297 			/*
2298 			 * With non-extent format we are limited by the journal
2299 			 * credit available.  Total credit needed to insert
2300 			 * nrblocks contiguous blocks is dependent on the
2301 			 * nrblocks.  So limit nrblocks.
2302 			 */
2303 			goto flush_it;
2304 		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2305 				EXT4_MAX_TRANS_DATA) {
2306 			/*
2307 			 * Adding the new buffer_head would make it cross the
2308 			 * allowed limit for which we have journal credit
2309 			 * reserved. So limit the new bh->b_size
2310 			 */
2311 			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2312 						mpd->inode->i_blkbits;
2313 			/* we will do mpage_da_submit_io in the next loop */
2314 		}
2315 	}
2316 	/*
2317 	 * First block in the extent
2318 	 */
2319 	if (mpd->b_size == 0) {
2320 		mpd->b_blocknr = logical;
2321 		mpd->b_size = b_size;
2322 		mpd->b_state = b_state & BH_FLAGS;
2323 		return;
2324 	}
2325 
2326 	next = mpd->b_blocknr + nrblocks;
2327 	/*
2328 	 * Can we merge the block to our big extent?
2329 	 */
2330 	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2331 		mpd->b_size += b_size;
2332 		return;
2333 	}
2334 
2335 flush_it:
2336 	/*
2337 	 * We couldn't merge the block to our extent, so we
2338 	 * need to flush current  extent and start new one
2339 	 */
2340 	if (mpage_da_map_blocks(mpd) == 0)
2341 		mpage_da_submit_io(mpd);
2342 	mpd->io_done = 1;
2343 	return;
2344 }
2345 
2346 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2347 {
2348 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2349 }
2350 
2351 /*
2352  * __mpage_da_writepage - finds extent of pages and blocks
2353  *
2354  * @page: page to consider
2355  * @wbc: not used, we just follow rules
2356  * @data: context
2357  *
2358  * The function finds extents of pages and scan them for all blocks.
2359  */
2360 static int __mpage_da_writepage(struct page *page,
2361 				struct writeback_control *wbc, void *data)
2362 {
2363 	struct mpage_da_data *mpd = data;
2364 	struct inode *inode = mpd->inode;
2365 	struct buffer_head *bh, *head;
2366 	sector_t logical;
2367 
2368 	if (mpd->io_done) {
2369 		/*
2370 		 * Rest of the page in the page_vec
2371 		 * redirty then and skip then. We will
2372 		 * try to write them again after
2373 		 * starting a new transaction
2374 		 */
2375 		redirty_page_for_writepage(wbc, page);
2376 		unlock_page(page);
2377 		return MPAGE_DA_EXTENT_TAIL;
2378 	}
2379 	/*
2380 	 * Can we merge this page to current extent?
2381 	 */
2382 	if (mpd->next_page != page->index) {
2383 		/*
2384 		 * Nope, we can't. So, we map non-allocated blocks
2385 		 * and start IO on them using writepage()
2386 		 */
2387 		if (mpd->next_page != mpd->first_page) {
2388 			if (mpage_da_map_blocks(mpd) == 0)
2389 				mpage_da_submit_io(mpd);
2390 			/*
2391 			 * skip rest of the page in the page_vec
2392 			 */
2393 			mpd->io_done = 1;
2394 			redirty_page_for_writepage(wbc, page);
2395 			unlock_page(page);
2396 			return MPAGE_DA_EXTENT_TAIL;
2397 		}
2398 
2399 		/*
2400 		 * Start next extent of pages ...
2401 		 */
2402 		mpd->first_page = page->index;
2403 
2404 		/*
2405 		 * ... and blocks
2406 		 */
2407 		mpd->b_size = 0;
2408 		mpd->b_state = 0;
2409 		mpd->b_blocknr = 0;
2410 	}
2411 
2412 	mpd->next_page = page->index + 1;
2413 	logical = (sector_t) page->index <<
2414 		  (PAGE_CACHE_SHIFT - inode->i_blkbits);
2415 
2416 	if (!page_has_buffers(page)) {
2417 		mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2418 				       (1 << BH_Dirty) | (1 << BH_Uptodate));
2419 		if (mpd->io_done)
2420 			return MPAGE_DA_EXTENT_TAIL;
2421 	} else {
2422 		/*
2423 		 * Page with regular buffer heads, just add all dirty ones
2424 		 */
2425 		head = page_buffers(page);
2426 		bh = head;
2427 		do {
2428 			BUG_ON(buffer_locked(bh));
2429 			/*
2430 			 * We need to try to allocate
2431 			 * unmapped blocks in the same page.
2432 			 * Otherwise we won't make progress
2433 			 * with the page in ext4_writepage
2434 			 */
2435 			if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2436 				mpage_add_bh_to_extent(mpd, logical,
2437 						       bh->b_size,
2438 						       bh->b_state);
2439 				if (mpd->io_done)
2440 					return MPAGE_DA_EXTENT_TAIL;
2441 			} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2442 				/*
2443 				 * mapped dirty buffer. We need to update
2444 				 * the b_state because we look at
2445 				 * b_state in mpage_da_map_blocks. We don't
2446 				 * update b_size because if we find an
2447 				 * unmapped buffer_head later we need to
2448 				 * use the b_state flag of that buffer_head.
2449 				 */
2450 				if (mpd->b_size == 0)
2451 					mpd->b_state = bh->b_state & BH_FLAGS;
2452 			}
2453 			logical++;
2454 		} while ((bh = bh->b_this_page) != head);
2455 	}
2456 
2457 	return 0;
2458 }
2459 
2460 /*
2461  * This is a special get_blocks_t callback which is used by
2462  * ext4_da_write_begin().  It will either return mapped block or
2463  * reserve space for a single block.
2464  *
2465  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2466  * We also have b_blocknr = -1 and b_bdev initialized properly
2467  *
2468  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2469  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2470  * initialized properly.
2471  */
2472 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2473 				  struct buffer_head *bh_result, int create)
2474 {
2475 	int ret = 0;
2476 	sector_t invalid_block = ~((sector_t) 0xffff);
2477 
2478 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2479 		invalid_block = ~0;
2480 
2481 	BUG_ON(create == 0);
2482 	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2483 
2484 	/*
2485 	 * first, we need to know whether the block is allocated already
2486 	 * preallocated blocks are unmapped but should treated
2487 	 * the same as allocated blocks.
2488 	 */
2489 	ret = ext4_get_blocks(NULL, inode, iblock, 1,  bh_result, 0);
2490 	if ((ret == 0) && !buffer_delay(bh_result)) {
2491 		/* the block isn't (pre)allocated yet, let's reserve space */
2492 		/*
2493 		 * XXX: __block_prepare_write() unmaps passed block,
2494 		 * is it OK?
2495 		 */
2496 		ret = ext4_da_reserve_space(inode, 1);
2497 		if (ret)
2498 			/* not enough space to reserve */
2499 			return ret;
2500 
2501 		map_bh(bh_result, inode->i_sb, invalid_block);
2502 		set_buffer_new(bh_result);
2503 		set_buffer_delay(bh_result);
2504 	} else if (ret > 0) {
2505 		bh_result->b_size = (ret << inode->i_blkbits);
2506 		if (buffer_unwritten(bh_result)) {
2507 			/* A delayed write to unwritten bh should
2508 			 * be marked new and mapped.  Mapped ensures
2509 			 * that we don't do get_block multiple times
2510 			 * when we write to the same offset and new
2511 			 * ensures that we do proper zero out for
2512 			 * partial write.
2513 			 */
2514 			set_buffer_new(bh_result);
2515 			set_buffer_mapped(bh_result);
2516 		}
2517 		ret = 0;
2518 	}
2519 
2520 	return ret;
2521 }
2522 
2523 /*
2524  * This function is used as a standard get_block_t calback function
2525  * when there is no desire to allocate any blocks.  It is used as a
2526  * callback function for block_prepare_write(), nobh_writepage(), and
2527  * block_write_full_page().  These functions should only try to map a
2528  * single block at a time.
2529  *
2530  * Since this function doesn't do block allocations even if the caller
2531  * requests it by passing in create=1, it is critically important that
2532  * any caller checks to make sure that any buffer heads are returned
2533  * by this function are either all already mapped or marked for
2534  * delayed allocation before calling nobh_writepage() or
2535  * block_write_full_page().  Otherwise, b_blocknr could be left
2536  * unitialized, and the page write functions will be taken by
2537  * surprise.
2538  */
2539 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2540 				   struct buffer_head *bh_result, int create)
2541 {
2542 	int ret = 0;
2543 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2544 
2545 	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2546 
2547 	/*
2548 	 * we don't want to do block allocation in writepage
2549 	 * so call get_block_wrap with create = 0
2550 	 */
2551 	ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2552 	if (ret > 0) {
2553 		bh_result->b_size = (ret << inode->i_blkbits);
2554 		ret = 0;
2555 	}
2556 	return ret;
2557 }
2558 
2559 static int bget_one(handle_t *handle, struct buffer_head *bh)
2560 {
2561 	get_bh(bh);
2562 	return 0;
2563 }
2564 
2565 static int bput_one(handle_t *handle, struct buffer_head *bh)
2566 {
2567 	put_bh(bh);
2568 	return 0;
2569 }
2570 
2571 static int __ext4_journalled_writepage(struct page *page,
2572 				       unsigned int len)
2573 {
2574 	struct address_space *mapping = page->mapping;
2575 	struct inode *inode = mapping->host;
2576 	struct buffer_head *page_bufs;
2577 	handle_t *handle = NULL;
2578 	int ret = 0;
2579 	int err;
2580 
2581 	page_bufs = page_buffers(page);
2582 	BUG_ON(!page_bufs);
2583 	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2584 	/* As soon as we unlock the page, it can go away, but we have
2585 	 * references to buffers so we are safe */
2586 	unlock_page(page);
2587 
2588 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2589 	if (IS_ERR(handle)) {
2590 		ret = PTR_ERR(handle);
2591 		goto out;
2592 	}
2593 
2594 	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2595 				do_journal_get_write_access);
2596 
2597 	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2598 				write_end_fn);
2599 	if (ret == 0)
2600 		ret = err;
2601 	err = ext4_journal_stop(handle);
2602 	if (!ret)
2603 		ret = err;
2604 
2605 	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2606 	EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2607 out:
2608 	return ret;
2609 }
2610 
2611 /*
2612  * Note that we don't need to start a transaction unless we're journaling data
2613  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2614  * need to file the inode to the transaction's list in ordered mode because if
2615  * we are writing back data added by write(), the inode is already there and if
2616  * we are writing back data modified via mmap(), noone guarantees in which
2617  * transaction the data will hit the disk. In case we are journaling data, we
2618  * cannot start transaction directly because transaction start ranks above page
2619  * lock so we have to do some magic.
2620  *
2621  * This function can get called via...
2622  *   - ext4_da_writepages after taking page lock (have journal handle)
2623  *   - journal_submit_inode_data_buffers (no journal handle)
2624  *   - shrink_page_list via pdflush (no journal handle)
2625  *   - grab_page_cache when doing write_begin (have journal handle)
2626  *
2627  * We don't do any block allocation in this function. If we have page with
2628  * multiple blocks we need to write those buffer_heads that are mapped. This
2629  * is important for mmaped based write. So if we do with blocksize 1K
2630  * truncate(f, 1024);
2631  * a = mmap(f, 0, 4096);
2632  * a[0] = 'a';
2633  * truncate(f, 4096);
2634  * we have in the page first buffer_head mapped via page_mkwrite call back
2635  * but other bufer_heads would be unmapped but dirty(dirty done via the
2636  * do_wp_page). So writepage should write the first block. If we modify
2637  * the mmap area beyond 1024 we will again get a page_fault and the
2638  * page_mkwrite callback will do the block allocation and mark the
2639  * buffer_heads mapped.
2640  *
2641  * We redirty the page if we have any buffer_heads that is either delay or
2642  * unwritten in the page.
2643  *
2644  * We can get recursively called as show below.
2645  *
2646  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2647  *		ext4_writepage()
2648  *
2649  * But since we don't do any block allocation we should not deadlock.
2650  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2651  */
2652 static int ext4_writepage(struct page *page,
2653 			  struct writeback_control *wbc)
2654 {
2655 	int ret = 0;
2656 	loff_t size;
2657 	unsigned int len;
2658 	struct buffer_head *page_bufs;
2659 	struct inode *inode = page->mapping->host;
2660 
2661 	trace_ext4_writepage(inode, page);
2662 	size = i_size_read(inode);
2663 	if (page->index == size >> PAGE_CACHE_SHIFT)
2664 		len = size & ~PAGE_CACHE_MASK;
2665 	else
2666 		len = PAGE_CACHE_SIZE;
2667 
2668 	if (page_has_buffers(page)) {
2669 		page_bufs = page_buffers(page);
2670 		if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2671 					ext4_bh_delay_or_unwritten)) {
2672 			/*
2673 			 * We don't want to do  block allocation
2674 			 * So redirty the page and return
2675 			 * We may reach here when we do a journal commit
2676 			 * via journal_submit_inode_data_buffers.
2677 			 * If we don't have mapping block we just ignore
2678 			 * them. We can also reach here via shrink_page_list
2679 			 */
2680 			redirty_page_for_writepage(wbc, page);
2681 			unlock_page(page);
2682 			return 0;
2683 		}
2684 	} else {
2685 		/*
2686 		 * The test for page_has_buffers() is subtle:
2687 		 * We know the page is dirty but it lost buffers. That means
2688 		 * that at some moment in time after write_begin()/write_end()
2689 		 * has been called all buffers have been clean and thus they
2690 		 * must have been written at least once. So they are all
2691 		 * mapped and we can happily proceed with mapping them
2692 		 * and writing the page.
2693 		 *
2694 		 * Try to initialize the buffer_heads and check whether
2695 		 * all are mapped and non delay. We don't want to
2696 		 * do block allocation here.
2697 		 */
2698 		ret = block_prepare_write(page, 0, len,
2699 					  noalloc_get_block_write);
2700 		if (!ret) {
2701 			page_bufs = page_buffers(page);
2702 			/* check whether all are mapped and non delay */
2703 			if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2704 						ext4_bh_delay_or_unwritten)) {
2705 				redirty_page_for_writepage(wbc, page);
2706 				unlock_page(page);
2707 				return 0;
2708 			}
2709 		} else {
2710 			/*
2711 			 * We can't do block allocation here
2712 			 * so just redity the page and unlock
2713 			 * and return
2714 			 */
2715 			redirty_page_for_writepage(wbc, page);
2716 			unlock_page(page);
2717 			return 0;
2718 		}
2719 		/* now mark the buffer_heads as dirty and uptodate */
2720 		block_commit_write(page, 0, len);
2721 	}
2722 
2723 	if (PageChecked(page) && ext4_should_journal_data(inode)) {
2724 		/*
2725 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2726 		 * doesn't seem much point in redirtying the page here.
2727 		 */
2728 		ClearPageChecked(page);
2729 		return __ext4_journalled_writepage(page, len);
2730 	}
2731 
2732 	if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2733 		ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2734 	else
2735 		ret = block_write_full_page(page, noalloc_get_block_write,
2736 					    wbc);
2737 
2738 	return ret;
2739 }
2740 
2741 /*
2742  * This is called via ext4_da_writepages() to
2743  * calulate the total number of credits to reserve to fit
2744  * a single extent allocation into a single transaction,
2745  * ext4_da_writpeages() will loop calling this before
2746  * the block allocation.
2747  */
2748 
2749 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2750 {
2751 	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2752 
2753 	/*
2754 	 * With non-extent format the journal credit needed to
2755 	 * insert nrblocks contiguous block is dependent on
2756 	 * number of contiguous block. So we will limit
2757 	 * number of contiguous block to a sane value
2758 	 */
2759 	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) &&
2760 	    (max_blocks > EXT4_MAX_TRANS_DATA))
2761 		max_blocks = EXT4_MAX_TRANS_DATA;
2762 
2763 	return ext4_chunk_trans_blocks(inode, max_blocks);
2764 }
2765 
2766 static int ext4_da_writepages(struct address_space *mapping,
2767 			      struct writeback_control *wbc)
2768 {
2769 	pgoff_t	index;
2770 	int range_whole = 0;
2771 	handle_t *handle = NULL;
2772 	struct mpage_da_data mpd;
2773 	struct inode *inode = mapping->host;
2774 	int no_nrwrite_index_update;
2775 	int pages_written = 0;
2776 	long pages_skipped;
2777 	unsigned int max_pages;
2778 	int range_cyclic, cycled = 1, io_done = 0;
2779 	int needed_blocks, ret = 0;
2780 	long desired_nr_to_write, nr_to_writebump = 0;
2781 	loff_t range_start = wbc->range_start;
2782 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2783 
2784 	trace_ext4_da_writepages(inode, wbc);
2785 
2786 	/*
2787 	 * No pages to write? This is mainly a kludge to avoid starting
2788 	 * a transaction for special inodes like journal inode on last iput()
2789 	 * because that could violate lock ordering on umount
2790 	 */
2791 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2792 		return 0;
2793 
2794 	/*
2795 	 * If the filesystem has aborted, it is read-only, so return
2796 	 * right away instead of dumping stack traces later on that
2797 	 * will obscure the real source of the problem.  We test
2798 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2799 	 * the latter could be true if the filesystem is mounted
2800 	 * read-only, and in that case, ext4_da_writepages should
2801 	 * *never* be called, so if that ever happens, we would want
2802 	 * the stack trace.
2803 	 */
2804 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2805 		return -EROFS;
2806 
2807 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2808 		range_whole = 1;
2809 
2810 	range_cyclic = wbc->range_cyclic;
2811 	if (wbc->range_cyclic) {
2812 		index = mapping->writeback_index;
2813 		if (index)
2814 			cycled = 0;
2815 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2816 		wbc->range_end  = LLONG_MAX;
2817 		wbc->range_cyclic = 0;
2818 	} else
2819 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2820 
2821 	/*
2822 	 * This works around two forms of stupidity.  The first is in
2823 	 * the writeback code, which caps the maximum number of pages
2824 	 * written to be 1024 pages.  This is wrong on multiple
2825 	 * levels; different architectues have a different page size,
2826 	 * which changes the maximum amount of data which gets
2827 	 * written.  Secondly, 4 megabytes is way too small.  XFS
2828 	 * forces this value to be 16 megabytes by multiplying
2829 	 * nr_to_write parameter by four, and then relies on its
2830 	 * allocator to allocate larger extents to make them
2831 	 * contiguous.  Unfortunately this brings us to the second
2832 	 * stupidity, which is that ext4's mballoc code only allocates
2833 	 * at most 2048 blocks.  So we force contiguous writes up to
2834 	 * the number of dirty blocks in the inode, or
2835 	 * sbi->max_writeback_mb_bump whichever is smaller.
2836 	 */
2837 	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2838 	if (!range_cyclic && range_whole)
2839 		desired_nr_to_write = wbc->nr_to_write * 8;
2840 	else
2841 		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2842 							   max_pages);
2843 	if (desired_nr_to_write > max_pages)
2844 		desired_nr_to_write = max_pages;
2845 
2846 	if (wbc->nr_to_write < desired_nr_to_write) {
2847 		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2848 		wbc->nr_to_write = desired_nr_to_write;
2849 	}
2850 
2851 	mpd.wbc = wbc;
2852 	mpd.inode = mapping->host;
2853 
2854 	/*
2855 	 * we don't want write_cache_pages to update
2856 	 * nr_to_write and writeback_index
2857 	 */
2858 	no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2859 	wbc->no_nrwrite_index_update = 1;
2860 	pages_skipped = wbc->pages_skipped;
2861 
2862 retry:
2863 	while (!ret && wbc->nr_to_write > 0) {
2864 
2865 		/*
2866 		 * we  insert one extent at a time. So we need
2867 		 * credit needed for single extent allocation.
2868 		 * journalled mode is currently not supported
2869 		 * by delalloc
2870 		 */
2871 		BUG_ON(ext4_should_journal_data(inode));
2872 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2873 
2874 		/* start a new transaction*/
2875 		handle = ext4_journal_start(inode, needed_blocks);
2876 		if (IS_ERR(handle)) {
2877 			ret = PTR_ERR(handle);
2878 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2879 			       "%ld pages, ino %lu; err %d\n", __func__,
2880 				wbc->nr_to_write, inode->i_ino, ret);
2881 			goto out_writepages;
2882 		}
2883 
2884 		/*
2885 		 * Now call __mpage_da_writepage to find the next
2886 		 * contiguous region of logical blocks that need
2887 		 * blocks to be allocated by ext4.  We don't actually
2888 		 * submit the blocks for I/O here, even though
2889 		 * write_cache_pages thinks it will, and will set the
2890 		 * pages as clean for write before calling
2891 		 * __mpage_da_writepage().
2892 		 */
2893 		mpd.b_size = 0;
2894 		mpd.b_state = 0;
2895 		mpd.b_blocknr = 0;
2896 		mpd.first_page = 0;
2897 		mpd.next_page = 0;
2898 		mpd.io_done = 0;
2899 		mpd.pages_written = 0;
2900 		mpd.retval = 0;
2901 		ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2902 					&mpd);
2903 		/*
2904 		 * If we have a contiguous extent of pages and we
2905 		 * haven't done the I/O yet, map the blocks and submit
2906 		 * them for I/O.
2907 		 */
2908 		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2909 			if (mpage_da_map_blocks(&mpd) == 0)
2910 				mpage_da_submit_io(&mpd);
2911 			mpd.io_done = 1;
2912 			ret = MPAGE_DA_EXTENT_TAIL;
2913 		}
2914 		trace_ext4_da_write_pages(inode, &mpd);
2915 		wbc->nr_to_write -= mpd.pages_written;
2916 
2917 		ext4_journal_stop(handle);
2918 
2919 		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2920 			/* commit the transaction which would
2921 			 * free blocks released in the transaction
2922 			 * and try again
2923 			 */
2924 			jbd2_journal_force_commit_nested(sbi->s_journal);
2925 			wbc->pages_skipped = pages_skipped;
2926 			ret = 0;
2927 		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2928 			/*
2929 			 * got one extent now try with
2930 			 * rest of the pages
2931 			 */
2932 			pages_written += mpd.pages_written;
2933 			wbc->pages_skipped = pages_skipped;
2934 			ret = 0;
2935 			io_done = 1;
2936 		} else if (wbc->nr_to_write)
2937 			/*
2938 			 * There is no more writeout needed
2939 			 * or we requested for a noblocking writeout
2940 			 * and we found the device congested
2941 			 */
2942 			break;
2943 	}
2944 	if (!io_done && !cycled) {
2945 		cycled = 1;
2946 		index = 0;
2947 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2948 		wbc->range_end  = mapping->writeback_index - 1;
2949 		goto retry;
2950 	}
2951 	if (pages_skipped != wbc->pages_skipped)
2952 		ext4_msg(inode->i_sb, KERN_CRIT,
2953 			 "This should not happen leaving %s "
2954 			 "with nr_to_write = %ld ret = %d\n",
2955 			 __func__, wbc->nr_to_write, ret);
2956 
2957 	/* Update index */
2958 	index += pages_written;
2959 	wbc->range_cyclic = range_cyclic;
2960 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2961 		/*
2962 		 * set the writeback_index so that range_cyclic
2963 		 * mode will write it back later
2964 		 */
2965 		mapping->writeback_index = index;
2966 
2967 out_writepages:
2968 	if (!no_nrwrite_index_update)
2969 		wbc->no_nrwrite_index_update = 0;
2970 	if (wbc->nr_to_write > nr_to_writebump)
2971 		wbc->nr_to_write -= nr_to_writebump;
2972 	wbc->range_start = range_start;
2973 	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2974 	return ret;
2975 }
2976 
2977 #define FALL_BACK_TO_NONDELALLOC 1
2978 static int ext4_nonda_switch(struct super_block *sb)
2979 {
2980 	s64 free_blocks, dirty_blocks;
2981 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2982 
2983 	/*
2984 	 * switch to non delalloc mode if we are running low
2985 	 * on free block. The free block accounting via percpu
2986 	 * counters can get slightly wrong with percpu_counter_batch getting
2987 	 * accumulated on each CPU without updating global counters
2988 	 * Delalloc need an accurate free block accounting. So switch
2989 	 * to non delalloc when we are near to error range.
2990 	 */
2991 	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2992 	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2993 	if (2 * free_blocks < 3 * dirty_blocks ||
2994 		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2995 		/*
2996 		 * free block count is less that 150% of dirty blocks
2997 		 * or free blocks is less that watermark
2998 		 */
2999 		return 1;
3000 	}
3001 	return 0;
3002 }
3003 
3004 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3005 			       loff_t pos, unsigned len, unsigned flags,
3006 			       struct page **pagep, void **fsdata)
3007 {
3008 	int ret, retries = 0;
3009 	struct page *page;
3010 	pgoff_t index;
3011 	unsigned from, to;
3012 	struct inode *inode = mapping->host;
3013 	handle_t *handle;
3014 
3015 	index = pos >> PAGE_CACHE_SHIFT;
3016 	from = pos & (PAGE_CACHE_SIZE - 1);
3017 	to = from + len;
3018 
3019 	if (ext4_nonda_switch(inode->i_sb)) {
3020 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3021 		return ext4_write_begin(file, mapping, pos,
3022 					len, flags, pagep, fsdata);
3023 	}
3024 	*fsdata = (void *)0;
3025 	trace_ext4_da_write_begin(inode, pos, len, flags);
3026 retry:
3027 	/*
3028 	 * With delayed allocation, we don't log the i_disksize update
3029 	 * if there is delayed block allocation. But we still need
3030 	 * to journalling the i_disksize update if writes to the end
3031 	 * of file which has an already mapped buffer.
3032 	 */
3033 	handle = ext4_journal_start(inode, 1);
3034 	if (IS_ERR(handle)) {
3035 		ret = PTR_ERR(handle);
3036 		goto out;
3037 	}
3038 	/* We cannot recurse into the filesystem as the transaction is already
3039 	 * started */
3040 	flags |= AOP_FLAG_NOFS;
3041 
3042 	page = grab_cache_page_write_begin(mapping, index, flags);
3043 	if (!page) {
3044 		ext4_journal_stop(handle);
3045 		ret = -ENOMEM;
3046 		goto out;
3047 	}
3048 	*pagep = page;
3049 
3050 	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
3051 				ext4_da_get_block_prep);
3052 	if (ret < 0) {
3053 		unlock_page(page);
3054 		ext4_journal_stop(handle);
3055 		page_cache_release(page);
3056 		/*
3057 		 * block_write_begin may have instantiated a few blocks
3058 		 * outside i_size.  Trim these off again. Don't need
3059 		 * i_size_read because we hold i_mutex.
3060 		 */
3061 		if (pos + len > inode->i_size)
3062 			ext4_truncate_failed_write(inode);
3063 	}
3064 
3065 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3066 		goto retry;
3067 out:
3068 	return ret;
3069 }
3070 
3071 /*
3072  * Check if we should update i_disksize
3073  * when write to the end of file but not require block allocation
3074  */
3075 static int ext4_da_should_update_i_disksize(struct page *page,
3076 					    unsigned long offset)
3077 {
3078 	struct buffer_head *bh;
3079 	struct inode *inode = page->mapping->host;
3080 	unsigned int idx;
3081 	int i;
3082 
3083 	bh = page_buffers(page);
3084 	idx = offset >> inode->i_blkbits;
3085 
3086 	for (i = 0; i < idx; i++)
3087 		bh = bh->b_this_page;
3088 
3089 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3090 		return 0;
3091 	return 1;
3092 }
3093 
3094 static int ext4_da_write_end(struct file *file,
3095 			     struct address_space *mapping,
3096 			     loff_t pos, unsigned len, unsigned copied,
3097 			     struct page *page, void *fsdata)
3098 {
3099 	struct inode *inode = mapping->host;
3100 	int ret = 0, ret2;
3101 	handle_t *handle = ext4_journal_current_handle();
3102 	loff_t new_i_size;
3103 	unsigned long start, end;
3104 	int write_mode = (int)(unsigned long)fsdata;
3105 
3106 	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3107 		if (ext4_should_order_data(inode)) {
3108 			return ext4_ordered_write_end(file, mapping, pos,
3109 					len, copied, page, fsdata);
3110 		} else if (ext4_should_writeback_data(inode)) {
3111 			return ext4_writeback_write_end(file, mapping, pos,
3112 					len, copied, page, fsdata);
3113 		} else {
3114 			BUG();
3115 		}
3116 	}
3117 
3118 	trace_ext4_da_write_end(inode, pos, len, copied);
3119 	start = pos & (PAGE_CACHE_SIZE - 1);
3120 	end = start + copied - 1;
3121 
3122 	/*
3123 	 * generic_write_end() will run mark_inode_dirty() if i_size
3124 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
3125 	 * into that.
3126 	 */
3127 
3128 	new_i_size = pos + copied;
3129 	if (new_i_size > EXT4_I(inode)->i_disksize) {
3130 		if (ext4_da_should_update_i_disksize(page, end)) {
3131 			down_write(&EXT4_I(inode)->i_data_sem);
3132 			if (new_i_size > EXT4_I(inode)->i_disksize) {
3133 				/*
3134 				 * Updating i_disksize when extending file
3135 				 * without needing block allocation
3136 				 */
3137 				if (ext4_should_order_data(inode))
3138 					ret = ext4_jbd2_file_inode(handle,
3139 								   inode);
3140 
3141 				EXT4_I(inode)->i_disksize = new_i_size;
3142 			}
3143 			up_write(&EXT4_I(inode)->i_data_sem);
3144 			/* We need to mark inode dirty even if
3145 			 * new_i_size is less that inode->i_size
3146 			 * bu greater than i_disksize.(hint delalloc)
3147 			 */
3148 			ext4_mark_inode_dirty(handle, inode);
3149 		}
3150 	}
3151 	ret2 = generic_write_end(file, mapping, pos, len, copied,
3152 							page, fsdata);
3153 	copied = ret2;
3154 	if (ret2 < 0)
3155 		ret = ret2;
3156 	ret2 = ext4_journal_stop(handle);
3157 	if (!ret)
3158 		ret = ret2;
3159 
3160 	return ret ? ret : copied;
3161 }
3162 
3163 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3164 {
3165 	/*
3166 	 * Drop reserved blocks
3167 	 */
3168 	BUG_ON(!PageLocked(page));
3169 	if (!page_has_buffers(page))
3170 		goto out;
3171 
3172 	ext4_da_page_release_reservation(page, offset);
3173 
3174 out:
3175 	ext4_invalidatepage(page, offset);
3176 
3177 	return;
3178 }
3179 
3180 /*
3181  * Force all delayed allocation blocks to be allocated for a given inode.
3182  */
3183 int ext4_alloc_da_blocks(struct inode *inode)
3184 {
3185 	trace_ext4_alloc_da_blocks(inode);
3186 
3187 	if (!EXT4_I(inode)->i_reserved_data_blocks &&
3188 	    !EXT4_I(inode)->i_reserved_meta_blocks)
3189 		return 0;
3190 
3191 	/*
3192 	 * We do something simple for now.  The filemap_flush() will
3193 	 * also start triggering a write of the data blocks, which is
3194 	 * not strictly speaking necessary (and for users of
3195 	 * laptop_mode, not even desirable).  However, to do otherwise
3196 	 * would require replicating code paths in:
3197 	 *
3198 	 * ext4_da_writepages() ->
3199 	 *    write_cache_pages() ---> (via passed in callback function)
3200 	 *        __mpage_da_writepage() -->
3201 	 *           mpage_add_bh_to_extent()
3202 	 *           mpage_da_map_blocks()
3203 	 *
3204 	 * The problem is that write_cache_pages(), located in
3205 	 * mm/page-writeback.c, marks pages clean in preparation for
3206 	 * doing I/O, which is not desirable if we're not planning on
3207 	 * doing I/O at all.
3208 	 *
3209 	 * We could call write_cache_pages(), and then redirty all of
3210 	 * the pages by calling redirty_page_for_writeback() but that
3211 	 * would be ugly in the extreme.  So instead we would need to
3212 	 * replicate parts of the code in the above functions,
3213 	 * simplifying them becuase we wouldn't actually intend to
3214 	 * write out the pages, but rather only collect contiguous
3215 	 * logical block extents, call the multi-block allocator, and
3216 	 * then update the buffer heads with the block allocations.
3217 	 *
3218 	 * For now, though, we'll cheat by calling filemap_flush(),
3219 	 * which will map the blocks, and start the I/O, but not
3220 	 * actually wait for the I/O to complete.
3221 	 */
3222 	return filemap_flush(inode->i_mapping);
3223 }
3224 
3225 /*
3226  * bmap() is special.  It gets used by applications such as lilo and by
3227  * the swapper to find the on-disk block of a specific piece of data.
3228  *
3229  * Naturally, this is dangerous if the block concerned is still in the
3230  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3231  * filesystem and enables swap, then they may get a nasty shock when the
3232  * data getting swapped to that swapfile suddenly gets overwritten by
3233  * the original zero's written out previously to the journal and
3234  * awaiting writeback in the kernel's buffer cache.
3235  *
3236  * So, if we see any bmap calls here on a modified, data-journaled file,
3237  * take extra steps to flush any blocks which might be in the cache.
3238  */
3239 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3240 {
3241 	struct inode *inode = mapping->host;
3242 	journal_t *journal;
3243 	int err;
3244 
3245 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3246 			test_opt(inode->i_sb, DELALLOC)) {
3247 		/*
3248 		 * With delalloc we want to sync the file
3249 		 * so that we can make sure we allocate
3250 		 * blocks for file
3251 		 */
3252 		filemap_write_and_wait(mapping);
3253 	}
3254 
3255 	if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
3256 		/*
3257 		 * This is a REALLY heavyweight approach, but the use of
3258 		 * bmap on dirty files is expected to be extremely rare:
3259 		 * only if we run lilo or swapon on a freshly made file
3260 		 * do we expect this to happen.
3261 		 *
3262 		 * (bmap requires CAP_SYS_RAWIO so this does not
3263 		 * represent an unprivileged user DOS attack --- we'd be
3264 		 * in trouble if mortal users could trigger this path at
3265 		 * will.)
3266 		 *
3267 		 * NB. EXT4_STATE_JDATA is not set on files other than
3268 		 * regular files.  If somebody wants to bmap a directory
3269 		 * or symlink and gets confused because the buffer
3270 		 * hasn't yet been flushed to disk, they deserve
3271 		 * everything they get.
3272 		 */
3273 
3274 		EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3275 		journal = EXT4_JOURNAL(inode);
3276 		jbd2_journal_lock_updates(journal);
3277 		err = jbd2_journal_flush(journal);
3278 		jbd2_journal_unlock_updates(journal);
3279 
3280 		if (err)
3281 			return 0;
3282 	}
3283 
3284 	return generic_block_bmap(mapping, block, ext4_get_block);
3285 }
3286 
3287 static int ext4_readpage(struct file *file, struct page *page)
3288 {
3289 	return mpage_readpage(page, ext4_get_block);
3290 }
3291 
3292 static int
3293 ext4_readpages(struct file *file, struct address_space *mapping,
3294 		struct list_head *pages, unsigned nr_pages)
3295 {
3296 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3297 }
3298 
3299 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3300 {
3301 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3302 
3303 	/*
3304 	 * If it's a full truncate we just forget about the pending dirtying
3305 	 */
3306 	if (offset == 0)
3307 		ClearPageChecked(page);
3308 
3309 	if (journal)
3310 		jbd2_journal_invalidatepage(journal, page, offset);
3311 	else
3312 		block_invalidatepage(page, offset);
3313 }
3314 
3315 static int ext4_releasepage(struct page *page, gfp_t wait)
3316 {
3317 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3318 
3319 	WARN_ON(PageChecked(page));
3320 	if (!page_has_buffers(page))
3321 		return 0;
3322 	if (journal)
3323 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3324 	else
3325 		return try_to_free_buffers(page);
3326 }
3327 
3328 /*
3329  * O_DIRECT for ext3 (or indirect map) based files
3330  *
3331  * If the O_DIRECT write will extend the file then add this inode to the
3332  * orphan list.  So recovery will truncate it back to the original size
3333  * if the machine crashes during the write.
3334  *
3335  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3336  * crashes then stale disk data _may_ be exposed inside the file. But current
3337  * VFS code falls back into buffered path in that case so we are safe.
3338  */
3339 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3340 			      const struct iovec *iov, loff_t offset,
3341 			      unsigned long nr_segs)
3342 {
3343 	struct file *file = iocb->ki_filp;
3344 	struct inode *inode = file->f_mapping->host;
3345 	struct ext4_inode_info *ei = EXT4_I(inode);
3346 	handle_t *handle;
3347 	ssize_t ret;
3348 	int orphan = 0;
3349 	size_t count = iov_length(iov, nr_segs);
3350 	int retries = 0;
3351 
3352 	if (rw == WRITE) {
3353 		loff_t final_size = offset + count;
3354 
3355 		if (final_size > inode->i_size) {
3356 			/* Credits for sb + inode write */
3357 			handle = ext4_journal_start(inode, 2);
3358 			if (IS_ERR(handle)) {
3359 				ret = PTR_ERR(handle);
3360 				goto out;
3361 			}
3362 			ret = ext4_orphan_add(handle, inode);
3363 			if (ret) {
3364 				ext4_journal_stop(handle);
3365 				goto out;
3366 			}
3367 			orphan = 1;
3368 			ei->i_disksize = inode->i_size;
3369 			ext4_journal_stop(handle);
3370 		}
3371 	}
3372 
3373 retry:
3374 	ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3375 				 offset, nr_segs,
3376 				 ext4_get_block, NULL);
3377 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3378 		goto retry;
3379 
3380 	if (orphan) {
3381 		int err;
3382 
3383 		/* Credits for sb + inode write */
3384 		handle = ext4_journal_start(inode, 2);
3385 		if (IS_ERR(handle)) {
3386 			/* This is really bad luck. We've written the data
3387 			 * but cannot extend i_size. Bail out and pretend
3388 			 * the write failed... */
3389 			ret = PTR_ERR(handle);
3390 			goto out;
3391 		}
3392 		if (inode->i_nlink)
3393 			ext4_orphan_del(handle, inode);
3394 		if (ret > 0) {
3395 			loff_t end = offset + ret;
3396 			if (end > inode->i_size) {
3397 				ei->i_disksize = end;
3398 				i_size_write(inode, end);
3399 				/*
3400 				 * We're going to return a positive `ret'
3401 				 * here due to non-zero-length I/O, so there's
3402 				 * no way of reporting error returns from
3403 				 * ext4_mark_inode_dirty() to userspace.  So
3404 				 * ignore it.
3405 				 */
3406 				ext4_mark_inode_dirty(handle, inode);
3407 			}
3408 		}
3409 		err = ext4_journal_stop(handle);
3410 		if (ret == 0)
3411 			ret = err;
3412 	}
3413 out:
3414 	return ret;
3415 }
3416 
3417 static int ext4_get_block_dio_write(struct inode *inode, sector_t iblock,
3418 		   struct buffer_head *bh_result, int create)
3419 {
3420 	handle_t *handle = NULL;
3421 	int ret = 0;
3422 	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
3423 	int dio_credits;
3424 
3425 	ext4_debug("ext4_get_block_dio_write: inode %lu, create flag %d\n",
3426 		   inode->i_ino, create);
3427 	/*
3428 	 * DIO VFS code passes create = 0 flag for write to
3429 	 * the middle of file. It does this to avoid block
3430 	 * allocation for holes, to prevent expose stale data
3431 	 * out when there is parallel buffered read (which does
3432 	 * not hold the i_mutex lock) while direct IO write has
3433 	 * not completed. DIO request on holes finally falls back
3434 	 * to buffered IO for this reason.
3435 	 *
3436 	 * For ext4 extent based file, since we support fallocate,
3437 	 * new allocated extent as uninitialized, for holes, we
3438 	 * could fallocate blocks for holes, thus parallel
3439 	 * buffered IO read will zero out the page when read on
3440 	 * a hole while parallel DIO write to the hole has not completed.
3441 	 *
3442 	 * when we come here, we know it's a direct IO write to
3443 	 * to the middle of file (<i_size)
3444 	 * so it's safe to override the create flag from VFS.
3445 	 */
3446 	create = EXT4_GET_BLOCKS_DIO_CREATE_EXT;
3447 
3448 	if (max_blocks > DIO_MAX_BLOCKS)
3449 		max_blocks = DIO_MAX_BLOCKS;
3450 	dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
3451 	handle = ext4_journal_start(inode, dio_credits);
3452 	if (IS_ERR(handle)) {
3453 		ret = PTR_ERR(handle);
3454 		goto out;
3455 	}
3456 	ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
3457 			      create);
3458 	if (ret > 0) {
3459 		bh_result->b_size = (ret << inode->i_blkbits);
3460 		ret = 0;
3461 	}
3462 	ext4_journal_stop(handle);
3463 out:
3464 	return ret;
3465 }
3466 
3467 static void ext4_free_io_end(ext4_io_end_t *io)
3468 {
3469 	BUG_ON(!io);
3470 	iput(io->inode);
3471 	kfree(io);
3472 }
3473 static void dump_aio_dio_list(struct inode * inode)
3474 {
3475 #ifdef	EXT4_DEBUG
3476 	struct list_head *cur, *before, *after;
3477 	ext4_io_end_t *io, *io0, *io1;
3478 
3479 	if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3480 		ext4_debug("inode %lu aio dio list is empty\n", inode->i_ino);
3481 		return;
3482 	}
3483 
3484 	ext4_debug("Dump inode %lu aio_dio_completed_IO list \n", inode->i_ino);
3485 	list_for_each_entry(io, &EXT4_I(inode)->i_aio_dio_complete_list, list){
3486 		cur = &io->list;
3487 		before = cur->prev;
3488 		io0 = container_of(before, ext4_io_end_t, list);
3489 		after = cur->next;
3490 		io1 = container_of(after, ext4_io_end_t, list);
3491 
3492 		ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3493 			    io, inode->i_ino, io0, io1);
3494 	}
3495 #endif
3496 }
3497 
3498 /*
3499  * check a range of space and convert unwritten extents to written.
3500  */
3501 static int ext4_end_aio_dio_nolock(ext4_io_end_t *io)
3502 {
3503 	struct inode *inode = io->inode;
3504 	loff_t offset = io->offset;
3505 	size_t size = io->size;
3506 	int ret = 0;
3507 
3508 	ext4_debug("end_aio_dio_onlock: io 0x%p from inode %lu,list->next 0x%p,"
3509 		   "list->prev 0x%p\n",
3510 	           io, inode->i_ino, io->list.next, io->list.prev);
3511 
3512 	if (list_empty(&io->list))
3513 		return ret;
3514 
3515 	if (io->flag != DIO_AIO_UNWRITTEN)
3516 		return ret;
3517 
3518 	if (offset + size <= i_size_read(inode))
3519 		ret = ext4_convert_unwritten_extents(inode, offset, size);
3520 
3521 	if (ret < 0) {
3522 		printk(KERN_EMERG "%s: failed to convert unwritten"
3523 			"extents to written extents, error is %d"
3524 			" io is still on inode %lu aio dio list\n",
3525                        __func__, ret, inode->i_ino);
3526 		return ret;
3527 	}
3528 
3529 	/* clear the DIO AIO unwritten flag */
3530 	io->flag = 0;
3531 	return ret;
3532 }
3533 /*
3534  * work on completed aio dio IO, to convert unwritten extents to extents
3535  */
3536 static void ext4_end_aio_dio_work(struct work_struct *work)
3537 {
3538 	ext4_io_end_t *io  = container_of(work, ext4_io_end_t, work);
3539 	struct inode *inode = io->inode;
3540 	int ret = 0;
3541 
3542 	mutex_lock(&inode->i_mutex);
3543 	ret = ext4_end_aio_dio_nolock(io);
3544 	if (ret >= 0) {
3545 		if (!list_empty(&io->list))
3546 			list_del_init(&io->list);
3547 		ext4_free_io_end(io);
3548 	}
3549 	mutex_unlock(&inode->i_mutex);
3550 }
3551 /*
3552  * This function is called from ext4_sync_file().
3553  *
3554  * When AIO DIO IO is completed, the work to convert unwritten
3555  * extents to written is queued on workqueue but may not get immediately
3556  * scheduled. When fsync is called, we need to ensure the
3557  * conversion is complete before fsync returns.
3558  * The inode keeps track of a list of completed AIO from DIO path
3559  * that might needs to do the conversion. This function walks through
3560  * the list and convert the related unwritten extents to written.
3561  */
3562 int flush_aio_dio_completed_IO(struct inode *inode)
3563 {
3564 	ext4_io_end_t *io;
3565 	int ret = 0;
3566 	int ret2 = 0;
3567 
3568 	if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list))
3569 		return ret;
3570 
3571 	dump_aio_dio_list(inode);
3572 	while (!list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3573 		io = list_entry(EXT4_I(inode)->i_aio_dio_complete_list.next,
3574 				ext4_io_end_t, list);
3575 		/*
3576 		 * Calling ext4_end_aio_dio_nolock() to convert completed
3577 		 * IO to written.
3578 		 *
3579 		 * When ext4_sync_file() is called, run_queue() may already
3580 		 * about to flush the work corresponding to this io structure.
3581 		 * It will be upset if it founds the io structure related
3582 		 * to the work-to-be schedule is freed.
3583 		 *
3584 		 * Thus we need to keep the io structure still valid here after
3585 		 * convertion finished. The io structure has a flag to
3586 		 * avoid double converting from both fsync and background work
3587 		 * queue work.
3588 		 */
3589 		ret = ext4_end_aio_dio_nolock(io);
3590 		if (ret < 0)
3591 			ret2 = ret;
3592 		else
3593 			list_del_init(&io->list);
3594 	}
3595 	return (ret2 < 0) ? ret2 : 0;
3596 }
3597 
3598 static ext4_io_end_t *ext4_init_io_end (struct inode *inode)
3599 {
3600 	ext4_io_end_t *io = NULL;
3601 
3602 	io = kmalloc(sizeof(*io), GFP_NOFS);
3603 
3604 	if (io) {
3605 		igrab(inode);
3606 		io->inode = inode;
3607 		io->flag = 0;
3608 		io->offset = 0;
3609 		io->size = 0;
3610 		io->error = 0;
3611 		INIT_WORK(&io->work, ext4_end_aio_dio_work);
3612 		INIT_LIST_HEAD(&io->list);
3613 	}
3614 
3615 	return io;
3616 }
3617 
3618 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3619 			    ssize_t size, void *private)
3620 {
3621         ext4_io_end_t *io_end = iocb->private;
3622 	struct workqueue_struct *wq;
3623 
3624 	/* if not async direct IO or dio with 0 bytes write, just return */
3625 	if (!io_end || !size)
3626 		return;
3627 
3628 	ext_debug("ext4_end_io_dio(): io_end 0x%p"
3629 		  "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3630  		  iocb->private, io_end->inode->i_ino, iocb, offset,
3631 		  size);
3632 
3633 	/* if not aio dio with unwritten extents, just free io and return */
3634 	if (io_end->flag != DIO_AIO_UNWRITTEN){
3635 		ext4_free_io_end(io_end);
3636 		iocb->private = NULL;
3637 		return;
3638 	}
3639 
3640 	io_end->offset = offset;
3641 	io_end->size = size;
3642 	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3643 
3644 	/* queue the work to convert unwritten extents to written */
3645 	queue_work(wq, &io_end->work);
3646 
3647 	/* Add the io_end to per-inode completed aio dio list*/
3648 	list_add_tail(&io_end->list,
3649 		 &EXT4_I(io_end->inode)->i_aio_dio_complete_list);
3650 	iocb->private = NULL;
3651 }
3652 /*
3653  * For ext4 extent files, ext4 will do direct-io write to holes,
3654  * preallocated extents, and those write extend the file, no need to
3655  * fall back to buffered IO.
3656  *
3657  * For holes, we fallocate those blocks, mark them as unintialized
3658  * If those blocks were preallocated, we mark sure they are splited, but
3659  * still keep the range to write as unintialized.
3660  *
3661  * The unwrritten extents will be converted to written when DIO is completed.
3662  * For async direct IO, since the IO may still pending when return, we
3663  * set up an end_io call back function, which will do the convertion
3664  * when async direct IO completed.
3665  *
3666  * If the O_DIRECT write will extend the file then add this inode to the
3667  * orphan list.  So recovery will truncate it back to the original size
3668  * if the machine crashes during the write.
3669  *
3670  */
3671 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3672 			      const struct iovec *iov, loff_t offset,
3673 			      unsigned long nr_segs)
3674 {
3675 	struct file *file = iocb->ki_filp;
3676 	struct inode *inode = file->f_mapping->host;
3677 	ssize_t ret;
3678 	size_t count = iov_length(iov, nr_segs);
3679 
3680 	loff_t final_size = offset + count;
3681 	if (rw == WRITE && final_size <= inode->i_size) {
3682 		/*
3683  		 * We could direct write to holes and fallocate.
3684 		 *
3685  		 * Allocated blocks to fill the hole are marked as uninitialized
3686  		 * to prevent paralel buffered read to expose the stale data
3687  		 * before DIO complete the data IO.
3688 		 *
3689  		 * As to previously fallocated extents, ext4 get_block
3690  		 * will just simply mark the buffer mapped but still
3691  		 * keep the extents uninitialized.
3692  		 *
3693 		 * for non AIO case, we will convert those unwritten extents
3694 		 * to written after return back from blockdev_direct_IO.
3695 		 *
3696 		 * for async DIO, the conversion needs to be defered when
3697 		 * the IO is completed. The ext4 end_io callback function
3698 		 * will be called to take care of the conversion work.
3699 		 * Here for async case, we allocate an io_end structure to
3700 		 * hook to the iocb.
3701  		 */
3702 		iocb->private = NULL;
3703 		EXT4_I(inode)->cur_aio_dio = NULL;
3704 		if (!is_sync_kiocb(iocb)) {
3705 			iocb->private = ext4_init_io_end(inode);
3706 			if (!iocb->private)
3707 				return -ENOMEM;
3708 			/*
3709 			 * we save the io structure for current async
3710 			 * direct IO, so that later ext4_get_blocks()
3711 			 * could flag the io structure whether there
3712 			 * is a unwritten extents needs to be converted
3713 			 * when IO is completed.
3714 			 */
3715 			EXT4_I(inode)->cur_aio_dio = iocb->private;
3716 		}
3717 
3718 		ret = blockdev_direct_IO(rw, iocb, inode,
3719 					 inode->i_sb->s_bdev, iov,
3720 					 offset, nr_segs,
3721 					 ext4_get_block_dio_write,
3722 					 ext4_end_io_dio);
3723 		if (iocb->private)
3724 			EXT4_I(inode)->cur_aio_dio = NULL;
3725 		/*
3726 		 * The io_end structure takes a reference to the inode,
3727 		 * that structure needs to be destroyed and the
3728 		 * reference to the inode need to be dropped, when IO is
3729 		 * complete, even with 0 byte write, or failed.
3730 		 *
3731 		 * In the successful AIO DIO case, the io_end structure will be
3732 		 * desctroyed and the reference to the inode will be dropped
3733 		 * after the end_io call back function is called.
3734 		 *
3735 		 * In the case there is 0 byte write, or error case, since
3736 		 * VFS direct IO won't invoke the end_io call back function,
3737 		 * we need to free the end_io structure here.
3738 		 */
3739 		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3740 			ext4_free_io_end(iocb->private);
3741 			iocb->private = NULL;
3742 		} else if (ret > 0 && (EXT4_I(inode)->i_state &
3743 				       EXT4_STATE_DIO_UNWRITTEN)) {
3744 			int err;
3745 			/*
3746 			 * for non AIO case, since the IO is already
3747 			 * completed, we could do the convertion right here
3748 			 */
3749 			err = ext4_convert_unwritten_extents(inode,
3750 							     offset, ret);
3751 			if (err < 0)
3752 				ret = err;
3753 			EXT4_I(inode)->i_state &= ~EXT4_STATE_DIO_UNWRITTEN;
3754 		}
3755 		return ret;
3756 	}
3757 
3758 	/* for write the the end of file case, we fall back to old way */
3759 	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3760 }
3761 
3762 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3763 			      const struct iovec *iov, loff_t offset,
3764 			      unsigned long nr_segs)
3765 {
3766 	struct file *file = iocb->ki_filp;
3767 	struct inode *inode = file->f_mapping->host;
3768 
3769 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3770 		return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3771 
3772 	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3773 }
3774 
3775 /*
3776  * Pages can be marked dirty completely asynchronously from ext4's journalling
3777  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3778  * much here because ->set_page_dirty is called under VFS locks.  The page is
3779  * not necessarily locked.
3780  *
3781  * We cannot just dirty the page and leave attached buffers clean, because the
3782  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3783  * or jbddirty because all the journalling code will explode.
3784  *
3785  * So what we do is to mark the page "pending dirty" and next time writepage
3786  * is called, propagate that into the buffers appropriately.
3787  */
3788 static int ext4_journalled_set_page_dirty(struct page *page)
3789 {
3790 	SetPageChecked(page);
3791 	return __set_page_dirty_nobuffers(page);
3792 }
3793 
3794 static const struct address_space_operations ext4_ordered_aops = {
3795 	.readpage		= ext4_readpage,
3796 	.readpages		= ext4_readpages,
3797 	.writepage		= ext4_writepage,
3798 	.sync_page		= block_sync_page,
3799 	.write_begin		= ext4_write_begin,
3800 	.write_end		= ext4_ordered_write_end,
3801 	.bmap			= ext4_bmap,
3802 	.invalidatepage		= ext4_invalidatepage,
3803 	.releasepage		= ext4_releasepage,
3804 	.direct_IO		= ext4_direct_IO,
3805 	.migratepage		= buffer_migrate_page,
3806 	.is_partially_uptodate  = block_is_partially_uptodate,
3807 	.error_remove_page	= generic_error_remove_page,
3808 };
3809 
3810 static const struct address_space_operations ext4_writeback_aops = {
3811 	.readpage		= ext4_readpage,
3812 	.readpages		= ext4_readpages,
3813 	.writepage		= ext4_writepage,
3814 	.sync_page		= block_sync_page,
3815 	.write_begin		= ext4_write_begin,
3816 	.write_end		= ext4_writeback_write_end,
3817 	.bmap			= ext4_bmap,
3818 	.invalidatepage		= ext4_invalidatepage,
3819 	.releasepage		= ext4_releasepage,
3820 	.direct_IO		= ext4_direct_IO,
3821 	.migratepage		= buffer_migrate_page,
3822 	.is_partially_uptodate  = block_is_partially_uptodate,
3823 	.error_remove_page	= generic_error_remove_page,
3824 };
3825 
3826 static const struct address_space_operations ext4_journalled_aops = {
3827 	.readpage		= ext4_readpage,
3828 	.readpages		= ext4_readpages,
3829 	.writepage		= ext4_writepage,
3830 	.sync_page		= block_sync_page,
3831 	.write_begin		= ext4_write_begin,
3832 	.write_end		= ext4_journalled_write_end,
3833 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3834 	.bmap			= ext4_bmap,
3835 	.invalidatepage		= ext4_invalidatepage,
3836 	.releasepage		= ext4_releasepage,
3837 	.is_partially_uptodate  = block_is_partially_uptodate,
3838 	.error_remove_page	= generic_error_remove_page,
3839 };
3840 
3841 static const struct address_space_operations ext4_da_aops = {
3842 	.readpage		= ext4_readpage,
3843 	.readpages		= ext4_readpages,
3844 	.writepage		= ext4_writepage,
3845 	.writepages		= ext4_da_writepages,
3846 	.sync_page		= block_sync_page,
3847 	.write_begin		= ext4_da_write_begin,
3848 	.write_end		= ext4_da_write_end,
3849 	.bmap			= ext4_bmap,
3850 	.invalidatepage		= ext4_da_invalidatepage,
3851 	.releasepage		= ext4_releasepage,
3852 	.direct_IO		= ext4_direct_IO,
3853 	.migratepage		= buffer_migrate_page,
3854 	.is_partially_uptodate  = block_is_partially_uptodate,
3855 	.error_remove_page	= generic_error_remove_page,
3856 };
3857 
3858 void ext4_set_aops(struct inode *inode)
3859 {
3860 	if (ext4_should_order_data(inode) &&
3861 		test_opt(inode->i_sb, DELALLOC))
3862 		inode->i_mapping->a_ops = &ext4_da_aops;
3863 	else if (ext4_should_order_data(inode))
3864 		inode->i_mapping->a_ops = &ext4_ordered_aops;
3865 	else if (ext4_should_writeback_data(inode) &&
3866 		 test_opt(inode->i_sb, DELALLOC))
3867 		inode->i_mapping->a_ops = &ext4_da_aops;
3868 	else if (ext4_should_writeback_data(inode))
3869 		inode->i_mapping->a_ops = &ext4_writeback_aops;
3870 	else
3871 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3872 }
3873 
3874 /*
3875  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3876  * up to the end of the block which corresponds to `from'.
3877  * This required during truncate. We need to physically zero the tail end
3878  * of that block so it doesn't yield old data if the file is later grown.
3879  */
3880 int ext4_block_truncate_page(handle_t *handle,
3881 		struct address_space *mapping, loff_t from)
3882 {
3883 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3884 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3885 	unsigned blocksize, length, pos;
3886 	ext4_lblk_t iblock;
3887 	struct inode *inode = mapping->host;
3888 	struct buffer_head *bh;
3889 	struct page *page;
3890 	int err = 0;
3891 
3892 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3893 				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3894 	if (!page)
3895 		return -EINVAL;
3896 
3897 	blocksize = inode->i_sb->s_blocksize;
3898 	length = blocksize - (offset & (blocksize - 1));
3899 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3900 
3901 	/*
3902 	 * For "nobh" option,  we can only work if we don't need to
3903 	 * read-in the page - otherwise we create buffers to do the IO.
3904 	 */
3905 	if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3906 	     ext4_should_writeback_data(inode) && PageUptodate(page)) {
3907 		zero_user(page, offset, length);
3908 		set_page_dirty(page);
3909 		goto unlock;
3910 	}
3911 
3912 	if (!page_has_buffers(page))
3913 		create_empty_buffers(page, blocksize, 0);
3914 
3915 	/* Find the buffer that contains "offset" */
3916 	bh = page_buffers(page);
3917 	pos = blocksize;
3918 	while (offset >= pos) {
3919 		bh = bh->b_this_page;
3920 		iblock++;
3921 		pos += blocksize;
3922 	}
3923 
3924 	err = 0;
3925 	if (buffer_freed(bh)) {
3926 		BUFFER_TRACE(bh, "freed: skip");
3927 		goto unlock;
3928 	}
3929 
3930 	if (!buffer_mapped(bh)) {
3931 		BUFFER_TRACE(bh, "unmapped");
3932 		ext4_get_block(inode, iblock, bh, 0);
3933 		/* unmapped? It's a hole - nothing to do */
3934 		if (!buffer_mapped(bh)) {
3935 			BUFFER_TRACE(bh, "still unmapped");
3936 			goto unlock;
3937 		}
3938 	}
3939 
3940 	/* Ok, it's mapped. Make sure it's up-to-date */
3941 	if (PageUptodate(page))
3942 		set_buffer_uptodate(bh);
3943 
3944 	if (!buffer_uptodate(bh)) {
3945 		err = -EIO;
3946 		ll_rw_block(READ, 1, &bh);
3947 		wait_on_buffer(bh);
3948 		/* Uhhuh. Read error. Complain and punt. */
3949 		if (!buffer_uptodate(bh))
3950 			goto unlock;
3951 	}
3952 
3953 	if (ext4_should_journal_data(inode)) {
3954 		BUFFER_TRACE(bh, "get write access");
3955 		err = ext4_journal_get_write_access(handle, bh);
3956 		if (err)
3957 			goto unlock;
3958 	}
3959 
3960 	zero_user(page, offset, length);
3961 
3962 	BUFFER_TRACE(bh, "zeroed end of block");
3963 
3964 	err = 0;
3965 	if (ext4_should_journal_data(inode)) {
3966 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3967 	} else {
3968 		if (ext4_should_order_data(inode))
3969 			err = ext4_jbd2_file_inode(handle, inode);
3970 		mark_buffer_dirty(bh);
3971 	}
3972 
3973 unlock:
3974 	unlock_page(page);
3975 	page_cache_release(page);
3976 	return err;
3977 }
3978 
3979 /*
3980  * Probably it should be a library function... search for first non-zero word
3981  * or memcmp with zero_page, whatever is better for particular architecture.
3982  * Linus?
3983  */
3984 static inline int all_zeroes(__le32 *p, __le32 *q)
3985 {
3986 	while (p < q)
3987 		if (*p++)
3988 			return 0;
3989 	return 1;
3990 }
3991 
3992 /**
3993  *	ext4_find_shared - find the indirect blocks for partial truncation.
3994  *	@inode:	  inode in question
3995  *	@depth:	  depth of the affected branch
3996  *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
3997  *	@chain:	  place to store the pointers to partial indirect blocks
3998  *	@top:	  place to the (detached) top of branch
3999  *
4000  *	This is a helper function used by ext4_truncate().
4001  *
4002  *	When we do truncate() we may have to clean the ends of several
4003  *	indirect blocks but leave the blocks themselves alive. Block is
4004  *	partially truncated if some data below the new i_size is refered
4005  *	from it (and it is on the path to the first completely truncated
4006  *	data block, indeed).  We have to free the top of that path along
4007  *	with everything to the right of the path. Since no allocation
4008  *	past the truncation point is possible until ext4_truncate()
4009  *	finishes, we may safely do the latter, but top of branch may
4010  *	require special attention - pageout below the truncation point
4011  *	might try to populate it.
4012  *
4013  *	We atomically detach the top of branch from the tree, store the
4014  *	block number of its root in *@top, pointers to buffer_heads of
4015  *	partially truncated blocks - in @chain[].bh and pointers to
4016  *	their last elements that should not be removed - in
4017  *	@chain[].p. Return value is the pointer to last filled element
4018  *	of @chain.
4019  *
4020  *	The work left to caller to do the actual freeing of subtrees:
4021  *		a) free the subtree starting from *@top
4022  *		b) free the subtrees whose roots are stored in
4023  *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
4024  *		c) free the subtrees growing from the inode past the @chain[0].
4025  *			(no partially truncated stuff there).  */
4026 
4027 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4028 				  ext4_lblk_t offsets[4], Indirect chain[4],
4029 				  __le32 *top)
4030 {
4031 	Indirect *partial, *p;
4032 	int k, err;
4033 
4034 	*top = 0;
4035 	/* Make k index the deepest non-null offset + 1 */
4036 	for (k = depth; k > 1 && !offsets[k-1]; k--)
4037 		;
4038 	partial = ext4_get_branch(inode, k, offsets, chain, &err);
4039 	/* Writer: pointers */
4040 	if (!partial)
4041 		partial = chain + k-1;
4042 	/*
4043 	 * If the branch acquired continuation since we've looked at it -
4044 	 * fine, it should all survive and (new) top doesn't belong to us.
4045 	 */
4046 	if (!partial->key && *partial->p)
4047 		/* Writer: end */
4048 		goto no_top;
4049 	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4050 		;
4051 	/*
4052 	 * OK, we've found the last block that must survive. The rest of our
4053 	 * branch should be detached before unlocking. However, if that rest
4054 	 * of branch is all ours and does not grow immediately from the inode
4055 	 * it's easier to cheat and just decrement partial->p.
4056 	 */
4057 	if (p == chain + k - 1 && p > chain) {
4058 		p->p--;
4059 	} else {
4060 		*top = *p->p;
4061 		/* Nope, don't do this in ext4.  Must leave the tree intact */
4062 #if 0
4063 		*p->p = 0;
4064 #endif
4065 	}
4066 	/* Writer: end */
4067 
4068 	while (partial > p) {
4069 		brelse(partial->bh);
4070 		partial--;
4071 	}
4072 no_top:
4073 	return partial;
4074 }
4075 
4076 /*
4077  * Zero a number of block pointers in either an inode or an indirect block.
4078  * If we restart the transaction we must again get write access to the
4079  * indirect block for further modification.
4080  *
4081  * We release `count' blocks on disk, but (last - first) may be greater
4082  * than `count' because there can be holes in there.
4083  */
4084 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
4085 			      struct buffer_head *bh,
4086 			      ext4_fsblk_t block_to_free,
4087 			      unsigned long count, __le32 *first,
4088 			      __le32 *last)
4089 {
4090 	__le32 *p;
4091 	int	flags = EXT4_FREE_BLOCKS_FORGET;
4092 
4093 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4094 		flags |= EXT4_FREE_BLOCKS_METADATA;
4095 
4096 	if (try_to_extend_transaction(handle, inode)) {
4097 		if (bh) {
4098 			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4099 			ext4_handle_dirty_metadata(handle, inode, bh);
4100 		}
4101 		ext4_mark_inode_dirty(handle, inode);
4102 		ext4_truncate_restart_trans(handle, inode,
4103 					    blocks_for_truncate(inode));
4104 		if (bh) {
4105 			BUFFER_TRACE(bh, "retaking write access");
4106 			ext4_journal_get_write_access(handle, bh);
4107 		}
4108 	}
4109 
4110 	for (p = first; p < last; p++)
4111 		*p = 0;
4112 
4113 	ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
4114 }
4115 
4116 /**
4117  * ext4_free_data - free a list of data blocks
4118  * @handle:	handle for this transaction
4119  * @inode:	inode we are dealing with
4120  * @this_bh:	indirect buffer_head which contains *@first and *@last
4121  * @first:	array of block numbers
4122  * @last:	points immediately past the end of array
4123  *
4124  * We are freeing all blocks refered from that array (numbers are stored as
4125  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4126  *
4127  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
4128  * blocks are contiguous then releasing them at one time will only affect one
4129  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4130  * actually use a lot of journal space.
4131  *
4132  * @this_bh will be %NULL if @first and @last point into the inode's direct
4133  * block pointers.
4134  */
4135 static void ext4_free_data(handle_t *handle, struct inode *inode,
4136 			   struct buffer_head *this_bh,
4137 			   __le32 *first, __le32 *last)
4138 {
4139 	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
4140 	unsigned long count = 0;	    /* Number of blocks in the run */
4141 	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
4142 					       corresponding to
4143 					       block_to_free */
4144 	ext4_fsblk_t nr;		    /* Current block # */
4145 	__le32 *p;			    /* Pointer into inode/ind
4146 					       for current block */
4147 	int err;
4148 
4149 	if (this_bh) {				/* For indirect block */
4150 		BUFFER_TRACE(this_bh, "get_write_access");
4151 		err = ext4_journal_get_write_access(handle, this_bh);
4152 		/* Important: if we can't update the indirect pointers
4153 		 * to the blocks, we can't free them. */
4154 		if (err)
4155 			return;
4156 	}
4157 
4158 	for (p = first; p < last; p++) {
4159 		nr = le32_to_cpu(*p);
4160 		if (nr) {
4161 			/* accumulate blocks to free if they're contiguous */
4162 			if (count == 0) {
4163 				block_to_free = nr;
4164 				block_to_free_p = p;
4165 				count = 1;
4166 			} else if (nr == block_to_free + count) {
4167 				count++;
4168 			} else {
4169 				ext4_clear_blocks(handle, inode, this_bh,
4170 						  block_to_free,
4171 						  count, block_to_free_p, p);
4172 				block_to_free = nr;
4173 				block_to_free_p = p;
4174 				count = 1;
4175 			}
4176 		}
4177 	}
4178 
4179 	if (count > 0)
4180 		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4181 				  count, block_to_free_p, p);
4182 
4183 	if (this_bh) {
4184 		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4185 
4186 		/*
4187 		 * The buffer head should have an attached journal head at this
4188 		 * point. However, if the data is corrupted and an indirect
4189 		 * block pointed to itself, it would have been detached when
4190 		 * the block was cleared. Check for this instead of OOPSing.
4191 		 */
4192 		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4193 			ext4_handle_dirty_metadata(handle, inode, this_bh);
4194 		else
4195 			ext4_error(inode->i_sb, __func__,
4196 				   "circular indirect block detected, "
4197 				   "inode=%lu, block=%llu",
4198 				   inode->i_ino,
4199 				   (unsigned long long) this_bh->b_blocknr);
4200 	}
4201 }
4202 
4203 /**
4204  *	ext4_free_branches - free an array of branches
4205  *	@handle: JBD handle for this transaction
4206  *	@inode:	inode we are dealing with
4207  *	@parent_bh: the buffer_head which contains *@first and *@last
4208  *	@first:	array of block numbers
4209  *	@last:	pointer immediately past the end of array
4210  *	@depth:	depth of the branches to free
4211  *
4212  *	We are freeing all blocks refered from these branches (numbers are
4213  *	stored as little-endian 32-bit) and updating @inode->i_blocks
4214  *	appropriately.
4215  */
4216 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4217 			       struct buffer_head *parent_bh,
4218 			       __le32 *first, __le32 *last, int depth)
4219 {
4220 	ext4_fsblk_t nr;
4221 	__le32 *p;
4222 
4223 	if (ext4_handle_is_aborted(handle))
4224 		return;
4225 
4226 	if (depth--) {
4227 		struct buffer_head *bh;
4228 		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4229 		p = last;
4230 		while (--p >= first) {
4231 			nr = le32_to_cpu(*p);
4232 			if (!nr)
4233 				continue;		/* A hole */
4234 
4235 			/* Go read the buffer for the next level down */
4236 			bh = sb_bread(inode->i_sb, nr);
4237 
4238 			/*
4239 			 * A read failure? Report error and clear slot
4240 			 * (should be rare).
4241 			 */
4242 			if (!bh) {
4243 				ext4_error(inode->i_sb, "ext4_free_branches",
4244 					   "Read failure, inode=%lu, block=%llu",
4245 					   inode->i_ino, nr);
4246 				continue;
4247 			}
4248 
4249 			/* This zaps the entire block.  Bottom up. */
4250 			BUFFER_TRACE(bh, "free child branches");
4251 			ext4_free_branches(handle, inode, bh,
4252 					(__le32 *) bh->b_data,
4253 					(__le32 *) bh->b_data + addr_per_block,
4254 					depth);
4255 
4256 			/*
4257 			 * We've probably journalled the indirect block several
4258 			 * times during the truncate.  But it's no longer
4259 			 * needed and we now drop it from the transaction via
4260 			 * jbd2_journal_revoke().
4261 			 *
4262 			 * That's easy if it's exclusively part of this
4263 			 * transaction.  But if it's part of the committing
4264 			 * transaction then jbd2_journal_forget() will simply
4265 			 * brelse() it.  That means that if the underlying
4266 			 * block is reallocated in ext4_get_block(),
4267 			 * unmap_underlying_metadata() will find this block
4268 			 * and will try to get rid of it.  damn, damn.
4269 			 *
4270 			 * If this block has already been committed to the
4271 			 * journal, a revoke record will be written.  And
4272 			 * revoke records must be emitted *before* clearing
4273 			 * this block's bit in the bitmaps.
4274 			 */
4275 			ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
4276 
4277 			/*
4278 			 * Everything below this this pointer has been
4279 			 * released.  Now let this top-of-subtree go.
4280 			 *
4281 			 * We want the freeing of this indirect block to be
4282 			 * atomic in the journal with the updating of the
4283 			 * bitmap block which owns it.  So make some room in
4284 			 * the journal.
4285 			 *
4286 			 * We zero the parent pointer *after* freeing its
4287 			 * pointee in the bitmaps, so if extend_transaction()
4288 			 * for some reason fails to put the bitmap changes and
4289 			 * the release into the same transaction, recovery
4290 			 * will merely complain about releasing a free block,
4291 			 * rather than leaking blocks.
4292 			 */
4293 			if (ext4_handle_is_aborted(handle))
4294 				return;
4295 			if (try_to_extend_transaction(handle, inode)) {
4296 				ext4_mark_inode_dirty(handle, inode);
4297 				ext4_truncate_restart_trans(handle, inode,
4298 					    blocks_for_truncate(inode));
4299 			}
4300 
4301 			ext4_free_blocks(handle, inode, 0, nr, 1,
4302 					 EXT4_FREE_BLOCKS_METADATA);
4303 
4304 			if (parent_bh) {
4305 				/*
4306 				 * The block which we have just freed is
4307 				 * pointed to by an indirect block: journal it
4308 				 */
4309 				BUFFER_TRACE(parent_bh, "get_write_access");
4310 				if (!ext4_journal_get_write_access(handle,
4311 								   parent_bh)){
4312 					*p = 0;
4313 					BUFFER_TRACE(parent_bh,
4314 					"call ext4_handle_dirty_metadata");
4315 					ext4_handle_dirty_metadata(handle,
4316 								   inode,
4317 								   parent_bh);
4318 				}
4319 			}
4320 		}
4321 	} else {
4322 		/* We have reached the bottom of the tree. */
4323 		BUFFER_TRACE(parent_bh, "free data blocks");
4324 		ext4_free_data(handle, inode, parent_bh, first, last);
4325 	}
4326 }
4327 
4328 int ext4_can_truncate(struct inode *inode)
4329 {
4330 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4331 		return 0;
4332 	if (S_ISREG(inode->i_mode))
4333 		return 1;
4334 	if (S_ISDIR(inode->i_mode))
4335 		return 1;
4336 	if (S_ISLNK(inode->i_mode))
4337 		return !ext4_inode_is_fast_symlink(inode);
4338 	return 0;
4339 }
4340 
4341 /*
4342  * ext4_truncate()
4343  *
4344  * We block out ext4_get_block() block instantiations across the entire
4345  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4346  * simultaneously on behalf of the same inode.
4347  *
4348  * As we work through the truncate and commmit bits of it to the journal there
4349  * is one core, guiding principle: the file's tree must always be consistent on
4350  * disk.  We must be able to restart the truncate after a crash.
4351  *
4352  * The file's tree may be transiently inconsistent in memory (although it
4353  * probably isn't), but whenever we close off and commit a journal transaction,
4354  * the contents of (the filesystem + the journal) must be consistent and
4355  * restartable.  It's pretty simple, really: bottom up, right to left (although
4356  * left-to-right works OK too).
4357  *
4358  * Note that at recovery time, journal replay occurs *before* the restart of
4359  * truncate against the orphan inode list.
4360  *
4361  * The committed inode has the new, desired i_size (which is the same as
4362  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4363  * that this inode's truncate did not complete and it will again call
4364  * ext4_truncate() to have another go.  So there will be instantiated blocks
4365  * to the right of the truncation point in a crashed ext4 filesystem.  But
4366  * that's fine - as long as they are linked from the inode, the post-crash
4367  * ext4_truncate() run will find them and release them.
4368  */
4369 void ext4_truncate(struct inode *inode)
4370 {
4371 	handle_t *handle;
4372 	struct ext4_inode_info *ei = EXT4_I(inode);
4373 	__le32 *i_data = ei->i_data;
4374 	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4375 	struct address_space *mapping = inode->i_mapping;
4376 	ext4_lblk_t offsets[4];
4377 	Indirect chain[4];
4378 	Indirect *partial;
4379 	__le32 nr = 0;
4380 	int n;
4381 	ext4_lblk_t last_block;
4382 	unsigned blocksize = inode->i_sb->s_blocksize;
4383 
4384 	if (!ext4_can_truncate(inode))
4385 		return;
4386 
4387 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4388 		ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
4389 
4390 	if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4391 		ext4_ext_truncate(inode);
4392 		return;
4393 	}
4394 
4395 	handle = start_transaction(inode);
4396 	if (IS_ERR(handle))
4397 		return;		/* AKPM: return what? */
4398 
4399 	last_block = (inode->i_size + blocksize-1)
4400 					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4401 
4402 	if (inode->i_size & (blocksize - 1))
4403 		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4404 			goto out_stop;
4405 
4406 	n = ext4_block_to_path(inode, last_block, offsets, NULL);
4407 	if (n == 0)
4408 		goto out_stop;	/* error */
4409 
4410 	/*
4411 	 * OK.  This truncate is going to happen.  We add the inode to the
4412 	 * orphan list, so that if this truncate spans multiple transactions,
4413 	 * and we crash, we will resume the truncate when the filesystem
4414 	 * recovers.  It also marks the inode dirty, to catch the new size.
4415 	 *
4416 	 * Implication: the file must always be in a sane, consistent
4417 	 * truncatable state while each transaction commits.
4418 	 */
4419 	if (ext4_orphan_add(handle, inode))
4420 		goto out_stop;
4421 
4422 	/*
4423 	 * From here we block out all ext4_get_block() callers who want to
4424 	 * modify the block allocation tree.
4425 	 */
4426 	down_write(&ei->i_data_sem);
4427 
4428 	ext4_discard_preallocations(inode);
4429 
4430 	/*
4431 	 * The orphan list entry will now protect us from any crash which
4432 	 * occurs before the truncate completes, so it is now safe to propagate
4433 	 * the new, shorter inode size (held for now in i_size) into the
4434 	 * on-disk inode. We do this via i_disksize, which is the value which
4435 	 * ext4 *really* writes onto the disk inode.
4436 	 */
4437 	ei->i_disksize = inode->i_size;
4438 
4439 	if (n == 1) {		/* direct blocks */
4440 		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4441 			       i_data + EXT4_NDIR_BLOCKS);
4442 		goto do_indirects;
4443 	}
4444 
4445 	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4446 	/* Kill the top of shared branch (not detached) */
4447 	if (nr) {
4448 		if (partial == chain) {
4449 			/* Shared branch grows from the inode */
4450 			ext4_free_branches(handle, inode, NULL,
4451 					   &nr, &nr+1, (chain+n-1) - partial);
4452 			*partial->p = 0;
4453 			/*
4454 			 * We mark the inode dirty prior to restart,
4455 			 * and prior to stop.  No need for it here.
4456 			 */
4457 		} else {
4458 			/* Shared branch grows from an indirect block */
4459 			BUFFER_TRACE(partial->bh, "get_write_access");
4460 			ext4_free_branches(handle, inode, partial->bh,
4461 					partial->p,
4462 					partial->p+1, (chain+n-1) - partial);
4463 		}
4464 	}
4465 	/* Clear the ends of indirect blocks on the shared branch */
4466 	while (partial > chain) {
4467 		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4468 				   (__le32*)partial->bh->b_data+addr_per_block,
4469 				   (chain+n-1) - partial);
4470 		BUFFER_TRACE(partial->bh, "call brelse");
4471 		brelse(partial->bh);
4472 		partial--;
4473 	}
4474 do_indirects:
4475 	/* Kill the remaining (whole) subtrees */
4476 	switch (offsets[0]) {
4477 	default:
4478 		nr = i_data[EXT4_IND_BLOCK];
4479 		if (nr) {
4480 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4481 			i_data[EXT4_IND_BLOCK] = 0;
4482 		}
4483 	case EXT4_IND_BLOCK:
4484 		nr = i_data[EXT4_DIND_BLOCK];
4485 		if (nr) {
4486 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4487 			i_data[EXT4_DIND_BLOCK] = 0;
4488 		}
4489 	case EXT4_DIND_BLOCK:
4490 		nr = i_data[EXT4_TIND_BLOCK];
4491 		if (nr) {
4492 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4493 			i_data[EXT4_TIND_BLOCK] = 0;
4494 		}
4495 	case EXT4_TIND_BLOCK:
4496 		;
4497 	}
4498 
4499 	up_write(&ei->i_data_sem);
4500 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4501 	ext4_mark_inode_dirty(handle, inode);
4502 
4503 	/*
4504 	 * In a multi-transaction truncate, we only make the final transaction
4505 	 * synchronous
4506 	 */
4507 	if (IS_SYNC(inode))
4508 		ext4_handle_sync(handle);
4509 out_stop:
4510 	/*
4511 	 * If this was a simple ftruncate(), and the file will remain alive
4512 	 * then we need to clear up the orphan record which we created above.
4513 	 * However, if this was a real unlink then we were called by
4514 	 * ext4_delete_inode(), and we allow that function to clean up the
4515 	 * orphan info for us.
4516 	 */
4517 	if (inode->i_nlink)
4518 		ext4_orphan_del(handle, inode);
4519 
4520 	ext4_journal_stop(handle);
4521 }
4522 
4523 /*
4524  * ext4_get_inode_loc returns with an extra refcount against the inode's
4525  * underlying buffer_head on success. If 'in_mem' is true, we have all
4526  * data in memory that is needed to recreate the on-disk version of this
4527  * inode.
4528  */
4529 static int __ext4_get_inode_loc(struct inode *inode,
4530 				struct ext4_iloc *iloc, int in_mem)
4531 {
4532 	struct ext4_group_desc	*gdp;
4533 	struct buffer_head	*bh;
4534 	struct super_block	*sb = inode->i_sb;
4535 	ext4_fsblk_t		block;
4536 	int			inodes_per_block, inode_offset;
4537 
4538 	iloc->bh = NULL;
4539 	if (!ext4_valid_inum(sb, inode->i_ino))
4540 		return -EIO;
4541 
4542 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4543 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4544 	if (!gdp)
4545 		return -EIO;
4546 
4547 	/*
4548 	 * Figure out the offset within the block group inode table
4549 	 */
4550 	inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4551 	inode_offset = ((inode->i_ino - 1) %
4552 			EXT4_INODES_PER_GROUP(sb));
4553 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4554 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4555 
4556 	bh = sb_getblk(sb, block);
4557 	if (!bh) {
4558 		ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4559 			   "inode block - inode=%lu, block=%llu",
4560 			   inode->i_ino, block);
4561 		return -EIO;
4562 	}
4563 	if (!buffer_uptodate(bh)) {
4564 		lock_buffer(bh);
4565 
4566 		/*
4567 		 * If the buffer has the write error flag, we have failed
4568 		 * to write out another inode in the same block.  In this
4569 		 * case, we don't have to read the block because we may
4570 		 * read the old inode data successfully.
4571 		 */
4572 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4573 			set_buffer_uptodate(bh);
4574 
4575 		if (buffer_uptodate(bh)) {
4576 			/* someone brought it uptodate while we waited */
4577 			unlock_buffer(bh);
4578 			goto has_buffer;
4579 		}
4580 
4581 		/*
4582 		 * If we have all information of the inode in memory and this
4583 		 * is the only valid inode in the block, we need not read the
4584 		 * block.
4585 		 */
4586 		if (in_mem) {
4587 			struct buffer_head *bitmap_bh;
4588 			int i, start;
4589 
4590 			start = inode_offset & ~(inodes_per_block - 1);
4591 
4592 			/* Is the inode bitmap in cache? */
4593 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4594 			if (!bitmap_bh)
4595 				goto make_io;
4596 
4597 			/*
4598 			 * If the inode bitmap isn't in cache then the
4599 			 * optimisation may end up performing two reads instead
4600 			 * of one, so skip it.
4601 			 */
4602 			if (!buffer_uptodate(bitmap_bh)) {
4603 				brelse(bitmap_bh);
4604 				goto make_io;
4605 			}
4606 			for (i = start; i < start + inodes_per_block; i++) {
4607 				if (i == inode_offset)
4608 					continue;
4609 				if (ext4_test_bit(i, bitmap_bh->b_data))
4610 					break;
4611 			}
4612 			brelse(bitmap_bh);
4613 			if (i == start + inodes_per_block) {
4614 				/* all other inodes are free, so skip I/O */
4615 				memset(bh->b_data, 0, bh->b_size);
4616 				set_buffer_uptodate(bh);
4617 				unlock_buffer(bh);
4618 				goto has_buffer;
4619 			}
4620 		}
4621 
4622 make_io:
4623 		/*
4624 		 * If we need to do any I/O, try to pre-readahead extra
4625 		 * blocks from the inode table.
4626 		 */
4627 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4628 			ext4_fsblk_t b, end, table;
4629 			unsigned num;
4630 
4631 			table = ext4_inode_table(sb, gdp);
4632 			/* s_inode_readahead_blks is always a power of 2 */
4633 			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4634 			if (table > b)
4635 				b = table;
4636 			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4637 			num = EXT4_INODES_PER_GROUP(sb);
4638 			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4639 				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4640 				num -= ext4_itable_unused_count(sb, gdp);
4641 			table += num / inodes_per_block;
4642 			if (end > table)
4643 				end = table;
4644 			while (b <= end)
4645 				sb_breadahead(sb, b++);
4646 		}
4647 
4648 		/*
4649 		 * There are other valid inodes in the buffer, this inode
4650 		 * has in-inode xattrs, or we don't have this inode in memory.
4651 		 * Read the block from disk.
4652 		 */
4653 		get_bh(bh);
4654 		bh->b_end_io = end_buffer_read_sync;
4655 		submit_bh(READ_META, bh);
4656 		wait_on_buffer(bh);
4657 		if (!buffer_uptodate(bh)) {
4658 			ext4_error(sb, __func__,
4659 				   "unable to read inode block - inode=%lu, "
4660 				   "block=%llu", inode->i_ino, block);
4661 			brelse(bh);
4662 			return -EIO;
4663 		}
4664 	}
4665 has_buffer:
4666 	iloc->bh = bh;
4667 	return 0;
4668 }
4669 
4670 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4671 {
4672 	/* We have all inode data except xattrs in memory here. */
4673 	return __ext4_get_inode_loc(inode, iloc,
4674 		!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4675 }
4676 
4677 void ext4_set_inode_flags(struct inode *inode)
4678 {
4679 	unsigned int flags = EXT4_I(inode)->i_flags;
4680 
4681 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4682 	if (flags & EXT4_SYNC_FL)
4683 		inode->i_flags |= S_SYNC;
4684 	if (flags & EXT4_APPEND_FL)
4685 		inode->i_flags |= S_APPEND;
4686 	if (flags & EXT4_IMMUTABLE_FL)
4687 		inode->i_flags |= S_IMMUTABLE;
4688 	if (flags & EXT4_NOATIME_FL)
4689 		inode->i_flags |= S_NOATIME;
4690 	if (flags & EXT4_DIRSYNC_FL)
4691 		inode->i_flags |= S_DIRSYNC;
4692 }
4693 
4694 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4695 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4696 {
4697 	unsigned int flags = ei->vfs_inode.i_flags;
4698 
4699 	ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4700 			EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4701 	if (flags & S_SYNC)
4702 		ei->i_flags |= EXT4_SYNC_FL;
4703 	if (flags & S_APPEND)
4704 		ei->i_flags |= EXT4_APPEND_FL;
4705 	if (flags & S_IMMUTABLE)
4706 		ei->i_flags |= EXT4_IMMUTABLE_FL;
4707 	if (flags & S_NOATIME)
4708 		ei->i_flags |= EXT4_NOATIME_FL;
4709 	if (flags & S_DIRSYNC)
4710 		ei->i_flags |= EXT4_DIRSYNC_FL;
4711 }
4712 
4713 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4714 				  struct ext4_inode_info *ei)
4715 {
4716 	blkcnt_t i_blocks ;
4717 	struct inode *inode = &(ei->vfs_inode);
4718 	struct super_block *sb = inode->i_sb;
4719 
4720 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4721 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4722 		/* we are using combined 48 bit field */
4723 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4724 					le32_to_cpu(raw_inode->i_blocks_lo);
4725 		if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4726 			/* i_blocks represent file system block size */
4727 			return i_blocks  << (inode->i_blkbits - 9);
4728 		} else {
4729 			return i_blocks;
4730 		}
4731 	} else {
4732 		return le32_to_cpu(raw_inode->i_blocks_lo);
4733 	}
4734 }
4735 
4736 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4737 {
4738 	struct ext4_iloc iloc;
4739 	struct ext4_inode *raw_inode;
4740 	struct ext4_inode_info *ei;
4741 	struct inode *inode;
4742 	journal_t *journal = EXT4_SB(sb)->s_journal;
4743 	long ret;
4744 	int block;
4745 
4746 	inode = iget_locked(sb, ino);
4747 	if (!inode)
4748 		return ERR_PTR(-ENOMEM);
4749 	if (!(inode->i_state & I_NEW))
4750 		return inode;
4751 
4752 	ei = EXT4_I(inode);
4753 	iloc.bh = 0;
4754 
4755 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4756 	if (ret < 0)
4757 		goto bad_inode;
4758 	raw_inode = ext4_raw_inode(&iloc);
4759 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4760 	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4761 	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4762 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4763 		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4764 		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4765 	}
4766 	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4767 
4768 	ei->i_state = 0;
4769 	ei->i_dir_start_lookup = 0;
4770 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4771 	/* We now have enough fields to check if the inode was active or not.
4772 	 * This is needed because nfsd might try to access dead inodes
4773 	 * the test is that same one that e2fsck uses
4774 	 * NeilBrown 1999oct15
4775 	 */
4776 	if (inode->i_nlink == 0) {
4777 		if (inode->i_mode == 0 ||
4778 		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4779 			/* this inode is deleted */
4780 			ret = -ESTALE;
4781 			goto bad_inode;
4782 		}
4783 		/* The only unlinked inodes we let through here have
4784 		 * valid i_mode and are being read by the orphan
4785 		 * recovery code: that's fine, we're about to complete
4786 		 * the process of deleting those. */
4787 	}
4788 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4789 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4790 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4791 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4792 		ei->i_file_acl |=
4793 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4794 	inode->i_size = ext4_isize(raw_inode);
4795 	ei->i_disksize = inode->i_size;
4796 #ifdef CONFIG_QUOTA
4797 	ei->i_reserved_quota = 0;
4798 #endif
4799 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4800 	ei->i_block_group = iloc.block_group;
4801 	ei->i_last_alloc_group = ~0;
4802 	/*
4803 	 * NOTE! The in-memory inode i_data array is in little-endian order
4804 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4805 	 */
4806 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4807 		ei->i_data[block] = raw_inode->i_block[block];
4808 	INIT_LIST_HEAD(&ei->i_orphan);
4809 
4810 	/*
4811 	 * Set transaction id's of transactions that have to be committed
4812 	 * to finish f[data]sync. We set them to currently running transaction
4813 	 * as we cannot be sure that the inode or some of its metadata isn't
4814 	 * part of the transaction - the inode could have been reclaimed and
4815 	 * now it is reread from disk.
4816 	 */
4817 	if (journal) {
4818 		transaction_t *transaction;
4819 		tid_t tid;
4820 
4821 		spin_lock(&journal->j_state_lock);
4822 		if (journal->j_running_transaction)
4823 			transaction = journal->j_running_transaction;
4824 		else
4825 			transaction = journal->j_committing_transaction;
4826 		if (transaction)
4827 			tid = transaction->t_tid;
4828 		else
4829 			tid = journal->j_commit_sequence;
4830 		spin_unlock(&journal->j_state_lock);
4831 		ei->i_sync_tid = tid;
4832 		ei->i_datasync_tid = tid;
4833 	}
4834 
4835 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4836 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4837 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4838 		    EXT4_INODE_SIZE(inode->i_sb)) {
4839 			ret = -EIO;
4840 			goto bad_inode;
4841 		}
4842 		if (ei->i_extra_isize == 0) {
4843 			/* The extra space is currently unused. Use it. */
4844 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4845 					    EXT4_GOOD_OLD_INODE_SIZE;
4846 		} else {
4847 			__le32 *magic = (void *)raw_inode +
4848 					EXT4_GOOD_OLD_INODE_SIZE +
4849 					ei->i_extra_isize;
4850 			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4851 				ei->i_state |= EXT4_STATE_XATTR;
4852 		}
4853 	} else
4854 		ei->i_extra_isize = 0;
4855 
4856 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4857 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4858 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4859 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4860 
4861 	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4862 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4863 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4864 			inode->i_version |=
4865 			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4866 	}
4867 
4868 	ret = 0;
4869 	if (ei->i_file_acl &&
4870 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4871 		ext4_error(sb, __func__,
4872 			   "bad extended attribute block %llu in inode #%lu",
4873 			   ei->i_file_acl, inode->i_ino);
4874 		ret = -EIO;
4875 		goto bad_inode;
4876 	} else if (ei->i_flags & EXT4_EXTENTS_FL) {
4877 		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4878 		    (S_ISLNK(inode->i_mode) &&
4879 		     !ext4_inode_is_fast_symlink(inode)))
4880 			/* Validate extent which is part of inode */
4881 			ret = ext4_ext_check_inode(inode);
4882 	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4883 		   (S_ISLNK(inode->i_mode) &&
4884 		    !ext4_inode_is_fast_symlink(inode))) {
4885 		/* Validate block references which are part of inode */
4886 		ret = ext4_check_inode_blockref(inode);
4887 	}
4888 	if (ret)
4889 		goto bad_inode;
4890 
4891 	if (S_ISREG(inode->i_mode)) {
4892 		inode->i_op = &ext4_file_inode_operations;
4893 		inode->i_fop = &ext4_file_operations;
4894 		ext4_set_aops(inode);
4895 	} else if (S_ISDIR(inode->i_mode)) {
4896 		inode->i_op = &ext4_dir_inode_operations;
4897 		inode->i_fop = &ext4_dir_operations;
4898 	} else if (S_ISLNK(inode->i_mode)) {
4899 		if (ext4_inode_is_fast_symlink(inode)) {
4900 			inode->i_op = &ext4_fast_symlink_inode_operations;
4901 			nd_terminate_link(ei->i_data, inode->i_size,
4902 				sizeof(ei->i_data) - 1);
4903 		} else {
4904 			inode->i_op = &ext4_symlink_inode_operations;
4905 			ext4_set_aops(inode);
4906 		}
4907 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4908 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4909 		inode->i_op = &ext4_special_inode_operations;
4910 		if (raw_inode->i_block[0])
4911 			init_special_inode(inode, inode->i_mode,
4912 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4913 		else
4914 			init_special_inode(inode, inode->i_mode,
4915 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4916 	} else {
4917 		ret = -EIO;
4918 		ext4_error(inode->i_sb, __func__,
4919 			   "bogus i_mode (%o) for inode=%lu",
4920 			   inode->i_mode, inode->i_ino);
4921 		goto bad_inode;
4922 	}
4923 	brelse(iloc.bh);
4924 	ext4_set_inode_flags(inode);
4925 	unlock_new_inode(inode);
4926 	return inode;
4927 
4928 bad_inode:
4929 	brelse(iloc.bh);
4930 	iget_failed(inode);
4931 	return ERR_PTR(ret);
4932 }
4933 
4934 static int ext4_inode_blocks_set(handle_t *handle,
4935 				struct ext4_inode *raw_inode,
4936 				struct ext4_inode_info *ei)
4937 {
4938 	struct inode *inode = &(ei->vfs_inode);
4939 	u64 i_blocks = inode->i_blocks;
4940 	struct super_block *sb = inode->i_sb;
4941 
4942 	if (i_blocks <= ~0U) {
4943 		/*
4944 		 * i_blocks can be represnted in a 32 bit variable
4945 		 * as multiple of 512 bytes
4946 		 */
4947 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4948 		raw_inode->i_blocks_high = 0;
4949 		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4950 		return 0;
4951 	}
4952 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4953 		return -EFBIG;
4954 
4955 	if (i_blocks <= 0xffffffffffffULL) {
4956 		/*
4957 		 * i_blocks can be represented in a 48 bit variable
4958 		 * as multiple of 512 bytes
4959 		 */
4960 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4961 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4962 		ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4963 	} else {
4964 		ei->i_flags |= EXT4_HUGE_FILE_FL;
4965 		/* i_block is stored in file system block size */
4966 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4967 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4968 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4969 	}
4970 	return 0;
4971 }
4972 
4973 /*
4974  * Post the struct inode info into an on-disk inode location in the
4975  * buffer-cache.  This gobbles the caller's reference to the
4976  * buffer_head in the inode location struct.
4977  *
4978  * The caller must have write access to iloc->bh.
4979  */
4980 static int ext4_do_update_inode(handle_t *handle,
4981 				struct inode *inode,
4982 				struct ext4_iloc *iloc)
4983 {
4984 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4985 	struct ext4_inode_info *ei = EXT4_I(inode);
4986 	struct buffer_head *bh = iloc->bh;
4987 	int err = 0, rc, block;
4988 
4989 	/* For fields not not tracking in the in-memory inode,
4990 	 * initialise them to zero for new inodes. */
4991 	if (ei->i_state & EXT4_STATE_NEW)
4992 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4993 
4994 	ext4_get_inode_flags(ei);
4995 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4996 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4997 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4998 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4999 /*
5000  * Fix up interoperability with old kernels. Otherwise, old inodes get
5001  * re-used with the upper 16 bits of the uid/gid intact
5002  */
5003 		if (!ei->i_dtime) {
5004 			raw_inode->i_uid_high =
5005 				cpu_to_le16(high_16_bits(inode->i_uid));
5006 			raw_inode->i_gid_high =
5007 				cpu_to_le16(high_16_bits(inode->i_gid));
5008 		} else {
5009 			raw_inode->i_uid_high = 0;
5010 			raw_inode->i_gid_high = 0;
5011 		}
5012 	} else {
5013 		raw_inode->i_uid_low =
5014 			cpu_to_le16(fs_high2lowuid(inode->i_uid));
5015 		raw_inode->i_gid_low =
5016 			cpu_to_le16(fs_high2lowgid(inode->i_gid));
5017 		raw_inode->i_uid_high = 0;
5018 		raw_inode->i_gid_high = 0;
5019 	}
5020 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5021 
5022 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5023 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5024 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5025 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5026 
5027 	if (ext4_inode_blocks_set(handle, raw_inode, ei))
5028 		goto out_brelse;
5029 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5030 	raw_inode->i_flags = cpu_to_le32(ei->i_flags);
5031 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5032 	    cpu_to_le32(EXT4_OS_HURD))
5033 		raw_inode->i_file_acl_high =
5034 			cpu_to_le16(ei->i_file_acl >> 32);
5035 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5036 	ext4_isize_set(raw_inode, ei->i_disksize);
5037 	if (ei->i_disksize > 0x7fffffffULL) {
5038 		struct super_block *sb = inode->i_sb;
5039 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5040 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5041 				EXT4_SB(sb)->s_es->s_rev_level ==
5042 				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5043 			/* If this is the first large file
5044 			 * created, add a flag to the superblock.
5045 			 */
5046 			err = ext4_journal_get_write_access(handle,
5047 					EXT4_SB(sb)->s_sbh);
5048 			if (err)
5049 				goto out_brelse;
5050 			ext4_update_dynamic_rev(sb);
5051 			EXT4_SET_RO_COMPAT_FEATURE(sb,
5052 					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5053 			sb->s_dirt = 1;
5054 			ext4_handle_sync(handle);
5055 			err = ext4_handle_dirty_metadata(handle, inode,
5056 					EXT4_SB(sb)->s_sbh);
5057 		}
5058 	}
5059 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5060 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5061 		if (old_valid_dev(inode->i_rdev)) {
5062 			raw_inode->i_block[0] =
5063 				cpu_to_le32(old_encode_dev(inode->i_rdev));
5064 			raw_inode->i_block[1] = 0;
5065 		} else {
5066 			raw_inode->i_block[0] = 0;
5067 			raw_inode->i_block[1] =
5068 				cpu_to_le32(new_encode_dev(inode->i_rdev));
5069 			raw_inode->i_block[2] = 0;
5070 		}
5071 	} else
5072 		for (block = 0; block < EXT4_N_BLOCKS; block++)
5073 			raw_inode->i_block[block] = ei->i_data[block];
5074 
5075 	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5076 	if (ei->i_extra_isize) {
5077 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5078 			raw_inode->i_version_hi =
5079 			cpu_to_le32(inode->i_version >> 32);
5080 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5081 	}
5082 
5083 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5084 	rc = ext4_handle_dirty_metadata(handle, inode, bh);
5085 	if (!err)
5086 		err = rc;
5087 	ei->i_state &= ~EXT4_STATE_NEW;
5088 
5089 	ext4_update_inode_fsync_trans(handle, inode, 0);
5090 out_brelse:
5091 	brelse(bh);
5092 	ext4_std_error(inode->i_sb, err);
5093 	return err;
5094 }
5095 
5096 /*
5097  * ext4_write_inode()
5098  *
5099  * We are called from a few places:
5100  *
5101  * - Within generic_file_write() for O_SYNC files.
5102  *   Here, there will be no transaction running. We wait for any running
5103  *   trasnaction to commit.
5104  *
5105  * - Within sys_sync(), kupdate and such.
5106  *   We wait on commit, if tol to.
5107  *
5108  * - Within prune_icache() (PF_MEMALLOC == true)
5109  *   Here we simply return.  We can't afford to block kswapd on the
5110  *   journal commit.
5111  *
5112  * In all cases it is actually safe for us to return without doing anything,
5113  * because the inode has been copied into a raw inode buffer in
5114  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
5115  * knfsd.
5116  *
5117  * Note that we are absolutely dependent upon all inode dirtiers doing the
5118  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5119  * which we are interested.
5120  *
5121  * It would be a bug for them to not do this.  The code:
5122  *
5123  *	mark_inode_dirty(inode)
5124  *	stuff();
5125  *	inode->i_size = expr;
5126  *
5127  * is in error because a kswapd-driven write_inode() could occur while
5128  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
5129  * will no longer be on the superblock's dirty inode list.
5130  */
5131 int ext4_write_inode(struct inode *inode, int wait)
5132 {
5133 	int err;
5134 
5135 	if (current->flags & PF_MEMALLOC)
5136 		return 0;
5137 
5138 	if (EXT4_SB(inode->i_sb)->s_journal) {
5139 		if (ext4_journal_current_handle()) {
5140 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5141 			dump_stack();
5142 			return -EIO;
5143 		}
5144 
5145 		if (!wait)
5146 			return 0;
5147 
5148 		err = ext4_force_commit(inode->i_sb);
5149 	} else {
5150 		struct ext4_iloc iloc;
5151 
5152 		err = ext4_get_inode_loc(inode, &iloc);
5153 		if (err)
5154 			return err;
5155 		if (wait)
5156 			sync_dirty_buffer(iloc.bh);
5157 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5158 			ext4_error(inode->i_sb, __func__,
5159 				   "IO error syncing inode, "
5160 				   "inode=%lu, block=%llu",
5161 				   inode->i_ino,
5162 				   (unsigned long long)iloc.bh->b_blocknr);
5163 			err = -EIO;
5164 		}
5165 	}
5166 	return err;
5167 }
5168 
5169 /*
5170  * ext4_setattr()
5171  *
5172  * Called from notify_change.
5173  *
5174  * We want to trap VFS attempts to truncate the file as soon as
5175  * possible.  In particular, we want to make sure that when the VFS
5176  * shrinks i_size, we put the inode on the orphan list and modify
5177  * i_disksize immediately, so that during the subsequent flushing of
5178  * dirty pages and freeing of disk blocks, we can guarantee that any
5179  * commit will leave the blocks being flushed in an unused state on
5180  * disk.  (On recovery, the inode will get truncated and the blocks will
5181  * be freed, so we have a strong guarantee that no future commit will
5182  * leave these blocks visible to the user.)
5183  *
5184  * Another thing we have to assure is that if we are in ordered mode
5185  * and inode is still attached to the committing transaction, we must
5186  * we start writeout of all the dirty pages which are being truncated.
5187  * This way we are sure that all the data written in the previous
5188  * transaction are already on disk (truncate waits for pages under
5189  * writeback).
5190  *
5191  * Called with inode->i_mutex down.
5192  */
5193 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5194 {
5195 	struct inode *inode = dentry->d_inode;
5196 	int error, rc = 0;
5197 	const unsigned int ia_valid = attr->ia_valid;
5198 
5199 	error = inode_change_ok(inode, attr);
5200 	if (error)
5201 		return error;
5202 
5203 	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5204 		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5205 		handle_t *handle;
5206 
5207 		/* (user+group)*(old+new) structure, inode write (sb,
5208 		 * inode block, ? - but truncate inode update has it) */
5209 		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5210 					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5211 		if (IS_ERR(handle)) {
5212 			error = PTR_ERR(handle);
5213 			goto err_out;
5214 		}
5215 		error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
5216 		if (error) {
5217 			ext4_journal_stop(handle);
5218 			return error;
5219 		}
5220 		/* Update corresponding info in inode so that everything is in
5221 		 * one transaction */
5222 		if (attr->ia_valid & ATTR_UID)
5223 			inode->i_uid = attr->ia_uid;
5224 		if (attr->ia_valid & ATTR_GID)
5225 			inode->i_gid = attr->ia_gid;
5226 		error = ext4_mark_inode_dirty(handle, inode);
5227 		ext4_journal_stop(handle);
5228 	}
5229 
5230 	if (attr->ia_valid & ATTR_SIZE) {
5231 		if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
5232 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5233 
5234 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5235 				error = -EFBIG;
5236 				goto err_out;
5237 			}
5238 		}
5239 	}
5240 
5241 	if (S_ISREG(inode->i_mode) &&
5242 	    attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
5243 		handle_t *handle;
5244 
5245 		handle = ext4_journal_start(inode, 3);
5246 		if (IS_ERR(handle)) {
5247 			error = PTR_ERR(handle);
5248 			goto err_out;
5249 		}
5250 
5251 		error = ext4_orphan_add(handle, inode);
5252 		EXT4_I(inode)->i_disksize = attr->ia_size;
5253 		rc = ext4_mark_inode_dirty(handle, inode);
5254 		if (!error)
5255 			error = rc;
5256 		ext4_journal_stop(handle);
5257 
5258 		if (ext4_should_order_data(inode)) {
5259 			error = ext4_begin_ordered_truncate(inode,
5260 							    attr->ia_size);
5261 			if (error) {
5262 				/* Do as much error cleanup as possible */
5263 				handle = ext4_journal_start(inode, 3);
5264 				if (IS_ERR(handle)) {
5265 					ext4_orphan_del(NULL, inode);
5266 					goto err_out;
5267 				}
5268 				ext4_orphan_del(handle, inode);
5269 				ext4_journal_stop(handle);
5270 				goto err_out;
5271 			}
5272 		}
5273 	}
5274 
5275 	rc = inode_setattr(inode, attr);
5276 
5277 	/* If inode_setattr's call to ext4_truncate failed to get a
5278 	 * transaction handle at all, we need to clean up the in-core
5279 	 * orphan list manually. */
5280 	if (inode->i_nlink)
5281 		ext4_orphan_del(NULL, inode);
5282 
5283 	if (!rc && (ia_valid & ATTR_MODE))
5284 		rc = ext4_acl_chmod(inode);
5285 
5286 err_out:
5287 	ext4_std_error(inode->i_sb, error);
5288 	if (!error)
5289 		error = rc;
5290 	return error;
5291 }
5292 
5293 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5294 		 struct kstat *stat)
5295 {
5296 	struct inode *inode;
5297 	unsigned long delalloc_blocks;
5298 
5299 	inode = dentry->d_inode;
5300 	generic_fillattr(inode, stat);
5301 
5302 	/*
5303 	 * We can't update i_blocks if the block allocation is delayed
5304 	 * otherwise in the case of system crash before the real block
5305 	 * allocation is done, we will have i_blocks inconsistent with
5306 	 * on-disk file blocks.
5307 	 * We always keep i_blocks updated together with real
5308 	 * allocation. But to not confuse with user, stat
5309 	 * will return the blocks that include the delayed allocation
5310 	 * blocks for this file.
5311 	 */
5312 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5313 	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5314 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5315 
5316 	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5317 	return 0;
5318 }
5319 
5320 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5321 				      int chunk)
5322 {
5323 	int indirects;
5324 
5325 	/* if nrblocks are contiguous */
5326 	if (chunk) {
5327 		/*
5328 		 * With N contiguous data blocks, it need at most
5329 		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5330 		 * 2 dindirect blocks
5331 		 * 1 tindirect block
5332 		 */
5333 		indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5334 		return indirects + 3;
5335 	}
5336 	/*
5337 	 * if nrblocks are not contiguous, worse case, each block touch
5338 	 * a indirect block, and each indirect block touch a double indirect
5339 	 * block, plus a triple indirect block
5340 	 */
5341 	indirects = nrblocks * 2 + 1;
5342 	return indirects;
5343 }
5344 
5345 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5346 {
5347 	if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
5348 		return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5349 	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5350 }
5351 
5352 /*
5353  * Account for index blocks, block groups bitmaps and block group
5354  * descriptor blocks if modify datablocks and index blocks
5355  * worse case, the indexs blocks spread over different block groups
5356  *
5357  * If datablocks are discontiguous, they are possible to spread over
5358  * different block groups too. If they are contiuguous, with flexbg,
5359  * they could still across block group boundary.
5360  *
5361  * Also account for superblock, inode, quota and xattr blocks
5362  */
5363 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5364 {
5365 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5366 	int gdpblocks;
5367 	int idxblocks;
5368 	int ret = 0;
5369 
5370 	/*
5371 	 * How many index blocks need to touch to modify nrblocks?
5372 	 * The "Chunk" flag indicating whether the nrblocks is
5373 	 * physically contiguous on disk
5374 	 *
5375 	 * For Direct IO and fallocate, they calls get_block to allocate
5376 	 * one single extent at a time, so they could set the "Chunk" flag
5377 	 */
5378 	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5379 
5380 	ret = idxblocks;
5381 
5382 	/*
5383 	 * Now let's see how many group bitmaps and group descriptors need
5384 	 * to account
5385 	 */
5386 	groups = idxblocks;
5387 	if (chunk)
5388 		groups += 1;
5389 	else
5390 		groups += nrblocks;
5391 
5392 	gdpblocks = groups;
5393 	if (groups > ngroups)
5394 		groups = ngroups;
5395 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5396 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5397 
5398 	/* bitmaps and block group descriptor blocks */
5399 	ret += groups + gdpblocks;
5400 
5401 	/* Blocks for super block, inode, quota and xattr blocks */
5402 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5403 
5404 	return ret;
5405 }
5406 
5407 /*
5408  * Calulate the total number of credits to reserve to fit
5409  * the modification of a single pages into a single transaction,
5410  * which may include multiple chunks of block allocations.
5411  *
5412  * This could be called via ext4_write_begin()
5413  *
5414  * We need to consider the worse case, when
5415  * one new block per extent.
5416  */
5417 int ext4_writepage_trans_blocks(struct inode *inode)
5418 {
5419 	int bpp = ext4_journal_blocks_per_page(inode);
5420 	int ret;
5421 
5422 	ret = ext4_meta_trans_blocks(inode, bpp, 0);
5423 
5424 	/* Account for data blocks for journalled mode */
5425 	if (ext4_should_journal_data(inode))
5426 		ret += bpp;
5427 	return ret;
5428 }
5429 
5430 /*
5431  * Calculate the journal credits for a chunk of data modification.
5432  *
5433  * This is called from DIO, fallocate or whoever calling
5434  * ext4_get_blocks() to map/allocate a chunk of contiguous disk blocks.
5435  *
5436  * journal buffers for data blocks are not included here, as DIO
5437  * and fallocate do no need to journal data buffers.
5438  */
5439 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5440 {
5441 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5442 }
5443 
5444 /*
5445  * The caller must have previously called ext4_reserve_inode_write().
5446  * Give this, we know that the caller already has write access to iloc->bh.
5447  */
5448 int ext4_mark_iloc_dirty(handle_t *handle,
5449 			 struct inode *inode, struct ext4_iloc *iloc)
5450 {
5451 	int err = 0;
5452 
5453 	if (test_opt(inode->i_sb, I_VERSION))
5454 		inode_inc_iversion(inode);
5455 
5456 	/* the do_update_inode consumes one bh->b_count */
5457 	get_bh(iloc->bh);
5458 
5459 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5460 	err = ext4_do_update_inode(handle, inode, iloc);
5461 	put_bh(iloc->bh);
5462 	return err;
5463 }
5464 
5465 /*
5466  * On success, We end up with an outstanding reference count against
5467  * iloc->bh.  This _must_ be cleaned up later.
5468  */
5469 
5470 int
5471 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5472 			 struct ext4_iloc *iloc)
5473 {
5474 	int err;
5475 
5476 	err = ext4_get_inode_loc(inode, iloc);
5477 	if (!err) {
5478 		BUFFER_TRACE(iloc->bh, "get_write_access");
5479 		err = ext4_journal_get_write_access(handle, iloc->bh);
5480 		if (err) {
5481 			brelse(iloc->bh);
5482 			iloc->bh = NULL;
5483 		}
5484 	}
5485 	ext4_std_error(inode->i_sb, err);
5486 	return err;
5487 }
5488 
5489 /*
5490  * Expand an inode by new_extra_isize bytes.
5491  * Returns 0 on success or negative error number on failure.
5492  */
5493 static int ext4_expand_extra_isize(struct inode *inode,
5494 				   unsigned int new_extra_isize,
5495 				   struct ext4_iloc iloc,
5496 				   handle_t *handle)
5497 {
5498 	struct ext4_inode *raw_inode;
5499 	struct ext4_xattr_ibody_header *header;
5500 	struct ext4_xattr_entry *entry;
5501 
5502 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5503 		return 0;
5504 
5505 	raw_inode = ext4_raw_inode(&iloc);
5506 
5507 	header = IHDR(inode, raw_inode);
5508 	entry = IFIRST(header);
5509 
5510 	/* No extended attributes present */
5511 	if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5512 		header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5513 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5514 			new_extra_isize);
5515 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5516 		return 0;
5517 	}
5518 
5519 	/* try to expand with EAs present */
5520 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5521 					  raw_inode, handle);
5522 }
5523 
5524 /*
5525  * What we do here is to mark the in-core inode as clean with respect to inode
5526  * dirtiness (it may still be data-dirty).
5527  * This means that the in-core inode may be reaped by prune_icache
5528  * without having to perform any I/O.  This is a very good thing,
5529  * because *any* task may call prune_icache - even ones which
5530  * have a transaction open against a different journal.
5531  *
5532  * Is this cheating?  Not really.  Sure, we haven't written the
5533  * inode out, but prune_icache isn't a user-visible syncing function.
5534  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5535  * we start and wait on commits.
5536  *
5537  * Is this efficient/effective?  Well, we're being nice to the system
5538  * by cleaning up our inodes proactively so they can be reaped
5539  * without I/O.  But we are potentially leaving up to five seconds'
5540  * worth of inodes floating about which prune_icache wants us to
5541  * write out.  One way to fix that would be to get prune_icache()
5542  * to do a write_super() to free up some memory.  It has the desired
5543  * effect.
5544  */
5545 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5546 {
5547 	struct ext4_iloc iloc;
5548 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5549 	static unsigned int mnt_count;
5550 	int err, ret;
5551 
5552 	might_sleep();
5553 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5554 	if (ext4_handle_valid(handle) &&
5555 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5556 	    !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5557 		/*
5558 		 * We need extra buffer credits since we may write into EA block
5559 		 * with this same handle. If journal_extend fails, then it will
5560 		 * only result in a minor loss of functionality for that inode.
5561 		 * If this is felt to be critical, then e2fsck should be run to
5562 		 * force a large enough s_min_extra_isize.
5563 		 */
5564 		if ((jbd2_journal_extend(handle,
5565 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5566 			ret = ext4_expand_extra_isize(inode,
5567 						      sbi->s_want_extra_isize,
5568 						      iloc, handle);
5569 			if (ret) {
5570 				EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
5571 				if (mnt_count !=
5572 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5573 					ext4_warning(inode->i_sb, __func__,
5574 					"Unable to expand inode %lu. Delete"
5575 					" some EAs or run e2fsck.",
5576 					inode->i_ino);
5577 					mnt_count =
5578 					  le16_to_cpu(sbi->s_es->s_mnt_count);
5579 				}
5580 			}
5581 		}
5582 	}
5583 	if (!err)
5584 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5585 	return err;
5586 }
5587 
5588 /*
5589  * ext4_dirty_inode() is called from __mark_inode_dirty()
5590  *
5591  * We're really interested in the case where a file is being extended.
5592  * i_size has been changed by generic_commit_write() and we thus need
5593  * to include the updated inode in the current transaction.
5594  *
5595  * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5596  * are allocated to the file.
5597  *
5598  * If the inode is marked synchronous, we don't honour that here - doing
5599  * so would cause a commit on atime updates, which we don't bother doing.
5600  * We handle synchronous inodes at the highest possible level.
5601  */
5602 void ext4_dirty_inode(struct inode *inode)
5603 {
5604 	handle_t *handle;
5605 
5606 	handle = ext4_journal_start(inode, 2);
5607 	if (IS_ERR(handle))
5608 		goto out;
5609 
5610 	ext4_mark_inode_dirty(handle, inode);
5611 
5612 	ext4_journal_stop(handle);
5613 out:
5614 	return;
5615 }
5616 
5617 #if 0
5618 /*
5619  * Bind an inode's backing buffer_head into this transaction, to prevent
5620  * it from being flushed to disk early.  Unlike
5621  * ext4_reserve_inode_write, this leaves behind no bh reference and
5622  * returns no iloc structure, so the caller needs to repeat the iloc
5623  * lookup to mark the inode dirty later.
5624  */
5625 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5626 {
5627 	struct ext4_iloc iloc;
5628 
5629 	int err = 0;
5630 	if (handle) {
5631 		err = ext4_get_inode_loc(inode, &iloc);
5632 		if (!err) {
5633 			BUFFER_TRACE(iloc.bh, "get_write_access");
5634 			err = jbd2_journal_get_write_access(handle, iloc.bh);
5635 			if (!err)
5636 				err = ext4_handle_dirty_metadata(handle,
5637 								 inode,
5638 								 iloc.bh);
5639 			brelse(iloc.bh);
5640 		}
5641 	}
5642 	ext4_std_error(inode->i_sb, err);
5643 	return err;
5644 }
5645 #endif
5646 
5647 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5648 {
5649 	journal_t *journal;
5650 	handle_t *handle;
5651 	int err;
5652 
5653 	/*
5654 	 * We have to be very careful here: changing a data block's
5655 	 * journaling status dynamically is dangerous.  If we write a
5656 	 * data block to the journal, change the status and then delete
5657 	 * that block, we risk forgetting to revoke the old log record
5658 	 * from the journal and so a subsequent replay can corrupt data.
5659 	 * So, first we make sure that the journal is empty and that
5660 	 * nobody is changing anything.
5661 	 */
5662 
5663 	journal = EXT4_JOURNAL(inode);
5664 	if (!journal)
5665 		return 0;
5666 	if (is_journal_aborted(journal))
5667 		return -EROFS;
5668 
5669 	jbd2_journal_lock_updates(journal);
5670 	jbd2_journal_flush(journal);
5671 
5672 	/*
5673 	 * OK, there are no updates running now, and all cached data is
5674 	 * synced to disk.  We are now in a completely consistent state
5675 	 * which doesn't have anything in the journal, and we know that
5676 	 * no filesystem updates are running, so it is safe to modify
5677 	 * the inode's in-core data-journaling state flag now.
5678 	 */
5679 
5680 	if (val)
5681 		EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5682 	else
5683 		EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5684 	ext4_set_aops(inode);
5685 
5686 	jbd2_journal_unlock_updates(journal);
5687 
5688 	/* Finally we can mark the inode as dirty. */
5689 
5690 	handle = ext4_journal_start(inode, 1);
5691 	if (IS_ERR(handle))
5692 		return PTR_ERR(handle);
5693 
5694 	err = ext4_mark_inode_dirty(handle, inode);
5695 	ext4_handle_sync(handle);
5696 	ext4_journal_stop(handle);
5697 	ext4_std_error(inode->i_sb, err);
5698 
5699 	return err;
5700 }
5701 
5702 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5703 {
5704 	return !buffer_mapped(bh);
5705 }
5706 
5707 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5708 {
5709 	struct page *page = vmf->page;
5710 	loff_t size;
5711 	unsigned long len;
5712 	int ret = -EINVAL;
5713 	void *fsdata;
5714 	struct file *file = vma->vm_file;
5715 	struct inode *inode = file->f_path.dentry->d_inode;
5716 	struct address_space *mapping = inode->i_mapping;
5717 
5718 	/*
5719 	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5720 	 * get i_mutex because we are already holding mmap_sem.
5721 	 */
5722 	down_read(&inode->i_alloc_sem);
5723 	size = i_size_read(inode);
5724 	if (page->mapping != mapping || size <= page_offset(page)
5725 	    || !PageUptodate(page)) {
5726 		/* page got truncated from under us? */
5727 		goto out_unlock;
5728 	}
5729 	ret = 0;
5730 	if (PageMappedToDisk(page))
5731 		goto out_unlock;
5732 
5733 	if (page->index == size >> PAGE_CACHE_SHIFT)
5734 		len = size & ~PAGE_CACHE_MASK;
5735 	else
5736 		len = PAGE_CACHE_SIZE;
5737 
5738 	lock_page(page);
5739 	/*
5740 	 * return if we have all the buffers mapped. This avoid
5741 	 * the need to call write_begin/write_end which does a
5742 	 * journal_start/journal_stop which can block and take
5743 	 * long time
5744 	 */
5745 	if (page_has_buffers(page)) {
5746 		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5747 					ext4_bh_unmapped)) {
5748 			unlock_page(page);
5749 			goto out_unlock;
5750 		}
5751 	}
5752 	unlock_page(page);
5753 	/*
5754 	 * OK, we need to fill the hole... Do write_begin write_end
5755 	 * to do block allocation/reservation.We are not holding
5756 	 * inode.i__mutex here. That allow * parallel write_begin,
5757 	 * write_end call. lock_page prevent this from happening
5758 	 * on the same page though
5759 	 */
5760 	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5761 			len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5762 	if (ret < 0)
5763 		goto out_unlock;
5764 	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5765 			len, len, page, fsdata);
5766 	if (ret < 0)
5767 		goto out_unlock;
5768 	ret = 0;
5769 out_unlock:
5770 	if (ret)
5771 		ret = VM_FAULT_SIGBUS;
5772 	up_read(&inode->i_alloc_sem);
5773 	return ret;
5774 }
5775