1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * 64-bit file support on 64-bit platforms by Jakub Jelinek 16 * (jj@sunsite.ms.mff.cuni.cz) 17 * 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 19 */ 20 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/jbd2.h> 24 #include <linux/highuid.h> 25 #include <linux/pagemap.h> 26 #include <linux/quotaops.h> 27 #include <linux/string.h> 28 #include <linux/buffer_head.h> 29 #include <linux/writeback.h> 30 #include <linux/pagevec.h> 31 #include <linux/mpage.h> 32 #include <linux/namei.h> 33 #include <linux/uio.h> 34 #include <linux/bio.h> 35 #include <linux/workqueue.h> 36 #include <linux/kernel.h> 37 #include <linux/printk.h> 38 #include <linux/slab.h> 39 #include <linux/ratelimit.h> 40 #include <linux/aio.h> 41 #include <linux/bitops.h> 42 43 #include "ext4_jbd2.h" 44 #include "xattr.h" 45 #include "acl.h" 46 #include "truncate.h" 47 48 #include <trace/events/ext4.h> 49 50 #define MPAGE_DA_EXTENT_TAIL 0x01 51 52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 53 struct ext4_inode_info *ei) 54 { 55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 56 __u16 csum_lo; 57 __u16 csum_hi = 0; 58 __u32 csum; 59 60 csum_lo = le16_to_cpu(raw->i_checksum_lo); 61 raw->i_checksum_lo = 0; 62 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 63 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 64 csum_hi = le16_to_cpu(raw->i_checksum_hi); 65 raw->i_checksum_hi = 0; 66 } 67 68 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, 69 EXT4_INODE_SIZE(inode->i_sb)); 70 71 raw->i_checksum_lo = cpu_to_le16(csum_lo); 72 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 73 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 74 raw->i_checksum_hi = cpu_to_le16(csum_hi); 75 76 return csum; 77 } 78 79 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 80 struct ext4_inode_info *ei) 81 { 82 __u32 provided, calculated; 83 84 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 85 cpu_to_le32(EXT4_OS_LINUX) || 86 !ext4_has_metadata_csum(inode->i_sb)) 87 return 1; 88 89 provided = le16_to_cpu(raw->i_checksum_lo); 90 calculated = ext4_inode_csum(inode, raw, ei); 91 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 92 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 93 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 94 else 95 calculated &= 0xFFFF; 96 97 return provided == calculated; 98 } 99 100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 101 struct ext4_inode_info *ei) 102 { 103 __u32 csum; 104 105 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 106 cpu_to_le32(EXT4_OS_LINUX) || 107 !ext4_has_metadata_csum(inode->i_sb)) 108 return; 109 110 csum = ext4_inode_csum(inode, raw, ei); 111 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 112 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 113 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 114 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 115 } 116 117 static inline int ext4_begin_ordered_truncate(struct inode *inode, 118 loff_t new_size) 119 { 120 trace_ext4_begin_ordered_truncate(inode, new_size); 121 /* 122 * If jinode is zero, then we never opened the file for 123 * writing, so there's no need to call 124 * jbd2_journal_begin_ordered_truncate() since there's no 125 * outstanding writes we need to flush. 126 */ 127 if (!EXT4_I(inode)->jinode) 128 return 0; 129 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 130 EXT4_I(inode)->jinode, 131 new_size); 132 } 133 134 static void ext4_invalidatepage(struct page *page, unsigned int offset, 135 unsigned int length); 136 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 137 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 138 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 139 int pextents); 140 141 /* 142 * Test whether an inode is a fast symlink. 143 */ 144 static int ext4_inode_is_fast_symlink(struct inode *inode) 145 { 146 int ea_blocks = EXT4_I(inode)->i_file_acl ? 147 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 148 149 if (ext4_has_inline_data(inode)) 150 return 0; 151 152 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 153 } 154 155 /* 156 * Restart the transaction associated with *handle. This does a commit, 157 * so before we call here everything must be consistently dirtied against 158 * this transaction. 159 */ 160 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 161 int nblocks) 162 { 163 int ret; 164 165 /* 166 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 167 * moment, get_block can be called only for blocks inside i_size since 168 * page cache has been already dropped and writes are blocked by 169 * i_mutex. So we can safely drop the i_data_sem here. 170 */ 171 BUG_ON(EXT4_JOURNAL(inode) == NULL); 172 jbd_debug(2, "restarting handle %p\n", handle); 173 up_write(&EXT4_I(inode)->i_data_sem); 174 ret = ext4_journal_restart(handle, nblocks); 175 down_write(&EXT4_I(inode)->i_data_sem); 176 ext4_discard_preallocations(inode); 177 178 return ret; 179 } 180 181 /* 182 * Called at the last iput() if i_nlink is zero. 183 */ 184 void ext4_evict_inode(struct inode *inode) 185 { 186 handle_t *handle; 187 int err; 188 189 trace_ext4_evict_inode(inode); 190 191 if (inode->i_nlink) { 192 /* 193 * When journalling data dirty buffers are tracked only in the 194 * journal. So although mm thinks everything is clean and 195 * ready for reaping the inode might still have some pages to 196 * write in the running transaction or waiting to be 197 * checkpointed. Thus calling jbd2_journal_invalidatepage() 198 * (via truncate_inode_pages()) to discard these buffers can 199 * cause data loss. Also even if we did not discard these 200 * buffers, we would have no way to find them after the inode 201 * is reaped and thus user could see stale data if he tries to 202 * read them before the transaction is checkpointed. So be 203 * careful and force everything to disk here... We use 204 * ei->i_datasync_tid to store the newest transaction 205 * containing inode's data. 206 * 207 * Note that directories do not have this problem because they 208 * don't use page cache. 209 */ 210 if (ext4_should_journal_data(inode) && 211 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 212 inode->i_ino != EXT4_JOURNAL_INO) { 213 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 214 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 215 216 jbd2_complete_transaction(journal, commit_tid); 217 filemap_write_and_wait(&inode->i_data); 218 } 219 truncate_inode_pages_final(&inode->i_data); 220 221 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count)); 222 goto no_delete; 223 } 224 225 if (is_bad_inode(inode)) 226 goto no_delete; 227 dquot_initialize(inode); 228 229 if (ext4_should_order_data(inode)) 230 ext4_begin_ordered_truncate(inode, 0); 231 truncate_inode_pages_final(&inode->i_data); 232 233 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count)); 234 235 /* 236 * Protect us against freezing - iput() caller didn't have to have any 237 * protection against it 238 */ 239 sb_start_intwrite(inode->i_sb); 240 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 241 ext4_blocks_for_truncate(inode)+3); 242 if (IS_ERR(handle)) { 243 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 244 /* 245 * If we're going to skip the normal cleanup, we still need to 246 * make sure that the in-core orphan linked list is properly 247 * cleaned up. 248 */ 249 ext4_orphan_del(NULL, inode); 250 sb_end_intwrite(inode->i_sb); 251 goto no_delete; 252 } 253 254 if (IS_SYNC(inode)) 255 ext4_handle_sync(handle); 256 inode->i_size = 0; 257 err = ext4_mark_inode_dirty(handle, inode); 258 if (err) { 259 ext4_warning(inode->i_sb, 260 "couldn't mark inode dirty (err %d)", err); 261 goto stop_handle; 262 } 263 if (inode->i_blocks) 264 ext4_truncate(inode); 265 266 /* 267 * ext4_ext_truncate() doesn't reserve any slop when it 268 * restarts journal transactions; therefore there may not be 269 * enough credits left in the handle to remove the inode from 270 * the orphan list and set the dtime field. 271 */ 272 if (!ext4_handle_has_enough_credits(handle, 3)) { 273 err = ext4_journal_extend(handle, 3); 274 if (err > 0) 275 err = ext4_journal_restart(handle, 3); 276 if (err != 0) { 277 ext4_warning(inode->i_sb, 278 "couldn't extend journal (err %d)", err); 279 stop_handle: 280 ext4_journal_stop(handle); 281 ext4_orphan_del(NULL, inode); 282 sb_end_intwrite(inode->i_sb); 283 goto no_delete; 284 } 285 } 286 287 /* 288 * Kill off the orphan record which ext4_truncate created. 289 * AKPM: I think this can be inside the above `if'. 290 * Note that ext4_orphan_del() has to be able to cope with the 291 * deletion of a non-existent orphan - this is because we don't 292 * know if ext4_truncate() actually created an orphan record. 293 * (Well, we could do this if we need to, but heck - it works) 294 */ 295 ext4_orphan_del(handle, inode); 296 EXT4_I(inode)->i_dtime = get_seconds(); 297 298 /* 299 * One subtle ordering requirement: if anything has gone wrong 300 * (transaction abort, IO errors, whatever), then we can still 301 * do these next steps (the fs will already have been marked as 302 * having errors), but we can't free the inode if the mark_dirty 303 * fails. 304 */ 305 if (ext4_mark_inode_dirty(handle, inode)) 306 /* If that failed, just do the required in-core inode clear. */ 307 ext4_clear_inode(inode); 308 else 309 ext4_free_inode(handle, inode); 310 ext4_journal_stop(handle); 311 sb_end_intwrite(inode->i_sb); 312 return; 313 no_delete: 314 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 315 } 316 317 #ifdef CONFIG_QUOTA 318 qsize_t *ext4_get_reserved_space(struct inode *inode) 319 { 320 return &EXT4_I(inode)->i_reserved_quota; 321 } 322 #endif 323 324 /* 325 * Called with i_data_sem down, which is important since we can call 326 * ext4_discard_preallocations() from here. 327 */ 328 void ext4_da_update_reserve_space(struct inode *inode, 329 int used, int quota_claim) 330 { 331 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 332 struct ext4_inode_info *ei = EXT4_I(inode); 333 334 spin_lock(&ei->i_block_reservation_lock); 335 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 336 if (unlikely(used > ei->i_reserved_data_blocks)) { 337 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 338 "with only %d reserved data blocks", 339 __func__, inode->i_ino, used, 340 ei->i_reserved_data_blocks); 341 WARN_ON(1); 342 used = ei->i_reserved_data_blocks; 343 } 344 345 /* Update per-inode reservations */ 346 ei->i_reserved_data_blocks -= used; 347 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 348 349 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 350 351 /* Update quota subsystem for data blocks */ 352 if (quota_claim) 353 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 354 else { 355 /* 356 * We did fallocate with an offset that is already delayed 357 * allocated. So on delayed allocated writeback we should 358 * not re-claim the quota for fallocated blocks. 359 */ 360 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 361 } 362 363 /* 364 * If we have done all the pending block allocations and if 365 * there aren't any writers on the inode, we can discard the 366 * inode's preallocations. 367 */ 368 if ((ei->i_reserved_data_blocks == 0) && 369 (atomic_read(&inode->i_writecount) == 0)) 370 ext4_discard_preallocations(inode); 371 } 372 373 static int __check_block_validity(struct inode *inode, const char *func, 374 unsigned int line, 375 struct ext4_map_blocks *map) 376 { 377 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 378 map->m_len)) { 379 ext4_error_inode(inode, func, line, map->m_pblk, 380 "lblock %lu mapped to illegal pblock " 381 "(length %d)", (unsigned long) map->m_lblk, 382 map->m_len); 383 return -EIO; 384 } 385 return 0; 386 } 387 388 #define check_block_validity(inode, map) \ 389 __check_block_validity((inode), __func__, __LINE__, (map)) 390 391 #ifdef ES_AGGRESSIVE_TEST 392 static void ext4_map_blocks_es_recheck(handle_t *handle, 393 struct inode *inode, 394 struct ext4_map_blocks *es_map, 395 struct ext4_map_blocks *map, 396 int flags) 397 { 398 int retval; 399 400 map->m_flags = 0; 401 /* 402 * There is a race window that the result is not the same. 403 * e.g. xfstests #223 when dioread_nolock enables. The reason 404 * is that we lookup a block mapping in extent status tree with 405 * out taking i_data_sem. So at the time the unwritten extent 406 * could be converted. 407 */ 408 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 409 down_read(&EXT4_I(inode)->i_data_sem); 410 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 411 retval = ext4_ext_map_blocks(handle, inode, map, flags & 412 EXT4_GET_BLOCKS_KEEP_SIZE); 413 } else { 414 retval = ext4_ind_map_blocks(handle, inode, map, flags & 415 EXT4_GET_BLOCKS_KEEP_SIZE); 416 } 417 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 418 up_read((&EXT4_I(inode)->i_data_sem)); 419 420 /* 421 * We don't check m_len because extent will be collpased in status 422 * tree. So the m_len might not equal. 423 */ 424 if (es_map->m_lblk != map->m_lblk || 425 es_map->m_flags != map->m_flags || 426 es_map->m_pblk != map->m_pblk) { 427 printk("ES cache assertion failed for inode: %lu " 428 "es_cached ex [%d/%d/%llu/%x] != " 429 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 430 inode->i_ino, es_map->m_lblk, es_map->m_len, 431 es_map->m_pblk, es_map->m_flags, map->m_lblk, 432 map->m_len, map->m_pblk, map->m_flags, 433 retval, flags); 434 } 435 } 436 #endif /* ES_AGGRESSIVE_TEST */ 437 438 /* 439 * The ext4_map_blocks() function tries to look up the requested blocks, 440 * and returns if the blocks are already mapped. 441 * 442 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 443 * and store the allocated blocks in the result buffer head and mark it 444 * mapped. 445 * 446 * If file type is extents based, it will call ext4_ext_map_blocks(), 447 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 448 * based files 449 * 450 * On success, it returns the number of blocks being mapped or allocated. 451 * if create==0 and the blocks are pre-allocated and unwritten block, 452 * the result buffer head is unmapped. If the create ==1, it will make sure 453 * the buffer head is mapped. 454 * 455 * It returns 0 if plain look up failed (blocks have not been allocated), in 456 * that case, buffer head is unmapped 457 * 458 * It returns the error in case of allocation failure. 459 */ 460 int ext4_map_blocks(handle_t *handle, struct inode *inode, 461 struct ext4_map_blocks *map, int flags) 462 { 463 struct extent_status es; 464 int retval; 465 int ret = 0; 466 #ifdef ES_AGGRESSIVE_TEST 467 struct ext4_map_blocks orig_map; 468 469 memcpy(&orig_map, map, sizeof(*map)); 470 #endif 471 472 map->m_flags = 0; 473 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 474 "logical block %lu\n", inode->i_ino, flags, map->m_len, 475 (unsigned long) map->m_lblk); 476 477 /* 478 * ext4_map_blocks returns an int, and m_len is an unsigned int 479 */ 480 if (unlikely(map->m_len > INT_MAX)) 481 map->m_len = INT_MAX; 482 483 /* We can handle the block number less than EXT_MAX_BLOCKS */ 484 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 485 return -EIO; 486 487 /* Lookup extent status tree firstly */ 488 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 489 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 490 map->m_pblk = ext4_es_pblock(&es) + 491 map->m_lblk - es.es_lblk; 492 map->m_flags |= ext4_es_is_written(&es) ? 493 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 494 retval = es.es_len - (map->m_lblk - es.es_lblk); 495 if (retval > map->m_len) 496 retval = map->m_len; 497 map->m_len = retval; 498 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 499 retval = 0; 500 } else { 501 BUG_ON(1); 502 } 503 #ifdef ES_AGGRESSIVE_TEST 504 ext4_map_blocks_es_recheck(handle, inode, map, 505 &orig_map, flags); 506 #endif 507 goto found; 508 } 509 510 /* 511 * Try to see if we can get the block without requesting a new 512 * file system block. 513 */ 514 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 515 down_read(&EXT4_I(inode)->i_data_sem); 516 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 517 retval = ext4_ext_map_blocks(handle, inode, map, flags & 518 EXT4_GET_BLOCKS_KEEP_SIZE); 519 } else { 520 retval = ext4_ind_map_blocks(handle, inode, map, flags & 521 EXT4_GET_BLOCKS_KEEP_SIZE); 522 } 523 if (retval > 0) { 524 unsigned int status; 525 526 if (unlikely(retval != map->m_len)) { 527 ext4_warning(inode->i_sb, 528 "ES len assertion failed for inode " 529 "%lu: retval %d != map->m_len %d", 530 inode->i_ino, retval, map->m_len); 531 WARN_ON(1); 532 } 533 534 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 535 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 536 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 537 ext4_find_delalloc_range(inode, map->m_lblk, 538 map->m_lblk + map->m_len - 1)) 539 status |= EXTENT_STATUS_DELAYED; 540 ret = ext4_es_insert_extent(inode, map->m_lblk, 541 map->m_len, map->m_pblk, status); 542 if (ret < 0) 543 retval = ret; 544 } 545 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 546 up_read((&EXT4_I(inode)->i_data_sem)); 547 548 found: 549 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 550 ret = check_block_validity(inode, map); 551 if (ret != 0) 552 return ret; 553 } 554 555 /* If it is only a block(s) look up */ 556 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 557 return retval; 558 559 /* 560 * Returns if the blocks have already allocated 561 * 562 * Note that if blocks have been preallocated 563 * ext4_ext_get_block() returns the create = 0 564 * with buffer head unmapped. 565 */ 566 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 567 /* 568 * If we need to convert extent to unwritten 569 * we continue and do the actual work in 570 * ext4_ext_map_blocks() 571 */ 572 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 573 return retval; 574 575 /* 576 * Here we clear m_flags because after allocating an new extent, 577 * it will be set again. 578 */ 579 map->m_flags &= ~EXT4_MAP_FLAGS; 580 581 /* 582 * New blocks allocate and/or writing to unwritten extent 583 * will possibly result in updating i_data, so we take 584 * the write lock of i_data_sem, and call get_block() 585 * with create == 1 flag. 586 */ 587 down_write(&EXT4_I(inode)->i_data_sem); 588 589 /* 590 * We need to check for EXT4 here because migrate 591 * could have changed the inode type in between 592 */ 593 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 594 retval = ext4_ext_map_blocks(handle, inode, map, flags); 595 } else { 596 retval = ext4_ind_map_blocks(handle, inode, map, flags); 597 598 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 599 /* 600 * We allocated new blocks which will result in 601 * i_data's format changing. Force the migrate 602 * to fail by clearing migrate flags 603 */ 604 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 605 } 606 607 /* 608 * Update reserved blocks/metadata blocks after successful 609 * block allocation which had been deferred till now. We don't 610 * support fallocate for non extent files. So we can update 611 * reserve space here. 612 */ 613 if ((retval > 0) && 614 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 615 ext4_da_update_reserve_space(inode, retval, 1); 616 } 617 618 if (retval > 0) { 619 unsigned int status; 620 621 if (unlikely(retval != map->m_len)) { 622 ext4_warning(inode->i_sb, 623 "ES len assertion failed for inode " 624 "%lu: retval %d != map->m_len %d", 625 inode->i_ino, retval, map->m_len); 626 WARN_ON(1); 627 } 628 629 /* 630 * If the extent has been zeroed out, we don't need to update 631 * extent status tree. 632 */ 633 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 634 ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 635 if (ext4_es_is_written(&es)) 636 goto has_zeroout; 637 } 638 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 639 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 640 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 641 ext4_find_delalloc_range(inode, map->m_lblk, 642 map->m_lblk + map->m_len - 1)) 643 status |= EXTENT_STATUS_DELAYED; 644 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 645 map->m_pblk, status); 646 if (ret < 0) 647 retval = ret; 648 } 649 650 has_zeroout: 651 up_write((&EXT4_I(inode)->i_data_sem)); 652 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 653 ret = check_block_validity(inode, map); 654 if (ret != 0) 655 return ret; 656 } 657 return retval; 658 } 659 660 static void ext4_end_io_unwritten(struct buffer_head *bh, int uptodate) 661 { 662 struct inode *inode = bh->b_assoc_map->host; 663 /* XXX: breaks on 32-bit > 16GB. Is that even supported? */ 664 loff_t offset = (loff_t)(uintptr_t)bh->b_private << inode->i_blkbits; 665 int err; 666 if (!uptodate) 667 return; 668 WARN_ON(!buffer_unwritten(bh)); 669 err = ext4_convert_unwritten_extents(NULL, inode, offset, bh->b_size); 670 } 671 672 /* Maximum number of blocks we map for direct IO at once. */ 673 #define DIO_MAX_BLOCKS 4096 674 675 static int _ext4_get_block(struct inode *inode, sector_t iblock, 676 struct buffer_head *bh, int flags) 677 { 678 handle_t *handle = ext4_journal_current_handle(); 679 struct ext4_map_blocks map; 680 int ret = 0, started = 0; 681 int dio_credits; 682 683 if (ext4_has_inline_data(inode)) 684 return -ERANGE; 685 686 map.m_lblk = iblock; 687 map.m_len = bh->b_size >> inode->i_blkbits; 688 689 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) { 690 /* Direct IO write... */ 691 if (map.m_len > DIO_MAX_BLOCKS) 692 map.m_len = DIO_MAX_BLOCKS; 693 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 694 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 695 dio_credits); 696 if (IS_ERR(handle)) { 697 ret = PTR_ERR(handle); 698 return ret; 699 } 700 started = 1; 701 } 702 703 ret = ext4_map_blocks(handle, inode, &map, flags); 704 if (ret > 0) { 705 ext4_io_end_t *io_end = ext4_inode_aio(inode); 706 707 map_bh(bh, inode->i_sb, map.m_pblk); 708 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 709 if (IS_DAX(inode) && buffer_unwritten(bh) && !io_end) { 710 bh->b_assoc_map = inode->i_mapping; 711 bh->b_private = (void *)(unsigned long)iblock; 712 bh->b_end_io = ext4_end_io_unwritten; 713 } 714 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN) 715 set_buffer_defer_completion(bh); 716 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 717 ret = 0; 718 } 719 if (started) 720 ext4_journal_stop(handle); 721 return ret; 722 } 723 724 int ext4_get_block(struct inode *inode, sector_t iblock, 725 struct buffer_head *bh, int create) 726 { 727 return _ext4_get_block(inode, iblock, bh, 728 create ? EXT4_GET_BLOCKS_CREATE : 0); 729 } 730 731 /* 732 * `handle' can be NULL if create is zero 733 */ 734 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 735 ext4_lblk_t block, int create) 736 { 737 struct ext4_map_blocks map; 738 struct buffer_head *bh; 739 int err; 740 741 J_ASSERT(handle != NULL || create == 0); 742 743 map.m_lblk = block; 744 map.m_len = 1; 745 err = ext4_map_blocks(handle, inode, &map, 746 create ? EXT4_GET_BLOCKS_CREATE : 0); 747 748 if (err == 0) 749 return create ? ERR_PTR(-ENOSPC) : NULL; 750 if (err < 0) 751 return ERR_PTR(err); 752 753 bh = sb_getblk(inode->i_sb, map.m_pblk); 754 if (unlikely(!bh)) 755 return ERR_PTR(-ENOMEM); 756 if (map.m_flags & EXT4_MAP_NEW) { 757 J_ASSERT(create != 0); 758 J_ASSERT(handle != NULL); 759 760 /* 761 * Now that we do not always journal data, we should 762 * keep in mind whether this should always journal the 763 * new buffer as metadata. For now, regular file 764 * writes use ext4_get_block instead, so it's not a 765 * problem. 766 */ 767 lock_buffer(bh); 768 BUFFER_TRACE(bh, "call get_create_access"); 769 err = ext4_journal_get_create_access(handle, bh); 770 if (unlikely(err)) { 771 unlock_buffer(bh); 772 goto errout; 773 } 774 if (!buffer_uptodate(bh)) { 775 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 776 set_buffer_uptodate(bh); 777 } 778 unlock_buffer(bh); 779 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 780 err = ext4_handle_dirty_metadata(handle, inode, bh); 781 if (unlikely(err)) 782 goto errout; 783 } else 784 BUFFER_TRACE(bh, "not a new buffer"); 785 return bh; 786 errout: 787 brelse(bh); 788 return ERR_PTR(err); 789 } 790 791 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 792 ext4_lblk_t block, int create) 793 { 794 struct buffer_head *bh; 795 796 bh = ext4_getblk(handle, inode, block, create); 797 if (IS_ERR(bh)) 798 return bh; 799 if (!bh || buffer_uptodate(bh)) 800 return bh; 801 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh); 802 wait_on_buffer(bh); 803 if (buffer_uptodate(bh)) 804 return bh; 805 put_bh(bh); 806 return ERR_PTR(-EIO); 807 } 808 809 int ext4_walk_page_buffers(handle_t *handle, 810 struct buffer_head *head, 811 unsigned from, 812 unsigned to, 813 int *partial, 814 int (*fn)(handle_t *handle, 815 struct buffer_head *bh)) 816 { 817 struct buffer_head *bh; 818 unsigned block_start, block_end; 819 unsigned blocksize = head->b_size; 820 int err, ret = 0; 821 struct buffer_head *next; 822 823 for (bh = head, block_start = 0; 824 ret == 0 && (bh != head || !block_start); 825 block_start = block_end, bh = next) { 826 next = bh->b_this_page; 827 block_end = block_start + blocksize; 828 if (block_end <= from || block_start >= to) { 829 if (partial && !buffer_uptodate(bh)) 830 *partial = 1; 831 continue; 832 } 833 err = (*fn)(handle, bh); 834 if (!ret) 835 ret = err; 836 } 837 return ret; 838 } 839 840 /* 841 * To preserve ordering, it is essential that the hole instantiation and 842 * the data write be encapsulated in a single transaction. We cannot 843 * close off a transaction and start a new one between the ext4_get_block() 844 * and the commit_write(). So doing the jbd2_journal_start at the start of 845 * prepare_write() is the right place. 846 * 847 * Also, this function can nest inside ext4_writepage(). In that case, we 848 * *know* that ext4_writepage() has generated enough buffer credits to do the 849 * whole page. So we won't block on the journal in that case, which is good, 850 * because the caller may be PF_MEMALLOC. 851 * 852 * By accident, ext4 can be reentered when a transaction is open via 853 * quota file writes. If we were to commit the transaction while thus 854 * reentered, there can be a deadlock - we would be holding a quota 855 * lock, and the commit would never complete if another thread had a 856 * transaction open and was blocking on the quota lock - a ranking 857 * violation. 858 * 859 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 860 * will _not_ run commit under these circumstances because handle->h_ref 861 * is elevated. We'll still have enough credits for the tiny quotafile 862 * write. 863 */ 864 int do_journal_get_write_access(handle_t *handle, 865 struct buffer_head *bh) 866 { 867 int dirty = buffer_dirty(bh); 868 int ret; 869 870 if (!buffer_mapped(bh) || buffer_freed(bh)) 871 return 0; 872 /* 873 * __block_write_begin() could have dirtied some buffers. Clean 874 * the dirty bit as jbd2_journal_get_write_access() could complain 875 * otherwise about fs integrity issues. Setting of the dirty bit 876 * by __block_write_begin() isn't a real problem here as we clear 877 * the bit before releasing a page lock and thus writeback cannot 878 * ever write the buffer. 879 */ 880 if (dirty) 881 clear_buffer_dirty(bh); 882 BUFFER_TRACE(bh, "get write access"); 883 ret = ext4_journal_get_write_access(handle, bh); 884 if (!ret && dirty) 885 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 886 return ret; 887 } 888 889 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 890 struct buffer_head *bh_result, int create); 891 static int ext4_write_begin(struct file *file, struct address_space *mapping, 892 loff_t pos, unsigned len, unsigned flags, 893 struct page **pagep, void **fsdata) 894 { 895 struct inode *inode = mapping->host; 896 int ret, needed_blocks; 897 handle_t *handle; 898 int retries = 0; 899 struct page *page; 900 pgoff_t index; 901 unsigned from, to; 902 903 trace_ext4_write_begin(inode, pos, len, flags); 904 /* 905 * Reserve one block more for addition to orphan list in case 906 * we allocate blocks but write fails for some reason 907 */ 908 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 909 index = pos >> PAGE_CACHE_SHIFT; 910 from = pos & (PAGE_CACHE_SIZE - 1); 911 to = from + len; 912 913 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 914 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 915 flags, pagep); 916 if (ret < 0) 917 return ret; 918 if (ret == 1) 919 return 0; 920 } 921 922 /* 923 * grab_cache_page_write_begin() can take a long time if the 924 * system is thrashing due to memory pressure, or if the page 925 * is being written back. So grab it first before we start 926 * the transaction handle. This also allows us to allocate 927 * the page (if needed) without using GFP_NOFS. 928 */ 929 retry_grab: 930 page = grab_cache_page_write_begin(mapping, index, flags); 931 if (!page) 932 return -ENOMEM; 933 unlock_page(page); 934 935 retry_journal: 936 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 937 if (IS_ERR(handle)) { 938 page_cache_release(page); 939 return PTR_ERR(handle); 940 } 941 942 lock_page(page); 943 if (page->mapping != mapping) { 944 /* The page got truncated from under us */ 945 unlock_page(page); 946 page_cache_release(page); 947 ext4_journal_stop(handle); 948 goto retry_grab; 949 } 950 /* In case writeback began while the page was unlocked */ 951 wait_for_stable_page(page); 952 953 if (ext4_should_dioread_nolock(inode)) 954 ret = __block_write_begin(page, pos, len, ext4_get_block_write); 955 else 956 ret = __block_write_begin(page, pos, len, ext4_get_block); 957 958 if (!ret && ext4_should_journal_data(inode)) { 959 ret = ext4_walk_page_buffers(handle, page_buffers(page), 960 from, to, NULL, 961 do_journal_get_write_access); 962 } 963 964 if (ret) { 965 unlock_page(page); 966 /* 967 * __block_write_begin may have instantiated a few blocks 968 * outside i_size. Trim these off again. Don't need 969 * i_size_read because we hold i_mutex. 970 * 971 * Add inode to orphan list in case we crash before 972 * truncate finishes 973 */ 974 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 975 ext4_orphan_add(handle, inode); 976 977 ext4_journal_stop(handle); 978 if (pos + len > inode->i_size) { 979 ext4_truncate_failed_write(inode); 980 /* 981 * If truncate failed early the inode might 982 * still be on the orphan list; we need to 983 * make sure the inode is removed from the 984 * orphan list in that case. 985 */ 986 if (inode->i_nlink) 987 ext4_orphan_del(NULL, inode); 988 } 989 990 if (ret == -ENOSPC && 991 ext4_should_retry_alloc(inode->i_sb, &retries)) 992 goto retry_journal; 993 page_cache_release(page); 994 return ret; 995 } 996 *pagep = page; 997 return ret; 998 } 999 1000 /* For write_end() in data=journal mode */ 1001 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1002 { 1003 int ret; 1004 if (!buffer_mapped(bh) || buffer_freed(bh)) 1005 return 0; 1006 set_buffer_uptodate(bh); 1007 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1008 clear_buffer_meta(bh); 1009 clear_buffer_prio(bh); 1010 return ret; 1011 } 1012 1013 /* 1014 * We need to pick up the new inode size which generic_commit_write gave us 1015 * `file' can be NULL - eg, when called from page_symlink(). 1016 * 1017 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1018 * buffers are managed internally. 1019 */ 1020 static int ext4_write_end(struct file *file, 1021 struct address_space *mapping, 1022 loff_t pos, unsigned len, unsigned copied, 1023 struct page *page, void *fsdata) 1024 { 1025 handle_t *handle = ext4_journal_current_handle(); 1026 struct inode *inode = mapping->host; 1027 loff_t old_size = inode->i_size; 1028 int ret = 0, ret2; 1029 int i_size_changed = 0; 1030 1031 trace_ext4_write_end(inode, pos, len, copied); 1032 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) { 1033 ret = ext4_jbd2_file_inode(handle, inode); 1034 if (ret) { 1035 unlock_page(page); 1036 page_cache_release(page); 1037 goto errout; 1038 } 1039 } 1040 1041 if (ext4_has_inline_data(inode)) { 1042 ret = ext4_write_inline_data_end(inode, pos, len, 1043 copied, page); 1044 if (ret < 0) 1045 goto errout; 1046 copied = ret; 1047 } else 1048 copied = block_write_end(file, mapping, pos, 1049 len, copied, page, fsdata); 1050 /* 1051 * it's important to update i_size while still holding page lock: 1052 * page writeout could otherwise come in and zero beyond i_size. 1053 */ 1054 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1055 unlock_page(page); 1056 page_cache_release(page); 1057 1058 if (old_size < pos) 1059 pagecache_isize_extended(inode, old_size, pos); 1060 /* 1061 * Don't mark the inode dirty under page lock. First, it unnecessarily 1062 * makes the holding time of page lock longer. Second, it forces lock 1063 * ordering of page lock and transaction start for journaling 1064 * filesystems. 1065 */ 1066 if (i_size_changed) 1067 ext4_mark_inode_dirty(handle, inode); 1068 1069 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1070 /* if we have allocated more blocks and copied 1071 * less. We will have blocks allocated outside 1072 * inode->i_size. So truncate them 1073 */ 1074 ext4_orphan_add(handle, inode); 1075 errout: 1076 ret2 = ext4_journal_stop(handle); 1077 if (!ret) 1078 ret = ret2; 1079 1080 if (pos + len > inode->i_size) { 1081 ext4_truncate_failed_write(inode); 1082 /* 1083 * If truncate failed early the inode might still be 1084 * on the orphan list; we need to make sure the inode 1085 * is removed from the orphan list in that case. 1086 */ 1087 if (inode->i_nlink) 1088 ext4_orphan_del(NULL, inode); 1089 } 1090 1091 return ret ? ret : copied; 1092 } 1093 1094 static int ext4_journalled_write_end(struct file *file, 1095 struct address_space *mapping, 1096 loff_t pos, unsigned len, unsigned copied, 1097 struct page *page, void *fsdata) 1098 { 1099 handle_t *handle = ext4_journal_current_handle(); 1100 struct inode *inode = mapping->host; 1101 loff_t old_size = inode->i_size; 1102 int ret = 0, ret2; 1103 int partial = 0; 1104 unsigned from, to; 1105 int size_changed = 0; 1106 1107 trace_ext4_journalled_write_end(inode, pos, len, copied); 1108 from = pos & (PAGE_CACHE_SIZE - 1); 1109 to = from + len; 1110 1111 BUG_ON(!ext4_handle_valid(handle)); 1112 1113 if (ext4_has_inline_data(inode)) 1114 copied = ext4_write_inline_data_end(inode, pos, len, 1115 copied, page); 1116 else { 1117 if (copied < len) { 1118 if (!PageUptodate(page)) 1119 copied = 0; 1120 page_zero_new_buffers(page, from+copied, to); 1121 } 1122 1123 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1124 to, &partial, write_end_fn); 1125 if (!partial) 1126 SetPageUptodate(page); 1127 } 1128 size_changed = ext4_update_inode_size(inode, pos + copied); 1129 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1130 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1131 unlock_page(page); 1132 page_cache_release(page); 1133 1134 if (old_size < pos) 1135 pagecache_isize_extended(inode, old_size, pos); 1136 1137 if (size_changed) { 1138 ret2 = ext4_mark_inode_dirty(handle, inode); 1139 if (!ret) 1140 ret = ret2; 1141 } 1142 1143 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1144 /* if we have allocated more blocks and copied 1145 * less. We will have blocks allocated outside 1146 * inode->i_size. So truncate them 1147 */ 1148 ext4_orphan_add(handle, inode); 1149 1150 ret2 = ext4_journal_stop(handle); 1151 if (!ret) 1152 ret = ret2; 1153 if (pos + len > inode->i_size) { 1154 ext4_truncate_failed_write(inode); 1155 /* 1156 * If truncate failed early the inode might still be 1157 * on the orphan list; we need to make sure the inode 1158 * is removed from the orphan list in that case. 1159 */ 1160 if (inode->i_nlink) 1161 ext4_orphan_del(NULL, inode); 1162 } 1163 1164 return ret ? ret : copied; 1165 } 1166 1167 /* 1168 * Reserve a single cluster located at lblock 1169 */ 1170 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock) 1171 { 1172 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1173 struct ext4_inode_info *ei = EXT4_I(inode); 1174 unsigned int md_needed; 1175 int ret; 1176 1177 /* 1178 * We will charge metadata quota at writeout time; this saves 1179 * us from metadata over-estimation, though we may go over by 1180 * a small amount in the end. Here we just reserve for data. 1181 */ 1182 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1183 if (ret) 1184 return ret; 1185 1186 /* 1187 * recalculate the amount of metadata blocks to reserve 1188 * in order to allocate nrblocks 1189 * worse case is one extent per block 1190 */ 1191 spin_lock(&ei->i_block_reservation_lock); 1192 /* 1193 * ext4_calc_metadata_amount() has side effects, which we have 1194 * to be prepared undo if we fail to claim space. 1195 */ 1196 md_needed = 0; 1197 trace_ext4_da_reserve_space(inode, 0); 1198 1199 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1200 spin_unlock(&ei->i_block_reservation_lock); 1201 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1202 return -ENOSPC; 1203 } 1204 ei->i_reserved_data_blocks++; 1205 spin_unlock(&ei->i_block_reservation_lock); 1206 1207 return 0; /* success */ 1208 } 1209 1210 static void ext4_da_release_space(struct inode *inode, int to_free) 1211 { 1212 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1213 struct ext4_inode_info *ei = EXT4_I(inode); 1214 1215 if (!to_free) 1216 return; /* Nothing to release, exit */ 1217 1218 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1219 1220 trace_ext4_da_release_space(inode, to_free); 1221 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1222 /* 1223 * if there aren't enough reserved blocks, then the 1224 * counter is messed up somewhere. Since this 1225 * function is called from invalidate page, it's 1226 * harmless to return without any action. 1227 */ 1228 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1229 "ino %lu, to_free %d with only %d reserved " 1230 "data blocks", inode->i_ino, to_free, 1231 ei->i_reserved_data_blocks); 1232 WARN_ON(1); 1233 to_free = ei->i_reserved_data_blocks; 1234 } 1235 ei->i_reserved_data_blocks -= to_free; 1236 1237 /* update fs dirty data blocks counter */ 1238 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1239 1240 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1241 1242 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1243 } 1244 1245 static void ext4_da_page_release_reservation(struct page *page, 1246 unsigned int offset, 1247 unsigned int length) 1248 { 1249 int to_release = 0; 1250 struct buffer_head *head, *bh; 1251 unsigned int curr_off = 0; 1252 struct inode *inode = page->mapping->host; 1253 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1254 unsigned int stop = offset + length; 1255 int num_clusters; 1256 ext4_fsblk_t lblk; 1257 1258 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length); 1259 1260 head = page_buffers(page); 1261 bh = head; 1262 do { 1263 unsigned int next_off = curr_off + bh->b_size; 1264 1265 if (next_off > stop) 1266 break; 1267 1268 if ((offset <= curr_off) && (buffer_delay(bh))) { 1269 to_release++; 1270 clear_buffer_delay(bh); 1271 } 1272 curr_off = next_off; 1273 } while ((bh = bh->b_this_page) != head); 1274 1275 if (to_release) { 1276 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1277 ext4_es_remove_extent(inode, lblk, to_release); 1278 } 1279 1280 /* If we have released all the blocks belonging to a cluster, then we 1281 * need to release the reserved space for that cluster. */ 1282 num_clusters = EXT4_NUM_B2C(sbi, to_release); 1283 while (num_clusters > 0) { 1284 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) + 1285 ((num_clusters - 1) << sbi->s_cluster_bits); 1286 if (sbi->s_cluster_ratio == 1 || 1287 !ext4_find_delalloc_cluster(inode, lblk)) 1288 ext4_da_release_space(inode, 1); 1289 1290 num_clusters--; 1291 } 1292 } 1293 1294 /* 1295 * Delayed allocation stuff 1296 */ 1297 1298 struct mpage_da_data { 1299 struct inode *inode; 1300 struct writeback_control *wbc; 1301 1302 pgoff_t first_page; /* The first page to write */ 1303 pgoff_t next_page; /* Current page to examine */ 1304 pgoff_t last_page; /* Last page to examine */ 1305 /* 1306 * Extent to map - this can be after first_page because that can be 1307 * fully mapped. We somewhat abuse m_flags to store whether the extent 1308 * is delalloc or unwritten. 1309 */ 1310 struct ext4_map_blocks map; 1311 struct ext4_io_submit io_submit; /* IO submission data */ 1312 }; 1313 1314 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1315 bool invalidate) 1316 { 1317 int nr_pages, i; 1318 pgoff_t index, end; 1319 struct pagevec pvec; 1320 struct inode *inode = mpd->inode; 1321 struct address_space *mapping = inode->i_mapping; 1322 1323 /* This is necessary when next_page == 0. */ 1324 if (mpd->first_page >= mpd->next_page) 1325 return; 1326 1327 index = mpd->first_page; 1328 end = mpd->next_page - 1; 1329 if (invalidate) { 1330 ext4_lblk_t start, last; 1331 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1332 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1333 ext4_es_remove_extent(inode, start, last - start + 1); 1334 } 1335 1336 pagevec_init(&pvec, 0); 1337 while (index <= end) { 1338 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1339 if (nr_pages == 0) 1340 break; 1341 for (i = 0; i < nr_pages; i++) { 1342 struct page *page = pvec.pages[i]; 1343 if (page->index > end) 1344 break; 1345 BUG_ON(!PageLocked(page)); 1346 BUG_ON(PageWriteback(page)); 1347 if (invalidate) { 1348 block_invalidatepage(page, 0, PAGE_CACHE_SIZE); 1349 ClearPageUptodate(page); 1350 } 1351 unlock_page(page); 1352 } 1353 index = pvec.pages[nr_pages - 1]->index + 1; 1354 pagevec_release(&pvec); 1355 } 1356 } 1357 1358 static void ext4_print_free_blocks(struct inode *inode) 1359 { 1360 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1361 struct super_block *sb = inode->i_sb; 1362 struct ext4_inode_info *ei = EXT4_I(inode); 1363 1364 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1365 EXT4_C2B(EXT4_SB(inode->i_sb), 1366 ext4_count_free_clusters(sb))); 1367 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1368 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1369 (long long) EXT4_C2B(EXT4_SB(sb), 1370 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1371 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1372 (long long) EXT4_C2B(EXT4_SB(sb), 1373 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1374 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1375 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1376 ei->i_reserved_data_blocks); 1377 return; 1378 } 1379 1380 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1381 { 1382 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1383 } 1384 1385 /* 1386 * This function is grabs code from the very beginning of 1387 * ext4_map_blocks, but assumes that the caller is from delayed write 1388 * time. This function looks up the requested blocks and sets the 1389 * buffer delay bit under the protection of i_data_sem. 1390 */ 1391 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1392 struct ext4_map_blocks *map, 1393 struct buffer_head *bh) 1394 { 1395 struct extent_status es; 1396 int retval; 1397 sector_t invalid_block = ~((sector_t) 0xffff); 1398 #ifdef ES_AGGRESSIVE_TEST 1399 struct ext4_map_blocks orig_map; 1400 1401 memcpy(&orig_map, map, sizeof(*map)); 1402 #endif 1403 1404 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1405 invalid_block = ~0; 1406 1407 map->m_flags = 0; 1408 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1409 "logical block %lu\n", inode->i_ino, map->m_len, 1410 (unsigned long) map->m_lblk); 1411 1412 /* Lookup extent status tree firstly */ 1413 if (ext4_es_lookup_extent(inode, iblock, &es)) { 1414 if (ext4_es_is_hole(&es)) { 1415 retval = 0; 1416 down_read(&EXT4_I(inode)->i_data_sem); 1417 goto add_delayed; 1418 } 1419 1420 /* 1421 * Delayed extent could be allocated by fallocate. 1422 * So we need to check it. 1423 */ 1424 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1425 map_bh(bh, inode->i_sb, invalid_block); 1426 set_buffer_new(bh); 1427 set_buffer_delay(bh); 1428 return 0; 1429 } 1430 1431 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1432 retval = es.es_len - (iblock - es.es_lblk); 1433 if (retval > map->m_len) 1434 retval = map->m_len; 1435 map->m_len = retval; 1436 if (ext4_es_is_written(&es)) 1437 map->m_flags |= EXT4_MAP_MAPPED; 1438 else if (ext4_es_is_unwritten(&es)) 1439 map->m_flags |= EXT4_MAP_UNWRITTEN; 1440 else 1441 BUG_ON(1); 1442 1443 #ifdef ES_AGGRESSIVE_TEST 1444 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1445 #endif 1446 return retval; 1447 } 1448 1449 /* 1450 * Try to see if we can get the block without requesting a new 1451 * file system block. 1452 */ 1453 down_read(&EXT4_I(inode)->i_data_sem); 1454 if (ext4_has_inline_data(inode)) 1455 retval = 0; 1456 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1457 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1458 else 1459 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1460 1461 add_delayed: 1462 if (retval == 0) { 1463 int ret; 1464 /* 1465 * XXX: __block_prepare_write() unmaps passed block, 1466 * is it OK? 1467 */ 1468 /* 1469 * If the block was allocated from previously allocated cluster, 1470 * then we don't need to reserve it again. However we still need 1471 * to reserve metadata for every block we're going to write. 1472 */ 1473 if (EXT4_SB(inode->i_sb)->s_cluster_ratio <= 1 || 1474 !ext4_find_delalloc_cluster(inode, map->m_lblk)) { 1475 ret = ext4_da_reserve_space(inode, iblock); 1476 if (ret) { 1477 /* not enough space to reserve */ 1478 retval = ret; 1479 goto out_unlock; 1480 } 1481 } 1482 1483 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1484 ~0, EXTENT_STATUS_DELAYED); 1485 if (ret) { 1486 retval = ret; 1487 goto out_unlock; 1488 } 1489 1490 map_bh(bh, inode->i_sb, invalid_block); 1491 set_buffer_new(bh); 1492 set_buffer_delay(bh); 1493 } else if (retval > 0) { 1494 int ret; 1495 unsigned int status; 1496 1497 if (unlikely(retval != map->m_len)) { 1498 ext4_warning(inode->i_sb, 1499 "ES len assertion failed for inode " 1500 "%lu: retval %d != map->m_len %d", 1501 inode->i_ino, retval, map->m_len); 1502 WARN_ON(1); 1503 } 1504 1505 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1506 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1507 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1508 map->m_pblk, status); 1509 if (ret != 0) 1510 retval = ret; 1511 } 1512 1513 out_unlock: 1514 up_read((&EXT4_I(inode)->i_data_sem)); 1515 1516 return retval; 1517 } 1518 1519 /* 1520 * This is a special get_block_t callback which is used by 1521 * ext4_da_write_begin(). It will either return mapped block or 1522 * reserve space for a single block. 1523 * 1524 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1525 * We also have b_blocknr = -1 and b_bdev initialized properly 1526 * 1527 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1528 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1529 * initialized properly. 1530 */ 1531 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1532 struct buffer_head *bh, int create) 1533 { 1534 struct ext4_map_blocks map; 1535 int ret = 0; 1536 1537 BUG_ON(create == 0); 1538 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1539 1540 map.m_lblk = iblock; 1541 map.m_len = 1; 1542 1543 /* 1544 * first, we need to know whether the block is allocated already 1545 * preallocated blocks are unmapped but should treated 1546 * the same as allocated blocks. 1547 */ 1548 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1549 if (ret <= 0) 1550 return ret; 1551 1552 map_bh(bh, inode->i_sb, map.m_pblk); 1553 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 1554 1555 if (buffer_unwritten(bh)) { 1556 /* A delayed write to unwritten bh should be marked 1557 * new and mapped. Mapped ensures that we don't do 1558 * get_block multiple times when we write to the same 1559 * offset and new ensures that we do proper zero out 1560 * for partial write. 1561 */ 1562 set_buffer_new(bh); 1563 set_buffer_mapped(bh); 1564 } 1565 return 0; 1566 } 1567 1568 static int bget_one(handle_t *handle, struct buffer_head *bh) 1569 { 1570 get_bh(bh); 1571 return 0; 1572 } 1573 1574 static int bput_one(handle_t *handle, struct buffer_head *bh) 1575 { 1576 put_bh(bh); 1577 return 0; 1578 } 1579 1580 static int __ext4_journalled_writepage(struct page *page, 1581 unsigned int len) 1582 { 1583 struct address_space *mapping = page->mapping; 1584 struct inode *inode = mapping->host; 1585 struct buffer_head *page_bufs = NULL; 1586 handle_t *handle = NULL; 1587 int ret = 0, err = 0; 1588 int inline_data = ext4_has_inline_data(inode); 1589 struct buffer_head *inode_bh = NULL; 1590 1591 ClearPageChecked(page); 1592 1593 if (inline_data) { 1594 BUG_ON(page->index != 0); 1595 BUG_ON(len > ext4_get_max_inline_size(inode)); 1596 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1597 if (inode_bh == NULL) 1598 goto out; 1599 } else { 1600 page_bufs = page_buffers(page); 1601 if (!page_bufs) { 1602 BUG(); 1603 goto out; 1604 } 1605 ext4_walk_page_buffers(handle, page_bufs, 0, len, 1606 NULL, bget_one); 1607 } 1608 /* As soon as we unlock the page, it can go away, but we have 1609 * references to buffers so we are safe */ 1610 unlock_page(page); 1611 1612 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1613 ext4_writepage_trans_blocks(inode)); 1614 if (IS_ERR(handle)) { 1615 ret = PTR_ERR(handle); 1616 goto out; 1617 } 1618 1619 BUG_ON(!ext4_handle_valid(handle)); 1620 1621 if (inline_data) { 1622 BUFFER_TRACE(inode_bh, "get write access"); 1623 ret = ext4_journal_get_write_access(handle, inode_bh); 1624 1625 err = ext4_handle_dirty_metadata(handle, inode, inode_bh); 1626 1627 } else { 1628 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1629 do_journal_get_write_access); 1630 1631 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1632 write_end_fn); 1633 } 1634 if (ret == 0) 1635 ret = err; 1636 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1637 err = ext4_journal_stop(handle); 1638 if (!ret) 1639 ret = err; 1640 1641 if (!ext4_has_inline_data(inode)) 1642 ext4_walk_page_buffers(NULL, page_bufs, 0, len, 1643 NULL, bput_one); 1644 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1645 out: 1646 brelse(inode_bh); 1647 return ret; 1648 } 1649 1650 /* 1651 * Note that we don't need to start a transaction unless we're journaling data 1652 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1653 * need to file the inode to the transaction's list in ordered mode because if 1654 * we are writing back data added by write(), the inode is already there and if 1655 * we are writing back data modified via mmap(), no one guarantees in which 1656 * transaction the data will hit the disk. In case we are journaling data, we 1657 * cannot start transaction directly because transaction start ranks above page 1658 * lock so we have to do some magic. 1659 * 1660 * This function can get called via... 1661 * - ext4_writepages after taking page lock (have journal handle) 1662 * - journal_submit_inode_data_buffers (no journal handle) 1663 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 1664 * - grab_page_cache when doing write_begin (have journal handle) 1665 * 1666 * We don't do any block allocation in this function. If we have page with 1667 * multiple blocks we need to write those buffer_heads that are mapped. This 1668 * is important for mmaped based write. So if we do with blocksize 1K 1669 * truncate(f, 1024); 1670 * a = mmap(f, 0, 4096); 1671 * a[0] = 'a'; 1672 * truncate(f, 4096); 1673 * we have in the page first buffer_head mapped via page_mkwrite call back 1674 * but other buffer_heads would be unmapped but dirty (dirty done via the 1675 * do_wp_page). So writepage should write the first block. If we modify 1676 * the mmap area beyond 1024 we will again get a page_fault and the 1677 * page_mkwrite callback will do the block allocation and mark the 1678 * buffer_heads mapped. 1679 * 1680 * We redirty the page if we have any buffer_heads that is either delay or 1681 * unwritten in the page. 1682 * 1683 * We can get recursively called as show below. 1684 * 1685 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1686 * ext4_writepage() 1687 * 1688 * But since we don't do any block allocation we should not deadlock. 1689 * Page also have the dirty flag cleared so we don't get recurive page_lock. 1690 */ 1691 static int ext4_writepage(struct page *page, 1692 struct writeback_control *wbc) 1693 { 1694 int ret = 0; 1695 loff_t size; 1696 unsigned int len; 1697 struct buffer_head *page_bufs = NULL; 1698 struct inode *inode = page->mapping->host; 1699 struct ext4_io_submit io_submit; 1700 bool keep_towrite = false; 1701 1702 trace_ext4_writepage(page); 1703 size = i_size_read(inode); 1704 if (page->index == size >> PAGE_CACHE_SHIFT) 1705 len = size & ~PAGE_CACHE_MASK; 1706 else 1707 len = PAGE_CACHE_SIZE; 1708 1709 page_bufs = page_buffers(page); 1710 /* 1711 * We cannot do block allocation or other extent handling in this 1712 * function. If there are buffers needing that, we have to redirty 1713 * the page. But we may reach here when we do a journal commit via 1714 * journal_submit_inode_data_buffers() and in that case we must write 1715 * allocated buffers to achieve data=ordered mode guarantees. 1716 */ 1717 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 1718 ext4_bh_delay_or_unwritten)) { 1719 redirty_page_for_writepage(wbc, page); 1720 if (current->flags & PF_MEMALLOC) { 1721 /* 1722 * For memory cleaning there's no point in writing only 1723 * some buffers. So just bail out. Warn if we came here 1724 * from direct reclaim. 1725 */ 1726 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 1727 == PF_MEMALLOC); 1728 unlock_page(page); 1729 return 0; 1730 } 1731 keep_towrite = true; 1732 } 1733 1734 if (PageChecked(page) && ext4_should_journal_data(inode)) 1735 /* 1736 * It's mmapped pagecache. Add buffers and journal it. There 1737 * doesn't seem much point in redirtying the page here. 1738 */ 1739 return __ext4_journalled_writepage(page, len); 1740 1741 ext4_io_submit_init(&io_submit, wbc); 1742 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 1743 if (!io_submit.io_end) { 1744 redirty_page_for_writepage(wbc, page); 1745 unlock_page(page); 1746 return -ENOMEM; 1747 } 1748 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite); 1749 ext4_io_submit(&io_submit); 1750 /* Drop io_end reference we got from init */ 1751 ext4_put_io_end_defer(io_submit.io_end); 1752 return ret; 1753 } 1754 1755 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 1756 { 1757 int len; 1758 loff_t size = i_size_read(mpd->inode); 1759 int err; 1760 1761 BUG_ON(page->index != mpd->first_page); 1762 if (page->index == size >> PAGE_CACHE_SHIFT) 1763 len = size & ~PAGE_CACHE_MASK; 1764 else 1765 len = PAGE_CACHE_SIZE; 1766 clear_page_dirty_for_io(page); 1767 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false); 1768 if (!err) 1769 mpd->wbc->nr_to_write--; 1770 mpd->first_page++; 1771 1772 return err; 1773 } 1774 1775 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay)) 1776 1777 /* 1778 * mballoc gives us at most this number of blocks... 1779 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 1780 * The rest of mballoc seems to handle chunks up to full group size. 1781 */ 1782 #define MAX_WRITEPAGES_EXTENT_LEN 2048 1783 1784 /* 1785 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 1786 * 1787 * @mpd - extent of blocks 1788 * @lblk - logical number of the block in the file 1789 * @bh - buffer head we want to add to the extent 1790 * 1791 * The function is used to collect contig. blocks in the same state. If the 1792 * buffer doesn't require mapping for writeback and we haven't started the 1793 * extent of buffers to map yet, the function returns 'true' immediately - the 1794 * caller can write the buffer right away. Otherwise the function returns true 1795 * if the block has been added to the extent, false if the block couldn't be 1796 * added. 1797 */ 1798 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 1799 struct buffer_head *bh) 1800 { 1801 struct ext4_map_blocks *map = &mpd->map; 1802 1803 /* Buffer that doesn't need mapping for writeback? */ 1804 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 1805 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 1806 /* So far no extent to map => we write the buffer right away */ 1807 if (map->m_len == 0) 1808 return true; 1809 return false; 1810 } 1811 1812 /* First block in the extent? */ 1813 if (map->m_len == 0) { 1814 map->m_lblk = lblk; 1815 map->m_len = 1; 1816 map->m_flags = bh->b_state & BH_FLAGS; 1817 return true; 1818 } 1819 1820 /* Don't go larger than mballoc is willing to allocate */ 1821 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 1822 return false; 1823 1824 /* Can we merge the block to our big extent? */ 1825 if (lblk == map->m_lblk + map->m_len && 1826 (bh->b_state & BH_FLAGS) == map->m_flags) { 1827 map->m_len++; 1828 return true; 1829 } 1830 return false; 1831 } 1832 1833 /* 1834 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 1835 * 1836 * @mpd - extent of blocks for mapping 1837 * @head - the first buffer in the page 1838 * @bh - buffer we should start processing from 1839 * @lblk - logical number of the block in the file corresponding to @bh 1840 * 1841 * Walk through page buffers from @bh upto @head (exclusive) and either submit 1842 * the page for IO if all buffers in this page were mapped and there's no 1843 * accumulated extent of buffers to map or add buffers in the page to the 1844 * extent of buffers to map. The function returns 1 if the caller can continue 1845 * by processing the next page, 0 if it should stop adding buffers to the 1846 * extent to map because we cannot extend it anymore. It can also return value 1847 * < 0 in case of error during IO submission. 1848 */ 1849 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 1850 struct buffer_head *head, 1851 struct buffer_head *bh, 1852 ext4_lblk_t lblk) 1853 { 1854 struct inode *inode = mpd->inode; 1855 int err; 1856 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1) 1857 >> inode->i_blkbits; 1858 1859 do { 1860 BUG_ON(buffer_locked(bh)); 1861 1862 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 1863 /* Found extent to map? */ 1864 if (mpd->map.m_len) 1865 return 0; 1866 /* Everything mapped so far and we hit EOF */ 1867 break; 1868 } 1869 } while (lblk++, (bh = bh->b_this_page) != head); 1870 /* So far everything mapped? Submit the page for IO. */ 1871 if (mpd->map.m_len == 0) { 1872 err = mpage_submit_page(mpd, head->b_page); 1873 if (err < 0) 1874 return err; 1875 } 1876 return lblk < blocks; 1877 } 1878 1879 /* 1880 * mpage_map_buffers - update buffers corresponding to changed extent and 1881 * submit fully mapped pages for IO 1882 * 1883 * @mpd - description of extent to map, on return next extent to map 1884 * 1885 * Scan buffers corresponding to changed extent (we expect corresponding pages 1886 * to be already locked) and update buffer state according to new extent state. 1887 * We map delalloc buffers to their physical location, clear unwritten bits, 1888 * and mark buffers as uninit when we perform writes to unwritten extents 1889 * and do extent conversion after IO is finished. If the last page is not fully 1890 * mapped, we update @map to the next extent in the last page that needs 1891 * mapping. Otherwise we submit the page for IO. 1892 */ 1893 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 1894 { 1895 struct pagevec pvec; 1896 int nr_pages, i; 1897 struct inode *inode = mpd->inode; 1898 struct buffer_head *head, *bh; 1899 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits; 1900 pgoff_t start, end; 1901 ext4_lblk_t lblk; 1902 sector_t pblock; 1903 int err; 1904 1905 start = mpd->map.m_lblk >> bpp_bits; 1906 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 1907 lblk = start << bpp_bits; 1908 pblock = mpd->map.m_pblk; 1909 1910 pagevec_init(&pvec, 0); 1911 while (start <= end) { 1912 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start, 1913 PAGEVEC_SIZE); 1914 if (nr_pages == 0) 1915 break; 1916 for (i = 0; i < nr_pages; i++) { 1917 struct page *page = pvec.pages[i]; 1918 1919 if (page->index > end) 1920 break; 1921 /* Up to 'end' pages must be contiguous */ 1922 BUG_ON(page->index != start); 1923 bh = head = page_buffers(page); 1924 do { 1925 if (lblk < mpd->map.m_lblk) 1926 continue; 1927 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 1928 /* 1929 * Buffer after end of mapped extent. 1930 * Find next buffer in the page to map. 1931 */ 1932 mpd->map.m_len = 0; 1933 mpd->map.m_flags = 0; 1934 /* 1935 * FIXME: If dioread_nolock supports 1936 * blocksize < pagesize, we need to make 1937 * sure we add size mapped so far to 1938 * io_end->size as the following call 1939 * can submit the page for IO. 1940 */ 1941 err = mpage_process_page_bufs(mpd, head, 1942 bh, lblk); 1943 pagevec_release(&pvec); 1944 if (err > 0) 1945 err = 0; 1946 return err; 1947 } 1948 if (buffer_delay(bh)) { 1949 clear_buffer_delay(bh); 1950 bh->b_blocknr = pblock++; 1951 } 1952 clear_buffer_unwritten(bh); 1953 } while (lblk++, (bh = bh->b_this_page) != head); 1954 1955 /* 1956 * FIXME: This is going to break if dioread_nolock 1957 * supports blocksize < pagesize as we will try to 1958 * convert potentially unmapped parts of inode. 1959 */ 1960 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE; 1961 /* Page fully mapped - let IO run! */ 1962 err = mpage_submit_page(mpd, page); 1963 if (err < 0) { 1964 pagevec_release(&pvec); 1965 return err; 1966 } 1967 start++; 1968 } 1969 pagevec_release(&pvec); 1970 } 1971 /* Extent fully mapped and matches with page boundary. We are done. */ 1972 mpd->map.m_len = 0; 1973 mpd->map.m_flags = 0; 1974 return 0; 1975 } 1976 1977 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 1978 { 1979 struct inode *inode = mpd->inode; 1980 struct ext4_map_blocks *map = &mpd->map; 1981 int get_blocks_flags; 1982 int err, dioread_nolock; 1983 1984 trace_ext4_da_write_pages_extent(inode, map); 1985 /* 1986 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 1987 * to convert an unwritten extent to be initialized (in the case 1988 * where we have written into one or more preallocated blocks). It is 1989 * possible that we're going to need more metadata blocks than 1990 * previously reserved. However we must not fail because we're in 1991 * writeback and there is nothing we can do about it so it might result 1992 * in data loss. So use reserved blocks to allocate metadata if 1993 * possible. 1994 * 1995 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 1996 * the blocks in question are delalloc blocks. This indicates 1997 * that the blocks and quotas has already been checked when 1998 * the data was copied into the page cache. 1999 */ 2000 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2001 EXT4_GET_BLOCKS_METADATA_NOFAIL; 2002 dioread_nolock = ext4_should_dioread_nolock(inode); 2003 if (dioread_nolock) 2004 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2005 if (map->m_flags & (1 << BH_Delay)) 2006 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2007 2008 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2009 if (err < 0) 2010 return err; 2011 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2012 if (!mpd->io_submit.io_end->handle && 2013 ext4_handle_valid(handle)) { 2014 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2015 handle->h_rsv_handle = NULL; 2016 } 2017 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2018 } 2019 2020 BUG_ON(map->m_len == 0); 2021 if (map->m_flags & EXT4_MAP_NEW) { 2022 struct block_device *bdev = inode->i_sb->s_bdev; 2023 int i; 2024 2025 for (i = 0; i < map->m_len; i++) 2026 unmap_underlying_metadata(bdev, map->m_pblk + i); 2027 } 2028 return 0; 2029 } 2030 2031 /* 2032 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2033 * mpd->len and submit pages underlying it for IO 2034 * 2035 * @handle - handle for journal operations 2036 * @mpd - extent to map 2037 * @give_up_on_write - we set this to true iff there is a fatal error and there 2038 * is no hope of writing the data. The caller should discard 2039 * dirty pages to avoid infinite loops. 2040 * 2041 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2042 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2043 * them to initialized or split the described range from larger unwritten 2044 * extent. Note that we need not map all the described range since allocation 2045 * can return less blocks or the range is covered by more unwritten extents. We 2046 * cannot map more because we are limited by reserved transaction credits. On 2047 * the other hand we always make sure that the last touched page is fully 2048 * mapped so that it can be written out (and thus forward progress is 2049 * guaranteed). After mapping we submit all mapped pages for IO. 2050 */ 2051 static int mpage_map_and_submit_extent(handle_t *handle, 2052 struct mpage_da_data *mpd, 2053 bool *give_up_on_write) 2054 { 2055 struct inode *inode = mpd->inode; 2056 struct ext4_map_blocks *map = &mpd->map; 2057 int err; 2058 loff_t disksize; 2059 int progress = 0; 2060 2061 mpd->io_submit.io_end->offset = 2062 ((loff_t)map->m_lblk) << inode->i_blkbits; 2063 do { 2064 err = mpage_map_one_extent(handle, mpd); 2065 if (err < 0) { 2066 struct super_block *sb = inode->i_sb; 2067 2068 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 2069 goto invalidate_dirty_pages; 2070 /* 2071 * Let the uper layers retry transient errors. 2072 * In the case of ENOSPC, if ext4_count_free_blocks() 2073 * is non-zero, a commit should free up blocks. 2074 */ 2075 if ((err == -ENOMEM) || 2076 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2077 if (progress) 2078 goto update_disksize; 2079 return err; 2080 } 2081 ext4_msg(sb, KERN_CRIT, 2082 "Delayed block allocation failed for " 2083 "inode %lu at logical offset %llu with" 2084 " max blocks %u with error %d", 2085 inode->i_ino, 2086 (unsigned long long)map->m_lblk, 2087 (unsigned)map->m_len, -err); 2088 ext4_msg(sb, KERN_CRIT, 2089 "This should not happen!! Data will " 2090 "be lost\n"); 2091 if (err == -ENOSPC) 2092 ext4_print_free_blocks(inode); 2093 invalidate_dirty_pages: 2094 *give_up_on_write = true; 2095 return err; 2096 } 2097 progress = 1; 2098 /* 2099 * Update buffer state, submit mapped pages, and get us new 2100 * extent to map 2101 */ 2102 err = mpage_map_and_submit_buffers(mpd); 2103 if (err < 0) 2104 goto update_disksize; 2105 } while (map->m_len); 2106 2107 update_disksize: 2108 /* 2109 * Update on-disk size after IO is submitted. Races with 2110 * truncate are avoided by checking i_size under i_data_sem. 2111 */ 2112 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT; 2113 if (disksize > EXT4_I(inode)->i_disksize) { 2114 int err2; 2115 loff_t i_size; 2116 2117 down_write(&EXT4_I(inode)->i_data_sem); 2118 i_size = i_size_read(inode); 2119 if (disksize > i_size) 2120 disksize = i_size; 2121 if (disksize > EXT4_I(inode)->i_disksize) 2122 EXT4_I(inode)->i_disksize = disksize; 2123 err2 = ext4_mark_inode_dirty(handle, inode); 2124 up_write(&EXT4_I(inode)->i_data_sem); 2125 if (err2) 2126 ext4_error(inode->i_sb, 2127 "Failed to mark inode %lu dirty", 2128 inode->i_ino); 2129 if (!err) 2130 err = err2; 2131 } 2132 return err; 2133 } 2134 2135 /* 2136 * Calculate the total number of credits to reserve for one writepages 2137 * iteration. This is called from ext4_writepages(). We map an extent of 2138 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2139 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2140 * bpp - 1 blocks in bpp different extents. 2141 */ 2142 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2143 { 2144 int bpp = ext4_journal_blocks_per_page(inode); 2145 2146 return ext4_meta_trans_blocks(inode, 2147 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2148 } 2149 2150 /* 2151 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2152 * and underlying extent to map 2153 * 2154 * @mpd - where to look for pages 2155 * 2156 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2157 * IO immediately. When we find a page which isn't mapped we start accumulating 2158 * extent of buffers underlying these pages that needs mapping (formed by 2159 * either delayed or unwritten buffers). We also lock the pages containing 2160 * these buffers. The extent found is returned in @mpd structure (starting at 2161 * mpd->lblk with length mpd->len blocks). 2162 * 2163 * Note that this function can attach bios to one io_end structure which are 2164 * neither logically nor physically contiguous. Although it may seem as an 2165 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2166 * case as we need to track IO to all buffers underlying a page in one io_end. 2167 */ 2168 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2169 { 2170 struct address_space *mapping = mpd->inode->i_mapping; 2171 struct pagevec pvec; 2172 unsigned int nr_pages; 2173 long left = mpd->wbc->nr_to_write; 2174 pgoff_t index = mpd->first_page; 2175 pgoff_t end = mpd->last_page; 2176 int tag; 2177 int i, err = 0; 2178 int blkbits = mpd->inode->i_blkbits; 2179 ext4_lblk_t lblk; 2180 struct buffer_head *head; 2181 2182 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2183 tag = PAGECACHE_TAG_TOWRITE; 2184 else 2185 tag = PAGECACHE_TAG_DIRTY; 2186 2187 pagevec_init(&pvec, 0); 2188 mpd->map.m_len = 0; 2189 mpd->next_page = index; 2190 while (index <= end) { 2191 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2192 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2193 if (nr_pages == 0) 2194 goto out; 2195 2196 for (i = 0; i < nr_pages; i++) { 2197 struct page *page = pvec.pages[i]; 2198 2199 /* 2200 * At this point, the page may be truncated or 2201 * invalidated (changing page->mapping to NULL), or 2202 * even swizzled back from swapper_space to tmpfs file 2203 * mapping. However, page->index will not change 2204 * because we have a reference on the page. 2205 */ 2206 if (page->index > end) 2207 goto out; 2208 2209 /* 2210 * Accumulated enough dirty pages? This doesn't apply 2211 * to WB_SYNC_ALL mode. For integrity sync we have to 2212 * keep going because someone may be concurrently 2213 * dirtying pages, and we might have synced a lot of 2214 * newly appeared dirty pages, but have not synced all 2215 * of the old dirty pages. 2216 */ 2217 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2218 goto out; 2219 2220 /* If we can't merge this page, we are done. */ 2221 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2222 goto out; 2223 2224 lock_page(page); 2225 /* 2226 * If the page is no longer dirty, or its mapping no 2227 * longer corresponds to inode we are writing (which 2228 * means it has been truncated or invalidated), or the 2229 * page is already under writeback and we are not doing 2230 * a data integrity writeback, skip the page 2231 */ 2232 if (!PageDirty(page) || 2233 (PageWriteback(page) && 2234 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2235 unlikely(page->mapping != mapping)) { 2236 unlock_page(page); 2237 continue; 2238 } 2239 2240 wait_on_page_writeback(page); 2241 BUG_ON(PageWriteback(page)); 2242 2243 if (mpd->map.m_len == 0) 2244 mpd->first_page = page->index; 2245 mpd->next_page = page->index + 1; 2246 /* Add all dirty buffers to mpd */ 2247 lblk = ((ext4_lblk_t)page->index) << 2248 (PAGE_CACHE_SHIFT - blkbits); 2249 head = page_buffers(page); 2250 err = mpage_process_page_bufs(mpd, head, head, lblk); 2251 if (err <= 0) 2252 goto out; 2253 err = 0; 2254 left--; 2255 } 2256 pagevec_release(&pvec); 2257 cond_resched(); 2258 } 2259 return 0; 2260 out: 2261 pagevec_release(&pvec); 2262 return err; 2263 } 2264 2265 static int __writepage(struct page *page, struct writeback_control *wbc, 2266 void *data) 2267 { 2268 struct address_space *mapping = data; 2269 int ret = ext4_writepage(page, wbc); 2270 mapping_set_error(mapping, ret); 2271 return ret; 2272 } 2273 2274 static int ext4_writepages(struct address_space *mapping, 2275 struct writeback_control *wbc) 2276 { 2277 pgoff_t writeback_index = 0; 2278 long nr_to_write = wbc->nr_to_write; 2279 int range_whole = 0; 2280 int cycled = 1; 2281 handle_t *handle = NULL; 2282 struct mpage_da_data mpd; 2283 struct inode *inode = mapping->host; 2284 int needed_blocks, rsv_blocks = 0, ret = 0; 2285 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2286 bool done; 2287 struct blk_plug plug; 2288 bool give_up_on_write = false; 2289 2290 trace_ext4_writepages(inode, wbc); 2291 2292 /* 2293 * No pages to write? This is mainly a kludge to avoid starting 2294 * a transaction for special inodes like journal inode on last iput() 2295 * because that could violate lock ordering on umount 2296 */ 2297 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2298 goto out_writepages; 2299 2300 if (ext4_should_journal_data(inode)) { 2301 struct blk_plug plug; 2302 2303 blk_start_plug(&plug); 2304 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 2305 blk_finish_plug(&plug); 2306 goto out_writepages; 2307 } 2308 2309 /* 2310 * If the filesystem has aborted, it is read-only, so return 2311 * right away instead of dumping stack traces later on that 2312 * will obscure the real source of the problem. We test 2313 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2314 * the latter could be true if the filesystem is mounted 2315 * read-only, and in that case, ext4_writepages should 2316 * *never* be called, so if that ever happens, we would want 2317 * the stack trace. 2318 */ 2319 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) { 2320 ret = -EROFS; 2321 goto out_writepages; 2322 } 2323 2324 if (ext4_should_dioread_nolock(inode)) { 2325 /* 2326 * We may need to convert up to one extent per block in 2327 * the page and we may dirty the inode. 2328 */ 2329 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits); 2330 } 2331 2332 /* 2333 * If we have inline data and arrive here, it means that 2334 * we will soon create the block for the 1st page, so 2335 * we'd better clear the inline data here. 2336 */ 2337 if (ext4_has_inline_data(inode)) { 2338 /* Just inode will be modified... */ 2339 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2340 if (IS_ERR(handle)) { 2341 ret = PTR_ERR(handle); 2342 goto out_writepages; 2343 } 2344 BUG_ON(ext4_test_inode_state(inode, 2345 EXT4_STATE_MAY_INLINE_DATA)); 2346 ext4_destroy_inline_data(handle, inode); 2347 ext4_journal_stop(handle); 2348 } 2349 2350 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2351 range_whole = 1; 2352 2353 if (wbc->range_cyclic) { 2354 writeback_index = mapping->writeback_index; 2355 if (writeback_index) 2356 cycled = 0; 2357 mpd.first_page = writeback_index; 2358 mpd.last_page = -1; 2359 } else { 2360 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT; 2361 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT; 2362 } 2363 2364 mpd.inode = inode; 2365 mpd.wbc = wbc; 2366 ext4_io_submit_init(&mpd.io_submit, wbc); 2367 retry: 2368 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2369 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2370 done = false; 2371 blk_start_plug(&plug); 2372 while (!done && mpd.first_page <= mpd.last_page) { 2373 /* For each extent of pages we use new io_end */ 2374 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2375 if (!mpd.io_submit.io_end) { 2376 ret = -ENOMEM; 2377 break; 2378 } 2379 2380 /* 2381 * We have two constraints: We find one extent to map and we 2382 * must always write out whole page (makes a difference when 2383 * blocksize < pagesize) so that we don't block on IO when we 2384 * try to write out the rest of the page. Journalled mode is 2385 * not supported by delalloc. 2386 */ 2387 BUG_ON(ext4_should_journal_data(inode)); 2388 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2389 2390 /* start a new transaction */ 2391 handle = ext4_journal_start_with_reserve(inode, 2392 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2393 if (IS_ERR(handle)) { 2394 ret = PTR_ERR(handle); 2395 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2396 "%ld pages, ino %lu; err %d", __func__, 2397 wbc->nr_to_write, inode->i_ino, ret); 2398 /* Release allocated io_end */ 2399 ext4_put_io_end(mpd.io_submit.io_end); 2400 break; 2401 } 2402 2403 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2404 ret = mpage_prepare_extent_to_map(&mpd); 2405 if (!ret) { 2406 if (mpd.map.m_len) 2407 ret = mpage_map_and_submit_extent(handle, &mpd, 2408 &give_up_on_write); 2409 else { 2410 /* 2411 * We scanned the whole range (or exhausted 2412 * nr_to_write), submitted what was mapped and 2413 * didn't find anything needing mapping. We are 2414 * done. 2415 */ 2416 done = true; 2417 } 2418 } 2419 ext4_journal_stop(handle); 2420 /* Submit prepared bio */ 2421 ext4_io_submit(&mpd.io_submit); 2422 /* Unlock pages we didn't use */ 2423 mpage_release_unused_pages(&mpd, give_up_on_write); 2424 /* Drop our io_end reference we got from init */ 2425 ext4_put_io_end(mpd.io_submit.io_end); 2426 2427 if (ret == -ENOSPC && sbi->s_journal) { 2428 /* 2429 * Commit the transaction which would 2430 * free blocks released in the transaction 2431 * and try again 2432 */ 2433 jbd2_journal_force_commit_nested(sbi->s_journal); 2434 ret = 0; 2435 continue; 2436 } 2437 /* Fatal error - ENOMEM, EIO... */ 2438 if (ret) 2439 break; 2440 } 2441 blk_finish_plug(&plug); 2442 if (!ret && !cycled && wbc->nr_to_write > 0) { 2443 cycled = 1; 2444 mpd.last_page = writeback_index - 1; 2445 mpd.first_page = 0; 2446 goto retry; 2447 } 2448 2449 /* Update index */ 2450 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2451 /* 2452 * Set the writeback_index so that range_cyclic 2453 * mode will write it back later 2454 */ 2455 mapping->writeback_index = mpd.first_page; 2456 2457 out_writepages: 2458 trace_ext4_writepages_result(inode, wbc, ret, 2459 nr_to_write - wbc->nr_to_write); 2460 return ret; 2461 } 2462 2463 static int ext4_nonda_switch(struct super_block *sb) 2464 { 2465 s64 free_clusters, dirty_clusters; 2466 struct ext4_sb_info *sbi = EXT4_SB(sb); 2467 2468 /* 2469 * switch to non delalloc mode if we are running low 2470 * on free block. The free block accounting via percpu 2471 * counters can get slightly wrong with percpu_counter_batch getting 2472 * accumulated on each CPU without updating global counters 2473 * Delalloc need an accurate free block accounting. So switch 2474 * to non delalloc when we are near to error range. 2475 */ 2476 free_clusters = 2477 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2478 dirty_clusters = 2479 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2480 /* 2481 * Start pushing delalloc when 1/2 of free blocks are dirty. 2482 */ 2483 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2484 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2485 2486 if (2 * free_clusters < 3 * dirty_clusters || 2487 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2488 /* 2489 * free block count is less than 150% of dirty blocks 2490 * or free blocks is less than watermark 2491 */ 2492 return 1; 2493 } 2494 return 0; 2495 } 2496 2497 /* We always reserve for an inode update; the superblock could be there too */ 2498 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len) 2499 { 2500 if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 2501 EXT4_FEATURE_RO_COMPAT_LARGE_FILE))) 2502 return 1; 2503 2504 if (pos + len <= 0x7fffffffULL) 2505 return 1; 2506 2507 /* We might need to update the superblock to set LARGE_FILE */ 2508 return 2; 2509 } 2510 2511 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2512 loff_t pos, unsigned len, unsigned flags, 2513 struct page **pagep, void **fsdata) 2514 { 2515 int ret, retries = 0; 2516 struct page *page; 2517 pgoff_t index; 2518 struct inode *inode = mapping->host; 2519 handle_t *handle; 2520 2521 index = pos >> PAGE_CACHE_SHIFT; 2522 2523 if (ext4_nonda_switch(inode->i_sb)) { 2524 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2525 return ext4_write_begin(file, mapping, pos, 2526 len, flags, pagep, fsdata); 2527 } 2528 *fsdata = (void *)0; 2529 trace_ext4_da_write_begin(inode, pos, len, flags); 2530 2531 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2532 ret = ext4_da_write_inline_data_begin(mapping, inode, 2533 pos, len, flags, 2534 pagep, fsdata); 2535 if (ret < 0) 2536 return ret; 2537 if (ret == 1) 2538 return 0; 2539 } 2540 2541 /* 2542 * grab_cache_page_write_begin() can take a long time if the 2543 * system is thrashing due to memory pressure, or if the page 2544 * is being written back. So grab it first before we start 2545 * the transaction handle. This also allows us to allocate 2546 * the page (if needed) without using GFP_NOFS. 2547 */ 2548 retry_grab: 2549 page = grab_cache_page_write_begin(mapping, index, flags); 2550 if (!page) 2551 return -ENOMEM; 2552 unlock_page(page); 2553 2554 /* 2555 * With delayed allocation, we don't log the i_disksize update 2556 * if there is delayed block allocation. But we still need 2557 * to journalling the i_disksize update if writes to the end 2558 * of file which has an already mapped buffer. 2559 */ 2560 retry_journal: 2561 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 2562 ext4_da_write_credits(inode, pos, len)); 2563 if (IS_ERR(handle)) { 2564 page_cache_release(page); 2565 return PTR_ERR(handle); 2566 } 2567 2568 lock_page(page); 2569 if (page->mapping != mapping) { 2570 /* The page got truncated from under us */ 2571 unlock_page(page); 2572 page_cache_release(page); 2573 ext4_journal_stop(handle); 2574 goto retry_grab; 2575 } 2576 /* In case writeback began while the page was unlocked */ 2577 wait_for_stable_page(page); 2578 2579 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 2580 if (ret < 0) { 2581 unlock_page(page); 2582 ext4_journal_stop(handle); 2583 /* 2584 * block_write_begin may have instantiated a few blocks 2585 * outside i_size. Trim these off again. Don't need 2586 * i_size_read because we hold i_mutex. 2587 */ 2588 if (pos + len > inode->i_size) 2589 ext4_truncate_failed_write(inode); 2590 2591 if (ret == -ENOSPC && 2592 ext4_should_retry_alloc(inode->i_sb, &retries)) 2593 goto retry_journal; 2594 2595 page_cache_release(page); 2596 return ret; 2597 } 2598 2599 *pagep = page; 2600 return ret; 2601 } 2602 2603 /* 2604 * Check if we should update i_disksize 2605 * when write to the end of file but not require block allocation 2606 */ 2607 static int ext4_da_should_update_i_disksize(struct page *page, 2608 unsigned long offset) 2609 { 2610 struct buffer_head *bh; 2611 struct inode *inode = page->mapping->host; 2612 unsigned int idx; 2613 int i; 2614 2615 bh = page_buffers(page); 2616 idx = offset >> inode->i_blkbits; 2617 2618 for (i = 0; i < idx; i++) 2619 bh = bh->b_this_page; 2620 2621 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2622 return 0; 2623 return 1; 2624 } 2625 2626 static int ext4_da_write_end(struct file *file, 2627 struct address_space *mapping, 2628 loff_t pos, unsigned len, unsigned copied, 2629 struct page *page, void *fsdata) 2630 { 2631 struct inode *inode = mapping->host; 2632 int ret = 0, ret2; 2633 handle_t *handle = ext4_journal_current_handle(); 2634 loff_t new_i_size; 2635 unsigned long start, end; 2636 int write_mode = (int)(unsigned long)fsdata; 2637 2638 if (write_mode == FALL_BACK_TO_NONDELALLOC) 2639 return ext4_write_end(file, mapping, pos, 2640 len, copied, page, fsdata); 2641 2642 trace_ext4_da_write_end(inode, pos, len, copied); 2643 start = pos & (PAGE_CACHE_SIZE - 1); 2644 end = start + copied - 1; 2645 2646 /* 2647 * generic_write_end() will run mark_inode_dirty() if i_size 2648 * changes. So let's piggyback the i_disksize mark_inode_dirty 2649 * into that. 2650 */ 2651 new_i_size = pos + copied; 2652 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 2653 if (ext4_has_inline_data(inode) || 2654 ext4_da_should_update_i_disksize(page, end)) { 2655 ext4_update_i_disksize(inode, new_i_size); 2656 /* We need to mark inode dirty even if 2657 * new_i_size is less that inode->i_size 2658 * bu greater than i_disksize.(hint delalloc) 2659 */ 2660 ext4_mark_inode_dirty(handle, inode); 2661 } 2662 } 2663 2664 if (write_mode != CONVERT_INLINE_DATA && 2665 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 2666 ext4_has_inline_data(inode)) 2667 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 2668 page); 2669 else 2670 ret2 = generic_write_end(file, mapping, pos, len, copied, 2671 page, fsdata); 2672 2673 copied = ret2; 2674 if (ret2 < 0) 2675 ret = ret2; 2676 ret2 = ext4_journal_stop(handle); 2677 if (!ret) 2678 ret = ret2; 2679 2680 return ret ? ret : copied; 2681 } 2682 2683 static void ext4_da_invalidatepage(struct page *page, unsigned int offset, 2684 unsigned int length) 2685 { 2686 /* 2687 * Drop reserved blocks 2688 */ 2689 BUG_ON(!PageLocked(page)); 2690 if (!page_has_buffers(page)) 2691 goto out; 2692 2693 ext4_da_page_release_reservation(page, offset, length); 2694 2695 out: 2696 ext4_invalidatepage(page, offset, length); 2697 2698 return; 2699 } 2700 2701 /* 2702 * Force all delayed allocation blocks to be allocated for a given inode. 2703 */ 2704 int ext4_alloc_da_blocks(struct inode *inode) 2705 { 2706 trace_ext4_alloc_da_blocks(inode); 2707 2708 if (!EXT4_I(inode)->i_reserved_data_blocks) 2709 return 0; 2710 2711 /* 2712 * We do something simple for now. The filemap_flush() will 2713 * also start triggering a write of the data blocks, which is 2714 * not strictly speaking necessary (and for users of 2715 * laptop_mode, not even desirable). However, to do otherwise 2716 * would require replicating code paths in: 2717 * 2718 * ext4_writepages() -> 2719 * write_cache_pages() ---> (via passed in callback function) 2720 * __mpage_da_writepage() --> 2721 * mpage_add_bh_to_extent() 2722 * mpage_da_map_blocks() 2723 * 2724 * The problem is that write_cache_pages(), located in 2725 * mm/page-writeback.c, marks pages clean in preparation for 2726 * doing I/O, which is not desirable if we're not planning on 2727 * doing I/O at all. 2728 * 2729 * We could call write_cache_pages(), and then redirty all of 2730 * the pages by calling redirty_page_for_writepage() but that 2731 * would be ugly in the extreme. So instead we would need to 2732 * replicate parts of the code in the above functions, 2733 * simplifying them because we wouldn't actually intend to 2734 * write out the pages, but rather only collect contiguous 2735 * logical block extents, call the multi-block allocator, and 2736 * then update the buffer heads with the block allocations. 2737 * 2738 * For now, though, we'll cheat by calling filemap_flush(), 2739 * which will map the blocks, and start the I/O, but not 2740 * actually wait for the I/O to complete. 2741 */ 2742 return filemap_flush(inode->i_mapping); 2743 } 2744 2745 /* 2746 * bmap() is special. It gets used by applications such as lilo and by 2747 * the swapper to find the on-disk block of a specific piece of data. 2748 * 2749 * Naturally, this is dangerous if the block concerned is still in the 2750 * journal. If somebody makes a swapfile on an ext4 data-journaling 2751 * filesystem and enables swap, then they may get a nasty shock when the 2752 * data getting swapped to that swapfile suddenly gets overwritten by 2753 * the original zero's written out previously to the journal and 2754 * awaiting writeback in the kernel's buffer cache. 2755 * 2756 * So, if we see any bmap calls here on a modified, data-journaled file, 2757 * take extra steps to flush any blocks which might be in the cache. 2758 */ 2759 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 2760 { 2761 struct inode *inode = mapping->host; 2762 journal_t *journal; 2763 int err; 2764 2765 /* 2766 * We can get here for an inline file via the FIBMAP ioctl 2767 */ 2768 if (ext4_has_inline_data(inode)) 2769 return 0; 2770 2771 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 2772 test_opt(inode->i_sb, DELALLOC)) { 2773 /* 2774 * With delalloc we want to sync the file 2775 * so that we can make sure we allocate 2776 * blocks for file 2777 */ 2778 filemap_write_and_wait(mapping); 2779 } 2780 2781 if (EXT4_JOURNAL(inode) && 2782 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 2783 /* 2784 * This is a REALLY heavyweight approach, but the use of 2785 * bmap on dirty files is expected to be extremely rare: 2786 * only if we run lilo or swapon on a freshly made file 2787 * do we expect this to happen. 2788 * 2789 * (bmap requires CAP_SYS_RAWIO so this does not 2790 * represent an unprivileged user DOS attack --- we'd be 2791 * in trouble if mortal users could trigger this path at 2792 * will.) 2793 * 2794 * NB. EXT4_STATE_JDATA is not set on files other than 2795 * regular files. If somebody wants to bmap a directory 2796 * or symlink and gets confused because the buffer 2797 * hasn't yet been flushed to disk, they deserve 2798 * everything they get. 2799 */ 2800 2801 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 2802 journal = EXT4_JOURNAL(inode); 2803 jbd2_journal_lock_updates(journal); 2804 err = jbd2_journal_flush(journal); 2805 jbd2_journal_unlock_updates(journal); 2806 2807 if (err) 2808 return 0; 2809 } 2810 2811 return generic_block_bmap(mapping, block, ext4_get_block); 2812 } 2813 2814 static int ext4_readpage(struct file *file, struct page *page) 2815 { 2816 int ret = -EAGAIN; 2817 struct inode *inode = page->mapping->host; 2818 2819 trace_ext4_readpage(page); 2820 2821 if (ext4_has_inline_data(inode)) 2822 ret = ext4_readpage_inline(inode, page); 2823 2824 if (ret == -EAGAIN) 2825 return mpage_readpage(page, ext4_get_block); 2826 2827 return ret; 2828 } 2829 2830 static int 2831 ext4_readpages(struct file *file, struct address_space *mapping, 2832 struct list_head *pages, unsigned nr_pages) 2833 { 2834 struct inode *inode = mapping->host; 2835 2836 /* If the file has inline data, no need to do readpages. */ 2837 if (ext4_has_inline_data(inode)) 2838 return 0; 2839 2840 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 2841 } 2842 2843 static void ext4_invalidatepage(struct page *page, unsigned int offset, 2844 unsigned int length) 2845 { 2846 trace_ext4_invalidatepage(page, offset, length); 2847 2848 /* No journalling happens on data buffers when this function is used */ 2849 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 2850 2851 block_invalidatepage(page, offset, length); 2852 } 2853 2854 static int __ext4_journalled_invalidatepage(struct page *page, 2855 unsigned int offset, 2856 unsigned int length) 2857 { 2858 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2859 2860 trace_ext4_journalled_invalidatepage(page, offset, length); 2861 2862 /* 2863 * If it's a full truncate we just forget about the pending dirtying 2864 */ 2865 if (offset == 0 && length == PAGE_CACHE_SIZE) 2866 ClearPageChecked(page); 2867 2868 return jbd2_journal_invalidatepage(journal, page, offset, length); 2869 } 2870 2871 /* Wrapper for aops... */ 2872 static void ext4_journalled_invalidatepage(struct page *page, 2873 unsigned int offset, 2874 unsigned int length) 2875 { 2876 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 2877 } 2878 2879 static int ext4_releasepage(struct page *page, gfp_t wait) 2880 { 2881 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 2882 2883 trace_ext4_releasepage(page); 2884 2885 /* Page has dirty journalled data -> cannot release */ 2886 if (PageChecked(page)) 2887 return 0; 2888 if (journal) 2889 return jbd2_journal_try_to_free_buffers(journal, page, wait); 2890 else 2891 return try_to_free_buffers(page); 2892 } 2893 2894 /* 2895 * ext4_get_block used when preparing for a DIO write or buffer write. 2896 * We allocate an uinitialized extent if blocks haven't been allocated. 2897 * The extent will be converted to initialized after the IO is complete. 2898 */ 2899 int ext4_get_block_write(struct inode *inode, sector_t iblock, 2900 struct buffer_head *bh_result, int create) 2901 { 2902 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n", 2903 inode->i_ino, create); 2904 return _ext4_get_block(inode, iblock, bh_result, 2905 EXT4_GET_BLOCKS_IO_CREATE_EXT); 2906 } 2907 2908 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 2909 struct buffer_head *bh_result, int create) 2910 { 2911 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n", 2912 inode->i_ino, create); 2913 return _ext4_get_block(inode, iblock, bh_result, 2914 EXT4_GET_BLOCKS_NO_LOCK); 2915 } 2916 2917 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 2918 ssize_t size, void *private) 2919 { 2920 ext4_io_end_t *io_end = iocb->private; 2921 2922 /* if not async direct IO just return */ 2923 if (!io_end) 2924 return; 2925 2926 ext_debug("ext4_end_io_dio(): io_end 0x%p " 2927 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", 2928 iocb->private, io_end->inode->i_ino, iocb, offset, 2929 size); 2930 2931 iocb->private = NULL; 2932 io_end->offset = offset; 2933 io_end->size = size; 2934 ext4_put_io_end(io_end); 2935 } 2936 2937 /* 2938 * For ext4 extent files, ext4 will do direct-io write to holes, 2939 * preallocated extents, and those write extend the file, no need to 2940 * fall back to buffered IO. 2941 * 2942 * For holes, we fallocate those blocks, mark them as unwritten 2943 * If those blocks were preallocated, we mark sure they are split, but 2944 * still keep the range to write as unwritten. 2945 * 2946 * The unwritten extents will be converted to written when DIO is completed. 2947 * For async direct IO, since the IO may still pending when return, we 2948 * set up an end_io call back function, which will do the conversion 2949 * when async direct IO completed. 2950 * 2951 * If the O_DIRECT write will extend the file then add this inode to the 2952 * orphan list. So recovery will truncate it back to the original size 2953 * if the machine crashes during the write. 2954 * 2955 */ 2956 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb, 2957 struct iov_iter *iter, loff_t offset) 2958 { 2959 struct file *file = iocb->ki_filp; 2960 struct inode *inode = file->f_mapping->host; 2961 ssize_t ret; 2962 size_t count = iov_iter_count(iter); 2963 int overwrite = 0; 2964 get_block_t *get_block_func = NULL; 2965 int dio_flags = 0; 2966 loff_t final_size = offset + count; 2967 ext4_io_end_t *io_end = NULL; 2968 2969 /* Use the old path for reads and writes beyond i_size. */ 2970 if (rw != WRITE || final_size > inode->i_size) 2971 return ext4_ind_direct_IO(rw, iocb, iter, offset); 2972 2973 BUG_ON(iocb->private == NULL); 2974 2975 /* 2976 * Make all waiters for direct IO properly wait also for extent 2977 * conversion. This also disallows race between truncate() and 2978 * overwrite DIO as i_dio_count needs to be incremented under i_mutex. 2979 */ 2980 if (rw == WRITE) 2981 atomic_inc(&inode->i_dio_count); 2982 2983 /* If we do a overwrite dio, i_mutex locking can be released */ 2984 overwrite = *((int *)iocb->private); 2985 2986 if (overwrite) { 2987 down_read(&EXT4_I(inode)->i_data_sem); 2988 mutex_unlock(&inode->i_mutex); 2989 } 2990 2991 /* 2992 * We could direct write to holes and fallocate. 2993 * 2994 * Allocated blocks to fill the hole are marked as 2995 * unwritten to prevent parallel buffered read to expose 2996 * the stale data before DIO complete the data IO. 2997 * 2998 * As to previously fallocated extents, ext4 get_block will 2999 * just simply mark the buffer mapped but still keep the 3000 * extents unwritten. 3001 * 3002 * For non AIO case, we will convert those unwritten extents 3003 * to written after return back from blockdev_direct_IO. 3004 * 3005 * For async DIO, the conversion needs to be deferred when the 3006 * IO is completed. The ext4 end_io callback function will be 3007 * called to take care of the conversion work. Here for async 3008 * case, we allocate an io_end structure to hook to the iocb. 3009 */ 3010 iocb->private = NULL; 3011 ext4_inode_aio_set(inode, NULL); 3012 if (!is_sync_kiocb(iocb)) { 3013 io_end = ext4_init_io_end(inode, GFP_NOFS); 3014 if (!io_end) { 3015 ret = -ENOMEM; 3016 goto retake_lock; 3017 } 3018 /* 3019 * Grab reference for DIO. Will be dropped in ext4_end_io_dio() 3020 */ 3021 iocb->private = ext4_get_io_end(io_end); 3022 /* 3023 * we save the io structure for current async direct 3024 * IO, so that later ext4_map_blocks() could flag the 3025 * io structure whether there is a unwritten extents 3026 * needs to be converted when IO is completed. 3027 */ 3028 ext4_inode_aio_set(inode, io_end); 3029 } 3030 3031 if (overwrite) { 3032 get_block_func = ext4_get_block_write_nolock; 3033 } else { 3034 get_block_func = ext4_get_block_write; 3035 dio_flags = DIO_LOCKING; 3036 } 3037 if (IS_DAX(inode)) 3038 ret = dax_do_io(rw, iocb, inode, iter, offset, get_block_func, 3039 ext4_end_io_dio, dio_flags); 3040 else 3041 ret = __blockdev_direct_IO(rw, iocb, inode, 3042 inode->i_sb->s_bdev, iter, offset, 3043 get_block_func, 3044 ext4_end_io_dio, NULL, dio_flags); 3045 3046 /* 3047 * Put our reference to io_end. This can free the io_end structure e.g. 3048 * in sync IO case or in case of error. It can even perform extent 3049 * conversion if all bios we submitted finished before we got here. 3050 * Note that in that case iocb->private can be already set to NULL 3051 * here. 3052 */ 3053 if (io_end) { 3054 ext4_inode_aio_set(inode, NULL); 3055 ext4_put_io_end(io_end); 3056 /* 3057 * When no IO was submitted ext4_end_io_dio() was not 3058 * called so we have to put iocb's reference. 3059 */ 3060 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) { 3061 WARN_ON(iocb->private != io_end); 3062 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN); 3063 ext4_put_io_end(io_end); 3064 iocb->private = NULL; 3065 } 3066 } 3067 if (ret > 0 && !overwrite && ext4_test_inode_state(inode, 3068 EXT4_STATE_DIO_UNWRITTEN)) { 3069 int err; 3070 /* 3071 * for non AIO case, since the IO is already 3072 * completed, we could do the conversion right here 3073 */ 3074 err = ext4_convert_unwritten_extents(NULL, inode, 3075 offset, ret); 3076 if (err < 0) 3077 ret = err; 3078 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3079 } 3080 3081 retake_lock: 3082 if (rw == WRITE) 3083 inode_dio_done(inode); 3084 /* take i_mutex locking again if we do a ovewrite dio */ 3085 if (overwrite) { 3086 up_read(&EXT4_I(inode)->i_data_sem); 3087 mutex_lock(&inode->i_mutex); 3088 } 3089 3090 return ret; 3091 } 3092 3093 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 3094 struct iov_iter *iter, loff_t offset) 3095 { 3096 struct file *file = iocb->ki_filp; 3097 struct inode *inode = file->f_mapping->host; 3098 size_t count = iov_iter_count(iter); 3099 ssize_t ret; 3100 3101 /* 3102 * If we are doing data journalling we don't support O_DIRECT 3103 */ 3104 if (ext4_should_journal_data(inode)) 3105 return 0; 3106 3107 /* Let buffer I/O handle the inline data case. */ 3108 if (ext4_has_inline_data(inode)) 3109 return 0; 3110 3111 trace_ext4_direct_IO_enter(inode, offset, count, rw); 3112 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3113 ret = ext4_ext_direct_IO(rw, iocb, iter, offset); 3114 else 3115 ret = ext4_ind_direct_IO(rw, iocb, iter, offset); 3116 trace_ext4_direct_IO_exit(inode, offset, count, rw, ret); 3117 return ret; 3118 } 3119 3120 /* 3121 * Pages can be marked dirty completely asynchronously from ext4's journalling 3122 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3123 * much here because ->set_page_dirty is called under VFS locks. The page is 3124 * not necessarily locked. 3125 * 3126 * We cannot just dirty the page and leave attached buffers clean, because the 3127 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3128 * or jbddirty because all the journalling code will explode. 3129 * 3130 * So what we do is to mark the page "pending dirty" and next time writepage 3131 * is called, propagate that into the buffers appropriately. 3132 */ 3133 static int ext4_journalled_set_page_dirty(struct page *page) 3134 { 3135 SetPageChecked(page); 3136 return __set_page_dirty_nobuffers(page); 3137 } 3138 3139 static const struct address_space_operations ext4_aops = { 3140 .readpage = ext4_readpage, 3141 .readpages = ext4_readpages, 3142 .writepage = ext4_writepage, 3143 .writepages = ext4_writepages, 3144 .write_begin = ext4_write_begin, 3145 .write_end = ext4_write_end, 3146 .bmap = ext4_bmap, 3147 .invalidatepage = ext4_invalidatepage, 3148 .releasepage = ext4_releasepage, 3149 .direct_IO = ext4_direct_IO, 3150 .migratepage = buffer_migrate_page, 3151 .is_partially_uptodate = block_is_partially_uptodate, 3152 .error_remove_page = generic_error_remove_page, 3153 }; 3154 3155 static const struct address_space_operations ext4_journalled_aops = { 3156 .readpage = ext4_readpage, 3157 .readpages = ext4_readpages, 3158 .writepage = ext4_writepage, 3159 .writepages = ext4_writepages, 3160 .write_begin = ext4_write_begin, 3161 .write_end = ext4_journalled_write_end, 3162 .set_page_dirty = ext4_journalled_set_page_dirty, 3163 .bmap = ext4_bmap, 3164 .invalidatepage = ext4_journalled_invalidatepage, 3165 .releasepage = ext4_releasepage, 3166 .direct_IO = ext4_direct_IO, 3167 .is_partially_uptodate = block_is_partially_uptodate, 3168 .error_remove_page = generic_error_remove_page, 3169 }; 3170 3171 static const struct address_space_operations ext4_da_aops = { 3172 .readpage = ext4_readpage, 3173 .readpages = ext4_readpages, 3174 .writepage = ext4_writepage, 3175 .writepages = ext4_writepages, 3176 .write_begin = ext4_da_write_begin, 3177 .write_end = ext4_da_write_end, 3178 .bmap = ext4_bmap, 3179 .invalidatepage = ext4_da_invalidatepage, 3180 .releasepage = ext4_releasepage, 3181 .direct_IO = ext4_direct_IO, 3182 .migratepage = buffer_migrate_page, 3183 .is_partially_uptodate = block_is_partially_uptodate, 3184 .error_remove_page = generic_error_remove_page, 3185 }; 3186 3187 void ext4_set_aops(struct inode *inode) 3188 { 3189 switch (ext4_inode_journal_mode(inode)) { 3190 case EXT4_INODE_ORDERED_DATA_MODE: 3191 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3192 break; 3193 case EXT4_INODE_WRITEBACK_DATA_MODE: 3194 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3195 break; 3196 case EXT4_INODE_JOURNAL_DATA_MODE: 3197 inode->i_mapping->a_ops = &ext4_journalled_aops; 3198 return; 3199 default: 3200 BUG(); 3201 } 3202 if (test_opt(inode->i_sb, DELALLOC)) 3203 inode->i_mapping->a_ops = &ext4_da_aops; 3204 else 3205 inode->i_mapping->a_ops = &ext4_aops; 3206 } 3207 3208 static int __ext4_block_zero_page_range(handle_t *handle, 3209 struct address_space *mapping, loff_t from, loff_t length) 3210 { 3211 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3212 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3213 unsigned blocksize, pos; 3214 ext4_lblk_t iblock; 3215 struct inode *inode = mapping->host; 3216 struct buffer_head *bh; 3217 struct page *page; 3218 int err = 0; 3219 3220 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 3221 mapping_gfp_mask(mapping) & ~__GFP_FS); 3222 if (!page) 3223 return -ENOMEM; 3224 3225 blocksize = inode->i_sb->s_blocksize; 3226 3227 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3228 3229 if (!page_has_buffers(page)) 3230 create_empty_buffers(page, blocksize, 0); 3231 3232 /* Find the buffer that contains "offset" */ 3233 bh = page_buffers(page); 3234 pos = blocksize; 3235 while (offset >= pos) { 3236 bh = bh->b_this_page; 3237 iblock++; 3238 pos += blocksize; 3239 } 3240 if (buffer_freed(bh)) { 3241 BUFFER_TRACE(bh, "freed: skip"); 3242 goto unlock; 3243 } 3244 if (!buffer_mapped(bh)) { 3245 BUFFER_TRACE(bh, "unmapped"); 3246 ext4_get_block(inode, iblock, bh, 0); 3247 /* unmapped? It's a hole - nothing to do */ 3248 if (!buffer_mapped(bh)) { 3249 BUFFER_TRACE(bh, "still unmapped"); 3250 goto unlock; 3251 } 3252 } 3253 3254 /* Ok, it's mapped. Make sure it's up-to-date */ 3255 if (PageUptodate(page)) 3256 set_buffer_uptodate(bh); 3257 3258 if (!buffer_uptodate(bh)) { 3259 err = -EIO; 3260 ll_rw_block(READ, 1, &bh); 3261 wait_on_buffer(bh); 3262 /* Uhhuh. Read error. Complain and punt. */ 3263 if (!buffer_uptodate(bh)) 3264 goto unlock; 3265 } 3266 if (ext4_should_journal_data(inode)) { 3267 BUFFER_TRACE(bh, "get write access"); 3268 err = ext4_journal_get_write_access(handle, bh); 3269 if (err) 3270 goto unlock; 3271 } 3272 zero_user(page, offset, length); 3273 BUFFER_TRACE(bh, "zeroed end of block"); 3274 3275 if (ext4_should_journal_data(inode)) { 3276 err = ext4_handle_dirty_metadata(handle, inode, bh); 3277 } else { 3278 err = 0; 3279 mark_buffer_dirty(bh); 3280 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) 3281 err = ext4_jbd2_file_inode(handle, inode); 3282 } 3283 3284 unlock: 3285 unlock_page(page); 3286 page_cache_release(page); 3287 return err; 3288 } 3289 3290 /* 3291 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3292 * starting from file offset 'from'. The range to be zero'd must 3293 * be contained with in one block. If the specified range exceeds 3294 * the end of the block it will be shortened to end of the block 3295 * that cooresponds to 'from' 3296 */ 3297 static int ext4_block_zero_page_range(handle_t *handle, 3298 struct address_space *mapping, loff_t from, loff_t length) 3299 { 3300 struct inode *inode = mapping->host; 3301 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3302 unsigned blocksize = inode->i_sb->s_blocksize; 3303 unsigned max = blocksize - (offset & (blocksize - 1)); 3304 3305 /* 3306 * correct length if it does not fall between 3307 * 'from' and the end of the block 3308 */ 3309 if (length > max || length < 0) 3310 length = max; 3311 3312 if (IS_DAX(inode)) 3313 return dax_zero_page_range(inode, from, length, ext4_get_block); 3314 return __ext4_block_zero_page_range(handle, mapping, from, length); 3315 } 3316 3317 /* 3318 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3319 * up to the end of the block which corresponds to `from'. 3320 * This required during truncate. We need to physically zero the tail end 3321 * of that block so it doesn't yield old data if the file is later grown. 3322 */ 3323 static int ext4_block_truncate_page(handle_t *handle, 3324 struct address_space *mapping, loff_t from) 3325 { 3326 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3327 unsigned length; 3328 unsigned blocksize; 3329 struct inode *inode = mapping->host; 3330 3331 blocksize = inode->i_sb->s_blocksize; 3332 length = blocksize - (offset & (blocksize - 1)); 3333 3334 return ext4_block_zero_page_range(handle, mapping, from, length); 3335 } 3336 3337 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3338 loff_t lstart, loff_t length) 3339 { 3340 struct super_block *sb = inode->i_sb; 3341 struct address_space *mapping = inode->i_mapping; 3342 unsigned partial_start, partial_end; 3343 ext4_fsblk_t start, end; 3344 loff_t byte_end = (lstart + length - 1); 3345 int err = 0; 3346 3347 partial_start = lstart & (sb->s_blocksize - 1); 3348 partial_end = byte_end & (sb->s_blocksize - 1); 3349 3350 start = lstart >> sb->s_blocksize_bits; 3351 end = byte_end >> sb->s_blocksize_bits; 3352 3353 /* Handle partial zero within the single block */ 3354 if (start == end && 3355 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3356 err = ext4_block_zero_page_range(handle, mapping, 3357 lstart, length); 3358 return err; 3359 } 3360 /* Handle partial zero out on the start of the range */ 3361 if (partial_start) { 3362 err = ext4_block_zero_page_range(handle, mapping, 3363 lstart, sb->s_blocksize); 3364 if (err) 3365 return err; 3366 } 3367 /* Handle partial zero out on the end of the range */ 3368 if (partial_end != sb->s_blocksize - 1) 3369 err = ext4_block_zero_page_range(handle, mapping, 3370 byte_end - partial_end, 3371 partial_end + 1); 3372 return err; 3373 } 3374 3375 int ext4_can_truncate(struct inode *inode) 3376 { 3377 if (S_ISREG(inode->i_mode)) 3378 return 1; 3379 if (S_ISDIR(inode->i_mode)) 3380 return 1; 3381 if (S_ISLNK(inode->i_mode)) 3382 return !ext4_inode_is_fast_symlink(inode); 3383 return 0; 3384 } 3385 3386 /* 3387 * ext4_punch_hole: punches a hole in a file by releaseing the blocks 3388 * associated with the given offset and length 3389 * 3390 * @inode: File inode 3391 * @offset: The offset where the hole will begin 3392 * @len: The length of the hole 3393 * 3394 * Returns: 0 on success or negative on failure 3395 */ 3396 3397 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 3398 { 3399 struct super_block *sb = inode->i_sb; 3400 ext4_lblk_t first_block, stop_block; 3401 struct address_space *mapping = inode->i_mapping; 3402 loff_t first_block_offset, last_block_offset; 3403 handle_t *handle; 3404 unsigned int credits; 3405 int ret = 0; 3406 3407 if (!S_ISREG(inode->i_mode)) 3408 return -EOPNOTSUPP; 3409 3410 trace_ext4_punch_hole(inode, offset, length, 0); 3411 3412 /* 3413 * Write out all dirty pages to avoid race conditions 3414 * Then release them. 3415 */ 3416 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 3417 ret = filemap_write_and_wait_range(mapping, offset, 3418 offset + length - 1); 3419 if (ret) 3420 return ret; 3421 } 3422 3423 mutex_lock(&inode->i_mutex); 3424 3425 /* No need to punch hole beyond i_size */ 3426 if (offset >= inode->i_size) 3427 goto out_mutex; 3428 3429 /* 3430 * If the hole extends beyond i_size, set the hole 3431 * to end after the page that contains i_size 3432 */ 3433 if (offset + length > inode->i_size) { 3434 length = inode->i_size + 3435 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) - 3436 offset; 3437 } 3438 3439 if (offset & (sb->s_blocksize - 1) || 3440 (offset + length) & (sb->s_blocksize - 1)) { 3441 /* 3442 * Attach jinode to inode for jbd2 if we do any zeroing of 3443 * partial block 3444 */ 3445 ret = ext4_inode_attach_jinode(inode); 3446 if (ret < 0) 3447 goto out_mutex; 3448 3449 } 3450 3451 first_block_offset = round_up(offset, sb->s_blocksize); 3452 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 3453 3454 /* Now release the pages and zero block aligned part of pages*/ 3455 if (last_block_offset > first_block_offset) 3456 truncate_pagecache_range(inode, first_block_offset, 3457 last_block_offset); 3458 3459 /* Wait all existing dio workers, newcomers will block on i_mutex */ 3460 ext4_inode_block_unlocked_dio(inode); 3461 inode_dio_wait(inode); 3462 3463 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3464 credits = ext4_writepage_trans_blocks(inode); 3465 else 3466 credits = ext4_blocks_for_truncate(inode); 3467 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3468 if (IS_ERR(handle)) { 3469 ret = PTR_ERR(handle); 3470 ext4_std_error(sb, ret); 3471 goto out_dio; 3472 } 3473 3474 ret = ext4_zero_partial_blocks(handle, inode, offset, 3475 length); 3476 if (ret) 3477 goto out_stop; 3478 3479 first_block = (offset + sb->s_blocksize - 1) >> 3480 EXT4_BLOCK_SIZE_BITS(sb); 3481 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 3482 3483 /* If there are no blocks to remove, return now */ 3484 if (first_block >= stop_block) 3485 goto out_stop; 3486 3487 down_write(&EXT4_I(inode)->i_data_sem); 3488 ext4_discard_preallocations(inode); 3489 3490 ret = ext4_es_remove_extent(inode, first_block, 3491 stop_block - first_block); 3492 if (ret) { 3493 up_write(&EXT4_I(inode)->i_data_sem); 3494 goto out_stop; 3495 } 3496 3497 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3498 ret = ext4_ext_remove_space(inode, first_block, 3499 stop_block - 1); 3500 else 3501 ret = ext4_ind_remove_space(handle, inode, first_block, 3502 stop_block); 3503 3504 up_write(&EXT4_I(inode)->i_data_sem); 3505 if (IS_SYNC(inode)) 3506 ext4_handle_sync(handle); 3507 3508 /* Now release the pages again to reduce race window */ 3509 if (last_block_offset > first_block_offset) 3510 truncate_pagecache_range(inode, first_block_offset, 3511 last_block_offset); 3512 3513 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3514 ext4_mark_inode_dirty(handle, inode); 3515 out_stop: 3516 ext4_journal_stop(handle); 3517 out_dio: 3518 ext4_inode_resume_unlocked_dio(inode); 3519 out_mutex: 3520 mutex_unlock(&inode->i_mutex); 3521 return ret; 3522 } 3523 3524 int ext4_inode_attach_jinode(struct inode *inode) 3525 { 3526 struct ext4_inode_info *ei = EXT4_I(inode); 3527 struct jbd2_inode *jinode; 3528 3529 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 3530 return 0; 3531 3532 jinode = jbd2_alloc_inode(GFP_KERNEL); 3533 spin_lock(&inode->i_lock); 3534 if (!ei->jinode) { 3535 if (!jinode) { 3536 spin_unlock(&inode->i_lock); 3537 return -ENOMEM; 3538 } 3539 ei->jinode = jinode; 3540 jbd2_journal_init_jbd_inode(ei->jinode, inode); 3541 jinode = NULL; 3542 } 3543 spin_unlock(&inode->i_lock); 3544 if (unlikely(jinode != NULL)) 3545 jbd2_free_inode(jinode); 3546 return 0; 3547 } 3548 3549 /* 3550 * ext4_truncate() 3551 * 3552 * We block out ext4_get_block() block instantiations across the entire 3553 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 3554 * simultaneously on behalf of the same inode. 3555 * 3556 * As we work through the truncate and commit bits of it to the journal there 3557 * is one core, guiding principle: the file's tree must always be consistent on 3558 * disk. We must be able to restart the truncate after a crash. 3559 * 3560 * The file's tree may be transiently inconsistent in memory (although it 3561 * probably isn't), but whenever we close off and commit a journal transaction, 3562 * the contents of (the filesystem + the journal) must be consistent and 3563 * restartable. It's pretty simple, really: bottom up, right to left (although 3564 * left-to-right works OK too). 3565 * 3566 * Note that at recovery time, journal replay occurs *before* the restart of 3567 * truncate against the orphan inode list. 3568 * 3569 * The committed inode has the new, desired i_size (which is the same as 3570 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 3571 * that this inode's truncate did not complete and it will again call 3572 * ext4_truncate() to have another go. So there will be instantiated blocks 3573 * to the right of the truncation point in a crashed ext4 filesystem. But 3574 * that's fine - as long as they are linked from the inode, the post-crash 3575 * ext4_truncate() run will find them and release them. 3576 */ 3577 void ext4_truncate(struct inode *inode) 3578 { 3579 struct ext4_inode_info *ei = EXT4_I(inode); 3580 unsigned int credits; 3581 handle_t *handle; 3582 struct address_space *mapping = inode->i_mapping; 3583 3584 /* 3585 * There is a possibility that we're either freeing the inode 3586 * or it's a completely new inode. In those cases we might not 3587 * have i_mutex locked because it's not necessary. 3588 */ 3589 if (!(inode->i_state & (I_NEW|I_FREEING))) 3590 WARN_ON(!mutex_is_locked(&inode->i_mutex)); 3591 trace_ext4_truncate_enter(inode); 3592 3593 if (!ext4_can_truncate(inode)) 3594 return; 3595 3596 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3597 3598 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 3599 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 3600 3601 if (ext4_has_inline_data(inode)) { 3602 int has_inline = 1; 3603 3604 ext4_inline_data_truncate(inode, &has_inline); 3605 if (has_inline) 3606 return; 3607 } 3608 3609 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 3610 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 3611 if (ext4_inode_attach_jinode(inode) < 0) 3612 return; 3613 } 3614 3615 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3616 credits = ext4_writepage_trans_blocks(inode); 3617 else 3618 credits = ext4_blocks_for_truncate(inode); 3619 3620 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3621 if (IS_ERR(handle)) { 3622 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 3623 return; 3624 } 3625 3626 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 3627 ext4_block_truncate_page(handle, mapping, inode->i_size); 3628 3629 /* 3630 * We add the inode to the orphan list, so that if this 3631 * truncate spans multiple transactions, and we crash, we will 3632 * resume the truncate when the filesystem recovers. It also 3633 * marks the inode dirty, to catch the new size. 3634 * 3635 * Implication: the file must always be in a sane, consistent 3636 * truncatable state while each transaction commits. 3637 */ 3638 if (ext4_orphan_add(handle, inode)) 3639 goto out_stop; 3640 3641 down_write(&EXT4_I(inode)->i_data_sem); 3642 3643 ext4_discard_preallocations(inode); 3644 3645 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3646 ext4_ext_truncate(handle, inode); 3647 else 3648 ext4_ind_truncate(handle, inode); 3649 3650 up_write(&ei->i_data_sem); 3651 3652 if (IS_SYNC(inode)) 3653 ext4_handle_sync(handle); 3654 3655 out_stop: 3656 /* 3657 * If this was a simple ftruncate() and the file will remain alive, 3658 * then we need to clear up the orphan record which we created above. 3659 * However, if this was a real unlink then we were called by 3660 * ext4_evict_inode(), and we allow that function to clean up the 3661 * orphan info for us. 3662 */ 3663 if (inode->i_nlink) 3664 ext4_orphan_del(handle, inode); 3665 3666 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3667 ext4_mark_inode_dirty(handle, inode); 3668 ext4_journal_stop(handle); 3669 3670 trace_ext4_truncate_exit(inode); 3671 } 3672 3673 /* 3674 * ext4_get_inode_loc returns with an extra refcount against the inode's 3675 * underlying buffer_head on success. If 'in_mem' is true, we have all 3676 * data in memory that is needed to recreate the on-disk version of this 3677 * inode. 3678 */ 3679 static int __ext4_get_inode_loc(struct inode *inode, 3680 struct ext4_iloc *iloc, int in_mem) 3681 { 3682 struct ext4_group_desc *gdp; 3683 struct buffer_head *bh; 3684 struct super_block *sb = inode->i_sb; 3685 ext4_fsblk_t block; 3686 int inodes_per_block, inode_offset; 3687 3688 iloc->bh = NULL; 3689 if (!ext4_valid_inum(sb, inode->i_ino)) 3690 return -EIO; 3691 3692 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 3693 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 3694 if (!gdp) 3695 return -EIO; 3696 3697 /* 3698 * Figure out the offset within the block group inode table 3699 */ 3700 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 3701 inode_offset = ((inode->i_ino - 1) % 3702 EXT4_INODES_PER_GROUP(sb)); 3703 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 3704 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 3705 3706 bh = sb_getblk(sb, block); 3707 if (unlikely(!bh)) 3708 return -ENOMEM; 3709 if (!buffer_uptodate(bh)) { 3710 lock_buffer(bh); 3711 3712 /* 3713 * If the buffer has the write error flag, we have failed 3714 * to write out another inode in the same block. In this 3715 * case, we don't have to read the block because we may 3716 * read the old inode data successfully. 3717 */ 3718 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 3719 set_buffer_uptodate(bh); 3720 3721 if (buffer_uptodate(bh)) { 3722 /* someone brought it uptodate while we waited */ 3723 unlock_buffer(bh); 3724 goto has_buffer; 3725 } 3726 3727 /* 3728 * If we have all information of the inode in memory and this 3729 * is the only valid inode in the block, we need not read the 3730 * block. 3731 */ 3732 if (in_mem) { 3733 struct buffer_head *bitmap_bh; 3734 int i, start; 3735 3736 start = inode_offset & ~(inodes_per_block - 1); 3737 3738 /* Is the inode bitmap in cache? */ 3739 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 3740 if (unlikely(!bitmap_bh)) 3741 goto make_io; 3742 3743 /* 3744 * If the inode bitmap isn't in cache then the 3745 * optimisation may end up performing two reads instead 3746 * of one, so skip it. 3747 */ 3748 if (!buffer_uptodate(bitmap_bh)) { 3749 brelse(bitmap_bh); 3750 goto make_io; 3751 } 3752 for (i = start; i < start + inodes_per_block; i++) { 3753 if (i == inode_offset) 3754 continue; 3755 if (ext4_test_bit(i, bitmap_bh->b_data)) 3756 break; 3757 } 3758 brelse(bitmap_bh); 3759 if (i == start + inodes_per_block) { 3760 /* all other inodes are free, so skip I/O */ 3761 memset(bh->b_data, 0, bh->b_size); 3762 set_buffer_uptodate(bh); 3763 unlock_buffer(bh); 3764 goto has_buffer; 3765 } 3766 } 3767 3768 make_io: 3769 /* 3770 * If we need to do any I/O, try to pre-readahead extra 3771 * blocks from the inode table. 3772 */ 3773 if (EXT4_SB(sb)->s_inode_readahead_blks) { 3774 ext4_fsblk_t b, end, table; 3775 unsigned num; 3776 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 3777 3778 table = ext4_inode_table(sb, gdp); 3779 /* s_inode_readahead_blks is always a power of 2 */ 3780 b = block & ~((ext4_fsblk_t) ra_blks - 1); 3781 if (table > b) 3782 b = table; 3783 end = b + ra_blks; 3784 num = EXT4_INODES_PER_GROUP(sb); 3785 if (ext4_has_group_desc_csum(sb)) 3786 num -= ext4_itable_unused_count(sb, gdp); 3787 table += num / inodes_per_block; 3788 if (end > table) 3789 end = table; 3790 while (b <= end) 3791 sb_breadahead(sb, b++); 3792 } 3793 3794 /* 3795 * There are other valid inodes in the buffer, this inode 3796 * has in-inode xattrs, or we don't have this inode in memory. 3797 * Read the block from disk. 3798 */ 3799 trace_ext4_load_inode(inode); 3800 get_bh(bh); 3801 bh->b_end_io = end_buffer_read_sync; 3802 submit_bh(READ | REQ_META | REQ_PRIO, bh); 3803 wait_on_buffer(bh); 3804 if (!buffer_uptodate(bh)) { 3805 EXT4_ERROR_INODE_BLOCK(inode, block, 3806 "unable to read itable block"); 3807 brelse(bh); 3808 return -EIO; 3809 } 3810 } 3811 has_buffer: 3812 iloc->bh = bh; 3813 return 0; 3814 } 3815 3816 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 3817 { 3818 /* We have all inode data except xattrs in memory here. */ 3819 return __ext4_get_inode_loc(inode, iloc, 3820 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 3821 } 3822 3823 void ext4_set_inode_flags(struct inode *inode) 3824 { 3825 unsigned int flags = EXT4_I(inode)->i_flags; 3826 unsigned int new_fl = 0; 3827 3828 if (flags & EXT4_SYNC_FL) 3829 new_fl |= S_SYNC; 3830 if (flags & EXT4_APPEND_FL) 3831 new_fl |= S_APPEND; 3832 if (flags & EXT4_IMMUTABLE_FL) 3833 new_fl |= S_IMMUTABLE; 3834 if (flags & EXT4_NOATIME_FL) 3835 new_fl |= S_NOATIME; 3836 if (flags & EXT4_DIRSYNC_FL) 3837 new_fl |= S_DIRSYNC; 3838 if (test_opt(inode->i_sb, DAX)) 3839 new_fl |= S_DAX; 3840 inode_set_flags(inode, new_fl, 3841 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX); 3842 } 3843 3844 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 3845 void ext4_get_inode_flags(struct ext4_inode_info *ei) 3846 { 3847 unsigned int vfs_fl; 3848 unsigned long old_fl, new_fl; 3849 3850 do { 3851 vfs_fl = ei->vfs_inode.i_flags; 3852 old_fl = ei->i_flags; 3853 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 3854 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL| 3855 EXT4_DIRSYNC_FL); 3856 if (vfs_fl & S_SYNC) 3857 new_fl |= EXT4_SYNC_FL; 3858 if (vfs_fl & S_APPEND) 3859 new_fl |= EXT4_APPEND_FL; 3860 if (vfs_fl & S_IMMUTABLE) 3861 new_fl |= EXT4_IMMUTABLE_FL; 3862 if (vfs_fl & S_NOATIME) 3863 new_fl |= EXT4_NOATIME_FL; 3864 if (vfs_fl & S_DIRSYNC) 3865 new_fl |= EXT4_DIRSYNC_FL; 3866 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl); 3867 } 3868 3869 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 3870 struct ext4_inode_info *ei) 3871 { 3872 blkcnt_t i_blocks ; 3873 struct inode *inode = &(ei->vfs_inode); 3874 struct super_block *sb = inode->i_sb; 3875 3876 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3877 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 3878 /* we are using combined 48 bit field */ 3879 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 3880 le32_to_cpu(raw_inode->i_blocks_lo); 3881 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 3882 /* i_blocks represent file system block size */ 3883 return i_blocks << (inode->i_blkbits - 9); 3884 } else { 3885 return i_blocks; 3886 } 3887 } else { 3888 return le32_to_cpu(raw_inode->i_blocks_lo); 3889 } 3890 } 3891 3892 static inline void ext4_iget_extra_inode(struct inode *inode, 3893 struct ext4_inode *raw_inode, 3894 struct ext4_inode_info *ei) 3895 { 3896 __le32 *magic = (void *)raw_inode + 3897 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 3898 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 3899 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 3900 ext4_find_inline_data_nolock(inode); 3901 } else 3902 EXT4_I(inode)->i_inline_off = 0; 3903 } 3904 3905 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 3906 { 3907 struct ext4_iloc iloc; 3908 struct ext4_inode *raw_inode; 3909 struct ext4_inode_info *ei; 3910 struct inode *inode; 3911 journal_t *journal = EXT4_SB(sb)->s_journal; 3912 long ret; 3913 int block; 3914 uid_t i_uid; 3915 gid_t i_gid; 3916 3917 inode = iget_locked(sb, ino); 3918 if (!inode) 3919 return ERR_PTR(-ENOMEM); 3920 if (!(inode->i_state & I_NEW)) 3921 return inode; 3922 3923 ei = EXT4_I(inode); 3924 iloc.bh = NULL; 3925 3926 ret = __ext4_get_inode_loc(inode, &iloc, 0); 3927 if (ret < 0) 3928 goto bad_inode; 3929 raw_inode = ext4_raw_inode(&iloc); 3930 3931 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 3932 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 3933 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 3934 EXT4_INODE_SIZE(inode->i_sb)) { 3935 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)", 3936 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize, 3937 EXT4_INODE_SIZE(inode->i_sb)); 3938 ret = -EIO; 3939 goto bad_inode; 3940 } 3941 } else 3942 ei->i_extra_isize = 0; 3943 3944 /* Precompute checksum seed for inode metadata */ 3945 if (ext4_has_metadata_csum(sb)) { 3946 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3947 __u32 csum; 3948 __le32 inum = cpu_to_le32(inode->i_ino); 3949 __le32 gen = raw_inode->i_generation; 3950 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 3951 sizeof(inum)); 3952 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 3953 sizeof(gen)); 3954 } 3955 3956 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 3957 EXT4_ERROR_INODE(inode, "checksum invalid"); 3958 ret = -EIO; 3959 goto bad_inode; 3960 } 3961 3962 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 3963 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 3964 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 3965 if (!(test_opt(inode->i_sb, NO_UID32))) { 3966 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 3967 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 3968 } 3969 i_uid_write(inode, i_uid); 3970 i_gid_write(inode, i_gid); 3971 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 3972 3973 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 3974 ei->i_inline_off = 0; 3975 ei->i_dir_start_lookup = 0; 3976 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 3977 /* We now have enough fields to check if the inode was active or not. 3978 * This is needed because nfsd might try to access dead inodes 3979 * the test is that same one that e2fsck uses 3980 * NeilBrown 1999oct15 3981 */ 3982 if (inode->i_nlink == 0) { 3983 if ((inode->i_mode == 0 || 3984 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 3985 ino != EXT4_BOOT_LOADER_INO) { 3986 /* this inode is deleted */ 3987 ret = -ESTALE; 3988 goto bad_inode; 3989 } 3990 /* The only unlinked inodes we let through here have 3991 * valid i_mode and are being read by the orphan 3992 * recovery code: that's fine, we're about to complete 3993 * the process of deleting those. 3994 * OR it is the EXT4_BOOT_LOADER_INO which is 3995 * not initialized on a new filesystem. */ 3996 } 3997 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 3998 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 3999 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4000 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) 4001 ei->i_file_acl |= 4002 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4003 inode->i_size = ext4_isize(raw_inode); 4004 ei->i_disksize = inode->i_size; 4005 #ifdef CONFIG_QUOTA 4006 ei->i_reserved_quota = 0; 4007 #endif 4008 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4009 ei->i_block_group = iloc.block_group; 4010 ei->i_last_alloc_group = ~0; 4011 /* 4012 * NOTE! The in-memory inode i_data array is in little-endian order 4013 * even on big-endian machines: we do NOT byteswap the block numbers! 4014 */ 4015 for (block = 0; block < EXT4_N_BLOCKS; block++) 4016 ei->i_data[block] = raw_inode->i_block[block]; 4017 INIT_LIST_HEAD(&ei->i_orphan); 4018 4019 /* 4020 * Set transaction id's of transactions that have to be committed 4021 * to finish f[data]sync. We set them to currently running transaction 4022 * as we cannot be sure that the inode or some of its metadata isn't 4023 * part of the transaction - the inode could have been reclaimed and 4024 * now it is reread from disk. 4025 */ 4026 if (journal) { 4027 transaction_t *transaction; 4028 tid_t tid; 4029 4030 read_lock(&journal->j_state_lock); 4031 if (journal->j_running_transaction) 4032 transaction = journal->j_running_transaction; 4033 else 4034 transaction = journal->j_committing_transaction; 4035 if (transaction) 4036 tid = transaction->t_tid; 4037 else 4038 tid = journal->j_commit_sequence; 4039 read_unlock(&journal->j_state_lock); 4040 ei->i_sync_tid = tid; 4041 ei->i_datasync_tid = tid; 4042 } 4043 4044 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4045 if (ei->i_extra_isize == 0) { 4046 /* The extra space is currently unused. Use it. */ 4047 ei->i_extra_isize = sizeof(struct ext4_inode) - 4048 EXT4_GOOD_OLD_INODE_SIZE; 4049 } else { 4050 ext4_iget_extra_inode(inode, raw_inode, ei); 4051 } 4052 } 4053 4054 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4055 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4056 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4057 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4058 4059 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4060 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4061 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4062 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4063 inode->i_version |= 4064 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4065 } 4066 } 4067 4068 ret = 0; 4069 if (ei->i_file_acl && 4070 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 4071 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 4072 ei->i_file_acl); 4073 ret = -EIO; 4074 goto bad_inode; 4075 } else if (!ext4_has_inline_data(inode)) { 4076 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 4077 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4078 (S_ISLNK(inode->i_mode) && 4079 !ext4_inode_is_fast_symlink(inode)))) 4080 /* Validate extent which is part of inode */ 4081 ret = ext4_ext_check_inode(inode); 4082 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4083 (S_ISLNK(inode->i_mode) && 4084 !ext4_inode_is_fast_symlink(inode))) { 4085 /* Validate block references which are part of inode */ 4086 ret = ext4_ind_check_inode(inode); 4087 } 4088 } 4089 if (ret) 4090 goto bad_inode; 4091 4092 if (S_ISREG(inode->i_mode)) { 4093 inode->i_op = &ext4_file_inode_operations; 4094 if (test_opt(inode->i_sb, DAX)) 4095 inode->i_fop = &ext4_dax_file_operations; 4096 else 4097 inode->i_fop = &ext4_file_operations; 4098 ext4_set_aops(inode); 4099 } else if (S_ISDIR(inode->i_mode)) { 4100 inode->i_op = &ext4_dir_inode_operations; 4101 inode->i_fop = &ext4_dir_operations; 4102 } else if (S_ISLNK(inode->i_mode)) { 4103 if (ext4_inode_is_fast_symlink(inode)) { 4104 inode->i_op = &ext4_fast_symlink_inode_operations; 4105 nd_terminate_link(ei->i_data, inode->i_size, 4106 sizeof(ei->i_data) - 1); 4107 } else { 4108 inode->i_op = &ext4_symlink_inode_operations; 4109 ext4_set_aops(inode); 4110 } 4111 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4112 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4113 inode->i_op = &ext4_special_inode_operations; 4114 if (raw_inode->i_block[0]) 4115 init_special_inode(inode, inode->i_mode, 4116 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4117 else 4118 init_special_inode(inode, inode->i_mode, 4119 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4120 } else if (ino == EXT4_BOOT_LOADER_INO) { 4121 make_bad_inode(inode); 4122 } else { 4123 ret = -EIO; 4124 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 4125 goto bad_inode; 4126 } 4127 brelse(iloc.bh); 4128 ext4_set_inode_flags(inode); 4129 unlock_new_inode(inode); 4130 return inode; 4131 4132 bad_inode: 4133 brelse(iloc.bh); 4134 iget_failed(inode); 4135 return ERR_PTR(ret); 4136 } 4137 4138 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino) 4139 { 4140 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 4141 return ERR_PTR(-EIO); 4142 return ext4_iget(sb, ino); 4143 } 4144 4145 static int ext4_inode_blocks_set(handle_t *handle, 4146 struct ext4_inode *raw_inode, 4147 struct ext4_inode_info *ei) 4148 { 4149 struct inode *inode = &(ei->vfs_inode); 4150 u64 i_blocks = inode->i_blocks; 4151 struct super_block *sb = inode->i_sb; 4152 4153 if (i_blocks <= ~0U) { 4154 /* 4155 * i_blocks can be represented in a 32 bit variable 4156 * as multiple of 512 bytes 4157 */ 4158 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4159 raw_inode->i_blocks_high = 0; 4160 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4161 return 0; 4162 } 4163 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) 4164 return -EFBIG; 4165 4166 if (i_blocks <= 0xffffffffffffULL) { 4167 /* 4168 * i_blocks can be represented in a 48 bit variable 4169 * as multiple of 512 bytes 4170 */ 4171 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4172 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4173 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4174 } else { 4175 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4176 /* i_block is stored in file system block size */ 4177 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4178 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4179 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4180 } 4181 return 0; 4182 } 4183 4184 struct other_inode { 4185 unsigned long orig_ino; 4186 struct ext4_inode *raw_inode; 4187 }; 4188 4189 static int other_inode_match(struct inode * inode, unsigned long ino, 4190 void *data) 4191 { 4192 struct other_inode *oi = (struct other_inode *) data; 4193 4194 if ((inode->i_ino != ino) || 4195 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4196 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) || 4197 ((inode->i_state & I_DIRTY_TIME) == 0)) 4198 return 0; 4199 spin_lock(&inode->i_lock); 4200 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4201 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) && 4202 (inode->i_state & I_DIRTY_TIME)) { 4203 struct ext4_inode_info *ei = EXT4_I(inode); 4204 4205 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED); 4206 spin_unlock(&inode->i_lock); 4207 4208 spin_lock(&ei->i_raw_lock); 4209 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode); 4210 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode); 4211 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode); 4212 ext4_inode_csum_set(inode, oi->raw_inode, ei); 4213 spin_unlock(&ei->i_raw_lock); 4214 trace_ext4_other_inode_update_time(inode, oi->orig_ino); 4215 return -1; 4216 } 4217 spin_unlock(&inode->i_lock); 4218 return -1; 4219 } 4220 4221 /* 4222 * Opportunistically update the other time fields for other inodes in 4223 * the same inode table block. 4224 */ 4225 static void ext4_update_other_inodes_time(struct super_block *sb, 4226 unsigned long orig_ino, char *buf) 4227 { 4228 struct other_inode oi; 4229 unsigned long ino; 4230 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4231 int inode_size = EXT4_INODE_SIZE(sb); 4232 4233 oi.orig_ino = orig_ino; 4234 ino = orig_ino & ~(inodes_per_block - 1); 4235 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 4236 if (ino == orig_ino) 4237 continue; 4238 oi.raw_inode = (struct ext4_inode *) buf; 4239 (void) find_inode_nowait(sb, ino, other_inode_match, &oi); 4240 } 4241 } 4242 4243 /* 4244 * Post the struct inode info into an on-disk inode location in the 4245 * buffer-cache. This gobbles the caller's reference to the 4246 * buffer_head in the inode location struct. 4247 * 4248 * The caller must have write access to iloc->bh. 4249 */ 4250 static int ext4_do_update_inode(handle_t *handle, 4251 struct inode *inode, 4252 struct ext4_iloc *iloc) 4253 { 4254 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4255 struct ext4_inode_info *ei = EXT4_I(inode); 4256 struct buffer_head *bh = iloc->bh; 4257 struct super_block *sb = inode->i_sb; 4258 int err = 0, rc, block; 4259 int need_datasync = 0, set_large_file = 0; 4260 uid_t i_uid; 4261 gid_t i_gid; 4262 4263 spin_lock(&ei->i_raw_lock); 4264 4265 /* For fields not tracked in the in-memory inode, 4266 * initialise them to zero for new inodes. */ 4267 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4268 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4269 4270 ext4_get_inode_flags(ei); 4271 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4272 i_uid = i_uid_read(inode); 4273 i_gid = i_gid_read(inode); 4274 if (!(test_opt(inode->i_sb, NO_UID32))) { 4275 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4276 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4277 /* 4278 * Fix up interoperability with old kernels. Otherwise, old inodes get 4279 * re-used with the upper 16 bits of the uid/gid intact 4280 */ 4281 if (!ei->i_dtime) { 4282 raw_inode->i_uid_high = 4283 cpu_to_le16(high_16_bits(i_uid)); 4284 raw_inode->i_gid_high = 4285 cpu_to_le16(high_16_bits(i_gid)); 4286 } else { 4287 raw_inode->i_uid_high = 0; 4288 raw_inode->i_gid_high = 0; 4289 } 4290 } else { 4291 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4292 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4293 raw_inode->i_uid_high = 0; 4294 raw_inode->i_gid_high = 0; 4295 } 4296 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4297 4298 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4299 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4300 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4301 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4302 4303 err = ext4_inode_blocks_set(handle, raw_inode, ei); 4304 if (err) { 4305 spin_unlock(&ei->i_raw_lock); 4306 goto out_brelse; 4307 } 4308 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4309 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4310 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 4311 raw_inode->i_file_acl_high = 4312 cpu_to_le16(ei->i_file_acl >> 32); 4313 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4314 if (ei->i_disksize != ext4_isize(raw_inode)) { 4315 ext4_isize_set(raw_inode, ei->i_disksize); 4316 need_datasync = 1; 4317 } 4318 if (ei->i_disksize > 0x7fffffffULL) { 4319 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 4320 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 4321 EXT4_SB(sb)->s_es->s_rev_level == 4322 cpu_to_le32(EXT4_GOOD_OLD_REV)) 4323 set_large_file = 1; 4324 } 4325 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4326 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4327 if (old_valid_dev(inode->i_rdev)) { 4328 raw_inode->i_block[0] = 4329 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4330 raw_inode->i_block[1] = 0; 4331 } else { 4332 raw_inode->i_block[0] = 0; 4333 raw_inode->i_block[1] = 4334 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4335 raw_inode->i_block[2] = 0; 4336 } 4337 } else if (!ext4_has_inline_data(inode)) { 4338 for (block = 0; block < EXT4_N_BLOCKS; block++) 4339 raw_inode->i_block[block] = ei->i_data[block]; 4340 } 4341 4342 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4343 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 4344 if (ei->i_extra_isize) { 4345 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4346 raw_inode->i_version_hi = 4347 cpu_to_le32(inode->i_version >> 32); 4348 raw_inode->i_extra_isize = 4349 cpu_to_le16(ei->i_extra_isize); 4350 } 4351 } 4352 ext4_inode_csum_set(inode, raw_inode, ei); 4353 spin_unlock(&ei->i_raw_lock); 4354 if (inode->i_sb->s_flags & MS_LAZYTIME) 4355 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 4356 bh->b_data); 4357 4358 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4359 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 4360 if (!err) 4361 err = rc; 4362 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 4363 if (set_large_file) { 4364 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 4365 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh); 4366 if (err) 4367 goto out_brelse; 4368 ext4_update_dynamic_rev(sb); 4369 EXT4_SET_RO_COMPAT_FEATURE(sb, 4370 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 4371 ext4_handle_sync(handle); 4372 err = ext4_handle_dirty_super(handle, sb); 4373 } 4374 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 4375 out_brelse: 4376 brelse(bh); 4377 ext4_std_error(inode->i_sb, err); 4378 return err; 4379 } 4380 4381 /* 4382 * ext4_write_inode() 4383 * 4384 * We are called from a few places: 4385 * 4386 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 4387 * Here, there will be no transaction running. We wait for any running 4388 * transaction to commit. 4389 * 4390 * - Within flush work (sys_sync(), kupdate and such). 4391 * We wait on commit, if told to. 4392 * 4393 * - Within iput_final() -> write_inode_now() 4394 * We wait on commit, if told to. 4395 * 4396 * In all cases it is actually safe for us to return without doing anything, 4397 * because the inode has been copied into a raw inode buffer in 4398 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 4399 * writeback. 4400 * 4401 * Note that we are absolutely dependent upon all inode dirtiers doing the 4402 * right thing: they *must* call mark_inode_dirty() after dirtying info in 4403 * which we are interested. 4404 * 4405 * It would be a bug for them to not do this. The code: 4406 * 4407 * mark_inode_dirty(inode) 4408 * stuff(); 4409 * inode->i_size = expr; 4410 * 4411 * is in error because write_inode() could occur while `stuff()' is running, 4412 * and the new i_size will be lost. Plus the inode will no longer be on the 4413 * superblock's dirty inode list. 4414 */ 4415 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 4416 { 4417 int err; 4418 4419 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC)) 4420 return 0; 4421 4422 if (EXT4_SB(inode->i_sb)->s_journal) { 4423 if (ext4_journal_current_handle()) { 4424 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 4425 dump_stack(); 4426 return -EIO; 4427 } 4428 4429 /* 4430 * No need to force transaction in WB_SYNC_NONE mode. Also 4431 * ext4_sync_fs() will force the commit after everything is 4432 * written. 4433 */ 4434 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 4435 return 0; 4436 4437 err = ext4_force_commit(inode->i_sb); 4438 } else { 4439 struct ext4_iloc iloc; 4440 4441 err = __ext4_get_inode_loc(inode, &iloc, 0); 4442 if (err) 4443 return err; 4444 /* 4445 * sync(2) will flush the whole buffer cache. No need to do 4446 * it here separately for each inode. 4447 */ 4448 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 4449 sync_dirty_buffer(iloc.bh); 4450 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 4451 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 4452 "IO error syncing inode"); 4453 err = -EIO; 4454 } 4455 brelse(iloc.bh); 4456 } 4457 return err; 4458 } 4459 4460 /* 4461 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 4462 * buffers that are attached to a page stradding i_size and are undergoing 4463 * commit. In that case we have to wait for commit to finish and try again. 4464 */ 4465 static void ext4_wait_for_tail_page_commit(struct inode *inode) 4466 { 4467 struct page *page; 4468 unsigned offset; 4469 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 4470 tid_t commit_tid = 0; 4471 int ret; 4472 4473 offset = inode->i_size & (PAGE_CACHE_SIZE - 1); 4474 /* 4475 * All buffers in the last page remain valid? Then there's nothing to 4476 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE == 4477 * blocksize case 4478 */ 4479 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits)) 4480 return; 4481 while (1) { 4482 page = find_lock_page(inode->i_mapping, 4483 inode->i_size >> PAGE_CACHE_SHIFT); 4484 if (!page) 4485 return; 4486 ret = __ext4_journalled_invalidatepage(page, offset, 4487 PAGE_CACHE_SIZE - offset); 4488 unlock_page(page); 4489 page_cache_release(page); 4490 if (ret != -EBUSY) 4491 return; 4492 commit_tid = 0; 4493 read_lock(&journal->j_state_lock); 4494 if (journal->j_committing_transaction) 4495 commit_tid = journal->j_committing_transaction->t_tid; 4496 read_unlock(&journal->j_state_lock); 4497 if (commit_tid) 4498 jbd2_log_wait_commit(journal, commit_tid); 4499 } 4500 } 4501 4502 /* 4503 * ext4_setattr() 4504 * 4505 * Called from notify_change. 4506 * 4507 * We want to trap VFS attempts to truncate the file as soon as 4508 * possible. In particular, we want to make sure that when the VFS 4509 * shrinks i_size, we put the inode on the orphan list and modify 4510 * i_disksize immediately, so that during the subsequent flushing of 4511 * dirty pages and freeing of disk blocks, we can guarantee that any 4512 * commit will leave the blocks being flushed in an unused state on 4513 * disk. (On recovery, the inode will get truncated and the blocks will 4514 * be freed, so we have a strong guarantee that no future commit will 4515 * leave these blocks visible to the user.) 4516 * 4517 * Another thing we have to assure is that if we are in ordered mode 4518 * and inode is still attached to the committing transaction, we must 4519 * we start writeout of all the dirty pages which are being truncated. 4520 * This way we are sure that all the data written in the previous 4521 * transaction are already on disk (truncate waits for pages under 4522 * writeback). 4523 * 4524 * Called with inode->i_mutex down. 4525 */ 4526 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 4527 { 4528 struct inode *inode = dentry->d_inode; 4529 int error, rc = 0; 4530 int orphan = 0; 4531 const unsigned int ia_valid = attr->ia_valid; 4532 4533 error = inode_change_ok(inode, attr); 4534 if (error) 4535 return error; 4536 4537 if (is_quota_modification(inode, attr)) 4538 dquot_initialize(inode); 4539 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 4540 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 4541 handle_t *handle; 4542 4543 /* (user+group)*(old+new) structure, inode write (sb, 4544 * inode block, ? - but truncate inode update has it) */ 4545 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 4546 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 4547 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 4548 if (IS_ERR(handle)) { 4549 error = PTR_ERR(handle); 4550 goto err_out; 4551 } 4552 error = dquot_transfer(inode, attr); 4553 if (error) { 4554 ext4_journal_stop(handle); 4555 return error; 4556 } 4557 /* Update corresponding info in inode so that everything is in 4558 * one transaction */ 4559 if (attr->ia_valid & ATTR_UID) 4560 inode->i_uid = attr->ia_uid; 4561 if (attr->ia_valid & ATTR_GID) 4562 inode->i_gid = attr->ia_gid; 4563 error = ext4_mark_inode_dirty(handle, inode); 4564 ext4_journal_stop(handle); 4565 } 4566 4567 if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) { 4568 handle_t *handle; 4569 4570 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4571 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4572 4573 if (attr->ia_size > sbi->s_bitmap_maxbytes) 4574 return -EFBIG; 4575 } 4576 4577 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size) 4578 inode_inc_iversion(inode); 4579 4580 if (S_ISREG(inode->i_mode) && 4581 (attr->ia_size < inode->i_size)) { 4582 if (ext4_should_order_data(inode)) { 4583 error = ext4_begin_ordered_truncate(inode, 4584 attr->ia_size); 4585 if (error) 4586 goto err_out; 4587 } 4588 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 4589 if (IS_ERR(handle)) { 4590 error = PTR_ERR(handle); 4591 goto err_out; 4592 } 4593 if (ext4_handle_valid(handle)) { 4594 error = ext4_orphan_add(handle, inode); 4595 orphan = 1; 4596 } 4597 down_write(&EXT4_I(inode)->i_data_sem); 4598 EXT4_I(inode)->i_disksize = attr->ia_size; 4599 rc = ext4_mark_inode_dirty(handle, inode); 4600 if (!error) 4601 error = rc; 4602 /* 4603 * We have to update i_size under i_data_sem together 4604 * with i_disksize to avoid races with writeback code 4605 * running ext4_wb_update_i_disksize(). 4606 */ 4607 if (!error) 4608 i_size_write(inode, attr->ia_size); 4609 up_write(&EXT4_I(inode)->i_data_sem); 4610 ext4_journal_stop(handle); 4611 if (error) { 4612 ext4_orphan_del(NULL, inode); 4613 goto err_out; 4614 } 4615 } else { 4616 loff_t oldsize = inode->i_size; 4617 4618 i_size_write(inode, attr->ia_size); 4619 pagecache_isize_extended(inode, oldsize, inode->i_size); 4620 } 4621 4622 /* 4623 * Blocks are going to be removed from the inode. Wait 4624 * for dio in flight. Temporarily disable 4625 * dioread_nolock to prevent livelock. 4626 */ 4627 if (orphan) { 4628 if (!ext4_should_journal_data(inode)) { 4629 ext4_inode_block_unlocked_dio(inode); 4630 inode_dio_wait(inode); 4631 ext4_inode_resume_unlocked_dio(inode); 4632 } else 4633 ext4_wait_for_tail_page_commit(inode); 4634 } 4635 /* 4636 * Truncate pagecache after we've waited for commit 4637 * in data=journal mode to make pages freeable. 4638 */ 4639 truncate_pagecache(inode, inode->i_size); 4640 } 4641 /* 4642 * We want to call ext4_truncate() even if attr->ia_size == 4643 * inode->i_size for cases like truncation of fallocated space 4644 */ 4645 if (attr->ia_valid & ATTR_SIZE) 4646 ext4_truncate(inode); 4647 4648 if (!rc) { 4649 setattr_copy(inode, attr); 4650 mark_inode_dirty(inode); 4651 } 4652 4653 /* 4654 * If the call to ext4_truncate failed to get a transaction handle at 4655 * all, we need to clean up the in-core orphan list manually. 4656 */ 4657 if (orphan && inode->i_nlink) 4658 ext4_orphan_del(NULL, inode); 4659 4660 if (!rc && (ia_valid & ATTR_MODE)) 4661 rc = posix_acl_chmod(inode, inode->i_mode); 4662 4663 err_out: 4664 ext4_std_error(inode->i_sb, error); 4665 if (!error) 4666 error = rc; 4667 return error; 4668 } 4669 4670 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 4671 struct kstat *stat) 4672 { 4673 struct inode *inode; 4674 unsigned long long delalloc_blocks; 4675 4676 inode = dentry->d_inode; 4677 generic_fillattr(inode, stat); 4678 4679 /* 4680 * If there is inline data in the inode, the inode will normally not 4681 * have data blocks allocated (it may have an external xattr block). 4682 * Report at least one sector for such files, so tools like tar, rsync, 4683 * others doen't incorrectly think the file is completely sparse. 4684 */ 4685 if (unlikely(ext4_has_inline_data(inode))) 4686 stat->blocks += (stat->size + 511) >> 9; 4687 4688 /* 4689 * We can't update i_blocks if the block allocation is delayed 4690 * otherwise in the case of system crash before the real block 4691 * allocation is done, we will have i_blocks inconsistent with 4692 * on-disk file blocks. 4693 * We always keep i_blocks updated together with real 4694 * allocation. But to not confuse with user, stat 4695 * will return the blocks that include the delayed allocation 4696 * blocks for this file. 4697 */ 4698 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 4699 EXT4_I(inode)->i_reserved_data_blocks); 4700 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 4701 return 0; 4702 } 4703 4704 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 4705 int pextents) 4706 { 4707 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4708 return ext4_ind_trans_blocks(inode, lblocks); 4709 return ext4_ext_index_trans_blocks(inode, pextents); 4710 } 4711 4712 /* 4713 * Account for index blocks, block groups bitmaps and block group 4714 * descriptor blocks if modify datablocks and index blocks 4715 * worse case, the indexs blocks spread over different block groups 4716 * 4717 * If datablocks are discontiguous, they are possible to spread over 4718 * different block groups too. If they are contiguous, with flexbg, 4719 * they could still across block group boundary. 4720 * 4721 * Also account for superblock, inode, quota and xattr blocks 4722 */ 4723 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 4724 int pextents) 4725 { 4726 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 4727 int gdpblocks; 4728 int idxblocks; 4729 int ret = 0; 4730 4731 /* 4732 * How many index blocks need to touch to map @lblocks logical blocks 4733 * to @pextents physical extents? 4734 */ 4735 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 4736 4737 ret = idxblocks; 4738 4739 /* 4740 * Now let's see how many group bitmaps and group descriptors need 4741 * to account 4742 */ 4743 groups = idxblocks + pextents; 4744 gdpblocks = groups; 4745 if (groups > ngroups) 4746 groups = ngroups; 4747 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 4748 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 4749 4750 /* bitmaps and block group descriptor blocks */ 4751 ret += groups + gdpblocks; 4752 4753 /* Blocks for super block, inode, quota and xattr blocks */ 4754 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 4755 4756 return ret; 4757 } 4758 4759 /* 4760 * Calculate the total number of credits to reserve to fit 4761 * the modification of a single pages into a single transaction, 4762 * which may include multiple chunks of block allocations. 4763 * 4764 * This could be called via ext4_write_begin() 4765 * 4766 * We need to consider the worse case, when 4767 * one new block per extent. 4768 */ 4769 int ext4_writepage_trans_blocks(struct inode *inode) 4770 { 4771 int bpp = ext4_journal_blocks_per_page(inode); 4772 int ret; 4773 4774 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 4775 4776 /* Account for data blocks for journalled mode */ 4777 if (ext4_should_journal_data(inode)) 4778 ret += bpp; 4779 return ret; 4780 } 4781 4782 /* 4783 * Calculate the journal credits for a chunk of data modification. 4784 * 4785 * This is called from DIO, fallocate or whoever calling 4786 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 4787 * 4788 * journal buffers for data blocks are not included here, as DIO 4789 * and fallocate do no need to journal data buffers. 4790 */ 4791 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 4792 { 4793 return ext4_meta_trans_blocks(inode, nrblocks, 1); 4794 } 4795 4796 /* 4797 * The caller must have previously called ext4_reserve_inode_write(). 4798 * Give this, we know that the caller already has write access to iloc->bh. 4799 */ 4800 int ext4_mark_iloc_dirty(handle_t *handle, 4801 struct inode *inode, struct ext4_iloc *iloc) 4802 { 4803 int err = 0; 4804 4805 if (IS_I_VERSION(inode)) 4806 inode_inc_iversion(inode); 4807 4808 /* the do_update_inode consumes one bh->b_count */ 4809 get_bh(iloc->bh); 4810 4811 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 4812 err = ext4_do_update_inode(handle, inode, iloc); 4813 put_bh(iloc->bh); 4814 return err; 4815 } 4816 4817 /* 4818 * On success, We end up with an outstanding reference count against 4819 * iloc->bh. This _must_ be cleaned up later. 4820 */ 4821 4822 int 4823 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 4824 struct ext4_iloc *iloc) 4825 { 4826 int err; 4827 4828 err = ext4_get_inode_loc(inode, iloc); 4829 if (!err) { 4830 BUFFER_TRACE(iloc->bh, "get_write_access"); 4831 err = ext4_journal_get_write_access(handle, iloc->bh); 4832 if (err) { 4833 brelse(iloc->bh); 4834 iloc->bh = NULL; 4835 } 4836 } 4837 ext4_std_error(inode->i_sb, err); 4838 return err; 4839 } 4840 4841 /* 4842 * Expand an inode by new_extra_isize bytes. 4843 * Returns 0 on success or negative error number on failure. 4844 */ 4845 static int ext4_expand_extra_isize(struct inode *inode, 4846 unsigned int new_extra_isize, 4847 struct ext4_iloc iloc, 4848 handle_t *handle) 4849 { 4850 struct ext4_inode *raw_inode; 4851 struct ext4_xattr_ibody_header *header; 4852 4853 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 4854 return 0; 4855 4856 raw_inode = ext4_raw_inode(&iloc); 4857 4858 header = IHDR(inode, raw_inode); 4859 4860 /* No extended attributes present */ 4861 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 4862 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 4863 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 4864 new_extra_isize); 4865 EXT4_I(inode)->i_extra_isize = new_extra_isize; 4866 return 0; 4867 } 4868 4869 /* try to expand with EAs present */ 4870 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 4871 raw_inode, handle); 4872 } 4873 4874 /* 4875 * What we do here is to mark the in-core inode as clean with respect to inode 4876 * dirtiness (it may still be data-dirty). 4877 * This means that the in-core inode may be reaped by prune_icache 4878 * without having to perform any I/O. This is a very good thing, 4879 * because *any* task may call prune_icache - even ones which 4880 * have a transaction open against a different journal. 4881 * 4882 * Is this cheating? Not really. Sure, we haven't written the 4883 * inode out, but prune_icache isn't a user-visible syncing function. 4884 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 4885 * we start and wait on commits. 4886 */ 4887 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 4888 { 4889 struct ext4_iloc iloc; 4890 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4891 static unsigned int mnt_count; 4892 int err, ret; 4893 4894 might_sleep(); 4895 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 4896 err = ext4_reserve_inode_write(handle, inode, &iloc); 4897 if (ext4_handle_valid(handle) && 4898 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 4899 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 4900 /* 4901 * We need extra buffer credits since we may write into EA block 4902 * with this same handle. If journal_extend fails, then it will 4903 * only result in a minor loss of functionality for that inode. 4904 * If this is felt to be critical, then e2fsck should be run to 4905 * force a large enough s_min_extra_isize. 4906 */ 4907 if ((jbd2_journal_extend(handle, 4908 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 4909 ret = ext4_expand_extra_isize(inode, 4910 sbi->s_want_extra_isize, 4911 iloc, handle); 4912 if (ret) { 4913 ext4_set_inode_state(inode, 4914 EXT4_STATE_NO_EXPAND); 4915 if (mnt_count != 4916 le16_to_cpu(sbi->s_es->s_mnt_count)) { 4917 ext4_warning(inode->i_sb, 4918 "Unable to expand inode %lu. Delete" 4919 " some EAs or run e2fsck.", 4920 inode->i_ino); 4921 mnt_count = 4922 le16_to_cpu(sbi->s_es->s_mnt_count); 4923 } 4924 } 4925 } 4926 } 4927 if (!err) 4928 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 4929 return err; 4930 } 4931 4932 /* 4933 * ext4_dirty_inode() is called from __mark_inode_dirty() 4934 * 4935 * We're really interested in the case where a file is being extended. 4936 * i_size has been changed by generic_commit_write() and we thus need 4937 * to include the updated inode in the current transaction. 4938 * 4939 * Also, dquot_alloc_block() will always dirty the inode when blocks 4940 * are allocated to the file. 4941 * 4942 * If the inode is marked synchronous, we don't honour that here - doing 4943 * so would cause a commit on atime updates, which we don't bother doing. 4944 * We handle synchronous inodes at the highest possible level. 4945 * 4946 * If only the I_DIRTY_TIME flag is set, we can skip everything. If 4947 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need 4948 * to copy into the on-disk inode structure are the timestamp files. 4949 */ 4950 void ext4_dirty_inode(struct inode *inode, int flags) 4951 { 4952 handle_t *handle; 4953 4954 if (flags == I_DIRTY_TIME) 4955 return; 4956 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 4957 if (IS_ERR(handle)) 4958 goto out; 4959 4960 ext4_mark_inode_dirty(handle, inode); 4961 4962 ext4_journal_stop(handle); 4963 out: 4964 return; 4965 } 4966 4967 #if 0 4968 /* 4969 * Bind an inode's backing buffer_head into this transaction, to prevent 4970 * it from being flushed to disk early. Unlike 4971 * ext4_reserve_inode_write, this leaves behind no bh reference and 4972 * returns no iloc structure, so the caller needs to repeat the iloc 4973 * lookup to mark the inode dirty later. 4974 */ 4975 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 4976 { 4977 struct ext4_iloc iloc; 4978 4979 int err = 0; 4980 if (handle) { 4981 err = ext4_get_inode_loc(inode, &iloc); 4982 if (!err) { 4983 BUFFER_TRACE(iloc.bh, "get_write_access"); 4984 err = jbd2_journal_get_write_access(handle, iloc.bh); 4985 if (!err) 4986 err = ext4_handle_dirty_metadata(handle, 4987 NULL, 4988 iloc.bh); 4989 brelse(iloc.bh); 4990 } 4991 } 4992 ext4_std_error(inode->i_sb, err); 4993 return err; 4994 } 4995 #endif 4996 4997 int ext4_change_inode_journal_flag(struct inode *inode, int val) 4998 { 4999 journal_t *journal; 5000 handle_t *handle; 5001 int err; 5002 5003 /* 5004 * We have to be very careful here: changing a data block's 5005 * journaling status dynamically is dangerous. If we write a 5006 * data block to the journal, change the status and then delete 5007 * that block, we risk forgetting to revoke the old log record 5008 * from the journal and so a subsequent replay can corrupt data. 5009 * So, first we make sure that the journal is empty and that 5010 * nobody is changing anything. 5011 */ 5012 5013 journal = EXT4_JOURNAL(inode); 5014 if (!journal) 5015 return 0; 5016 if (is_journal_aborted(journal)) 5017 return -EROFS; 5018 /* We have to allocate physical blocks for delalloc blocks 5019 * before flushing journal. otherwise delalloc blocks can not 5020 * be allocated any more. even more truncate on delalloc blocks 5021 * could trigger BUG by flushing delalloc blocks in journal. 5022 * There is no delalloc block in non-journal data mode. 5023 */ 5024 if (val && test_opt(inode->i_sb, DELALLOC)) { 5025 err = ext4_alloc_da_blocks(inode); 5026 if (err < 0) 5027 return err; 5028 } 5029 5030 /* Wait for all existing dio workers */ 5031 ext4_inode_block_unlocked_dio(inode); 5032 inode_dio_wait(inode); 5033 5034 jbd2_journal_lock_updates(journal); 5035 5036 /* 5037 * OK, there are no updates running now, and all cached data is 5038 * synced to disk. We are now in a completely consistent state 5039 * which doesn't have anything in the journal, and we know that 5040 * no filesystem updates are running, so it is safe to modify 5041 * the inode's in-core data-journaling state flag now. 5042 */ 5043 5044 if (val) 5045 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5046 else { 5047 err = jbd2_journal_flush(journal); 5048 if (err < 0) { 5049 jbd2_journal_unlock_updates(journal); 5050 ext4_inode_resume_unlocked_dio(inode); 5051 return err; 5052 } 5053 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5054 } 5055 ext4_set_aops(inode); 5056 5057 jbd2_journal_unlock_updates(journal); 5058 ext4_inode_resume_unlocked_dio(inode); 5059 5060 /* Finally we can mark the inode as dirty. */ 5061 5062 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 5063 if (IS_ERR(handle)) 5064 return PTR_ERR(handle); 5065 5066 err = ext4_mark_inode_dirty(handle, inode); 5067 ext4_handle_sync(handle); 5068 ext4_journal_stop(handle); 5069 ext4_std_error(inode->i_sb, err); 5070 5071 return err; 5072 } 5073 5074 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 5075 { 5076 return !buffer_mapped(bh); 5077 } 5078 5079 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 5080 { 5081 struct page *page = vmf->page; 5082 loff_t size; 5083 unsigned long len; 5084 int ret; 5085 struct file *file = vma->vm_file; 5086 struct inode *inode = file_inode(file); 5087 struct address_space *mapping = inode->i_mapping; 5088 handle_t *handle; 5089 get_block_t *get_block; 5090 int retries = 0; 5091 5092 sb_start_pagefault(inode->i_sb); 5093 file_update_time(vma->vm_file); 5094 /* Delalloc case is easy... */ 5095 if (test_opt(inode->i_sb, DELALLOC) && 5096 !ext4_should_journal_data(inode) && 5097 !ext4_nonda_switch(inode->i_sb)) { 5098 do { 5099 ret = __block_page_mkwrite(vma, vmf, 5100 ext4_da_get_block_prep); 5101 } while (ret == -ENOSPC && 5102 ext4_should_retry_alloc(inode->i_sb, &retries)); 5103 goto out_ret; 5104 } 5105 5106 lock_page(page); 5107 size = i_size_read(inode); 5108 /* Page got truncated from under us? */ 5109 if (page->mapping != mapping || page_offset(page) > size) { 5110 unlock_page(page); 5111 ret = VM_FAULT_NOPAGE; 5112 goto out; 5113 } 5114 5115 if (page->index == size >> PAGE_CACHE_SHIFT) 5116 len = size & ~PAGE_CACHE_MASK; 5117 else 5118 len = PAGE_CACHE_SIZE; 5119 /* 5120 * Return if we have all the buffers mapped. This avoids the need to do 5121 * journal_start/journal_stop which can block and take a long time 5122 */ 5123 if (page_has_buffers(page)) { 5124 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 5125 0, len, NULL, 5126 ext4_bh_unmapped)) { 5127 /* Wait so that we don't change page under IO */ 5128 wait_for_stable_page(page); 5129 ret = VM_FAULT_LOCKED; 5130 goto out; 5131 } 5132 } 5133 unlock_page(page); 5134 /* OK, we need to fill the hole... */ 5135 if (ext4_should_dioread_nolock(inode)) 5136 get_block = ext4_get_block_write; 5137 else 5138 get_block = ext4_get_block; 5139 retry_alloc: 5140 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 5141 ext4_writepage_trans_blocks(inode)); 5142 if (IS_ERR(handle)) { 5143 ret = VM_FAULT_SIGBUS; 5144 goto out; 5145 } 5146 ret = __block_page_mkwrite(vma, vmf, get_block); 5147 if (!ret && ext4_should_journal_data(inode)) { 5148 if (ext4_walk_page_buffers(handle, page_buffers(page), 0, 5149 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) { 5150 unlock_page(page); 5151 ret = VM_FAULT_SIGBUS; 5152 ext4_journal_stop(handle); 5153 goto out; 5154 } 5155 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 5156 } 5157 ext4_journal_stop(handle); 5158 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 5159 goto retry_alloc; 5160 out_ret: 5161 ret = block_page_mkwrite_return(ret); 5162 out: 5163 sb_end_pagefault(inode->i_sb); 5164 return ret; 5165 } 5166