1 /* 2 * linux/fs/ext4/ialloc.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * BSD ufs-inspired inode and directory allocation by 10 * Stephen Tweedie (sct@redhat.com), 1993 11 * Big-endian to little-endian byte-swapping/bitmaps by 12 * David S. Miller (davem@caip.rutgers.edu), 1995 13 */ 14 15 #include <linux/time.h> 16 #include <linux/fs.h> 17 #include <linux/stat.h> 18 #include <linux/string.h> 19 #include <linux/quotaops.h> 20 #include <linux/buffer_head.h> 21 #include <linux/random.h> 22 #include <linux/bitops.h> 23 #include <linux/blkdev.h> 24 #include <linux/cred.h> 25 26 #include <asm/byteorder.h> 27 28 #include "ext4.h" 29 #include "ext4_jbd2.h" 30 #include "xattr.h" 31 #include "acl.h" 32 33 #include <trace/events/ext4.h> 34 35 /* 36 * ialloc.c contains the inodes allocation and deallocation routines 37 */ 38 39 /* 40 * The free inodes are managed by bitmaps. A file system contains several 41 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap 42 * block for inodes, N blocks for the inode table and data blocks. 43 * 44 * The file system contains group descriptors which are located after the 45 * super block. Each descriptor contains the number of the bitmap block and 46 * the free blocks count in the block. 47 */ 48 49 /* 50 * To avoid calling the atomic setbit hundreds or thousands of times, we only 51 * need to use it within a single byte (to ensure we get endianness right). 52 * We can use memset for the rest of the bitmap as there are no other users. 53 */ 54 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap) 55 { 56 int i; 57 58 if (start_bit >= end_bit) 59 return; 60 61 ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit); 62 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++) 63 ext4_set_bit(i, bitmap); 64 if (i < end_bit) 65 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3); 66 } 67 68 /* Initializes an uninitialized inode bitmap */ 69 static int ext4_init_inode_bitmap(struct super_block *sb, 70 struct buffer_head *bh, 71 ext4_group_t block_group, 72 struct ext4_group_desc *gdp) 73 { 74 struct ext4_group_info *grp; 75 struct ext4_sb_info *sbi = EXT4_SB(sb); 76 J_ASSERT_BH(bh, buffer_locked(bh)); 77 78 /* If checksum is bad mark all blocks and inodes use to prevent 79 * allocation, essentially implementing a per-group read-only flag. */ 80 if (!ext4_group_desc_csum_verify(sb, block_group, gdp)) { 81 grp = ext4_get_group_info(sb, block_group); 82 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp)) 83 percpu_counter_sub(&sbi->s_freeclusters_counter, 84 grp->bb_free); 85 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state); 86 if (!EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) { 87 int count; 88 count = ext4_free_inodes_count(sb, gdp); 89 percpu_counter_sub(&sbi->s_freeinodes_counter, 90 count); 91 } 92 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state); 93 return -EFSBADCRC; 94 } 95 96 memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8); 97 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), sb->s_blocksize * 8, 98 bh->b_data); 99 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bh, 100 EXT4_INODES_PER_GROUP(sb) / 8); 101 ext4_group_desc_csum_set(sb, block_group, gdp); 102 103 return 0; 104 } 105 106 void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate) 107 { 108 if (uptodate) { 109 set_buffer_uptodate(bh); 110 set_bitmap_uptodate(bh); 111 } 112 unlock_buffer(bh); 113 put_bh(bh); 114 } 115 116 static int ext4_validate_inode_bitmap(struct super_block *sb, 117 struct ext4_group_desc *desc, 118 ext4_group_t block_group, 119 struct buffer_head *bh) 120 { 121 ext4_fsblk_t blk; 122 struct ext4_group_info *grp = ext4_get_group_info(sb, block_group); 123 struct ext4_sb_info *sbi = EXT4_SB(sb); 124 125 if (buffer_verified(bh)) 126 return 0; 127 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) 128 return -EFSCORRUPTED; 129 130 ext4_lock_group(sb, block_group); 131 blk = ext4_inode_bitmap(sb, desc); 132 if (!ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh, 133 EXT4_INODES_PER_GROUP(sb) / 8)) { 134 ext4_unlock_group(sb, block_group); 135 ext4_error(sb, "Corrupt inode bitmap - block_group = %u, " 136 "inode_bitmap = %llu", block_group, blk); 137 grp = ext4_get_group_info(sb, block_group); 138 if (!EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) { 139 int count; 140 count = ext4_free_inodes_count(sb, desc); 141 percpu_counter_sub(&sbi->s_freeinodes_counter, 142 count); 143 } 144 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state); 145 return -EFSBADCRC; 146 } 147 set_buffer_verified(bh); 148 ext4_unlock_group(sb, block_group); 149 return 0; 150 } 151 152 /* 153 * Read the inode allocation bitmap for a given block_group, reading 154 * into the specified slot in the superblock's bitmap cache. 155 * 156 * Return buffer_head of bitmap on success or NULL. 157 */ 158 static struct buffer_head * 159 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group) 160 { 161 struct ext4_group_desc *desc; 162 struct buffer_head *bh = NULL; 163 ext4_fsblk_t bitmap_blk; 164 int err; 165 166 desc = ext4_get_group_desc(sb, block_group, NULL); 167 if (!desc) 168 return ERR_PTR(-EFSCORRUPTED); 169 170 bitmap_blk = ext4_inode_bitmap(sb, desc); 171 bh = sb_getblk(sb, bitmap_blk); 172 if (unlikely(!bh)) { 173 ext4_error(sb, "Cannot read inode bitmap - " 174 "block_group = %u, inode_bitmap = %llu", 175 block_group, bitmap_blk); 176 return ERR_PTR(-EIO); 177 } 178 if (bitmap_uptodate(bh)) 179 goto verify; 180 181 lock_buffer(bh); 182 if (bitmap_uptodate(bh)) { 183 unlock_buffer(bh); 184 goto verify; 185 } 186 187 ext4_lock_group(sb, block_group); 188 if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) { 189 err = ext4_init_inode_bitmap(sb, bh, block_group, desc); 190 set_bitmap_uptodate(bh); 191 set_buffer_uptodate(bh); 192 set_buffer_verified(bh); 193 ext4_unlock_group(sb, block_group); 194 unlock_buffer(bh); 195 if (err) { 196 ext4_error(sb, "Failed to init inode bitmap for group " 197 "%u: %d", block_group, err); 198 goto out; 199 } 200 return bh; 201 } 202 ext4_unlock_group(sb, block_group); 203 204 if (buffer_uptodate(bh)) { 205 /* 206 * if not uninit if bh is uptodate, 207 * bitmap is also uptodate 208 */ 209 set_bitmap_uptodate(bh); 210 unlock_buffer(bh); 211 goto verify; 212 } 213 /* 214 * submit the buffer_head for reading 215 */ 216 trace_ext4_load_inode_bitmap(sb, block_group); 217 bh->b_end_io = ext4_end_bitmap_read; 218 get_bh(bh); 219 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh); 220 wait_on_buffer(bh); 221 if (!buffer_uptodate(bh)) { 222 put_bh(bh); 223 ext4_error(sb, "Cannot read inode bitmap - " 224 "block_group = %u, inode_bitmap = %llu", 225 block_group, bitmap_blk); 226 return ERR_PTR(-EIO); 227 } 228 229 verify: 230 err = ext4_validate_inode_bitmap(sb, desc, block_group, bh); 231 if (err) 232 goto out; 233 return bh; 234 out: 235 put_bh(bh); 236 return ERR_PTR(err); 237 } 238 239 /* 240 * NOTE! When we get the inode, we're the only people 241 * that have access to it, and as such there are no 242 * race conditions we have to worry about. The inode 243 * is not on the hash-lists, and it cannot be reached 244 * through the filesystem because the directory entry 245 * has been deleted earlier. 246 * 247 * HOWEVER: we must make sure that we get no aliases, 248 * which means that we have to call "clear_inode()" 249 * _before_ we mark the inode not in use in the inode 250 * bitmaps. Otherwise a newly created file might use 251 * the same inode number (not actually the same pointer 252 * though), and then we'd have two inodes sharing the 253 * same inode number and space on the harddisk. 254 */ 255 void ext4_free_inode(handle_t *handle, struct inode *inode) 256 { 257 struct super_block *sb = inode->i_sb; 258 int is_directory; 259 unsigned long ino; 260 struct buffer_head *bitmap_bh = NULL; 261 struct buffer_head *bh2; 262 ext4_group_t block_group; 263 unsigned long bit; 264 struct ext4_group_desc *gdp; 265 struct ext4_super_block *es; 266 struct ext4_sb_info *sbi; 267 int fatal = 0, err, count, cleared; 268 struct ext4_group_info *grp; 269 270 if (!sb) { 271 printk(KERN_ERR "EXT4-fs: %s:%d: inode on " 272 "nonexistent device\n", __func__, __LINE__); 273 return; 274 } 275 if (atomic_read(&inode->i_count) > 1) { 276 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d", 277 __func__, __LINE__, inode->i_ino, 278 atomic_read(&inode->i_count)); 279 return; 280 } 281 if (inode->i_nlink) { 282 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n", 283 __func__, __LINE__, inode->i_ino, inode->i_nlink); 284 return; 285 } 286 sbi = EXT4_SB(sb); 287 288 ino = inode->i_ino; 289 ext4_debug("freeing inode %lu\n", ino); 290 trace_ext4_free_inode(inode); 291 292 /* 293 * Note: we must free any quota before locking the superblock, 294 * as writing the quota to disk may need the lock as well. 295 */ 296 dquot_initialize(inode); 297 ext4_xattr_delete_inode(handle, inode); 298 dquot_free_inode(inode); 299 dquot_drop(inode); 300 301 is_directory = S_ISDIR(inode->i_mode); 302 303 /* Do this BEFORE marking the inode not in use or returning an error */ 304 ext4_clear_inode(inode); 305 306 es = EXT4_SB(sb)->s_es; 307 if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) { 308 ext4_error(sb, "reserved or nonexistent inode %lu", ino); 309 goto error_return; 310 } 311 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 312 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 313 bitmap_bh = ext4_read_inode_bitmap(sb, block_group); 314 /* Don't bother if the inode bitmap is corrupt. */ 315 grp = ext4_get_group_info(sb, block_group); 316 if (IS_ERR(bitmap_bh)) { 317 fatal = PTR_ERR(bitmap_bh); 318 bitmap_bh = NULL; 319 goto error_return; 320 } 321 if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp))) { 322 fatal = -EFSCORRUPTED; 323 goto error_return; 324 } 325 326 BUFFER_TRACE(bitmap_bh, "get_write_access"); 327 fatal = ext4_journal_get_write_access(handle, bitmap_bh); 328 if (fatal) 329 goto error_return; 330 331 fatal = -ESRCH; 332 gdp = ext4_get_group_desc(sb, block_group, &bh2); 333 if (gdp) { 334 BUFFER_TRACE(bh2, "get_write_access"); 335 fatal = ext4_journal_get_write_access(handle, bh2); 336 } 337 ext4_lock_group(sb, block_group); 338 cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data); 339 if (fatal || !cleared) { 340 ext4_unlock_group(sb, block_group); 341 goto out; 342 } 343 344 count = ext4_free_inodes_count(sb, gdp) + 1; 345 ext4_free_inodes_set(sb, gdp, count); 346 if (is_directory) { 347 count = ext4_used_dirs_count(sb, gdp) - 1; 348 ext4_used_dirs_set(sb, gdp, count); 349 percpu_counter_dec(&sbi->s_dirs_counter); 350 } 351 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh, 352 EXT4_INODES_PER_GROUP(sb) / 8); 353 ext4_group_desc_csum_set(sb, block_group, gdp); 354 ext4_unlock_group(sb, block_group); 355 356 percpu_counter_inc(&sbi->s_freeinodes_counter); 357 if (sbi->s_log_groups_per_flex) { 358 ext4_group_t f = ext4_flex_group(sbi, block_group); 359 360 atomic_inc(&sbi->s_flex_groups[f].free_inodes); 361 if (is_directory) 362 atomic_dec(&sbi->s_flex_groups[f].used_dirs); 363 } 364 BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata"); 365 fatal = ext4_handle_dirty_metadata(handle, NULL, bh2); 366 out: 367 if (cleared) { 368 BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata"); 369 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 370 if (!fatal) 371 fatal = err; 372 } else { 373 ext4_error(sb, "bit already cleared for inode %lu", ino); 374 if (gdp && !EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) { 375 int count; 376 count = ext4_free_inodes_count(sb, gdp); 377 percpu_counter_sub(&sbi->s_freeinodes_counter, 378 count); 379 } 380 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state); 381 } 382 383 error_return: 384 brelse(bitmap_bh); 385 ext4_std_error(sb, fatal); 386 } 387 388 struct orlov_stats { 389 __u64 free_clusters; 390 __u32 free_inodes; 391 __u32 used_dirs; 392 }; 393 394 /* 395 * Helper function for Orlov's allocator; returns critical information 396 * for a particular block group or flex_bg. If flex_size is 1, then g 397 * is a block group number; otherwise it is flex_bg number. 398 */ 399 static void get_orlov_stats(struct super_block *sb, ext4_group_t g, 400 int flex_size, struct orlov_stats *stats) 401 { 402 struct ext4_group_desc *desc; 403 struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups; 404 405 if (flex_size > 1) { 406 stats->free_inodes = atomic_read(&flex_group[g].free_inodes); 407 stats->free_clusters = atomic64_read(&flex_group[g].free_clusters); 408 stats->used_dirs = atomic_read(&flex_group[g].used_dirs); 409 return; 410 } 411 412 desc = ext4_get_group_desc(sb, g, NULL); 413 if (desc) { 414 stats->free_inodes = ext4_free_inodes_count(sb, desc); 415 stats->free_clusters = ext4_free_group_clusters(sb, desc); 416 stats->used_dirs = ext4_used_dirs_count(sb, desc); 417 } else { 418 stats->free_inodes = 0; 419 stats->free_clusters = 0; 420 stats->used_dirs = 0; 421 } 422 } 423 424 /* 425 * Orlov's allocator for directories. 426 * 427 * We always try to spread first-level directories. 428 * 429 * If there are blockgroups with both free inodes and free blocks counts 430 * not worse than average we return one with smallest directory count. 431 * Otherwise we simply return a random group. 432 * 433 * For the rest rules look so: 434 * 435 * It's OK to put directory into a group unless 436 * it has too many directories already (max_dirs) or 437 * it has too few free inodes left (min_inodes) or 438 * it has too few free blocks left (min_blocks) or 439 * Parent's group is preferred, if it doesn't satisfy these 440 * conditions we search cyclically through the rest. If none 441 * of the groups look good we just look for a group with more 442 * free inodes than average (starting at parent's group). 443 */ 444 445 static int find_group_orlov(struct super_block *sb, struct inode *parent, 446 ext4_group_t *group, umode_t mode, 447 const struct qstr *qstr) 448 { 449 ext4_group_t parent_group = EXT4_I(parent)->i_block_group; 450 struct ext4_sb_info *sbi = EXT4_SB(sb); 451 ext4_group_t real_ngroups = ext4_get_groups_count(sb); 452 int inodes_per_group = EXT4_INODES_PER_GROUP(sb); 453 unsigned int freei, avefreei, grp_free; 454 ext4_fsblk_t freeb, avefreec; 455 unsigned int ndirs; 456 int max_dirs, min_inodes; 457 ext4_grpblk_t min_clusters; 458 ext4_group_t i, grp, g, ngroups; 459 struct ext4_group_desc *desc; 460 struct orlov_stats stats; 461 int flex_size = ext4_flex_bg_size(sbi); 462 struct dx_hash_info hinfo; 463 464 ngroups = real_ngroups; 465 if (flex_size > 1) { 466 ngroups = (real_ngroups + flex_size - 1) >> 467 sbi->s_log_groups_per_flex; 468 parent_group >>= sbi->s_log_groups_per_flex; 469 } 470 471 freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter); 472 avefreei = freei / ngroups; 473 freeb = EXT4_C2B(sbi, 474 percpu_counter_read_positive(&sbi->s_freeclusters_counter)); 475 avefreec = freeb; 476 do_div(avefreec, ngroups); 477 ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter); 478 479 if (S_ISDIR(mode) && 480 ((parent == d_inode(sb->s_root)) || 481 (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) { 482 int best_ndir = inodes_per_group; 483 int ret = -1; 484 485 if (qstr) { 486 hinfo.hash_version = DX_HASH_HALF_MD4; 487 hinfo.seed = sbi->s_hash_seed; 488 ext4fs_dirhash(qstr->name, qstr->len, &hinfo); 489 grp = hinfo.hash; 490 } else 491 grp = prandom_u32(); 492 parent_group = (unsigned)grp % ngroups; 493 for (i = 0; i < ngroups; i++) { 494 g = (parent_group + i) % ngroups; 495 get_orlov_stats(sb, g, flex_size, &stats); 496 if (!stats.free_inodes) 497 continue; 498 if (stats.used_dirs >= best_ndir) 499 continue; 500 if (stats.free_inodes < avefreei) 501 continue; 502 if (stats.free_clusters < avefreec) 503 continue; 504 grp = g; 505 ret = 0; 506 best_ndir = stats.used_dirs; 507 } 508 if (ret) 509 goto fallback; 510 found_flex_bg: 511 if (flex_size == 1) { 512 *group = grp; 513 return 0; 514 } 515 516 /* 517 * We pack inodes at the beginning of the flexgroup's 518 * inode tables. Block allocation decisions will do 519 * something similar, although regular files will 520 * start at 2nd block group of the flexgroup. See 521 * ext4_ext_find_goal() and ext4_find_near(). 522 */ 523 grp *= flex_size; 524 for (i = 0; i < flex_size; i++) { 525 if (grp+i >= real_ngroups) 526 break; 527 desc = ext4_get_group_desc(sb, grp+i, NULL); 528 if (desc && ext4_free_inodes_count(sb, desc)) { 529 *group = grp+i; 530 return 0; 531 } 532 } 533 goto fallback; 534 } 535 536 max_dirs = ndirs / ngroups + inodes_per_group / 16; 537 min_inodes = avefreei - inodes_per_group*flex_size / 4; 538 if (min_inodes < 1) 539 min_inodes = 1; 540 min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4; 541 542 /* 543 * Start looking in the flex group where we last allocated an 544 * inode for this parent directory 545 */ 546 if (EXT4_I(parent)->i_last_alloc_group != ~0) { 547 parent_group = EXT4_I(parent)->i_last_alloc_group; 548 if (flex_size > 1) 549 parent_group >>= sbi->s_log_groups_per_flex; 550 } 551 552 for (i = 0; i < ngroups; i++) { 553 grp = (parent_group + i) % ngroups; 554 get_orlov_stats(sb, grp, flex_size, &stats); 555 if (stats.used_dirs >= max_dirs) 556 continue; 557 if (stats.free_inodes < min_inodes) 558 continue; 559 if (stats.free_clusters < min_clusters) 560 continue; 561 goto found_flex_bg; 562 } 563 564 fallback: 565 ngroups = real_ngroups; 566 avefreei = freei / ngroups; 567 fallback_retry: 568 parent_group = EXT4_I(parent)->i_block_group; 569 for (i = 0; i < ngroups; i++) { 570 grp = (parent_group + i) % ngroups; 571 desc = ext4_get_group_desc(sb, grp, NULL); 572 if (desc) { 573 grp_free = ext4_free_inodes_count(sb, desc); 574 if (grp_free && grp_free >= avefreei) { 575 *group = grp; 576 return 0; 577 } 578 } 579 } 580 581 if (avefreei) { 582 /* 583 * The free-inodes counter is approximate, and for really small 584 * filesystems the above test can fail to find any blockgroups 585 */ 586 avefreei = 0; 587 goto fallback_retry; 588 } 589 590 return -1; 591 } 592 593 static int find_group_other(struct super_block *sb, struct inode *parent, 594 ext4_group_t *group, umode_t mode) 595 { 596 ext4_group_t parent_group = EXT4_I(parent)->i_block_group; 597 ext4_group_t i, last, ngroups = ext4_get_groups_count(sb); 598 struct ext4_group_desc *desc; 599 int flex_size = ext4_flex_bg_size(EXT4_SB(sb)); 600 601 /* 602 * Try to place the inode is the same flex group as its 603 * parent. If we can't find space, use the Orlov algorithm to 604 * find another flex group, and store that information in the 605 * parent directory's inode information so that use that flex 606 * group for future allocations. 607 */ 608 if (flex_size > 1) { 609 int retry = 0; 610 611 try_again: 612 parent_group &= ~(flex_size-1); 613 last = parent_group + flex_size; 614 if (last > ngroups) 615 last = ngroups; 616 for (i = parent_group; i < last; i++) { 617 desc = ext4_get_group_desc(sb, i, NULL); 618 if (desc && ext4_free_inodes_count(sb, desc)) { 619 *group = i; 620 return 0; 621 } 622 } 623 if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) { 624 retry = 1; 625 parent_group = EXT4_I(parent)->i_last_alloc_group; 626 goto try_again; 627 } 628 /* 629 * If this didn't work, use the Orlov search algorithm 630 * to find a new flex group; we pass in the mode to 631 * avoid the topdir algorithms. 632 */ 633 *group = parent_group + flex_size; 634 if (*group > ngroups) 635 *group = 0; 636 return find_group_orlov(sb, parent, group, mode, NULL); 637 } 638 639 /* 640 * Try to place the inode in its parent directory 641 */ 642 *group = parent_group; 643 desc = ext4_get_group_desc(sb, *group, NULL); 644 if (desc && ext4_free_inodes_count(sb, desc) && 645 ext4_free_group_clusters(sb, desc)) 646 return 0; 647 648 /* 649 * We're going to place this inode in a different blockgroup from its 650 * parent. We want to cause files in a common directory to all land in 651 * the same blockgroup. But we want files which are in a different 652 * directory which shares a blockgroup with our parent to land in a 653 * different blockgroup. 654 * 655 * So add our directory's i_ino into the starting point for the hash. 656 */ 657 *group = (*group + parent->i_ino) % ngroups; 658 659 /* 660 * Use a quadratic hash to find a group with a free inode and some free 661 * blocks. 662 */ 663 for (i = 1; i < ngroups; i <<= 1) { 664 *group += i; 665 if (*group >= ngroups) 666 *group -= ngroups; 667 desc = ext4_get_group_desc(sb, *group, NULL); 668 if (desc && ext4_free_inodes_count(sb, desc) && 669 ext4_free_group_clusters(sb, desc)) 670 return 0; 671 } 672 673 /* 674 * That failed: try linear search for a free inode, even if that group 675 * has no free blocks. 676 */ 677 *group = parent_group; 678 for (i = 0; i < ngroups; i++) { 679 if (++*group >= ngroups) 680 *group = 0; 681 desc = ext4_get_group_desc(sb, *group, NULL); 682 if (desc && ext4_free_inodes_count(sb, desc)) 683 return 0; 684 } 685 686 return -1; 687 } 688 689 /* 690 * In no journal mode, if an inode has recently been deleted, we want 691 * to avoid reusing it until we're reasonably sure the inode table 692 * block has been written back to disk. (Yes, these values are 693 * somewhat arbitrary...) 694 */ 695 #define RECENTCY_MIN 5 696 #define RECENTCY_DIRTY 30 697 698 static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino) 699 { 700 struct ext4_group_desc *gdp; 701 struct ext4_inode *raw_inode; 702 struct buffer_head *bh; 703 unsigned long dtime, now; 704 int inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 705 int offset, ret = 0, recentcy = RECENTCY_MIN; 706 707 gdp = ext4_get_group_desc(sb, group, NULL); 708 if (unlikely(!gdp)) 709 return 0; 710 711 bh = sb_getblk(sb, ext4_inode_table(sb, gdp) + 712 (ino / inodes_per_block)); 713 if (unlikely(!bh) || !buffer_uptodate(bh)) 714 /* 715 * If the block is not in the buffer cache, then it 716 * must have been written out. 717 */ 718 goto out; 719 720 offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb); 721 raw_inode = (struct ext4_inode *) (bh->b_data + offset); 722 dtime = le32_to_cpu(raw_inode->i_dtime); 723 now = get_seconds(); 724 if (buffer_dirty(bh)) 725 recentcy += RECENTCY_DIRTY; 726 727 if (dtime && (dtime < now) && (now < dtime + recentcy)) 728 ret = 1; 729 out: 730 brelse(bh); 731 return ret; 732 } 733 734 /* 735 * There are two policies for allocating an inode. If the new inode is 736 * a directory, then a forward search is made for a block group with both 737 * free space and a low directory-to-inode ratio; if that fails, then of 738 * the groups with above-average free space, that group with the fewest 739 * directories already is chosen. 740 * 741 * For other inodes, search forward from the parent directory's block 742 * group to find a free inode. 743 */ 744 struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir, 745 umode_t mode, const struct qstr *qstr, 746 __u32 goal, uid_t *owner, int handle_type, 747 unsigned int line_no, int nblocks) 748 { 749 struct super_block *sb; 750 struct buffer_head *inode_bitmap_bh = NULL; 751 struct buffer_head *group_desc_bh; 752 ext4_group_t ngroups, group = 0; 753 unsigned long ino = 0; 754 struct inode *inode; 755 struct ext4_group_desc *gdp = NULL; 756 struct ext4_inode_info *ei; 757 struct ext4_sb_info *sbi; 758 int ret2, err; 759 struct inode *ret; 760 ext4_group_t i; 761 ext4_group_t flex_group; 762 struct ext4_group_info *grp; 763 int encrypt = 0; 764 765 /* Cannot create files in a deleted directory */ 766 if (!dir || !dir->i_nlink) 767 return ERR_PTR(-EPERM); 768 769 if (unlikely(ext4_forced_shutdown(EXT4_SB(dir->i_sb)))) 770 return ERR_PTR(-EIO); 771 772 if ((ext4_encrypted_inode(dir) || 773 DUMMY_ENCRYPTION_ENABLED(EXT4_SB(dir->i_sb))) && 774 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 775 err = fscrypt_get_encryption_info(dir); 776 if (err) 777 return ERR_PTR(err); 778 if (!fscrypt_has_encryption_key(dir)) 779 return ERR_PTR(-ENOKEY); 780 if (!handle) 781 nblocks += EXT4_DATA_TRANS_BLOCKS(dir->i_sb); 782 encrypt = 1; 783 } 784 785 sb = dir->i_sb; 786 ngroups = ext4_get_groups_count(sb); 787 trace_ext4_request_inode(dir, mode); 788 inode = new_inode(sb); 789 if (!inode) 790 return ERR_PTR(-ENOMEM); 791 ei = EXT4_I(inode); 792 sbi = EXT4_SB(sb); 793 794 /* 795 * Initialize owners and quota early so that we don't have to account 796 * for quota initialization worst case in standard inode creating 797 * transaction 798 */ 799 if (owner) { 800 inode->i_mode = mode; 801 i_uid_write(inode, owner[0]); 802 i_gid_write(inode, owner[1]); 803 } else if (test_opt(sb, GRPID)) { 804 inode->i_mode = mode; 805 inode->i_uid = current_fsuid(); 806 inode->i_gid = dir->i_gid; 807 } else 808 inode_init_owner(inode, dir, mode); 809 810 if (ext4_has_feature_project(sb) && 811 ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT)) 812 ei->i_projid = EXT4_I(dir)->i_projid; 813 else 814 ei->i_projid = make_kprojid(&init_user_ns, EXT4_DEF_PROJID); 815 816 err = dquot_initialize(inode); 817 if (err) 818 goto out; 819 820 if (!goal) 821 goal = sbi->s_inode_goal; 822 823 if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) { 824 group = (goal - 1) / EXT4_INODES_PER_GROUP(sb); 825 ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb); 826 ret2 = 0; 827 goto got_group; 828 } 829 830 if (S_ISDIR(mode)) 831 ret2 = find_group_orlov(sb, dir, &group, mode, qstr); 832 else 833 ret2 = find_group_other(sb, dir, &group, mode); 834 835 got_group: 836 EXT4_I(dir)->i_last_alloc_group = group; 837 err = -ENOSPC; 838 if (ret2 == -1) 839 goto out; 840 841 /* 842 * Normally we will only go through one pass of this loop, 843 * unless we get unlucky and it turns out the group we selected 844 * had its last inode grabbed by someone else. 845 */ 846 for (i = 0; i < ngroups; i++, ino = 0) { 847 err = -EIO; 848 849 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 850 if (!gdp) 851 goto out; 852 853 /* 854 * Check free inodes count before loading bitmap. 855 */ 856 if (ext4_free_inodes_count(sb, gdp) == 0) { 857 if (++group == ngroups) 858 group = 0; 859 continue; 860 } 861 862 grp = ext4_get_group_info(sb, group); 863 /* Skip groups with already-known suspicious inode tables */ 864 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) { 865 if (++group == ngroups) 866 group = 0; 867 continue; 868 } 869 870 brelse(inode_bitmap_bh); 871 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group); 872 /* Skip groups with suspicious inode tables */ 873 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp) || 874 IS_ERR(inode_bitmap_bh)) { 875 inode_bitmap_bh = NULL; 876 if (++group == ngroups) 877 group = 0; 878 continue; 879 } 880 881 repeat_in_this_group: 882 ino = ext4_find_next_zero_bit((unsigned long *) 883 inode_bitmap_bh->b_data, 884 EXT4_INODES_PER_GROUP(sb), ino); 885 if (ino >= EXT4_INODES_PER_GROUP(sb)) 886 goto next_group; 887 if (group == 0 && (ino+1) < EXT4_FIRST_INO(sb)) { 888 ext4_error(sb, "reserved inode found cleared - " 889 "inode=%lu", ino + 1); 890 continue; 891 } 892 if ((EXT4_SB(sb)->s_journal == NULL) && 893 recently_deleted(sb, group, ino)) { 894 ino++; 895 goto next_inode; 896 } 897 if (!handle) { 898 BUG_ON(nblocks <= 0); 899 handle = __ext4_journal_start_sb(dir->i_sb, line_no, 900 handle_type, nblocks, 901 0); 902 if (IS_ERR(handle)) { 903 err = PTR_ERR(handle); 904 ext4_std_error(sb, err); 905 goto out; 906 } 907 } 908 BUFFER_TRACE(inode_bitmap_bh, "get_write_access"); 909 err = ext4_journal_get_write_access(handle, inode_bitmap_bh); 910 if (err) { 911 ext4_std_error(sb, err); 912 goto out; 913 } 914 ext4_lock_group(sb, group); 915 ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data); 916 ext4_unlock_group(sb, group); 917 ino++; /* the inode bitmap is zero-based */ 918 if (!ret2) 919 goto got; /* we grabbed the inode! */ 920 next_inode: 921 if (ino < EXT4_INODES_PER_GROUP(sb)) 922 goto repeat_in_this_group; 923 next_group: 924 if (++group == ngroups) 925 group = 0; 926 } 927 err = -ENOSPC; 928 goto out; 929 930 got: 931 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata"); 932 err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh); 933 if (err) { 934 ext4_std_error(sb, err); 935 goto out; 936 } 937 938 BUFFER_TRACE(group_desc_bh, "get_write_access"); 939 err = ext4_journal_get_write_access(handle, group_desc_bh); 940 if (err) { 941 ext4_std_error(sb, err); 942 goto out; 943 } 944 945 /* We may have to initialize the block bitmap if it isn't already */ 946 if (ext4_has_group_desc_csum(sb) && 947 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 948 struct buffer_head *block_bitmap_bh; 949 950 block_bitmap_bh = ext4_read_block_bitmap(sb, group); 951 if (IS_ERR(block_bitmap_bh)) { 952 err = PTR_ERR(block_bitmap_bh); 953 goto out; 954 } 955 BUFFER_TRACE(block_bitmap_bh, "get block bitmap access"); 956 err = ext4_journal_get_write_access(handle, block_bitmap_bh); 957 if (err) { 958 brelse(block_bitmap_bh); 959 ext4_std_error(sb, err); 960 goto out; 961 } 962 963 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap"); 964 err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh); 965 966 /* recheck and clear flag under lock if we still need to */ 967 ext4_lock_group(sb, group); 968 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 969 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 970 ext4_free_group_clusters_set(sb, gdp, 971 ext4_free_clusters_after_init(sb, group, gdp)); 972 ext4_block_bitmap_csum_set(sb, group, gdp, 973 block_bitmap_bh); 974 ext4_group_desc_csum_set(sb, group, gdp); 975 } 976 ext4_unlock_group(sb, group); 977 brelse(block_bitmap_bh); 978 979 if (err) { 980 ext4_std_error(sb, err); 981 goto out; 982 } 983 } 984 985 /* Update the relevant bg descriptor fields */ 986 if (ext4_has_group_desc_csum(sb)) { 987 int free; 988 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 989 990 down_read(&grp->alloc_sem); /* protect vs itable lazyinit */ 991 ext4_lock_group(sb, group); /* while we modify the bg desc */ 992 free = EXT4_INODES_PER_GROUP(sb) - 993 ext4_itable_unused_count(sb, gdp); 994 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) { 995 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT); 996 free = 0; 997 } 998 /* 999 * Check the relative inode number against the last used 1000 * relative inode number in this group. if it is greater 1001 * we need to update the bg_itable_unused count 1002 */ 1003 if (ino > free) 1004 ext4_itable_unused_set(sb, gdp, 1005 (EXT4_INODES_PER_GROUP(sb) - ino)); 1006 up_read(&grp->alloc_sem); 1007 } else { 1008 ext4_lock_group(sb, group); 1009 } 1010 1011 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1); 1012 if (S_ISDIR(mode)) { 1013 ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1); 1014 if (sbi->s_log_groups_per_flex) { 1015 ext4_group_t f = ext4_flex_group(sbi, group); 1016 1017 atomic_inc(&sbi->s_flex_groups[f].used_dirs); 1018 } 1019 } 1020 if (ext4_has_group_desc_csum(sb)) { 1021 ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh, 1022 EXT4_INODES_PER_GROUP(sb) / 8); 1023 ext4_group_desc_csum_set(sb, group, gdp); 1024 } 1025 ext4_unlock_group(sb, group); 1026 1027 BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata"); 1028 err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh); 1029 if (err) { 1030 ext4_std_error(sb, err); 1031 goto out; 1032 } 1033 1034 percpu_counter_dec(&sbi->s_freeinodes_counter); 1035 if (S_ISDIR(mode)) 1036 percpu_counter_inc(&sbi->s_dirs_counter); 1037 1038 if (sbi->s_log_groups_per_flex) { 1039 flex_group = ext4_flex_group(sbi, group); 1040 atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes); 1041 } 1042 1043 inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb); 1044 /* This is the optimal IO size (for stat), not the fs block size */ 1045 inode->i_blocks = 0; 1046 inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime = 1047 current_time(inode); 1048 1049 memset(ei->i_data, 0, sizeof(ei->i_data)); 1050 ei->i_dir_start_lookup = 0; 1051 ei->i_disksize = 0; 1052 1053 /* Don't inherit extent flag from directory, amongst others. */ 1054 ei->i_flags = 1055 ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED); 1056 ei->i_file_acl = 0; 1057 ei->i_dtime = 0; 1058 ei->i_block_group = group; 1059 ei->i_last_alloc_group = ~0; 1060 1061 ext4_set_inode_flags(inode); 1062 if (IS_DIRSYNC(inode)) 1063 ext4_handle_sync(handle); 1064 if (insert_inode_locked(inode) < 0) { 1065 /* 1066 * Likely a bitmap corruption causing inode to be allocated 1067 * twice. 1068 */ 1069 err = -EIO; 1070 ext4_error(sb, "failed to insert inode %lu: doubly allocated?", 1071 inode->i_ino); 1072 goto out; 1073 } 1074 spin_lock(&sbi->s_next_gen_lock); 1075 inode->i_generation = sbi->s_next_generation++; 1076 spin_unlock(&sbi->s_next_gen_lock); 1077 1078 /* Precompute checksum seed for inode metadata */ 1079 if (ext4_has_metadata_csum(sb)) { 1080 __u32 csum; 1081 __le32 inum = cpu_to_le32(inode->i_ino); 1082 __le32 gen = cpu_to_le32(inode->i_generation); 1083 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 1084 sizeof(inum)); 1085 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 1086 sizeof(gen)); 1087 } 1088 1089 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 1090 ext4_set_inode_state(inode, EXT4_STATE_NEW); 1091 1092 ei->i_extra_isize = EXT4_SB(sb)->s_want_extra_isize; 1093 ei->i_inline_off = 0; 1094 if (ext4_has_feature_inline_data(sb)) 1095 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 1096 ret = inode; 1097 err = dquot_alloc_inode(inode); 1098 if (err) 1099 goto fail_drop; 1100 1101 /* 1102 * Since the encryption xattr will always be unique, create it first so 1103 * that it's less likely to end up in an external xattr block and 1104 * prevent its deduplication. 1105 */ 1106 if (encrypt) { 1107 err = fscrypt_inherit_context(dir, inode, handle, true); 1108 if (err) 1109 goto fail_free_drop; 1110 } 1111 1112 err = ext4_init_acl(handle, inode, dir); 1113 if (err) 1114 goto fail_free_drop; 1115 1116 err = ext4_init_security(handle, inode, dir, qstr); 1117 if (err) 1118 goto fail_free_drop; 1119 1120 if (ext4_has_feature_extents(sb)) { 1121 /* set extent flag only for directory, file and normal symlink*/ 1122 if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) { 1123 ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS); 1124 ext4_ext_tree_init(handle, inode); 1125 } 1126 } 1127 1128 if (ext4_handle_valid(handle)) { 1129 ei->i_sync_tid = handle->h_transaction->t_tid; 1130 ei->i_datasync_tid = handle->h_transaction->t_tid; 1131 } 1132 1133 err = ext4_mark_inode_dirty(handle, inode); 1134 if (err) { 1135 ext4_std_error(sb, err); 1136 goto fail_free_drop; 1137 } 1138 1139 ext4_debug("allocating inode %lu\n", inode->i_ino); 1140 trace_ext4_allocate_inode(inode, dir, mode); 1141 brelse(inode_bitmap_bh); 1142 return ret; 1143 1144 fail_free_drop: 1145 dquot_free_inode(inode); 1146 fail_drop: 1147 clear_nlink(inode); 1148 unlock_new_inode(inode); 1149 out: 1150 dquot_drop(inode); 1151 inode->i_flags |= S_NOQUOTA; 1152 iput(inode); 1153 brelse(inode_bitmap_bh); 1154 return ERR_PTR(err); 1155 } 1156 1157 /* Verify that we are loading a valid orphan from disk */ 1158 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino) 1159 { 1160 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count); 1161 ext4_group_t block_group; 1162 int bit; 1163 struct buffer_head *bitmap_bh = NULL; 1164 struct inode *inode = NULL; 1165 int err = -EFSCORRUPTED; 1166 1167 if (ino < EXT4_FIRST_INO(sb) || ino > max_ino) 1168 goto bad_orphan; 1169 1170 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 1171 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 1172 bitmap_bh = ext4_read_inode_bitmap(sb, block_group); 1173 if (IS_ERR(bitmap_bh)) { 1174 ext4_error(sb, "inode bitmap error %ld for orphan %lu", 1175 ino, PTR_ERR(bitmap_bh)); 1176 return (struct inode *) bitmap_bh; 1177 } 1178 1179 /* Having the inode bit set should be a 100% indicator that this 1180 * is a valid orphan (no e2fsck run on fs). Orphans also include 1181 * inodes that were being truncated, so we can't check i_nlink==0. 1182 */ 1183 if (!ext4_test_bit(bit, bitmap_bh->b_data)) 1184 goto bad_orphan; 1185 1186 inode = ext4_iget(sb, ino); 1187 if (IS_ERR(inode)) { 1188 err = PTR_ERR(inode); 1189 ext4_error(sb, "couldn't read orphan inode %lu (err %d)", 1190 ino, err); 1191 return inode; 1192 } 1193 1194 /* 1195 * If the orphans has i_nlinks > 0 then it should be able to 1196 * be truncated, otherwise it won't be removed from the orphan 1197 * list during processing and an infinite loop will result. 1198 * Similarly, it must not be a bad inode. 1199 */ 1200 if ((inode->i_nlink && !ext4_can_truncate(inode)) || 1201 is_bad_inode(inode)) 1202 goto bad_orphan; 1203 1204 if (NEXT_ORPHAN(inode) > max_ino) 1205 goto bad_orphan; 1206 brelse(bitmap_bh); 1207 return inode; 1208 1209 bad_orphan: 1210 ext4_error(sb, "bad orphan inode %lu", ino); 1211 if (bitmap_bh) 1212 printk(KERN_ERR "ext4_test_bit(bit=%d, block=%llu) = %d\n", 1213 bit, (unsigned long long)bitmap_bh->b_blocknr, 1214 ext4_test_bit(bit, bitmap_bh->b_data)); 1215 if (inode) { 1216 printk(KERN_ERR "is_bad_inode(inode)=%d\n", 1217 is_bad_inode(inode)); 1218 printk(KERN_ERR "NEXT_ORPHAN(inode)=%u\n", 1219 NEXT_ORPHAN(inode)); 1220 printk(KERN_ERR "max_ino=%lu\n", max_ino); 1221 printk(KERN_ERR "i_nlink=%u\n", inode->i_nlink); 1222 /* Avoid freeing blocks if we got a bad deleted inode */ 1223 if (inode->i_nlink == 0) 1224 inode->i_blocks = 0; 1225 iput(inode); 1226 } 1227 brelse(bitmap_bh); 1228 return ERR_PTR(err); 1229 } 1230 1231 unsigned long ext4_count_free_inodes(struct super_block *sb) 1232 { 1233 unsigned long desc_count; 1234 struct ext4_group_desc *gdp; 1235 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 1236 #ifdef EXT4FS_DEBUG 1237 struct ext4_super_block *es; 1238 unsigned long bitmap_count, x; 1239 struct buffer_head *bitmap_bh = NULL; 1240 1241 es = EXT4_SB(sb)->s_es; 1242 desc_count = 0; 1243 bitmap_count = 0; 1244 gdp = NULL; 1245 for (i = 0; i < ngroups; i++) { 1246 gdp = ext4_get_group_desc(sb, i, NULL); 1247 if (!gdp) 1248 continue; 1249 desc_count += ext4_free_inodes_count(sb, gdp); 1250 brelse(bitmap_bh); 1251 bitmap_bh = ext4_read_inode_bitmap(sb, i); 1252 if (IS_ERR(bitmap_bh)) { 1253 bitmap_bh = NULL; 1254 continue; 1255 } 1256 1257 x = ext4_count_free(bitmap_bh->b_data, 1258 EXT4_INODES_PER_GROUP(sb) / 8); 1259 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n", 1260 (unsigned long) i, ext4_free_inodes_count(sb, gdp), x); 1261 bitmap_count += x; 1262 } 1263 brelse(bitmap_bh); 1264 printk(KERN_DEBUG "ext4_count_free_inodes: " 1265 "stored = %u, computed = %lu, %lu\n", 1266 le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count); 1267 return desc_count; 1268 #else 1269 desc_count = 0; 1270 for (i = 0; i < ngroups; i++) { 1271 gdp = ext4_get_group_desc(sb, i, NULL); 1272 if (!gdp) 1273 continue; 1274 desc_count += ext4_free_inodes_count(sb, gdp); 1275 cond_resched(); 1276 } 1277 return desc_count; 1278 #endif 1279 } 1280 1281 /* Called at mount-time, super-block is locked */ 1282 unsigned long ext4_count_dirs(struct super_block * sb) 1283 { 1284 unsigned long count = 0; 1285 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 1286 1287 for (i = 0; i < ngroups; i++) { 1288 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 1289 if (!gdp) 1290 continue; 1291 count += ext4_used_dirs_count(sb, gdp); 1292 } 1293 return count; 1294 } 1295 1296 /* 1297 * Zeroes not yet zeroed inode table - just write zeroes through the whole 1298 * inode table. Must be called without any spinlock held. The only place 1299 * where it is called from on active part of filesystem is ext4lazyinit 1300 * thread, so we do not need any special locks, however we have to prevent 1301 * inode allocation from the current group, so we take alloc_sem lock, to 1302 * block ext4_new_inode() until we are finished. 1303 */ 1304 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group, 1305 int barrier) 1306 { 1307 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1308 struct ext4_sb_info *sbi = EXT4_SB(sb); 1309 struct ext4_group_desc *gdp = NULL; 1310 struct buffer_head *group_desc_bh; 1311 handle_t *handle; 1312 ext4_fsblk_t blk; 1313 int num, ret = 0, used_blks = 0; 1314 1315 /* This should not happen, but just to be sure check this */ 1316 if (sb->s_flags & MS_RDONLY) { 1317 ret = 1; 1318 goto out; 1319 } 1320 1321 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 1322 if (!gdp) 1323 goto out; 1324 1325 /* 1326 * We do not need to lock this, because we are the only one 1327 * handling this flag. 1328 */ 1329 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)) 1330 goto out; 1331 1332 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1); 1333 if (IS_ERR(handle)) { 1334 ret = PTR_ERR(handle); 1335 goto out; 1336 } 1337 1338 down_write(&grp->alloc_sem); 1339 /* 1340 * If inode bitmap was already initialized there may be some 1341 * used inodes so we need to skip blocks with used inodes in 1342 * inode table. 1343 */ 1344 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) 1345 used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) - 1346 ext4_itable_unused_count(sb, gdp)), 1347 sbi->s_inodes_per_block); 1348 1349 if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group)) { 1350 ext4_error(sb, "Something is wrong with group %u: " 1351 "used itable blocks: %d; " 1352 "itable unused count: %u", 1353 group, used_blks, 1354 ext4_itable_unused_count(sb, gdp)); 1355 ret = 1; 1356 goto err_out; 1357 } 1358 1359 blk = ext4_inode_table(sb, gdp) + used_blks; 1360 num = sbi->s_itb_per_group - used_blks; 1361 1362 BUFFER_TRACE(group_desc_bh, "get_write_access"); 1363 ret = ext4_journal_get_write_access(handle, 1364 group_desc_bh); 1365 if (ret) 1366 goto err_out; 1367 1368 /* 1369 * Skip zeroout if the inode table is full. But we set the ZEROED 1370 * flag anyway, because obviously, when it is full it does not need 1371 * further zeroing. 1372 */ 1373 if (unlikely(num == 0)) 1374 goto skip_zeroout; 1375 1376 ext4_debug("going to zero out inode table in group %d\n", 1377 group); 1378 ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS); 1379 if (ret < 0) 1380 goto err_out; 1381 if (barrier) 1382 blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL); 1383 1384 skip_zeroout: 1385 ext4_lock_group(sb, group); 1386 gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED); 1387 ext4_group_desc_csum_set(sb, group, gdp); 1388 ext4_unlock_group(sb, group); 1389 1390 BUFFER_TRACE(group_desc_bh, 1391 "call ext4_handle_dirty_metadata"); 1392 ret = ext4_handle_dirty_metadata(handle, NULL, 1393 group_desc_bh); 1394 1395 err_out: 1396 up_write(&grp->alloc_sem); 1397 ext4_journal_stop(handle); 1398 out: 1399 return ret; 1400 } 1401