1 /* 2 * linux/fs/ext4/indirect.c 3 * 4 * from 5 * 6 * linux/fs/ext4/inode.c 7 * 8 * Copyright (C) 1992, 1993, 1994, 1995 9 * Remy Card (card@masi.ibp.fr) 10 * Laboratoire MASI - Institut Blaise Pascal 11 * Universite Pierre et Marie Curie (Paris VI) 12 * 13 * from 14 * 15 * linux/fs/minix/inode.c 16 * 17 * Copyright (C) 1991, 1992 Linus Torvalds 18 * 19 * Goal-directed block allocation by Stephen Tweedie 20 * (sct@redhat.com), 1993, 1998 21 */ 22 23 #include <linux/aio.h> 24 #include "ext4_jbd2.h" 25 #include "truncate.h" 26 27 #include <trace/events/ext4.h> 28 29 typedef struct { 30 __le32 *p; 31 __le32 key; 32 struct buffer_head *bh; 33 } Indirect; 34 35 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v) 36 { 37 p->key = *(p->p = v); 38 p->bh = bh; 39 } 40 41 /** 42 * ext4_block_to_path - parse the block number into array of offsets 43 * @inode: inode in question (we are only interested in its superblock) 44 * @i_block: block number to be parsed 45 * @offsets: array to store the offsets in 46 * @boundary: set this non-zero if the referred-to block is likely to be 47 * followed (on disk) by an indirect block. 48 * 49 * To store the locations of file's data ext4 uses a data structure common 50 * for UNIX filesystems - tree of pointers anchored in the inode, with 51 * data blocks at leaves and indirect blocks in intermediate nodes. 52 * This function translates the block number into path in that tree - 53 * return value is the path length and @offsets[n] is the offset of 54 * pointer to (n+1)th node in the nth one. If @block is out of range 55 * (negative or too large) warning is printed and zero returned. 56 * 57 * Note: function doesn't find node addresses, so no IO is needed. All 58 * we need to know is the capacity of indirect blocks (taken from the 59 * inode->i_sb). 60 */ 61 62 /* 63 * Portability note: the last comparison (check that we fit into triple 64 * indirect block) is spelled differently, because otherwise on an 65 * architecture with 32-bit longs and 8Kb pages we might get into trouble 66 * if our filesystem had 8Kb blocks. We might use long long, but that would 67 * kill us on x86. Oh, well, at least the sign propagation does not matter - 68 * i_block would have to be negative in the very beginning, so we would not 69 * get there at all. 70 */ 71 72 static int ext4_block_to_path(struct inode *inode, 73 ext4_lblk_t i_block, 74 ext4_lblk_t offsets[4], int *boundary) 75 { 76 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb); 77 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb); 78 const long direct_blocks = EXT4_NDIR_BLOCKS, 79 indirect_blocks = ptrs, 80 double_blocks = (1 << (ptrs_bits * 2)); 81 int n = 0; 82 int final = 0; 83 84 if (i_block < direct_blocks) { 85 offsets[n++] = i_block; 86 final = direct_blocks; 87 } else if ((i_block -= direct_blocks) < indirect_blocks) { 88 offsets[n++] = EXT4_IND_BLOCK; 89 offsets[n++] = i_block; 90 final = ptrs; 91 } else if ((i_block -= indirect_blocks) < double_blocks) { 92 offsets[n++] = EXT4_DIND_BLOCK; 93 offsets[n++] = i_block >> ptrs_bits; 94 offsets[n++] = i_block & (ptrs - 1); 95 final = ptrs; 96 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { 97 offsets[n++] = EXT4_TIND_BLOCK; 98 offsets[n++] = i_block >> (ptrs_bits * 2); 99 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); 100 offsets[n++] = i_block & (ptrs - 1); 101 final = ptrs; 102 } else { 103 ext4_warning(inode->i_sb, "block %lu > max in inode %lu", 104 i_block + direct_blocks + 105 indirect_blocks + double_blocks, inode->i_ino); 106 } 107 if (boundary) 108 *boundary = final - 1 - (i_block & (ptrs - 1)); 109 return n; 110 } 111 112 /** 113 * ext4_get_branch - read the chain of indirect blocks leading to data 114 * @inode: inode in question 115 * @depth: depth of the chain (1 - direct pointer, etc.) 116 * @offsets: offsets of pointers in inode/indirect blocks 117 * @chain: place to store the result 118 * @err: here we store the error value 119 * 120 * Function fills the array of triples <key, p, bh> and returns %NULL 121 * if everything went OK or the pointer to the last filled triple 122 * (incomplete one) otherwise. Upon the return chain[i].key contains 123 * the number of (i+1)-th block in the chain (as it is stored in memory, 124 * i.e. little-endian 32-bit), chain[i].p contains the address of that 125 * number (it points into struct inode for i==0 and into the bh->b_data 126 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect 127 * block for i>0 and NULL for i==0. In other words, it holds the block 128 * numbers of the chain, addresses they were taken from (and where we can 129 * verify that chain did not change) and buffer_heads hosting these 130 * numbers. 131 * 132 * Function stops when it stumbles upon zero pointer (absent block) 133 * (pointer to last triple returned, *@err == 0) 134 * or when it gets an IO error reading an indirect block 135 * (ditto, *@err == -EIO) 136 * or when it reads all @depth-1 indirect blocks successfully and finds 137 * the whole chain, all way to the data (returns %NULL, *err == 0). 138 * 139 * Need to be called with 140 * down_read(&EXT4_I(inode)->i_data_sem) 141 */ 142 static Indirect *ext4_get_branch(struct inode *inode, int depth, 143 ext4_lblk_t *offsets, 144 Indirect chain[4], int *err) 145 { 146 struct super_block *sb = inode->i_sb; 147 Indirect *p = chain; 148 struct buffer_head *bh; 149 int ret = -EIO; 150 151 *err = 0; 152 /* i_data is not going away, no lock needed */ 153 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets); 154 if (!p->key) 155 goto no_block; 156 while (--depth) { 157 bh = sb_getblk(sb, le32_to_cpu(p->key)); 158 if (unlikely(!bh)) { 159 ret = -ENOMEM; 160 goto failure; 161 } 162 163 if (!bh_uptodate_or_lock(bh)) { 164 if (bh_submit_read(bh) < 0) { 165 put_bh(bh); 166 goto failure; 167 } 168 /* validate block references */ 169 if (ext4_check_indirect_blockref(inode, bh)) { 170 put_bh(bh); 171 goto failure; 172 } 173 } 174 175 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets); 176 /* Reader: end */ 177 if (!p->key) 178 goto no_block; 179 } 180 return NULL; 181 182 failure: 183 *err = ret; 184 no_block: 185 return p; 186 } 187 188 /** 189 * ext4_find_near - find a place for allocation with sufficient locality 190 * @inode: owner 191 * @ind: descriptor of indirect block. 192 * 193 * This function returns the preferred place for block allocation. 194 * It is used when heuristic for sequential allocation fails. 195 * Rules are: 196 * + if there is a block to the left of our position - allocate near it. 197 * + if pointer will live in indirect block - allocate near that block. 198 * + if pointer will live in inode - allocate in the same 199 * cylinder group. 200 * 201 * In the latter case we colour the starting block by the callers PID to 202 * prevent it from clashing with concurrent allocations for a different inode 203 * in the same block group. The PID is used here so that functionally related 204 * files will be close-by on-disk. 205 * 206 * Caller must make sure that @ind is valid and will stay that way. 207 */ 208 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind) 209 { 210 struct ext4_inode_info *ei = EXT4_I(inode); 211 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data; 212 __le32 *p; 213 214 /* Try to find previous block */ 215 for (p = ind->p - 1; p >= start; p--) { 216 if (*p) 217 return le32_to_cpu(*p); 218 } 219 220 /* No such thing, so let's try location of indirect block */ 221 if (ind->bh) 222 return ind->bh->b_blocknr; 223 224 /* 225 * It is going to be referred to from the inode itself? OK, just put it 226 * into the same cylinder group then. 227 */ 228 return ext4_inode_to_goal_block(inode); 229 } 230 231 /** 232 * ext4_find_goal - find a preferred place for allocation. 233 * @inode: owner 234 * @block: block we want 235 * @partial: pointer to the last triple within a chain 236 * 237 * Normally this function find the preferred place for block allocation, 238 * returns it. 239 * Because this is only used for non-extent files, we limit the block nr 240 * to 32 bits. 241 */ 242 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block, 243 Indirect *partial) 244 { 245 ext4_fsblk_t goal; 246 247 /* 248 * XXX need to get goal block from mballoc's data structures 249 */ 250 251 goal = ext4_find_near(inode, partial); 252 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS; 253 return goal; 254 } 255 256 /** 257 * ext4_blks_to_allocate - Look up the block map and count the number 258 * of direct blocks need to be allocated for the given branch. 259 * 260 * @branch: chain of indirect blocks 261 * @k: number of blocks need for indirect blocks 262 * @blks: number of data blocks to be mapped. 263 * @blocks_to_boundary: the offset in the indirect block 264 * 265 * return the total number of blocks to be allocate, including the 266 * direct and indirect blocks. 267 */ 268 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks, 269 int blocks_to_boundary) 270 { 271 unsigned int count = 0; 272 273 /* 274 * Simple case, [t,d]Indirect block(s) has not allocated yet 275 * then it's clear blocks on that path have not allocated 276 */ 277 if (k > 0) { 278 /* right now we don't handle cross boundary allocation */ 279 if (blks < blocks_to_boundary + 1) 280 count += blks; 281 else 282 count += blocks_to_boundary + 1; 283 return count; 284 } 285 286 count++; 287 while (count < blks && count <= blocks_to_boundary && 288 le32_to_cpu(*(branch[0].p + count)) == 0) { 289 count++; 290 } 291 return count; 292 } 293 294 /** 295 * ext4_alloc_branch - allocate and set up a chain of blocks. 296 * @handle: handle for this transaction 297 * @inode: owner 298 * @indirect_blks: number of allocated indirect blocks 299 * @blks: number of allocated direct blocks 300 * @goal: preferred place for allocation 301 * @offsets: offsets (in the blocks) to store the pointers to next. 302 * @branch: place to store the chain in. 303 * 304 * This function allocates blocks, zeroes out all but the last one, 305 * links them into chain and (if we are synchronous) writes them to disk. 306 * In other words, it prepares a branch that can be spliced onto the 307 * inode. It stores the information about that chain in the branch[], in 308 * the same format as ext4_get_branch() would do. We are calling it after 309 * we had read the existing part of chain and partial points to the last 310 * triple of that (one with zero ->key). Upon the exit we have the same 311 * picture as after the successful ext4_get_block(), except that in one 312 * place chain is disconnected - *branch->p is still zero (we did not 313 * set the last link), but branch->key contains the number that should 314 * be placed into *branch->p to fill that gap. 315 * 316 * If allocation fails we free all blocks we've allocated (and forget 317 * their buffer_heads) and return the error value the from failed 318 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain 319 * as described above and return 0. 320 */ 321 static int ext4_alloc_branch(handle_t *handle, 322 struct ext4_allocation_request *ar, 323 int indirect_blks, ext4_lblk_t *offsets, 324 Indirect *branch) 325 { 326 struct buffer_head * bh; 327 ext4_fsblk_t b, new_blocks[4]; 328 __le32 *p; 329 int i, j, err, len = 1; 330 331 for (i = 0; i <= indirect_blks; i++) { 332 if (i == indirect_blks) { 333 new_blocks[i] = ext4_mb_new_blocks(handle, ar, &err); 334 } else 335 ar->goal = new_blocks[i] = ext4_new_meta_blocks(handle, 336 ar->inode, ar->goal, 337 ar->flags & EXT4_MB_DELALLOC_RESERVED, 338 NULL, &err); 339 if (err) { 340 i--; 341 goto failed; 342 } 343 branch[i].key = cpu_to_le32(new_blocks[i]); 344 if (i == 0) 345 continue; 346 347 bh = branch[i].bh = sb_getblk(ar->inode->i_sb, new_blocks[i-1]); 348 if (unlikely(!bh)) { 349 err = -ENOMEM; 350 goto failed; 351 } 352 lock_buffer(bh); 353 BUFFER_TRACE(bh, "call get_create_access"); 354 err = ext4_journal_get_create_access(handle, bh); 355 if (err) { 356 unlock_buffer(bh); 357 goto failed; 358 } 359 360 memset(bh->b_data, 0, bh->b_size); 361 p = branch[i].p = (__le32 *) bh->b_data + offsets[i]; 362 b = new_blocks[i]; 363 364 if (i == indirect_blks) 365 len = ar->len; 366 for (j = 0; j < len; j++) 367 *p++ = cpu_to_le32(b++); 368 369 BUFFER_TRACE(bh, "marking uptodate"); 370 set_buffer_uptodate(bh); 371 unlock_buffer(bh); 372 373 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 374 err = ext4_handle_dirty_metadata(handle, ar->inode, bh); 375 if (err) 376 goto failed; 377 } 378 return 0; 379 failed: 380 for (; i >= 0; i--) { 381 /* 382 * We want to ext4_forget() only freshly allocated indirect 383 * blocks. Buffer for new_blocks[i-1] is at branch[i].bh and 384 * buffer at branch[0].bh is indirect block / inode already 385 * existing before ext4_alloc_branch() was called. 386 */ 387 if (i > 0 && i != indirect_blks && branch[i].bh) 388 ext4_forget(handle, 1, ar->inode, branch[i].bh, 389 branch[i].bh->b_blocknr); 390 ext4_free_blocks(handle, ar->inode, NULL, new_blocks[i], 391 (i == indirect_blks) ? ar->len : 1, 0); 392 } 393 return err; 394 } 395 396 /** 397 * ext4_splice_branch - splice the allocated branch onto inode. 398 * @handle: handle for this transaction 399 * @inode: owner 400 * @block: (logical) number of block we are adding 401 * @chain: chain of indirect blocks (with a missing link - see 402 * ext4_alloc_branch) 403 * @where: location of missing link 404 * @num: number of indirect blocks we are adding 405 * @blks: number of direct blocks we are adding 406 * 407 * This function fills the missing link and does all housekeeping needed in 408 * inode (->i_blocks, etc.). In case of success we end up with the full 409 * chain to new block and return 0. 410 */ 411 static int ext4_splice_branch(handle_t *handle, 412 struct ext4_allocation_request *ar, 413 Indirect *where, int num) 414 { 415 int i; 416 int err = 0; 417 ext4_fsblk_t current_block; 418 419 /* 420 * If we're splicing into a [td]indirect block (as opposed to the 421 * inode) then we need to get write access to the [td]indirect block 422 * before the splice. 423 */ 424 if (where->bh) { 425 BUFFER_TRACE(where->bh, "get_write_access"); 426 err = ext4_journal_get_write_access(handle, where->bh); 427 if (err) 428 goto err_out; 429 } 430 /* That's it */ 431 432 *where->p = where->key; 433 434 /* 435 * Update the host buffer_head or inode to point to more just allocated 436 * direct blocks blocks 437 */ 438 if (num == 0 && ar->len > 1) { 439 current_block = le32_to_cpu(where->key) + 1; 440 for (i = 1; i < ar->len; i++) 441 *(where->p + i) = cpu_to_le32(current_block++); 442 } 443 444 /* We are done with atomic stuff, now do the rest of housekeeping */ 445 /* had we spliced it onto indirect block? */ 446 if (where->bh) { 447 /* 448 * If we spliced it onto an indirect block, we haven't 449 * altered the inode. Note however that if it is being spliced 450 * onto an indirect block at the very end of the file (the 451 * file is growing) then we *will* alter the inode to reflect 452 * the new i_size. But that is not done here - it is done in 453 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode. 454 */ 455 jbd_debug(5, "splicing indirect only\n"); 456 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata"); 457 err = ext4_handle_dirty_metadata(handle, ar->inode, where->bh); 458 if (err) 459 goto err_out; 460 } else { 461 /* 462 * OK, we spliced it into the inode itself on a direct block. 463 */ 464 ext4_mark_inode_dirty(handle, ar->inode); 465 jbd_debug(5, "splicing direct\n"); 466 } 467 return err; 468 469 err_out: 470 for (i = 1; i <= num; i++) { 471 /* 472 * branch[i].bh is newly allocated, so there is no 473 * need to revoke the block, which is why we don't 474 * need to set EXT4_FREE_BLOCKS_METADATA. 475 */ 476 ext4_free_blocks(handle, ar->inode, where[i].bh, 0, 1, 477 EXT4_FREE_BLOCKS_FORGET); 478 } 479 ext4_free_blocks(handle, ar->inode, NULL, le32_to_cpu(where[num].key), 480 ar->len, 0); 481 482 return err; 483 } 484 485 /* 486 * The ext4_ind_map_blocks() function handles non-extents inodes 487 * (i.e., using the traditional indirect/double-indirect i_blocks 488 * scheme) for ext4_map_blocks(). 489 * 490 * Allocation strategy is simple: if we have to allocate something, we will 491 * have to go the whole way to leaf. So let's do it before attaching anything 492 * to tree, set linkage between the newborn blocks, write them if sync is 493 * required, recheck the path, free and repeat if check fails, otherwise 494 * set the last missing link (that will protect us from any truncate-generated 495 * removals - all blocks on the path are immune now) and possibly force the 496 * write on the parent block. 497 * That has a nice additional property: no special recovery from the failed 498 * allocations is needed - we simply release blocks and do not touch anything 499 * reachable from inode. 500 * 501 * `handle' can be NULL if create == 0. 502 * 503 * return > 0, # of blocks mapped or allocated. 504 * return = 0, if plain lookup failed. 505 * return < 0, error case. 506 * 507 * The ext4_ind_get_blocks() function should be called with 508 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem 509 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or 510 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system 511 * blocks. 512 */ 513 int ext4_ind_map_blocks(handle_t *handle, struct inode *inode, 514 struct ext4_map_blocks *map, 515 int flags) 516 { 517 struct ext4_allocation_request ar; 518 int err = -EIO; 519 ext4_lblk_t offsets[4]; 520 Indirect chain[4]; 521 Indirect *partial; 522 int indirect_blks; 523 int blocks_to_boundary = 0; 524 int depth; 525 int count = 0; 526 ext4_fsblk_t first_block = 0; 527 528 trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags); 529 J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))); 530 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0); 531 depth = ext4_block_to_path(inode, map->m_lblk, offsets, 532 &blocks_to_boundary); 533 534 if (depth == 0) 535 goto out; 536 537 partial = ext4_get_branch(inode, depth, offsets, chain, &err); 538 539 /* Simplest case - block found, no allocation needed */ 540 if (!partial) { 541 first_block = le32_to_cpu(chain[depth - 1].key); 542 count++; 543 /*map more blocks*/ 544 while (count < map->m_len && count <= blocks_to_boundary) { 545 ext4_fsblk_t blk; 546 547 blk = le32_to_cpu(*(chain[depth-1].p + count)); 548 549 if (blk == first_block + count) 550 count++; 551 else 552 break; 553 } 554 goto got_it; 555 } 556 557 /* Next simple case - plain lookup or failed read of indirect block */ 558 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO) 559 goto cleanup; 560 561 /* 562 * Okay, we need to do block allocation. 563 */ 564 if (EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 565 EXT4_FEATURE_RO_COMPAT_BIGALLOC)) { 566 EXT4_ERROR_INODE(inode, "Can't allocate blocks for " 567 "non-extent mapped inodes with bigalloc"); 568 return -ENOSPC; 569 } 570 571 /* Set up for the direct block allocation */ 572 memset(&ar, 0, sizeof(ar)); 573 ar.inode = inode; 574 ar.logical = map->m_lblk; 575 if (S_ISREG(inode->i_mode)) 576 ar.flags = EXT4_MB_HINT_DATA; 577 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 578 ar.flags |= EXT4_MB_DELALLOC_RESERVED; 579 580 ar.goal = ext4_find_goal(inode, map->m_lblk, partial); 581 582 /* the number of blocks need to allocate for [d,t]indirect blocks */ 583 indirect_blks = (chain + depth) - partial - 1; 584 585 /* 586 * Next look up the indirect map to count the totoal number of 587 * direct blocks to allocate for this branch. 588 */ 589 ar.len = ext4_blks_to_allocate(partial, indirect_blks, 590 map->m_len, blocks_to_boundary); 591 592 /* 593 * Block out ext4_truncate while we alter the tree 594 */ 595 err = ext4_alloc_branch(handle, &ar, indirect_blks, 596 offsets + (partial - chain), partial); 597 598 /* 599 * The ext4_splice_branch call will free and forget any buffers 600 * on the new chain if there is a failure, but that risks using 601 * up transaction credits, especially for bitmaps where the 602 * credits cannot be returned. Can we handle this somehow? We 603 * may need to return -EAGAIN upwards in the worst case. --sct 604 */ 605 if (!err) 606 err = ext4_splice_branch(handle, &ar, partial, indirect_blks); 607 if (err) 608 goto cleanup; 609 610 map->m_flags |= EXT4_MAP_NEW; 611 612 ext4_update_inode_fsync_trans(handle, inode, 1); 613 count = ar.len; 614 got_it: 615 map->m_flags |= EXT4_MAP_MAPPED; 616 map->m_pblk = le32_to_cpu(chain[depth-1].key); 617 map->m_len = count; 618 if (count > blocks_to_boundary) 619 map->m_flags |= EXT4_MAP_BOUNDARY; 620 err = count; 621 /* Clean up and exit */ 622 partial = chain + depth - 1; /* the whole chain */ 623 cleanup: 624 while (partial > chain) { 625 BUFFER_TRACE(partial->bh, "call brelse"); 626 brelse(partial->bh); 627 partial--; 628 } 629 out: 630 trace_ext4_ind_map_blocks_exit(inode, flags, map, err); 631 return err; 632 } 633 634 /* 635 * O_DIRECT for ext3 (or indirect map) based files 636 * 637 * If the O_DIRECT write will extend the file then add this inode to the 638 * orphan list. So recovery will truncate it back to the original size 639 * if the machine crashes during the write. 640 * 641 * If the O_DIRECT write is intantiating holes inside i_size and the machine 642 * crashes then stale disk data _may_ be exposed inside the file. But current 643 * VFS code falls back into buffered path in that case so we are safe. 644 */ 645 ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb, 646 struct iov_iter *iter, loff_t offset) 647 { 648 struct file *file = iocb->ki_filp; 649 struct inode *inode = file->f_mapping->host; 650 struct ext4_inode_info *ei = EXT4_I(inode); 651 handle_t *handle; 652 ssize_t ret; 653 int orphan = 0; 654 size_t count = iov_iter_count(iter); 655 int retries = 0; 656 657 if (rw == WRITE) { 658 loff_t final_size = offset + count; 659 660 if (final_size > inode->i_size) { 661 /* Credits for sb + inode write */ 662 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 663 if (IS_ERR(handle)) { 664 ret = PTR_ERR(handle); 665 goto out; 666 } 667 ret = ext4_orphan_add(handle, inode); 668 if (ret) { 669 ext4_journal_stop(handle); 670 goto out; 671 } 672 orphan = 1; 673 ei->i_disksize = inode->i_size; 674 ext4_journal_stop(handle); 675 } 676 } 677 678 retry: 679 if (rw == READ && ext4_should_dioread_nolock(inode)) { 680 /* 681 * Nolock dioread optimization may be dynamically disabled 682 * via ext4_inode_block_unlocked_dio(). Check inode's state 683 * while holding extra i_dio_count ref. 684 */ 685 atomic_inc(&inode->i_dio_count); 686 smp_mb(); 687 if (unlikely(ext4_test_inode_state(inode, 688 EXT4_STATE_DIOREAD_LOCK))) { 689 inode_dio_done(inode); 690 goto locked; 691 } 692 ret = __blockdev_direct_IO(rw, iocb, inode, 693 inode->i_sb->s_bdev, iter, offset, 694 ext4_get_block, NULL, NULL, 0); 695 inode_dio_done(inode); 696 } else { 697 locked: 698 ret = blockdev_direct_IO(rw, iocb, inode, iter, 699 offset, ext4_get_block); 700 701 if (unlikely((rw & WRITE) && ret < 0)) { 702 loff_t isize = i_size_read(inode); 703 loff_t end = offset + count; 704 705 if (end > isize) 706 ext4_truncate_failed_write(inode); 707 } 708 } 709 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 710 goto retry; 711 712 if (orphan) { 713 int err; 714 715 /* Credits for sb + inode write */ 716 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 717 if (IS_ERR(handle)) { 718 /* This is really bad luck. We've written the data 719 * but cannot extend i_size. Bail out and pretend 720 * the write failed... */ 721 ret = PTR_ERR(handle); 722 if (inode->i_nlink) 723 ext4_orphan_del(NULL, inode); 724 725 goto out; 726 } 727 if (inode->i_nlink) 728 ext4_orphan_del(handle, inode); 729 if (ret > 0) { 730 loff_t end = offset + ret; 731 if (end > inode->i_size) { 732 ei->i_disksize = end; 733 i_size_write(inode, end); 734 /* 735 * We're going to return a positive `ret' 736 * here due to non-zero-length I/O, so there's 737 * no way of reporting error returns from 738 * ext4_mark_inode_dirty() to userspace. So 739 * ignore it. 740 */ 741 ext4_mark_inode_dirty(handle, inode); 742 } 743 } 744 err = ext4_journal_stop(handle); 745 if (ret == 0) 746 ret = err; 747 } 748 out: 749 return ret; 750 } 751 752 /* 753 * Calculate the number of metadata blocks need to reserve 754 * to allocate a new block at @lblocks for non extent file based file 755 */ 756 int ext4_ind_calc_metadata_amount(struct inode *inode, sector_t lblock) 757 { 758 struct ext4_inode_info *ei = EXT4_I(inode); 759 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1); 760 int blk_bits; 761 762 if (lblock < EXT4_NDIR_BLOCKS) 763 return 0; 764 765 lblock -= EXT4_NDIR_BLOCKS; 766 767 if (ei->i_da_metadata_calc_len && 768 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) { 769 ei->i_da_metadata_calc_len++; 770 return 0; 771 } 772 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask; 773 ei->i_da_metadata_calc_len = 1; 774 blk_bits = order_base_2(lblock); 775 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1; 776 } 777 778 /* 779 * Calculate number of indirect blocks touched by mapping @nrblocks logically 780 * contiguous blocks 781 */ 782 int ext4_ind_trans_blocks(struct inode *inode, int nrblocks) 783 { 784 /* 785 * With N contiguous data blocks, we need at most 786 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks, 787 * 2 dindirect blocks, and 1 tindirect block 788 */ 789 return DIV_ROUND_UP(nrblocks, EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4; 790 } 791 792 /* 793 * Truncate transactions can be complex and absolutely huge. So we need to 794 * be able to restart the transaction at a conventient checkpoint to make 795 * sure we don't overflow the journal. 796 * 797 * Try to extend this transaction for the purposes of truncation. If 798 * extend fails, we need to propagate the failure up and restart the 799 * transaction in the top-level truncate loop. --sct 800 * 801 * Returns 0 if we managed to create more room. If we can't create more 802 * room, and the transaction must be restarted we return 1. 803 */ 804 static int try_to_extend_transaction(handle_t *handle, struct inode *inode) 805 { 806 if (!ext4_handle_valid(handle)) 807 return 0; 808 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1)) 809 return 0; 810 if (!ext4_journal_extend(handle, ext4_blocks_for_truncate(inode))) 811 return 0; 812 return 1; 813 } 814 815 /* 816 * Probably it should be a library function... search for first non-zero word 817 * or memcmp with zero_page, whatever is better for particular architecture. 818 * Linus? 819 */ 820 static inline int all_zeroes(__le32 *p, __le32 *q) 821 { 822 while (p < q) 823 if (*p++) 824 return 0; 825 return 1; 826 } 827 828 /** 829 * ext4_find_shared - find the indirect blocks for partial truncation. 830 * @inode: inode in question 831 * @depth: depth of the affected branch 832 * @offsets: offsets of pointers in that branch (see ext4_block_to_path) 833 * @chain: place to store the pointers to partial indirect blocks 834 * @top: place to the (detached) top of branch 835 * 836 * This is a helper function used by ext4_truncate(). 837 * 838 * When we do truncate() we may have to clean the ends of several 839 * indirect blocks but leave the blocks themselves alive. Block is 840 * partially truncated if some data below the new i_size is referred 841 * from it (and it is on the path to the first completely truncated 842 * data block, indeed). We have to free the top of that path along 843 * with everything to the right of the path. Since no allocation 844 * past the truncation point is possible until ext4_truncate() 845 * finishes, we may safely do the latter, but top of branch may 846 * require special attention - pageout below the truncation point 847 * might try to populate it. 848 * 849 * We atomically detach the top of branch from the tree, store the 850 * block number of its root in *@top, pointers to buffer_heads of 851 * partially truncated blocks - in @chain[].bh and pointers to 852 * their last elements that should not be removed - in 853 * @chain[].p. Return value is the pointer to last filled element 854 * of @chain. 855 * 856 * The work left to caller to do the actual freeing of subtrees: 857 * a) free the subtree starting from *@top 858 * b) free the subtrees whose roots are stored in 859 * (@chain[i].p+1 .. end of @chain[i].bh->b_data) 860 * c) free the subtrees growing from the inode past the @chain[0]. 861 * (no partially truncated stuff there). */ 862 863 static Indirect *ext4_find_shared(struct inode *inode, int depth, 864 ext4_lblk_t offsets[4], Indirect chain[4], 865 __le32 *top) 866 { 867 Indirect *partial, *p; 868 int k, err; 869 870 *top = 0; 871 /* Make k index the deepest non-null offset + 1 */ 872 for (k = depth; k > 1 && !offsets[k-1]; k--) 873 ; 874 partial = ext4_get_branch(inode, k, offsets, chain, &err); 875 /* Writer: pointers */ 876 if (!partial) 877 partial = chain + k-1; 878 /* 879 * If the branch acquired continuation since we've looked at it - 880 * fine, it should all survive and (new) top doesn't belong to us. 881 */ 882 if (!partial->key && *partial->p) 883 /* Writer: end */ 884 goto no_top; 885 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--) 886 ; 887 /* 888 * OK, we've found the last block that must survive. The rest of our 889 * branch should be detached before unlocking. However, if that rest 890 * of branch is all ours and does not grow immediately from the inode 891 * it's easier to cheat and just decrement partial->p. 892 */ 893 if (p == chain + k - 1 && p > chain) { 894 p->p--; 895 } else { 896 *top = *p->p; 897 /* Nope, don't do this in ext4. Must leave the tree intact */ 898 #if 0 899 *p->p = 0; 900 #endif 901 } 902 /* Writer: end */ 903 904 while (partial > p) { 905 brelse(partial->bh); 906 partial--; 907 } 908 no_top: 909 return partial; 910 } 911 912 /* 913 * Zero a number of block pointers in either an inode or an indirect block. 914 * If we restart the transaction we must again get write access to the 915 * indirect block for further modification. 916 * 917 * We release `count' blocks on disk, but (last - first) may be greater 918 * than `count' because there can be holes in there. 919 * 920 * Return 0 on success, 1 on invalid block range 921 * and < 0 on fatal error. 922 */ 923 static int ext4_clear_blocks(handle_t *handle, struct inode *inode, 924 struct buffer_head *bh, 925 ext4_fsblk_t block_to_free, 926 unsigned long count, __le32 *first, 927 __le32 *last) 928 { 929 __le32 *p; 930 int flags = EXT4_FREE_BLOCKS_VALIDATED; 931 int err; 932 933 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 934 flags |= EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_METADATA; 935 else if (ext4_should_journal_data(inode)) 936 flags |= EXT4_FREE_BLOCKS_FORGET; 937 938 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free, 939 count)) { 940 EXT4_ERROR_INODE(inode, "attempt to clear invalid " 941 "blocks %llu len %lu", 942 (unsigned long long) block_to_free, count); 943 return 1; 944 } 945 946 if (try_to_extend_transaction(handle, inode)) { 947 if (bh) { 948 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 949 err = ext4_handle_dirty_metadata(handle, inode, bh); 950 if (unlikely(err)) 951 goto out_err; 952 } 953 err = ext4_mark_inode_dirty(handle, inode); 954 if (unlikely(err)) 955 goto out_err; 956 err = ext4_truncate_restart_trans(handle, inode, 957 ext4_blocks_for_truncate(inode)); 958 if (unlikely(err)) 959 goto out_err; 960 if (bh) { 961 BUFFER_TRACE(bh, "retaking write access"); 962 err = ext4_journal_get_write_access(handle, bh); 963 if (unlikely(err)) 964 goto out_err; 965 } 966 } 967 968 for (p = first; p < last; p++) 969 *p = 0; 970 971 ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags); 972 return 0; 973 out_err: 974 ext4_std_error(inode->i_sb, err); 975 return err; 976 } 977 978 /** 979 * ext4_free_data - free a list of data blocks 980 * @handle: handle for this transaction 981 * @inode: inode we are dealing with 982 * @this_bh: indirect buffer_head which contains *@first and *@last 983 * @first: array of block numbers 984 * @last: points immediately past the end of array 985 * 986 * We are freeing all blocks referred from that array (numbers are stored as 987 * little-endian 32-bit) and updating @inode->i_blocks appropriately. 988 * 989 * We accumulate contiguous runs of blocks to free. Conveniently, if these 990 * blocks are contiguous then releasing them at one time will only affect one 991 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't 992 * actually use a lot of journal space. 993 * 994 * @this_bh will be %NULL if @first and @last point into the inode's direct 995 * block pointers. 996 */ 997 static void ext4_free_data(handle_t *handle, struct inode *inode, 998 struct buffer_head *this_bh, 999 __le32 *first, __le32 *last) 1000 { 1001 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */ 1002 unsigned long count = 0; /* Number of blocks in the run */ 1003 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind 1004 corresponding to 1005 block_to_free */ 1006 ext4_fsblk_t nr; /* Current block # */ 1007 __le32 *p; /* Pointer into inode/ind 1008 for current block */ 1009 int err = 0; 1010 1011 if (this_bh) { /* For indirect block */ 1012 BUFFER_TRACE(this_bh, "get_write_access"); 1013 err = ext4_journal_get_write_access(handle, this_bh); 1014 /* Important: if we can't update the indirect pointers 1015 * to the blocks, we can't free them. */ 1016 if (err) 1017 return; 1018 } 1019 1020 for (p = first; p < last; p++) { 1021 nr = le32_to_cpu(*p); 1022 if (nr) { 1023 /* accumulate blocks to free if they're contiguous */ 1024 if (count == 0) { 1025 block_to_free = nr; 1026 block_to_free_p = p; 1027 count = 1; 1028 } else if (nr == block_to_free + count) { 1029 count++; 1030 } else { 1031 err = ext4_clear_blocks(handle, inode, this_bh, 1032 block_to_free, count, 1033 block_to_free_p, p); 1034 if (err) 1035 break; 1036 block_to_free = nr; 1037 block_to_free_p = p; 1038 count = 1; 1039 } 1040 } 1041 } 1042 1043 if (!err && count > 0) 1044 err = ext4_clear_blocks(handle, inode, this_bh, block_to_free, 1045 count, block_to_free_p, p); 1046 if (err < 0) 1047 /* fatal error */ 1048 return; 1049 1050 if (this_bh) { 1051 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata"); 1052 1053 /* 1054 * The buffer head should have an attached journal head at this 1055 * point. However, if the data is corrupted and an indirect 1056 * block pointed to itself, it would have been detached when 1057 * the block was cleared. Check for this instead of OOPSing. 1058 */ 1059 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh)) 1060 ext4_handle_dirty_metadata(handle, inode, this_bh); 1061 else 1062 EXT4_ERROR_INODE(inode, 1063 "circular indirect block detected at " 1064 "block %llu", 1065 (unsigned long long) this_bh->b_blocknr); 1066 } 1067 } 1068 1069 /** 1070 * ext4_free_branches - free an array of branches 1071 * @handle: JBD handle for this transaction 1072 * @inode: inode we are dealing with 1073 * @parent_bh: the buffer_head which contains *@first and *@last 1074 * @first: array of block numbers 1075 * @last: pointer immediately past the end of array 1076 * @depth: depth of the branches to free 1077 * 1078 * We are freeing all blocks referred from these branches (numbers are 1079 * stored as little-endian 32-bit) and updating @inode->i_blocks 1080 * appropriately. 1081 */ 1082 static void ext4_free_branches(handle_t *handle, struct inode *inode, 1083 struct buffer_head *parent_bh, 1084 __le32 *first, __le32 *last, int depth) 1085 { 1086 ext4_fsblk_t nr; 1087 __le32 *p; 1088 1089 if (ext4_handle_is_aborted(handle)) 1090 return; 1091 1092 if (depth--) { 1093 struct buffer_head *bh; 1094 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 1095 p = last; 1096 while (--p >= first) { 1097 nr = le32_to_cpu(*p); 1098 if (!nr) 1099 continue; /* A hole */ 1100 1101 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), 1102 nr, 1)) { 1103 EXT4_ERROR_INODE(inode, 1104 "invalid indirect mapped " 1105 "block %lu (level %d)", 1106 (unsigned long) nr, depth); 1107 break; 1108 } 1109 1110 /* Go read the buffer for the next level down */ 1111 bh = sb_bread(inode->i_sb, nr); 1112 1113 /* 1114 * A read failure? Report error and clear slot 1115 * (should be rare). 1116 */ 1117 if (!bh) { 1118 EXT4_ERROR_INODE_BLOCK(inode, nr, 1119 "Read failure"); 1120 continue; 1121 } 1122 1123 /* This zaps the entire block. Bottom up. */ 1124 BUFFER_TRACE(bh, "free child branches"); 1125 ext4_free_branches(handle, inode, bh, 1126 (__le32 *) bh->b_data, 1127 (__le32 *) bh->b_data + addr_per_block, 1128 depth); 1129 brelse(bh); 1130 1131 /* 1132 * Everything below this this pointer has been 1133 * released. Now let this top-of-subtree go. 1134 * 1135 * We want the freeing of this indirect block to be 1136 * atomic in the journal with the updating of the 1137 * bitmap block which owns it. So make some room in 1138 * the journal. 1139 * 1140 * We zero the parent pointer *after* freeing its 1141 * pointee in the bitmaps, so if extend_transaction() 1142 * for some reason fails to put the bitmap changes and 1143 * the release into the same transaction, recovery 1144 * will merely complain about releasing a free block, 1145 * rather than leaking blocks. 1146 */ 1147 if (ext4_handle_is_aborted(handle)) 1148 return; 1149 if (try_to_extend_transaction(handle, inode)) { 1150 ext4_mark_inode_dirty(handle, inode); 1151 ext4_truncate_restart_trans(handle, inode, 1152 ext4_blocks_for_truncate(inode)); 1153 } 1154 1155 /* 1156 * The forget flag here is critical because if 1157 * we are journaling (and not doing data 1158 * journaling), we have to make sure a revoke 1159 * record is written to prevent the journal 1160 * replay from overwriting the (former) 1161 * indirect block if it gets reallocated as a 1162 * data block. This must happen in the same 1163 * transaction where the data blocks are 1164 * actually freed. 1165 */ 1166 ext4_free_blocks(handle, inode, NULL, nr, 1, 1167 EXT4_FREE_BLOCKS_METADATA| 1168 EXT4_FREE_BLOCKS_FORGET); 1169 1170 if (parent_bh) { 1171 /* 1172 * The block which we have just freed is 1173 * pointed to by an indirect block: journal it 1174 */ 1175 BUFFER_TRACE(parent_bh, "get_write_access"); 1176 if (!ext4_journal_get_write_access(handle, 1177 parent_bh)){ 1178 *p = 0; 1179 BUFFER_TRACE(parent_bh, 1180 "call ext4_handle_dirty_metadata"); 1181 ext4_handle_dirty_metadata(handle, 1182 inode, 1183 parent_bh); 1184 } 1185 } 1186 } 1187 } else { 1188 /* We have reached the bottom of the tree. */ 1189 BUFFER_TRACE(parent_bh, "free data blocks"); 1190 ext4_free_data(handle, inode, parent_bh, first, last); 1191 } 1192 } 1193 1194 void ext4_ind_truncate(handle_t *handle, struct inode *inode) 1195 { 1196 struct ext4_inode_info *ei = EXT4_I(inode); 1197 __le32 *i_data = ei->i_data; 1198 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 1199 ext4_lblk_t offsets[4]; 1200 Indirect chain[4]; 1201 Indirect *partial; 1202 __le32 nr = 0; 1203 int n = 0; 1204 ext4_lblk_t last_block, max_block; 1205 unsigned blocksize = inode->i_sb->s_blocksize; 1206 1207 last_block = (inode->i_size + blocksize-1) 1208 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 1209 max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1) 1210 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 1211 1212 if (last_block != max_block) { 1213 n = ext4_block_to_path(inode, last_block, offsets, NULL); 1214 if (n == 0) 1215 return; 1216 } 1217 1218 ext4_es_remove_extent(inode, last_block, EXT_MAX_BLOCKS - last_block); 1219 1220 /* 1221 * The orphan list entry will now protect us from any crash which 1222 * occurs before the truncate completes, so it is now safe to propagate 1223 * the new, shorter inode size (held for now in i_size) into the 1224 * on-disk inode. We do this via i_disksize, which is the value which 1225 * ext4 *really* writes onto the disk inode. 1226 */ 1227 ei->i_disksize = inode->i_size; 1228 1229 if (last_block == max_block) { 1230 /* 1231 * It is unnecessary to free any data blocks if last_block is 1232 * equal to the indirect block limit. 1233 */ 1234 return; 1235 } else if (n == 1) { /* direct blocks */ 1236 ext4_free_data(handle, inode, NULL, i_data+offsets[0], 1237 i_data + EXT4_NDIR_BLOCKS); 1238 goto do_indirects; 1239 } 1240 1241 partial = ext4_find_shared(inode, n, offsets, chain, &nr); 1242 /* Kill the top of shared branch (not detached) */ 1243 if (nr) { 1244 if (partial == chain) { 1245 /* Shared branch grows from the inode */ 1246 ext4_free_branches(handle, inode, NULL, 1247 &nr, &nr+1, (chain+n-1) - partial); 1248 *partial->p = 0; 1249 /* 1250 * We mark the inode dirty prior to restart, 1251 * and prior to stop. No need for it here. 1252 */ 1253 } else { 1254 /* Shared branch grows from an indirect block */ 1255 BUFFER_TRACE(partial->bh, "get_write_access"); 1256 ext4_free_branches(handle, inode, partial->bh, 1257 partial->p, 1258 partial->p+1, (chain+n-1) - partial); 1259 } 1260 } 1261 /* Clear the ends of indirect blocks on the shared branch */ 1262 while (partial > chain) { 1263 ext4_free_branches(handle, inode, partial->bh, partial->p + 1, 1264 (__le32*)partial->bh->b_data+addr_per_block, 1265 (chain+n-1) - partial); 1266 BUFFER_TRACE(partial->bh, "call brelse"); 1267 brelse(partial->bh); 1268 partial--; 1269 } 1270 do_indirects: 1271 /* Kill the remaining (whole) subtrees */ 1272 switch (offsets[0]) { 1273 default: 1274 nr = i_data[EXT4_IND_BLOCK]; 1275 if (nr) { 1276 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1); 1277 i_data[EXT4_IND_BLOCK] = 0; 1278 } 1279 case EXT4_IND_BLOCK: 1280 nr = i_data[EXT4_DIND_BLOCK]; 1281 if (nr) { 1282 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2); 1283 i_data[EXT4_DIND_BLOCK] = 0; 1284 } 1285 case EXT4_DIND_BLOCK: 1286 nr = i_data[EXT4_TIND_BLOCK]; 1287 if (nr) { 1288 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3); 1289 i_data[EXT4_TIND_BLOCK] = 0; 1290 } 1291 case EXT4_TIND_BLOCK: 1292 ; 1293 } 1294 } 1295 1296 /** 1297 * ext4_ind_remove_space - remove space from the range 1298 * @handle: JBD handle for this transaction 1299 * @inode: inode we are dealing with 1300 * @start: First block to remove 1301 * @end: One block after the last block to remove (exclusive) 1302 * 1303 * Free the blocks in the defined range (end is exclusive endpoint of 1304 * range). This is used by ext4_punch_hole(). 1305 */ 1306 int ext4_ind_remove_space(handle_t *handle, struct inode *inode, 1307 ext4_lblk_t start, ext4_lblk_t end) 1308 { 1309 struct ext4_inode_info *ei = EXT4_I(inode); 1310 __le32 *i_data = ei->i_data; 1311 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 1312 ext4_lblk_t offsets[4], offsets2[4]; 1313 Indirect chain[4], chain2[4]; 1314 Indirect *partial, *partial2; 1315 ext4_lblk_t max_block; 1316 __le32 nr = 0, nr2 = 0; 1317 int n = 0, n2 = 0; 1318 unsigned blocksize = inode->i_sb->s_blocksize; 1319 1320 max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1) 1321 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 1322 if (end >= max_block) 1323 end = max_block; 1324 if ((start >= end) || (start > max_block)) 1325 return 0; 1326 1327 n = ext4_block_to_path(inode, start, offsets, NULL); 1328 n2 = ext4_block_to_path(inode, end, offsets2, NULL); 1329 1330 BUG_ON(n > n2); 1331 1332 if ((n == 1) && (n == n2)) { 1333 /* We're punching only within direct block range */ 1334 ext4_free_data(handle, inode, NULL, i_data + offsets[0], 1335 i_data + offsets2[0]); 1336 return 0; 1337 } else if (n2 > n) { 1338 /* 1339 * Start and end are on a different levels so we're going to 1340 * free partial block at start, and partial block at end of 1341 * the range. If there are some levels in between then 1342 * do_indirects label will take care of that. 1343 */ 1344 1345 if (n == 1) { 1346 /* 1347 * Start is at the direct block level, free 1348 * everything to the end of the level. 1349 */ 1350 ext4_free_data(handle, inode, NULL, i_data + offsets[0], 1351 i_data + EXT4_NDIR_BLOCKS); 1352 goto end_range; 1353 } 1354 1355 1356 partial = ext4_find_shared(inode, n, offsets, chain, &nr); 1357 if (nr) { 1358 if (partial == chain) { 1359 /* Shared branch grows from the inode */ 1360 ext4_free_branches(handle, inode, NULL, 1361 &nr, &nr+1, (chain+n-1) - partial); 1362 *partial->p = 0; 1363 } else { 1364 /* Shared branch grows from an indirect block */ 1365 BUFFER_TRACE(partial->bh, "get_write_access"); 1366 ext4_free_branches(handle, inode, partial->bh, 1367 partial->p, 1368 partial->p+1, (chain+n-1) - partial); 1369 } 1370 } 1371 1372 /* 1373 * Clear the ends of indirect blocks on the shared branch 1374 * at the start of the range 1375 */ 1376 while (partial > chain) { 1377 ext4_free_branches(handle, inode, partial->bh, 1378 partial->p + 1, 1379 (__le32 *)partial->bh->b_data+addr_per_block, 1380 (chain+n-1) - partial); 1381 BUFFER_TRACE(partial->bh, "call brelse"); 1382 brelse(partial->bh); 1383 partial--; 1384 } 1385 1386 end_range: 1387 partial2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2); 1388 if (nr2) { 1389 if (partial2 == chain2) { 1390 /* 1391 * Remember, end is exclusive so here we're at 1392 * the start of the next level we're not going 1393 * to free. Everything was covered by the start 1394 * of the range. 1395 */ 1396 return 0; 1397 } else { 1398 /* Shared branch grows from an indirect block */ 1399 partial2--; 1400 } 1401 } else { 1402 /* 1403 * ext4_find_shared returns Indirect structure which 1404 * points to the last element which should not be 1405 * removed by truncate. But this is end of the range 1406 * in punch_hole so we need to point to the next element 1407 */ 1408 partial2->p++; 1409 } 1410 1411 /* 1412 * Clear the ends of indirect blocks on the shared branch 1413 * at the end of the range 1414 */ 1415 while (partial2 > chain2) { 1416 ext4_free_branches(handle, inode, partial2->bh, 1417 (__le32 *)partial2->bh->b_data, 1418 partial2->p, 1419 (chain2+n2-1) - partial2); 1420 BUFFER_TRACE(partial2->bh, "call brelse"); 1421 brelse(partial2->bh); 1422 partial2--; 1423 } 1424 goto do_indirects; 1425 } 1426 1427 /* Punch happened within the same level (n == n2) */ 1428 partial = ext4_find_shared(inode, n, offsets, chain, &nr); 1429 partial2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2); 1430 /* 1431 * ext4_find_shared returns Indirect structure which 1432 * points to the last element which should not be 1433 * removed by truncate. But this is end of the range 1434 * in punch_hole so we need to point to the next element 1435 */ 1436 partial2->p++; 1437 while ((partial > chain) || (partial2 > chain2)) { 1438 /* We're at the same block, so we're almost finished */ 1439 if ((partial->bh && partial2->bh) && 1440 (partial->bh->b_blocknr == partial2->bh->b_blocknr)) { 1441 if ((partial > chain) && (partial2 > chain2)) { 1442 ext4_free_branches(handle, inode, partial->bh, 1443 partial->p + 1, 1444 partial2->p, 1445 (chain+n-1) - partial); 1446 BUFFER_TRACE(partial->bh, "call brelse"); 1447 brelse(partial->bh); 1448 BUFFER_TRACE(partial2->bh, "call brelse"); 1449 brelse(partial2->bh); 1450 } 1451 return 0; 1452 } 1453 /* 1454 * Clear the ends of indirect blocks on the shared branch 1455 * at the start of the range 1456 */ 1457 if (partial > chain) { 1458 ext4_free_branches(handle, inode, partial->bh, 1459 partial->p + 1, 1460 (__le32 *)partial->bh->b_data+addr_per_block, 1461 (chain+n-1) - partial); 1462 BUFFER_TRACE(partial->bh, "call brelse"); 1463 brelse(partial->bh); 1464 partial--; 1465 } 1466 /* 1467 * Clear the ends of indirect blocks on the shared branch 1468 * at the end of the range 1469 */ 1470 if (partial2 > chain2) { 1471 ext4_free_branches(handle, inode, partial2->bh, 1472 (__le32 *)partial2->bh->b_data, 1473 partial2->p, 1474 (chain2+n-1) - partial2); 1475 BUFFER_TRACE(partial2->bh, "call brelse"); 1476 brelse(partial2->bh); 1477 partial2--; 1478 } 1479 } 1480 1481 do_indirects: 1482 /* Kill the remaining (whole) subtrees */ 1483 switch (offsets[0]) { 1484 default: 1485 if (++n >= n2) 1486 return 0; 1487 nr = i_data[EXT4_IND_BLOCK]; 1488 if (nr) { 1489 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1); 1490 i_data[EXT4_IND_BLOCK] = 0; 1491 } 1492 case EXT4_IND_BLOCK: 1493 if (++n >= n2) 1494 return 0; 1495 nr = i_data[EXT4_DIND_BLOCK]; 1496 if (nr) { 1497 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2); 1498 i_data[EXT4_DIND_BLOCK] = 0; 1499 } 1500 case EXT4_DIND_BLOCK: 1501 if (++n >= n2) 1502 return 0; 1503 nr = i_data[EXT4_TIND_BLOCK]; 1504 if (nr) { 1505 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3); 1506 i_data[EXT4_TIND_BLOCK] = 0; 1507 } 1508 case EXT4_TIND_BLOCK: 1509 ; 1510 } 1511 return 0; 1512 } 1513