1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/inode.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * 64-bit file support on 64-bit platforms by Jakub Jelinek 17 * (jj@sunsite.ms.mff.cuni.cz) 18 * 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/highuid.h> 25 #include <linux/pagemap.h> 26 #include <linux/dax.h> 27 #include <linux/quotaops.h> 28 #include <linux/string.h> 29 #include <linux/buffer_head.h> 30 #include <linux/writeback.h> 31 #include <linux/pagevec.h> 32 #include <linux/mpage.h> 33 #include <linux/namei.h> 34 #include <linux/uio.h> 35 #include <linux/bio.h> 36 #include <linux/workqueue.h> 37 #include <linux/kernel.h> 38 #include <linux/printk.h> 39 #include <linux/slab.h> 40 #include <linux/bitops.h> 41 #include <linux/iomap.h> 42 #include <linux/iversion.h> 43 44 #include "ext4_jbd2.h" 45 #include "xattr.h" 46 #include "acl.h" 47 #include "truncate.h" 48 49 #include <trace/events/ext4.h> 50 51 #define MPAGE_DA_EXTENT_TAIL 0x01 52 53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 54 struct ext4_inode_info *ei) 55 { 56 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 57 __u32 csum; 58 __u16 dummy_csum = 0; 59 int offset = offsetof(struct ext4_inode, i_checksum_lo); 60 unsigned int csum_size = sizeof(dummy_csum); 61 62 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset); 63 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size); 64 offset += csum_size; 65 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 66 EXT4_GOOD_OLD_INODE_SIZE - offset); 67 68 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 69 offset = offsetof(struct ext4_inode, i_checksum_hi); 70 csum = ext4_chksum(sbi, csum, (__u8 *)raw + 71 EXT4_GOOD_OLD_INODE_SIZE, 72 offset - EXT4_GOOD_OLD_INODE_SIZE); 73 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 74 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, 75 csum_size); 76 offset += csum_size; 77 } 78 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 79 EXT4_INODE_SIZE(inode->i_sb) - offset); 80 } 81 82 return csum; 83 } 84 85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 86 struct ext4_inode_info *ei) 87 { 88 __u32 provided, calculated; 89 90 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 91 cpu_to_le32(EXT4_OS_LINUX) || 92 !ext4_has_metadata_csum(inode->i_sb)) 93 return 1; 94 95 provided = le16_to_cpu(raw->i_checksum_lo); 96 calculated = ext4_inode_csum(inode, raw, ei); 97 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 98 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 99 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 100 else 101 calculated &= 0xFFFF; 102 103 return provided == calculated; 104 } 105 106 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 107 struct ext4_inode_info *ei) 108 { 109 __u32 csum; 110 111 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 112 cpu_to_le32(EXT4_OS_LINUX) || 113 !ext4_has_metadata_csum(inode->i_sb)) 114 return; 115 116 csum = ext4_inode_csum(inode, raw, ei); 117 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 118 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 119 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 120 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 121 } 122 123 static inline int ext4_begin_ordered_truncate(struct inode *inode, 124 loff_t new_size) 125 { 126 trace_ext4_begin_ordered_truncate(inode, new_size); 127 /* 128 * If jinode is zero, then we never opened the file for 129 * writing, so there's no need to call 130 * jbd2_journal_begin_ordered_truncate() since there's no 131 * outstanding writes we need to flush. 132 */ 133 if (!EXT4_I(inode)->jinode) 134 return 0; 135 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 136 EXT4_I(inode)->jinode, 137 new_size); 138 } 139 140 static void ext4_invalidatepage(struct page *page, unsigned int offset, 141 unsigned int length); 142 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 143 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 144 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 145 int pextents); 146 147 /* 148 * Test whether an inode is a fast symlink. 149 * A fast symlink has its symlink data stored in ext4_inode_info->i_data. 150 */ 151 int ext4_inode_is_fast_symlink(struct inode *inode) 152 { 153 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 154 int ea_blocks = EXT4_I(inode)->i_file_acl ? 155 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 156 157 if (ext4_has_inline_data(inode)) 158 return 0; 159 160 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 161 } 162 return S_ISLNK(inode->i_mode) && inode->i_size && 163 (inode->i_size < EXT4_N_BLOCKS * 4); 164 } 165 166 /* 167 * Restart the transaction associated with *handle. This does a commit, 168 * so before we call here everything must be consistently dirtied against 169 * this transaction. 170 */ 171 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 172 int nblocks) 173 { 174 int ret; 175 176 /* 177 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 178 * moment, get_block can be called only for blocks inside i_size since 179 * page cache has been already dropped and writes are blocked by 180 * i_mutex. So we can safely drop the i_data_sem here. 181 */ 182 BUG_ON(EXT4_JOURNAL(inode) == NULL); 183 jbd_debug(2, "restarting handle %p\n", handle); 184 up_write(&EXT4_I(inode)->i_data_sem); 185 ret = ext4_journal_restart(handle, nblocks); 186 down_write(&EXT4_I(inode)->i_data_sem); 187 ext4_discard_preallocations(inode); 188 189 return ret; 190 } 191 192 /* 193 * Called at the last iput() if i_nlink is zero. 194 */ 195 void ext4_evict_inode(struct inode *inode) 196 { 197 handle_t *handle; 198 int err; 199 int extra_credits = 3; 200 struct ext4_xattr_inode_array *ea_inode_array = NULL; 201 202 trace_ext4_evict_inode(inode); 203 204 if (inode->i_nlink) { 205 /* 206 * When journalling data dirty buffers are tracked only in the 207 * journal. So although mm thinks everything is clean and 208 * ready for reaping the inode might still have some pages to 209 * write in the running transaction or waiting to be 210 * checkpointed. Thus calling jbd2_journal_invalidatepage() 211 * (via truncate_inode_pages()) to discard these buffers can 212 * cause data loss. Also even if we did not discard these 213 * buffers, we would have no way to find them after the inode 214 * is reaped and thus user could see stale data if he tries to 215 * read them before the transaction is checkpointed. So be 216 * careful and force everything to disk here... We use 217 * ei->i_datasync_tid to store the newest transaction 218 * containing inode's data. 219 * 220 * Note that directories do not have this problem because they 221 * don't use page cache. 222 */ 223 if (inode->i_ino != EXT4_JOURNAL_INO && 224 ext4_should_journal_data(inode) && 225 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 226 inode->i_data.nrpages) { 227 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 228 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 229 230 jbd2_complete_transaction(journal, commit_tid); 231 filemap_write_and_wait(&inode->i_data); 232 } 233 truncate_inode_pages_final(&inode->i_data); 234 235 goto no_delete; 236 } 237 238 if (is_bad_inode(inode)) 239 goto no_delete; 240 dquot_initialize(inode); 241 242 if (ext4_should_order_data(inode)) 243 ext4_begin_ordered_truncate(inode, 0); 244 truncate_inode_pages_final(&inode->i_data); 245 246 /* 247 * Protect us against freezing - iput() caller didn't have to have any 248 * protection against it 249 */ 250 sb_start_intwrite(inode->i_sb); 251 252 if (!IS_NOQUOTA(inode)) 253 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); 254 255 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 256 ext4_blocks_for_truncate(inode)+extra_credits); 257 if (IS_ERR(handle)) { 258 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 259 /* 260 * If we're going to skip the normal cleanup, we still need to 261 * make sure that the in-core orphan linked list is properly 262 * cleaned up. 263 */ 264 ext4_orphan_del(NULL, inode); 265 sb_end_intwrite(inode->i_sb); 266 goto no_delete; 267 } 268 269 if (IS_SYNC(inode)) 270 ext4_handle_sync(handle); 271 272 /* 273 * Set inode->i_size to 0 before calling ext4_truncate(). We need 274 * special handling of symlinks here because i_size is used to 275 * determine whether ext4_inode_info->i_data contains symlink data or 276 * block mappings. Setting i_size to 0 will remove its fast symlink 277 * status. Erase i_data so that it becomes a valid empty block map. 278 */ 279 if (ext4_inode_is_fast_symlink(inode)) 280 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data)); 281 inode->i_size = 0; 282 err = ext4_mark_inode_dirty(handle, inode); 283 if (err) { 284 ext4_warning(inode->i_sb, 285 "couldn't mark inode dirty (err %d)", err); 286 goto stop_handle; 287 } 288 if (inode->i_blocks) { 289 err = ext4_truncate(inode); 290 if (err) { 291 ext4_error(inode->i_sb, 292 "couldn't truncate inode %lu (err %d)", 293 inode->i_ino, err); 294 goto stop_handle; 295 } 296 } 297 298 /* Remove xattr references. */ 299 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array, 300 extra_credits); 301 if (err) { 302 ext4_warning(inode->i_sb, "xattr delete (err %d)", err); 303 stop_handle: 304 ext4_journal_stop(handle); 305 ext4_orphan_del(NULL, inode); 306 sb_end_intwrite(inode->i_sb); 307 ext4_xattr_inode_array_free(ea_inode_array); 308 goto no_delete; 309 } 310 311 /* 312 * Kill off the orphan record which ext4_truncate created. 313 * AKPM: I think this can be inside the above `if'. 314 * Note that ext4_orphan_del() has to be able to cope with the 315 * deletion of a non-existent orphan - this is because we don't 316 * know if ext4_truncate() actually created an orphan record. 317 * (Well, we could do this if we need to, but heck - it works) 318 */ 319 ext4_orphan_del(handle, inode); 320 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds(); 321 322 /* 323 * One subtle ordering requirement: if anything has gone wrong 324 * (transaction abort, IO errors, whatever), then we can still 325 * do these next steps (the fs will already have been marked as 326 * having errors), but we can't free the inode if the mark_dirty 327 * fails. 328 */ 329 if (ext4_mark_inode_dirty(handle, inode)) 330 /* If that failed, just do the required in-core inode clear. */ 331 ext4_clear_inode(inode); 332 else 333 ext4_free_inode(handle, inode); 334 ext4_journal_stop(handle); 335 sb_end_intwrite(inode->i_sb); 336 ext4_xattr_inode_array_free(ea_inode_array); 337 return; 338 no_delete: 339 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 340 } 341 342 #ifdef CONFIG_QUOTA 343 qsize_t *ext4_get_reserved_space(struct inode *inode) 344 { 345 return &EXT4_I(inode)->i_reserved_quota; 346 } 347 #endif 348 349 /* 350 * Called with i_data_sem down, which is important since we can call 351 * ext4_discard_preallocations() from here. 352 */ 353 void ext4_da_update_reserve_space(struct inode *inode, 354 int used, int quota_claim) 355 { 356 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 357 struct ext4_inode_info *ei = EXT4_I(inode); 358 359 spin_lock(&ei->i_block_reservation_lock); 360 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 361 if (unlikely(used > ei->i_reserved_data_blocks)) { 362 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 363 "with only %d reserved data blocks", 364 __func__, inode->i_ino, used, 365 ei->i_reserved_data_blocks); 366 WARN_ON(1); 367 used = ei->i_reserved_data_blocks; 368 } 369 370 /* Update per-inode reservations */ 371 ei->i_reserved_data_blocks -= used; 372 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 373 374 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 375 376 /* Update quota subsystem for data blocks */ 377 if (quota_claim) 378 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 379 else { 380 /* 381 * We did fallocate with an offset that is already delayed 382 * allocated. So on delayed allocated writeback we should 383 * not re-claim the quota for fallocated blocks. 384 */ 385 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 386 } 387 388 /* 389 * If we have done all the pending block allocations and if 390 * there aren't any writers on the inode, we can discard the 391 * inode's preallocations. 392 */ 393 if ((ei->i_reserved_data_blocks == 0) && 394 !inode_is_open_for_write(inode)) 395 ext4_discard_preallocations(inode); 396 } 397 398 static int __check_block_validity(struct inode *inode, const char *func, 399 unsigned int line, 400 struct ext4_map_blocks *map) 401 { 402 if (ext4_has_feature_journal(inode->i_sb) && 403 (inode->i_ino == 404 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum))) 405 return 0; 406 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 407 map->m_len)) { 408 ext4_error_inode(inode, func, line, map->m_pblk, 409 "lblock %lu mapped to illegal pblock %llu " 410 "(length %d)", (unsigned long) map->m_lblk, 411 map->m_pblk, map->m_len); 412 return -EFSCORRUPTED; 413 } 414 return 0; 415 } 416 417 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 418 ext4_lblk_t len) 419 { 420 int ret; 421 422 if (IS_ENCRYPTED(inode)) 423 return fscrypt_zeroout_range(inode, lblk, pblk, len); 424 425 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 426 if (ret > 0) 427 ret = 0; 428 429 return ret; 430 } 431 432 #define check_block_validity(inode, map) \ 433 __check_block_validity((inode), __func__, __LINE__, (map)) 434 435 #ifdef ES_AGGRESSIVE_TEST 436 static void ext4_map_blocks_es_recheck(handle_t *handle, 437 struct inode *inode, 438 struct ext4_map_blocks *es_map, 439 struct ext4_map_blocks *map, 440 int flags) 441 { 442 int retval; 443 444 map->m_flags = 0; 445 /* 446 * There is a race window that the result is not the same. 447 * e.g. xfstests #223 when dioread_nolock enables. The reason 448 * is that we lookup a block mapping in extent status tree with 449 * out taking i_data_sem. So at the time the unwritten extent 450 * could be converted. 451 */ 452 down_read(&EXT4_I(inode)->i_data_sem); 453 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 454 retval = ext4_ext_map_blocks(handle, inode, map, flags & 455 EXT4_GET_BLOCKS_KEEP_SIZE); 456 } else { 457 retval = ext4_ind_map_blocks(handle, inode, map, flags & 458 EXT4_GET_BLOCKS_KEEP_SIZE); 459 } 460 up_read((&EXT4_I(inode)->i_data_sem)); 461 462 /* 463 * We don't check m_len because extent will be collpased in status 464 * tree. So the m_len might not equal. 465 */ 466 if (es_map->m_lblk != map->m_lblk || 467 es_map->m_flags != map->m_flags || 468 es_map->m_pblk != map->m_pblk) { 469 printk("ES cache assertion failed for inode: %lu " 470 "es_cached ex [%d/%d/%llu/%x] != " 471 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 472 inode->i_ino, es_map->m_lblk, es_map->m_len, 473 es_map->m_pblk, es_map->m_flags, map->m_lblk, 474 map->m_len, map->m_pblk, map->m_flags, 475 retval, flags); 476 } 477 } 478 #endif /* ES_AGGRESSIVE_TEST */ 479 480 /* 481 * The ext4_map_blocks() function tries to look up the requested blocks, 482 * and returns if the blocks are already mapped. 483 * 484 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 485 * and store the allocated blocks in the result buffer head and mark it 486 * mapped. 487 * 488 * If file type is extents based, it will call ext4_ext_map_blocks(), 489 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 490 * based files 491 * 492 * On success, it returns the number of blocks being mapped or allocated. if 493 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map 494 * is marked as unwritten. If the create == 1, it will mark @map as mapped. 495 * 496 * It returns 0 if plain look up failed (blocks have not been allocated), in 497 * that case, @map is returned as unmapped but we still do fill map->m_len to 498 * indicate the length of a hole starting at map->m_lblk. 499 * 500 * It returns the error in case of allocation failure. 501 */ 502 int ext4_map_blocks(handle_t *handle, struct inode *inode, 503 struct ext4_map_blocks *map, int flags) 504 { 505 struct extent_status es; 506 int retval; 507 int ret = 0; 508 #ifdef ES_AGGRESSIVE_TEST 509 struct ext4_map_blocks orig_map; 510 511 memcpy(&orig_map, map, sizeof(*map)); 512 #endif 513 514 map->m_flags = 0; 515 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 516 "logical block %lu\n", inode->i_ino, flags, map->m_len, 517 (unsigned long) map->m_lblk); 518 519 /* 520 * ext4_map_blocks returns an int, and m_len is an unsigned int 521 */ 522 if (unlikely(map->m_len > INT_MAX)) 523 map->m_len = INT_MAX; 524 525 /* We can handle the block number less than EXT_MAX_BLOCKS */ 526 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 527 return -EFSCORRUPTED; 528 529 /* Lookup extent status tree firstly */ 530 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 531 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 532 map->m_pblk = ext4_es_pblock(&es) + 533 map->m_lblk - es.es_lblk; 534 map->m_flags |= ext4_es_is_written(&es) ? 535 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 536 retval = es.es_len - (map->m_lblk - es.es_lblk); 537 if (retval > map->m_len) 538 retval = map->m_len; 539 map->m_len = retval; 540 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 541 map->m_pblk = 0; 542 retval = es.es_len - (map->m_lblk - es.es_lblk); 543 if (retval > map->m_len) 544 retval = map->m_len; 545 map->m_len = retval; 546 retval = 0; 547 } else { 548 BUG(); 549 } 550 #ifdef ES_AGGRESSIVE_TEST 551 ext4_map_blocks_es_recheck(handle, inode, map, 552 &orig_map, flags); 553 #endif 554 goto found; 555 } 556 557 /* 558 * Try to see if we can get the block without requesting a new 559 * file system block. 560 */ 561 down_read(&EXT4_I(inode)->i_data_sem); 562 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 563 retval = ext4_ext_map_blocks(handle, inode, map, flags & 564 EXT4_GET_BLOCKS_KEEP_SIZE); 565 } else { 566 retval = ext4_ind_map_blocks(handle, inode, map, flags & 567 EXT4_GET_BLOCKS_KEEP_SIZE); 568 } 569 if (retval > 0) { 570 unsigned int status; 571 572 if (unlikely(retval != map->m_len)) { 573 ext4_warning(inode->i_sb, 574 "ES len assertion failed for inode " 575 "%lu: retval %d != map->m_len %d", 576 inode->i_ino, retval, map->m_len); 577 WARN_ON(1); 578 } 579 580 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 581 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 582 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 583 !(status & EXTENT_STATUS_WRITTEN) && 584 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 585 map->m_lblk + map->m_len - 1)) 586 status |= EXTENT_STATUS_DELAYED; 587 ret = ext4_es_insert_extent(inode, map->m_lblk, 588 map->m_len, map->m_pblk, status); 589 if (ret < 0) 590 retval = ret; 591 } 592 up_read((&EXT4_I(inode)->i_data_sem)); 593 594 found: 595 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 596 ret = check_block_validity(inode, map); 597 if (ret != 0) 598 return ret; 599 } 600 601 /* If it is only a block(s) look up */ 602 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 603 return retval; 604 605 /* 606 * Returns if the blocks have already allocated 607 * 608 * Note that if blocks have been preallocated 609 * ext4_ext_get_block() returns the create = 0 610 * with buffer head unmapped. 611 */ 612 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 613 /* 614 * If we need to convert extent to unwritten 615 * we continue and do the actual work in 616 * ext4_ext_map_blocks() 617 */ 618 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 619 return retval; 620 621 /* 622 * Here we clear m_flags because after allocating an new extent, 623 * it will be set again. 624 */ 625 map->m_flags &= ~EXT4_MAP_FLAGS; 626 627 /* 628 * New blocks allocate and/or writing to unwritten extent 629 * will possibly result in updating i_data, so we take 630 * the write lock of i_data_sem, and call get_block() 631 * with create == 1 flag. 632 */ 633 down_write(&EXT4_I(inode)->i_data_sem); 634 635 /* 636 * We need to check for EXT4 here because migrate 637 * could have changed the inode type in between 638 */ 639 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 640 retval = ext4_ext_map_blocks(handle, inode, map, flags); 641 } else { 642 retval = ext4_ind_map_blocks(handle, inode, map, flags); 643 644 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 645 /* 646 * We allocated new blocks which will result in 647 * i_data's format changing. Force the migrate 648 * to fail by clearing migrate flags 649 */ 650 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 651 } 652 653 /* 654 * Update reserved blocks/metadata blocks after successful 655 * block allocation which had been deferred till now. We don't 656 * support fallocate for non extent files. So we can update 657 * reserve space here. 658 */ 659 if ((retval > 0) && 660 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 661 ext4_da_update_reserve_space(inode, retval, 1); 662 } 663 664 if (retval > 0) { 665 unsigned int status; 666 667 if (unlikely(retval != map->m_len)) { 668 ext4_warning(inode->i_sb, 669 "ES len assertion failed for inode " 670 "%lu: retval %d != map->m_len %d", 671 inode->i_ino, retval, map->m_len); 672 WARN_ON(1); 673 } 674 675 /* 676 * We have to zeroout blocks before inserting them into extent 677 * status tree. Otherwise someone could look them up there and 678 * use them before they are really zeroed. We also have to 679 * unmap metadata before zeroing as otherwise writeback can 680 * overwrite zeros with stale data from block device. 681 */ 682 if (flags & EXT4_GET_BLOCKS_ZERO && 683 map->m_flags & EXT4_MAP_MAPPED && 684 map->m_flags & EXT4_MAP_NEW) { 685 ret = ext4_issue_zeroout(inode, map->m_lblk, 686 map->m_pblk, map->m_len); 687 if (ret) { 688 retval = ret; 689 goto out_sem; 690 } 691 } 692 693 /* 694 * If the extent has been zeroed out, we don't need to update 695 * extent status tree. 696 */ 697 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 698 ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 699 if (ext4_es_is_written(&es)) 700 goto out_sem; 701 } 702 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 703 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 704 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 705 !(status & EXTENT_STATUS_WRITTEN) && 706 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 707 map->m_lblk + map->m_len - 1)) 708 status |= EXTENT_STATUS_DELAYED; 709 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 710 map->m_pblk, status); 711 if (ret < 0) { 712 retval = ret; 713 goto out_sem; 714 } 715 } 716 717 out_sem: 718 up_write((&EXT4_I(inode)->i_data_sem)); 719 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 720 ret = check_block_validity(inode, map); 721 if (ret != 0) 722 return ret; 723 724 /* 725 * Inodes with freshly allocated blocks where contents will be 726 * visible after transaction commit must be on transaction's 727 * ordered data list. 728 */ 729 if (map->m_flags & EXT4_MAP_NEW && 730 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 731 !(flags & EXT4_GET_BLOCKS_ZERO) && 732 !ext4_is_quota_file(inode) && 733 ext4_should_order_data(inode)) { 734 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 735 ret = ext4_jbd2_inode_add_wait(handle, inode); 736 else 737 ret = ext4_jbd2_inode_add_write(handle, inode); 738 if (ret) 739 return ret; 740 } 741 } 742 return retval; 743 } 744 745 /* 746 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 747 * we have to be careful as someone else may be manipulating b_state as well. 748 */ 749 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 750 { 751 unsigned long old_state; 752 unsigned long new_state; 753 754 flags &= EXT4_MAP_FLAGS; 755 756 /* Dummy buffer_head? Set non-atomically. */ 757 if (!bh->b_page) { 758 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 759 return; 760 } 761 /* 762 * Someone else may be modifying b_state. Be careful! This is ugly but 763 * once we get rid of using bh as a container for mapping information 764 * to pass to / from get_block functions, this can go away. 765 */ 766 do { 767 old_state = READ_ONCE(bh->b_state); 768 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 769 } while (unlikely( 770 cmpxchg(&bh->b_state, old_state, new_state) != old_state)); 771 } 772 773 static int _ext4_get_block(struct inode *inode, sector_t iblock, 774 struct buffer_head *bh, int flags) 775 { 776 struct ext4_map_blocks map; 777 int ret = 0; 778 779 if (ext4_has_inline_data(inode)) 780 return -ERANGE; 781 782 map.m_lblk = iblock; 783 map.m_len = bh->b_size >> inode->i_blkbits; 784 785 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 786 flags); 787 if (ret > 0) { 788 map_bh(bh, inode->i_sb, map.m_pblk); 789 ext4_update_bh_state(bh, map.m_flags); 790 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 791 ret = 0; 792 } else if (ret == 0) { 793 /* hole case, need to fill in bh->b_size */ 794 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 795 } 796 return ret; 797 } 798 799 int ext4_get_block(struct inode *inode, sector_t iblock, 800 struct buffer_head *bh, int create) 801 { 802 return _ext4_get_block(inode, iblock, bh, 803 create ? EXT4_GET_BLOCKS_CREATE : 0); 804 } 805 806 /* 807 * Get block function used when preparing for buffered write if we require 808 * creating an unwritten extent if blocks haven't been allocated. The extent 809 * will be converted to written after the IO is complete. 810 */ 811 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 812 struct buffer_head *bh_result, int create) 813 { 814 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 815 inode->i_ino, create); 816 return _ext4_get_block(inode, iblock, bh_result, 817 EXT4_GET_BLOCKS_IO_CREATE_EXT); 818 } 819 820 /* Maximum number of blocks we map for direct IO at once. */ 821 #define DIO_MAX_BLOCKS 4096 822 823 /* 824 * Get blocks function for the cases that need to start a transaction - 825 * generally difference cases of direct IO and DAX IO. It also handles retries 826 * in case of ENOSPC. 827 */ 828 static int ext4_get_block_trans(struct inode *inode, sector_t iblock, 829 struct buffer_head *bh_result, int flags) 830 { 831 int dio_credits; 832 handle_t *handle; 833 int retries = 0; 834 int ret; 835 836 /* Trim mapping request to maximum we can map at once for DIO */ 837 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS) 838 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits; 839 dio_credits = ext4_chunk_trans_blocks(inode, 840 bh_result->b_size >> inode->i_blkbits); 841 retry: 842 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 843 if (IS_ERR(handle)) 844 return PTR_ERR(handle); 845 846 ret = _ext4_get_block(inode, iblock, bh_result, flags); 847 ext4_journal_stop(handle); 848 849 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 850 goto retry; 851 return ret; 852 } 853 854 /* Get block function for DIO reads and writes to inodes without extents */ 855 int ext4_dio_get_block(struct inode *inode, sector_t iblock, 856 struct buffer_head *bh, int create) 857 { 858 /* We don't expect handle for direct IO */ 859 WARN_ON_ONCE(ext4_journal_current_handle()); 860 861 if (!create) 862 return _ext4_get_block(inode, iblock, bh, 0); 863 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE); 864 } 865 866 /* 867 * Get block function for AIO DIO writes when we create unwritten extent if 868 * blocks are not allocated yet. The extent will be converted to written 869 * after IO is complete. 870 */ 871 static int ext4_dio_get_block_unwritten_async(struct inode *inode, 872 sector_t iblock, struct buffer_head *bh_result, int create) 873 { 874 int ret; 875 876 /* We don't expect handle for direct IO */ 877 WARN_ON_ONCE(ext4_journal_current_handle()); 878 879 ret = ext4_get_block_trans(inode, iblock, bh_result, 880 EXT4_GET_BLOCKS_IO_CREATE_EXT); 881 882 /* 883 * When doing DIO using unwritten extents, we need io_end to convert 884 * unwritten extents to written on IO completion. We allocate io_end 885 * once we spot unwritten extent and store it in b_private. Generic 886 * DIO code keeps b_private set and furthermore passes the value to 887 * our completion callback in 'private' argument. 888 */ 889 if (!ret && buffer_unwritten(bh_result)) { 890 if (!bh_result->b_private) { 891 ext4_io_end_t *io_end; 892 893 io_end = ext4_init_io_end(inode, GFP_KERNEL); 894 if (!io_end) 895 return -ENOMEM; 896 bh_result->b_private = io_end; 897 ext4_set_io_unwritten_flag(inode, io_end); 898 } 899 set_buffer_defer_completion(bh_result); 900 } 901 902 return ret; 903 } 904 905 /* 906 * Get block function for non-AIO DIO writes when we create unwritten extent if 907 * blocks are not allocated yet. The extent will be converted to written 908 * after IO is complete by ext4_direct_IO_write(). 909 */ 910 static int ext4_dio_get_block_unwritten_sync(struct inode *inode, 911 sector_t iblock, struct buffer_head *bh_result, int create) 912 { 913 int ret; 914 915 /* We don't expect handle for direct IO */ 916 WARN_ON_ONCE(ext4_journal_current_handle()); 917 918 ret = ext4_get_block_trans(inode, iblock, bh_result, 919 EXT4_GET_BLOCKS_IO_CREATE_EXT); 920 921 /* 922 * Mark inode as having pending DIO writes to unwritten extents. 923 * ext4_direct_IO_write() checks this flag and converts extents to 924 * written. 925 */ 926 if (!ret && buffer_unwritten(bh_result)) 927 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 928 929 return ret; 930 } 931 932 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock, 933 struct buffer_head *bh_result, int create) 934 { 935 int ret; 936 937 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n", 938 inode->i_ino, create); 939 /* We don't expect handle for direct IO */ 940 WARN_ON_ONCE(ext4_journal_current_handle()); 941 942 ret = _ext4_get_block(inode, iblock, bh_result, 0); 943 /* 944 * Blocks should have been preallocated! ext4_file_write_iter() checks 945 * that. 946 */ 947 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result)); 948 949 return ret; 950 } 951 952 953 /* 954 * `handle' can be NULL if create is zero 955 */ 956 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 957 ext4_lblk_t block, int map_flags) 958 { 959 struct ext4_map_blocks map; 960 struct buffer_head *bh; 961 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 962 int err; 963 964 J_ASSERT(handle != NULL || create == 0); 965 966 map.m_lblk = block; 967 map.m_len = 1; 968 err = ext4_map_blocks(handle, inode, &map, map_flags); 969 970 if (err == 0) 971 return create ? ERR_PTR(-ENOSPC) : NULL; 972 if (err < 0) 973 return ERR_PTR(err); 974 975 bh = sb_getblk(inode->i_sb, map.m_pblk); 976 if (unlikely(!bh)) 977 return ERR_PTR(-ENOMEM); 978 if (map.m_flags & EXT4_MAP_NEW) { 979 J_ASSERT(create != 0); 980 J_ASSERT(handle != NULL); 981 982 /* 983 * Now that we do not always journal data, we should 984 * keep in mind whether this should always journal the 985 * new buffer as metadata. For now, regular file 986 * writes use ext4_get_block instead, so it's not a 987 * problem. 988 */ 989 lock_buffer(bh); 990 BUFFER_TRACE(bh, "call get_create_access"); 991 err = ext4_journal_get_create_access(handle, bh); 992 if (unlikely(err)) { 993 unlock_buffer(bh); 994 goto errout; 995 } 996 if (!buffer_uptodate(bh)) { 997 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 998 set_buffer_uptodate(bh); 999 } 1000 unlock_buffer(bh); 1001 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 1002 err = ext4_handle_dirty_metadata(handle, inode, bh); 1003 if (unlikely(err)) 1004 goto errout; 1005 } else 1006 BUFFER_TRACE(bh, "not a new buffer"); 1007 return bh; 1008 errout: 1009 brelse(bh); 1010 return ERR_PTR(err); 1011 } 1012 1013 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 1014 ext4_lblk_t block, int map_flags) 1015 { 1016 struct buffer_head *bh; 1017 1018 bh = ext4_getblk(handle, inode, block, map_flags); 1019 if (IS_ERR(bh)) 1020 return bh; 1021 if (!bh || buffer_uptodate(bh)) 1022 return bh; 1023 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh); 1024 wait_on_buffer(bh); 1025 if (buffer_uptodate(bh)) 1026 return bh; 1027 put_bh(bh); 1028 return ERR_PTR(-EIO); 1029 } 1030 1031 /* Read a contiguous batch of blocks. */ 1032 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, 1033 bool wait, struct buffer_head **bhs) 1034 { 1035 int i, err; 1036 1037 for (i = 0; i < bh_count; i++) { 1038 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */); 1039 if (IS_ERR(bhs[i])) { 1040 err = PTR_ERR(bhs[i]); 1041 bh_count = i; 1042 goto out_brelse; 1043 } 1044 } 1045 1046 for (i = 0; i < bh_count; i++) 1047 /* Note that NULL bhs[i] is valid because of holes. */ 1048 if (bhs[i] && !buffer_uptodate(bhs[i])) 1049 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, 1050 &bhs[i]); 1051 1052 if (!wait) 1053 return 0; 1054 1055 for (i = 0; i < bh_count; i++) 1056 if (bhs[i]) 1057 wait_on_buffer(bhs[i]); 1058 1059 for (i = 0; i < bh_count; i++) { 1060 if (bhs[i] && !buffer_uptodate(bhs[i])) { 1061 err = -EIO; 1062 goto out_brelse; 1063 } 1064 } 1065 return 0; 1066 1067 out_brelse: 1068 for (i = 0; i < bh_count; i++) { 1069 brelse(bhs[i]); 1070 bhs[i] = NULL; 1071 } 1072 return err; 1073 } 1074 1075 int ext4_walk_page_buffers(handle_t *handle, 1076 struct buffer_head *head, 1077 unsigned from, 1078 unsigned to, 1079 int *partial, 1080 int (*fn)(handle_t *handle, 1081 struct buffer_head *bh)) 1082 { 1083 struct buffer_head *bh; 1084 unsigned block_start, block_end; 1085 unsigned blocksize = head->b_size; 1086 int err, ret = 0; 1087 struct buffer_head *next; 1088 1089 for (bh = head, block_start = 0; 1090 ret == 0 && (bh != head || !block_start); 1091 block_start = block_end, bh = next) { 1092 next = bh->b_this_page; 1093 block_end = block_start + blocksize; 1094 if (block_end <= from || block_start >= to) { 1095 if (partial && !buffer_uptodate(bh)) 1096 *partial = 1; 1097 continue; 1098 } 1099 err = (*fn)(handle, bh); 1100 if (!ret) 1101 ret = err; 1102 } 1103 return ret; 1104 } 1105 1106 /* 1107 * To preserve ordering, it is essential that the hole instantiation and 1108 * the data write be encapsulated in a single transaction. We cannot 1109 * close off a transaction and start a new one between the ext4_get_block() 1110 * and the commit_write(). So doing the jbd2_journal_start at the start of 1111 * prepare_write() is the right place. 1112 * 1113 * Also, this function can nest inside ext4_writepage(). In that case, we 1114 * *know* that ext4_writepage() has generated enough buffer credits to do the 1115 * whole page. So we won't block on the journal in that case, which is good, 1116 * because the caller may be PF_MEMALLOC. 1117 * 1118 * By accident, ext4 can be reentered when a transaction is open via 1119 * quota file writes. If we were to commit the transaction while thus 1120 * reentered, there can be a deadlock - we would be holding a quota 1121 * lock, and the commit would never complete if another thread had a 1122 * transaction open and was blocking on the quota lock - a ranking 1123 * violation. 1124 * 1125 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1126 * will _not_ run commit under these circumstances because handle->h_ref 1127 * is elevated. We'll still have enough credits for the tiny quotafile 1128 * write. 1129 */ 1130 int do_journal_get_write_access(handle_t *handle, 1131 struct buffer_head *bh) 1132 { 1133 int dirty = buffer_dirty(bh); 1134 int ret; 1135 1136 if (!buffer_mapped(bh) || buffer_freed(bh)) 1137 return 0; 1138 /* 1139 * __block_write_begin() could have dirtied some buffers. Clean 1140 * the dirty bit as jbd2_journal_get_write_access() could complain 1141 * otherwise about fs integrity issues. Setting of the dirty bit 1142 * by __block_write_begin() isn't a real problem here as we clear 1143 * the bit before releasing a page lock and thus writeback cannot 1144 * ever write the buffer. 1145 */ 1146 if (dirty) 1147 clear_buffer_dirty(bh); 1148 BUFFER_TRACE(bh, "get write access"); 1149 ret = ext4_journal_get_write_access(handle, bh); 1150 if (!ret && dirty) 1151 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1152 return ret; 1153 } 1154 1155 #ifdef CONFIG_FS_ENCRYPTION 1156 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len, 1157 get_block_t *get_block) 1158 { 1159 unsigned from = pos & (PAGE_SIZE - 1); 1160 unsigned to = from + len; 1161 struct inode *inode = page->mapping->host; 1162 unsigned block_start, block_end; 1163 sector_t block; 1164 int err = 0; 1165 unsigned blocksize = inode->i_sb->s_blocksize; 1166 unsigned bbits; 1167 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait; 1168 bool decrypt = false; 1169 1170 BUG_ON(!PageLocked(page)); 1171 BUG_ON(from > PAGE_SIZE); 1172 BUG_ON(to > PAGE_SIZE); 1173 BUG_ON(from > to); 1174 1175 if (!page_has_buffers(page)) 1176 create_empty_buffers(page, blocksize, 0); 1177 head = page_buffers(page); 1178 bbits = ilog2(blocksize); 1179 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1180 1181 for (bh = head, block_start = 0; bh != head || !block_start; 1182 block++, block_start = block_end, bh = bh->b_this_page) { 1183 block_end = block_start + blocksize; 1184 if (block_end <= from || block_start >= to) { 1185 if (PageUptodate(page)) { 1186 if (!buffer_uptodate(bh)) 1187 set_buffer_uptodate(bh); 1188 } 1189 continue; 1190 } 1191 if (buffer_new(bh)) 1192 clear_buffer_new(bh); 1193 if (!buffer_mapped(bh)) { 1194 WARN_ON(bh->b_size != blocksize); 1195 err = get_block(inode, block, bh, 1); 1196 if (err) 1197 break; 1198 if (buffer_new(bh)) { 1199 if (PageUptodate(page)) { 1200 clear_buffer_new(bh); 1201 set_buffer_uptodate(bh); 1202 mark_buffer_dirty(bh); 1203 continue; 1204 } 1205 if (block_end > to || block_start < from) 1206 zero_user_segments(page, to, block_end, 1207 block_start, from); 1208 continue; 1209 } 1210 } 1211 if (PageUptodate(page)) { 1212 if (!buffer_uptodate(bh)) 1213 set_buffer_uptodate(bh); 1214 continue; 1215 } 1216 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1217 !buffer_unwritten(bh) && 1218 (block_start < from || block_end > to)) { 1219 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1220 *wait_bh++ = bh; 1221 decrypt = IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode); 1222 } 1223 } 1224 /* 1225 * If we issued read requests, let them complete. 1226 */ 1227 while (wait_bh > wait) { 1228 wait_on_buffer(*--wait_bh); 1229 if (!buffer_uptodate(*wait_bh)) 1230 err = -EIO; 1231 } 1232 if (unlikely(err)) 1233 page_zero_new_buffers(page, from, to); 1234 else if (decrypt) 1235 err = fscrypt_decrypt_page(page->mapping->host, page, 1236 PAGE_SIZE, 0, page->index); 1237 return err; 1238 } 1239 #endif 1240 1241 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1242 loff_t pos, unsigned len, unsigned flags, 1243 struct page **pagep, void **fsdata) 1244 { 1245 struct inode *inode = mapping->host; 1246 int ret, needed_blocks; 1247 handle_t *handle; 1248 int retries = 0; 1249 struct page *page; 1250 pgoff_t index; 1251 unsigned from, to; 1252 1253 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 1254 return -EIO; 1255 1256 trace_ext4_write_begin(inode, pos, len, flags); 1257 /* 1258 * Reserve one block more for addition to orphan list in case 1259 * we allocate blocks but write fails for some reason 1260 */ 1261 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1262 index = pos >> PAGE_SHIFT; 1263 from = pos & (PAGE_SIZE - 1); 1264 to = from + len; 1265 1266 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1267 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1268 flags, pagep); 1269 if (ret < 0) 1270 return ret; 1271 if (ret == 1) 1272 return 0; 1273 } 1274 1275 /* 1276 * grab_cache_page_write_begin() can take a long time if the 1277 * system is thrashing due to memory pressure, or if the page 1278 * is being written back. So grab it first before we start 1279 * the transaction handle. This also allows us to allocate 1280 * the page (if needed) without using GFP_NOFS. 1281 */ 1282 retry_grab: 1283 page = grab_cache_page_write_begin(mapping, index, flags); 1284 if (!page) 1285 return -ENOMEM; 1286 unlock_page(page); 1287 1288 retry_journal: 1289 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1290 if (IS_ERR(handle)) { 1291 put_page(page); 1292 return PTR_ERR(handle); 1293 } 1294 1295 lock_page(page); 1296 if (page->mapping != mapping) { 1297 /* The page got truncated from under us */ 1298 unlock_page(page); 1299 put_page(page); 1300 ext4_journal_stop(handle); 1301 goto retry_grab; 1302 } 1303 /* In case writeback began while the page was unlocked */ 1304 wait_for_stable_page(page); 1305 1306 #ifdef CONFIG_FS_ENCRYPTION 1307 if (ext4_should_dioread_nolock(inode)) 1308 ret = ext4_block_write_begin(page, pos, len, 1309 ext4_get_block_unwritten); 1310 else 1311 ret = ext4_block_write_begin(page, pos, len, 1312 ext4_get_block); 1313 #else 1314 if (ext4_should_dioread_nolock(inode)) 1315 ret = __block_write_begin(page, pos, len, 1316 ext4_get_block_unwritten); 1317 else 1318 ret = __block_write_begin(page, pos, len, ext4_get_block); 1319 #endif 1320 if (!ret && ext4_should_journal_data(inode)) { 1321 ret = ext4_walk_page_buffers(handle, page_buffers(page), 1322 from, to, NULL, 1323 do_journal_get_write_access); 1324 } 1325 1326 if (ret) { 1327 unlock_page(page); 1328 /* 1329 * __block_write_begin may have instantiated a few blocks 1330 * outside i_size. Trim these off again. Don't need 1331 * i_size_read because we hold i_mutex. 1332 * 1333 * Add inode to orphan list in case we crash before 1334 * truncate finishes 1335 */ 1336 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1337 ext4_orphan_add(handle, inode); 1338 1339 ext4_journal_stop(handle); 1340 if (pos + len > inode->i_size) { 1341 ext4_truncate_failed_write(inode); 1342 /* 1343 * If truncate failed early the inode might 1344 * still be on the orphan list; we need to 1345 * make sure the inode is removed from the 1346 * orphan list in that case. 1347 */ 1348 if (inode->i_nlink) 1349 ext4_orphan_del(NULL, inode); 1350 } 1351 1352 if (ret == -ENOSPC && 1353 ext4_should_retry_alloc(inode->i_sb, &retries)) 1354 goto retry_journal; 1355 put_page(page); 1356 return ret; 1357 } 1358 *pagep = page; 1359 return ret; 1360 } 1361 1362 /* For write_end() in data=journal mode */ 1363 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1364 { 1365 int ret; 1366 if (!buffer_mapped(bh) || buffer_freed(bh)) 1367 return 0; 1368 set_buffer_uptodate(bh); 1369 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1370 clear_buffer_meta(bh); 1371 clear_buffer_prio(bh); 1372 return ret; 1373 } 1374 1375 /* 1376 * We need to pick up the new inode size which generic_commit_write gave us 1377 * `file' can be NULL - eg, when called from page_symlink(). 1378 * 1379 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1380 * buffers are managed internally. 1381 */ 1382 static int ext4_write_end(struct file *file, 1383 struct address_space *mapping, 1384 loff_t pos, unsigned len, unsigned copied, 1385 struct page *page, void *fsdata) 1386 { 1387 handle_t *handle = ext4_journal_current_handle(); 1388 struct inode *inode = mapping->host; 1389 loff_t old_size = inode->i_size; 1390 int ret = 0, ret2; 1391 int i_size_changed = 0; 1392 int inline_data = ext4_has_inline_data(inode); 1393 1394 trace_ext4_write_end(inode, pos, len, copied); 1395 if (inline_data) { 1396 ret = ext4_write_inline_data_end(inode, pos, len, 1397 copied, page); 1398 if (ret < 0) { 1399 unlock_page(page); 1400 put_page(page); 1401 goto errout; 1402 } 1403 copied = ret; 1404 } else 1405 copied = block_write_end(file, mapping, pos, 1406 len, copied, page, fsdata); 1407 /* 1408 * it's important to update i_size while still holding page lock: 1409 * page writeout could otherwise come in and zero beyond i_size. 1410 */ 1411 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1412 unlock_page(page); 1413 put_page(page); 1414 1415 if (old_size < pos) 1416 pagecache_isize_extended(inode, old_size, pos); 1417 /* 1418 * Don't mark the inode dirty under page lock. First, it unnecessarily 1419 * makes the holding time of page lock longer. Second, it forces lock 1420 * ordering of page lock and transaction start for journaling 1421 * filesystems. 1422 */ 1423 if (i_size_changed || inline_data) 1424 ext4_mark_inode_dirty(handle, inode); 1425 1426 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1427 /* if we have allocated more blocks and copied 1428 * less. We will have blocks allocated outside 1429 * inode->i_size. So truncate them 1430 */ 1431 ext4_orphan_add(handle, inode); 1432 errout: 1433 ret2 = ext4_journal_stop(handle); 1434 if (!ret) 1435 ret = ret2; 1436 1437 if (pos + len > inode->i_size) { 1438 ext4_truncate_failed_write(inode); 1439 /* 1440 * If truncate failed early the inode might still be 1441 * on the orphan list; we need to make sure the inode 1442 * is removed from the orphan list in that case. 1443 */ 1444 if (inode->i_nlink) 1445 ext4_orphan_del(NULL, inode); 1446 } 1447 1448 return ret ? ret : copied; 1449 } 1450 1451 /* 1452 * This is a private version of page_zero_new_buffers() which doesn't 1453 * set the buffer to be dirty, since in data=journalled mode we need 1454 * to call ext4_handle_dirty_metadata() instead. 1455 */ 1456 static void ext4_journalled_zero_new_buffers(handle_t *handle, 1457 struct page *page, 1458 unsigned from, unsigned to) 1459 { 1460 unsigned int block_start = 0, block_end; 1461 struct buffer_head *head, *bh; 1462 1463 bh = head = page_buffers(page); 1464 do { 1465 block_end = block_start + bh->b_size; 1466 if (buffer_new(bh)) { 1467 if (block_end > from && block_start < to) { 1468 if (!PageUptodate(page)) { 1469 unsigned start, size; 1470 1471 start = max(from, block_start); 1472 size = min(to, block_end) - start; 1473 1474 zero_user(page, start, size); 1475 write_end_fn(handle, bh); 1476 } 1477 clear_buffer_new(bh); 1478 } 1479 } 1480 block_start = block_end; 1481 bh = bh->b_this_page; 1482 } while (bh != head); 1483 } 1484 1485 static int ext4_journalled_write_end(struct file *file, 1486 struct address_space *mapping, 1487 loff_t pos, unsigned len, unsigned copied, 1488 struct page *page, void *fsdata) 1489 { 1490 handle_t *handle = ext4_journal_current_handle(); 1491 struct inode *inode = mapping->host; 1492 loff_t old_size = inode->i_size; 1493 int ret = 0, ret2; 1494 int partial = 0; 1495 unsigned from, to; 1496 int size_changed = 0; 1497 int inline_data = ext4_has_inline_data(inode); 1498 1499 trace_ext4_journalled_write_end(inode, pos, len, copied); 1500 from = pos & (PAGE_SIZE - 1); 1501 to = from + len; 1502 1503 BUG_ON(!ext4_handle_valid(handle)); 1504 1505 if (inline_data) { 1506 ret = ext4_write_inline_data_end(inode, pos, len, 1507 copied, page); 1508 if (ret < 0) { 1509 unlock_page(page); 1510 put_page(page); 1511 goto errout; 1512 } 1513 copied = ret; 1514 } else if (unlikely(copied < len) && !PageUptodate(page)) { 1515 copied = 0; 1516 ext4_journalled_zero_new_buffers(handle, page, from, to); 1517 } else { 1518 if (unlikely(copied < len)) 1519 ext4_journalled_zero_new_buffers(handle, page, 1520 from + copied, to); 1521 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1522 from + copied, &partial, 1523 write_end_fn); 1524 if (!partial) 1525 SetPageUptodate(page); 1526 } 1527 size_changed = ext4_update_inode_size(inode, pos + copied); 1528 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1529 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1530 unlock_page(page); 1531 put_page(page); 1532 1533 if (old_size < pos) 1534 pagecache_isize_extended(inode, old_size, pos); 1535 1536 if (size_changed || inline_data) { 1537 ret2 = ext4_mark_inode_dirty(handle, inode); 1538 if (!ret) 1539 ret = ret2; 1540 } 1541 1542 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1543 /* if we have allocated more blocks and copied 1544 * less. We will have blocks allocated outside 1545 * inode->i_size. So truncate them 1546 */ 1547 ext4_orphan_add(handle, inode); 1548 1549 errout: 1550 ret2 = ext4_journal_stop(handle); 1551 if (!ret) 1552 ret = ret2; 1553 if (pos + len > inode->i_size) { 1554 ext4_truncate_failed_write(inode); 1555 /* 1556 * If truncate failed early the inode might still be 1557 * on the orphan list; we need to make sure the inode 1558 * is removed from the orphan list in that case. 1559 */ 1560 if (inode->i_nlink) 1561 ext4_orphan_del(NULL, inode); 1562 } 1563 1564 return ret ? ret : copied; 1565 } 1566 1567 /* 1568 * Reserve space for a single cluster 1569 */ 1570 static int ext4_da_reserve_space(struct inode *inode) 1571 { 1572 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1573 struct ext4_inode_info *ei = EXT4_I(inode); 1574 int ret; 1575 1576 /* 1577 * We will charge metadata quota at writeout time; this saves 1578 * us from metadata over-estimation, though we may go over by 1579 * a small amount in the end. Here we just reserve for data. 1580 */ 1581 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1582 if (ret) 1583 return ret; 1584 1585 spin_lock(&ei->i_block_reservation_lock); 1586 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1587 spin_unlock(&ei->i_block_reservation_lock); 1588 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1589 return -ENOSPC; 1590 } 1591 ei->i_reserved_data_blocks++; 1592 trace_ext4_da_reserve_space(inode); 1593 spin_unlock(&ei->i_block_reservation_lock); 1594 1595 return 0; /* success */ 1596 } 1597 1598 void ext4_da_release_space(struct inode *inode, int to_free) 1599 { 1600 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1601 struct ext4_inode_info *ei = EXT4_I(inode); 1602 1603 if (!to_free) 1604 return; /* Nothing to release, exit */ 1605 1606 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1607 1608 trace_ext4_da_release_space(inode, to_free); 1609 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1610 /* 1611 * if there aren't enough reserved blocks, then the 1612 * counter is messed up somewhere. Since this 1613 * function is called from invalidate page, it's 1614 * harmless to return without any action. 1615 */ 1616 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1617 "ino %lu, to_free %d with only %d reserved " 1618 "data blocks", inode->i_ino, to_free, 1619 ei->i_reserved_data_blocks); 1620 WARN_ON(1); 1621 to_free = ei->i_reserved_data_blocks; 1622 } 1623 ei->i_reserved_data_blocks -= to_free; 1624 1625 /* update fs dirty data blocks counter */ 1626 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1627 1628 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1629 1630 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1631 } 1632 1633 static void ext4_da_page_release_reservation(struct page *page, 1634 unsigned int offset, 1635 unsigned int length) 1636 { 1637 int contiguous_blks = 0; 1638 struct buffer_head *head, *bh; 1639 unsigned int curr_off = 0; 1640 struct inode *inode = page->mapping->host; 1641 unsigned int stop = offset + length; 1642 ext4_fsblk_t lblk; 1643 1644 BUG_ON(stop > PAGE_SIZE || stop < length); 1645 1646 head = page_buffers(page); 1647 bh = head; 1648 do { 1649 unsigned int next_off = curr_off + bh->b_size; 1650 1651 if (next_off > stop) 1652 break; 1653 1654 if ((offset <= curr_off) && (buffer_delay(bh))) { 1655 contiguous_blks++; 1656 clear_buffer_delay(bh); 1657 } else if (contiguous_blks) { 1658 lblk = page->index << 1659 (PAGE_SHIFT - inode->i_blkbits); 1660 lblk += (curr_off >> inode->i_blkbits) - 1661 contiguous_blks; 1662 ext4_es_remove_blks(inode, lblk, contiguous_blks); 1663 contiguous_blks = 0; 1664 } 1665 curr_off = next_off; 1666 } while ((bh = bh->b_this_page) != head); 1667 1668 if (contiguous_blks) { 1669 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits); 1670 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks; 1671 ext4_es_remove_blks(inode, lblk, contiguous_blks); 1672 } 1673 1674 } 1675 1676 /* 1677 * Delayed allocation stuff 1678 */ 1679 1680 struct mpage_da_data { 1681 struct inode *inode; 1682 struct writeback_control *wbc; 1683 1684 pgoff_t first_page; /* The first page to write */ 1685 pgoff_t next_page; /* Current page to examine */ 1686 pgoff_t last_page; /* Last page to examine */ 1687 /* 1688 * Extent to map - this can be after first_page because that can be 1689 * fully mapped. We somewhat abuse m_flags to store whether the extent 1690 * is delalloc or unwritten. 1691 */ 1692 struct ext4_map_blocks map; 1693 struct ext4_io_submit io_submit; /* IO submission data */ 1694 unsigned int do_map:1; 1695 }; 1696 1697 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1698 bool invalidate) 1699 { 1700 int nr_pages, i; 1701 pgoff_t index, end; 1702 struct pagevec pvec; 1703 struct inode *inode = mpd->inode; 1704 struct address_space *mapping = inode->i_mapping; 1705 1706 /* This is necessary when next_page == 0. */ 1707 if (mpd->first_page >= mpd->next_page) 1708 return; 1709 1710 index = mpd->first_page; 1711 end = mpd->next_page - 1; 1712 if (invalidate) { 1713 ext4_lblk_t start, last; 1714 start = index << (PAGE_SHIFT - inode->i_blkbits); 1715 last = end << (PAGE_SHIFT - inode->i_blkbits); 1716 ext4_es_remove_extent(inode, start, last - start + 1); 1717 } 1718 1719 pagevec_init(&pvec); 1720 while (index <= end) { 1721 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end); 1722 if (nr_pages == 0) 1723 break; 1724 for (i = 0; i < nr_pages; i++) { 1725 struct page *page = pvec.pages[i]; 1726 1727 BUG_ON(!PageLocked(page)); 1728 BUG_ON(PageWriteback(page)); 1729 if (invalidate) { 1730 if (page_mapped(page)) 1731 clear_page_dirty_for_io(page); 1732 block_invalidatepage(page, 0, PAGE_SIZE); 1733 ClearPageUptodate(page); 1734 } 1735 unlock_page(page); 1736 } 1737 pagevec_release(&pvec); 1738 } 1739 } 1740 1741 static void ext4_print_free_blocks(struct inode *inode) 1742 { 1743 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1744 struct super_block *sb = inode->i_sb; 1745 struct ext4_inode_info *ei = EXT4_I(inode); 1746 1747 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1748 EXT4_C2B(EXT4_SB(inode->i_sb), 1749 ext4_count_free_clusters(sb))); 1750 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1751 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1752 (long long) EXT4_C2B(EXT4_SB(sb), 1753 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1754 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1755 (long long) EXT4_C2B(EXT4_SB(sb), 1756 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1757 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1758 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1759 ei->i_reserved_data_blocks); 1760 return; 1761 } 1762 1763 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1764 { 1765 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1766 } 1767 1768 /* 1769 * ext4_insert_delayed_block - adds a delayed block to the extents status 1770 * tree, incrementing the reserved cluster/block 1771 * count or making a pending reservation 1772 * where needed 1773 * 1774 * @inode - file containing the newly added block 1775 * @lblk - logical block to be added 1776 * 1777 * Returns 0 on success, negative error code on failure. 1778 */ 1779 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk) 1780 { 1781 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1782 int ret; 1783 bool allocated = false; 1784 1785 /* 1786 * If the cluster containing lblk is shared with a delayed, 1787 * written, or unwritten extent in a bigalloc file system, it's 1788 * already been accounted for and does not need to be reserved. 1789 * A pending reservation must be made for the cluster if it's 1790 * shared with a written or unwritten extent and doesn't already 1791 * have one. Written and unwritten extents can be purged from the 1792 * extents status tree if the system is under memory pressure, so 1793 * it's necessary to examine the extent tree if a search of the 1794 * extents status tree doesn't get a match. 1795 */ 1796 if (sbi->s_cluster_ratio == 1) { 1797 ret = ext4_da_reserve_space(inode); 1798 if (ret != 0) /* ENOSPC */ 1799 goto errout; 1800 } else { /* bigalloc */ 1801 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) { 1802 if (!ext4_es_scan_clu(inode, 1803 &ext4_es_is_mapped, lblk)) { 1804 ret = ext4_clu_mapped(inode, 1805 EXT4_B2C(sbi, lblk)); 1806 if (ret < 0) 1807 goto errout; 1808 if (ret == 0) { 1809 ret = ext4_da_reserve_space(inode); 1810 if (ret != 0) /* ENOSPC */ 1811 goto errout; 1812 } else { 1813 allocated = true; 1814 } 1815 } else { 1816 allocated = true; 1817 } 1818 } 1819 } 1820 1821 ret = ext4_es_insert_delayed_block(inode, lblk, allocated); 1822 1823 errout: 1824 return ret; 1825 } 1826 1827 /* 1828 * This function is grabs code from the very beginning of 1829 * ext4_map_blocks, but assumes that the caller is from delayed write 1830 * time. This function looks up the requested blocks and sets the 1831 * buffer delay bit under the protection of i_data_sem. 1832 */ 1833 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1834 struct ext4_map_blocks *map, 1835 struct buffer_head *bh) 1836 { 1837 struct extent_status es; 1838 int retval; 1839 sector_t invalid_block = ~((sector_t) 0xffff); 1840 #ifdef ES_AGGRESSIVE_TEST 1841 struct ext4_map_blocks orig_map; 1842 1843 memcpy(&orig_map, map, sizeof(*map)); 1844 #endif 1845 1846 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1847 invalid_block = ~0; 1848 1849 map->m_flags = 0; 1850 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1851 "logical block %lu\n", inode->i_ino, map->m_len, 1852 (unsigned long) map->m_lblk); 1853 1854 /* Lookup extent status tree firstly */ 1855 if (ext4_es_lookup_extent(inode, iblock, &es)) { 1856 if (ext4_es_is_hole(&es)) { 1857 retval = 0; 1858 down_read(&EXT4_I(inode)->i_data_sem); 1859 goto add_delayed; 1860 } 1861 1862 /* 1863 * Delayed extent could be allocated by fallocate. 1864 * So we need to check it. 1865 */ 1866 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1867 map_bh(bh, inode->i_sb, invalid_block); 1868 set_buffer_new(bh); 1869 set_buffer_delay(bh); 1870 return 0; 1871 } 1872 1873 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1874 retval = es.es_len - (iblock - es.es_lblk); 1875 if (retval > map->m_len) 1876 retval = map->m_len; 1877 map->m_len = retval; 1878 if (ext4_es_is_written(&es)) 1879 map->m_flags |= EXT4_MAP_MAPPED; 1880 else if (ext4_es_is_unwritten(&es)) 1881 map->m_flags |= EXT4_MAP_UNWRITTEN; 1882 else 1883 BUG(); 1884 1885 #ifdef ES_AGGRESSIVE_TEST 1886 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1887 #endif 1888 return retval; 1889 } 1890 1891 /* 1892 * Try to see if we can get the block without requesting a new 1893 * file system block. 1894 */ 1895 down_read(&EXT4_I(inode)->i_data_sem); 1896 if (ext4_has_inline_data(inode)) 1897 retval = 0; 1898 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1899 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1900 else 1901 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1902 1903 add_delayed: 1904 if (retval == 0) { 1905 int ret; 1906 1907 /* 1908 * XXX: __block_prepare_write() unmaps passed block, 1909 * is it OK? 1910 */ 1911 1912 ret = ext4_insert_delayed_block(inode, map->m_lblk); 1913 if (ret != 0) { 1914 retval = ret; 1915 goto out_unlock; 1916 } 1917 1918 map_bh(bh, inode->i_sb, invalid_block); 1919 set_buffer_new(bh); 1920 set_buffer_delay(bh); 1921 } else if (retval > 0) { 1922 int ret; 1923 unsigned int status; 1924 1925 if (unlikely(retval != map->m_len)) { 1926 ext4_warning(inode->i_sb, 1927 "ES len assertion failed for inode " 1928 "%lu: retval %d != map->m_len %d", 1929 inode->i_ino, retval, map->m_len); 1930 WARN_ON(1); 1931 } 1932 1933 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1934 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1935 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1936 map->m_pblk, status); 1937 if (ret != 0) 1938 retval = ret; 1939 } 1940 1941 out_unlock: 1942 up_read((&EXT4_I(inode)->i_data_sem)); 1943 1944 return retval; 1945 } 1946 1947 /* 1948 * This is a special get_block_t callback which is used by 1949 * ext4_da_write_begin(). It will either return mapped block or 1950 * reserve space for a single block. 1951 * 1952 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1953 * We also have b_blocknr = -1 and b_bdev initialized properly 1954 * 1955 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1956 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1957 * initialized properly. 1958 */ 1959 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1960 struct buffer_head *bh, int create) 1961 { 1962 struct ext4_map_blocks map; 1963 int ret = 0; 1964 1965 BUG_ON(create == 0); 1966 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1967 1968 map.m_lblk = iblock; 1969 map.m_len = 1; 1970 1971 /* 1972 * first, we need to know whether the block is allocated already 1973 * preallocated blocks are unmapped but should treated 1974 * the same as allocated blocks. 1975 */ 1976 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1977 if (ret <= 0) 1978 return ret; 1979 1980 map_bh(bh, inode->i_sb, map.m_pblk); 1981 ext4_update_bh_state(bh, map.m_flags); 1982 1983 if (buffer_unwritten(bh)) { 1984 /* A delayed write to unwritten bh should be marked 1985 * new and mapped. Mapped ensures that we don't do 1986 * get_block multiple times when we write to the same 1987 * offset and new ensures that we do proper zero out 1988 * for partial write. 1989 */ 1990 set_buffer_new(bh); 1991 set_buffer_mapped(bh); 1992 } 1993 return 0; 1994 } 1995 1996 static int bget_one(handle_t *handle, struct buffer_head *bh) 1997 { 1998 get_bh(bh); 1999 return 0; 2000 } 2001 2002 static int bput_one(handle_t *handle, struct buffer_head *bh) 2003 { 2004 put_bh(bh); 2005 return 0; 2006 } 2007 2008 static int __ext4_journalled_writepage(struct page *page, 2009 unsigned int len) 2010 { 2011 struct address_space *mapping = page->mapping; 2012 struct inode *inode = mapping->host; 2013 struct buffer_head *page_bufs = NULL; 2014 handle_t *handle = NULL; 2015 int ret = 0, err = 0; 2016 int inline_data = ext4_has_inline_data(inode); 2017 struct buffer_head *inode_bh = NULL; 2018 2019 ClearPageChecked(page); 2020 2021 if (inline_data) { 2022 BUG_ON(page->index != 0); 2023 BUG_ON(len > ext4_get_max_inline_size(inode)); 2024 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 2025 if (inode_bh == NULL) 2026 goto out; 2027 } else { 2028 page_bufs = page_buffers(page); 2029 if (!page_bufs) { 2030 BUG(); 2031 goto out; 2032 } 2033 ext4_walk_page_buffers(handle, page_bufs, 0, len, 2034 NULL, bget_one); 2035 } 2036 /* 2037 * We need to release the page lock before we start the 2038 * journal, so grab a reference so the page won't disappear 2039 * out from under us. 2040 */ 2041 get_page(page); 2042 unlock_page(page); 2043 2044 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 2045 ext4_writepage_trans_blocks(inode)); 2046 if (IS_ERR(handle)) { 2047 ret = PTR_ERR(handle); 2048 put_page(page); 2049 goto out_no_pagelock; 2050 } 2051 BUG_ON(!ext4_handle_valid(handle)); 2052 2053 lock_page(page); 2054 put_page(page); 2055 if (page->mapping != mapping) { 2056 /* The page got truncated from under us */ 2057 ext4_journal_stop(handle); 2058 ret = 0; 2059 goto out; 2060 } 2061 2062 if (inline_data) { 2063 ret = ext4_mark_inode_dirty(handle, inode); 2064 } else { 2065 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 2066 do_journal_get_write_access); 2067 2068 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 2069 write_end_fn); 2070 } 2071 if (ret == 0) 2072 ret = err; 2073 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 2074 err = ext4_journal_stop(handle); 2075 if (!ret) 2076 ret = err; 2077 2078 if (!ext4_has_inline_data(inode)) 2079 ext4_walk_page_buffers(NULL, page_bufs, 0, len, 2080 NULL, bput_one); 2081 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 2082 out: 2083 unlock_page(page); 2084 out_no_pagelock: 2085 brelse(inode_bh); 2086 return ret; 2087 } 2088 2089 /* 2090 * Note that we don't need to start a transaction unless we're journaling data 2091 * because we should have holes filled from ext4_page_mkwrite(). We even don't 2092 * need to file the inode to the transaction's list in ordered mode because if 2093 * we are writing back data added by write(), the inode is already there and if 2094 * we are writing back data modified via mmap(), no one guarantees in which 2095 * transaction the data will hit the disk. In case we are journaling data, we 2096 * cannot start transaction directly because transaction start ranks above page 2097 * lock so we have to do some magic. 2098 * 2099 * This function can get called via... 2100 * - ext4_writepages after taking page lock (have journal handle) 2101 * - journal_submit_inode_data_buffers (no journal handle) 2102 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 2103 * - grab_page_cache when doing write_begin (have journal handle) 2104 * 2105 * We don't do any block allocation in this function. If we have page with 2106 * multiple blocks we need to write those buffer_heads that are mapped. This 2107 * is important for mmaped based write. So if we do with blocksize 1K 2108 * truncate(f, 1024); 2109 * a = mmap(f, 0, 4096); 2110 * a[0] = 'a'; 2111 * truncate(f, 4096); 2112 * we have in the page first buffer_head mapped via page_mkwrite call back 2113 * but other buffer_heads would be unmapped but dirty (dirty done via the 2114 * do_wp_page). So writepage should write the first block. If we modify 2115 * the mmap area beyond 1024 we will again get a page_fault and the 2116 * page_mkwrite callback will do the block allocation and mark the 2117 * buffer_heads mapped. 2118 * 2119 * We redirty the page if we have any buffer_heads that is either delay or 2120 * unwritten in the page. 2121 * 2122 * We can get recursively called as show below. 2123 * 2124 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 2125 * ext4_writepage() 2126 * 2127 * But since we don't do any block allocation we should not deadlock. 2128 * Page also have the dirty flag cleared so we don't get recurive page_lock. 2129 */ 2130 static int ext4_writepage(struct page *page, 2131 struct writeback_control *wbc) 2132 { 2133 int ret = 0; 2134 loff_t size; 2135 unsigned int len; 2136 struct buffer_head *page_bufs = NULL; 2137 struct inode *inode = page->mapping->host; 2138 struct ext4_io_submit io_submit; 2139 bool keep_towrite = false; 2140 2141 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 2142 ext4_invalidatepage(page, 0, PAGE_SIZE); 2143 unlock_page(page); 2144 return -EIO; 2145 } 2146 2147 trace_ext4_writepage(page); 2148 size = i_size_read(inode); 2149 if (page->index == size >> PAGE_SHIFT) 2150 len = size & ~PAGE_MASK; 2151 else 2152 len = PAGE_SIZE; 2153 2154 page_bufs = page_buffers(page); 2155 /* 2156 * We cannot do block allocation or other extent handling in this 2157 * function. If there are buffers needing that, we have to redirty 2158 * the page. But we may reach here when we do a journal commit via 2159 * journal_submit_inode_data_buffers() and in that case we must write 2160 * allocated buffers to achieve data=ordered mode guarantees. 2161 * 2162 * Also, if there is only one buffer per page (the fs block 2163 * size == the page size), if one buffer needs block 2164 * allocation or needs to modify the extent tree to clear the 2165 * unwritten flag, we know that the page can't be written at 2166 * all, so we might as well refuse the write immediately. 2167 * Unfortunately if the block size != page size, we can't as 2168 * easily detect this case using ext4_walk_page_buffers(), but 2169 * for the extremely common case, this is an optimization that 2170 * skips a useless round trip through ext4_bio_write_page(). 2171 */ 2172 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2173 ext4_bh_delay_or_unwritten)) { 2174 redirty_page_for_writepage(wbc, page); 2175 if ((current->flags & PF_MEMALLOC) || 2176 (inode->i_sb->s_blocksize == PAGE_SIZE)) { 2177 /* 2178 * For memory cleaning there's no point in writing only 2179 * some buffers. So just bail out. Warn if we came here 2180 * from direct reclaim. 2181 */ 2182 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 2183 == PF_MEMALLOC); 2184 unlock_page(page); 2185 return 0; 2186 } 2187 keep_towrite = true; 2188 } 2189 2190 if (PageChecked(page) && ext4_should_journal_data(inode)) 2191 /* 2192 * It's mmapped pagecache. Add buffers and journal it. There 2193 * doesn't seem much point in redirtying the page here. 2194 */ 2195 return __ext4_journalled_writepage(page, len); 2196 2197 ext4_io_submit_init(&io_submit, wbc); 2198 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 2199 if (!io_submit.io_end) { 2200 redirty_page_for_writepage(wbc, page); 2201 unlock_page(page); 2202 return -ENOMEM; 2203 } 2204 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite); 2205 ext4_io_submit(&io_submit); 2206 /* Drop io_end reference we got from init */ 2207 ext4_put_io_end_defer(io_submit.io_end); 2208 return ret; 2209 } 2210 2211 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 2212 { 2213 int len; 2214 loff_t size; 2215 int err; 2216 2217 BUG_ON(page->index != mpd->first_page); 2218 clear_page_dirty_for_io(page); 2219 /* 2220 * We have to be very careful here! Nothing protects writeback path 2221 * against i_size changes and the page can be writeably mapped into 2222 * page tables. So an application can be growing i_size and writing 2223 * data through mmap while writeback runs. clear_page_dirty_for_io() 2224 * write-protects our page in page tables and the page cannot get 2225 * written to again until we release page lock. So only after 2226 * clear_page_dirty_for_io() we are safe to sample i_size for 2227 * ext4_bio_write_page() to zero-out tail of the written page. We rely 2228 * on the barrier provided by TestClearPageDirty in 2229 * clear_page_dirty_for_io() to make sure i_size is really sampled only 2230 * after page tables are updated. 2231 */ 2232 size = i_size_read(mpd->inode); 2233 if (page->index == size >> PAGE_SHIFT) 2234 len = size & ~PAGE_MASK; 2235 else 2236 len = PAGE_SIZE; 2237 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false); 2238 if (!err) 2239 mpd->wbc->nr_to_write--; 2240 mpd->first_page++; 2241 2242 return err; 2243 } 2244 2245 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay)) 2246 2247 /* 2248 * mballoc gives us at most this number of blocks... 2249 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 2250 * The rest of mballoc seems to handle chunks up to full group size. 2251 */ 2252 #define MAX_WRITEPAGES_EXTENT_LEN 2048 2253 2254 /* 2255 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 2256 * 2257 * @mpd - extent of blocks 2258 * @lblk - logical number of the block in the file 2259 * @bh - buffer head we want to add to the extent 2260 * 2261 * The function is used to collect contig. blocks in the same state. If the 2262 * buffer doesn't require mapping for writeback and we haven't started the 2263 * extent of buffers to map yet, the function returns 'true' immediately - the 2264 * caller can write the buffer right away. Otherwise the function returns true 2265 * if the block has been added to the extent, false if the block couldn't be 2266 * added. 2267 */ 2268 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 2269 struct buffer_head *bh) 2270 { 2271 struct ext4_map_blocks *map = &mpd->map; 2272 2273 /* Buffer that doesn't need mapping for writeback? */ 2274 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 2275 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 2276 /* So far no extent to map => we write the buffer right away */ 2277 if (map->m_len == 0) 2278 return true; 2279 return false; 2280 } 2281 2282 /* First block in the extent? */ 2283 if (map->m_len == 0) { 2284 /* We cannot map unless handle is started... */ 2285 if (!mpd->do_map) 2286 return false; 2287 map->m_lblk = lblk; 2288 map->m_len = 1; 2289 map->m_flags = bh->b_state & BH_FLAGS; 2290 return true; 2291 } 2292 2293 /* Don't go larger than mballoc is willing to allocate */ 2294 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 2295 return false; 2296 2297 /* Can we merge the block to our big extent? */ 2298 if (lblk == map->m_lblk + map->m_len && 2299 (bh->b_state & BH_FLAGS) == map->m_flags) { 2300 map->m_len++; 2301 return true; 2302 } 2303 return false; 2304 } 2305 2306 /* 2307 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 2308 * 2309 * @mpd - extent of blocks for mapping 2310 * @head - the first buffer in the page 2311 * @bh - buffer we should start processing from 2312 * @lblk - logical number of the block in the file corresponding to @bh 2313 * 2314 * Walk through page buffers from @bh upto @head (exclusive) and either submit 2315 * the page for IO if all buffers in this page were mapped and there's no 2316 * accumulated extent of buffers to map or add buffers in the page to the 2317 * extent of buffers to map. The function returns 1 if the caller can continue 2318 * by processing the next page, 0 if it should stop adding buffers to the 2319 * extent to map because we cannot extend it anymore. It can also return value 2320 * < 0 in case of error during IO submission. 2321 */ 2322 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 2323 struct buffer_head *head, 2324 struct buffer_head *bh, 2325 ext4_lblk_t lblk) 2326 { 2327 struct inode *inode = mpd->inode; 2328 int err; 2329 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) 2330 >> inode->i_blkbits; 2331 2332 do { 2333 BUG_ON(buffer_locked(bh)); 2334 2335 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2336 /* Found extent to map? */ 2337 if (mpd->map.m_len) 2338 return 0; 2339 /* Buffer needs mapping and handle is not started? */ 2340 if (!mpd->do_map) 2341 return 0; 2342 /* Everything mapped so far and we hit EOF */ 2343 break; 2344 } 2345 } while (lblk++, (bh = bh->b_this_page) != head); 2346 /* So far everything mapped? Submit the page for IO. */ 2347 if (mpd->map.m_len == 0) { 2348 err = mpage_submit_page(mpd, head->b_page); 2349 if (err < 0) 2350 return err; 2351 } 2352 return lblk < blocks; 2353 } 2354 2355 /* 2356 * mpage_map_buffers - update buffers corresponding to changed extent and 2357 * submit fully mapped pages for IO 2358 * 2359 * @mpd - description of extent to map, on return next extent to map 2360 * 2361 * Scan buffers corresponding to changed extent (we expect corresponding pages 2362 * to be already locked) and update buffer state according to new extent state. 2363 * We map delalloc buffers to their physical location, clear unwritten bits, 2364 * and mark buffers as uninit when we perform writes to unwritten extents 2365 * and do extent conversion after IO is finished. If the last page is not fully 2366 * mapped, we update @map to the next extent in the last page that needs 2367 * mapping. Otherwise we submit the page for IO. 2368 */ 2369 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2370 { 2371 struct pagevec pvec; 2372 int nr_pages, i; 2373 struct inode *inode = mpd->inode; 2374 struct buffer_head *head, *bh; 2375 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2376 pgoff_t start, end; 2377 ext4_lblk_t lblk; 2378 sector_t pblock; 2379 int err; 2380 2381 start = mpd->map.m_lblk >> bpp_bits; 2382 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2383 lblk = start << bpp_bits; 2384 pblock = mpd->map.m_pblk; 2385 2386 pagevec_init(&pvec); 2387 while (start <= end) { 2388 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, 2389 &start, end); 2390 if (nr_pages == 0) 2391 break; 2392 for (i = 0; i < nr_pages; i++) { 2393 struct page *page = pvec.pages[i]; 2394 2395 bh = head = page_buffers(page); 2396 do { 2397 if (lblk < mpd->map.m_lblk) 2398 continue; 2399 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2400 /* 2401 * Buffer after end of mapped extent. 2402 * Find next buffer in the page to map. 2403 */ 2404 mpd->map.m_len = 0; 2405 mpd->map.m_flags = 0; 2406 /* 2407 * FIXME: If dioread_nolock supports 2408 * blocksize < pagesize, we need to make 2409 * sure we add size mapped so far to 2410 * io_end->size as the following call 2411 * can submit the page for IO. 2412 */ 2413 err = mpage_process_page_bufs(mpd, head, 2414 bh, lblk); 2415 pagevec_release(&pvec); 2416 if (err > 0) 2417 err = 0; 2418 return err; 2419 } 2420 if (buffer_delay(bh)) { 2421 clear_buffer_delay(bh); 2422 bh->b_blocknr = pblock++; 2423 } 2424 clear_buffer_unwritten(bh); 2425 } while (lblk++, (bh = bh->b_this_page) != head); 2426 2427 /* 2428 * FIXME: This is going to break if dioread_nolock 2429 * supports blocksize < pagesize as we will try to 2430 * convert potentially unmapped parts of inode. 2431 */ 2432 mpd->io_submit.io_end->size += PAGE_SIZE; 2433 /* Page fully mapped - let IO run! */ 2434 err = mpage_submit_page(mpd, page); 2435 if (err < 0) { 2436 pagevec_release(&pvec); 2437 return err; 2438 } 2439 } 2440 pagevec_release(&pvec); 2441 } 2442 /* Extent fully mapped and matches with page boundary. We are done. */ 2443 mpd->map.m_len = 0; 2444 mpd->map.m_flags = 0; 2445 return 0; 2446 } 2447 2448 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2449 { 2450 struct inode *inode = mpd->inode; 2451 struct ext4_map_blocks *map = &mpd->map; 2452 int get_blocks_flags; 2453 int err, dioread_nolock; 2454 2455 trace_ext4_da_write_pages_extent(inode, map); 2456 /* 2457 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2458 * to convert an unwritten extent to be initialized (in the case 2459 * where we have written into one or more preallocated blocks). It is 2460 * possible that we're going to need more metadata blocks than 2461 * previously reserved. However we must not fail because we're in 2462 * writeback and there is nothing we can do about it so it might result 2463 * in data loss. So use reserved blocks to allocate metadata if 2464 * possible. 2465 * 2466 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2467 * the blocks in question are delalloc blocks. This indicates 2468 * that the blocks and quotas has already been checked when 2469 * the data was copied into the page cache. 2470 */ 2471 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2472 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2473 EXT4_GET_BLOCKS_IO_SUBMIT; 2474 dioread_nolock = ext4_should_dioread_nolock(inode); 2475 if (dioread_nolock) 2476 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2477 if (map->m_flags & (1 << BH_Delay)) 2478 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2479 2480 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2481 if (err < 0) 2482 return err; 2483 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2484 if (!mpd->io_submit.io_end->handle && 2485 ext4_handle_valid(handle)) { 2486 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2487 handle->h_rsv_handle = NULL; 2488 } 2489 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2490 } 2491 2492 BUG_ON(map->m_len == 0); 2493 return 0; 2494 } 2495 2496 /* 2497 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2498 * mpd->len and submit pages underlying it for IO 2499 * 2500 * @handle - handle for journal operations 2501 * @mpd - extent to map 2502 * @give_up_on_write - we set this to true iff there is a fatal error and there 2503 * is no hope of writing the data. The caller should discard 2504 * dirty pages to avoid infinite loops. 2505 * 2506 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2507 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2508 * them to initialized or split the described range from larger unwritten 2509 * extent. Note that we need not map all the described range since allocation 2510 * can return less blocks or the range is covered by more unwritten extents. We 2511 * cannot map more because we are limited by reserved transaction credits. On 2512 * the other hand we always make sure that the last touched page is fully 2513 * mapped so that it can be written out (and thus forward progress is 2514 * guaranteed). After mapping we submit all mapped pages for IO. 2515 */ 2516 static int mpage_map_and_submit_extent(handle_t *handle, 2517 struct mpage_da_data *mpd, 2518 bool *give_up_on_write) 2519 { 2520 struct inode *inode = mpd->inode; 2521 struct ext4_map_blocks *map = &mpd->map; 2522 int err; 2523 loff_t disksize; 2524 int progress = 0; 2525 2526 mpd->io_submit.io_end->offset = 2527 ((loff_t)map->m_lblk) << inode->i_blkbits; 2528 do { 2529 err = mpage_map_one_extent(handle, mpd); 2530 if (err < 0) { 2531 struct super_block *sb = inode->i_sb; 2532 2533 if (ext4_forced_shutdown(EXT4_SB(sb)) || 2534 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 2535 goto invalidate_dirty_pages; 2536 /* 2537 * Let the uper layers retry transient errors. 2538 * In the case of ENOSPC, if ext4_count_free_blocks() 2539 * is non-zero, a commit should free up blocks. 2540 */ 2541 if ((err == -ENOMEM) || 2542 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2543 if (progress) 2544 goto update_disksize; 2545 return err; 2546 } 2547 ext4_msg(sb, KERN_CRIT, 2548 "Delayed block allocation failed for " 2549 "inode %lu at logical offset %llu with" 2550 " max blocks %u with error %d", 2551 inode->i_ino, 2552 (unsigned long long)map->m_lblk, 2553 (unsigned)map->m_len, -err); 2554 ext4_msg(sb, KERN_CRIT, 2555 "This should not happen!! Data will " 2556 "be lost\n"); 2557 if (err == -ENOSPC) 2558 ext4_print_free_blocks(inode); 2559 invalidate_dirty_pages: 2560 *give_up_on_write = true; 2561 return err; 2562 } 2563 progress = 1; 2564 /* 2565 * Update buffer state, submit mapped pages, and get us new 2566 * extent to map 2567 */ 2568 err = mpage_map_and_submit_buffers(mpd); 2569 if (err < 0) 2570 goto update_disksize; 2571 } while (map->m_len); 2572 2573 update_disksize: 2574 /* 2575 * Update on-disk size after IO is submitted. Races with 2576 * truncate are avoided by checking i_size under i_data_sem. 2577 */ 2578 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2579 if (disksize > EXT4_I(inode)->i_disksize) { 2580 int err2; 2581 loff_t i_size; 2582 2583 down_write(&EXT4_I(inode)->i_data_sem); 2584 i_size = i_size_read(inode); 2585 if (disksize > i_size) 2586 disksize = i_size; 2587 if (disksize > EXT4_I(inode)->i_disksize) 2588 EXT4_I(inode)->i_disksize = disksize; 2589 up_write(&EXT4_I(inode)->i_data_sem); 2590 err2 = ext4_mark_inode_dirty(handle, inode); 2591 if (err2) 2592 ext4_error(inode->i_sb, 2593 "Failed to mark inode %lu dirty", 2594 inode->i_ino); 2595 if (!err) 2596 err = err2; 2597 } 2598 return err; 2599 } 2600 2601 /* 2602 * Calculate the total number of credits to reserve for one writepages 2603 * iteration. This is called from ext4_writepages(). We map an extent of 2604 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2605 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2606 * bpp - 1 blocks in bpp different extents. 2607 */ 2608 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2609 { 2610 int bpp = ext4_journal_blocks_per_page(inode); 2611 2612 return ext4_meta_trans_blocks(inode, 2613 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2614 } 2615 2616 /* 2617 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2618 * and underlying extent to map 2619 * 2620 * @mpd - where to look for pages 2621 * 2622 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2623 * IO immediately. When we find a page which isn't mapped we start accumulating 2624 * extent of buffers underlying these pages that needs mapping (formed by 2625 * either delayed or unwritten buffers). We also lock the pages containing 2626 * these buffers. The extent found is returned in @mpd structure (starting at 2627 * mpd->lblk with length mpd->len blocks). 2628 * 2629 * Note that this function can attach bios to one io_end structure which are 2630 * neither logically nor physically contiguous. Although it may seem as an 2631 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2632 * case as we need to track IO to all buffers underlying a page in one io_end. 2633 */ 2634 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2635 { 2636 struct address_space *mapping = mpd->inode->i_mapping; 2637 struct pagevec pvec; 2638 unsigned int nr_pages; 2639 long left = mpd->wbc->nr_to_write; 2640 pgoff_t index = mpd->first_page; 2641 pgoff_t end = mpd->last_page; 2642 xa_mark_t tag; 2643 int i, err = 0; 2644 int blkbits = mpd->inode->i_blkbits; 2645 ext4_lblk_t lblk; 2646 struct buffer_head *head; 2647 2648 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2649 tag = PAGECACHE_TAG_TOWRITE; 2650 else 2651 tag = PAGECACHE_TAG_DIRTY; 2652 2653 pagevec_init(&pvec); 2654 mpd->map.m_len = 0; 2655 mpd->next_page = index; 2656 while (index <= end) { 2657 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2658 tag); 2659 if (nr_pages == 0) 2660 goto out; 2661 2662 for (i = 0; i < nr_pages; i++) { 2663 struct page *page = pvec.pages[i]; 2664 2665 /* 2666 * Accumulated enough dirty pages? This doesn't apply 2667 * to WB_SYNC_ALL mode. For integrity sync we have to 2668 * keep going because someone may be concurrently 2669 * dirtying pages, and we might have synced a lot of 2670 * newly appeared dirty pages, but have not synced all 2671 * of the old dirty pages. 2672 */ 2673 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2674 goto out; 2675 2676 /* If we can't merge this page, we are done. */ 2677 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2678 goto out; 2679 2680 lock_page(page); 2681 /* 2682 * If the page is no longer dirty, or its mapping no 2683 * longer corresponds to inode we are writing (which 2684 * means it has been truncated or invalidated), or the 2685 * page is already under writeback and we are not doing 2686 * a data integrity writeback, skip the page 2687 */ 2688 if (!PageDirty(page) || 2689 (PageWriteback(page) && 2690 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2691 unlikely(page->mapping != mapping)) { 2692 unlock_page(page); 2693 continue; 2694 } 2695 2696 wait_on_page_writeback(page); 2697 BUG_ON(PageWriteback(page)); 2698 2699 if (mpd->map.m_len == 0) 2700 mpd->first_page = page->index; 2701 mpd->next_page = page->index + 1; 2702 /* Add all dirty buffers to mpd */ 2703 lblk = ((ext4_lblk_t)page->index) << 2704 (PAGE_SHIFT - blkbits); 2705 head = page_buffers(page); 2706 err = mpage_process_page_bufs(mpd, head, head, lblk); 2707 if (err <= 0) 2708 goto out; 2709 err = 0; 2710 left--; 2711 } 2712 pagevec_release(&pvec); 2713 cond_resched(); 2714 } 2715 return 0; 2716 out: 2717 pagevec_release(&pvec); 2718 return err; 2719 } 2720 2721 static int ext4_writepages(struct address_space *mapping, 2722 struct writeback_control *wbc) 2723 { 2724 pgoff_t writeback_index = 0; 2725 long nr_to_write = wbc->nr_to_write; 2726 int range_whole = 0; 2727 int cycled = 1; 2728 handle_t *handle = NULL; 2729 struct mpage_da_data mpd; 2730 struct inode *inode = mapping->host; 2731 int needed_blocks, rsv_blocks = 0, ret = 0; 2732 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2733 bool done; 2734 struct blk_plug plug; 2735 bool give_up_on_write = false; 2736 2737 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2738 return -EIO; 2739 2740 percpu_down_read(&sbi->s_journal_flag_rwsem); 2741 trace_ext4_writepages(inode, wbc); 2742 2743 /* 2744 * No pages to write? This is mainly a kludge to avoid starting 2745 * a transaction for special inodes like journal inode on last iput() 2746 * because that could violate lock ordering on umount 2747 */ 2748 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2749 goto out_writepages; 2750 2751 if (ext4_should_journal_data(inode)) { 2752 ret = generic_writepages(mapping, wbc); 2753 goto out_writepages; 2754 } 2755 2756 /* 2757 * If the filesystem has aborted, it is read-only, so return 2758 * right away instead of dumping stack traces later on that 2759 * will obscure the real source of the problem. We test 2760 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because 2761 * the latter could be true if the filesystem is mounted 2762 * read-only, and in that case, ext4_writepages should 2763 * *never* be called, so if that ever happens, we would want 2764 * the stack trace. 2765 */ 2766 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) || 2767 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) { 2768 ret = -EROFS; 2769 goto out_writepages; 2770 } 2771 2772 if (ext4_should_dioread_nolock(inode)) { 2773 /* 2774 * We may need to convert up to one extent per block in 2775 * the page and we may dirty the inode. 2776 */ 2777 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode, 2778 PAGE_SIZE >> inode->i_blkbits); 2779 } 2780 2781 /* 2782 * If we have inline data and arrive here, it means that 2783 * we will soon create the block for the 1st page, so 2784 * we'd better clear the inline data here. 2785 */ 2786 if (ext4_has_inline_data(inode)) { 2787 /* Just inode will be modified... */ 2788 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2789 if (IS_ERR(handle)) { 2790 ret = PTR_ERR(handle); 2791 goto out_writepages; 2792 } 2793 BUG_ON(ext4_test_inode_state(inode, 2794 EXT4_STATE_MAY_INLINE_DATA)); 2795 ext4_destroy_inline_data(handle, inode); 2796 ext4_journal_stop(handle); 2797 } 2798 2799 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2800 range_whole = 1; 2801 2802 if (wbc->range_cyclic) { 2803 writeback_index = mapping->writeback_index; 2804 if (writeback_index) 2805 cycled = 0; 2806 mpd.first_page = writeback_index; 2807 mpd.last_page = -1; 2808 } else { 2809 mpd.first_page = wbc->range_start >> PAGE_SHIFT; 2810 mpd.last_page = wbc->range_end >> PAGE_SHIFT; 2811 } 2812 2813 mpd.inode = inode; 2814 mpd.wbc = wbc; 2815 ext4_io_submit_init(&mpd.io_submit, wbc); 2816 retry: 2817 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2818 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2819 done = false; 2820 blk_start_plug(&plug); 2821 2822 /* 2823 * First writeback pages that don't need mapping - we can avoid 2824 * starting a transaction unnecessarily and also avoid being blocked 2825 * in the block layer on device congestion while having transaction 2826 * started. 2827 */ 2828 mpd.do_map = 0; 2829 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2830 if (!mpd.io_submit.io_end) { 2831 ret = -ENOMEM; 2832 goto unplug; 2833 } 2834 ret = mpage_prepare_extent_to_map(&mpd); 2835 /* Unlock pages we didn't use */ 2836 mpage_release_unused_pages(&mpd, false); 2837 /* Submit prepared bio */ 2838 ext4_io_submit(&mpd.io_submit); 2839 ext4_put_io_end_defer(mpd.io_submit.io_end); 2840 mpd.io_submit.io_end = NULL; 2841 if (ret < 0) 2842 goto unplug; 2843 2844 while (!done && mpd.first_page <= mpd.last_page) { 2845 /* For each extent of pages we use new io_end */ 2846 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2847 if (!mpd.io_submit.io_end) { 2848 ret = -ENOMEM; 2849 break; 2850 } 2851 2852 /* 2853 * We have two constraints: We find one extent to map and we 2854 * must always write out whole page (makes a difference when 2855 * blocksize < pagesize) so that we don't block on IO when we 2856 * try to write out the rest of the page. Journalled mode is 2857 * not supported by delalloc. 2858 */ 2859 BUG_ON(ext4_should_journal_data(inode)); 2860 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2861 2862 /* start a new transaction */ 2863 handle = ext4_journal_start_with_reserve(inode, 2864 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2865 if (IS_ERR(handle)) { 2866 ret = PTR_ERR(handle); 2867 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2868 "%ld pages, ino %lu; err %d", __func__, 2869 wbc->nr_to_write, inode->i_ino, ret); 2870 /* Release allocated io_end */ 2871 ext4_put_io_end(mpd.io_submit.io_end); 2872 mpd.io_submit.io_end = NULL; 2873 break; 2874 } 2875 mpd.do_map = 1; 2876 2877 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2878 ret = mpage_prepare_extent_to_map(&mpd); 2879 if (!ret) { 2880 if (mpd.map.m_len) 2881 ret = mpage_map_and_submit_extent(handle, &mpd, 2882 &give_up_on_write); 2883 else { 2884 /* 2885 * We scanned the whole range (or exhausted 2886 * nr_to_write), submitted what was mapped and 2887 * didn't find anything needing mapping. We are 2888 * done. 2889 */ 2890 done = true; 2891 } 2892 } 2893 /* 2894 * Caution: If the handle is synchronous, 2895 * ext4_journal_stop() can wait for transaction commit 2896 * to finish which may depend on writeback of pages to 2897 * complete or on page lock to be released. In that 2898 * case, we have to wait until after after we have 2899 * submitted all the IO, released page locks we hold, 2900 * and dropped io_end reference (for extent conversion 2901 * to be able to complete) before stopping the handle. 2902 */ 2903 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2904 ext4_journal_stop(handle); 2905 handle = NULL; 2906 mpd.do_map = 0; 2907 } 2908 /* Unlock pages we didn't use */ 2909 mpage_release_unused_pages(&mpd, give_up_on_write); 2910 /* Submit prepared bio */ 2911 ext4_io_submit(&mpd.io_submit); 2912 2913 /* 2914 * Drop our io_end reference we got from init. We have 2915 * to be careful and use deferred io_end finishing if 2916 * we are still holding the transaction as we can 2917 * release the last reference to io_end which may end 2918 * up doing unwritten extent conversion. 2919 */ 2920 if (handle) { 2921 ext4_put_io_end_defer(mpd.io_submit.io_end); 2922 ext4_journal_stop(handle); 2923 } else 2924 ext4_put_io_end(mpd.io_submit.io_end); 2925 mpd.io_submit.io_end = NULL; 2926 2927 if (ret == -ENOSPC && sbi->s_journal) { 2928 /* 2929 * Commit the transaction which would 2930 * free blocks released in the transaction 2931 * and try again 2932 */ 2933 jbd2_journal_force_commit_nested(sbi->s_journal); 2934 ret = 0; 2935 continue; 2936 } 2937 /* Fatal error - ENOMEM, EIO... */ 2938 if (ret) 2939 break; 2940 } 2941 unplug: 2942 blk_finish_plug(&plug); 2943 if (!ret && !cycled && wbc->nr_to_write > 0) { 2944 cycled = 1; 2945 mpd.last_page = writeback_index - 1; 2946 mpd.first_page = 0; 2947 goto retry; 2948 } 2949 2950 /* Update index */ 2951 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2952 /* 2953 * Set the writeback_index so that range_cyclic 2954 * mode will write it back later 2955 */ 2956 mapping->writeback_index = mpd.first_page; 2957 2958 out_writepages: 2959 trace_ext4_writepages_result(inode, wbc, ret, 2960 nr_to_write - wbc->nr_to_write); 2961 percpu_up_read(&sbi->s_journal_flag_rwsem); 2962 return ret; 2963 } 2964 2965 static int ext4_dax_writepages(struct address_space *mapping, 2966 struct writeback_control *wbc) 2967 { 2968 int ret; 2969 long nr_to_write = wbc->nr_to_write; 2970 struct inode *inode = mapping->host; 2971 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2972 2973 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2974 return -EIO; 2975 2976 percpu_down_read(&sbi->s_journal_flag_rwsem); 2977 trace_ext4_writepages(inode, wbc); 2978 2979 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc); 2980 trace_ext4_writepages_result(inode, wbc, ret, 2981 nr_to_write - wbc->nr_to_write); 2982 percpu_up_read(&sbi->s_journal_flag_rwsem); 2983 return ret; 2984 } 2985 2986 static int ext4_nonda_switch(struct super_block *sb) 2987 { 2988 s64 free_clusters, dirty_clusters; 2989 struct ext4_sb_info *sbi = EXT4_SB(sb); 2990 2991 /* 2992 * switch to non delalloc mode if we are running low 2993 * on free block. The free block accounting via percpu 2994 * counters can get slightly wrong with percpu_counter_batch getting 2995 * accumulated on each CPU without updating global counters 2996 * Delalloc need an accurate free block accounting. So switch 2997 * to non delalloc when we are near to error range. 2998 */ 2999 free_clusters = 3000 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 3001 dirty_clusters = 3002 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 3003 /* 3004 * Start pushing delalloc when 1/2 of free blocks are dirty. 3005 */ 3006 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 3007 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 3008 3009 if (2 * free_clusters < 3 * dirty_clusters || 3010 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 3011 /* 3012 * free block count is less than 150% of dirty blocks 3013 * or free blocks is less than watermark 3014 */ 3015 return 1; 3016 } 3017 return 0; 3018 } 3019 3020 /* We always reserve for an inode update; the superblock could be there too */ 3021 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len) 3022 { 3023 if (likely(ext4_has_feature_large_file(inode->i_sb))) 3024 return 1; 3025 3026 if (pos + len <= 0x7fffffffULL) 3027 return 1; 3028 3029 /* We might need to update the superblock to set LARGE_FILE */ 3030 return 2; 3031 } 3032 3033 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 3034 loff_t pos, unsigned len, unsigned flags, 3035 struct page **pagep, void **fsdata) 3036 { 3037 int ret, retries = 0; 3038 struct page *page; 3039 pgoff_t index; 3040 struct inode *inode = mapping->host; 3041 handle_t *handle; 3042 3043 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 3044 return -EIO; 3045 3046 index = pos >> PAGE_SHIFT; 3047 3048 if (ext4_nonda_switch(inode->i_sb) || 3049 S_ISLNK(inode->i_mode)) { 3050 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 3051 return ext4_write_begin(file, mapping, pos, 3052 len, flags, pagep, fsdata); 3053 } 3054 *fsdata = (void *)0; 3055 trace_ext4_da_write_begin(inode, pos, len, flags); 3056 3057 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 3058 ret = ext4_da_write_inline_data_begin(mapping, inode, 3059 pos, len, flags, 3060 pagep, fsdata); 3061 if (ret < 0) 3062 return ret; 3063 if (ret == 1) 3064 return 0; 3065 } 3066 3067 /* 3068 * grab_cache_page_write_begin() can take a long time if the 3069 * system is thrashing due to memory pressure, or if the page 3070 * is being written back. So grab it first before we start 3071 * the transaction handle. This also allows us to allocate 3072 * the page (if needed) without using GFP_NOFS. 3073 */ 3074 retry_grab: 3075 page = grab_cache_page_write_begin(mapping, index, flags); 3076 if (!page) 3077 return -ENOMEM; 3078 unlock_page(page); 3079 3080 /* 3081 * With delayed allocation, we don't log the i_disksize update 3082 * if there is delayed block allocation. But we still need 3083 * to journalling the i_disksize update if writes to the end 3084 * of file which has an already mapped buffer. 3085 */ 3086 retry_journal: 3087 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 3088 ext4_da_write_credits(inode, pos, len)); 3089 if (IS_ERR(handle)) { 3090 put_page(page); 3091 return PTR_ERR(handle); 3092 } 3093 3094 lock_page(page); 3095 if (page->mapping != mapping) { 3096 /* The page got truncated from under us */ 3097 unlock_page(page); 3098 put_page(page); 3099 ext4_journal_stop(handle); 3100 goto retry_grab; 3101 } 3102 /* In case writeback began while the page was unlocked */ 3103 wait_for_stable_page(page); 3104 3105 #ifdef CONFIG_FS_ENCRYPTION 3106 ret = ext4_block_write_begin(page, pos, len, 3107 ext4_da_get_block_prep); 3108 #else 3109 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 3110 #endif 3111 if (ret < 0) { 3112 unlock_page(page); 3113 ext4_journal_stop(handle); 3114 /* 3115 * block_write_begin may have instantiated a few blocks 3116 * outside i_size. Trim these off again. Don't need 3117 * i_size_read because we hold i_mutex. 3118 */ 3119 if (pos + len > inode->i_size) 3120 ext4_truncate_failed_write(inode); 3121 3122 if (ret == -ENOSPC && 3123 ext4_should_retry_alloc(inode->i_sb, &retries)) 3124 goto retry_journal; 3125 3126 put_page(page); 3127 return ret; 3128 } 3129 3130 *pagep = page; 3131 return ret; 3132 } 3133 3134 /* 3135 * Check if we should update i_disksize 3136 * when write to the end of file but not require block allocation 3137 */ 3138 static int ext4_da_should_update_i_disksize(struct page *page, 3139 unsigned long offset) 3140 { 3141 struct buffer_head *bh; 3142 struct inode *inode = page->mapping->host; 3143 unsigned int idx; 3144 int i; 3145 3146 bh = page_buffers(page); 3147 idx = offset >> inode->i_blkbits; 3148 3149 for (i = 0; i < idx; i++) 3150 bh = bh->b_this_page; 3151 3152 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 3153 return 0; 3154 return 1; 3155 } 3156 3157 static int ext4_da_write_end(struct file *file, 3158 struct address_space *mapping, 3159 loff_t pos, unsigned len, unsigned copied, 3160 struct page *page, void *fsdata) 3161 { 3162 struct inode *inode = mapping->host; 3163 int ret = 0, ret2; 3164 handle_t *handle = ext4_journal_current_handle(); 3165 loff_t new_i_size; 3166 unsigned long start, end; 3167 int write_mode = (int)(unsigned long)fsdata; 3168 3169 if (write_mode == FALL_BACK_TO_NONDELALLOC) 3170 return ext4_write_end(file, mapping, pos, 3171 len, copied, page, fsdata); 3172 3173 trace_ext4_da_write_end(inode, pos, len, copied); 3174 start = pos & (PAGE_SIZE - 1); 3175 end = start + copied - 1; 3176 3177 /* 3178 * generic_write_end() will run mark_inode_dirty() if i_size 3179 * changes. So let's piggyback the i_disksize mark_inode_dirty 3180 * into that. 3181 */ 3182 new_i_size = pos + copied; 3183 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 3184 if (ext4_has_inline_data(inode) || 3185 ext4_da_should_update_i_disksize(page, end)) { 3186 ext4_update_i_disksize(inode, new_i_size); 3187 /* We need to mark inode dirty even if 3188 * new_i_size is less that inode->i_size 3189 * bu greater than i_disksize.(hint delalloc) 3190 */ 3191 ext4_mark_inode_dirty(handle, inode); 3192 } 3193 } 3194 3195 if (write_mode != CONVERT_INLINE_DATA && 3196 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3197 ext4_has_inline_data(inode)) 3198 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 3199 page); 3200 else 3201 ret2 = generic_write_end(file, mapping, pos, len, copied, 3202 page, fsdata); 3203 3204 copied = ret2; 3205 if (ret2 < 0) 3206 ret = ret2; 3207 ret2 = ext4_journal_stop(handle); 3208 if (!ret) 3209 ret = ret2; 3210 3211 return ret ? ret : copied; 3212 } 3213 3214 static void ext4_da_invalidatepage(struct page *page, unsigned int offset, 3215 unsigned int length) 3216 { 3217 /* 3218 * Drop reserved blocks 3219 */ 3220 BUG_ON(!PageLocked(page)); 3221 if (!page_has_buffers(page)) 3222 goto out; 3223 3224 ext4_da_page_release_reservation(page, offset, length); 3225 3226 out: 3227 ext4_invalidatepage(page, offset, length); 3228 3229 return; 3230 } 3231 3232 /* 3233 * Force all delayed allocation blocks to be allocated for a given inode. 3234 */ 3235 int ext4_alloc_da_blocks(struct inode *inode) 3236 { 3237 trace_ext4_alloc_da_blocks(inode); 3238 3239 if (!EXT4_I(inode)->i_reserved_data_blocks) 3240 return 0; 3241 3242 /* 3243 * We do something simple for now. The filemap_flush() will 3244 * also start triggering a write of the data blocks, which is 3245 * not strictly speaking necessary (and for users of 3246 * laptop_mode, not even desirable). However, to do otherwise 3247 * would require replicating code paths in: 3248 * 3249 * ext4_writepages() -> 3250 * write_cache_pages() ---> (via passed in callback function) 3251 * __mpage_da_writepage() --> 3252 * mpage_add_bh_to_extent() 3253 * mpage_da_map_blocks() 3254 * 3255 * The problem is that write_cache_pages(), located in 3256 * mm/page-writeback.c, marks pages clean in preparation for 3257 * doing I/O, which is not desirable if we're not planning on 3258 * doing I/O at all. 3259 * 3260 * We could call write_cache_pages(), and then redirty all of 3261 * the pages by calling redirty_page_for_writepage() but that 3262 * would be ugly in the extreme. So instead we would need to 3263 * replicate parts of the code in the above functions, 3264 * simplifying them because we wouldn't actually intend to 3265 * write out the pages, but rather only collect contiguous 3266 * logical block extents, call the multi-block allocator, and 3267 * then update the buffer heads with the block allocations. 3268 * 3269 * For now, though, we'll cheat by calling filemap_flush(), 3270 * which will map the blocks, and start the I/O, but not 3271 * actually wait for the I/O to complete. 3272 */ 3273 return filemap_flush(inode->i_mapping); 3274 } 3275 3276 /* 3277 * bmap() is special. It gets used by applications such as lilo and by 3278 * the swapper to find the on-disk block of a specific piece of data. 3279 * 3280 * Naturally, this is dangerous if the block concerned is still in the 3281 * journal. If somebody makes a swapfile on an ext4 data-journaling 3282 * filesystem and enables swap, then they may get a nasty shock when the 3283 * data getting swapped to that swapfile suddenly gets overwritten by 3284 * the original zero's written out previously to the journal and 3285 * awaiting writeback in the kernel's buffer cache. 3286 * 3287 * So, if we see any bmap calls here on a modified, data-journaled file, 3288 * take extra steps to flush any blocks which might be in the cache. 3289 */ 3290 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3291 { 3292 struct inode *inode = mapping->host; 3293 journal_t *journal; 3294 int err; 3295 3296 /* 3297 * We can get here for an inline file via the FIBMAP ioctl 3298 */ 3299 if (ext4_has_inline_data(inode)) 3300 return 0; 3301 3302 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3303 test_opt(inode->i_sb, DELALLOC)) { 3304 /* 3305 * With delalloc we want to sync the file 3306 * so that we can make sure we allocate 3307 * blocks for file 3308 */ 3309 filemap_write_and_wait(mapping); 3310 } 3311 3312 if (EXT4_JOURNAL(inode) && 3313 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 3314 /* 3315 * This is a REALLY heavyweight approach, but the use of 3316 * bmap on dirty files is expected to be extremely rare: 3317 * only if we run lilo or swapon on a freshly made file 3318 * do we expect this to happen. 3319 * 3320 * (bmap requires CAP_SYS_RAWIO so this does not 3321 * represent an unprivileged user DOS attack --- we'd be 3322 * in trouble if mortal users could trigger this path at 3323 * will.) 3324 * 3325 * NB. EXT4_STATE_JDATA is not set on files other than 3326 * regular files. If somebody wants to bmap a directory 3327 * or symlink and gets confused because the buffer 3328 * hasn't yet been flushed to disk, they deserve 3329 * everything they get. 3330 */ 3331 3332 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 3333 journal = EXT4_JOURNAL(inode); 3334 jbd2_journal_lock_updates(journal); 3335 err = jbd2_journal_flush(journal); 3336 jbd2_journal_unlock_updates(journal); 3337 3338 if (err) 3339 return 0; 3340 } 3341 3342 return generic_block_bmap(mapping, block, ext4_get_block); 3343 } 3344 3345 static int ext4_readpage(struct file *file, struct page *page) 3346 { 3347 int ret = -EAGAIN; 3348 struct inode *inode = page->mapping->host; 3349 3350 trace_ext4_readpage(page); 3351 3352 if (ext4_has_inline_data(inode)) 3353 ret = ext4_readpage_inline(inode, page); 3354 3355 if (ret == -EAGAIN) 3356 return ext4_mpage_readpages(page->mapping, NULL, page, 1, 3357 false); 3358 3359 return ret; 3360 } 3361 3362 static int 3363 ext4_readpages(struct file *file, struct address_space *mapping, 3364 struct list_head *pages, unsigned nr_pages) 3365 { 3366 struct inode *inode = mapping->host; 3367 3368 /* If the file has inline data, no need to do readpages. */ 3369 if (ext4_has_inline_data(inode)) 3370 return 0; 3371 3372 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages, true); 3373 } 3374 3375 static void ext4_invalidatepage(struct page *page, unsigned int offset, 3376 unsigned int length) 3377 { 3378 trace_ext4_invalidatepage(page, offset, length); 3379 3380 /* No journalling happens on data buffers when this function is used */ 3381 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 3382 3383 block_invalidatepage(page, offset, length); 3384 } 3385 3386 static int __ext4_journalled_invalidatepage(struct page *page, 3387 unsigned int offset, 3388 unsigned int length) 3389 { 3390 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3391 3392 trace_ext4_journalled_invalidatepage(page, offset, length); 3393 3394 /* 3395 * If it's a full truncate we just forget about the pending dirtying 3396 */ 3397 if (offset == 0 && length == PAGE_SIZE) 3398 ClearPageChecked(page); 3399 3400 return jbd2_journal_invalidatepage(journal, page, offset, length); 3401 } 3402 3403 /* Wrapper for aops... */ 3404 static void ext4_journalled_invalidatepage(struct page *page, 3405 unsigned int offset, 3406 unsigned int length) 3407 { 3408 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 3409 } 3410 3411 static int ext4_releasepage(struct page *page, gfp_t wait) 3412 { 3413 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3414 3415 trace_ext4_releasepage(page); 3416 3417 /* Page has dirty journalled data -> cannot release */ 3418 if (PageChecked(page)) 3419 return 0; 3420 if (journal) 3421 return jbd2_journal_try_to_free_buffers(journal, page, wait); 3422 else 3423 return try_to_free_buffers(page); 3424 } 3425 3426 static bool ext4_inode_datasync_dirty(struct inode *inode) 3427 { 3428 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 3429 3430 if (journal) 3431 return !jbd2_transaction_committed(journal, 3432 EXT4_I(inode)->i_datasync_tid); 3433 /* Any metadata buffers to write? */ 3434 if (!list_empty(&inode->i_mapping->private_list)) 3435 return true; 3436 return inode->i_state & I_DIRTY_DATASYNC; 3437 } 3438 3439 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3440 unsigned flags, struct iomap *iomap) 3441 { 3442 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3443 unsigned int blkbits = inode->i_blkbits; 3444 unsigned long first_block, last_block; 3445 struct ext4_map_blocks map; 3446 bool delalloc = false; 3447 int ret; 3448 3449 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3450 return -EINVAL; 3451 first_block = offset >> blkbits; 3452 last_block = min_t(loff_t, (offset + length - 1) >> blkbits, 3453 EXT4_MAX_LOGICAL_BLOCK); 3454 3455 if (flags & IOMAP_REPORT) { 3456 if (ext4_has_inline_data(inode)) { 3457 ret = ext4_inline_data_iomap(inode, iomap); 3458 if (ret != -EAGAIN) { 3459 if (ret == 0 && offset >= iomap->length) 3460 ret = -ENOENT; 3461 return ret; 3462 } 3463 } 3464 } else { 3465 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3466 return -ERANGE; 3467 } 3468 3469 map.m_lblk = first_block; 3470 map.m_len = last_block - first_block + 1; 3471 3472 if (flags & IOMAP_REPORT) { 3473 ret = ext4_map_blocks(NULL, inode, &map, 0); 3474 if (ret < 0) 3475 return ret; 3476 3477 if (ret == 0) { 3478 ext4_lblk_t end = map.m_lblk + map.m_len - 1; 3479 struct extent_status es; 3480 3481 ext4_es_find_extent_range(inode, &ext4_es_is_delayed, 3482 map.m_lblk, end, &es); 3483 3484 if (!es.es_len || es.es_lblk > end) { 3485 /* entire range is a hole */ 3486 } else if (es.es_lblk > map.m_lblk) { 3487 /* range starts with a hole */ 3488 map.m_len = es.es_lblk - map.m_lblk; 3489 } else { 3490 ext4_lblk_t offs = 0; 3491 3492 if (es.es_lblk < map.m_lblk) 3493 offs = map.m_lblk - es.es_lblk; 3494 map.m_lblk = es.es_lblk + offs; 3495 map.m_len = es.es_len - offs; 3496 delalloc = true; 3497 } 3498 } 3499 } else if (flags & IOMAP_WRITE) { 3500 int dio_credits; 3501 handle_t *handle; 3502 int retries = 0; 3503 3504 /* Trim mapping request to maximum we can map at once for DIO */ 3505 if (map.m_len > DIO_MAX_BLOCKS) 3506 map.m_len = DIO_MAX_BLOCKS; 3507 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 3508 retry: 3509 /* 3510 * Either we allocate blocks and then we don't get unwritten 3511 * extent so we have reserved enough credits, or the blocks 3512 * are already allocated and unwritten and in that case 3513 * extent conversion fits in the credits as well. 3514 */ 3515 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 3516 dio_credits); 3517 if (IS_ERR(handle)) 3518 return PTR_ERR(handle); 3519 3520 ret = ext4_map_blocks(handle, inode, &map, 3521 EXT4_GET_BLOCKS_CREATE_ZERO); 3522 if (ret < 0) { 3523 ext4_journal_stop(handle); 3524 if (ret == -ENOSPC && 3525 ext4_should_retry_alloc(inode->i_sb, &retries)) 3526 goto retry; 3527 return ret; 3528 } 3529 3530 /* 3531 * If we added blocks beyond i_size, we need to make sure they 3532 * will get truncated if we crash before updating i_size in 3533 * ext4_iomap_end(). For faults we don't need to do that (and 3534 * even cannot because for orphan list operations inode_lock is 3535 * required) - if we happen to instantiate block beyond i_size, 3536 * it is because we race with truncate which has already added 3537 * the inode to the orphan list. 3538 */ 3539 if (!(flags & IOMAP_FAULT) && first_block + map.m_len > 3540 (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) { 3541 int err; 3542 3543 err = ext4_orphan_add(handle, inode); 3544 if (err < 0) { 3545 ext4_journal_stop(handle); 3546 return err; 3547 } 3548 } 3549 ext4_journal_stop(handle); 3550 } else { 3551 ret = ext4_map_blocks(NULL, inode, &map, 0); 3552 if (ret < 0) 3553 return ret; 3554 } 3555 3556 iomap->flags = 0; 3557 if (ext4_inode_datasync_dirty(inode)) 3558 iomap->flags |= IOMAP_F_DIRTY; 3559 iomap->bdev = inode->i_sb->s_bdev; 3560 iomap->dax_dev = sbi->s_daxdev; 3561 iomap->offset = (u64)first_block << blkbits; 3562 iomap->length = (u64)map.m_len << blkbits; 3563 3564 if (ret == 0) { 3565 iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE; 3566 iomap->addr = IOMAP_NULL_ADDR; 3567 } else { 3568 if (map.m_flags & EXT4_MAP_MAPPED) { 3569 iomap->type = IOMAP_MAPPED; 3570 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) { 3571 iomap->type = IOMAP_UNWRITTEN; 3572 } else { 3573 WARN_ON_ONCE(1); 3574 return -EIO; 3575 } 3576 iomap->addr = (u64)map.m_pblk << blkbits; 3577 } 3578 3579 if (map.m_flags & EXT4_MAP_NEW) 3580 iomap->flags |= IOMAP_F_NEW; 3581 3582 return 0; 3583 } 3584 3585 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, 3586 ssize_t written, unsigned flags, struct iomap *iomap) 3587 { 3588 int ret = 0; 3589 handle_t *handle; 3590 int blkbits = inode->i_blkbits; 3591 bool truncate = false; 3592 3593 if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT)) 3594 return 0; 3595 3596 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3597 if (IS_ERR(handle)) { 3598 ret = PTR_ERR(handle); 3599 goto orphan_del; 3600 } 3601 if (ext4_update_inode_size(inode, offset + written)) 3602 ext4_mark_inode_dirty(handle, inode); 3603 /* 3604 * We may need to truncate allocated but not written blocks beyond EOF. 3605 */ 3606 if (iomap->offset + iomap->length > 3607 ALIGN(inode->i_size, 1 << blkbits)) { 3608 ext4_lblk_t written_blk, end_blk; 3609 3610 written_blk = (offset + written) >> blkbits; 3611 end_blk = (offset + length) >> blkbits; 3612 if (written_blk < end_blk && ext4_can_truncate(inode)) 3613 truncate = true; 3614 } 3615 /* 3616 * Remove inode from orphan list if we were extending a inode and 3617 * everything went fine. 3618 */ 3619 if (!truncate && inode->i_nlink && 3620 !list_empty(&EXT4_I(inode)->i_orphan)) 3621 ext4_orphan_del(handle, inode); 3622 ext4_journal_stop(handle); 3623 if (truncate) { 3624 ext4_truncate_failed_write(inode); 3625 orphan_del: 3626 /* 3627 * If truncate failed early the inode might still be on the 3628 * orphan list; we need to make sure the inode is removed from 3629 * the orphan list in that case. 3630 */ 3631 if (inode->i_nlink) 3632 ext4_orphan_del(NULL, inode); 3633 } 3634 return ret; 3635 } 3636 3637 const struct iomap_ops ext4_iomap_ops = { 3638 .iomap_begin = ext4_iomap_begin, 3639 .iomap_end = ext4_iomap_end, 3640 }; 3641 3642 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 3643 ssize_t size, void *private) 3644 { 3645 ext4_io_end_t *io_end = private; 3646 3647 /* if not async direct IO just return */ 3648 if (!io_end) 3649 return 0; 3650 3651 ext_debug("ext4_end_io_dio(): io_end 0x%p " 3652 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", 3653 io_end, io_end->inode->i_ino, iocb, offset, size); 3654 3655 /* 3656 * Error during AIO DIO. We cannot convert unwritten extents as the 3657 * data was not written. Just clear the unwritten flag and drop io_end. 3658 */ 3659 if (size <= 0) { 3660 ext4_clear_io_unwritten_flag(io_end); 3661 size = 0; 3662 } 3663 io_end->offset = offset; 3664 io_end->size = size; 3665 ext4_put_io_end(io_end); 3666 3667 return 0; 3668 } 3669 3670 /* 3671 * Handling of direct IO writes. 3672 * 3673 * For ext4 extent files, ext4 will do direct-io write even to holes, 3674 * preallocated extents, and those write extend the file, no need to 3675 * fall back to buffered IO. 3676 * 3677 * For holes, we fallocate those blocks, mark them as unwritten 3678 * If those blocks were preallocated, we mark sure they are split, but 3679 * still keep the range to write as unwritten. 3680 * 3681 * The unwritten extents will be converted to written when DIO is completed. 3682 * For async direct IO, since the IO may still pending when return, we 3683 * set up an end_io call back function, which will do the conversion 3684 * when async direct IO completed. 3685 * 3686 * If the O_DIRECT write will extend the file then add this inode to the 3687 * orphan list. So recovery will truncate it back to the original size 3688 * if the machine crashes during the write. 3689 * 3690 */ 3691 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter) 3692 { 3693 struct file *file = iocb->ki_filp; 3694 struct inode *inode = file->f_mapping->host; 3695 struct ext4_inode_info *ei = EXT4_I(inode); 3696 ssize_t ret; 3697 loff_t offset = iocb->ki_pos; 3698 size_t count = iov_iter_count(iter); 3699 int overwrite = 0; 3700 get_block_t *get_block_func = NULL; 3701 int dio_flags = 0; 3702 loff_t final_size = offset + count; 3703 int orphan = 0; 3704 handle_t *handle; 3705 3706 if (final_size > inode->i_size || final_size > ei->i_disksize) { 3707 /* Credits for sb + inode write */ 3708 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3709 if (IS_ERR(handle)) { 3710 ret = PTR_ERR(handle); 3711 goto out; 3712 } 3713 ret = ext4_orphan_add(handle, inode); 3714 if (ret) { 3715 ext4_journal_stop(handle); 3716 goto out; 3717 } 3718 orphan = 1; 3719 ext4_update_i_disksize(inode, inode->i_size); 3720 ext4_journal_stop(handle); 3721 } 3722 3723 BUG_ON(iocb->private == NULL); 3724 3725 /* 3726 * Make all waiters for direct IO properly wait also for extent 3727 * conversion. This also disallows race between truncate() and 3728 * overwrite DIO as i_dio_count needs to be incremented under i_mutex. 3729 */ 3730 inode_dio_begin(inode); 3731 3732 /* If we do a overwrite dio, i_mutex locking can be released */ 3733 overwrite = *((int *)iocb->private); 3734 3735 if (overwrite) 3736 inode_unlock(inode); 3737 3738 /* 3739 * For extent mapped files we could direct write to holes and fallocate. 3740 * 3741 * Allocated blocks to fill the hole are marked as unwritten to prevent 3742 * parallel buffered read to expose the stale data before DIO complete 3743 * the data IO. 3744 * 3745 * As to previously fallocated extents, ext4 get_block will just simply 3746 * mark the buffer mapped but still keep the extents unwritten. 3747 * 3748 * For non AIO case, we will convert those unwritten extents to written 3749 * after return back from blockdev_direct_IO. That way we save us from 3750 * allocating io_end structure and also the overhead of offloading 3751 * the extent convertion to a workqueue. 3752 * 3753 * For async DIO, the conversion needs to be deferred when the 3754 * IO is completed. The ext4 end_io callback function will be 3755 * called to take care of the conversion work. Here for async 3756 * case, we allocate an io_end structure to hook to the iocb. 3757 */ 3758 iocb->private = NULL; 3759 if (overwrite) 3760 get_block_func = ext4_dio_get_block_overwrite; 3761 else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) || 3762 round_down(offset, i_blocksize(inode)) >= inode->i_size) { 3763 get_block_func = ext4_dio_get_block; 3764 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES; 3765 } else if (is_sync_kiocb(iocb)) { 3766 get_block_func = ext4_dio_get_block_unwritten_sync; 3767 dio_flags = DIO_LOCKING; 3768 } else { 3769 get_block_func = ext4_dio_get_block_unwritten_async; 3770 dio_flags = DIO_LOCKING; 3771 } 3772 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter, 3773 get_block_func, ext4_end_io_dio, NULL, 3774 dio_flags); 3775 3776 if (ret > 0 && !overwrite && ext4_test_inode_state(inode, 3777 EXT4_STATE_DIO_UNWRITTEN)) { 3778 int err; 3779 /* 3780 * for non AIO case, since the IO is already 3781 * completed, we could do the conversion right here 3782 */ 3783 err = ext4_convert_unwritten_extents(NULL, inode, 3784 offset, ret); 3785 if (err < 0) 3786 ret = err; 3787 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3788 } 3789 3790 inode_dio_end(inode); 3791 /* take i_mutex locking again if we do a ovewrite dio */ 3792 if (overwrite) 3793 inode_lock(inode); 3794 3795 if (ret < 0 && final_size > inode->i_size) 3796 ext4_truncate_failed_write(inode); 3797 3798 /* Handle extending of i_size after direct IO write */ 3799 if (orphan) { 3800 int err; 3801 3802 /* Credits for sb + inode write */ 3803 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3804 if (IS_ERR(handle)) { 3805 /* 3806 * We wrote the data but cannot extend 3807 * i_size. Bail out. In async io case, we do 3808 * not return error here because we have 3809 * already submmitted the corresponding 3810 * bio. Returning error here makes the caller 3811 * think that this IO is done and failed 3812 * resulting in race with bio's completion 3813 * handler. 3814 */ 3815 if (!ret) 3816 ret = PTR_ERR(handle); 3817 if (inode->i_nlink) 3818 ext4_orphan_del(NULL, inode); 3819 3820 goto out; 3821 } 3822 if (inode->i_nlink) 3823 ext4_orphan_del(handle, inode); 3824 if (ret > 0) { 3825 loff_t end = offset + ret; 3826 if (end > inode->i_size || end > ei->i_disksize) { 3827 ext4_update_i_disksize(inode, end); 3828 if (end > inode->i_size) 3829 i_size_write(inode, end); 3830 /* 3831 * We're going to return a positive `ret' 3832 * here due to non-zero-length I/O, so there's 3833 * no way of reporting error returns from 3834 * ext4_mark_inode_dirty() to userspace. So 3835 * ignore it. 3836 */ 3837 ext4_mark_inode_dirty(handle, inode); 3838 } 3839 } 3840 err = ext4_journal_stop(handle); 3841 if (ret == 0) 3842 ret = err; 3843 } 3844 out: 3845 return ret; 3846 } 3847 3848 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter) 3849 { 3850 struct address_space *mapping = iocb->ki_filp->f_mapping; 3851 struct inode *inode = mapping->host; 3852 size_t count = iov_iter_count(iter); 3853 ssize_t ret; 3854 3855 /* 3856 * Shared inode_lock is enough for us - it protects against concurrent 3857 * writes & truncates and since we take care of writing back page cache, 3858 * we are protected against page writeback as well. 3859 */ 3860 inode_lock_shared(inode); 3861 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos, 3862 iocb->ki_pos + count - 1); 3863 if (ret) 3864 goto out_unlock; 3865 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, 3866 iter, ext4_dio_get_block, NULL, NULL, 0); 3867 out_unlock: 3868 inode_unlock_shared(inode); 3869 return ret; 3870 } 3871 3872 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 3873 { 3874 struct file *file = iocb->ki_filp; 3875 struct inode *inode = file->f_mapping->host; 3876 size_t count = iov_iter_count(iter); 3877 loff_t offset = iocb->ki_pos; 3878 ssize_t ret; 3879 3880 #ifdef CONFIG_FS_ENCRYPTION 3881 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) 3882 return 0; 3883 #endif 3884 3885 /* 3886 * If we are doing data journalling we don't support O_DIRECT 3887 */ 3888 if (ext4_should_journal_data(inode)) 3889 return 0; 3890 3891 /* Let buffer I/O handle the inline data case. */ 3892 if (ext4_has_inline_data(inode)) 3893 return 0; 3894 3895 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter)); 3896 if (iov_iter_rw(iter) == READ) 3897 ret = ext4_direct_IO_read(iocb, iter); 3898 else 3899 ret = ext4_direct_IO_write(iocb, iter); 3900 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret); 3901 return ret; 3902 } 3903 3904 /* 3905 * Pages can be marked dirty completely asynchronously from ext4's journalling 3906 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3907 * much here because ->set_page_dirty is called under VFS locks. The page is 3908 * not necessarily locked. 3909 * 3910 * We cannot just dirty the page and leave attached buffers clean, because the 3911 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3912 * or jbddirty because all the journalling code will explode. 3913 * 3914 * So what we do is to mark the page "pending dirty" and next time writepage 3915 * is called, propagate that into the buffers appropriately. 3916 */ 3917 static int ext4_journalled_set_page_dirty(struct page *page) 3918 { 3919 SetPageChecked(page); 3920 return __set_page_dirty_nobuffers(page); 3921 } 3922 3923 static int ext4_set_page_dirty(struct page *page) 3924 { 3925 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page)); 3926 WARN_ON_ONCE(!page_has_buffers(page)); 3927 return __set_page_dirty_buffers(page); 3928 } 3929 3930 static const struct address_space_operations ext4_aops = { 3931 .readpage = ext4_readpage, 3932 .readpages = ext4_readpages, 3933 .writepage = ext4_writepage, 3934 .writepages = ext4_writepages, 3935 .write_begin = ext4_write_begin, 3936 .write_end = ext4_write_end, 3937 .set_page_dirty = ext4_set_page_dirty, 3938 .bmap = ext4_bmap, 3939 .invalidatepage = ext4_invalidatepage, 3940 .releasepage = ext4_releasepage, 3941 .direct_IO = ext4_direct_IO, 3942 .migratepage = buffer_migrate_page, 3943 .is_partially_uptodate = block_is_partially_uptodate, 3944 .error_remove_page = generic_error_remove_page, 3945 }; 3946 3947 static const struct address_space_operations ext4_journalled_aops = { 3948 .readpage = ext4_readpage, 3949 .readpages = ext4_readpages, 3950 .writepage = ext4_writepage, 3951 .writepages = ext4_writepages, 3952 .write_begin = ext4_write_begin, 3953 .write_end = ext4_journalled_write_end, 3954 .set_page_dirty = ext4_journalled_set_page_dirty, 3955 .bmap = ext4_bmap, 3956 .invalidatepage = ext4_journalled_invalidatepage, 3957 .releasepage = ext4_releasepage, 3958 .direct_IO = ext4_direct_IO, 3959 .is_partially_uptodate = block_is_partially_uptodate, 3960 .error_remove_page = generic_error_remove_page, 3961 }; 3962 3963 static const struct address_space_operations ext4_da_aops = { 3964 .readpage = ext4_readpage, 3965 .readpages = ext4_readpages, 3966 .writepage = ext4_writepage, 3967 .writepages = ext4_writepages, 3968 .write_begin = ext4_da_write_begin, 3969 .write_end = ext4_da_write_end, 3970 .set_page_dirty = ext4_set_page_dirty, 3971 .bmap = ext4_bmap, 3972 .invalidatepage = ext4_da_invalidatepage, 3973 .releasepage = ext4_releasepage, 3974 .direct_IO = ext4_direct_IO, 3975 .migratepage = buffer_migrate_page, 3976 .is_partially_uptodate = block_is_partially_uptodate, 3977 .error_remove_page = generic_error_remove_page, 3978 }; 3979 3980 static const struct address_space_operations ext4_dax_aops = { 3981 .writepages = ext4_dax_writepages, 3982 .direct_IO = noop_direct_IO, 3983 .set_page_dirty = noop_set_page_dirty, 3984 .bmap = ext4_bmap, 3985 .invalidatepage = noop_invalidatepage, 3986 }; 3987 3988 void ext4_set_aops(struct inode *inode) 3989 { 3990 switch (ext4_inode_journal_mode(inode)) { 3991 case EXT4_INODE_ORDERED_DATA_MODE: 3992 case EXT4_INODE_WRITEBACK_DATA_MODE: 3993 break; 3994 case EXT4_INODE_JOURNAL_DATA_MODE: 3995 inode->i_mapping->a_ops = &ext4_journalled_aops; 3996 return; 3997 default: 3998 BUG(); 3999 } 4000 if (IS_DAX(inode)) 4001 inode->i_mapping->a_ops = &ext4_dax_aops; 4002 else if (test_opt(inode->i_sb, DELALLOC)) 4003 inode->i_mapping->a_ops = &ext4_da_aops; 4004 else 4005 inode->i_mapping->a_ops = &ext4_aops; 4006 } 4007 4008 static int __ext4_block_zero_page_range(handle_t *handle, 4009 struct address_space *mapping, loff_t from, loff_t length) 4010 { 4011 ext4_fsblk_t index = from >> PAGE_SHIFT; 4012 unsigned offset = from & (PAGE_SIZE-1); 4013 unsigned blocksize, pos; 4014 ext4_lblk_t iblock; 4015 struct inode *inode = mapping->host; 4016 struct buffer_head *bh; 4017 struct page *page; 4018 int err = 0; 4019 4020 page = find_or_create_page(mapping, from >> PAGE_SHIFT, 4021 mapping_gfp_constraint(mapping, ~__GFP_FS)); 4022 if (!page) 4023 return -ENOMEM; 4024 4025 blocksize = inode->i_sb->s_blocksize; 4026 4027 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 4028 4029 if (!page_has_buffers(page)) 4030 create_empty_buffers(page, blocksize, 0); 4031 4032 /* Find the buffer that contains "offset" */ 4033 bh = page_buffers(page); 4034 pos = blocksize; 4035 while (offset >= pos) { 4036 bh = bh->b_this_page; 4037 iblock++; 4038 pos += blocksize; 4039 } 4040 if (buffer_freed(bh)) { 4041 BUFFER_TRACE(bh, "freed: skip"); 4042 goto unlock; 4043 } 4044 if (!buffer_mapped(bh)) { 4045 BUFFER_TRACE(bh, "unmapped"); 4046 ext4_get_block(inode, iblock, bh, 0); 4047 /* unmapped? It's a hole - nothing to do */ 4048 if (!buffer_mapped(bh)) { 4049 BUFFER_TRACE(bh, "still unmapped"); 4050 goto unlock; 4051 } 4052 } 4053 4054 /* Ok, it's mapped. Make sure it's up-to-date */ 4055 if (PageUptodate(page)) 4056 set_buffer_uptodate(bh); 4057 4058 if (!buffer_uptodate(bh)) { 4059 err = -EIO; 4060 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 4061 wait_on_buffer(bh); 4062 /* Uhhuh. Read error. Complain and punt. */ 4063 if (!buffer_uptodate(bh)) 4064 goto unlock; 4065 if (S_ISREG(inode->i_mode) && IS_ENCRYPTED(inode)) { 4066 /* We expect the key to be set. */ 4067 BUG_ON(!fscrypt_has_encryption_key(inode)); 4068 BUG_ON(blocksize != PAGE_SIZE); 4069 WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host, 4070 page, PAGE_SIZE, 0, page->index)); 4071 } 4072 } 4073 if (ext4_should_journal_data(inode)) { 4074 BUFFER_TRACE(bh, "get write access"); 4075 err = ext4_journal_get_write_access(handle, bh); 4076 if (err) 4077 goto unlock; 4078 } 4079 zero_user(page, offset, length); 4080 BUFFER_TRACE(bh, "zeroed end of block"); 4081 4082 if (ext4_should_journal_data(inode)) { 4083 err = ext4_handle_dirty_metadata(handle, inode, bh); 4084 } else { 4085 err = 0; 4086 mark_buffer_dirty(bh); 4087 if (ext4_should_order_data(inode)) 4088 err = ext4_jbd2_inode_add_write(handle, inode); 4089 } 4090 4091 unlock: 4092 unlock_page(page); 4093 put_page(page); 4094 return err; 4095 } 4096 4097 /* 4098 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 4099 * starting from file offset 'from'. The range to be zero'd must 4100 * be contained with in one block. If the specified range exceeds 4101 * the end of the block it will be shortened to end of the block 4102 * that cooresponds to 'from' 4103 */ 4104 static int ext4_block_zero_page_range(handle_t *handle, 4105 struct address_space *mapping, loff_t from, loff_t length) 4106 { 4107 struct inode *inode = mapping->host; 4108 unsigned offset = from & (PAGE_SIZE-1); 4109 unsigned blocksize = inode->i_sb->s_blocksize; 4110 unsigned max = blocksize - (offset & (blocksize - 1)); 4111 4112 /* 4113 * correct length if it does not fall between 4114 * 'from' and the end of the block 4115 */ 4116 if (length > max || length < 0) 4117 length = max; 4118 4119 if (IS_DAX(inode)) { 4120 return iomap_zero_range(inode, from, length, NULL, 4121 &ext4_iomap_ops); 4122 } 4123 return __ext4_block_zero_page_range(handle, mapping, from, length); 4124 } 4125 4126 /* 4127 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 4128 * up to the end of the block which corresponds to `from'. 4129 * This required during truncate. We need to physically zero the tail end 4130 * of that block so it doesn't yield old data if the file is later grown. 4131 */ 4132 static int ext4_block_truncate_page(handle_t *handle, 4133 struct address_space *mapping, loff_t from) 4134 { 4135 unsigned offset = from & (PAGE_SIZE-1); 4136 unsigned length; 4137 unsigned blocksize; 4138 struct inode *inode = mapping->host; 4139 4140 /* If we are processing an encrypted inode during orphan list handling */ 4141 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode)) 4142 return 0; 4143 4144 blocksize = inode->i_sb->s_blocksize; 4145 length = blocksize - (offset & (blocksize - 1)); 4146 4147 return ext4_block_zero_page_range(handle, mapping, from, length); 4148 } 4149 4150 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 4151 loff_t lstart, loff_t length) 4152 { 4153 struct super_block *sb = inode->i_sb; 4154 struct address_space *mapping = inode->i_mapping; 4155 unsigned partial_start, partial_end; 4156 ext4_fsblk_t start, end; 4157 loff_t byte_end = (lstart + length - 1); 4158 int err = 0; 4159 4160 partial_start = lstart & (sb->s_blocksize - 1); 4161 partial_end = byte_end & (sb->s_blocksize - 1); 4162 4163 start = lstart >> sb->s_blocksize_bits; 4164 end = byte_end >> sb->s_blocksize_bits; 4165 4166 /* Handle partial zero within the single block */ 4167 if (start == end && 4168 (partial_start || (partial_end != sb->s_blocksize - 1))) { 4169 err = ext4_block_zero_page_range(handle, mapping, 4170 lstart, length); 4171 return err; 4172 } 4173 /* Handle partial zero out on the start of the range */ 4174 if (partial_start) { 4175 err = ext4_block_zero_page_range(handle, mapping, 4176 lstart, sb->s_blocksize); 4177 if (err) 4178 return err; 4179 } 4180 /* Handle partial zero out on the end of the range */ 4181 if (partial_end != sb->s_blocksize - 1) 4182 err = ext4_block_zero_page_range(handle, mapping, 4183 byte_end - partial_end, 4184 partial_end + 1); 4185 return err; 4186 } 4187 4188 int ext4_can_truncate(struct inode *inode) 4189 { 4190 if (S_ISREG(inode->i_mode)) 4191 return 1; 4192 if (S_ISDIR(inode->i_mode)) 4193 return 1; 4194 if (S_ISLNK(inode->i_mode)) 4195 return !ext4_inode_is_fast_symlink(inode); 4196 return 0; 4197 } 4198 4199 /* 4200 * We have to make sure i_disksize gets properly updated before we truncate 4201 * page cache due to hole punching or zero range. Otherwise i_disksize update 4202 * can get lost as it may have been postponed to submission of writeback but 4203 * that will never happen after we truncate page cache. 4204 */ 4205 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 4206 loff_t len) 4207 { 4208 handle_t *handle; 4209 loff_t size = i_size_read(inode); 4210 4211 WARN_ON(!inode_is_locked(inode)); 4212 if (offset > size || offset + len < size) 4213 return 0; 4214 4215 if (EXT4_I(inode)->i_disksize >= size) 4216 return 0; 4217 4218 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 4219 if (IS_ERR(handle)) 4220 return PTR_ERR(handle); 4221 ext4_update_i_disksize(inode, size); 4222 ext4_mark_inode_dirty(handle, inode); 4223 ext4_journal_stop(handle); 4224 4225 return 0; 4226 } 4227 4228 static void ext4_wait_dax_page(struct ext4_inode_info *ei) 4229 { 4230 up_write(&ei->i_mmap_sem); 4231 schedule(); 4232 down_write(&ei->i_mmap_sem); 4233 } 4234 4235 int ext4_break_layouts(struct inode *inode) 4236 { 4237 struct ext4_inode_info *ei = EXT4_I(inode); 4238 struct page *page; 4239 int error; 4240 4241 if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem))) 4242 return -EINVAL; 4243 4244 do { 4245 page = dax_layout_busy_page(inode->i_mapping); 4246 if (!page) 4247 return 0; 4248 4249 error = ___wait_var_event(&page->_refcount, 4250 atomic_read(&page->_refcount) == 1, 4251 TASK_INTERRUPTIBLE, 0, 0, 4252 ext4_wait_dax_page(ei)); 4253 } while (error == 0); 4254 4255 return error; 4256 } 4257 4258 /* 4259 * ext4_punch_hole: punches a hole in a file by releasing the blocks 4260 * associated with the given offset and length 4261 * 4262 * @inode: File inode 4263 * @offset: The offset where the hole will begin 4264 * @len: The length of the hole 4265 * 4266 * Returns: 0 on success or negative on failure 4267 */ 4268 4269 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 4270 { 4271 struct super_block *sb = inode->i_sb; 4272 ext4_lblk_t first_block, stop_block; 4273 struct address_space *mapping = inode->i_mapping; 4274 loff_t first_block_offset, last_block_offset; 4275 handle_t *handle; 4276 unsigned int credits; 4277 int ret = 0; 4278 4279 if (!S_ISREG(inode->i_mode)) 4280 return -EOPNOTSUPP; 4281 4282 trace_ext4_punch_hole(inode, offset, length, 0); 4283 4284 /* 4285 * Write out all dirty pages to avoid race conditions 4286 * Then release them. 4287 */ 4288 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 4289 ret = filemap_write_and_wait_range(mapping, offset, 4290 offset + length - 1); 4291 if (ret) 4292 return ret; 4293 } 4294 4295 inode_lock(inode); 4296 4297 /* No need to punch hole beyond i_size */ 4298 if (offset >= inode->i_size) 4299 goto out_mutex; 4300 4301 /* 4302 * If the hole extends beyond i_size, set the hole 4303 * to end after the page that contains i_size 4304 */ 4305 if (offset + length > inode->i_size) { 4306 length = inode->i_size + 4307 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) - 4308 offset; 4309 } 4310 4311 if (offset & (sb->s_blocksize - 1) || 4312 (offset + length) & (sb->s_blocksize - 1)) { 4313 /* 4314 * Attach jinode to inode for jbd2 if we do any zeroing of 4315 * partial block 4316 */ 4317 ret = ext4_inode_attach_jinode(inode); 4318 if (ret < 0) 4319 goto out_mutex; 4320 4321 } 4322 4323 /* Wait all existing dio workers, newcomers will block on i_mutex */ 4324 inode_dio_wait(inode); 4325 4326 /* 4327 * Prevent page faults from reinstantiating pages we have released from 4328 * page cache. 4329 */ 4330 down_write(&EXT4_I(inode)->i_mmap_sem); 4331 4332 ret = ext4_break_layouts(inode); 4333 if (ret) 4334 goto out_dio; 4335 4336 first_block_offset = round_up(offset, sb->s_blocksize); 4337 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 4338 4339 /* Now release the pages and zero block aligned part of pages*/ 4340 if (last_block_offset > first_block_offset) { 4341 ret = ext4_update_disksize_before_punch(inode, offset, length); 4342 if (ret) 4343 goto out_dio; 4344 truncate_pagecache_range(inode, first_block_offset, 4345 last_block_offset); 4346 } 4347 4348 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4349 credits = ext4_writepage_trans_blocks(inode); 4350 else 4351 credits = ext4_blocks_for_truncate(inode); 4352 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4353 if (IS_ERR(handle)) { 4354 ret = PTR_ERR(handle); 4355 ext4_std_error(sb, ret); 4356 goto out_dio; 4357 } 4358 4359 ret = ext4_zero_partial_blocks(handle, inode, offset, 4360 length); 4361 if (ret) 4362 goto out_stop; 4363 4364 first_block = (offset + sb->s_blocksize - 1) >> 4365 EXT4_BLOCK_SIZE_BITS(sb); 4366 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 4367 4368 /* If there are blocks to remove, do it */ 4369 if (stop_block > first_block) { 4370 4371 down_write(&EXT4_I(inode)->i_data_sem); 4372 ext4_discard_preallocations(inode); 4373 4374 ret = ext4_es_remove_extent(inode, first_block, 4375 stop_block - first_block); 4376 if (ret) { 4377 up_write(&EXT4_I(inode)->i_data_sem); 4378 goto out_stop; 4379 } 4380 4381 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4382 ret = ext4_ext_remove_space(inode, first_block, 4383 stop_block - 1); 4384 else 4385 ret = ext4_ind_remove_space(handle, inode, first_block, 4386 stop_block); 4387 4388 up_write(&EXT4_I(inode)->i_data_sem); 4389 } 4390 if (IS_SYNC(inode)) 4391 ext4_handle_sync(handle); 4392 4393 inode->i_mtime = inode->i_ctime = current_time(inode); 4394 ext4_mark_inode_dirty(handle, inode); 4395 if (ret >= 0) 4396 ext4_update_inode_fsync_trans(handle, inode, 1); 4397 out_stop: 4398 ext4_journal_stop(handle); 4399 out_dio: 4400 up_write(&EXT4_I(inode)->i_mmap_sem); 4401 out_mutex: 4402 inode_unlock(inode); 4403 return ret; 4404 } 4405 4406 int ext4_inode_attach_jinode(struct inode *inode) 4407 { 4408 struct ext4_inode_info *ei = EXT4_I(inode); 4409 struct jbd2_inode *jinode; 4410 4411 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4412 return 0; 4413 4414 jinode = jbd2_alloc_inode(GFP_KERNEL); 4415 spin_lock(&inode->i_lock); 4416 if (!ei->jinode) { 4417 if (!jinode) { 4418 spin_unlock(&inode->i_lock); 4419 return -ENOMEM; 4420 } 4421 ei->jinode = jinode; 4422 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4423 jinode = NULL; 4424 } 4425 spin_unlock(&inode->i_lock); 4426 if (unlikely(jinode != NULL)) 4427 jbd2_free_inode(jinode); 4428 return 0; 4429 } 4430 4431 /* 4432 * ext4_truncate() 4433 * 4434 * We block out ext4_get_block() block instantiations across the entire 4435 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4436 * simultaneously on behalf of the same inode. 4437 * 4438 * As we work through the truncate and commit bits of it to the journal there 4439 * is one core, guiding principle: the file's tree must always be consistent on 4440 * disk. We must be able to restart the truncate after a crash. 4441 * 4442 * The file's tree may be transiently inconsistent in memory (although it 4443 * probably isn't), but whenever we close off and commit a journal transaction, 4444 * the contents of (the filesystem + the journal) must be consistent and 4445 * restartable. It's pretty simple, really: bottom up, right to left (although 4446 * left-to-right works OK too). 4447 * 4448 * Note that at recovery time, journal replay occurs *before* the restart of 4449 * truncate against the orphan inode list. 4450 * 4451 * The committed inode has the new, desired i_size (which is the same as 4452 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4453 * that this inode's truncate did not complete and it will again call 4454 * ext4_truncate() to have another go. So there will be instantiated blocks 4455 * to the right of the truncation point in a crashed ext4 filesystem. But 4456 * that's fine - as long as they are linked from the inode, the post-crash 4457 * ext4_truncate() run will find them and release them. 4458 */ 4459 int ext4_truncate(struct inode *inode) 4460 { 4461 struct ext4_inode_info *ei = EXT4_I(inode); 4462 unsigned int credits; 4463 int err = 0; 4464 handle_t *handle; 4465 struct address_space *mapping = inode->i_mapping; 4466 4467 /* 4468 * There is a possibility that we're either freeing the inode 4469 * or it's a completely new inode. In those cases we might not 4470 * have i_mutex locked because it's not necessary. 4471 */ 4472 if (!(inode->i_state & (I_NEW|I_FREEING))) 4473 WARN_ON(!inode_is_locked(inode)); 4474 trace_ext4_truncate_enter(inode); 4475 4476 if (!ext4_can_truncate(inode)) 4477 return 0; 4478 4479 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 4480 4481 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4482 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4483 4484 if (ext4_has_inline_data(inode)) { 4485 int has_inline = 1; 4486 4487 err = ext4_inline_data_truncate(inode, &has_inline); 4488 if (err) 4489 return err; 4490 if (has_inline) 4491 return 0; 4492 } 4493 4494 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4495 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4496 if (ext4_inode_attach_jinode(inode) < 0) 4497 return 0; 4498 } 4499 4500 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4501 credits = ext4_writepage_trans_blocks(inode); 4502 else 4503 credits = ext4_blocks_for_truncate(inode); 4504 4505 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4506 if (IS_ERR(handle)) 4507 return PTR_ERR(handle); 4508 4509 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4510 ext4_block_truncate_page(handle, mapping, inode->i_size); 4511 4512 /* 4513 * We add the inode to the orphan list, so that if this 4514 * truncate spans multiple transactions, and we crash, we will 4515 * resume the truncate when the filesystem recovers. It also 4516 * marks the inode dirty, to catch the new size. 4517 * 4518 * Implication: the file must always be in a sane, consistent 4519 * truncatable state while each transaction commits. 4520 */ 4521 err = ext4_orphan_add(handle, inode); 4522 if (err) 4523 goto out_stop; 4524 4525 down_write(&EXT4_I(inode)->i_data_sem); 4526 4527 ext4_discard_preallocations(inode); 4528 4529 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4530 err = ext4_ext_truncate(handle, inode); 4531 else 4532 ext4_ind_truncate(handle, inode); 4533 4534 up_write(&ei->i_data_sem); 4535 if (err) 4536 goto out_stop; 4537 4538 if (IS_SYNC(inode)) 4539 ext4_handle_sync(handle); 4540 4541 out_stop: 4542 /* 4543 * If this was a simple ftruncate() and the file will remain alive, 4544 * then we need to clear up the orphan record which we created above. 4545 * However, if this was a real unlink then we were called by 4546 * ext4_evict_inode(), and we allow that function to clean up the 4547 * orphan info for us. 4548 */ 4549 if (inode->i_nlink) 4550 ext4_orphan_del(handle, inode); 4551 4552 inode->i_mtime = inode->i_ctime = current_time(inode); 4553 ext4_mark_inode_dirty(handle, inode); 4554 ext4_journal_stop(handle); 4555 4556 trace_ext4_truncate_exit(inode); 4557 return err; 4558 } 4559 4560 /* 4561 * ext4_get_inode_loc returns with an extra refcount against the inode's 4562 * underlying buffer_head on success. If 'in_mem' is true, we have all 4563 * data in memory that is needed to recreate the on-disk version of this 4564 * inode. 4565 */ 4566 static int __ext4_get_inode_loc(struct inode *inode, 4567 struct ext4_iloc *iloc, int in_mem) 4568 { 4569 struct ext4_group_desc *gdp; 4570 struct buffer_head *bh; 4571 struct super_block *sb = inode->i_sb; 4572 ext4_fsblk_t block; 4573 int inodes_per_block, inode_offset; 4574 4575 iloc->bh = NULL; 4576 if (inode->i_ino < EXT4_ROOT_INO || 4577 inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 4578 return -EFSCORRUPTED; 4579 4580 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 4581 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4582 if (!gdp) 4583 return -EIO; 4584 4585 /* 4586 * Figure out the offset within the block group inode table 4587 */ 4588 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4589 inode_offset = ((inode->i_ino - 1) % 4590 EXT4_INODES_PER_GROUP(sb)); 4591 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 4592 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4593 4594 bh = sb_getblk(sb, block); 4595 if (unlikely(!bh)) 4596 return -ENOMEM; 4597 if (!buffer_uptodate(bh)) { 4598 lock_buffer(bh); 4599 4600 /* 4601 * If the buffer has the write error flag, we have failed 4602 * to write out another inode in the same block. In this 4603 * case, we don't have to read the block because we may 4604 * read the old inode data successfully. 4605 */ 4606 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 4607 set_buffer_uptodate(bh); 4608 4609 if (buffer_uptodate(bh)) { 4610 /* someone brought it uptodate while we waited */ 4611 unlock_buffer(bh); 4612 goto has_buffer; 4613 } 4614 4615 /* 4616 * If we have all information of the inode in memory and this 4617 * is the only valid inode in the block, we need not read the 4618 * block. 4619 */ 4620 if (in_mem) { 4621 struct buffer_head *bitmap_bh; 4622 int i, start; 4623 4624 start = inode_offset & ~(inodes_per_block - 1); 4625 4626 /* Is the inode bitmap in cache? */ 4627 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4628 if (unlikely(!bitmap_bh)) 4629 goto make_io; 4630 4631 /* 4632 * If the inode bitmap isn't in cache then the 4633 * optimisation may end up performing two reads instead 4634 * of one, so skip it. 4635 */ 4636 if (!buffer_uptodate(bitmap_bh)) { 4637 brelse(bitmap_bh); 4638 goto make_io; 4639 } 4640 for (i = start; i < start + inodes_per_block; i++) { 4641 if (i == inode_offset) 4642 continue; 4643 if (ext4_test_bit(i, bitmap_bh->b_data)) 4644 break; 4645 } 4646 brelse(bitmap_bh); 4647 if (i == start + inodes_per_block) { 4648 /* all other inodes are free, so skip I/O */ 4649 memset(bh->b_data, 0, bh->b_size); 4650 set_buffer_uptodate(bh); 4651 unlock_buffer(bh); 4652 goto has_buffer; 4653 } 4654 } 4655 4656 make_io: 4657 /* 4658 * If we need to do any I/O, try to pre-readahead extra 4659 * blocks from the inode table. 4660 */ 4661 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4662 ext4_fsblk_t b, end, table; 4663 unsigned num; 4664 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4665 4666 table = ext4_inode_table(sb, gdp); 4667 /* s_inode_readahead_blks is always a power of 2 */ 4668 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4669 if (table > b) 4670 b = table; 4671 end = b + ra_blks; 4672 num = EXT4_INODES_PER_GROUP(sb); 4673 if (ext4_has_group_desc_csum(sb)) 4674 num -= ext4_itable_unused_count(sb, gdp); 4675 table += num / inodes_per_block; 4676 if (end > table) 4677 end = table; 4678 while (b <= end) 4679 sb_breadahead(sb, b++); 4680 } 4681 4682 /* 4683 * There are other valid inodes in the buffer, this inode 4684 * has in-inode xattrs, or we don't have this inode in memory. 4685 * Read the block from disk. 4686 */ 4687 trace_ext4_load_inode(inode); 4688 get_bh(bh); 4689 bh->b_end_io = end_buffer_read_sync; 4690 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh); 4691 wait_on_buffer(bh); 4692 if (!buffer_uptodate(bh)) { 4693 EXT4_ERROR_INODE_BLOCK(inode, block, 4694 "unable to read itable block"); 4695 brelse(bh); 4696 return -EIO; 4697 } 4698 } 4699 has_buffer: 4700 iloc->bh = bh; 4701 return 0; 4702 } 4703 4704 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4705 { 4706 /* We have all inode data except xattrs in memory here. */ 4707 return __ext4_get_inode_loc(inode, iloc, 4708 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 4709 } 4710 4711 static bool ext4_should_use_dax(struct inode *inode) 4712 { 4713 if (!test_opt(inode->i_sb, DAX)) 4714 return false; 4715 if (!S_ISREG(inode->i_mode)) 4716 return false; 4717 if (ext4_should_journal_data(inode)) 4718 return false; 4719 if (ext4_has_inline_data(inode)) 4720 return false; 4721 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT)) 4722 return false; 4723 return true; 4724 } 4725 4726 void ext4_set_inode_flags(struct inode *inode) 4727 { 4728 unsigned int flags = EXT4_I(inode)->i_flags; 4729 unsigned int new_fl = 0; 4730 4731 if (flags & EXT4_SYNC_FL) 4732 new_fl |= S_SYNC; 4733 if (flags & EXT4_APPEND_FL) 4734 new_fl |= S_APPEND; 4735 if (flags & EXT4_IMMUTABLE_FL) 4736 new_fl |= S_IMMUTABLE; 4737 if (flags & EXT4_NOATIME_FL) 4738 new_fl |= S_NOATIME; 4739 if (flags & EXT4_DIRSYNC_FL) 4740 new_fl |= S_DIRSYNC; 4741 if (ext4_should_use_dax(inode)) 4742 new_fl |= S_DAX; 4743 if (flags & EXT4_ENCRYPT_FL) 4744 new_fl |= S_ENCRYPTED; 4745 if (flags & EXT4_CASEFOLD_FL) 4746 new_fl |= S_CASEFOLD; 4747 inode_set_flags(inode, new_fl, 4748 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX| 4749 S_ENCRYPTED|S_CASEFOLD); 4750 } 4751 4752 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4753 struct ext4_inode_info *ei) 4754 { 4755 blkcnt_t i_blocks ; 4756 struct inode *inode = &(ei->vfs_inode); 4757 struct super_block *sb = inode->i_sb; 4758 4759 if (ext4_has_feature_huge_file(sb)) { 4760 /* we are using combined 48 bit field */ 4761 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4762 le32_to_cpu(raw_inode->i_blocks_lo); 4763 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4764 /* i_blocks represent file system block size */ 4765 return i_blocks << (inode->i_blkbits - 9); 4766 } else { 4767 return i_blocks; 4768 } 4769 } else { 4770 return le32_to_cpu(raw_inode->i_blocks_lo); 4771 } 4772 } 4773 4774 static inline int ext4_iget_extra_inode(struct inode *inode, 4775 struct ext4_inode *raw_inode, 4776 struct ext4_inode_info *ei) 4777 { 4778 __le32 *magic = (void *)raw_inode + 4779 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4780 4781 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <= 4782 EXT4_INODE_SIZE(inode->i_sb) && 4783 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4784 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4785 return ext4_find_inline_data_nolock(inode); 4786 } else 4787 EXT4_I(inode)->i_inline_off = 0; 4788 return 0; 4789 } 4790 4791 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4792 { 4793 if (!ext4_has_feature_project(inode->i_sb)) 4794 return -EOPNOTSUPP; 4795 *projid = EXT4_I(inode)->i_projid; 4796 return 0; 4797 } 4798 4799 /* 4800 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of 4801 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag 4802 * set. 4803 */ 4804 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val) 4805 { 4806 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4807 inode_set_iversion_raw(inode, val); 4808 else 4809 inode_set_iversion_queried(inode, val); 4810 } 4811 static inline u64 ext4_inode_peek_iversion(const struct inode *inode) 4812 { 4813 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4814 return inode_peek_iversion_raw(inode); 4815 else 4816 return inode_peek_iversion(inode); 4817 } 4818 4819 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino, 4820 ext4_iget_flags flags, const char *function, 4821 unsigned int line) 4822 { 4823 struct ext4_iloc iloc; 4824 struct ext4_inode *raw_inode; 4825 struct ext4_inode_info *ei; 4826 struct inode *inode; 4827 journal_t *journal = EXT4_SB(sb)->s_journal; 4828 long ret; 4829 loff_t size; 4830 int block; 4831 uid_t i_uid; 4832 gid_t i_gid; 4833 projid_t i_projid; 4834 4835 if ((!(flags & EXT4_IGET_SPECIAL) && 4836 (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) || 4837 (ino < EXT4_ROOT_INO) || 4838 (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) { 4839 if (flags & EXT4_IGET_HANDLE) 4840 return ERR_PTR(-ESTALE); 4841 __ext4_error(sb, function, line, 4842 "inode #%lu: comm %s: iget: illegal inode #", 4843 ino, current->comm); 4844 return ERR_PTR(-EFSCORRUPTED); 4845 } 4846 4847 inode = iget_locked(sb, ino); 4848 if (!inode) 4849 return ERR_PTR(-ENOMEM); 4850 if (!(inode->i_state & I_NEW)) 4851 return inode; 4852 4853 ei = EXT4_I(inode); 4854 iloc.bh = NULL; 4855 4856 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4857 if (ret < 0) 4858 goto bad_inode; 4859 raw_inode = ext4_raw_inode(&iloc); 4860 4861 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) { 4862 ext4_error_inode(inode, function, line, 0, 4863 "iget: root inode unallocated"); 4864 ret = -EFSCORRUPTED; 4865 goto bad_inode; 4866 } 4867 4868 if ((flags & EXT4_IGET_HANDLE) && 4869 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) { 4870 ret = -ESTALE; 4871 goto bad_inode; 4872 } 4873 4874 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4875 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4876 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4877 EXT4_INODE_SIZE(inode->i_sb) || 4878 (ei->i_extra_isize & 3)) { 4879 ext4_error_inode(inode, function, line, 0, 4880 "iget: bad extra_isize %u " 4881 "(inode size %u)", 4882 ei->i_extra_isize, 4883 EXT4_INODE_SIZE(inode->i_sb)); 4884 ret = -EFSCORRUPTED; 4885 goto bad_inode; 4886 } 4887 } else 4888 ei->i_extra_isize = 0; 4889 4890 /* Precompute checksum seed for inode metadata */ 4891 if (ext4_has_metadata_csum(sb)) { 4892 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4893 __u32 csum; 4894 __le32 inum = cpu_to_le32(inode->i_ino); 4895 __le32 gen = raw_inode->i_generation; 4896 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4897 sizeof(inum)); 4898 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4899 sizeof(gen)); 4900 } 4901 4902 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 4903 ext4_error_inode(inode, function, line, 0, 4904 "iget: checksum invalid"); 4905 ret = -EFSBADCRC; 4906 goto bad_inode; 4907 } 4908 4909 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4910 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4911 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4912 if (ext4_has_feature_project(sb) && 4913 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4914 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4915 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4916 else 4917 i_projid = EXT4_DEF_PROJID; 4918 4919 if (!(test_opt(inode->i_sb, NO_UID32))) { 4920 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4921 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4922 } 4923 i_uid_write(inode, i_uid); 4924 i_gid_write(inode, i_gid); 4925 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4926 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4927 4928 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4929 ei->i_inline_off = 0; 4930 ei->i_dir_start_lookup = 0; 4931 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4932 /* We now have enough fields to check if the inode was active or not. 4933 * This is needed because nfsd might try to access dead inodes 4934 * the test is that same one that e2fsck uses 4935 * NeilBrown 1999oct15 4936 */ 4937 if (inode->i_nlink == 0) { 4938 if ((inode->i_mode == 0 || 4939 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4940 ino != EXT4_BOOT_LOADER_INO) { 4941 /* this inode is deleted */ 4942 ret = -ESTALE; 4943 goto bad_inode; 4944 } 4945 /* The only unlinked inodes we let through here have 4946 * valid i_mode and are being read by the orphan 4947 * recovery code: that's fine, we're about to complete 4948 * the process of deleting those. 4949 * OR it is the EXT4_BOOT_LOADER_INO which is 4950 * not initialized on a new filesystem. */ 4951 } 4952 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4953 ext4_set_inode_flags(inode); 4954 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4955 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4956 if (ext4_has_feature_64bit(sb)) 4957 ei->i_file_acl |= 4958 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4959 inode->i_size = ext4_isize(sb, raw_inode); 4960 if ((size = i_size_read(inode)) < 0) { 4961 ext4_error_inode(inode, function, line, 0, 4962 "iget: bad i_size value: %lld", size); 4963 ret = -EFSCORRUPTED; 4964 goto bad_inode; 4965 } 4966 ei->i_disksize = inode->i_size; 4967 #ifdef CONFIG_QUOTA 4968 ei->i_reserved_quota = 0; 4969 #endif 4970 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4971 ei->i_block_group = iloc.block_group; 4972 ei->i_last_alloc_group = ~0; 4973 /* 4974 * NOTE! The in-memory inode i_data array is in little-endian order 4975 * even on big-endian machines: we do NOT byteswap the block numbers! 4976 */ 4977 for (block = 0; block < EXT4_N_BLOCKS; block++) 4978 ei->i_data[block] = raw_inode->i_block[block]; 4979 INIT_LIST_HEAD(&ei->i_orphan); 4980 4981 /* 4982 * Set transaction id's of transactions that have to be committed 4983 * to finish f[data]sync. We set them to currently running transaction 4984 * as we cannot be sure that the inode or some of its metadata isn't 4985 * part of the transaction - the inode could have been reclaimed and 4986 * now it is reread from disk. 4987 */ 4988 if (journal) { 4989 transaction_t *transaction; 4990 tid_t tid; 4991 4992 read_lock(&journal->j_state_lock); 4993 if (journal->j_running_transaction) 4994 transaction = journal->j_running_transaction; 4995 else 4996 transaction = journal->j_committing_transaction; 4997 if (transaction) 4998 tid = transaction->t_tid; 4999 else 5000 tid = journal->j_commit_sequence; 5001 read_unlock(&journal->j_state_lock); 5002 ei->i_sync_tid = tid; 5003 ei->i_datasync_tid = tid; 5004 } 5005 5006 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 5007 if (ei->i_extra_isize == 0) { 5008 /* The extra space is currently unused. Use it. */ 5009 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 5010 ei->i_extra_isize = sizeof(struct ext4_inode) - 5011 EXT4_GOOD_OLD_INODE_SIZE; 5012 } else { 5013 ret = ext4_iget_extra_inode(inode, raw_inode, ei); 5014 if (ret) 5015 goto bad_inode; 5016 } 5017 } 5018 5019 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 5020 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 5021 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 5022 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 5023 5024 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 5025 u64 ivers = le32_to_cpu(raw_inode->i_disk_version); 5026 5027 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 5028 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 5029 ivers |= 5030 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 5031 } 5032 ext4_inode_set_iversion_queried(inode, ivers); 5033 } 5034 5035 ret = 0; 5036 if (ei->i_file_acl && 5037 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 5038 ext4_error_inode(inode, function, line, 0, 5039 "iget: bad extended attribute block %llu", 5040 ei->i_file_acl); 5041 ret = -EFSCORRUPTED; 5042 goto bad_inode; 5043 } else if (!ext4_has_inline_data(inode)) { 5044 /* validate the block references in the inode */ 5045 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 5046 (S_ISLNK(inode->i_mode) && 5047 !ext4_inode_is_fast_symlink(inode))) { 5048 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 5049 ret = ext4_ext_check_inode(inode); 5050 else 5051 ret = ext4_ind_check_inode(inode); 5052 } 5053 } 5054 if (ret) 5055 goto bad_inode; 5056 5057 if (S_ISREG(inode->i_mode)) { 5058 inode->i_op = &ext4_file_inode_operations; 5059 inode->i_fop = &ext4_file_operations; 5060 ext4_set_aops(inode); 5061 } else if (S_ISDIR(inode->i_mode)) { 5062 inode->i_op = &ext4_dir_inode_operations; 5063 inode->i_fop = &ext4_dir_operations; 5064 } else if (S_ISLNK(inode->i_mode)) { 5065 /* VFS does not allow setting these so must be corruption */ 5066 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 5067 ext4_error_inode(inode, function, line, 0, 5068 "iget: immutable or append flags " 5069 "not allowed on symlinks"); 5070 ret = -EFSCORRUPTED; 5071 goto bad_inode; 5072 } 5073 if (IS_ENCRYPTED(inode)) { 5074 inode->i_op = &ext4_encrypted_symlink_inode_operations; 5075 ext4_set_aops(inode); 5076 } else if (ext4_inode_is_fast_symlink(inode)) { 5077 inode->i_link = (char *)ei->i_data; 5078 inode->i_op = &ext4_fast_symlink_inode_operations; 5079 nd_terminate_link(ei->i_data, inode->i_size, 5080 sizeof(ei->i_data) - 1); 5081 } else { 5082 inode->i_op = &ext4_symlink_inode_operations; 5083 ext4_set_aops(inode); 5084 } 5085 inode_nohighmem(inode); 5086 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 5087 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 5088 inode->i_op = &ext4_special_inode_operations; 5089 if (raw_inode->i_block[0]) 5090 init_special_inode(inode, inode->i_mode, 5091 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 5092 else 5093 init_special_inode(inode, inode->i_mode, 5094 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 5095 } else if (ino == EXT4_BOOT_LOADER_INO) { 5096 make_bad_inode(inode); 5097 } else { 5098 ret = -EFSCORRUPTED; 5099 ext4_error_inode(inode, function, line, 0, 5100 "iget: bogus i_mode (%o)", inode->i_mode); 5101 goto bad_inode; 5102 } 5103 brelse(iloc.bh); 5104 5105 unlock_new_inode(inode); 5106 return inode; 5107 5108 bad_inode: 5109 brelse(iloc.bh); 5110 iget_failed(inode); 5111 return ERR_PTR(ret); 5112 } 5113 5114 static int ext4_inode_blocks_set(handle_t *handle, 5115 struct ext4_inode *raw_inode, 5116 struct ext4_inode_info *ei) 5117 { 5118 struct inode *inode = &(ei->vfs_inode); 5119 u64 i_blocks = inode->i_blocks; 5120 struct super_block *sb = inode->i_sb; 5121 5122 if (i_blocks <= ~0U) { 5123 /* 5124 * i_blocks can be represented in a 32 bit variable 5125 * as multiple of 512 bytes 5126 */ 5127 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 5128 raw_inode->i_blocks_high = 0; 5129 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 5130 return 0; 5131 } 5132 if (!ext4_has_feature_huge_file(sb)) 5133 return -EFBIG; 5134 5135 if (i_blocks <= 0xffffffffffffULL) { 5136 /* 5137 * i_blocks can be represented in a 48 bit variable 5138 * as multiple of 512 bytes 5139 */ 5140 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 5141 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 5142 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 5143 } else { 5144 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 5145 /* i_block is stored in file system block size */ 5146 i_blocks = i_blocks >> (inode->i_blkbits - 9); 5147 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 5148 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 5149 } 5150 return 0; 5151 } 5152 5153 struct other_inode { 5154 unsigned long orig_ino; 5155 struct ext4_inode *raw_inode; 5156 }; 5157 5158 static int other_inode_match(struct inode * inode, unsigned long ino, 5159 void *data) 5160 { 5161 struct other_inode *oi = (struct other_inode *) data; 5162 5163 if ((inode->i_ino != ino) || 5164 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 5165 I_DIRTY_INODE)) || 5166 ((inode->i_state & I_DIRTY_TIME) == 0)) 5167 return 0; 5168 spin_lock(&inode->i_lock); 5169 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 5170 I_DIRTY_INODE)) == 0) && 5171 (inode->i_state & I_DIRTY_TIME)) { 5172 struct ext4_inode_info *ei = EXT4_I(inode); 5173 5174 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED); 5175 spin_unlock(&inode->i_lock); 5176 5177 spin_lock(&ei->i_raw_lock); 5178 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode); 5179 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode); 5180 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode); 5181 ext4_inode_csum_set(inode, oi->raw_inode, ei); 5182 spin_unlock(&ei->i_raw_lock); 5183 trace_ext4_other_inode_update_time(inode, oi->orig_ino); 5184 return -1; 5185 } 5186 spin_unlock(&inode->i_lock); 5187 return -1; 5188 } 5189 5190 /* 5191 * Opportunistically update the other time fields for other inodes in 5192 * the same inode table block. 5193 */ 5194 static void ext4_update_other_inodes_time(struct super_block *sb, 5195 unsigned long orig_ino, char *buf) 5196 { 5197 struct other_inode oi; 5198 unsigned long ino; 5199 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 5200 int inode_size = EXT4_INODE_SIZE(sb); 5201 5202 oi.orig_ino = orig_ino; 5203 /* 5204 * Calculate the first inode in the inode table block. Inode 5205 * numbers are one-based. That is, the first inode in a block 5206 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 5207 */ 5208 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 5209 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 5210 if (ino == orig_ino) 5211 continue; 5212 oi.raw_inode = (struct ext4_inode *) buf; 5213 (void) find_inode_nowait(sb, ino, other_inode_match, &oi); 5214 } 5215 } 5216 5217 /* 5218 * Post the struct inode info into an on-disk inode location in the 5219 * buffer-cache. This gobbles the caller's reference to the 5220 * buffer_head in the inode location struct. 5221 * 5222 * The caller must have write access to iloc->bh. 5223 */ 5224 static int ext4_do_update_inode(handle_t *handle, 5225 struct inode *inode, 5226 struct ext4_iloc *iloc) 5227 { 5228 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5229 struct ext4_inode_info *ei = EXT4_I(inode); 5230 struct buffer_head *bh = iloc->bh; 5231 struct super_block *sb = inode->i_sb; 5232 int err = 0, rc, block; 5233 int need_datasync = 0, set_large_file = 0; 5234 uid_t i_uid; 5235 gid_t i_gid; 5236 projid_t i_projid; 5237 5238 spin_lock(&ei->i_raw_lock); 5239 5240 /* For fields not tracked in the in-memory inode, 5241 * initialise them to zero for new inodes. */ 5242 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5243 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5244 5245 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 5246 i_uid = i_uid_read(inode); 5247 i_gid = i_gid_read(inode); 5248 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 5249 if (!(test_opt(inode->i_sb, NO_UID32))) { 5250 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 5251 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 5252 /* 5253 * Fix up interoperability with old kernels. Otherwise, old inodes get 5254 * re-used with the upper 16 bits of the uid/gid intact 5255 */ 5256 if (ei->i_dtime && list_empty(&ei->i_orphan)) { 5257 raw_inode->i_uid_high = 0; 5258 raw_inode->i_gid_high = 0; 5259 } else { 5260 raw_inode->i_uid_high = 5261 cpu_to_le16(high_16_bits(i_uid)); 5262 raw_inode->i_gid_high = 5263 cpu_to_le16(high_16_bits(i_gid)); 5264 } 5265 } else { 5266 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 5267 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 5268 raw_inode->i_uid_high = 0; 5269 raw_inode->i_gid_high = 0; 5270 } 5271 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 5272 5273 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 5274 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 5275 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 5276 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 5277 5278 err = ext4_inode_blocks_set(handle, raw_inode, ei); 5279 if (err) { 5280 spin_unlock(&ei->i_raw_lock); 5281 goto out_brelse; 5282 } 5283 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 5284 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 5285 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 5286 raw_inode->i_file_acl_high = 5287 cpu_to_le16(ei->i_file_acl >> 32); 5288 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 5289 if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) { 5290 ext4_isize_set(raw_inode, ei->i_disksize); 5291 need_datasync = 1; 5292 } 5293 if (ei->i_disksize > 0x7fffffffULL) { 5294 if (!ext4_has_feature_large_file(sb) || 5295 EXT4_SB(sb)->s_es->s_rev_level == 5296 cpu_to_le32(EXT4_GOOD_OLD_REV)) 5297 set_large_file = 1; 5298 } 5299 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 5300 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 5301 if (old_valid_dev(inode->i_rdev)) { 5302 raw_inode->i_block[0] = 5303 cpu_to_le32(old_encode_dev(inode->i_rdev)); 5304 raw_inode->i_block[1] = 0; 5305 } else { 5306 raw_inode->i_block[0] = 0; 5307 raw_inode->i_block[1] = 5308 cpu_to_le32(new_encode_dev(inode->i_rdev)); 5309 raw_inode->i_block[2] = 0; 5310 } 5311 } else if (!ext4_has_inline_data(inode)) { 5312 for (block = 0; block < EXT4_N_BLOCKS; block++) 5313 raw_inode->i_block[block] = ei->i_data[block]; 5314 } 5315 5316 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 5317 u64 ivers = ext4_inode_peek_iversion(inode); 5318 5319 raw_inode->i_disk_version = cpu_to_le32(ivers); 5320 if (ei->i_extra_isize) { 5321 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 5322 raw_inode->i_version_hi = 5323 cpu_to_le32(ivers >> 32); 5324 raw_inode->i_extra_isize = 5325 cpu_to_le16(ei->i_extra_isize); 5326 } 5327 } 5328 5329 BUG_ON(!ext4_has_feature_project(inode->i_sb) && 5330 i_projid != EXT4_DEF_PROJID); 5331 5332 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 5333 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 5334 raw_inode->i_projid = cpu_to_le32(i_projid); 5335 5336 ext4_inode_csum_set(inode, raw_inode, ei); 5337 spin_unlock(&ei->i_raw_lock); 5338 if (inode->i_sb->s_flags & SB_LAZYTIME) 5339 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 5340 bh->b_data); 5341 5342 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5343 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 5344 if (!err) 5345 err = rc; 5346 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5347 if (set_large_file) { 5348 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 5349 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh); 5350 if (err) 5351 goto out_brelse; 5352 ext4_set_feature_large_file(sb); 5353 ext4_handle_sync(handle); 5354 err = ext4_handle_dirty_super(handle, sb); 5355 } 5356 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5357 out_brelse: 5358 brelse(bh); 5359 ext4_std_error(inode->i_sb, err); 5360 return err; 5361 } 5362 5363 /* 5364 * ext4_write_inode() 5365 * 5366 * We are called from a few places: 5367 * 5368 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5369 * Here, there will be no transaction running. We wait for any running 5370 * transaction to commit. 5371 * 5372 * - Within flush work (sys_sync(), kupdate and such). 5373 * We wait on commit, if told to. 5374 * 5375 * - Within iput_final() -> write_inode_now() 5376 * We wait on commit, if told to. 5377 * 5378 * In all cases it is actually safe for us to return without doing anything, 5379 * because the inode has been copied into a raw inode buffer in 5380 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5381 * writeback. 5382 * 5383 * Note that we are absolutely dependent upon all inode dirtiers doing the 5384 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5385 * which we are interested. 5386 * 5387 * It would be a bug for them to not do this. The code: 5388 * 5389 * mark_inode_dirty(inode) 5390 * stuff(); 5391 * inode->i_size = expr; 5392 * 5393 * is in error because write_inode() could occur while `stuff()' is running, 5394 * and the new i_size will be lost. Plus the inode will no longer be on the 5395 * superblock's dirty inode list. 5396 */ 5397 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5398 { 5399 int err; 5400 5401 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) || 5402 sb_rdonly(inode->i_sb)) 5403 return 0; 5404 5405 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5406 return -EIO; 5407 5408 if (EXT4_SB(inode->i_sb)->s_journal) { 5409 if (ext4_journal_current_handle()) { 5410 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 5411 dump_stack(); 5412 return -EIO; 5413 } 5414 5415 /* 5416 * No need to force transaction in WB_SYNC_NONE mode. Also 5417 * ext4_sync_fs() will force the commit after everything is 5418 * written. 5419 */ 5420 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5421 return 0; 5422 5423 err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal, 5424 EXT4_I(inode)->i_sync_tid); 5425 } else { 5426 struct ext4_iloc iloc; 5427 5428 err = __ext4_get_inode_loc(inode, &iloc, 0); 5429 if (err) 5430 return err; 5431 /* 5432 * sync(2) will flush the whole buffer cache. No need to do 5433 * it here separately for each inode. 5434 */ 5435 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5436 sync_dirty_buffer(iloc.bh); 5437 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5438 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 5439 "IO error syncing inode"); 5440 err = -EIO; 5441 } 5442 brelse(iloc.bh); 5443 } 5444 return err; 5445 } 5446 5447 /* 5448 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 5449 * buffers that are attached to a page stradding i_size and are undergoing 5450 * commit. In that case we have to wait for commit to finish and try again. 5451 */ 5452 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5453 { 5454 struct page *page; 5455 unsigned offset; 5456 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5457 tid_t commit_tid = 0; 5458 int ret; 5459 5460 offset = inode->i_size & (PAGE_SIZE - 1); 5461 /* 5462 * All buffers in the last page remain valid? Then there's nothing to 5463 * do. We do the check mainly to optimize the common PAGE_SIZE == 5464 * blocksize case 5465 */ 5466 if (offset > PAGE_SIZE - i_blocksize(inode)) 5467 return; 5468 while (1) { 5469 page = find_lock_page(inode->i_mapping, 5470 inode->i_size >> PAGE_SHIFT); 5471 if (!page) 5472 return; 5473 ret = __ext4_journalled_invalidatepage(page, offset, 5474 PAGE_SIZE - offset); 5475 unlock_page(page); 5476 put_page(page); 5477 if (ret != -EBUSY) 5478 return; 5479 commit_tid = 0; 5480 read_lock(&journal->j_state_lock); 5481 if (journal->j_committing_transaction) 5482 commit_tid = journal->j_committing_transaction->t_tid; 5483 read_unlock(&journal->j_state_lock); 5484 if (commit_tid) 5485 jbd2_log_wait_commit(journal, commit_tid); 5486 } 5487 } 5488 5489 /* 5490 * ext4_setattr() 5491 * 5492 * Called from notify_change. 5493 * 5494 * We want to trap VFS attempts to truncate the file as soon as 5495 * possible. In particular, we want to make sure that when the VFS 5496 * shrinks i_size, we put the inode on the orphan list and modify 5497 * i_disksize immediately, so that during the subsequent flushing of 5498 * dirty pages and freeing of disk blocks, we can guarantee that any 5499 * commit will leave the blocks being flushed in an unused state on 5500 * disk. (On recovery, the inode will get truncated and the blocks will 5501 * be freed, so we have a strong guarantee that no future commit will 5502 * leave these blocks visible to the user.) 5503 * 5504 * Another thing we have to assure is that if we are in ordered mode 5505 * and inode is still attached to the committing transaction, we must 5506 * we start writeout of all the dirty pages which are being truncated. 5507 * This way we are sure that all the data written in the previous 5508 * transaction are already on disk (truncate waits for pages under 5509 * writeback). 5510 * 5511 * Called with inode->i_mutex down. 5512 */ 5513 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 5514 { 5515 struct inode *inode = d_inode(dentry); 5516 int error, rc = 0; 5517 int orphan = 0; 5518 const unsigned int ia_valid = attr->ia_valid; 5519 5520 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5521 return -EIO; 5522 5523 error = setattr_prepare(dentry, attr); 5524 if (error) 5525 return error; 5526 5527 error = fscrypt_prepare_setattr(dentry, attr); 5528 if (error) 5529 return error; 5530 5531 if (is_quota_modification(inode, attr)) { 5532 error = dquot_initialize(inode); 5533 if (error) 5534 return error; 5535 } 5536 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 5537 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 5538 handle_t *handle; 5539 5540 /* (user+group)*(old+new) structure, inode write (sb, 5541 * inode block, ? - but truncate inode update has it) */ 5542 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5543 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5544 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5545 if (IS_ERR(handle)) { 5546 error = PTR_ERR(handle); 5547 goto err_out; 5548 } 5549 5550 /* dquot_transfer() calls back ext4_get_inode_usage() which 5551 * counts xattr inode references. 5552 */ 5553 down_read(&EXT4_I(inode)->xattr_sem); 5554 error = dquot_transfer(inode, attr); 5555 up_read(&EXT4_I(inode)->xattr_sem); 5556 5557 if (error) { 5558 ext4_journal_stop(handle); 5559 return error; 5560 } 5561 /* Update corresponding info in inode so that everything is in 5562 * one transaction */ 5563 if (attr->ia_valid & ATTR_UID) 5564 inode->i_uid = attr->ia_uid; 5565 if (attr->ia_valid & ATTR_GID) 5566 inode->i_gid = attr->ia_gid; 5567 error = ext4_mark_inode_dirty(handle, inode); 5568 ext4_journal_stop(handle); 5569 } 5570 5571 if (attr->ia_valid & ATTR_SIZE) { 5572 handle_t *handle; 5573 loff_t oldsize = inode->i_size; 5574 int shrink = (attr->ia_size <= inode->i_size); 5575 5576 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5577 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5578 5579 if (attr->ia_size > sbi->s_bitmap_maxbytes) 5580 return -EFBIG; 5581 } 5582 if (!S_ISREG(inode->i_mode)) 5583 return -EINVAL; 5584 5585 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size) 5586 inode_inc_iversion(inode); 5587 5588 if (ext4_should_order_data(inode) && 5589 (attr->ia_size < inode->i_size)) { 5590 error = ext4_begin_ordered_truncate(inode, 5591 attr->ia_size); 5592 if (error) 5593 goto err_out; 5594 } 5595 if (attr->ia_size != inode->i_size) { 5596 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5597 if (IS_ERR(handle)) { 5598 error = PTR_ERR(handle); 5599 goto err_out; 5600 } 5601 if (ext4_handle_valid(handle) && shrink) { 5602 error = ext4_orphan_add(handle, inode); 5603 orphan = 1; 5604 } 5605 /* 5606 * Update c/mtime on truncate up, ext4_truncate() will 5607 * update c/mtime in shrink case below 5608 */ 5609 if (!shrink) { 5610 inode->i_mtime = current_time(inode); 5611 inode->i_ctime = inode->i_mtime; 5612 } 5613 down_write(&EXT4_I(inode)->i_data_sem); 5614 EXT4_I(inode)->i_disksize = attr->ia_size; 5615 rc = ext4_mark_inode_dirty(handle, inode); 5616 if (!error) 5617 error = rc; 5618 /* 5619 * We have to update i_size under i_data_sem together 5620 * with i_disksize to avoid races with writeback code 5621 * running ext4_wb_update_i_disksize(). 5622 */ 5623 if (!error) 5624 i_size_write(inode, attr->ia_size); 5625 up_write(&EXT4_I(inode)->i_data_sem); 5626 ext4_journal_stop(handle); 5627 if (error) { 5628 if (orphan && inode->i_nlink) 5629 ext4_orphan_del(NULL, inode); 5630 goto err_out; 5631 } 5632 } 5633 if (!shrink) { 5634 pagecache_isize_extended(inode, oldsize, inode->i_size); 5635 } else { 5636 /* 5637 * Blocks are going to be removed from the inode. Wait 5638 * for dio in flight. 5639 */ 5640 inode_dio_wait(inode); 5641 } 5642 if (orphan && ext4_should_journal_data(inode)) 5643 ext4_wait_for_tail_page_commit(inode); 5644 down_write(&EXT4_I(inode)->i_mmap_sem); 5645 5646 rc = ext4_break_layouts(inode); 5647 if (rc) { 5648 up_write(&EXT4_I(inode)->i_mmap_sem); 5649 error = rc; 5650 goto err_out; 5651 } 5652 5653 /* 5654 * Truncate pagecache after we've waited for commit 5655 * in data=journal mode to make pages freeable. 5656 */ 5657 truncate_pagecache(inode, inode->i_size); 5658 if (shrink) { 5659 rc = ext4_truncate(inode); 5660 if (rc) 5661 error = rc; 5662 } 5663 up_write(&EXT4_I(inode)->i_mmap_sem); 5664 } 5665 5666 if (!error) { 5667 setattr_copy(inode, attr); 5668 mark_inode_dirty(inode); 5669 } 5670 5671 /* 5672 * If the call to ext4_truncate failed to get a transaction handle at 5673 * all, we need to clean up the in-core orphan list manually. 5674 */ 5675 if (orphan && inode->i_nlink) 5676 ext4_orphan_del(NULL, inode); 5677 5678 if (!error && (ia_valid & ATTR_MODE)) 5679 rc = posix_acl_chmod(inode, inode->i_mode); 5680 5681 err_out: 5682 ext4_std_error(inode->i_sb, error); 5683 if (!error) 5684 error = rc; 5685 return error; 5686 } 5687 5688 int ext4_getattr(const struct path *path, struct kstat *stat, 5689 u32 request_mask, unsigned int query_flags) 5690 { 5691 struct inode *inode = d_inode(path->dentry); 5692 struct ext4_inode *raw_inode; 5693 struct ext4_inode_info *ei = EXT4_I(inode); 5694 unsigned int flags; 5695 5696 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { 5697 stat->result_mask |= STATX_BTIME; 5698 stat->btime.tv_sec = ei->i_crtime.tv_sec; 5699 stat->btime.tv_nsec = ei->i_crtime.tv_nsec; 5700 } 5701 5702 flags = ei->i_flags & EXT4_FL_USER_VISIBLE; 5703 if (flags & EXT4_APPEND_FL) 5704 stat->attributes |= STATX_ATTR_APPEND; 5705 if (flags & EXT4_COMPR_FL) 5706 stat->attributes |= STATX_ATTR_COMPRESSED; 5707 if (flags & EXT4_ENCRYPT_FL) 5708 stat->attributes |= STATX_ATTR_ENCRYPTED; 5709 if (flags & EXT4_IMMUTABLE_FL) 5710 stat->attributes |= STATX_ATTR_IMMUTABLE; 5711 if (flags & EXT4_NODUMP_FL) 5712 stat->attributes |= STATX_ATTR_NODUMP; 5713 5714 stat->attributes_mask |= (STATX_ATTR_APPEND | 5715 STATX_ATTR_COMPRESSED | 5716 STATX_ATTR_ENCRYPTED | 5717 STATX_ATTR_IMMUTABLE | 5718 STATX_ATTR_NODUMP); 5719 5720 generic_fillattr(inode, stat); 5721 return 0; 5722 } 5723 5724 int ext4_file_getattr(const struct path *path, struct kstat *stat, 5725 u32 request_mask, unsigned int query_flags) 5726 { 5727 struct inode *inode = d_inode(path->dentry); 5728 u64 delalloc_blocks; 5729 5730 ext4_getattr(path, stat, request_mask, query_flags); 5731 5732 /* 5733 * If there is inline data in the inode, the inode will normally not 5734 * have data blocks allocated (it may have an external xattr block). 5735 * Report at least one sector for such files, so tools like tar, rsync, 5736 * others don't incorrectly think the file is completely sparse. 5737 */ 5738 if (unlikely(ext4_has_inline_data(inode))) 5739 stat->blocks += (stat->size + 511) >> 9; 5740 5741 /* 5742 * We can't update i_blocks if the block allocation is delayed 5743 * otherwise in the case of system crash before the real block 5744 * allocation is done, we will have i_blocks inconsistent with 5745 * on-disk file blocks. 5746 * We always keep i_blocks updated together with real 5747 * allocation. But to not confuse with user, stat 5748 * will return the blocks that include the delayed allocation 5749 * blocks for this file. 5750 */ 5751 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5752 EXT4_I(inode)->i_reserved_data_blocks); 5753 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5754 return 0; 5755 } 5756 5757 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5758 int pextents) 5759 { 5760 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5761 return ext4_ind_trans_blocks(inode, lblocks); 5762 return ext4_ext_index_trans_blocks(inode, pextents); 5763 } 5764 5765 /* 5766 * Account for index blocks, block groups bitmaps and block group 5767 * descriptor blocks if modify datablocks and index blocks 5768 * worse case, the indexs blocks spread over different block groups 5769 * 5770 * If datablocks are discontiguous, they are possible to spread over 5771 * different block groups too. If they are contiguous, with flexbg, 5772 * they could still across block group boundary. 5773 * 5774 * Also account for superblock, inode, quota and xattr blocks 5775 */ 5776 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5777 int pextents) 5778 { 5779 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5780 int gdpblocks; 5781 int idxblocks; 5782 int ret = 0; 5783 5784 /* 5785 * How many index blocks need to touch to map @lblocks logical blocks 5786 * to @pextents physical extents? 5787 */ 5788 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5789 5790 ret = idxblocks; 5791 5792 /* 5793 * Now let's see how many group bitmaps and group descriptors need 5794 * to account 5795 */ 5796 groups = idxblocks + pextents; 5797 gdpblocks = groups; 5798 if (groups > ngroups) 5799 groups = ngroups; 5800 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5801 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5802 5803 /* bitmaps and block group descriptor blocks */ 5804 ret += groups + gdpblocks; 5805 5806 /* Blocks for super block, inode, quota and xattr blocks */ 5807 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5808 5809 return ret; 5810 } 5811 5812 /* 5813 * Calculate the total number of credits to reserve to fit 5814 * the modification of a single pages into a single transaction, 5815 * which may include multiple chunks of block allocations. 5816 * 5817 * This could be called via ext4_write_begin() 5818 * 5819 * We need to consider the worse case, when 5820 * one new block per extent. 5821 */ 5822 int ext4_writepage_trans_blocks(struct inode *inode) 5823 { 5824 int bpp = ext4_journal_blocks_per_page(inode); 5825 int ret; 5826 5827 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5828 5829 /* Account for data blocks for journalled mode */ 5830 if (ext4_should_journal_data(inode)) 5831 ret += bpp; 5832 return ret; 5833 } 5834 5835 /* 5836 * Calculate the journal credits for a chunk of data modification. 5837 * 5838 * This is called from DIO, fallocate or whoever calling 5839 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5840 * 5841 * journal buffers for data blocks are not included here, as DIO 5842 * and fallocate do no need to journal data buffers. 5843 */ 5844 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5845 { 5846 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5847 } 5848 5849 /* 5850 * The caller must have previously called ext4_reserve_inode_write(). 5851 * Give this, we know that the caller already has write access to iloc->bh. 5852 */ 5853 int ext4_mark_iloc_dirty(handle_t *handle, 5854 struct inode *inode, struct ext4_iloc *iloc) 5855 { 5856 int err = 0; 5857 5858 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 5859 put_bh(iloc->bh); 5860 return -EIO; 5861 } 5862 if (IS_I_VERSION(inode)) 5863 inode_inc_iversion(inode); 5864 5865 /* the do_update_inode consumes one bh->b_count */ 5866 get_bh(iloc->bh); 5867 5868 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5869 err = ext4_do_update_inode(handle, inode, iloc); 5870 put_bh(iloc->bh); 5871 return err; 5872 } 5873 5874 /* 5875 * On success, We end up with an outstanding reference count against 5876 * iloc->bh. This _must_ be cleaned up later. 5877 */ 5878 5879 int 5880 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5881 struct ext4_iloc *iloc) 5882 { 5883 int err; 5884 5885 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5886 return -EIO; 5887 5888 err = ext4_get_inode_loc(inode, iloc); 5889 if (!err) { 5890 BUFFER_TRACE(iloc->bh, "get_write_access"); 5891 err = ext4_journal_get_write_access(handle, iloc->bh); 5892 if (err) { 5893 brelse(iloc->bh); 5894 iloc->bh = NULL; 5895 } 5896 } 5897 ext4_std_error(inode->i_sb, err); 5898 return err; 5899 } 5900 5901 static int __ext4_expand_extra_isize(struct inode *inode, 5902 unsigned int new_extra_isize, 5903 struct ext4_iloc *iloc, 5904 handle_t *handle, int *no_expand) 5905 { 5906 struct ext4_inode *raw_inode; 5907 struct ext4_xattr_ibody_header *header; 5908 int error; 5909 5910 raw_inode = ext4_raw_inode(iloc); 5911 5912 header = IHDR(inode, raw_inode); 5913 5914 /* No extended attributes present */ 5915 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5916 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5917 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + 5918 EXT4_I(inode)->i_extra_isize, 0, 5919 new_extra_isize - EXT4_I(inode)->i_extra_isize); 5920 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5921 return 0; 5922 } 5923 5924 /* try to expand with EAs present */ 5925 error = ext4_expand_extra_isize_ea(inode, new_extra_isize, 5926 raw_inode, handle); 5927 if (error) { 5928 /* 5929 * Inode size expansion failed; don't try again 5930 */ 5931 *no_expand = 1; 5932 } 5933 5934 return error; 5935 } 5936 5937 /* 5938 * Expand an inode by new_extra_isize bytes. 5939 * Returns 0 on success or negative error number on failure. 5940 */ 5941 static int ext4_try_to_expand_extra_isize(struct inode *inode, 5942 unsigned int new_extra_isize, 5943 struct ext4_iloc iloc, 5944 handle_t *handle) 5945 { 5946 int no_expand; 5947 int error; 5948 5949 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) 5950 return -EOVERFLOW; 5951 5952 /* 5953 * In nojournal mode, we can immediately attempt to expand 5954 * the inode. When journaled, we first need to obtain extra 5955 * buffer credits since we may write into the EA block 5956 * with this same handle. If journal_extend fails, then it will 5957 * only result in a minor loss of functionality for that inode. 5958 * If this is felt to be critical, then e2fsck should be run to 5959 * force a large enough s_min_extra_isize. 5960 */ 5961 if (ext4_handle_valid(handle) && 5962 jbd2_journal_extend(handle, 5963 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0) 5964 return -ENOSPC; 5965 5966 if (ext4_write_trylock_xattr(inode, &no_expand) == 0) 5967 return -EBUSY; 5968 5969 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc, 5970 handle, &no_expand); 5971 ext4_write_unlock_xattr(inode, &no_expand); 5972 5973 return error; 5974 } 5975 5976 int ext4_expand_extra_isize(struct inode *inode, 5977 unsigned int new_extra_isize, 5978 struct ext4_iloc *iloc) 5979 { 5980 handle_t *handle; 5981 int no_expand; 5982 int error, rc; 5983 5984 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5985 brelse(iloc->bh); 5986 return -EOVERFLOW; 5987 } 5988 5989 handle = ext4_journal_start(inode, EXT4_HT_INODE, 5990 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)); 5991 if (IS_ERR(handle)) { 5992 error = PTR_ERR(handle); 5993 brelse(iloc->bh); 5994 return error; 5995 } 5996 5997 ext4_write_lock_xattr(inode, &no_expand); 5998 5999 BUFFER_TRACE(iloc->bh, "get_write_access"); 6000 error = ext4_journal_get_write_access(handle, iloc->bh); 6001 if (error) { 6002 brelse(iloc->bh); 6003 goto out_stop; 6004 } 6005 6006 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc, 6007 handle, &no_expand); 6008 6009 rc = ext4_mark_iloc_dirty(handle, inode, iloc); 6010 if (!error) 6011 error = rc; 6012 6013 ext4_write_unlock_xattr(inode, &no_expand); 6014 out_stop: 6015 ext4_journal_stop(handle); 6016 return error; 6017 } 6018 6019 /* 6020 * What we do here is to mark the in-core inode as clean with respect to inode 6021 * dirtiness (it may still be data-dirty). 6022 * This means that the in-core inode may be reaped by prune_icache 6023 * without having to perform any I/O. This is a very good thing, 6024 * because *any* task may call prune_icache - even ones which 6025 * have a transaction open against a different journal. 6026 * 6027 * Is this cheating? Not really. Sure, we haven't written the 6028 * inode out, but prune_icache isn't a user-visible syncing function. 6029 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 6030 * we start and wait on commits. 6031 */ 6032 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 6033 { 6034 struct ext4_iloc iloc; 6035 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 6036 int err; 6037 6038 might_sleep(); 6039 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 6040 err = ext4_reserve_inode_write(handle, inode, &iloc); 6041 if (err) 6042 return err; 6043 6044 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize) 6045 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize, 6046 iloc, handle); 6047 6048 return ext4_mark_iloc_dirty(handle, inode, &iloc); 6049 } 6050 6051 /* 6052 * ext4_dirty_inode() is called from __mark_inode_dirty() 6053 * 6054 * We're really interested in the case where a file is being extended. 6055 * i_size has been changed by generic_commit_write() and we thus need 6056 * to include the updated inode in the current transaction. 6057 * 6058 * Also, dquot_alloc_block() will always dirty the inode when blocks 6059 * are allocated to the file. 6060 * 6061 * If the inode is marked synchronous, we don't honour that here - doing 6062 * so would cause a commit on atime updates, which we don't bother doing. 6063 * We handle synchronous inodes at the highest possible level. 6064 * 6065 * If only the I_DIRTY_TIME flag is set, we can skip everything. If 6066 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need 6067 * to copy into the on-disk inode structure are the timestamp files. 6068 */ 6069 void ext4_dirty_inode(struct inode *inode, int flags) 6070 { 6071 handle_t *handle; 6072 6073 if (flags == I_DIRTY_TIME) 6074 return; 6075 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 6076 if (IS_ERR(handle)) 6077 goto out; 6078 6079 ext4_mark_inode_dirty(handle, inode); 6080 6081 ext4_journal_stop(handle); 6082 out: 6083 return; 6084 } 6085 6086 int ext4_change_inode_journal_flag(struct inode *inode, int val) 6087 { 6088 journal_t *journal; 6089 handle_t *handle; 6090 int err; 6091 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 6092 6093 /* 6094 * We have to be very careful here: changing a data block's 6095 * journaling status dynamically is dangerous. If we write a 6096 * data block to the journal, change the status and then delete 6097 * that block, we risk forgetting to revoke the old log record 6098 * from the journal and so a subsequent replay can corrupt data. 6099 * So, first we make sure that the journal is empty and that 6100 * nobody is changing anything. 6101 */ 6102 6103 journal = EXT4_JOURNAL(inode); 6104 if (!journal) 6105 return 0; 6106 if (is_journal_aborted(journal)) 6107 return -EROFS; 6108 6109 /* Wait for all existing dio workers */ 6110 inode_dio_wait(inode); 6111 6112 /* 6113 * Before flushing the journal and switching inode's aops, we have 6114 * to flush all dirty data the inode has. There can be outstanding 6115 * delayed allocations, there can be unwritten extents created by 6116 * fallocate or buffered writes in dioread_nolock mode covered by 6117 * dirty data which can be converted only after flushing the dirty 6118 * data (and journalled aops don't know how to handle these cases). 6119 */ 6120 if (val) { 6121 down_write(&EXT4_I(inode)->i_mmap_sem); 6122 err = filemap_write_and_wait(inode->i_mapping); 6123 if (err < 0) { 6124 up_write(&EXT4_I(inode)->i_mmap_sem); 6125 return err; 6126 } 6127 } 6128 6129 percpu_down_write(&sbi->s_journal_flag_rwsem); 6130 jbd2_journal_lock_updates(journal); 6131 6132 /* 6133 * OK, there are no updates running now, and all cached data is 6134 * synced to disk. We are now in a completely consistent state 6135 * which doesn't have anything in the journal, and we know that 6136 * no filesystem updates are running, so it is safe to modify 6137 * the inode's in-core data-journaling state flag now. 6138 */ 6139 6140 if (val) 6141 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6142 else { 6143 err = jbd2_journal_flush(journal); 6144 if (err < 0) { 6145 jbd2_journal_unlock_updates(journal); 6146 percpu_up_write(&sbi->s_journal_flag_rwsem); 6147 return err; 6148 } 6149 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6150 } 6151 ext4_set_aops(inode); 6152 6153 jbd2_journal_unlock_updates(journal); 6154 percpu_up_write(&sbi->s_journal_flag_rwsem); 6155 6156 if (val) 6157 up_write(&EXT4_I(inode)->i_mmap_sem); 6158 6159 /* Finally we can mark the inode as dirty. */ 6160 6161 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 6162 if (IS_ERR(handle)) 6163 return PTR_ERR(handle); 6164 6165 err = ext4_mark_inode_dirty(handle, inode); 6166 ext4_handle_sync(handle); 6167 ext4_journal_stop(handle); 6168 ext4_std_error(inode->i_sb, err); 6169 6170 return err; 6171 } 6172 6173 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 6174 { 6175 return !buffer_mapped(bh); 6176 } 6177 6178 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf) 6179 { 6180 struct vm_area_struct *vma = vmf->vma; 6181 struct page *page = vmf->page; 6182 loff_t size; 6183 unsigned long len; 6184 int err; 6185 vm_fault_t ret; 6186 struct file *file = vma->vm_file; 6187 struct inode *inode = file_inode(file); 6188 struct address_space *mapping = inode->i_mapping; 6189 handle_t *handle; 6190 get_block_t *get_block; 6191 int retries = 0; 6192 6193 sb_start_pagefault(inode->i_sb); 6194 file_update_time(vma->vm_file); 6195 6196 down_read(&EXT4_I(inode)->i_mmap_sem); 6197 6198 err = ext4_convert_inline_data(inode); 6199 if (err) 6200 goto out_ret; 6201 6202 /* Delalloc case is easy... */ 6203 if (test_opt(inode->i_sb, DELALLOC) && 6204 !ext4_should_journal_data(inode) && 6205 !ext4_nonda_switch(inode->i_sb)) { 6206 do { 6207 err = block_page_mkwrite(vma, vmf, 6208 ext4_da_get_block_prep); 6209 } while (err == -ENOSPC && 6210 ext4_should_retry_alloc(inode->i_sb, &retries)); 6211 goto out_ret; 6212 } 6213 6214 lock_page(page); 6215 size = i_size_read(inode); 6216 /* Page got truncated from under us? */ 6217 if (page->mapping != mapping || page_offset(page) > size) { 6218 unlock_page(page); 6219 ret = VM_FAULT_NOPAGE; 6220 goto out; 6221 } 6222 6223 if (page->index == size >> PAGE_SHIFT) 6224 len = size & ~PAGE_MASK; 6225 else 6226 len = PAGE_SIZE; 6227 /* 6228 * Return if we have all the buffers mapped. This avoids the need to do 6229 * journal_start/journal_stop which can block and take a long time 6230 */ 6231 if (page_has_buffers(page)) { 6232 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 6233 0, len, NULL, 6234 ext4_bh_unmapped)) { 6235 /* Wait so that we don't change page under IO */ 6236 wait_for_stable_page(page); 6237 ret = VM_FAULT_LOCKED; 6238 goto out; 6239 } 6240 } 6241 unlock_page(page); 6242 /* OK, we need to fill the hole... */ 6243 if (ext4_should_dioread_nolock(inode)) 6244 get_block = ext4_get_block_unwritten; 6245 else 6246 get_block = ext4_get_block; 6247 retry_alloc: 6248 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 6249 ext4_writepage_trans_blocks(inode)); 6250 if (IS_ERR(handle)) { 6251 ret = VM_FAULT_SIGBUS; 6252 goto out; 6253 } 6254 err = block_page_mkwrite(vma, vmf, get_block); 6255 if (!err && ext4_should_journal_data(inode)) { 6256 if (ext4_walk_page_buffers(handle, page_buffers(page), 0, 6257 PAGE_SIZE, NULL, do_journal_get_write_access)) { 6258 unlock_page(page); 6259 ret = VM_FAULT_SIGBUS; 6260 ext4_journal_stop(handle); 6261 goto out; 6262 } 6263 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 6264 } 6265 ext4_journal_stop(handle); 6266 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 6267 goto retry_alloc; 6268 out_ret: 6269 ret = block_page_mkwrite_return(err); 6270 out: 6271 up_read(&EXT4_I(inode)->i_mmap_sem); 6272 sb_end_pagefault(inode->i_sb); 6273 return ret; 6274 } 6275 6276 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf) 6277 { 6278 struct inode *inode = file_inode(vmf->vma->vm_file); 6279 vm_fault_t ret; 6280 6281 down_read(&EXT4_I(inode)->i_mmap_sem); 6282 ret = filemap_fault(vmf); 6283 up_read(&EXT4_I(inode)->i_mmap_sem); 6284 6285 return ret; 6286 } 6287