xref: /openbmc/linux/fs/ext4/indirect.c (revision e7065e20)
1 /*
2  *  linux/fs/ext4/indirect.c
3  *
4  *  from
5  *
6  *  linux/fs/ext4/inode.c
7  *
8  * Copyright (C) 1992, 1993, 1994, 1995
9  * Remy Card (card@masi.ibp.fr)
10  * Laboratoire MASI - Institut Blaise Pascal
11  * Universite Pierre et Marie Curie (Paris VI)
12  *
13  *  from
14  *
15  *  linux/fs/minix/inode.c
16  *
17  *  Copyright (C) 1991, 1992  Linus Torvalds
18  *
19  *  Goal-directed block allocation by Stephen Tweedie
20  *	(sct@redhat.com), 1993, 1998
21  */
22 
23 #include "ext4_jbd2.h"
24 #include "truncate.h"
25 
26 #include <trace/events/ext4.h>
27 
28 typedef struct {
29 	__le32	*p;
30 	__le32	key;
31 	struct buffer_head *bh;
32 } Indirect;
33 
34 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
35 {
36 	p->key = *(p->p = v);
37 	p->bh = bh;
38 }
39 
40 /**
41  *	ext4_block_to_path - parse the block number into array of offsets
42  *	@inode: inode in question (we are only interested in its superblock)
43  *	@i_block: block number to be parsed
44  *	@offsets: array to store the offsets in
45  *	@boundary: set this non-zero if the referred-to block is likely to be
46  *	       followed (on disk) by an indirect block.
47  *
48  *	To store the locations of file's data ext4 uses a data structure common
49  *	for UNIX filesystems - tree of pointers anchored in the inode, with
50  *	data blocks at leaves and indirect blocks in intermediate nodes.
51  *	This function translates the block number into path in that tree -
52  *	return value is the path length and @offsets[n] is the offset of
53  *	pointer to (n+1)th node in the nth one. If @block is out of range
54  *	(negative or too large) warning is printed and zero returned.
55  *
56  *	Note: function doesn't find node addresses, so no IO is needed. All
57  *	we need to know is the capacity of indirect blocks (taken from the
58  *	inode->i_sb).
59  */
60 
61 /*
62  * Portability note: the last comparison (check that we fit into triple
63  * indirect block) is spelled differently, because otherwise on an
64  * architecture with 32-bit longs and 8Kb pages we might get into trouble
65  * if our filesystem had 8Kb blocks. We might use long long, but that would
66  * kill us on x86. Oh, well, at least the sign propagation does not matter -
67  * i_block would have to be negative in the very beginning, so we would not
68  * get there at all.
69  */
70 
71 static int ext4_block_to_path(struct inode *inode,
72 			      ext4_lblk_t i_block,
73 			      ext4_lblk_t offsets[4], int *boundary)
74 {
75 	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
76 	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
77 	const long direct_blocks = EXT4_NDIR_BLOCKS,
78 		indirect_blocks = ptrs,
79 		double_blocks = (1 << (ptrs_bits * 2));
80 	int n = 0;
81 	int final = 0;
82 
83 	if (i_block < direct_blocks) {
84 		offsets[n++] = i_block;
85 		final = direct_blocks;
86 	} else if ((i_block -= direct_blocks) < indirect_blocks) {
87 		offsets[n++] = EXT4_IND_BLOCK;
88 		offsets[n++] = i_block;
89 		final = ptrs;
90 	} else if ((i_block -= indirect_blocks) < double_blocks) {
91 		offsets[n++] = EXT4_DIND_BLOCK;
92 		offsets[n++] = i_block >> ptrs_bits;
93 		offsets[n++] = i_block & (ptrs - 1);
94 		final = ptrs;
95 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
96 		offsets[n++] = EXT4_TIND_BLOCK;
97 		offsets[n++] = i_block >> (ptrs_bits * 2);
98 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
99 		offsets[n++] = i_block & (ptrs - 1);
100 		final = ptrs;
101 	} else {
102 		ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
103 			     i_block + direct_blocks +
104 			     indirect_blocks + double_blocks, inode->i_ino);
105 	}
106 	if (boundary)
107 		*boundary = final - 1 - (i_block & (ptrs - 1));
108 	return n;
109 }
110 
111 /**
112  *	ext4_get_branch - read the chain of indirect blocks leading to data
113  *	@inode: inode in question
114  *	@depth: depth of the chain (1 - direct pointer, etc.)
115  *	@offsets: offsets of pointers in inode/indirect blocks
116  *	@chain: place to store the result
117  *	@err: here we store the error value
118  *
119  *	Function fills the array of triples <key, p, bh> and returns %NULL
120  *	if everything went OK or the pointer to the last filled triple
121  *	(incomplete one) otherwise. Upon the return chain[i].key contains
122  *	the number of (i+1)-th block in the chain (as it is stored in memory,
123  *	i.e. little-endian 32-bit), chain[i].p contains the address of that
124  *	number (it points into struct inode for i==0 and into the bh->b_data
125  *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
126  *	block for i>0 and NULL for i==0. In other words, it holds the block
127  *	numbers of the chain, addresses they were taken from (and where we can
128  *	verify that chain did not change) and buffer_heads hosting these
129  *	numbers.
130  *
131  *	Function stops when it stumbles upon zero pointer (absent block)
132  *		(pointer to last triple returned, *@err == 0)
133  *	or when it gets an IO error reading an indirect block
134  *		(ditto, *@err == -EIO)
135  *	or when it reads all @depth-1 indirect blocks successfully and finds
136  *	the whole chain, all way to the data (returns %NULL, *err == 0).
137  *
138  *      Need to be called with
139  *      down_read(&EXT4_I(inode)->i_data_sem)
140  */
141 static Indirect *ext4_get_branch(struct inode *inode, int depth,
142 				 ext4_lblk_t  *offsets,
143 				 Indirect chain[4], int *err)
144 {
145 	struct super_block *sb = inode->i_sb;
146 	Indirect *p = chain;
147 	struct buffer_head *bh;
148 
149 	*err = 0;
150 	/* i_data is not going away, no lock needed */
151 	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
152 	if (!p->key)
153 		goto no_block;
154 	while (--depth) {
155 		bh = sb_getblk(sb, le32_to_cpu(p->key));
156 		if (unlikely(!bh))
157 			goto failure;
158 
159 		if (!bh_uptodate_or_lock(bh)) {
160 			if (bh_submit_read(bh) < 0) {
161 				put_bh(bh);
162 				goto failure;
163 			}
164 			/* validate block references */
165 			if (ext4_check_indirect_blockref(inode, bh)) {
166 				put_bh(bh);
167 				goto failure;
168 			}
169 		}
170 
171 		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
172 		/* Reader: end */
173 		if (!p->key)
174 			goto no_block;
175 	}
176 	return NULL;
177 
178 failure:
179 	*err = -EIO;
180 no_block:
181 	return p;
182 }
183 
184 /**
185  *	ext4_find_near - find a place for allocation with sufficient locality
186  *	@inode: owner
187  *	@ind: descriptor of indirect block.
188  *
189  *	This function returns the preferred place for block allocation.
190  *	It is used when heuristic for sequential allocation fails.
191  *	Rules are:
192  *	  + if there is a block to the left of our position - allocate near it.
193  *	  + if pointer will live in indirect block - allocate near that block.
194  *	  + if pointer will live in inode - allocate in the same
195  *	    cylinder group.
196  *
197  * In the latter case we colour the starting block by the callers PID to
198  * prevent it from clashing with concurrent allocations for a different inode
199  * in the same block group.   The PID is used here so that functionally related
200  * files will be close-by on-disk.
201  *
202  *	Caller must make sure that @ind is valid and will stay that way.
203  */
204 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
205 {
206 	struct ext4_inode_info *ei = EXT4_I(inode);
207 	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
208 	__le32 *p;
209 
210 	/* Try to find previous block */
211 	for (p = ind->p - 1; p >= start; p--) {
212 		if (*p)
213 			return le32_to_cpu(*p);
214 	}
215 
216 	/* No such thing, so let's try location of indirect block */
217 	if (ind->bh)
218 		return ind->bh->b_blocknr;
219 
220 	/*
221 	 * It is going to be referred to from the inode itself? OK, just put it
222 	 * into the same cylinder group then.
223 	 */
224 	return ext4_inode_to_goal_block(inode);
225 }
226 
227 /**
228  *	ext4_find_goal - find a preferred place for allocation.
229  *	@inode: owner
230  *	@block:  block we want
231  *	@partial: pointer to the last triple within a chain
232  *
233  *	Normally this function find the preferred place for block allocation,
234  *	returns it.
235  *	Because this is only used for non-extent files, we limit the block nr
236  *	to 32 bits.
237  */
238 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
239 				   Indirect *partial)
240 {
241 	ext4_fsblk_t goal;
242 
243 	/*
244 	 * XXX need to get goal block from mballoc's data structures
245 	 */
246 
247 	goal = ext4_find_near(inode, partial);
248 	goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
249 	return goal;
250 }
251 
252 /**
253  *	ext4_blks_to_allocate - Look up the block map and count the number
254  *	of direct blocks need to be allocated for the given branch.
255  *
256  *	@branch: chain of indirect blocks
257  *	@k: number of blocks need for indirect blocks
258  *	@blks: number of data blocks to be mapped.
259  *	@blocks_to_boundary:  the offset in the indirect block
260  *
261  *	return the total number of blocks to be allocate, including the
262  *	direct and indirect blocks.
263  */
264 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
265 				 int blocks_to_boundary)
266 {
267 	unsigned int count = 0;
268 
269 	/*
270 	 * Simple case, [t,d]Indirect block(s) has not allocated yet
271 	 * then it's clear blocks on that path have not allocated
272 	 */
273 	if (k > 0) {
274 		/* right now we don't handle cross boundary allocation */
275 		if (blks < blocks_to_boundary + 1)
276 			count += blks;
277 		else
278 			count += blocks_to_boundary + 1;
279 		return count;
280 	}
281 
282 	count++;
283 	while (count < blks && count <= blocks_to_boundary &&
284 		le32_to_cpu(*(branch[0].p + count)) == 0) {
285 		count++;
286 	}
287 	return count;
288 }
289 
290 /**
291  *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
292  *	@handle: handle for this transaction
293  *	@inode: inode which needs allocated blocks
294  *	@iblock: the logical block to start allocated at
295  *	@goal: preferred physical block of allocation
296  *	@indirect_blks: the number of blocks need to allocate for indirect
297  *			blocks
298  *	@blks: number of desired blocks
299  *	@new_blocks: on return it will store the new block numbers for
300  *	the indirect blocks(if needed) and the first direct block,
301  *	@err: on return it will store the error code
302  *
303  *	This function will return the number of blocks allocated as
304  *	requested by the passed-in parameters.
305  */
306 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
307 			     ext4_lblk_t iblock, ext4_fsblk_t goal,
308 			     int indirect_blks, int blks,
309 			     ext4_fsblk_t new_blocks[4], int *err)
310 {
311 	struct ext4_allocation_request ar;
312 	int target, i;
313 	unsigned long count = 0, blk_allocated = 0;
314 	int index = 0;
315 	ext4_fsblk_t current_block = 0;
316 	int ret = 0;
317 
318 	/*
319 	 * Here we try to allocate the requested multiple blocks at once,
320 	 * on a best-effort basis.
321 	 * To build a branch, we should allocate blocks for
322 	 * the indirect blocks(if not allocated yet), and at least
323 	 * the first direct block of this branch.  That's the
324 	 * minimum number of blocks need to allocate(required)
325 	 */
326 	/* first we try to allocate the indirect blocks */
327 	target = indirect_blks;
328 	while (target > 0) {
329 		count = target;
330 		/* allocating blocks for indirect blocks and direct blocks */
331 		current_block = ext4_new_meta_blocks(handle, inode, goal,
332 						     0, &count, err);
333 		if (*err)
334 			goto failed_out;
335 
336 		if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
337 			EXT4_ERROR_INODE(inode,
338 					 "current_block %llu + count %lu > %d!",
339 					 current_block, count,
340 					 EXT4_MAX_BLOCK_FILE_PHYS);
341 			*err = -EIO;
342 			goto failed_out;
343 		}
344 
345 		target -= count;
346 		/* allocate blocks for indirect blocks */
347 		while (index < indirect_blks && count) {
348 			new_blocks[index++] = current_block++;
349 			count--;
350 		}
351 		if (count > 0) {
352 			/*
353 			 * save the new block number
354 			 * for the first direct block
355 			 */
356 			new_blocks[index] = current_block;
357 			printk(KERN_INFO "%s returned more blocks than "
358 						"requested\n", __func__);
359 			WARN_ON(1);
360 			break;
361 		}
362 	}
363 
364 	target = blks - count ;
365 	blk_allocated = count;
366 	if (!target)
367 		goto allocated;
368 	/* Now allocate data blocks */
369 	memset(&ar, 0, sizeof(ar));
370 	ar.inode = inode;
371 	ar.goal = goal;
372 	ar.len = target;
373 	ar.logical = iblock;
374 	if (S_ISREG(inode->i_mode))
375 		/* enable in-core preallocation only for regular files */
376 		ar.flags = EXT4_MB_HINT_DATA;
377 
378 	current_block = ext4_mb_new_blocks(handle, &ar, err);
379 	if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
380 		EXT4_ERROR_INODE(inode,
381 				 "current_block %llu + ar.len %d > %d!",
382 				 current_block, ar.len,
383 				 EXT4_MAX_BLOCK_FILE_PHYS);
384 		*err = -EIO;
385 		goto failed_out;
386 	}
387 
388 	if (*err && (target == blks)) {
389 		/*
390 		 * if the allocation failed and we didn't allocate
391 		 * any blocks before
392 		 */
393 		goto failed_out;
394 	}
395 	if (!*err) {
396 		if (target == blks) {
397 			/*
398 			 * save the new block number
399 			 * for the first direct block
400 			 */
401 			new_blocks[index] = current_block;
402 		}
403 		blk_allocated += ar.len;
404 	}
405 allocated:
406 	/* total number of blocks allocated for direct blocks */
407 	ret = blk_allocated;
408 	*err = 0;
409 	return ret;
410 failed_out:
411 	for (i = 0; i < index; i++)
412 		ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0);
413 	return ret;
414 }
415 
416 /**
417  *	ext4_alloc_branch - allocate and set up a chain of blocks.
418  *	@handle: handle for this transaction
419  *	@inode: owner
420  *	@indirect_blks: number of allocated indirect blocks
421  *	@blks: number of allocated direct blocks
422  *	@goal: preferred place for allocation
423  *	@offsets: offsets (in the blocks) to store the pointers to next.
424  *	@branch: place to store the chain in.
425  *
426  *	This function allocates blocks, zeroes out all but the last one,
427  *	links them into chain and (if we are synchronous) writes them to disk.
428  *	In other words, it prepares a branch that can be spliced onto the
429  *	inode. It stores the information about that chain in the branch[], in
430  *	the same format as ext4_get_branch() would do. We are calling it after
431  *	we had read the existing part of chain and partial points to the last
432  *	triple of that (one with zero ->key). Upon the exit we have the same
433  *	picture as after the successful ext4_get_block(), except that in one
434  *	place chain is disconnected - *branch->p is still zero (we did not
435  *	set the last link), but branch->key contains the number that should
436  *	be placed into *branch->p to fill that gap.
437  *
438  *	If allocation fails we free all blocks we've allocated (and forget
439  *	their buffer_heads) and return the error value the from failed
440  *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
441  *	as described above and return 0.
442  */
443 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
444 			     ext4_lblk_t iblock, int indirect_blks,
445 			     int *blks, ext4_fsblk_t goal,
446 			     ext4_lblk_t *offsets, Indirect *branch)
447 {
448 	int blocksize = inode->i_sb->s_blocksize;
449 	int i, n = 0;
450 	int err = 0;
451 	struct buffer_head *bh;
452 	int num;
453 	ext4_fsblk_t new_blocks[4];
454 	ext4_fsblk_t current_block;
455 
456 	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
457 				*blks, new_blocks, &err);
458 	if (err)
459 		return err;
460 
461 	branch[0].key = cpu_to_le32(new_blocks[0]);
462 	/*
463 	 * metadata blocks and data blocks are allocated.
464 	 */
465 	for (n = 1; n <= indirect_blks;  n++) {
466 		/*
467 		 * Get buffer_head for parent block, zero it out
468 		 * and set the pointer to new one, then send
469 		 * parent to disk.
470 		 */
471 		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
472 		if (unlikely(!bh)) {
473 			err = -EIO;
474 			goto failed;
475 		}
476 
477 		branch[n].bh = bh;
478 		lock_buffer(bh);
479 		BUFFER_TRACE(bh, "call get_create_access");
480 		err = ext4_journal_get_create_access(handle, bh);
481 		if (err) {
482 			/* Don't brelse(bh) here; it's done in
483 			 * ext4_journal_forget() below */
484 			unlock_buffer(bh);
485 			goto failed;
486 		}
487 
488 		memset(bh->b_data, 0, blocksize);
489 		branch[n].p = (__le32 *) bh->b_data + offsets[n];
490 		branch[n].key = cpu_to_le32(new_blocks[n]);
491 		*branch[n].p = branch[n].key;
492 		if (n == indirect_blks) {
493 			current_block = new_blocks[n];
494 			/*
495 			 * End of chain, update the last new metablock of
496 			 * the chain to point to the new allocated
497 			 * data blocks numbers
498 			 */
499 			for (i = 1; i < num; i++)
500 				*(branch[n].p + i) = cpu_to_le32(++current_block);
501 		}
502 		BUFFER_TRACE(bh, "marking uptodate");
503 		set_buffer_uptodate(bh);
504 		unlock_buffer(bh);
505 
506 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
507 		err = ext4_handle_dirty_metadata(handle, inode, bh);
508 		if (err)
509 			goto failed;
510 	}
511 	*blks = num;
512 	return err;
513 failed:
514 	/* Allocation failed, free what we already allocated */
515 	ext4_free_blocks(handle, inode, NULL, new_blocks[0], 1, 0);
516 	for (i = 1; i <= n ; i++) {
517 		/*
518 		 * branch[i].bh is newly allocated, so there is no
519 		 * need to revoke the block, which is why we don't
520 		 * need to set EXT4_FREE_BLOCKS_METADATA.
521 		 */
522 		ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1,
523 				 EXT4_FREE_BLOCKS_FORGET);
524 	}
525 	for (i = n+1; i < indirect_blks; i++)
526 		ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0);
527 
528 	ext4_free_blocks(handle, inode, NULL, new_blocks[i], num, 0);
529 
530 	return err;
531 }
532 
533 /**
534  * ext4_splice_branch - splice the allocated branch onto inode.
535  * @handle: handle for this transaction
536  * @inode: owner
537  * @block: (logical) number of block we are adding
538  * @chain: chain of indirect blocks (with a missing link - see
539  *	ext4_alloc_branch)
540  * @where: location of missing link
541  * @num:   number of indirect blocks we are adding
542  * @blks:  number of direct blocks we are adding
543  *
544  * This function fills the missing link and does all housekeeping needed in
545  * inode (->i_blocks, etc.). In case of success we end up with the full
546  * chain to new block and return 0.
547  */
548 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
549 			      ext4_lblk_t block, Indirect *where, int num,
550 			      int blks)
551 {
552 	int i;
553 	int err = 0;
554 	ext4_fsblk_t current_block;
555 
556 	/*
557 	 * If we're splicing into a [td]indirect block (as opposed to the
558 	 * inode) then we need to get write access to the [td]indirect block
559 	 * before the splice.
560 	 */
561 	if (where->bh) {
562 		BUFFER_TRACE(where->bh, "get_write_access");
563 		err = ext4_journal_get_write_access(handle, where->bh);
564 		if (err)
565 			goto err_out;
566 	}
567 	/* That's it */
568 
569 	*where->p = where->key;
570 
571 	/*
572 	 * Update the host buffer_head or inode to point to more just allocated
573 	 * direct blocks blocks
574 	 */
575 	if (num == 0 && blks > 1) {
576 		current_block = le32_to_cpu(where->key) + 1;
577 		for (i = 1; i < blks; i++)
578 			*(where->p + i) = cpu_to_le32(current_block++);
579 	}
580 
581 	/* We are done with atomic stuff, now do the rest of housekeeping */
582 	/* had we spliced it onto indirect block? */
583 	if (where->bh) {
584 		/*
585 		 * If we spliced it onto an indirect block, we haven't
586 		 * altered the inode.  Note however that if it is being spliced
587 		 * onto an indirect block at the very end of the file (the
588 		 * file is growing) then we *will* alter the inode to reflect
589 		 * the new i_size.  But that is not done here - it is done in
590 		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
591 		 */
592 		jbd_debug(5, "splicing indirect only\n");
593 		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
594 		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
595 		if (err)
596 			goto err_out;
597 	} else {
598 		/*
599 		 * OK, we spliced it into the inode itself on a direct block.
600 		 */
601 		ext4_mark_inode_dirty(handle, inode);
602 		jbd_debug(5, "splicing direct\n");
603 	}
604 	return err;
605 
606 err_out:
607 	for (i = 1; i <= num; i++) {
608 		/*
609 		 * branch[i].bh is newly allocated, so there is no
610 		 * need to revoke the block, which is why we don't
611 		 * need to set EXT4_FREE_BLOCKS_METADATA.
612 		 */
613 		ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
614 				 EXT4_FREE_BLOCKS_FORGET);
615 	}
616 	ext4_free_blocks(handle, inode, NULL, le32_to_cpu(where[num].key),
617 			 blks, 0);
618 
619 	return err;
620 }
621 
622 /*
623  * The ext4_ind_map_blocks() function handles non-extents inodes
624  * (i.e., using the traditional indirect/double-indirect i_blocks
625  * scheme) for ext4_map_blocks().
626  *
627  * Allocation strategy is simple: if we have to allocate something, we will
628  * have to go the whole way to leaf. So let's do it before attaching anything
629  * to tree, set linkage between the newborn blocks, write them if sync is
630  * required, recheck the path, free and repeat if check fails, otherwise
631  * set the last missing link (that will protect us from any truncate-generated
632  * removals - all blocks on the path are immune now) and possibly force the
633  * write on the parent block.
634  * That has a nice additional property: no special recovery from the failed
635  * allocations is needed - we simply release blocks and do not touch anything
636  * reachable from inode.
637  *
638  * `handle' can be NULL if create == 0.
639  *
640  * return > 0, # of blocks mapped or allocated.
641  * return = 0, if plain lookup failed.
642  * return < 0, error case.
643  *
644  * The ext4_ind_get_blocks() function should be called with
645  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
646  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
647  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
648  * blocks.
649  */
650 int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
651 			struct ext4_map_blocks *map,
652 			int flags)
653 {
654 	int err = -EIO;
655 	ext4_lblk_t offsets[4];
656 	Indirect chain[4];
657 	Indirect *partial;
658 	ext4_fsblk_t goal;
659 	int indirect_blks;
660 	int blocks_to_boundary = 0;
661 	int depth;
662 	int count = 0;
663 	ext4_fsblk_t first_block = 0;
664 
665 	trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
666 	J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
667 	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
668 	depth = ext4_block_to_path(inode, map->m_lblk, offsets,
669 				   &blocks_to_boundary);
670 
671 	if (depth == 0)
672 		goto out;
673 
674 	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
675 
676 	/* Simplest case - block found, no allocation needed */
677 	if (!partial) {
678 		first_block = le32_to_cpu(chain[depth - 1].key);
679 		count++;
680 		/*map more blocks*/
681 		while (count < map->m_len && count <= blocks_to_boundary) {
682 			ext4_fsblk_t blk;
683 
684 			blk = le32_to_cpu(*(chain[depth-1].p + count));
685 
686 			if (blk == first_block + count)
687 				count++;
688 			else
689 				break;
690 		}
691 		goto got_it;
692 	}
693 
694 	/* Next simple case - plain lookup or failed read of indirect block */
695 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
696 		goto cleanup;
697 
698 	/*
699 	 * Okay, we need to do block allocation.
700 	*/
701 	if (EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
702 				       EXT4_FEATURE_RO_COMPAT_BIGALLOC)) {
703 		EXT4_ERROR_INODE(inode, "Can't allocate blocks for "
704 				 "non-extent mapped inodes with bigalloc");
705 		return -ENOSPC;
706 	}
707 
708 	goal = ext4_find_goal(inode, map->m_lblk, partial);
709 
710 	/* the number of blocks need to allocate for [d,t]indirect blocks */
711 	indirect_blks = (chain + depth) - partial - 1;
712 
713 	/*
714 	 * Next look up the indirect map to count the totoal number of
715 	 * direct blocks to allocate for this branch.
716 	 */
717 	count = ext4_blks_to_allocate(partial, indirect_blks,
718 				      map->m_len, blocks_to_boundary);
719 	/*
720 	 * Block out ext4_truncate while we alter the tree
721 	 */
722 	err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
723 				&count, goal,
724 				offsets + (partial - chain), partial);
725 
726 	/*
727 	 * The ext4_splice_branch call will free and forget any buffers
728 	 * on the new chain if there is a failure, but that risks using
729 	 * up transaction credits, especially for bitmaps where the
730 	 * credits cannot be returned.  Can we handle this somehow?  We
731 	 * may need to return -EAGAIN upwards in the worst case.  --sct
732 	 */
733 	if (!err)
734 		err = ext4_splice_branch(handle, inode, map->m_lblk,
735 					 partial, indirect_blks, count);
736 	if (err)
737 		goto cleanup;
738 
739 	map->m_flags |= EXT4_MAP_NEW;
740 
741 	ext4_update_inode_fsync_trans(handle, inode, 1);
742 got_it:
743 	map->m_flags |= EXT4_MAP_MAPPED;
744 	map->m_pblk = le32_to_cpu(chain[depth-1].key);
745 	map->m_len = count;
746 	if (count > blocks_to_boundary)
747 		map->m_flags |= EXT4_MAP_BOUNDARY;
748 	err = count;
749 	/* Clean up and exit */
750 	partial = chain + depth - 1;	/* the whole chain */
751 cleanup:
752 	while (partial > chain) {
753 		BUFFER_TRACE(partial->bh, "call brelse");
754 		brelse(partial->bh);
755 		partial--;
756 	}
757 out:
758 	trace_ext4_ind_map_blocks_exit(inode, map->m_lblk,
759 				map->m_pblk, map->m_len, err);
760 	return err;
761 }
762 
763 /*
764  * O_DIRECT for ext3 (or indirect map) based files
765  *
766  * If the O_DIRECT write will extend the file then add this inode to the
767  * orphan list.  So recovery will truncate it back to the original size
768  * if the machine crashes during the write.
769  *
770  * If the O_DIRECT write is intantiating holes inside i_size and the machine
771  * crashes then stale disk data _may_ be exposed inside the file. But current
772  * VFS code falls back into buffered path in that case so we are safe.
773  */
774 ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
775 			   const struct iovec *iov, loff_t offset,
776 			   unsigned long nr_segs)
777 {
778 	struct file *file = iocb->ki_filp;
779 	struct inode *inode = file->f_mapping->host;
780 	struct ext4_inode_info *ei = EXT4_I(inode);
781 	handle_t *handle;
782 	ssize_t ret;
783 	int orphan = 0;
784 	size_t count = iov_length(iov, nr_segs);
785 	int retries = 0;
786 
787 	if (rw == WRITE) {
788 		loff_t final_size = offset + count;
789 
790 		if (final_size > inode->i_size) {
791 			/* Credits for sb + inode write */
792 			handle = ext4_journal_start(inode, 2);
793 			if (IS_ERR(handle)) {
794 				ret = PTR_ERR(handle);
795 				goto out;
796 			}
797 			ret = ext4_orphan_add(handle, inode);
798 			if (ret) {
799 				ext4_journal_stop(handle);
800 				goto out;
801 			}
802 			orphan = 1;
803 			ei->i_disksize = inode->i_size;
804 			ext4_journal_stop(handle);
805 		}
806 	}
807 
808 retry:
809 	if (rw == READ && ext4_should_dioread_nolock(inode)) {
810 		if (unlikely(!list_empty(&ei->i_completed_io_list))) {
811 			mutex_lock(&inode->i_mutex);
812 			ext4_flush_completed_IO(inode);
813 			mutex_unlock(&inode->i_mutex);
814 		}
815 		ret = __blockdev_direct_IO(rw, iocb, inode,
816 				 inode->i_sb->s_bdev, iov,
817 				 offset, nr_segs,
818 				 ext4_get_block, NULL, NULL, 0);
819 	} else {
820 		ret = blockdev_direct_IO(rw, iocb, inode, iov,
821 				 offset, nr_segs, ext4_get_block);
822 
823 		if (unlikely((rw & WRITE) && ret < 0)) {
824 			loff_t isize = i_size_read(inode);
825 			loff_t end = offset + iov_length(iov, nr_segs);
826 
827 			if (end > isize)
828 				ext4_truncate_failed_write(inode);
829 		}
830 	}
831 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
832 		goto retry;
833 
834 	if (orphan) {
835 		int err;
836 
837 		/* Credits for sb + inode write */
838 		handle = ext4_journal_start(inode, 2);
839 		if (IS_ERR(handle)) {
840 			/* This is really bad luck. We've written the data
841 			 * but cannot extend i_size. Bail out and pretend
842 			 * the write failed... */
843 			ret = PTR_ERR(handle);
844 			if (inode->i_nlink)
845 				ext4_orphan_del(NULL, inode);
846 
847 			goto out;
848 		}
849 		if (inode->i_nlink)
850 			ext4_orphan_del(handle, inode);
851 		if (ret > 0) {
852 			loff_t end = offset + ret;
853 			if (end > inode->i_size) {
854 				ei->i_disksize = end;
855 				i_size_write(inode, end);
856 				/*
857 				 * We're going to return a positive `ret'
858 				 * here due to non-zero-length I/O, so there's
859 				 * no way of reporting error returns from
860 				 * ext4_mark_inode_dirty() to userspace.  So
861 				 * ignore it.
862 				 */
863 				ext4_mark_inode_dirty(handle, inode);
864 			}
865 		}
866 		err = ext4_journal_stop(handle);
867 		if (ret == 0)
868 			ret = err;
869 	}
870 out:
871 	return ret;
872 }
873 
874 /*
875  * Calculate the number of metadata blocks need to reserve
876  * to allocate a new block at @lblocks for non extent file based file
877  */
878 int ext4_ind_calc_metadata_amount(struct inode *inode, sector_t lblock)
879 {
880 	struct ext4_inode_info *ei = EXT4_I(inode);
881 	sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
882 	int blk_bits;
883 
884 	if (lblock < EXT4_NDIR_BLOCKS)
885 		return 0;
886 
887 	lblock -= EXT4_NDIR_BLOCKS;
888 
889 	if (ei->i_da_metadata_calc_len &&
890 	    (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
891 		ei->i_da_metadata_calc_len++;
892 		return 0;
893 	}
894 	ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
895 	ei->i_da_metadata_calc_len = 1;
896 	blk_bits = order_base_2(lblock);
897 	return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
898 }
899 
900 int ext4_ind_trans_blocks(struct inode *inode, int nrblocks, int chunk)
901 {
902 	int indirects;
903 
904 	/* if nrblocks are contiguous */
905 	if (chunk) {
906 		/*
907 		 * With N contiguous data blocks, we need at most
908 		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
909 		 * 2 dindirect blocks, and 1 tindirect block
910 		 */
911 		return DIV_ROUND_UP(nrblocks,
912 				    EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
913 	}
914 	/*
915 	 * if nrblocks are not contiguous, worse case, each block touch
916 	 * a indirect block, and each indirect block touch a double indirect
917 	 * block, plus a triple indirect block
918 	 */
919 	indirects = nrblocks * 2 + 1;
920 	return indirects;
921 }
922 
923 /*
924  * Truncate transactions can be complex and absolutely huge.  So we need to
925  * be able to restart the transaction at a conventient checkpoint to make
926  * sure we don't overflow the journal.
927  *
928  * start_transaction gets us a new handle for a truncate transaction,
929  * and extend_transaction tries to extend the existing one a bit.  If
930  * extend fails, we need to propagate the failure up and restart the
931  * transaction in the top-level truncate loop. --sct
932  */
933 static handle_t *start_transaction(struct inode *inode)
934 {
935 	handle_t *result;
936 
937 	result = ext4_journal_start(inode, ext4_blocks_for_truncate(inode));
938 	if (!IS_ERR(result))
939 		return result;
940 
941 	ext4_std_error(inode->i_sb, PTR_ERR(result));
942 	return result;
943 }
944 
945 /*
946  * Try to extend this transaction for the purposes of truncation.
947  *
948  * Returns 0 if we managed to create more room.  If we can't create more
949  * room, and the transaction must be restarted we return 1.
950  */
951 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
952 {
953 	if (!ext4_handle_valid(handle))
954 		return 0;
955 	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
956 		return 0;
957 	if (!ext4_journal_extend(handle, ext4_blocks_for_truncate(inode)))
958 		return 0;
959 	return 1;
960 }
961 
962 /*
963  * Probably it should be a library function... search for first non-zero word
964  * or memcmp with zero_page, whatever is better for particular architecture.
965  * Linus?
966  */
967 static inline int all_zeroes(__le32 *p, __le32 *q)
968 {
969 	while (p < q)
970 		if (*p++)
971 			return 0;
972 	return 1;
973 }
974 
975 /**
976  *	ext4_find_shared - find the indirect blocks for partial truncation.
977  *	@inode:	  inode in question
978  *	@depth:	  depth of the affected branch
979  *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
980  *	@chain:	  place to store the pointers to partial indirect blocks
981  *	@top:	  place to the (detached) top of branch
982  *
983  *	This is a helper function used by ext4_truncate().
984  *
985  *	When we do truncate() we may have to clean the ends of several
986  *	indirect blocks but leave the blocks themselves alive. Block is
987  *	partially truncated if some data below the new i_size is referred
988  *	from it (and it is on the path to the first completely truncated
989  *	data block, indeed).  We have to free the top of that path along
990  *	with everything to the right of the path. Since no allocation
991  *	past the truncation point is possible until ext4_truncate()
992  *	finishes, we may safely do the latter, but top of branch may
993  *	require special attention - pageout below the truncation point
994  *	might try to populate it.
995  *
996  *	We atomically detach the top of branch from the tree, store the
997  *	block number of its root in *@top, pointers to buffer_heads of
998  *	partially truncated blocks - in @chain[].bh and pointers to
999  *	their last elements that should not be removed - in
1000  *	@chain[].p. Return value is the pointer to last filled element
1001  *	of @chain.
1002  *
1003  *	The work left to caller to do the actual freeing of subtrees:
1004  *		a) free the subtree starting from *@top
1005  *		b) free the subtrees whose roots are stored in
1006  *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
1007  *		c) free the subtrees growing from the inode past the @chain[0].
1008  *			(no partially truncated stuff there).  */
1009 
1010 static Indirect *ext4_find_shared(struct inode *inode, int depth,
1011 				  ext4_lblk_t offsets[4], Indirect chain[4],
1012 				  __le32 *top)
1013 {
1014 	Indirect *partial, *p;
1015 	int k, err;
1016 
1017 	*top = 0;
1018 	/* Make k index the deepest non-null offset + 1 */
1019 	for (k = depth; k > 1 && !offsets[k-1]; k--)
1020 		;
1021 	partial = ext4_get_branch(inode, k, offsets, chain, &err);
1022 	/* Writer: pointers */
1023 	if (!partial)
1024 		partial = chain + k-1;
1025 	/*
1026 	 * If the branch acquired continuation since we've looked at it -
1027 	 * fine, it should all survive and (new) top doesn't belong to us.
1028 	 */
1029 	if (!partial->key && *partial->p)
1030 		/* Writer: end */
1031 		goto no_top;
1032 	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
1033 		;
1034 	/*
1035 	 * OK, we've found the last block that must survive. The rest of our
1036 	 * branch should be detached before unlocking. However, if that rest
1037 	 * of branch is all ours and does not grow immediately from the inode
1038 	 * it's easier to cheat and just decrement partial->p.
1039 	 */
1040 	if (p == chain + k - 1 && p > chain) {
1041 		p->p--;
1042 	} else {
1043 		*top = *p->p;
1044 		/* Nope, don't do this in ext4.  Must leave the tree intact */
1045 #if 0
1046 		*p->p = 0;
1047 #endif
1048 	}
1049 	/* Writer: end */
1050 
1051 	while (partial > p) {
1052 		brelse(partial->bh);
1053 		partial--;
1054 	}
1055 no_top:
1056 	return partial;
1057 }
1058 
1059 /*
1060  * Zero a number of block pointers in either an inode or an indirect block.
1061  * If we restart the transaction we must again get write access to the
1062  * indirect block for further modification.
1063  *
1064  * We release `count' blocks on disk, but (last - first) may be greater
1065  * than `count' because there can be holes in there.
1066  *
1067  * Return 0 on success, 1 on invalid block range
1068  * and < 0 on fatal error.
1069  */
1070 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
1071 			     struct buffer_head *bh,
1072 			     ext4_fsblk_t block_to_free,
1073 			     unsigned long count, __le32 *first,
1074 			     __le32 *last)
1075 {
1076 	__le32 *p;
1077 	int	flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
1078 	int	err;
1079 
1080 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1081 		flags |= EXT4_FREE_BLOCKS_METADATA;
1082 
1083 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
1084 				   count)) {
1085 		EXT4_ERROR_INODE(inode, "attempt to clear invalid "
1086 				 "blocks %llu len %lu",
1087 				 (unsigned long long) block_to_free, count);
1088 		return 1;
1089 	}
1090 
1091 	if (try_to_extend_transaction(handle, inode)) {
1092 		if (bh) {
1093 			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1094 			err = ext4_handle_dirty_metadata(handle, inode, bh);
1095 			if (unlikely(err))
1096 				goto out_err;
1097 		}
1098 		err = ext4_mark_inode_dirty(handle, inode);
1099 		if (unlikely(err))
1100 			goto out_err;
1101 		err = ext4_truncate_restart_trans(handle, inode,
1102 					ext4_blocks_for_truncate(inode));
1103 		if (unlikely(err))
1104 			goto out_err;
1105 		if (bh) {
1106 			BUFFER_TRACE(bh, "retaking write access");
1107 			err = ext4_journal_get_write_access(handle, bh);
1108 			if (unlikely(err))
1109 				goto out_err;
1110 		}
1111 	}
1112 
1113 	for (p = first; p < last; p++)
1114 		*p = 0;
1115 
1116 	ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
1117 	return 0;
1118 out_err:
1119 	ext4_std_error(inode->i_sb, err);
1120 	return err;
1121 }
1122 
1123 /**
1124  * ext4_free_data - free a list of data blocks
1125  * @handle:	handle for this transaction
1126  * @inode:	inode we are dealing with
1127  * @this_bh:	indirect buffer_head which contains *@first and *@last
1128  * @first:	array of block numbers
1129  * @last:	points immediately past the end of array
1130  *
1131  * We are freeing all blocks referred from that array (numbers are stored as
1132  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
1133  *
1134  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
1135  * blocks are contiguous then releasing them at one time will only affect one
1136  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
1137  * actually use a lot of journal space.
1138  *
1139  * @this_bh will be %NULL if @first and @last point into the inode's direct
1140  * block pointers.
1141  */
1142 static void ext4_free_data(handle_t *handle, struct inode *inode,
1143 			   struct buffer_head *this_bh,
1144 			   __le32 *first, __le32 *last)
1145 {
1146 	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
1147 	unsigned long count = 0;	    /* Number of blocks in the run */
1148 	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
1149 					       corresponding to
1150 					       block_to_free */
1151 	ext4_fsblk_t nr;		    /* Current block # */
1152 	__le32 *p;			    /* Pointer into inode/ind
1153 					       for current block */
1154 	int err = 0;
1155 
1156 	if (this_bh) {				/* For indirect block */
1157 		BUFFER_TRACE(this_bh, "get_write_access");
1158 		err = ext4_journal_get_write_access(handle, this_bh);
1159 		/* Important: if we can't update the indirect pointers
1160 		 * to the blocks, we can't free them. */
1161 		if (err)
1162 			return;
1163 	}
1164 
1165 	for (p = first; p < last; p++) {
1166 		nr = le32_to_cpu(*p);
1167 		if (nr) {
1168 			/* accumulate blocks to free if they're contiguous */
1169 			if (count == 0) {
1170 				block_to_free = nr;
1171 				block_to_free_p = p;
1172 				count = 1;
1173 			} else if (nr == block_to_free + count) {
1174 				count++;
1175 			} else {
1176 				err = ext4_clear_blocks(handle, inode, this_bh,
1177 						        block_to_free, count,
1178 						        block_to_free_p, p);
1179 				if (err)
1180 					break;
1181 				block_to_free = nr;
1182 				block_to_free_p = p;
1183 				count = 1;
1184 			}
1185 		}
1186 	}
1187 
1188 	if (!err && count > 0)
1189 		err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
1190 					count, block_to_free_p, p);
1191 	if (err < 0)
1192 		/* fatal error */
1193 		return;
1194 
1195 	if (this_bh) {
1196 		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
1197 
1198 		/*
1199 		 * The buffer head should have an attached journal head at this
1200 		 * point. However, if the data is corrupted and an indirect
1201 		 * block pointed to itself, it would have been detached when
1202 		 * the block was cleared. Check for this instead of OOPSing.
1203 		 */
1204 		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
1205 			ext4_handle_dirty_metadata(handle, inode, this_bh);
1206 		else
1207 			EXT4_ERROR_INODE(inode,
1208 					 "circular indirect block detected at "
1209 					 "block %llu",
1210 				(unsigned long long) this_bh->b_blocknr);
1211 	}
1212 }
1213 
1214 /**
1215  *	ext4_free_branches - free an array of branches
1216  *	@handle: JBD handle for this transaction
1217  *	@inode:	inode we are dealing with
1218  *	@parent_bh: the buffer_head which contains *@first and *@last
1219  *	@first:	array of block numbers
1220  *	@last:	pointer immediately past the end of array
1221  *	@depth:	depth of the branches to free
1222  *
1223  *	We are freeing all blocks referred from these branches (numbers are
1224  *	stored as little-endian 32-bit) and updating @inode->i_blocks
1225  *	appropriately.
1226  */
1227 static void ext4_free_branches(handle_t *handle, struct inode *inode,
1228 			       struct buffer_head *parent_bh,
1229 			       __le32 *first, __le32 *last, int depth)
1230 {
1231 	ext4_fsblk_t nr;
1232 	__le32 *p;
1233 
1234 	if (ext4_handle_is_aborted(handle))
1235 		return;
1236 
1237 	if (depth--) {
1238 		struct buffer_head *bh;
1239 		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1240 		p = last;
1241 		while (--p >= first) {
1242 			nr = le32_to_cpu(*p);
1243 			if (!nr)
1244 				continue;		/* A hole */
1245 
1246 			if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
1247 						   nr, 1)) {
1248 				EXT4_ERROR_INODE(inode,
1249 						 "invalid indirect mapped "
1250 						 "block %lu (level %d)",
1251 						 (unsigned long) nr, depth);
1252 				break;
1253 			}
1254 
1255 			/* Go read the buffer for the next level down */
1256 			bh = sb_bread(inode->i_sb, nr);
1257 
1258 			/*
1259 			 * A read failure? Report error and clear slot
1260 			 * (should be rare).
1261 			 */
1262 			if (!bh) {
1263 				EXT4_ERROR_INODE_BLOCK(inode, nr,
1264 						       "Read failure");
1265 				continue;
1266 			}
1267 
1268 			/* This zaps the entire block.  Bottom up. */
1269 			BUFFER_TRACE(bh, "free child branches");
1270 			ext4_free_branches(handle, inode, bh,
1271 					(__le32 *) bh->b_data,
1272 					(__le32 *) bh->b_data + addr_per_block,
1273 					depth);
1274 			brelse(bh);
1275 
1276 			/*
1277 			 * Everything below this this pointer has been
1278 			 * released.  Now let this top-of-subtree go.
1279 			 *
1280 			 * We want the freeing of this indirect block to be
1281 			 * atomic in the journal with the updating of the
1282 			 * bitmap block which owns it.  So make some room in
1283 			 * the journal.
1284 			 *
1285 			 * We zero the parent pointer *after* freeing its
1286 			 * pointee in the bitmaps, so if extend_transaction()
1287 			 * for some reason fails to put the bitmap changes and
1288 			 * the release into the same transaction, recovery
1289 			 * will merely complain about releasing a free block,
1290 			 * rather than leaking blocks.
1291 			 */
1292 			if (ext4_handle_is_aborted(handle))
1293 				return;
1294 			if (try_to_extend_transaction(handle, inode)) {
1295 				ext4_mark_inode_dirty(handle, inode);
1296 				ext4_truncate_restart_trans(handle, inode,
1297 					    ext4_blocks_for_truncate(inode));
1298 			}
1299 
1300 			/*
1301 			 * The forget flag here is critical because if
1302 			 * we are journaling (and not doing data
1303 			 * journaling), we have to make sure a revoke
1304 			 * record is written to prevent the journal
1305 			 * replay from overwriting the (former)
1306 			 * indirect block if it gets reallocated as a
1307 			 * data block.  This must happen in the same
1308 			 * transaction where the data blocks are
1309 			 * actually freed.
1310 			 */
1311 			ext4_free_blocks(handle, inode, NULL, nr, 1,
1312 					 EXT4_FREE_BLOCKS_METADATA|
1313 					 EXT4_FREE_BLOCKS_FORGET);
1314 
1315 			if (parent_bh) {
1316 				/*
1317 				 * The block which we have just freed is
1318 				 * pointed to by an indirect block: journal it
1319 				 */
1320 				BUFFER_TRACE(parent_bh, "get_write_access");
1321 				if (!ext4_journal_get_write_access(handle,
1322 								   parent_bh)){
1323 					*p = 0;
1324 					BUFFER_TRACE(parent_bh,
1325 					"call ext4_handle_dirty_metadata");
1326 					ext4_handle_dirty_metadata(handle,
1327 								   inode,
1328 								   parent_bh);
1329 				}
1330 			}
1331 		}
1332 	} else {
1333 		/* We have reached the bottom of the tree. */
1334 		BUFFER_TRACE(parent_bh, "free data blocks");
1335 		ext4_free_data(handle, inode, parent_bh, first, last);
1336 	}
1337 }
1338 
1339 void ext4_ind_truncate(struct inode *inode)
1340 {
1341 	handle_t *handle;
1342 	struct ext4_inode_info *ei = EXT4_I(inode);
1343 	__le32 *i_data = ei->i_data;
1344 	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1345 	struct address_space *mapping = inode->i_mapping;
1346 	ext4_lblk_t offsets[4];
1347 	Indirect chain[4];
1348 	Indirect *partial;
1349 	__le32 nr = 0;
1350 	int n = 0;
1351 	ext4_lblk_t last_block, max_block;
1352 	loff_t page_len;
1353 	unsigned blocksize = inode->i_sb->s_blocksize;
1354 	int err;
1355 
1356 	handle = start_transaction(inode);
1357 	if (IS_ERR(handle))
1358 		return;		/* AKPM: return what? */
1359 
1360 	last_block = (inode->i_size + blocksize-1)
1361 					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1362 	max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1363 					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1364 
1365 	if (inode->i_size % PAGE_CACHE_SIZE != 0) {
1366 		page_len = PAGE_CACHE_SIZE -
1367 			(inode->i_size & (PAGE_CACHE_SIZE - 1));
1368 
1369 		err = ext4_discard_partial_page_buffers(handle,
1370 			mapping, inode->i_size, page_len, 0);
1371 
1372 		if (err)
1373 			goto out_stop;
1374 	}
1375 
1376 	if (last_block != max_block) {
1377 		n = ext4_block_to_path(inode, last_block, offsets, NULL);
1378 		if (n == 0)
1379 			goto out_stop;	/* error */
1380 	}
1381 
1382 	/*
1383 	 * OK.  This truncate is going to happen.  We add the inode to the
1384 	 * orphan list, so that if this truncate spans multiple transactions,
1385 	 * and we crash, we will resume the truncate when the filesystem
1386 	 * recovers.  It also marks the inode dirty, to catch the new size.
1387 	 *
1388 	 * Implication: the file must always be in a sane, consistent
1389 	 * truncatable state while each transaction commits.
1390 	 */
1391 	if (ext4_orphan_add(handle, inode))
1392 		goto out_stop;
1393 
1394 	/*
1395 	 * From here we block out all ext4_get_block() callers who want to
1396 	 * modify the block allocation tree.
1397 	 */
1398 	down_write(&ei->i_data_sem);
1399 
1400 	ext4_discard_preallocations(inode);
1401 
1402 	/*
1403 	 * The orphan list entry will now protect us from any crash which
1404 	 * occurs before the truncate completes, so it is now safe to propagate
1405 	 * the new, shorter inode size (held for now in i_size) into the
1406 	 * on-disk inode. We do this via i_disksize, which is the value which
1407 	 * ext4 *really* writes onto the disk inode.
1408 	 */
1409 	ei->i_disksize = inode->i_size;
1410 
1411 	if (last_block == max_block) {
1412 		/*
1413 		 * It is unnecessary to free any data blocks if last_block is
1414 		 * equal to the indirect block limit.
1415 		 */
1416 		goto out_unlock;
1417 	} else if (n == 1) {		/* direct blocks */
1418 		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
1419 			       i_data + EXT4_NDIR_BLOCKS);
1420 		goto do_indirects;
1421 	}
1422 
1423 	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1424 	/* Kill the top of shared branch (not detached) */
1425 	if (nr) {
1426 		if (partial == chain) {
1427 			/* Shared branch grows from the inode */
1428 			ext4_free_branches(handle, inode, NULL,
1429 					   &nr, &nr+1, (chain+n-1) - partial);
1430 			*partial->p = 0;
1431 			/*
1432 			 * We mark the inode dirty prior to restart,
1433 			 * and prior to stop.  No need for it here.
1434 			 */
1435 		} else {
1436 			/* Shared branch grows from an indirect block */
1437 			BUFFER_TRACE(partial->bh, "get_write_access");
1438 			ext4_free_branches(handle, inode, partial->bh,
1439 					partial->p,
1440 					partial->p+1, (chain+n-1) - partial);
1441 		}
1442 	}
1443 	/* Clear the ends of indirect blocks on the shared branch */
1444 	while (partial > chain) {
1445 		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
1446 				   (__le32*)partial->bh->b_data+addr_per_block,
1447 				   (chain+n-1) - partial);
1448 		BUFFER_TRACE(partial->bh, "call brelse");
1449 		brelse(partial->bh);
1450 		partial--;
1451 	}
1452 do_indirects:
1453 	/* Kill the remaining (whole) subtrees */
1454 	switch (offsets[0]) {
1455 	default:
1456 		nr = i_data[EXT4_IND_BLOCK];
1457 		if (nr) {
1458 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1459 			i_data[EXT4_IND_BLOCK] = 0;
1460 		}
1461 	case EXT4_IND_BLOCK:
1462 		nr = i_data[EXT4_DIND_BLOCK];
1463 		if (nr) {
1464 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1465 			i_data[EXT4_DIND_BLOCK] = 0;
1466 		}
1467 	case EXT4_DIND_BLOCK:
1468 		nr = i_data[EXT4_TIND_BLOCK];
1469 		if (nr) {
1470 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1471 			i_data[EXT4_TIND_BLOCK] = 0;
1472 		}
1473 	case EXT4_TIND_BLOCK:
1474 		;
1475 	}
1476 
1477 out_unlock:
1478 	up_write(&ei->i_data_sem);
1479 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
1480 	ext4_mark_inode_dirty(handle, inode);
1481 
1482 	/*
1483 	 * In a multi-transaction truncate, we only make the final transaction
1484 	 * synchronous
1485 	 */
1486 	if (IS_SYNC(inode))
1487 		ext4_handle_sync(handle);
1488 out_stop:
1489 	/*
1490 	 * If this was a simple ftruncate(), and the file will remain alive
1491 	 * then we need to clear up the orphan record which we created above.
1492 	 * However, if this was a real unlink then we were called by
1493 	 * ext4_delete_inode(), and we allow that function to clean up the
1494 	 * orphan info for us.
1495 	 */
1496 	if (inode->i_nlink)
1497 		ext4_orphan_del(handle, inode);
1498 
1499 	ext4_journal_stop(handle);
1500 	trace_ext4_truncate_exit(inode);
1501 }
1502 
1503