1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/indirect.c 4 * 5 * from 6 * 7 * linux/fs/ext4/inode.c 8 * 9 * Copyright (C) 1992, 1993, 1994, 1995 10 * Remy Card (card@masi.ibp.fr) 11 * Laboratoire MASI - Institut Blaise Pascal 12 * Universite Pierre et Marie Curie (Paris VI) 13 * 14 * from 15 * 16 * linux/fs/minix/inode.c 17 * 18 * Copyright (C) 1991, 1992 Linus Torvalds 19 * 20 * Goal-directed block allocation by Stephen Tweedie 21 * (sct@redhat.com), 1993, 1998 22 */ 23 24 #include "ext4_jbd2.h" 25 #include "truncate.h" 26 #include <linux/dax.h> 27 #include <linux/uio.h> 28 29 #include <trace/events/ext4.h> 30 31 typedef struct { 32 __le32 *p; 33 __le32 key; 34 struct buffer_head *bh; 35 } Indirect; 36 37 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v) 38 { 39 p->key = *(p->p = v); 40 p->bh = bh; 41 } 42 43 /** 44 * ext4_block_to_path - parse the block number into array of offsets 45 * @inode: inode in question (we are only interested in its superblock) 46 * @i_block: block number to be parsed 47 * @offsets: array to store the offsets in 48 * @boundary: set this non-zero if the referred-to block is likely to be 49 * followed (on disk) by an indirect block. 50 * 51 * To store the locations of file's data ext4 uses a data structure common 52 * for UNIX filesystems - tree of pointers anchored in the inode, with 53 * data blocks at leaves and indirect blocks in intermediate nodes. 54 * This function translates the block number into path in that tree - 55 * return value is the path length and @offsets[n] is the offset of 56 * pointer to (n+1)th node in the nth one. If @block is out of range 57 * (negative or too large) warning is printed and zero returned. 58 * 59 * Note: function doesn't find node addresses, so no IO is needed. All 60 * we need to know is the capacity of indirect blocks (taken from the 61 * inode->i_sb). 62 */ 63 64 /* 65 * Portability note: the last comparison (check that we fit into triple 66 * indirect block) is spelled differently, because otherwise on an 67 * architecture with 32-bit longs and 8Kb pages we might get into trouble 68 * if our filesystem had 8Kb blocks. We might use long long, but that would 69 * kill us on x86. Oh, well, at least the sign propagation does not matter - 70 * i_block would have to be negative in the very beginning, so we would not 71 * get there at all. 72 */ 73 74 static int ext4_block_to_path(struct inode *inode, 75 ext4_lblk_t i_block, 76 ext4_lblk_t offsets[4], int *boundary) 77 { 78 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb); 79 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb); 80 const long direct_blocks = EXT4_NDIR_BLOCKS, 81 indirect_blocks = ptrs, 82 double_blocks = (1 << (ptrs_bits * 2)); 83 int n = 0; 84 int final = 0; 85 86 if (i_block < direct_blocks) { 87 offsets[n++] = i_block; 88 final = direct_blocks; 89 } else if ((i_block -= direct_blocks) < indirect_blocks) { 90 offsets[n++] = EXT4_IND_BLOCK; 91 offsets[n++] = i_block; 92 final = ptrs; 93 } else if ((i_block -= indirect_blocks) < double_blocks) { 94 offsets[n++] = EXT4_DIND_BLOCK; 95 offsets[n++] = i_block >> ptrs_bits; 96 offsets[n++] = i_block & (ptrs - 1); 97 final = ptrs; 98 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { 99 offsets[n++] = EXT4_TIND_BLOCK; 100 offsets[n++] = i_block >> (ptrs_bits * 2); 101 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); 102 offsets[n++] = i_block & (ptrs - 1); 103 final = ptrs; 104 } else { 105 ext4_warning(inode->i_sb, "block %lu > max in inode %lu", 106 i_block + direct_blocks + 107 indirect_blocks + double_blocks, inode->i_ino); 108 } 109 if (boundary) 110 *boundary = final - 1 - (i_block & (ptrs - 1)); 111 return n; 112 } 113 114 /** 115 * ext4_get_branch - read the chain of indirect blocks leading to data 116 * @inode: inode in question 117 * @depth: depth of the chain (1 - direct pointer, etc.) 118 * @offsets: offsets of pointers in inode/indirect blocks 119 * @chain: place to store the result 120 * @err: here we store the error value 121 * 122 * Function fills the array of triples <key, p, bh> and returns %NULL 123 * if everything went OK or the pointer to the last filled triple 124 * (incomplete one) otherwise. Upon the return chain[i].key contains 125 * the number of (i+1)-th block in the chain (as it is stored in memory, 126 * i.e. little-endian 32-bit), chain[i].p contains the address of that 127 * number (it points into struct inode for i==0 and into the bh->b_data 128 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect 129 * block for i>0 and NULL for i==0. In other words, it holds the block 130 * numbers of the chain, addresses they were taken from (and where we can 131 * verify that chain did not change) and buffer_heads hosting these 132 * numbers. 133 * 134 * Function stops when it stumbles upon zero pointer (absent block) 135 * (pointer to last triple returned, *@err == 0) 136 * or when it gets an IO error reading an indirect block 137 * (ditto, *@err == -EIO) 138 * or when it reads all @depth-1 indirect blocks successfully and finds 139 * the whole chain, all way to the data (returns %NULL, *err == 0). 140 * 141 * Need to be called with 142 * down_read(&EXT4_I(inode)->i_data_sem) 143 */ 144 static Indirect *ext4_get_branch(struct inode *inode, int depth, 145 ext4_lblk_t *offsets, 146 Indirect chain[4], int *err) 147 { 148 struct super_block *sb = inode->i_sb; 149 Indirect *p = chain; 150 struct buffer_head *bh; 151 int ret = -EIO; 152 153 *err = 0; 154 /* i_data is not going away, no lock needed */ 155 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets); 156 if (!p->key) 157 goto no_block; 158 while (--depth) { 159 bh = sb_getblk(sb, le32_to_cpu(p->key)); 160 if (unlikely(!bh)) { 161 ret = -ENOMEM; 162 goto failure; 163 } 164 165 if (!bh_uptodate_or_lock(bh)) { 166 if (bh_submit_read(bh) < 0) { 167 put_bh(bh); 168 goto failure; 169 } 170 /* validate block references */ 171 if (ext4_check_indirect_blockref(inode, bh)) { 172 put_bh(bh); 173 goto failure; 174 } 175 } 176 177 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets); 178 /* Reader: end */ 179 if (!p->key) 180 goto no_block; 181 } 182 return NULL; 183 184 failure: 185 *err = ret; 186 no_block: 187 return p; 188 } 189 190 /** 191 * ext4_find_near - find a place for allocation with sufficient locality 192 * @inode: owner 193 * @ind: descriptor of indirect block. 194 * 195 * This function returns the preferred place for block allocation. 196 * It is used when heuristic for sequential allocation fails. 197 * Rules are: 198 * + if there is a block to the left of our position - allocate near it. 199 * + if pointer will live in indirect block - allocate near that block. 200 * + if pointer will live in inode - allocate in the same 201 * cylinder group. 202 * 203 * In the latter case we colour the starting block by the callers PID to 204 * prevent it from clashing with concurrent allocations for a different inode 205 * in the same block group. The PID is used here so that functionally related 206 * files will be close-by on-disk. 207 * 208 * Caller must make sure that @ind is valid and will stay that way. 209 */ 210 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind) 211 { 212 struct ext4_inode_info *ei = EXT4_I(inode); 213 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data; 214 __le32 *p; 215 216 /* Try to find previous block */ 217 for (p = ind->p - 1; p >= start; p--) { 218 if (*p) 219 return le32_to_cpu(*p); 220 } 221 222 /* No such thing, so let's try location of indirect block */ 223 if (ind->bh) 224 return ind->bh->b_blocknr; 225 226 /* 227 * It is going to be referred to from the inode itself? OK, just put it 228 * into the same cylinder group then. 229 */ 230 return ext4_inode_to_goal_block(inode); 231 } 232 233 /** 234 * ext4_find_goal - find a preferred place for allocation. 235 * @inode: owner 236 * @block: block we want 237 * @partial: pointer to the last triple within a chain 238 * 239 * Normally this function find the preferred place for block allocation, 240 * returns it. 241 * Because this is only used for non-extent files, we limit the block nr 242 * to 32 bits. 243 */ 244 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block, 245 Indirect *partial) 246 { 247 ext4_fsblk_t goal; 248 249 /* 250 * XXX need to get goal block from mballoc's data structures 251 */ 252 253 goal = ext4_find_near(inode, partial); 254 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS; 255 return goal; 256 } 257 258 /** 259 * ext4_blks_to_allocate - Look up the block map and count the number 260 * of direct blocks need to be allocated for the given branch. 261 * 262 * @branch: chain of indirect blocks 263 * @k: number of blocks need for indirect blocks 264 * @blks: number of data blocks to be mapped. 265 * @blocks_to_boundary: the offset in the indirect block 266 * 267 * return the total number of blocks to be allocate, including the 268 * direct and indirect blocks. 269 */ 270 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks, 271 int blocks_to_boundary) 272 { 273 unsigned int count = 0; 274 275 /* 276 * Simple case, [t,d]Indirect block(s) has not allocated yet 277 * then it's clear blocks on that path have not allocated 278 */ 279 if (k > 0) { 280 /* right now we don't handle cross boundary allocation */ 281 if (blks < blocks_to_boundary + 1) 282 count += blks; 283 else 284 count += blocks_to_boundary + 1; 285 return count; 286 } 287 288 count++; 289 while (count < blks && count <= blocks_to_boundary && 290 le32_to_cpu(*(branch[0].p + count)) == 0) { 291 count++; 292 } 293 return count; 294 } 295 296 /** 297 * ext4_alloc_branch - allocate and set up a chain of blocks. 298 * @handle: handle for this transaction 299 * @inode: owner 300 * @indirect_blks: number of allocated indirect blocks 301 * @blks: number of allocated direct blocks 302 * @goal: preferred place for allocation 303 * @offsets: offsets (in the blocks) to store the pointers to next. 304 * @branch: place to store the chain in. 305 * 306 * This function allocates blocks, zeroes out all but the last one, 307 * links them into chain and (if we are synchronous) writes them to disk. 308 * In other words, it prepares a branch that can be spliced onto the 309 * inode. It stores the information about that chain in the branch[], in 310 * the same format as ext4_get_branch() would do. We are calling it after 311 * we had read the existing part of chain and partial points to the last 312 * triple of that (one with zero ->key). Upon the exit we have the same 313 * picture as after the successful ext4_get_block(), except that in one 314 * place chain is disconnected - *branch->p is still zero (we did not 315 * set the last link), but branch->key contains the number that should 316 * be placed into *branch->p to fill that gap. 317 * 318 * If allocation fails we free all blocks we've allocated (and forget 319 * their buffer_heads) and return the error value the from failed 320 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain 321 * as described above and return 0. 322 */ 323 static int ext4_alloc_branch(handle_t *handle, 324 struct ext4_allocation_request *ar, 325 int indirect_blks, ext4_lblk_t *offsets, 326 Indirect *branch) 327 { 328 struct buffer_head * bh; 329 ext4_fsblk_t b, new_blocks[4]; 330 __le32 *p; 331 int i, j, err, len = 1; 332 333 for (i = 0; i <= indirect_blks; i++) { 334 if (i == indirect_blks) { 335 new_blocks[i] = ext4_mb_new_blocks(handle, ar, &err); 336 } else 337 ar->goal = new_blocks[i] = ext4_new_meta_blocks(handle, 338 ar->inode, ar->goal, 339 ar->flags & EXT4_MB_DELALLOC_RESERVED, 340 NULL, &err); 341 if (err) { 342 i--; 343 goto failed; 344 } 345 branch[i].key = cpu_to_le32(new_blocks[i]); 346 if (i == 0) 347 continue; 348 349 bh = branch[i].bh = sb_getblk(ar->inode->i_sb, new_blocks[i-1]); 350 if (unlikely(!bh)) { 351 err = -ENOMEM; 352 goto failed; 353 } 354 lock_buffer(bh); 355 BUFFER_TRACE(bh, "call get_create_access"); 356 err = ext4_journal_get_create_access(handle, bh); 357 if (err) { 358 unlock_buffer(bh); 359 goto failed; 360 } 361 362 memset(bh->b_data, 0, bh->b_size); 363 p = branch[i].p = (__le32 *) bh->b_data + offsets[i]; 364 b = new_blocks[i]; 365 366 if (i == indirect_blks) 367 len = ar->len; 368 for (j = 0; j < len; j++) 369 *p++ = cpu_to_le32(b++); 370 371 BUFFER_TRACE(bh, "marking uptodate"); 372 set_buffer_uptodate(bh); 373 unlock_buffer(bh); 374 375 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 376 err = ext4_handle_dirty_metadata(handle, ar->inode, bh); 377 if (err) 378 goto failed; 379 } 380 return 0; 381 failed: 382 for (; i >= 0; i--) { 383 /* 384 * We want to ext4_forget() only freshly allocated indirect 385 * blocks. Buffer for new_blocks[i-1] is at branch[i].bh and 386 * buffer at branch[0].bh is indirect block / inode already 387 * existing before ext4_alloc_branch() was called. 388 */ 389 if (i > 0 && i != indirect_blks && branch[i].bh) 390 ext4_forget(handle, 1, ar->inode, branch[i].bh, 391 branch[i].bh->b_blocknr); 392 ext4_free_blocks(handle, ar->inode, NULL, new_blocks[i], 393 (i == indirect_blks) ? ar->len : 1, 0); 394 } 395 return err; 396 } 397 398 /** 399 * ext4_splice_branch - splice the allocated branch onto inode. 400 * @handle: handle for this transaction 401 * @inode: owner 402 * @block: (logical) number of block we are adding 403 * @chain: chain of indirect blocks (with a missing link - see 404 * ext4_alloc_branch) 405 * @where: location of missing link 406 * @num: number of indirect blocks we are adding 407 * @blks: number of direct blocks we are adding 408 * 409 * This function fills the missing link and does all housekeeping needed in 410 * inode (->i_blocks, etc.). In case of success we end up with the full 411 * chain to new block and return 0. 412 */ 413 static int ext4_splice_branch(handle_t *handle, 414 struct ext4_allocation_request *ar, 415 Indirect *where, int num) 416 { 417 int i; 418 int err = 0; 419 ext4_fsblk_t current_block; 420 421 /* 422 * If we're splicing into a [td]indirect block (as opposed to the 423 * inode) then we need to get write access to the [td]indirect block 424 * before the splice. 425 */ 426 if (where->bh) { 427 BUFFER_TRACE(where->bh, "get_write_access"); 428 err = ext4_journal_get_write_access(handle, where->bh); 429 if (err) 430 goto err_out; 431 } 432 /* That's it */ 433 434 *where->p = where->key; 435 436 /* 437 * Update the host buffer_head or inode to point to more just allocated 438 * direct blocks blocks 439 */ 440 if (num == 0 && ar->len > 1) { 441 current_block = le32_to_cpu(where->key) + 1; 442 for (i = 1; i < ar->len; i++) 443 *(where->p + i) = cpu_to_le32(current_block++); 444 } 445 446 /* We are done with atomic stuff, now do the rest of housekeeping */ 447 /* had we spliced it onto indirect block? */ 448 if (where->bh) { 449 /* 450 * If we spliced it onto an indirect block, we haven't 451 * altered the inode. Note however that if it is being spliced 452 * onto an indirect block at the very end of the file (the 453 * file is growing) then we *will* alter the inode to reflect 454 * the new i_size. But that is not done here - it is done in 455 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode. 456 */ 457 jbd_debug(5, "splicing indirect only\n"); 458 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata"); 459 err = ext4_handle_dirty_metadata(handle, ar->inode, where->bh); 460 if (err) 461 goto err_out; 462 } else { 463 /* 464 * OK, we spliced it into the inode itself on a direct block. 465 */ 466 ext4_mark_inode_dirty(handle, ar->inode); 467 jbd_debug(5, "splicing direct\n"); 468 } 469 return err; 470 471 err_out: 472 for (i = 1; i <= num; i++) { 473 /* 474 * branch[i].bh is newly allocated, so there is no 475 * need to revoke the block, which is why we don't 476 * need to set EXT4_FREE_BLOCKS_METADATA. 477 */ 478 ext4_free_blocks(handle, ar->inode, where[i].bh, 0, 1, 479 EXT4_FREE_BLOCKS_FORGET); 480 } 481 ext4_free_blocks(handle, ar->inode, NULL, le32_to_cpu(where[num].key), 482 ar->len, 0); 483 484 return err; 485 } 486 487 /* 488 * The ext4_ind_map_blocks() function handles non-extents inodes 489 * (i.e., using the traditional indirect/double-indirect i_blocks 490 * scheme) for ext4_map_blocks(). 491 * 492 * Allocation strategy is simple: if we have to allocate something, we will 493 * have to go the whole way to leaf. So let's do it before attaching anything 494 * to tree, set linkage between the newborn blocks, write them if sync is 495 * required, recheck the path, free and repeat if check fails, otherwise 496 * set the last missing link (that will protect us from any truncate-generated 497 * removals - all blocks on the path are immune now) and possibly force the 498 * write on the parent block. 499 * That has a nice additional property: no special recovery from the failed 500 * allocations is needed - we simply release blocks and do not touch anything 501 * reachable from inode. 502 * 503 * `handle' can be NULL if create == 0. 504 * 505 * return > 0, # of blocks mapped or allocated. 506 * return = 0, if plain lookup failed. 507 * return < 0, error case. 508 * 509 * The ext4_ind_get_blocks() function should be called with 510 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem 511 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or 512 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system 513 * blocks. 514 */ 515 int ext4_ind_map_blocks(handle_t *handle, struct inode *inode, 516 struct ext4_map_blocks *map, 517 int flags) 518 { 519 struct ext4_allocation_request ar; 520 int err = -EIO; 521 ext4_lblk_t offsets[4]; 522 Indirect chain[4]; 523 Indirect *partial; 524 int indirect_blks; 525 int blocks_to_boundary = 0; 526 int depth; 527 int count = 0; 528 ext4_fsblk_t first_block = 0; 529 530 trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags); 531 J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))); 532 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0); 533 depth = ext4_block_to_path(inode, map->m_lblk, offsets, 534 &blocks_to_boundary); 535 536 if (depth == 0) 537 goto out; 538 539 partial = ext4_get_branch(inode, depth, offsets, chain, &err); 540 541 /* Simplest case - block found, no allocation needed */ 542 if (!partial) { 543 first_block = le32_to_cpu(chain[depth - 1].key); 544 count++; 545 /*map more blocks*/ 546 while (count < map->m_len && count <= blocks_to_boundary) { 547 ext4_fsblk_t blk; 548 549 blk = le32_to_cpu(*(chain[depth-1].p + count)); 550 551 if (blk == first_block + count) 552 count++; 553 else 554 break; 555 } 556 goto got_it; 557 } 558 559 /* Next simple case - plain lookup failed */ 560 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 561 unsigned epb = inode->i_sb->s_blocksize / sizeof(u32); 562 int i; 563 564 /* 565 * Count number blocks in a subtree under 'partial'. At each 566 * level we count number of complete empty subtrees beyond 567 * current offset and then descend into the subtree only 568 * partially beyond current offset. 569 */ 570 count = 0; 571 for (i = partial - chain + 1; i < depth; i++) 572 count = count * epb + (epb - offsets[i] - 1); 573 count++; 574 /* Fill in size of a hole we found */ 575 map->m_pblk = 0; 576 map->m_len = min_t(unsigned int, map->m_len, count); 577 goto cleanup; 578 } 579 580 /* Failed read of indirect block */ 581 if (err == -EIO) 582 goto cleanup; 583 584 /* 585 * Okay, we need to do block allocation. 586 */ 587 if (ext4_has_feature_bigalloc(inode->i_sb)) { 588 EXT4_ERROR_INODE(inode, "Can't allocate blocks for " 589 "non-extent mapped inodes with bigalloc"); 590 return -EFSCORRUPTED; 591 } 592 593 /* Set up for the direct block allocation */ 594 memset(&ar, 0, sizeof(ar)); 595 ar.inode = inode; 596 ar.logical = map->m_lblk; 597 if (S_ISREG(inode->i_mode)) 598 ar.flags = EXT4_MB_HINT_DATA; 599 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 600 ar.flags |= EXT4_MB_DELALLOC_RESERVED; 601 if (flags & EXT4_GET_BLOCKS_METADATA_NOFAIL) 602 ar.flags |= EXT4_MB_USE_RESERVED; 603 604 ar.goal = ext4_find_goal(inode, map->m_lblk, partial); 605 606 /* the number of blocks need to allocate for [d,t]indirect blocks */ 607 indirect_blks = (chain + depth) - partial - 1; 608 609 /* 610 * Next look up the indirect map to count the totoal number of 611 * direct blocks to allocate for this branch. 612 */ 613 ar.len = ext4_blks_to_allocate(partial, indirect_blks, 614 map->m_len, blocks_to_boundary); 615 616 /* 617 * Block out ext4_truncate while we alter the tree 618 */ 619 err = ext4_alloc_branch(handle, &ar, indirect_blks, 620 offsets + (partial - chain), partial); 621 622 /* 623 * The ext4_splice_branch call will free and forget any buffers 624 * on the new chain if there is a failure, but that risks using 625 * up transaction credits, especially for bitmaps where the 626 * credits cannot be returned. Can we handle this somehow? We 627 * may need to return -EAGAIN upwards in the worst case. --sct 628 */ 629 if (!err) 630 err = ext4_splice_branch(handle, &ar, partial, indirect_blks); 631 if (err) 632 goto cleanup; 633 634 map->m_flags |= EXT4_MAP_NEW; 635 636 ext4_update_inode_fsync_trans(handle, inode, 1); 637 count = ar.len; 638 got_it: 639 map->m_flags |= EXT4_MAP_MAPPED; 640 map->m_pblk = le32_to_cpu(chain[depth-1].key); 641 map->m_len = count; 642 if (count > blocks_to_boundary) 643 map->m_flags |= EXT4_MAP_BOUNDARY; 644 err = count; 645 /* Clean up and exit */ 646 partial = chain + depth - 1; /* the whole chain */ 647 cleanup: 648 while (partial > chain) { 649 BUFFER_TRACE(partial->bh, "call brelse"); 650 brelse(partial->bh); 651 partial--; 652 } 653 out: 654 trace_ext4_ind_map_blocks_exit(inode, flags, map, err); 655 return err; 656 } 657 658 /* 659 * Calculate the number of metadata blocks need to reserve 660 * to allocate a new block at @lblocks for non extent file based file 661 */ 662 int ext4_ind_calc_metadata_amount(struct inode *inode, sector_t lblock) 663 { 664 struct ext4_inode_info *ei = EXT4_I(inode); 665 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1); 666 int blk_bits; 667 668 if (lblock < EXT4_NDIR_BLOCKS) 669 return 0; 670 671 lblock -= EXT4_NDIR_BLOCKS; 672 673 if (ei->i_da_metadata_calc_len && 674 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) { 675 ei->i_da_metadata_calc_len++; 676 return 0; 677 } 678 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask; 679 ei->i_da_metadata_calc_len = 1; 680 blk_bits = order_base_2(lblock); 681 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1; 682 } 683 684 /* 685 * Calculate number of indirect blocks touched by mapping @nrblocks logically 686 * contiguous blocks 687 */ 688 int ext4_ind_trans_blocks(struct inode *inode, int nrblocks) 689 { 690 /* 691 * With N contiguous data blocks, we need at most 692 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks, 693 * 2 dindirect blocks, and 1 tindirect block 694 */ 695 return DIV_ROUND_UP(nrblocks, EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4; 696 } 697 698 /* 699 * Truncate transactions can be complex and absolutely huge. So we need to 700 * be able to restart the transaction at a conventient checkpoint to make 701 * sure we don't overflow the journal. 702 * 703 * Try to extend this transaction for the purposes of truncation. If 704 * extend fails, we need to propagate the failure up and restart the 705 * transaction in the top-level truncate loop. --sct 706 * 707 * Returns 0 if we managed to create more room. If we can't create more 708 * room, and the transaction must be restarted we return 1. 709 */ 710 static int try_to_extend_transaction(handle_t *handle, struct inode *inode) 711 { 712 if (!ext4_handle_valid(handle)) 713 return 0; 714 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1)) 715 return 0; 716 if (!ext4_journal_extend(handle, ext4_blocks_for_truncate(inode))) 717 return 0; 718 return 1; 719 } 720 721 /* 722 * Probably it should be a library function... search for first non-zero word 723 * or memcmp with zero_page, whatever is better for particular architecture. 724 * Linus? 725 */ 726 static inline int all_zeroes(__le32 *p, __le32 *q) 727 { 728 while (p < q) 729 if (*p++) 730 return 0; 731 return 1; 732 } 733 734 /** 735 * ext4_find_shared - find the indirect blocks for partial truncation. 736 * @inode: inode in question 737 * @depth: depth of the affected branch 738 * @offsets: offsets of pointers in that branch (see ext4_block_to_path) 739 * @chain: place to store the pointers to partial indirect blocks 740 * @top: place to the (detached) top of branch 741 * 742 * This is a helper function used by ext4_truncate(). 743 * 744 * When we do truncate() we may have to clean the ends of several 745 * indirect blocks but leave the blocks themselves alive. Block is 746 * partially truncated if some data below the new i_size is referred 747 * from it (and it is on the path to the first completely truncated 748 * data block, indeed). We have to free the top of that path along 749 * with everything to the right of the path. Since no allocation 750 * past the truncation point is possible until ext4_truncate() 751 * finishes, we may safely do the latter, but top of branch may 752 * require special attention - pageout below the truncation point 753 * might try to populate it. 754 * 755 * We atomically detach the top of branch from the tree, store the 756 * block number of its root in *@top, pointers to buffer_heads of 757 * partially truncated blocks - in @chain[].bh and pointers to 758 * their last elements that should not be removed - in 759 * @chain[].p. Return value is the pointer to last filled element 760 * of @chain. 761 * 762 * The work left to caller to do the actual freeing of subtrees: 763 * a) free the subtree starting from *@top 764 * b) free the subtrees whose roots are stored in 765 * (@chain[i].p+1 .. end of @chain[i].bh->b_data) 766 * c) free the subtrees growing from the inode past the @chain[0]. 767 * (no partially truncated stuff there). */ 768 769 static Indirect *ext4_find_shared(struct inode *inode, int depth, 770 ext4_lblk_t offsets[4], Indirect chain[4], 771 __le32 *top) 772 { 773 Indirect *partial, *p; 774 int k, err; 775 776 *top = 0; 777 /* Make k index the deepest non-null offset + 1 */ 778 for (k = depth; k > 1 && !offsets[k-1]; k--) 779 ; 780 partial = ext4_get_branch(inode, k, offsets, chain, &err); 781 /* Writer: pointers */ 782 if (!partial) 783 partial = chain + k-1; 784 /* 785 * If the branch acquired continuation since we've looked at it - 786 * fine, it should all survive and (new) top doesn't belong to us. 787 */ 788 if (!partial->key && *partial->p) 789 /* Writer: end */ 790 goto no_top; 791 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--) 792 ; 793 /* 794 * OK, we've found the last block that must survive. The rest of our 795 * branch should be detached before unlocking. However, if that rest 796 * of branch is all ours and does not grow immediately from the inode 797 * it's easier to cheat and just decrement partial->p. 798 */ 799 if (p == chain + k - 1 && p > chain) { 800 p->p--; 801 } else { 802 *top = *p->p; 803 /* Nope, don't do this in ext4. Must leave the tree intact */ 804 #if 0 805 *p->p = 0; 806 #endif 807 } 808 /* Writer: end */ 809 810 while (partial > p) { 811 brelse(partial->bh); 812 partial--; 813 } 814 no_top: 815 return partial; 816 } 817 818 /* 819 * Zero a number of block pointers in either an inode or an indirect block. 820 * If we restart the transaction we must again get write access to the 821 * indirect block for further modification. 822 * 823 * We release `count' blocks on disk, but (last - first) may be greater 824 * than `count' because there can be holes in there. 825 * 826 * Return 0 on success, 1 on invalid block range 827 * and < 0 on fatal error. 828 */ 829 static int ext4_clear_blocks(handle_t *handle, struct inode *inode, 830 struct buffer_head *bh, 831 ext4_fsblk_t block_to_free, 832 unsigned long count, __le32 *first, 833 __le32 *last) 834 { 835 __le32 *p; 836 int flags = EXT4_FREE_BLOCKS_VALIDATED; 837 int err; 838 839 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode) || 840 ext4_test_inode_flag(inode, EXT4_INODE_EA_INODE)) 841 flags |= EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_METADATA; 842 else if (ext4_should_journal_data(inode)) 843 flags |= EXT4_FREE_BLOCKS_FORGET; 844 845 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free, 846 count)) { 847 EXT4_ERROR_INODE(inode, "attempt to clear invalid " 848 "blocks %llu len %lu", 849 (unsigned long long) block_to_free, count); 850 return 1; 851 } 852 853 if (try_to_extend_transaction(handle, inode)) { 854 if (bh) { 855 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 856 err = ext4_handle_dirty_metadata(handle, inode, bh); 857 if (unlikely(err)) 858 goto out_err; 859 } 860 err = ext4_mark_inode_dirty(handle, inode); 861 if (unlikely(err)) 862 goto out_err; 863 err = ext4_truncate_restart_trans(handle, inode, 864 ext4_blocks_for_truncate(inode)); 865 if (unlikely(err)) 866 goto out_err; 867 if (bh) { 868 BUFFER_TRACE(bh, "retaking write access"); 869 err = ext4_journal_get_write_access(handle, bh); 870 if (unlikely(err)) 871 goto out_err; 872 } 873 } 874 875 for (p = first; p < last; p++) 876 *p = 0; 877 878 ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags); 879 return 0; 880 out_err: 881 ext4_std_error(inode->i_sb, err); 882 return err; 883 } 884 885 /** 886 * ext4_free_data - free a list of data blocks 887 * @handle: handle for this transaction 888 * @inode: inode we are dealing with 889 * @this_bh: indirect buffer_head which contains *@first and *@last 890 * @first: array of block numbers 891 * @last: points immediately past the end of array 892 * 893 * We are freeing all blocks referred from that array (numbers are stored as 894 * little-endian 32-bit) and updating @inode->i_blocks appropriately. 895 * 896 * We accumulate contiguous runs of blocks to free. Conveniently, if these 897 * blocks are contiguous then releasing them at one time will only affect one 898 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't 899 * actually use a lot of journal space. 900 * 901 * @this_bh will be %NULL if @first and @last point into the inode's direct 902 * block pointers. 903 */ 904 static void ext4_free_data(handle_t *handle, struct inode *inode, 905 struct buffer_head *this_bh, 906 __le32 *first, __le32 *last) 907 { 908 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */ 909 unsigned long count = 0; /* Number of blocks in the run */ 910 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind 911 corresponding to 912 block_to_free */ 913 ext4_fsblk_t nr; /* Current block # */ 914 __le32 *p; /* Pointer into inode/ind 915 for current block */ 916 int err = 0; 917 918 if (this_bh) { /* For indirect block */ 919 BUFFER_TRACE(this_bh, "get_write_access"); 920 err = ext4_journal_get_write_access(handle, this_bh); 921 /* Important: if we can't update the indirect pointers 922 * to the blocks, we can't free them. */ 923 if (err) 924 return; 925 } 926 927 for (p = first; p < last; p++) { 928 nr = le32_to_cpu(*p); 929 if (nr) { 930 /* accumulate blocks to free if they're contiguous */ 931 if (count == 0) { 932 block_to_free = nr; 933 block_to_free_p = p; 934 count = 1; 935 } else if (nr == block_to_free + count) { 936 count++; 937 } else { 938 err = ext4_clear_blocks(handle, inode, this_bh, 939 block_to_free, count, 940 block_to_free_p, p); 941 if (err) 942 break; 943 block_to_free = nr; 944 block_to_free_p = p; 945 count = 1; 946 } 947 } 948 } 949 950 if (!err && count > 0) 951 err = ext4_clear_blocks(handle, inode, this_bh, block_to_free, 952 count, block_to_free_p, p); 953 if (err < 0) 954 /* fatal error */ 955 return; 956 957 if (this_bh) { 958 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata"); 959 960 /* 961 * The buffer head should have an attached journal head at this 962 * point. However, if the data is corrupted and an indirect 963 * block pointed to itself, it would have been detached when 964 * the block was cleared. Check for this instead of OOPSing. 965 */ 966 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh)) 967 ext4_handle_dirty_metadata(handle, inode, this_bh); 968 else 969 EXT4_ERROR_INODE(inode, 970 "circular indirect block detected at " 971 "block %llu", 972 (unsigned long long) this_bh->b_blocknr); 973 } 974 } 975 976 /** 977 * ext4_free_branches - free an array of branches 978 * @handle: JBD handle for this transaction 979 * @inode: inode we are dealing with 980 * @parent_bh: the buffer_head which contains *@first and *@last 981 * @first: array of block numbers 982 * @last: pointer immediately past the end of array 983 * @depth: depth of the branches to free 984 * 985 * We are freeing all blocks referred from these branches (numbers are 986 * stored as little-endian 32-bit) and updating @inode->i_blocks 987 * appropriately. 988 */ 989 static void ext4_free_branches(handle_t *handle, struct inode *inode, 990 struct buffer_head *parent_bh, 991 __le32 *first, __le32 *last, int depth) 992 { 993 ext4_fsblk_t nr; 994 __le32 *p; 995 996 if (ext4_handle_is_aborted(handle)) 997 return; 998 999 if (depth--) { 1000 struct buffer_head *bh; 1001 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 1002 p = last; 1003 while (--p >= first) { 1004 nr = le32_to_cpu(*p); 1005 if (!nr) 1006 continue; /* A hole */ 1007 1008 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), 1009 nr, 1)) { 1010 EXT4_ERROR_INODE(inode, 1011 "invalid indirect mapped " 1012 "block %lu (level %d)", 1013 (unsigned long) nr, depth); 1014 break; 1015 } 1016 1017 /* Go read the buffer for the next level down */ 1018 bh = sb_bread(inode->i_sb, nr); 1019 1020 /* 1021 * A read failure? Report error and clear slot 1022 * (should be rare). 1023 */ 1024 if (!bh) { 1025 EXT4_ERROR_INODE_BLOCK(inode, nr, 1026 "Read failure"); 1027 continue; 1028 } 1029 1030 /* This zaps the entire block. Bottom up. */ 1031 BUFFER_TRACE(bh, "free child branches"); 1032 ext4_free_branches(handle, inode, bh, 1033 (__le32 *) bh->b_data, 1034 (__le32 *) bh->b_data + addr_per_block, 1035 depth); 1036 brelse(bh); 1037 1038 /* 1039 * Everything below this this pointer has been 1040 * released. Now let this top-of-subtree go. 1041 * 1042 * We want the freeing of this indirect block to be 1043 * atomic in the journal with the updating of the 1044 * bitmap block which owns it. So make some room in 1045 * the journal. 1046 * 1047 * We zero the parent pointer *after* freeing its 1048 * pointee in the bitmaps, so if extend_transaction() 1049 * for some reason fails to put the bitmap changes and 1050 * the release into the same transaction, recovery 1051 * will merely complain about releasing a free block, 1052 * rather than leaking blocks. 1053 */ 1054 if (ext4_handle_is_aborted(handle)) 1055 return; 1056 if (try_to_extend_transaction(handle, inode)) { 1057 ext4_mark_inode_dirty(handle, inode); 1058 ext4_truncate_restart_trans(handle, inode, 1059 ext4_blocks_for_truncate(inode)); 1060 } 1061 1062 /* 1063 * The forget flag here is critical because if 1064 * we are journaling (and not doing data 1065 * journaling), we have to make sure a revoke 1066 * record is written to prevent the journal 1067 * replay from overwriting the (former) 1068 * indirect block if it gets reallocated as a 1069 * data block. This must happen in the same 1070 * transaction where the data blocks are 1071 * actually freed. 1072 */ 1073 ext4_free_blocks(handle, inode, NULL, nr, 1, 1074 EXT4_FREE_BLOCKS_METADATA| 1075 EXT4_FREE_BLOCKS_FORGET); 1076 1077 if (parent_bh) { 1078 /* 1079 * The block which we have just freed is 1080 * pointed to by an indirect block: journal it 1081 */ 1082 BUFFER_TRACE(parent_bh, "get_write_access"); 1083 if (!ext4_journal_get_write_access(handle, 1084 parent_bh)){ 1085 *p = 0; 1086 BUFFER_TRACE(parent_bh, 1087 "call ext4_handle_dirty_metadata"); 1088 ext4_handle_dirty_metadata(handle, 1089 inode, 1090 parent_bh); 1091 } 1092 } 1093 } 1094 } else { 1095 /* We have reached the bottom of the tree. */ 1096 BUFFER_TRACE(parent_bh, "free data blocks"); 1097 ext4_free_data(handle, inode, parent_bh, first, last); 1098 } 1099 } 1100 1101 void ext4_ind_truncate(handle_t *handle, struct inode *inode) 1102 { 1103 struct ext4_inode_info *ei = EXT4_I(inode); 1104 __le32 *i_data = ei->i_data; 1105 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 1106 ext4_lblk_t offsets[4]; 1107 Indirect chain[4]; 1108 Indirect *partial; 1109 __le32 nr = 0; 1110 int n = 0; 1111 ext4_lblk_t last_block, max_block; 1112 unsigned blocksize = inode->i_sb->s_blocksize; 1113 1114 last_block = (inode->i_size + blocksize-1) 1115 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 1116 max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1) 1117 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 1118 1119 if (last_block != max_block) { 1120 n = ext4_block_to_path(inode, last_block, offsets, NULL); 1121 if (n == 0) 1122 return; 1123 } 1124 1125 ext4_es_remove_extent(inode, last_block, EXT_MAX_BLOCKS - last_block); 1126 1127 /* 1128 * The orphan list entry will now protect us from any crash which 1129 * occurs before the truncate completes, so it is now safe to propagate 1130 * the new, shorter inode size (held for now in i_size) into the 1131 * on-disk inode. We do this via i_disksize, which is the value which 1132 * ext4 *really* writes onto the disk inode. 1133 */ 1134 ei->i_disksize = inode->i_size; 1135 1136 if (last_block == max_block) { 1137 /* 1138 * It is unnecessary to free any data blocks if last_block is 1139 * equal to the indirect block limit. 1140 */ 1141 return; 1142 } else if (n == 1) { /* direct blocks */ 1143 ext4_free_data(handle, inode, NULL, i_data+offsets[0], 1144 i_data + EXT4_NDIR_BLOCKS); 1145 goto do_indirects; 1146 } 1147 1148 partial = ext4_find_shared(inode, n, offsets, chain, &nr); 1149 /* Kill the top of shared branch (not detached) */ 1150 if (nr) { 1151 if (partial == chain) { 1152 /* Shared branch grows from the inode */ 1153 ext4_free_branches(handle, inode, NULL, 1154 &nr, &nr+1, (chain+n-1) - partial); 1155 *partial->p = 0; 1156 /* 1157 * We mark the inode dirty prior to restart, 1158 * and prior to stop. No need for it here. 1159 */ 1160 } else { 1161 /* Shared branch grows from an indirect block */ 1162 BUFFER_TRACE(partial->bh, "get_write_access"); 1163 ext4_free_branches(handle, inode, partial->bh, 1164 partial->p, 1165 partial->p+1, (chain+n-1) - partial); 1166 } 1167 } 1168 /* Clear the ends of indirect blocks on the shared branch */ 1169 while (partial > chain) { 1170 ext4_free_branches(handle, inode, partial->bh, partial->p + 1, 1171 (__le32*)partial->bh->b_data+addr_per_block, 1172 (chain+n-1) - partial); 1173 BUFFER_TRACE(partial->bh, "call brelse"); 1174 brelse(partial->bh); 1175 partial--; 1176 } 1177 do_indirects: 1178 /* Kill the remaining (whole) subtrees */ 1179 switch (offsets[0]) { 1180 default: 1181 nr = i_data[EXT4_IND_BLOCK]; 1182 if (nr) { 1183 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1); 1184 i_data[EXT4_IND_BLOCK] = 0; 1185 } 1186 case EXT4_IND_BLOCK: 1187 nr = i_data[EXT4_DIND_BLOCK]; 1188 if (nr) { 1189 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2); 1190 i_data[EXT4_DIND_BLOCK] = 0; 1191 } 1192 case EXT4_DIND_BLOCK: 1193 nr = i_data[EXT4_TIND_BLOCK]; 1194 if (nr) { 1195 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3); 1196 i_data[EXT4_TIND_BLOCK] = 0; 1197 } 1198 case EXT4_TIND_BLOCK: 1199 ; 1200 } 1201 } 1202 1203 /** 1204 * ext4_ind_remove_space - remove space from the range 1205 * @handle: JBD handle for this transaction 1206 * @inode: inode we are dealing with 1207 * @start: First block to remove 1208 * @end: One block after the last block to remove (exclusive) 1209 * 1210 * Free the blocks in the defined range (end is exclusive endpoint of 1211 * range). This is used by ext4_punch_hole(). 1212 */ 1213 int ext4_ind_remove_space(handle_t *handle, struct inode *inode, 1214 ext4_lblk_t start, ext4_lblk_t end) 1215 { 1216 struct ext4_inode_info *ei = EXT4_I(inode); 1217 __le32 *i_data = ei->i_data; 1218 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 1219 ext4_lblk_t offsets[4], offsets2[4]; 1220 Indirect chain[4], chain2[4]; 1221 Indirect *partial, *partial2; 1222 ext4_lblk_t max_block; 1223 __le32 nr = 0, nr2 = 0; 1224 int n = 0, n2 = 0; 1225 unsigned blocksize = inode->i_sb->s_blocksize; 1226 1227 max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1) 1228 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 1229 if (end >= max_block) 1230 end = max_block; 1231 if ((start >= end) || (start > max_block)) 1232 return 0; 1233 1234 n = ext4_block_to_path(inode, start, offsets, NULL); 1235 n2 = ext4_block_to_path(inode, end, offsets2, NULL); 1236 1237 BUG_ON(n > n2); 1238 1239 if ((n == 1) && (n == n2)) { 1240 /* We're punching only within direct block range */ 1241 ext4_free_data(handle, inode, NULL, i_data + offsets[0], 1242 i_data + offsets2[0]); 1243 return 0; 1244 } else if (n2 > n) { 1245 /* 1246 * Start and end are on a different levels so we're going to 1247 * free partial block at start, and partial block at end of 1248 * the range. If there are some levels in between then 1249 * do_indirects label will take care of that. 1250 */ 1251 1252 if (n == 1) { 1253 /* 1254 * Start is at the direct block level, free 1255 * everything to the end of the level. 1256 */ 1257 ext4_free_data(handle, inode, NULL, i_data + offsets[0], 1258 i_data + EXT4_NDIR_BLOCKS); 1259 goto end_range; 1260 } 1261 1262 1263 partial = ext4_find_shared(inode, n, offsets, chain, &nr); 1264 if (nr) { 1265 if (partial == chain) { 1266 /* Shared branch grows from the inode */ 1267 ext4_free_branches(handle, inode, NULL, 1268 &nr, &nr+1, (chain+n-1) - partial); 1269 *partial->p = 0; 1270 } else { 1271 /* Shared branch grows from an indirect block */ 1272 BUFFER_TRACE(partial->bh, "get_write_access"); 1273 ext4_free_branches(handle, inode, partial->bh, 1274 partial->p, 1275 partial->p+1, (chain+n-1) - partial); 1276 } 1277 } 1278 1279 /* 1280 * Clear the ends of indirect blocks on the shared branch 1281 * at the start of the range 1282 */ 1283 while (partial > chain) { 1284 ext4_free_branches(handle, inode, partial->bh, 1285 partial->p + 1, 1286 (__le32 *)partial->bh->b_data+addr_per_block, 1287 (chain+n-1) - partial); 1288 BUFFER_TRACE(partial->bh, "call brelse"); 1289 brelse(partial->bh); 1290 partial--; 1291 } 1292 1293 end_range: 1294 partial2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2); 1295 if (nr2) { 1296 if (partial2 == chain2) { 1297 /* 1298 * Remember, end is exclusive so here we're at 1299 * the start of the next level we're not going 1300 * to free. Everything was covered by the start 1301 * of the range. 1302 */ 1303 goto do_indirects; 1304 } 1305 } else { 1306 /* 1307 * ext4_find_shared returns Indirect structure which 1308 * points to the last element which should not be 1309 * removed by truncate. But this is end of the range 1310 * in punch_hole so we need to point to the next element 1311 */ 1312 partial2->p++; 1313 } 1314 1315 /* 1316 * Clear the ends of indirect blocks on the shared branch 1317 * at the end of the range 1318 */ 1319 while (partial2 > chain2) { 1320 ext4_free_branches(handle, inode, partial2->bh, 1321 (__le32 *)partial2->bh->b_data, 1322 partial2->p, 1323 (chain2+n2-1) - partial2); 1324 BUFFER_TRACE(partial2->bh, "call brelse"); 1325 brelse(partial2->bh); 1326 partial2--; 1327 } 1328 goto do_indirects; 1329 } 1330 1331 /* Punch happened within the same level (n == n2) */ 1332 partial = ext4_find_shared(inode, n, offsets, chain, &nr); 1333 partial2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2); 1334 1335 /* Free top, but only if partial2 isn't its subtree. */ 1336 if (nr) { 1337 int level = min(partial - chain, partial2 - chain2); 1338 int i; 1339 int subtree = 1; 1340 1341 for (i = 0; i <= level; i++) { 1342 if (offsets[i] != offsets2[i]) { 1343 subtree = 0; 1344 break; 1345 } 1346 } 1347 1348 if (!subtree) { 1349 if (partial == chain) { 1350 /* Shared branch grows from the inode */ 1351 ext4_free_branches(handle, inode, NULL, 1352 &nr, &nr+1, 1353 (chain+n-1) - partial); 1354 *partial->p = 0; 1355 } else { 1356 /* Shared branch grows from an indirect block */ 1357 BUFFER_TRACE(partial->bh, "get_write_access"); 1358 ext4_free_branches(handle, inode, partial->bh, 1359 partial->p, 1360 partial->p+1, 1361 (chain+n-1) - partial); 1362 } 1363 } 1364 } 1365 1366 if (!nr2) { 1367 /* 1368 * ext4_find_shared returns Indirect structure which 1369 * points to the last element which should not be 1370 * removed by truncate. But this is end of the range 1371 * in punch_hole so we need to point to the next element 1372 */ 1373 partial2->p++; 1374 } 1375 1376 while (partial > chain || partial2 > chain2) { 1377 int depth = (chain+n-1) - partial; 1378 int depth2 = (chain2+n2-1) - partial2; 1379 1380 if (partial > chain && partial2 > chain2 && 1381 partial->bh->b_blocknr == partial2->bh->b_blocknr) { 1382 /* 1383 * We've converged on the same block. Clear the range, 1384 * then we're done. 1385 */ 1386 ext4_free_branches(handle, inode, partial->bh, 1387 partial->p + 1, 1388 partial2->p, 1389 (chain+n-1) - partial); 1390 BUFFER_TRACE(partial->bh, "call brelse"); 1391 brelse(partial->bh); 1392 BUFFER_TRACE(partial2->bh, "call brelse"); 1393 brelse(partial2->bh); 1394 return 0; 1395 } 1396 1397 /* 1398 * The start and end partial branches may not be at the same 1399 * level even though the punch happened within one level. So, we 1400 * give them a chance to arrive at the same level, then walk 1401 * them in step with each other until we converge on the same 1402 * block. 1403 */ 1404 if (partial > chain && depth <= depth2) { 1405 ext4_free_branches(handle, inode, partial->bh, 1406 partial->p + 1, 1407 (__le32 *)partial->bh->b_data+addr_per_block, 1408 (chain+n-1) - partial); 1409 BUFFER_TRACE(partial->bh, "call brelse"); 1410 brelse(partial->bh); 1411 partial--; 1412 } 1413 if (partial2 > chain2 && depth2 <= depth) { 1414 ext4_free_branches(handle, inode, partial2->bh, 1415 (__le32 *)partial2->bh->b_data, 1416 partial2->p, 1417 (chain2+n2-1) - partial2); 1418 BUFFER_TRACE(partial2->bh, "call brelse"); 1419 brelse(partial2->bh); 1420 partial2--; 1421 } 1422 } 1423 return 0; 1424 1425 do_indirects: 1426 /* Kill the remaining (whole) subtrees */ 1427 switch (offsets[0]) { 1428 default: 1429 if (++n >= n2) 1430 return 0; 1431 nr = i_data[EXT4_IND_BLOCK]; 1432 if (nr) { 1433 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1); 1434 i_data[EXT4_IND_BLOCK] = 0; 1435 } 1436 case EXT4_IND_BLOCK: 1437 if (++n >= n2) 1438 return 0; 1439 nr = i_data[EXT4_DIND_BLOCK]; 1440 if (nr) { 1441 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2); 1442 i_data[EXT4_DIND_BLOCK] = 0; 1443 } 1444 case EXT4_DIND_BLOCK: 1445 if (++n >= n2) 1446 return 0; 1447 nr = i_data[EXT4_TIND_BLOCK]; 1448 if (nr) { 1449 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3); 1450 i_data[EXT4_TIND_BLOCK] = 0; 1451 } 1452 case EXT4_TIND_BLOCK: 1453 ; 1454 } 1455 return 0; 1456 } 1457