1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/ialloc.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * BSD ufs-inspired inode and directory allocation by 11 * Stephen Tweedie (sct@redhat.com), 1993 12 * Big-endian to little-endian byte-swapping/bitmaps by 13 * David S. Miller (davem@caip.rutgers.edu), 1995 14 */ 15 16 #include <linux/time.h> 17 #include <linux/fs.h> 18 #include <linux/stat.h> 19 #include <linux/string.h> 20 #include <linux/quotaops.h> 21 #include <linux/buffer_head.h> 22 #include <linux/random.h> 23 #include <linux/bitops.h> 24 #include <linux/blkdev.h> 25 #include <linux/cred.h> 26 27 #include <asm/byteorder.h> 28 29 #include "ext4.h" 30 #include "ext4_jbd2.h" 31 #include "xattr.h" 32 #include "acl.h" 33 34 #include <trace/events/ext4.h> 35 36 /* 37 * ialloc.c contains the inodes allocation and deallocation routines 38 */ 39 40 /* 41 * The free inodes are managed by bitmaps. A file system contains several 42 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap 43 * block for inodes, N blocks for the inode table and data blocks. 44 * 45 * The file system contains group descriptors which are located after the 46 * super block. Each descriptor contains the number of the bitmap block and 47 * the free blocks count in the block. 48 */ 49 50 /* 51 * To avoid calling the atomic setbit hundreds or thousands of times, we only 52 * need to use it within a single byte (to ensure we get endianness right). 53 * We can use memset for the rest of the bitmap as there are no other users. 54 */ 55 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap) 56 { 57 int i; 58 59 if (start_bit >= end_bit) 60 return; 61 62 ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit); 63 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++) 64 ext4_set_bit(i, bitmap); 65 if (i < end_bit) 66 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3); 67 } 68 69 void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate) 70 { 71 if (uptodate) { 72 set_buffer_uptodate(bh); 73 set_bitmap_uptodate(bh); 74 } 75 unlock_buffer(bh); 76 put_bh(bh); 77 } 78 79 static int ext4_validate_inode_bitmap(struct super_block *sb, 80 struct ext4_group_desc *desc, 81 ext4_group_t block_group, 82 struct buffer_head *bh) 83 { 84 ext4_fsblk_t blk; 85 struct ext4_group_info *grp; 86 87 if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) 88 return 0; 89 90 grp = ext4_get_group_info(sb, block_group); 91 92 if (buffer_verified(bh)) 93 return 0; 94 if (!grp || EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) 95 return -EFSCORRUPTED; 96 97 ext4_lock_group(sb, block_group); 98 if (buffer_verified(bh)) 99 goto verified; 100 blk = ext4_inode_bitmap(sb, desc); 101 if (!ext4_inode_bitmap_csum_verify(sb, desc, bh, 102 EXT4_INODES_PER_GROUP(sb) / 8) || 103 ext4_simulate_fail(sb, EXT4_SIM_IBITMAP_CRC)) { 104 ext4_unlock_group(sb, block_group); 105 ext4_error(sb, "Corrupt inode bitmap - block_group = %u, " 106 "inode_bitmap = %llu", block_group, blk); 107 ext4_mark_group_bitmap_corrupted(sb, block_group, 108 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 109 return -EFSBADCRC; 110 } 111 set_buffer_verified(bh); 112 verified: 113 ext4_unlock_group(sb, block_group); 114 return 0; 115 } 116 117 /* 118 * Read the inode allocation bitmap for a given block_group, reading 119 * into the specified slot in the superblock's bitmap cache. 120 * 121 * Return buffer_head of bitmap on success, or an ERR_PTR on error. 122 */ 123 static struct buffer_head * 124 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group) 125 { 126 struct ext4_group_desc *desc; 127 struct ext4_sb_info *sbi = EXT4_SB(sb); 128 struct buffer_head *bh = NULL; 129 ext4_fsblk_t bitmap_blk; 130 int err; 131 132 desc = ext4_get_group_desc(sb, block_group, NULL); 133 if (!desc) 134 return ERR_PTR(-EFSCORRUPTED); 135 136 bitmap_blk = ext4_inode_bitmap(sb, desc); 137 if ((bitmap_blk <= le32_to_cpu(sbi->s_es->s_first_data_block)) || 138 (bitmap_blk >= ext4_blocks_count(sbi->s_es))) { 139 ext4_error(sb, "Invalid inode bitmap blk %llu in " 140 "block_group %u", bitmap_blk, block_group); 141 ext4_mark_group_bitmap_corrupted(sb, block_group, 142 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 143 return ERR_PTR(-EFSCORRUPTED); 144 } 145 bh = sb_getblk(sb, bitmap_blk); 146 if (unlikely(!bh)) { 147 ext4_warning(sb, "Cannot read inode bitmap - " 148 "block_group = %u, inode_bitmap = %llu", 149 block_group, bitmap_blk); 150 return ERR_PTR(-ENOMEM); 151 } 152 if (bitmap_uptodate(bh)) 153 goto verify; 154 155 lock_buffer(bh); 156 if (bitmap_uptodate(bh)) { 157 unlock_buffer(bh); 158 goto verify; 159 } 160 161 ext4_lock_group(sb, block_group); 162 if (ext4_has_group_desc_csum(sb) && 163 (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) { 164 if (block_group == 0) { 165 ext4_unlock_group(sb, block_group); 166 unlock_buffer(bh); 167 ext4_error(sb, "Inode bitmap for bg 0 marked " 168 "uninitialized"); 169 err = -EFSCORRUPTED; 170 goto out; 171 } 172 memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8); 173 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), 174 sb->s_blocksize * 8, bh->b_data); 175 set_bitmap_uptodate(bh); 176 set_buffer_uptodate(bh); 177 set_buffer_verified(bh); 178 ext4_unlock_group(sb, block_group); 179 unlock_buffer(bh); 180 return bh; 181 } 182 ext4_unlock_group(sb, block_group); 183 184 if (buffer_uptodate(bh)) { 185 /* 186 * if not uninit if bh is uptodate, 187 * bitmap is also uptodate 188 */ 189 set_bitmap_uptodate(bh); 190 unlock_buffer(bh); 191 goto verify; 192 } 193 /* 194 * submit the buffer_head for reading 195 */ 196 trace_ext4_load_inode_bitmap(sb, block_group); 197 ext4_read_bh(bh, REQ_META | REQ_PRIO, 198 ext4_end_bitmap_read, 199 ext4_simulate_fail(sb, EXT4_SIM_IBITMAP_EIO)); 200 if (!buffer_uptodate(bh)) { 201 put_bh(bh); 202 ext4_error_err(sb, EIO, "Cannot read inode bitmap - " 203 "block_group = %u, inode_bitmap = %llu", 204 block_group, bitmap_blk); 205 ext4_mark_group_bitmap_corrupted(sb, block_group, 206 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 207 return ERR_PTR(-EIO); 208 } 209 210 verify: 211 err = ext4_validate_inode_bitmap(sb, desc, block_group, bh); 212 if (err) 213 goto out; 214 return bh; 215 out: 216 put_bh(bh); 217 return ERR_PTR(err); 218 } 219 220 /* 221 * NOTE! When we get the inode, we're the only people 222 * that have access to it, and as such there are no 223 * race conditions we have to worry about. The inode 224 * is not on the hash-lists, and it cannot be reached 225 * through the filesystem because the directory entry 226 * has been deleted earlier. 227 * 228 * HOWEVER: we must make sure that we get no aliases, 229 * which means that we have to call "clear_inode()" 230 * _before_ we mark the inode not in use in the inode 231 * bitmaps. Otherwise a newly created file might use 232 * the same inode number (not actually the same pointer 233 * though), and then we'd have two inodes sharing the 234 * same inode number and space on the harddisk. 235 */ 236 void ext4_free_inode(handle_t *handle, struct inode *inode) 237 { 238 struct super_block *sb = inode->i_sb; 239 int is_directory; 240 unsigned long ino; 241 struct buffer_head *bitmap_bh = NULL; 242 struct buffer_head *bh2; 243 ext4_group_t block_group; 244 unsigned long bit; 245 struct ext4_group_desc *gdp; 246 struct ext4_super_block *es; 247 struct ext4_sb_info *sbi; 248 int fatal = 0, err, count, cleared; 249 struct ext4_group_info *grp; 250 251 if (!sb) { 252 printk(KERN_ERR "EXT4-fs: %s:%d: inode on " 253 "nonexistent device\n", __func__, __LINE__); 254 return; 255 } 256 if (atomic_read(&inode->i_count) > 1) { 257 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d", 258 __func__, __LINE__, inode->i_ino, 259 atomic_read(&inode->i_count)); 260 return; 261 } 262 if (inode->i_nlink) { 263 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n", 264 __func__, __LINE__, inode->i_ino, inode->i_nlink); 265 return; 266 } 267 sbi = EXT4_SB(sb); 268 269 ino = inode->i_ino; 270 ext4_debug("freeing inode %lu\n", ino); 271 trace_ext4_free_inode(inode); 272 273 dquot_initialize(inode); 274 dquot_free_inode(inode); 275 276 is_directory = S_ISDIR(inode->i_mode); 277 278 /* Do this BEFORE marking the inode not in use or returning an error */ 279 ext4_clear_inode(inode); 280 281 es = sbi->s_es; 282 if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) { 283 ext4_error(sb, "reserved or nonexistent inode %lu", ino); 284 goto error_return; 285 } 286 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 287 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 288 bitmap_bh = ext4_read_inode_bitmap(sb, block_group); 289 /* Don't bother if the inode bitmap is corrupt. */ 290 if (IS_ERR(bitmap_bh)) { 291 fatal = PTR_ERR(bitmap_bh); 292 bitmap_bh = NULL; 293 goto error_return; 294 } 295 if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) { 296 grp = ext4_get_group_info(sb, block_group); 297 if (!grp || unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp))) { 298 fatal = -EFSCORRUPTED; 299 goto error_return; 300 } 301 } 302 303 BUFFER_TRACE(bitmap_bh, "get_write_access"); 304 fatal = ext4_journal_get_write_access(handle, sb, bitmap_bh, 305 EXT4_JTR_NONE); 306 if (fatal) 307 goto error_return; 308 309 fatal = -ESRCH; 310 gdp = ext4_get_group_desc(sb, block_group, &bh2); 311 if (gdp) { 312 BUFFER_TRACE(bh2, "get_write_access"); 313 fatal = ext4_journal_get_write_access(handle, sb, bh2, 314 EXT4_JTR_NONE); 315 } 316 ext4_lock_group(sb, block_group); 317 cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data); 318 if (fatal || !cleared) { 319 ext4_unlock_group(sb, block_group); 320 goto out; 321 } 322 323 count = ext4_free_inodes_count(sb, gdp) + 1; 324 ext4_free_inodes_set(sb, gdp, count); 325 if (is_directory) { 326 count = ext4_used_dirs_count(sb, gdp) - 1; 327 ext4_used_dirs_set(sb, gdp, count); 328 if (percpu_counter_initialized(&sbi->s_dirs_counter)) 329 percpu_counter_dec(&sbi->s_dirs_counter); 330 } 331 ext4_inode_bitmap_csum_set(sb, gdp, bitmap_bh, 332 EXT4_INODES_PER_GROUP(sb) / 8); 333 ext4_group_desc_csum_set(sb, block_group, gdp); 334 ext4_unlock_group(sb, block_group); 335 336 if (percpu_counter_initialized(&sbi->s_freeinodes_counter)) 337 percpu_counter_inc(&sbi->s_freeinodes_counter); 338 if (sbi->s_log_groups_per_flex) { 339 struct flex_groups *fg; 340 341 fg = sbi_array_rcu_deref(sbi, s_flex_groups, 342 ext4_flex_group(sbi, block_group)); 343 atomic_inc(&fg->free_inodes); 344 if (is_directory) 345 atomic_dec(&fg->used_dirs); 346 } 347 BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata"); 348 fatal = ext4_handle_dirty_metadata(handle, NULL, bh2); 349 out: 350 if (cleared) { 351 BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata"); 352 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 353 if (!fatal) 354 fatal = err; 355 } else { 356 ext4_error(sb, "bit already cleared for inode %lu", ino); 357 ext4_mark_group_bitmap_corrupted(sb, block_group, 358 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 359 } 360 361 error_return: 362 brelse(bitmap_bh); 363 ext4_std_error(sb, fatal); 364 } 365 366 struct orlov_stats { 367 __u64 free_clusters; 368 __u32 free_inodes; 369 __u32 used_dirs; 370 }; 371 372 /* 373 * Helper function for Orlov's allocator; returns critical information 374 * for a particular block group or flex_bg. If flex_size is 1, then g 375 * is a block group number; otherwise it is flex_bg number. 376 */ 377 static void get_orlov_stats(struct super_block *sb, ext4_group_t g, 378 int flex_size, struct orlov_stats *stats) 379 { 380 struct ext4_group_desc *desc; 381 382 if (flex_size > 1) { 383 struct flex_groups *fg = sbi_array_rcu_deref(EXT4_SB(sb), 384 s_flex_groups, g); 385 stats->free_inodes = atomic_read(&fg->free_inodes); 386 stats->free_clusters = atomic64_read(&fg->free_clusters); 387 stats->used_dirs = atomic_read(&fg->used_dirs); 388 return; 389 } 390 391 desc = ext4_get_group_desc(sb, g, NULL); 392 if (desc) { 393 stats->free_inodes = ext4_free_inodes_count(sb, desc); 394 stats->free_clusters = ext4_free_group_clusters(sb, desc); 395 stats->used_dirs = ext4_used_dirs_count(sb, desc); 396 } else { 397 stats->free_inodes = 0; 398 stats->free_clusters = 0; 399 stats->used_dirs = 0; 400 } 401 } 402 403 /* 404 * Orlov's allocator for directories. 405 * 406 * We always try to spread first-level directories. 407 * 408 * If there are blockgroups with both free inodes and free clusters counts 409 * not worse than average we return one with smallest directory count. 410 * Otherwise we simply return a random group. 411 * 412 * For the rest rules look so: 413 * 414 * It's OK to put directory into a group unless 415 * it has too many directories already (max_dirs) or 416 * it has too few free inodes left (min_inodes) or 417 * it has too few free clusters left (min_clusters) or 418 * Parent's group is preferred, if it doesn't satisfy these 419 * conditions we search cyclically through the rest. If none 420 * of the groups look good we just look for a group with more 421 * free inodes than average (starting at parent's group). 422 */ 423 424 static int find_group_orlov(struct super_block *sb, struct inode *parent, 425 ext4_group_t *group, umode_t mode, 426 const struct qstr *qstr) 427 { 428 ext4_group_t parent_group = EXT4_I(parent)->i_block_group; 429 struct ext4_sb_info *sbi = EXT4_SB(sb); 430 ext4_group_t real_ngroups = ext4_get_groups_count(sb); 431 int inodes_per_group = EXT4_INODES_PER_GROUP(sb); 432 unsigned int freei, avefreei, grp_free; 433 ext4_fsblk_t freec, avefreec; 434 unsigned int ndirs; 435 int max_dirs, min_inodes; 436 ext4_grpblk_t min_clusters; 437 ext4_group_t i, grp, g, ngroups; 438 struct ext4_group_desc *desc; 439 struct orlov_stats stats; 440 int flex_size = ext4_flex_bg_size(sbi); 441 struct dx_hash_info hinfo; 442 443 ngroups = real_ngroups; 444 if (flex_size > 1) { 445 ngroups = (real_ngroups + flex_size - 1) >> 446 sbi->s_log_groups_per_flex; 447 parent_group >>= sbi->s_log_groups_per_flex; 448 } 449 450 freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter); 451 avefreei = freei / ngroups; 452 freec = percpu_counter_read_positive(&sbi->s_freeclusters_counter); 453 avefreec = freec; 454 do_div(avefreec, ngroups); 455 ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter); 456 457 if (S_ISDIR(mode) && 458 ((parent == d_inode(sb->s_root)) || 459 (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) { 460 int best_ndir = inodes_per_group; 461 int ret = -1; 462 463 if (qstr) { 464 hinfo.hash_version = DX_HASH_HALF_MD4; 465 hinfo.seed = sbi->s_hash_seed; 466 ext4fs_dirhash(parent, qstr->name, qstr->len, &hinfo); 467 parent_group = hinfo.hash % ngroups; 468 } else 469 parent_group = get_random_u32_below(ngroups); 470 for (i = 0; i < ngroups; i++) { 471 g = (parent_group + i) % ngroups; 472 get_orlov_stats(sb, g, flex_size, &stats); 473 if (!stats.free_inodes) 474 continue; 475 if (stats.used_dirs >= best_ndir) 476 continue; 477 if (stats.free_inodes < avefreei) 478 continue; 479 if (stats.free_clusters < avefreec) 480 continue; 481 grp = g; 482 ret = 0; 483 best_ndir = stats.used_dirs; 484 } 485 if (ret) 486 goto fallback; 487 found_flex_bg: 488 if (flex_size == 1) { 489 *group = grp; 490 return 0; 491 } 492 493 /* 494 * We pack inodes at the beginning of the flexgroup's 495 * inode tables. Block allocation decisions will do 496 * something similar, although regular files will 497 * start at 2nd block group of the flexgroup. See 498 * ext4_ext_find_goal() and ext4_find_near(). 499 */ 500 grp *= flex_size; 501 for (i = 0; i < flex_size; i++) { 502 if (grp+i >= real_ngroups) 503 break; 504 desc = ext4_get_group_desc(sb, grp+i, NULL); 505 if (desc && ext4_free_inodes_count(sb, desc)) { 506 *group = grp+i; 507 return 0; 508 } 509 } 510 goto fallback; 511 } 512 513 max_dirs = ndirs / ngroups + inodes_per_group*flex_size / 16; 514 min_inodes = avefreei - inodes_per_group*flex_size / 4; 515 if (min_inodes < 1) 516 min_inodes = 1; 517 min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4; 518 if (min_clusters < 0) 519 min_clusters = 0; 520 521 /* 522 * Start looking in the flex group where we last allocated an 523 * inode for this parent directory 524 */ 525 if (EXT4_I(parent)->i_last_alloc_group != ~0) { 526 parent_group = EXT4_I(parent)->i_last_alloc_group; 527 if (flex_size > 1) 528 parent_group >>= sbi->s_log_groups_per_flex; 529 } 530 531 for (i = 0; i < ngroups; i++) { 532 grp = (parent_group + i) % ngroups; 533 get_orlov_stats(sb, grp, flex_size, &stats); 534 if (stats.used_dirs >= max_dirs) 535 continue; 536 if (stats.free_inodes < min_inodes) 537 continue; 538 if (stats.free_clusters < min_clusters) 539 continue; 540 goto found_flex_bg; 541 } 542 543 fallback: 544 ngroups = real_ngroups; 545 avefreei = freei / ngroups; 546 fallback_retry: 547 parent_group = EXT4_I(parent)->i_block_group; 548 for (i = 0; i < ngroups; i++) { 549 grp = (parent_group + i) % ngroups; 550 desc = ext4_get_group_desc(sb, grp, NULL); 551 if (desc) { 552 grp_free = ext4_free_inodes_count(sb, desc); 553 if (grp_free && grp_free >= avefreei) { 554 *group = grp; 555 return 0; 556 } 557 } 558 } 559 560 if (avefreei) { 561 /* 562 * The free-inodes counter is approximate, and for really small 563 * filesystems the above test can fail to find any blockgroups 564 */ 565 avefreei = 0; 566 goto fallback_retry; 567 } 568 569 return -1; 570 } 571 572 static int find_group_other(struct super_block *sb, struct inode *parent, 573 ext4_group_t *group, umode_t mode) 574 { 575 ext4_group_t parent_group = EXT4_I(parent)->i_block_group; 576 ext4_group_t i, last, ngroups = ext4_get_groups_count(sb); 577 struct ext4_group_desc *desc; 578 int flex_size = ext4_flex_bg_size(EXT4_SB(sb)); 579 580 /* 581 * Try to place the inode is the same flex group as its 582 * parent. If we can't find space, use the Orlov algorithm to 583 * find another flex group, and store that information in the 584 * parent directory's inode information so that use that flex 585 * group for future allocations. 586 */ 587 if (flex_size > 1) { 588 int retry = 0; 589 590 try_again: 591 parent_group &= ~(flex_size-1); 592 last = parent_group + flex_size; 593 if (last > ngroups) 594 last = ngroups; 595 for (i = parent_group; i < last; i++) { 596 desc = ext4_get_group_desc(sb, i, NULL); 597 if (desc && ext4_free_inodes_count(sb, desc)) { 598 *group = i; 599 return 0; 600 } 601 } 602 if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) { 603 retry = 1; 604 parent_group = EXT4_I(parent)->i_last_alloc_group; 605 goto try_again; 606 } 607 /* 608 * If this didn't work, use the Orlov search algorithm 609 * to find a new flex group; we pass in the mode to 610 * avoid the topdir algorithms. 611 */ 612 *group = parent_group + flex_size; 613 if (*group > ngroups) 614 *group = 0; 615 return find_group_orlov(sb, parent, group, mode, NULL); 616 } 617 618 /* 619 * Try to place the inode in its parent directory 620 */ 621 *group = parent_group; 622 desc = ext4_get_group_desc(sb, *group, NULL); 623 if (desc && ext4_free_inodes_count(sb, desc) && 624 ext4_free_group_clusters(sb, desc)) 625 return 0; 626 627 /* 628 * We're going to place this inode in a different blockgroup from its 629 * parent. We want to cause files in a common directory to all land in 630 * the same blockgroup. But we want files which are in a different 631 * directory which shares a blockgroup with our parent to land in a 632 * different blockgroup. 633 * 634 * So add our directory's i_ino into the starting point for the hash. 635 */ 636 *group = (*group + parent->i_ino) % ngroups; 637 638 /* 639 * Use a quadratic hash to find a group with a free inode and some free 640 * blocks. 641 */ 642 for (i = 1; i < ngroups; i <<= 1) { 643 *group += i; 644 if (*group >= ngroups) 645 *group -= ngroups; 646 desc = ext4_get_group_desc(sb, *group, NULL); 647 if (desc && ext4_free_inodes_count(sb, desc) && 648 ext4_free_group_clusters(sb, desc)) 649 return 0; 650 } 651 652 /* 653 * That failed: try linear search for a free inode, even if that group 654 * has no free blocks. 655 */ 656 *group = parent_group; 657 for (i = 0; i < ngroups; i++) { 658 if (++*group >= ngroups) 659 *group = 0; 660 desc = ext4_get_group_desc(sb, *group, NULL); 661 if (desc && ext4_free_inodes_count(sb, desc)) 662 return 0; 663 } 664 665 return -1; 666 } 667 668 /* 669 * In no journal mode, if an inode has recently been deleted, we want 670 * to avoid reusing it until we're reasonably sure the inode table 671 * block has been written back to disk. (Yes, these values are 672 * somewhat arbitrary...) 673 */ 674 #define RECENTCY_MIN 60 675 #define RECENTCY_DIRTY 300 676 677 static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino) 678 { 679 struct ext4_group_desc *gdp; 680 struct ext4_inode *raw_inode; 681 struct buffer_head *bh; 682 int inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 683 int offset, ret = 0; 684 int recentcy = RECENTCY_MIN; 685 u32 dtime, now; 686 687 gdp = ext4_get_group_desc(sb, group, NULL); 688 if (unlikely(!gdp)) 689 return 0; 690 691 bh = sb_find_get_block(sb, ext4_inode_table(sb, gdp) + 692 (ino / inodes_per_block)); 693 if (!bh || !buffer_uptodate(bh)) 694 /* 695 * If the block is not in the buffer cache, then it 696 * must have been written out. 697 */ 698 goto out; 699 700 offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb); 701 raw_inode = (struct ext4_inode *) (bh->b_data + offset); 702 703 /* i_dtime is only 32 bits on disk, but we only care about relative 704 * times in the range of a few minutes (i.e. long enough to sync a 705 * recently-deleted inode to disk), so using the low 32 bits of the 706 * clock (a 68 year range) is enough, see time_before32() */ 707 dtime = le32_to_cpu(raw_inode->i_dtime); 708 now = ktime_get_real_seconds(); 709 if (buffer_dirty(bh)) 710 recentcy += RECENTCY_DIRTY; 711 712 if (dtime && time_before32(dtime, now) && 713 time_before32(now, dtime + recentcy)) 714 ret = 1; 715 out: 716 brelse(bh); 717 return ret; 718 } 719 720 static int find_inode_bit(struct super_block *sb, ext4_group_t group, 721 struct buffer_head *bitmap, unsigned long *ino) 722 { 723 bool check_recently_deleted = EXT4_SB(sb)->s_journal == NULL; 724 unsigned long recently_deleted_ino = EXT4_INODES_PER_GROUP(sb); 725 726 next: 727 *ino = ext4_find_next_zero_bit((unsigned long *) 728 bitmap->b_data, 729 EXT4_INODES_PER_GROUP(sb), *ino); 730 if (*ino >= EXT4_INODES_PER_GROUP(sb)) 731 goto not_found; 732 733 if (check_recently_deleted && recently_deleted(sb, group, *ino)) { 734 recently_deleted_ino = *ino; 735 *ino = *ino + 1; 736 if (*ino < EXT4_INODES_PER_GROUP(sb)) 737 goto next; 738 goto not_found; 739 } 740 return 1; 741 not_found: 742 if (recently_deleted_ino >= EXT4_INODES_PER_GROUP(sb)) 743 return 0; 744 /* 745 * Not reusing recently deleted inodes is mostly a preference. We don't 746 * want to report ENOSPC or skew allocation patterns because of that. 747 * So return even recently deleted inode if we could find better in the 748 * given range. 749 */ 750 *ino = recently_deleted_ino; 751 return 1; 752 } 753 754 int ext4_mark_inode_used(struct super_block *sb, int ino) 755 { 756 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count); 757 struct buffer_head *inode_bitmap_bh = NULL, *group_desc_bh = NULL; 758 struct ext4_group_desc *gdp; 759 ext4_group_t group; 760 int bit; 761 int err; 762 763 if (ino < EXT4_FIRST_INO(sb) || ino > max_ino) 764 return -EFSCORRUPTED; 765 766 group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 767 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 768 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group); 769 if (IS_ERR(inode_bitmap_bh)) 770 return PTR_ERR(inode_bitmap_bh); 771 772 if (ext4_test_bit(bit, inode_bitmap_bh->b_data)) { 773 err = 0; 774 goto out; 775 } 776 777 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 778 if (!gdp || !group_desc_bh) { 779 err = -EINVAL; 780 goto out; 781 } 782 783 ext4_set_bit(bit, inode_bitmap_bh->b_data); 784 785 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata"); 786 err = ext4_handle_dirty_metadata(NULL, NULL, inode_bitmap_bh); 787 if (err) { 788 ext4_std_error(sb, err); 789 goto out; 790 } 791 err = sync_dirty_buffer(inode_bitmap_bh); 792 if (err) { 793 ext4_std_error(sb, err); 794 goto out; 795 } 796 797 /* We may have to initialize the block bitmap if it isn't already */ 798 if (ext4_has_group_desc_csum(sb) && 799 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 800 struct buffer_head *block_bitmap_bh; 801 802 block_bitmap_bh = ext4_read_block_bitmap(sb, group); 803 if (IS_ERR(block_bitmap_bh)) { 804 err = PTR_ERR(block_bitmap_bh); 805 goto out; 806 } 807 808 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap"); 809 err = ext4_handle_dirty_metadata(NULL, NULL, block_bitmap_bh); 810 sync_dirty_buffer(block_bitmap_bh); 811 812 /* recheck and clear flag under lock if we still need to */ 813 ext4_lock_group(sb, group); 814 if (ext4_has_group_desc_csum(sb) && 815 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 816 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 817 ext4_free_group_clusters_set(sb, gdp, 818 ext4_free_clusters_after_init(sb, group, gdp)); 819 ext4_block_bitmap_csum_set(sb, gdp, block_bitmap_bh); 820 ext4_group_desc_csum_set(sb, group, gdp); 821 } 822 ext4_unlock_group(sb, group); 823 brelse(block_bitmap_bh); 824 825 if (err) { 826 ext4_std_error(sb, err); 827 goto out; 828 } 829 } 830 831 /* Update the relevant bg descriptor fields */ 832 if (ext4_has_group_desc_csum(sb)) { 833 int free; 834 835 ext4_lock_group(sb, group); /* while we modify the bg desc */ 836 free = EXT4_INODES_PER_GROUP(sb) - 837 ext4_itable_unused_count(sb, gdp); 838 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) { 839 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT); 840 free = 0; 841 } 842 843 /* 844 * Check the relative inode number against the last used 845 * relative inode number in this group. if it is greater 846 * we need to update the bg_itable_unused count 847 */ 848 if (bit >= free) 849 ext4_itable_unused_set(sb, gdp, 850 (EXT4_INODES_PER_GROUP(sb) - bit - 1)); 851 } else { 852 ext4_lock_group(sb, group); 853 } 854 855 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1); 856 if (ext4_has_group_desc_csum(sb)) { 857 ext4_inode_bitmap_csum_set(sb, gdp, inode_bitmap_bh, 858 EXT4_INODES_PER_GROUP(sb) / 8); 859 ext4_group_desc_csum_set(sb, group, gdp); 860 } 861 862 ext4_unlock_group(sb, group); 863 err = ext4_handle_dirty_metadata(NULL, NULL, group_desc_bh); 864 sync_dirty_buffer(group_desc_bh); 865 out: 866 brelse(inode_bitmap_bh); 867 return err; 868 } 869 870 static int ext4_xattr_credits_for_new_inode(struct inode *dir, mode_t mode, 871 bool encrypt) 872 { 873 struct super_block *sb = dir->i_sb; 874 int nblocks = 0; 875 #ifdef CONFIG_EXT4_FS_POSIX_ACL 876 struct posix_acl *p = get_inode_acl(dir, ACL_TYPE_DEFAULT); 877 878 if (IS_ERR(p)) 879 return PTR_ERR(p); 880 if (p) { 881 int acl_size = p->a_count * sizeof(ext4_acl_entry); 882 883 nblocks += (S_ISDIR(mode) ? 2 : 1) * 884 __ext4_xattr_set_credits(sb, NULL /* inode */, 885 NULL /* block_bh */, acl_size, 886 true /* is_create */); 887 posix_acl_release(p); 888 } 889 #endif 890 891 #ifdef CONFIG_SECURITY 892 { 893 int num_security_xattrs = 1; 894 895 #ifdef CONFIG_INTEGRITY 896 num_security_xattrs++; 897 #endif 898 /* 899 * We assume that security xattrs are never more than 1k. 900 * In practice they are under 128 bytes. 901 */ 902 nblocks += num_security_xattrs * 903 __ext4_xattr_set_credits(sb, NULL /* inode */, 904 NULL /* block_bh */, 1024, 905 true /* is_create */); 906 } 907 #endif 908 if (encrypt) 909 nblocks += __ext4_xattr_set_credits(sb, 910 NULL /* inode */, 911 NULL /* block_bh */, 912 FSCRYPT_SET_CONTEXT_MAX_SIZE, 913 true /* is_create */); 914 return nblocks; 915 } 916 917 /* 918 * There are two policies for allocating an inode. If the new inode is 919 * a directory, then a forward search is made for a block group with both 920 * free space and a low directory-to-inode ratio; if that fails, then of 921 * the groups with above-average free space, that group with the fewest 922 * directories already is chosen. 923 * 924 * For other inodes, search forward from the parent directory's block 925 * group to find a free inode. 926 */ 927 struct inode *__ext4_new_inode(struct mnt_idmap *idmap, 928 handle_t *handle, struct inode *dir, 929 umode_t mode, const struct qstr *qstr, 930 __u32 goal, uid_t *owner, __u32 i_flags, 931 int handle_type, unsigned int line_no, 932 int nblocks) 933 { 934 struct super_block *sb; 935 struct buffer_head *inode_bitmap_bh = NULL; 936 struct buffer_head *group_desc_bh; 937 ext4_group_t ngroups, group = 0; 938 unsigned long ino = 0; 939 struct inode *inode; 940 struct ext4_group_desc *gdp = NULL; 941 struct ext4_inode_info *ei; 942 struct ext4_sb_info *sbi; 943 int ret2, err; 944 struct inode *ret; 945 ext4_group_t i; 946 ext4_group_t flex_group; 947 struct ext4_group_info *grp = NULL; 948 bool encrypt = false; 949 950 /* Cannot create files in a deleted directory */ 951 if (!dir || !dir->i_nlink) 952 return ERR_PTR(-EPERM); 953 954 sb = dir->i_sb; 955 sbi = EXT4_SB(sb); 956 957 if (unlikely(ext4_forced_shutdown(sb))) 958 return ERR_PTR(-EIO); 959 960 ngroups = ext4_get_groups_count(sb); 961 trace_ext4_request_inode(dir, mode); 962 inode = new_inode(sb); 963 if (!inode) 964 return ERR_PTR(-ENOMEM); 965 ei = EXT4_I(inode); 966 967 /* 968 * Initialize owners and quota early so that we don't have to account 969 * for quota initialization worst case in standard inode creating 970 * transaction 971 */ 972 if (owner) { 973 inode->i_mode = mode; 974 i_uid_write(inode, owner[0]); 975 i_gid_write(inode, owner[1]); 976 } else if (test_opt(sb, GRPID)) { 977 inode->i_mode = mode; 978 inode_fsuid_set(inode, idmap); 979 inode->i_gid = dir->i_gid; 980 } else 981 inode_init_owner(idmap, inode, dir, mode); 982 983 if (ext4_has_feature_project(sb) && 984 ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT)) 985 ei->i_projid = EXT4_I(dir)->i_projid; 986 else 987 ei->i_projid = make_kprojid(&init_user_ns, EXT4_DEF_PROJID); 988 989 if (!(i_flags & EXT4_EA_INODE_FL)) { 990 err = fscrypt_prepare_new_inode(dir, inode, &encrypt); 991 if (err) 992 goto out; 993 } 994 995 err = dquot_initialize(inode); 996 if (err) 997 goto out; 998 999 if (!handle && sbi->s_journal && !(i_flags & EXT4_EA_INODE_FL)) { 1000 ret2 = ext4_xattr_credits_for_new_inode(dir, mode, encrypt); 1001 if (ret2 < 0) { 1002 err = ret2; 1003 goto out; 1004 } 1005 nblocks += ret2; 1006 } 1007 1008 if (!goal) 1009 goal = sbi->s_inode_goal; 1010 1011 if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) { 1012 group = (goal - 1) / EXT4_INODES_PER_GROUP(sb); 1013 ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb); 1014 ret2 = 0; 1015 goto got_group; 1016 } 1017 1018 if (S_ISDIR(mode)) 1019 ret2 = find_group_orlov(sb, dir, &group, mode, qstr); 1020 else 1021 ret2 = find_group_other(sb, dir, &group, mode); 1022 1023 got_group: 1024 EXT4_I(dir)->i_last_alloc_group = group; 1025 err = -ENOSPC; 1026 if (ret2 == -1) 1027 goto out; 1028 1029 /* 1030 * Normally we will only go through one pass of this loop, 1031 * unless we get unlucky and it turns out the group we selected 1032 * had its last inode grabbed by someone else. 1033 */ 1034 for (i = 0; i < ngroups; i++, ino = 0) { 1035 err = -EIO; 1036 1037 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 1038 if (!gdp) 1039 goto out; 1040 1041 /* 1042 * Check free inodes count before loading bitmap. 1043 */ 1044 if (ext4_free_inodes_count(sb, gdp) == 0) 1045 goto next_group; 1046 1047 if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) { 1048 grp = ext4_get_group_info(sb, group); 1049 /* 1050 * Skip groups with already-known suspicious inode 1051 * tables 1052 */ 1053 if (!grp || EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) 1054 goto next_group; 1055 } 1056 1057 brelse(inode_bitmap_bh); 1058 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group); 1059 /* Skip groups with suspicious inode tables */ 1060 if (IS_ERR(inode_bitmap_bh)) { 1061 inode_bitmap_bh = NULL; 1062 goto next_group; 1063 } 1064 if (!(sbi->s_mount_state & EXT4_FC_REPLAY) && 1065 EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) 1066 goto next_group; 1067 1068 repeat_in_this_group: 1069 ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino); 1070 if (!ret2) 1071 goto next_group; 1072 1073 if (group == 0 && (ino + 1) < EXT4_FIRST_INO(sb)) { 1074 ext4_error(sb, "reserved inode found cleared - " 1075 "inode=%lu", ino + 1); 1076 ext4_mark_group_bitmap_corrupted(sb, group, 1077 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 1078 goto next_group; 1079 } 1080 1081 if ((!(sbi->s_mount_state & EXT4_FC_REPLAY)) && !handle) { 1082 BUG_ON(nblocks <= 0); 1083 handle = __ext4_journal_start_sb(NULL, dir->i_sb, 1084 line_no, handle_type, nblocks, 0, 1085 ext4_trans_default_revoke_credits(sb)); 1086 if (IS_ERR(handle)) { 1087 err = PTR_ERR(handle); 1088 ext4_std_error(sb, err); 1089 goto out; 1090 } 1091 } 1092 BUFFER_TRACE(inode_bitmap_bh, "get_write_access"); 1093 err = ext4_journal_get_write_access(handle, sb, inode_bitmap_bh, 1094 EXT4_JTR_NONE); 1095 if (err) { 1096 ext4_std_error(sb, err); 1097 goto out; 1098 } 1099 ext4_lock_group(sb, group); 1100 ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data); 1101 if (ret2) { 1102 /* Someone already took the bit. Repeat the search 1103 * with lock held. 1104 */ 1105 ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino); 1106 if (ret2) { 1107 ext4_set_bit(ino, inode_bitmap_bh->b_data); 1108 ret2 = 0; 1109 } else { 1110 ret2 = 1; /* we didn't grab the inode */ 1111 } 1112 } 1113 ext4_unlock_group(sb, group); 1114 ino++; /* the inode bitmap is zero-based */ 1115 if (!ret2) 1116 goto got; /* we grabbed the inode! */ 1117 1118 if (ino < EXT4_INODES_PER_GROUP(sb)) 1119 goto repeat_in_this_group; 1120 next_group: 1121 if (++group == ngroups) 1122 group = 0; 1123 } 1124 err = -ENOSPC; 1125 goto out; 1126 1127 got: 1128 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata"); 1129 err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh); 1130 if (err) { 1131 ext4_std_error(sb, err); 1132 goto out; 1133 } 1134 1135 BUFFER_TRACE(group_desc_bh, "get_write_access"); 1136 err = ext4_journal_get_write_access(handle, sb, group_desc_bh, 1137 EXT4_JTR_NONE); 1138 if (err) { 1139 ext4_std_error(sb, err); 1140 goto out; 1141 } 1142 1143 /* We may have to initialize the block bitmap if it isn't already */ 1144 if (ext4_has_group_desc_csum(sb) && 1145 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 1146 struct buffer_head *block_bitmap_bh; 1147 1148 block_bitmap_bh = ext4_read_block_bitmap(sb, group); 1149 if (IS_ERR(block_bitmap_bh)) { 1150 err = PTR_ERR(block_bitmap_bh); 1151 goto out; 1152 } 1153 BUFFER_TRACE(block_bitmap_bh, "get block bitmap access"); 1154 err = ext4_journal_get_write_access(handle, sb, block_bitmap_bh, 1155 EXT4_JTR_NONE); 1156 if (err) { 1157 brelse(block_bitmap_bh); 1158 ext4_std_error(sb, err); 1159 goto out; 1160 } 1161 1162 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap"); 1163 err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh); 1164 1165 /* recheck and clear flag under lock if we still need to */ 1166 ext4_lock_group(sb, group); 1167 if (ext4_has_group_desc_csum(sb) && 1168 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 1169 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 1170 ext4_free_group_clusters_set(sb, gdp, 1171 ext4_free_clusters_after_init(sb, group, gdp)); 1172 ext4_block_bitmap_csum_set(sb, gdp, block_bitmap_bh); 1173 ext4_group_desc_csum_set(sb, group, gdp); 1174 } 1175 ext4_unlock_group(sb, group); 1176 brelse(block_bitmap_bh); 1177 1178 if (err) { 1179 ext4_std_error(sb, err); 1180 goto out; 1181 } 1182 } 1183 1184 /* Update the relevant bg descriptor fields */ 1185 if (ext4_has_group_desc_csum(sb)) { 1186 int free; 1187 struct ext4_group_info *grp = NULL; 1188 1189 if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) { 1190 grp = ext4_get_group_info(sb, group); 1191 if (!grp) { 1192 err = -EFSCORRUPTED; 1193 goto out; 1194 } 1195 down_read(&grp->alloc_sem); /* 1196 * protect vs itable 1197 * lazyinit 1198 */ 1199 } 1200 ext4_lock_group(sb, group); /* while we modify the bg desc */ 1201 free = EXT4_INODES_PER_GROUP(sb) - 1202 ext4_itable_unused_count(sb, gdp); 1203 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) { 1204 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT); 1205 free = 0; 1206 } 1207 /* 1208 * Check the relative inode number against the last used 1209 * relative inode number in this group. if it is greater 1210 * we need to update the bg_itable_unused count 1211 */ 1212 if (ino > free) 1213 ext4_itable_unused_set(sb, gdp, 1214 (EXT4_INODES_PER_GROUP(sb) - ino)); 1215 if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) 1216 up_read(&grp->alloc_sem); 1217 } else { 1218 ext4_lock_group(sb, group); 1219 } 1220 1221 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1); 1222 if (S_ISDIR(mode)) { 1223 ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1); 1224 if (sbi->s_log_groups_per_flex) { 1225 ext4_group_t f = ext4_flex_group(sbi, group); 1226 1227 atomic_inc(&sbi_array_rcu_deref(sbi, s_flex_groups, 1228 f)->used_dirs); 1229 } 1230 } 1231 if (ext4_has_group_desc_csum(sb)) { 1232 ext4_inode_bitmap_csum_set(sb, gdp, inode_bitmap_bh, 1233 EXT4_INODES_PER_GROUP(sb) / 8); 1234 ext4_group_desc_csum_set(sb, group, gdp); 1235 } 1236 ext4_unlock_group(sb, group); 1237 1238 BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata"); 1239 err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh); 1240 if (err) { 1241 ext4_std_error(sb, err); 1242 goto out; 1243 } 1244 1245 percpu_counter_dec(&sbi->s_freeinodes_counter); 1246 if (S_ISDIR(mode)) 1247 percpu_counter_inc(&sbi->s_dirs_counter); 1248 1249 if (sbi->s_log_groups_per_flex) { 1250 flex_group = ext4_flex_group(sbi, group); 1251 atomic_dec(&sbi_array_rcu_deref(sbi, s_flex_groups, 1252 flex_group)->free_inodes); 1253 } 1254 1255 inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb); 1256 /* This is the optimal IO size (for stat), not the fs block size */ 1257 inode->i_blocks = 0; 1258 inode->i_mtime = inode->i_atime = inode_set_ctime_current(inode); 1259 ei->i_crtime = inode->i_mtime; 1260 1261 memset(ei->i_data, 0, sizeof(ei->i_data)); 1262 ei->i_dir_start_lookup = 0; 1263 ei->i_disksize = 0; 1264 1265 /* Don't inherit extent flag from directory, amongst others. */ 1266 ei->i_flags = 1267 ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED); 1268 ei->i_flags |= i_flags; 1269 ei->i_file_acl = 0; 1270 ei->i_dtime = 0; 1271 ei->i_block_group = group; 1272 ei->i_last_alloc_group = ~0; 1273 1274 ext4_set_inode_flags(inode, true); 1275 if (IS_DIRSYNC(inode)) 1276 ext4_handle_sync(handle); 1277 if (insert_inode_locked(inode) < 0) { 1278 /* 1279 * Likely a bitmap corruption causing inode to be allocated 1280 * twice. 1281 */ 1282 err = -EIO; 1283 ext4_error(sb, "failed to insert inode %lu: doubly allocated?", 1284 inode->i_ino); 1285 ext4_mark_group_bitmap_corrupted(sb, group, 1286 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 1287 goto out; 1288 } 1289 inode->i_generation = get_random_u32(); 1290 1291 /* Precompute checksum seed for inode metadata */ 1292 if (ext4_has_metadata_csum(sb)) { 1293 __u32 csum; 1294 __le32 inum = cpu_to_le32(inode->i_ino); 1295 __le32 gen = cpu_to_le32(inode->i_generation); 1296 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 1297 sizeof(inum)); 1298 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 1299 sizeof(gen)); 1300 } 1301 1302 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 1303 ext4_set_inode_state(inode, EXT4_STATE_NEW); 1304 1305 ei->i_extra_isize = sbi->s_want_extra_isize; 1306 ei->i_inline_off = 0; 1307 if (ext4_has_feature_inline_data(sb) && 1308 (!(ei->i_flags & EXT4_DAX_FL) || S_ISDIR(mode))) 1309 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 1310 ret = inode; 1311 err = dquot_alloc_inode(inode); 1312 if (err) 1313 goto fail_drop; 1314 1315 /* 1316 * Since the encryption xattr will always be unique, create it first so 1317 * that it's less likely to end up in an external xattr block and 1318 * prevent its deduplication. 1319 */ 1320 if (encrypt) { 1321 err = fscrypt_set_context(inode, handle); 1322 if (err) 1323 goto fail_free_drop; 1324 } 1325 1326 if (!(ei->i_flags & EXT4_EA_INODE_FL)) { 1327 err = ext4_init_acl(handle, inode, dir); 1328 if (err) 1329 goto fail_free_drop; 1330 1331 err = ext4_init_security(handle, inode, dir, qstr); 1332 if (err) 1333 goto fail_free_drop; 1334 } 1335 1336 if (ext4_has_feature_extents(sb)) { 1337 /* set extent flag only for directory, file and normal symlink*/ 1338 if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) { 1339 ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS); 1340 ext4_ext_tree_init(handle, inode); 1341 } 1342 } 1343 1344 if (ext4_handle_valid(handle)) { 1345 ei->i_sync_tid = handle->h_transaction->t_tid; 1346 ei->i_datasync_tid = handle->h_transaction->t_tid; 1347 } 1348 1349 err = ext4_mark_inode_dirty(handle, inode); 1350 if (err) { 1351 ext4_std_error(sb, err); 1352 goto fail_free_drop; 1353 } 1354 1355 ext4_debug("allocating inode %lu\n", inode->i_ino); 1356 trace_ext4_allocate_inode(inode, dir, mode); 1357 brelse(inode_bitmap_bh); 1358 return ret; 1359 1360 fail_free_drop: 1361 dquot_free_inode(inode); 1362 fail_drop: 1363 clear_nlink(inode); 1364 unlock_new_inode(inode); 1365 out: 1366 dquot_drop(inode); 1367 inode->i_flags |= S_NOQUOTA; 1368 iput(inode); 1369 brelse(inode_bitmap_bh); 1370 return ERR_PTR(err); 1371 } 1372 1373 /* Verify that we are loading a valid orphan from disk */ 1374 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino) 1375 { 1376 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count); 1377 ext4_group_t block_group; 1378 int bit; 1379 struct buffer_head *bitmap_bh = NULL; 1380 struct inode *inode = NULL; 1381 int err = -EFSCORRUPTED; 1382 1383 if (ino < EXT4_FIRST_INO(sb) || ino > max_ino) 1384 goto bad_orphan; 1385 1386 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 1387 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 1388 bitmap_bh = ext4_read_inode_bitmap(sb, block_group); 1389 if (IS_ERR(bitmap_bh)) 1390 return ERR_CAST(bitmap_bh); 1391 1392 /* Having the inode bit set should be a 100% indicator that this 1393 * is a valid orphan (no e2fsck run on fs). Orphans also include 1394 * inodes that were being truncated, so we can't check i_nlink==0. 1395 */ 1396 if (!ext4_test_bit(bit, bitmap_bh->b_data)) 1397 goto bad_orphan; 1398 1399 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL); 1400 if (IS_ERR(inode)) { 1401 err = PTR_ERR(inode); 1402 ext4_error_err(sb, -err, 1403 "couldn't read orphan inode %lu (err %d)", 1404 ino, err); 1405 brelse(bitmap_bh); 1406 return inode; 1407 } 1408 1409 /* 1410 * If the orphans has i_nlinks > 0 then it should be able to 1411 * be truncated, otherwise it won't be removed from the orphan 1412 * list during processing and an infinite loop will result. 1413 * Similarly, it must not be a bad inode. 1414 */ 1415 if ((inode->i_nlink && !ext4_can_truncate(inode)) || 1416 is_bad_inode(inode)) 1417 goto bad_orphan; 1418 1419 if (NEXT_ORPHAN(inode) > max_ino) 1420 goto bad_orphan; 1421 brelse(bitmap_bh); 1422 return inode; 1423 1424 bad_orphan: 1425 ext4_error(sb, "bad orphan inode %lu", ino); 1426 if (bitmap_bh) 1427 printk(KERN_ERR "ext4_test_bit(bit=%d, block=%llu) = %d\n", 1428 bit, (unsigned long long)bitmap_bh->b_blocknr, 1429 ext4_test_bit(bit, bitmap_bh->b_data)); 1430 if (inode) { 1431 printk(KERN_ERR "is_bad_inode(inode)=%d\n", 1432 is_bad_inode(inode)); 1433 printk(KERN_ERR "NEXT_ORPHAN(inode)=%u\n", 1434 NEXT_ORPHAN(inode)); 1435 printk(KERN_ERR "max_ino=%lu\n", max_ino); 1436 printk(KERN_ERR "i_nlink=%u\n", inode->i_nlink); 1437 /* Avoid freeing blocks if we got a bad deleted inode */ 1438 if (inode->i_nlink == 0) 1439 inode->i_blocks = 0; 1440 iput(inode); 1441 } 1442 brelse(bitmap_bh); 1443 return ERR_PTR(err); 1444 } 1445 1446 unsigned long ext4_count_free_inodes(struct super_block *sb) 1447 { 1448 unsigned long desc_count; 1449 struct ext4_group_desc *gdp; 1450 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 1451 #ifdef EXT4FS_DEBUG 1452 struct ext4_super_block *es; 1453 unsigned long bitmap_count, x; 1454 struct buffer_head *bitmap_bh = NULL; 1455 1456 es = EXT4_SB(sb)->s_es; 1457 desc_count = 0; 1458 bitmap_count = 0; 1459 gdp = NULL; 1460 for (i = 0; i < ngroups; i++) { 1461 gdp = ext4_get_group_desc(sb, i, NULL); 1462 if (!gdp) 1463 continue; 1464 desc_count += ext4_free_inodes_count(sb, gdp); 1465 brelse(bitmap_bh); 1466 bitmap_bh = ext4_read_inode_bitmap(sb, i); 1467 if (IS_ERR(bitmap_bh)) { 1468 bitmap_bh = NULL; 1469 continue; 1470 } 1471 1472 x = ext4_count_free(bitmap_bh->b_data, 1473 EXT4_INODES_PER_GROUP(sb) / 8); 1474 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n", 1475 (unsigned long) i, ext4_free_inodes_count(sb, gdp), x); 1476 bitmap_count += x; 1477 } 1478 brelse(bitmap_bh); 1479 printk(KERN_DEBUG "ext4_count_free_inodes: " 1480 "stored = %u, computed = %lu, %lu\n", 1481 le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count); 1482 return desc_count; 1483 #else 1484 desc_count = 0; 1485 for (i = 0; i < ngroups; i++) { 1486 gdp = ext4_get_group_desc(sb, i, NULL); 1487 if (!gdp) 1488 continue; 1489 desc_count += ext4_free_inodes_count(sb, gdp); 1490 cond_resched(); 1491 } 1492 return desc_count; 1493 #endif 1494 } 1495 1496 /* Called at mount-time, super-block is locked */ 1497 unsigned long ext4_count_dirs(struct super_block * sb) 1498 { 1499 unsigned long count = 0; 1500 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 1501 1502 for (i = 0; i < ngroups; i++) { 1503 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 1504 if (!gdp) 1505 continue; 1506 count += ext4_used_dirs_count(sb, gdp); 1507 } 1508 return count; 1509 } 1510 1511 /* 1512 * Zeroes not yet zeroed inode table - just write zeroes through the whole 1513 * inode table. Must be called without any spinlock held. The only place 1514 * where it is called from on active part of filesystem is ext4lazyinit 1515 * thread, so we do not need any special locks, however we have to prevent 1516 * inode allocation from the current group, so we take alloc_sem lock, to 1517 * block ext4_new_inode() until we are finished. 1518 */ 1519 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group, 1520 int barrier) 1521 { 1522 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1523 struct ext4_sb_info *sbi = EXT4_SB(sb); 1524 struct ext4_group_desc *gdp = NULL; 1525 struct buffer_head *group_desc_bh; 1526 handle_t *handle; 1527 ext4_fsblk_t blk; 1528 int num, ret = 0, used_blks = 0; 1529 unsigned long used_inos = 0; 1530 1531 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 1532 if (!gdp || !grp) 1533 goto out; 1534 1535 /* 1536 * We do not need to lock this, because we are the only one 1537 * handling this flag. 1538 */ 1539 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)) 1540 goto out; 1541 1542 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1); 1543 if (IS_ERR(handle)) { 1544 ret = PTR_ERR(handle); 1545 goto out; 1546 } 1547 1548 down_write(&grp->alloc_sem); 1549 /* 1550 * If inode bitmap was already initialized there may be some 1551 * used inodes so we need to skip blocks with used inodes in 1552 * inode table. 1553 */ 1554 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) { 1555 used_inos = EXT4_INODES_PER_GROUP(sb) - 1556 ext4_itable_unused_count(sb, gdp); 1557 used_blks = DIV_ROUND_UP(used_inos, sbi->s_inodes_per_block); 1558 1559 /* Bogus inode unused count? */ 1560 if (used_blks < 0 || used_blks > sbi->s_itb_per_group) { 1561 ext4_error(sb, "Something is wrong with group %u: " 1562 "used itable blocks: %d; " 1563 "itable unused count: %u", 1564 group, used_blks, 1565 ext4_itable_unused_count(sb, gdp)); 1566 ret = 1; 1567 goto err_out; 1568 } 1569 1570 used_inos += group * EXT4_INODES_PER_GROUP(sb); 1571 /* 1572 * Are there some uninitialized inodes in the inode table 1573 * before the first normal inode? 1574 */ 1575 if ((used_blks != sbi->s_itb_per_group) && 1576 (used_inos < EXT4_FIRST_INO(sb))) { 1577 ext4_error(sb, "Something is wrong with group %u: " 1578 "itable unused count: %u; " 1579 "itables initialized count: %ld", 1580 group, ext4_itable_unused_count(sb, gdp), 1581 used_inos); 1582 ret = 1; 1583 goto err_out; 1584 } 1585 } 1586 1587 blk = ext4_inode_table(sb, gdp) + used_blks; 1588 num = sbi->s_itb_per_group - used_blks; 1589 1590 BUFFER_TRACE(group_desc_bh, "get_write_access"); 1591 ret = ext4_journal_get_write_access(handle, sb, group_desc_bh, 1592 EXT4_JTR_NONE); 1593 if (ret) 1594 goto err_out; 1595 1596 /* 1597 * Skip zeroout if the inode table is full. But we set the ZEROED 1598 * flag anyway, because obviously, when it is full it does not need 1599 * further zeroing. 1600 */ 1601 if (unlikely(num == 0)) 1602 goto skip_zeroout; 1603 1604 ext4_debug("going to zero out inode table in group %d\n", 1605 group); 1606 ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS); 1607 if (ret < 0) 1608 goto err_out; 1609 if (barrier) 1610 blkdev_issue_flush(sb->s_bdev); 1611 1612 skip_zeroout: 1613 ext4_lock_group(sb, group); 1614 gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED); 1615 ext4_group_desc_csum_set(sb, group, gdp); 1616 ext4_unlock_group(sb, group); 1617 1618 BUFFER_TRACE(group_desc_bh, 1619 "call ext4_handle_dirty_metadata"); 1620 ret = ext4_handle_dirty_metadata(handle, NULL, 1621 group_desc_bh); 1622 1623 err_out: 1624 up_write(&grp->alloc_sem); 1625 ext4_journal_stop(handle); 1626 out: 1627 return ret; 1628 } 1629