xref: /openbmc/linux/fs/ext4/indirect.c (revision 97da55fc)
1 /*
2  *  linux/fs/ext4/indirect.c
3  *
4  *  from
5  *
6  *  linux/fs/ext4/inode.c
7  *
8  * Copyright (C) 1992, 1993, 1994, 1995
9  * Remy Card (card@masi.ibp.fr)
10  * Laboratoire MASI - Institut Blaise Pascal
11  * Universite Pierre et Marie Curie (Paris VI)
12  *
13  *  from
14  *
15  *  linux/fs/minix/inode.c
16  *
17  *  Copyright (C) 1991, 1992  Linus Torvalds
18  *
19  *  Goal-directed block allocation by Stephen Tweedie
20  *	(sct@redhat.com), 1993, 1998
21  */
22 
23 #include "ext4_jbd2.h"
24 #include "truncate.h"
25 #include "ext4_extents.h"	/* Needed for EXT_MAX_BLOCKS */
26 
27 #include <trace/events/ext4.h>
28 
29 typedef struct {
30 	__le32	*p;
31 	__le32	key;
32 	struct buffer_head *bh;
33 } Indirect;
34 
35 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
36 {
37 	p->key = *(p->p = v);
38 	p->bh = bh;
39 }
40 
41 /**
42  *	ext4_block_to_path - parse the block number into array of offsets
43  *	@inode: inode in question (we are only interested in its superblock)
44  *	@i_block: block number to be parsed
45  *	@offsets: array to store the offsets in
46  *	@boundary: set this non-zero if the referred-to block is likely to be
47  *	       followed (on disk) by an indirect block.
48  *
49  *	To store the locations of file's data ext4 uses a data structure common
50  *	for UNIX filesystems - tree of pointers anchored in the inode, with
51  *	data blocks at leaves and indirect blocks in intermediate nodes.
52  *	This function translates the block number into path in that tree -
53  *	return value is the path length and @offsets[n] is the offset of
54  *	pointer to (n+1)th node in the nth one. If @block is out of range
55  *	(negative or too large) warning is printed and zero returned.
56  *
57  *	Note: function doesn't find node addresses, so no IO is needed. All
58  *	we need to know is the capacity of indirect blocks (taken from the
59  *	inode->i_sb).
60  */
61 
62 /*
63  * Portability note: the last comparison (check that we fit into triple
64  * indirect block) is spelled differently, because otherwise on an
65  * architecture with 32-bit longs and 8Kb pages we might get into trouble
66  * if our filesystem had 8Kb blocks. We might use long long, but that would
67  * kill us on x86. Oh, well, at least the sign propagation does not matter -
68  * i_block would have to be negative in the very beginning, so we would not
69  * get there at all.
70  */
71 
72 static int ext4_block_to_path(struct inode *inode,
73 			      ext4_lblk_t i_block,
74 			      ext4_lblk_t offsets[4], int *boundary)
75 {
76 	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
77 	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
78 	const long direct_blocks = EXT4_NDIR_BLOCKS,
79 		indirect_blocks = ptrs,
80 		double_blocks = (1 << (ptrs_bits * 2));
81 	int n = 0;
82 	int final = 0;
83 
84 	if (i_block < direct_blocks) {
85 		offsets[n++] = i_block;
86 		final = direct_blocks;
87 	} else if ((i_block -= direct_blocks) < indirect_blocks) {
88 		offsets[n++] = EXT4_IND_BLOCK;
89 		offsets[n++] = i_block;
90 		final = ptrs;
91 	} else if ((i_block -= indirect_blocks) < double_blocks) {
92 		offsets[n++] = EXT4_DIND_BLOCK;
93 		offsets[n++] = i_block >> ptrs_bits;
94 		offsets[n++] = i_block & (ptrs - 1);
95 		final = ptrs;
96 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
97 		offsets[n++] = EXT4_TIND_BLOCK;
98 		offsets[n++] = i_block >> (ptrs_bits * 2);
99 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
100 		offsets[n++] = i_block & (ptrs - 1);
101 		final = ptrs;
102 	} else {
103 		ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
104 			     i_block + direct_blocks +
105 			     indirect_blocks + double_blocks, inode->i_ino);
106 	}
107 	if (boundary)
108 		*boundary = final - 1 - (i_block & (ptrs - 1));
109 	return n;
110 }
111 
112 /**
113  *	ext4_get_branch - read the chain of indirect blocks leading to data
114  *	@inode: inode in question
115  *	@depth: depth of the chain (1 - direct pointer, etc.)
116  *	@offsets: offsets of pointers in inode/indirect blocks
117  *	@chain: place to store the result
118  *	@err: here we store the error value
119  *
120  *	Function fills the array of triples <key, p, bh> and returns %NULL
121  *	if everything went OK or the pointer to the last filled triple
122  *	(incomplete one) otherwise. Upon the return chain[i].key contains
123  *	the number of (i+1)-th block in the chain (as it is stored in memory,
124  *	i.e. little-endian 32-bit), chain[i].p contains the address of that
125  *	number (it points into struct inode for i==0 and into the bh->b_data
126  *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
127  *	block for i>0 and NULL for i==0. In other words, it holds the block
128  *	numbers of the chain, addresses they were taken from (and where we can
129  *	verify that chain did not change) and buffer_heads hosting these
130  *	numbers.
131  *
132  *	Function stops when it stumbles upon zero pointer (absent block)
133  *		(pointer to last triple returned, *@err == 0)
134  *	or when it gets an IO error reading an indirect block
135  *		(ditto, *@err == -EIO)
136  *	or when it reads all @depth-1 indirect blocks successfully and finds
137  *	the whole chain, all way to the data (returns %NULL, *err == 0).
138  *
139  *      Need to be called with
140  *      down_read(&EXT4_I(inode)->i_data_sem)
141  */
142 static Indirect *ext4_get_branch(struct inode *inode, int depth,
143 				 ext4_lblk_t  *offsets,
144 				 Indirect chain[4], int *err)
145 {
146 	struct super_block *sb = inode->i_sb;
147 	Indirect *p = chain;
148 	struct buffer_head *bh;
149 	int ret = -EIO;
150 
151 	*err = 0;
152 	/* i_data is not going away, no lock needed */
153 	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
154 	if (!p->key)
155 		goto no_block;
156 	while (--depth) {
157 		bh = sb_getblk(sb, le32_to_cpu(p->key));
158 		if (unlikely(!bh)) {
159 			ret = -ENOMEM;
160 			goto failure;
161 		}
162 
163 		if (!bh_uptodate_or_lock(bh)) {
164 			if (bh_submit_read(bh) < 0) {
165 				put_bh(bh);
166 				goto failure;
167 			}
168 			/* validate block references */
169 			if (ext4_check_indirect_blockref(inode, bh)) {
170 				put_bh(bh);
171 				goto failure;
172 			}
173 		}
174 
175 		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
176 		/* Reader: end */
177 		if (!p->key)
178 			goto no_block;
179 	}
180 	return NULL;
181 
182 failure:
183 	*err = ret;
184 no_block:
185 	return p;
186 }
187 
188 /**
189  *	ext4_find_near - find a place for allocation with sufficient locality
190  *	@inode: owner
191  *	@ind: descriptor of indirect block.
192  *
193  *	This function returns the preferred place for block allocation.
194  *	It is used when heuristic for sequential allocation fails.
195  *	Rules are:
196  *	  + if there is a block to the left of our position - allocate near it.
197  *	  + if pointer will live in indirect block - allocate near that block.
198  *	  + if pointer will live in inode - allocate in the same
199  *	    cylinder group.
200  *
201  * In the latter case we colour the starting block by the callers PID to
202  * prevent it from clashing with concurrent allocations for a different inode
203  * in the same block group.   The PID is used here so that functionally related
204  * files will be close-by on-disk.
205  *
206  *	Caller must make sure that @ind is valid and will stay that way.
207  */
208 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
209 {
210 	struct ext4_inode_info *ei = EXT4_I(inode);
211 	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
212 	__le32 *p;
213 
214 	/* Try to find previous block */
215 	for (p = ind->p - 1; p >= start; p--) {
216 		if (*p)
217 			return le32_to_cpu(*p);
218 	}
219 
220 	/* No such thing, so let's try location of indirect block */
221 	if (ind->bh)
222 		return ind->bh->b_blocknr;
223 
224 	/*
225 	 * It is going to be referred to from the inode itself? OK, just put it
226 	 * into the same cylinder group then.
227 	 */
228 	return ext4_inode_to_goal_block(inode);
229 }
230 
231 /**
232  *	ext4_find_goal - find a preferred place for allocation.
233  *	@inode: owner
234  *	@block:  block we want
235  *	@partial: pointer to the last triple within a chain
236  *
237  *	Normally this function find the preferred place for block allocation,
238  *	returns it.
239  *	Because this is only used for non-extent files, we limit the block nr
240  *	to 32 bits.
241  */
242 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
243 				   Indirect *partial)
244 {
245 	ext4_fsblk_t goal;
246 
247 	/*
248 	 * XXX need to get goal block from mballoc's data structures
249 	 */
250 
251 	goal = ext4_find_near(inode, partial);
252 	goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
253 	return goal;
254 }
255 
256 /**
257  *	ext4_blks_to_allocate - Look up the block map and count the number
258  *	of direct blocks need to be allocated for the given branch.
259  *
260  *	@branch: chain of indirect blocks
261  *	@k: number of blocks need for indirect blocks
262  *	@blks: number of data blocks to be mapped.
263  *	@blocks_to_boundary:  the offset in the indirect block
264  *
265  *	return the total number of blocks to be allocate, including the
266  *	direct and indirect blocks.
267  */
268 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
269 				 int blocks_to_boundary)
270 {
271 	unsigned int count = 0;
272 
273 	/*
274 	 * Simple case, [t,d]Indirect block(s) has not allocated yet
275 	 * then it's clear blocks on that path have not allocated
276 	 */
277 	if (k > 0) {
278 		/* right now we don't handle cross boundary allocation */
279 		if (blks < blocks_to_boundary + 1)
280 			count += blks;
281 		else
282 			count += blocks_to_boundary + 1;
283 		return count;
284 	}
285 
286 	count++;
287 	while (count < blks && count <= blocks_to_boundary &&
288 		le32_to_cpu(*(branch[0].p + count)) == 0) {
289 		count++;
290 	}
291 	return count;
292 }
293 
294 /**
295  *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
296  *	@handle: handle for this transaction
297  *	@inode: inode which needs allocated blocks
298  *	@iblock: the logical block to start allocated at
299  *	@goal: preferred physical block of allocation
300  *	@indirect_blks: the number of blocks need to allocate for indirect
301  *			blocks
302  *	@blks: number of desired blocks
303  *	@new_blocks: on return it will store the new block numbers for
304  *	the indirect blocks(if needed) and the first direct block,
305  *	@err: on return it will store the error code
306  *
307  *	This function will return the number of blocks allocated as
308  *	requested by the passed-in parameters.
309  */
310 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
311 			     ext4_lblk_t iblock, ext4_fsblk_t goal,
312 			     int indirect_blks, int blks,
313 			     ext4_fsblk_t new_blocks[4], int *err)
314 {
315 	struct ext4_allocation_request ar;
316 	int target, i;
317 	unsigned long count = 0, blk_allocated = 0;
318 	int index = 0;
319 	ext4_fsblk_t current_block = 0;
320 	int ret = 0;
321 
322 	/*
323 	 * Here we try to allocate the requested multiple blocks at once,
324 	 * on a best-effort basis.
325 	 * To build a branch, we should allocate blocks for
326 	 * the indirect blocks(if not allocated yet), and at least
327 	 * the first direct block of this branch.  That's the
328 	 * minimum number of blocks need to allocate(required)
329 	 */
330 	/* first we try to allocate the indirect blocks */
331 	target = indirect_blks;
332 	while (target > 0) {
333 		count = target;
334 		/* allocating blocks for indirect blocks and direct blocks */
335 		current_block = ext4_new_meta_blocks(handle, inode, goal,
336 						     0, &count, err);
337 		if (*err)
338 			goto failed_out;
339 
340 		if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
341 			EXT4_ERROR_INODE(inode,
342 					 "current_block %llu + count %lu > %d!",
343 					 current_block, count,
344 					 EXT4_MAX_BLOCK_FILE_PHYS);
345 			*err = -EIO;
346 			goto failed_out;
347 		}
348 
349 		target -= count;
350 		/* allocate blocks for indirect blocks */
351 		while (index < indirect_blks && count) {
352 			new_blocks[index++] = current_block++;
353 			count--;
354 		}
355 		if (count > 0) {
356 			/*
357 			 * save the new block number
358 			 * for the first direct block
359 			 */
360 			new_blocks[index] = current_block;
361 			WARN(1, KERN_INFO "%s returned more blocks than "
362 						"requested\n", __func__);
363 			break;
364 		}
365 	}
366 
367 	target = blks - count ;
368 	blk_allocated = count;
369 	if (!target)
370 		goto allocated;
371 	/* Now allocate data blocks */
372 	memset(&ar, 0, sizeof(ar));
373 	ar.inode = inode;
374 	ar.goal = goal;
375 	ar.len = target;
376 	ar.logical = iblock;
377 	if (S_ISREG(inode->i_mode))
378 		/* enable in-core preallocation only for regular files */
379 		ar.flags = EXT4_MB_HINT_DATA;
380 
381 	current_block = ext4_mb_new_blocks(handle, &ar, err);
382 	if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
383 		EXT4_ERROR_INODE(inode,
384 				 "current_block %llu + ar.len %d > %d!",
385 				 current_block, ar.len,
386 				 EXT4_MAX_BLOCK_FILE_PHYS);
387 		*err = -EIO;
388 		goto failed_out;
389 	}
390 
391 	if (*err && (target == blks)) {
392 		/*
393 		 * if the allocation failed and we didn't allocate
394 		 * any blocks before
395 		 */
396 		goto failed_out;
397 	}
398 	if (!*err) {
399 		if (target == blks) {
400 			/*
401 			 * save the new block number
402 			 * for the first direct block
403 			 */
404 			new_blocks[index] = current_block;
405 		}
406 		blk_allocated += ar.len;
407 	}
408 allocated:
409 	/* total number of blocks allocated for direct blocks */
410 	ret = blk_allocated;
411 	*err = 0;
412 	return ret;
413 failed_out:
414 	for (i = 0; i < index; i++)
415 		ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0);
416 	return ret;
417 }
418 
419 /**
420  *	ext4_alloc_branch - allocate and set up a chain of blocks.
421  *	@handle: handle for this transaction
422  *	@inode: owner
423  *	@indirect_blks: number of allocated indirect blocks
424  *	@blks: number of allocated direct blocks
425  *	@goal: preferred place for allocation
426  *	@offsets: offsets (in the blocks) to store the pointers to next.
427  *	@branch: place to store the chain in.
428  *
429  *	This function allocates blocks, zeroes out all but the last one,
430  *	links them into chain and (if we are synchronous) writes them to disk.
431  *	In other words, it prepares a branch that can be spliced onto the
432  *	inode. It stores the information about that chain in the branch[], in
433  *	the same format as ext4_get_branch() would do. We are calling it after
434  *	we had read the existing part of chain and partial points to the last
435  *	triple of that (one with zero ->key). Upon the exit we have the same
436  *	picture as after the successful ext4_get_block(), except that in one
437  *	place chain is disconnected - *branch->p is still zero (we did not
438  *	set the last link), but branch->key contains the number that should
439  *	be placed into *branch->p to fill that gap.
440  *
441  *	If allocation fails we free all blocks we've allocated (and forget
442  *	their buffer_heads) and return the error value the from failed
443  *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
444  *	as described above and return 0.
445  */
446 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
447 			     ext4_lblk_t iblock, int indirect_blks,
448 			     int *blks, ext4_fsblk_t goal,
449 			     ext4_lblk_t *offsets, Indirect *branch)
450 {
451 	int blocksize = inode->i_sb->s_blocksize;
452 	int i, n = 0;
453 	int err = 0;
454 	struct buffer_head *bh;
455 	int num;
456 	ext4_fsblk_t new_blocks[4];
457 	ext4_fsblk_t current_block;
458 
459 	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
460 				*blks, new_blocks, &err);
461 	if (err)
462 		return err;
463 
464 	branch[0].key = cpu_to_le32(new_blocks[0]);
465 	/*
466 	 * metadata blocks and data blocks are allocated.
467 	 */
468 	for (n = 1; n <= indirect_blks;  n++) {
469 		/*
470 		 * Get buffer_head for parent block, zero it out
471 		 * and set the pointer to new one, then send
472 		 * parent to disk.
473 		 */
474 		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
475 		if (unlikely(!bh)) {
476 			err = -ENOMEM;
477 			goto failed;
478 		}
479 
480 		branch[n].bh = bh;
481 		lock_buffer(bh);
482 		BUFFER_TRACE(bh, "call get_create_access");
483 		err = ext4_journal_get_create_access(handle, bh);
484 		if (err) {
485 			/* Don't brelse(bh) here; it's done in
486 			 * ext4_journal_forget() below */
487 			unlock_buffer(bh);
488 			goto failed;
489 		}
490 
491 		memset(bh->b_data, 0, blocksize);
492 		branch[n].p = (__le32 *) bh->b_data + offsets[n];
493 		branch[n].key = cpu_to_le32(new_blocks[n]);
494 		*branch[n].p = branch[n].key;
495 		if (n == indirect_blks) {
496 			current_block = new_blocks[n];
497 			/*
498 			 * End of chain, update the last new metablock of
499 			 * the chain to point to the new allocated
500 			 * data blocks numbers
501 			 */
502 			for (i = 1; i < num; i++)
503 				*(branch[n].p + i) = cpu_to_le32(++current_block);
504 		}
505 		BUFFER_TRACE(bh, "marking uptodate");
506 		set_buffer_uptodate(bh);
507 		unlock_buffer(bh);
508 
509 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
510 		err = ext4_handle_dirty_metadata(handle, inode, bh);
511 		if (err)
512 			goto failed;
513 	}
514 	*blks = num;
515 	return err;
516 failed:
517 	/* Allocation failed, free what we already allocated */
518 	ext4_free_blocks(handle, inode, NULL, new_blocks[0], 1, 0);
519 	for (i = 1; i <= n ; i++) {
520 		/*
521 		 * branch[i].bh is newly allocated, so there is no
522 		 * need to revoke the block, which is why we don't
523 		 * need to set EXT4_FREE_BLOCKS_METADATA.
524 		 */
525 		ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1,
526 				 EXT4_FREE_BLOCKS_FORGET);
527 	}
528 	for (i = n+1; i < indirect_blks; i++)
529 		ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0);
530 
531 	ext4_free_blocks(handle, inode, NULL, new_blocks[i], num, 0);
532 
533 	return err;
534 }
535 
536 /**
537  * ext4_splice_branch - splice the allocated branch onto inode.
538  * @handle: handle for this transaction
539  * @inode: owner
540  * @block: (logical) number of block we are adding
541  * @chain: chain of indirect blocks (with a missing link - see
542  *	ext4_alloc_branch)
543  * @where: location of missing link
544  * @num:   number of indirect blocks we are adding
545  * @blks:  number of direct blocks we are adding
546  *
547  * This function fills the missing link and does all housekeeping needed in
548  * inode (->i_blocks, etc.). In case of success we end up with the full
549  * chain to new block and return 0.
550  */
551 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
552 			      ext4_lblk_t block, Indirect *where, int num,
553 			      int blks)
554 {
555 	int i;
556 	int err = 0;
557 	ext4_fsblk_t current_block;
558 
559 	/*
560 	 * If we're splicing into a [td]indirect block (as opposed to the
561 	 * inode) then we need to get write access to the [td]indirect block
562 	 * before the splice.
563 	 */
564 	if (where->bh) {
565 		BUFFER_TRACE(where->bh, "get_write_access");
566 		err = ext4_journal_get_write_access(handle, where->bh);
567 		if (err)
568 			goto err_out;
569 	}
570 	/* That's it */
571 
572 	*where->p = where->key;
573 
574 	/*
575 	 * Update the host buffer_head or inode to point to more just allocated
576 	 * direct blocks blocks
577 	 */
578 	if (num == 0 && blks > 1) {
579 		current_block = le32_to_cpu(where->key) + 1;
580 		for (i = 1; i < blks; i++)
581 			*(where->p + i) = cpu_to_le32(current_block++);
582 	}
583 
584 	/* We are done with atomic stuff, now do the rest of housekeeping */
585 	/* had we spliced it onto indirect block? */
586 	if (where->bh) {
587 		/*
588 		 * If we spliced it onto an indirect block, we haven't
589 		 * altered the inode.  Note however that if it is being spliced
590 		 * onto an indirect block at the very end of the file (the
591 		 * file is growing) then we *will* alter the inode to reflect
592 		 * the new i_size.  But that is not done here - it is done in
593 		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
594 		 */
595 		jbd_debug(5, "splicing indirect only\n");
596 		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
597 		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
598 		if (err)
599 			goto err_out;
600 	} else {
601 		/*
602 		 * OK, we spliced it into the inode itself on a direct block.
603 		 */
604 		ext4_mark_inode_dirty(handle, inode);
605 		jbd_debug(5, "splicing direct\n");
606 	}
607 	return err;
608 
609 err_out:
610 	for (i = 1; i <= num; i++) {
611 		/*
612 		 * branch[i].bh is newly allocated, so there is no
613 		 * need to revoke the block, which is why we don't
614 		 * need to set EXT4_FREE_BLOCKS_METADATA.
615 		 */
616 		ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
617 				 EXT4_FREE_BLOCKS_FORGET);
618 	}
619 	ext4_free_blocks(handle, inode, NULL, le32_to_cpu(where[num].key),
620 			 blks, 0);
621 
622 	return err;
623 }
624 
625 /*
626  * The ext4_ind_map_blocks() function handles non-extents inodes
627  * (i.e., using the traditional indirect/double-indirect i_blocks
628  * scheme) for ext4_map_blocks().
629  *
630  * Allocation strategy is simple: if we have to allocate something, we will
631  * have to go the whole way to leaf. So let's do it before attaching anything
632  * to tree, set linkage between the newborn blocks, write them if sync is
633  * required, recheck the path, free and repeat if check fails, otherwise
634  * set the last missing link (that will protect us from any truncate-generated
635  * removals - all blocks on the path are immune now) and possibly force the
636  * write on the parent block.
637  * That has a nice additional property: no special recovery from the failed
638  * allocations is needed - we simply release blocks and do not touch anything
639  * reachable from inode.
640  *
641  * `handle' can be NULL if create == 0.
642  *
643  * return > 0, # of blocks mapped or allocated.
644  * return = 0, if plain lookup failed.
645  * return < 0, error case.
646  *
647  * The ext4_ind_get_blocks() function should be called with
648  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
649  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
650  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
651  * blocks.
652  */
653 int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
654 			struct ext4_map_blocks *map,
655 			int flags)
656 {
657 	int err = -EIO;
658 	ext4_lblk_t offsets[4];
659 	Indirect chain[4];
660 	Indirect *partial;
661 	ext4_fsblk_t goal;
662 	int indirect_blks;
663 	int blocks_to_boundary = 0;
664 	int depth;
665 	int count = 0;
666 	ext4_fsblk_t first_block = 0;
667 
668 	trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
669 	J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
670 	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
671 	depth = ext4_block_to_path(inode, map->m_lblk, offsets,
672 				   &blocks_to_boundary);
673 
674 	if (depth == 0)
675 		goto out;
676 
677 	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
678 
679 	/* Simplest case - block found, no allocation needed */
680 	if (!partial) {
681 		first_block = le32_to_cpu(chain[depth - 1].key);
682 		count++;
683 		/*map more blocks*/
684 		while (count < map->m_len && count <= blocks_to_boundary) {
685 			ext4_fsblk_t blk;
686 
687 			blk = le32_to_cpu(*(chain[depth-1].p + count));
688 
689 			if (blk == first_block + count)
690 				count++;
691 			else
692 				break;
693 		}
694 		goto got_it;
695 	}
696 
697 	/* Next simple case - plain lookup or failed read of indirect block */
698 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
699 		goto cleanup;
700 
701 	/*
702 	 * Okay, we need to do block allocation.
703 	*/
704 	if (EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
705 				       EXT4_FEATURE_RO_COMPAT_BIGALLOC)) {
706 		EXT4_ERROR_INODE(inode, "Can't allocate blocks for "
707 				 "non-extent mapped inodes with bigalloc");
708 		return -ENOSPC;
709 	}
710 
711 	goal = ext4_find_goal(inode, map->m_lblk, partial);
712 
713 	/* the number of blocks need to allocate for [d,t]indirect blocks */
714 	indirect_blks = (chain + depth) - partial - 1;
715 
716 	/*
717 	 * Next look up the indirect map to count the totoal number of
718 	 * direct blocks to allocate for this branch.
719 	 */
720 	count = ext4_blks_to_allocate(partial, indirect_blks,
721 				      map->m_len, blocks_to_boundary);
722 	/*
723 	 * Block out ext4_truncate while we alter the tree
724 	 */
725 	err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
726 				&count, goal,
727 				offsets + (partial - chain), partial);
728 
729 	/*
730 	 * The ext4_splice_branch call will free and forget any buffers
731 	 * on the new chain if there is a failure, but that risks using
732 	 * up transaction credits, especially for bitmaps where the
733 	 * credits cannot be returned.  Can we handle this somehow?  We
734 	 * may need to return -EAGAIN upwards in the worst case.  --sct
735 	 */
736 	if (!err)
737 		err = ext4_splice_branch(handle, inode, map->m_lblk,
738 					 partial, indirect_blks, count);
739 	if (err)
740 		goto cleanup;
741 
742 	map->m_flags |= EXT4_MAP_NEW;
743 
744 	ext4_update_inode_fsync_trans(handle, inode, 1);
745 got_it:
746 	map->m_flags |= EXT4_MAP_MAPPED;
747 	map->m_pblk = le32_to_cpu(chain[depth-1].key);
748 	map->m_len = count;
749 	if (count > blocks_to_boundary)
750 		map->m_flags |= EXT4_MAP_BOUNDARY;
751 	err = count;
752 	/* Clean up and exit */
753 	partial = chain + depth - 1;	/* the whole chain */
754 cleanup:
755 	while (partial > chain) {
756 		BUFFER_TRACE(partial->bh, "call brelse");
757 		brelse(partial->bh);
758 		partial--;
759 	}
760 out:
761 	trace_ext4_ind_map_blocks_exit(inode, map, err);
762 	return err;
763 }
764 
765 /*
766  * O_DIRECT for ext3 (or indirect map) based files
767  *
768  * If the O_DIRECT write will extend the file then add this inode to the
769  * orphan list.  So recovery will truncate it back to the original size
770  * if the machine crashes during the write.
771  *
772  * If the O_DIRECT write is intantiating holes inside i_size and the machine
773  * crashes then stale disk data _may_ be exposed inside the file. But current
774  * VFS code falls back into buffered path in that case so we are safe.
775  */
776 ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
777 			   const struct iovec *iov, loff_t offset,
778 			   unsigned long nr_segs)
779 {
780 	struct file *file = iocb->ki_filp;
781 	struct inode *inode = file->f_mapping->host;
782 	struct ext4_inode_info *ei = EXT4_I(inode);
783 	handle_t *handle;
784 	ssize_t ret;
785 	int orphan = 0;
786 	size_t count = iov_length(iov, nr_segs);
787 	int retries = 0;
788 
789 	if (rw == WRITE) {
790 		loff_t final_size = offset + count;
791 
792 		if (final_size > inode->i_size) {
793 			/* Credits for sb + inode write */
794 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
795 			if (IS_ERR(handle)) {
796 				ret = PTR_ERR(handle);
797 				goto out;
798 			}
799 			ret = ext4_orphan_add(handle, inode);
800 			if (ret) {
801 				ext4_journal_stop(handle);
802 				goto out;
803 			}
804 			orphan = 1;
805 			ei->i_disksize = inode->i_size;
806 			ext4_journal_stop(handle);
807 		}
808 	}
809 
810 retry:
811 	if (rw == READ && ext4_should_dioread_nolock(inode)) {
812 		if (unlikely(atomic_read(&EXT4_I(inode)->i_unwritten))) {
813 			mutex_lock(&inode->i_mutex);
814 			ext4_flush_unwritten_io(inode);
815 			mutex_unlock(&inode->i_mutex);
816 		}
817 		/*
818 		 * Nolock dioread optimization may be dynamically disabled
819 		 * via ext4_inode_block_unlocked_dio(). Check inode's state
820 		 * while holding extra i_dio_count ref.
821 		 */
822 		atomic_inc(&inode->i_dio_count);
823 		smp_mb();
824 		if (unlikely(ext4_test_inode_state(inode,
825 						    EXT4_STATE_DIOREAD_LOCK))) {
826 			inode_dio_done(inode);
827 			goto locked;
828 		}
829 		ret = __blockdev_direct_IO(rw, iocb, inode,
830 				 inode->i_sb->s_bdev, iov,
831 				 offset, nr_segs,
832 				 ext4_get_block, NULL, NULL, 0);
833 		inode_dio_done(inode);
834 	} else {
835 locked:
836 		ret = blockdev_direct_IO(rw, iocb, inode, iov,
837 				 offset, nr_segs, ext4_get_block);
838 
839 		if (unlikely((rw & WRITE) && ret < 0)) {
840 			loff_t isize = i_size_read(inode);
841 			loff_t end = offset + iov_length(iov, nr_segs);
842 
843 			if (end > isize)
844 				ext4_truncate_failed_write(inode);
845 		}
846 	}
847 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
848 		goto retry;
849 
850 	if (orphan) {
851 		int err;
852 
853 		/* Credits for sb + inode write */
854 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
855 		if (IS_ERR(handle)) {
856 			/* This is really bad luck. We've written the data
857 			 * but cannot extend i_size. Bail out and pretend
858 			 * the write failed... */
859 			ret = PTR_ERR(handle);
860 			if (inode->i_nlink)
861 				ext4_orphan_del(NULL, inode);
862 
863 			goto out;
864 		}
865 		if (inode->i_nlink)
866 			ext4_orphan_del(handle, inode);
867 		if (ret > 0) {
868 			loff_t end = offset + ret;
869 			if (end > inode->i_size) {
870 				ei->i_disksize = end;
871 				i_size_write(inode, end);
872 				/*
873 				 * We're going to return a positive `ret'
874 				 * here due to non-zero-length I/O, so there's
875 				 * no way of reporting error returns from
876 				 * ext4_mark_inode_dirty() to userspace.  So
877 				 * ignore it.
878 				 */
879 				ext4_mark_inode_dirty(handle, inode);
880 			}
881 		}
882 		err = ext4_journal_stop(handle);
883 		if (ret == 0)
884 			ret = err;
885 	}
886 out:
887 	return ret;
888 }
889 
890 /*
891  * Calculate the number of metadata blocks need to reserve
892  * to allocate a new block at @lblocks for non extent file based file
893  */
894 int ext4_ind_calc_metadata_amount(struct inode *inode, sector_t lblock)
895 {
896 	struct ext4_inode_info *ei = EXT4_I(inode);
897 	sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
898 	int blk_bits;
899 
900 	if (lblock < EXT4_NDIR_BLOCKS)
901 		return 0;
902 
903 	lblock -= EXT4_NDIR_BLOCKS;
904 
905 	if (ei->i_da_metadata_calc_len &&
906 	    (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
907 		ei->i_da_metadata_calc_len++;
908 		return 0;
909 	}
910 	ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
911 	ei->i_da_metadata_calc_len = 1;
912 	blk_bits = order_base_2(lblock);
913 	return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
914 }
915 
916 int ext4_ind_trans_blocks(struct inode *inode, int nrblocks, int chunk)
917 {
918 	int indirects;
919 
920 	/* if nrblocks are contiguous */
921 	if (chunk) {
922 		/*
923 		 * With N contiguous data blocks, we need at most
924 		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
925 		 * 2 dindirect blocks, and 1 tindirect block
926 		 */
927 		return DIV_ROUND_UP(nrblocks,
928 				    EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
929 	}
930 	/*
931 	 * if nrblocks are not contiguous, worse case, each block touch
932 	 * a indirect block, and each indirect block touch a double indirect
933 	 * block, plus a triple indirect block
934 	 */
935 	indirects = nrblocks * 2 + 1;
936 	return indirects;
937 }
938 
939 /*
940  * Truncate transactions can be complex and absolutely huge.  So we need to
941  * be able to restart the transaction at a conventient checkpoint to make
942  * sure we don't overflow the journal.
943  *
944  * start_transaction gets us a new handle for a truncate transaction,
945  * and extend_transaction tries to extend the existing one a bit.  If
946  * extend fails, we need to propagate the failure up and restart the
947  * transaction in the top-level truncate loop. --sct
948  */
949 static handle_t *start_transaction(struct inode *inode)
950 {
951 	handle_t *result;
952 
953 	result = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
954 				    ext4_blocks_for_truncate(inode));
955 	if (!IS_ERR(result))
956 		return result;
957 
958 	ext4_std_error(inode->i_sb, PTR_ERR(result));
959 	return result;
960 }
961 
962 /*
963  * Try to extend this transaction for the purposes of truncation.
964  *
965  * Returns 0 if we managed to create more room.  If we can't create more
966  * room, and the transaction must be restarted we return 1.
967  */
968 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
969 {
970 	if (!ext4_handle_valid(handle))
971 		return 0;
972 	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
973 		return 0;
974 	if (!ext4_journal_extend(handle, ext4_blocks_for_truncate(inode)))
975 		return 0;
976 	return 1;
977 }
978 
979 /*
980  * Probably it should be a library function... search for first non-zero word
981  * or memcmp with zero_page, whatever is better for particular architecture.
982  * Linus?
983  */
984 static inline int all_zeroes(__le32 *p, __le32 *q)
985 {
986 	while (p < q)
987 		if (*p++)
988 			return 0;
989 	return 1;
990 }
991 
992 /**
993  *	ext4_find_shared - find the indirect blocks for partial truncation.
994  *	@inode:	  inode in question
995  *	@depth:	  depth of the affected branch
996  *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
997  *	@chain:	  place to store the pointers to partial indirect blocks
998  *	@top:	  place to the (detached) top of branch
999  *
1000  *	This is a helper function used by ext4_truncate().
1001  *
1002  *	When we do truncate() we may have to clean the ends of several
1003  *	indirect blocks but leave the blocks themselves alive. Block is
1004  *	partially truncated if some data below the new i_size is referred
1005  *	from it (and it is on the path to the first completely truncated
1006  *	data block, indeed).  We have to free the top of that path along
1007  *	with everything to the right of the path. Since no allocation
1008  *	past the truncation point is possible until ext4_truncate()
1009  *	finishes, we may safely do the latter, but top of branch may
1010  *	require special attention - pageout below the truncation point
1011  *	might try to populate it.
1012  *
1013  *	We atomically detach the top of branch from the tree, store the
1014  *	block number of its root in *@top, pointers to buffer_heads of
1015  *	partially truncated blocks - in @chain[].bh and pointers to
1016  *	their last elements that should not be removed - in
1017  *	@chain[].p. Return value is the pointer to last filled element
1018  *	of @chain.
1019  *
1020  *	The work left to caller to do the actual freeing of subtrees:
1021  *		a) free the subtree starting from *@top
1022  *		b) free the subtrees whose roots are stored in
1023  *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
1024  *		c) free the subtrees growing from the inode past the @chain[0].
1025  *			(no partially truncated stuff there).  */
1026 
1027 static Indirect *ext4_find_shared(struct inode *inode, int depth,
1028 				  ext4_lblk_t offsets[4], Indirect chain[4],
1029 				  __le32 *top)
1030 {
1031 	Indirect *partial, *p;
1032 	int k, err;
1033 
1034 	*top = 0;
1035 	/* Make k index the deepest non-null offset + 1 */
1036 	for (k = depth; k > 1 && !offsets[k-1]; k--)
1037 		;
1038 	partial = ext4_get_branch(inode, k, offsets, chain, &err);
1039 	/* Writer: pointers */
1040 	if (!partial)
1041 		partial = chain + k-1;
1042 	/*
1043 	 * If the branch acquired continuation since we've looked at it -
1044 	 * fine, it should all survive and (new) top doesn't belong to us.
1045 	 */
1046 	if (!partial->key && *partial->p)
1047 		/* Writer: end */
1048 		goto no_top;
1049 	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
1050 		;
1051 	/*
1052 	 * OK, we've found the last block that must survive. The rest of our
1053 	 * branch should be detached before unlocking. However, if that rest
1054 	 * of branch is all ours and does not grow immediately from the inode
1055 	 * it's easier to cheat and just decrement partial->p.
1056 	 */
1057 	if (p == chain + k - 1 && p > chain) {
1058 		p->p--;
1059 	} else {
1060 		*top = *p->p;
1061 		/* Nope, don't do this in ext4.  Must leave the tree intact */
1062 #if 0
1063 		*p->p = 0;
1064 #endif
1065 	}
1066 	/* Writer: end */
1067 
1068 	while (partial > p) {
1069 		brelse(partial->bh);
1070 		partial--;
1071 	}
1072 no_top:
1073 	return partial;
1074 }
1075 
1076 /*
1077  * Zero a number of block pointers in either an inode or an indirect block.
1078  * If we restart the transaction we must again get write access to the
1079  * indirect block for further modification.
1080  *
1081  * We release `count' blocks on disk, but (last - first) may be greater
1082  * than `count' because there can be holes in there.
1083  *
1084  * Return 0 on success, 1 on invalid block range
1085  * and < 0 on fatal error.
1086  */
1087 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
1088 			     struct buffer_head *bh,
1089 			     ext4_fsblk_t block_to_free,
1090 			     unsigned long count, __le32 *first,
1091 			     __le32 *last)
1092 {
1093 	__le32 *p;
1094 	int	flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
1095 	int	err;
1096 
1097 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1098 		flags |= EXT4_FREE_BLOCKS_METADATA;
1099 
1100 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
1101 				   count)) {
1102 		EXT4_ERROR_INODE(inode, "attempt to clear invalid "
1103 				 "blocks %llu len %lu",
1104 				 (unsigned long long) block_to_free, count);
1105 		return 1;
1106 	}
1107 
1108 	if (try_to_extend_transaction(handle, inode)) {
1109 		if (bh) {
1110 			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1111 			err = ext4_handle_dirty_metadata(handle, inode, bh);
1112 			if (unlikely(err))
1113 				goto out_err;
1114 		}
1115 		err = ext4_mark_inode_dirty(handle, inode);
1116 		if (unlikely(err))
1117 			goto out_err;
1118 		err = ext4_truncate_restart_trans(handle, inode,
1119 					ext4_blocks_for_truncate(inode));
1120 		if (unlikely(err))
1121 			goto out_err;
1122 		if (bh) {
1123 			BUFFER_TRACE(bh, "retaking write access");
1124 			err = ext4_journal_get_write_access(handle, bh);
1125 			if (unlikely(err))
1126 				goto out_err;
1127 		}
1128 	}
1129 
1130 	for (p = first; p < last; p++)
1131 		*p = 0;
1132 
1133 	ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
1134 	return 0;
1135 out_err:
1136 	ext4_std_error(inode->i_sb, err);
1137 	return err;
1138 }
1139 
1140 /**
1141  * ext4_free_data - free a list of data blocks
1142  * @handle:	handle for this transaction
1143  * @inode:	inode we are dealing with
1144  * @this_bh:	indirect buffer_head which contains *@first and *@last
1145  * @first:	array of block numbers
1146  * @last:	points immediately past the end of array
1147  *
1148  * We are freeing all blocks referred from that array (numbers are stored as
1149  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
1150  *
1151  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
1152  * blocks are contiguous then releasing them at one time will only affect one
1153  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
1154  * actually use a lot of journal space.
1155  *
1156  * @this_bh will be %NULL if @first and @last point into the inode's direct
1157  * block pointers.
1158  */
1159 static void ext4_free_data(handle_t *handle, struct inode *inode,
1160 			   struct buffer_head *this_bh,
1161 			   __le32 *first, __le32 *last)
1162 {
1163 	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
1164 	unsigned long count = 0;	    /* Number of blocks in the run */
1165 	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
1166 					       corresponding to
1167 					       block_to_free */
1168 	ext4_fsblk_t nr;		    /* Current block # */
1169 	__le32 *p;			    /* Pointer into inode/ind
1170 					       for current block */
1171 	int err = 0;
1172 
1173 	if (this_bh) {				/* For indirect block */
1174 		BUFFER_TRACE(this_bh, "get_write_access");
1175 		err = ext4_journal_get_write_access(handle, this_bh);
1176 		/* Important: if we can't update the indirect pointers
1177 		 * to the blocks, we can't free them. */
1178 		if (err)
1179 			return;
1180 	}
1181 
1182 	for (p = first; p < last; p++) {
1183 		nr = le32_to_cpu(*p);
1184 		if (nr) {
1185 			/* accumulate blocks to free if they're contiguous */
1186 			if (count == 0) {
1187 				block_to_free = nr;
1188 				block_to_free_p = p;
1189 				count = 1;
1190 			} else if (nr == block_to_free + count) {
1191 				count++;
1192 			} else {
1193 				err = ext4_clear_blocks(handle, inode, this_bh,
1194 						        block_to_free, count,
1195 						        block_to_free_p, p);
1196 				if (err)
1197 					break;
1198 				block_to_free = nr;
1199 				block_to_free_p = p;
1200 				count = 1;
1201 			}
1202 		}
1203 	}
1204 
1205 	if (!err && count > 0)
1206 		err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
1207 					count, block_to_free_p, p);
1208 	if (err < 0)
1209 		/* fatal error */
1210 		return;
1211 
1212 	if (this_bh) {
1213 		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
1214 
1215 		/*
1216 		 * The buffer head should have an attached journal head at this
1217 		 * point. However, if the data is corrupted and an indirect
1218 		 * block pointed to itself, it would have been detached when
1219 		 * the block was cleared. Check for this instead of OOPSing.
1220 		 */
1221 		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
1222 			ext4_handle_dirty_metadata(handle, inode, this_bh);
1223 		else
1224 			EXT4_ERROR_INODE(inode,
1225 					 "circular indirect block detected at "
1226 					 "block %llu",
1227 				(unsigned long long) this_bh->b_blocknr);
1228 	}
1229 }
1230 
1231 /**
1232  *	ext4_free_branches - free an array of branches
1233  *	@handle: JBD handle for this transaction
1234  *	@inode:	inode we are dealing with
1235  *	@parent_bh: the buffer_head which contains *@first and *@last
1236  *	@first:	array of block numbers
1237  *	@last:	pointer immediately past the end of array
1238  *	@depth:	depth of the branches to free
1239  *
1240  *	We are freeing all blocks referred from these branches (numbers are
1241  *	stored as little-endian 32-bit) and updating @inode->i_blocks
1242  *	appropriately.
1243  */
1244 static void ext4_free_branches(handle_t *handle, struct inode *inode,
1245 			       struct buffer_head *parent_bh,
1246 			       __le32 *first, __le32 *last, int depth)
1247 {
1248 	ext4_fsblk_t nr;
1249 	__le32 *p;
1250 
1251 	if (ext4_handle_is_aborted(handle))
1252 		return;
1253 
1254 	if (depth--) {
1255 		struct buffer_head *bh;
1256 		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1257 		p = last;
1258 		while (--p >= first) {
1259 			nr = le32_to_cpu(*p);
1260 			if (!nr)
1261 				continue;		/* A hole */
1262 
1263 			if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
1264 						   nr, 1)) {
1265 				EXT4_ERROR_INODE(inode,
1266 						 "invalid indirect mapped "
1267 						 "block %lu (level %d)",
1268 						 (unsigned long) nr, depth);
1269 				break;
1270 			}
1271 
1272 			/* Go read the buffer for the next level down */
1273 			bh = sb_bread(inode->i_sb, nr);
1274 
1275 			/*
1276 			 * A read failure? Report error and clear slot
1277 			 * (should be rare).
1278 			 */
1279 			if (!bh) {
1280 				EXT4_ERROR_INODE_BLOCK(inode, nr,
1281 						       "Read failure");
1282 				continue;
1283 			}
1284 
1285 			/* This zaps the entire block.  Bottom up. */
1286 			BUFFER_TRACE(bh, "free child branches");
1287 			ext4_free_branches(handle, inode, bh,
1288 					(__le32 *) bh->b_data,
1289 					(__le32 *) bh->b_data + addr_per_block,
1290 					depth);
1291 			brelse(bh);
1292 
1293 			/*
1294 			 * Everything below this this pointer has been
1295 			 * released.  Now let this top-of-subtree go.
1296 			 *
1297 			 * We want the freeing of this indirect block to be
1298 			 * atomic in the journal with the updating of the
1299 			 * bitmap block which owns it.  So make some room in
1300 			 * the journal.
1301 			 *
1302 			 * We zero the parent pointer *after* freeing its
1303 			 * pointee in the bitmaps, so if extend_transaction()
1304 			 * for some reason fails to put the bitmap changes and
1305 			 * the release into the same transaction, recovery
1306 			 * will merely complain about releasing a free block,
1307 			 * rather than leaking blocks.
1308 			 */
1309 			if (ext4_handle_is_aborted(handle))
1310 				return;
1311 			if (try_to_extend_transaction(handle, inode)) {
1312 				ext4_mark_inode_dirty(handle, inode);
1313 				ext4_truncate_restart_trans(handle, inode,
1314 					    ext4_blocks_for_truncate(inode));
1315 			}
1316 
1317 			/*
1318 			 * The forget flag here is critical because if
1319 			 * we are journaling (and not doing data
1320 			 * journaling), we have to make sure a revoke
1321 			 * record is written to prevent the journal
1322 			 * replay from overwriting the (former)
1323 			 * indirect block if it gets reallocated as a
1324 			 * data block.  This must happen in the same
1325 			 * transaction where the data blocks are
1326 			 * actually freed.
1327 			 */
1328 			ext4_free_blocks(handle, inode, NULL, nr, 1,
1329 					 EXT4_FREE_BLOCKS_METADATA|
1330 					 EXT4_FREE_BLOCKS_FORGET);
1331 
1332 			if (parent_bh) {
1333 				/*
1334 				 * The block which we have just freed is
1335 				 * pointed to by an indirect block: journal it
1336 				 */
1337 				BUFFER_TRACE(parent_bh, "get_write_access");
1338 				if (!ext4_journal_get_write_access(handle,
1339 								   parent_bh)){
1340 					*p = 0;
1341 					BUFFER_TRACE(parent_bh,
1342 					"call ext4_handle_dirty_metadata");
1343 					ext4_handle_dirty_metadata(handle,
1344 								   inode,
1345 								   parent_bh);
1346 				}
1347 			}
1348 		}
1349 	} else {
1350 		/* We have reached the bottom of the tree. */
1351 		BUFFER_TRACE(parent_bh, "free data blocks");
1352 		ext4_free_data(handle, inode, parent_bh, first, last);
1353 	}
1354 }
1355 
1356 void ext4_ind_truncate(struct inode *inode)
1357 {
1358 	handle_t *handle;
1359 	struct ext4_inode_info *ei = EXT4_I(inode);
1360 	__le32 *i_data = ei->i_data;
1361 	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1362 	struct address_space *mapping = inode->i_mapping;
1363 	ext4_lblk_t offsets[4];
1364 	Indirect chain[4];
1365 	Indirect *partial;
1366 	__le32 nr = 0;
1367 	int n = 0;
1368 	ext4_lblk_t last_block, max_block;
1369 	loff_t page_len;
1370 	unsigned blocksize = inode->i_sb->s_blocksize;
1371 	int err;
1372 
1373 	handle = start_transaction(inode);
1374 	if (IS_ERR(handle))
1375 		return;		/* AKPM: return what? */
1376 
1377 	last_block = (inode->i_size + blocksize-1)
1378 					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1379 	max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1380 					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1381 
1382 	if (inode->i_size % PAGE_CACHE_SIZE != 0) {
1383 		page_len = PAGE_CACHE_SIZE -
1384 			(inode->i_size & (PAGE_CACHE_SIZE - 1));
1385 
1386 		err = ext4_discard_partial_page_buffers(handle,
1387 			mapping, inode->i_size, page_len, 0);
1388 
1389 		if (err)
1390 			goto out_stop;
1391 	}
1392 
1393 	if (last_block != max_block) {
1394 		n = ext4_block_to_path(inode, last_block, offsets, NULL);
1395 		if (n == 0)
1396 			goto out_stop;	/* error */
1397 	}
1398 
1399 	/*
1400 	 * OK.  This truncate is going to happen.  We add the inode to the
1401 	 * orphan list, so that if this truncate spans multiple transactions,
1402 	 * and we crash, we will resume the truncate when the filesystem
1403 	 * recovers.  It also marks the inode dirty, to catch the new size.
1404 	 *
1405 	 * Implication: the file must always be in a sane, consistent
1406 	 * truncatable state while each transaction commits.
1407 	 */
1408 	if (ext4_orphan_add(handle, inode))
1409 		goto out_stop;
1410 
1411 	/*
1412 	 * From here we block out all ext4_get_block() callers who want to
1413 	 * modify the block allocation tree.
1414 	 */
1415 	down_write(&ei->i_data_sem);
1416 
1417 	ext4_discard_preallocations(inode);
1418 	ext4_es_remove_extent(inode, last_block, EXT_MAX_BLOCKS - last_block);
1419 
1420 	/*
1421 	 * The orphan list entry will now protect us from any crash which
1422 	 * occurs before the truncate completes, so it is now safe to propagate
1423 	 * the new, shorter inode size (held for now in i_size) into the
1424 	 * on-disk inode. We do this via i_disksize, which is the value which
1425 	 * ext4 *really* writes onto the disk inode.
1426 	 */
1427 	ei->i_disksize = inode->i_size;
1428 
1429 	if (last_block == max_block) {
1430 		/*
1431 		 * It is unnecessary to free any data blocks if last_block is
1432 		 * equal to the indirect block limit.
1433 		 */
1434 		goto out_unlock;
1435 	} else if (n == 1) {		/* direct blocks */
1436 		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
1437 			       i_data + EXT4_NDIR_BLOCKS);
1438 		goto do_indirects;
1439 	}
1440 
1441 	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1442 	/* Kill the top of shared branch (not detached) */
1443 	if (nr) {
1444 		if (partial == chain) {
1445 			/* Shared branch grows from the inode */
1446 			ext4_free_branches(handle, inode, NULL,
1447 					   &nr, &nr+1, (chain+n-1) - partial);
1448 			*partial->p = 0;
1449 			/*
1450 			 * We mark the inode dirty prior to restart,
1451 			 * and prior to stop.  No need for it here.
1452 			 */
1453 		} else {
1454 			/* Shared branch grows from an indirect block */
1455 			BUFFER_TRACE(partial->bh, "get_write_access");
1456 			ext4_free_branches(handle, inode, partial->bh,
1457 					partial->p,
1458 					partial->p+1, (chain+n-1) - partial);
1459 		}
1460 	}
1461 	/* Clear the ends of indirect blocks on the shared branch */
1462 	while (partial > chain) {
1463 		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
1464 				   (__le32*)partial->bh->b_data+addr_per_block,
1465 				   (chain+n-1) - partial);
1466 		BUFFER_TRACE(partial->bh, "call brelse");
1467 		brelse(partial->bh);
1468 		partial--;
1469 	}
1470 do_indirects:
1471 	/* Kill the remaining (whole) subtrees */
1472 	switch (offsets[0]) {
1473 	default:
1474 		nr = i_data[EXT4_IND_BLOCK];
1475 		if (nr) {
1476 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1477 			i_data[EXT4_IND_BLOCK] = 0;
1478 		}
1479 	case EXT4_IND_BLOCK:
1480 		nr = i_data[EXT4_DIND_BLOCK];
1481 		if (nr) {
1482 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1483 			i_data[EXT4_DIND_BLOCK] = 0;
1484 		}
1485 	case EXT4_DIND_BLOCK:
1486 		nr = i_data[EXT4_TIND_BLOCK];
1487 		if (nr) {
1488 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1489 			i_data[EXT4_TIND_BLOCK] = 0;
1490 		}
1491 	case EXT4_TIND_BLOCK:
1492 		;
1493 	}
1494 
1495 out_unlock:
1496 	up_write(&ei->i_data_sem);
1497 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
1498 	ext4_mark_inode_dirty(handle, inode);
1499 
1500 	/*
1501 	 * In a multi-transaction truncate, we only make the final transaction
1502 	 * synchronous
1503 	 */
1504 	if (IS_SYNC(inode))
1505 		ext4_handle_sync(handle);
1506 out_stop:
1507 	/*
1508 	 * If this was a simple ftruncate(), and the file will remain alive
1509 	 * then we need to clear up the orphan record which we created above.
1510 	 * However, if this was a real unlink then we were called by
1511 	 * ext4_delete_inode(), and we allow that function to clean up the
1512 	 * orphan info for us.
1513 	 */
1514 	if (inode->i_nlink)
1515 		ext4_orphan_del(handle, inode);
1516 
1517 	ext4_journal_stop(handle);
1518 	trace_ext4_truncate_exit(inode);
1519 }
1520 
1521 static int free_hole_blocks(handle_t *handle, struct inode *inode,
1522 			    struct buffer_head *parent_bh, __le32 *i_data,
1523 			    int level, ext4_lblk_t first,
1524 			    ext4_lblk_t count, int max)
1525 {
1526 	struct buffer_head *bh = NULL;
1527 	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1528 	int ret = 0;
1529 	int i, inc;
1530 	ext4_lblk_t offset;
1531 	__le32 blk;
1532 
1533 	inc = 1 << ((EXT4_BLOCK_SIZE_BITS(inode->i_sb) - 2) * level);
1534 	for (i = 0, offset = 0; i < max; i++, i_data++, offset += inc) {
1535 		if (offset >= count + first)
1536 			break;
1537 		if (*i_data == 0 || (offset + inc) <= first)
1538 			continue;
1539 		blk = *i_data;
1540 		if (level > 0) {
1541 			ext4_lblk_t first2;
1542 			bh = sb_bread(inode->i_sb, blk);
1543 			if (!bh) {
1544 				EXT4_ERROR_INODE_BLOCK(inode, blk,
1545 						       "Read failure");
1546 				return -EIO;
1547 			}
1548 			first2 = (first > offset) ? first - offset : 0;
1549 			ret = free_hole_blocks(handle, inode, bh,
1550 					       (__le32 *)bh->b_data, level - 1,
1551 					       first2, count - offset,
1552 					       inode->i_sb->s_blocksize >> 2);
1553 			if (ret) {
1554 				brelse(bh);
1555 				goto err;
1556 			}
1557 		}
1558 		if (level == 0 ||
1559 		    (bh && all_zeroes((__le32 *)bh->b_data,
1560 				      (__le32 *)bh->b_data + addr_per_block))) {
1561 			ext4_free_data(handle, inode, parent_bh, &blk, &blk+1);
1562 			*i_data = 0;
1563 		}
1564 		brelse(bh);
1565 		bh = NULL;
1566 	}
1567 
1568 err:
1569 	return ret;
1570 }
1571 
1572 static int ext4_free_hole_blocks(handle_t *handle, struct inode *inode,
1573 				 ext4_lblk_t first, ext4_lblk_t stop)
1574 {
1575 	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1576 	int level, ret = 0;
1577 	int num = EXT4_NDIR_BLOCKS;
1578 	ext4_lblk_t count, max = EXT4_NDIR_BLOCKS;
1579 	__le32 *i_data = EXT4_I(inode)->i_data;
1580 
1581 	count = stop - first;
1582 	for (level = 0; level < 4; level++, max *= addr_per_block) {
1583 		if (first < max) {
1584 			ret = free_hole_blocks(handle, inode, NULL, i_data,
1585 					       level, first, count, num);
1586 			if (ret)
1587 				goto err;
1588 			if (count > max - first)
1589 				count -= max - first;
1590 			else
1591 				break;
1592 			first = 0;
1593 		} else {
1594 			first -= max;
1595 		}
1596 		i_data += num;
1597 		if (level == 0) {
1598 			num = 1;
1599 			max = 1;
1600 		}
1601 	}
1602 
1603 err:
1604 	return ret;
1605 }
1606 
1607 int ext4_ind_punch_hole(struct file *file, loff_t offset, loff_t length)
1608 {
1609 	struct inode *inode = file_inode(file);
1610 	struct super_block *sb = inode->i_sb;
1611 	ext4_lblk_t first_block, stop_block;
1612 	struct address_space *mapping = inode->i_mapping;
1613 	handle_t *handle = NULL;
1614 	loff_t first_page, last_page, page_len;
1615 	loff_t first_page_offset, last_page_offset;
1616 	int err = 0;
1617 
1618 	/*
1619 	 * Write out all dirty pages to avoid race conditions
1620 	 * Then release them.
1621 	 */
1622 	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
1623 		err = filemap_write_and_wait_range(mapping,
1624 			offset, offset + length - 1);
1625 		if (err)
1626 			return err;
1627 	}
1628 
1629 	mutex_lock(&inode->i_mutex);
1630 	/* It's not possible punch hole on append only file */
1631 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
1632 		err = -EPERM;
1633 		goto out_mutex;
1634 	}
1635 	if (IS_SWAPFILE(inode)) {
1636 		err = -ETXTBSY;
1637 		goto out_mutex;
1638 	}
1639 
1640 	/* No need to punch hole beyond i_size */
1641 	if (offset >= inode->i_size)
1642 		goto out_mutex;
1643 
1644 	/*
1645 	 * If the hole extents beyond i_size, set the hole
1646 	 * to end after the page that contains i_size
1647 	 */
1648 	if (offset + length > inode->i_size) {
1649 		length = inode->i_size +
1650 		    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
1651 		    offset;
1652 	}
1653 
1654 	first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1655 	last_page = (offset + length) >> PAGE_CACHE_SHIFT;
1656 
1657 	first_page_offset = first_page << PAGE_CACHE_SHIFT;
1658 	last_page_offset = last_page << PAGE_CACHE_SHIFT;
1659 
1660 	/* Now release the pages */
1661 	if (last_page_offset > first_page_offset) {
1662 		truncate_pagecache_range(inode, first_page_offset,
1663 					 last_page_offset - 1);
1664 	}
1665 
1666 	/* Wait all existing dio works, newcomers will block on i_mutex */
1667 	inode_dio_wait(inode);
1668 
1669 	handle = start_transaction(inode);
1670 	if (IS_ERR(handle))
1671 		goto out_mutex;
1672 
1673 	/*
1674 	 * Now we need to zero out the non-page-aligned data in the
1675 	 * pages at the start and tail of the hole, and unmap the buffer
1676 	 * heads for the block aligned regions of the page that were
1677 	 * completely zerod.
1678 	 */
1679 	if (first_page > last_page) {
1680 		/*
1681 		 * If the file space being truncated is contained within a page
1682 		 * just zero out and unmap the middle of that page
1683 		 */
1684 		err = ext4_discard_partial_page_buffers(handle,
1685 			mapping, offset, length, 0);
1686 		if (err)
1687 			goto out;
1688 	} else {
1689 		/*
1690 		 * Zero out and unmap the paritial page that contains
1691 		 * the start of the hole
1692 		 */
1693 		page_len = first_page_offset - offset;
1694 		if (page_len > 0) {
1695 			err = ext4_discard_partial_page_buffers(handle, mapping,
1696 							offset, page_len, 0);
1697 			if (err)
1698 				goto out;
1699 		}
1700 
1701 		/*
1702 		 * Zero out and unmap the partial page that contains
1703 		 * the end of the hole
1704 		 */
1705 		page_len = offset + length - last_page_offset;
1706 		if (page_len > 0) {
1707 			err = ext4_discard_partial_page_buffers(handle, mapping,
1708 						last_page_offset, page_len, 0);
1709 			if (err)
1710 				goto out;
1711 		}
1712 	}
1713 
1714 	/*
1715 	 * If i_size contained in the last page, we need to
1716 	 * unmap and zero the paritial page after i_size
1717 	 */
1718 	if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
1719 	    inode->i_size % PAGE_CACHE_SIZE != 0) {
1720 		page_len = PAGE_CACHE_SIZE -
1721 			(inode->i_size & (PAGE_CACHE_SIZE - 1));
1722 		if (page_len > 0) {
1723 			err = ext4_discard_partial_page_buffers(handle,
1724 				mapping, inode->i_size, page_len, 0);
1725 			if (err)
1726 				goto out;
1727 		}
1728 	}
1729 
1730 	first_block = (offset + sb->s_blocksize - 1) >>
1731 		EXT4_BLOCK_SIZE_BITS(sb);
1732 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
1733 
1734 	if (first_block >= stop_block)
1735 		goto out;
1736 
1737 	down_write(&EXT4_I(inode)->i_data_sem);
1738 	ext4_discard_preallocations(inode);
1739 
1740 	err = ext4_es_remove_extent(inode, first_block,
1741 				    stop_block - first_block);
1742 	err = ext4_free_hole_blocks(handle, inode, first_block, stop_block);
1743 
1744 	ext4_discard_preallocations(inode);
1745 
1746 	if (IS_SYNC(inode))
1747 		ext4_handle_sync(handle);
1748 
1749 	up_write(&EXT4_I(inode)->i_data_sem);
1750 
1751 out:
1752 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
1753 	ext4_mark_inode_dirty(handle, inode);
1754 	ext4_journal_stop(handle);
1755 
1756 out_mutex:
1757 	mutex_unlock(&inode->i_mutex);
1758 
1759 	return err;
1760 }
1761