1 /* 2 * linux/fs/ext4/indirect.c 3 * 4 * from 5 * 6 * linux/fs/ext4/inode.c 7 * 8 * Copyright (C) 1992, 1993, 1994, 1995 9 * Remy Card (card@masi.ibp.fr) 10 * Laboratoire MASI - Institut Blaise Pascal 11 * Universite Pierre et Marie Curie (Paris VI) 12 * 13 * from 14 * 15 * linux/fs/minix/inode.c 16 * 17 * Copyright (C) 1991, 1992 Linus Torvalds 18 * 19 * Goal-directed block allocation by Stephen Tweedie 20 * (sct@redhat.com), 1993, 1998 21 */ 22 23 #include <linux/module.h> 24 #include "ext4_jbd2.h" 25 #include "truncate.h" 26 27 #include <trace/events/ext4.h> 28 29 typedef struct { 30 __le32 *p; 31 __le32 key; 32 struct buffer_head *bh; 33 } Indirect; 34 35 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v) 36 { 37 p->key = *(p->p = v); 38 p->bh = bh; 39 } 40 41 /** 42 * ext4_block_to_path - parse the block number into array of offsets 43 * @inode: inode in question (we are only interested in its superblock) 44 * @i_block: block number to be parsed 45 * @offsets: array to store the offsets in 46 * @boundary: set this non-zero if the referred-to block is likely to be 47 * followed (on disk) by an indirect block. 48 * 49 * To store the locations of file's data ext4 uses a data structure common 50 * for UNIX filesystems - tree of pointers anchored in the inode, with 51 * data blocks at leaves and indirect blocks in intermediate nodes. 52 * This function translates the block number into path in that tree - 53 * return value is the path length and @offsets[n] is the offset of 54 * pointer to (n+1)th node in the nth one. If @block is out of range 55 * (negative or too large) warning is printed and zero returned. 56 * 57 * Note: function doesn't find node addresses, so no IO is needed. All 58 * we need to know is the capacity of indirect blocks (taken from the 59 * inode->i_sb). 60 */ 61 62 /* 63 * Portability note: the last comparison (check that we fit into triple 64 * indirect block) is spelled differently, because otherwise on an 65 * architecture with 32-bit longs and 8Kb pages we might get into trouble 66 * if our filesystem had 8Kb blocks. We might use long long, but that would 67 * kill us on x86. Oh, well, at least the sign propagation does not matter - 68 * i_block would have to be negative in the very beginning, so we would not 69 * get there at all. 70 */ 71 72 static int ext4_block_to_path(struct inode *inode, 73 ext4_lblk_t i_block, 74 ext4_lblk_t offsets[4], int *boundary) 75 { 76 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb); 77 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb); 78 const long direct_blocks = EXT4_NDIR_BLOCKS, 79 indirect_blocks = ptrs, 80 double_blocks = (1 << (ptrs_bits * 2)); 81 int n = 0; 82 int final = 0; 83 84 if (i_block < direct_blocks) { 85 offsets[n++] = i_block; 86 final = direct_blocks; 87 } else if ((i_block -= direct_blocks) < indirect_blocks) { 88 offsets[n++] = EXT4_IND_BLOCK; 89 offsets[n++] = i_block; 90 final = ptrs; 91 } else if ((i_block -= indirect_blocks) < double_blocks) { 92 offsets[n++] = EXT4_DIND_BLOCK; 93 offsets[n++] = i_block >> ptrs_bits; 94 offsets[n++] = i_block & (ptrs - 1); 95 final = ptrs; 96 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { 97 offsets[n++] = EXT4_TIND_BLOCK; 98 offsets[n++] = i_block >> (ptrs_bits * 2); 99 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); 100 offsets[n++] = i_block & (ptrs - 1); 101 final = ptrs; 102 } else { 103 ext4_warning(inode->i_sb, "block %lu > max in inode %lu", 104 i_block + direct_blocks + 105 indirect_blocks + double_blocks, inode->i_ino); 106 } 107 if (boundary) 108 *boundary = final - 1 - (i_block & (ptrs - 1)); 109 return n; 110 } 111 112 /** 113 * ext4_get_branch - read the chain of indirect blocks leading to data 114 * @inode: inode in question 115 * @depth: depth of the chain (1 - direct pointer, etc.) 116 * @offsets: offsets of pointers in inode/indirect blocks 117 * @chain: place to store the result 118 * @err: here we store the error value 119 * 120 * Function fills the array of triples <key, p, bh> and returns %NULL 121 * if everything went OK or the pointer to the last filled triple 122 * (incomplete one) otherwise. Upon the return chain[i].key contains 123 * the number of (i+1)-th block in the chain (as it is stored in memory, 124 * i.e. little-endian 32-bit), chain[i].p contains the address of that 125 * number (it points into struct inode for i==0 and into the bh->b_data 126 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect 127 * block for i>0 and NULL for i==0. In other words, it holds the block 128 * numbers of the chain, addresses they were taken from (and where we can 129 * verify that chain did not change) and buffer_heads hosting these 130 * numbers. 131 * 132 * Function stops when it stumbles upon zero pointer (absent block) 133 * (pointer to last triple returned, *@err == 0) 134 * or when it gets an IO error reading an indirect block 135 * (ditto, *@err == -EIO) 136 * or when it reads all @depth-1 indirect blocks successfully and finds 137 * the whole chain, all way to the data (returns %NULL, *err == 0). 138 * 139 * Need to be called with 140 * down_read(&EXT4_I(inode)->i_data_sem) 141 */ 142 static Indirect *ext4_get_branch(struct inode *inode, int depth, 143 ext4_lblk_t *offsets, 144 Indirect chain[4], int *err) 145 { 146 struct super_block *sb = inode->i_sb; 147 Indirect *p = chain; 148 struct buffer_head *bh; 149 150 *err = 0; 151 /* i_data is not going away, no lock needed */ 152 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets); 153 if (!p->key) 154 goto no_block; 155 while (--depth) { 156 bh = sb_getblk(sb, le32_to_cpu(p->key)); 157 if (unlikely(!bh)) 158 goto failure; 159 160 if (!bh_uptodate_or_lock(bh)) { 161 if (bh_submit_read(bh) < 0) { 162 put_bh(bh); 163 goto failure; 164 } 165 /* validate block references */ 166 if (ext4_check_indirect_blockref(inode, bh)) { 167 put_bh(bh); 168 goto failure; 169 } 170 } 171 172 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets); 173 /* Reader: end */ 174 if (!p->key) 175 goto no_block; 176 } 177 return NULL; 178 179 failure: 180 *err = -EIO; 181 no_block: 182 return p; 183 } 184 185 /** 186 * ext4_find_near - find a place for allocation with sufficient locality 187 * @inode: owner 188 * @ind: descriptor of indirect block. 189 * 190 * This function returns the preferred place for block allocation. 191 * It is used when heuristic for sequential allocation fails. 192 * Rules are: 193 * + if there is a block to the left of our position - allocate near it. 194 * + if pointer will live in indirect block - allocate near that block. 195 * + if pointer will live in inode - allocate in the same 196 * cylinder group. 197 * 198 * In the latter case we colour the starting block by the callers PID to 199 * prevent it from clashing with concurrent allocations for a different inode 200 * in the same block group. The PID is used here so that functionally related 201 * files will be close-by on-disk. 202 * 203 * Caller must make sure that @ind is valid and will stay that way. 204 */ 205 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind) 206 { 207 struct ext4_inode_info *ei = EXT4_I(inode); 208 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data; 209 __le32 *p; 210 211 /* Try to find previous block */ 212 for (p = ind->p - 1; p >= start; p--) { 213 if (*p) 214 return le32_to_cpu(*p); 215 } 216 217 /* No such thing, so let's try location of indirect block */ 218 if (ind->bh) 219 return ind->bh->b_blocknr; 220 221 /* 222 * It is going to be referred to from the inode itself? OK, just put it 223 * into the same cylinder group then. 224 */ 225 return ext4_inode_to_goal_block(inode); 226 } 227 228 /** 229 * ext4_find_goal - find a preferred place for allocation. 230 * @inode: owner 231 * @block: block we want 232 * @partial: pointer to the last triple within a chain 233 * 234 * Normally this function find the preferred place for block allocation, 235 * returns it. 236 * Because this is only used for non-extent files, we limit the block nr 237 * to 32 bits. 238 */ 239 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block, 240 Indirect *partial) 241 { 242 ext4_fsblk_t goal; 243 244 /* 245 * XXX need to get goal block from mballoc's data structures 246 */ 247 248 goal = ext4_find_near(inode, partial); 249 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS; 250 return goal; 251 } 252 253 /** 254 * ext4_blks_to_allocate - Look up the block map and count the number 255 * of direct blocks need to be allocated for the given branch. 256 * 257 * @branch: chain of indirect blocks 258 * @k: number of blocks need for indirect blocks 259 * @blks: number of data blocks to be mapped. 260 * @blocks_to_boundary: the offset in the indirect block 261 * 262 * return the total number of blocks to be allocate, including the 263 * direct and indirect blocks. 264 */ 265 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks, 266 int blocks_to_boundary) 267 { 268 unsigned int count = 0; 269 270 /* 271 * Simple case, [t,d]Indirect block(s) has not allocated yet 272 * then it's clear blocks on that path have not allocated 273 */ 274 if (k > 0) { 275 /* right now we don't handle cross boundary allocation */ 276 if (blks < blocks_to_boundary + 1) 277 count += blks; 278 else 279 count += blocks_to_boundary + 1; 280 return count; 281 } 282 283 count++; 284 while (count < blks && count <= blocks_to_boundary && 285 le32_to_cpu(*(branch[0].p + count)) == 0) { 286 count++; 287 } 288 return count; 289 } 290 291 /** 292 * ext4_alloc_blocks: multiple allocate blocks needed for a branch 293 * @handle: handle for this transaction 294 * @inode: inode which needs allocated blocks 295 * @iblock: the logical block to start allocated at 296 * @goal: preferred physical block of allocation 297 * @indirect_blks: the number of blocks need to allocate for indirect 298 * blocks 299 * @blks: number of desired blocks 300 * @new_blocks: on return it will store the new block numbers for 301 * the indirect blocks(if needed) and the first direct block, 302 * @err: on return it will store the error code 303 * 304 * This function will return the number of blocks allocated as 305 * requested by the passed-in parameters. 306 */ 307 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode, 308 ext4_lblk_t iblock, ext4_fsblk_t goal, 309 int indirect_blks, int blks, 310 ext4_fsblk_t new_blocks[4], int *err) 311 { 312 struct ext4_allocation_request ar; 313 int target, i; 314 unsigned long count = 0, blk_allocated = 0; 315 int index = 0; 316 ext4_fsblk_t current_block = 0; 317 int ret = 0; 318 319 /* 320 * Here we try to allocate the requested multiple blocks at once, 321 * on a best-effort basis. 322 * To build a branch, we should allocate blocks for 323 * the indirect blocks(if not allocated yet), and at least 324 * the first direct block of this branch. That's the 325 * minimum number of blocks need to allocate(required) 326 */ 327 /* first we try to allocate the indirect blocks */ 328 target = indirect_blks; 329 while (target > 0) { 330 count = target; 331 /* allocating blocks for indirect blocks and direct blocks */ 332 current_block = ext4_new_meta_blocks(handle, inode, goal, 333 0, &count, err); 334 if (*err) 335 goto failed_out; 336 337 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) { 338 EXT4_ERROR_INODE(inode, 339 "current_block %llu + count %lu > %d!", 340 current_block, count, 341 EXT4_MAX_BLOCK_FILE_PHYS); 342 *err = -EIO; 343 goto failed_out; 344 } 345 346 target -= count; 347 /* allocate blocks for indirect blocks */ 348 while (index < indirect_blks && count) { 349 new_blocks[index++] = current_block++; 350 count--; 351 } 352 if (count > 0) { 353 /* 354 * save the new block number 355 * for the first direct block 356 */ 357 new_blocks[index] = current_block; 358 printk(KERN_INFO "%s returned more blocks than " 359 "requested\n", __func__); 360 WARN_ON(1); 361 break; 362 } 363 } 364 365 target = blks - count ; 366 blk_allocated = count; 367 if (!target) 368 goto allocated; 369 /* Now allocate data blocks */ 370 memset(&ar, 0, sizeof(ar)); 371 ar.inode = inode; 372 ar.goal = goal; 373 ar.len = target; 374 ar.logical = iblock; 375 if (S_ISREG(inode->i_mode)) 376 /* enable in-core preallocation only for regular files */ 377 ar.flags = EXT4_MB_HINT_DATA; 378 379 current_block = ext4_mb_new_blocks(handle, &ar, err); 380 if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) { 381 EXT4_ERROR_INODE(inode, 382 "current_block %llu + ar.len %d > %d!", 383 current_block, ar.len, 384 EXT4_MAX_BLOCK_FILE_PHYS); 385 *err = -EIO; 386 goto failed_out; 387 } 388 389 if (*err && (target == blks)) { 390 /* 391 * if the allocation failed and we didn't allocate 392 * any blocks before 393 */ 394 goto failed_out; 395 } 396 if (!*err) { 397 if (target == blks) { 398 /* 399 * save the new block number 400 * for the first direct block 401 */ 402 new_blocks[index] = current_block; 403 } 404 blk_allocated += ar.len; 405 } 406 allocated: 407 /* total number of blocks allocated for direct blocks */ 408 ret = blk_allocated; 409 *err = 0; 410 return ret; 411 failed_out: 412 for (i = 0; i < index; i++) 413 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0); 414 return ret; 415 } 416 417 /** 418 * ext4_alloc_branch - allocate and set up a chain of blocks. 419 * @handle: handle for this transaction 420 * @inode: owner 421 * @indirect_blks: number of allocated indirect blocks 422 * @blks: number of allocated direct blocks 423 * @goal: preferred place for allocation 424 * @offsets: offsets (in the blocks) to store the pointers to next. 425 * @branch: place to store the chain in. 426 * 427 * This function allocates blocks, zeroes out all but the last one, 428 * links them into chain and (if we are synchronous) writes them to disk. 429 * In other words, it prepares a branch that can be spliced onto the 430 * inode. It stores the information about that chain in the branch[], in 431 * the same format as ext4_get_branch() would do. We are calling it after 432 * we had read the existing part of chain and partial points to the last 433 * triple of that (one with zero ->key). Upon the exit we have the same 434 * picture as after the successful ext4_get_block(), except that in one 435 * place chain is disconnected - *branch->p is still zero (we did not 436 * set the last link), but branch->key contains the number that should 437 * be placed into *branch->p to fill that gap. 438 * 439 * If allocation fails we free all blocks we've allocated (and forget 440 * their buffer_heads) and return the error value the from failed 441 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain 442 * as described above and return 0. 443 */ 444 static int ext4_alloc_branch(handle_t *handle, struct inode *inode, 445 ext4_lblk_t iblock, int indirect_blks, 446 int *blks, ext4_fsblk_t goal, 447 ext4_lblk_t *offsets, Indirect *branch) 448 { 449 int blocksize = inode->i_sb->s_blocksize; 450 int i, n = 0; 451 int err = 0; 452 struct buffer_head *bh; 453 int num; 454 ext4_fsblk_t new_blocks[4]; 455 ext4_fsblk_t current_block; 456 457 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks, 458 *blks, new_blocks, &err); 459 if (err) 460 return err; 461 462 branch[0].key = cpu_to_le32(new_blocks[0]); 463 /* 464 * metadata blocks and data blocks are allocated. 465 */ 466 for (n = 1; n <= indirect_blks; n++) { 467 /* 468 * Get buffer_head for parent block, zero it out 469 * and set the pointer to new one, then send 470 * parent to disk. 471 */ 472 bh = sb_getblk(inode->i_sb, new_blocks[n-1]); 473 if (unlikely(!bh)) { 474 err = -EIO; 475 goto failed; 476 } 477 478 branch[n].bh = bh; 479 lock_buffer(bh); 480 BUFFER_TRACE(bh, "call get_create_access"); 481 err = ext4_journal_get_create_access(handle, bh); 482 if (err) { 483 /* Don't brelse(bh) here; it's done in 484 * ext4_journal_forget() below */ 485 unlock_buffer(bh); 486 goto failed; 487 } 488 489 memset(bh->b_data, 0, blocksize); 490 branch[n].p = (__le32 *) bh->b_data + offsets[n]; 491 branch[n].key = cpu_to_le32(new_blocks[n]); 492 *branch[n].p = branch[n].key; 493 if (n == indirect_blks) { 494 current_block = new_blocks[n]; 495 /* 496 * End of chain, update the last new metablock of 497 * the chain to point to the new allocated 498 * data blocks numbers 499 */ 500 for (i = 1; i < num; i++) 501 *(branch[n].p + i) = cpu_to_le32(++current_block); 502 } 503 BUFFER_TRACE(bh, "marking uptodate"); 504 set_buffer_uptodate(bh); 505 unlock_buffer(bh); 506 507 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 508 err = ext4_handle_dirty_metadata(handle, inode, bh); 509 if (err) 510 goto failed; 511 } 512 *blks = num; 513 return err; 514 failed: 515 /* Allocation failed, free what we already allocated */ 516 ext4_free_blocks(handle, inode, NULL, new_blocks[0], 1, 0); 517 for (i = 1; i <= n ; i++) { 518 /* 519 * branch[i].bh is newly allocated, so there is no 520 * need to revoke the block, which is why we don't 521 * need to set EXT4_FREE_BLOCKS_METADATA. 522 */ 523 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 524 EXT4_FREE_BLOCKS_FORGET); 525 } 526 for (i = n+1; i < indirect_blks; i++) 527 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0); 528 529 ext4_free_blocks(handle, inode, NULL, new_blocks[i], num, 0); 530 531 return err; 532 } 533 534 /** 535 * ext4_splice_branch - splice the allocated branch onto inode. 536 * @handle: handle for this transaction 537 * @inode: owner 538 * @block: (logical) number of block we are adding 539 * @chain: chain of indirect blocks (with a missing link - see 540 * ext4_alloc_branch) 541 * @where: location of missing link 542 * @num: number of indirect blocks we are adding 543 * @blks: number of direct blocks we are adding 544 * 545 * This function fills the missing link and does all housekeeping needed in 546 * inode (->i_blocks, etc.). In case of success we end up with the full 547 * chain to new block and return 0. 548 */ 549 static int ext4_splice_branch(handle_t *handle, struct inode *inode, 550 ext4_lblk_t block, Indirect *where, int num, 551 int blks) 552 { 553 int i; 554 int err = 0; 555 ext4_fsblk_t current_block; 556 557 /* 558 * If we're splicing into a [td]indirect block (as opposed to the 559 * inode) then we need to get write access to the [td]indirect block 560 * before the splice. 561 */ 562 if (where->bh) { 563 BUFFER_TRACE(where->bh, "get_write_access"); 564 err = ext4_journal_get_write_access(handle, where->bh); 565 if (err) 566 goto err_out; 567 } 568 /* That's it */ 569 570 *where->p = where->key; 571 572 /* 573 * Update the host buffer_head or inode to point to more just allocated 574 * direct blocks blocks 575 */ 576 if (num == 0 && blks > 1) { 577 current_block = le32_to_cpu(where->key) + 1; 578 for (i = 1; i < blks; i++) 579 *(where->p + i) = cpu_to_le32(current_block++); 580 } 581 582 /* We are done with atomic stuff, now do the rest of housekeeping */ 583 /* had we spliced it onto indirect block? */ 584 if (where->bh) { 585 /* 586 * If we spliced it onto an indirect block, we haven't 587 * altered the inode. Note however that if it is being spliced 588 * onto an indirect block at the very end of the file (the 589 * file is growing) then we *will* alter the inode to reflect 590 * the new i_size. But that is not done here - it is done in 591 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode. 592 */ 593 jbd_debug(5, "splicing indirect only\n"); 594 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata"); 595 err = ext4_handle_dirty_metadata(handle, inode, where->bh); 596 if (err) 597 goto err_out; 598 } else { 599 /* 600 * OK, we spliced it into the inode itself on a direct block. 601 */ 602 ext4_mark_inode_dirty(handle, inode); 603 jbd_debug(5, "splicing direct\n"); 604 } 605 return err; 606 607 err_out: 608 for (i = 1; i <= num; i++) { 609 /* 610 * branch[i].bh is newly allocated, so there is no 611 * need to revoke the block, which is why we don't 612 * need to set EXT4_FREE_BLOCKS_METADATA. 613 */ 614 ext4_free_blocks(handle, inode, where[i].bh, 0, 1, 615 EXT4_FREE_BLOCKS_FORGET); 616 } 617 ext4_free_blocks(handle, inode, NULL, le32_to_cpu(where[num].key), 618 blks, 0); 619 620 return err; 621 } 622 623 /* 624 * The ext4_ind_map_blocks() function handles non-extents inodes 625 * (i.e., using the traditional indirect/double-indirect i_blocks 626 * scheme) for ext4_map_blocks(). 627 * 628 * Allocation strategy is simple: if we have to allocate something, we will 629 * have to go the whole way to leaf. So let's do it before attaching anything 630 * to tree, set linkage between the newborn blocks, write them if sync is 631 * required, recheck the path, free and repeat if check fails, otherwise 632 * set the last missing link (that will protect us from any truncate-generated 633 * removals - all blocks on the path are immune now) and possibly force the 634 * write on the parent block. 635 * That has a nice additional property: no special recovery from the failed 636 * allocations is needed - we simply release blocks and do not touch anything 637 * reachable from inode. 638 * 639 * `handle' can be NULL if create == 0. 640 * 641 * return > 0, # of blocks mapped or allocated. 642 * return = 0, if plain lookup failed. 643 * return < 0, error case. 644 * 645 * The ext4_ind_get_blocks() function should be called with 646 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem 647 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or 648 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system 649 * blocks. 650 */ 651 int ext4_ind_map_blocks(handle_t *handle, struct inode *inode, 652 struct ext4_map_blocks *map, 653 int flags) 654 { 655 int err = -EIO; 656 ext4_lblk_t offsets[4]; 657 Indirect chain[4]; 658 Indirect *partial; 659 ext4_fsblk_t goal; 660 int indirect_blks; 661 int blocks_to_boundary = 0; 662 int depth; 663 int count = 0; 664 ext4_fsblk_t first_block = 0; 665 666 trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags); 667 J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))); 668 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0); 669 depth = ext4_block_to_path(inode, map->m_lblk, offsets, 670 &blocks_to_boundary); 671 672 if (depth == 0) 673 goto out; 674 675 partial = ext4_get_branch(inode, depth, offsets, chain, &err); 676 677 /* Simplest case - block found, no allocation needed */ 678 if (!partial) { 679 first_block = le32_to_cpu(chain[depth - 1].key); 680 count++; 681 /*map more blocks*/ 682 while (count < map->m_len && count <= blocks_to_boundary) { 683 ext4_fsblk_t blk; 684 685 blk = le32_to_cpu(*(chain[depth-1].p + count)); 686 687 if (blk == first_block + count) 688 count++; 689 else 690 break; 691 } 692 goto got_it; 693 } 694 695 /* Next simple case - plain lookup or failed read of indirect block */ 696 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO) 697 goto cleanup; 698 699 /* 700 * Okay, we need to do block allocation. 701 */ 702 goal = ext4_find_goal(inode, map->m_lblk, partial); 703 704 /* the number of blocks need to allocate for [d,t]indirect blocks */ 705 indirect_blks = (chain + depth) - partial - 1; 706 707 /* 708 * Next look up the indirect map to count the totoal number of 709 * direct blocks to allocate for this branch. 710 */ 711 count = ext4_blks_to_allocate(partial, indirect_blks, 712 map->m_len, blocks_to_boundary); 713 /* 714 * Block out ext4_truncate while we alter the tree 715 */ 716 err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks, 717 &count, goal, 718 offsets + (partial - chain), partial); 719 720 /* 721 * The ext4_splice_branch call will free and forget any buffers 722 * on the new chain if there is a failure, but that risks using 723 * up transaction credits, especially for bitmaps where the 724 * credits cannot be returned. Can we handle this somehow? We 725 * may need to return -EAGAIN upwards in the worst case. --sct 726 */ 727 if (!err) 728 err = ext4_splice_branch(handle, inode, map->m_lblk, 729 partial, indirect_blks, count); 730 if (err) 731 goto cleanup; 732 733 map->m_flags |= EXT4_MAP_NEW; 734 735 ext4_update_inode_fsync_trans(handle, inode, 1); 736 got_it: 737 map->m_flags |= EXT4_MAP_MAPPED; 738 map->m_pblk = le32_to_cpu(chain[depth-1].key); 739 map->m_len = count; 740 if (count > blocks_to_boundary) 741 map->m_flags |= EXT4_MAP_BOUNDARY; 742 err = count; 743 /* Clean up and exit */ 744 partial = chain + depth - 1; /* the whole chain */ 745 cleanup: 746 while (partial > chain) { 747 BUFFER_TRACE(partial->bh, "call brelse"); 748 brelse(partial->bh); 749 partial--; 750 } 751 out: 752 trace_ext4_ind_map_blocks_exit(inode, map->m_lblk, 753 map->m_pblk, map->m_len, err); 754 return err; 755 } 756 757 /* 758 * O_DIRECT for ext3 (or indirect map) based files 759 * 760 * If the O_DIRECT write will extend the file then add this inode to the 761 * orphan list. So recovery will truncate it back to the original size 762 * if the machine crashes during the write. 763 * 764 * If the O_DIRECT write is intantiating holes inside i_size and the machine 765 * crashes then stale disk data _may_ be exposed inside the file. But current 766 * VFS code falls back into buffered path in that case so we are safe. 767 */ 768 ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb, 769 const struct iovec *iov, loff_t offset, 770 unsigned long nr_segs) 771 { 772 struct file *file = iocb->ki_filp; 773 struct inode *inode = file->f_mapping->host; 774 struct ext4_inode_info *ei = EXT4_I(inode); 775 handle_t *handle; 776 ssize_t ret; 777 int orphan = 0; 778 size_t count = iov_length(iov, nr_segs); 779 int retries = 0; 780 781 if (rw == WRITE) { 782 loff_t final_size = offset + count; 783 784 if (final_size > inode->i_size) { 785 /* Credits for sb + inode write */ 786 handle = ext4_journal_start(inode, 2); 787 if (IS_ERR(handle)) { 788 ret = PTR_ERR(handle); 789 goto out; 790 } 791 ret = ext4_orphan_add(handle, inode); 792 if (ret) { 793 ext4_journal_stop(handle); 794 goto out; 795 } 796 orphan = 1; 797 ei->i_disksize = inode->i_size; 798 ext4_journal_stop(handle); 799 } 800 } 801 802 retry: 803 if (rw == READ && ext4_should_dioread_nolock(inode)) { 804 if (unlikely(!list_empty(&ei->i_completed_io_list))) { 805 mutex_lock(&inode->i_mutex); 806 ext4_flush_completed_IO(inode); 807 mutex_unlock(&inode->i_mutex); 808 } 809 ret = __blockdev_direct_IO(rw, iocb, inode, 810 inode->i_sb->s_bdev, iov, 811 offset, nr_segs, 812 ext4_get_block, NULL, NULL, 0); 813 } else { 814 ret = blockdev_direct_IO(rw, iocb, inode, iov, 815 offset, nr_segs, ext4_get_block); 816 817 if (unlikely((rw & WRITE) && ret < 0)) { 818 loff_t isize = i_size_read(inode); 819 loff_t end = offset + iov_length(iov, nr_segs); 820 821 if (end > isize) 822 ext4_truncate_failed_write(inode); 823 } 824 } 825 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 826 goto retry; 827 828 if (orphan) { 829 int err; 830 831 /* Credits for sb + inode write */ 832 handle = ext4_journal_start(inode, 2); 833 if (IS_ERR(handle)) { 834 /* This is really bad luck. We've written the data 835 * but cannot extend i_size. Bail out and pretend 836 * the write failed... */ 837 ret = PTR_ERR(handle); 838 if (inode->i_nlink) 839 ext4_orphan_del(NULL, inode); 840 841 goto out; 842 } 843 if (inode->i_nlink) 844 ext4_orphan_del(handle, inode); 845 if (ret > 0) { 846 loff_t end = offset + ret; 847 if (end > inode->i_size) { 848 ei->i_disksize = end; 849 i_size_write(inode, end); 850 /* 851 * We're going to return a positive `ret' 852 * here due to non-zero-length I/O, so there's 853 * no way of reporting error returns from 854 * ext4_mark_inode_dirty() to userspace. So 855 * ignore it. 856 */ 857 ext4_mark_inode_dirty(handle, inode); 858 } 859 } 860 err = ext4_journal_stop(handle); 861 if (ret == 0) 862 ret = err; 863 } 864 out: 865 return ret; 866 } 867 868 /* 869 * Calculate the number of metadata blocks need to reserve 870 * to allocate a new block at @lblocks for non extent file based file 871 */ 872 int ext4_ind_calc_metadata_amount(struct inode *inode, sector_t lblock) 873 { 874 struct ext4_inode_info *ei = EXT4_I(inode); 875 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1); 876 int blk_bits; 877 878 if (lblock < EXT4_NDIR_BLOCKS) 879 return 0; 880 881 lblock -= EXT4_NDIR_BLOCKS; 882 883 if (ei->i_da_metadata_calc_len && 884 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) { 885 ei->i_da_metadata_calc_len++; 886 return 0; 887 } 888 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask; 889 ei->i_da_metadata_calc_len = 1; 890 blk_bits = order_base_2(lblock); 891 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1; 892 } 893 894 int ext4_ind_trans_blocks(struct inode *inode, int nrblocks, int chunk) 895 { 896 int indirects; 897 898 /* if nrblocks are contiguous */ 899 if (chunk) { 900 /* 901 * With N contiguous data blocks, we need at most 902 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks, 903 * 2 dindirect blocks, and 1 tindirect block 904 */ 905 return DIV_ROUND_UP(nrblocks, 906 EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4; 907 } 908 /* 909 * if nrblocks are not contiguous, worse case, each block touch 910 * a indirect block, and each indirect block touch a double indirect 911 * block, plus a triple indirect block 912 */ 913 indirects = nrblocks * 2 + 1; 914 return indirects; 915 } 916 917 /* 918 * Truncate transactions can be complex and absolutely huge. So we need to 919 * be able to restart the transaction at a conventient checkpoint to make 920 * sure we don't overflow the journal. 921 * 922 * start_transaction gets us a new handle for a truncate transaction, 923 * and extend_transaction tries to extend the existing one a bit. If 924 * extend fails, we need to propagate the failure up and restart the 925 * transaction in the top-level truncate loop. --sct 926 */ 927 static handle_t *start_transaction(struct inode *inode) 928 { 929 handle_t *result; 930 931 result = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)); 932 if (!IS_ERR(result)) 933 return result; 934 935 ext4_std_error(inode->i_sb, PTR_ERR(result)); 936 return result; 937 } 938 939 /* 940 * Try to extend this transaction for the purposes of truncation. 941 * 942 * Returns 0 if we managed to create more room. If we can't create more 943 * room, and the transaction must be restarted we return 1. 944 */ 945 static int try_to_extend_transaction(handle_t *handle, struct inode *inode) 946 { 947 if (!ext4_handle_valid(handle)) 948 return 0; 949 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1)) 950 return 0; 951 if (!ext4_journal_extend(handle, ext4_blocks_for_truncate(inode))) 952 return 0; 953 return 1; 954 } 955 956 /* 957 * Probably it should be a library function... search for first non-zero word 958 * or memcmp with zero_page, whatever is better for particular architecture. 959 * Linus? 960 */ 961 static inline int all_zeroes(__le32 *p, __le32 *q) 962 { 963 while (p < q) 964 if (*p++) 965 return 0; 966 return 1; 967 } 968 969 /** 970 * ext4_find_shared - find the indirect blocks for partial truncation. 971 * @inode: inode in question 972 * @depth: depth of the affected branch 973 * @offsets: offsets of pointers in that branch (see ext4_block_to_path) 974 * @chain: place to store the pointers to partial indirect blocks 975 * @top: place to the (detached) top of branch 976 * 977 * This is a helper function used by ext4_truncate(). 978 * 979 * When we do truncate() we may have to clean the ends of several 980 * indirect blocks but leave the blocks themselves alive. Block is 981 * partially truncated if some data below the new i_size is referred 982 * from it (and it is on the path to the first completely truncated 983 * data block, indeed). We have to free the top of that path along 984 * with everything to the right of the path. Since no allocation 985 * past the truncation point is possible until ext4_truncate() 986 * finishes, we may safely do the latter, but top of branch may 987 * require special attention - pageout below the truncation point 988 * might try to populate it. 989 * 990 * We atomically detach the top of branch from the tree, store the 991 * block number of its root in *@top, pointers to buffer_heads of 992 * partially truncated blocks - in @chain[].bh and pointers to 993 * their last elements that should not be removed - in 994 * @chain[].p. Return value is the pointer to last filled element 995 * of @chain. 996 * 997 * The work left to caller to do the actual freeing of subtrees: 998 * a) free the subtree starting from *@top 999 * b) free the subtrees whose roots are stored in 1000 * (@chain[i].p+1 .. end of @chain[i].bh->b_data) 1001 * c) free the subtrees growing from the inode past the @chain[0]. 1002 * (no partially truncated stuff there). */ 1003 1004 static Indirect *ext4_find_shared(struct inode *inode, int depth, 1005 ext4_lblk_t offsets[4], Indirect chain[4], 1006 __le32 *top) 1007 { 1008 Indirect *partial, *p; 1009 int k, err; 1010 1011 *top = 0; 1012 /* Make k index the deepest non-null offset + 1 */ 1013 for (k = depth; k > 1 && !offsets[k-1]; k--) 1014 ; 1015 partial = ext4_get_branch(inode, k, offsets, chain, &err); 1016 /* Writer: pointers */ 1017 if (!partial) 1018 partial = chain + k-1; 1019 /* 1020 * If the branch acquired continuation since we've looked at it - 1021 * fine, it should all survive and (new) top doesn't belong to us. 1022 */ 1023 if (!partial->key && *partial->p) 1024 /* Writer: end */ 1025 goto no_top; 1026 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--) 1027 ; 1028 /* 1029 * OK, we've found the last block that must survive. The rest of our 1030 * branch should be detached before unlocking. However, if that rest 1031 * of branch is all ours and does not grow immediately from the inode 1032 * it's easier to cheat and just decrement partial->p. 1033 */ 1034 if (p == chain + k - 1 && p > chain) { 1035 p->p--; 1036 } else { 1037 *top = *p->p; 1038 /* Nope, don't do this in ext4. Must leave the tree intact */ 1039 #if 0 1040 *p->p = 0; 1041 #endif 1042 } 1043 /* Writer: end */ 1044 1045 while (partial > p) { 1046 brelse(partial->bh); 1047 partial--; 1048 } 1049 no_top: 1050 return partial; 1051 } 1052 1053 /* 1054 * Zero a number of block pointers in either an inode or an indirect block. 1055 * If we restart the transaction we must again get write access to the 1056 * indirect block for further modification. 1057 * 1058 * We release `count' blocks on disk, but (last - first) may be greater 1059 * than `count' because there can be holes in there. 1060 * 1061 * Return 0 on success, 1 on invalid block range 1062 * and < 0 on fatal error. 1063 */ 1064 static int ext4_clear_blocks(handle_t *handle, struct inode *inode, 1065 struct buffer_head *bh, 1066 ext4_fsblk_t block_to_free, 1067 unsigned long count, __le32 *first, 1068 __le32 *last) 1069 { 1070 __le32 *p; 1071 int flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED; 1072 int err; 1073 1074 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 1075 flags |= EXT4_FREE_BLOCKS_METADATA; 1076 1077 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free, 1078 count)) { 1079 EXT4_ERROR_INODE(inode, "attempt to clear invalid " 1080 "blocks %llu len %lu", 1081 (unsigned long long) block_to_free, count); 1082 return 1; 1083 } 1084 1085 if (try_to_extend_transaction(handle, inode)) { 1086 if (bh) { 1087 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 1088 err = ext4_handle_dirty_metadata(handle, inode, bh); 1089 if (unlikely(err)) 1090 goto out_err; 1091 } 1092 err = ext4_mark_inode_dirty(handle, inode); 1093 if (unlikely(err)) 1094 goto out_err; 1095 err = ext4_truncate_restart_trans(handle, inode, 1096 ext4_blocks_for_truncate(inode)); 1097 if (unlikely(err)) 1098 goto out_err; 1099 if (bh) { 1100 BUFFER_TRACE(bh, "retaking write access"); 1101 err = ext4_journal_get_write_access(handle, bh); 1102 if (unlikely(err)) 1103 goto out_err; 1104 } 1105 } 1106 1107 for (p = first; p < last; p++) 1108 *p = 0; 1109 1110 ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags); 1111 return 0; 1112 out_err: 1113 ext4_std_error(inode->i_sb, err); 1114 return err; 1115 } 1116 1117 /** 1118 * ext4_free_data - free a list of data blocks 1119 * @handle: handle for this transaction 1120 * @inode: inode we are dealing with 1121 * @this_bh: indirect buffer_head which contains *@first and *@last 1122 * @first: array of block numbers 1123 * @last: points immediately past the end of array 1124 * 1125 * We are freeing all blocks referred from that array (numbers are stored as 1126 * little-endian 32-bit) and updating @inode->i_blocks appropriately. 1127 * 1128 * We accumulate contiguous runs of blocks to free. Conveniently, if these 1129 * blocks are contiguous then releasing them at one time will only affect one 1130 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't 1131 * actually use a lot of journal space. 1132 * 1133 * @this_bh will be %NULL if @first and @last point into the inode's direct 1134 * block pointers. 1135 */ 1136 static void ext4_free_data(handle_t *handle, struct inode *inode, 1137 struct buffer_head *this_bh, 1138 __le32 *first, __le32 *last) 1139 { 1140 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */ 1141 unsigned long count = 0; /* Number of blocks in the run */ 1142 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind 1143 corresponding to 1144 block_to_free */ 1145 ext4_fsblk_t nr; /* Current block # */ 1146 __le32 *p; /* Pointer into inode/ind 1147 for current block */ 1148 int err = 0; 1149 1150 if (this_bh) { /* For indirect block */ 1151 BUFFER_TRACE(this_bh, "get_write_access"); 1152 err = ext4_journal_get_write_access(handle, this_bh); 1153 /* Important: if we can't update the indirect pointers 1154 * to the blocks, we can't free them. */ 1155 if (err) 1156 return; 1157 } 1158 1159 for (p = first; p < last; p++) { 1160 nr = le32_to_cpu(*p); 1161 if (nr) { 1162 /* accumulate blocks to free if they're contiguous */ 1163 if (count == 0) { 1164 block_to_free = nr; 1165 block_to_free_p = p; 1166 count = 1; 1167 } else if (nr == block_to_free + count) { 1168 count++; 1169 } else { 1170 err = ext4_clear_blocks(handle, inode, this_bh, 1171 block_to_free, count, 1172 block_to_free_p, p); 1173 if (err) 1174 break; 1175 block_to_free = nr; 1176 block_to_free_p = p; 1177 count = 1; 1178 } 1179 } 1180 } 1181 1182 if (!err && count > 0) 1183 err = ext4_clear_blocks(handle, inode, this_bh, block_to_free, 1184 count, block_to_free_p, p); 1185 if (err < 0) 1186 /* fatal error */ 1187 return; 1188 1189 if (this_bh) { 1190 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata"); 1191 1192 /* 1193 * The buffer head should have an attached journal head at this 1194 * point. However, if the data is corrupted and an indirect 1195 * block pointed to itself, it would have been detached when 1196 * the block was cleared. Check for this instead of OOPSing. 1197 */ 1198 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh)) 1199 ext4_handle_dirty_metadata(handle, inode, this_bh); 1200 else 1201 EXT4_ERROR_INODE(inode, 1202 "circular indirect block detected at " 1203 "block %llu", 1204 (unsigned long long) this_bh->b_blocknr); 1205 } 1206 } 1207 1208 /** 1209 * ext4_free_branches - free an array of branches 1210 * @handle: JBD handle for this transaction 1211 * @inode: inode we are dealing with 1212 * @parent_bh: the buffer_head which contains *@first and *@last 1213 * @first: array of block numbers 1214 * @last: pointer immediately past the end of array 1215 * @depth: depth of the branches to free 1216 * 1217 * We are freeing all blocks referred from these branches (numbers are 1218 * stored as little-endian 32-bit) and updating @inode->i_blocks 1219 * appropriately. 1220 */ 1221 static void ext4_free_branches(handle_t *handle, struct inode *inode, 1222 struct buffer_head *parent_bh, 1223 __le32 *first, __le32 *last, int depth) 1224 { 1225 ext4_fsblk_t nr; 1226 __le32 *p; 1227 1228 if (ext4_handle_is_aborted(handle)) 1229 return; 1230 1231 if (depth--) { 1232 struct buffer_head *bh; 1233 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 1234 p = last; 1235 while (--p >= first) { 1236 nr = le32_to_cpu(*p); 1237 if (!nr) 1238 continue; /* A hole */ 1239 1240 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), 1241 nr, 1)) { 1242 EXT4_ERROR_INODE(inode, 1243 "invalid indirect mapped " 1244 "block %lu (level %d)", 1245 (unsigned long) nr, depth); 1246 break; 1247 } 1248 1249 /* Go read the buffer for the next level down */ 1250 bh = sb_bread(inode->i_sb, nr); 1251 1252 /* 1253 * A read failure? Report error and clear slot 1254 * (should be rare). 1255 */ 1256 if (!bh) { 1257 EXT4_ERROR_INODE_BLOCK(inode, nr, 1258 "Read failure"); 1259 continue; 1260 } 1261 1262 /* This zaps the entire block. Bottom up. */ 1263 BUFFER_TRACE(bh, "free child branches"); 1264 ext4_free_branches(handle, inode, bh, 1265 (__le32 *) bh->b_data, 1266 (__le32 *) bh->b_data + addr_per_block, 1267 depth); 1268 brelse(bh); 1269 1270 /* 1271 * Everything below this this pointer has been 1272 * released. Now let this top-of-subtree go. 1273 * 1274 * We want the freeing of this indirect block to be 1275 * atomic in the journal with the updating of the 1276 * bitmap block which owns it. So make some room in 1277 * the journal. 1278 * 1279 * We zero the parent pointer *after* freeing its 1280 * pointee in the bitmaps, so if extend_transaction() 1281 * for some reason fails to put the bitmap changes and 1282 * the release into the same transaction, recovery 1283 * will merely complain about releasing a free block, 1284 * rather than leaking blocks. 1285 */ 1286 if (ext4_handle_is_aborted(handle)) 1287 return; 1288 if (try_to_extend_transaction(handle, inode)) { 1289 ext4_mark_inode_dirty(handle, inode); 1290 ext4_truncate_restart_trans(handle, inode, 1291 ext4_blocks_for_truncate(inode)); 1292 } 1293 1294 /* 1295 * The forget flag here is critical because if 1296 * we are journaling (and not doing data 1297 * journaling), we have to make sure a revoke 1298 * record is written to prevent the journal 1299 * replay from overwriting the (former) 1300 * indirect block if it gets reallocated as a 1301 * data block. This must happen in the same 1302 * transaction where the data blocks are 1303 * actually freed. 1304 */ 1305 ext4_free_blocks(handle, inode, NULL, nr, 1, 1306 EXT4_FREE_BLOCKS_METADATA| 1307 EXT4_FREE_BLOCKS_FORGET); 1308 1309 if (parent_bh) { 1310 /* 1311 * The block which we have just freed is 1312 * pointed to by an indirect block: journal it 1313 */ 1314 BUFFER_TRACE(parent_bh, "get_write_access"); 1315 if (!ext4_journal_get_write_access(handle, 1316 parent_bh)){ 1317 *p = 0; 1318 BUFFER_TRACE(parent_bh, 1319 "call ext4_handle_dirty_metadata"); 1320 ext4_handle_dirty_metadata(handle, 1321 inode, 1322 parent_bh); 1323 } 1324 } 1325 } 1326 } else { 1327 /* We have reached the bottom of the tree. */ 1328 BUFFER_TRACE(parent_bh, "free data blocks"); 1329 ext4_free_data(handle, inode, parent_bh, first, last); 1330 } 1331 } 1332 1333 void ext4_ind_truncate(struct inode *inode) 1334 { 1335 handle_t *handle; 1336 struct ext4_inode_info *ei = EXT4_I(inode); 1337 __le32 *i_data = ei->i_data; 1338 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 1339 struct address_space *mapping = inode->i_mapping; 1340 ext4_lblk_t offsets[4]; 1341 Indirect chain[4]; 1342 Indirect *partial; 1343 __le32 nr = 0; 1344 int n = 0; 1345 ext4_lblk_t last_block, max_block; 1346 unsigned blocksize = inode->i_sb->s_blocksize; 1347 1348 handle = start_transaction(inode); 1349 if (IS_ERR(handle)) 1350 return; /* AKPM: return what? */ 1351 1352 last_block = (inode->i_size + blocksize-1) 1353 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 1354 max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1) 1355 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 1356 1357 if (inode->i_size & (blocksize - 1)) 1358 if (ext4_block_truncate_page(handle, mapping, inode->i_size)) 1359 goto out_stop; 1360 1361 if (last_block != max_block) { 1362 n = ext4_block_to_path(inode, last_block, offsets, NULL); 1363 if (n == 0) 1364 goto out_stop; /* error */ 1365 } 1366 1367 /* 1368 * OK. This truncate is going to happen. We add the inode to the 1369 * orphan list, so that if this truncate spans multiple transactions, 1370 * and we crash, we will resume the truncate when the filesystem 1371 * recovers. It also marks the inode dirty, to catch the new size. 1372 * 1373 * Implication: the file must always be in a sane, consistent 1374 * truncatable state while each transaction commits. 1375 */ 1376 if (ext4_orphan_add(handle, inode)) 1377 goto out_stop; 1378 1379 /* 1380 * From here we block out all ext4_get_block() callers who want to 1381 * modify the block allocation tree. 1382 */ 1383 down_write(&ei->i_data_sem); 1384 1385 ext4_discard_preallocations(inode); 1386 1387 /* 1388 * The orphan list entry will now protect us from any crash which 1389 * occurs before the truncate completes, so it is now safe to propagate 1390 * the new, shorter inode size (held for now in i_size) into the 1391 * on-disk inode. We do this via i_disksize, which is the value which 1392 * ext4 *really* writes onto the disk inode. 1393 */ 1394 ei->i_disksize = inode->i_size; 1395 1396 if (last_block == max_block) { 1397 /* 1398 * It is unnecessary to free any data blocks if last_block is 1399 * equal to the indirect block limit. 1400 */ 1401 goto out_unlock; 1402 } else if (n == 1) { /* direct blocks */ 1403 ext4_free_data(handle, inode, NULL, i_data+offsets[0], 1404 i_data + EXT4_NDIR_BLOCKS); 1405 goto do_indirects; 1406 } 1407 1408 partial = ext4_find_shared(inode, n, offsets, chain, &nr); 1409 /* Kill the top of shared branch (not detached) */ 1410 if (nr) { 1411 if (partial == chain) { 1412 /* Shared branch grows from the inode */ 1413 ext4_free_branches(handle, inode, NULL, 1414 &nr, &nr+1, (chain+n-1) - partial); 1415 *partial->p = 0; 1416 /* 1417 * We mark the inode dirty prior to restart, 1418 * and prior to stop. No need for it here. 1419 */ 1420 } else { 1421 /* Shared branch grows from an indirect block */ 1422 BUFFER_TRACE(partial->bh, "get_write_access"); 1423 ext4_free_branches(handle, inode, partial->bh, 1424 partial->p, 1425 partial->p+1, (chain+n-1) - partial); 1426 } 1427 } 1428 /* Clear the ends of indirect blocks on the shared branch */ 1429 while (partial > chain) { 1430 ext4_free_branches(handle, inode, partial->bh, partial->p + 1, 1431 (__le32*)partial->bh->b_data+addr_per_block, 1432 (chain+n-1) - partial); 1433 BUFFER_TRACE(partial->bh, "call brelse"); 1434 brelse(partial->bh); 1435 partial--; 1436 } 1437 do_indirects: 1438 /* Kill the remaining (whole) subtrees */ 1439 switch (offsets[0]) { 1440 default: 1441 nr = i_data[EXT4_IND_BLOCK]; 1442 if (nr) { 1443 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1); 1444 i_data[EXT4_IND_BLOCK] = 0; 1445 } 1446 case EXT4_IND_BLOCK: 1447 nr = i_data[EXT4_DIND_BLOCK]; 1448 if (nr) { 1449 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2); 1450 i_data[EXT4_DIND_BLOCK] = 0; 1451 } 1452 case EXT4_DIND_BLOCK: 1453 nr = i_data[EXT4_TIND_BLOCK]; 1454 if (nr) { 1455 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3); 1456 i_data[EXT4_TIND_BLOCK] = 0; 1457 } 1458 case EXT4_TIND_BLOCK: 1459 ; 1460 } 1461 1462 out_unlock: 1463 up_write(&ei->i_data_sem); 1464 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 1465 ext4_mark_inode_dirty(handle, inode); 1466 1467 /* 1468 * In a multi-transaction truncate, we only make the final transaction 1469 * synchronous 1470 */ 1471 if (IS_SYNC(inode)) 1472 ext4_handle_sync(handle); 1473 out_stop: 1474 /* 1475 * If this was a simple ftruncate(), and the file will remain alive 1476 * then we need to clear up the orphan record which we created above. 1477 * However, if this was a real unlink then we were called by 1478 * ext4_delete_inode(), and we allow that function to clean up the 1479 * orphan info for us. 1480 */ 1481 if (inode->i_nlink) 1482 ext4_orphan_del(handle, inode); 1483 1484 ext4_journal_stop(handle); 1485 trace_ext4_truncate_exit(inode); 1486 } 1487 1488