1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/indirect.c 4 * 5 * from 6 * 7 * linux/fs/ext4/inode.c 8 * 9 * Copyright (C) 1992, 1993, 1994, 1995 10 * Remy Card (card@masi.ibp.fr) 11 * Laboratoire MASI - Institut Blaise Pascal 12 * Universite Pierre et Marie Curie (Paris VI) 13 * 14 * from 15 * 16 * linux/fs/minix/inode.c 17 * 18 * Copyright (C) 1991, 1992 Linus Torvalds 19 * 20 * Goal-directed block allocation by Stephen Tweedie 21 * (sct@redhat.com), 1993, 1998 22 */ 23 24 #include "ext4_jbd2.h" 25 #include "truncate.h" 26 #include <linux/dax.h> 27 #include <linux/uio.h> 28 29 #include <trace/events/ext4.h> 30 31 typedef struct { 32 __le32 *p; 33 __le32 key; 34 struct buffer_head *bh; 35 } Indirect; 36 37 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v) 38 { 39 p->key = *(p->p = v); 40 p->bh = bh; 41 } 42 43 /** 44 * ext4_block_to_path - parse the block number into array of offsets 45 * @inode: inode in question (we are only interested in its superblock) 46 * @i_block: block number to be parsed 47 * @offsets: array to store the offsets in 48 * @boundary: set this non-zero if the referred-to block is likely to be 49 * followed (on disk) by an indirect block. 50 * 51 * To store the locations of file's data ext4 uses a data structure common 52 * for UNIX filesystems - tree of pointers anchored in the inode, with 53 * data blocks at leaves and indirect blocks in intermediate nodes. 54 * This function translates the block number into path in that tree - 55 * return value is the path length and @offsets[n] is the offset of 56 * pointer to (n+1)th node in the nth one. If @block is out of range 57 * (negative or too large) warning is printed and zero returned. 58 * 59 * Note: function doesn't find node addresses, so no IO is needed. All 60 * we need to know is the capacity of indirect blocks (taken from the 61 * inode->i_sb). 62 */ 63 64 /* 65 * Portability note: the last comparison (check that we fit into triple 66 * indirect block) is spelled differently, because otherwise on an 67 * architecture with 32-bit longs and 8Kb pages we might get into trouble 68 * if our filesystem had 8Kb blocks. We might use long long, but that would 69 * kill us on x86. Oh, well, at least the sign propagation does not matter - 70 * i_block would have to be negative in the very beginning, so we would not 71 * get there at all. 72 */ 73 74 static int ext4_block_to_path(struct inode *inode, 75 ext4_lblk_t i_block, 76 ext4_lblk_t offsets[4], int *boundary) 77 { 78 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb); 79 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb); 80 const long direct_blocks = EXT4_NDIR_BLOCKS, 81 indirect_blocks = ptrs, 82 double_blocks = (1 << (ptrs_bits * 2)); 83 int n = 0; 84 int final = 0; 85 86 if (i_block < direct_blocks) { 87 offsets[n++] = i_block; 88 final = direct_blocks; 89 } else if ((i_block -= direct_blocks) < indirect_blocks) { 90 offsets[n++] = EXT4_IND_BLOCK; 91 offsets[n++] = i_block; 92 final = ptrs; 93 } else if ((i_block -= indirect_blocks) < double_blocks) { 94 offsets[n++] = EXT4_DIND_BLOCK; 95 offsets[n++] = i_block >> ptrs_bits; 96 offsets[n++] = i_block & (ptrs - 1); 97 final = ptrs; 98 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { 99 offsets[n++] = EXT4_TIND_BLOCK; 100 offsets[n++] = i_block >> (ptrs_bits * 2); 101 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); 102 offsets[n++] = i_block & (ptrs - 1); 103 final = ptrs; 104 } else { 105 ext4_warning(inode->i_sb, "block %lu > max in inode %lu", 106 i_block + direct_blocks + 107 indirect_blocks + double_blocks, inode->i_ino); 108 } 109 if (boundary) 110 *boundary = final - 1 - (i_block & (ptrs - 1)); 111 return n; 112 } 113 114 /** 115 * ext4_get_branch - read the chain of indirect blocks leading to data 116 * @inode: inode in question 117 * @depth: depth of the chain (1 - direct pointer, etc.) 118 * @offsets: offsets of pointers in inode/indirect blocks 119 * @chain: place to store the result 120 * @err: here we store the error value 121 * 122 * Function fills the array of triples <key, p, bh> and returns %NULL 123 * if everything went OK or the pointer to the last filled triple 124 * (incomplete one) otherwise. Upon the return chain[i].key contains 125 * the number of (i+1)-th block in the chain (as it is stored in memory, 126 * i.e. little-endian 32-bit), chain[i].p contains the address of that 127 * number (it points into struct inode for i==0 and into the bh->b_data 128 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect 129 * block for i>0 and NULL for i==0. In other words, it holds the block 130 * numbers of the chain, addresses they were taken from (and where we can 131 * verify that chain did not change) and buffer_heads hosting these 132 * numbers. 133 * 134 * Function stops when it stumbles upon zero pointer (absent block) 135 * (pointer to last triple returned, *@err == 0) 136 * or when it gets an IO error reading an indirect block 137 * (ditto, *@err == -EIO) 138 * or when it reads all @depth-1 indirect blocks successfully and finds 139 * the whole chain, all way to the data (returns %NULL, *err == 0). 140 * 141 * Need to be called with 142 * down_read(&EXT4_I(inode)->i_data_sem) 143 */ 144 static Indirect *ext4_get_branch(struct inode *inode, int depth, 145 ext4_lblk_t *offsets, 146 Indirect chain[4], int *err) 147 { 148 struct super_block *sb = inode->i_sb; 149 Indirect *p = chain; 150 struct buffer_head *bh; 151 int ret = -EIO; 152 153 *err = 0; 154 /* i_data is not going away, no lock needed */ 155 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets); 156 if (!p->key) 157 goto no_block; 158 while (--depth) { 159 bh = sb_getblk(sb, le32_to_cpu(p->key)); 160 if (unlikely(!bh)) { 161 ret = -ENOMEM; 162 goto failure; 163 } 164 165 if (!bh_uptodate_or_lock(bh)) { 166 if (ext4_read_bh(bh, 0, NULL) < 0) { 167 put_bh(bh); 168 goto failure; 169 } 170 /* validate block references */ 171 if (ext4_check_indirect_blockref(inode, bh)) { 172 put_bh(bh); 173 goto failure; 174 } 175 } 176 177 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets); 178 /* Reader: end */ 179 if (!p->key) 180 goto no_block; 181 } 182 return NULL; 183 184 failure: 185 *err = ret; 186 no_block: 187 return p; 188 } 189 190 /** 191 * ext4_find_near - find a place for allocation with sufficient locality 192 * @inode: owner 193 * @ind: descriptor of indirect block. 194 * 195 * This function returns the preferred place for block allocation. 196 * It is used when heuristic for sequential allocation fails. 197 * Rules are: 198 * + if there is a block to the left of our position - allocate near it. 199 * + if pointer will live in indirect block - allocate near that block. 200 * + if pointer will live in inode - allocate in the same 201 * cylinder group. 202 * 203 * In the latter case we colour the starting block by the callers PID to 204 * prevent it from clashing with concurrent allocations for a different inode 205 * in the same block group. The PID is used here so that functionally related 206 * files will be close-by on-disk. 207 * 208 * Caller must make sure that @ind is valid and will stay that way. 209 */ 210 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind) 211 { 212 struct ext4_inode_info *ei = EXT4_I(inode); 213 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data; 214 __le32 *p; 215 216 /* Try to find previous block */ 217 for (p = ind->p - 1; p >= start; p--) { 218 if (*p) 219 return le32_to_cpu(*p); 220 } 221 222 /* No such thing, so let's try location of indirect block */ 223 if (ind->bh) 224 return ind->bh->b_blocknr; 225 226 /* 227 * It is going to be referred to from the inode itself? OK, just put it 228 * into the same cylinder group then. 229 */ 230 return ext4_inode_to_goal_block(inode); 231 } 232 233 /** 234 * ext4_find_goal - find a preferred place for allocation. 235 * @inode: owner 236 * @block: block we want 237 * @partial: pointer to the last triple within a chain 238 * 239 * Normally this function find the preferred place for block allocation, 240 * returns it. 241 * Because this is only used for non-extent files, we limit the block nr 242 * to 32 bits. 243 */ 244 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block, 245 Indirect *partial) 246 { 247 ext4_fsblk_t goal; 248 249 /* 250 * XXX need to get goal block from mballoc's data structures 251 */ 252 253 goal = ext4_find_near(inode, partial); 254 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS; 255 return goal; 256 } 257 258 /** 259 * ext4_blks_to_allocate - Look up the block map and count the number 260 * of direct blocks need to be allocated for the given branch. 261 * 262 * @branch: chain of indirect blocks 263 * @k: number of blocks need for indirect blocks 264 * @blks: number of data blocks to be mapped. 265 * @blocks_to_boundary: the offset in the indirect block 266 * 267 * return the total number of blocks to be allocate, including the 268 * direct and indirect blocks. 269 */ 270 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks, 271 int blocks_to_boundary) 272 { 273 unsigned int count = 0; 274 275 /* 276 * Simple case, [t,d]Indirect block(s) has not allocated yet 277 * then it's clear blocks on that path have not allocated 278 */ 279 if (k > 0) { 280 /* right now we don't handle cross boundary allocation */ 281 if (blks < blocks_to_boundary + 1) 282 count += blks; 283 else 284 count += blocks_to_boundary + 1; 285 return count; 286 } 287 288 count++; 289 while (count < blks && count <= blocks_to_boundary && 290 le32_to_cpu(*(branch[0].p + count)) == 0) { 291 count++; 292 } 293 return count; 294 } 295 296 /** 297 * ext4_alloc_branch() - allocate and set up a chain of blocks 298 * @handle: handle for this transaction 299 * @ar: structure describing the allocation request 300 * @indirect_blks: number of allocated indirect blocks 301 * @offsets: offsets (in the blocks) to store the pointers to next. 302 * @branch: place to store the chain in. 303 * 304 * This function allocates blocks, zeroes out all but the last one, 305 * links them into chain and (if we are synchronous) writes them to disk. 306 * In other words, it prepares a branch that can be spliced onto the 307 * inode. It stores the information about that chain in the branch[], in 308 * the same format as ext4_get_branch() would do. We are calling it after 309 * we had read the existing part of chain and partial points to the last 310 * triple of that (one with zero ->key). Upon the exit we have the same 311 * picture as after the successful ext4_get_block(), except that in one 312 * place chain is disconnected - *branch->p is still zero (we did not 313 * set the last link), but branch->key contains the number that should 314 * be placed into *branch->p to fill that gap. 315 * 316 * If allocation fails we free all blocks we've allocated (and forget 317 * their buffer_heads) and return the error value the from failed 318 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain 319 * as described above and return 0. 320 */ 321 static int ext4_alloc_branch(handle_t *handle, 322 struct ext4_allocation_request *ar, 323 int indirect_blks, ext4_lblk_t *offsets, 324 Indirect *branch) 325 { 326 struct buffer_head * bh; 327 ext4_fsblk_t b, new_blocks[4]; 328 __le32 *p; 329 int i, j, err, len = 1; 330 331 for (i = 0; i <= indirect_blks; i++) { 332 if (i == indirect_blks) { 333 new_blocks[i] = ext4_mb_new_blocks(handle, ar, &err); 334 } else { 335 ar->goal = new_blocks[i] = ext4_new_meta_blocks(handle, 336 ar->inode, ar->goal, 337 ar->flags & EXT4_MB_DELALLOC_RESERVED, 338 NULL, &err); 339 /* Simplify error cleanup... */ 340 branch[i+1].bh = NULL; 341 } 342 if (err) { 343 i--; 344 goto failed; 345 } 346 branch[i].key = cpu_to_le32(new_blocks[i]); 347 if (i == 0) 348 continue; 349 350 bh = branch[i].bh = sb_getblk(ar->inode->i_sb, new_blocks[i-1]); 351 if (unlikely(!bh)) { 352 err = -ENOMEM; 353 goto failed; 354 } 355 lock_buffer(bh); 356 BUFFER_TRACE(bh, "call get_create_access"); 357 err = ext4_journal_get_create_access(handle, ar->inode->i_sb, 358 bh, EXT4_JTR_NONE); 359 if (err) { 360 unlock_buffer(bh); 361 goto failed; 362 } 363 364 memset(bh->b_data, 0, bh->b_size); 365 p = branch[i].p = (__le32 *) bh->b_data + offsets[i]; 366 b = new_blocks[i]; 367 368 if (i == indirect_blks) 369 len = ar->len; 370 for (j = 0; j < len; j++) 371 *p++ = cpu_to_le32(b++); 372 373 BUFFER_TRACE(bh, "marking uptodate"); 374 set_buffer_uptodate(bh); 375 unlock_buffer(bh); 376 377 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 378 err = ext4_handle_dirty_metadata(handle, ar->inode, bh); 379 if (err) 380 goto failed; 381 } 382 return 0; 383 failed: 384 if (i == indirect_blks) { 385 /* Free data blocks */ 386 ext4_free_blocks(handle, ar->inode, NULL, new_blocks[i], 387 ar->len, 0); 388 i--; 389 } 390 for (; i >= 0; i--) { 391 /* 392 * We want to ext4_forget() only freshly allocated indirect 393 * blocks. Buffer for new_blocks[i] is at branch[i+1].bh 394 * (buffer at branch[0].bh is indirect block / inode already 395 * existing before ext4_alloc_branch() was called). Also 396 * because blocks are freshly allocated, we don't need to 397 * revoke them which is why we don't set 398 * EXT4_FREE_BLOCKS_METADATA. 399 */ 400 ext4_free_blocks(handle, ar->inode, branch[i+1].bh, 401 new_blocks[i], 1, 402 branch[i+1].bh ? EXT4_FREE_BLOCKS_FORGET : 0); 403 } 404 return err; 405 } 406 407 /** 408 * ext4_splice_branch() - splice the allocated branch onto inode. 409 * @handle: handle for this transaction 410 * @ar: structure describing the allocation request 411 * @where: location of missing link 412 * @num: number of indirect blocks we are adding 413 * 414 * This function fills the missing link and does all housekeeping needed in 415 * inode (->i_blocks, etc.). In case of success we end up with the full 416 * chain to new block and return 0. 417 */ 418 static int ext4_splice_branch(handle_t *handle, 419 struct ext4_allocation_request *ar, 420 Indirect *where, int num) 421 { 422 int i; 423 int err = 0; 424 ext4_fsblk_t current_block; 425 426 /* 427 * If we're splicing into a [td]indirect block (as opposed to the 428 * inode) then we need to get write access to the [td]indirect block 429 * before the splice. 430 */ 431 if (where->bh) { 432 BUFFER_TRACE(where->bh, "get_write_access"); 433 err = ext4_journal_get_write_access(handle, ar->inode->i_sb, 434 where->bh, EXT4_JTR_NONE); 435 if (err) 436 goto err_out; 437 } 438 /* That's it */ 439 440 *where->p = where->key; 441 442 /* 443 * Update the host buffer_head or inode to point to more just allocated 444 * direct blocks blocks 445 */ 446 if (num == 0 && ar->len > 1) { 447 current_block = le32_to_cpu(where->key) + 1; 448 for (i = 1; i < ar->len; i++) 449 *(where->p + i) = cpu_to_le32(current_block++); 450 } 451 452 /* We are done with atomic stuff, now do the rest of housekeeping */ 453 /* had we spliced it onto indirect block? */ 454 if (where->bh) { 455 /* 456 * If we spliced it onto an indirect block, we haven't 457 * altered the inode. Note however that if it is being spliced 458 * onto an indirect block at the very end of the file (the 459 * file is growing) then we *will* alter the inode to reflect 460 * the new i_size. But that is not done here - it is done in 461 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode. 462 */ 463 ext4_debug("splicing indirect only\n"); 464 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata"); 465 err = ext4_handle_dirty_metadata(handle, ar->inode, where->bh); 466 if (err) 467 goto err_out; 468 } else { 469 /* 470 * OK, we spliced it into the inode itself on a direct block. 471 */ 472 err = ext4_mark_inode_dirty(handle, ar->inode); 473 if (unlikely(err)) 474 goto err_out; 475 ext4_debug("splicing direct\n"); 476 } 477 return err; 478 479 err_out: 480 for (i = 1; i <= num; i++) { 481 /* 482 * branch[i].bh is newly allocated, so there is no 483 * need to revoke the block, which is why we don't 484 * need to set EXT4_FREE_BLOCKS_METADATA. 485 */ 486 ext4_free_blocks(handle, ar->inode, where[i].bh, 0, 1, 487 EXT4_FREE_BLOCKS_FORGET); 488 } 489 ext4_free_blocks(handle, ar->inode, NULL, le32_to_cpu(where[num].key), 490 ar->len, 0); 491 492 return err; 493 } 494 495 /* 496 * The ext4_ind_map_blocks() function handles non-extents inodes 497 * (i.e., using the traditional indirect/double-indirect i_blocks 498 * scheme) for ext4_map_blocks(). 499 * 500 * Allocation strategy is simple: if we have to allocate something, we will 501 * have to go the whole way to leaf. So let's do it before attaching anything 502 * to tree, set linkage between the newborn blocks, write them if sync is 503 * required, recheck the path, free and repeat if check fails, otherwise 504 * set the last missing link (that will protect us from any truncate-generated 505 * removals - all blocks on the path are immune now) and possibly force the 506 * write on the parent block. 507 * That has a nice additional property: no special recovery from the failed 508 * allocations is needed - we simply release blocks and do not touch anything 509 * reachable from inode. 510 * 511 * `handle' can be NULL if create == 0. 512 * 513 * return > 0, # of blocks mapped or allocated. 514 * return = 0, if plain lookup failed. 515 * return < 0, error case. 516 * 517 * The ext4_ind_get_blocks() function should be called with 518 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem 519 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or 520 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system 521 * blocks. 522 */ 523 int ext4_ind_map_blocks(handle_t *handle, struct inode *inode, 524 struct ext4_map_blocks *map, 525 int flags) 526 { 527 struct ext4_allocation_request ar; 528 int err = -EIO; 529 ext4_lblk_t offsets[4]; 530 Indirect chain[4]; 531 Indirect *partial; 532 int indirect_blks; 533 int blocks_to_boundary = 0; 534 int depth; 535 int count = 0; 536 ext4_fsblk_t first_block = 0; 537 538 trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags); 539 ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))); 540 ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0); 541 depth = ext4_block_to_path(inode, map->m_lblk, offsets, 542 &blocks_to_boundary); 543 544 if (depth == 0) 545 goto out; 546 547 partial = ext4_get_branch(inode, depth, offsets, chain, &err); 548 549 /* Simplest case - block found, no allocation needed */ 550 if (!partial) { 551 first_block = le32_to_cpu(chain[depth - 1].key); 552 count++; 553 /*map more blocks*/ 554 while (count < map->m_len && count <= blocks_to_boundary) { 555 ext4_fsblk_t blk; 556 557 blk = le32_to_cpu(*(chain[depth-1].p + count)); 558 559 if (blk == first_block + count) 560 count++; 561 else 562 break; 563 } 564 goto got_it; 565 } 566 567 /* Next simple case - plain lookup failed */ 568 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 569 unsigned epb = inode->i_sb->s_blocksize / sizeof(u32); 570 int i; 571 572 /* 573 * Count number blocks in a subtree under 'partial'. At each 574 * level we count number of complete empty subtrees beyond 575 * current offset and then descend into the subtree only 576 * partially beyond current offset. 577 */ 578 count = 0; 579 for (i = partial - chain + 1; i < depth; i++) 580 count = count * epb + (epb - offsets[i] - 1); 581 count++; 582 /* Fill in size of a hole we found */ 583 map->m_pblk = 0; 584 map->m_len = min_t(unsigned int, map->m_len, count); 585 goto cleanup; 586 } 587 588 /* Failed read of indirect block */ 589 if (err == -EIO) 590 goto cleanup; 591 592 /* 593 * Okay, we need to do block allocation. 594 */ 595 if (ext4_has_feature_bigalloc(inode->i_sb)) { 596 EXT4_ERROR_INODE(inode, "Can't allocate blocks for " 597 "non-extent mapped inodes with bigalloc"); 598 err = -EFSCORRUPTED; 599 goto out; 600 } 601 602 /* Set up for the direct block allocation */ 603 memset(&ar, 0, sizeof(ar)); 604 ar.inode = inode; 605 ar.logical = map->m_lblk; 606 if (S_ISREG(inode->i_mode)) 607 ar.flags = EXT4_MB_HINT_DATA; 608 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 609 ar.flags |= EXT4_MB_DELALLOC_RESERVED; 610 if (flags & EXT4_GET_BLOCKS_METADATA_NOFAIL) 611 ar.flags |= EXT4_MB_USE_RESERVED; 612 613 ar.goal = ext4_find_goal(inode, map->m_lblk, partial); 614 615 /* the number of blocks need to allocate for [d,t]indirect blocks */ 616 indirect_blks = (chain + depth) - partial - 1; 617 618 /* 619 * Next look up the indirect map to count the totoal number of 620 * direct blocks to allocate for this branch. 621 */ 622 ar.len = ext4_blks_to_allocate(partial, indirect_blks, 623 map->m_len, blocks_to_boundary); 624 625 /* 626 * Block out ext4_truncate while we alter the tree 627 */ 628 err = ext4_alloc_branch(handle, &ar, indirect_blks, 629 offsets + (partial - chain), partial); 630 631 /* 632 * The ext4_splice_branch call will free and forget any buffers 633 * on the new chain if there is a failure, but that risks using 634 * up transaction credits, especially for bitmaps where the 635 * credits cannot be returned. Can we handle this somehow? We 636 * may need to return -EAGAIN upwards in the worst case. --sct 637 */ 638 if (!err) 639 err = ext4_splice_branch(handle, &ar, partial, indirect_blks); 640 if (err) 641 goto cleanup; 642 643 map->m_flags |= EXT4_MAP_NEW; 644 645 ext4_update_inode_fsync_trans(handle, inode, 1); 646 count = ar.len; 647 got_it: 648 map->m_flags |= EXT4_MAP_MAPPED; 649 map->m_pblk = le32_to_cpu(chain[depth-1].key); 650 map->m_len = count; 651 if (count > blocks_to_boundary) 652 map->m_flags |= EXT4_MAP_BOUNDARY; 653 err = count; 654 /* Clean up and exit */ 655 partial = chain + depth - 1; /* the whole chain */ 656 cleanup: 657 while (partial > chain) { 658 BUFFER_TRACE(partial->bh, "call brelse"); 659 brelse(partial->bh); 660 partial--; 661 } 662 out: 663 trace_ext4_ind_map_blocks_exit(inode, flags, map, err); 664 return err; 665 } 666 667 /* 668 * Calculate number of indirect blocks touched by mapping @nrblocks logically 669 * contiguous blocks 670 */ 671 int ext4_ind_trans_blocks(struct inode *inode, int nrblocks) 672 { 673 /* 674 * With N contiguous data blocks, we need at most 675 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks, 676 * 2 dindirect blocks, and 1 tindirect block 677 */ 678 return DIV_ROUND_UP(nrblocks, EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4; 679 } 680 681 static int ext4_ind_trunc_restart_fn(handle_t *handle, struct inode *inode, 682 struct buffer_head *bh, int *dropped) 683 { 684 int err; 685 686 if (bh) { 687 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 688 err = ext4_handle_dirty_metadata(handle, inode, bh); 689 if (unlikely(err)) 690 return err; 691 } 692 err = ext4_mark_inode_dirty(handle, inode); 693 if (unlikely(err)) 694 return err; 695 /* 696 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 697 * moment, get_block can be called only for blocks inside i_size since 698 * page cache has been already dropped and writes are blocked by 699 * i_rwsem. So we can safely drop the i_data_sem here. 700 */ 701 BUG_ON(EXT4_JOURNAL(inode) == NULL); 702 ext4_discard_preallocations(inode, 0); 703 up_write(&EXT4_I(inode)->i_data_sem); 704 *dropped = 1; 705 return 0; 706 } 707 708 /* 709 * Truncate transactions can be complex and absolutely huge. So we need to 710 * be able to restart the transaction at a convenient checkpoint to make 711 * sure we don't overflow the journal. 712 * 713 * Try to extend this transaction for the purposes of truncation. If 714 * extend fails, we restart transaction. 715 */ 716 static int ext4_ind_truncate_ensure_credits(handle_t *handle, 717 struct inode *inode, 718 struct buffer_head *bh, 719 int revoke_creds) 720 { 721 int ret; 722 int dropped = 0; 723 724 ret = ext4_journal_ensure_credits_fn(handle, EXT4_RESERVE_TRANS_BLOCKS, 725 ext4_blocks_for_truncate(inode), revoke_creds, 726 ext4_ind_trunc_restart_fn(handle, inode, bh, &dropped)); 727 if (dropped) 728 down_write(&EXT4_I(inode)->i_data_sem); 729 if (ret <= 0) 730 return ret; 731 if (bh) { 732 BUFFER_TRACE(bh, "retaking write access"); 733 ret = ext4_journal_get_write_access(handle, inode->i_sb, bh, 734 EXT4_JTR_NONE); 735 if (unlikely(ret)) 736 return ret; 737 } 738 return 0; 739 } 740 741 /* 742 * Probably it should be a library function... search for first non-zero word 743 * or memcmp with zero_page, whatever is better for particular architecture. 744 * Linus? 745 */ 746 static inline int all_zeroes(__le32 *p, __le32 *q) 747 { 748 while (p < q) 749 if (*p++) 750 return 0; 751 return 1; 752 } 753 754 /** 755 * ext4_find_shared - find the indirect blocks for partial truncation. 756 * @inode: inode in question 757 * @depth: depth of the affected branch 758 * @offsets: offsets of pointers in that branch (see ext4_block_to_path) 759 * @chain: place to store the pointers to partial indirect blocks 760 * @top: place to the (detached) top of branch 761 * 762 * This is a helper function used by ext4_truncate(). 763 * 764 * When we do truncate() we may have to clean the ends of several 765 * indirect blocks but leave the blocks themselves alive. Block is 766 * partially truncated if some data below the new i_size is referred 767 * from it (and it is on the path to the first completely truncated 768 * data block, indeed). We have to free the top of that path along 769 * with everything to the right of the path. Since no allocation 770 * past the truncation point is possible until ext4_truncate() 771 * finishes, we may safely do the latter, but top of branch may 772 * require special attention - pageout below the truncation point 773 * might try to populate it. 774 * 775 * We atomically detach the top of branch from the tree, store the 776 * block number of its root in *@top, pointers to buffer_heads of 777 * partially truncated blocks - in @chain[].bh and pointers to 778 * their last elements that should not be removed - in 779 * @chain[].p. Return value is the pointer to last filled element 780 * of @chain. 781 * 782 * The work left to caller to do the actual freeing of subtrees: 783 * a) free the subtree starting from *@top 784 * b) free the subtrees whose roots are stored in 785 * (@chain[i].p+1 .. end of @chain[i].bh->b_data) 786 * c) free the subtrees growing from the inode past the @chain[0]. 787 * (no partially truncated stuff there). */ 788 789 static Indirect *ext4_find_shared(struct inode *inode, int depth, 790 ext4_lblk_t offsets[4], Indirect chain[4], 791 __le32 *top) 792 { 793 Indirect *partial, *p; 794 int k, err; 795 796 *top = 0; 797 /* Make k index the deepest non-null offset + 1 */ 798 for (k = depth; k > 1 && !offsets[k-1]; k--) 799 ; 800 partial = ext4_get_branch(inode, k, offsets, chain, &err); 801 /* Writer: pointers */ 802 if (!partial) 803 partial = chain + k-1; 804 /* 805 * If the branch acquired continuation since we've looked at it - 806 * fine, it should all survive and (new) top doesn't belong to us. 807 */ 808 if (!partial->key && *partial->p) 809 /* Writer: end */ 810 goto no_top; 811 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--) 812 ; 813 /* 814 * OK, we've found the last block that must survive. The rest of our 815 * branch should be detached before unlocking. However, if that rest 816 * of branch is all ours and does not grow immediately from the inode 817 * it's easier to cheat and just decrement partial->p. 818 */ 819 if (p == chain + k - 1 && p > chain) { 820 p->p--; 821 } else { 822 *top = *p->p; 823 /* Nope, don't do this in ext4. Must leave the tree intact */ 824 #if 0 825 *p->p = 0; 826 #endif 827 } 828 /* Writer: end */ 829 830 while (partial > p) { 831 brelse(partial->bh); 832 partial--; 833 } 834 no_top: 835 return partial; 836 } 837 838 /* 839 * Zero a number of block pointers in either an inode or an indirect block. 840 * If we restart the transaction we must again get write access to the 841 * indirect block for further modification. 842 * 843 * We release `count' blocks on disk, but (last - first) may be greater 844 * than `count' because there can be holes in there. 845 * 846 * Return 0 on success, 1 on invalid block range 847 * and < 0 on fatal error. 848 */ 849 static int ext4_clear_blocks(handle_t *handle, struct inode *inode, 850 struct buffer_head *bh, 851 ext4_fsblk_t block_to_free, 852 unsigned long count, __le32 *first, 853 __le32 *last) 854 { 855 __le32 *p; 856 int flags = EXT4_FREE_BLOCKS_VALIDATED; 857 int err; 858 859 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode) || 860 ext4_test_inode_flag(inode, EXT4_INODE_EA_INODE)) 861 flags |= EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_METADATA; 862 else if (ext4_should_journal_data(inode)) 863 flags |= EXT4_FREE_BLOCKS_FORGET; 864 865 if (!ext4_inode_block_valid(inode, block_to_free, count)) { 866 EXT4_ERROR_INODE(inode, "attempt to clear invalid " 867 "blocks %llu len %lu", 868 (unsigned long long) block_to_free, count); 869 return 1; 870 } 871 872 err = ext4_ind_truncate_ensure_credits(handle, inode, bh, 873 ext4_free_data_revoke_credits(inode, count)); 874 if (err < 0) 875 goto out_err; 876 877 for (p = first; p < last; p++) 878 *p = 0; 879 880 ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags); 881 return 0; 882 out_err: 883 ext4_std_error(inode->i_sb, err); 884 return err; 885 } 886 887 /** 888 * ext4_free_data - free a list of data blocks 889 * @handle: handle for this transaction 890 * @inode: inode we are dealing with 891 * @this_bh: indirect buffer_head which contains *@first and *@last 892 * @first: array of block numbers 893 * @last: points immediately past the end of array 894 * 895 * We are freeing all blocks referred from that array (numbers are stored as 896 * little-endian 32-bit) and updating @inode->i_blocks appropriately. 897 * 898 * We accumulate contiguous runs of blocks to free. Conveniently, if these 899 * blocks are contiguous then releasing them at one time will only affect one 900 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't 901 * actually use a lot of journal space. 902 * 903 * @this_bh will be %NULL if @first and @last point into the inode's direct 904 * block pointers. 905 */ 906 static void ext4_free_data(handle_t *handle, struct inode *inode, 907 struct buffer_head *this_bh, 908 __le32 *first, __le32 *last) 909 { 910 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */ 911 unsigned long count = 0; /* Number of blocks in the run */ 912 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind 913 corresponding to 914 block_to_free */ 915 ext4_fsblk_t nr; /* Current block # */ 916 __le32 *p; /* Pointer into inode/ind 917 for current block */ 918 int err = 0; 919 920 if (this_bh) { /* For indirect block */ 921 BUFFER_TRACE(this_bh, "get_write_access"); 922 err = ext4_journal_get_write_access(handle, inode->i_sb, 923 this_bh, EXT4_JTR_NONE); 924 /* Important: if we can't update the indirect pointers 925 * to the blocks, we can't free them. */ 926 if (err) 927 return; 928 } 929 930 for (p = first; p < last; p++) { 931 nr = le32_to_cpu(*p); 932 if (nr) { 933 /* accumulate blocks to free if they're contiguous */ 934 if (count == 0) { 935 block_to_free = nr; 936 block_to_free_p = p; 937 count = 1; 938 } else if (nr == block_to_free + count) { 939 count++; 940 } else { 941 err = ext4_clear_blocks(handle, inode, this_bh, 942 block_to_free, count, 943 block_to_free_p, p); 944 if (err) 945 break; 946 block_to_free = nr; 947 block_to_free_p = p; 948 count = 1; 949 } 950 } 951 } 952 953 if (!err && count > 0) 954 err = ext4_clear_blocks(handle, inode, this_bh, block_to_free, 955 count, block_to_free_p, p); 956 if (err < 0) 957 /* fatal error */ 958 return; 959 960 if (this_bh) { 961 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata"); 962 963 /* 964 * The buffer head should have an attached journal head at this 965 * point. However, if the data is corrupted and an indirect 966 * block pointed to itself, it would have been detached when 967 * the block was cleared. Check for this instead of OOPSing. 968 */ 969 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh)) 970 ext4_handle_dirty_metadata(handle, inode, this_bh); 971 else 972 EXT4_ERROR_INODE(inode, 973 "circular indirect block detected at " 974 "block %llu", 975 (unsigned long long) this_bh->b_blocknr); 976 } 977 } 978 979 /** 980 * ext4_free_branches - free an array of branches 981 * @handle: JBD handle for this transaction 982 * @inode: inode we are dealing with 983 * @parent_bh: the buffer_head which contains *@first and *@last 984 * @first: array of block numbers 985 * @last: pointer immediately past the end of array 986 * @depth: depth of the branches to free 987 * 988 * We are freeing all blocks referred from these branches (numbers are 989 * stored as little-endian 32-bit) and updating @inode->i_blocks 990 * appropriately. 991 */ 992 static void ext4_free_branches(handle_t *handle, struct inode *inode, 993 struct buffer_head *parent_bh, 994 __le32 *first, __le32 *last, int depth) 995 { 996 ext4_fsblk_t nr; 997 __le32 *p; 998 999 if (ext4_handle_is_aborted(handle)) 1000 return; 1001 1002 if (depth--) { 1003 struct buffer_head *bh; 1004 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 1005 p = last; 1006 while (--p >= first) { 1007 nr = le32_to_cpu(*p); 1008 if (!nr) 1009 continue; /* A hole */ 1010 1011 if (!ext4_inode_block_valid(inode, nr, 1)) { 1012 EXT4_ERROR_INODE(inode, 1013 "invalid indirect mapped " 1014 "block %lu (level %d)", 1015 (unsigned long) nr, depth); 1016 break; 1017 } 1018 1019 /* Go read the buffer for the next level down */ 1020 bh = ext4_sb_bread(inode->i_sb, nr, 0); 1021 1022 /* 1023 * A read failure? Report error and clear slot 1024 * (should be rare). 1025 */ 1026 if (IS_ERR(bh)) { 1027 ext4_error_inode_block(inode, nr, -PTR_ERR(bh), 1028 "Read failure"); 1029 continue; 1030 } 1031 1032 /* This zaps the entire block. Bottom up. */ 1033 BUFFER_TRACE(bh, "free child branches"); 1034 ext4_free_branches(handle, inode, bh, 1035 (__le32 *) bh->b_data, 1036 (__le32 *) bh->b_data + addr_per_block, 1037 depth); 1038 brelse(bh); 1039 1040 /* 1041 * Everything below this pointer has been 1042 * released. Now let this top-of-subtree go. 1043 * 1044 * We want the freeing of this indirect block to be 1045 * atomic in the journal with the updating of the 1046 * bitmap block which owns it. So make some room in 1047 * the journal. 1048 * 1049 * We zero the parent pointer *after* freeing its 1050 * pointee in the bitmaps, so if extend_transaction() 1051 * for some reason fails to put the bitmap changes and 1052 * the release into the same transaction, recovery 1053 * will merely complain about releasing a free block, 1054 * rather than leaking blocks. 1055 */ 1056 if (ext4_handle_is_aborted(handle)) 1057 return; 1058 if (ext4_ind_truncate_ensure_credits(handle, inode, 1059 NULL, 1060 ext4_free_metadata_revoke_credits( 1061 inode->i_sb, 1)) < 0) 1062 return; 1063 1064 /* 1065 * The forget flag here is critical because if 1066 * we are journaling (and not doing data 1067 * journaling), we have to make sure a revoke 1068 * record is written to prevent the journal 1069 * replay from overwriting the (former) 1070 * indirect block if it gets reallocated as a 1071 * data block. This must happen in the same 1072 * transaction where the data blocks are 1073 * actually freed. 1074 */ 1075 ext4_free_blocks(handle, inode, NULL, nr, 1, 1076 EXT4_FREE_BLOCKS_METADATA| 1077 EXT4_FREE_BLOCKS_FORGET); 1078 1079 if (parent_bh) { 1080 /* 1081 * The block which we have just freed is 1082 * pointed to by an indirect block: journal it 1083 */ 1084 BUFFER_TRACE(parent_bh, "get_write_access"); 1085 if (!ext4_journal_get_write_access(handle, 1086 inode->i_sb, parent_bh, 1087 EXT4_JTR_NONE)) { 1088 *p = 0; 1089 BUFFER_TRACE(parent_bh, 1090 "call ext4_handle_dirty_metadata"); 1091 ext4_handle_dirty_metadata(handle, 1092 inode, 1093 parent_bh); 1094 } 1095 } 1096 } 1097 } else { 1098 /* We have reached the bottom of the tree. */ 1099 BUFFER_TRACE(parent_bh, "free data blocks"); 1100 ext4_free_data(handle, inode, parent_bh, first, last); 1101 } 1102 } 1103 1104 void ext4_ind_truncate(handle_t *handle, struct inode *inode) 1105 { 1106 struct ext4_inode_info *ei = EXT4_I(inode); 1107 __le32 *i_data = ei->i_data; 1108 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 1109 ext4_lblk_t offsets[4]; 1110 Indirect chain[4]; 1111 Indirect *partial; 1112 __le32 nr = 0; 1113 int n = 0; 1114 ext4_lblk_t last_block, max_block; 1115 unsigned blocksize = inode->i_sb->s_blocksize; 1116 1117 last_block = (inode->i_size + blocksize-1) 1118 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 1119 max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1) 1120 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 1121 1122 if (last_block != max_block) { 1123 n = ext4_block_to_path(inode, last_block, offsets, NULL); 1124 if (n == 0) 1125 return; 1126 } 1127 1128 ext4_es_remove_extent(inode, last_block, EXT_MAX_BLOCKS - last_block); 1129 1130 /* 1131 * The orphan list entry will now protect us from any crash which 1132 * occurs before the truncate completes, so it is now safe to propagate 1133 * the new, shorter inode size (held for now in i_size) into the 1134 * on-disk inode. We do this via i_disksize, which is the value which 1135 * ext4 *really* writes onto the disk inode. 1136 */ 1137 ei->i_disksize = inode->i_size; 1138 1139 if (last_block == max_block) { 1140 /* 1141 * It is unnecessary to free any data blocks if last_block is 1142 * equal to the indirect block limit. 1143 */ 1144 return; 1145 } else if (n == 1) { /* direct blocks */ 1146 ext4_free_data(handle, inode, NULL, i_data+offsets[0], 1147 i_data + EXT4_NDIR_BLOCKS); 1148 goto do_indirects; 1149 } 1150 1151 partial = ext4_find_shared(inode, n, offsets, chain, &nr); 1152 /* Kill the top of shared branch (not detached) */ 1153 if (nr) { 1154 if (partial == chain) { 1155 /* Shared branch grows from the inode */ 1156 ext4_free_branches(handle, inode, NULL, 1157 &nr, &nr+1, (chain+n-1) - partial); 1158 *partial->p = 0; 1159 /* 1160 * We mark the inode dirty prior to restart, 1161 * and prior to stop. No need for it here. 1162 */ 1163 } else { 1164 /* Shared branch grows from an indirect block */ 1165 BUFFER_TRACE(partial->bh, "get_write_access"); 1166 ext4_free_branches(handle, inode, partial->bh, 1167 partial->p, 1168 partial->p+1, (chain+n-1) - partial); 1169 } 1170 } 1171 /* Clear the ends of indirect blocks on the shared branch */ 1172 while (partial > chain) { 1173 ext4_free_branches(handle, inode, partial->bh, partial->p + 1, 1174 (__le32*)partial->bh->b_data+addr_per_block, 1175 (chain+n-1) - partial); 1176 BUFFER_TRACE(partial->bh, "call brelse"); 1177 brelse(partial->bh); 1178 partial--; 1179 } 1180 do_indirects: 1181 /* Kill the remaining (whole) subtrees */ 1182 switch (offsets[0]) { 1183 default: 1184 nr = i_data[EXT4_IND_BLOCK]; 1185 if (nr) { 1186 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1); 1187 i_data[EXT4_IND_BLOCK] = 0; 1188 } 1189 fallthrough; 1190 case EXT4_IND_BLOCK: 1191 nr = i_data[EXT4_DIND_BLOCK]; 1192 if (nr) { 1193 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2); 1194 i_data[EXT4_DIND_BLOCK] = 0; 1195 } 1196 fallthrough; 1197 case EXT4_DIND_BLOCK: 1198 nr = i_data[EXT4_TIND_BLOCK]; 1199 if (nr) { 1200 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3); 1201 i_data[EXT4_TIND_BLOCK] = 0; 1202 } 1203 fallthrough; 1204 case EXT4_TIND_BLOCK: 1205 ; 1206 } 1207 } 1208 1209 /** 1210 * ext4_ind_remove_space - remove space from the range 1211 * @handle: JBD handle for this transaction 1212 * @inode: inode we are dealing with 1213 * @start: First block to remove 1214 * @end: One block after the last block to remove (exclusive) 1215 * 1216 * Free the blocks in the defined range (end is exclusive endpoint of 1217 * range). This is used by ext4_punch_hole(). 1218 */ 1219 int ext4_ind_remove_space(handle_t *handle, struct inode *inode, 1220 ext4_lblk_t start, ext4_lblk_t end) 1221 { 1222 struct ext4_inode_info *ei = EXT4_I(inode); 1223 __le32 *i_data = ei->i_data; 1224 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 1225 ext4_lblk_t offsets[4], offsets2[4]; 1226 Indirect chain[4], chain2[4]; 1227 Indirect *partial, *partial2; 1228 Indirect *p = NULL, *p2 = NULL; 1229 ext4_lblk_t max_block; 1230 __le32 nr = 0, nr2 = 0; 1231 int n = 0, n2 = 0; 1232 unsigned blocksize = inode->i_sb->s_blocksize; 1233 1234 max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1) 1235 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 1236 if (end >= max_block) 1237 end = max_block; 1238 if ((start >= end) || (start > max_block)) 1239 return 0; 1240 1241 n = ext4_block_to_path(inode, start, offsets, NULL); 1242 n2 = ext4_block_to_path(inode, end, offsets2, NULL); 1243 1244 BUG_ON(n > n2); 1245 1246 if ((n == 1) && (n == n2)) { 1247 /* We're punching only within direct block range */ 1248 ext4_free_data(handle, inode, NULL, i_data + offsets[0], 1249 i_data + offsets2[0]); 1250 return 0; 1251 } else if (n2 > n) { 1252 /* 1253 * Start and end are on a different levels so we're going to 1254 * free partial block at start, and partial block at end of 1255 * the range. If there are some levels in between then 1256 * do_indirects label will take care of that. 1257 */ 1258 1259 if (n == 1) { 1260 /* 1261 * Start is at the direct block level, free 1262 * everything to the end of the level. 1263 */ 1264 ext4_free_data(handle, inode, NULL, i_data + offsets[0], 1265 i_data + EXT4_NDIR_BLOCKS); 1266 goto end_range; 1267 } 1268 1269 1270 partial = p = ext4_find_shared(inode, n, offsets, chain, &nr); 1271 if (nr) { 1272 if (partial == chain) { 1273 /* Shared branch grows from the inode */ 1274 ext4_free_branches(handle, inode, NULL, 1275 &nr, &nr+1, (chain+n-1) - partial); 1276 *partial->p = 0; 1277 } else { 1278 /* Shared branch grows from an indirect block */ 1279 BUFFER_TRACE(partial->bh, "get_write_access"); 1280 ext4_free_branches(handle, inode, partial->bh, 1281 partial->p, 1282 partial->p+1, (chain+n-1) - partial); 1283 } 1284 } 1285 1286 /* 1287 * Clear the ends of indirect blocks on the shared branch 1288 * at the start of the range 1289 */ 1290 while (partial > chain) { 1291 ext4_free_branches(handle, inode, partial->bh, 1292 partial->p + 1, 1293 (__le32 *)partial->bh->b_data+addr_per_block, 1294 (chain+n-1) - partial); 1295 partial--; 1296 } 1297 1298 end_range: 1299 partial2 = p2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2); 1300 if (nr2) { 1301 if (partial2 == chain2) { 1302 /* 1303 * Remember, end is exclusive so here we're at 1304 * the start of the next level we're not going 1305 * to free. Everything was covered by the start 1306 * of the range. 1307 */ 1308 goto do_indirects; 1309 } 1310 } else { 1311 /* 1312 * ext4_find_shared returns Indirect structure which 1313 * points to the last element which should not be 1314 * removed by truncate. But this is end of the range 1315 * in punch_hole so we need to point to the next element 1316 */ 1317 partial2->p++; 1318 } 1319 1320 /* 1321 * Clear the ends of indirect blocks on the shared branch 1322 * at the end of the range 1323 */ 1324 while (partial2 > chain2) { 1325 ext4_free_branches(handle, inode, partial2->bh, 1326 (__le32 *)partial2->bh->b_data, 1327 partial2->p, 1328 (chain2+n2-1) - partial2); 1329 partial2--; 1330 } 1331 goto do_indirects; 1332 } 1333 1334 /* Punch happened within the same level (n == n2) */ 1335 partial = p = ext4_find_shared(inode, n, offsets, chain, &nr); 1336 partial2 = p2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2); 1337 1338 /* Free top, but only if partial2 isn't its subtree. */ 1339 if (nr) { 1340 int level = min(partial - chain, partial2 - chain2); 1341 int i; 1342 int subtree = 1; 1343 1344 for (i = 0; i <= level; i++) { 1345 if (offsets[i] != offsets2[i]) { 1346 subtree = 0; 1347 break; 1348 } 1349 } 1350 1351 if (!subtree) { 1352 if (partial == chain) { 1353 /* Shared branch grows from the inode */ 1354 ext4_free_branches(handle, inode, NULL, 1355 &nr, &nr+1, 1356 (chain+n-1) - partial); 1357 *partial->p = 0; 1358 } else { 1359 /* Shared branch grows from an indirect block */ 1360 BUFFER_TRACE(partial->bh, "get_write_access"); 1361 ext4_free_branches(handle, inode, partial->bh, 1362 partial->p, 1363 partial->p+1, 1364 (chain+n-1) - partial); 1365 } 1366 } 1367 } 1368 1369 if (!nr2) { 1370 /* 1371 * ext4_find_shared returns Indirect structure which 1372 * points to the last element which should not be 1373 * removed by truncate. But this is end of the range 1374 * in punch_hole so we need to point to the next element 1375 */ 1376 partial2->p++; 1377 } 1378 1379 while (partial > chain || partial2 > chain2) { 1380 int depth = (chain+n-1) - partial; 1381 int depth2 = (chain2+n2-1) - partial2; 1382 1383 if (partial > chain && partial2 > chain2 && 1384 partial->bh->b_blocknr == partial2->bh->b_blocknr) { 1385 /* 1386 * We've converged on the same block. Clear the range, 1387 * then we're done. 1388 */ 1389 ext4_free_branches(handle, inode, partial->bh, 1390 partial->p + 1, 1391 partial2->p, 1392 (chain+n-1) - partial); 1393 goto cleanup; 1394 } 1395 1396 /* 1397 * The start and end partial branches may not be at the same 1398 * level even though the punch happened within one level. So, we 1399 * give them a chance to arrive at the same level, then walk 1400 * them in step with each other until we converge on the same 1401 * block. 1402 */ 1403 if (partial > chain && depth <= depth2) { 1404 ext4_free_branches(handle, inode, partial->bh, 1405 partial->p + 1, 1406 (__le32 *)partial->bh->b_data+addr_per_block, 1407 (chain+n-1) - partial); 1408 partial--; 1409 } 1410 if (partial2 > chain2 && depth2 <= depth) { 1411 ext4_free_branches(handle, inode, partial2->bh, 1412 (__le32 *)partial2->bh->b_data, 1413 partial2->p, 1414 (chain2+n2-1) - partial2); 1415 partial2--; 1416 } 1417 } 1418 1419 cleanup: 1420 while (p && p > chain) { 1421 BUFFER_TRACE(p->bh, "call brelse"); 1422 brelse(p->bh); 1423 p--; 1424 } 1425 while (p2 && p2 > chain2) { 1426 BUFFER_TRACE(p2->bh, "call brelse"); 1427 brelse(p2->bh); 1428 p2--; 1429 } 1430 return 0; 1431 1432 do_indirects: 1433 /* Kill the remaining (whole) subtrees */ 1434 switch (offsets[0]) { 1435 default: 1436 if (++n >= n2) 1437 break; 1438 nr = i_data[EXT4_IND_BLOCK]; 1439 if (nr) { 1440 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1); 1441 i_data[EXT4_IND_BLOCK] = 0; 1442 } 1443 fallthrough; 1444 case EXT4_IND_BLOCK: 1445 if (++n >= n2) 1446 break; 1447 nr = i_data[EXT4_DIND_BLOCK]; 1448 if (nr) { 1449 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2); 1450 i_data[EXT4_DIND_BLOCK] = 0; 1451 } 1452 fallthrough; 1453 case EXT4_DIND_BLOCK: 1454 if (++n >= n2) 1455 break; 1456 nr = i_data[EXT4_TIND_BLOCK]; 1457 if (nr) { 1458 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3); 1459 i_data[EXT4_TIND_BLOCK] = 0; 1460 } 1461 fallthrough; 1462 case EXT4_TIND_BLOCK: 1463 ; 1464 } 1465 goto cleanup; 1466 } 1467