1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/indirect.c 4 * 5 * from 6 * 7 * linux/fs/ext4/inode.c 8 * 9 * Copyright (C) 1992, 1993, 1994, 1995 10 * Remy Card (card@masi.ibp.fr) 11 * Laboratoire MASI - Institut Blaise Pascal 12 * Universite Pierre et Marie Curie (Paris VI) 13 * 14 * from 15 * 16 * linux/fs/minix/inode.c 17 * 18 * Copyright (C) 1991, 1992 Linus Torvalds 19 * 20 * Goal-directed block allocation by Stephen Tweedie 21 * (sct@redhat.com), 1993, 1998 22 */ 23 24 #include "ext4_jbd2.h" 25 #include "truncate.h" 26 #include <linux/dax.h> 27 #include <linux/uio.h> 28 29 #include <trace/events/ext4.h> 30 31 typedef struct { 32 __le32 *p; 33 __le32 key; 34 struct buffer_head *bh; 35 } Indirect; 36 37 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v) 38 { 39 p->key = *(p->p = v); 40 p->bh = bh; 41 } 42 43 /** 44 * ext4_block_to_path - parse the block number into array of offsets 45 * @inode: inode in question (we are only interested in its superblock) 46 * @i_block: block number to be parsed 47 * @offsets: array to store the offsets in 48 * @boundary: set this non-zero if the referred-to block is likely to be 49 * followed (on disk) by an indirect block. 50 * 51 * To store the locations of file's data ext4 uses a data structure common 52 * for UNIX filesystems - tree of pointers anchored in the inode, with 53 * data blocks at leaves and indirect blocks in intermediate nodes. 54 * This function translates the block number into path in that tree - 55 * return value is the path length and @offsets[n] is the offset of 56 * pointer to (n+1)th node in the nth one. If @block is out of range 57 * (negative or too large) warning is printed and zero returned. 58 * 59 * Note: function doesn't find node addresses, so no IO is needed. All 60 * we need to know is the capacity of indirect blocks (taken from the 61 * inode->i_sb). 62 */ 63 64 /* 65 * Portability note: the last comparison (check that we fit into triple 66 * indirect block) is spelled differently, because otherwise on an 67 * architecture with 32-bit longs and 8Kb pages we might get into trouble 68 * if our filesystem had 8Kb blocks. We might use long long, but that would 69 * kill us on x86. Oh, well, at least the sign propagation does not matter - 70 * i_block would have to be negative in the very beginning, so we would not 71 * get there at all. 72 */ 73 74 static int ext4_block_to_path(struct inode *inode, 75 ext4_lblk_t i_block, 76 ext4_lblk_t offsets[4], int *boundary) 77 { 78 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb); 79 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb); 80 const long direct_blocks = EXT4_NDIR_BLOCKS, 81 indirect_blocks = ptrs, 82 double_blocks = (1 << (ptrs_bits * 2)); 83 int n = 0; 84 int final = 0; 85 86 if (i_block < direct_blocks) { 87 offsets[n++] = i_block; 88 final = direct_blocks; 89 } else if ((i_block -= direct_blocks) < indirect_blocks) { 90 offsets[n++] = EXT4_IND_BLOCK; 91 offsets[n++] = i_block; 92 final = ptrs; 93 } else if ((i_block -= indirect_blocks) < double_blocks) { 94 offsets[n++] = EXT4_DIND_BLOCK; 95 offsets[n++] = i_block >> ptrs_bits; 96 offsets[n++] = i_block & (ptrs - 1); 97 final = ptrs; 98 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { 99 offsets[n++] = EXT4_TIND_BLOCK; 100 offsets[n++] = i_block >> (ptrs_bits * 2); 101 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); 102 offsets[n++] = i_block & (ptrs - 1); 103 final = ptrs; 104 } else { 105 ext4_warning(inode->i_sb, "block %lu > max in inode %lu", 106 i_block + direct_blocks + 107 indirect_blocks + double_blocks, inode->i_ino); 108 } 109 if (boundary) 110 *boundary = final - 1 - (i_block & (ptrs - 1)); 111 return n; 112 } 113 114 /** 115 * ext4_get_branch - read the chain of indirect blocks leading to data 116 * @inode: inode in question 117 * @depth: depth of the chain (1 - direct pointer, etc.) 118 * @offsets: offsets of pointers in inode/indirect blocks 119 * @chain: place to store the result 120 * @err: here we store the error value 121 * 122 * Function fills the array of triples <key, p, bh> and returns %NULL 123 * if everything went OK or the pointer to the last filled triple 124 * (incomplete one) otherwise. Upon the return chain[i].key contains 125 * the number of (i+1)-th block in the chain (as it is stored in memory, 126 * i.e. little-endian 32-bit), chain[i].p contains the address of that 127 * number (it points into struct inode for i==0 and into the bh->b_data 128 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect 129 * block for i>0 and NULL for i==0. In other words, it holds the block 130 * numbers of the chain, addresses they were taken from (and where we can 131 * verify that chain did not change) and buffer_heads hosting these 132 * numbers. 133 * 134 * Function stops when it stumbles upon zero pointer (absent block) 135 * (pointer to last triple returned, *@err == 0) 136 * or when it gets an IO error reading an indirect block 137 * (ditto, *@err == -EIO) 138 * or when it reads all @depth-1 indirect blocks successfully and finds 139 * the whole chain, all way to the data (returns %NULL, *err == 0). 140 * 141 * Need to be called with 142 * down_read(&EXT4_I(inode)->i_data_sem) 143 */ 144 static Indirect *ext4_get_branch(struct inode *inode, int depth, 145 ext4_lblk_t *offsets, 146 Indirect chain[4], int *err) 147 { 148 struct super_block *sb = inode->i_sb; 149 Indirect *p = chain; 150 struct buffer_head *bh; 151 int ret = -EIO; 152 153 *err = 0; 154 /* i_data is not going away, no lock needed */ 155 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets); 156 if (!p->key) 157 goto no_block; 158 while (--depth) { 159 bh = sb_getblk(sb, le32_to_cpu(p->key)); 160 if (unlikely(!bh)) { 161 ret = -ENOMEM; 162 goto failure; 163 } 164 165 if (!bh_uptodate_or_lock(bh)) { 166 if (bh_submit_read(bh) < 0) { 167 put_bh(bh); 168 goto failure; 169 } 170 /* validate block references */ 171 if (ext4_check_indirect_blockref(inode, bh)) { 172 put_bh(bh); 173 goto failure; 174 } 175 } 176 177 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets); 178 /* Reader: end */ 179 if (!p->key) 180 goto no_block; 181 } 182 return NULL; 183 184 failure: 185 *err = ret; 186 no_block: 187 return p; 188 } 189 190 /** 191 * ext4_find_near - find a place for allocation with sufficient locality 192 * @inode: owner 193 * @ind: descriptor of indirect block. 194 * 195 * This function returns the preferred place for block allocation. 196 * It is used when heuristic for sequential allocation fails. 197 * Rules are: 198 * + if there is a block to the left of our position - allocate near it. 199 * + if pointer will live in indirect block - allocate near that block. 200 * + if pointer will live in inode - allocate in the same 201 * cylinder group. 202 * 203 * In the latter case we colour the starting block by the callers PID to 204 * prevent it from clashing with concurrent allocations for a different inode 205 * in the same block group. The PID is used here so that functionally related 206 * files will be close-by on-disk. 207 * 208 * Caller must make sure that @ind is valid and will stay that way. 209 */ 210 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind) 211 { 212 struct ext4_inode_info *ei = EXT4_I(inode); 213 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data; 214 __le32 *p; 215 216 /* Try to find previous block */ 217 for (p = ind->p - 1; p >= start; p--) { 218 if (*p) 219 return le32_to_cpu(*p); 220 } 221 222 /* No such thing, so let's try location of indirect block */ 223 if (ind->bh) 224 return ind->bh->b_blocknr; 225 226 /* 227 * It is going to be referred to from the inode itself? OK, just put it 228 * into the same cylinder group then. 229 */ 230 return ext4_inode_to_goal_block(inode); 231 } 232 233 /** 234 * ext4_find_goal - find a preferred place for allocation. 235 * @inode: owner 236 * @block: block we want 237 * @partial: pointer to the last triple within a chain 238 * 239 * Normally this function find the preferred place for block allocation, 240 * returns it. 241 * Because this is only used for non-extent files, we limit the block nr 242 * to 32 bits. 243 */ 244 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block, 245 Indirect *partial) 246 { 247 ext4_fsblk_t goal; 248 249 /* 250 * XXX need to get goal block from mballoc's data structures 251 */ 252 253 goal = ext4_find_near(inode, partial); 254 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS; 255 return goal; 256 } 257 258 /** 259 * ext4_blks_to_allocate - Look up the block map and count the number 260 * of direct blocks need to be allocated for the given branch. 261 * 262 * @branch: chain of indirect blocks 263 * @k: number of blocks need for indirect blocks 264 * @blks: number of data blocks to be mapped. 265 * @blocks_to_boundary: the offset in the indirect block 266 * 267 * return the total number of blocks to be allocate, including the 268 * direct and indirect blocks. 269 */ 270 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks, 271 int blocks_to_boundary) 272 { 273 unsigned int count = 0; 274 275 /* 276 * Simple case, [t,d]Indirect block(s) has not allocated yet 277 * then it's clear blocks on that path have not allocated 278 */ 279 if (k > 0) { 280 /* right now we don't handle cross boundary allocation */ 281 if (blks < blocks_to_boundary + 1) 282 count += blks; 283 else 284 count += blocks_to_boundary + 1; 285 return count; 286 } 287 288 count++; 289 while (count < blks && count <= blocks_to_boundary && 290 le32_to_cpu(*(branch[0].p + count)) == 0) { 291 count++; 292 } 293 return count; 294 } 295 296 /** 297 * ext4_alloc_branch - allocate and set up a chain of blocks. 298 * @handle: handle for this transaction 299 * @inode: owner 300 * @indirect_blks: number of allocated indirect blocks 301 * @blks: number of allocated direct blocks 302 * @goal: preferred place for allocation 303 * @offsets: offsets (in the blocks) to store the pointers to next. 304 * @branch: place to store the chain in. 305 * 306 * This function allocates blocks, zeroes out all but the last one, 307 * links them into chain and (if we are synchronous) writes them to disk. 308 * In other words, it prepares a branch that can be spliced onto the 309 * inode. It stores the information about that chain in the branch[], in 310 * the same format as ext4_get_branch() would do. We are calling it after 311 * we had read the existing part of chain and partial points to the last 312 * triple of that (one with zero ->key). Upon the exit we have the same 313 * picture as after the successful ext4_get_block(), except that in one 314 * place chain is disconnected - *branch->p is still zero (we did not 315 * set the last link), but branch->key contains the number that should 316 * be placed into *branch->p to fill that gap. 317 * 318 * If allocation fails we free all blocks we've allocated (and forget 319 * their buffer_heads) and return the error value the from failed 320 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain 321 * as described above and return 0. 322 */ 323 static int ext4_alloc_branch(handle_t *handle, 324 struct ext4_allocation_request *ar, 325 int indirect_blks, ext4_lblk_t *offsets, 326 Indirect *branch) 327 { 328 struct buffer_head * bh; 329 ext4_fsblk_t b, new_blocks[4]; 330 __le32 *p; 331 int i, j, err, len = 1; 332 333 for (i = 0; i <= indirect_blks; i++) { 334 if (i == indirect_blks) { 335 new_blocks[i] = ext4_mb_new_blocks(handle, ar, &err); 336 } else 337 ar->goal = new_blocks[i] = ext4_new_meta_blocks(handle, 338 ar->inode, ar->goal, 339 ar->flags & EXT4_MB_DELALLOC_RESERVED, 340 NULL, &err); 341 if (err) { 342 i--; 343 goto failed; 344 } 345 branch[i].key = cpu_to_le32(new_blocks[i]); 346 if (i == 0) 347 continue; 348 349 bh = branch[i].bh = sb_getblk(ar->inode->i_sb, new_blocks[i-1]); 350 if (unlikely(!bh)) { 351 err = -ENOMEM; 352 goto failed; 353 } 354 lock_buffer(bh); 355 BUFFER_TRACE(bh, "call get_create_access"); 356 err = ext4_journal_get_create_access(handle, bh); 357 if (err) { 358 unlock_buffer(bh); 359 goto failed; 360 } 361 362 memset(bh->b_data, 0, bh->b_size); 363 p = branch[i].p = (__le32 *) bh->b_data + offsets[i]; 364 b = new_blocks[i]; 365 366 if (i == indirect_blks) 367 len = ar->len; 368 for (j = 0; j < len; j++) 369 *p++ = cpu_to_le32(b++); 370 371 BUFFER_TRACE(bh, "marking uptodate"); 372 set_buffer_uptodate(bh); 373 unlock_buffer(bh); 374 375 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 376 err = ext4_handle_dirty_metadata(handle, ar->inode, bh); 377 if (err) 378 goto failed; 379 } 380 return 0; 381 failed: 382 for (; i >= 0; i--) { 383 /* 384 * We want to ext4_forget() only freshly allocated indirect 385 * blocks. Buffer for new_blocks[i-1] is at branch[i].bh and 386 * buffer at branch[0].bh is indirect block / inode already 387 * existing before ext4_alloc_branch() was called. 388 */ 389 if (i > 0 && i != indirect_blks && branch[i].bh) 390 ext4_forget(handle, 1, ar->inode, branch[i].bh, 391 branch[i].bh->b_blocknr); 392 ext4_free_blocks(handle, ar->inode, NULL, new_blocks[i], 393 (i == indirect_blks) ? ar->len : 1, 0); 394 } 395 return err; 396 } 397 398 /** 399 * ext4_splice_branch - splice the allocated branch onto inode. 400 * @handle: handle for this transaction 401 * @inode: owner 402 * @block: (logical) number of block we are adding 403 * @chain: chain of indirect blocks (with a missing link - see 404 * ext4_alloc_branch) 405 * @where: location of missing link 406 * @num: number of indirect blocks we are adding 407 * @blks: number of direct blocks we are adding 408 * 409 * This function fills the missing link and does all housekeeping needed in 410 * inode (->i_blocks, etc.). In case of success we end up with the full 411 * chain to new block and return 0. 412 */ 413 static int ext4_splice_branch(handle_t *handle, 414 struct ext4_allocation_request *ar, 415 Indirect *where, int num) 416 { 417 int i; 418 int err = 0; 419 ext4_fsblk_t current_block; 420 421 /* 422 * If we're splicing into a [td]indirect block (as opposed to the 423 * inode) then we need to get write access to the [td]indirect block 424 * before the splice. 425 */ 426 if (where->bh) { 427 BUFFER_TRACE(where->bh, "get_write_access"); 428 err = ext4_journal_get_write_access(handle, where->bh); 429 if (err) 430 goto err_out; 431 } 432 /* That's it */ 433 434 *where->p = where->key; 435 436 /* 437 * Update the host buffer_head or inode to point to more just allocated 438 * direct blocks blocks 439 */ 440 if (num == 0 && ar->len > 1) { 441 current_block = le32_to_cpu(where->key) + 1; 442 for (i = 1; i < ar->len; i++) 443 *(where->p + i) = cpu_to_le32(current_block++); 444 } 445 446 /* We are done with atomic stuff, now do the rest of housekeeping */ 447 /* had we spliced it onto indirect block? */ 448 if (where->bh) { 449 /* 450 * If we spliced it onto an indirect block, we haven't 451 * altered the inode. Note however that if it is being spliced 452 * onto an indirect block at the very end of the file (the 453 * file is growing) then we *will* alter the inode to reflect 454 * the new i_size. But that is not done here - it is done in 455 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode. 456 */ 457 jbd_debug(5, "splicing indirect only\n"); 458 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata"); 459 err = ext4_handle_dirty_metadata(handle, ar->inode, where->bh); 460 if (err) 461 goto err_out; 462 } else { 463 /* 464 * OK, we spliced it into the inode itself on a direct block. 465 */ 466 ext4_mark_inode_dirty(handle, ar->inode); 467 jbd_debug(5, "splicing direct\n"); 468 } 469 return err; 470 471 err_out: 472 for (i = 1; i <= num; i++) { 473 /* 474 * branch[i].bh is newly allocated, so there is no 475 * need to revoke the block, which is why we don't 476 * need to set EXT4_FREE_BLOCKS_METADATA. 477 */ 478 ext4_free_blocks(handle, ar->inode, where[i].bh, 0, 1, 479 EXT4_FREE_BLOCKS_FORGET); 480 } 481 ext4_free_blocks(handle, ar->inode, NULL, le32_to_cpu(where[num].key), 482 ar->len, 0); 483 484 return err; 485 } 486 487 /* 488 * The ext4_ind_map_blocks() function handles non-extents inodes 489 * (i.e., using the traditional indirect/double-indirect i_blocks 490 * scheme) for ext4_map_blocks(). 491 * 492 * Allocation strategy is simple: if we have to allocate something, we will 493 * have to go the whole way to leaf. So let's do it before attaching anything 494 * to tree, set linkage between the newborn blocks, write them if sync is 495 * required, recheck the path, free and repeat if check fails, otherwise 496 * set the last missing link (that will protect us from any truncate-generated 497 * removals - all blocks on the path are immune now) and possibly force the 498 * write on the parent block. 499 * That has a nice additional property: no special recovery from the failed 500 * allocations is needed - we simply release blocks and do not touch anything 501 * reachable from inode. 502 * 503 * `handle' can be NULL if create == 0. 504 * 505 * return > 0, # of blocks mapped or allocated. 506 * return = 0, if plain lookup failed. 507 * return < 0, error case. 508 * 509 * The ext4_ind_get_blocks() function should be called with 510 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem 511 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or 512 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system 513 * blocks. 514 */ 515 int ext4_ind_map_blocks(handle_t *handle, struct inode *inode, 516 struct ext4_map_blocks *map, 517 int flags) 518 { 519 struct ext4_allocation_request ar; 520 int err = -EIO; 521 ext4_lblk_t offsets[4]; 522 Indirect chain[4]; 523 Indirect *partial; 524 int indirect_blks; 525 int blocks_to_boundary = 0; 526 int depth; 527 int count = 0; 528 ext4_fsblk_t first_block = 0; 529 530 trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags); 531 J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))); 532 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0); 533 depth = ext4_block_to_path(inode, map->m_lblk, offsets, 534 &blocks_to_boundary); 535 536 if (depth == 0) 537 goto out; 538 539 partial = ext4_get_branch(inode, depth, offsets, chain, &err); 540 541 /* Simplest case - block found, no allocation needed */ 542 if (!partial) { 543 first_block = le32_to_cpu(chain[depth - 1].key); 544 count++; 545 /*map more blocks*/ 546 while (count < map->m_len && count <= blocks_to_boundary) { 547 ext4_fsblk_t blk; 548 549 blk = le32_to_cpu(*(chain[depth-1].p + count)); 550 551 if (blk == first_block + count) 552 count++; 553 else 554 break; 555 } 556 goto got_it; 557 } 558 559 /* Next simple case - plain lookup failed */ 560 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 561 unsigned epb = inode->i_sb->s_blocksize / sizeof(u32); 562 int i; 563 564 /* Count number blocks in a subtree under 'partial' */ 565 count = 1; 566 for (i = 0; partial + i != chain + depth - 1; i++) 567 count *= epb; 568 /* Fill in size of a hole we found */ 569 map->m_pblk = 0; 570 map->m_len = min_t(unsigned int, map->m_len, count); 571 goto cleanup; 572 } 573 574 /* Failed read of indirect block */ 575 if (err == -EIO) 576 goto cleanup; 577 578 /* 579 * Okay, we need to do block allocation. 580 */ 581 if (ext4_has_feature_bigalloc(inode->i_sb)) { 582 EXT4_ERROR_INODE(inode, "Can't allocate blocks for " 583 "non-extent mapped inodes with bigalloc"); 584 return -EFSCORRUPTED; 585 } 586 587 /* Set up for the direct block allocation */ 588 memset(&ar, 0, sizeof(ar)); 589 ar.inode = inode; 590 ar.logical = map->m_lblk; 591 if (S_ISREG(inode->i_mode)) 592 ar.flags = EXT4_MB_HINT_DATA; 593 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 594 ar.flags |= EXT4_MB_DELALLOC_RESERVED; 595 if (flags & EXT4_GET_BLOCKS_METADATA_NOFAIL) 596 ar.flags |= EXT4_MB_USE_RESERVED; 597 598 ar.goal = ext4_find_goal(inode, map->m_lblk, partial); 599 600 /* the number of blocks need to allocate for [d,t]indirect blocks */ 601 indirect_blks = (chain + depth) - partial - 1; 602 603 /* 604 * Next look up the indirect map to count the totoal number of 605 * direct blocks to allocate for this branch. 606 */ 607 ar.len = ext4_blks_to_allocate(partial, indirect_blks, 608 map->m_len, blocks_to_boundary); 609 610 /* 611 * Block out ext4_truncate while we alter the tree 612 */ 613 err = ext4_alloc_branch(handle, &ar, indirect_blks, 614 offsets + (partial - chain), partial); 615 616 /* 617 * The ext4_splice_branch call will free and forget any buffers 618 * on the new chain if there is a failure, but that risks using 619 * up transaction credits, especially for bitmaps where the 620 * credits cannot be returned. Can we handle this somehow? We 621 * may need to return -EAGAIN upwards in the worst case. --sct 622 */ 623 if (!err) 624 err = ext4_splice_branch(handle, &ar, partial, indirect_blks); 625 if (err) 626 goto cleanup; 627 628 map->m_flags |= EXT4_MAP_NEW; 629 630 ext4_update_inode_fsync_trans(handle, inode, 1); 631 count = ar.len; 632 got_it: 633 map->m_flags |= EXT4_MAP_MAPPED; 634 map->m_pblk = le32_to_cpu(chain[depth-1].key); 635 map->m_len = count; 636 if (count > blocks_to_boundary) 637 map->m_flags |= EXT4_MAP_BOUNDARY; 638 err = count; 639 /* Clean up and exit */ 640 partial = chain + depth - 1; /* the whole chain */ 641 cleanup: 642 while (partial > chain) { 643 BUFFER_TRACE(partial->bh, "call brelse"); 644 brelse(partial->bh); 645 partial--; 646 } 647 out: 648 trace_ext4_ind_map_blocks_exit(inode, flags, map, err); 649 return err; 650 } 651 652 /* 653 * Calculate the number of metadata blocks need to reserve 654 * to allocate a new block at @lblocks for non extent file based file 655 */ 656 int ext4_ind_calc_metadata_amount(struct inode *inode, sector_t lblock) 657 { 658 struct ext4_inode_info *ei = EXT4_I(inode); 659 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1); 660 int blk_bits; 661 662 if (lblock < EXT4_NDIR_BLOCKS) 663 return 0; 664 665 lblock -= EXT4_NDIR_BLOCKS; 666 667 if (ei->i_da_metadata_calc_len && 668 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) { 669 ei->i_da_metadata_calc_len++; 670 return 0; 671 } 672 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask; 673 ei->i_da_metadata_calc_len = 1; 674 blk_bits = order_base_2(lblock); 675 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1; 676 } 677 678 /* 679 * Calculate number of indirect blocks touched by mapping @nrblocks logically 680 * contiguous blocks 681 */ 682 int ext4_ind_trans_blocks(struct inode *inode, int nrblocks) 683 { 684 /* 685 * With N contiguous data blocks, we need at most 686 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks, 687 * 2 dindirect blocks, and 1 tindirect block 688 */ 689 return DIV_ROUND_UP(nrblocks, EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4; 690 } 691 692 /* 693 * Truncate transactions can be complex and absolutely huge. So we need to 694 * be able to restart the transaction at a conventient checkpoint to make 695 * sure we don't overflow the journal. 696 * 697 * Try to extend this transaction for the purposes of truncation. If 698 * extend fails, we need to propagate the failure up and restart the 699 * transaction in the top-level truncate loop. --sct 700 * 701 * Returns 0 if we managed to create more room. If we can't create more 702 * room, and the transaction must be restarted we return 1. 703 */ 704 static int try_to_extend_transaction(handle_t *handle, struct inode *inode) 705 { 706 if (!ext4_handle_valid(handle)) 707 return 0; 708 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1)) 709 return 0; 710 if (!ext4_journal_extend(handle, ext4_blocks_for_truncate(inode))) 711 return 0; 712 return 1; 713 } 714 715 /* 716 * Probably it should be a library function... search for first non-zero word 717 * or memcmp with zero_page, whatever is better for particular architecture. 718 * Linus? 719 */ 720 static inline int all_zeroes(__le32 *p, __le32 *q) 721 { 722 while (p < q) 723 if (*p++) 724 return 0; 725 return 1; 726 } 727 728 /** 729 * ext4_find_shared - find the indirect blocks for partial truncation. 730 * @inode: inode in question 731 * @depth: depth of the affected branch 732 * @offsets: offsets of pointers in that branch (see ext4_block_to_path) 733 * @chain: place to store the pointers to partial indirect blocks 734 * @top: place to the (detached) top of branch 735 * 736 * This is a helper function used by ext4_truncate(). 737 * 738 * When we do truncate() we may have to clean the ends of several 739 * indirect blocks but leave the blocks themselves alive. Block is 740 * partially truncated if some data below the new i_size is referred 741 * from it (and it is on the path to the first completely truncated 742 * data block, indeed). We have to free the top of that path along 743 * with everything to the right of the path. Since no allocation 744 * past the truncation point is possible until ext4_truncate() 745 * finishes, we may safely do the latter, but top of branch may 746 * require special attention - pageout below the truncation point 747 * might try to populate it. 748 * 749 * We atomically detach the top of branch from the tree, store the 750 * block number of its root in *@top, pointers to buffer_heads of 751 * partially truncated blocks - in @chain[].bh and pointers to 752 * their last elements that should not be removed - in 753 * @chain[].p. Return value is the pointer to last filled element 754 * of @chain. 755 * 756 * The work left to caller to do the actual freeing of subtrees: 757 * a) free the subtree starting from *@top 758 * b) free the subtrees whose roots are stored in 759 * (@chain[i].p+1 .. end of @chain[i].bh->b_data) 760 * c) free the subtrees growing from the inode past the @chain[0]. 761 * (no partially truncated stuff there). */ 762 763 static Indirect *ext4_find_shared(struct inode *inode, int depth, 764 ext4_lblk_t offsets[4], Indirect chain[4], 765 __le32 *top) 766 { 767 Indirect *partial, *p; 768 int k, err; 769 770 *top = 0; 771 /* Make k index the deepest non-null offset + 1 */ 772 for (k = depth; k > 1 && !offsets[k-1]; k--) 773 ; 774 partial = ext4_get_branch(inode, k, offsets, chain, &err); 775 /* Writer: pointers */ 776 if (!partial) 777 partial = chain + k-1; 778 /* 779 * If the branch acquired continuation since we've looked at it - 780 * fine, it should all survive and (new) top doesn't belong to us. 781 */ 782 if (!partial->key && *partial->p) 783 /* Writer: end */ 784 goto no_top; 785 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--) 786 ; 787 /* 788 * OK, we've found the last block that must survive. The rest of our 789 * branch should be detached before unlocking. However, if that rest 790 * of branch is all ours and does not grow immediately from the inode 791 * it's easier to cheat and just decrement partial->p. 792 */ 793 if (p == chain + k - 1 && p > chain) { 794 p->p--; 795 } else { 796 *top = *p->p; 797 /* Nope, don't do this in ext4. Must leave the tree intact */ 798 #if 0 799 *p->p = 0; 800 #endif 801 } 802 /* Writer: end */ 803 804 while (partial > p) { 805 brelse(partial->bh); 806 partial--; 807 } 808 no_top: 809 return partial; 810 } 811 812 /* 813 * Zero a number of block pointers in either an inode or an indirect block. 814 * If we restart the transaction we must again get write access to the 815 * indirect block for further modification. 816 * 817 * We release `count' blocks on disk, but (last - first) may be greater 818 * than `count' because there can be holes in there. 819 * 820 * Return 0 on success, 1 on invalid block range 821 * and < 0 on fatal error. 822 */ 823 static int ext4_clear_blocks(handle_t *handle, struct inode *inode, 824 struct buffer_head *bh, 825 ext4_fsblk_t block_to_free, 826 unsigned long count, __le32 *first, 827 __le32 *last) 828 { 829 __le32 *p; 830 int flags = EXT4_FREE_BLOCKS_VALIDATED; 831 int err; 832 833 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode) || 834 ext4_test_inode_flag(inode, EXT4_INODE_EA_INODE)) 835 flags |= EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_METADATA; 836 else if (ext4_should_journal_data(inode)) 837 flags |= EXT4_FREE_BLOCKS_FORGET; 838 839 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free, 840 count)) { 841 EXT4_ERROR_INODE(inode, "attempt to clear invalid " 842 "blocks %llu len %lu", 843 (unsigned long long) block_to_free, count); 844 return 1; 845 } 846 847 if (try_to_extend_transaction(handle, inode)) { 848 if (bh) { 849 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 850 err = ext4_handle_dirty_metadata(handle, inode, bh); 851 if (unlikely(err)) 852 goto out_err; 853 } 854 err = ext4_mark_inode_dirty(handle, inode); 855 if (unlikely(err)) 856 goto out_err; 857 err = ext4_truncate_restart_trans(handle, inode, 858 ext4_blocks_for_truncate(inode)); 859 if (unlikely(err)) 860 goto out_err; 861 if (bh) { 862 BUFFER_TRACE(bh, "retaking write access"); 863 err = ext4_journal_get_write_access(handle, bh); 864 if (unlikely(err)) 865 goto out_err; 866 } 867 } 868 869 for (p = first; p < last; p++) 870 *p = 0; 871 872 ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags); 873 return 0; 874 out_err: 875 ext4_std_error(inode->i_sb, err); 876 return err; 877 } 878 879 /** 880 * ext4_free_data - free a list of data blocks 881 * @handle: handle for this transaction 882 * @inode: inode we are dealing with 883 * @this_bh: indirect buffer_head which contains *@first and *@last 884 * @first: array of block numbers 885 * @last: points immediately past the end of array 886 * 887 * We are freeing all blocks referred from that array (numbers are stored as 888 * little-endian 32-bit) and updating @inode->i_blocks appropriately. 889 * 890 * We accumulate contiguous runs of blocks to free. Conveniently, if these 891 * blocks are contiguous then releasing them at one time will only affect one 892 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't 893 * actually use a lot of journal space. 894 * 895 * @this_bh will be %NULL if @first and @last point into the inode's direct 896 * block pointers. 897 */ 898 static void ext4_free_data(handle_t *handle, struct inode *inode, 899 struct buffer_head *this_bh, 900 __le32 *first, __le32 *last) 901 { 902 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */ 903 unsigned long count = 0; /* Number of blocks in the run */ 904 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind 905 corresponding to 906 block_to_free */ 907 ext4_fsblk_t nr; /* Current block # */ 908 __le32 *p; /* Pointer into inode/ind 909 for current block */ 910 int err = 0; 911 912 if (this_bh) { /* For indirect block */ 913 BUFFER_TRACE(this_bh, "get_write_access"); 914 err = ext4_journal_get_write_access(handle, this_bh); 915 /* Important: if we can't update the indirect pointers 916 * to the blocks, we can't free them. */ 917 if (err) 918 return; 919 } 920 921 for (p = first; p < last; p++) { 922 nr = le32_to_cpu(*p); 923 if (nr) { 924 /* accumulate blocks to free if they're contiguous */ 925 if (count == 0) { 926 block_to_free = nr; 927 block_to_free_p = p; 928 count = 1; 929 } else if (nr == block_to_free + count) { 930 count++; 931 } else { 932 err = ext4_clear_blocks(handle, inode, this_bh, 933 block_to_free, count, 934 block_to_free_p, p); 935 if (err) 936 break; 937 block_to_free = nr; 938 block_to_free_p = p; 939 count = 1; 940 } 941 } 942 } 943 944 if (!err && count > 0) 945 err = ext4_clear_blocks(handle, inode, this_bh, block_to_free, 946 count, block_to_free_p, p); 947 if (err < 0) 948 /* fatal error */ 949 return; 950 951 if (this_bh) { 952 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata"); 953 954 /* 955 * The buffer head should have an attached journal head at this 956 * point. However, if the data is corrupted and an indirect 957 * block pointed to itself, it would have been detached when 958 * the block was cleared. Check for this instead of OOPSing. 959 */ 960 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh)) 961 ext4_handle_dirty_metadata(handle, inode, this_bh); 962 else 963 EXT4_ERROR_INODE(inode, 964 "circular indirect block detected at " 965 "block %llu", 966 (unsigned long long) this_bh->b_blocknr); 967 } 968 } 969 970 /** 971 * ext4_free_branches - free an array of branches 972 * @handle: JBD handle for this transaction 973 * @inode: inode we are dealing with 974 * @parent_bh: the buffer_head which contains *@first and *@last 975 * @first: array of block numbers 976 * @last: pointer immediately past the end of array 977 * @depth: depth of the branches to free 978 * 979 * We are freeing all blocks referred from these branches (numbers are 980 * stored as little-endian 32-bit) and updating @inode->i_blocks 981 * appropriately. 982 */ 983 static void ext4_free_branches(handle_t *handle, struct inode *inode, 984 struct buffer_head *parent_bh, 985 __le32 *first, __le32 *last, int depth) 986 { 987 ext4_fsblk_t nr; 988 __le32 *p; 989 990 if (ext4_handle_is_aborted(handle)) 991 return; 992 993 if (depth--) { 994 struct buffer_head *bh; 995 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 996 p = last; 997 while (--p >= first) { 998 nr = le32_to_cpu(*p); 999 if (!nr) 1000 continue; /* A hole */ 1001 1002 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), 1003 nr, 1)) { 1004 EXT4_ERROR_INODE(inode, 1005 "invalid indirect mapped " 1006 "block %lu (level %d)", 1007 (unsigned long) nr, depth); 1008 break; 1009 } 1010 1011 /* Go read the buffer for the next level down */ 1012 bh = sb_bread(inode->i_sb, nr); 1013 1014 /* 1015 * A read failure? Report error and clear slot 1016 * (should be rare). 1017 */ 1018 if (!bh) { 1019 EXT4_ERROR_INODE_BLOCK(inode, nr, 1020 "Read failure"); 1021 continue; 1022 } 1023 1024 /* This zaps the entire block. Bottom up. */ 1025 BUFFER_TRACE(bh, "free child branches"); 1026 ext4_free_branches(handle, inode, bh, 1027 (__le32 *) bh->b_data, 1028 (__le32 *) bh->b_data + addr_per_block, 1029 depth); 1030 brelse(bh); 1031 1032 /* 1033 * Everything below this this pointer has been 1034 * released. Now let this top-of-subtree go. 1035 * 1036 * We want the freeing of this indirect block to be 1037 * atomic in the journal with the updating of the 1038 * bitmap block which owns it. So make some room in 1039 * the journal. 1040 * 1041 * We zero the parent pointer *after* freeing its 1042 * pointee in the bitmaps, so if extend_transaction() 1043 * for some reason fails to put the bitmap changes and 1044 * the release into the same transaction, recovery 1045 * will merely complain about releasing a free block, 1046 * rather than leaking blocks. 1047 */ 1048 if (ext4_handle_is_aborted(handle)) 1049 return; 1050 if (try_to_extend_transaction(handle, inode)) { 1051 ext4_mark_inode_dirty(handle, inode); 1052 ext4_truncate_restart_trans(handle, inode, 1053 ext4_blocks_for_truncate(inode)); 1054 } 1055 1056 /* 1057 * The forget flag here is critical because if 1058 * we are journaling (and not doing data 1059 * journaling), we have to make sure a revoke 1060 * record is written to prevent the journal 1061 * replay from overwriting the (former) 1062 * indirect block if it gets reallocated as a 1063 * data block. This must happen in the same 1064 * transaction where the data blocks are 1065 * actually freed. 1066 */ 1067 ext4_free_blocks(handle, inode, NULL, nr, 1, 1068 EXT4_FREE_BLOCKS_METADATA| 1069 EXT4_FREE_BLOCKS_FORGET); 1070 1071 if (parent_bh) { 1072 /* 1073 * The block which we have just freed is 1074 * pointed to by an indirect block: journal it 1075 */ 1076 BUFFER_TRACE(parent_bh, "get_write_access"); 1077 if (!ext4_journal_get_write_access(handle, 1078 parent_bh)){ 1079 *p = 0; 1080 BUFFER_TRACE(parent_bh, 1081 "call ext4_handle_dirty_metadata"); 1082 ext4_handle_dirty_metadata(handle, 1083 inode, 1084 parent_bh); 1085 } 1086 } 1087 } 1088 } else { 1089 /* We have reached the bottom of the tree. */ 1090 BUFFER_TRACE(parent_bh, "free data blocks"); 1091 ext4_free_data(handle, inode, parent_bh, first, last); 1092 } 1093 } 1094 1095 void ext4_ind_truncate(handle_t *handle, struct inode *inode) 1096 { 1097 struct ext4_inode_info *ei = EXT4_I(inode); 1098 __le32 *i_data = ei->i_data; 1099 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 1100 ext4_lblk_t offsets[4]; 1101 Indirect chain[4]; 1102 Indirect *partial; 1103 __le32 nr = 0; 1104 int n = 0; 1105 ext4_lblk_t last_block, max_block; 1106 unsigned blocksize = inode->i_sb->s_blocksize; 1107 1108 last_block = (inode->i_size + blocksize-1) 1109 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 1110 max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1) 1111 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 1112 1113 if (last_block != max_block) { 1114 n = ext4_block_to_path(inode, last_block, offsets, NULL); 1115 if (n == 0) 1116 return; 1117 } 1118 1119 ext4_es_remove_extent(inode, last_block, EXT_MAX_BLOCKS - last_block); 1120 1121 /* 1122 * The orphan list entry will now protect us from any crash which 1123 * occurs before the truncate completes, so it is now safe to propagate 1124 * the new, shorter inode size (held for now in i_size) into the 1125 * on-disk inode. We do this via i_disksize, which is the value which 1126 * ext4 *really* writes onto the disk inode. 1127 */ 1128 ei->i_disksize = inode->i_size; 1129 1130 if (last_block == max_block) { 1131 /* 1132 * It is unnecessary to free any data blocks if last_block is 1133 * equal to the indirect block limit. 1134 */ 1135 return; 1136 } else if (n == 1) { /* direct blocks */ 1137 ext4_free_data(handle, inode, NULL, i_data+offsets[0], 1138 i_data + EXT4_NDIR_BLOCKS); 1139 goto do_indirects; 1140 } 1141 1142 partial = ext4_find_shared(inode, n, offsets, chain, &nr); 1143 /* Kill the top of shared branch (not detached) */ 1144 if (nr) { 1145 if (partial == chain) { 1146 /* Shared branch grows from the inode */ 1147 ext4_free_branches(handle, inode, NULL, 1148 &nr, &nr+1, (chain+n-1) - partial); 1149 *partial->p = 0; 1150 /* 1151 * We mark the inode dirty prior to restart, 1152 * and prior to stop. No need for it here. 1153 */ 1154 } else { 1155 /* Shared branch grows from an indirect block */ 1156 BUFFER_TRACE(partial->bh, "get_write_access"); 1157 ext4_free_branches(handle, inode, partial->bh, 1158 partial->p, 1159 partial->p+1, (chain+n-1) - partial); 1160 } 1161 } 1162 /* Clear the ends of indirect blocks on the shared branch */ 1163 while (partial > chain) { 1164 ext4_free_branches(handle, inode, partial->bh, partial->p + 1, 1165 (__le32*)partial->bh->b_data+addr_per_block, 1166 (chain+n-1) - partial); 1167 BUFFER_TRACE(partial->bh, "call brelse"); 1168 brelse(partial->bh); 1169 partial--; 1170 } 1171 do_indirects: 1172 /* Kill the remaining (whole) subtrees */ 1173 switch (offsets[0]) { 1174 default: 1175 nr = i_data[EXT4_IND_BLOCK]; 1176 if (nr) { 1177 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1); 1178 i_data[EXT4_IND_BLOCK] = 0; 1179 } 1180 case EXT4_IND_BLOCK: 1181 nr = i_data[EXT4_DIND_BLOCK]; 1182 if (nr) { 1183 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2); 1184 i_data[EXT4_DIND_BLOCK] = 0; 1185 } 1186 case EXT4_DIND_BLOCK: 1187 nr = i_data[EXT4_TIND_BLOCK]; 1188 if (nr) { 1189 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3); 1190 i_data[EXT4_TIND_BLOCK] = 0; 1191 } 1192 case EXT4_TIND_BLOCK: 1193 ; 1194 } 1195 } 1196 1197 /** 1198 * ext4_ind_remove_space - remove space from the range 1199 * @handle: JBD handle for this transaction 1200 * @inode: inode we are dealing with 1201 * @start: First block to remove 1202 * @end: One block after the last block to remove (exclusive) 1203 * 1204 * Free the blocks in the defined range (end is exclusive endpoint of 1205 * range). This is used by ext4_punch_hole(). 1206 */ 1207 int ext4_ind_remove_space(handle_t *handle, struct inode *inode, 1208 ext4_lblk_t start, ext4_lblk_t end) 1209 { 1210 struct ext4_inode_info *ei = EXT4_I(inode); 1211 __le32 *i_data = ei->i_data; 1212 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 1213 ext4_lblk_t offsets[4], offsets2[4]; 1214 Indirect chain[4], chain2[4]; 1215 Indirect *partial, *partial2; 1216 ext4_lblk_t max_block; 1217 __le32 nr = 0, nr2 = 0; 1218 int n = 0, n2 = 0; 1219 unsigned blocksize = inode->i_sb->s_blocksize; 1220 1221 max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1) 1222 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 1223 if (end >= max_block) 1224 end = max_block; 1225 if ((start >= end) || (start > max_block)) 1226 return 0; 1227 1228 n = ext4_block_to_path(inode, start, offsets, NULL); 1229 n2 = ext4_block_to_path(inode, end, offsets2, NULL); 1230 1231 BUG_ON(n > n2); 1232 1233 if ((n == 1) && (n == n2)) { 1234 /* We're punching only within direct block range */ 1235 ext4_free_data(handle, inode, NULL, i_data + offsets[0], 1236 i_data + offsets2[0]); 1237 return 0; 1238 } else if (n2 > n) { 1239 /* 1240 * Start and end are on a different levels so we're going to 1241 * free partial block at start, and partial block at end of 1242 * the range. If there are some levels in between then 1243 * do_indirects label will take care of that. 1244 */ 1245 1246 if (n == 1) { 1247 /* 1248 * Start is at the direct block level, free 1249 * everything to the end of the level. 1250 */ 1251 ext4_free_data(handle, inode, NULL, i_data + offsets[0], 1252 i_data + EXT4_NDIR_BLOCKS); 1253 goto end_range; 1254 } 1255 1256 1257 partial = ext4_find_shared(inode, n, offsets, chain, &nr); 1258 if (nr) { 1259 if (partial == chain) { 1260 /* Shared branch grows from the inode */ 1261 ext4_free_branches(handle, inode, NULL, 1262 &nr, &nr+1, (chain+n-1) - partial); 1263 *partial->p = 0; 1264 } else { 1265 /* Shared branch grows from an indirect block */ 1266 BUFFER_TRACE(partial->bh, "get_write_access"); 1267 ext4_free_branches(handle, inode, partial->bh, 1268 partial->p, 1269 partial->p+1, (chain+n-1) - partial); 1270 } 1271 } 1272 1273 /* 1274 * Clear the ends of indirect blocks on the shared branch 1275 * at the start of the range 1276 */ 1277 while (partial > chain) { 1278 ext4_free_branches(handle, inode, partial->bh, 1279 partial->p + 1, 1280 (__le32 *)partial->bh->b_data+addr_per_block, 1281 (chain+n-1) - partial); 1282 BUFFER_TRACE(partial->bh, "call brelse"); 1283 brelse(partial->bh); 1284 partial--; 1285 } 1286 1287 end_range: 1288 partial2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2); 1289 if (nr2) { 1290 if (partial2 == chain2) { 1291 /* 1292 * Remember, end is exclusive so here we're at 1293 * the start of the next level we're not going 1294 * to free. Everything was covered by the start 1295 * of the range. 1296 */ 1297 goto do_indirects; 1298 } 1299 } else { 1300 /* 1301 * ext4_find_shared returns Indirect structure which 1302 * points to the last element which should not be 1303 * removed by truncate. But this is end of the range 1304 * in punch_hole so we need to point to the next element 1305 */ 1306 partial2->p++; 1307 } 1308 1309 /* 1310 * Clear the ends of indirect blocks on the shared branch 1311 * at the end of the range 1312 */ 1313 while (partial2 > chain2) { 1314 ext4_free_branches(handle, inode, partial2->bh, 1315 (__le32 *)partial2->bh->b_data, 1316 partial2->p, 1317 (chain2+n2-1) - partial2); 1318 BUFFER_TRACE(partial2->bh, "call brelse"); 1319 brelse(partial2->bh); 1320 partial2--; 1321 } 1322 goto do_indirects; 1323 } 1324 1325 /* Punch happened within the same level (n == n2) */ 1326 partial = ext4_find_shared(inode, n, offsets, chain, &nr); 1327 partial2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2); 1328 1329 /* Free top, but only if partial2 isn't its subtree. */ 1330 if (nr) { 1331 int level = min(partial - chain, partial2 - chain2); 1332 int i; 1333 int subtree = 1; 1334 1335 for (i = 0; i <= level; i++) { 1336 if (offsets[i] != offsets2[i]) { 1337 subtree = 0; 1338 break; 1339 } 1340 } 1341 1342 if (!subtree) { 1343 if (partial == chain) { 1344 /* Shared branch grows from the inode */ 1345 ext4_free_branches(handle, inode, NULL, 1346 &nr, &nr+1, 1347 (chain+n-1) - partial); 1348 *partial->p = 0; 1349 } else { 1350 /* Shared branch grows from an indirect block */ 1351 BUFFER_TRACE(partial->bh, "get_write_access"); 1352 ext4_free_branches(handle, inode, partial->bh, 1353 partial->p, 1354 partial->p+1, 1355 (chain+n-1) - partial); 1356 } 1357 } 1358 } 1359 1360 if (!nr2) { 1361 /* 1362 * ext4_find_shared returns Indirect structure which 1363 * points to the last element which should not be 1364 * removed by truncate. But this is end of the range 1365 * in punch_hole so we need to point to the next element 1366 */ 1367 partial2->p++; 1368 } 1369 1370 while (partial > chain || partial2 > chain2) { 1371 int depth = (chain+n-1) - partial; 1372 int depth2 = (chain2+n2-1) - partial2; 1373 1374 if (partial > chain && partial2 > chain2 && 1375 partial->bh->b_blocknr == partial2->bh->b_blocknr) { 1376 /* 1377 * We've converged on the same block. Clear the range, 1378 * then we're done. 1379 */ 1380 ext4_free_branches(handle, inode, partial->bh, 1381 partial->p + 1, 1382 partial2->p, 1383 (chain+n-1) - partial); 1384 BUFFER_TRACE(partial->bh, "call brelse"); 1385 brelse(partial->bh); 1386 BUFFER_TRACE(partial2->bh, "call brelse"); 1387 brelse(partial2->bh); 1388 return 0; 1389 } 1390 1391 /* 1392 * The start and end partial branches may not be at the same 1393 * level even though the punch happened within one level. So, we 1394 * give them a chance to arrive at the same level, then walk 1395 * them in step with each other until we converge on the same 1396 * block. 1397 */ 1398 if (partial > chain && depth <= depth2) { 1399 ext4_free_branches(handle, inode, partial->bh, 1400 partial->p + 1, 1401 (__le32 *)partial->bh->b_data+addr_per_block, 1402 (chain+n-1) - partial); 1403 BUFFER_TRACE(partial->bh, "call brelse"); 1404 brelse(partial->bh); 1405 partial--; 1406 } 1407 if (partial2 > chain2 && depth2 <= depth) { 1408 ext4_free_branches(handle, inode, partial2->bh, 1409 (__le32 *)partial2->bh->b_data, 1410 partial2->p, 1411 (chain2+n2-1) - partial2); 1412 BUFFER_TRACE(partial2->bh, "call brelse"); 1413 brelse(partial2->bh); 1414 partial2--; 1415 } 1416 } 1417 return 0; 1418 1419 do_indirects: 1420 /* Kill the remaining (whole) subtrees */ 1421 switch (offsets[0]) { 1422 default: 1423 if (++n >= n2) 1424 return 0; 1425 nr = i_data[EXT4_IND_BLOCK]; 1426 if (nr) { 1427 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1); 1428 i_data[EXT4_IND_BLOCK] = 0; 1429 } 1430 case EXT4_IND_BLOCK: 1431 if (++n >= n2) 1432 return 0; 1433 nr = i_data[EXT4_DIND_BLOCK]; 1434 if (nr) { 1435 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2); 1436 i_data[EXT4_DIND_BLOCK] = 0; 1437 } 1438 case EXT4_DIND_BLOCK: 1439 if (++n >= n2) 1440 return 0; 1441 nr = i_data[EXT4_TIND_BLOCK]; 1442 if (nr) { 1443 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3); 1444 i_data[EXT4_TIND_BLOCK] = 0; 1445 } 1446 case EXT4_TIND_BLOCK: 1447 ; 1448 } 1449 return 0; 1450 } 1451