1 /* 2 * linux/fs/ext4/indirect.c 3 * 4 * from 5 * 6 * linux/fs/ext4/inode.c 7 * 8 * Copyright (C) 1992, 1993, 1994, 1995 9 * Remy Card (card@masi.ibp.fr) 10 * Laboratoire MASI - Institut Blaise Pascal 11 * Universite Pierre et Marie Curie (Paris VI) 12 * 13 * from 14 * 15 * linux/fs/minix/inode.c 16 * 17 * Copyright (C) 1991, 1992 Linus Torvalds 18 * 19 * Goal-directed block allocation by Stephen Tweedie 20 * (sct@redhat.com), 1993, 1998 21 */ 22 23 #include "ext4_jbd2.h" 24 #include "truncate.h" 25 #include "ext4_extents.h" /* Needed for EXT_MAX_BLOCKS */ 26 27 #include <trace/events/ext4.h> 28 29 typedef struct { 30 __le32 *p; 31 __le32 key; 32 struct buffer_head *bh; 33 } Indirect; 34 35 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v) 36 { 37 p->key = *(p->p = v); 38 p->bh = bh; 39 } 40 41 /** 42 * ext4_block_to_path - parse the block number into array of offsets 43 * @inode: inode in question (we are only interested in its superblock) 44 * @i_block: block number to be parsed 45 * @offsets: array to store the offsets in 46 * @boundary: set this non-zero if the referred-to block is likely to be 47 * followed (on disk) by an indirect block. 48 * 49 * To store the locations of file's data ext4 uses a data structure common 50 * for UNIX filesystems - tree of pointers anchored in the inode, with 51 * data blocks at leaves and indirect blocks in intermediate nodes. 52 * This function translates the block number into path in that tree - 53 * return value is the path length and @offsets[n] is the offset of 54 * pointer to (n+1)th node in the nth one. If @block is out of range 55 * (negative or too large) warning is printed and zero returned. 56 * 57 * Note: function doesn't find node addresses, so no IO is needed. All 58 * we need to know is the capacity of indirect blocks (taken from the 59 * inode->i_sb). 60 */ 61 62 /* 63 * Portability note: the last comparison (check that we fit into triple 64 * indirect block) is spelled differently, because otherwise on an 65 * architecture with 32-bit longs and 8Kb pages we might get into trouble 66 * if our filesystem had 8Kb blocks. We might use long long, but that would 67 * kill us on x86. Oh, well, at least the sign propagation does not matter - 68 * i_block would have to be negative in the very beginning, so we would not 69 * get there at all. 70 */ 71 72 static int ext4_block_to_path(struct inode *inode, 73 ext4_lblk_t i_block, 74 ext4_lblk_t offsets[4], int *boundary) 75 { 76 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb); 77 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb); 78 const long direct_blocks = EXT4_NDIR_BLOCKS, 79 indirect_blocks = ptrs, 80 double_blocks = (1 << (ptrs_bits * 2)); 81 int n = 0; 82 int final = 0; 83 84 if (i_block < direct_blocks) { 85 offsets[n++] = i_block; 86 final = direct_blocks; 87 } else if ((i_block -= direct_blocks) < indirect_blocks) { 88 offsets[n++] = EXT4_IND_BLOCK; 89 offsets[n++] = i_block; 90 final = ptrs; 91 } else if ((i_block -= indirect_blocks) < double_blocks) { 92 offsets[n++] = EXT4_DIND_BLOCK; 93 offsets[n++] = i_block >> ptrs_bits; 94 offsets[n++] = i_block & (ptrs - 1); 95 final = ptrs; 96 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { 97 offsets[n++] = EXT4_TIND_BLOCK; 98 offsets[n++] = i_block >> (ptrs_bits * 2); 99 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); 100 offsets[n++] = i_block & (ptrs - 1); 101 final = ptrs; 102 } else { 103 ext4_warning(inode->i_sb, "block %lu > max in inode %lu", 104 i_block + direct_blocks + 105 indirect_blocks + double_blocks, inode->i_ino); 106 } 107 if (boundary) 108 *boundary = final - 1 - (i_block & (ptrs - 1)); 109 return n; 110 } 111 112 /** 113 * ext4_get_branch - read the chain of indirect blocks leading to data 114 * @inode: inode in question 115 * @depth: depth of the chain (1 - direct pointer, etc.) 116 * @offsets: offsets of pointers in inode/indirect blocks 117 * @chain: place to store the result 118 * @err: here we store the error value 119 * 120 * Function fills the array of triples <key, p, bh> and returns %NULL 121 * if everything went OK or the pointer to the last filled triple 122 * (incomplete one) otherwise. Upon the return chain[i].key contains 123 * the number of (i+1)-th block in the chain (as it is stored in memory, 124 * i.e. little-endian 32-bit), chain[i].p contains the address of that 125 * number (it points into struct inode for i==0 and into the bh->b_data 126 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect 127 * block for i>0 and NULL for i==0. In other words, it holds the block 128 * numbers of the chain, addresses they were taken from (and where we can 129 * verify that chain did not change) and buffer_heads hosting these 130 * numbers. 131 * 132 * Function stops when it stumbles upon zero pointer (absent block) 133 * (pointer to last triple returned, *@err == 0) 134 * or when it gets an IO error reading an indirect block 135 * (ditto, *@err == -EIO) 136 * or when it reads all @depth-1 indirect blocks successfully and finds 137 * the whole chain, all way to the data (returns %NULL, *err == 0). 138 * 139 * Need to be called with 140 * down_read(&EXT4_I(inode)->i_data_sem) 141 */ 142 static Indirect *ext4_get_branch(struct inode *inode, int depth, 143 ext4_lblk_t *offsets, 144 Indirect chain[4], int *err) 145 { 146 struct super_block *sb = inode->i_sb; 147 Indirect *p = chain; 148 struct buffer_head *bh; 149 int ret = -EIO; 150 151 *err = 0; 152 /* i_data is not going away, no lock needed */ 153 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets); 154 if (!p->key) 155 goto no_block; 156 while (--depth) { 157 bh = sb_getblk(sb, le32_to_cpu(p->key)); 158 if (unlikely(!bh)) { 159 ret = -ENOMEM; 160 goto failure; 161 } 162 163 if (!bh_uptodate_or_lock(bh)) { 164 if (bh_submit_read(bh) < 0) { 165 put_bh(bh); 166 goto failure; 167 } 168 /* validate block references */ 169 if (ext4_check_indirect_blockref(inode, bh)) { 170 put_bh(bh); 171 goto failure; 172 } 173 } 174 175 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets); 176 /* Reader: end */ 177 if (!p->key) 178 goto no_block; 179 } 180 return NULL; 181 182 failure: 183 *err = ret; 184 no_block: 185 return p; 186 } 187 188 /** 189 * ext4_find_near - find a place for allocation with sufficient locality 190 * @inode: owner 191 * @ind: descriptor of indirect block. 192 * 193 * This function returns the preferred place for block allocation. 194 * It is used when heuristic for sequential allocation fails. 195 * Rules are: 196 * + if there is a block to the left of our position - allocate near it. 197 * + if pointer will live in indirect block - allocate near that block. 198 * + if pointer will live in inode - allocate in the same 199 * cylinder group. 200 * 201 * In the latter case we colour the starting block by the callers PID to 202 * prevent it from clashing with concurrent allocations for a different inode 203 * in the same block group. The PID is used here so that functionally related 204 * files will be close-by on-disk. 205 * 206 * Caller must make sure that @ind is valid and will stay that way. 207 */ 208 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind) 209 { 210 struct ext4_inode_info *ei = EXT4_I(inode); 211 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data; 212 __le32 *p; 213 214 /* Try to find previous block */ 215 for (p = ind->p - 1; p >= start; p--) { 216 if (*p) 217 return le32_to_cpu(*p); 218 } 219 220 /* No such thing, so let's try location of indirect block */ 221 if (ind->bh) 222 return ind->bh->b_blocknr; 223 224 /* 225 * It is going to be referred to from the inode itself? OK, just put it 226 * into the same cylinder group then. 227 */ 228 return ext4_inode_to_goal_block(inode); 229 } 230 231 /** 232 * ext4_find_goal - find a preferred place for allocation. 233 * @inode: owner 234 * @block: block we want 235 * @partial: pointer to the last triple within a chain 236 * 237 * Normally this function find the preferred place for block allocation, 238 * returns it. 239 * Because this is only used for non-extent files, we limit the block nr 240 * to 32 bits. 241 */ 242 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block, 243 Indirect *partial) 244 { 245 ext4_fsblk_t goal; 246 247 /* 248 * XXX need to get goal block from mballoc's data structures 249 */ 250 251 goal = ext4_find_near(inode, partial); 252 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS; 253 return goal; 254 } 255 256 /** 257 * ext4_blks_to_allocate - Look up the block map and count the number 258 * of direct blocks need to be allocated for the given branch. 259 * 260 * @branch: chain of indirect blocks 261 * @k: number of blocks need for indirect blocks 262 * @blks: number of data blocks to be mapped. 263 * @blocks_to_boundary: the offset in the indirect block 264 * 265 * return the total number of blocks to be allocate, including the 266 * direct and indirect blocks. 267 */ 268 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks, 269 int blocks_to_boundary) 270 { 271 unsigned int count = 0; 272 273 /* 274 * Simple case, [t,d]Indirect block(s) has not allocated yet 275 * then it's clear blocks on that path have not allocated 276 */ 277 if (k > 0) { 278 /* right now we don't handle cross boundary allocation */ 279 if (blks < blocks_to_boundary + 1) 280 count += blks; 281 else 282 count += blocks_to_boundary + 1; 283 return count; 284 } 285 286 count++; 287 while (count < blks && count <= blocks_to_boundary && 288 le32_to_cpu(*(branch[0].p + count)) == 0) { 289 count++; 290 } 291 return count; 292 } 293 294 /** 295 * ext4_alloc_blocks: multiple allocate blocks needed for a branch 296 * @handle: handle for this transaction 297 * @inode: inode which needs allocated blocks 298 * @iblock: the logical block to start allocated at 299 * @goal: preferred physical block of allocation 300 * @indirect_blks: the number of blocks need to allocate for indirect 301 * blocks 302 * @blks: number of desired blocks 303 * @new_blocks: on return it will store the new block numbers for 304 * the indirect blocks(if needed) and the first direct block, 305 * @err: on return it will store the error code 306 * 307 * This function will return the number of blocks allocated as 308 * requested by the passed-in parameters. 309 */ 310 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode, 311 ext4_lblk_t iblock, ext4_fsblk_t goal, 312 int indirect_blks, int blks, 313 ext4_fsblk_t new_blocks[4], int *err) 314 { 315 struct ext4_allocation_request ar; 316 int target, i; 317 unsigned long count = 0, blk_allocated = 0; 318 int index = 0; 319 ext4_fsblk_t current_block = 0; 320 int ret = 0; 321 322 /* 323 * Here we try to allocate the requested multiple blocks at once, 324 * on a best-effort basis. 325 * To build a branch, we should allocate blocks for 326 * the indirect blocks(if not allocated yet), and at least 327 * the first direct block of this branch. That's the 328 * minimum number of blocks need to allocate(required) 329 */ 330 /* first we try to allocate the indirect blocks */ 331 target = indirect_blks; 332 while (target > 0) { 333 count = target; 334 /* allocating blocks for indirect blocks and direct blocks */ 335 current_block = ext4_new_meta_blocks(handle, inode, goal, 336 0, &count, err); 337 if (*err) 338 goto failed_out; 339 340 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) { 341 EXT4_ERROR_INODE(inode, 342 "current_block %llu + count %lu > %d!", 343 current_block, count, 344 EXT4_MAX_BLOCK_FILE_PHYS); 345 *err = -EIO; 346 goto failed_out; 347 } 348 349 target -= count; 350 /* allocate blocks for indirect blocks */ 351 while (index < indirect_blks && count) { 352 new_blocks[index++] = current_block++; 353 count--; 354 } 355 if (count > 0) { 356 /* 357 * save the new block number 358 * for the first direct block 359 */ 360 new_blocks[index] = current_block; 361 WARN(1, KERN_INFO "%s returned more blocks than " 362 "requested\n", __func__); 363 break; 364 } 365 } 366 367 target = blks - count ; 368 blk_allocated = count; 369 if (!target) 370 goto allocated; 371 /* Now allocate data blocks */ 372 memset(&ar, 0, sizeof(ar)); 373 ar.inode = inode; 374 ar.goal = goal; 375 ar.len = target; 376 ar.logical = iblock; 377 if (S_ISREG(inode->i_mode)) 378 /* enable in-core preallocation only for regular files */ 379 ar.flags = EXT4_MB_HINT_DATA; 380 381 current_block = ext4_mb_new_blocks(handle, &ar, err); 382 if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) { 383 EXT4_ERROR_INODE(inode, 384 "current_block %llu + ar.len %d > %d!", 385 current_block, ar.len, 386 EXT4_MAX_BLOCK_FILE_PHYS); 387 *err = -EIO; 388 goto failed_out; 389 } 390 391 if (*err && (target == blks)) { 392 /* 393 * if the allocation failed and we didn't allocate 394 * any blocks before 395 */ 396 goto failed_out; 397 } 398 if (!*err) { 399 if (target == blks) { 400 /* 401 * save the new block number 402 * for the first direct block 403 */ 404 new_blocks[index] = current_block; 405 } 406 blk_allocated += ar.len; 407 } 408 allocated: 409 /* total number of blocks allocated for direct blocks */ 410 ret = blk_allocated; 411 *err = 0; 412 return ret; 413 failed_out: 414 for (i = 0; i < index; i++) 415 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0); 416 return ret; 417 } 418 419 /** 420 * ext4_alloc_branch - allocate and set up a chain of blocks. 421 * @handle: handle for this transaction 422 * @inode: owner 423 * @indirect_blks: number of allocated indirect blocks 424 * @blks: number of allocated direct blocks 425 * @goal: preferred place for allocation 426 * @offsets: offsets (in the blocks) to store the pointers to next. 427 * @branch: place to store the chain in. 428 * 429 * This function allocates blocks, zeroes out all but the last one, 430 * links them into chain and (if we are synchronous) writes them to disk. 431 * In other words, it prepares a branch that can be spliced onto the 432 * inode. It stores the information about that chain in the branch[], in 433 * the same format as ext4_get_branch() would do. We are calling it after 434 * we had read the existing part of chain and partial points to the last 435 * triple of that (one with zero ->key). Upon the exit we have the same 436 * picture as after the successful ext4_get_block(), except that in one 437 * place chain is disconnected - *branch->p is still zero (we did not 438 * set the last link), but branch->key contains the number that should 439 * be placed into *branch->p to fill that gap. 440 * 441 * If allocation fails we free all blocks we've allocated (and forget 442 * their buffer_heads) and return the error value the from failed 443 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain 444 * as described above and return 0. 445 */ 446 static int ext4_alloc_branch(handle_t *handle, struct inode *inode, 447 ext4_lblk_t iblock, int indirect_blks, 448 int *blks, ext4_fsblk_t goal, 449 ext4_lblk_t *offsets, Indirect *branch) 450 { 451 int blocksize = inode->i_sb->s_blocksize; 452 int i, n = 0; 453 int err = 0; 454 struct buffer_head *bh; 455 int num; 456 ext4_fsblk_t new_blocks[4]; 457 ext4_fsblk_t current_block; 458 459 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks, 460 *blks, new_blocks, &err); 461 if (err) 462 return err; 463 464 branch[0].key = cpu_to_le32(new_blocks[0]); 465 /* 466 * metadata blocks and data blocks are allocated. 467 */ 468 for (n = 1; n <= indirect_blks; n++) { 469 /* 470 * Get buffer_head for parent block, zero it out 471 * and set the pointer to new one, then send 472 * parent to disk. 473 */ 474 bh = sb_getblk(inode->i_sb, new_blocks[n-1]); 475 if (unlikely(!bh)) { 476 err = -ENOMEM; 477 goto failed; 478 } 479 480 branch[n].bh = bh; 481 lock_buffer(bh); 482 BUFFER_TRACE(bh, "call get_create_access"); 483 err = ext4_journal_get_create_access(handle, bh); 484 if (err) { 485 /* Don't brelse(bh) here; it's done in 486 * ext4_journal_forget() below */ 487 unlock_buffer(bh); 488 goto failed; 489 } 490 491 memset(bh->b_data, 0, blocksize); 492 branch[n].p = (__le32 *) bh->b_data + offsets[n]; 493 branch[n].key = cpu_to_le32(new_blocks[n]); 494 *branch[n].p = branch[n].key; 495 if (n == indirect_blks) { 496 current_block = new_blocks[n]; 497 /* 498 * End of chain, update the last new metablock of 499 * the chain to point to the new allocated 500 * data blocks numbers 501 */ 502 for (i = 1; i < num; i++) 503 *(branch[n].p + i) = cpu_to_le32(++current_block); 504 } 505 BUFFER_TRACE(bh, "marking uptodate"); 506 set_buffer_uptodate(bh); 507 unlock_buffer(bh); 508 509 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 510 err = ext4_handle_dirty_metadata(handle, inode, bh); 511 if (err) 512 goto failed; 513 } 514 *blks = num; 515 return err; 516 failed: 517 /* Allocation failed, free what we already allocated */ 518 ext4_free_blocks(handle, inode, NULL, new_blocks[0], 1, 0); 519 for (i = 1; i <= n ; i++) { 520 /* 521 * branch[i].bh is newly allocated, so there is no 522 * need to revoke the block, which is why we don't 523 * need to set EXT4_FREE_BLOCKS_METADATA. 524 */ 525 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 526 EXT4_FREE_BLOCKS_FORGET); 527 } 528 for (i = n+1; i < indirect_blks; i++) 529 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0); 530 531 ext4_free_blocks(handle, inode, NULL, new_blocks[i], num, 0); 532 533 return err; 534 } 535 536 /** 537 * ext4_splice_branch - splice the allocated branch onto inode. 538 * @handle: handle for this transaction 539 * @inode: owner 540 * @block: (logical) number of block we are adding 541 * @chain: chain of indirect blocks (with a missing link - see 542 * ext4_alloc_branch) 543 * @where: location of missing link 544 * @num: number of indirect blocks we are adding 545 * @blks: number of direct blocks we are adding 546 * 547 * This function fills the missing link and does all housekeeping needed in 548 * inode (->i_blocks, etc.). In case of success we end up with the full 549 * chain to new block and return 0. 550 */ 551 static int ext4_splice_branch(handle_t *handle, struct inode *inode, 552 ext4_lblk_t block, Indirect *where, int num, 553 int blks) 554 { 555 int i; 556 int err = 0; 557 ext4_fsblk_t current_block; 558 559 /* 560 * If we're splicing into a [td]indirect block (as opposed to the 561 * inode) then we need to get write access to the [td]indirect block 562 * before the splice. 563 */ 564 if (where->bh) { 565 BUFFER_TRACE(where->bh, "get_write_access"); 566 err = ext4_journal_get_write_access(handle, where->bh); 567 if (err) 568 goto err_out; 569 } 570 /* That's it */ 571 572 *where->p = where->key; 573 574 /* 575 * Update the host buffer_head or inode to point to more just allocated 576 * direct blocks blocks 577 */ 578 if (num == 0 && blks > 1) { 579 current_block = le32_to_cpu(where->key) + 1; 580 for (i = 1; i < blks; i++) 581 *(where->p + i) = cpu_to_le32(current_block++); 582 } 583 584 /* We are done with atomic stuff, now do the rest of housekeeping */ 585 /* had we spliced it onto indirect block? */ 586 if (where->bh) { 587 /* 588 * If we spliced it onto an indirect block, we haven't 589 * altered the inode. Note however that if it is being spliced 590 * onto an indirect block at the very end of the file (the 591 * file is growing) then we *will* alter the inode to reflect 592 * the new i_size. But that is not done here - it is done in 593 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode. 594 */ 595 jbd_debug(5, "splicing indirect only\n"); 596 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata"); 597 err = ext4_handle_dirty_metadata(handle, inode, where->bh); 598 if (err) 599 goto err_out; 600 } else { 601 /* 602 * OK, we spliced it into the inode itself on a direct block. 603 */ 604 ext4_mark_inode_dirty(handle, inode); 605 jbd_debug(5, "splicing direct\n"); 606 } 607 return err; 608 609 err_out: 610 for (i = 1; i <= num; i++) { 611 /* 612 * branch[i].bh is newly allocated, so there is no 613 * need to revoke the block, which is why we don't 614 * need to set EXT4_FREE_BLOCKS_METADATA. 615 */ 616 ext4_free_blocks(handle, inode, where[i].bh, 0, 1, 617 EXT4_FREE_BLOCKS_FORGET); 618 } 619 ext4_free_blocks(handle, inode, NULL, le32_to_cpu(where[num].key), 620 blks, 0); 621 622 return err; 623 } 624 625 /* 626 * The ext4_ind_map_blocks() function handles non-extents inodes 627 * (i.e., using the traditional indirect/double-indirect i_blocks 628 * scheme) for ext4_map_blocks(). 629 * 630 * Allocation strategy is simple: if we have to allocate something, we will 631 * have to go the whole way to leaf. So let's do it before attaching anything 632 * to tree, set linkage between the newborn blocks, write them if sync is 633 * required, recheck the path, free and repeat if check fails, otherwise 634 * set the last missing link (that will protect us from any truncate-generated 635 * removals - all blocks on the path are immune now) and possibly force the 636 * write on the parent block. 637 * That has a nice additional property: no special recovery from the failed 638 * allocations is needed - we simply release blocks and do not touch anything 639 * reachable from inode. 640 * 641 * `handle' can be NULL if create == 0. 642 * 643 * return > 0, # of blocks mapped or allocated. 644 * return = 0, if plain lookup failed. 645 * return < 0, error case. 646 * 647 * The ext4_ind_get_blocks() function should be called with 648 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem 649 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or 650 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system 651 * blocks. 652 */ 653 int ext4_ind_map_blocks(handle_t *handle, struct inode *inode, 654 struct ext4_map_blocks *map, 655 int flags) 656 { 657 int err = -EIO; 658 ext4_lblk_t offsets[4]; 659 Indirect chain[4]; 660 Indirect *partial; 661 ext4_fsblk_t goal; 662 int indirect_blks; 663 int blocks_to_boundary = 0; 664 int depth; 665 int count = 0; 666 ext4_fsblk_t first_block = 0; 667 668 trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags); 669 J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))); 670 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0); 671 depth = ext4_block_to_path(inode, map->m_lblk, offsets, 672 &blocks_to_boundary); 673 674 if (depth == 0) 675 goto out; 676 677 partial = ext4_get_branch(inode, depth, offsets, chain, &err); 678 679 /* Simplest case - block found, no allocation needed */ 680 if (!partial) { 681 first_block = le32_to_cpu(chain[depth - 1].key); 682 count++; 683 /*map more blocks*/ 684 while (count < map->m_len && count <= blocks_to_boundary) { 685 ext4_fsblk_t blk; 686 687 blk = le32_to_cpu(*(chain[depth-1].p + count)); 688 689 if (blk == first_block + count) 690 count++; 691 else 692 break; 693 } 694 goto got_it; 695 } 696 697 /* Next simple case - plain lookup or failed read of indirect block */ 698 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO) 699 goto cleanup; 700 701 /* 702 * Okay, we need to do block allocation. 703 */ 704 if (EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 705 EXT4_FEATURE_RO_COMPAT_BIGALLOC)) { 706 EXT4_ERROR_INODE(inode, "Can't allocate blocks for " 707 "non-extent mapped inodes with bigalloc"); 708 return -ENOSPC; 709 } 710 711 goal = ext4_find_goal(inode, map->m_lblk, partial); 712 713 /* the number of blocks need to allocate for [d,t]indirect blocks */ 714 indirect_blks = (chain + depth) - partial - 1; 715 716 /* 717 * Next look up the indirect map to count the totoal number of 718 * direct blocks to allocate for this branch. 719 */ 720 count = ext4_blks_to_allocate(partial, indirect_blks, 721 map->m_len, blocks_to_boundary); 722 /* 723 * Block out ext4_truncate while we alter the tree 724 */ 725 err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks, 726 &count, goal, 727 offsets + (partial - chain), partial); 728 729 /* 730 * The ext4_splice_branch call will free and forget any buffers 731 * on the new chain if there is a failure, but that risks using 732 * up transaction credits, especially for bitmaps where the 733 * credits cannot be returned. Can we handle this somehow? We 734 * may need to return -EAGAIN upwards in the worst case. --sct 735 */ 736 if (!err) 737 err = ext4_splice_branch(handle, inode, map->m_lblk, 738 partial, indirect_blks, count); 739 if (err) 740 goto cleanup; 741 742 map->m_flags |= EXT4_MAP_NEW; 743 744 ext4_update_inode_fsync_trans(handle, inode, 1); 745 got_it: 746 map->m_flags |= EXT4_MAP_MAPPED; 747 map->m_pblk = le32_to_cpu(chain[depth-1].key); 748 map->m_len = count; 749 if (count > blocks_to_boundary) 750 map->m_flags |= EXT4_MAP_BOUNDARY; 751 err = count; 752 /* Clean up and exit */ 753 partial = chain + depth - 1; /* the whole chain */ 754 cleanup: 755 while (partial > chain) { 756 BUFFER_TRACE(partial->bh, "call brelse"); 757 brelse(partial->bh); 758 partial--; 759 } 760 out: 761 trace_ext4_ind_map_blocks_exit(inode, map, err); 762 return err; 763 } 764 765 /* 766 * O_DIRECT for ext3 (or indirect map) based files 767 * 768 * If the O_DIRECT write will extend the file then add this inode to the 769 * orphan list. So recovery will truncate it back to the original size 770 * if the machine crashes during the write. 771 * 772 * If the O_DIRECT write is intantiating holes inside i_size and the machine 773 * crashes then stale disk data _may_ be exposed inside the file. But current 774 * VFS code falls back into buffered path in that case so we are safe. 775 */ 776 ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb, 777 const struct iovec *iov, loff_t offset, 778 unsigned long nr_segs) 779 { 780 struct file *file = iocb->ki_filp; 781 struct inode *inode = file->f_mapping->host; 782 struct ext4_inode_info *ei = EXT4_I(inode); 783 handle_t *handle; 784 ssize_t ret; 785 int orphan = 0; 786 size_t count = iov_length(iov, nr_segs); 787 int retries = 0; 788 789 if (rw == WRITE) { 790 loff_t final_size = offset + count; 791 792 if (final_size > inode->i_size) { 793 /* Credits for sb + inode write */ 794 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 795 if (IS_ERR(handle)) { 796 ret = PTR_ERR(handle); 797 goto out; 798 } 799 ret = ext4_orphan_add(handle, inode); 800 if (ret) { 801 ext4_journal_stop(handle); 802 goto out; 803 } 804 orphan = 1; 805 ei->i_disksize = inode->i_size; 806 ext4_journal_stop(handle); 807 } 808 } 809 810 retry: 811 if (rw == READ && ext4_should_dioread_nolock(inode)) { 812 if (unlikely(atomic_read(&EXT4_I(inode)->i_unwritten))) { 813 mutex_lock(&inode->i_mutex); 814 ext4_flush_unwritten_io(inode); 815 mutex_unlock(&inode->i_mutex); 816 } 817 /* 818 * Nolock dioread optimization may be dynamically disabled 819 * via ext4_inode_block_unlocked_dio(). Check inode's state 820 * while holding extra i_dio_count ref. 821 */ 822 atomic_inc(&inode->i_dio_count); 823 smp_mb(); 824 if (unlikely(ext4_test_inode_state(inode, 825 EXT4_STATE_DIOREAD_LOCK))) { 826 inode_dio_done(inode); 827 goto locked; 828 } 829 ret = __blockdev_direct_IO(rw, iocb, inode, 830 inode->i_sb->s_bdev, iov, 831 offset, nr_segs, 832 ext4_get_block, NULL, NULL, 0); 833 inode_dio_done(inode); 834 } else { 835 locked: 836 ret = blockdev_direct_IO(rw, iocb, inode, iov, 837 offset, nr_segs, ext4_get_block); 838 839 if (unlikely((rw & WRITE) && ret < 0)) { 840 loff_t isize = i_size_read(inode); 841 loff_t end = offset + iov_length(iov, nr_segs); 842 843 if (end > isize) 844 ext4_truncate_failed_write(inode); 845 } 846 } 847 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 848 goto retry; 849 850 if (orphan) { 851 int err; 852 853 /* Credits for sb + inode write */ 854 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 855 if (IS_ERR(handle)) { 856 /* This is really bad luck. We've written the data 857 * but cannot extend i_size. Bail out and pretend 858 * the write failed... */ 859 ret = PTR_ERR(handle); 860 if (inode->i_nlink) 861 ext4_orphan_del(NULL, inode); 862 863 goto out; 864 } 865 if (inode->i_nlink) 866 ext4_orphan_del(handle, inode); 867 if (ret > 0) { 868 loff_t end = offset + ret; 869 if (end > inode->i_size) { 870 ei->i_disksize = end; 871 i_size_write(inode, end); 872 /* 873 * We're going to return a positive `ret' 874 * here due to non-zero-length I/O, so there's 875 * no way of reporting error returns from 876 * ext4_mark_inode_dirty() to userspace. So 877 * ignore it. 878 */ 879 ext4_mark_inode_dirty(handle, inode); 880 } 881 } 882 err = ext4_journal_stop(handle); 883 if (ret == 0) 884 ret = err; 885 } 886 out: 887 return ret; 888 } 889 890 /* 891 * Calculate the number of metadata blocks need to reserve 892 * to allocate a new block at @lblocks for non extent file based file 893 */ 894 int ext4_ind_calc_metadata_amount(struct inode *inode, sector_t lblock) 895 { 896 struct ext4_inode_info *ei = EXT4_I(inode); 897 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1); 898 int blk_bits; 899 900 if (lblock < EXT4_NDIR_BLOCKS) 901 return 0; 902 903 lblock -= EXT4_NDIR_BLOCKS; 904 905 if (ei->i_da_metadata_calc_len && 906 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) { 907 ei->i_da_metadata_calc_len++; 908 return 0; 909 } 910 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask; 911 ei->i_da_metadata_calc_len = 1; 912 blk_bits = order_base_2(lblock); 913 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1; 914 } 915 916 int ext4_ind_trans_blocks(struct inode *inode, int nrblocks, int chunk) 917 { 918 int indirects; 919 920 /* if nrblocks are contiguous */ 921 if (chunk) { 922 /* 923 * With N contiguous data blocks, we need at most 924 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks, 925 * 2 dindirect blocks, and 1 tindirect block 926 */ 927 return DIV_ROUND_UP(nrblocks, 928 EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4; 929 } 930 /* 931 * if nrblocks are not contiguous, worse case, each block touch 932 * a indirect block, and each indirect block touch a double indirect 933 * block, plus a triple indirect block 934 */ 935 indirects = nrblocks * 2 + 1; 936 return indirects; 937 } 938 939 /* 940 * Truncate transactions can be complex and absolutely huge. So we need to 941 * be able to restart the transaction at a conventient checkpoint to make 942 * sure we don't overflow the journal. 943 * 944 * start_transaction gets us a new handle for a truncate transaction, 945 * and extend_transaction tries to extend the existing one a bit. If 946 * extend fails, we need to propagate the failure up and restart the 947 * transaction in the top-level truncate loop. --sct 948 */ 949 static handle_t *start_transaction(struct inode *inode) 950 { 951 handle_t *result; 952 953 result = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 954 ext4_blocks_for_truncate(inode)); 955 if (!IS_ERR(result)) 956 return result; 957 958 ext4_std_error(inode->i_sb, PTR_ERR(result)); 959 return result; 960 } 961 962 /* 963 * Try to extend this transaction for the purposes of truncation. 964 * 965 * Returns 0 if we managed to create more room. If we can't create more 966 * room, and the transaction must be restarted we return 1. 967 */ 968 static int try_to_extend_transaction(handle_t *handle, struct inode *inode) 969 { 970 if (!ext4_handle_valid(handle)) 971 return 0; 972 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1)) 973 return 0; 974 if (!ext4_journal_extend(handle, ext4_blocks_for_truncate(inode))) 975 return 0; 976 return 1; 977 } 978 979 /* 980 * Probably it should be a library function... search for first non-zero word 981 * or memcmp with zero_page, whatever is better for particular architecture. 982 * Linus? 983 */ 984 static inline int all_zeroes(__le32 *p, __le32 *q) 985 { 986 while (p < q) 987 if (*p++) 988 return 0; 989 return 1; 990 } 991 992 /** 993 * ext4_find_shared - find the indirect blocks for partial truncation. 994 * @inode: inode in question 995 * @depth: depth of the affected branch 996 * @offsets: offsets of pointers in that branch (see ext4_block_to_path) 997 * @chain: place to store the pointers to partial indirect blocks 998 * @top: place to the (detached) top of branch 999 * 1000 * This is a helper function used by ext4_truncate(). 1001 * 1002 * When we do truncate() we may have to clean the ends of several 1003 * indirect blocks but leave the blocks themselves alive. Block is 1004 * partially truncated if some data below the new i_size is referred 1005 * from it (and it is on the path to the first completely truncated 1006 * data block, indeed). We have to free the top of that path along 1007 * with everything to the right of the path. Since no allocation 1008 * past the truncation point is possible until ext4_truncate() 1009 * finishes, we may safely do the latter, but top of branch may 1010 * require special attention - pageout below the truncation point 1011 * might try to populate it. 1012 * 1013 * We atomically detach the top of branch from the tree, store the 1014 * block number of its root in *@top, pointers to buffer_heads of 1015 * partially truncated blocks - in @chain[].bh and pointers to 1016 * their last elements that should not be removed - in 1017 * @chain[].p. Return value is the pointer to last filled element 1018 * of @chain. 1019 * 1020 * The work left to caller to do the actual freeing of subtrees: 1021 * a) free the subtree starting from *@top 1022 * b) free the subtrees whose roots are stored in 1023 * (@chain[i].p+1 .. end of @chain[i].bh->b_data) 1024 * c) free the subtrees growing from the inode past the @chain[0]. 1025 * (no partially truncated stuff there). */ 1026 1027 static Indirect *ext4_find_shared(struct inode *inode, int depth, 1028 ext4_lblk_t offsets[4], Indirect chain[4], 1029 __le32 *top) 1030 { 1031 Indirect *partial, *p; 1032 int k, err; 1033 1034 *top = 0; 1035 /* Make k index the deepest non-null offset + 1 */ 1036 for (k = depth; k > 1 && !offsets[k-1]; k--) 1037 ; 1038 partial = ext4_get_branch(inode, k, offsets, chain, &err); 1039 /* Writer: pointers */ 1040 if (!partial) 1041 partial = chain + k-1; 1042 /* 1043 * If the branch acquired continuation since we've looked at it - 1044 * fine, it should all survive and (new) top doesn't belong to us. 1045 */ 1046 if (!partial->key && *partial->p) 1047 /* Writer: end */ 1048 goto no_top; 1049 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--) 1050 ; 1051 /* 1052 * OK, we've found the last block that must survive. The rest of our 1053 * branch should be detached before unlocking. However, if that rest 1054 * of branch is all ours and does not grow immediately from the inode 1055 * it's easier to cheat and just decrement partial->p. 1056 */ 1057 if (p == chain + k - 1 && p > chain) { 1058 p->p--; 1059 } else { 1060 *top = *p->p; 1061 /* Nope, don't do this in ext4. Must leave the tree intact */ 1062 #if 0 1063 *p->p = 0; 1064 #endif 1065 } 1066 /* Writer: end */ 1067 1068 while (partial > p) { 1069 brelse(partial->bh); 1070 partial--; 1071 } 1072 no_top: 1073 return partial; 1074 } 1075 1076 /* 1077 * Zero a number of block pointers in either an inode or an indirect block. 1078 * If we restart the transaction we must again get write access to the 1079 * indirect block for further modification. 1080 * 1081 * We release `count' blocks on disk, but (last - first) may be greater 1082 * than `count' because there can be holes in there. 1083 * 1084 * Return 0 on success, 1 on invalid block range 1085 * and < 0 on fatal error. 1086 */ 1087 static int ext4_clear_blocks(handle_t *handle, struct inode *inode, 1088 struct buffer_head *bh, 1089 ext4_fsblk_t block_to_free, 1090 unsigned long count, __le32 *first, 1091 __le32 *last) 1092 { 1093 __le32 *p; 1094 int flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED; 1095 int err; 1096 1097 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 1098 flags |= EXT4_FREE_BLOCKS_METADATA; 1099 1100 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free, 1101 count)) { 1102 EXT4_ERROR_INODE(inode, "attempt to clear invalid " 1103 "blocks %llu len %lu", 1104 (unsigned long long) block_to_free, count); 1105 return 1; 1106 } 1107 1108 if (try_to_extend_transaction(handle, inode)) { 1109 if (bh) { 1110 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 1111 err = ext4_handle_dirty_metadata(handle, inode, bh); 1112 if (unlikely(err)) 1113 goto out_err; 1114 } 1115 err = ext4_mark_inode_dirty(handle, inode); 1116 if (unlikely(err)) 1117 goto out_err; 1118 err = ext4_truncate_restart_trans(handle, inode, 1119 ext4_blocks_for_truncate(inode)); 1120 if (unlikely(err)) 1121 goto out_err; 1122 if (bh) { 1123 BUFFER_TRACE(bh, "retaking write access"); 1124 err = ext4_journal_get_write_access(handle, bh); 1125 if (unlikely(err)) 1126 goto out_err; 1127 } 1128 } 1129 1130 for (p = first; p < last; p++) 1131 *p = 0; 1132 1133 ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags); 1134 return 0; 1135 out_err: 1136 ext4_std_error(inode->i_sb, err); 1137 return err; 1138 } 1139 1140 /** 1141 * ext4_free_data - free a list of data blocks 1142 * @handle: handle for this transaction 1143 * @inode: inode we are dealing with 1144 * @this_bh: indirect buffer_head which contains *@first and *@last 1145 * @first: array of block numbers 1146 * @last: points immediately past the end of array 1147 * 1148 * We are freeing all blocks referred from that array (numbers are stored as 1149 * little-endian 32-bit) and updating @inode->i_blocks appropriately. 1150 * 1151 * We accumulate contiguous runs of blocks to free. Conveniently, if these 1152 * blocks are contiguous then releasing them at one time will only affect one 1153 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't 1154 * actually use a lot of journal space. 1155 * 1156 * @this_bh will be %NULL if @first and @last point into the inode's direct 1157 * block pointers. 1158 */ 1159 static void ext4_free_data(handle_t *handle, struct inode *inode, 1160 struct buffer_head *this_bh, 1161 __le32 *first, __le32 *last) 1162 { 1163 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */ 1164 unsigned long count = 0; /* Number of blocks in the run */ 1165 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind 1166 corresponding to 1167 block_to_free */ 1168 ext4_fsblk_t nr; /* Current block # */ 1169 __le32 *p; /* Pointer into inode/ind 1170 for current block */ 1171 int err = 0; 1172 1173 if (this_bh) { /* For indirect block */ 1174 BUFFER_TRACE(this_bh, "get_write_access"); 1175 err = ext4_journal_get_write_access(handle, this_bh); 1176 /* Important: if we can't update the indirect pointers 1177 * to the blocks, we can't free them. */ 1178 if (err) 1179 return; 1180 } 1181 1182 for (p = first; p < last; p++) { 1183 nr = le32_to_cpu(*p); 1184 if (nr) { 1185 /* accumulate blocks to free if they're contiguous */ 1186 if (count == 0) { 1187 block_to_free = nr; 1188 block_to_free_p = p; 1189 count = 1; 1190 } else if (nr == block_to_free + count) { 1191 count++; 1192 } else { 1193 err = ext4_clear_blocks(handle, inode, this_bh, 1194 block_to_free, count, 1195 block_to_free_p, p); 1196 if (err) 1197 break; 1198 block_to_free = nr; 1199 block_to_free_p = p; 1200 count = 1; 1201 } 1202 } 1203 } 1204 1205 if (!err && count > 0) 1206 err = ext4_clear_blocks(handle, inode, this_bh, block_to_free, 1207 count, block_to_free_p, p); 1208 if (err < 0) 1209 /* fatal error */ 1210 return; 1211 1212 if (this_bh) { 1213 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata"); 1214 1215 /* 1216 * The buffer head should have an attached journal head at this 1217 * point. However, if the data is corrupted and an indirect 1218 * block pointed to itself, it would have been detached when 1219 * the block was cleared. Check for this instead of OOPSing. 1220 */ 1221 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh)) 1222 ext4_handle_dirty_metadata(handle, inode, this_bh); 1223 else 1224 EXT4_ERROR_INODE(inode, 1225 "circular indirect block detected at " 1226 "block %llu", 1227 (unsigned long long) this_bh->b_blocknr); 1228 } 1229 } 1230 1231 /** 1232 * ext4_free_branches - free an array of branches 1233 * @handle: JBD handle for this transaction 1234 * @inode: inode we are dealing with 1235 * @parent_bh: the buffer_head which contains *@first and *@last 1236 * @first: array of block numbers 1237 * @last: pointer immediately past the end of array 1238 * @depth: depth of the branches to free 1239 * 1240 * We are freeing all blocks referred from these branches (numbers are 1241 * stored as little-endian 32-bit) and updating @inode->i_blocks 1242 * appropriately. 1243 */ 1244 static void ext4_free_branches(handle_t *handle, struct inode *inode, 1245 struct buffer_head *parent_bh, 1246 __le32 *first, __le32 *last, int depth) 1247 { 1248 ext4_fsblk_t nr; 1249 __le32 *p; 1250 1251 if (ext4_handle_is_aborted(handle)) 1252 return; 1253 1254 if (depth--) { 1255 struct buffer_head *bh; 1256 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 1257 p = last; 1258 while (--p >= first) { 1259 nr = le32_to_cpu(*p); 1260 if (!nr) 1261 continue; /* A hole */ 1262 1263 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), 1264 nr, 1)) { 1265 EXT4_ERROR_INODE(inode, 1266 "invalid indirect mapped " 1267 "block %lu (level %d)", 1268 (unsigned long) nr, depth); 1269 break; 1270 } 1271 1272 /* Go read the buffer for the next level down */ 1273 bh = sb_bread(inode->i_sb, nr); 1274 1275 /* 1276 * A read failure? Report error and clear slot 1277 * (should be rare). 1278 */ 1279 if (!bh) { 1280 EXT4_ERROR_INODE_BLOCK(inode, nr, 1281 "Read failure"); 1282 continue; 1283 } 1284 1285 /* This zaps the entire block. Bottom up. */ 1286 BUFFER_TRACE(bh, "free child branches"); 1287 ext4_free_branches(handle, inode, bh, 1288 (__le32 *) bh->b_data, 1289 (__le32 *) bh->b_data + addr_per_block, 1290 depth); 1291 brelse(bh); 1292 1293 /* 1294 * Everything below this this pointer has been 1295 * released. Now let this top-of-subtree go. 1296 * 1297 * We want the freeing of this indirect block to be 1298 * atomic in the journal with the updating of the 1299 * bitmap block which owns it. So make some room in 1300 * the journal. 1301 * 1302 * We zero the parent pointer *after* freeing its 1303 * pointee in the bitmaps, so if extend_transaction() 1304 * for some reason fails to put the bitmap changes and 1305 * the release into the same transaction, recovery 1306 * will merely complain about releasing a free block, 1307 * rather than leaking blocks. 1308 */ 1309 if (ext4_handle_is_aborted(handle)) 1310 return; 1311 if (try_to_extend_transaction(handle, inode)) { 1312 ext4_mark_inode_dirty(handle, inode); 1313 ext4_truncate_restart_trans(handle, inode, 1314 ext4_blocks_for_truncate(inode)); 1315 } 1316 1317 /* 1318 * The forget flag here is critical because if 1319 * we are journaling (and not doing data 1320 * journaling), we have to make sure a revoke 1321 * record is written to prevent the journal 1322 * replay from overwriting the (former) 1323 * indirect block if it gets reallocated as a 1324 * data block. This must happen in the same 1325 * transaction where the data blocks are 1326 * actually freed. 1327 */ 1328 ext4_free_blocks(handle, inode, NULL, nr, 1, 1329 EXT4_FREE_BLOCKS_METADATA| 1330 EXT4_FREE_BLOCKS_FORGET); 1331 1332 if (parent_bh) { 1333 /* 1334 * The block which we have just freed is 1335 * pointed to by an indirect block: journal it 1336 */ 1337 BUFFER_TRACE(parent_bh, "get_write_access"); 1338 if (!ext4_journal_get_write_access(handle, 1339 parent_bh)){ 1340 *p = 0; 1341 BUFFER_TRACE(parent_bh, 1342 "call ext4_handle_dirty_metadata"); 1343 ext4_handle_dirty_metadata(handle, 1344 inode, 1345 parent_bh); 1346 } 1347 } 1348 } 1349 } else { 1350 /* We have reached the bottom of the tree. */ 1351 BUFFER_TRACE(parent_bh, "free data blocks"); 1352 ext4_free_data(handle, inode, parent_bh, first, last); 1353 } 1354 } 1355 1356 void ext4_ind_truncate(struct inode *inode) 1357 { 1358 handle_t *handle; 1359 struct ext4_inode_info *ei = EXT4_I(inode); 1360 __le32 *i_data = ei->i_data; 1361 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 1362 struct address_space *mapping = inode->i_mapping; 1363 ext4_lblk_t offsets[4]; 1364 Indirect chain[4]; 1365 Indirect *partial; 1366 __le32 nr = 0; 1367 int n = 0; 1368 ext4_lblk_t last_block, max_block; 1369 loff_t page_len; 1370 unsigned blocksize = inode->i_sb->s_blocksize; 1371 int err; 1372 1373 handle = start_transaction(inode); 1374 if (IS_ERR(handle)) 1375 return; /* AKPM: return what? */ 1376 1377 last_block = (inode->i_size + blocksize-1) 1378 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 1379 max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1) 1380 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 1381 1382 if (inode->i_size % PAGE_CACHE_SIZE != 0) { 1383 page_len = PAGE_CACHE_SIZE - 1384 (inode->i_size & (PAGE_CACHE_SIZE - 1)); 1385 1386 err = ext4_discard_partial_page_buffers(handle, 1387 mapping, inode->i_size, page_len, 0); 1388 1389 if (err) 1390 goto out_stop; 1391 } 1392 1393 if (last_block != max_block) { 1394 n = ext4_block_to_path(inode, last_block, offsets, NULL); 1395 if (n == 0) 1396 goto out_stop; /* error */ 1397 } 1398 1399 /* 1400 * OK. This truncate is going to happen. We add the inode to the 1401 * orphan list, so that if this truncate spans multiple transactions, 1402 * and we crash, we will resume the truncate when the filesystem 1403 * recovers. It also marks the inode dirty, to catch the new size. 1404 * 1405 * Implication: the file must always be in a sane, consistent 1406 * truncatable state while each transaction commits. 1407 */ 1408 if (ext4_orphan_add(handle, inode)) 1409 goto out_stop; 1410 1411 /* 1412 * From here we block out all ext4_get_block() callers who want to 1413 * modify the block allocation tree. 1414 */ 1415 down_write(&ei->i_data_sem); 1416 1417 ext4_discard_preallocations(inode); 1418 ext4_es_remove_extent(inode, last_block, EXT_MAX_BLOCKS - last_block); 1419 1420 /* 1421 * The orphan list entry will now protect us from any crash which 1422 * occurs before the truncate completes, so it is now safe to propagate 1423 * the new, shorter inode size (held for now in i_size) into the 1424 * on-disk inode. We do this via i_disksize, which is the value which 1425 * ext4 *really* writes onto the disk inode. 1426 */ 1427 ei->i_disksize = inode->i_size; 1428 1429 if (last_block == max_block) { 1430 /* 1431 * It is unnecessary to free any data blocks if last_block is 1432 * equal to the indirect block limit. 1433 */ 1434 goto out_unlock; 1435 } else if (n == 1) { /* direct blocks */ 1436 ext4_free_data(handle, inode, NULL, i_data+offsets[0], 1437 i_data + EXT4_NDIR_BLOCKS); 1438 goto do_indirects; 1439 } 1440 1441 partial = ext4_find_shared(inode, n, offsets, chain, &nr); 1442 /* Kill the top of shared branch (not detached) */ 1443 if (nr) { 1444 if (partial == chain) { 1445 /* Shared branch grows from the inode */ 1446 ext4_free_branches(handle, inode, NULL, 1447 &nr, &nr+1, (chain+n-1) - partial); 1448 *partial->p = 0; 1449 /* 1450 * We mark the inode dirty prior to restart, 1451 * and prior to stop. No need for it here. 1452 */ 1453 } else { 1454 /* Shared branch grows from an indirect block */ 1455 BUFFER_TRACE(partial->bh, "get_write_access"); 1456 ext4_free_branches(handle, inode, partial->bh, 1457 partial->p, 1458 partial->p+1, (chain+n-1) - partial); 1459 } 1460 } 1461 /* Clear the ends of indirect blocks on the shared branch */ 1462 while (partial > chain) { 1463 ext4_free_branches(handle, inode, partial->bh, partial->p + 1, 1464 (__le32*)partial->bh->b_data+addr_per_block, 1465 (chain+n-1) - partial); 1466 BUFFER_TRACE(partial->bh, "call brelse"); 1467 brelse(partial->bh); 1468 partial--; 1469 } 1470 do_indirects: 1471 /* Kill the remaining (whole) subtrees */ 1472 switch (offsets[0]) { 1473 default: 1474 nr = i_data[EXT4_IND_BLOCK]; 1475 if (nr) { 1476 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1); 1477 i_data[EXT4_IND_BLOCK] = 0; 1478 } 1479 case EXT4_IND_BLOCK: 1480 nr = i_data[EXT4_DIND_BLOCK]; 1481 if (nr) { 1482 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2); 1483 i_data[EXT4_DIND_BLOCK] = 0; 1484 } 1485 case EXT4_DIND_BLOCK: 1486 nr = i_data[EXT4_TIND_BLOCK]; 1487 if (nr) { 1488 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3); 1489 i_data[EXT4_TIND_BLOCK] = 0; 1490 } 1491 case EXT4_TIND_BLOCK: 1492 ; 1493 } 1494 1495 out_unlock: 1496 up_write(&ei->i_data_sem); 1497 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 1498 ext4_mark_inode_dirty(handle, inode); 1499 1500 /* 1501 * In a multi-transaction truncate, we only make the final transaction 1502 * synchronous 1503 */ 1504 if (IS_SYNC(inode)) 1505 ext4_handle_sync(handle); 1506 out_stop: 1507 /* 1508 * If this was a simple ftruncate(), and the file will remain alive 1509 * then we need to clear up the orphan record which we created above. 1510 * However, if this was a real unlink then we were called by 1511 * ext4_delete_inode(), and we allow that function to clean up the 1512 * orphan info for us. 1513 */ 1514 if (inode->i_nlink) 1515 ext4_orphan_del(handle, inode); 1516 1517 ext4_journal_stop(handle); 1518 trace_ext4_truncate_exit(inode); 1519 } 1520 1521 static int free_hole_blocks(handle_t *handle, struct inode *inode, 1522 struct buffer_head *parent_bh, __le32 *i_data, 1523 int level, ext4_lblk_t first, 1524 ext4_lblk_t count, int max) 1525 { 1526 struct buffer_head *bh = NULL; 1527 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 1528 int ret = 0; 1529 int i, inc; 1530 ext4_lblk_t offset; 1531 __le32 blk; 1532 1533 inc = 1 << ((EXT4_BLOCK_SIZE_BITS(inode->i_sb) - 2) * level); 1534 for (i = 0, offset = 0; i < max; i++, i_data++, offset += inc) { 1535 if (offset >= count + first) 1536 break; 1537 if (*i_data == 0 || (offset + inc) <= first) 1538 continue; 1539 blk = *i_data; 1540 if (level > 0) { 1541 ext4_lblk_t first2; 1542 bh = sb_bread(inode->i_sb, blk); 1543 if (!bh) { 1544 EXT4_ERROR_INODE_BLOCK(inode, blk, 1545 "Read failure"); 1546 return -EIO; 1547 } 1548 first2 = (first > offset) ? first - offset : 0; 1549 ret = free_hole_blocks(handle, inode, bh, 1550 (__le32 *)bh->b_data, level - 1, 1551 first2, count - offset, 1552 inode->i_sb->s_blocksize >> 2); 1553 if (ret) { 1554 brelse(bh); 1555 goto err; 1556 } 1557 } 1558 if (level == 0 || 1559 (bh && all_zeroes((__le32 *)bh->b_data, 1560 (__le32 *)bh->b_data + addr_per_block))) { 1561 ext4_free_data(handle, inode, parent_bh, &blk, &blk+1); 1562 *i_data = 0; 1563 } 1564 brelse(bh); 1565 bh = NULL; 1566 } 1567 1568 err: 1569 return ret; 1570 } 1571 1572 static int ext4_free_hole_blocks(handle_t *handle, struct inode *inode, 1573 ext4_lblk_t first, ext4_lblk_t stop) 1574 { 1575 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 1576 int level, ret = 0; 1577 int num = EXT4_NDIR_BLOCKS; 1578 ext4_lblk_t count, max = EXT4_NDIR_BLOCKS; 1579 __le32 *i_data = EXT4_I(inode)->i_data; 1580 1581 count = stop - first; 1582 for (level = 0; level < 4; level++, max *= addr_per_block) { 1583 if (first < max) { 1584 ret = free_hole_blocks(handle, inode, NULL, i_data, 1585 level, first, count, num); 1586 if (ret) 1587 goto err; 1588 if (count > max - first) 1589 count -= max - first; 1590 else 1591 break; 1592 first = 0; 1593 } else { 1594 first -= max; 1595 } 1596 i_data += num; 1597 if (level == 0) { 1598 num = 1; 1599 max = 1; 1600 } 1601 } 1602 1603 err: 1604 return ret; 1605 } 1606 1607 int ext4_ind_punch_hole(struct file *file, loff_t offset, loff_t length) 1608 { 1609 struct inode *inode = file_inode(file); 1610 struct super_block *sb = inode->i_sb; 1611 ext4_lblk_t first_block, stop_block; 1612 struct address_space *mapping = inode->i_mapping; 1613 handle_t *handle = NULL; 1614 loff_t first_page, last_page, page_len; 1615 loff_t first_page_offset, last_page_offset; 1616 int err = 0; 1617 1618 /* 1619 * Write out all dirty pages to avoid race conditions 1620 * Then release them. 1621 */ 1622 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 1623 err = filemap_write_and_wait_range(mapping, 1624 offset, offset + length - 1); 1625 if (err) 1626 return err; 1627 } 1628 1629 mutex_lock(&inode->i_mutex); 1630 /* It's not possible punch hole on append only file */ 1631 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 1632 err = -EPERM; 1633 goto out_mutex; 1634 } 1635 if (IS_SWAPFILE(inode)) { 1636 err = -ETXTBSY; 1637 goto out_mutex; 1638 } 1639 1640 /* No need to punch hole beyond i_size */ 1641 if (offset >= inode->i_size) 1642 goto out_mutex; 1643 1644 /* 1645 * If the hole extents beyond i_size, set the hole 1646 * to end after the page that contains i_size 1647 */ 1648 if (offset + length > inode->i_size) { 1649 length = inode->i_size + 1650 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) - 1651 offset; 1652 } 1653 1654 first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1655 last_page = (offset + length) >> PAGE_CACHE_SHIFT; 1656 1657 first_page_offset = first_page << PAGE_CACHE_SHIFT; 1658 last_page_offset = last_page << PAGE_CACHE_SHIFT; 1659 1660 /* Now release the pages */ 1661 if (last_page_offset > first_page_offset) { 1662 truncate_pagecache_range(inode, first_page_offset, 1663 last_page_offset - 1); 1664 } 1665 1666 /* Wait all existing dio works, newcomers will block on i_mutex */ 1667 inode_dio_wait(inode); 1668 1669 handle = start_transaction(inode); 1670 if (IS_ERR(handle)) 1671 goto out_mutex; 1672 1673 /* 1674 * Now we need to zero out the non-page-aligned data in the 1675 * pages at the start and tail of the hole, and unmap the buffer 1676 * heads for the block aligned regions of the page that were 1677 * completely zerod. 1678 */ 1679 if (first_page > last_page) { 1680 /* 1681 * If the file space being truncated is contained within a page 1682 * just zero out and unmap the middle of that page 1683 */ 1684 err = ext4_discard_partial_page_buffers(handle, 1685 mapping, offset, length, 0); 1686 if (err) 1687 goto out; 1688 } else { 1689 /* 1690 * Zero out and unmap the paritial page that contains 1691 * the start of the hole 1692 */ 1693 page_len = first_page_offset - offset; 1694 if (page_len > 0) { 1695 err = ext4_discard_partial_page_buffers(handle, mapping, 1696 offset, page_len, 0); 1697 if (err) 1698 goto out; 1699 } 1700 1701 /* 1702 * Zero out and unmap the partial page that contains 1703 * the end of the hole 1704 */ 1705 page_len = offset + length - last_page_offset; 1706 if (page_len > 0) { 1707 err = ext4_discard_partial_page_buffers(handle, mapping, 1708 last_page_offset, page_len, 0); 1709 if (err) 1710 goto out; 1711 } 1712 } 1713 1714 /* 1715 * If i_size contained in the last page, we need to 1716 * unmap and zero the paritial page after i_size 1717 */ 1718 if (inode->i_size >> PAGE_CACHE_SHIFT == last_page && 1719 inode->i_size % PAGE_CACHE_SIZE != 0) { 1720 page_len = PAGE_CACHE_SIZE - 1721 (inode->i_size & (PAGE_CACHE_SIZE - 1)); 1722 if (page_len > 0) { 1723 err = ext4_discard_partial_page_buffers(handle, 1724 mapping, inode->i_size, page_len, 0); 1725 if (err) 1726 goto out; 1727 } 1728 } 1729 1730 first_block = (offset + sb->s_blocksize - 1) >> 1731 EXT4_BLOCK_SIZE_BITS(sb); 1732 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 1733 1734 if (first_block >= stop_block) 1735 goto out; 1736 1737 down_write(&EXT4_I(inode)->i_data_sem); 1738 ext4_discard_preallocations(inode); 1739 1740 err = ext4_es_remove_extent(inode, first_block, 1741 stop_block - first_block); 1742 err = ext4_free_hole_blocks(handle, inode, first_block, stop_block); 1743 1744 ext4_discard_preallocations(inode); 1745 1746 if (IS_SYNC(inode)) 1747 ext4_handle_sync(handle); 1748 1749 up_write(&EXT4_I(inode)->i_data_sem); 1750 1751 out: 1752 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 1753 ext4_mark_inode_dirty(handle, inode); 1754 ext4_journal_stop(handle); 1755 1756 out_mutex: 1757 mutex_unlock(&inode->i_mutex); 1758 1759 return err; 1760 } 1761