xref: /openbmc/linux/fs/ext4/indirect.c (revision e23feb16)
1 /*
2  *  linux/fs/ext4/indirect.c
3  *
4  *  from
5  *
6  *  linux/fs/ext4/inode.c
7  *
8  * Copyright (C) 1992, 1993, 1994, 1995
9  * Remy Card (card@masi.ibp.fr)
10  * Laboratoire MASI - Institut Blaise Pascal
11  * Universite Pierre et Marie Curie (Paris VI)
12  *
13  *  from
14  *
15  *  linux/fs/minix/inode.c
16  *
17  *  Copyright (C) 1991, 1992  Linus Torvalds
18  *
19  *  Goal-directed block allocation by Stephen Tweedie
20  *	(sct@redhat.com), 1993, 1998
21  */
22 
23 #include <linux/aio.h>
24 #include "ext4_jbd2.h"
25 #include "truncate.h"
26 
27 #include <trace/events/ext4.h>
28 
29 typedef struct {
30 	__le32	*p;
31 	__le32	key;
32 	struct buffer_head *bh;
33 } Indirect;
34 
35 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
36 {
37 	p->key = *(p->p = v);
38 	p->bh = bh;
39 }
40 
41 /**
42  *	ext4_block_to_path - parse the block number into array of offsets
43  *	@inode: inode in question (we are only interested in its superblock)
44  *	@i_block: block number to be parsed
45  *	@offsets: array to store the offsets in
46  *	@boundary: set this non-zero if the referred-to block is likely to be
47  *	       followed (on disk) by an indirect block.
48  *
49  *	To store the locations of file's data ext4 uses a data structure common
50  *	for UNIX filesystems - tree of pointers anchored in the inode, with
51  *	data blocks at leaves and indirect blocks in intermediate nodes.
52  *	This function translates the block number into path in that tree -
53  *	return value is the path length and @offsets[n] is the offset of
54  *	pointer to (n+1)th node in the nth one. If @block is out of range
55  *	(negative or too large) warning is printed and zero returned.
56  *
57  *	Note: function doesn't find node addresses, so no IO is needed. All
58  *	we need to know is the capacity of indirect blocks (taken from the
59  *	inode->i_sb).
60  */
61 
62 /*
63  * Portability note: the last comparison (check that we fit into triple
64  * indirect block) is spelled differently, because otherwise on an
65  * architecture with 32-bit longs and 8Kb pages we might get into trouble
66  * if our filesystem had 8Kb blocks. We might use long long, but that would
67  * kill us on x86. Oh, well, at least the sign propagation does not matter -
68  * i_block would have to be negative in the very beginning, so we would not
69  * get there at all.
70  */
71 
72 static int ext4_block_to_path(struct inode *inode,
73 			      ext4_lblk_t i_block,
74 			      ext4_lblk_t offsets[4], int *boundary)
75 {
76 	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
77 	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
78 	const long direct_blocks = EXT4_NDIR_BLOCKS,
79 		indirect_blocks = ptrs,
80 		double_blocks = (1 << (ptrs_bits * 2));
81 	int n = 0;
82 	int final = 0;
83 
84 	if (i_block < direct_blocks) {
85 		offsets[n++] = i_block;
86 		final = direct_blocks;
87 	} else if ((i_block -= direct_blocks) < indirect_blocks) {
88 		offsets[n++] = EXT4_IND_BLOCK;
89 		offsets[n++] = i_block;
90 		final = ptrs;
91 	} else if ((i_block -= indirect_blocks) < double_blocks) {
92 		offsets[n++] = EXT4_DIND_BLOCK;
93 		offsets[n++] = i_block >> ptrs_bits;
94 		offsets[n++] = i_block & (ptrs - 1);
95 		final = ptrs;
96 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
97 		offsets[n++] = EXT4_TIND_BLOCK;
98 		offsets[n++] = i_block >> (ptrs_bits * 2);
99 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
100 		offsets[n++] = i_block & (ptrs - 1);
101 		final = ptrs;
102 	} else {
103 		ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
104 			     i_block + direct_blocks +
105 			     indirect_blocks + double_blocks, inode->i_ino);
106 	}
107 	if (boundary)
108 		*boundary = final - 1 - (i_block & (ptrs - 1));
109 	return n;
110 }
111 
112 /**
113  *	ext4_get_branch - read the chain of indirect blocks leading to data
114  *	@inode: inode in question
115  *	@depth: depth of the chain (1 - direct pointer, etc.)
116  *	@offsets: offsets of pointers in inode/indirect blocks
117  *	@chain: place to store the result
118  *	@err: here we store the error value
119  *
120  *	Function fills the array of triples <key, p, bh> and returns %NULL
121  *	if everything went OK or the pointer to the last filled triple
122  *	(incomplete one) otherwise. Upon the return chain[i].key contains
123  *	the number of (i+1)-th block in the chain (as it is stored in memory,
124  *	i.e. little-endian 32-bit), chain[i].p contains the address of that
125  *	number (it points into struct inode for i==0 and into the bh->b_data
126  *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
127  *	block for i>0 and NULL for i==0. In other words, it holds the block
128  *	numbers of the chain, addresses they were taken from (and where we can
129  *	verify that chain did not change) and buffer_heads hosting these
130  *	numbers.
131  *
132  *	Function stops when it stumbles upon zero pointer (absent block)
133  *		(pointer to last triple returned, *@err == 0)
134  *	or when it gets an IO error reading an indirect block
135  *		(ditto, *@err == -EIO)
136  *	or when it reads all @depth-1 indirect blocks successfully and finds
137  *	the whole chain, all way to the data (returns %NULL, *err == 0).
138  *
139  *      Need to be called with
140  *      down_read(&EXT4_I(inode)->i_data_sem)
141  */
142 static Indirect *ext4_get_branch(struct inode *inode, int depth,
143 				 ext4_lblk_t  *offsets,
144 				 Indirect chain[4], int *err)
145 {
146 	struct super_block *sb = inode->i_sb;
147 	Indirect *p = chain;
148 	struct buffer_head *bh;
149 	int ret = -EIO;
150 
151 	*err = 0;
152 	/* i_data is not going away, no lock needed */
153 	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
154 	if (!p->key)
155 		goto no_block;
156 	while (--depth) {
157 		bh = sb_getblk(sb, le32_to_cpu(p->key));
158 		if (unlikely(!bh)) {
159 			ret = -ENOMEM;
160 			goto failure;
161 		}
162 
163 		if (!bh_uptodate_or_lock(bh)) {
164 			if (bh_submit_read(bh) < 0) {
165 				put_bh(bh);
166 				goto failure;
167 			}
168 			/* validate block references */
169 			if (ext4_check_indirect_blockref(inode, bh)) {
170 				put_bh(bh);
171 				goto failure;
172 			}
173 		}
174 
175 		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
176 		/* Reader: end */
177 		if (!p->key)
178 			goto no_block;
179 	}
180 	return NULL;
181 
182 failure:
183 	*err = ret;
184 no_block:
185 	return p;
186 }
187 
188 /**
189  *	ext4_find_near - find a place for allocation with sufficient locality
190  *	@inode: owner
191  *	@ind: descriptor of indirect block.
192  *
193  *	This function returns the preferred place for block allocation.
194  *	It is used when heuristic for sequential allocation fails.
195  *	Rules are:
196  *	  + if there is a block to the left of our position - allocate near it.
197  *	  + if pointer will live in indirect block - allocate near that block.
198  *	  + if pointer will live in inode - allocate in the same
199  *	    cylinder group.
200  *
201  * In the latter case we colour the starting block by the callers PID to
202  * prevent it from clashing with concurrent allocations for a different inode
203  * in the same block group.   The PID is used here so that functionally related
204  * files will be close-by on-disk.
205  *
206  *	Caller must make sure that @ind is valid and will stay that way.
207  */
208 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
209 {
210 	struct ext4_inode_info *ei = EXT4_I(inode);
211 	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
212 	__le32 *p;
213 
214 	/* Try to find previous block */
215 	for (p = ind->p - 1; p >= start; p--) {
216 		if (*p)
217 			return le32_to_cpu(*p);
218 	}
219 
220 	/* No such thing, so let's try location of indirect block */
221 	if (ind->bh)
222 		return ind->bh->b_blocknr;
223 
224 	/*
225 	 * It is going to be referred to from the inode itself? OK, just put it
226 	 * into the same cylinder group then.
227 	 */
228 	return ext4_inode_to_goal_block(inode);
229 }
230 
231 /**
232  *	ext4_find_goal - find a preferred place for allocation.
233  *	@inode: owner
234  *	@block:  block we want
235  *	@partial: pointer to the last triple within a chain
236  *
237  *	Normally this function find the preferred place for block allocation,
238  *	returns it.
239  *	Because this is only used for non-extent files, we limit the block nr
240  *	to 32 bits.
241  */
242 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
243 				   Indirect *partial)
244 {
245 	ext4_fsblk_t goal;
246 
247 	/*
248 	 * XXX need to get goal block from mballoc's data structures
249 	 */
250 
251 	goal = ext4_find_near(inode, partial);
252 	goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
253 	return goal;
254 }
255 
256 /**
257  *	ext4_blks_to_allocate - Look up the block map and count the number
258  *	of direct blocks need to be allocated for the given branch.
259  *
260  *	@branch: chain of indirect blocks
261  *	@k: number of blocks need for indirect blocks
262  *	@blks: number of data blocks to be mapped.
263  *	@blocks_to_boundary:  the offset in the indirect block
264  *
265  *	return the total number of blocks to be allocate, including the
266  *	direct and indirect blocks.
267  */
268 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
269 				 int blocks_to_boundary)
270 {
271 	unsigned int count = 0;
272 
273 	/*
274 	 * Simple case, [t,d]Indirect block(s) has not allocated yet
275 	 * then it's clear blocks on that path have not allocated
276 	 */
277 	if (k > 0) {
278 		/* right now we don't handle cross boundary allocation */
279 		if (blks < blocks_to_boundary + 1)
280 			count += blks;
281 		else
282 			count += blocks_to_boundary + 1;
283 		return count;
284 	}
285 
286 	count++;
287 	while (count < blks && count <= blocks_to_boundary &&
288 		le32_to_cpu(*(branch[0].p + count)) == 0) {
289 		count++;
290 	}
291 	return count;
292 }
293 
294 /**
295  *	ext4_alloc_branch - allocate and set up a chain of blocks.
296  *	@handle: handle for this transaction
297  *	@inode: owner
298  *	@indirect_blks: number of allocated indirect blocks
299  *	@blks: number of allocated direct blocks
300  *	@goal: preferred place for allocation
301  *	@offsets: offsets (in the blocks) to store the pointers to next.
302  *	@branch: place to store the chain in.
303  *
304  *	This function allocates blocks, zeroes out all but the last one,
305  *	links them into chain and (if we are synchronous) writes them to disk.
306  *	In other words, it prepares a branch that can be spliced onto the
307  *	inode. It stores the information about that chain in the branch[], in
308  *	the same format as ext4_get_branch() would do. We are calling it after
309  *	we had read the existing part of chain and partial points to the last
310  *	triple of that (one with zero ->key). Upon the exit we have the same
311  *	picture as after the successful ext4_get_block(), except that in one
312  *	place chain is disconnected - *branch->p is still zero (we did not
313  *	set the last link), but branch->key contains the number that should
314  *	be placed into *branch->p to fill that gap.
315  *
316  *	If allocation fails we free all blocks we've allocated (and forget
317  *	their buffer_heads) and return the error value the from failed
318  *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
319  *	as described above and return 0.
320  */
321 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
322 			     ext4_lblk_t iblock, int indirect_blks,
323 			     int *blks, ext4_fsblk_t goal,
324 			     ext4_lblk_t *offsets, Indirect *branch)
325 {
326 	struct ext4_allocation_request	ar;
327 	struct buffer_head *		bh;
328 	ext4_fsblk_t			b, new_blocks[4];
329 	__le32				*p;
330 	int				i, j, err, len = 1;
331 
332 	/*
333 	 * Set up for the direct block allocation
334 	 */
335 	memset(&ar, 0, sizeof(ar));
336 	ar.inode = inode;
337 	ar.len = *blks;
338 	ar.logical = iblock;
339 	if (S_ISREG(inode->i_mode))
340 		ar.flags = EXT4_MB_HINT_DATA;
341 
342 	for (i = 0; i <= indirect_blks; i++) {
343 		if (i == indirect_blks) {
344 			ar.goal = goal;
345 			new_blocks[i] = ext4_mb_new_blocks(handle, &ar, &err);
346 		} else
347 			goal = new_blocks[i] = ext4_new_meta_blocks(handle, inode,
348 							goal, 0, NULL, &err);
349 		if (err) {
350 			i--;
351 			goto failed;
352 		}
353 		branch[i].key = cpu_to_le32(new_blocks[i]);
354 		if (i == 0)
355 			continue;
356 
357 		bh = branch[i].bh = sb_getblk(inode->i_sb, new_blocks[i-1]);
358 		if (unlikely(!bh)) {
359 			err = -ENOMEM;
360 			goto failed;
361 		}
362 		lock_buffer(bh);
363 		BUFFER_TRACE(bh, "call get_create_access");
364 		err = ext4_journal_get_create_access(handle, bh);
365 		if (err) {
366 			unlock_buffer(bh);
367 			goto failed;
368 		}
369 
370 		memset(bh->b_data, 0, bh->b_size);
371 		p = branch[i].p = (__le32 *) bh->b_data + offsets[i];
372 		b = new_blocks[i];
373 
374 		if (i == indirect_blks)
375 			len = ar.len;
376 		for (j = 0; j < len; j++)
377 			*p++ = cpu_to_le32(b++);
378 
379 		BUFFER_TRACE(bh, "marking uptodate");
380 		set_buffer_uptodate(bh);
381 		unlock_buffer(bh);
382 
383 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
384 		err = ext4_handle_dirty_metadata(handle, inode, bh);
385 		if (err)
386 			goto failed;
387 	}
388 	*blks = ar.len;
389 	return 0;
390 failed:
391 	for (; i >= 0; i--) {
392 		if (i != indirect_blks && branch[i].bh)
393 			ext4_forget(handle, 1, inode, branch[i].bh,
394 				    branch[i].bh->b_blocknr);
395 		ext4_free_blocks(handle, inode, NULL, new_blocks[i],
396 				 (i == indirect_blks) ? ar.len : 1, 0);
397 	}
398 	return err;
399 }
400 
401 /**
402  * ext4_splice_branch - splice the allocated branch onto inode.
403  * @handle: handle for this transaction
404  * @inode: owner
405  * @block: (logical) number of block we are adding
406  * @chain: chain of indirect blocks (with a missing link - see
407  *	ext4_alloc_branch)
408  * @where: location of missing link
409  * @num:   number of indirect blocks we are adding
410  * @blks:  number of direct blocks we are adding
411  *
412  * This function fills the missing link and does all housekeeping needed in
413  * inode (->i_blocks, etc.). In case of success we end up with the full
414  * chain to new block and return 0.
415  */
416 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
417 			      ext4_lblk_t block, Indirect *where, int num,
418 			      int blks)
419 {
420 	int i;
421 	int err = 0;
422 	ext4_fsblk_t current_block;
423 
424 	/*
425 	 * If we're splicing into a [td]indirect block (as opposed to the
426 	 * inode) then we need to get write access to the [td]indirect block
427 	 * before the splice.
428 	 */
429 	if (where->bh) {
430 		BUFFER_TRACE(where->bh, "get_write_access");
431 		err = ext4_journal_get_write_access(handle, where->bh);
432 		if (err)
433 			goto err_out;
434 	}
435 	/* That's it */
436 
437 	*where->p = where->key;
438 
439 	/*
440 	 * Update the host buffer_head or inode to point to more just allocated
441 	 * direct blocks blocks
442 	 */
443 	if (num == 0 && blks > 1) {
444 		current_block = le32_to_cpu(where->key) + 1;
445 		for (i = 1; i < blks; i++)
446 			*(where->p + i) = cpu_to_le32(current_block++);
447 	}
448 
449 	/* We are done with atomic stuff, now do the rest of housekeeping */
450 	/* had we spliced it onto indirect block? */
451 	if (where->bh) {
452 		/*
453 		 * If we spliced it onto an indirect block, we haven't
454 		 * altered the inode.  Note however that if it is being spliced
455 		 * onto an indirect block at the very end of the file (the
456 		 * file is growing) then we *will* alter the inode to reflect
457 		 * the new i_size.  But that is not done here - it is done in
458 		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
459 		 */
460 		jbd_debug(5, "splicing indirect only\n");
461 		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
462 		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
463 		if (err)
464 			goto err_out;
465 	} else {
466 		/*
467 		 * OK, we spliced it into the inode itself on a direct block.
468 		 */
469 		ext4_mark_inode_dirty(handle, inode);
470 		jbd_debug(5, "splicing direct\n");
471 	}
472 	return err;
473 
474 err_out:
475 	for (i = 1; i <= num; i++) {
476 		/*
477 		 * branch[i].bh is newly allocated, so there is no
478 		 * need to revoke the block, which is why we don't
479 		 * need to set EXT4_FREE_BLOCKS_METADATA.
480 		 */
481 		ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
482 				 EXT4_FREE_BLOCKS_FORGET);
483 	}
484 	ext4_free_blocks(handle, inode, NULL, le32_to_cpu(where[num].key),
485 			 blks, 0);
486 
487 	return err;
488 }
489 
490 /*
491  * The ext4_ind_map_blocks() function handles non-extents inodes
492  * (i.e., using the traditional indirect/double-indirect i_blocks
493  * scheme) for ext4_map_blocks().
494  *
495  * Allocation strategy is simple: if we have to allocate something, we will
496  * have to go the whole way to leaf. So let's do it before attaching anything
497  * to tree, set linkage between the newborn blocks, write them if sync is
498  * required, recheck the path, free and repeat if check fails, otherwise
499  * set the last missing link (that will protect us from any truncate-generated
500  * removals - all blocks on the path are immune now) and possibly force the
501  * write on the parent block.
502  * That has a nice additional property: no special recovery from the failed
503  * allocations is needed - we simply release blocks and do not touch anything
504  * reachable from inode.
505  *
506  * `handle' can be NULL if create == 0.
507  *
508  * return > 0, # of blocks mapped or allocated.
509  * return = 0, if plain lookup failed.
510  * return < 0, error case.
511  *
512  * The ext4_ind_get_blocks() function should be called with
513  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
514  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
515  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
516  * blocks.
517  */
518 int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
519 			struct ext4_map_blocks *map,
520 			int flags)
521 {
522 	int err = -EIO;
523 	ext4_lblk_t offsets[4];
524 	Indirect chain[4];
525 	Indirect *partial;
526 	ext4_fsblk_t goal;
527 	int indirect_blks;
528 	int blocks_to_boundary = 0;
529 	int depth;
530 	int count = 0;
531 	ext4_fsblk_t first_block = 0;
532 
533 	trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
534 	J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
535 	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
536 	depth = ext4_block_to_path(inode, map->m_lblk, offsets,
537 				   &blocks_to_boundary);
538 
539 	if (depth == 0)
540 		goto out;
541 
542 	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
543 
544 	/* Simplest case - block found, no allocation needed */
545 	if (!partial) {
546 		first_block = le32_to_cpu(chain[depth - 1].key);
547 		count++;
548 		/*map more blocks*/
549 		while (count < map->m_len && count <= blocks_to_boundary) {
550 			ext4_fsblk_t blk;
551 
552 			blk = le32_to_cpu(*(chain[depth-1].p + count));
553 
554 			if (blk == first_block + count)
555 				count++;
556 			else
557 				break;
558 		}
559 		goto got_it;
560 	}
561 
562 	/* Next simple case - plain lookup or failed read of indirect block */
563 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
564 		goto cleanup;
565 
566 	/*
567 	 * Okay, we need to do block allocation.
568 	*/
569 	if (EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
570 				       EXT4_FEATURE_RO_COMPAT_BIGALLOC)) {
571 		EXT4_ERROR_INODE(inode, "Can't allocate blocks for "
572 				 "non-extent mapped inodes with bigalloc");
573 		return -ENOSPC;
574 	}
575 
576 	goal = ext4_find_goal(inode, map->m_lblk, partial);
577 
578 	/* the number of blocks need to allocate for [d,t]indirect blocks */
579 	indirect_blks = (chain + depth) - partial - 1;
580 
581 	/*
582 	 * Next look up the indirect map to count the totoal number of
583 	 * direct blocks to allocate for this branch.
584 	 */
585 	count = ext4_blks_to_allocate(partial, indirect_blks,
586 				      map->m_len, blocks_to_boundary);
587 	/*
588 	 * Block out ext4_truncate while we alter the tree
589 	 */
590 	err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
591 				&count, goal,
592 				offsets + (partial - chain), partial);
593 
594 	/*
595 	 * The ext4_splice_branch call will free and forget any buffers
596 	 * on the new chain if there is a failure, but that risks using
597 	 * up transaction credits, especially for bitmaps where the
598 	 * credits cannot be returned.  Can we handle this somehow?  We
599 	 * may need to return -EAGAIN upwards in the worst case.  --sct
600 	 */
601 	if (!err)
602 		err = ext4_splice_branch(handle, inode, map->m_lblk,
603 					 partial, indirect_blks, count);
604 	if (err)
605 		goto cleanup;
606 
607 	map->m_flags |= EXT4_MAP_NEW;
608 
609 	ext4_update_inode_fsync_trans(handle, inode, 1);
610 got_it:
611 	map->m_flags |= EXT4_MAP_MAPPED;
612 	map->m_pblk = le32_to_cpu(chain[depth-1].key);
613 	map->m_len = count;
614 	if (count > blocks_to_boundary)
615 		map->m_flags |= EXT4_MAP_BOUNDARY;
616 	err = count;
617 	/* Clean up and exit */
618 	partial = chain + depth - 1;	/* the whole chain */
619 cleanup:
620 	while (partial > chain) {
621 		BUFFER_TRACE(partial->bh, "call brelse");
622 		brelse(partial->bh);
623 		partial--;
624 	}
625 out:
626 	trace_ext4_ind_map_blocks_exit(inode, flags, map, err);
627 	return err;
628 }
629 
630 /*
631  * O_DIRECT for ext3 (or indirect map) based files
632  *
633  * If the O_DIRECT write will extend the file then add this inode to the
634  * orphan list.  So recovery will truncate it back to the original size
635  * if the machine crashes during the write.
636  *
637  * If the O_DIRECT write is intantiating holes inside i_size and the machine
638  * crashes then stale disk data _may_ be exposed inside the file. But current
639  * VFS code falls back into buffered path in that case so we are safe.
640  */
641 ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
642 			   const struct iovec *iov, loff_t offset,
643 			   unsigned long nr_segs)
644 {
645 	struct file *file = iocb->ki_filp;
646 	struct inode *inode = file->f_mapping->host;
647 	struct ext4_inode_info *ei = EXT4_I(inode);
648 	handle_t *handle;
649 	ssize_t ret;
650 	int orphan = 0;
651 	size_t count = iov_length(iov, nr_segs);
652 	int retries = 0;
653 
654 	if (rw == WRITE) {
655 		loff_t final_size = offset + count;
656 
657 		if (final_size > inode->i_size) {
658 			/* Credits for sb + inode write */
659 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
660 			if (IS_ERR(handle)) {
661 				ret = PTR_ERR(handle);
662 				goto out;
663 			}
664 			ret = ext4_orphan_add(handle, inode);
665 			if (ret) {
666 				ext4_journal_stop(handle);
667 				goto out;
668 			}
669 			orphan = 1;
670 			ei->i_disksize = inode->i_size;
671 			ext4_journal_stop(handle);
672 		}
673 	}
674 
675 retry:
676 	if (rw == READ && ext4_should_dioread_nolock(inode)) {
677 		/*
678 		 * Nolock dioread optimization may be dynamically disabled
679 		 * via ext4_inode_block_unlocked_dio(). Check inode's state
680 		 * while holding extra i_dio_count ref.
681 		 */
682 		atomic_inc(&inode->i_dio_count);
683 		smp_mb();
684 		if (unlikely(ext4_test_inode_state(inode,
685 						    EXT4_STATE_DIOREAD_LOCK))) {
686 			inode_dio_done(inode);
687 			goto locked;
688 		}
689 		ret = __blockdev_direct_IO(rw, iocb, inode,
690 				 inode->i_sb->s_bdev, iov,
691 				 offset, nr_segs,
692 				 ext4_get_block, NULL, NULL, 0);
693 		inode_dio_done(inode);
694 	} else {
695 locked:
696 		ret = blockdev_direct_IO(rw, iocb, inode, iov,
697 				 offset, nr_segs, ext4_get_block);
698 
699 		if (unlikely((rw & WRITE) && ret < 0)) {
700 			loff_t isize = i_size_read(inode);
701 			loff_t end = offset + iov_length(iov, nr_segs);
702 
703 			if (end > isize)
704 				ext4_truncate_failed_write(inode);
705 		}
706 	}
707 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
708 		goto retry;
709 
710 	if (orphan) {
711 		int err;
712 
713 		/* Credits for sb + inode write */
714 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
715 		if (IS_ERR(handle)) {
716 			/* This is really bad luck. We've written the data
717 			 * but cannot extend i_size. Bail out and pretend
718 			 * the write failed... */
719 			ret = PTR_ERR(handle);
720 			if (inode->i_nlink)
721 				ext4_orphan_del(NULL, inode);
722 
723 			goto out;
724 		}
725 		if (inode->i_nlink)
726 			ext4_orphan_del(handle, inode);
727 		if (ret > 0) {
728 			loff_t end = offset + ret;
729 			if (end > inode->i_size) {
730 				ei->i_disksize = end;
731 				i_size_write(inode, end);
732 				/*
733 				 * We're going to return a positive `ret'
734 				 * here due to non-zero-length I/O, so there's
735 				 * no way of reporting error returns from
736 				 * ext4_mark_inode_dirty() to userspace.  So
737 				 * ignore it.
738 				 */
739 				ext4_mark_inode_dirty(handle, inode);
740 			}
741 		}
742 		err = ext4_journal_stop(handle);
743 		if (ret == 0)
744 			ret = err;
745 	}
746 out:
747 	return ret;
748 }
749 
750 /*
751  * Calculate the number of metadata blocks need to reserve
752  * to allocate a new block at @lblocks for non extent file based file
753  */
754 int ext4_ind_calc_metadata_amount(struct inode *inode, sector_t lblock)
755 {
756 	struct ext4_inode_info *ei = EXT4_I(inode);
757 	sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
758 	int blk_bits;
759 
760 	if (lblock < EXT4_NDIR_BLOCKS)
761 		return 0;
762 
763 	lblock -= EXT4_NDIR_BLOCKS;
764 
765 	if (ei->i_da_metadata_calc_len &&
766 	    (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
767 		ei->i_da_metadata_calc_len++;
768 		return 0;
769 	}
770 	ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
771 	ei->i_da_metadata_calc_len = 1;
772 	blk_bits = order_base_2(lblock);
773 	return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
774 }
775 
776 /*
777  * Calculate number of indirect blocks touched by mapping @nrblocks logically
778  * contiguous blocks
779  */
780 int ext4_ind_trans_blocks(struct inode *inode, int nrblocks)
781 {
782 	/*
783 	 * With N contiguous data blocks, we need at most
784 	 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
785 	 * 2 dindirect blocks, and 1 tindirect block
786 	 */
787 	return DIV_ROUND_UP(nrblocks, EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
788 }
789 
790 /*
791  * Truncate transactions can be complex and absolutely huge.  So we need to
792  * be able to restart the transaction at a conventient checkpoint to make
793  * sure we don't overflow the journal.
794  *
795  * Try to extend this transaction for the purposes of truncation.  If
796  * extend fails, we need to propagate the failure up and restart the
797  * transaction in the top-level truncate loop. --sct
798  *
799  * Returns 0 if we managed to create more room.  If we can't create more
800  * room, and the transaction must be restarted we return 1.
801  */
802 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
803 {
804 	if (!ext4_handle_valid(handle))
805 		return 0;
806 	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
807 		return 0;
808 	if (!ext4_journal_extend(handle, ext4_blocks_for_truncate(inode)))
809 		return 0;
810 	return 1;
811 }
812 
813 /*
814  * Probably it should be a library function... search for first non-zero word
815  * or memcmp with zero_page, whatever is better for particular architecture.
816  * Linus?
817  */
818 static inline int all_zeroes(__le32 *p, __le32 *q)
819 {
820 	while (p < q)
821 		if (*p++)
822 			return 0;
823 	return 1;
824 }
825 
826 /**
827  *	ext4_find_shared - find the indirect blocks for partial truncation.
828  *	@inode:	  inode in question
829  *	@depth:	  depth of the affected branch
830  *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
831  *	@chain:	  place to store the pointers to partial indirect blocks
832  *	@top:	  place to the (detached) top of branch
833  *
834  *	This is a helper function used by ext4_truncate().
835  *
836  *	When we do truncate() we may have to clean the ends of several
837  *	indirect blocks but leave the blocks themselves alive. Block is
838  *	partially truncated if some data below the new i_size is referred
839  *	from it (and it is on the path to the first completely truncated
840  *	data block, indeed).  We have to free the top of that path along
841  *	with everything to the right of the path. Since no allocation
842  *	past the truncation point is possible until ext4_truncate()
843  *	finishes, we may safely do the latter, but top of branch may
844  *	require special attention - pageout below the truncation point
845  *	might try to populate it.
846  *
847  *	We atomically detach the top of branch from the tree, store the
848  *	block number of its root in *@top, pointers to buffer_heads of
849  *	partially truncated blocks - in @chain[].bh and pointers to
850  *	their last elements that should not be removed - in
851  *	@chain[].p. Return value is the pointer to last filled element
852  *	of @chain.
853  *
854  *	The work left to caller to do the actual freeing of subtrees:
855  *		a) free the subtree starting from *@top
856  *		b) free the subtrees whose roots are stored in
857  *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
858  *		c) free the subtrees growing from the inode past the @chain[0].
859  *			(no partially truncated stuff there).  */
860 
861 static Indirect *ext4_find_shared(struct inode *inode, int depth,
862 				  ext4_lblk_t offsets[4], Indirect chain[4],
863 				  __le32 *top)
864 {
865 	Indirect *partial, *p;
866 	int k, err;
867 
868 	*top = 0;
869 	/* Make k index the deepest non-null offset + 1 */
870 	for (k = depth; k > 1 && !offsets[k-1]; k--)
871 		;
872 	partial = ext4_get_branch(inode, k, offsets, chain, &err);
873 	/* Writer: pointers */
874 	if (!partial)
875 		partial = chain + k-1;
876 	/*
877 	 * If the branch acquired continuation since we've looked at it -
878 	 * fine, it should all survive and (new) top doesn't belong to us.
879 	 */
880 	if (!partial->key && *partial->p)
881 		/* Writer: end */
882 		goto no_top;
883 	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
884 		;
885 	/*
886 	 * OK, we've found the last block that must survive. The rest of our
887 	 * branch should be detached before unlocking. However, if that rest
888 	 * of branch is all ours and does not grow immediately from the inode
889 	 * it's easier to cheat and just decrement partial->p.
890 	 */
891 	if (p == chain + k - 1 && p > chain) {
892 		p->p--;
893 	} else {
894 		*top = *p->p;
895 		/* Nope, don't do this in ext4.  Must leave the tree intact */
896 #if 0
897 		*p->p = 0;
898 #endif
899 	}
900 	/* Writer: end */
901 
902 	while (partial > p) {
903 		brelse(partial->bh);
904 		partial--;
905 	}
906 no_top:
907 	return partial;
908 }
909 
910 /*
911  * Zero a number of block pointers in either an inode or an indirect block.
912  * If we restart the transaction we must again get write access to the
913  * indirect block for further modification.
914  *
915  * We release `count' blocks on disk, but (last - first) may be greater
916  * than `count' because there can be holes in there.
917  *
918  * Return 0 on success, 1 on invalid block range
919  * and < 0 on fatal error.
920  */
921 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
922 			     struct buffer_head *bh,
923 			     ext4_fsblk_t block_to_free,
924 			     unsigned long count, __le32 *first,
925 			     __le32 *last)
926 {
927 	__le32 *p;
928 	int	flags = EXT4_FREE_BLOCKS_VALIDATED;
929 	int	err;
930 
931 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
932 		flags |= EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_METADATA;
933 	else if (ext4_should_journal_data(inode))
934 		flags |= EXT4_FREE_BLOCKS_FORGET;
935 
936 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
937 				   count)) {
938 		EXT4_ERROR_INODE(inode, "attempt to clear invalid "
939 				 "blocks %llu len %lu",
940 				 (unsigned long long) block_to_free, count);
941 		return 1;
942 	}
943 
944 	if (try_to_extend_transaction(handle, inode)) {
945 		if (bh) {
946 			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
947 			err = ext4_handle_dirty_metadata(handle, inode, bh);
948 			if (unlikely(err))
949 				goto out_err;
950 		}
951 		err = ext4_mark_inode_dirty(handle, inode);
952 		if (unlikely(err))
953 			goto out_err;
954 		err = ext4_truncate_restart_trans(handle, inode,
955 					ext4_blocks_for_truncate(inode));
956 		if (unlikely(err))
957 			goto out_err;
958 		if (bh) {
959 			BUFFER_TRACE(bh, "retaking write access");
960 			err = ext4_journal_get_write_access(handle, bh);
961 			if (unlikely(err))
962 				goto out_err;
963 		}
964 	}
965 
966 	for (p = first; p < last; p++)
967 		*p = 0;
968 
969 	ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
970 	return 0;
971 out_err:
972 	ext4_std_error(inode->i_sb, err);
973 	return err;
974 }
975 
976 /**
977  * ext4_free_data - free a list of data blocks
978  * @handle:	handle for this transaction
979  * @inode:	inode we are dealing with
980  * @this_bh:	indirect buffer_head which contains *@first and *@last
981  * @first:	array of block numbers
982  * @last:	points immediately past the end of array
983  *
984  * We are freeing all blocks referred from that array (numbers are stored as
985  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
986  *
987  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
988  * blocks are contiguous then releasing them at one time will only affect one
989  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
990  * actually use a lot of journal space.
991  *
992  * @this_bh will be %NULL if @first and @last point into the inode's direct
993  * block pointers.
994  */
995 static void ext4_free_data(handle_t *handle, struct inode *inode,
996 			   struct buffer_head *this_bh,
997 			   __le32 *first, __le32 *last)
998 {
999 	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
1000 	unsigned long count = 0;	    /* Number of blocks in the run */
1001 	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
1002 					       corresponding to
1003 					       block_to_free */
1004 	ext4_fsblk_t nr;		    /* Current block # */
1005 	__le32 *p;			    /* Pointer into inode/ind
1006 					       for current block */
1007 	int err = 0;
1008 
1009 	if (this_bh) {				/* For indirect block */
1010 		BUFFER_TRACE(this_bh, "get_write_access");
1011 		err = ext4_journal_get_write_access(handle, this_bh);
1012 		/* Important: if we can't update the indirect pointers
1013 		 * to the blocks, we can't free them. */
1014 		if (err)
1015 			return;
1016 	}
1017 
1018 	for (p = first; p < last; p++) {
1019 		nr = le32_to_cpu(*p);
1020 		if (nr) {
1021 			/* accumulate blocks to free if they're contiguous */
1022 			if (count == 0) {
1023 				block_to_free = nr;
1024 				block_to_free_p = p;
1025 				count = 1;
1026 			} else if (nr == block_to_free + count) {
1027 				count++;
1028 			} else {
1029 				err = ext4_clear_blocks(handle, inode, this_bh,
1030 						        block_to_free, count,
1031 						        block_to_free_p, p);
1032 				if (err)
1033 					break;
1034 				block_to_free = nr;
1035 				block_to_free_p = p;
1036 				count = 1;
1037 			}
1038 		}
1039 	}
1040 
1041 	if (!err && count > 0)
1042 		err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
1043 					count, block_to_free_p, p);
1044 	if (err < 0)
1045 		/* fatal error */
1046 		return;
1047 
1048 	if (this_bh) {
1049 		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
1050 
1051 		/*
1052 		 * The buffer head should have an attached journal head at this
1053 		 * point. However, if the data is corrupted and an indirect
1054 		 * block pointed to itself, it would have been detached when
1055 		 * the block was cleared. Check for this instead of OOPSing.
1056 		 */
1057 		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
1058 			ext4_handle_dirty_metadata(handle, inode, this_bh);
1059 		else
1060 			EXT4_ERROR_INODE(inode,
1061 					 "circular indirect block detected at "
1062 					 "block %llu",
1063 				(unsigned long long) this_bh->b_blocknr);
1064 	}
1065 }
1066 
1067 /**
1068  *	ext4_free_branches - free an array of branches
1069  *	@handle: JBD handle for this transaction
1070  *	@inode:	inode we are dealing with
1071  *	@parent_bh: the buffer_head which contains *@first and *@last
1072  *	@first:	array of block numbers
1073  *	@last:	pointer immediately past the end of array
1074  *	@depth:	depth of the branches to free
1075  *
1076  *	We are freeing all blocks referred from these branches (numbers are
1077  *	stored as little-endian 32-bit) and updating @inode->i_blocks
1078  *	appropriately.
1079  */
1080 static void ext4_free_branches(handle_t *handle, struct inode *inode,
1081 			       struct buffer_head *parent_bh,
1082 			       __le32 *first, __le32 *last, int depth)
1083 {
1084 	ext4_fsblk_t nr;
1085 	__le32 *p;
1086 
1087 	if (ext4_handle_is_aborted(handle))
1088 		return;
1089 
1090 	if (depth--) {
1091 		struct buffer_head *bh;
1092 		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1093 		p = last;
1094 		while (--p >= first) {
1095 			nr = le32_to_cpu(*p);
1096 			if (!nr)
1097 				continue;		/* A hole */
1098 
1099 			if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
1100 						   nr, 1)) {
1101 				EXT4_ERROR_INODE(inode,
1102 						 "invalid indirect mapped "
1103 						 "block %lu (level %d)",
1104 						 (unsigned long) nr, depth);
1105 				break;
1106 			}
1107 
1108 			/* Go read the buffer for the next level down */
1109 			bh = sb_bread(inode->i_sb, nr);
1110 
1111 			/*
1112 			 * A read failure? Report error and clear slot
1113 			 * (should be rare).
1114 			 */
1115 			if (!bh) {
1116 				EXT4_ERROR_INODE_BLOCK(inode, nr,
1117 						       "Read failure");
1118 				continue;
1119 			}
1120 
1121 			/* This zaps the entire block.  Bottom up. */
1122 			BUFFER_TRACE(bh, "free child branches");
1123 			ext4_free_branches(handle, inode, bh,
1124 					(__le32 *) bh->b_data,
1125 					(__le32 *) bh->b_data + addr_per_block,
1126 					depth);
1127 			brelse(bh);
1128 
1129 			/*
1130 			 * Everything below this this pointer has been
1131 			 * released.  Now let this top-of-subtree go.
1132 			 *
1133 			 * We want the freeing of this indirect block to be
1134 			 * atomic in the journal with the updating of the
1135 			 * bitmap block which owns it.  So make some room in
1136 			 * the journal.
1137 			 *
1138 			 * We zero the parent pointer *after* freeing its
1139 			 * pointee in the bitmaps, so if extend_transaction()
1140 			 * for some reason fails to put the bitmap changes and
1141 			 * the release into the same transaction, recovery
1142 			 * will merely complain about releasing a free block,
1143 			 * rather than leaking blocks.
1144 			 */
1145 			if (ext4_handle_is_aborted(handle))
1146 				return;
1147 			if (try_to_extend_transaction(handle, inode)) {
1148 				ext4_mark_inode_dirty(handle, inode);
1149 				ext4_truncate_restart_trans(handle, inode,
1150 					    ext4_blocks_for_truncate(inode));
1151 			}
1152 
1153 			/*
1154 			 * The forget flag here is critical because if
1155 			 * we are journaling (and not doing data
1156 			 * journaling), we have to make sure a revoke
1157 			 * record is written to prevent the journal
1158 			 * replay from overwriting the (former)
1159 			 * indirect block if it gets reallocated as a
1160 			 * data block.  This must happen in the same
1161 			 * transaction where the data blocks are
1162 			 * actually freed.
1163 			 */
1164 			ext4_free_blocks(handle, inode, NULL, nr, 1,
1165 					 EXT4_FREE_BLOCKS_METADATA|
1166 					 EXT4_FREE_BLOCKS_FORGET);
1167 
1168 			if (parent_bh) {
1169 				/*
1170 				 * The block which we have just freed is
1171 				 * pointed to by an indirect block: journal it
1172 				 */
1173 				BUFFER_TRACE(parent_bh, "get_write_access");
1174 				if (!ext4_journal_get_write_access(handle,
1175 								   parent_bh)){
1176 					*p = 0;
1177 					BUFFER_TRACE(parent_bh,
1178 					"call ext4_handle_dirty_metadata");
1179 					ext4_handle_dirty_metadata(handle,
1180 								   inode,
1181 								   parent_bh);
1182 				}
1183 			}
1184 		}
1185 	} else {
1186 		/* We have reached the bottom of the tree. */
1187 		BUFFER_TRACE(parent_bh, "free data blocks");
1188 		ext4_free_data(handle, inode, parent_bh, first, last);
1189 	}
1190 }
1191 
1192 void ext4_ind_truncate(handle_t *handle, struct inode *inode)
1193 {
1194 	struct ext4_inode_info *ei = EXT4_I(inode);
1195 	__le32 *i_data = ei->i_data;
1196 	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1197 	ext4_lblk_t offsets[4];
1198 	Indirect chain[4];
1199 	Indirect *partial;
1200 	__le32 nr = 0;
1201 	int n = 0;
1202 	ext4_lblk_t last_block, max_block;
1203 	unsigned blocksize = inode->i_sb->s_blocksize;
1204 
1205 	last_block = (inode->i_size + blocksize-1)
1206 					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1207 	max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1208 					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1209 
1210 	if (last_block != max_block) {
1211 		n = ext4_block_to_path(inode, last_block, offsets, NULL);
1212 		if (n == 0)
1213 			return;
1214 	}
1215 
1216 	ext4_es_remove_extent(inode, last_block, EXT_MAX_BLOCKS - last_block);
1217 
1218 	/*
1219 	 * The orphan list entry will now protect us from any crash which
1220 	 * occurs before the truncate completes, so it is now safe to propagate
1221 	 * the new, shorter inode size (held for now in i_size) into the
1222 	 * on-disk inode. We do this via i_disksize, which is the value which
1223 	 * ext4 *really* writes onto the disk inode.
1224 	 */
1225 	ei->i_disksize = inode->i_size;
1226 
1227 	if (last_block == max_block) {
1228 		/*
1229 		 * It is unnecessary to free any data blocks if last_block is
1230 		 * equal to the indirect block limit.
1231 		 */
1232 		return;
1233 	} else if (n == 1) {		/* direct blocks */
1234 		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
1235 			       i_data + EXT4_NDIR_BLOCKS);
1236 		goto do_indirects;
1237 	}
1238 
1239 	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1240 	/* Kill the top of shared branch (not detached) */
1241 	if (nr) {
1242 		if (partial == chain) {
1243 			/* Shared branch grows from the inode */
1244 			ext4_free_branches(handle, inode, NULL,
1245 					   &nr, &nr+1, (chain+n-1) - partial);
1246 			*partial->p = 0;
1247 			/*
1248 			 * We mark the inode dirty prior to restart,
1249 			 * and prior to stop.  No need for it here.
1250 			 */
1251 		} else {
1252 			/* Shared branch grows from an indirect block */
1253 			BUFFER_TRACE(partial->bh, "get_write_access");
1254 			ext4_free_branches(handle, inode, partial->bh,
1255 					partial->p,
1256 					partial->p+1, (chain+n-1) - partial);
1257 		}
1258 	}
1259 	/* Clear the ends of indirect blocks on the shared branch */
1260 	while (partial > chain) {
1261 		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
1262 				   (__le32*)partial->bh->b_data+addr_per_block,
1263 				   (chain+n-1) - partial);
1264 		BUFFER_TRACE(partial->bh, "call brelse");
1265 		brelse(partial->bh);
1266 		partial--;
1267 	}
1268 do_indirects:
1269 	/* Kill the remaining (whole) subtrees */
1270 	switch (offsets[0]) {
1271 	default:
1272 		nr = i_data[EXT4_IND_BLOCK];
1273 		if (nr) {
1274 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1275 			i_data[EXT4_IND_BLOCK] = 0;
1276 		}
1277 	case EXT4_IND_BLOCK:
1278 		nr = i_data[EXT4_DIND_BLOCK];
1279 		if (nr) {
1280 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1281 			i_data[EXT4_DIND_BLOCK] = 0;
1282 		}
1283 	case EXT4_DIND_BLOCK:
1284 		nr = i_data[EXT4_TIND_BLOCK];
1285 		if (nr) {
1286 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1287 			i_data[EXT4_TIND_BLOCK] = 0;
1288 		}
1289 	case EXT4_TIND_BLOCK:
1290 		;
1291 	}
1292 }
1293 
1294 static int free_hole_blocks(handle_t *handle, struct inode *inode,
1295 			    struct buffer_head *parent_bh, __le32 *i_data,
1296 			    int level, ext4_lblk_t first,
1297 			    ext4_lblk_t count, int max)
1298 {
1299 	struct buffer_head *bh = NULL;
1300 	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1301 	int ret = 0;
1302 	int i, inc;
1303 	ext4_lblk_t offset;
1304 	__le32 blk;
1305 
1306 	inc = 1 << ((EXT4_BLOCK_SIZE_BITS(inode->i_sb) - 2) * level);
1307 	for (i = 0, offset = 0; i < max; i++, i_data++, offset += inc) {
1308 		if (offset >= count + first)
1309 			break;
1310 		if (*i_data == 0 || (offset + inc) <= first)
1311 			continue;
1312 		blk = *i_data;
1313 		if (level > 0) {
1314 			ext4_lblk_t first2;
1315 			bh = sb_bread(inode->i_sb, le32_to_cpu(blk));
1316 			if (!bh) {
1317 				EXT4_ERROR_INODE_BLOCK(inode, le32_to_cpu(blk),
1318 						       "Read failure");
1319 				return -EIO;
1320 			}
1321 			first2 = (first > offset) ? first - offset : 0;
1322 			ret = free_hole_blocks(handle, inode, bh,
1323 					       (__le32 *)bh->b_data, level - 1,
1324 					       first2, count - offset,
1325 					       inode->i_sb->s_blocksize >> 2);
1326 			if (ret) {
1327 				brelse(bh);
1328 				goto err;
1329 			}
1330 		}
1331 		if (level == 0 ||
1332 		    (bh && all_zeroes((__le32 *)bh->b_data,
1333 				      (__le32 *)bh->b_data + addr_per_block))) {
1334 			ext4_free_data(handle, inode, parent_bh, &blk, &blk+1);
1335 			*i_data = 0;
1336 		}
1337 		brelse(bh);
1338 		bh = NULL;
1339 	}
1340 
1341 err:
1342 	return ret;
1343 }
1344 
1345 int ext4_free_hole_blocks(handle_t *handle, struct inode *inode,
1346 			  ext4_lblk_t first, ext4_lblk_t stop)
1347 {
1348 	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1349 	int level, ret = 0;
1350 	int num = EXT4_NDIR_BLOCKS;
1351 	ext4_lblk_t count, max = EXT4_NDIR_BLOCKS;
1352 	__le32 *i_data = EXT4_I(inode)->i_data;
1353 
1354 	count = stop - first;
1355 	for (level = 0; level < 4; level++, max *= addr_per_block) {
1356 		if (first < max) {
1357 			ret = free_hole_blocks(handle, inode, NULL, i_data,
1358 					       level, first, count, num);
1359 			if (ret)
1360 				goto err;
1361 			if (count > max - first)
1362 				count -= max - first;
1363 			else
1364 				break;
1365 			first = 0;
1366 		} else {
1367 			first -= max;
1368 		}
1369 		i_data += num;
1370 		if (level == 0) {
1371 			num = 1;
1372 			max = 1;
1373 		}
1374 	}
1375 
1376 err:
1377 	return ret;
1378 }
1379 
1380