1 /* 2 * linux/fs/ext4/indirect.c 3 * 4 * from 5 * 6 * linux/fs/ext4/inode.c 7 * 8 * Copyright (C) 1992, 1993, 1994, 1995 9 * Remy Card (card@masi.ibp.fr) 10 * Laboratoire MASI - Institut Blaise Pascal 11 * Universite Pierre et Marie Curie (Paris VI) 12 * 13 * from 14 * 15 * linux/fs/minix/inode.c 16 * 17 * Copyright (C) 1991, 1992 Linus Torvalds 18 * 19 * Goal-directed block allocation by Stephen Tweedie 20 * (sct@redhat.com), 1993, 1998 21 */ 22 23 #include "ext4_jbd2.h" 24 #include "truncate.h" 25 #include <linux/uio.h> 26 27 #include <trace/events/ext4.h> 28 29 typedef struct { 30 __le32 *p; 31 __le32 key; 32 struct buffer_head *bh; 33 } Indirect; 34 35 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v) 36 { 37 p->key = *(p->p = v); 38 p->bh = bh; 39 } 40 41 /** 42 * ext4_block_to_path - parse the block number into array of offsets 43 * @inode: inode in question (we are only interested in its superblock) 44 * @i_block: block number to be parsed 45 * @offsets: array to store the offsets in 46 * @boundary: set this non-zero if the referred-to block is likely to be 47 * followed (on disk) by an indirect block. 48 * 49 * To store the locations of file's data ext4 uses a data structure common 50 * for UNIX filesystems - tree of pointers anchored in the inode, with 51 * data blocks at leaves and indirect blocks in intermediate nodes. 52 * This function translates the block number into path in that tree - 53 * return value is the path length and @offsets[n] is the offset of 54 * pointer to (n+1)th node in the nth one. If @block is out of range 55 * (negative or too large) warning is printed and zero returned. 56 * 57 * Note: function doesn't find node addresses, so no IO is needed. All 58 * we need to know is the capacity of indirect blocks (taken from the 59 * inode->i_sb). 60 */ 61 62 /* 63 * Portability note: the last comparison (check that we fit into triple 64 * indirect block) is spelled differently, because otherwise on an 65 * architecture with 32-bit longs and 8Kb pages we might get into trouble 66 * if our filesystem had 8Kb blocks. We might use long long, but that would 67 * kill us on x86. Oh, well, at least the sign propagation does not matter - 68 * i_block would have to be negative in the very beginning, so we would not 69 * get there at all. 70 */ 71 72 static int ext4_block_to_path(struct inode *inode, 73 ext4_lblk_t i_block, 74 ext4_lblk_t offsets[4], int *boundary) 75 { 76 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb); 77 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb); 78 const long direct_blocks = EXT4_NDIR_BLOCKS, 79 indirect_blocks = ptrs, 80 double_blocks = (1 << (ptrs_bits * 2)); 81 int n = 0; 82 int final = 0; 83 84 if (i_block < direct_blocks) { 85 offsets[n++] = i_block; 86 final = direct_blocks; 87 } else if ((i_block -= direct_blocks) < indirect_blocks) { 88 offsets[n++] = EXT4_IND_BLOCK; 89 offsets[n++] = i_block; 90 final = ptrs; 91 } else if ((i_block -= indirect_blocks) < double_blocks) { 92 offsets[n++] = EXT4_DIND_BLOCK; 93 offsets[n++] = i_block >> ptrs_bits; 94 offsets[n++] = i_block & (ptrs - 1); 95 final = ptrs; 96 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { 97 offsets[n++] = EXT4_TIND_BLOCK; 98 offsets[n++] = i_block >> (ptrs_bits * 2); 99 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); 100 offsets[n++] = i_block & (ptrs - 1); 101 final = ptrs; 102 } else { 103 ext4_warning(inode->i_sb, "block %lu > max in inode %lu", 104 i_block + direct_blocks + 105 indirect_blocks + double_blocks, inode->i_ino); 106 } 107 if (boundary) 108 *boundary = final - 1 - (i_block & (ptrs - 1)); 109 return n; 110 } 111 112 /** 113 * ext4_get_branch - read the chain of indirect blocks leading to data 114 * @inode: inode in question 115 * @depth: depth of the chain (1 - direct pointer, etc.) 116 * @offsets: offsets of pointers in inode/indirect blocks 117 * @chain: place to store the result 118 * @err: here we store the error value 119 * 120 * Function fills the array of triples <key, p, bh> and returns %NULL 121 * if everything went OK or the pointer to the last filled triple 122 * (incomplete one) otherwise. Upon the return chain[i].key contains 123 * the number of (i+1)-th block in the chain (as it is stored in memory, 124 * i.e. little-endian 32-bit), chain[i].p contains the address of that 125 * number (it points into struct inode for i==0 and into the bh->b_data 126 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect 127 * block for i>0 and NULL for i==0. In other words, it holds the block 128 * numbers of the chain, addresses they were taken from (and where we can 129 * verify that chain did not change) and buffer_heads hosting these 130 * numbers. 131 * 132 * Function stops when it stumbles upon zero pointer (absent block) 133 * (pointer to last triple returned, *@err == 0) 134 * or when it gets an IO error reading an indirect block 135 * (ditto, *@err == -EIO) 136 * or when it reads all @depth-1 indirect blocks successfully and finds 137 * the whole chain, all way to the data (returns %NULL, *err == 0). 138 * 139 * Need to be called with 140 * down_read(&EXT4_I(inode)->i_data_sem) 141 */ 142 static Indirect *ext4_get_branch(struct inode *inode, int depth, 143 ext4_lblk_t *offsets, 144 Indirect chain[4], int *err) 145 { 146 struct super_block *sb = inode->i_sb; 147 Indirect *p = chain; 148 struct buffer_head *bh; 149 int ret = -EIO; 150 151 *err = 0; 152 /* i_data is not going away, no lock needed */ 153 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets); 154 if (!p->key) 155 goto no_block; 156 while (--depth) { 157 bh = sb_getblk(sb, le32_to_cpu(p->key)); 158 if (unlikely(!bh)) { 159 ret = -ENOMEM; 160 goto failure; 161 } 162 163 if (!bh_uptodate_or_lock(bh)) { 164 if (bh_submit_read(bh) < 0) { 165 put_bh(bh); 166 goto failure; 167 } 168 /* validate block references */ 169 if (ext4_check_indirect_blockref(inode, bh)) { 170 put_bh(bh); 171 goto failure; 172 } 173 } 174 175 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets); 176 /* Reader: end */ 177 if (!p->key) 178 goto no_block; 179 } 180 return NULL; 181 182 failure: 183 *err = ret; 184 no_block: 185 return p; 186 } 187 188 /** 189 * ext4_find_near - find a place for allocation with sufficient locality 190 * @inode: owner 191 * @ind: descriptor of indirect block. 192 * 193 * This function returns the preferred place for block allocation. 194 * It is used when heuristic for sequential allocation fails. 195 * Rules are: 196 * + if there is a block to the left of our position - allocate near it. 197 * + if pointer will live in indirect block - allocate near that block. 198 * + if pointer will live in inode - allocate in the same 199 * cylinder group. 200 * 201 * In the latter case we colour the starting block by the callers PID to 202 * prevent it from clashing with concurrent allocations for a different inode 203 * in the same block group. The PID is used here so that functionally related 204 * files will be close-by on-disk. 205 * 206 * Caller must make sure that @ind is valid and will stay that way. 207 */ 208 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind) 209 { 210 struct ext4_inode_info *ei = EXT4_I(inode); 211 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data; 212 __le32 *p; 213 214 /* Try to find previous block */ 215 for (p = ind->p - 1; p >= start; p--) { 216 if (*p) 217 return le32_to_cpu(*p); 218 } 219 220 /* No such thing, so let's try location of indirect block */ 221 if (ind->bh) 222 return ind->bh->b_blocknr; 223 224 /* 225 * It is going to be referred to from the inode itself? OK, just put it 226 * into the same cylinder group then. 227 */ 228 return ext4_inode_to_goal_block(inode); 229 } 230 231 /** 232 * ext4_find_goal - find a preferred place for allocation. 233 * @inode: owner 234 * @block: block we want 235 * @partial: pointer to the last triple within a chain 236 * 237 * Normally this function find the preferred place for block allocation, 238 * returns it. 239 * Because this is only used for non-extent files, we limit the block nr 240 * to 32 bits. 241 */ 242 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block, 243 Indirect *partial) 244 { 245 ext4_fsblk_t goal; 246 247 /* 248 * XXX need to get goal block from mballoc's data structures 249 */ 250 251 goal = ext4_find_near(inode, partial); 252 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS; 253 return goal; 254 } 255 256 /** 257 * ext4_blks_to_allocate - Look up the block map and count the number 258 * of direct blocks need to be allocated for the given branch. 259 * 260 * @branch: chain of indirect blocks 261 * @k: number of blocks need for indirect blocks 262 * @blks: number of data blocks to be mapped. 263 * @blocks_to_boundary: the offset in the indirect block 264 * 265 * return the total number of blocks to be allocate, including the 266 * direct and indirect blocks. 267 */ 268 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks, 269 int blocks_to_boundary) 270 { 271 unsigned int count = 0; 272 273 /* 274 * Simple case, [t,d]Indirect block(s) has not allocated yet 275 * then it's clear blocks on that path have not allocated 276 */ 277 if (k > 0) { 278 /* right now we don't handle cross boundary allocation */ 279 if (blks < blocks_to_boundary + 1) 280 count += blks; 281 else 282 count += blocks_to_boundary + 1; 283 return count; 284 } 285 286 count++; 287 while (count < blks && count <= blocks_to_boundary && 288 le32_to_cpu(*(branch[0].p + count)) == 0) { 289 count++; 290 } 291 return count; 292 } 293 294 /** 295 * ext4_alloc_branch - allocate and set up a chain of blocks. 296 * @handle: handle for this transaction 297 * @inode: owner 298 * @indirect_blks: number of allocated indirect blocks 299 * @blks: number of allocated direct blocks 300 * @goal: preferred place for allocation 301 * @offsets: offsets (in the blocks) to store the pointers to next. 302 * @branch: place to store the chain in. 303 * 304 * This function allocates blocks, zeroes out all but the last one, 305 * links them into chain and (if we are synchronous) writes them to disk. 306 * In other words, it prepares a branch that can be spliced onto the 307 * inode. It stores the information about that chain in the branch[], in 308 * the same format as ext4_get_branch() would do. We are calling it after 309 * we had read the existing part of chain and partial points to the last 310 * triple of that (one with zero ->key). Upon the exit we have the same 311 * picture as after the successful ext4_get_block(), except that in one 312 * place chain is disconnected - *branch->p is still zero (we did not 313 * set the last link), but branch->key contains the number that should 314 * be placed into *branch->p to fill that gap. 315 * 316 * If allocation fails we free all blocks we've allocated (and forget 317 * their buffer_heads) and return the error value the from failed 318 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain 319 * as described above and return 0. 320 */ 321 static int ext4_alloc_branch(handle_t *handle, 322 struct ext4_allocation_request *ar, 323 int indirect_blks, ext4_lblk_t *offsets, 324 Indirect *branch) 325 { 326 struct buffer_head * bh; 327 ext4_fsblk_t b, new_blocks[4]; 328 __le32 *p; 329 int i, j, err, len = 1; 330 331 for (i = 0; i <= indirect_blks; i++) { 332 if (i == indirect_blks) { 333 new_blocks[i] = ext4_mb_new_blocks(handle, ar, &err); 334 } else 335 ar->goal = new_blocks[i] = ext4_new_meta_blocks(handle, 336 ar->inode, ar->goal, 337 ar->flags & EXT4_MB_DELALLOC_RESERVED, 338 NULL, &err); 339 if (err) { 340 i--; 341 goto failed; 342 } 343 branch[i].key = cpu_to_le32(new_blocks[i]); 344 if (i == 0) 345 continue; 346 347 bh = branch[i].bh = sb_getblk(ar->inode->i_sb, new_blocks[i-1]); 348 if (unlikely(!bh)) { 349 err = -ENOMEM; 350 goto failed; 351 } 352 lock_buffer(bh); 353 BUFFER_TRACE(bh, "call get_create_access"); 354 err = ext4_journal_get_create_access(handle, bh); 355 if (err) { 356 unlock_buffer(bh); 357 goto failed; 358 } 359 360 memset(bh->b_data, 0, bh->b_size); 361 p = branch[i].p = (__le32 *) bh->b_data + offsets[i]; 362 b = new_blocks[i]; 363 364 if (i == indirect_blks) 365 len = ar->len; 366 for (j = 0; j < len; j++) 367 *p++ = cpu_to_le32(b++); 368 369 BUFFER_TRACE(bh, "marking uptodate"); 370 set_buffer_uptodate(bh); 371 unlock_buffer(bh); 372 373 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 374 err = ext4_handle_dirty_metadata(handle, ar->inode, bh); 375 if (err) 376 goto failed; 377 } 378 return 0; 379 failed: 380 for (; i >= 0; i--) { 381 /* 382 * We want to ext4_forget() only freshly allocated indirect 383 * blocks. Buffer for new_blocks[i-1] is at branch[i].bh and 384 * buffer at branch[0].bh is indirect block / inode already 385 * existing before ext4_alloc_branch() was called. 386 */ 387 if (i > 0 && i != indirect_blks && branch[i].bh) 388 ext4_forget(handle, 1, ar->inode, branch[i].bh, 389 branch[i].bh->b_blocknr); 390 ext4_free_blocks(handle, ar->inode, NULL, new_blocks[i], 391 (i == indirect_blks) ? ar->len : 1, 0); 392 } 393 return err; 394 } 395 396 /** 397 * ext4_splice_branch - splice the allocated branch onto inode. 398 * @handle: handle for this transaction 399 * @inode: owner 400 * @block: (logical) number of block we are adding 401 * @chain: chain of indirect blocks (with a missing link - see 402 * ext4_alloc_branch) 403 * @where: location of missing link 404 * @num: number of indirect blocks we are adding 405 * @blks: number of direct blocks we are adding 406 * 407 * This function fills the missing link and does all housekeeping needed in 408 * inode (->i_blocks, etc.). In case of success we end up with the full 409 * chain to new block and return 0. 410 */ 411 static int ext4_splice_branch(handle_t *handle, 412 struct ext4_allocation_request *ar, 413 Indirect *where, int num) 414 { 415 int i; 416 int err = 0; 417 ext4_fsblk_t current_block; 418 419 /* 420 * If we're splicing into a [td]indirect block (as opposed to the 421 * inode) then we need to get write access to the [td]indirect block 422 * before the splice. 423 */ 424 if (where->bh) { 425 BUFFER_TRACE(where->bh, "get_write_access"); 426 err = ext4_journal_get_write_access(handle, where->bh); 427 if (err) 428 goto err_out; 429 } 430 /* That's it */ 431 432 *where->p = where->key; 433 434 /* 435 * Update the host buffer_head or inode to point to more just allocated 436 * direct blocks blocks 437 */ 438 if (num == 0 && ar->len > 1) { 439 current_block = le32_to_cpu(where->key) + 1; 440 for (i = 1; i < ar->len; i++) 441 *(where->p + i) = cpu_to_le32(current_block++); 442 } 443 444 /* We are done with atomic stuff, now do the rest of housekeeping */ 445 /* had we spliced it onto indirect block? */ 446 if (where->bh) { 447 /* 448 * If we spliced it onto an indirect block, we haven't 449 * altered the inode. Note however that if it is being spliced 450 * onto an indirect block at the very end of the file (the 451 * file is growing) then we *will* alter the inode to reflect 452 * the new i_size. But that is not done here - it is done in 453 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode. 454 */ 455 jbd_debug(5, "splicing indirect only\n"); 456 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata"); 457 err = ext4_handle_dirty_metadata(handle, ar->inode, where->bh); 458 if (err) 459 goto err_out; 460 } else { 461 /* 462 * OK, we spliced it into the inode itself on a direct block. 463 */ 464 ext4_mark_inode_dirty(handle, ar->inode); 465 jbd_debug(5, "splicing direct\n"); 466 } 467 return err; 468 469 err_out: 470 for (i = 1; i <= num; i++) { 471 /* 472 * branch[i].bh is newly allocated, so there is no 473 * need to revoke the block, which is why we don't 474 * need to set EXT4_FREE_BLOCKS_METADATA. 475 */ 476 ext4_free_blocks(handle, ar->inode, where[i].bh, 0, 1, 477 EXT4_FREE_BLOCKS_FORGET); 478 } 479 ext4_free_blocks(handle, ar->inode, NULL, le32_to_cpu(where[num].key), 480 ar->len, 0); 481 482 return err; 483 } 484 485 /* 486 * The ext4_ind_map_blocks() function handles non-extents inodes 487 * (i.e., using the traditional indirect/double-indirect i_blocks 488 * scheme) for ext4_map_blocks(). 489 * 490 * Allocation strategy is simple: if we have to allocate something, we will 491 * have to go the whole way to leaf. So let's do it before attaching anything 492 * to tree, set linkage between the newborn blocks, write them if sync is 493 * required, recheck the path, free and repeat if check fails, otherwise 494 * set the last missing link (that will protect us from any truncate-generated 495 * removals - all blocks on the path are immune now) and possibly force the 496 * write on the parent block. 497 * That has a nice additional property: no special recovery from the failed 498 * allocations is needed - we simply release blocks and do not touch anything 499 * reachable from inode. 500 * 501 * `handle' can be NULL if create == 0. 502 * 503 * return > 0, # of blocks mapped or allocated. 504 * return = 0, if plain lookup failed. 505 * return < 0, error case. 506 * 507 * The ext4_ind_get_blocks() function should be called with 508 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem 509 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or 510 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system 511 * blocks. 512 */ 513 int ext4_ind_map_blocks(handle_t *handle, struct inode *inode, 514 struct ext4_map_blocks *map, 515 int flags) 516 { 517 struct ext4_allocation_request ar; 518 int err = -EIO; 519 ext4_lblk_t offsets[4]; 520 Indirect chain[4]; 521 Indirect *partial; 522 int indirect_blks; 523 int blocks_to_boundary = 0; 524 int depth; 525 int count = 0; 526 ext4_fsblk_t first_block = 0; 527 528 trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags); 529 J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))); 530 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0); 531 depth = ext4_block_to_path(inode, map->m_lblk, offsets, 532 &blocks_to_boundary); 533 534 if (depth == 0) 535 goto out; 536 537 partial = ext4_get_branch(inode, depth, offsets, chain, &err); 538 539 /* Simplest case - block found, no allocation needed */ 540 if (!partial) { 541 first_block = le32_to_cpu(chain[depth - 1].key); 542 count++; 543 /*map more blocks*/ 544 while (count < map->m_len && count <= blocks_to_boundary) { 545 ext4_fsblk_t blk; 546 547 blk = le32_to_cpu(*(chain[depth-1].p + count)); 548 549 if (blk == first_block + count) 550 count++; 551 else 552 break; 553 } 554 goto got_it; 555 } 556 557 /* Next simple case - plain lookup or failed read of indirect block */ 558 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO) 559 goto cleanup; 560 561 /* 562 * Okay, we need to do block allocation. 563 */ 564 if (EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 565 EXT4_FEATURE_RO_COMPAT_BIGALLOC)) { 566 EXT4_ERROR_INODE(inode, "Can't allocate blocks for " 567 "non-extent mapped inodes with bigalloc"); 568 return -ENOSPC; 569 } 570 571 /* Set up for the direct block allocation */ 572 memset(&ar, 0, sizeof(ar)); 573 ar.inode = inode; 574 ar.logical = map->m_lblk; 575 if (S_ISREG(inode->i_mode)) 576 ar.flags = EXT4_MB_HINT_DATA; 577 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 578 ar.flags |= EXT4_MB_DELALLOC_RESERVED; 579 580 ar.goal = ext4_find_goal(inode, map->m_lblk, partial); 581 582 /* the number of blocks need to allocate for [d,t]indirect blocks */ 583 indirect_blks = (chain + depth) - partial - 1; 584 585 /* 586 * Next look up the indirect map to count the totoal number of 587 * direct blocks to allocate for this branch. 588 */ 589 ar.len = ext4_blks_to_allocate(partial, indirect_blks, 590 map->m_len, blocks_to_boundary); 591 592 /* 593 * Block out ext4_truncate while we alter the tree 594 */ 595 err = ext4_alloc_branch(handle, &ar, indirect_blks, 596 offsets + (partial - chain), partial); 597 598 /* 599 * The ext4_splice_branch call will free and forget any buffers 600 * on the new chain if there is a failure, but that risks using 601 * up transaction credits, especially for bitmaps where the 602 * credits cannot be returned. Can we handle this somehow? We 603 * may need to return -EAGAIN upwards in the worst case. --sct 604 */ 605 if (!err) 606 err = ext4_splice_branch(handle, &ar, partial, indirect_blks); 607 if (err) 608 goto cleanup; 609 610 map->m_flags |= EXT4_MAP_NEW; 611 612 ext4_update_inode_fsync_trans(handle, inode, 1); 613 count = ar.len; 614 got_it: 615 map->m_flags |= EXT4_MAP_MAPPED; 616 map->m_pblk = le32_to_cpu(chain[depth-1].key); 617 map->m_len = count; 618 if (count > blocks_to_boundary) 619 map->m_flags |= EXT4_MAP_BOUNDARY; 620 err = count; 621 /* Clean up and exit */ 622 partial = chain + depth - 1; /* the whole chain */ 623 cleanup: 624 while (partial > chain) { 625 BUFFER_TRACE(partial->bh, "call brelse"); 626 brelse(partial->bh); 627 partial--; 628 } 629 out: 630 trace_ext4_ind_map_blocks_exit(inode, flags, map, err); 631 return err; 632 } 633 634 /* 635 * O_DIRECT for ext3 (or indirect map) based files 636 * 637 * If the O_DIRECT write will extend the file then add this inode to the 638 * orphan list. So recovery will truncate it back to the original size 639 * if the machine crashes during the write. 640 * 641 * If the O_DIRECT write is intantiating holes inside i_size and the machine 642 * crashes then stale disk data _may_ be exposed inside the file. But current 643 * VFS code falls back into buffered path in that case so we are safe. 644 */ 645 ssize_t ext4_ind_direct_IO(struct kiocb *iocb, struct iov_iter *iter, 646 loff_t offset) 647 { 648 struct file *file = iocb->ki_filp; 649 struct inode *inode = file->f_mapping->host; 650 struct ext4_inode_info *ei = EXT4_I(inode); 651 handle_t *handle; 652 ssize_t ret; 653 int orphan = 0; 654 size_t count = iov_iter_count(iter); 655 int retries = 0; 656 657 if (iov_iter_rw(iter) == WRITE) { 658 loff_t final_size = offset + count; 659 660 if (final_size > inode->i_size) { 661 /* Credits for sb + inode write */ 662 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 663 if (IS_ERR(handle)) { 664 ret = PTR_ERR(handle); 665 goto out; 666 } 667 ret = ext4_orphan_add(handle, inode); 668 if (ret) { 669 ext4_journal_stop(handle); 670 goto out; 671 } 672 orphan = 1; 673 ei->i_disksize = inode->i_size; 674 ext4_journal_stop(handle); 675 } 676 } 677 678 retry: 679 if (iov_iter_rw(iter) == READ && ext4_should_dioread_nolock(inode)) { 680 /* 681 * Nolock dioread optimization may be dynamically disabled 682 * via ext4_inode_block_unlocked_dio(). Check inode's state 683 * while holding extra i_dio_count ref. 684 */ 685 inode_dio_begin(inode); 686 smp_mb(); 687 if (unlikely(ext4_test_inode_state(inode, 688 EXT4_STATE_DIOREAD_LOCK))) { 689 inode_dio_end(inode); 690 goto locked; 691 } 692 if (IS_DAX(inode)) 693 ret = dax_do_io(iocb, inode, iter, offset, 694 ext4_get_block, NULL, 0); 695 else 696 ret = __blockdev_direct_IO(iocb, inode, 697 inode->i_sb->s_bdev, iter, 698 offset, ext4_get_block, NULL, 699 NULL, 0); 700 inode_dio_end(inode); 701 } else { 702 locked: 703 if (IS_DAX(inode)) 704 ret = dax_do_io(iocb, inode, iter, offset, 705 ext4_get_block, NULL, DIO_LOCKING); 706 else 707 ret = blockdev_direct_IO(iocb, inode, iter, offset, 708 ext4_get_block); 709 710 if (unlikely(iov_iter_rw(iter) == WRITE && ret < 0)) { 711 loff_t isize = i_size_read(inode); 712 loff_t end = offset + count; 713 714 if (end > isize) 715 ext4_truncate_failed_write(inode); 716 } 717 } 718 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 719 goto retry; 720 721 if (orphan) { 722 int err; 723 724 /* Credits for sb + inode write */ 725 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 726 if (IS_ERR(handle)) { 727 /* This is really bad luck. We've written the data 728 * but cannot extend i_size. Bail out and pretend 729 * the write failed... */ 730 ret = PTR_ERR(handle); 731 if (inode->i_nlink) 732 ext4_orphan_del(NULL, inode); 733 734 goto out; 735 } 736 if (inode->i_nlink) 737 ext4_orphan_del(handle, inode); 738 if (ret > 0) { 739 loff_t end = offset + ret; 740 if (end > inode->i_size) { 741 ei->i_disksize = end; 742 i_size_write(inode, end); 743 /* 744 * We're going to return a positive `ret' 745 * here due to non-zero-length I/O, so there's 746 * no way of reporting error returns from 747 * ext4_mark_inode_dirty() to userspace. So 748 * ignore it. 749 */ 750 ext4_mark_inode_dirty(handle, inode); 751 } 752 } 753 err = ext4_journal_stop(handle); 754 if (ret == 0) 755 ret = err; 756 } 757 out: 758 return ret; 759 } 760 761 /* 762 * Calculate the number of metadata blocks need to reserve 763 * to allocate a new block at @lblocks for non extent file based file 764 */ 765 int ext4_ind_calc_metadata_amount(struct inode *inode, sector_t lblock) 766 { 767 struct ext4_inode_info *ei = EXT4_I(inode); 768 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1); 769 int blk_bits; 770 771 if (lblock < EXT4_NDIR_BLOCKS) 772 return 0; 773 774 lblock -= EXT4_NDIR_BLOCKS; 775 776 if (ei->i_da_metadata_calc_len && 777 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) { 778 ei->i_da_metadata_calc_len++; 779 return 0; 780 } 781 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask; 782 ei->i_da_metadata_calc_len = 1; 783 blk_bits = order_base_2(lblock); 784 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1; 785 } 786 787 /* 788 * Calculate number of indirect blocks touched by mapping @nrblocks logically 789 * contiguous blocks 790 */ 791 int ext4_ind_trans_blocks(struct inode *inode, int nrblocks) 792 { 793 /* 794 * With N contiguous data blocks, we need at most 795 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks, 796 * 2 dindirect blocks, and 1 tindirect block 797 */ 798 return DIV_ROUND_UP(nrblocks, EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4; 799 } 800 801 /* 802 * Truncate transactions can be complex and absolutely huge. So we need to 803 * be able to restart the transaction at a conventient checkpoint to make 804 * sure we don't overflow the journal. 805 * 806 * Try to extend this transaction for the purposes of truncation. If 807 * extend fails, we need to propagate the failure up and restart the 808 * transaction in the top-level truncate loop. --sct 809 * 810 * Returns 0 if we managed to create more room. If we can't create more 811 * room, and the transaction must be restarted we return 1. 812 */ 813 static int try_to_extend_transaction(handle_t *handle, struct inode *inode) 814 { 815 if (!ext4_handle_valid(handle)) 816 return 0; 817 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1)) 818 return 0; 819 if (!ext4_journal_extend(handle, ext4_blocks_for_truncate(inode))) 820 return 0; 821 return 1; 822 } 823 824 /* 825 * Probably it should be a library function... search for first non-zero word 826 * or memcmp with zero_page, whatever is better for particular architecture. 827 * Linus? 828 */ 829 static inline int all_zeroes(__le32 *p, __le32 *q) 830 { 831 while (p < q) 832 if (*p++) 833 return 0; 834 return 1; 835 } 836 837 /** 838 * ext4_find_shared - find the indirect blocks for partial truncation. 839 * @inode: inode in question 840 * @depth: depth of the affected branch 841 * @offsets: offsets of pointers in that branch (see ext4_block_to_path) 842 * @chain: place to store the pointers to partial indirect blocks 843 * @top: place to the (detached) top of branch 844 * 845 * This is a helper function used by ext4_truncate(). 846 * 847 * When we do truncate() we may have to clean the ends of several 848 * indirect blocks but leave the blocks themselves alive. Block is 849 * partially truncated if some data below the new i_size is referred 850 * from it (and it is on the path to the first completely truncated 851 * data block, indeed). We have to free the top of that path along 852 * with everything to the right of the path. Since no allocation 853 * past the truncation point is possible until ext4_truncate() 854 * finishes, we may safely do the latter, but top of branch may 855 * require special attention - pageout below the truncation point 856 * might try to populate it. 857 * 858 * We atomically detach the top of branch from the tree, store the 859 * block number of its root in *@top, pointers to buffer_heads of 860 * partially truncated blocks - in @chain[].bh and pointers to 861 * their last elements that should not be removed - in 862 * @chain[].p. Return value is the pointer to last filled element 863 * of @chain. 864 * 865 * The work left to caller to do the actual freeing of subtrees: 866 * a) free the subtree starting from *@top 867 * b) free the subtrees whose roots are stored in 868 * (@chain[i].p+1 .. end of @chain[i].bh->b_data) 869 * c) free the subtrees growing from the inode past the @chain[0]. 870 * (no partially truncated stuff there). */ 871 872 static Indirect *ext4_find_shared(struct inode *inode, int depth, 873 ext4_lblk_t offsets[4], Indirect chain[4], 874 __le32 *top) 875 { 876 Indirect *partial, *p; 877 int k, err; 878 879 *top = 0; 880 /* Make k index the deepest non-null offset + 1 */ 881 for (k = depth; k > 1 && !offsets[k-1]; k--) 882 ; 883 partial = ext4_get_branch(inode, k, offsets, chain, &err); 884 /* Writer: pointers */ 885 if (!partial) 886 partial = chain + k-1; 887 /* 888 * If the branch acquired continuation since we've looked at it - 889 * fine, it should all survive and (new) top doesn't belong to us. 890 */ 891 if (!partial->key && *partial->p) 892 /* Writer: end */ 893 goto no_top; 894 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--) 895 ; 896 /* 897 * OK, we've found the last block that must survive. The rest of our 898 * branch should be detached before unlocking. However, if that rest 899 * of branch is all ours and does not grow immediately from the inode 900 * it's easier to cheat and just decrement partial->p. 901 */ 902 if (p == chain + k - 1 && p > chain) { 903 p->p--; 904 } else { 905 *top = *p->p; 906 /* Nope, don't do this in ext4. Must leave the tree intact */ 907 #if 0 908 *p->p = 0; 909 #endif 910 } 911 /* Writer: end */ 912 913 while (partial > p) { 914 brelse(partial->bh); 915 partial--; 916 } 917 no_top: 918 return partial; 919 } 920 921 /* 922 * Zero a number of block pointers in either an inode or an indirect block. 923 * If we restart the transaction we must again get write access to the 924 * indirect block for further modification. 925 * 926 * We release `count' blocks on disk, but (last - first) may be greater 927 * than `count' because there can be holes in there. 928 * 929 * Return 0 on success, 1 on invalid block range 930 * and < 0 on fatal error. 931 */ 932 static int ext4_clear_blocks(handle_t *handle, struct inode *inode, 933 struct buffer_head *bh, 934 ext4_fsblk_t block_to_free, 935 unsigned long count, __le32 *first, 936 __le32 *last) 937 { 938 __le32 *p; 939 int flags = EXT4_FREE_BLOCKS_VALIDATED; 940 int err; 941 942 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 943 flags |= EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_METADATA; 944 else if (ext4_should_journal_data(inode)) 945 flags |= EXT4_FREE_BLOCKS_FORGET; 946 947 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free, 948 count)) { 949 EXT4_ERROR_INODE(inode, "attempt to clear invalid " 950 "blocks %llu len %lu", 951 (unsigned long long) block_to_free, count); 952 return 1; 953 } 954 955 if (try_to_extend_transaction(handle, inode)) { 956 if (bh) { 957 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 958 err = ext4_handle_dirty_metadata(handle, inode, bh); 959 if (unlikely(err)) 960 goto out_err; 961 } 962 err = ext4_mark_inode_dirty(handle, inode); 963 if (unlikely(err)) 964 goto out_err; 965 err = ext4_truncate_restart_trans(handle, inode, 966 ext4_blocks_for_truncate(inode)); 967 if (unlikely(err)) 968 goto out_err; 969 if (bh) { 970 BUFFER_TRACE(bh, "retaking write access"); 971 err = ext4_journal_get_write_access(handle, bh); 972 if (unlikely(err)) 973 goto out_err; 974 } 975 } 976 977 for (p = first; p < last; p++) 978 *p = 0; 979 980 ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags); 981 return 0; 982 out_err: 983 ext4_std_error(inode->i_sb, err); 984 return err; 985 } 986 987 /** 988 * ext4_free_data - free a list of data blocks 989 * @handle: handle for this transaction 990 * @inode: inode we are dealing with 991 * @this_bh: indirect buffer_head which contains *@first and *@last 992 * @first: array of block numbers 993 * @last: points immediately past the end of array 994 * 995 * We are freeing all blocks referred from that array (numbers are stored as 996 * little-endian 32-bit) and updating @inode->i_blocks appropriately. 997 * 998 * We accumulate contiguous runs of blocks to free. Conveniently, if these 999 * blocks are contiguous then releasing them at one time will only affect one 1000 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't 1001 * actually use a lot of journal space. 1002 * 1003 * @this_bh will be %NULL if @first and @last point into the inode's direct 1004 * block pointers. 1005 */ 1006 static void ext4_free_data(handle_t *handle, struct inode *inode, 1007 struct buffer_head *this_bh, 1008 __le32 *first, __le32 *last) 1009 { 1010 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */ 1011 unsigned long count = 0; /* Number of blocks in the run */ 1012 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind 1013 corresponding to 1014 block_to_free */ 1015 ext4_fsblk_t nr; /* Current block # */ 1016 __le32 *p; /* Pointer into inode/ind 1017 for current block */ 1018 int err = 0; 1019 1020 if (this_bh) { /* For indirect block */ 1021 BUFFER_TRACE(this_bh, "get_write_access"); 1022 err = ext4_journal_get_write_access(handle, this_bh); 1023 /* Important: if we can't update the indirect pointers 1024 * to the blocks, we can't free them. */ 1025 if (err) 1026 return; 1027 } 1028 1029 for (p = first; p < last; p++) { 1030 nr = le32_to_cpu(*p); 1031 if (nr) { 1032 /* accumulate blocks to free if they're contiguous */ 1033 if (count == 0) { 1034 block_to_free = nr; 1035 block_to_free_p = p; 1036 count = 1; 1037 } else if (nr == block_to_free + count) { 1038 count++; 1039 } else { 1040 err = ext4_clear_blocks(handle, inode, this_bh, 1041 block_to_free, count, 1042 block_to_free_p, p); 1043 if (err) 1044 break; 1045 block_to_free = nr; 1046 block_to_free_p = p; 1047 count = 1; 1048 } 1049 } 1050 } 1051 1052 if (!err && count > 0) 1053 err = ext4_clear_blocks(handle, inode, this_bh, block_to_free, 1054 count, block_to_free_p, p); 1055 if (err < 0) 1056 /* fatal error */ 1057 return; 1058 1059 if (this_bh) { 1060 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata"); 1061 1062 /* 1063 * The buffer head should have an attached journal head at this 1064 * point. However, if the data is corrupted and an indirect 1065 * block pointed to itself, it would have been detached when 1066 * the block was cleared. Check for this instead of OOPSing. 1067 */ 1068 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh)) 1069 ext4_handle_dirty_metadata(handle, inode, this_bh); 1070 else 1071 EXT4_ERROR_INODE(inode, 1072 "circular indirect block detected at " 1073 "block %llu", 1074 (unsigned long long) this_bh->b_blocknr); 1075 } 1076 } 1077 1078 /** 1079 * ext4_free_branches - free an array of branches 1080 * @handle: JBD handle for this transaction 1081 * @inode: inode we are dealing with 1082 * @parent_bh: the buffer_head which contains *@first and *@last 1083 * @first: array of block numbers 1084 * @last: pointer immediately past the end of array 1085 * @depth: depth of the branches to free 1086 * 1087 * We are freeing all blocks referred from these branches (numbers are 1088 * stored as little-endian 32-bit) and updating @inode->i_blocks 1089 * appropriately. 1090 */ 1091 static void ext4_free_branches(handle_t *handle, struct inode *inode, 1092 struct buffer_head *parent_bh, 1093 __le32 *first, __le32 *last, int depth) 1094 { 1095 ext4_fsblk_t nr; 1096 __le32 *p; 1097 1098 if (ext4_handle_is_aborted(handle)) 1099 return; 1100 1101 if (depth--) { 1102 struct buffer_head *bh; 1103 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 1104 p = last; 1105 while (--p >= first) { 1106 nr = le32_to_cpu(*p); 1107 if (!nr) 1108 continue; /* A hole */ 1109 1110 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), 1111 nr, 1)) { 1112 EXT4_ERROR_INODE(inode, 1113 "invalid indirect mapped " 1114 "block %lu (level %d)", 1115 (unsigned long) nr, depth); 1116 break; 1117 } 1118 1119 /* Go read the buffer for the next level down */ 1120 bh = sb_bread(inode->i_sb, nr); 1121 1122 /* 1123 * A read failure? Report error and clear slot 1124 * (should be rare). 1125 */ 1126 if (!bh) { 1127 EXT4_ERROR_INODE_BLOCK(inode, nr, 1128 "Read failure"); 1129 continue; 1130 } 1131 1132 /* This zaps the entire block. Bottom up. */ 1133 BUFFER_TRACE(bh, "free child branches"); 1134 ext4_free_branches(handle, inode, bh, 1135 (__le32 *) bh->b_data, 1136 (__le32 *) bh->b_data + addr_per_block, 1137 depth); 1138 brelse(bh); 1139 1140 /* 1141 * Everything below this this pointer has been 1142 * released. Now let this top-of-subtree go. 1143 * 1144 * We want the freeing of this indirect block to be 1145 * atomic in the journal with the updating of the 1146 * bitmap block which owns it. So make some room in 1147 * the journal. 1148 * 1149 * We zero the parent pointer *after* freeing its 1150 * pointee in the bitmaps, so if extend_transaction() 1151 * for some reason fails to put the bitmap changes and 1152 * the release into the same transaction, recovery 1153 * will merely complain about releasing a free block, 1154 * rather than leaking blocks. 1155 */ 1156 if (ext4_handle_is_aborted(handle)) 1157 return; 1158 if (try_to_extend_transaction(handle, inode)) { 1159 ext4_mark_inode_dirty(handle, inode); 1160 ext4_truncate_restart_trans(handle, inode, 1161 ext4_blocks_for_truncate(inode)); 1162 } 1163 1164 /* 1165 * The forget flag here is critical because if 1166 * we are journaling (and not doing data 1167 * journaling), we have to make sure a revoke 1168 * record is written to prevent the journal 1169 * replay from overwriting the (former) 1170 * indirect block if it gets reallocated as a 1171 * data block. This must happen in the same 1172 * transaction where the data blocks are 1173 * actually freed. 1174 */ 1175 ext4_free_blocks(handle, inode, NULL, nr, 1, 1176 EXT4_FREE_BLOCKS_METADATA| 1177 EXT4_FREE_BLOCKS_FORGET); 1178 1179 if (parent_bh) { 1180 /* 1181 * The block which we have just freed is 1182 * pointed to by an indirect block: journal it 1183 */ 1184 BUFFER_TRACE(parent_bh, "get_write_access"); 1185 if (!ext4_journal_get_write_access(handle, 1186 parent_bh)){ 1187 *p = 0; 1188 BUFFER_TRACE(parent_bh, 1189 "call ext4_handle_dirty_metadata"); 1190 ext4_handle_dirty_metadata(handle, 1191 inode, 1192 parent_bh); 1193 } 1194 } 1195 } 1196 } else { 1197 /* We have reached the bottom of the tree. */ 1198 BUFFER_TRACE(parent_bh, "free data blocks"); 1199 ext4_free_data(handle, inode, parent_bh, first, last); 1200 } 1201 } 1202 1203 void ext4_ind_truncate(handle_t *handle, struct inode *inode) 1204 { 1205 struct ext4_inode_info *ei = EXT4_I(inode); 1206 __le32 *i_data = ei->i_data; 1207 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 1208 ext4_lblk_t offsets[4]; 1209 Indirect chain[4]; 1210 Indirect *partial; 1211 __le32 nr = 0; 1212 int n = 0; 1213 ext4_lblk_t last_block, max_block; 1214 unsigned blocksize = inode->i_sb->s_blocksize; 1215 1216 last_block = (inode->i_size + blocksize-1) 1217 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 1218 max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1) 1219 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 1220 1221 if (last_block != max_block) { 1222 n = ext4_block_to_path(inode, last_block, offsets, NULL); 1223 if (n == 0) 1224 return; 1225 } 1226 1227 ext4_es_remove_extent(inode, last_block, EXT_MAX_BLOCKS - last_block); 1228 1229 /* 1230 * The orphan list entry will now protect us from any crash which 1231 * occurs before the truncate completes, so it is now safe to propagate 1232 * the new, shorter inode size (held for now in i_size) into the 1233 * on-disk inode. We do this via i_disksize, which is the value which 1234 * ext4 *really* writes onto the disk inode. 1235 */ 1236 ei->i_disksize = inode->i_size; 1237 1238 if (last_block == max_block) { 1239 /* 1240 * It is unnecessary to free any data blocks if last_block is 1241 * equal to the indirect block limit. 1242 */ 1243 return; 1244 } else if (n == 1) { /* direct blocks */ 1245 ext4_free_data(handle, inode, NULL, i_data+offsets[0], 1246 i_data + EXT4_NDIR_BLOCKS); 1247 goto do_indirects; 1248 } 1249 1250 partial = ext4_find_shared(inode, n, offsets, chain, &nr); 1251 /* Kill the top of shared branch (not detached) */ 1252 if (nr) { 1253 if (partial == chain) { 1254 /* Shared branch grows from the inode */ 1255 ext4_free_branches(handle, inode, NULL, 1256 &nr, &nr+1, (chain+n-1) - partial); 1257 *partial->p = 0; 1258 /* 1259 * We mark the inode dirty prior to restart, 1260 * and prior to stop. No need for it here. 1261 */ 1262 } else { 1263 /* Shared branch grows from an indirect block */ 1264 BUFFER_TRACE(partial->bh, "get_write_access"); 1265 ext4_free_branches(handle, inode, partial->bh, 1266 partial->p, 1267 partial->p+1, (chain+n-1) - partial); 1268 } 1269 } 1270 /* Clear the ends of indirect blocks on the shared branch */ 1271 while (partial > chain) { 1272 ext4_free_branches(handle, inode, partial->bh, partial->p + 1, 1273 (__le32*)partial->bh->b_data+addr_per_block, 1274 (chain+n-1) - partial); 1275 BUFFER_TRACE(partial->bh, "call brelse"); 1276 brelse(partial->bh); 1277 partial--; 1278 } 1279 do_indirects: 1280 /* Kill the remaining (whole) subtrees */ 1281 switch (offsets[0]) { 1282 default: 1283 nr = i_data[EXT4_IND_BLOCK]; 1284 if (nr) { 1285 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1); 1286 i_data[EXT4_IND_BLOCK] = 0; 1287 } 1288 case EXT4_IND_BLOCK: 1289 nr = i_data[EXT4_DIND_BLOCK]; 1290 if (nr) { 1291 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2); 1292 i_data[EXT4_DIND_BLOCK] = 0; 1293 } 1294 case EXT4_DIND_BLOCK: 1295 nr = i_data[EXT4_TIND_BLOCK]; 1296 if (nr) { 1297 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3); 1298 i_data[EXT4_TIND_BLOCK] = 0; 1299 } 1300 case EXT4_TIND_BLOCK: 1301 ; 1302 } 1303 } 1304 1305 /** 1306 * ext4_ind_remove_space - remove space from the range 1307 * @handle: JBD handle for this transaction 1308 * @inode: inode we are dealing with 1309 * @start: First block to remove 1310 * @end: One block after the last block to remove (exclusive) 1311 * 1312 * Free the blocks in the defined range (end is exclusive endpoint of 1313 * range). This is used by ext4_punch_hole(). 1314 */ 1315 int ext4_ind_remove_space(handle_t *handle, struct inode *inode, 1316 ext4_lblk_t start, ext4_lblk_t end) 1317 { 1318 struct ext4_inode_info *ei = EXT4_I(inode); 1319 __le32 *i_data = ei->i_data; 1320 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 1321 ext4_lblk_t offsets[4], offsets2[4]; 1322 Indirect chain[4], chain2[4]; 1323 Indirect *partial, *partial2; 1324 ext4_lblk_t max_block; 1325 __le32 nr = 0, nr2 = 0; 1326 int n = 0, n2 = 0; 1327 unsigned blocksize = inode->i_sb->s_blocksize; 1328 1329 max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1) 1330 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 1331 if (end >= max_block) 1332 end = max_block; 1333 if ((start >= end) || (start > max_block)) 1334 return 0; 1335 1336 n = ext4_block_to_path(inode, start, offsets, NULL); 1337 n2 = ext4_block_to_path(inode, end, offsets2, NULL); 1338 1339 BUG_ON(n > n2); 1340 1341 if ((n == 1) && (n == n2)) { 1342 /* We're punching only within direct block range */ 1343 ext4_free_data(handle, inode, NULL, i_data + offsets[0], 1344 i_data + offsets2[0]); 1345 return 0; 1346 } else if (n2 > n) { 1347 /* 1348 * Start and end are on a different levels so we're going to 1349 * free partial block at start, and partial block at end of 1350 * the range. If there are some levels in between then 1351 * do_indirects label will take care of that. 1352 */ 1353 1354 if (n == 1) { 1355 /* 1356 * Start is at the direct block level, free 1357 * everything to the end of the level. 1358 */ 1359 ext4_free_data(handle, inode, NULL, i_data + offsets[0], 1360 i_data + EXT4_NDIR_BLOCKS); 1361 goto end_range; 1362 } 1363 1364 1365 partial = ext4_find_shared(inode, n, offsets, chain, &nr); 1366 if (nr) { 1367 if (partial == chain) { 1368 /* Shared branch grows from the inode */ 1369 ext4_free_branches(handle, inode, NULL, 1370 &nr, &nr+1, (chain+n-1) - partial); 1371 *partial->p = 0; 1372 } else { 1373 /* Shared branch grows from an indirect block */ 1374 BUFFER_TRACE(partial->bh, "get_write_access"); 1375 ext4_free_branches(handle, inode, partial->bh, 1376 partial->p, 1377 partial->p+1, (chain+n-1) - partial); 1378 } 1379 } 1380 1381 /* 1382 * Clear the ends of indirect blocks on the shared branch 1383 * at the start of the range 1384 */ 1385 while (partial > chain) { 1386 ext4_free_branches(handle, inode, partial->bh, 1387 partial->p + 1, 1388 (__le32 *)partial->bh->b_data+addr_per_block, 1389 (chain+n-1) - partial); 1390 BUFFER_TRACE(partial->bh, "call brelse"); 1391 brelse(partial->bh); 1392 partial--; 1393 } 1394 1395 end_range: 1396 partial2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2); 1397 if (nr2) { 1398 if (partial2 == chain2) { 1399 /* 1400 * Remember, end is exclusive so here we're at 1401 * the start of the next level we're not going 1402 * to free. Everything was covered by the start 1403 * of the range. 1404 */ 1405 goto do_indirects; 1406 } 1407 } else { 1408 /* 1409 * ext4_find_shared returns Indirect structure which 1410 * points to the last element which should not be 1411 * removed by truncate. But this is end of the range 1412 * in punch_hole so we need to point to the next element 1413 */ 1414 partial2->p++; 1415 } 1416 1417 /* 1418 * Clear the ends of indirect blocks on the shared branch 1419 * at the end of the range 1420 */ 1421 while (partial2 > chain2) { 1422 ext4_free_branches(handle, inode, partial2->bh, 1423 (__le32 *)partial2->bh->b_data, 1424 partial2->p, 1425 (chain2+n2-1) - partial2); 1426 BUFFER_TRACE(partial2->bh, "call brelse"); 1427 brelse(partial2->bh); 1428 partial2--; 1429 } 1430 goto do_indirects; 1431 } 1432 1433 /* Punch happened within the same level (n == n2) */ 1434 partial = ext4_find_shared(inode, n, offsets, chain, &nr); 1435 partial2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2); 1436 1437 /* Free top, but only if partial2 isn't its subtree. */ 1438 if (nr) { 1439 int level = min(partial - chain, partial2 - chain2); 1440 int i; 1441 int subtree = 1; 1442 1443 for (i = 0; i <= level; i++) { 1444 if (offsets[i] != offsets2[i]) { 1445 subtree = 0; 1446 break; 1447 } 1448 } 1449 1450 if (!subtree) { 1451 if (partial == chain) { 1452 /* Shared branch grows from the inode */ 1453 ext4_free_branches(handle, inode, NULL, 1454 &nr, &nr+1, 1455 (chain+n-1) - partial); 1456 *partial->p = 0; 1457 } else { 1458 /* Shared branch grows from an indirect block */ 1459 BUFFER_TRACE(partial->bh, "get_write_access"); 1460 ext4_free_branches(handle, inode, partial->bh, 1461 partial->p, 1462 partial->p+1, 1463 (chain+n-1) - partial); 1464 } 1465 } 1466 } 1467 1468 if (!nr2) { 1469 /* 1470 * ext4_find_shared returns Indirect structure which 1471 * points to the last element which should not be 1472 * removed by truncate. But this is end of the range 1473 * in punch_hole so we need to point to the next element 1474 */ 1475 partial2->p++; 1476 } 1477 1478 while (partial > chain || partial2 > chain2) { 1479 int depth = (chain+n-1) - partial; 1480 int depth2 = (chain2+n2-1) - partial2; 1481 1482 if (partial > chain && partial2 > chain2 && 1483 partial->bh->b_blocknr == partial2->bh->b_blocknr) { 1484 /* 1485 * We've converged on the same block. Clear the range, 1486 * then we're done. 1487 */ 1488 ext4_free_branches(handle, inode, partial->bh, 1489 partial->p + 1, 1490 partial2->p, 1491 (chain+n-1) - partial); 1492 BUFFER_TRACE(partial->bh, "call brelse"); 1493 brelse(partial->bh); 1494 BUFFER_TRACE(partial2->bh, "call brelse"); 1495 brelse(partial2->bh); 1496 return 0; 1497 } 1498 1499 /* 1500 * The start and end partial branches may not be at the same 1501 * level even though the punch happened within one level. So, we 1502 * give them a chance to arrive at the same level, then walk 1503 * them in step with each other until we converge on the same 1504 * block. 1505 */ 1506 if (partial > chain && depth <= depth2) { 1507 ext4_free_branches(handle, inode, partial->bh, 1508 partial->p + 1, 1509 (__le32 *)partial->bh->b_data+addr_per_block, 1510 (chain+n-1) - partial); 1511 BUFFER_TRACE(partial->bh, "call brelse"); 1512 brelse(partial->bh); 1513 partial--; 1514 } 1515 if (partial2 > chain2 && depth2 <= depth) { 1516 ext4_free_branches(handle, inode, partial2->bh, 1517 (__le32 *)partial2->bh->b_data, 1518 partial2->p, 1519 (chain2+n2-1) - partial2); 1520 BUFFER_TRACE(partial2->bh, "call brelse"); 1521 brelse(partial2->bh); 1522 partial2--; 1523 } 1524 } 1525 return 0; 1526 1527 do_indirects: 1528 /* Kill the remaining (whole) subtrees */ 1529 switch (offsets[0]) { 1530 default: 1531 if (++n >= n2) 1532 return 0; 1533 nr = i_data[EXT4_IND_BLOCK]; 1534 if (nr) { 1535 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1); 1536 i_data[EXT4_IND_BLOCK] = 0; 1537 } 1538 case EXT4_IND_BLOCK: 1539 if (++n >= n2) 1540 return 0; 1541 nr = i_data[EXT4_DIND_BLOCK]; 1542 if (nr) { 1543 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2); 1544 i_data[EXT4_DIND_BLOCK] = 0; 1545 } 1546 case EXT4_DIND_BLOCK: 1547 if (++n >= n2) 1548 return 0; 1549 nr = i_data[EXT4_TIND_BLOCK]; 1550 if (nr) { 1551 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3); 1552 i_data[EXT4_TIND_BLOCK] = 0; 1553 } 1554 case EXT4_TIND_BLOCK: 1555 ; 1556 } 1557 return 0; 1558 } 1559