1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/inode.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * 64-bit file support on 64-bit platforms by Jakub Jelinek 17 * (jj@sunsite.ms.mff.cuni.cz) 18 * 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/mount.h> 24 #include <linux/time.h> 25 #include <linux/highuid.h> 26 #include <linux/pagemap.h> 27 #include <linux/dax.h> 28 #include <linux/quotaops.h> 29 #include <linux/string.h> 30 #include <linux/buffer_head.h> 31 #include <linux/writeback.h> 32 #include <linux/pagevec.h> 33 #include <linux/mpage.h> 34 #include <linux/namei.h> 35 #include <linux/uio.h> 36 #include <linux/bio.h> 37 #include <linux/workqueue.h> 38 #include <linux/kernel.h> 39 #include <linux/printk.h> 40 #include <linux/slab.h> 41 #include <linux/bitops.h> 42 #include <linux/iomap.h> 43 #include <linux/iversion.h> 44 45 #include "ext4_jbd2.h" 46 #include "xattr.h" 47 #include "acl.h" 48 #include "truncate.h" 49 50 #include <trace/events/ext4.h> 51 52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 53 struct ext4_inode_info *ei) 54 { 55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 56 __u32 csum; 57 __u16 dummy_csum = 0; 58 int offset = offsetof(struct ext4_inode, i_checksum_lo); 59 unsigned int csum_size = sizeof(dummy_csum); 60 61 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset); 62 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size); 63 offset += csum_size; 64 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 65 EXT4_GOOD_OLD_INODE_SIZE - offset); 66 67 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 68 offset = offsetof(struct ext4_inode, i_checksum_hi); 69 csum = ext4_chksum(sbi, csum, (__u8 *)raw + 70 EXT4_GOOD_OLD_INODE_SIZE, 71 offset - EXT4_GOOD_OLD_INODE_SIZE); 72 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 73 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, 74 csum_size); 75 offset += csum_size; 76 } 77 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 78 EXT4_INODE_SIZE(inode->i_sb) - offset); 79 } 80 81 return csum; 82 } 83 84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 85 struct ext4_inode_info *ei) 86 { 87 __u32 provided, calculated; 88 89 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 90 cpu_to_le32(EXT4_OS_LINUX) || 91 !ext4_has_metadata_csum(inode->i_sb)) 92 return 1; 93 94 provided = le16_to_cpu(raw->i_checksum_lo); 95 calculated = ext4_inode_csum(inode, raw, ei); 96 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 97 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 98 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 99 else 100 calculated &= 0xFFFF; 101 102 return provided == calculated; 103 } 104 105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 106 struct ext4_inode_info *ei) 107 { 108 __u32 csum; 109 110 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 111 cpu_to_le32(EXT4_OS_LINUX) || 112 !ext4_has_metadata_csum(inode->i_sb)) 113 return; 114 115 csum = ext4_inode_csum(inode, raw, ei); 116 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 117 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 118 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 119 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 120 } 121 122 static inline int ext4_begin_ordered_truncate(struct inode *inode, 123 loff_t new_size) 124 { 125 trace_ext4_begin_ordered_truncate(inode, new_size); 126 /* 127 * If jinode is zero, then we never opened the file for 128 * writing, so there's no need to call 129 * jbd2_journal_begin_ordered_truncate() since there's no 130 * outstanding writes we need to flush. 131 */ 132 if (!EXT4_I(inode)->jinode) 133 return 0; 134 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 135 EXT4_I(inode)->jinode, 136 new_size); 137 } 138 139 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 140 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 141 int pextents); 142 143 /* 144 * Test whether an inode is a fast symlink. 145 * A fast symlink has its symlink data stored in ext4_inode_info->i_data. 146 */ 147 int ext4_inode_is_fast_symlink(struct inode *inode) 148 { 149 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 150 int ea_blocks = EXT4_I(inode)->i_file_acl ? 151 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 152 153 if (ext4_has_inline_data(inode)) 154 return 0; 155 156 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 157 } 158 return S_ISLNK(inode->i_mode) && inode->i_size && 159 (inode->i_size < EXT4_N_BLOCKS * 4); 160 } 161 162 /* 163 * Called at the last iput() if i_nlink is zero. 164 */ 165 void ext4_evict_inode(struct inode *inode) 166 { 167 handle_t *handle; 168 int err; 169 /* 170 * Credits for final inode cleanup and freeing: 171 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor 172 * (xattr block freeing), bitmap, group descriptor (inode freeing) 173 */ 174 int extra_credits = 6; 175 struct ext4_xattr_inode_array *ea_inode_array = NULL; 176 bool freeze_protected = false; 177 178 trace_ext4_evict_inode(inode); 179 180 if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL) 181 ext4_evict_ea_inode(inode); 182 if (inode->i_nlink) { 183 /* 184 * When journalling data dirty buffers are tracked only in the 185 * journal. So although mm thinks everything is clean and 186 * ready for reaping the inode might still have some pages to 187 * write in the running transaction or waiting to be 188 * checkpointed. Thus calling jbd2_journal_invalidate_folio() 189 * (via truncate_inode_pages()) to discard these buffers can 190 * cause data loss. Also even if we did not discard these 191 * buffers, we would have no way to find them after the inode 192 * is reaped and thus user could see stale data if he tries to 193 * read them before the transaction is checkpointed. So be 194 * careful and force everything to disk here... We use 195 * ei->i_datasync_tid to store the newest transaction 196 * containing inode's data. 197 * 198 * Note that directories do not have this problem because they 199 * don't use page cache. 200 */ 201 if (inode->i_ino != EXT4_JOURNAL_INO && 202 ext4_should_journal_data(inode) && 203 S_ISREG(inode->i_mode) && inode->i_data.nrpages) { 204 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 205 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 206 207 jbd2_complete_transaction(journal, commit_tid); 208 filemap_write_and_wait(&inode->i_data); 209 } 210 truncate_inode_pages_final(&inode->i_data); 211 212 goto no_delete; 213 } 214 215 if (is_bad_inode(inode)) 216 goto no_delete; 217 dquot_initialize(inode); 218 219 if (ext4_should_order_data(inode)) 220 ext4_begin_ordered_truncate(inode, 0); 221 truncate_inode_pages_final(&inode->i_data); 222 223 /* 224 * For inodes with journalled data, transaction commit could have 225 * dirtied the inode. Flush worker is ignoring it because of I_FREEING 226 * flag but we still need to remove the inode from the writeback lists. 227 */ 228 if (!list_empty_careful(&inode->i_io_list)) { 229 WARN_ON_ONCE(!ext4_should_journal_data(inode)); 230 inode_io_list_del(inode); 231 } 232 233 /* 234 * Protect us against freezing - iput() caller didn't have to have any 235 * protection against it. When we are in a running transaction though, 236 * we are already protected against freezing and we cannot grab further 237 * protection due to lock ordering constraints. 238 */ 239 if (!ext4_journal_current_handle()) { 240 sb_start_intwrite(inode->i_sb); 241 freeze_protected = true; 242 } 243 244 if (!IS_NOQUOTA(inode)) 245 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); 246 247 /* 248 * Block bitmap, group descriptor, and inode are accounted in both 249 * ext4_blocks_for_truncate() and extra_credits. So subtract 3. 250 */ 251 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 252 ext4_blocks_for_truncate(inode) + extra_credits - 3); 253 if (IS_ERR(handle)) { 254 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 255 /* 256 * If we're going to skip the normal cleanup, we still need to 257 * make sure that the in-core orphan linked list is properly 258 * cleaned up. 259 */ 260 ext4_orphan_del(NULL, inode); 261 if (freeze_protected) 262 sb_end_intwrite(inode->i_sb); 263 goto no_delete; 264 } 265 266 if (IS_SYNC(inode)) 267 ext4_handle_sync(handle); 268 269 /* 270 * Set inode->i_size to 0 before calling ext4_truncate(). We need 271 * special handling of symlinks here because i_size is used to 272 * determine whether ext4_inode_info->i_data contains symlink data or 273 * block mappings. Setting i_size to 0 will remove its fast symlink 274 * status. Erase i_data so that it becomes a valid empty block map. 275 */ 276 if (ext4_inode_is_fast_symlink(inode)) 277 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data)); 278 inode->i_size = 0; 279 err = ext4_mark_inode_dirty(handle, inode); 280 if (err) { 281 ext4_warning(inode->i_sb, 282 "couldn't mark inode dirty (err %d)", err); 283 goto stop_handle; 284 } 285 if (inode->i_blocks) { 286 err = ext4_truncate(inode); 287 if (err) { 288 ext4_error_err(inode->i_sb, -err, 289 "couldn't truncate inode %lu (err %d)", 290 inode->i_ino, err); 291 goto stop_handle; 292 } 293 } 294 295 /* Remove xattr references. */ 296 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array, 297 extra_credits); 298 if (err) { 299 ext4_warning(inode->i_sb, "xattr delete (err %d)", err); 300 stop_handle: 301 ext4_journal_stop(handle); 302 ext4_orphan_del(NULL, inode); 303 if (freeze_protected) 304 sb_end_intwrite(inode->i_sb); 305 ext4_xattr_inode_array_free(ea_inode_array); 306 goto no_delete; 307 } 308 309 /* 310 * Kill off the orphan record which ext4_truncate created. 311 * AKPM: I think this can be inside the above `if'. 312 * Note that ext4_orphan_del() has to be able to cope with the 313 * deletion of a non-existent orphan - this is because we don't 314 * know if ext4_truncate() actually created an orphan record. 315 * (Well, we could do this if we need to, but heck - it works) 316 */ 317 ext4_orphan_del(handle, inode); 318 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds(); 319 320 /* 321 * One subtle ordering requirement: if anything has gone wrong 322 * (transaction abort, IO errors, whatever), then we can still 323 * do these next steps (the fs will already have been marked as 324 * having errors), but we can't free the inode if the mark_dirty 325 * fails. 326 */ 327 if (ext4_mark_inode_dirty(handle, inode)) 328 /* If that failed, just do the required in-core inode clear. */ 329 ext4_clear_inode(inode); 330 else 331 ext4_free_inode(handle, inode); 332 ext4_journal_stop(handle); 333 if (freeze_protected) 334 sb_end_intwrite(inode->i_sb); 335 ext4_xattr_inode_array_free(ea_inode_array); 336 return; 337 no_delete: 338 if (!list_empty(&EXT4_I(inode)->i_fc_list)) 339 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL); 340 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 341 } 342 343 #ifdef CONFIG_QUOTA 344 qsize_t *ext4_get_reserved_space(struct inode *inode) 345 { 346 return &EXT4_I(inode)->i_reserved_quota; 347 } 348 #endif 349 350 /* 351 * Called with i_data_sem down, which is important since we can call 352 * ext4_discard_preallocations() from here. 353 */ 354 void ext4_da_update_reserve_space(struct inode *inode, 355 int used, int quota_claim) 356 { 357 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 358 struct ext4_inode_info *ei = EXT4_I(inode); 359 360 spin_lock(&ei->i_block_reservation_lock); 361 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 362 if (unlikely(used > ei->i_reserved_data_blocks)) { 363 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 364 "with only %d reserved data blocks", 365 __func__, inode->i_ino, used, 366 ei->i_reserved_data_blocks); 367 WARN_ON(1); 368 used = ei->i_reserved_data_blocks; 369 } 370 371 /* Update per-inode reservations */ 372 ei->i_reserved_data_blocks -= used; 373 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 374 375 spin_unlock(&ei->i_block_reservation_lock); 376 377 /* Update quota subsystem for data blocks */ 378 if (quota_claim) 379 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 380 else { 381 /* 382 * We did fallocate with an offset that is already delayed 383 * allocated. So on delayed allocated writeback we should 384 * not re-claim the quota for fallocated blocks. 385 */ 386 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 387 } 388 389 /* 390 * If we have done all the pending block allocations and if 391 * there aren't any writers on the inode, we can discard the 392 * inode's preallocations. 393 */ 394 if ((ei->i_reserved_data_blocks == 0) && 395 !inode_is_open_for_write(inode)) 396 ext4_discard_preallocations(inode, 0); 397 } 398 399 static int __check_block_validity(struct inode *inode, const char *func, 400 unsigned int line, 401 struct ext4_map_blocks *map) 402 { 403 if (ext4_has_feature_journal(inode->i_sb) && 404 (inode->i_ino == 405 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum))) 406 return 0; 407 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) { 408 ext4_error_inode(inode, func, line, map->m_pblk, 409 "lblock %lu mapped to illegal pblock %llu " 410 "(length %d)", (unsigned long) map->m_lblk, 411 map->m_pblk, map->m_len); 412 return -EFSCORRUPTED; 413 } 414 return 0; 415 } 416 417 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 418 ext4_lblk_t len) 419 { 420 int ret; 421 422 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) 423 return fscrypt_zeroout_range(inode, lblk, pblk, len); 424 425 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 426 if (ret > 0) 427 ret = 0; 428 429 return ret; 430 } 431 432 #define check_block_validity(inode, map) \ 433 __check_block_validity((inode), __func__, __LINE__, (map)) 434 435 #ifdef ES_AGGRESSIVE_TEST 436 static void ext4_map_blocks_es_recheck(handle_t *handle, 437 struct inode *inode, 438 struct ext4_map_blocks *es_map, 439 struct ext4_map_blocks *map, 440 int flags) 441 { 442 int retval; 443 444 map->m_flags = 0; 445 /* 446 * There is a race window that the result is not the same. 447 * e.g. xfstests #223 when dioread_nolock enables. The reason 448 * is that we lookup a block mapping in extent status tree with 449 * out taking i_data_sem. So at the time the unwritten extent 450 * could be converted. 451 */ 452 down_read(&EXT4_I(inode)->i_data_sem); 453 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 454 retval = ext4_ext_map_blocks(handle, inode, map, 0); 455 } else { 456 retval = ext4_ind_map_blocks(handle, inode, map, 0); 457 } 458 up_read((&EXT4_I(inode)->i_data_sem)); 459 460 /* 461 * We don't check m_len because extent will be collpased in status 462 * tree. So the m_len might not equal. 463 */ 464 if (es_map->m_lblk != map->m_lblk || 465 es_map->m_flags != map->m_flags || 466 es_map->m_pblk != map->m_pblk) { 467 printk("ES cache assertion failed for inode: %lu " 468 "es_cached ex [%d/%d/%llu/%x] != " 469 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 470 inode->i_ino, es_map->m_lblk, es_map->m_len, 471 es_map->m_pblk, es_map->m_flags, map->m_lblk, 472 map->m_len, map->m_pblk, map->m_flags, 473 retval, flags); 474 } 475 } 476 #endif /* ES_AGGRESSIVE_TEST */ 477 478 /* 479 * The ext4_map_blocks() function tries to look up the requested blocks, 480 * and returns if the blocks are already mapped. 481 * 482 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 483 * and store the allocated blocks in the result buffer head and mark it 484 * mapped. 485 * 486 * If file type is extents based, it will call ext4_ext_map_blocks(), 487 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 488 * based files 489 * 490 * On success, it returns the number of blocks being mapped or allocated. if 491 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map 492 * is marked as unwritten. If the create == 1, it will mark @map as mapped. 493 * 494 * It returns 0 if plain look up failed (blocks have not been allocated), in 495 * that case, @map is returned as unmapped but we still do fill map->m_len to 496 * indicate the length of a hole starting at map->m_lblk. 497 * 498 * It returns the error in case of allocation failure. 499 */ 500 int ext4_map_blocks(handle_t *handle, struct inode *inode, 501 struct ext4_map_blocks *map, int flags) 502 { 503 struct extent_status es; 504 int retval; 505 int ret = 0; 506 #ifdef ES_AGGRESSIVE_TEST 507 struct ext4_map_blocks orig_map; 508 509 memcpy(&orig_map, map, sizeof(*map)); 510 #endif 511 512 map->m_flags = 0; 513 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n", 514 flags, map->m_len, (unsigned long) map->m_lblk); 515 516 /* 517 * ext4_map_blocks returns an int, and m_len is an unsigned int 518 */ 519 if (unlikely(map->m_len > INT_MAX)) 520 map->m_len = INT_MAX; 521 522 /* We can handle the block number less than EXT_MAX_BLOCKS */ 523 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 524 return -EFSCORRUPTED; 525 526 /* Lookup extent status tree firstly */ 527 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) && 528 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 529 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 530 map->m_pblk = ext4_es_pblock(&es) + 531 map->m_lblk - es.es_lblk; 532 map->m_flags |= ext4_es_is_written(&es) ? 533 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 534 retval = es.es_len - (map->m_lblk - es.es_lblk); 535 if (retval > map->m_len) 536 retval = map->m_len; 537 map->m_len = retval; 538 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 539 map->m_pblk = 0; 540 retval = es.es_len - (map->m_lblk - es.es_lblk); 541 if (retval > map->m_len) 542 retval = map->m_len; 543 map->m_len = retval; 544 retval = 0; 545 } else { 546 BUG(); 547 } 548 549 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT) 550 return retval; 551 #ifdef ES_AGGRESSIVE_TEST 552 ext4_map_blocks_es_recheck(handle, inode, map, 553 &orig_map, flags); 554 #endif 555 goto found; 556 } 557 /* 558 * In the query cache no-wait mode, nothing we can do more if we 559 * cannot find extent in the cache. 560 */ 561 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT) 562 return 0; 563 564 /* 565 * Try to see if we can get the block without requesting a new 566 * file system block. 567 */ 568 down_read(&EXT4_I(inode)->i_data_sem); 569 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 570 retval = ext4_ext_map_blocks(handle, inode, map, 0); 571 } else { 572 retval = ext4_ind_map_blocks(handle, inode, map, 0); 573 } 574 if (retval > 0) { 575 unsigned int status; 576 577 if (unlikely(retval != map->m_len)) { 578 ext4_warning(inode->i_sb, 579 "ES len assertion failed for inode " 580 "%lu: retval %d != map->m_len %d", 581 inode->i_ino, retval, map->m_len); 582 WARN_ON(1); 583 } 584 585 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 586 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 587 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 588 !(status & EXTENT_STATUS_WRITTEN) && 589 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 590 map->m_lblk + map->m_len - 1)) 591 status |= EXTENT_STATUS_DELAYED; 592 ret = ext4_es_insert_extent(inode, map->m_lblk, 593 map->m_len, map->m_pblk, status); 594 if (ret < 0) 595 retval = ret; 596 } 597 up_read((&EXT4_I(inode)->i_data_sem)); 598 599 found: 600 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 601 ret = check_block_validity(inode, map); 602 if (ret != 0) 603 return ret; 604 } 605 606 /* If it is only a block(s) look up */ 607 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 608 return retval; 609 610 /* 611 * Returns if the blocks have already allocated 612 * 613 * Note that if blocks have been preallocated 614 * ext4_ext_get_block() returns the create = 0 615 * with buffer head unmapped. 616 */ 617 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 618 /* 619 * If we need to convert extent to unwritten 620 * we continue and do the actual work in 621 * ext4_ext_map_blocks() 622 */ 623 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 624 return retval; 625 626 /* 627 * Here we clear m_flags because after allocating an new extent, 628 * it will be set again. 629 */ 630 map->m_flags &= ~EXT4_MAP_FLAGS; 631 632 /* 633 * New blocks allocate and/or writing to unwritten extent 634 * will possibly result in updating i_data, so we take 635 * the write lock of i_data_sem, and call get_block() 636 * with create == 1 flag. 637 */ 638 down_write(&EXT4_I(inode)->i_data_sem); 639 640 /* 641 * We need to check for EXT4 here because migrate 642 * could have changed the inode type in between 643 */ 644 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 645 retval = ext4_ext_map_blocks(handle, inode, map, flags); 646 } else { 647 retval = ext4_ind_map_blocks(handle, inode, map, flags); 648 649 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 650 /* 651 * We allocated new blocks which will result in 652 * i_data's format changing. Force the migrate 653 * to fail by clearing migrate flags 654 */ 655 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 656 } 657 658 /* 659 * Update reserved blocks/metadata blocks after successful 660 * block allocation which had been deferred till now. We don't 661 * support fallocate for non extent files. So we can update 662 * reserve space here. 663 */ 664 if ((retval > 0) && 665 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 666 ext4_da_update_reserve_space(inode, retval, 1); 667 } 668 669 if (retval > 0) { 670 unsigned int status; 671 672 if (unlikely(retval != map->m_len)) { 673 ext4_warning(inode->i_sb, 674 "ES len assertion failed for inode " 675 "%lu: retval %d != map->m_len %d", 676 inode->i_ino, retval, map->m_len); 677 WARN_ON(1); 678 } 679 680 /* 681 * We have to zeroout blocks before inserting them into extent 682 * status tree. Otherwise someone could look them up there and 683 * use them before they are really zeroed. We also have to 684 * unmap metadata before zeroing as otherwise writeback can 685 * overwrite zeros with stale data from block device. 686 */ 687 if (flags & EXT4_GET_BLOCKS_ZERO && 688 map->m_flags & EXT4_MAP_MAPPED && 689 map->m_flags & EXT4_MAP_NEW) { 690 ret = ext4_issue_zeroout(inode, map->m_lblk, 691 map->m_pblk, map->m_len); 692 if (ret) { 693 retval = ret; 694 goto out_sem; 695 } 696 } 697 698 /* 699 * If the extent has been zeroed out, we don't need to update 700 * extent status tree. 701 */ 702 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 703 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 704 if (ext4_es_is_written(&es)) 705 goto out_sem; 706 } 707 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 708 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 709 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 710 !(status & EXTENT_STATUS_WRITTEN) && 711 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 712 map->m_lblk + map->m_len - 1)) 713 status |= EXTENT_STATUS_DELAYED; 714 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 715 map->m_pblk, status); 716 if (ret < 0) { 717 retval = ret; 718 goto out_sem; 719 } 720 } 721 722 out_sem: 723 up_write((&EXT4_I(inode)->i_data_sem)); 724 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 725 ret = check_block_validity(inode, map); 726 if (ret != 0) 727 return ret; 728 729 /* 730 * Inodes with freshly allocated blocks where contents will be 731 * visible after transaction commit must be on transaction's 732 * ordered data list. 733 */ 734 if (map->m_flags & EXT4_MAP_NEW && 735 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 736 !(flags & EXT4_GET_BLOCKS_ZERO) && 737 !ext4_is_quota_file(inode) && 738 ext4_should_order_data(inode)) { 739 loff_t start_byte = 740 (loff_t)map->m_lblk << inode->i_blkbits; 741 loff_t length = (loff_t)map->m_len << inode->i_blkbits; 742 743 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 744 ret = ext4_jbd2_inode_add_wait(handle, inode, 745 start_byte, length); 746 else 747 ret = ext4_jbd2_inode_add_write(handle, inode, 748 start_byte, length); 749 if (ret) 750 return ret; 751 } 752 } 753 if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN || 754 map->m_flags & EXT4_MAP_MAPPED)) 755 ext4_fc_track_range(handle, inode, map->m_lblk, 756 map->m_lblk + map->m_len - 1); 757 if (retval < 0) 758 ext_debug(inode, "failed with err %d\n", retval); 759 return retval; 760 } 761 762 /* 763 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 764 * we have to be careful as someone else may be manipulating b_state as well. 765 */ 766 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 767 { 768 unsigned long old_state; 769 unsigned long new_state; 770 771 flags &= EXT4_MAP_FLAGS; 772 773 /* Dummy buffer_head? Set non-atomically. */ 774 if (!bh->b_page) { 775 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 776 return; 777 } 778 /* 779 * Someone else may be modifying b_state. Be careful! This is ugly but 780 * once we get rid of using bh as a container for mapping information 781 * to pass to / from get_block functions, this can go away. 782 */ 783 do { 784 old_state = READ_ONCE(bh->b_state); 785 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 786 } while (unlikely( 787 cmpxchg(&bh->b_state, old_state, new_state) != old_state)); 788 } 789 790 static int _ext4_get_block(struct inode *inode, sector_t iblock, 791 struct buffer_head *bh, int flags) 792 { 793 struct ext4_map_blocks map; 794 int ret = 0; 795 796 if (ext4_has_inline_data(inode)) 797 return -ERANGE; 798 799 map.m_lblk = iblock; 800 map.m_len = bh->b_size >> inode->i_blkbits; 801 802 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 803 flags); 804 if (ret > 0) { 805 map_bh(bh, inode->i_sb, map.m_pblk); 806 ext4_update_bh_state(bh, map.m_flags); 807 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 808 ret = 0; 809 } else if (ret == 0) { 810 /* hole case, need to fill in bh->b_size */ 811 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 812 } 813 return ret; 814 } 815 816 int ext4_get_block(struct inode *inode, sector_t iblock, 817 struct buffer_head *bh, int create) 818 { 819 return _ext4_get_block(inode, iblock, bh, 820 create ? EXT4_GET_BLOCKS_CREATE : 0); 821 } 822 823 /* 824 * Get block function used when preparing for buffered write if we require 825 * creating an unwritten extent if blocks haven't been allocated. The extent 826 * will be converted to written after the IO is complete. 827 */ 828 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 829 struct buffer_head *bh_result, int create) 830 { 831 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 832 inode->i_ino, create); 833 return _ext4_get_block(inode, iblock, bh_result, 834 EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT); 835 } 836 837 /* Maximum number of blocks we map for direct IO at once. */ 838 #define DIO_MAX_BLOCKS 4096 839 840 /* 841 * `handle' can be NULL if create is zero 842 */ 843 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 844 ext4_lblk_t block, int map_flags) 845 { 846 struct ext4_map_blocks map; 847 struct buffer_head *bh; 848 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 849 bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT; 850 int err; 851 852 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 853 || handle != NULL || create == 0); 854 ASSERT(create == 0 || !nowait); 855 856 map.m_lblk = block; 857 map.m_len = 1; 858 err = ext4_map_blocks(handle, inode, &map, map_flags); 859 860 if (err == 0) 861 return create ? ERR_PTR(-ENOSPC) : NULL; 862 if (err < 0) 863 return ERR_PTR(err); 864 865 if (nowait) 866 return sb_find_get_block(inode->i_sb, map.m_pblk); 867 868 bh = sb_getblk(inode->i_sb, map.m_pblk); 869 if (unlikely(!bh)) 870 return ERR_PTR(-ENOMEM); 871 if (map.m_flags & EXT4_MAP_NEW) { 872 ASSERT(create != 0); 873 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 874 || (handle != NULL)); 875 876 /* 877 * Now that we do not always journal data, we should 878 * keep in mind whether this should always journal the 879 * new buffer as metadata. For now, regular file 880 * writes use ext4_get_block instead, so it's not a 881 * problem. 882 */ 883 lock_buffer(bh); 884 BUFFER_TRACE(bh, "call get_create_access"); 885 err = ext4_journal_get_create_access(handle, inode->i_sb, bh, 886 EXT4_JTR_NONE); 887 if (unlikely(err)) { 888 unlock_buffer(bh); 889 goto errout; 890 } 891 if (!buffer_uptodate(bh)) { 892 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 893 set_buffer_uptodate(bh); 894 } 895 unlock_buffer(bh); 896 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 897 err = ext4_handle_dirty_metadata(handle, inode, bh); 898 if (unlikely(err)) 899 goto errout; 900 } else 901 BUFFER_TRACE(bh, "not a new buffer"); 902 return bh; 903 errout: 904 brelse(bh); 905 return ERR_PTR(err); 906 } 907 908 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 909 ext4_lblk_t block, int map_flags) 910 { 911 struct buffer_head *bh; 912 int ret; 913 914 bh = ext4_getblk(handle, inode, block, map_flags); 915 if (IS_ERR(bh)) 916 return bh; 917 if (!bh || ext4_buffer_uptodate(bh)) 918 return bh; 919 920 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true); 921 if (ret) { 922 put_bh(bh); 923 return ERR_PTR(ret); 924 } 925 return bh; 926 } 927 928 /* Read a contiguous batch of blocks. */ 929 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, 930 bool wait, struct buffer_head **bhs) 931 { 932 int i, err; 933 934 for (i = 0; i < bh_count; i++) { 935 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */); 936 if (IS_ERR(bhs[i])) { 937 err = PTR_ERR(bhs[i]); 938 bh_count = i; 939 goto out_brelse; 940 } 941 } 942 943 for (i = 0; i < bh_count; i++) 944 /* Note that NULL bhs[i] is valid because of holes. */ 945 if (bhs[i] && !ext4_buffer_uptodate(bhs[i])) 946 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false); 947 948 if (!wait) 949 return 0; 950 951 for (i = 0; i < bh_count; i++) 952 if (bhs[i]) 953 wait_on_buffer(bhs[i]); 954 955 for (i = 0; i < bh_count; i++) { 956 if (bhs[i] && !buffer_uptodate(bhs[i])) { 957 err = -EIO; 958 goto out_brelse; 959 } 960 } 961 return 0; 962 963 out_brelse: 964 for (i = 0; i < bh_count; i++) { 965 brelse(bhs[i]); 966 bhs[i] = NULL; 967 } 968 return err; 969 } 970 971 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode, 972 struct buffer_head *head, 973 unsigned from, 974 unsigned to, 975 int *partial, 976 int (*fn)(handle_t *handle, struct inode *inode, 977 struct buffer_head *bh)) 978 { 979 struct buffer_head *bh; 980 unsigned block_start, block_end; 981 unsigned blocksize = head->b_size; 982 int err, ret = 0; 983 struct buffer_head *next; 984 985 for (bh = head, block_start = 0; 986 ret == 0 && (bh != head || !block_start); 987 block_start = block_end, bh = next) { 988 next = bh->b_this_page; 989 block_end = block_start + blocksize; 990 if (block_end <= from || block_start >= to) { 991 if (partial && !buffer_uptodate(bh)) 992 *partial = 1; 993 continue; 994 } 995 err = (*fn)(handle, inode, bh); 996 if (!ret) 997 ret = err; 998 } 999 return ret; 1000 } 1001 1002 /* 1003 * To preserve ordering, it is essential that the hole instantiation and 1004 * the data write be encapsulated in a single transaction. We cannot 1005 * close off a transaction and start a new one between the ext4_get_block() 1006 * and the commit_write(). So doing the jbd2_journal_start at the start of 1007 * prepare_write() is the right place. 1008 * 1009 * Also, this function can nest inside ext4_writepage(). In that case, we 1010 * *know* that ext4_writepage() has generated enough buffer credits to do the 1011 * whole page. So we won't block on the journal in that case, which is good, 1012 * because the caller may be PF_MEMALLOC. 1013 * 1014 * By accident, ext4 can be reentered when a transaction is open via 1015 * quota file writes. If we were to commit the transaction while thus 1016 * reentered, there can be a deadlock - we would be holding a quota 1017 * lock, and the commit would never complete if another thread had a 1018 * transaction open and was blocking on the quota lock - a ranking 1019 * violation. 1020 * 1021 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1022 * will _not_ run commit under these circumstances because handle->h_ref 1023 * is elevated. We'll still have enough credits for the tiny quotafile 1024 * write. 1025 */ 1026 int do_journal_get_write_access(handle_t *handle, struct inode *inode, 1027 struct buffer_head *bh) 1028 { 1029 int dirty = buffer_dirty(bh); 1030 int ret; 1031 1032 if (!buffer_mapped(bh) || buffer_freed(bh)) 1033 return 0; 1034 /* 1035 * __block_write_begin() could have dirtied some buffers. Clean 1036 * the dirty bit as jbd2_journal_get_write_access() could complain 1037 * otherwise about fs integrity issues. Setting of the dirty bit 1038 * by __block_write_begin() isn't a real problem here as we clear 1039 * the bit before releasing a page lock and thus writeback cannot 1040 * ever write the buffer. 1041 */ 1042 if (dirty) 1043 clear_buffer_dirty(bh); 1044 BUFFER_TRACE(bh, "get write access"); 1045 ret = ext4_journal_get_write_access(handle, inode->i_sb, bh, 1046 EXT4_JTR_NONE); 1047 if (!ret && dirty) 1048 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1049 return ret; 1050 } 1051 1052 #ifdef CONFIG_FS_ENCRYPTION 1053 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len, 1054 get_block_t *get_block) 1055 { 1056 unsigned from = pos & (PAGE_SIZE - 1); 1057 unsigned to = from + len; 1058 struct inode *inode = page->mapping->host; 1059 unsigned block_start, block_end; 1060 sector_t block; 1061 int err = 0; 1062 unsigned blocksize = inode->i_sb->s_blocksize; 1063 unsigned bbits; 1064 struct buffer_head *bh, *head, *wait[2]; 1065 int nr_wait = 0; 1066 int i; 1067 1068 BUG_ON(!PageLocked(page)); 1069 BUG_ON(from > PAGE_SIZE); 1070 BUG_ON(to > PAGE_SIZE); 1071 BUG_ON(from > to); 1072 1073 if (!page_has_buffers(page)) 1074 create_empty_buffers(page, blocksize, 0); 1075 head = page_buffers(page); 1076 bbits = ilog2(blocksize); 1077 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1078 1079 for (bh = head, block_start = 0; bh != head || !block_start; 1080 block++, block_start = block_end, bh = bh->b_this_page) { 1081 block_end = block_start + blocksize; 1082 if (block_end <= from || block_start >= to) { 1083 if (PageUptodate(page)) { 1084 set_buffer_uptodate(bh); 1085 } 1086 continue; 1087 } 1088 if (buffer_new(bh)) 1089 clear_buffer_new(bh); 1090 if (!buffer_mapped(bh)) { 1091 WARN_ON(bh->b_size != blocksize); 1092 err = get_block(inode, block, bh, 1); 1093 if (err) 1094 break; 1095 if (buffer_new(bh)) { 1096 if (PageUptodate(page)) { 1097 clear_buffer_new(bh); 1098 set_buffer_uptodate(bh); 1099 mark_buffer_dirty(bh); 1100 continue; 1101 } 1102 if (block_end > to || block_start < from) 1103 zero_user_segments(page, to, block_end, 1104 block_start, from); 1105 continue; 1106 } 1107 } 1108 if (PageUptodate(page)) { 1109 set_buffer_uptodate(bh); 1110 continue; 1111 } 1112 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1113 !buffer_unwritten(bh) && 1114 (block_start < from || block_end > to)) { 1115 ext4_read_bh_lock(bh, 0, false); 1116 wait[nr_wait++] = bh; 1117 } 1118 } 1119 /* 1120 * If we issued read requests, let them complete. 1121 */ 1122 for (i = 0; i < nr_wait; i++) { 1123 wait_on_buffer(wait[i]); 1124 if (!buffer_uptodate(wait[i])) 1125 err = -EIO; 1126 } 1127 if (unlikely(err)) { 1128 page_zero_new_buffers(page, from, to); 1129 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 1130 for (i = 0; i < nr_wait; i++) { 1131 int err2; 1132 1133 err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize, 1134 bh_offset(wait[i])); 1135 if (err2) { 1136 clear_buffer_uptodate(wait[i]); 1137 err = err2; 1138 } 1139 } 1140 } 1141 1142 return err; 1143 } 1144 #endif 1145 1146 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1147 loff_t pos, unsigned len, 1148 struct page **pagep, void **fsdata) 1149 { 1150 struct inode *inode = mapping->host; 1151 int ret, needed_blocks; 1152 handle_t *handle; 1153 int retries = 0; 1154 struct page *page; 1155 pgoff_t index; 1156 unsigned from, to; 1157 1158 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 1159 return -EIO; 1160 1161 trace_ext4_write_begin(inode, pos, len); 1162 /* 1163 * Reserve one block more for addition to orphan list in case 1164 * we allocate blocks but write fails for some reason 1165 */ 1166 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1167 index = pos >> PAGE_SHIFT; 1168 from = pos & (PAGE_SIZE - 1); 1169 to = from + len; 1170 1171 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1172 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1173 pagep); 1174 if (ret < 0) 1175 return ret; 1176 if (ret == 1) 1177 return 0; 1178 } 1179 1180 /* 1181 * grab_cache_page_write_begin() can take a long time if the 1182 * system is thrashing due to memory pressure, or if the page 1183 * is being written back. So grab it first before we start 1184 * the transaction handle. This also allows us to allocate 1185 * the page (if needed) without using GFP_NOFS. 1186 */ 1187 retry_grab: 1188 page = grab_cache_page_write_begin(mapping, index); 1189 if (!page) 1190 return -ENOMEM; 1191 /* 1192 * The same as page allocation, we prealloc buffer heads before 1193 * starting the handle. 1194 */ 1195 if (!page_has_buffers(page)) 1196 create_empty_buffers(page, inode->i_sb->s_blocksize, 0); 1197 1198 unlock_page(page); 1199 1200 retry_journal: 1201 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1202 if (IS_ERR(handle)) { 1203 put_page(page); 1204 return PTR_ERR(handle); 1205 } 1206 1207 lock_page(page); 1208 if (page->mapping != mapping) { 1209 /* The page got truncated from under us */ 1210 unlock_page(page); 1211 put_page(page); 1212 ext4_journal_stop(handle); 1213 goto retry_grab; 1214 } 1215 /* In case writeback began while the page was unlocked */ 1216 wait_for_stable_page(page); 1217 1218 #ifdef CONFIG_FS_ENCRYPTION 1219 if (ext4_should_dioread_nolock(inode)) 1220 ret = ext4_block_write_begin(page, pos, len, 1221 ext4_get_block_unwritten); 1222 else 1223 ret = ext4_block_write_begin(page, pos, len, 1224 ext4_get_block); 1225 #else 1226 if (ext4_should_dioread_nolock(inode)) 1227 ret = __block_write_begin(page, pos, len, 1228 ext4_get_block_unwritten); 1229 else 1230 ret = __block_write_begin(page, pos, len, ext4_get_block); 1231 #endif 1232 if (!ret && ext4_should_journal_data(inode)) { 1233 ret = ext4_walk_page_buffers(handle, inode, 1234 page_buffers(page), from, to, NULL, 1235 do_journal_get_write_access); 1236 } 1237 1238 if (ret) { 1239 bool extended = (pos + len > inode->i_size) && 1240 !ext4_verity_in_progress(inode); 1241 1242 unlock_page(page); 1243 /* 1244 * __block_write_begin may have instantiated a few blocks 1245 * outside i_size. Trim these off again. Don't need 1246 * i_size_read because we hold i_rwsem. 1247 * 1248 * Add inode to orphan list in case we crash before 1249 * truncate finishes 1250 */ 1251 if (extended && ext4_can_truncate(inode)) 1252 ext4_orphan_add(handle, inode); 1253 1254 ext4_journal_stop(handle); 1255 if (extended) { 1256 ext4_truncate_failed_write(inode); 1257 /* 1258 * If truncate failed early the inode might 1259 * still be on the orphan list; we need to 1260 * make sure the inode is removed from the 1261 * orphan list in that case. 1262 */ 1263 if (inode->i_nlink) 1264 ext4_orphan_del(NULL, inode); 1265 } 1266 1267 if (ret == -ENOSPC && 1268 ext4_should_retry_alloc(inode->i_sb, &retries)) 1269 goto retry_journal; 1270 put_page(page); 1271 return ret; 1272 } 1273 *pagep = page; 1274 return ret; 1275 } 1276 1277 /* For write_end() in data=journal mode */ 1278 static int write_end_fn(handle_t *handle, struct inode *inode, 1279 struct buffer_head *bh) 1280 { 1281 int ret; 1282 if (!buffer_mapped(bh) || buffer_freed(bh)) 1283 return 0; 1284 set_buffer_uptodate(bh); 1285 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1286 clear_buffer_meta(bh); 1287 clear_buffer_prio(bh); 1288 return ret; 1289 } 1290 1291 /* 1292 * We need to pick up the new inode size which generic_commit_write gave us 1293 * `file' can be NULL - eg, when called from page_symlink(). 1294 * 1295 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1296 * buffers are managed internally. 1297 */ 1298 static int ext4_write_end(struct file *file, 1299 struct address_space *mapping, 1300 loff_t pos, unsigned len, unsigned copied, 1301 struct page *page, void *fsdata) 1302 { 1303 handle_t *handle = ext4_journal_current_handle(); 1304 struct inode *inode = mapping->host; 1305 loff_t old_size = inode->i_size; 1306 int ret = 0, ret2; 1307 int i_size_changed = 0; 1308 bool verity = ext4_verity_in_progress(inode); 1309 1310 trace_ext4_write_end(inode, pos, len, copied); 1311 1312 if (ext4_has_inline_data(inode)) 1313 return ext4_write_inline_data_end(inode, pos, len, copied, page); 1314 1315 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 1316 /* 1317 * it's important to update i_size while still holding page lock: 1318 * page writeout could otherwise come in and zero beyond i_size. 1319 * 1320 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree 1321 * blocks are being written past EOF, so skip the i_size update. 1322 */ 1323 if (!verity) 1324 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1325 unlock_page(page); 1326 put_page(page); 1327 1328 if (old_size < pos && !verity) 1329 pagecache_isize_extended(inode, old_size, pos); 1330 /* 1331 * Don't mark the inode dirty under page lock. First, it unnecessarily 1332 * makes the holding time of page lock longer. Second, it forces lock 1333 * ordering of page lock and transaction start for journaling 1334 * filesystems. 1335 */ 1336 if (i_size_changed) 1337 ret = ext4_mark_inode_dirty(handle, inode); 1338 1339 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1340 /* if we have allocated more blocks and copied 1341 * less. We will have blocks allocated outside 1342 * inode->i_size. So truncate them 1343 */ 1344 ext4_orphan_add(handle, inode); 1345 1346 ret2 = ext4_journal_stop(handle); 1347 if (!ret) 1348 ret = ret2; 1349 1350 if (pos + len > inode->i_size && !verity) { 1351 ext4_truncate_failed_write(inode); 1352 /* 1353 * If truncate failed early the inode might still be 1354 * on the orphan list; we need to make sure the inode 1355 * is removed from the orphan list in that case. 1356 */ 1357 if (inode->i_nlink) 1358 ext4_orphan_del(NULL, inode); 1359 } 1360 1361 return ret ? ret : copied; 1362 } 1363 1364 /* 1365 * This is a private version of page_zero_new_buffers() which doesn't 1366 * set the buffer to be dirty, since in data=journalled mode we need 1367 * to call ext4_handle_dirty_metadata() instead. 1368 */ 1369 static void ext4_journalled_zero_new_buffers(handle_t *handle, 1370 struct inode *inode, 1371 struct page *page, 1372 unsigned from, unsigned to) 1373 { 1374 unsigned int block_start = 0, block_end; 1375 struct buffer_head *head, *bh; 1376 1377 bh = head = page_buffers(page); 1378 do { 1379 block_end = block_start + bh->b_size; 1380 if (buffer_new(bh)) { 1381 if (block_end > from && block_start < to) { 1382 if (!PageUptodate(page)) { 1383 unsigned start, size; 1384 1385 start = max(from, block_start); 1386 size = min(to, block_end) - start; 1387 1388 zero_user(page, start, size); 1389 write_end_fn(handle, inode, bh); 1390 } 1391 clear_buffer_new(bh); 1392 } 1393 } 1394 block_start = block_end; 1395 bh = bh->b_this_page; 1396 } while (bh != head); 1397 } 1398 1399 static int ext4_journalled_write_end(struct file *file, 1400 struct address_space *mapping, 1401 loff_t pos, unsigned len, unsigned copied, 1402 struct page *page, void *fsdata) 1403 { 1404 handle_t *handle = ext4_journal_current_handle(); 1405 struct inode *inode = mapping->host; 1406 loff_t old_size = inode->i_size; 1407 int ret = 0, ret2; 1408 int partial = 0; 1409 unsigned from, to; 1410 int size_changed = 0; 1411 bool verity = ext4_verity_in_progress(inode); 1412 1413 trace_ext4_journalled_write_end(inode, pos, len, copied); 1414 from = pos & (PAGE_SIZE - 1); 1415 to = from + len; 1416 1417 BUG_ON(!ext4_handle_valid(handle)); 1418 1419 if (ext4_has_inline_data(inode)) 1420 return ext4_write_inline_data_end(inode, pos, len, copied, page); 1421 1422 if (unlikely(copied < len) && !PageUptodate(page)) { 1423 copied = 0; 1424 ext4_journalled_zero_new_buffers(handle, inode, page, from, to); 1425 } else { 1426 if (unlikely(copied < len)) 1427 ext4_journalled_zero_new_buffers(handle, inode, page, 1428 from + copied, to); 1429 ret = ext4_walk_page_buffers(handle, inode, page_buffers(page), 1430 from, from + copied, &partial, 1431 write_end_fn); 1432 if (!partial) 1433 SetPageUptodate(page); 1434 } 1435 if (!verity) 1436 size_changed = ext4_update_inode_size(inode, pos + copied); 1437 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1438 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1439 unlock_page(page); 1440 put_page(page); 1441 1442 if (old_size < pos && !verity) 1443 pagecache_isize_extended(inode, old_size, pos); 1444 1445 if (size_changed) { 1446 ret2 = ext4_mark_inode_dirty(handle, inode); 1447 if (!ret) 1448 ret = ret2; 1449 } 1450 1451 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1452 /* if we have allocated more blocks and copied 1453 * less. We will have blocks allocated outside 1454 * inode->i_size. So truncate them 1455 */ 1456 ext4_orphan_add(handle, inode); 1457 1458 ret2 = ext4_journal_stop(handle); 1459 if (!ret) 1460 ret = ret2; 1461 if (pos + len > inode->i_size && !verity) { 1462 ext4_truncate_failed_write(inode); 1463 /* 1464 * If truncate failed early the inode might still be 1465 * on the orphan list; we need to make sure the inode 1466 * is removed from the orphan list in that case. 1467 */ 1468 if (inode->i_nlink) 1469 ext4_orphan_del(NULL, inode); 1470 } 1471 1472 return ret ? ret : copied; 1473 } 1474 1475 /* 1476 * Reserve space for a single cluster 1477 */ 1478 static int ext4_da_reserve_space(struct inode *inode) 1479 { 1480 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1481 struct ext4_inode_info *ei = EXT4_I(inode); 1482 int ret; 1483 1484 /* 1485 * We will charge metadata quota at writeout time; this saves 1486 * us from metadata over-estimation, though we may go over by 1487 * a small amount in the end. Here we just reserve for data. 1488 */ 1489 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1490 if (ret) 1491 return ret; 1492 1493 spin_lock(&ei->i_block_reservation_lock); 1494 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1495 spin_unlock(&ei->i_block_reservation_lock); 1496 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1497 return -ENOSPC; 1498 } 1499 ei->i_reserved_data_blocks++; 1500 trace_ext4_da_reserve_space(inode); 1501 spin_unlock(&ei->i_block_reservation_lock); 1502 1503 return 0; /* success */ 1504 } 1505 1506 void ext4_da_release_space(struct inode *inode, int to_free) 1507 { 1508 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1509 struct ext4_inode_info *ei = EXT4_I(inode); 1510 1511 if (!to_free) 1512 return; /* Nothing to release, exit */ 1513 1514 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1515 1516 trace_ext4_da_release_space(inode, to_free); 1517 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1518 /* 1519 * if there aren't enough reserved blocks, then the 1520 * counter is messed up somewhere. Since this 1521 * function is called from invalidate page, it's 1522 * harmless to return without any action. 1523 */ 1524 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1525 "ino %lu, to_free %d with only %d reserved " 1526 "data blocks", inode->i_ino, to_free, 1527 ei->i_reserved_data_blocks); 1528 WARN_ON(1); 1529 to_free = ei->i_reserved_data_blocks; 1530 } 1531 ei->i_reserved_data_blocks -= to_free; 1532 1533 /* update fs dirty data blocks counter */ 1534 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1535 1536 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1537 1538 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1539 } 1540 1541 /* 1542 * Delayed allocation stuff 1543 */ 1544 1545 struct mpage_da_data { 1546 struct inode *inode; 1547 struct writeback_control *wbc; 1548 1549 pgoff_t first_page; /* The first page to write */ 1550 pgoff_t next_page; /* Current page to examine */ 1551 pgoff_t last_page; /* Last page to examine */ 1552 /* 1553 * Extent to map - this can be after first_page because that can be 1554 * fully mapped. We somewhat abuse m_flags to store whether the extent 1555 * is delalloc or unwritten. 1556 */ 1557 struct ext4_map_blocks map; 1558 struct ext4_io_submit io_submit; /* IO submission data */ 1559 unsigned int do_map:1; 1560 unsigned int scanned_until_end:1; 1561 }; 1562 1563 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1564 bool invalidate) 1565 { 1566 unsigned nr, i; 1567 pgoff_t index, end; 1568 struct folio_batch fbatch; 1569 struct inode *inode = mpd->inode; 1570 struct address_space *mapping = inode->i_mapping; 1571 1572 /* This is necessary when next_page == 0. */ 1573 if (mpd->first_page >= mpd->next_page) 1574 return; 1575 1576 mpd->scanned_until_end = 0; 1577 index = mpd->first_page; 1578 end = mpd->next_page - 1; 1579 if (invalidate) { 1580 ext4_lblk_t start, last; 1581 start = index << (PAGE_SHIFT - inode->i_blkbits); 1582 last = end << (PAGE_SHIFT - inode->i_blkbits); 1583 1584 /* 1585 * avoid racing with extent status tree scans made by 1586 * ext4_insert_delayed_block() 1587 */ 1588 down_write(&EXT4_I(inode)->i_data_sem); 1589 ext4_es_remove_extent(inode, start, last - start + 1); 1590 up_write(&EXT4_I(inode)->i_data_sem); 1591 } 1592 1593 folio_batch_init(&fbatch); 1594 while (index <= end) { 1595 nr = filemap_get_folios(mapping, &index, end, &fbatch); 1596 if (nr == 0) 1597 break; 1598 for (i = 0; i < nr; i++) { 1599 struct folio *folio = fbatch.folios[i]; 1600 1601 if (folio->index < mpd->first_page) 1602 continue; 1603 if (folio->index + folio_nr_pages(folio) - 1 > end) 1604 continue; 1605 BUG_ON(!folio_test_locked(folio)); 1606 BUG_ON(folio_test_writeback(folio)); 1607 if (invalidate) { 1608 if (folio_mapped(folio)) 1609 folio_clear_dirty_for_io(folio); 1610 block_invalidate_folio(folio, 0, 1611 folio_size(folio)); 1612 folio_clear_uptodate(folio); 1613 } 1614 folio_unlock(folio); 1615 } 1616 folio_batch_release(&fbatch); 1617 } 1618 } 1619 1620 static void ext4_print_free_blocks(struct inode *inode) 1621 { 1622 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1623 struct super_block *sb = inode->i_sb; 1624 struct ext4_inode_info *ei = EXT4_I(inode); 1625 1626 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1627 EXT4_C2B(EXT4_SB(inode->i_sb), 1628 ext4_count_free_clusters(sb))); 1629 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1630 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1631 (long long) EXT4_C2B(EXT4_SB(sb), 1632 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1633 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1634 (long long) EXT4_C2B(EXT4_SB(sb), 1635 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1636 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1637 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1638 ei->i_reserved_data_blocks); 1639 return; 1640 } 1641 1642 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct inode *inode, 1643 struct buffer_head *bh) 1644 { 1645 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1646 } 1647 1648 /* 1649 * ext4_insert_delayed_block - adds a delayed block to the extents status 1650 * tree, incrementing the reserved cluster/block 1651 * count or making a pending reservation 1652 * where needed 1653 * 1654 * @inode - file containing the newly added block 1655 * @lblk - logical block to be added 1656 * 1657 * Returns 0 on success, negative error code on failure. 1658 */ 1659 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk) 1660 { 1661 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1662 int ret; 1663 bool allocated = false; 1664 bool reserved = false; 1665 1666 /* 1667 * If the cluster containing lblk is shared with a delayed, 1668 * written, or unwritten extent in a bigalloc file system, it's 1669 * already been accounted for and does not need to be reserved. 1670 * A pending reservation must be made for the cluster if it's 1671 * shared with a written or unwritten extent and doesn't already 1672 * have one. Written and unwritten extents can be purged from the 1673 * extents status tree if the system is under memory pressure, so 1674 * it's necessary to examine the extent tree if a search of the 1675 * extents status tree doesn't get a match. 1676 */ 1677 if (sbi->s_cluster_ratio == 1) { 1678 ret = ext4_da_reserve_space(inode); 1679 if (ret != 0) /* ENOSPC */ 1680 goto errout; 1681 reserved = true; 1682 } else { /* bigalloc */ 1683 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) { 1684 if (!ext4_es_scan_clu(inode, 1685 &ext4_es_is_mapped, lblk)) { 1686 ret = ext4_clu_mapped(inode, 1687 EXT4_B2C(sbi, lblk)); 1688 if (ret < 0) 1689 goto errout; 1690 if (ret == 0) { 1691 ret = ext4_da_reserve_space(inode); 1692 if (ret != 0) /* ENOSPC */ 1693 goto errout; 1694 reserved = true; 1695 } else { 1696 allocated = true; 1697 } 1698 } else { 1699 allocated = true; 1700 } 1701 } 1702 } 1703 1704 ret = ext4_es_insert_delayed_block(inode, lblk, allocated); 1705 if (ret && reserved) 1706 ext4_da_release_space(inode, 1); 1707 1708 errout: 1709 return ret; 1710 } 1711 1712 /* 1713 * This function is grabs code from the very beginning of 1714 * ext4_map_blocks, but assumes that the caller is from delayed write 1715 * time. This function looks up the requested blocks and sets the 1716 * buffer delay bit under the protection of i_data_sem. 1717 */ 1718 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1719 struct ext4_map_blocks *map, 1720 struct buffer_head *bh) 1721 { 1722 struct extent_status es; 1723 int retval; 1724 sector_t invalid_block = ~((sector_t) 0xffff); 1725 #ifdef ES_AGGRESSIVE_TEST 1726 struct ext4_map_blocks orig_map; 1727 1728 memcpy(&orig_map, map, sizeof(*map)); 1729 #endif 1730 1731 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1732 invalid_block = ~0; 1733 1734 map->m_flags = 0; 1735 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len, 1736 (unsigned long) map->m_lblk); 1737 1738 /* Lookup extent status tree firstly */ 1739 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) { 1740 if (ext4_es_is_hole(&es)) { 1741 retval = 0; 1742 down_read(&EXT4_I(inode)->i_data_sem); 1743 goto add_delayed; 1744 } 1745 1746 /* 1747 * Delayed extent could be allocated by fallocate. 1748 * So we need to check it. 1749 */ 1750 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1751 map_bh(bh, inode->i_sb, invalid_block); 1752 set_buffer_new(bh); 1753 set_buffer_delay(bh); 1754 return 0; 1755 } 1756 1757 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1758 retval = es.es_len - (iblock - es.es_lblk); 1759 if (retval > map->m_len) 1760 retval = map->m_len; 1761 map->m_len = retval; 1762 if (ext4_es_is_written(&es)) 1763 map->m_flags |= EXT4_MAP_MAPPED; 1764 else if (ext4_es_is_unwritten(&es)) 1765 map->m_flags |= EXT4_MAP_UNWRITTEN; 1766 else 1767 BUG(); 1768 1769 #ifdef ES_AGGRESSIVE_TEST 1770 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1771 #endif 1772 return retval; 1773 } 1774 1775 /* 1776 * Try to see if we can get the block without requesting a new 1777 * file system block. 1778 */ 1779 down_read(&EXT4_I(inode)->i_data_sem); 1780 if (ext4_has_inline_data(inode)) 1781 retval = 0; 1782 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1783 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1784 else 1785 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1786 1787 add_delayed: 1788 if (retval == 0) { 1789 int ret; 1790 1791 /* 1792 * XXX: __block_prepare_write() unmaps passed block, 1793 * is it OK? 1794 */ 1795 1796 ret = ext4_insert_delayed_block(inode, map->m_lblk); 1797 if (ret != 0) { 1798 retval = ret; 1799 goto out_unlock; 1800 } 1801 1802 map_bh(bh, inode->i_sb, invalid_block); 1803 set_buffer_new(bh); 1804 set_buffer_delay(bh); 1805 } else if (retval > 0) { 1806 int ret; 1807 unsigned int status; 1808 1809 if (unlikely(retval != map->m_len)) { 1810 ext4_warning(inode->i_sb, 1811 "ES len assertion failed for inode " 1812 "%lu: retval %d != map->m_len %d", 1813 inode->i_ino, retval, map->m_len); 1814 WARN_ON(1); 1815 } 1816 1817 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1818 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1819 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1820 map->m_pblk, status); 1821 if (ret != 0) 1822 retval = ret; 1823 } 1824 1825 out_unlock: 1826 up_read((&EXT4_I(inode)->i_data_sem)); 1827 1828 return retval; 1829 } 1830 1831 /* 1832 * This is a special get_block_t callback which is used by 1833 * ext4_da_write_begin(). It will either return mapped block or 1834 * reserve space for a single block. 1835 * 1836 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1837 * We also have b_blocknr = -1 and b_bdev initialized properly 1838 * 1839 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1840 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1841 * initialized properly. 1842 */ 1843 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1844 struct buffer_head *bh, int create) 1845 { 1846 struct ext4_map_blocks map; 1847 int ret = 0; 1848 1849 BUG_ON(create == 0); 1850 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1851 1852 map.m_lblk = iblock; 1853 map.m_len = 1; 1854 1855 /* 1856 * first, we need to know whether the block is allocated already 1857 * preallocated blocks are unmapped but should treated 1858 * the same as allocated blocks. 1859 */ 1860 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1861 if (ret <= 0) 1862 return ret; 1863 1864 map_bh(bh, inode->i_sb, map.m_pblk); 1865 ext4_update_bh_state(bh, map.m_flags); 1866 1867 if (buffer_unwritten(bh)) { 1868 /* A delayed write to unwritten bh should be marked 1869 * new and mapped. Mapped ensures that we don't do 1870 * get_block multiple times when we write to the same 1871 * offset and new ensures that we do proper zero out 1872 * for partial write. 1873 */ 1874 set_buffer_new(bh); 1875 set_buffer_mapped(bh); 1876 } 1877 return 0; 1878 } 1879 1880 static int __ext4_journalled_writepage(struct page *page, 1881 unsigned int len) 1882 { 1883 struct address_space *mapping = page->mapping; 1884 struct inode *inode = mapping->host; 1885 handle_t *handle = NULL; 1886 int ret = 0, err = 0; 1887 int inline_data = ext4_has_inline_data(inode); 1888 struct buffer_head *inode_bh = NULL; 1889 loff_t size; 1890 1891 ClearPageChecked(page); 1892 1893 if (inline_data) { 1894 BUG_ON(page->index != 0); 1895 BUG_ON(len > ext4_get_max_inline_size(inode)); 1896 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1897 if (inode_bh == NULL) 1898 goto out; 1899 } 1900 /* 1901 * We need to release the page lock before we start the 1902 * journal, so grab a reference so the page won't disappear 1903 * out from under us. 1904 */ 1905 get_page(page); 1906 unlock_page(page); 1907 1908 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1909 ext4_writepage_trans_blocks(inode)); 1910 if (IS_ERR(handle)) { 1911 ret = PTR_ERR(handle); 1912 put_page(page); 1913 goto out_no_pagelock; 1914 } 1915 BUG_ON(!ext4_handle_valid(handle)); 1916 1917 lock_page(page); 1918 put_page(page); 1919 size = i_size_read(inode); 1920 if (page->mapping != mapping || page_offset(page) > size) { 1921 /* The page got truncated from under us */ 1922 ext4_journal_stop(handle); 1923 ret = 0; 1924 goto out; 1925 } 1926 1927 if (inline_data) { 1928 ret = ext4_mark_inode_dirty(handle, inode); 1929 } else { 1930 struct buffer_head *page_bufs = page_buffers(page); 1931 1932 if (page->index == size >> PAGE_SHIFT) 1933 len = size & ~PAGE_MASK; 1934 else 1935 len = PAGE_SIZE; 1936 1937 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 1938 NULL, do_journal_get_write_access); 1939 1940 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 1941 NULL, write_end_fn); 1942 } 1943 if (ret == 0) 1944 ret = err; 1945 err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len); 1946 if (ret == 0) 1947 ret = err; 1948 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1949 err = ext4_journal_stop(handle); 1950 if (!ret) 1951 ret = err; 1952 1953 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1954 out: 1955 unlock_page(page); 1956 out_no_pagelock: 1957 brelse(inode_bh); 1958 return ret; 1959 } 1960 1961 /* 1962 * Note that we don't need to start a transaction unless we're journaling data 1963 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1964 * need to file the inode to the transaction's list in ordered mode because if 1965 * we are writing back data added by write(), the inode is already there and if 1966 * we are writing back data modified via mmap(), no one guarantees in which 1967 * transaction the data will hit the disk. In case we are journaling data, we 1968 * cannot start transaction directly because transaction start ranks above page 1969 * lock so we have to do some magic. 1970 * 1971 * This function can get called via... 1972 * - ext4_writepages after taking page lock (have journal handle) 1973 * - journal_submit_inode_data_buffers (no journal handle) 1974 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 1975 * - grab_page_cache when doing write_begin (have journal handle) 1976 * 1977 * We don't do any block allocation in this function. If we have page with 1978 * multiple blocks we need to write those buffer_heads that are mapped. This 1979 * is important for mmaped based write. So if we do with blocksize 1K 1980 * truncate(f, 1024); 1981 * a = mmap(f, 0, 4096); 1982 * a[0] = 'a'; 1983 * truncate(f, 4096); 1984 * we have in the page first buffer_head mapped via page_mkwrite call back 1985 * but other buffer_heads would be unmapped but dirty (dirty done via the 1986 * do_wp_page). So writepage should write the first block. If we modify 1987 * the mmap area beyond 1024 we will again get a page_fault and the 1988 * page_mkwrite callback will do the block allocation and mark the 1989 * buffer_heads mapped. 1990 * 1991 * We redirty the page if we have any buffer_heads that is either delay or 1992 * unwritten in the page. 1993 * 1994 * We can get recursively called as show below. 1995 * 1996 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1997 * ext4_writepage() 1998 * 1999 * But since we don't do any block allocation we should not deadlock. 2000 * Page also have the dirty flag cleared so we don't get recurive page_lock. 2001 */ 2002 static int ext4_writepage(struct page *page, 2003 struct writeback_control *wbc) 2004 { 2005 struct folio *folio = page_folio(page); 2006 int ret = 0; 2007 loff_t size; 2008 unsigned int len; 2009 struct buffer_head *page_bufs = NULL; 2010 struct inode *inode = page->mapping->host; 2011 struct ext4_io_submit io_submit; 2012 bool keep_towrite = false; 2013 2014 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 2015 folio_invalidate(folio, 0, folio_size(folio)); 2016 folio_unlock(folio); 2017 return -EIO; 2018 } 2019 2020 trace_ext4_writepage(page); 2021 size = i_size_read(inode); 2022 if (page->index == size >> PAGE_SHIFT && 2023 !ext4_verity_in_progress(inode)) 2024 len = size & ~PAGE_MASK; 2025 else 2026 len = PAGE_SIZE; 2027 2028 /* Should never happen but for bugs in other kernel subsystems */ 2029 if (!page_has_buffers(page)) { 2030 ext4_warning_inode(inode, 2031 "page %lu does not have buffers attached", page->index); 2032 ClearPageDirty(page); 2033 unlock_page(page); 2034 return 0; 2035 } 2036 2037 page_bufs = page_buffers(page); 2038 /* 2039 * We cannot do block allocation or other extent handling in this 2040 * function. If there are buffers needing that, we have to redirty 2041 * the page. But we may reach here when we do a journal commit via 2042 * journal_submit_inode_data_buffers() and in that case we must write 2043 * allocated buffers to achieve data=ordered mode guarantees. 2044 * 2045 * Also, if there is only one buffer per page (the fs block 2046 * size == the page size), if one buffer needs block 2047 * allocation or needs to modify the extent tree to clear the 2048 * unwritten flag, we know that the page can't be written at 2049 * all, so we might as well refuse the write immediately. 2050 * Unfortunately if the block size != page size, we can't as 2051 * easily detect this case using ext4_walk_page_buffers(), but 2052 * for the extremely common case, this is an optimization that 2053 * skips a useless round trip through ext4_bio_write_page(). 2054 */ 2055 if (ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len, NULL, 2056 ext4_bh_delay_or_unwritten)) { 2057 redirty_page_for_writepage(wbc, page); 2058 if ((current->flags & PF_MEMALLOC) || 2059 (inode->i_sb->s_blocksize == PAGE_SIZE)) { 2060 /* 2061 * For memory cleaning there's no point in writing only 2062 * some buffers. So just bail out. Warn if we came here 2063 * from direct reclaim. 2064 */ 2065 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 2066 == PF_MEMALLOC); 2067 unlock_page(page); 2068 return 0; 2069 } 2070 keep_towrite = true; 2071 } 2072 2073 if (PageChecked(page) && ext4_should_journal_data(inode)) 2074 /* 2075 * It's mmapped pagecache. Add buffers and journal it. There 2076 * doesn't seem much point in redirtying the page here. 2077 */ 2078 return __ext4_journalled_writepage(page, len); 2079 2080 ext4_io_submit_init(&io_submit, wbc); 2081 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 2082 if (!io_submit.io_end) { 2083 redirty_page_for_writepage(wbc, page); 2084 unlock_page(page); 2085 return -ENOMEM; 2086 } 2087 ret = ext4_bio_write_page(&io_submit, page, len, keep_towrite); 2088 ext4_io_submit(&io_submit); 2089 /* Drop io_end reference we got from init */ 2090 ext4_put_io_end_defer(io_submit.io_end); 2091 return ret; 2092 } 2093 2094 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 2095 { 2096 int len; 2097 loff_t size; 2098 int err; 2099 2100 BUG_ON(page->index != mpd->first_page); 2101 clear_page_dirty_for_io(page); 2102 /* 2103 * We have to be very careful here! Nothing protects writeback path 2104 * against i_size changes and the page can be writeably mapped into 2105 * page tables. So an application can be growing i_size and writing 2106 * data through mmap while writeback runs. clear_page_dirty_for_io() 2107 * write-protects our page in page tables and the page cannot get 2108 * written to again until we release page lock. So only after 2109 * clear_page_dirty_for_io() we are safe to sample i_size for 2110 * ext4_bio_write_page() to zero-out tail of the written page. We rely 2111 * on the barrier provided by TestClearPageDirty in 2112 * clear_page_dirty_for_io() to make sure i_size is really sampled only 2113 * after page tables are updated. 2114 */ 2115 size = i_size_read(mpd->inode); 2116 if (page->index == size >> PAGE_SHIFT && 2117 !ext4_verity_in_progress(mpd->inode)) 2118 len = size & ~PAGE_MASK; 2119 else 2120 len = PAGE_SIZE; 2121 err = ext4_bio_write_page(&mpd->io_submit, page, len, false); 2122 if (!err) 2123 mpd->wbc->nr_to_write--; 2124 mpd->first_page++; 2125 2126 return err; 2127 } 2128 2129 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay)) 2130 2131 /* 2132 * mballoc gives us at most this number of blocks... 2133 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 2134 * The rest of mballoc seems to handle chunks up to full group size. 2135 */ 2136 #define MAX_WRITEPAGES_EXTENT_LEN 2048 2137 2138 /* 2139 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 2140 * 2141 * @mpd - extent of blocks 2142 * @lblk - logical number of the block in the file 2143 * @bh - buffer head we want to add to the extent 2144 * 2145 * The function is used to collect contig. blocks in the same state. If the 2146 * buffer doesn't require mapping for writeback and we haven't started the 2147 * extent of buffers to map yet, the function returns 'true' immediately - the 2148 * caller can write the buffer right away. Otherwise the function returns true 2149 * if the block has been added to the extent, false if the block couldn't be 2150 * added. 2151 */ 2152 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 2153 struct buffer_head *bh) 2154 { 2155 struct ext4_map_blocks *map = &mpd->map; 2156 2157 /* Buffer that doesn't need mapping for writeback? */ 2158 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 2159 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 2160 /* So far no extent to map => we write the buffer right away */ 2161 if (map->m_len == 0) 2162 return true; 2163 return false; 2164 } 2165 2166 /* First block in the extent? */ 2167 if (map->m_len == 0) { 2168 /* We cannot map unless handle is started... */ 2169 if (!mpd->do_map) 2170 return false; 2171 map->m_lblk = lblk; 2172 map->m_len = 1; 2173 map->m_flags = bh->b_state & BH_FLAGS; 2174 return true; 2175 } 2176 2177 /* Don't go larger than mballoc is willing to allocate */ 2178 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 2179 return false; 2180 2181 /* Can we merge the block to our big extent? */ 2182 if (lblk == map->m_lblk + map->m_len && 2183 (bh->b_state & BH_FLAGS) == map->m_flags) { 2184 map->m_len++; 2185 return true; 2186 } 2187 return false; 2188 } 2189 2190 /* 2191 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 2192 * 2193 * @mpd - extent of blocks for mapping 2194 * @head - the first buffer in the page 2195 * @bh - buffer we should start processing from 2196 * @lblk - logical number of the block in the file corresponding to @bh 2197 * 2198 * Walk through page buffers from @bh upto @head (exclusive) and either submit 2199 * the page for IO if all buffers in this page were mapped and there's no 2200 * accumulated extent of buffers to map or add buffers in the page to the 2201 * extent of buffers to map. The function returns 1 if the caller can continue 2202 * by processing the next page, 0 if it should stop adding buffers to the 2203 * extent to map because we cannot extend it anymore. It can also return value 2204 * < 0 in case of error during IO submission. 2205 */ 2206 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 2207 struct buffer_head *head, 2208 struct buffer_head *bh, 2209 ext4_lblk_t lblk) 2210 { 2211 struct inode *inode = mpd->inode; 2212 int err; 2213 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) 2214 >> inode->i_blkbits; 2215 2216 if (ext4_verity_in_progress(inode)) 2217 blocks = EXT_MAX_BLOCKS; 2218 2219 do { 2220 BUG_ON(buffer_locked(bh)); 2221 2222 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2223 /* Found extent to map? */ 2224 if (mpd->map.m_len) 2225 return 0; 2226 /* Buffer needs mapping and handle is not started? */ 2227 if (!mpd->do_map) 2228 return 0; 2229 /* Everything mapped so far and we hit EOF */ 2230 break; 2231 } 2232 } while (lblk++, (bh = bh->b_this_page) != head); 2233 /* So far everything mapped? Submit the page for IO. */ 2234 if (mpd->map.m_len == 0) { 2235 err = mpage_submit_page(mpd, head->b_page); 2236 if (err < 0) 2237 return err; 2238 } 2239 if (lblk >= blocks) { 2240 mpd->scanned_until_end = 1; 2241 return 0; 2242 } 2243 return 1; 2244 } 2245 2246 /* 2247 * mpage_process_page - update page buffers corresponding to changed extent and 2248 * may submit fully mapped page for IO 2249 * 2250 * @mpd - description of extent to map, on return next extent to map 2251 * @m_lblk - logical block mapping. 2252 * @m_pblk - corresponding physical mapping. 2253 * @map_bh - determines on return whether this page requires any further 2254 * mapping or not. 2255 * Scan given page buffers corresponding to changed extent and update buffer 2256 * state according to new extent state. 2257 * We map delalloc buffers to their physical location, clear unwritten bits. 2258 * If the given page is not fully mapped, we update @map to the next extent in 2259 * the given page that needs mapping & return @map_bh as true. 2260 */ 2261 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page, 2262 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk, 2263 bool *map_bh) 2264 { 2265 struct buffer_head *head, *bh; 2266 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2267 ext4_lblk_t lblk = *m_lblk; 2268 ext4_fsblk_t pblock = *m_pblk; 2269 int err = 0; 2270 int blkbits = mpd->inode->i_blkbits; 2271 ssize_t io_end_size = 0; 2272 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end); 2273 2274 bh = head = page_buffers(page); 2275 do { 2276 if (lblk < mpd->map.m_lblk) 2277 continue; 2278 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2279 /* 2280 * Buffer after end of mapped extent. 2281 * Find next buffer in the page to map. 2282 */ 2283 mpd->map.m_len = 0; 2284 mpd->map.m_flags = 0; 2285 io_end_vec->size += io_end_size; 2286 2287 err = mpage_process_page_bufs(mpd, head, bh, lblk); 2288 if (err > 0) 2289 err = 0; 2290 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) { 2291 io_end_vec = ext4_alloc_io_end_vec(io_end); 2292 if (IS_ERR(io_end_vec)) { 2293 err = PTR_ERR(io_end_vec); 2294 goto out; 2295 } 2296 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits; 2297 } 2298 *map_bh = true; 2299 goto out; 2300 } 2301 if (buffer_delay(bh)) { 2302 clear_buffer_delay(bh); 2303 bh->b_blocknr = pblock++; 2304 } 2305 clear_buffer_unwritten(bh); 2306 io_end_size += (1 << blkbits); 2307 } while (lblk++, (bh = bh->b_this_page) != head); 2308 2309 io_end_vec->size += io_end_size; 2310 *map_bh = false; 2311 out: 2312 *m_lblk = lblk; 2313 *m_pblk = pblock; 2314 return err; 2315 } 2316 2317 /* 2318 * mpage_map_buffers - update buffers corresponding to changed extent and 2319 * submit fully mapped pages for IO 2320 * 2321 * @mpd - description of extent to map, on return next extent to map 2322 * 2323 * Scan buffers corresponding to changed extent (we expect corresponding pages 2324 * to be already locked) and update buffer state according to new extent state. 2325 * We map delalloc buffers to their physical location, clear unwritten bits, 2326 * and mark buffers as uninit when we perform writes to unwritten extents 2327 * and do extent conversion after IO is finished. If the last page is not fully 2328 * mapped, we update @map to the next extent in the last page that needs 2329 * mapping. Otherwise we submit the page for IO. 2330 */ 2331 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2332 { 2333 struct folio_batch fbatch; 2334 unsigned nr, i; 2335 struct inode *inode = mpd->inode; 2336 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2337 pgoff_t start, end; 2338 ext4_lblk_t lblk; 2339 ext4_fsblk_t pblock; 2340 int err; 2341 bool map_bh = false; 2342 2343 start = mpd->map.m_lblk >> bpp_bits; 2344 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2345 lblk = start << bpp_bits; 2346 pblock = mpd->map.m_pblk; 2347 2348 folio_batch_init(&fbatch); 2349 while (start <= end) { 2350 nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch); 2351 if (nr == 0) 2352 break; 2353 for (i = 0; i < nr; i++) { 2354 struct page *page = &fbatch.folios[i]->page; 2355 2356 err = mpage_process_page(mpd, page, &lblk, &pblock, 2357 &map_bh); 2358 /* 2359 * If map_bh is true, means page may require further bh 2360 * mapping, or maybe the page was submitted for IO. 2361 * So we return to call further extent mapping. 2362 */ 2363 if (err < 0 || map_bh) 2364 goto out; 2365 /* Page fully mapped - let IO run! */ 2366 err = mpage_submit_page(mpd, page); 2367 if (err < 0) 2368 goto out; 2369 } 2370 folio_batch_release(&fbatch); 2371 } 2372 /* Extent fully mapped and matches with page boundary. We are done. */ 2373 mpd->map.m_len = 0; 2374 mpd->map.m_flags = 0; 2375 return 0; 2376 out: 2377 folio_batch_release(&fbatch); 2378 return err; 2379 } 2380 2381 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2382 { 2383 struct inode *inode = mpd->inode; 2384 struct ext4_map_blocks *map = &mpd->map; 2385 int get_blocks_flags; 2386 int err, dioread_nolock; 2387 2388 trace_ext4_da_write_pages_extent(inode, map); 2389 /* 2390 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2391 * to convert an unwritten extent to be initialized (in the case 2392 * where we have written into one or more preallocated blocks). It is 2393 * possible that we're going to need more metadata blocks than 2394 * previously reserved. However we must not fail because we're in 2395 * writeback and there is nothing we can do about it so it might result 2396 * in data loss. So use reserved blocks to allocate metadata if 2397 * possible. 2398 * 2399 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2400 * the blocks in question are delalloc blocks. This indicates 2401 * that the blocks and quotas has already been checked when 2402 * the data was copied into the page cache. 2403 */ 2404 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2405 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2406 EXT4_GET_BLOCKS_IO_SUBMIT; 2407 dioread_nolock = ext4_should_dioread_nolock(inode); 2408 if (dioread_nolock) 2409 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2410 if (map->m_flags & BIT(BH_Delay)) 2411 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2412 2413 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2414 if (err < 0) 2415 return err; 2416 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2417 if (!mpd->io_submit.io_end->handle && 2418 ext4_handle_valid(handle)) { 2419 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2420 handle->h_rsv_handle = NULL; 2421 } 2422 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2423 } 2424 2425 BUG_ON(map->m_len == 0); 2426 return 0; 2427 } 2428 2429 /* 2430 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2431 * mpd->len and submit pages underlying it for IO 2432 * 2433 * @handle - handle for journal operations 2434 * @mpd - extent to map 2435 * @give_up_on_write - we set this to true iff there is a fatal error and there 2436 * is no hope of writing the data. The caller should discard 2437 * dirty pages to avoid infinite loops. 2438 * 2439 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2440 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2441 * them to initialized or split the described range from larger unwritten 2442 * extent. Note that we need not map all the described range since allocation 2443 * can return less blocks or the range is covered by more unwritten extents. We 2444 * cannot map more because we are limited by reserved transaction credits. On 2445 * the other hand we always make sure that the last touched page is fully 2446 * mapped so that it can be written out (and thus forward progress is 2447 * guaranteed). After mapping we submit all mapped pages for IO. 2448 */ 2449 static int mpage_map_and_submit_extent(handle_t *handle, 2450 struct mpage_da_data *mpd, 2451 bool *give_up_on_write) 2452 { 2453 struct inode *inode = mpd->inode; 2454 struct ext4_map_blocks *map = &mpd->map; 2455 int err; 2456 loff_t disksize; 2457 int progress = 0; 2458 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2459 struct ext4_io_end_vec *io_end_vec; 2460 2461 io_end_vec = ext4_alloc_io_end_vec(io_end); 2462 if (IS_ERR(io_end_vec)) 2463 return PTR_ERR(io_end_vec); 2464 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits; 2465 do { 2466 err = mpage_map_one_extent(handle, mpd); 2467 if (err < 0) { 2468 struct super_block *sb = inode->i_sb; 2469 2470 if (ext4_forced_shutdown(EXT4_SB(sb)) || 2471 ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) 2472 goto invalidate_dirty_pages; 2473 /* 2474 * Let the uper layers retry transient errors. 2475 * In the case of ENOSPC, if ext4_count_free_blocks() 2476 * is non-zero, a commit should free up blocks. 2477 */ 2478 if ((err == -ENOMEM) || 2479 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2480 if (progress) 2481 goto update_disksize; 2482 return err; 2483 } 2484 ext4_msg(sb, KERN_CRIT, 2485 "Delayed block allocation failed for " 2486 "inode %lu at logical offset %llu with" 2487 " max blocks %u with error %d", 2488 inode->i_ino, 2489 (unsigned long long)map->m_lblk, 2490 (unsigned)map->m_len, -err); 2491 ext4_msg(sb, KERN_CRIT, 2492 "This should not happen!! Data will " 2493 "be lost\n"); 2494 if (err == -ENOSPC) 2495 ext4_print_free_blocks(inode); 2496 invalidate_dirty_pages: 2497 *give_up_on_write = true; 2498 return err; 2499 } 2500 progress = 1; 2501 /* 2502 * Update buffer state, submit mapped pages, and get us new 2503 * extent to map 2504 */ 2505 err = mpage_map_and_submit_buffers(mpd); 2506 if (err < 0) 2507 goto update_disksize; 2508 } while (map->m_len); 2509 2510 update_disksize: 2511 /* 2512 * Update on-disk size after IO is submitted. Races with 2513 * truncate are avoided by checking i_size under i_data_sem. 2514 */ 2515 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2516 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) { 2517 int err2; 2518 loff_t i_size; 2519 2520 down_write(&EXT4_I(inode)->i_data_sem); 2521 i_size = i_size_read(inode); 2522 if (disksize > i_size) 2523 disksize = i_size; 2524 if (disksize > EXT4_I(inode)->i_disksize) 2525 EXT4_I(inode)->i_disksize = disksize; 2526 up_write(&EXT4_I(inode)->i_data_sem); 2527 err2 = ext4_mark_inode_dirty(handle, inode); 2528 if (err2) { 2529 ext4_error_err(inode->i_sb, -err2, 2530 "Failed to mark inode %lu dirty", 2531 inode->i_ino); 2532 } 2533 if (!err) 2534 err = err2; 2535 } 2536 return err; 2537 } 2538 2539 /* 2540 * Calculate the total number of credits to reserve for one writepages 2541 * iteration. This is called from ext4_writepages(). We map an extent of 2542 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2543 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2544 * bpp - 1 blocks in bpp different extents. 2545 */ 2546 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2547 { 2548 int bpp = ext4_journal_blocks_per_page(inode); 2549 2550 return ext4_meta_trans_blocks(inode, 2551 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2552 } 2553 2554 /* 2555 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2556 * and underlying extent to map 2557 * 2558 * @mpd - where to look for pages 2559 * 2560 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2561 * IO immediately. When we find a page which isn't mapped we start accumulating 2562 * extent of buffers underlying these pages that needs mapping (formed by 2563 * either delayed or unwritten buffers). We also lock the pages containing 2564 * these buffers. The extent found is returned in @mpd structure (starting at 2565 * mpd->lblk with length mpd->len blocks). 2566 * 2567 * Note that this function can attach bios to one io_end structure which are 2568 * neither logically nor physically contiguous. Although it may seem as an 2569 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2570 * case as we need to track IO to all buffers underlying a page in one io_end. 2571 */ 2572 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2573 { 2574 struct address_space *mapping = mpd->inode->i_mapping; 2575 struct pagevec pvec; 2576 unsigned int nr_pages; 2577 long left = mpd->wbc->nr_to_write; 2578 pgoff_t index = mpd->first_page; 2579 pgoff_t end = mpd->last_page; 2580 xa_mark_t tag; 2581 int i, err = 0; 2582 int blkbits = mpd->inode->i_blkbits; 2583 ext4_lblk_t lblk; 2584 struct buffer_head *head; 2585 2586 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2587 tag = PAGECACHE_TAG_TOWRITE; 2588 else 2589 tag = PAGECACHE_TAG_DIRTY; 2590 2591 pagevec_init(&pvec); 2592 mpd->map.m_len = 0; 2593 mpd->next_page = index; 2594 while (index <= end) { 2595 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2596 tag); 2597 if (nr_pages == 0) 2598 break; 2599 2600 for (i = 0; i < nr_pages; i++) { 2601 struct page *page = pvec.pages[i]; 2602 2603 /* 2604 * Accumulated enough dirty pages? This doesn't apply 2605 * to WB_SYNC_ALL mode. For integrity sync we have to 2606 * keep going because someone may be concurrently 2607 * dirtying pages, and we might have synced a lot of 2608 * newly appeared dirty pages, but have not synced all 2609 * of the old dirty pages. 2610 */ 2611 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2612 goto out; 2613 2614 /* If we can't merge this page, we are done. */ 2615 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2616 goto out; 2617 2618 lock_page(page); 2619 /* 2620 * If the page is no longer dirty, or its mapping no 2621 * longer corresponds to inode we are writing (which 2622 * means it has been truncated or invalidated), or the 2623 * page is already under writeback and we are not doing 2624 * a data integrity writeback, skip the page 2625 */ 2626 if (!PageDirty(page) || 2627 (PageWriteback(page) && 2628 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2629 unlikely(page->mapping != mapping)) { 2630 unlock_page(page); 2631 continue; 2632 } 2633 2634 wait_on_page_writeback(page); 2635 BUG_ON(PageWriteback(page)); 2636 2637 /* 2638 * Should never happen but for buggy code in 2639 * other subsystems that call 2640 * set_page_dirty() without properly warning 2641 * the file system first. See [1] for more 2642 * information. 2643 * 2644 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz 2645 */ 2646 if (!page_has_buffers(page)) { 2647 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", page->index); 2648 ClearPageDirty(page); 2649 unlock_page(page); 2650 continue; 2651 } 2652 2653 if (mpd->map.m_len == 0) 2654 mpd->first_page = page->index; 2655 mpd->next_page = page->index + 1; 2656 /* Add all dirty buffers to mpd */ 2657 lblk = ((ext4_lblk_t)page->index) << 2658 (PAGE_SHIFT - blkbits); 2659 head = page_buffers(page); 2660 err = mpage_process_page_bufs(mpd, head, head, lblk); 2661 if (err <= 0) 2662 goto out; 2663 err = 0; 2664 left--; 2665 } 2666 pagevec_release(&pvec); 2667 cond_resched(); 2668 } 2669 mpd->scanned_until_end = 1; 2670 return 0; 2671 out: 2672 pagevec_release(&pvec); 2673 return err; 2674 } 2675 2676 static int ext4_writepages(struct address_space *mapping, 2677 struct writeback_control *wbc) 2678 { 2679 pgoff_t writeback_index = 0; 2680 long nr_to_write = wbc->nr_to_write; 2681 int range_whole = 0; 2682 int cycled = 1; 2683 handle_t *handle = NULL; 2684 struct mpage_da_data mpd; 2685 struct inode *inode = mapping->host; 2686 int needed_blocks, rsv_blocks = 0, ret = 0; 2687 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2688 struct blk_plug plug; 2689 bool give_up_on_write = false; 2690 2691 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2692 return -EIO; 2693 2694 percpu_down_read(&sbi->s_writepages_rwsem); 2695 trace_ext4_writepages(inode, wbc); 2696 2697 /* 2698 * No pages to write? This is mainly a kludge to avoid starting 2699 * a transaction for special inodes like journal inode on last iput() 2700 * because that could violate lock ordering on umount 2701 */ 2702 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2703 goto out_writepages; 2704 2705 if (ext4_should_journal_data(inode)) { 2706 ret = generic_writepages(mapping, wbc); 2707 goto out_writepages; 2708 } 2709 2710 /* 2711 * If the filesystem has aborted, it is read-only, so return 2712 * right away instead of dumping stack traces later on that 2713 * will obscure the real source of the problem. We test 2714 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because 2715 * the latter could be true if the filesystem is mounted 2716 * read-only, and in that case, ext4_writepages should 2717 * *never* be called, so if that ever happens, we would want 2718 * the stack trace. 2719 */ 2720 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) || 2721 ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) { 2722 ret = -EROFS; 2723 goto out_writepages; 2724 } 2725 2726 /* 2727 * If we have inline data and arrive here, it means that 2728 * we will soon create the block for the 1st page, so 2729 * we'd better clear the inline data here. 2730 */ 2731 if (ext4_has_inline_data(inode)) { 2732 /* Just inode will be modified... */ 2733 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2734 if (IS_ERR(handle)) { 2735 ret = PTR_ERR(handle); 2736 goto out_writepages; 2737 } 2738 BUG_ON(ext4_test_inode_state(inode, 2739 EXT4_STATE_MAY_INLINE_DATA)); 2740 ext4_destroy_inline_data(handle, inode); 2741 ext4_journal_stop(handle); 2742 } 2743 2744 if (ext4_should_dioread_nolock(inode)) { 2745 /* 2746 * We may need to convert up to one extent per block in 2747 * the page and we may dirty the inode. 2748 */ 2749 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode, 2750 PAGE_SIZE >> inode->i_blkbits); 2751 } 2752 2753 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2754 range_whole = 1; 2755 2756 if (wbc->range_cyclic) { 2757 writeback_index = mapping->writeback_index; 2758 if (writeback_index) 2759 cycled = 0; 2760 mpd.first_page = writeback_index; 2761 mpd.last_page = -1; 2762 } else { 2763 mpd.first_page = wbc->range_start >> PAGE_SHIFT; 2764 mpd.last_page = wbc->range_end >> PAGE_SHIFT; 2765 } 2766 2767 mpd.inode = inode; 2768 mpd.wbc = wbc; 2769 ext4_io_submit_init(&mpd.io_submit, wbc); 2770 retry: 2771 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2772 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2773 blk_start_plug(&plug); 2774 2775 /* 2776 * First writeback pages that don't need mapping - we can avoid 2777 * starting a transaction unnecessarily and also avoid being blocked 2778 * in the block layer on device congestion while having transaction 2779 * started. 2780 */ 2781 mpd.do_map = 0; 2782 mpd.scanned_until_end = 0; 2783 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2784 if (!mpd.io_submit.io_end) { 2785 ret = -ENOMEM; 2786 goto unplug; 2787 } 2788 ret = mpage_prepare_extent_to_map(&mpd); 2789 /* Unlock pages we didn't use */ 2790 mpage_release_unused_pages(&mpd, false); 2791 /* Submit prepared bio */ 2792 ext4_io_submit(&mpd.io_submit); 2793 ext4_put_io_end_defer(mpd.io_submit.io_end); 2794 mpd.io_submit.io_end = NULL; 2795 if (ret < 0) 2796 goto unplug; 2797 2798 while (!mpd.scanned_until_end && wbc->nr_to_write > 0) { 2799 /* For each extent of pages we use new io_end */ 2800 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2801 if (!mpd.io_submit.io_end) { 2802 ret = -ENOMEM; 2803 break; 2804 } 2805 2806 /* 2807 * We have two constraints: We find one extent to map and we 2808 * must always write out whole page (makes a difference when 2809 * blocksize < pagesize) so that we don't block on IO when we 2810 * try to write out the rest of the page. Journalled mode is 2811 * not supported by delalloc. 2812 */ 2813 BUG_ON(ext4_should_journal_data(inode)); 2814 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2815 2816 /* start a new transaction */ 2817 handle = ext4_journal_start_with_reserve(inode, 2818 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2819 if (IS_ERR(handle)) { 2820 ret = PTR_ERR(handle); 2821 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2822 "%ld pages, ino %lu; err %d", __func__, 2823 wbc->nr_to_write, inode->i_ino, ret); 2824 /* Release allocated io_end */ 2825 ext4_put_io_end(mpd.io_submit.io_end); 2826 mpd.io_submit.io_end = NULL; 2827 break; 2828 } 2829 mpd.do_map = 1; 2830 2831 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2832 ret = mpage_prepare_extent_to_map(&mpd); 2833 if (!ret && mpd.map.m_len) 2834 ret = mpage_map_and_submit_extent(handle, &mpd, 2835 &give_up_on_write); 2836 /* 2837 * Caution: If the handle is synchronous, 2838 * ext4_journal_stop() can wait for transaction commit 2839 * to finish which may depend on writeback of pages to 2840 * complete or on page lock to be released. In that 2841 * case, we have to wait until after we have 2842 * submitted all the IO, released page locks we hold, 2843 * and dropped io_end reference (for extent conversion 2844 * to be able to complete) before stopping the handle. 2845 */ 2846 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2847 ext4_journal_stop(handle); 2848 handle = NULL; 2849 mpd.do_map = 0; 2850 } 2851 /* Unlock pages we didn't use */ 2852 mpage_release_unused_pages(&mpd, give_up_on_write); 2853 /* Submit prepared bio */ 2854 ext4_io_submit(&mpd.io_submit); 2855 2856 /* 2857 * Drop our io_end reference we got from init. We have 2858 * to be careful and use deferred io_end finishing if 2859 * we are still holding the transaction as we can 2860 * release the last reference to io_end which may end 2861 * up doing unwritten extent conversion. 2862 */ 2863 if (handle) { 2864 ext4_put_io_end_defer(mpd.io_submit.io_end); 2865 ext4_journal_stop(handle); 2866 } else 2867 ext4_put_io_end(mpd.io_submit.io_end); 2868 mpd.io_submit.io_end = NULL; 2869 2870 if (ret == -ENOSPC && sbi->s_journal) { 2871 /* 2872 * Commit the transaction which would 2873 * free blocks released in the transaction 2874 * and try again 2875 */ 2876 jbd2_journal_force_commit_nested(sbi->s_journal); 2877 ret = 0; 2878 continue; 2879 } 2880 /* Fatal error - ENOMEM, EIO... */ 2881 if (ret) 2882 break; 2883 } 2884 unplug: 2885 blk_finish_plug(&plug); 2886 if (!ret && !cycled && wbc->nr_to_write > 0) { 2887 cycled = 1; 2888 mpd.last_page = writeback_index - 1; 2889 mpd.first_page = 0; 2890 goto retry; 2891 } 2892 2893 /* Update index */ 2894 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2895 /* 2896 * Set the writeback_index so that range_cyclic 2897 * mode will write it back later 2898 */ 2899 mapping->writeback_index = mpd.first_page; 2900 2901 out_writepages: 2902 trace_ext4_writepages_result(inode, wbc, ret, 2903 nr_to_write - wbc->nr_to_write); 2904 percpu_up_read(&sbi->s_writepages_rwsem); 2905 return ret; 2906 } 2907 2908 static int ext4_dax_writepages(struct address_space *mapping, 2909 struct writeback_control *wbc) 2910 { 2911 int ret; 2912 long nr_to_write = wbc->nr_to_write; 2913 struct inode *inode = mapping->host; 2914 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2915 2916 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2917 return -EIO; 2918 2919 percpu_down_read(&sbi->s_writepages_rwsem); 2920 trace_ext4_writepages(inode, wbc); 2921 2922 ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc); 2923 trace_ext4_writepages_result(inode, wbc, ret, 2924 nr_to_write - wbc->nr_to_write); 2925 percpu_up_read(&sbi->s_writepages_rwsem); 2926 return ret; 2927 } 2928 2929 static int ext4_nonda_switch(struct super_block *sb) 2930 { 2931 s64 free_clusters, dirty_clusters; 2932 struct ext4_sb_info *sbi = EXT4_SB(sb); 2933 2934 /* 2935 * switch to non delalloc mode if we are running low 2936 * on free block. The free block accounting via percpu 2937 * counters can get slightly wrong with percpu_counter_batch getting 2938 * accumulated on each CPU without updating global counters 2939 * Delalloc need an accurate free block accounting. So switch 2940 * to non delalloc when we are near to error range. 2941 */ 2942 free_clusters = 2943 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2944 dirty_clusters = 2945 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2946 /* 2947 * Start pushing delalloc when 1/2 of free blocks are dirty. 2948 */ 2949 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2950 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2951 2952 if (2 * free_clusters < 3 * dirty_clusters || 2953 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2954 /* 2955 * free block count is less than 150% of dirty blocks 2956 * or free blocks is less than watermark 2957 */ 2958 return 1; 2959 } 2960 return 0; 2961 } 2962 2963 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2964 loff_t pos, unsigned len, 2965 struct page **pagep, void **fsdata) 2966 { 2967 int ret, retries = 0; 2968 struct page *page; 2969 pgoff_t index; 2970 struct inode *inode = mapping->host; 2971 2972 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2973 return -EIO; 2974 2975 index = pos >> PAGE_SHIFT; 2976 2977 if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) { 2978 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2979 return ext4_write_begin(file, mapping, pos, 2980 len, pagep, fsdata); 2981 } 2982 *fsdata = (void *)0; 2983 trace_ext4_da_write_begin(inode, pos, len); 2984 2985 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2986 ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len, 2987 pagep, fsdata); 2988 if (ret < 0) 2989 return ret; 2990 if (ret == 1) 2991 return 0; 2992 } 2993 2994 retry: 2995 page = grab_cache_page_write_begin(mapping, index); 2996 if (!page) 2997 return -ENOMEM; 2998 2999 /* In case writeback began while the page was unlocked */ 3000 wait_for_stable_page(page); 3001 3002 #ifdef CONFIG_FS_ENCRYPTION 3003 ret = ext4_block_write_begin(page, pos, len, 3004 ext4_da_get_block_prep); 3005 #else 3006 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 3007 #endif 3008 if (ret < 0) { 3009 unlock_page(page); 3010 put_page(page); 3011 /* 3012 * block_write_begin may have instantiated a few blocks 3013 * outside i_size. Trim these off again. Don't need 3014 * i_size_read because we hold inode lock. 3015 */ 3016 if (pos + len > inode->i_size) 3017 ext4_truncate_failed_write(inode); 3018 3019 if (ret == -ENOSPC && 3020 ext4_should_retry_alloc(inode->i_sb, &retries)) 3021 goto retry; 3022 return ret; 3023 } 3024 3025 *pagep = page; 3026 return ret; 3027 } 3028 3029 /* 3030 * Check if we should update i_disksize 3031 * when write to the end of file but not require block allocation 3032 */ 3033 static int ext4_da_should_update_i_disksize(struct page *page, 3034 unsigned long offset) 3035 { 3036 struct buffer_head *bh; 3037 struct inode *inode = page->mapping->host; 3038 unsigned int idx; 3039 int i; 3040 3041 bh = page_buffers(page); 3042 idx = offset >> inode->i_blkbits; 3043 3044 for (i = 0; i < idx; i++) 3045 bh = bh->b_this_page; 3046 3047 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 3048 return 0; 3049 return 1; 3050 } 3051 3052 static int ext4_da_write_end(struct file *file, 3053 struct address_space *mapping, 3054 loff_t pos, unsigned len, unsigned copied, 3055 struct page *page, void *fsdata) 3056 { 3057 struct inode *inode = mapping->host; 3058 loff_t new_i_size; 3059 unsigned long start, end; 3060 int write_mode = (int)(unsigned long)fsdata; 3061 3062 if (write_mode == FALL_BACK_TO_NONDELALLOC) 3063 return ext4_write_end(file, mapping, pos, 3064 len, copied, page, fsdata); 3065 3066 trace_ext4_da_write_end(inode, pos, len, copied); 3067 3068 if (write_mode != CONVERT_INLINE_DATA && 3069 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3070 ext4_has_inline_data(inode)) 3071 return ext4_write_inline_data_end(inode, pos, len, copied, page); 3072 3073 start = pos & (PAGE_SIZE - 1); 3074 end = start + copied - 1; 3075 3076 /* 3077 * Since we are holding inode lock, we are sure i_disksize <= 3078 * i_size. We also know that if i_disksize < i_size, there are 3079 * delalloc writes pending in the range upto i_size. If the end of 3080 * the current write is <= i_size, there's no need to touch 3081 * i_disksize since writeback will push i_disksize upto i_size 3082 * eventually. If the end of the current write is > i_size and 3083 * inside an allocated block (ext4_da_should_update_i_disksize() 3084 * check), we need to update i_disksize here as neither 3085 * ext4_writepage() nor certain ext4_writepages() paths not 3086 * allocating blocks update i_disksize. 3087 * 3088 * Note that we defer inode dirtying to generic_write_end() / 3089 * ext4_da_write_inline_data_end(). 3090 */ 3091 new_i_size = pos + copied; 3092 if (copied && new_i_size > inode->i_size && 3093 ext4_da_should_update_i_disksize(page, end)) 3094 ext4_update_i_disksize(inode, new_i_size); 3095 3096 return generic_write_end(file, mapping, pos, len, copied, page, fsdata); 3097 } 3098 3099 /* 3100 * Force all delayed allocation blocks to be allocated for a given inode. 3101 */ 3102 int ext4_alloc_da_blocks(struct inode *inode) 3103 { 3104 trace_ext4_alloc_da_blocks(inode); 3105 3106 if (!EXT4_I(inode)->i_reserved_data_blocks) 3107 return 0; 3108 3109 /* 3110 * We do something simple for now. The filemap_flush() will 3111 * also start triggering a write of the data blocks, which is 3112 * not strictly speaking necessary (and for users of 3113 * laptop_mode, not even desirable). However, to do otherwise 3114 * would require replicating code paths in: 3115 * 3116 * ext4_writepages() -> 3117 * write_cache_pages() ---> (via passed in callback function) 3118 * __mpage_da_writepage() --> 3119 * mpage_add_bh_to_extent() 3120 * mpage_da_map_blocks() 3121 * 3122 * The problem is that write_cache_pages(), located in 3123 * mm/page-writeback.c, marks pages clean in preparation for 3124 * doing I/O, which is not desirable if we're not planning on 3125 * doing I/O at all. 3126 * 3127 * We could call write_cache_pages(), and then redirty all of 3128 * the pages by calling redirty_page_for_writepage() but that 3129 * would be ugly in the extreme. So instead we would need to 3130 * replicate parts of the code in the above functions, 3131 * simplifying them because we wouldn't actually intend to 3132 * write out the pages, but rather only collect contiguous 3133 * logical block extents, call the multi-block allocator, and 3134 * then update the buffer heads with the block allocations. 3135 * 3136 * For now, though, we'll cheat by calling filemap_flush(), 3137 * which will map the blocks, and start the I/O, but not 3138 * actually wait for the I/O to complete. 3139 */ 3140 return filemap_flush(inode->i_mapping); 3141 } 3142 3143 /* 3144 * bmap() is special. It gets used by applications such as lilo and by 3145 * the swapper to find the on-disk block of a specific piece of data. 3146 * 3147 * Naturally, this is dangerous if the block concerned is still in the 3148 * journal. If somebody makes a swapfile on an ext4 data-journaling 3149 * filesystem and enables swap, then they may get a nasty shock when the 3150 * data getting swapped to that swapfile suddenly gets overwritten by 3151 * the original zero's written out previously to the journal and 3152 * awaiting writeback in the kernel's buffer cache. 3153 * 3154 * So, if we see any bmap calls here on a modified, data-journaled file, 3155 * take extra steps to flush any blocks which might be in the cache. 3156 */ 3157 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3158 { 3159 struct inode *inode = mapping->host; 3160 journal_t *journal; 3161 sector_t ret = 0; 3162 int err; 3163 3164 inode_lock_shared(inode); 3165 /* 3166 * We can get here for an inline file via the FIBMAP ioctl 3167 */ 3168 if (ext4_has_inline_data(inode)) 3169 goto out; 3170 3171 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3172 test_opt(inode->i_sb, DELALLOC)) { 3173 /* 3174 * With delalloc we want to sync the file 3175 * so that we can make sure we allocate 3176 * blocks for file 3177 */ 3178 filemap_write_and_wait(mapping); 3179 } 3180 3181 if (EXT4_JOURNAL(inode) && 3182 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 3183 /* 3184 * This is a REALLY heavyweight approach, but the use of 3185 * bmap on dirty files is expected to be extremely rare: 3186 * only if we run lilo or swapon on a freshly made file 3187 * do we expect this to happen. 3188 * 3189 * (bmap requires CAP_SYS_RAWIO so this does not 3190 * represent an unprivileged user DOS attack --- we'd be 3191 * in trouble if mortal users could trigger this path at 3192 * will.) 3193 * 3194 * NB. EXT4_STATE_JDATA is not set on files other than 3195 * regular files. If somebody wants to bmap a directory 3196 * or symlink and gets confused because the buffer 3197 * hasn't yet been flushed to disk, they deserve 3198 * everything they get. 3199 */ 3200 3201 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 3202 journal = EXT4_JOURNAL(inode); 3203 jbd2_journal_lock_updates(journal); 3204 err = jbd2_journal_flush(journal, 0); 3205 jbd2_journal_unlock_updates(journal); 3206 3207 if (err) 3208 goto out; 3209 } 3210 3211 ret = iomap_bmap(mapping, block, &ext4_iomap_ops); 3212 3213 out: 3214 inode_unlock_shared(inode); 3215 return ret; 3216 } 3217 3218 static int ext4_read_folio(struct file *file, struct folio *folio) 3219 { 3220 struct page *page = &folio->page; 3221 int ret = -EAGAIN; 3222 struct inode *inode = page->mapping->host; 3223 3224 trace_ext4_readpage(page); 3225 3226 if (ext4_has_inline_data(inode)) 3227 ret = ext4_readpage_inline(inode, page); 3228 3229 if (ret == -EAGAIN) 3230 return ext4_mpage_readpages(inode, NULL, page); 3231 3232 return ret; 3233 } 3234 3235 static void ext4_readahead(struct readahead_control *rac) 3236 { 3237 struct inode *inode = rac->mapping->host; 3238 3239 /* If the file has inline data, no need to do readahead. */ 3240 if (ext4_has_inline_data(inode)) 3241 return; 3242 3243 ext4_mpage_readpages(inode, rac, NULL); 3244 } 3245 3246 static void ext4_invalidate_folio(struct folio *folio, size_t offset, 3247 size_t length) 3248 { 3249 trace_ext4_invalidate_folio(folio, offset, length); 3250 3251 /* No journalling happens on data buffers when this function is used */ 3252 WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio))); 3253 3254 block_invalidate_folio(folio, offset, length); 3255 } 3256 3257 static int __ext4_journalled_invalidate_folio(struct folio *folio, 3258 size_t offset, size_t length) 3259 { 3260 journal_t *journal = EXT4_JOURNAL(folio->mapping->host); 3261 3262 trace_ext4_journalled_invalidate_folio(folio, offset, length); 3263 3264 /* 3265 * If it's a full truncate we just forget about the pending dirtying 3266 */ 3267 if (offset == 0 && length == folio_size(folio)) 3268 folio_clear_checked(folio); 3269 3270 return jbd2_journal_invalidate_folio(journal, folio, offset, length); 3271 } 3272 3273 /* Wrapper for aops... */ 3274 static void ext4_journalled_invalidate_folio(struct folio *folio, 3275 size_t offset, 3276 size_t length) 3277 { 3278 WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0); 3279 } 3280 3281 static bool ext4_release_folio(struct folio *folio, gfp_t wait) 3282 { 3283 journal_t *journal = EXT4_JOURNAL(folio->mapping->host); 3284 3285 trace_ext4_releasepage(&folio->page); 3286 3287 /* Page has dirty journalled data -> cannot release */ 3288 if (folio_test_checked(folio)) 3289 return false; 3290 if (journal) 3291 return jbd2_journal_try_to_free_buffers(journal, folio); 3292 else 3293 return try_to_free_buffers(folio); 3294 } 3295 3296 static bool ext4_inode_datasync_dirty(struct inode *inode) 3297 { 3298 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 3299 3300 if (journal) { 3301 if (jbd2_transaction_committed(journal, 3302 EXT4_I(inode)->i_datasync_tid)) 3303 return false; 3304 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT)) 3305 return !list_empty(&EXT4_I(inode)->i_fc_list); 3306 return true; 3307 } 3308 3309 /* Any metadata buffers to write? */ 3310 if (!list_empty(&inode->i_mapping->private_list)) 3311 return true; 3312 return inode->i_state & I_DIRTY_DATASYNC; 3313 } 3314 3315 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap, 3316 struct ext4_map_blocks *map, loff_t offset, 3317 loff_t length, unsigned int flags) 3318 { 3319 u8 blkbits = inode->i_blkbits; 3320 3321 /* 3322 * Writes that span EOF might trigger an I/O size update on completion, 3323 * so consider them to be dirty for the purpose of O_DSYNC, even if 3324 * there is no other metadata changes being made or are pending. 3325 */ 3326 iomap->flags = 0; 3327 if (ext4_inode_datasync_dirty(inode) || 3328 offset + length > i_size_read(inode)) 3329 iomap->flags |= IOMAP_F_DIRTY; 3330 3331 if (map->m_flags & EXT4_MAP_NEW) 3332 iomap->flags |= IOMAP_F_NEW; 3333 3334 if (flags & IOMAP_DAX) 3335 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev; 3336 else 3337 iomap->bdev = inode->i_sb->s_bdev; 3338 iomap->offset = (u64) map->m_lblk << blkbits; 3339 iomap->length = (u64) map->m_len << blkbits; 3340 3341 if ((map->m_flags & EXT4_MAP_MAPPED) && 3342 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3343 iomap->flags |= IOMAP_F_MERGED; 3344 3345 /* 3346 * Flags passed to ext4_map_blocks() for direct I/O writes can result 3347 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits 3348 * set. In order for any allocated unwritten extents to be converted 3349 * into written extents correctly within the ->end_io() handler, we 3350 * need to ensure that the iomap->type is set appropriately. Hence, the 3351 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has 3352 * been set first. 3353 */ 3354 if (map->m_flags & EXT4_MAP_UNWRITTEN) { 3355 iomap->type = IOMAP_UNWRITTEN; 3356 iomap->addr = (u64) map->m_pblk << blkbits; 3357 if (flags & IOMAP_DAX) 3358 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; 3359 } else if (map->m_flags & EXT4_MAP_MAPPED) { 3360 iomap->type = IOMAP_MAPPED; 3361 iomap->addr = (u64) map->m_pblk << blkbits; 3362 if (flags & IOMAP_DAX) 3363 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; 3364 } else { 3365 iomap->type = IOMAP_HOLE; 3366 iomap->addr = IOMAP_NULL_ADDR; 3367 } 3368 } 3369 3370 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map, 3371 unsigned int flags) 3372 { 3373 handle_t *handle; 3374 u8 blkbits = inode->i_blkbits; 3375 int ret, dio_credits, m_flags = 0, retries = 0; 3376 3377 /* 3378 * Trim the mapping request to the maximum value that we can map at 3379 * once for direct I/O. 3380 */ 3381 if (map->m_len > DIO_MAX_BLOCKS) 3382 map->m_len = DIO_MAX_BLOCKS; 3383 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len); 3384 3385 retry: 3386 /* 3387 * Either we allocate blocks and then don't get an unwritten extent, so 3388 * in that case we have reserved enough credits. Or, the blocks are 3389 * already allocated and unwritten. In that case, the extent conversion 3390 * fits into the credits as well. 3391 */ 3392 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 3393 if (IS_ERR(handle)) 3394 return PTR_ERR(handle); 3395 3396 /* 3397 * DAX and direct I/O are the only two operations that are currently 3398 * supported with IOMAP_WRITE. 3399 */ 3400 WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT))); 3401 if (flags & IOMAP_DAX) 3402 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO; 3403 /* 3404 * We use i_size instead of i_disksize here because delalloc writeback 3405 * can complete at any point during the I/O and subsequently push the 3406 * i_disksize out to i_size. This could be beyond where direct I/O is 3407 * happening and thus expose allocated blocks to direct I/O reads. 3408 */ 3409 else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode)) 3410 m_flags = EXT4_GET_BLOCKS_CREATE; 3411 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3412 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT; 3413 3414 ret = ext4_map_blocks(handle, inode, map, m_flags); 3415 3416 /* 3417 * We cannot fill holes in indirect tree based inodes as that could 3418 * expose stale data in the case of a crash. Use the magic error code 3419 * to fallback to buffered I/O. 3420 */ 3421 if (!m_flags && !ret) 3422 ret = -ENOTBLK; 3423 3424 ext4_journal_stop(handle); 3425 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3426 goto retry; 3427 3428 return ret; 3429 } 3430 3431 3432 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3433 unsigned flags, struct iomap *iomap, struct iomap *srcmap) 3434 { 3435 int ret; 3436 struct ext4_map_blocks map; 3437 u8 blkbits = inode->i_blkbits; 3438 3439 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3440 return -EINVAL; 3441 3442 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3443 return -ERANGE; 3444 3445 /* 3446 * Calculate the first and last logical blocks respectively. 3447 */ 3448 map.m_lblk = offset >> blkbits; 3449 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3450 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3451 3452 if (flags & IOMAP_WRITE) { 3453 /* 3454 * We check here if the blocks are already allocated, then we 3455 * don't need to start a journal txn and we can directly return 3456 * the mapping information. This could boost performance 3457 * especially in multi-threaded overwrite requests. 3458 */ 3459 if (offset + length <= i_size_read(inode)) { 3460 ret = ext4_map_blocks(NULL, inode, &map, 0); 3461 if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED)) 3462 goto out; 3463 } 3464 ret = ext4_iomap_alloc(inode, &map, flags); 3465 } else { 3466 ret = ext4_map_blocks(NULL, inode, &map, 0); 3467 } 3468 3469 if (ret < 0) 3470 return ret; 3471 out: 3472 /* 3473 * When inline encryption is enabled, sometimes I/O to an encrypted file 3474 * has to be broken up to guarantee DUN contiguity. Handle this by 3475 * limiting the length of the mapping returned. 3476 */ 3477 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len); 3478 3479 ext4_set_iomap(inode, iomap, &map, offset, length, flags); 3480 3481 return 0; 3482 } 3483 3484 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset, 3485 loff_t length, unsigned flags, struct iomap *iomap, 3486 struct iomap *srcmap) 3487 { 3488 int ret; 3489 3490 /* 3491 * Even for writes we don't need to allocate blocks, so just pretend 3492 * we are reading to save overhead of starting a transaction. 3493 */ 3494 flags &= ~IOMAP_WRITE; 3495 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap); 3496 WARN_ON_ONCE(iomap->type != IOMAP_MAPPED); 3497 return ret; 3498 } 3499 3500 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, 3501 ssize_t written, unsigned flags, struct iomap *iomap) 3502 { 3503 /* 3504 * Check to see whether an error occurred while writing out the data to 3505 * the allocated blocks. If so, return the magic error code so that we 3506 * fallback to buffered I/O and attempt to complete the remainder of 3507 * the I/O. Any blocks that may have been allocated in preparation for 3508 * the direct I/O will be reused during buffered I/O. 3509 */ 3510 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0) 3511 return -ENOTBLK; 3512 3513 return 0; 3514 } 3515 3516 const struct iomap_ops ext4_iomap_ops = { 3517 .iomap_begin = ext4_iomap_begin, 3518 .iomap_end = ext4_iomap_end, 3519 }; 3520 3521 const struct iomap_ops ext4_iomap_overwrite_ops = { 3522 .iomap_begin = ext4_iomap_overwrite_begin, 3523 .iomap_end = ext4_iomap_end, 3524 }; 3525 3526 static bool ext4_iomap_is_delalloc(struct inode *inode, 3527 struct ext4_map_blocks *map) 3528 { 3529 struct extent_status es; 3530 ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1; 3531 3532 ext4_es_find_extent_range(inode, &ext4_es_is_delayed, 3533 map->m_lblk, end, &es); 3534 3535 if (!es.es_len || es.es_lblk > end) 3536 return false; 3537 3538 if (es.es_lblk > map->m_lblk) { 3539 map->m_len = es.es_lblk - map->m_lblk; 3540 return false; 3541 } 3542 3543 offset = map->m_lblk - es.es_lblk; 3544 map->m_len = es.es_len - offset; 3545 3546 return true; 3547 } 3548 3549 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset, 3550 loff_t length, unsigned int flags, 3551 struct iomap *iomap, struct iomap *srcmap) 3552 { 3553 int ret; 3554 bool delalloc = false; 3555 struct ext4_map_blocks map; 3556 u8 blkbits = inode->i_blkbits; 3557 3558 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3559 return -EINVAL; 3560 3561 if (ext4_has_inline_data(inode)) { 3562 ret = ext4_inline_data_iomap(inode, iomap); 3563 if (ret != -EAGAIN) { 3564 if (ret == 0 && offset >= iomap->length) 3565 ret = -ENOENT; 3566 return ret; 3567 } 3568 } 3569 3570 /* 3571 * Calculate the first and last logical block respectively. 3572 */ 3573 map.m_lblk = offset >> blkbits; 3574 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3575 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3576 3577 /* 3578 * Fiemap callers may call for offset beyond s_bitmap_maxbytes. 3579 * So handle it here itself instead of querying ext4_map_blocks(). 3580 * Since ext4_map_blocks() will warn about it and will return 3581 * -EIO error. 3582 */ 3583 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 3584 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3585 3586 if (offset >= sbi->s_bitmap_maxbytes) { 3587 map.m_flags = 0; 3588 goto set_iomap; 3589 } 3590 } 3591 3592 ret = ext4_map_blocks(NULL, inode, &map, 0); 3593 if (ret < 0) 3594 return ret; 3595 if (ret == 0) 3596 delalloc = ext4_iomap_is_delalloc(inode, &map); 3597 3598 set_iomap: 3599 ext4_set_iomap(inode, iomap, &map, offset, length, flags); 3600 if (delalloc && iomap->type == IOMAP_HOLE) 3601 iomap->type = IOMAP_DELALLOC; 3602 3603 return 0; 3604 } 3605 3606 const struct iomap_ops ext4_iomap_report_ops = { 3607 .iomap_begin = ext4_iomap_begin_report, 3608 }; 3609 3610 /* 3611 * Whenever the folio is being dirtied, corresponding buffers should already 3612 * be attached to the transaction (we take care of this in ext4_page_mkwrite() 3613 * and ext4_write_begin()). However we cannot move buffers to dirty transaction 3614 * lists here because ->dirty_folio is called under VFS locks and the folio 3615 * is not necessarily locked. 3616 * 3617 * We cannot just dirty the folio and leave attached buffers clean, because the 3618 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3619 * or jbddirty because all the journalling code will explode. 3620 * 3621 * So what we do is to mark the folio "pending dirty" and next time writepage 3622 * is called, propagate that into the buffers appropriately. 3623 */ 3624 static bool ext4_journalled_dirty_folio(struct address_space *mapping, 3625 struct folio *folio) 3626 { 3627 WARN_ON_ONCE(!folio_buffers(folio)); 3628 folio_set_checked(folio); 3629 return filemap_dirty_folio(mapping, folio); 3630 } 3631 3632 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio) 3633 { 3634 WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio)); 3635 WARN_ON_ONCE(!folio_buffers(folio)); 3636 return block_dirty_folio(mapping, folio); 3637 } 3638 3639 static int ext4_iomap_swap_activate(struct swap_info_struct *sis, 3640 struct file *file, sector_t *span) 3641 { 3642 return iomap_swapfile_activate(sis, file, span, 3643 &ext4_iomap_report_ops); 3644 } 3645 3646 static const struct address_space_operations ext4_aops = { 3647 .read_folio = ext4_read_folio, 3648 .readahead = ext4_readahead, 3649 .writepage = ext4_writepage, 3650 .writepages = ext4_writepages, 3651 .write_begin = ext4_write_begin, 3652 .write_end = ext4_write_end, 3653 .dirty_folio = ext4_dirty_folio, 3654 .bmap = ext4_bmap, 3655 .invalidate_folio = ext4_invalidate_folio, 3656 .release_folio = ext4_release_folio, 3657 .direct_IO = noop_direct_IO, 3658 .migrate_folio = buffer_migrate_folio, 3659 .is_partially_uptodate = block_is_partially_uptodate, 3660 .error_remove_page = generic_error_remove_page, 3661 .swap_activate = ext4_iomap_swap_activate, 3662 }; 3663 3664 static const struct address_space_operations ext4_journalled_aops = { 3665 .read_folio = ext4_read_folio, 3666 .readahead = ext4_readahead, 3667 .writepage = ext4_writepage, 3668 .writepages = ext4_writepages, 3669 .write_begin = ext4_write_begin, 3670 .write_end = ext4_journalled_write_end, 3671 .dirty_folio = ext4_journalled_dirty_folio, 3672 .bmap = ext4_bmap, 3673 .invalidate_folio = ext4_journalled_invalidate_folio, 3674 .release_folio = ext4_release_folio, 3675 .direct_IO = noop_direct_IO, 3676 .is_partially_uptodate = block_is_partially_uptodate, 3677 .error_remove_page = generic_error_remove_page, 3678 .swap_activate = ext4_iomap_swap_activate, 3679 }; 3680 3681 static const struct address_space_operations ext4_da_aops = { 3682 .read_folio = ext4_read_folio, 3683 .readahead = ext4_readahead, 3684 .writepage = ext4_writepage, 3685 .writepages = ext4_writepages, 3686 .write_begin = ext4_da_write_begin, 3687 .write_end = ext4_da_write_end, 3688 .dirty_folio = ext4_dirty_folio, 3689 .bmap = ext4_bmap, 3690 .invalidate_folio = ext4_invalidate_folio, 3691 .release_folio = ext4_release_folio, 3692 .direct_IO = noop_direct_IO, 3693 .migrate_folio = buffer_migrate_folio, 3694 .is_partially_uptodate = block_is_partially_uptodate, 3695 .error_remove_page = generic_error_remove_page, 3696 .swap_activate = ext4_iomap_swap_activate, 3697 }; 3698 3699 static const struct address_space_operations ext4_dax_aops = { 3700 .writepages = ext4_dax_writepages, 3701 .direct_IO = noop_direct_IO, 3702 .dirty_folio = noop_dirty_folio, 3703 .bmap = ext4_bmap, 3704 .swap_activate = ext4_iomap_swap_activate, 3705 }; 3706 3707 void ext4_set_aops(struct inode *inode) 3708 { 3709 switch (ext4_inode_journal_mode(inode)) { 3710 case EXT4_INODE_ORDERED_DATA_MODE: 3711 case EXT4_INODE_WRITEBACK_DATA_MODE: 3712 break; 3713 case EXT4_INODE_JOURNAL_DATA_MODE: 3714 inode->i_mapping->a_ops = &ext4_journalled_aops; 3715 return; 3716 default: 3717 BUG(); 3718 } 3719 if (IS_DAX(inode)) 3720 inode->i_mapping->a_ops = &ext4_dax_aops; 3721 else if (test_opt(inode->i_sb, DELALLOC)) 3722 inode->i_mapping->a_ops = &ext4_da_aops; 3723 else 3724 inode->i_mapping->a_ops = &ext4_aops; 3725 } 3726 3727 static int __ext4_block_zero_page_range(handle_t *handle, 3728 struct address_space *mapping, loff_t from, loff_t length) 3729 { 3730 ext4_fsblk_t index = from >> PAGE_SHIFT; 3731 unsigned offset = from & (PAGE_SIZE-1); 3732 unsigned blocksize, pos; 3733 ext4_lblk_t iblock; 3734 struct inode *inode = mapping->host; 3735 struct buffer_head *bh; 3736 struct page *page; 3737 int err = 0; 3738 3739 page = find_or_create_page(mapping, from >> PAGE_SHIFT, 3740 mapping_gfp_constraint(mapping, ~__GFP_FS)); 3741 if (!page) 3742 return -ENOMEM; 3743 3744 blocksize = inode->i_sb->s_blocksize; 3745 3746 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 3747 3748 if (!page_has_buffers(page)) 3749 create_empty_buffers(page, blocksize, 0); 3750 3751 /* Find the buffer that contains "offset" */ 3752 bh = page_buffers(page); 3753 pos = blocksize; 3754 while (offset >= pos) { 3755 bh = bh->b_this_page; 3756 iblock++; 3757 pos += blocksize; 3758 } 3759 if (buffer_freed(bh)) { 3760 BUFFER_TRACE(bh, "freed: skip"); 3761 goto unlock; 3762 } 3763 if (!buffer_mapped(bh)) { 3764 BUFFER_TRACE(bh, "unmapped"); 3765 ext4_get_block(inode, iblock, bh, 0); 3766 /* unmapped? It's a hole - nothing to do */ 3767 if (!buffer_mapped(bh)) { 3768 BUFFER_TRACE(bh, "still unmapped"); 3769 goto unlock; 3770 } 3771 } 3772 3773 /* Ok, it's mapped. Make sure it's up-to-date */ 3774 if (PageUptodate(page)) 3775 set_buffer_uptodate(bh); 3776 3777 if (!buffer_uptodate(bh)) { 3778 err = ext4_read_bh_lock(bh, 0, true); 3779 if (err) 3780 goto unlock; 3781 if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 3782 /* We expect the key to be set. */ 3783 BUG_ON(!fscrypt_has_encryption_key(inode)); 3784 err = fscrypt_decrypt_pagecache_blocks(page, blocksize, 3785 bh_offset(bh)); 3786 if (err) { 3787 clear_buffer_uptodate(bh); 3788 goto unlock; 3789 } 3790 } 3791 } 3792 if (ext4_should_journal_data(inode)) { 3793 BUFFER_TRACE(bh, "get write access"); 3794 err = ext4_journal_get_write_access(handle, inode->i_sb, bh, 3795 EXT4_JTR_NONE); 3796 if (err) 3797 goto unlock; 3798 } 3799 zero_user(page, offset, length); 3800 BUFFER_TRACE(bh, "zeroed end of block"); 3801 3802 if (ext4_should_journal_data(inode)) { 3803 err = ext4_handle_dirty_metadata(handle, inode, bh); 3804 } else { 3805 err = 0; 3806 mark_buffer_dirty(bh); 3807 if (ext4_should_order_data(inode)) 3808 err = ext4_jbd2_inode_add_write(handle, inode, from, 3809 length); 3810 } 3811 3812 unlock: 3813 unlock_page(page); 3814 put_page(page); 3815 return err; 3816 } 3817 3818 /* 3819 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3820 * starting from file offset 'from'. The range to be zero'd must 3821 * be contained with in one block. If the specified range exceeds 3822 * the end of the block it will be shortened to end of the block 3823 * that corresponds to 'from' 3824 */ 3825 static int ext4_block_zero_page_range(handle_t *handle, 3826 struct address_space *mapping, loff_t from, loff_t length) 3827 { 3828 struct inode *inode = mapping->host; 3829 unsigned offset = from & (PAGE_SIZE-1); 3830 unsigned blocksize = inode->i_sb->s_blocksize; 3831 unsigned max = blocksize - (offset & (blocksize - 1)); 3832 3833 /* 3834 * correct length if it does not fall between 3835 * 'from' and the end of the block 3836 */ 3837 if (length > max || length < 0) 3838 length = max; 3839 3840 if (IS_DAX(inode)) { 3841 return dax_zero_range(inode, from, length, NULL, 3842 &ext4_iomap_ops); 3843 } 3844 return __ext4_block_zero_page_range(handle, mapping, from, length); 3845 } 3846 3847 /* 3848 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3849 * up to the end of the block which corresponds to `from'. 3850 * This required during truncate. We need to physically zero the tail end 3851 * of that block so it doesn't yield old data if the file is later grown. 3852 */ 3853 static int ext4_block_truncate_page(handle_t *handle, 3854 struct address_space *mapping, loff_t from) 3855 { 3856 unsigned offset = from & (PAGE_SIZE-1); 3857 unsigned length; 3858 unsigned blocksize; 3859 struct inode *inode = mapping->host; 3860 3861 /* If we are processing an encrypted inode during orphan list handling */ 3862 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode)) 3863 return 0; 3864 3865 blocksize = inode->i_sb->s_blocksize; 3866 length = blocksize - (offset & (blocksize - 1)); 3867 3868 return ext4_block_zero_page_range(handle, mapping, from, length); 3869 } 3870 3871 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3872 loff_t lstart, loff_t length) 3873 { 3874 struct super_block *sb = inode->i_sb; 3875 struct address_space *mapping = inode->i_mapping; 3876 unsigned partial_start, partial_end; 3877 ext4_fsblk_t start, end; 3878 loff_t byte_end = (lstart + length - 1); 3879 int err = 0; 3880 3881 partial_start = lstart & (sb->s_blocksize - 1); 3882 partial_end = byte_end & (sb->s_blocksize - 1); 3883 3884 start = lstart >> sb->s_blocksize_bits; 3885 end = byte_end >> sb->s_blocksize_bits; 3886 3887 /* Handle partial zero within the single block */ 3888 if (start == end && 3889 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3890 err = ext4_block_zero_page_range(handle, mapping, 3891 lstart, length); 3892 return err; 3893 } 3894 /* Handle partial zero out on the start of the range */ 3895 if (partial_start) { 3896 err = ext4_block_zero_page_range(handle, mapping, 3897 lstart, sb->s_blocksize); 3898 if (err) 3899 return err; 3900 } 3901 /* Handle partial zero out on the end of the range */ 3902 if (partial_end != sb->s_blocksize - 1) 3903 err = ext4_block_zero_page_range(handle, mapping, 3904 byte_end - partial_end, 3905 partial_end + 1); 3906 return err; 3907 } 3908 3909 int ext4_can_truncate(struct inode *inode) 3910 { 3911 if (S_ISREG(inode->i_mode)) 3912 return 1; 3913 if (S_ISDIR(inode->i_mode)) 3914 return 1; 3915 if (S_ISLNK(inode->i_mode)) 3916 return !ext4_inode_is_fast_symlink(inode); 3917 return 0; 3918 } 3919 3920 /* 3921 * We have to make sure i_disksize gets properly updated before we truncate 3922 * page cache due to hole punching or zero range. Otherwise i_disksize update 3923 * can get lost as it may have been postponed to submission of writeback but 3924 * that will never happen after we truncate page cache. 3925 */ 3926 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 3927 loff_t len) 3928 { 3929 handle_t *handle; 3930 int ret; 3931 3932 loff_t size = i_size_read(inode); 3933 3934 WARN_ON(!inode_is_locked(inode)); 3935 if (offset > size || offset + len < size) 3936 return 0; 3937 3938 if (EXT4_I(inode)->i_disksize >= size) 3939 return 0; 3940 3941 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 3942 if (IS_ERR(handle)) 3943 return PTR_ERR(handle); 3944 ext4_update_i_disksize(inode, size); 3945 ret = ext4_mark_inode_dirty(handle, inode); 3946 ext4_journal_stop(handle); 3947 3948 return ret; 3949 } 3950 3951 static void ext4_wait_dax_page(struct inode *inode) 3952 { 3953 filemap_invalidate_unlock(inode->i_mapping); 3954 schedule(); 3955 filemap_invalidate_lock(inode->i_mapping); 3956 } 3957 3958 int ext4_break_layouts(struct inode *inode) 3959 { 3960 struct page *page; 3961 int error; 3962 3963 if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock))) 3964 return -EINVAL; 3965 3966 do { 3967 page = dax_layout_busy_page(inode->i_mapping); 3968 if (!page) 3969 return 0; 3970 3971 error = ___wait_var_event(&page->_refcount, 3972 atomic_read(&page->_refcount) == 1, 3973 TASK_INTERRUPTIBLE, 0, 0, 3974 ext4_wait_dax_page(inode)); 3975 } while (error == 0); 3976 3977 return error; 3978 } 3979 3980 /* 3981 * ext4_punch_hole: punches a hole in a file by releasing the blocks 3982 * associated with the given offset and length 3983 * 3984 * @inode: File inode 3985 * @offset: The offset where the hole will begin 3986 * @len: The length of the hole 3987 * 3988 * Returns: 0 on success or negative on failure 3989 */ 3990 3991 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length) 3992 { 3993 struct inode *inode = file_inode(file); 3994 struct super_block *sb = inode->i_sb; 3995 ext4_lblk_t first_block, stop_block; 3996 struct address_space *mapping = inode->i_mapping; 3997 loff_t first_block_offset, last_block_offset, max_length; 3998 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3999 handle_t *handle; 4000 unsigned int credits; 4001 int ret = 0, ret2 = 0; 4002 4003 trace_ext4_punch_hole(inode, offset, length, 0); 4004 4005 /* 4006 * Write out all dirty pages to avoid race conditions 4007 * Then release them. 4008 */ 4009 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 4010 ret = filemap_write_and_wait_range(mapping, offset, 4011 offset + length - 1); 4012 if (ret) 4013 return ret; 4014 } 4015 4016 inode_lock(inode); 4017 4018 /* No need to punch hole beyond i_size */ 4019 if (offset >= inode->i_size) 4020 goto out_mutex; 4021 4022 /* 4023 * If the hole extends beyond i_size, set the hole 4024 * to end after the page that contains i_size 4025 */ 4026 if (offset + length > inode->i_size) { 4027 length = inode->i_size + 4028 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) - 4029 offset; 4030 } 4031 4032 /* 4033 * For punch hole the length + offset needs to be within one block 4034 * before last range. Adjust the length if it goes beyond that limit. 4035 */ 4036 max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize; 4037 if (offset + length > max_length) 4038 length = max_length - offset; 4039 4040 if (offset & (sb->s_blocksize - 1) || 4041 (offset + length) & (sb->s_blocksize - 1)) { 4042 /* 4043 * Attach jinode to inode for jbd2 if we do any zeroing of 4044 * partial block 4045 */ 4046 ret = ext4_inode_attach_jinode(inode); 4047 if (ret < 0) 4048 goto out_mutex; 4049 4050 } 4051 4052 /* Wait all existing dio workers, newcomers will block on i_rwsem */ 4053 inode_dio_wait(inode); 4054 4055 ret = file_modified(file); 4056 if (ret) 4057 goto out_mutex; 4058 4059 /* 4060 * Prevent page faults from reinstantiating pages we have released from 4061 * page cache. 4062 */ 4063 filemap_invalidate_lock(mapping); 4064 4065 ret = ext4_break_layouts(inode); 4066 if (ret) 4067 goto out_dio; 4068 4069 first_block_offset = round_up(offset, sb->s_blocksize); 4070 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 4071 4072 /* Now release the pages and zero block aligned part of pages*/ 4073 if (last_block_offset > first_block_offset) { 4074 ret = ext4_update_disksize_before_punch(inode, offset, length); 4075 if (ret) 4076 goto out_dio; 4077 truncate_pagecache_range(inode, first_block_offset, 4078 last_block_offset); 4079 } 4080 4081 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4082 credits = ext4_writepage_trans_blocks(inode); 4083 else 4084 credits = ext4_blocks_for_truncate(inode); 4085 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4086 if (IS_ERR(handle)) { 4087 ret = PTR_ERR(handle); 4088 ext4_std_error(sb, ret); 4089 goto out_dio; 4090 } 4091 4092 ret = ext4_zero_partial_blocks(handle, inode, offset, 4093 length); 4094 if (ret) 4095 goto out_stop; 4096 4097 first_block = (offset + sb->s_blocksize - 1) >> 4098 EXT4_BLOCK_SIZE_BITS(sb); 4099 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 4100 4101 /* If there are blocks to remove, do it */ 4102 if (stop_block > first_block) { 4103 4104 down_write(&EXT4_I(inode)->i_data_sem); 4105 ext4_discard_preallocations(inode, 0); 4106 4107 ret = ext4_es_remove_extent(inode, first_block, 4108 stop_block - first_block); 4109 if (ret) { 4110 up_write(&EXT4_I(inode)->i_data_sem); 4111 goto out_stop; 4112 } 4113 4114 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4115 ret = ext4_ext_remove_space(inode, first_block, 4116 stop_block - 1); 4117 else 4118 ret = ext4_ind_remove_space(handle, inode, first_block, 4119 stop_block); 4120 4121 up_write(&EXT4_I(inode)->i_data_sem); 4122 } 4123 ext4_fc_track_range(handle, inode, first_block, stop_block); 4124 if (IS_SYNC(inode)) 4125 ext4_handle_sync(handle); 4126 4127 inode->i_mtime = inode->i_ctime = current_time(inode); 4128 ret2 = ext4_mark_inode_dirty(handle, inode); 4129 if (unlikely(ret2)) 4130 ret = ret2; 4131 if (ret >= 0) 4132 ext4_update_inode_fsync_trans(handle, inode, 1); 4133 out_stop: 4134 ext4_journal_stop(handle); 4135 out_dio: 4136 filemap_invalidate_unlock(mapping); 4137 out_mutex: 4138 inode_unlock(inode); 4139 return ret; 4140 } 4141 4142 int ext4_inode_attach_jinode(struct inode *inode) 4143 { 4144 struct ext4_inode_info *ei = EXT4_I(inode); 4145 struct jbd2_inode *jinode; 4146 4147 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4148 return 0; 4149 4150 jinode = jbd2_alloc_inode(GFP_KERNEL); 4151 spin_lock(&inode->i_lock); 4152 if (!ei->jinode) { 4153 if (!jinode) { 4154 spin_unlock(&inode->i_lock); 4155 return -ENOMEM; 4156 } 4157 ei->jinode = jinode; 4158 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4159 jinode = NULL; 4160 } 4161 spin_unlock(&inode->i_lock); 4162 if (unlikely(jinode != NULL)) 4163 jbd2_free_inode(jinode); 4164 return 0; 4165 } 4166 4167 /* 4168 * ext4_truncate() 4169 * 4170 * We block out ext4_get_block() block instantiations across the entire 4171 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4172 * simultaneously on behalf of the same inode. 4173 * 4174 * As we work through the truncate and commit bits of it to the journal there 4175 * is one core, guiding principle: the file's tree must always be consistent on 4176 * disk. We must be able to restart the truncate after a crash. 4177 * 4178 * The file's tree may be transiently inconsistent in memory (although it 4179 * probably isn't), but whenever we close off and commit a journal transaction, 4180 * the contents of (the filesystem + the journal) must be consistent and 4181 * restartable. It's pretty simple, really: bottom up, right to left (although 4182 * left-to-right works OK too). 4183 * 4184 * Note that at recovery time, journal replay occurs *before* the restart of 4185 * truncate against the orphan inode list. 4186 * 4187 * The committed inode has the new, desired i_size (which is the same as 4188 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4189 * that this inode's truncate did not complete and it will again call 4190 * ext4_truncate() to have another go. So there will be instantiated blocks 4191 * to the right of the truncation point in a crashed ext4 filesystem. But 4192 * that's fine - as long as they are linked from the inode, the post-crash 4193 * ext4_truncate() run will find them and release them. 4194 */ 4195 int ext4_truncate(struct inode *inode) 4196 { 4197 struct ext4_inode_info *ei = EXT4_I(inode); 4198 unsigned int credits; 4199 int err = 0, err2; 4200 handle_t *handle; 4201 struct address_space *mapping = inode->i_mapping; 4202 4203 /* 4204 * There is a possibility that we're either freeing the inode 4205 * or it's a completely new inode. In those cases we might not 4206 * have i_rwsem locked because it's not necessary. 4207 */ 4208 if (!(inode->i_state & (I_NEW|I_FREEING))) 4209 WARN_ON(!inode_is_locked(inode)); 4210 trace_ext4_truncate_enter(inode); 4211 4212 if (!ext4_can_truncate(inode)) 4213 goto out_trace; 4214 4215 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4216 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4217 4218 if (ext4_has_inline_data(inode)) { 4219 int has_inline = 1; 4220 4221 err = ext4_inline_data_truncate(inode, &has_inline); 4222 if (err || has_inline) 4223 goto out_trace; 4224 } 4225 4226 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4227 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4228 if (ext4_inode_attach_jinode(inode) < 0) 4229 goto out_trace; 4230 } 4231 4232 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4233 credits = ext4_writepage_trans_blocks(inode); 4234 else 4235 credits = ext4_blocks_for_truncate(inode); 4236 4237 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4238 if (IS_ERR(handle)) { 4239 err = PTR_ERR(handle); 4240 goto out_trace; 4241 } 4242 4243 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4244 ext4_block_truncate_page(handle, mapping, inode->i_size); 4245 4246 /* 4247 * We add the inode to the orphan list, so that if this 4248 * truncate spans multiple transactions, and we crash, we will 4249 * resume the truncate when the filesystem recovers. It also 4250 * marks the inode dirty, to catch the new size. 4251 * 4252 * Implication: the file must always be in a sane, consistent 4253 * truncatable state while each transaction commits. 4254 */ 4255 err = ext4_orphan_add(handle, inode); 4256 if (err) 4257 goto out_stop; 4258 4259 down_write(&EXT4_I(inode)->i_data_sem); 4260 4261 ext4_discard_preallocations(inode, 0); 4262 4263 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4264 err = ext4_ext_truncate(handle, inode); 4265 else 4266 ext4_ind_truncate(handle, inode); 4267 4268 up_write(&ei->i_data_sem); 4269 if (err) 4270 goto out_stop; 4271 4272 if (IS_SYNC(inode)) 4273 ext4_handle_sync(handle); 4274 4275 out_stop: 4276 /* 4277 * If this was a simple ftruncate() and the file will remain alive, 4278 * then we need to clear up the orphan record which we created above. 4279 * However, if this was a real unlink then we were called by 4280 * ext4_evict_inode(), and we allow that function to clean up the 4281 * orphan info for us. 4282 */ 4283 if (inode->i_nlink) 4284 ext4_orphan_del(handle, inode); 4285 4286 inode->i_mtime = inode->i_ctime = current_time(inode); 4287 err2 = ext4_mark_inode_dirty(handle, inode); 4288 if (unlikely(err2 && !err)) 4289 err = err2; 4290 ext4_journal_stop(handle); 4291 4292 out_trace: 4293 trace_ext4_truncate_exit(inode); 4294 return err; 4295 } 4296 4297 static inline u64 ext4_inode_peek_iversion(const struct inode *inode) 4298 { 4299 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4300 return inode_peek_iversion_raw(inode); 4301 else 4302 return inode_peek_iversion(inode); 4303 } 4304 4305 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode, 4306 struct ext4_inode_info *ei) 4307 { 4308 struct inode *inode = &(ei->vfs_inode); 4309 u64 i_blocks = READ_ONCE(inode->i_blocks); 4310 struct super_block *sb = inode->i_sb; 4311 4312 if (i_blocks <= ~0U) { 4313 /* 4314 * i_blocks can be represented in a 32 bit variable 4315 * as multiple of 512 bytes 4316 */ 4317 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4318 raw_inode->i_blocks_high = 0; 4319 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4320 return 0; 4321 } 4322 4323 /* 4324 * This should never happen since sb->s_maxbytes should not have 4325 * allowed this, sb->s_maxbytes was set according to the huge_file 4326 * feature in ext4_fill_super(). 4327 */ 4328 if (!ext4_has_feature_huge_file(sb)) 4329 return -EFSCORRUPTED; 4330 4331 if (i_blocks <= 0xffffffffffffULL) { 4332 /* 4333 * i_blocks can be represented in a 48 bit variable 4334 * as multiple of 512 bytes 4335 */ 4336 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4337 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4338 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4339 } else { 4340 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4341 /* i_block is stored in file system block size */ 4342 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4343 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4344 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4345 } 4346 return 0; 4347 } 4348 4349 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode) 4350 { 4351 struct ext4_inode_info *ei = EXT4_I(inode); 4352 uid_t i_uid; 4353 gid_t i_gid; 4354 projid_t i_projid; 4355 int block; 4356 int err; 4357 4358 err = ext4_inode_blocks_set(raw_inode, ei); 4359 4360 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4361 i_uid = i_uid_read(inode); 4362 i_gid = i_gid_read(inode); 4363 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 4364 if (!(test_opt(inode->i_sb, NO_UID32))) { 4365 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4366 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4367 /* 4368 * Fix up interoperability with old kernels. Otherwise, 4369 * old inodes get re-used with the upper 16 bits of the 4370 * uid/gid intact. 4371 */ 4372 if (ei->i_dtime && list_empty(&ei->i_orphan)) { 4373 raw_inode->i_uid_high = 0; 4374 raw_inode->i_gid_high = 0; 4375 } else { 4376 raw_inode->i_uid_high = 4377 cpu_to_le16(high_16_bits(i_uid)); 4378 raw_inode->i_gid_high = 4379 cpu_to_le16(high_16_bits(i_gid)); 4380 } 4381 } else { 4382 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4383 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4384 raw_inode->i_uid_high = 0; 4385 raw_inode->i_gid_high = 0; 4386 } 4387 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4388 4389 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4390 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4391 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4392 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4393 4394 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4395 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4396 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 4397 raw_inode->i_file_acl_high = 4398 cpu_to_le16(ei->i_file_acl >> 32); 4399 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4400 ext4_isize_set(raw_inode, ei->i_disksize); 4401 4402 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4403 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4404 if (old_valid_dev(inode->i_rdev)) { 4405 raw_inode->i_block[0] = 4406 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4407 raw_inode->i_block[1] = 0; 4408 } else { 4409 raw_inode->i_block[0] = 0; 4410 raw_inode->i_block[1] = 4411 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4412 raw_inode->i_block[2] = 0; 4413 } 4414 } else if (!ext4_has_inline_data(inode)) { 4415 for (block = 0; block < EXT4_N_BLOCKS; block++) 4416 raw_inode->i_block[block] = ei->i_data[block]; 4417 } 4418 4419 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4420 u64 ivers = ext4_inode_peek_iversion(inode); 4421 4422 raw_inode->i_disk_version = cpu_to_le32(ivers); 4423 if (ei->i_extra_isize) { 4424 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4425 raw_inode->i_version_hi = 4426 cpu_to_le32(ivers >> 32); 4427 raw_inode->i_extra_isize = 4428 cpu_to_le16(ei->i_extra_isize); 4429 } 4430 } 4431 4432 if (i_projid != EXT4_DEF_PROJID && 4433 !ext4_has_feature_project(inode->i_sb)) 4434 err = err ?: -EFSCORRUPTED; 4435 4436 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 4437 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4438 raw_inode->i_projid = cpu_to_le32(i_projid); 4439 4440 ext4_inode_csum_set(inode, raw_inode, ei); 4441 return err; 4442 } 4443 4444 /* 4445 * ext4_get_inode_loc returns with an extra refcount against the inode's 4446 * underlying buffer_head on success. If we pass 'inode' and it does not 4447 * have in-inode xattr, we have all inode data in memory that is needed 4448 * to recreate the on-disk version of this inode. 4449 */ 4450 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino, 4451 struct inode *inode, struct ext4_iloc *iloc, 4452 ext4_fsblk_t *ret_block) 4453 { 4454 struct ext4_group_desc *gdp; 4455 struct buffer_head *bh; 4456 ext4_fsblk_t block; 4457 struct blk_plug plug; 4458 int inodes_per_block, inode_offset; 4459 4460 iloc->bh = NULL; 4461 if (ino < EXT4_ROOT_INO || 4462 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 4463 return -EFSCORRUPTED; 4464 4465 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 4466 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4467 if (!gdp) 4468 return -EIO; 4469 4470 /* 4471 * Figure out the offset within the block group inode table 4472 */ 4473 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4474 inode_offset = ((ino - 1) % 4475 EXT4_INODES_PER_GROUP(sb)); 4476 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 4477 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4478 4479 bh = sb_getblk(sb, block); 4480 if (unlikely(!bh)) 4481 return -ENOMEM; 4482 if (ext4_buffer_uptodate(bh)) 4483 goto has_buffer; 4484 4485 lock_buffer(bh); 4486 if (ext4_buffer_uptodate(bh)) { 4487 /* Someone brought it uptodate while we waited */ 4488 unlock_buffer(bh); 4489 goto has_buffer; 4490 } 4491 4492 /* 4493 * If we have all information of the inode in memory and this 4494 * is the only valid inode in the block, we need not read the 4495 * block. 4496 */ 4497 if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { 4498 struct buffer_head *bitmap_bh; 4499 int i, start; 4500 4501 start = inode_offset & ~(inodes_per_block - 1); 4502 4503 /* Is the inode bitmap in cache? */ 4504 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4505 if (unlikely(!bitmap_bh)) 4506 goto make_io; 4507 4508 /* 4509 * If the inode bitmap isn't in cache then the 4510 * optimisation may end up performing two reads instead 4511 * of one, so skip it. 4512 */ 4513 if (!buffer_uptodate(bitmap_bh)) { 4514 brelse(bitmap_bh); 4515 goto make_io; 4516 } 4517 for (i = start; i < start + inodes_per_block; i++) { 4518 if (i == inode_offset) 4519 continue; 4520 if (ext4_test_bit(i, bitmap_bh->b_data)) 4521 break; 4522 } 4523 brelse(bitmap_bh); 4524 if (i == start + inodes_per_block) { 4525 struct ext4_inode *raw_inode = 4526 (struct ext4_inode *) (bh->b_data + iloc->offset); 4527 4528 /* all other inodes are free, so skip I/O */ 4529 memset(bh->b_data, 0, bh->b_size); 4530 if (!ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4531 ext4_fill_raw_inode(inode, raw_inode); 4532 set_buffer_uptodate(bh); 4533 unlock_buffer(bh); 4534 goto has_buffer; 4535 } 4536 } 4537 4538 make_io: 4539 /* 4540 * If we need to do any I/O, try to pre-readahead extra 4541 * blocks from the inode table. 4542 */ 4543 blk_start_plug(&plug); 4544 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4545 ext4_fsblk_t b, end, table; 4546 unsigned num; 4547 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4548 4549 table = ext4_inode_table(sb, gdp); 4550 /* s_inode_readahead_blks is always a power of 2 */ 4551 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4552 if (table > b) 4553 b = table; 4554 end = b + ra_blks; 4555 num = EXT4_INODES_PER_GROUP(sb); 4556 if (ext4_has_group_desc_csum(sb)) 4557 num -= ext4_itable_unused_count(sb, gdp); 4558 table += num / inodes_per_block; 4559 if (end > table) 4560 end = table; 4561 while (b <= end) 4562 ext4_sb_breadahead_unmovable(sb, b++); 4563 } 4564 4565 /* 4566 * There are other valid inodes in the buffer, this inode 4567 * has in-inode xattrs, or we don't have this inode in memory. 4568 * Read the block from disk. 4569 */ 4570 trace_ext4_load_inode(sb, ino); 4571 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL); 4572 blk_finish_plug(&plug); 4573 wait_on_buffer(bh); 4574 ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO); 4575 if (!buffer_uptodate(bh)) { 4576 if (ret_block) 4577 *ret_block = block; 4578 brelse(bh); 4579 return -EIO; 4580 } 4581 has_buffer: 4582 iloc->bh = bh; 4583 return 0; 4584 } 4585 4586 static int __ext4_get_inode_loc_noinmem(struct inode *inode, 4587 struct ext4_iloc *iloc) 4588 { 4589 ext4_fsblk_t err_blk = 0; 4590 int ret; 4591 4592 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc, 4593 &err_blk); 4594 4595 if (ret == -EIO) 4596 ext4_error_inode_block(inode, err_blk, EIO, 4597 "unable to read itable block"); 4598 4599 return ret; 4600 } 4601 4602 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4603 { 4604 ext4_fsblk_t err_blk = 0; 4605 int ret; 4606 4607 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc, 4608 &err_blk); 4609 4610 if (ret == -EIO) 4611 ext4_error_inode_block(inode, err_blk, EIO, 4612 "unable to read itable block"); 4613 4614 return ret; 4615 } 4616 4617 4618 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino, 4619 struct ext4_iloc *iloc) 4620 { 4621 return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL); 4622 } 4623 4624 static bool ext4_should_enable_dax(struct inode *inode) 4625 { 4626 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4627 4628 if (test_opt2(inode->i_sb, DAX_NEVER)) 4629 return false; 4630 if (!S_ISREG(inode->i_mode)) 4631 return false; 4632 if (ext4_should_journal_data(inode)) 4633 return false; 4634 if (ext4_has_inline_data(inode)) 4635 return false; 4636 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT)) 4637 return false; 4638 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY)) 4639 return false; 4640 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) 4641 return false; 4642 if (test_opt(inode->i_sb, DAX_ALWAYS)) 4643 return true; 4644 4645 return ext4_test_inode_flag(inode, EXT4_INODE_DAX); 4646 } 4647 4648 void ext4_set_inode_flags(struct inode *inode, bool init) 4649 { 4650 unsigned int flags = EXT4_I(inode)->i_flags; 4651 unsigned int new_fl = 0; 4652 4653 WARN_ON_ONCE(IS_DAX(inode) && init); 4654 4655 if (flags & EXT4_SYNC_FL) 4656 new_fl |= S_SYNC; 4657 if (flags & EXT4_APPEND_FL) 4658 new_fl |= S_APPEND; 4659 if (flags & EXT4_IMMUTABLE_FL) 4660 new_fl |= S_IMMUTABLE; 4661 if (flags & EXT4_NOATIME_FL) 4662 new_fl |= S_NOATIME; 4663 if (flags & EXT4_DIRSYNC_FL) 4664 new_fl |= S_DIRSYNC; 4665 4666 /* Because of the way inode_set_flags() works we must preserve S_DAX 4667 * here if already set. */ 4668 new_fl |= (inode->i_flags & S_DAX); 4669 if (init && ext4_should_enable_dax(inode)) 4670 new_fl |= S_DAX; 4671 4672 if (flags & EXT4_ENCRYPT_FL) 4673 new_fl |= S_ENCRYPTED; 4674 if (flags & EXT4_CASEFOLD_FL) 4675 new_fl |= S_CASEFOLD; 4676 if (flags & EXT4_VERITY_FL) 4677 new_fl |= S_VERITY; 4678 inode_set_flags(inode, new_fl, 4679 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX| 4680 S_ENCRYPTED|S_CASEFOLD|S_VERITY); 4681 } 4682 4683 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4684 struct ext4_inode_info *ei) 4685 { 4686 blkcnt_t i_blocks ; 4687 struct inode *inode = &(ei->vfs_inode); 4688 struct super_block *sb = inode->i_sb; 4689 4690 if (ext4_has_feature_huge_file(sb)) { 4691 /* we are using combined 48 bit field */ 4692 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4693 le32_to_cpu(raw_inode->i_blocks_lo); 4694 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4695 /* i_blocks represent file system block size */ 4696 return i_blocks << (inode->i_blkbits - 9); 4697 } else { 4698 return i_blocks; 4699 } 4700 } else { 4701 return le32_to_cpu(raw_inode->i_blocks_lo); 4702 } 4703 } 4704 4705 static inline int ext4_iget_extra_inode(struct inode *inode, 4706 struct ext4_inode *raw_inode, 4707 struct ext4_inode_info *ei) 4708 { 4709 __le32 *magic = (void *)raw_inode + 4710 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4711 4712 if (EXT4_INODE_HAS_XATTR_SPACE(inode) && 4713 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4714 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4715 return ext4_find_inline_data_nolock(inode); 4716 } else 4717 EXT4_I(inode)->i_inline_off = 0; 4718 return 0; 4719 } 4720 4721 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4722 { 4723 if (!ext4_has_feature_project(inode->i_sb)) 4724 return -EOPNOTSUPP; 4725 *projid = EXT4_I(inode)->i_projid; 4726 return 0; 4727 } 4728 4729 /* 4730 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of 4731 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag 4732 * set. 4733 */ 4734 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val) 4735 { 4736 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4737 inode_set_iversion_raw(inode, val); 4738 else 4739 inode_set_iversion_queried(inode, val); 4740 } 4741 4742 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino, 4743 ext4_iget_flags flags, const char *function, 4744 unsigned int line) 4745 { 4746 struct ext4_iloc iloc; 4747 struct ext4_inode *raw_inode; 4748 struct ext4_inode_info *ei; 4749 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4750 struct inode *inode; 4751 journal_t *journal = EXT4_SB(sb)->s_journal; 4752 long ret; 4753 loff_t size; 4754 int block; 4755 uid_t i_uid; 4756 gid_t i_gid; 4757 projid_t i_projid; 4758 4759 if ((!(flags & EXT4_IGET_SPECIAL) && 4760 ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) || 4761 ino == le32_to_cpu(es->s_usr_quota_inum) || 4762 ino == le32_to_cpu(es->s_grp_quota_inum) || 4763 ino == le32_to_cpu(es->s_prj_quota_inum) || 4764 ino == le32_to_cpu(es->s_orphan_file_inum))) || 4765 (ino < EXT4_ROOT_INO) || 4766 (ino > le32_to_cpu(es->s_inodes_count))) { 4767 if (flags & EXT4_IGET_HANDLE) 4768 return ERR_PTR(-ESTALE); 4769 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0, 4770 "inode #%lu: comm %s: iget: illegal inode #", 4771 ino, current->comm); 4772 return ERR_PTR(-EFSCORRUPTED); 4773 } 4774 4775 inode = iget_locked(sb, ino); 4776 if (!inode) 4777 return ERR_PTR(-ENOMEM); 4778 if (!(inode->i_state & I_NEW)) 4779 return inode; 4780 4781 ei = EXT4_I(inode); 4782 iloc.bh = NULL; 4783 4784 ret = __ext4_get_inode_loc_noinmem(inode, &iloc); 4785 if (ret < 0) 4786 goto bad_inode; 4787 raw_inode = ext4_raw_inode(&iloc); 4788 4789 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) { 4790 ext4_error_inode(inode, function, line, 0, 4791 "iget: root inode unallocated"); 4792 ret = -EFSCORRUPTED; 4793 goto bad_inode; 4794 } 4795 4796 if ((flags & EXT4_IGET_HANDLE) && 4797 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) { 4798 ret = -ESTALE; 4799 goto bad_inode; 4800 } 4801 4802 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4803 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4804 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4805 EXT4_INODE_SIZE(inode->i_sb) || 4806 (ei->i_extra_isize & 3)) { 4807 ext4_error_inode(inode, function, line, 0, 4808 "iget: bad extra_isize %u " 4809 "(inode size %u)", 4810 ei->i_extra_isize, 4811 EXT4_INODE_SIZE(inode->i_sb)); 4812 ret = -EFSCORRUPTED; 4813 goto bad_inode; 4814 } 4815 } else 4816 ei->i_extra_isize = 0; 4817 4818 /* Precompute checksum seed for inode metadata */ 4819 if (ext4_has_metadata_csum(sb)) { 4820 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4821 __u32 csum; 4822 __le32 inum = cpu_to_le32(inode->i_ino); 4823 __le32 gen = raw_inode->i_generation; 4824 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4825 sizeof(inum)); 4826 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4827 sizeof(gen)); 4828 } 4829 4830 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) || 4831 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) && 4832 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) { 4833 ext4_error_inode_err(inode, function, line, 0, 4834 EFSBADCRC, "iget: checksum invalid"); 4835 ret = -EFSBADCRC; 4836 goto bad_inode; 4837 } 4838 4839 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4840 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4841 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4842 if (ext4_has_feature_project(sb) && 4843 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4844 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4845 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4846 else 4847 i_projid = EXT4_DEF_PROJID; 4848 4849 if (!(test_opt(inode->i_sb, NO_UID32))) { 4850 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4851 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4852 } 4853 i_uid_write(inode, i_uid); 4854 i_gid_write(inode, i_gid); 4855 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4856 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4857 4858 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4859 ei->i_inline_off = 0; 4860 ei->i_dir_start_lookup = 0; 4861 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4862 /* We now have enough fields to check if the inode was active or not. 4863 * This is needed because nfsd might try to access dead inodes 4864 * the test is that same one that e2fsck uses 4865 * NeilBrown 1999oct15 4866 */ 4867 if (inode->i_nlink == 0) { 4868 if ((inode->i_mode == 0 || 4869 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4870 ino != EXT4_BOOT_LOADER_INO) { 4871 /* this inode is deleted */ 4872 ret = -ESTALE; 4873 goto bad_inode; 4874 } 4875 /* The only unlinked inodes we let through here have 4876 * valid i_mode and are being read by the orphan 4877 * recovery code: that's fine, we're about to complete 4878 * the process of deleting those. 4879 * OR it is the EXT4_BOOT_LOADER_INO which is 4880 * not initialized on a new filesystem. */ 4881 } 4882 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4883 ext4_set_inode_flags(inode, true); 4884 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4885 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4886 if (ext4_has_feature_64bit(sb)) 4887 ei->i_file_acl |= 4888 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4889 inode->i_size = ext4_isize(sb, raw_inode); 4890 if ((size = i_size_read(inode)) < 0) { 4891 ext4_error_inode(inode, function, line, 0, 4892 "iget: bad i_size value: %lld", size); 4893 ret = -EFSCORRUPTED; 4894 goto bad_inode; 4895 } 4896 /* 4897 * If dir_index is not enabled but there's dir with INDEX flag set, 4898 * we'd normally treat htree data as empty space. But with metadata 4899 * checksumming that corrupts checksums so forbid that. 4900 */ 4901 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) && 4902 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) { 4903 ext4_error_inode(inode, function, line, 0, 4904 "iget: Dir with htree data on filesystem without dir_index feature."); 4905 ret = -EFSCORRUPTED; 4906 goto bad_inode; 4907 } 4908 ei->i_disksize = inode->i_size; 4909 #ifdef CONFIG_QUOTA 4910 ei->i_reserved_quota = 0; 4911 #endif 4912 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4913 ei->i_block_group = iloc.block_group; 4914 ei->i_last_alloc_group = ~0; 4915 /* 4916 * NOTE! The in-memory inode i_data array is in little-endian order 4917 * even on big-endian machines: we do NOT byteswap the block numbers! 4918 */ 4919 for (block = 0; block < EXT4_N_BLOCKS; block++) 4920 ei->i_data[block] = raw_inode->i_block[block]; 4921 INIT_LIST_HEAD(&ei->i_orphan); 4922 ext4_fc_init_inode(&ei->vfs_inode); 4923 4924 /* 4925 * Set transaction id's of transactions that have to be committed 4926 * to finish f[data]sync. We set them to currently running transaction 4927 * as we cannot be sure that the inode or some of its metadata isn't 4928 * part of the transaction - the inode could have been reclaimed and 4929 * now it is reread from disk. 4930 */ 4931 if (journal) { 4932 transaction_t *transaction; 4933 tid_t tid; 4934 4935 read_lock(&journal->j_state_lock); 4936 if (journal->j_running_transaction) 4937 transaction = journal->j_running_transaction; 4938 else 4939 transaction = journal->j_committing_transaction; 4940 if (transaction) 4941 tid = transaction->t_tid; 4942 else 4943 tid = journal->j_commit_sequence; 4944 read_unlock(&journal->j_state_lock); 4945 ei->i_sync_tid = tid; 4946 ei->i_datasync_tid = tid; 4947 } 4948 4949 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4950 if (ei->i_extra_isize == 0) { 4951 /* The extra space is currently unused. Use it. */ 4952 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 4953 ei->i_extra_isize = sizeof(struct ext4_inode) - 4954 EXT4_GOOD_OLD_INODE_SIZE; 4955 } else { 4956 ret = ext4_iget_extra_inode(inode, raw_inode, ei); 4957 if (ret) 4958 goto bad_inode; 4959 } 4960 } 4961 4962 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4963 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4964 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4965 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4966 4967 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4968 u64 ivers = le32_to_cpu(raw_inode->i_disk_version); 4969 4970 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4971 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4972 ivers |= 4973 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4974 } 4975 ext4_inode_set_iversion_queried(inode, ivers); 4976 } 4977 4978 ret = 0; 4979 if (ei->i_file_acl && 4980 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) { 4981 ext4_error_inode(inode, function, line, 0, 4982 "iget: bad extended attribute block %llu", 4983 ei->i_file_acl); 4984 ret = -EFSCORRUPTED; 4985 goto bad_inode; 4986 } else if (!ext4_has_inline_data(inode)) { 4987 /* validate the block references in the inode */ 4988 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) && 4989 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4990 (S_ISLNK(inode->i_mode) && 4991 !ext4_inode_is_fast_symlink(inode)))) { 4992 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4993 ret = ext4_ext_check_inode(inode); 4994 else 4995 ret = ext4_ind_check_inode(inode); 4996 } 4997 } 4998 if (ret) 4999 goto bad_inode; 5000 5001 if (S_ISREG(inode->i_mode)) { 5002 inode->i_op = &ext4_file_inode_operations; 5003 inode->i_fop = &ext4_file_operations; 5004 ext4_set_aops(inode); 5005 } else if (S_ISDIR(inode->i_mode)) { 5006 inode->i_op = &ext4_dir_inode_operations; 5007 inode->i_fop = &ext4_dir_operations; 5008 } else if (S_ISLNK(inode->i_mode)) { 5009 /* VFS does not allow setting these so must be corruption */ 5010 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 5011 ext4_error_inode(inode, function, line, 0, 5012 "iget: immutable or append flags " 5013 "not allowed on symlinks"); 5014 ret = -EFSCORRUPTED; 5015 goto bad_inode; 5016 } 5017 if (IS_ENCRYPTED(inode)) { 5018 inode->i_op = &ext4_encrypted_symlink_inode_operations; 5019 } else if (ext4_inode_is_fast_symlink(inode)) { 5020 inode->i_link = (char *)ei->i_data; 5021 inode->i_op = &ext4_fast_symlink_inode_operations; 5022 nd_terminate_link(ei->i_data, inode->i_size, 5023 sizeof(ei->i_data) - 1); 5024 } else { 5025 inode->i_op = &ext4_symlink_inode_operations; 5026 } 5027 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 5028 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 5029 inode->i_op = &ext4_special_inode_operations; 5030 if (raw_inode->i_block[0]) 5031 init_special_inode(inode, inode->i_mode, 5032 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 5033 else 5034 init_special_inode(inode, inode->i_mode, 5035 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 5036 } else if (ino == EXT4_BOOT_LOADER_INO) { 5037 make_bad_inode(inode); 5038 } else { 5039 ret = -EFSCORRUPTED; 5040 ext4_error_inode(inode, function, line, 0, 5041 "iget: bogus i_mode (%o)", inode->i_mode); 5042 goto bad_inode; 5043 } 5044 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) 5045 ext4_error_inode(inode, function, line, 0, 5046 "casefold flag without casefold feature"); 5047 brelse(iloc.bh); 5048 5049 unlock_new_inode(inode); 5050 return inode; 5051 5052 bad_inode: 5053 brelse(iloc.bh); 5054 iget_failed(inode); 5055 return ERR_PTR(ret); 5056 } 5057 5058 static void __ext4_update_other_inode_time(struct super_block *sb, 5059 unsigned long orig_ino, 5060 unsigned long ino, 5061 struct ext4_inode *raw_inode) 5062 { 5063 struct inode *inode; 5064 5065 inode = find_inode_by_ino_rcu(sb, ino); 5066 if (!inode) 5067 return; 5068 5069 if (!inode_is_dirtytime_only(inode)) 5070 return; 5071 5072 spin_lock(&inode->i_lock); 5073 if (inode_is_dirtytime_only(inode)) { 5074 struct ext4_inode_info *ei = EXT4_I(inode); 5075 5076 inode->i_state &= ~I_DIRTY_TIME; 5077 spin_unlock(&inode->i_lock); 5078 5079 spin_lock(&ei->i_raw_lock); 5080 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 5081 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 5082 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 5083 ext4_inode_csum_set(inode, raw_inode, ei); 5084 spin_unlock(&ei->i_raw_lock); 5085 trace_ext4_other_inode_update_time(inode, orig_ino); 5086 return; 5087 } 5088 spin_unlock(&inode->i_lock); 5089 } 5090 5091 /* 5092 * Opportunistically update the other time fields for other inodes in 5093 * the same inode table block. 5094 */ 5095 static void ext4_update_other_inodes_time(struct super_block *sb, 5096 unsigned long orig_ino, char *buf) 5097 { 5098 unsigned long ino; 5099 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 5100 int inode_size = EXT4_INODE_SIZE(sb); 5101 5102 /* 5103 * Calculate the first inode in the inode table block. Inode 5104 * numbers are one-based. That is, the first inode in a block 5105 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 5106 */ 5107 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 5108 rcu_read_lock(); 5109 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 5110 if (ino == orig_ino) 5111 continue; 5112 __ext4_update_other_inode_time(sb, orig_ino, ino, 5113 (struct ext4_inode *)buf); 5114 } 5115 rcu_read_unlock(); 5116 } 5117 5118 /* 5119 * Post the struct inode info into an on-disk inode location in the 5120 * buffer-cache. This gobbles the caller's reference to the 5121 * buffer_head in the inode location struct. 5122 * 5123 * The caller must have write access to iloc->bh. 5124 */ 5125 static int ext4_do_update_inode(handle_t *handle, 5126 struct inode *inode, 5127 struct ext4_iloc *iloc) 5128 { 5129 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5130 struct ext4_inode_info *ei = EXT4_I(inode); 5131 struct buffer_head *bh = iloc->bh; 5132 struct super_block *sb = inode->i_sb; 5133 int err; 5134 int need_datasync = 0, set_large_file = 0; 5135 5136 spin_lock(&ei->i_raw_lock); 5137 5138 /* 5139 * For fields not tracked in the in-memory inode, initialise them 5140 * to zero for new inodes. 5141 */ 5142 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5143 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5144 5145 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) 5146 need_datasync = 1; 5147 if (ei->i_disksize > 0x7fffffffULL) { 5148 if (!ext4_has_feature_large_file(sb) || 5149 EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV)) 5150 set_large_file = 1; 5151 } 5152 5153 err = ext4_fill_raw_inode(inode, raw_inode); 5154 spin_unlock(&ei->i_raw_lock); 5155 if (err) { 5156 EXT4_ERROR_INODE(inode, "corrupted inode contents"); 5157 goto out_brelse; 5158 } 5159 5160 if (inode->i_sb->s_flags & SB_LAZYTIME) 5161 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 5162 bh->b_data); 5163 5164 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5165 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5166 if (err) 5167 goto out_error; 5168 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5169 if (set_large_file) { 5170 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 5171 err = ext4_journal_get_write_access(handle, sb, 5172 EXT4_SB(sb)->s_sbh, 5173 EXT4_JTR_NONE); 5174 if (err) 5175 goto out_error; 5176 lock_buffer(EXT4_SB(sb)->s_sbh); 5177 ext4_set_feature_large_file(sb); 5178 ext4_superblock_csum_set(sb); 5179 unlock_buffer(EXT4_SB(sb)->s_sbh); 5180 ext4_handle_sync(handle); 5181 err = ext4_handle_dirty_metadata(handle, NULL, 5182 EXT4_SB(sb)->s_sbh); 5183 } 5184 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5185 out_error: 5186 ext4_std_error(inode->i_sb, err); 5187 out_brelse: 5188 brelse(bh); 5189 return err; 5190 } 5191 5192 /* 5193 * ext4_write_inode() 5194 * 5195 * We are called from a few places: 5196 * 5197 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5198 * Here, there will be no transaction running. We wait for any running 5199 * transaction to commit. 5200 * 5201 * - Within flush work (sys_sync(), kupdate and such). 5202 * We wait on commit, if told to. 5203 * 5204 * - Within iput_final() -> write_inode_now() 5205 * We wait on commit, if told to. 5206 * 5207 * In all cases it is actually safe for us to return without doing anything, 5208 * because the inode has been copied into a raw inode buffer in 5209 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5210 * writeback. 5211 * 5212 * Note that we are absolutely dependent upon all inode dirtiers doing the 5213 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5214 * which we are interested. 5215 * 5216 * It would be a bug for them to not do this. The code: 5217 * 5218 * mark_inode_dirty(inode) 5219 * stuff(); 5220 * inode->i_size = expr; 5221 * 5222 * is in error because write_inode() could occur while `stuff()' is running, 5223 * and the new i_size will be lost. Plus the inode will no longer be on the 5224 * superblock's dirty inode list. 5225 */ 5226 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5227 { 5228 int err; 5229 5230 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) || 5231 sb_rdonly(inode->i_sb)) 5232 return 0; 5233 5234 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5235 return -EIO; 5236 5237 if (EXT4_SB(inode->i_sb)->s_journal) { 5238 if (ext4_journal_current_handle()) { 5239 ext4_debug("called recursively, non-PF_MEMALLOC!\n"); 5240 dump_stack(); 5241 return -EIO; 5242 } 5243 5244 /* 5245 * No need to force transaction in WB_SYNC_NONE mode. Also 5246 * ext4_sync_fs() will force the commit after everything is 5247 * written. 5248 */ 5249 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5250 return 0; 5251 5252 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal, 5253 EXT4_I(inode)->i_sync_tid); 5254 } else { 5255 struct ext4_iloc iloc; 5256 5257 err = __ext4_get_inode_loc_noinmem(inode, &iloc); 5258 if (err) 5259 return err; 5260 /* 5261 * sync(2) will flush the whole buffer cache. No need to do 5262 * it here separately for each inode. 5263 */ 5264 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5265 sync_dirty_buffer(iloc.bh); 5266 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5267 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO, 5268 "IO error syncing inode"); 5269 err = -EIO; 5270 } 5271 brelse(iloc.bh); 5272 } 5273 return err; 5274 } 5275 5276 /* 5277 * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate 5278 * buffers that are attached to a folio straddling i_size and are undergoing 5279 * commit. In that case we have to wait for commit to finish and try again. 5280 */ 5281 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5282 { 5283 unsigned offset; 5284 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5285 tid_t commit_tid = 0; 5286 int ret; 5287 5288 offset = inode->i_size & (PAGE_SIZE - 1); 5289 /* 5290 * If the folio is fully truncated, we don't need to wait for any commit 5291 * (and we even should not as __ext4_journalled_invalidate_folio() may 5292 * strip all buffers from the folio but keep the folio dirty which can then 5293 * confuse e.g. concurrent ext4_writepage() seeing dirty folio without 5294 * buffers). Also we don't need to wait for any commit if all buffers in 5295 * the folio remain valid. This is most beneficial for the common case of 5296 * blocksize == PAGESIZE. 5297 */ 5298 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode))) 5299 return; 5300 while (1) { 5301 struct folio *folio = filemap_lock_folio(inode->i_mapping, 5302 inode->i_size >> PAGE_SHIFT); 5303 if (!folio) 5304 return; 5305 ret = __ext4_journalled_invalidate_folio(folio, offset, 5306 folio_size(folio) - offset); 5307 folio_unlock(folio); 5308 folio_put(folio); 5309 if (ret != -EBUSY) 5310 return; 5311 commit_tid = 0; 5312 read_lock(&journal->j_state_lock); 5313 if (journal->j_committing_transaction) 5314 commit_tid = journal->j_committing_transaction->t_tid; 5315 read_unlock(&journal->j_state_lock); 5316 if (commit_tid) 5317 jbd2_log_wait_commit(journal, commit_tid); 5318 } 5319 } 5320 5321 /* 5322 * ext4_setattr() 5323 * 5324 * Called from notify_change. 5325 * 5326 * We want to trap VFS attempts to truncate the file as soon as 5327 * possible. In particular, we want to make sure that when the VFS 5328 * shrinks i_size, we put the inode on the orphan list and modify 5329 * i_disksize immediately, so that during the subsequent flushing of 5330 * dirty pages and freeing of disk blocks, we can guarantee that any 5331 * commit will leave the blocks being flushed in an unused state on 5332 * disk. (On recovery, the inode will get truncated and the blocks will 5333 * be freed, so we have a strong guarantee that no future commit will 5334 * leave these blocks visible to the user.) 5335 * 5336 * Another thing we have to assure is that if we are in ordered mode 5337 * and inode is still attached to the committing transaction, we must 5338 * we start writeout of all the dirty pages which are being truncated. 5339 * This way we are sure that all the data written in the previous 5340 * transaction are already on disk (truncate waits for pages under 5341 * writeback). 5342 * 5343 * Called with inode->i_rwsem down. 5344 */ 5345 int ext4_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, 5346 struct iattr *attr) 5347 { 5348 struct inode *inode = d_inode(dentry); 5349 int error, rc = 0; 5350 int orphan = 0; 5351 const unsigned int ia_valid = attr->ia_valid; 5352 bool inc_ivers = true; 5353 5354 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5355 return -EIO; 5356 5357 if (unlikely(IS_IMMUTABLE(inode))) 5358 return -EPERM; 5359 5360 if (unlikely(IS_APPEND(inode) && 5361 (ia_valid & (ATTR_MODE | ATTR_UID | 5362 ATTR_GID | ATTR_TIMES_SET)))) 5363 return -EPERM; 5364 5365 error = setattr_prepare(mnt_userns, dentry, attr); 5366 if (error) 5367 return error; 5368 5369 error = fscrypt_prepare_setattr(dentry, attr); 5370 if (error) 5371 return error; 5372 5373 error = fsverity_prepare_setattr(dentry, attr); 5374 if (error) 5375 return error; 5376 5377 if (is_quota_modification(mnt_userns, inode, attr)) { 5378 error = dquot_initialize(inode); 5379 if (error) 5380 return error; 5381 } 5382 5383 if (i_uid_needs_update(mnt_userns, attr, inode) || 5384 i_gid_needs_update(mnt_userns, attr, inode)) { 5385 handle_t *handle; 5386 5387 /* (user+group)*(old+new) structure, inode write (sb, 5388 * inode block, ? - but truncate inode update has it) */ 5389 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5390 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5391 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5392 if (IS_ERR(handle)) { 5393 error = PTR_ERR(handle); 5394 goto err_out; 5395 } 5396 5397 /* dquot_transfer() calls back ext4_get_inode_usage() which 5398 * counts xattr inode references. 5399 */ 5400 down_read(&EXT4_I(inode)->xattr_sem); 5401 error = dquot_transfer(mnt_userns, inode, attr); 5402 up_read(&EXT4_I(inode)->xattr_sem); 5403 5404 if (error) { 5405 ext4_journal_stop(handle); 5406 return error; 5407 } 5408 /* Update corresponding info in inode so that everything is in 5409 * one transaction */ 5410 i_uid_update(mnt_userns, attr, inode); 5411 i_gid_update(mnt_userns, attr, inode); 5412 error = ext4_mark_inode_dirty(handle, inode); 5413 ext4_journal_stop(handle); 5414 if (unlikely(error)) { 5415 return error; 5416 } 5417 } 5418 5419 if (attr->ia_valid & ATTR_SIZE) { 5420 handle_t *handle; 5421 loff_t oldsize = inode->i_size; 5422 loff_t old_disksize; 5423 int shrink = (attr->ia_size < inode->i_size); 5424 5425 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5426 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5427 5428 if (attr->ia_size > sbi->s_bitmap_maxbytes) { 5429 return -EFBIG; 5430 } 5431 } 5432 if (!S_ISREG(inode->i_mode)) { 5433 return -EINVAL; 5434 } 5435 5436 if (attr->ia_size == inode->i_size) 5437 inc_ivers = false; 5438 5439 if (shrink) { 5440 if (ext4_should_order_data(inode)) { 5441 error = ext4_begin_ordered_truncate(inode, 5442 attr->ia_size); 5443 if (error) 5444 goto err_out; 5445 } 5446 /* 5447 * Blocks are going to be removed from the inode. Wait 5448 * for dio in flight. 5449 */ 5450 inode_dio_wait(inode); 5451 } 5452 5453 filemap_invalidate_lock(inode->i_mapping); 5454 5455 rc = ext4_break_layouts(inode); 5456 if (rc) { 5457 filemap_invalidate_unlock(inode->i_mapping); 5458 goto err_out; 5459 } 5460 5461 if (attr->ia_size != inode->i_size) { 5462 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5463 if (IS_ERR(handle)) { 5464 error = PTR_ERR(handle); 5465 goto out_mmap_sem; 5466 } 5467 if (ext4_handle_valid(handle) && shrink) { 5468 error = ext4_orphan_add(handle, inode); 5469 orphan = 1; 5470 } 5471 /* 5472 * Update c/mtime on truncate up, ext4_truncate() will 5473 * update c/mtime in shrink case below 5474 */ 5475 if (!shrink) { 5476 inode->i_mtime = current_time(inode); 5477 inode->i_ctime = inode->i_mtime; 5478 } 5479 5480 if (shrink) 5481 ext4_fc_track_range(handle, inode, 5482 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5483 inode->i_sb->s_blocksize_bits, 5484 EXT_MAX_BLOCKS - 1); 5485 else 5486 ext4_fc_track_range( 5487 handle, inode, 5488 (oldsize > 0 ? oldsize - 1 : oldsize) >> 5489 inode->i_sb->s_blocksize_bits, 5490 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5491 inode->i_sb->s_blocksize_bits); 5492 5493 down_write(&EXT4_I(inode)->i_data_sem); 5494 old_disksize = EXT4_I(inode)->i_disksize; 5495 EXT4_I(inode)->i_disksize = attr->ia_size; 5496 rc = ext4_mark_inode_dirty(handle, inode); 5497 if (!error) 5498 error = rc; 5499 /* 5500 * We have to update i_size under i_data_sem together 5501 * with i_disksize to avoid races with writeback code 5502 * running ext4_wb_update_i_disksize(). 5503 */ 5504 if (!error) 5505 i_size_write(inode, attr->ia_size); 5506 else 5507 EXT4_I(inode)->i_disksize = old_disksize; 5508 up_write(&EXT4_I(inode)->i_data_sem); 5509 ext4_journal_stop(handle); 5510 if (error) 5511 goto out_mmap_sem; 5512 if (!shrink) { 5513 pagecache_isize_extended(inode, oldsize, 5514 inode->i_size); 5515 } else if (ext4_should_journal_data(inode)) { 5516 ext4_wait_for_tail_page_commit(inode); 5517 } 5518 } 5519 5520 /* 5521 * Truncate pagecache after we've waited for commit 5522 * in data=journal mode to make pages freeable. 5523 */ 5524 truncate_pagecache(inode, inode->i_size); 5525 /* 5526 * Call ext4_truncate() even if i_size didn't change to 5527 * truncate possible preallocated blocks. 5528 */ 5529 if (attr->ia_size <= oldsize) { 5530 rc = ext4_truncate(inode); 5531 if (rc) 5532 error = rc; 5533 } 5534 out_mmap_sem: 5535 filemap_invalidate_unlock(inode->i_mapping); 5536 } 5537 5538 if (!error) { 5539 if (inc_ivers) 5540 inode_inc_iversion(inode); 5541 setattr_copy(mnt_userns, inode, attr); 5542 mark_inode_dirty(inode); 5543 } 5544 5545 /* 5546 * If the call to ext4_truncate failed to get a transaction handle at 5547 * all, we need to clean up the in-core orphan list manually. 5548 */ 5549 if (orphan && inode->i_nlink) 5550 ext4_orphan_del(NULL, inode); 5551 5552 if (!error && (ia_valid & ATTR_MODE)) 5553 rc = posix_acl_chmod(mnt_userns, inode, inode->i_mode); 5554 5555 err_out: 5556 if (error) 5557 ext4_std_error(inode->i_sb, error); 5558 if (!error) 5559 error = rc; 5560 return error; 5561 } 5562 5563 u32 ext4_dio_alignment(struct inode *inode) 5564 { 5565 if (fsverity_active(inode)) 5566 return 0; 5567 if (ext4_should_journal_data(inode)) 5568 return 0; 5569 if (ext4_has_inline_data(inode)) 5570 return 0; 5571 if (IS_ENCRYPTED(inode)) { 5572 if (!fscrypt_dio_supported(inode)) 5573 return 0; 5574 return i_blocksize(inode); 5575 } 5576 return 1; /* use the iomap defaults */ 5577 } 5578 5579 int ext4_getattr(struct user_namespace *mnt_userns, const struct path *path, 5580 struct kstat *stat, u32 request_mask, unsigned int query_flags) 5581 { 5582 struct inode *inode = d_inode(path->dentry); 5583 struct ext4_inode *raw_inode; 5584 struct ext4_inode_info *ei = EXT4_I(inode); 5585 unsigned int flags; 5586 5587 if ((request_mask & STATX_BTIME) && 5588 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { 5589 stat->result_mask |= STATX_BTIME; 5590 stat->btime.tv_sec = ei->i_crtime.tv_sec; 5591 stat->btime.tv_nsec = ei->i_crtime.tv_nsec; 5592 } 5593 5594 /* 5595 * Return the DIO alignment restrictions if requested. We only return 5596 * this information when requested, since on encrypted files it might 5597 * take a fair bit of work to get if the file wasn't opened recently. 5598 */ 5599 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) { 5600 u32 dio_align = ext4_dio_alignment(inode); 5601 5602 stat->result_mask |= STATX_DIOALIGN; 5603 if (dio_align == 1) { 5604 struct block_device *bdev = inode->i_sb->s_bdev; 5605 5606 /* iomap defaults */ 5607 stat->dio_mem_align = bdev_dma_alignment(bdev) + 1; 5608 stat->dio_offset_align = bdev_logical_block_size(bdev); 5609 } else { 5610 stat->dio_mem_align = dio_align; 5611 stat->dio_offset_align = dio_align; 5612 } 5613 } 5614 5615 flags = ei->i_flags & EXT4_FL_USER_VISIBLE; 5616 if (flags & EXT4_APPEND_FL) 5617 stat->attributes |= STATX_ATTR_APPEND; 5618 if (flags & EXT4_COMPR_FL) 5619 stat->attributes |= STATX_ATTR_COMPRESSED; 5620 if (flags & EXT4_ENCRYPT_FL) 5621 stat->attributes |= STATX_ATTR_ENCRYPTED; 5622 if (flags & EXT4_IMMUTABLE_FL) 5623 stat->attributes |= STATX_ATTR_IMMUTABLE; 5624 if (flags & EXT4_NODUMP_FL) 5625 stat->attributes |= STATX_ATTR_NODUMP; 5626 if (flags & EXT4_VERITY_FL) 5627 stat->attributes |= STATX_ATTR_VERITY; 5628 5629 stat->attributes_mask |= (STATX_ATTR_APPEND | 5630 STATX_ATTR_COMPRESSED | 5631 STATX_ATTR_ENCRYPTED | 5632 STATX_ATTR_IMMUTABLE | 5633 STATX_ATTR_NODUMP | 5634 STATX_ATTR_VERITY); 5635 5636 generic_fillattr(mnt_userns, inode, stat); 5637 return 0; 5638 } 5639 5640 int ext4_file_getattr(struct user_namespace *mnt_userns, 5641 const struct path *path, struct kstat *stat, 5642 u32 request_mask, unsigned int query_flags) 5643 { 5644 struct inode *inode = d_inode(path->dentry); 5645 u64 delalloc_blocks; 5646 5647 ext4_getattr(mnt_userns, path, stat, request_mask, query_flags); 5648 5649 /* 5650 * If there is inline data in the inode, the inode will normally not 5651 * have data blocks allocated (it may have an external xattr block). 5652 * Report at least one sector for such files, so tools like tar, rsync, 5653 * others don't incorrectly think the file is completely sparse. 5654 */ 5655 if (unlikely(ext4_has_inline_data(inode))) 5656 stat->blocks += (stat->size + 511) >> 9; 5657 5658 /* 5659 * We can't update i_blocks if the block allocation is delayed 5660 * otherwise in the case of system crash before the real block 5661 * allocation is done, we will have i_blocks inconsistent with 5662 * on-disk file blocks. 5663 * We always keep i_blocks updated together with real 5664 * allocation. But to not confuse with user, stat 5665 * will return the blocks that include the delayed allocation 5666 * blocks for this file. 5667 */ 5668 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5669 EXT4_I(inode)->i_reserved_data_blocks); 5670 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5671 return 0; 5672 } 5673 5674 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5675 int pextents) 5676 { 5677 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5678 return ext4_ind_trans_blocks(inode, lblocks); 5679 return ext4_ext_index_trans_blocks(inode, pextents); 5680 } 5681 5682 /* 5683 * Account for index blocks, block groups bitmaps and block group 5684 * descriptor blocks if modify datablocks and index blocks 5685 * worse case, the indexs blocks spread over different block groups 5686 * 5687 * If datablocks are discontiguous, they are possible to spread over 5688 * different block groups too. If they are contiguous, with flexbg, 5689 * they could still across block group boundary. 5690 * 5691 * Also account for superblock, inode, quota and xattr blocks 5692 */ 5693 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5694 int pextents) 5695 { 5696 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5697 int gdpblocks; 5698 int idxblocks; 5699 int ret = 0; 5700 5701 /* 5702 * How many index blocks need to touch to map @lblocks logical blocks 5703 * to @pextents physical extents? 5704 */ 5705 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5706 5707 ret = idxblocks; 5708 5709 /* 5710 * Now let's see how many group bitmaps and group descriptors need 5711 * to account 5712 */ 5713 groups = idxblocks + pextents; 5714 gdpblocks = groups; 5715 if (groups > ngroups) 5716 groups = ngroups; 5717 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5718 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5719 5720 /* bitmaps and block group descriptor blocks */ 5721 ret += groups + gdpblocks; 5722 5723 /* Blocks for super block, inode, quota and xattr blocks */ 5724 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5725 5726 return ret; 5727 } 5728 5729 /* 5730 * Calculate the total number of credits to reserve to fit 5731 * the modification of a single pages into a single transaction, 5732 * which may include multiple chunks of block allocations. 5733 * 5734 * This could be called via ext4_write_begin() 5735 * 5736 * We need to consider the worse case, when 5737 * one new block per extent. 5738 */ 5739 int ext4_writepage_trans_blocks(struct inode *inode) 5740 { 5741 int bpp = ext4_journal_blocks_per_page(inode); 5742 int ret; 5743 5744 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5745 5746 /* Account for data blocks for journalled mode */ 5747 if (ext4_should_journal_data(inode)) 5748 ret += bpp; 5749 return ret; 5750 } 5751 5752 /* 5753 * Calculate the journal credits for a chunk of data modification. 5754 * 5755 * This is called from DIO, fallocate or whoever calling 5756 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5757 * 5758 * journal buffers for data blocks are not included here, as DIO 5759 * and fallocate do no need to journal data buffers. 5760 */ 5761 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5762 { 5763 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5764 } 5765 5766 /* 5767 * The caller must have previously called ext4_reserve_inode_write(). 5768 * Give this, we know that the caller already has write access to iloc->bh. 5769 */ 5770 int ext4_mark_iloc_dirty(handle_t *handle, 5771 struct inode *inode, struct ext4_iloc *iloc) 5772 { 5773 int err = 0; 5774 5775 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 5776 put_bh(iloc->bh); 5777 return -EIO; 5778 } 5779 ext4_fc_track_inode(handle, inode); 5780 5781 /* the do_update_inode consumes one bh->b_count */ 5782 get_bh(iloc->bh); 5783 5784 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5785 err = ext4_do_update_inode(handle, inode, iloc); 5786 put_bh(iloc->bh); 5787 return err; 5788 } 5789 5790 /* 5791 * On success, We end up with an outstanding reference count against 5792 * iloc->bh. This _must_ be cleaned up later. 5793 */ 5794 5795 int 5796 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5797 struct ext4_iloc *iloc) 5798 { 5799 int err; 5800 5801 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5802 return -EIO; 5803 5804 err = ext4_get_inode_loc(inode, iloc); 5805 if (!err) { 5806 BUFFER_TRACE(iloc->bh, "get_write_access"); 5807 err = ext4_journal_get_write_access(handle, inode->i_sb, 5808 iloc->bh, EXT4_JTR_NONE); 5809 if (err) { 5810 brelse(iloc->bh); 5811 iloc->bh = NULL; 5812 } 5813 } 5814 ext4_std_error(inode->i_sb, err); 5815 return err; 5816 } 5817 5818 static int __ext4_expand_extra_isize(struct inode *inode, 5819 unsigned int new_extra_isize, 5820 struct ext4_iloc *iloc, 5821 handle_t *handle, int *no_expand) 5822 { 5823 struct ext4_inode *raw_inode; 5824 struct ext4_xattr_ibody_header *header; 5825 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb); 5826 struct ext4_inode_info *ei = EXT4_I(inode); 5827 int error; 5828 5829 /* this was checked at iget time, but double check for good measure */ 5830 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) || 5831 (ei->i_extra_isize & 3)) { 5832 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)", 5833 ei->i_extra_isize, 5834 EXT4_INODE_SIZE(inode->i_sb)); 5835 return -EFSCORRUPTED; 5836 } 5837 if ((new_extra_isize < ei->i_extra_isize) || 5838 (new_extra_isize < 4) || 5839 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE)) 5840 return -EINVAL; /* Should never happen */ 5841 5842 raw_inode = ext4_raw_inode(iloc); 5843 5844 header = IHDR(inode, raw_inode); 5845 5846 /* No extended attributes present */ 5847 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5848 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5849 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + 5850 EXT4_I(inode)->i_extra_isize, 0, 5851 new_extra_isize - EXT4_I(inode)->i_extra_isize); 5852 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5853 return 0; 5854 } 5855 5856 /* try to expand with EAs present */ 5857 error = ext4_expand_extra_isize_ea(inode, new_extra_isize, 5858 raw_inode, handle); 5859 if (error) { 5860 /* 5861 * Inode size expansion failed; don't try again 5862 */ 5863 *no_expand = 1; 5864 } 5865 5866 return error; 5867 } 5868 5869 /* 5870 * Expand an inode by new_extra_isize bytes. 5871 * Returns 0 on success or negative error number on failure. 5872 */ 5873 static int ext4_try_to_expand_extra_isize(struct inode *inode, 5874 unsigned int new_extra_isize, 5875 struct ext4_iloc iloc, 5876 handle_t *handle) 5877 { 5878 int no_expand; 5879 int error; 5880 5881 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) 5882 return -EOVERFLOW; 5883 5884 /* 5885 * In nojournal mode, we can immediately attempt to expand 5886 * the inode. When journaled, we first need to obtain extra 5887 * buffer credits since we may write into the EA block 5888 * with this same handle. If journal_extend fails, then it will 5889 * only result in a minor loss of functionality for that inode. 5890 * If this is felt to be critical, then e2fsck should be run to 5891 * force a large enough s_min_extra_isize. 5892 */ 5893 if (ext4_journal_extend(handle, 5894 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0) 5895 return -ENOSPC; 5896 5897 if (ext4_write_trylock_xattr(inode, &no_expand) == 0) 5898 return -EBUSY; 5899 5900 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc, 5901 handle, &no_expand); 5902 ext4_write_unlock_xattr(inode, &no_expand); 5903 5904 return error; 5905 } 5906 5907 int ext4_expand_extra_isize(struct inode *inode, 5908 unsigned int new_extra_isize, 5909 struct ext4_iloc *iloc) 5910 { 5911 handle_t *handle; 5912 int no_expand; 5913 int error, rc; 5914 5915 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5916 brelse(iloc->bh); 5917 return -EOVERFLOW; 5918 } 5919 5920 handle = ext4_journal_start(inode, EXT4_HT_INODE, 5921 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)); 5922 if (IS_ERR(handle)) { 5923 error = PTR_ERR(handle); 5924 brelse(iloc->bh); 5925 return error; 5926 } 5927 5928 ext4_write_lock_xattr(inode, &no_expand); 5929 5930 BUFFER_TRACE(iloc->bh, "get_write_access"); 5931 error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh, 5932 EXT4_JTR_NONE); 5933 if (error) { 5934 brelse(iloc->bh); 5935 goto out_unlock; 5936 } 5937 5938 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc, 5939 handle, &no_expand); 5940 5941 rc = ext4_mark_iloc_dirty(handle, inode, iloc); 5942 if (!error) 5943 error = rc; 5944 5945 out_unlock: 5946 ext4_write_unlock_xattr(inode, &no_expand); 5947 ext4_journal_stop(handle); 5948 return error; 5949 } 5950 5951 /* 5952 * What we do here is to mark the in-core inode as clean with respect to inode 5953 * dirtiness (it may still be data-dirty). 5954 * This means that the in-core inode may be reaped by prune_icache 5955 * without having to perform any I/O. This is a very good thing, 5956 * because *any* task may call prune_icache - even ones which 5957 * have a transaction open against a different journal. 5958 * 5959 * Is this cheating? Not really. Sure, we haven't written the 5960 * inode out, but prune_icache isn't a user-visible syncing function. 5961 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5962 * we start and wait on commits. 5963 */ 5964 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode, 5965 const char *func, unsigned int line) 5966 { 5967 struct ext4_iloc iloc; 5968 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5969 int err; 5970 5971 might_sleep(); 5972 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5973 err = ext4_reserve_inode_write(handle, inode, &iloc); 5974 if (err) 5975 goto out; 5976 5977 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize) 5978 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize, 5979 iloc, handle); 5980 5981 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 5982 out: 5983 if (unlikely(err)) 5984 ext4_error_inode_err(inode, func, line, 0, err, 5985 "mark_inode_dirty error"); 5986 return err; 5987 } 5988 5989 /* 5990 * ext4_dirty_inode() is called from __mark_inode_dirty() 5991 * 5992 * We're really interested in the case where a file is being extended. 5993 * i_size has been changed by generic_commit_write() and we thus need 5994 * to include the updated inode in the current transaction. 5995 * 5996 * Also, dquot_alloc_block() will always dirty the inode when blocks 5997 * are allocated to the file. 5998 * 5999 * If the inode is marked synchronous, we don't honour that here - doing 6000 * so would cause a commit on atime updates, which we don't bother doing. 6001 * We handle synchronous inodes at the highest possible level. 6002 */ 6003 void ext4_dirty_inode(struct inode *inode, int flags) 6004 { 6005 handle_t *handle; 6006 6007 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 6008 if (IS_ERR(handle)) 6009 return; 6010 ext4_mark_inode_dirty(handle, inode); 6011 ext4_journal_stop(handle); 6012 } 6013 6014 int ext4_change_inode_journal_flag(struct inode *inode, int val) 6015 { 6016 journal_t *journal; 6017 handle_t *handle; 6018 int err; 6019 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 6020 6021 /* 6022 * We have to be very careful here: changing a data block's 6023 * journaling status dynamically is dangerous. If we write a 6024 * data block to the journal, change the status and then delete 6025 * that block, we risk forgetting to revoke the old log record 6026 * from the journal and so a subsequent replay can corrupt data. 6027 * So, first we make sure that the journal is empty and that 6028 * nobody is changing anything. 6029 */ 6030 6031 journal = EXT4_JOURNAL(inode); 6032 if (!journal) 6033 return 0; 6034 if (is_journal_aborted(journal)) 6035 return -EROFS; 6036 6037 /* Wait for all existing dio workers */ 6038 inode_dio_wait(inode); 6039 6040 /* 6041 * Before flushing the journal and switching inode's aops, we have 6042 * to flush all dirty data the inode has. There can be outstanding 6043 * delayed allocations, there can be unwritten extents created by 6044 * fallocate or buffered writes in dioread_nolock mode covered by 6045 * dirty data which can be converted only after flushing the dirty 6046 * data (and journalled aops don't know how to handle these cases). 6047 */ 6048 if (val) { 6049 filemap_invalidate_lock(inode->i_mapping); 6050 err = filemap_write_and_wait(inode->i_mapping); 6051 if (err < 0) { 6052 filemap_invalidate_unlock(inode->i_mapping); 6053 return err; 6054 } 6055 } 6056 6057 percpu_down_write(&sbi->s_writepages_rwsem); 6058 jbd2_journal_lock_updates(journal); 6059 6060 /* 6061 * OK, there are no updates running now, and all cached data is 6062 * synced to disk. We are now in a completely consistent state 6063 * which doesn't have anything in the journal, and we know that 6064 * no filesystem updates are running, so it is safe to modify 6065 * the inode's in-core data-journaling state flag now. 6066 */ 6067 6068 if (val) 6069 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6070 else { 6071 err = jbd2_journal_flush(journal, 0); 6072 if (err < 0) { 6073 jbd2_journal_unlock_updates(journal); 6074 percpu_up_write(&sbi->s_writepages_rwsem); 6075 return err; 6076 } 6077 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6078 } 6079 ext4_set_aops(inode); 6080 6081 jbd2_journal_unlock_updates(journal); 6082 percpu_up_write(&sbi->s_writepages_rwsem); 6083 6084 if (val) 6085 filemap_invalidate_unlock(inode->i_mapping); 6086 6087 /* Finally we can mark the inode as dirty. */ 6088 6089 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 6090 if (IS_ERR(handle)) 6091 return PTR_ERR(handle); 6092 6093 ext4_fc_mark_ineligible(inode->i_sb, 6094 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle); 6095 err = ext4_mark_inode_dirty(handle, inode); 6096 ext4_handle_sync(handle); 6097 ext4_journal_stop(handle); 6098 ext4_std_error(inode->i_sb, err); 6099 6100 return err; 6101 } 6102 6103 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode, 6104 struct buffer_head *bh) 6105 { 6106 return !buffer_mapped(bh); 6107 } 6108 6109 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf) 6110 { 6111 struct vm_area_struct *vma = vmf->vma; 6112 struct page *page = vmf->page; 6113 loff_t size; 6114 unsigned long len; 6115 int err; 6116 vm_fault_t ret; 6117 struct file *file = vma->vm_file; 6118 struct inode *inode = file_inode(file); 6119 struct address_space *mapping = inode->i_mapping; 6120 handle_t *handle; 6121 get_block_t *get_block; 6122 int retries = 0; 6123 6124 if (unlikely(IS_IMMUTABLE(inode))) 6125 return VM_FAULT_SIGBUS; 6126 6127 sb_start_pagefault(inode->i_sb); 6128 file_update_time(vma->vm_file); 6129 6130 filemap_invalidate_lock_shared(mapping); 6131 6132 err = ext4_convert_inline_data(inode); 6133 if (err) 6134 goto out_ret; 6135 6136 /* 6137 * On data journalling we skip straight to the transaction handle: 6138 * there's no delalloc; page truncated will be checked later; the 6139 * early return w/ all buffers mapped (calculates size/len) can't 6140 * be used; and there's no dioread_nolock, so only ext4_get_block. 6141 */ 6142 if (ext4_should_journal_data(inode)) 6143 goto retry_alloc; 6144 6145 /* Delalloc case is easy... */ 6146 if (test_opt(inode->i_sb, DELALLOC) && 6147 !ext4_nonda_switch(inode->i_sb)) { 6148 do { 6149 err = block_page_mkwrite(vma, vmf, 6150 ext4_da_get_block_prep); 6151 } while (err == -ENOSPC && 6152 ext4_should_retry_alloc(inode->i_sb, &retries)); 6153 goto out_ret; 6154 } 6155 6156 lock_page(page); 6157 size = i_size_read(inode); 6158 /* Page got truncated from under us? */ 6159 if (page->mapping != mapping || page_offset(page) > size) { 6160 unlock_page(page); 6161 ret = VM_FAULT_NOPAGE; 6162 goto out; 6163 } 6164 6165 if (page->index == size >> PAGE_SHIFT) 6166 len = size & ~PAGE_MASK; 6167 else 6168 len = PAGE_SIZE; 6169 /* 6170 * Return if we have all the buffers mapped. This avoids the need to do 6171 * journal_start/journal_stop which can block and take a long time 6172 * 6173 * This cannot be done for data journalling, as we have to add the 6174 * inode to the transaction's list to writeprotect pages on commit. 6175 */ 6176 if (page_has_buffers(page)) { 6177 if (!ext4_walk_page_buffers(NULL, inode, page_buffers(page), 6178 0, len, NULL, 6179 ext4_bh_unmapped)) { 6180 /* Wait so that we don't change page under IO */ 6181 wait_for_stable_page(page); 6182 ret = VM_FAULT_LOCKED; 6183 goto out; 6184 } 6185 } 6186 unlock_page(page); 6187 /* OK, we need to fill the hole... */ 6188 if (ext4_should_dioread_nolock(inode)) 6189 get_block = ext4_get_block_unwritten; 6190 else 6191 get_block = ext4_get_block; 6192 retry_alloc: 6193 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 6194 ext4_writepage_trans_blocks(inode)); 6195 if (IS_ERR(handle)) { 6196 ret = VM_FAULT_SIGBUS; 6197 goto out; 6198 } 6199 /* 6200 * Data journalling can't use block_page_mkwrite() because it 6201 * will set_buffer_dirty() before do_journal_get_write_access() 6202 * thus might hit warning messages for dirty metadata buffers. 6203 */ 6204 if (!ext4_should_journal_data(inode)) { 6205 err = block_page_mkwrite(vma, vmf, get_block); 6206 } else { 6207 lock_page(page); 6208 size = i_size_read(inode); 6209 /* Page got truncated from under us? */ 6210 if (page->mapping != mapping || page_offset(page) > size) { 6211 ret = VM_FAULT_NOPAGE; 6212 goto out_error; 6213 } 6214 6215 if (page->index == size >> PAGE_SHIFT) 6216 len = size & ~PAGE_MASK; 6217 else 6218 len = PAGE_SIZE; 6219 6220 err = __block_write_begin(page, 0, len, ext4_get_block); 6221 if (!err) { 6222 ret = VM_FAULT_SIGBUS; 6223 if (ext4_walk_page_buffers(handle, inode, 6224 page_buffers(page), 0, len, NULL, 6225 do_journal_get_write_access)) 6226 goto out_error; 6227 if (ext4_walk_page_buffers(handle, inode, 6228 page_buffers(page), 0, len, NULL, 6229 write_end_fn)) 6230 goto out_error; 6231 if (ext4_jbd2_inode_add_write(handle, inode, 6232 page_offset(page), len)) 6233 goto out_error; 6234 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 6235 } else { 6236 unlock_page(page); 6237 } 6238 } 6239 ext4_journal_stop(handle); 6240 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 6241 goto retry_alloc; 6242 out_ret: 6243 ret = block_page_mkwrite_return(err); 6244 out: 6245 filemap_invalidate_unlock_shared(mapping); 6246 sb_end_pagefault(inode->i_sb); 6247 return ret; 6248 out_error: 6249 unlock_page(page); 6250 ext4_journal_stop(handle); 6251 goto out; 6252 } 6253