1 /* 2 * linux/fs/ext4/indirect.c 3 * 4 * from 5 * 6 * linux/fs/ext4/inode.c 7 * 8 * Copyright (C) 1992, 1993, 1994, 1995 9 * Remy Card (card@masi.ibp.fr) 10 * Laboratoire MASI - Institut Blaise Pascal 11 * Universite Pierre et Marie Curie (Paris VI) 12 * 13 * from 14 * 15 * linux/fs/minix/inode.c 16 * 17 * Copyright (C) 1991, 1992 Linus Torvalds 18 * 19 * Goal-directed block allocation by Stephen Tweedie 20 * (sct@redhat.com), 1993, 1998 21 */ 22 23 #include "ext4_jbd2.h" 24 #include "truncate.h" 25 #include <linux/dax.h> 26 #include <linux/uio.h> 27 28 #include <trace/events/ext4.h> 29 30 typedef struct { 31 __le32 *p; 32 __le32 key; 33 struct buffer_head *bh; 34 } Indirect; 35 36 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v) 37 { 38 p->key = *(p->p = v); 39 p->bh = bh; 40 } 41 42 /** 43 * ext4_block_to_path - parse the block number into array of offsets 44 * @inode: inode in question (we are only interested in its superblock) 45 * @i_block: block number to be parsed 46 * @offsets: array to store the offsets in 47 * @boundary: set this non-zero if the referred-to block is likely to be 48 * followed (on disk) by an indirect block. 49 * 50 * To store the locations of file's data ext4 uses a data structure common 51 * for UNIX filesystems - tree of pointers anchored in the inode, with 52 * data blocks at leaves and indirect blocks in intermediate nodes. 53 * This function translates the block number into path in that tree - 54 * return value is the path length and @offsets[n] is the offset of 55 * pointer to (n+1)th node in the nth one. If @block is out of range 56 * (negative or too large) warning is printed and zero returned. 57 * 58 * Note: function doesn't find node addresses, so no IO is needed. All 59 * we need to know is the capacity of indirect blocks (taken from the 60 * inode->i_sb). 61 */ 62 63 /* 64 * Portability note: the last comparison (check that we fit into triple 65 * indirect block) is spelled differently, because otherwise on an 66 * architecture with 32-bit longs and 8Kb pages we might get into trouble 67 * if our filesystem had 8Kb blocks. We might use long long, but that would 68 * kill us on x86. Oh, well, at least the sign propagation does not matter - 69 * i_block would have to be negative in the very beginning, so we would not 70 * get there at all. 71 */ 72 73 static int ext4_block_to_path(struct inode *inode, 74 ext4_lblk_t i_block, 75 ext4_lblk_t offsets[4], int *boundary) 76 { 77 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb); 78 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb); 79 const long direct_blocks = EXT4_NDIR_BLOCKS, 80 indirect_blocks = ptrs, 81 double_blocks = (1 << (ptrs_bits * 2)); 82 int n = 0; 83 int final = 0; 84 85 if (i_block < direct_blocks) { 86 offsets[n++] = i_block; 87 final = direct_blocks; 88 } else if ((i_block -= direct_blocks) < indirect_blocks) { 89 offsets[n++] = EXT4_IND_BLOCK; 90 offsets[n++] = i_block; 91 final = ptrs; 92 } else if ((i_block -= indirect_blocks) < double_blocks) { 93 offsets[n++] = EXT4_DIND_BLOCK; 94 offsets[n++] = i_block >> ptrs_bits; 95 offsets[n++] = i_block & (ptrs - 1); 96 final = ptrs; 97 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { 98 offsets[n++] = EXT4_TIND_BLOCK; 99 offsets[n++] = i_block >> (ptrs_bits * 2); 100 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); 101 offsets[n++] = i_block & (ptrs - 1); 102 final = ptrs; 103 } else { 104 ext4_warning(inode->i_sb, "block %lu > max in inode %lu", 105 i_block + direct_blocks + 106 indirect_blocks + double_blocks, inode->i_ino); 107 } 108 if (boundary) 109 *boundary = final - 1 - (i_block & (ptrs - 1)); 110 return n; 111 } 112 113 /** 114 * ext4_get_branch - read the chain of indirect blocks leading to data 115 * @inode: inode in question 116 * @depth: depth of the chain (1 - direct pointer, etc.) 117 * @offsets: offsets of pointers in inode/indirect blocks 118 * @chain: place to store the result 119 * @err: here we store the error value 120 * 121 * Function fills the array of triples <key, p, bh> and returns %NULL 122 * if everything went OK or the pointer to the last filled triple 123 * (incomplete one) otherwise. Upon the return chain[i].key contains 124 * the number of (i+1)-th block in the chain (as it is stored in memory, 125 * i.e. little-endian 32-bit), chain[i].p contains the address of that 126 * number (it points into struct inode for i==0 and into the bh->b_data 127 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect 128 * block for i>0 and NULL for i==0. In other words, it holds the block 129 * numbers of the chain, addresses they were taken from (and where we can 130 * verify that chain did not change) and buffer_heads hosting these 131 * numbers. 132 * 133 * Function stops when it stumbles upon zero pointer (absent block) 134 * (pointer to last triple returned, *@err == 0) 135 * or when it gets an IO error reading an indirect block 136 * (ditto, *@err == -EIO) 137 * or when it reads all @depth-1 indirect blocks successfully and finds 138 * the whole chain, all way to the data (returns %NULL, *err == 0). 139 * 140 * Need to be called with 141 * down_read(&EXT4_I(inode)->i_data_sem) 142 */ 143 static Indirect *ext4_get_branch(struct inode *inode, int depth, 144 ext4_lblk_t *offsets, 145 Indirect chain[4], int *err) 146 { 147 struct super_block *sb = inode->i_sb; 148 Indirect *p = chain; 149 struct buffer_head *bh; 150 int ret = -EIO; 151 152 *err = 0; 153 /* i_data is not going away, no lock needed */ 154 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets); 155 if (!p->key) 156 goto no_block; 157 while (--depth) { 158 bh = sb_getblk(sb, le32_to_cpu(p->key)); 159 if (unlikely(!bh)) { 160 ret = -ENOMEM; 161 goto failure; 162 } 163 164 if (!bh_uptodate_or_lock(bh)) { 165 if (bh_submit_read(bh) < 0) { 166 put_bh(bh); 167 goto failure; 168 } 169 /* validate block references */ 170 if (ext4_check_indirect_blockref(inode, bh)) { 171 put_bh(bh); 172 goto failure; 173 } 174 } 175 176 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets); 177 /* Reader: end */ 178 if (!p->key) 179 goto no_block; 180 } 181 return NULL; 182 183 failure: 184 *err = ret; 185 no_block: 186 return p; 187 } 188 189 /** 190 * ext4_find_near - find a place for allocation with sufficient locality 191 * @inode: owner 192 * @ind: descriptor of indirect block. 193 * 194 * This function returns the preferred place for block allocation. 195 * It is used when heuristic for sequential allocation fails. 196 * Rules are: 197 * + if there is a block to the left of our position - allocate near it. 198 * + if pointer will live in indirect block - allocate near that block. 199 * + if pointer will live in inode - allocate in the same 200 * cylinder group. 201 * 202 * In the latter case we colour the starting block by the callers PID to 203 * prevent it from clashing with concurrent allocations for a different inode 204 * in the same block group. The PID is used here so that functionally related 205 * files will be close-by on-disk. 206 * 207 * Caller must make sure that @ind is valid and will stay that way. 208 */ 209 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind) 210 { 211 struct ext4_inode_info *ei = EXT4_I(inode); 212 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data; 213 __le32 *p; 214 215 /* Try to find previous block */ 216 for (p = ind->p - 1; p >= start; p--) { 217 if (*p) 218 return le32_to_cpu(*p); 219 } 220 221 /* No such thing, so let's try location of indirect block */ 222 if (ind->bh) 223 return ind->bh->b_blocknr; 224 225 /* 226 * It is going to be referred to from the inode itself? OK, just put it 227 * into the same cylinder group then. 228 */ 229 return ext4_inode_to_goal_block(inode); 230 } 231 232 /** 233 * ext4_find_goal - find a preferred place for allocation. 234 * @inode: owner 235 * @block: block we want 236 * @partial: pointer to the last triple within a chain 237 * 238 * Normally this function find the preferred place for block allocation, 239 * returns it. 240 * Because this is only used for non-extent files, we limit the block nr 241 * to 32 bits. 242 */ 243 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block, 244 Indirect *partial) 245 { 246 ext4_fsblk_t goal; 247 248 /* 249 * XXX need to get goal block from mballoc's data structures 250 */ 251 252 goal = ext4_find_near(inode, partial); 253 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS; 254 return goal; 255 } 256 257 /** 258 * ext4_blks_to_allocate - Look up the block map and count the number 259 * of direct blocks need to be allocated for the given branch. 260 * 261 * @branch: chain of indirect blocks 262 * @k: number of blocks need for indirect blocks 263 * @blks: number of data blocks to be mapped. 264 * @blocks_to_boundary: the offset in the indirect block 265 * 266 * return the total number of blocks to be allocate, including the 267 * direct and indirect blocks. 268 */ 269 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks, 270 int blocks_to_boundary) 271 { 272 unsigned int count = 0; 273 274 /* 275 * Simple case, [t,d]Indirect block(s) has not allocated yet 276 * then it's clear blocks on that path have not allocated 277 */ 278 if (k > 0) { 279 /* right now we don't handle cross boundary allocation */ 280 if (blks < blocks_to_boundary + 1) 281 count += blks; 282 else 283 count += blocks_to_boundary + 1; 284 return count; 285 } 286 287 count++; 288 while (count < blks && count <= blocks_to_boundary && 289 le32_to_cpu(*(branch[0].p + count)) == 0) { 290 count++; 291 } 292 return count; 293 } 294 295 /** 296 * ext4_alloc_branch - allocate and set up a chain of blocks. 297 * @handle: handle for this transaction 298 * @inode: owner 299 * @indirect_blks: number of allocated indirect blocks 300 * @blks: number of allocated direct blocks 301 * @goal: preferred place for allocation 302 * @offsets: offsets (in the blocks) to store the pointers to next. 303 * @branch: place to store the chain in. 304 * 305 * This function allocates blocks, zeroes out all but the last one, 306 * links them into chain and (if we are synchronous) writes them to disk. 307 * In other words, it prepares a branch that can be spliced onto the 308 * inode. It stores the information about that chain in the branch[], in 309 * the same format as ext4_get_branch() would do. We are calling it after 310 * we had read the existing part of chain and partial points to the last 311 * triple of that (one with zero ->key). Upon the exit we have the same 312 * picture as after the successful ext4_get_block(), except that in one 313 * place chain is disconnected - *branch->p is still zero (we did not 314 * set the last link), but branch->key contains the number that should 315 * be placed into *branch->p to fill that gap. 316 * 317 * If allocation fails we free all blocks we've allocated (and forget 318 * their buffer_heads) and return the error value the from failed 319 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain 320 * as described above and return 0. 321 */ 322 static int ext4_alloc_branch(handle_t *handle, 323 struct ext4_allocation_request *ar, 324 int indirect_blks, ext4_lblk_t *offsets, 325 Indirect *branch) 326 { 327 struct buffer_head * bh; 328 ext4_fsblk_t b, new_blocks[4]; 329 __le32 *p; 330 int i, j, err, len = 1; 331 332 for (i = 0; i <= indirect_blks; i++) { 333 if (i == indirect_blks) { 334 new_blocks[i] = ext4_mb_new_blocks(handle, ar, &err); 335 } else 336 ar->goal = new_blocks[i] = ext4_new_meta_blocks(handle, 337 ar->inode, ar->goal, 338 ar->flags & EXT4_MB_DELALLOC_RESERVED, 339 NULL, &err); 340 if (err) { 341 i--; 342 goto failed; 343 } 344 branch[i].key = cpu_to_le32(new_blocks[i]); 345 if (i == 0) 346 continue; 347 348 bh = branch[i].bh = sb_getblk(ar->inode->i_sb, new_blocks[i-1]); 349 if (unlikely(!bh)) { 350 err = -ENOMEM; 351 goto failed; 352 } 353 lock_buffer(bh); 354 BUFFER_TRACE(bh, "call get_create_access"); 355 err = ext4_journal_get_create_access(handle, bh); 356 if (err) { 357 unlock_buffer(bh); 358 goto failed; 359 } 360 361 memset(bh->b_data, 0, bh->b_size); 362 p = branch[i].p = (__le32 *) bh->b_data + offsets[i]; 363 b = new_blocks[i]; 364 365 if (i == indirect_blks) 366 len = ar->len; 367 for (j = 0; j < len; j++) 368 *p++ = cpu_to_le32(b++); 369 370 BUFFER_TRACE(bh, "marking uptodate"); 371 set_buffer_uptodate(bh); 372 unlock_buffer(bh); 373 374 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 375 err = ext4_handle_dirty_metadata(handle, ar->inode, bh); 376 if (err) 377 goto failed; 378 } 379 return 0; 380 failed: 381 for (; i >= 0; i--) { 382 /* 383 * We want to ext4_forget() only freshly allocated indirect 384 * blocks. Buffer for new_blocks[i-1] is at branch[i].bh and 385 * buffer at branch[0].bh is indirect block / inode already 386 * existing before ext4_alloc_branch() was called. 387 */ 388 if (i > 0 && i != indirect_blks && branch[i].bh) 389 ext4_forget(handle, 1, ar->inode, branch[i].bh, 390 branch[i].bh->b_blocknr); 391 ext4_free_blocks(handle, ar->inode, NULL, new_blocks[i], 392 (i == indirect_blks) ? ar->len : 1, 0); 393 } 394 return err; 395 } 396 397 /** 398 * ext4_splice_branch - splice the allocated branch onto inode. 399 * @handle: handle for this transaction 400 * @inode: owner 401 * @block: (logical) number of block we are adding 402 * @chain: chain of indirect blocks (with a missing link - see 403 * ext4_alloc_branch) 404 * @where: location of missing link 405 * @num: number of indirect blocks we are adding 406 * @blks: number of direct blocks we are adding 407 * 408 * This function fills the missing link and does all housekeeping needed in 409 * inode (->i_blocks, etc.). In case of success we end up with the full 410 * chain to new block and return 0. 411 */ 412 static int ext4_splice_branch(handle_t *handle, 413 struct ext4_allocation_request *ar, 414 Indirect *where, int num) 415 { 416 int i; 417 int err = 0; 418 ext4_fsblk_t current_block; 419 420 /* 421 * If we're splicing into a [td]indirect block (as opposed to the 422 * inode) then we need to get write access to the [td]indirect block 423 * before the splice. 424 */ 425 if (where->bh) { 426 BUFFER_TRACE(where->bh, "get_write_access"); 427 err = ext4_journal_get_write_access(handle, where->bh); 428 if (err) 429 goto err_out; 430 } 431 /* That's it */ 432 433 *where->p = where->key; 434 435 /* 436 * Update the host buffer_head or inode to point to more just allocated 437 * direct blocks blocks 438 */ 439 if (num == 0 && ar->len > 1) { 440 current_block = le32_to_cpu(where->key) + 1; 441 for (i = 1; i < ar->len; i++) 442 *(where->p + i) = cpu_to_le32(current_block++); 443 } 444 445 /* We are done with atomic stuff, now do the rest of housekeeping */ 446 /* had we spliced it onto indirect block? */ 447 if (where->bh) { 448 /* 449 * If we spliced it onto an indirect block, we haven't 450 * altered the inode. Note however that if it is being spliced 451 * onto an indirect block at the very end of the file (the 452 * file is growing) then we *will* alter the inode to reflect 453 * the new i_size. But that is not done here - it is done in 454 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode. 455 */ 456 jbd_debug(5, "splicing indirect only\n"); 457 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata"); 458 err = ext4_handle_dirty_metadata(handle, ar->inode, where->bh); 459 if (err) 460 goto err_out; 461 } else { 462 /* 463 * OK, we spliced it into the inode itself on a direct block. 464 */ 465 ext4_mark_inode_dirty(handle, ar->inode); 466 jbd_debug(5, "splicing direct\n"); 467 } 468 return err; 469 470 err_out: 471 for (i = 1; i <= num; i++) { 472 /* 473 * branch[i].bh is newly allocated, so there is no 474 * need to revoke the block, which is why we don't 475 * need to set EXT4_FREE_BLOCKS_METADATA. 476 */ 477 ext4_free_blocks(handle, ar->inode, where[i].bh, 0, 1, 478 EXT4_FREE_BLOCKS_FORGET); 479 } 480 ext4_free_blocks(handle, ar->inode, NULL, le32_to_cpu(where[num].key), 481 ar->len, 0); 482 483 return err; 484 } 485 486 /* 487 * The ext4_ind_map_blocks() function handles non-extents inodes 488 * (i.e., using the traditional indirect/double-indirect i_blocks 489 * scheme) for ext4_map_blocks(). 490 * 491 * Allocation strategy is simple: if we have to allocate something, we will 492 * have to go the whole way to leaf. So let's do it before attaching anything 493 * to tree, set linkage between the newborn blocks, write them if sync is 494 * required, recheck the path, free and repeat if check fails, otherwise 495 * set the last missing link (that will protect us from any truncate-generated 496 * removals - all blocks on the path are immune now) and possibly force the 497 * write on the parent block. 498 * That has a nice additional property: no special recovery from the failed 499 * allocations is needed - we simply release blocks and do not touch anything 500 * reachable from inode. 501 * 502 * `handle' can be NULL if create == 0. 503 * 504 * return > 0, # of blocks mapped or allocated. 505 * return = 0, if plain lookup failed. 506 * return < 0, error case. 507 * 508 * The ext4_ind_get_blocks() function should be called with 509 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem 510 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or 511 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system 512 * blocks. 513 */ 514 int ext4_ind_map_blocks(handle_t *handle, struct inode *inode, 515 struct ext4_map_blocks *map, 516 int flags) 517 { 518 struct ext4_allocation_request ar; 519 int err = -EIO; 520 ext4_lblk_t offsets[4]; 521 Indirect chain[4]; 522 Indirect *partial; 523 int indirect_blks; 524 int blocks_to_boundary = 0; 525 int depth; 526 int count = 0; 527 ext4_fsblk_t first_block = 0; 528 529 trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags); 530 J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))); 531 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0); 532 depth = ext4_block_to_path(inode, map->m_lblk, offsets, 533 &blocks_to_boundary); 534 535 if (depth == 0) 536 goto out; 537 538 partial = ext4_get_branch(inode, depth, offsets, chain, &err); 539 540 /* Simplest case - block found, no allocation needed */ 541 if (!partial) { 542 first_block = le32_to_cpu(chain[depth - 1].key); 543 count++; 544 /*map more blocks*/ 545 while (count < map->m_len && count <= blocks_to_boundary) { 546 ext4_fsblk_t blk; 547 548 blk = le32_to_cpu(*(chain[depth-1].p + count)); 549 550 if (blk == first_block + count) 551 count++; 552 else 553 break; 554 } 555 goto got_it; 556 } 557 558 /* Next simple case - plain lookup failed */ 559 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { 560 unsigned epb = inode->i_sb->s_blocksize / sizeof(u32); 561 int i; 562 563 /* Count number blocks in a subtree under 'partial' */ 564 count = 1; 565 for (i = 0; partial + i != chain + depth - 1; i++) 566 count *= epb; 567 /* Fill in size of a hole we found */ 568 map->m_pblk = 0; 569 map->m_len = min_t(unsigned int, map->m_len, count); 570 goto cleanup; 571 } 572 573 /* Failed read of indirect block */ 574 if (err == -EIO) 575 goto cleanup; 576 577 /* 578 * Okay, we need to do block allocation. 579 */ 580 if (ext4_has_feature_bigalloc(inode->i_sb)) { 581 EXT4_ERROR_INODE(inode, "Can't allocate blocks for " 582 "non-extent mapped inodes with bigalloc"); 583 return -EFSCORRUPTED; 584 } 585 586 /* Set up for the direct block allocation */ 587 memset(&ar, 0, sizeof(ar)); 588 ar.inode = inode; 589 ar.logical = map->m_lblk; 590 if (S_ISREG(inode->i_mode)) 591 ar.flags = EXT4_MB_HINT_DATA; 592 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 593 ar.flags |= EXT4_MB_DELALLOC_RESERVED; 594 if (flags & EXT4_GET_BLOCKS_METADATA_NOFAIL) 595 ar.flags |= EXT4_MB_USE_RESERVED; 596 597 ar.goal = ext4_find_goal(inode, map->m_lblk, partial); 598 599 /* the number of blocks need to allocate for [d,t]indirect blocks */ 600 indirect_blks = (chain + depth) - partial - 1; 601 602 /* 603 * Next look up the indirect map to count the totoal number of 604 * direct blocks to allocate for this branch. 605 */ 606 ar.len = ext4_blks_to_allocate(partial, indirect_blks, 607 map->m_len, blocks_to_boundary); 608 609 /* 610 * Block out ext4_truncate while we alter the tree 611 */ 612 err = ext4_alloc_branch(handle, &ar, indirect_blks, 613 offsets + (partial - chain), partial); 614 615 /* 616 * The ext4_splice_branch call will free and forget any buffers 617 * on the new chain if there is a failure, but that risks using 618 * up transaction credits, especially for bitmaps where the 619 * credits cannot be returned. Can we handle this somehow? We 620 * may need to return -EAGAIN upwards in the worst case. --sct 621 */ 622 if (!err) 623 err = ext4_splice_branch(handle, &ar, partial, indirect_blks); 624 if (err) 625 goto cleanup; 626 627 map->m_flags |= EXT4_MAP_NEW; 628 629 ext4_update_inode_fsync_trans(handle, inode, 1); 630 count = ar.len; 631 got_it: 632 map->m_flags |= EXT4_MAP_MAPPED; 633 map->m_pblk = le32_to_cpu(chain[depth-1].key); 634 map->m_len = count; 635 if (count > blocks_to_boundary) 636 map->m_flags |= EXT4_MAP_BOUNDARY; 637 err = count; 638 /* Clean up and exit */ 639 partial = chain + depth - 1; /* the whole chain */ 640 cleanup: 641 while (partial > chain) { 642 BUFFER_TRACE(partial->bh, "call brelse"); 643 brelse(partial->bh); 644 partial--; 645 } 646 out: 647 trace_ext4_ind_map_blocks_exit(inode, flags, map, err); 648 return err; 649 } 650 651 /* 652 * O_DIRECT for ext3 (or indirect map) based files 653 * 654 * If the O_DIRECT write will extend the file then add this inode to the 655 * orphan list. So recovery will truncate it back to the original size 656 * if the machine crashes during the write. 657 * 658 * If the O_DIRECT write is intantiating holes inside i_size and the machine 659 * crashes then stale disk data _may_ be exposed inside the file. But current 660 * VFS code falls back into buffered path in that case so we are safe. 661 */ 662 ssize_t ext4_ind_direct_IO(struct kiocb *iocb, struct iov_iter *iter, 663 loff_t offset) 664 { 665 struct file *file = iocb->ki_filp; 666 struct inode *inode = file->f_mapping->host; 667 struct ext4_inode_info *ei = EXT4_I(inode); 668 handle_t *handle; 669 ssize_t ret; 670 int orphan = 0; 671 size_t count = iov_iter_count(iter); 672 int retries = 0; 673 674 if (iov_iter_rw(iter) == WRITE) { 675 loff_t final_size = offset + count; 676 677 if (final_size > inode->i_size) { 678 /* Credits for sb + inode write */ 679 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 680 if (IS_ERR(handle)) { 681 ret = PTR_ERR(handle); 682 goto out; 683 } 684 ret = ext4_orphan_add(handle, inode); 685 if (ret) { 686 ext4_journal_stop(handle); 687 goto out; 688 } 689 orphan = 1; 690 ei->i_disksize = inode->i_size; 691 ext4_journal_stop(handle); 692 } 693 } 694 695 retry: 696 if (iov_iter_rw(iter) == READ && ext4_should_dioread_nolock(inode)) { 697 /* 698 * Nolock dioread optimization may be dynamically disabled 699 * via ext4_inode_block_unlocked_dio(). Check inode's state 700 * while holding extra i_dio_count ref. 701 */ 702 inode_dio_begin(inode); 703 smp_mb(); 704 if (unlikely(ext4_test_inode_state(inode, 705 EXT4_STATE_DIOREAD_LOCK))) { 706 inode_dio_end(inode); 707 goto locked; 708 } 709 if (IS_DAX(inode)) 710 ret = dax_do_io(iocb, inode, iter, offset, 711 ext4_dio_get_block, NULL, 0); 712 else 713 ret = __blockdev_direct_IO(iocb, inode, 714 inode->i_sb->s_bdev, iter, 715 offset, ext4_dio_get_block, 716 NULL, NULL, 0); 717 inode_dio_end(inode); 718 } else { 719 locked: 720 if (IS_DAX(inode)) 721 ret = dax_do_io(iocb, inode, iter, offset, 722 ext4_dio_get_block, NULL, DIO_LOCKING); 723 else 724 ret = blockdev_direct_IO(iocb, inode, iter, offset, 725 ext4_dio_get_block); 726 727 if (unlikely(iov_iter_rw(iter) == WRITE && ret < 0)) { 728 loff_t isize = i_size_read(inode); 729 loff_t end = offset + count; 730 731 if (end > isize) 732 ext4_truncate_failed_write(inode); 733 } 734 } 735 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 736 goto retry; 737 738 if (orphan) { 739 int err; 740 741 /* Credits for sb + inode write */ 742 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 743 if (IS_ERR(handle)) { 744 /* This is really bad luck. We've written the data 745 * but cannot extend i_size. Bail out and pretend 746 * the write failed... */ 747 ret = PTR_ERR(handle); 748 if (inode->i_nlink) 749 ext4_orphan_del(NULL, inode); 750 751 goto out; 752 } 753 if (inode->i_nlink) 754 ext4_orphan_del(handle, inode); 755 if (ret > 0) { 756 loff_t end = offset + ret; 757 if (end > inode->i_size) { 758 ei->i_disksize = end; 759 i_size_write(inode, end); 760 /* 761 * We're going to return a positive `ret' 762 * here due to non-zero-length I/O, so there's 763 * no way of reporting error returns from 764 * ext4_mark_inode_dirty() to userspace. So 765 * ignore it. 766 */ 767 ext4_mark_inode_dirty(handle, inode); 768 } 769 } 770 err = ext4_journal_stop(handle); 771 if (ret == 0) 772 ret = err; 773 } 774 out: 775 return ret; 776 } 777 778 /* 779 * Calculate the number of metadata blocks need to reserve 780 * to allocate a new block at @lblocks for non extent file based file 781 */ 782 int ext4_ind_calc_metadata_amount(struct inode *inode, sector_t lblock) 783 { 784 struct ext4_inode_info *ei = EXT4_I(inode); 785 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1); 786 int blk_bits; 787 788 if (lblock < EXT4_NDIR_BLOCKS) 789 return 0; 790 791 lblock -= EXT4_NDIR_BLOCKS; 792 793 if (ei->i_da_metadata_calc_len && 794 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) { 795 ei->i_da_metadata_calc_len++; 796 return 0; 797 } 798 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask; 799 ei->i_da_metadata_calc_len = 1; 800 blk_bits = order_base_2(lblock); 801 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1; 802 } 803 804 /* 805 * Calculate number of indirect blocks touched by mapping @nrblocks logically 806 * contiguous blocks 807 */ 808 int ext4_ind_trans_blocks(struct inode *inode, int nrblocks) 809 { 810 /* 811 * With N contiguous data blocks, we need at most 812 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks, 813 * 2 dindirect blocks, and 1 tindirect block 814 */ 815 return DIV_ROUND_UP(nrblocks, EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4; 816 } 817 818 /* 819 * Truncate transactions can be complex and absolutely huge. So we need to 820 * be able to restart the transaction at a conventient checkpoint to make 821 * sure we don't overflow the journal. 822 * 823 * Try to extend this transaction for the purposes of truncation. If 824 * extend fails, we need to propagate the failure up and restart the 825 * transaction in the top-level truncate loop. --sct 826 * 827 * Returns 0 if we managed to create more room. If we can't create more 828 * room, and the transaction must be restarted we return 1. 829 */ 830 static int try_to_extend_transaction(handle_t *handle, struct inode *inode) 831 { 832 if (!ext4_handle_valid(handle)) 833 return 0; 834 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1)) 835 return 0; 836 if (!ext4_journal_extend(handle, ext4_blocks_for_truncate(inode))) 837 return 0; 838 return 1; 839 } 840 841 /* 842 * Probably it should be a library function... search for first non-zero word 843 * or memcmp with zero_page, whatever is better for particular architecture. 844 * Linus? 845 */ 846 static inline int all_zeroes(__le32 *p, __le32 *q) 847 { 848 while (p < q) 849 if (*p++) 850 return 0; 851 return 1; 852 } 853 854 /** 855 * ext4_find_shared - find the indirect blocks for partial truncation. 856 * @inode: inode in question 857 * @depth: depth of the affected branch 858 * @offsets: offsets of pointers in that branch (see ext4_block_to_path) 859 * @chain: place to store the pointers to partial indirect blocks 860 * @top: place to the (detached) top of branch 861 * 862 * This is a helper function used by ext4_truncate(). 863 * 864 * When we do truncate() we may have to clean the ends of several 865 * indirect blocks but leave the blocks themselves alive. Block is 866 * partially truncated if some data below the new i_size is referred 867 * from it (and it is on the path to the first completely truncated 868 * data block, indeed). We have to free the top of that path along 869 * with everything to the right of the path. Since no allocation 870 * past the truncation point is possible until ext4_truncate() 871 * finishes, we may safely do the latter, but top of branch may 872 * require special attention - pageout below the truncation point 873 * might try to populate it. 874 * 875 * We atomically detach the top of branch from the tree, store the 876 * block number of its root in *@top, pointers to buffer_heads of 877 * partially truncated blocks - in @chain[].bh and pointers to 878 * their last elements that should not be removed - in 879 * @chain[].p. Return value is the pointer to last filled element 880 * of @chain. 881 * 882 * The work left to caller to do the actual freeing of subtrees: 883 * a) free the subtree starting from *@top 884 * b) free the subtrees whose roots are stored in 885 * (@chain[i].p+1 .. end of @chain[i].bh->b_data) 886 * c) free the subtrees growing from the inode past the @chain[0]. 887 * (no partially truncated stuff there). */ 888 889 static Indirect *ext4_find_shared(struct inode *inode, int depth, 890 ext4_lblk_t offsets[4], Indirect chain[4], 891 __le32 *top) 892 { 893 Indirect *partial, *p; 894 int k, err; 895 896 *top = 0; 897 /* Make k index the deepest non-null offset + 1 */ 898 for (k = depth; k > 1 && !offsets[k-1]; k--) 899 ; 900 partial = ext4_get_branch(inode, k, offsets, chain, &err); 901 /* Writer: pointers */ 902 if (!partial) 903 partial = chain + k-1; 904 /* 905 * If the branch acquired continuation since we've looked at it - 906 * fine, it should all survive and (new) top doesn't belong to us. 907 */ 908 if (!partial->key && *partial->p) 909 /* Writer: end */ 910 goto no_top; 911 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--) 912 ; 913 /* 914 * OK, we've found the last block that must survive. The rest of our 915 * branch should be detached before unlocking. However, if that rest 916 * of branch is all ours and does not grow immediately from the inode 917 * it's easier to cheat and just decrement partial->p. 918 */ 919 if (p == chain + k - 1 && p > chain) { 920 p->p--; 921 } else { 922 *top = *p->p; 923 /* Nope, don't do this in ext4. Must leave the tree intact */ 924 #if 0 925 *p->p = 0; 926 #endif 927 } 928 /* Writer: end */ 929 930 while (partial > p) { 931 brelse(partial->bh); 932 partial--; 933 } 934 no_top: 935 return partial; 936 } 937 938 /* 939 * Zero a number of block pointers in either an inode or an indirect block. 940 * If we restart the transaction we must again get write access to the 941 * indirect block for further modification. 942 * 943 * We release `count' blocks on disk, but (last - first) may be greater 944 * than `count' because there can be holes in there. 945 * 946 * Return 0 on success, 1 on invalid block range 947 * and < 0 on fatal error. 948 */ 949 static int ext4_clear_blocks(handle_t *handle, struct inode *inode, 950 struct buffer_head *bh, 951 ext4_fsblk_t block_to_free, 952 unsigned long count, __le32 *first, 953 __le32 *last) 954 { 955 __le32 *p; 956 int flags = EXT4_FREE_BLOCKS_VALIDATED; 957 int err; 958 959 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 960 flags |= EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_METADATA; 961 else if (ext4_should_journal_data(inode)) 962 flags |= EXT4_FREE_BLOCKS_FORGET; 963 964 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free, 965 count)) { 966 EXT4_ERROR_INODE(inode, "attempt to clear invalid " 967 "blocks %llu len %lu", 968 (unsigned long long) block_to_free, count); 969 return 1; 970 } 971 972 if (try_to_extend_transaction(handle, inode)) { 973 if (bh) { 974 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 975 err = ext4_handle_dirty_metadata(handle, inode, bh); 976 if (unlikely(err)) 977 goto out_err; 978 } 979 err = ext4_mark_inode_dirty(handle, inode); 980 if (unlikely(err)) 981 goto out_err; 982 err = ext4_truncate_restart_trans(handle, inode, 983 ext4_blocks_for_truncate(inode)); 984 if (unlikely(err)) 985 goto out_err; 986 if (bh) { 987 BUFFER_TRACE(bh, "retaking write access"); 988 err = ext4_journal_get_write_access(handle, bh); 989 if (unlikely(err)) 990 goto out_err; 991 } 992 } 993 994 for (p = first; p < last; p++) 995 *p = 0; 996 997 ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags); 998 return 0; 999 out_err: 1000 ext4_std_error(inode->i_sb, err); 1001 return err; 1002 } 1003 1004 /** 1005 * ext4_free_data - free a list of data blocks 1006 * @handle: handle for this transaction 1007 * @inode: inode we are dealing with 1008 * @this_bh: indirect buffer_head which contains *@first and *@last 1009 * @first: array of block numbers 1010 * @last: points immediately past the end of array 1011 * 1012 * We are freeing all blocks referred from that array (numbers are stored as 1013 * little-endian 32-bit) and updating @inode->i_blocks appropriately. 1014 * 1015 * We accumulate contiguous runs of blocks to free. Conveniently, if these 1016 * blocks are contiguous then releasing them at one time will only affect one 1017 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't 1018 * actually use a lot of journal space. 1019 * 1020 * @this_bh will be %NULL if @first and @last point into the inode's direct 1021 * block pointers. 1022 */ 1023 static void ext4_free_data(handle_t *handle, struct inode *inode, 1024 struct buffer_head *this_bh, 1025 __le32 *first, __le32 *last) 1026 { 1027 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */ 1028 unsigned long count = 0; /* Number of blocks in the run */ 1029 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind 1030 corresponding to 1031 block_to_free */ 1032 ext4_fsblk_t nr; /* Current block # */ 1033 __le32 *p; /* Pointer into inode/ind 1034 for current block */ 1035 int err = 0; 1036 1037 if (this_bh) { /* For indirect block */ 1038 BUFFER_TRACE(this_bh, "get_write_access"); 1039 err = ext4_journal_get_write_access(handle, this_bh); 1040 /* Important: if we can't update the indirect pointers 1041 * to the blocks, we can't free them. */ 1042 if (err) 1043 return; 1044 } 1045 1046 for (p = first; p < last; p++) { 1047 nr = le32_to_cpu(*p); 1048 if (nr) { 1049 /* accumulate blocks to free if they're contiguous */ 1050 if (count == 0) { 1051 block_to_free = nr; 1052 block_to_free_p = p; 1053 count = 1; 1054 } else if (nr == block_to_free + count) { 1055 count++; 1056 } else { 1057 err = ext4_clear_blocks(handle, inode, this_bh, 1058 block_to_free, count, 1059 block_to_free_p, p); 1060 if (err) 1061 break; 1062 block_to_free = nr; 1063 block_to_free_p = p; 1064 count = 1; 1065 } 1066 } 1067 } 1068 1069 if (!err && count > 0) 1070 err = ext4_clear_blocks(handle, inode, this_bh, block_to_free, 1071 count, block_to_free_p, p); 1072 if (err < 0) 1073 /* fatal error */ 1074 return; 1075 1076 if (this_bh) { 1077 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata"); 1078 1079 /* 1080 * The buffer head should have an attached journal head at this 1081 * point. However, if the data is corrupted and an indirect 1082 * block pointed to itself, it would have been detached when 1083 * the block was cleared. Check for this instead of OOPSing. 1084 */ 1085 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh)) 1086 ext4_handle_dirty_metadata(handle, inode, this_bh); 1087 else 1088 EXT4_ERROR_INODE(inode, 1089 "circular indirect block detected at " 1090 "block %llu", 1091 (unsigned long long) this_bh->b_blocknr); 1092 } 1093 } 1094 1095 /** 1096 * ext4_free_branches - free an array of branches 1097 * @handle: JBD handle for this transaction 1098 * @inode: inode we are dealing with 1099 * @parent_bh: the buffer_head which contains *@first and *@last 1100 * @first: array of block numbers 1101 * @last: pointer immediately past the end of array 1102 * @depth: depth of the branches to free 1103 * 1104 * We are freeing all blocks referred from these branches (numbers are 1105 * stored as little-endian 32-bit) and updating @inode->i_blocks 1106 * appropriately. 1107 */ 1108 static void ext4_free_branches(handle_t *handle, struct inode *inode, 1109 struct buffer_head *parent_bh, 1110 __le32 *first, __le32 *last, int depth) 1111 { 1112 ext4_fsblk_t nr; 1113 __le32 *p; 1114 1115 if (ext4_handle_is_aborted(handle)) 1116 return; 1117 1118 if (depth--) { 1119 struct buffer_head *bh; 1120 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 1121 p = last; 1122 while (--p >= first) { 1123 nr = le32_to_cpu(*p); 1124 if (!nr) 1125 continue; /* A hole */ 1126 1127 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), 1128 nr, 1)) { 1129 EXT4_ERROR_INODE(inode, 1130 "invalid indirect mapped " 1131 "block %lu (level %d)", 1132 (unsigned long) nr, depth); 1133 break; 1134 } 1135 1136 /* Go read the buffer for the next level down */ 1137 bh = sb_bread(inode->i_sb, nr); 1138 1139 /* 1140 * A read failure? Report error and clear slot 1141 * (should be rare). 1142 */ 1143 if (!bh) { 1144 EXT4_ERROR_INODE_BLOCK(inode, nr, 1145 "Read failure"); 1146 continue; 1147 } 1148 1149 /* This zaps the entire block. Bottom up. */ 1150 BUFFER_TRACE(bh, "free child branches"); 1151 ext4_free_branches(handle, inode, bh, 1152 (__le32 *) bh->b_data, 1153 (__le32 *) bh->b_data + addr_per_block, 1154 depth); 1155 brelse(bh); 1156 1157 /* 1158 * Everything below this this pointer has been 1159 * released. Now let this top-of-subtree go. 1160 * 1161 * We want the freeing of this indirect block to be 1162 * atomic in the journal with the updating of the 1163 * bitmap block which owns it. So make some room in 1164 * the journal. 1165 * 1166 * We zero the parent pointer *after* freeing its 1167 * pointee in the bitmaps, so if extend_transaction() 1168 * for some reason fails to put the bitmap changes and 1169 * the release into the same transaction, recovery 1170 * will merely complain about releasing a free block, 1171 * rather than leaking blocks. 1172 */ 1173 if (ext4_handle_is_aborted(handle)) 1174 return; 1175 if (try_to_extend_transaction(handle, inode)) { 1176 ext4_mark_inode_dirty(handle, inode); 1177 ext4_truncate_restart_trans(handle, inode, 1178 ext4_blocks_for_truncate(inode)); 1179 } 1180 1181 /* 1182 * The forget flag here is critical because if 1183 * we are journaling (and not doing data 1184 * journaling), we have to make sure a revoke 1185 * record is written to prevent the journal 1186 * replay from overwriting the (former) 1187 * indirect block if it gets reallocated as a 1188 * data block. This must happen in the same 1189 * transaction where the data blocks are 1190 * actually freed. 1191 */ 1192 ext4_free_blocks(handle, inode, NULL, nr, 1, 1193 EXT4_FREE_BLOCKS_METADATA| 1194 EXT4_FREE_BLOCKS_FORGET); 1195 1196 if (parent_bh) { 1197 /* 1198 * The block which we have just freed is 1199 * pointed to by an indirect block: journal it 1200 */ 1201 BUFFER_TRACE(parent_bh, "get_write_access"); 1202 if (!ext4_journal_get_write_access(handle, 1203 parent_bh)){ 1204 *p = 0; 1205 BUFFER_TRACE(parent_bh, 1206 "call ext4_handle_dirty_metadata"); 1207 ext4_handle_dirty_metadata(handle, 1208 inode, 1209 parent_bh); 1210 } 1211 } 1212 } 1213 } else { 1214 /* We have reached the bottom of the tree. */ 1215 BUFFER_TRACE(parent_bh, "free data blocks"); 1216 ext4_free_data(handle, inode, parent_bh, first, last); 1217 } 1218 } 1219 1220 void ext4_ind_truncate(handle_t *handle, struct inode *inode) 1221 { 1222 struct ext4_inode_info *ei = EXT4_I(inode); 1223 __le32 *i_data = ei->i_data; 1224 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 1225 ext4_lblk_t offsets[4]; 1226 Indirect chain[4]; 1227 Indirect *partial; 1228 __le32 nr = 0; 1229 int n = 0; 1230 ext4_lblk_t last_block, max_block; 1231 unsigned blocksize = inode->i_sb->s_blocksize; 1232 1233 last_block = (inode->i_size + blocksize-1) 1234 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 1235 max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1) 1236 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 1237 1238 if (last_block != max_block) { 1239 n = ext4_block_to_path(inode, last_block, offsets, NULL); 1240 if (n == 0) 1241 return; 1242 } 1243 1244 ext4_es_remove_extent(inode, last_block, EXT_MAX_BLOCKS - last_block); 1245 1246 /* 1247 * The orphan list entry will now protect us from any crash which 1248 * occurs before the truncate completes, so it is now safe to propagate 1249 * the new, shorter inode size (held for now in i_size) into the 1250 * on-disk inode. We do this via i_disksize, which is the value which 1251 * ext4 *really* writes onto the disk inode. 1252 */ 1253 ei->i_disksize = inode->i_size; 1254 1255 if (last_block == max_block) { 1256 /* 1257 * It is unnecessary to free any data blocks if last_block is 1258 * equal to the indirect block limit. 1259 */ 1260 return; 1261 } else if (n == 1) { /* direct blocks */ 1262 ext4_free_data(handle, inode, NULL, i_data+offsets[0], 1263 i_data + EXT4_NDIR_BLOCKS); 1264 goto do_indirects; 1265 } 1266 1267 partial = ext4_find_shared(inode, n, offsets, chain, &nr); 1268 /* Kill the top of shared branch (not detached) */ 1269 if (nr) { 1270 if (partial == chain) { 1271 /* Shared branch grows from the inode */ 1272 ext4_free_branches(handle, inode, NULL, 1273 &nr, &nr+1, (chain+n-1) - partial); 1274 *partial->p = 0; 1275 /* 1276 * We mark the inode dirty prior to restart, 1277 * and prior to stop. No need for it here. 1278 */ 1279 } else { 1280 /* Shared branch grows from an indirect block */ 1281 BUFFER_TRACE(partial->bh, "get_write_access"); 1282 ext4_free_branches(handle, inode, partial->bh, 1283 partial->p, 1284 partial->p+1, (chain+n-1) - partial); 1285 } 1286 } 1287 /* Clear the ends of indirect blocks on the shared branch */ 1288 while (partial > chain) { 1289 ext4_free_branches(handle, inode, partial->bh, partial->p + 1, 1290 (__le32*)partial->bh->b_data+addr_per_block, 1291 (chain+n-1) - partial); 1292 BUFFER_TRACE(partial->bh, "call brelse"); 1293 brelse(partial->bh); 1294 partial--; 1295 } 1296 do_indirects: 1297 /* Kill the remaining (whole) subtrees */ 1298 switch (offsets[0]) { 1299 default: 1300 nr = i_data[EXT4_IND_BLOCK]; 1301 if (nr) { 1302 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1); 1303 i_data[EXT4_IND_BLOCK] = 0; 1304 } 1305 case EXT4_IND_BLOCK: 1306 nr = i_data[EXT4_DIND_BLOCK]; 1307 if (nr) { 1308 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2); 1309 i_data[EXT4_DIND_BLOCK] = 0; 1310 } 1311 case EXT4_DIND_BLOCK: 1312 nr = i_data[EXT4_TIND_BLOCK]; 1313 if (nr) { 1314 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3); 1315 i_data[EXT4_TIND_BLOCK] = 0; 1316 } 1317 case EXT4_TIND_BLOCK: 1318 ; 1319 } 1320 } 1321 1322 /** 1323 * ext4_ind_remove_space - remove space from the range 1324 * @handle: JBD handle for this transaction 1325 * @inode: inode we are dealing with 1326 * @start: First block to remove 1327 * @end: One block after the last block to remove (exclusive) 1328 * 1329 * Free the blocks in the defined range (end is exclusive endpoint of 1330 * range). This is used by ext4_punch_hole(). 1331 */ 1332 int ext4_ind_remove_space(handle_t *handle, struct inode *inode, 1333 ext4_lblk_t start, ext4_lblk_t end) 1334 { 1335 struct ext4_inode_info *ei = EXT4_I(inode); 1336 __le32 *i_data = ei->i_data; 1337 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 1338 ext4_lblk_t offsets[4], offsets2[4]; 1339 Indirect chain[4], chain2[4]; 1340 Indirect *partial, *partial2; 1341 ext4_lblk_t max_block; 1342 __le32 nr = 0, nr2 = 0; 1343 int n = 0, n2 = 0; 1344 unsigned blocksize = inode->i_sb->s_blocksize; 1345 1346 max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1) 1347 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 1348 if (end >= max_block) 1349 end = max_block; 1350 if ((start >= end) || (start > max_block)) 1351 return 0; 1352 1353 n = ext4_block_to_path(inode, start, offsets, NULL); 1354 n2 = ext4_block_to_path(inode, end, offsets2, NULL); 1355 1356 BUG_ON(n > n2); 1357 1358 if ((n == 1) && (n == n2)) { 1359 /* We're punching only within direct block range */ 1360 ext4_free_data(handle, inode, NULL, i_data + offsets[0], 1361 i_data + offsets2[0]); 1362 return 0; 1363 } else if (n2 > n) { 1364 /* 1365 * Start and end are on a different levels so we're going to 1366 * free partial block at start, and partial block at end of 1367 * the range. If there are some levels in between then 1368 * do_indirects label will take care of that. 1369 */ 1370 1371 if (n == 1) { 1372 /* 1373 * Start is at the direct block level, free 1374 * everything to the end of the level. 1375 */ 1376 ext4_free_data(handle, inode, NULL, i_data + offsets[0], 1377 i_data + EXT4_NDIR_BLOCKS); 1378 goto end_range; 1379 } 1380 1381 1382 partial = ext4_find_shared(inode, n, offsets, chain, &nr); 1383 if (nr) { 1384 if (partial == chain) { 1385 /* Shared branch grows from the inode */ 1386 ext4_free_branches(handle, inode, NULL, 1387 &nr, &nr+1, (chain+n-1) - partial); 1388 *partial->p = 0; 1389 } else { 1390 /* Shared branch grows from an indirect block */ 1391 BUFFER_TRACE(partial->bh, "get_write_access"); 1392 ext4_free_branches(handle, inode, partial->bh, 1393 partial->p, 1394 partial->p+1, (chain+n-1) - partial); 1395 } 1396 } 1397 1398 /* 1399 * Clear the ends of indirect blocks on the shared branch 1400 * at the start of the range 1401 */ 1402 while (partial > chain) { 1403 ext4_free_branches(handle, inode, partial->bh, 1404 partial->p + 1, 1405 (__le32 *)partial->bh->b_data+addr_per_block, 1406 (chain+n-1) - partial); 1407 BUFFER_TRACE(partial->bh, "call brelse"); 1408 brelse(partial->bh); 1409 partial--; 1410 } 1411 1412 end_range: 1413 partial2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2); 1414 if (nr2) { 1415 if (partial2 == chain2) { 1416 /* 1417 * Remember, end is exclusive so here we're at 1418 * the start of the next level we're not going 1419 * to free. Everything was covered by the start 1420 * of the range. 1421 */ 1422 goto do_indirects; 1423 } 1424 } else { 1425 /* 1426 * ext4_find_shared returns Indirect structure which 1427 * points to the last element which should not be 1428 * removed by truncate. But this is end of the range 1429 * in punch_hole so we need to point to the next element 1430 */ 1431 partial2->p++; 1432 } 1433 1434 /* 1435 * Clear the ends of indirect blocks on the shared branch 1436 * at the end of the range 1437 */ 1438 while (partial2 > chain2) { 1439 ext4_free_branches(handle, inode, partial2->bh, 1440 (__le32 *)partial2->bh->b_data, 1441 partial2->p, 1442 (chain2+n2-1) - partial2); 1443 BUFFER_TRACE(partial2->bh, "call brelse"); 1444 brelse(partial2->bh); 1445 partial2--; 1446 } 1447 goto do_indirects; 1448 } 1449 1450 /* Punch happened within the same level (n == n2) */ 1451 partial = ext4_find_shared(inode, n, offsets, chain, &nr); 1452 partial2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2); 1453 1454 /* Free top, but only if partial2 isn't its subtree. */ 1455 if (nr) { 1456 int level = min(partial - chain, partial2 - chain2); 1457 int i; 1458 int subtree = 1; 1459 1460 for (i = 0; i <= level; i++) { 1461 if (offsets[i] != offsets2[i]) { 1462 subtree = 0; 1463 break; 1464 } 1465 } 1466 1467 if (!subtree) { 1468 if (partial == chain) { 1469 /* Shared branch grows from the inode */ 1470 ext4_free_branches(handle, inode, NULL, 1471 &nr, &nr+1, 1472 (chain+n-1) - partial); 1473 *partial->p = 0; 1474 } else { 1475 /* Shared branch grows from an indirect block */ 1476 BUFFER_TRACE(partial->bh, "get_write_access"); 1477 ext4_free_branches(handle, inode, partial->bh, 1478 partial->p, 1479 partial->p+1, 1480 (chain+n-1) - partial); 1481 } 1482 } 1483 } 1484 1485 if (!nr2) { 1486 /* 1487 * ext4_find_shared returns Indirect structure which 1488 * points to the last element which should not be 1489 * removed by truncate. But this is end of the range 1490 * in punch_hole so we need to point to the next element 1491 */ 1492 partial2->p++; 1493 } 1494 1495 while (partial > chain || partial2 > chain2) { 1496 int depth = (chain+n-1) - partial; 1497 int depth2 = (chain2+n2-1) - partial2; 1498 1499 if (partial > chain && partial2 > chain2 && 1500 partial->bh->b_blocknr == partial2->bh->b_blocknr) { 1501 /* 1502 * We've converged on the same block. Clear the range, 1503 * then we're done. 1504 */ 1505 ext4_free_branches(handle, inode, partial->bh, 1506 partial->p + 1, 1507 partial2->p, 1508 (chain+n-1) - partial); 1509 BUFFER_TRACE(partial->bh, "call brelse"); 1510 brelse(partial->bh); 1511 BUFFER_TRACE(partial2->bh, "call brelse"); 1512 brelse(partial2->bh); 1513 return 0; 1514 } 1515 1516 /* 1517 * The start and end partial branches may not be at the same 1518 * level even though the punch happened within one level. So, we 1519 * give them a chance to arrive at the same level, then walk 1520 * them in step with each other until we converge on the same 1521 * block. 1522 */ 1523 if (partial > chain && depth <= depth2) { 1524 ext4_free_branches(handle, inode, partial->bh, 1525 partial->p + 1, 1526 (__le32 *)partial->bh->b_data+addr_per_block, 1527 (chain+n-1) - partial); 1528 BUFFER_TRACE(partial->bh, "call brelse"); 1529 brelse(partial->bh); 1530 partial--; 1531 } 1532 if (partial2 > chain2 && depth2 <= depth) { 1533 ext4_free_branches(handle, inode, partial2->bh, 1534 (__le32 *)partial2->bh->b_data, 1535 partial2->p, 1536 (chain2+n2-1) - partial2); 1537 BUFFER_TRACE(partial2->bh, "call brelse"); 1538 brelse(partial2->bh); 1539 partial2--; 1540 } 1541 } 1542 return 0; 1543 1544 do_indirects: 1545 /* Kill the remaining (whole) subtrees */ 1546 switch (offsets[0]) { 1547 default: 1548 if (++n >= n2) 1549 return 0; 1550 nr = i_data[EXT4_IND_BLOCK]; 1551 if (nr) { 1552 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1); 1553 i_data[EXT4_IND_BLOCK] = 0; 1554 } 1555 case EXT4_IND_BLOCK: 1556 if (++n >= n2) 1557 return 0; 1558 nr = i_data[EXT4_DIND_BLOCK]; 1559 if (nr) { 1560 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2); 1561 i_data[EXT4_DIND_BLOCK] = 0; 1562 } 1563 case EXT4_DIND_BLOCK: 1564 if (++n >= n2) 1565 return 0; 1566 nr = i_data[EXT4_TIND_BLOCK]; 1567 if (nr) { 1568 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3); 1569 i_data[EXT4_TIND_BLOCK] = 0; 1570 } 1571 case EXT4_TIND_BLOCK: 1572 ; 1573 } 1574 return 0; 1575 } 1576