1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/ialloc.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * BSD ufs-inspired inode and directory allocation by 11 * Stephen Tweedie (sct@redhat.com), 1993 12 * Big-endian to little-endian byte-swapping/bitmaps by 13 * David S. Miller (davem@caip.rutgers.edu), 1995 14 */ 15 16 #include <linux/time.h> 17 #include <linux/fs.h> 18 #include <linux/stat.h> 19 #include <linux/string.h> 20 #include <linux/quotaops.h> 21 #include <linux/buffer_head.h> 22 #include <linux/random.h> 23 #include <linux/bitops.h> 24 #include <linux/blkdev.h> 25 #include <linux/cred.h> 26 27 #include <asm/byteorder.h> 28 29 #include "ext4.h" 30 #include "ext4_jbd2.h" 31 #include "xattr.h" 32 #include "acl.h" 33 34 #include <trace/events/ext4.h> 35 36 /* 37 * ialloc.c contains the inodes allocation and deallocation routines 38 */ 39 40 /* 41 * The free inodes are managed by bitmaps. A file system contains several 42 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap 43 * block for inodes, N blocks for the inode table and data blocks. 44 * 45 * The file system contains group descriptors which are located after the 46 * super block. Each descriptor contains the number of the bitmap block and 47 * the free blocks count in the block. 48 */ 49 50 /* 51 * To avoid calling the atomic setbit hundreds or thousands of times, we only 52 * need to use it within a single byte (to ensure we get endianness right). 53 * We can use memset for the rest of the bitmap as there are no other users. 54 */ 55 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap) 56 { 57 int i; 58 59 if (start_bit >= end_bit) 60 return; 61 62 ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit); 63 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++) 64 ext4_set_bit(i, bitmap); 65 if (i < end_bit) 66 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3); 67 } 68 69 void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate) 70 { 71 if (uptodate) { 72 set_buffer_uptodate(bh); 73 set_bitmap_uptodate(bh); 74 } 75 unlock_buffer(bh); 76 put_bh(bh); 77 } 78 79 static int ext4_validate_inode_bitmap(struct super_block *sb, 80 struct ext4_group_desc *desc, 81 ext4_group_t block_group, 82 struct buffer_head *bh) 83 { 84 ext4_fsblk_t blk; 85 struct ext4_group_info *grp; 86 87 if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) 88 return 0; 89 90 grp = ext4_get_group_info(sb, block_group); 91 92 if (buffer_verified(bh)) 93 return 0; 94 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) 95 return -EFSCORRUPTED; 96 97 ext4_lock_group(sb, block_group); 98 if (buffer_verified(bh)) 99 goto verified; 100 blk = ext4_inode_bitmap(sb, desc); 101 if (!ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh, 102 EXT4_INODES_PER_GROUP(sb) / 8) || 103 ext4_simulate_fail(sb, EXT4_SIM_IBITMAP_CRC)) { 104 ext4_unlock_group(sb, block_group); 105 ext4_error(sb, "Corrupt inode bitmap - block_group = %u, " 106 "inode_bitmap = %llu", block_group, blk); 107 ext4_mark_group_bitmap_corrupted(sb, block_group, 108 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 109 return -EFSBADCRC; 110 } 111 set_buffer_verified(bh); 112 verified: 113 ext4_unlock_group(sb, block_group); 114 return 0; 115 } 116 117 /* 118 * Read the inode allocation bitmap for a given block_group, reading 119 * into the specified slot in the superblock's bitmap cache. 120 * 121 * Return buffer_head of bitmap on success, or an ERR_PTR on error. 122 */ 123 static struct buffer_head * 124 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group) 125 { 126 struct ext4_group_desc *desc; 127 struct ext4_sb_info *sbi = EXT4_SB(sb); 128 struct buffer_head *bh = NULL; 129 ext4_fsblk_t bitmap_blk; 130 int err; 131 132 desc = ext4_get_group_desc(sb, block_group, NULL); 133 if (!desc) 134 return ERR_PTR(-EFSCORRUPTED); 135 136 bitmap_blk = ext4_inode_bitmap(sb, desc); 137 if ((bitmap_blk <= le32_to_cpu(sbi->s_es->s_first_data_block)) || 138 (bitmap_blk >= ext4_blocks_count(sbi->s_es))) { 139 ext4_error(sb, "Invalid inode bitmap blk %llu in " 140 "block_group %u", bitmap_blk, block_group); 141 ext4_mark_group_bitmap_corrupted(sb, block_group, 142 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 143 return ERR_PTR(-EFSCORRUPTED); 144 } 145 bh = sb_getblk(sb, bitmap_blk); 146 if (unlikely(!bh)) { 147 ext4_warning(sb, "Cannot read inode bitmap - " 148 "block_group = %u, inode_bitmap = %llu", 149 block_group, bitmap_blk); 150 return ERR_PTR(-ENOMEM); 151 } 152 if (bitmap_uptodate(bh)) 153 goto verify; 154 155 lock_buffer(bh); 156 if (bitmap_uptodate(bh)) { 157 unlock_buffer(bh); 158 goto verify; 159 } 160 161 ext4_lock_group(sb, block_group); 162 if (ext4_has_group_desc_csum(sb) && 163 (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) { 164 if (block_group == 0) { 165 ext4_unlock_group(sb, block_group); 166 unlock_buffer(bh); 167 ext4_error(sb, "Inode bitmap for bg 0 marked " 168 "uninitialized"); 169 err = -EFSCORRUPTED; 170 goto out; 171 } 172 memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8); 173 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), 174 sb->s_blocksize * 8, bh->b_data); 175 set_bitmap_uptodate(bh); 176 set_buffer_uptodate(bh); 177 set_buffer_verified(bh); 178 ext4_unlock_group(sb, block_group); 179 unlock_buffer(bh); 180 return bh; 181 } 182 ext4_unlock_group(sb, block_group); 183 184 if (buffer_uptodate(bh)) { 185 /* 186 * if not uninit if bh is uptodate, 187 * bitmap is also uptodate 188 */ 189 set_bitmap_uptodate(bh); 190 unlock_buffer(bh); 191 goto verify; 192 } 193 /* 194 * submit the buffer_head for reading 195 */ 196 trace_ext4_load_inode_bitmap(sb, block_group); 197 ext4_read_bh(bh, REQ_META | REQ_PRIO, ext4_end_bitmap_read); 198 ext4_simulate_fail_bh(sb, bh, EXT4_SIM_IBITMAP_EIO); 199 if (!buffer_uptodate(bh)) { 200 put_bh(bh); 201 ext4_error_err(sb, EIO, "Cannot read inode bitmap - " 202 "block_group = %u, inode_bitmap = %llu", 203 block_group, bitmap_blk); 204 ext4_mark_group_bitmap_corrupted(sb, block_group, 205 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 206 return ERR_PTR(-EIO); 207 } 208 209 verify: 210 err = ext4_validate_inode_bitmap(sb, desc, block_group, bh); 211 if (err) 212 goto out; 213 return bh; 214 out: 215 put_bh(bh); 216 return ERR_PTR(err); 217 } 218 219 /* 220 * NOTE! When we get the inode, we're the only people 221 * that have access to it, and as such there are no 222 * race conditions we have to worry about. The inode 223 * is not on the hash-lists, and it cannot be reached 224 * through the filesystem because the directory entry 225 * has been deleted earlier. 226 * 227 * HOWEVER: we must make sure that we get no aliases, 228 * which means that we have to call "clear_inode()" 229 * _before_ we mark the inode not in use in the inode 230 * bitmaps. Otherwise a newly created file might use 231 * the same inode number (not actually the same pointer 232 * though), and then we'd have two inodes sharing the 233 * same inode number and space on the harddisk. 234 */ 235 void ext4_free_inode(handle_t *handle, struct inode *inode) 236 { 237 struct super_block *sb = inode->i_sb; 238 int is_directory; 239 unsigned long ino; 240 struct buffer_head *bitmap_bh = NULL; 241 struct buffer_head *bh2; 242 ext4_group_t block_group; 243 unsigned long bit; 244 struct ext4_group_desc *gdp; 245 struct ext4_super_block *es; 246 struct ext4_sb_info *sbi; 247 int fatal = 0, err, count, cleared; 248 struct ext4_group_info *grp; 249 250 if (!sb) { 251 printk(KERN_ERR "EXT4-fs: %s:%d: inode on " 252 "nonexistent device\n", __func__, __LINE__); 253 return; 254 } 255 if (atomic_read(&inode->i_count) > 1) { 256 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d", 257 __func__, __LINE__, inode->i_ino, 258 atomic_read(&inode->i_count)); 259 return; 260 } 261 if (inode->i_nlink) { 262 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n", 263 __func__, __LINE__, inode->i_ino, inode->i_nlink); 264 return; 265 } 266 sbi = EXT4_SB(sb); 267 268 ino = inode->i_ino; 269 ext4_debug("freeing inode %lu\n", ino); 270 trace_ext4_free_inode(inode); 271 272 dquot_initialize(inode); 273 dquot_free_inode(inode); 274 275 is_directory = S_ISDIR(inode->i_mode); 276 277 /* Do this BEFORE marking the inode not in use or returning an error */ 278 ext4_clear_inode(inode); 279 280 es = sbi->s_es; 281 if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) { 282 ext4_error(sb, "reserved or nonexistent inode %lu", ino); 283 goto error_return; 284 } 285 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 286 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 287 bitmap_bh = ext4_read_inode_bitmap(sb, block_group); 288 /* Don't bother if the inode bitmap is corrupt. */ 289 if (IS_ERR(bitmap_bh)) { 290 fatal = PTR_ERR(bitmap_bh); 291 bitmap_bh = NULL; 292 goto error_return; 293 } 294 if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) { 295 grp = ext4_get_group_info(sb, block_group); 296 if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp))) { 297 fatal = -EFSCORRUPTED; 298 goto error_return; 299 } 300 } 301 302 BUFFER_TRACE(bitmap_bh, "get_write_access"); 303 fatal = ext4_journal_get_write_access(handle, sb, bitmap_bh, 304 EXT4_JTR_NONE); 305 if (fatal) 306 goto error_return; 307 308 fatal = -ESRCH; 309 gdp = ext4_get_group_desc(sb, block_group, &bh2); 310 if (gdp) { 311 BUFFER_TRACE(bh2, "get_write_access"); 312 fatal = ext4_journal_get_write_access(handle, sb, bh2, 313 EXT4_JTR_NONE); 314 } 315 ext4_lock_group(sb, block_group); 316 cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data); 317 if (fatal || !cleared) { 318 ext4_unlock_group(sb, block_group); 319 goto out; 320 } 321 322 count = ext4_free_inodes_count(sb, gdp) + 1; 323 ext4_free_inodes_set(sb, gdp, count); 324 if (is_directory) { 325 count = ext4_used_dirs_count(sb, gdp) - 1; 326 ext4_used_dirs_set(sb, gdp, count); 327 if (percpu_counter_initialized(&sbi->s_dirs_counter)) 328 percpu_counter_dec(&sbi->s_dirs_counter); 329 } 330 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh, 331 EXT4_INODES_PER_GROUP(sb) / 8); 332 ext4_group_desc_csum_set(sb, block_group, gdp); 333 ext4_unlock_group(sb, block_group); 334 335 if (percpu_counter_initialized(&sbi->s_freeinodes_counter)) 336 percpu_counter_inc(&sbi->s_freeinodes_counter); 337 if (sbi->s_log_groups_per_flex) { 338 struct flex_groups *fg; 339 340 fg = sbi_array_rcu_deref(sbi, s_flex_groups, 341 ext4_flex_group(sbi, block_group)); 342 atomic_inc(&fg->free_inodes); 343 if (is_directory) 344 atomic_dec(&fg->used_dirs); 345 } 346 BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata"); 347 fatal = ext4_handle_dirty_metadata(handle, NULL, bh2); 348 out: 349 if (cleared) { 350 BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata"); 351 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 352 if (!fatal) 353 fatal = err; 354 } else { 355 ext4_error(sb, "bit already cleared for inode %lu", ino); 356 ext4_mark_group_bitmap_corrupted(sb, block_group, 357 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 358 } 359 360 error_return: 361 brelse(bitmap_bh); 362 ext4_std_error(sb, fatal); 363 } 364 365 struct orlov_stats { 366 __u64 free_clusters; 367 __u32 free_inodes; 368 __u32 used_dirs; 369 }; 370 371 /* 372 * Helper function for Orlov's allocator; returns critical information 373 * for a particular block group or flex_bg. If flex_size is 1, then g 374 * is a block group number; otherwise it is flex_bg number. 375 */ 376 static void get_orlov_stats(struct super_block *sb, ext4_group_t g, 377 int flex_size, struct orlov_stats *stats) 378 { 379 struct ext4_group_desc *desc; 380 381 if (flex_size > 1) { 382 struct flex_groups *fg = sbi_array_rcu_deref(EXT4_SB(sb), 383 s_flex_groups, g); 384 stats->free_inodes = atomic_read(&fg->free_inodes); 385 stats->free_clusters = atomic64_read(&fg->free_clusters); 386 stats->used_dirs = atomic_read(&fg->used_dirs); 387 return; 388 } 389 390 desc = ext4_get_group_desc(sb, g, NULL); 391 if (desc) { 392 stats->free_inodes = ext4_free_inodes_count(sb, desc); 393 stats->free_clusters = ext4_free_group_clusters(sb, desc); 394 stats->used_dirs = ext4_used_dirs_count(sb, desc); 395 } else { 396 stats->free_inodes = 0; 397 stats->free_clusters = 0; 398 stats->used_dirs = 0; 399 } 400 } 401 402 /* 403 * Orlov's allocator for directories. 404 * 405 * We always try to spread first-level directories. 406 * 407 * If there are blockgroups with both free inodes and free clusters counts 408 * not worse than average we return one with smallest directory count. 409 * Otherwise we simply return a random group. 410 * 411 * For the rest rules look so: 412 * 413 * It's OK to put directory into a group unless 414 * it has too many directories already (max_dirs) or 415 * it has too few free inodes left (min_inodes) or 416 * it has too few free clusters left (min_clusters) or 417 * Parent's group is preferred, if it doesn't satisfy these 418 * conditions we search cyclically through the rest. If none 419 * of the groups look good we just look for a group with more 420 * free inodes than average (starting at parent's group). 421 */ 422 423 static int find_group_orlov(struct super_block *sb, struct inode *parent, 424 ext4_group_t *group, umode_t mode, 425 const struct qstr *qstr) 426 { 427 ext4_group_t parent_group = EXT4_I(parent)->i_block_group; 428 struct ext4_sb_info *sbi = EXT4_SB(sb); 429 ext4_group_t real_ngroups = ext4_get_groups_count(sb); 430 int inodes_per_group = EXT4_INODES_PER_GROUP(sb); 431 unsigned int freei, avefreei, grp_free; 432 ext4_fsblk_t freec, avefreec; 433 unsigned int ndirs; 434 int max_dirs, min_inodes; 435 ext4_grpblk_t min_clusters; 436 ext4_group_t i, grp, g, ngroups; 437 struct ext4_group_desc *desc; 438 struct orlov_stats stats; 439 int flex_size = ext4_flex_bg_size(sbi); 440 struct dx_hash_info hinfo; 441 442 ngroups = real_ngroups; 443 if (flex_size > 1) { 444 ngroups = (real_ngroups + flex_size - 1) >> 445 sbi->s_log_groups_per_flex; 446 parent_group >>= sbi->s_log_groups_per_flex; 447 } 448 449 freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter); 450 avefreei = freei / ngroups; 451 freec = percpu_counter_read_positive(&sbi->s_freeclusters_counter); 452 avefreec = freec; 453 do_div(avefreec, ngroups); 454 ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter); 455 456 if (S_ISDIR(mode) && 457 ((parent == d_inode(sb->s_root)) || 458 (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) { 459 int best_ndir = inodes_per_group; 460 int ret = -1; 461 462 if (qstr) { 463 hinfo.hash_version = DX_HASH_HALF_MD4; 464 hinfo.seed = sbi->s_hash_seed; 465 ext4fs_dirhash(parent, qstr->name, qstr->len, &hinfo); 466 parent_group = hinfo.hash % ngroups; 467 } else 468 parent_group = get_random_u32_below(ngroups); 469 for (i = 0; i < ngroups; i++) { 470 g = (parent_group + i) % ngroups; 471 get_orlov_stats(sb, g, flex_size, &stats); 472 if (!stats.free_inodes) 473 continue; 474 if (stats.used_dirs >= best_ndir) 475 continue; 476 if (stats.free_inodes < avefreei) 477 continue; 478 if (stats.free_clusters < avefreec) 479 continue; 480 grp = g; 481 ret = 0; 482 best_ndir = stats.used_dirs; 483 } 484 if (ret) 485 goto fallback; 486 found_flex_bg: 487 if (flex_size == 1) { 488 *group = grp; 489 return 0; 490 } 491 492 /* 493 * We pack inodes at the beginning of the flexgroup's 494 * inode tables. Block allocation decisions will do 495 * something similar, although regular files will 496 * start at 2nd block group of the flexgroup. See 497 * ext4_ext_find_goal() and ext4_find_near(). 498 */ 499 grp *= flex_size; 500 for (i = 0; i < flex_size; i++) { 501 if (grp+i >= real_ngroups) 502 break; 503 desc = ext4_get_group_desc(sb, grp+i, NULL); 504 if (desc && ext4_free_inodes_count(sb, desc)) { 505 *group = grp+i; 506 return 0; 507 } 508 } 509 goto fallback; 510 } 511 512 max_dirs = ndirs / ngroups + inodes_per_group*flex_size / 16; 513 min_inodes = avefreei - inodes_per_group*flex_size / 4; 514 if (min_inodes < 1) 515 min_inodes = 1; 516 min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4; 517 518 /* 519 * Start looking in the flex group where we last allocated an 520 * inode for this parent directory 521 */ 522 if (EXT4_I(parent)->i_last_alloc_group != ~0) { 523 parent_group = EXT4_I(parent)->i_last_alloc_group; 524 if (flex_size > 1) 525 parent_group >>= sbi->s_log_groups_per_flex; 526 } 527 528 for (i = 0; i < ngroups; i++) { 529 grp = (parent_group + i) % ngroups; 530 get_orlov_stats(sb, grp, flex_size, &stats); 531 if (stats.used_dirs >= max_dirs) 532 continue; 533 if (stats.free_inodes < min_inodes) 534 continue; 535 if (stats.free_clusters < min_clusters) 536 continue; 537 goto found_flex_bg; 538 } 539 540 fallback: 541 ngroups = real_ngroups; 542 avefreei = freei / ngroups; 543 fallback_retry: 544 parent_group = EXT4_I(parent)->i_block_group; 545 for (i = 0; i < ngroups; i++) { 546 grp = (parent_group + i) % ngroups; 547 desc = ext4_get_group_desc(sb, grp, NULL); 548 if (desc) { 549 grp_free = ext4_free_inodes_count(sb, desc); 550 if (grp_free && grp_free >= avefreei) { 551 *group = grp; 552 return 0; 553 } 554 } 555 } 556 557 if (avefreei) { 558 /* 559 * The free-inodes counter is approximate, and for really small 560 * filesystems the above test can fail to find any blockgroups 561 */ 562 avefreei = 0; 563 goto fallback_retry; 564 } 565 566 return -1; 567 } 568 569 static int find_group_other(struct super_block *sb, struct inode *parent, 570 ext4_group_t *group, umode_t mode) 571 { 572 ext4_group_t parent_group = EXT4_I(parent)->i_block_group; 573 ext4_group_t i, last, ngroups = ext4_get_groups_count(sb); 574 struct ext4_group_desc *desc; 575 int flex_size = ext4_flex_bg_size(EXT4_SB(sb)); 576 577 /* 578 * Try to place the inode is the same flex group as its 579 * parent. If we can't find space, use the Orlov algorithm to 580 * find another flex group, and store that information in the 581 * parent directory's inode information so that use that flex 582 * group for future allocations. 583 */ 584 if (flex_size > 1) { 585 int retry = 0; 586 587 try_again: 588 parent_group &= ~(flex_size-1); 589 last = parent_group + flex_size; 590 if (last > ngroups) 591 last = ngroups; 592 for (i = parent_group; i < last; i++) { 593 desc = ext4_get_group_desc(sb, i, NULL); 594 if (desc && ext4_free_inodes_count(sb, desc)) { 595 *group = i; 596 return 0; 597 } 598 } 599 if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) { 600 retry = 1; 601 parent_group = EXT4_I(parent)->i_last_alloc_group; 602 goto try_again; 603 } 604 /* 605 * If this didn't work, use the Orlov search algorithm 606 * to find a new flex group; we pass in the mode to 607 * avoid the topdir algorithms. 608 */ 609 *group = parent_group + flex_size; 610 if (*group > ngroups) 611 *group = 0; 612 return find_group_orlov(sb, parent, group, mode, NULL); 613 } 614 615 /* 616 * Try to place the inode in its parent directory 617 */ 618 *group = parent_group; 619 desc = ext4_get_group_desc(sb, *group, NULL); 620 if (desc && ext4_free_inodes_count(sb, desc) && 621 ext4_free_group_clusters(sb, desc)) 622 return 0; 623 624 /* 625 * We're going to place this inode in a different blockgroup from its 626 * parent. We want to cause files in a common directory to all land in 627 * the same blockgroup. But we want files which are in a different 628 * directory which shares a blockgroup with our parent to land in a 629 * different blockgroup. 630 * 631 * So add our directory's i_ino into the starting point for the hash. 632 */ 633 *group = (*group + parent->i_ino) % ngroups; 634 635 /* 636 * Use a quadratic hash to find a group with a free inode and some free 637 * blocks. 638 */ 639 for (i = 1; i < ngroups; i <<= 1) { 640 *group += i; 641 if (*group >= ngroups) 642 *group -= ngroups; 643 desc = ext4_get_group_desc(sb, *group, NULL); 644 if (desc && ext4_free_inodes_count(sb, desc) && 645 ext4_free_group_clusters(sb, desc)) 646 return 0; 647 } 648 649 /* 650 * That failed: try linear search for a free inode, even if that group 651 * has no free blocks. 652 */ 653 *group = parent_group; 654 for (i = 0; i < ngroups; i++) { 655 if (++*group >= ngroups) 656 *group = 0; 657 desc = ext4_get_group_desc(sb, *group, NULL); 658 if (desc && ext4_free_inodes_count(sb, desc)) 659 return 0; 660 } 661 662 return -1; 663 } 664 665 /* 666 * In no journal mode, if an inode has recently been deleted, we want 667 * to avoid reusing it until we're reasonably sure the inode table 668 * block has been written back to disk. (Yes, these values are 669 * somewhat arbitrary...) 670 */ 671 #define RECENTCY_MIN 60 672 #define RECENTCY_DIRTY 300 673 674 static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino) 675 { 676 struct ext4_group_desc *gdp; 677 struct ext4_inode *raw_inode; 678 struct buffer_head *bh; 679 int inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 680 int offset, ret = 0; 681 int recentcy = RECENTCY_MIN; 682 u32 dtime, now; 683 684 gdp = ext4_get_group_desc(sb, group, NULL); 685 if (unlikely(!gdp)) 686 return 0; 687 688 bh = sb_find_get_block(sb, ext4_inode_table(sb, gdp) + 689 (ino / inodes_per_block)); 690 if (!bh || !buffer_uptodate(bh)) 691 /* 692 * If the block is not in the buffer cache, then it 693 * must have been written out. 694 */ 695 goto out; 696 697 offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb); 698 raw_inode = (struct ext4_inode *) (bh->b_data + offset); 699 700 /* i_dtime is only 32 bits on disk, but we only care about relative 701 * times in the range of a few minutes (i.e. long enough to sync a 702 * recently-deleted inode to disk), so using the low 32 bits of the 703 * clock (a 68 year range) is enough, see time_before32() */ 704 dtime = le32_to_cpu(raw_inode->i_dtime); 705 now = ktime_get_real_seconds(); 706 if (buffer_dirty(bh)) 707 recentcy += RECENTCY_DIRTY; 708 709 if (dtime && time_before32(dtime, now) && 710 time_before32(now, dtime + recentcy)) 711 ret = 1; 712 out: 713 brelse(bh); 714 return ret; 715 } 716 717 static int find_inode_bit(struct super_block *sb, ext4_group_t group, 718 struct buffer_head *bitmap, unsigned long *ino) 719 { 720 bool check_recently_deleted = EXT4_SB(sb)->s_journal == NULL; 721 unsigned long recently_deleted_ino = EXT4_INODES_PER_GROUP(sb); 722 723 next: 724 *ino = ext4_find_next_zero_bit((unsigned long *) 725 bitmap->b_data, 726 EXT4_INODES_PER_GROUP(sb), *ino); 727 if (*ino >= EXT4_INODES_PER_GROUP(sb)) 728 goto not_found; 729 730 if (check_recently_deleted && recently_deleted(sb, group, *ino)) { 731 recently_deleted_ino = *ino; 732 *ino = *ino + 1; 733 if (*ino < EXT4_INODES_PER_GROUP(sb)) 734 goto next; 735 goto not_found; 736 } 737 return 1; 738 not_found: 739 if (recently_deleted_ino >= EXT4_INODES_PER_GROUP(sb)) 740 return 0; 741 /* 742 * Not reusing recently deleted inodes is mostly a preference. We don't 743 * want to report ENOSPC or skew allocation patterns because of that. 744 * So return even recently deleted inode if we could find better in the 745 * given range. 746 */ 747 *ino = recently_deleted_ino; 748 return 1; 749 } 750 751 int ext4_mark_inode_used(struct super_block *sb, int ino) 752 { 753 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count); 754 struct buffer_head *inode_bitmap_bh = NULL, *group_desc_bh = NULL; 755 struct ext4_group_desc *gdp; 756 ext4_group_t group; 757 int bit; 758 int err = -EFSCORRUPTED; 759 760 if (ino < EXT4_FIRST_INO(sb) || ino > max_ino) 761 goto out; 762 763 group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 764 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 765 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group); 766 if (IS_ERR(inode_bitmap_bh)) 767 return PTR_ERR(inode_bitmap_bh); 768 769 if (ext4_test_bit(bit, inode_bitmap_bh->b_data)) { 770 err = 0; 771 goto out; 772 } 773 774 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 775 if (!gdp || !group_desc_bh) { 776 err = -EINVAL; 777 goto out; 778 } 779 780 ext4_set_bit(bit, inode_bitmap_bh->b_data); 781 782 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata"); 783 err = ext4_handle_dirty_metadata(NULL, NULL, inode_bitmap_bh); 784 if (err) { 785 ext4_std_error(sb, err); 786 goto out; 787 } 788 err = sync_dirty_buffer(inode_bitmap_bh); 789 if (err) { 790 ext4_std_error(sb, err); 791 goto out; 792 } 793 794 /* We may have to initialize the block bitmap if it isn't already */ 795 if (ext4_has_group_desc_csum(sb) && 796 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 797 struct buffer_head *block_bitmap_bh; 798 799 block_bitmap_bh = ext4_read_block_bitmap(sb, group); 800 if (IS_ERR(block_bitmap_bh)) { 801 err = PTR_ERR(block_bitmap_bh); 802 goto out; 803 } 804 805 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap"); 806 err = ext4_handle_dirty_metadata(NULL, NULL, block_bitmap_bh); 807 sync_dirty_buffer(block_bitmap_bh); 808 809 /* recheck and clear flag under lock if we still need to */ 810 ext4_lock_group(sb, group); 811 if (ext4_has_group_desc_csum(sb) && 812 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 813 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 814 ext4_free_group_clusters_set(sb, gdp, 815 ext4_free_clusters_after_init(sb, group, gdp)); 816 ext4_block_bitmap_csum_set(sb, group, gdp, 817 block_bitmap_bh); 818 ext4_group_desc_csum_set(sb, group, gdp); 819 } 820 ext4_unlock_group(sb, group); 821 brelse(block_bitmap_bh); 822 823 if (err) { 824 ext4_std_error(sb, err); 825 goto out; 826 } 827 } 828 829 /* Update the relevant bg descriptor fields */ 830 if (ext4_has_group_desc_csum(sb)) { 831 int free; 832 833 ext4_lock_group(sb, group); /* while we modify the bg desc */ 834 free = EXT4_INODES_PER_GROUP(sb) - 835 ext4_itable_unused_count(sb, gdp); 836 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) { 837 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT); 838 free = 0; 839 } 840 841 /* 842 * Check the relative inode number against the last used 843 * relative inode number in this group. if it is greater 844 * we need to update the bg_itable_unused count 845 */ 846 if (bit >= free) 847 ext4_itable_unused_set(sb, gdp, 848 (EXT4_INODES_PER_GROUP(sb) - bit - 1)); 849 } else { 850 ext4_lock_group(sb, group); 851 } 852 853 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1); 854 if (ext4_has_group_desc_csum(sb)) { 855 ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh, 856 EXT4_INODES_PER_GROUP(sb) / 8); 857 ext4_group_desc_csum_set(sb, group, gdp); 858 } 859 860 ext4_unlock_group(sb, group); 861 err = ext4_handle_dirty_metadata(NULL, NULL, group_desc_bh); 862 sync_dirty_buffer(group_desc_bh); 863 out: 864 return err; 865 } 866 867 static int ext4_xattr_credits_for_new_inode(struct inode *dir, mode_t mode, 868 bool encrypt) 869 { 870 struct super_block *sb = dir->i_sb; 871 int nblocks = 0; 872 #ifdef CONFIG_EXT4_FS_POSIX_ACL 873 struct posix_acl *p = get_inode_acl(dir, ACL_TYPE_DEFAULT); 874 875 if (IS_ERR(p)) 876 return PTR_ERR(p); 877 if (p) { 878 int acl_size = p->a_count * sizeof(ext4_acl_entry); 879 880 nblocks += (S_ISDIR(mode) ? 2 : 1) * 881 __ext4_xattr_set_credits(sb, NULL /* inode */, 882 NULL /* block_bh */, acl_size, 883 true /* is_create */); 884 posix_acl_release(p); 885 } 886 #endif 887 888 #ifdef CONFIG_SECURITY 889 { 890 int num_security_xattrs = 1; 891 892 #ifdef CONFIG_INTEGRITY 893 num_security_xattrs++; 894 #endif 895 /* 896 * We assume that security xattrs are never more than 1k. 897 * In practice they are under 128 bytes. 898 */ 899 nblocks += num_security_xattrs * 900 __ext4_xattr_set_credits(sb, NULL /* inode */, 901 NULL /* block_bh */, 1024, 902 true /* is_create */); 903 } 904 #endif 905 if (encrypt) 906 nblocks += __ext4_xattr_set_credits(sb, 907 NULL /* inode */, 908 NULL /* block_bh */, 909 FSCRYPT_SET_CONTEXT_MAX_SIZE, 910 true /* is_create */); 911 return nblocks; 912 } 913 914 /* 915 * There are two policies for allocating an inode. If the new inode is 916 * a directory, then a forward search is made for a block group with both 917 * free space and a low directory-to-inode ratio; if that fails, then of 918 * the groups with above-average free space, that group with the fewest 919 * directories already is chosen. 920 * 921 * For other inodes, search forward from the parent directory's block 922 * group to find a free inode. 923 */ 924 struct inode *__ext4_new_inode(struct user_namespace *mnt_userns, 925 handle_t *handle, struct inode *dir, 926 umode_t mode, const struct qstr *qstr, 927 __u32 goal, uid_t *owner, __u32 i_flags, 928 int handle_type, unsigned int line_no, 929 int nblocks) 930 { 931 struct super_block *sb; 932 struct buffer_head *inode_bitmap_bh = NULL; 933 struct buffer_head *group_desc_bh; 934 ext4_group_t ngroups, group = 0; 935 unsigned long ino = 0; 936 struct inode *inode; 937 struct ext4_group_desc *gdp = NULL; 938 struct ext4_inode_info *ei; 939 struct ext4_sb_info *sbi; 940 int ret2, err; 941 struct inode *ret; 942 ext4_group_t i; 943 ext4_group_t flex_group; 944 struct ext4_group_info *grp = NULL; 945 bool encrypt = false; 946 947 /* Cannot create files in a deleted directory */ 948 if (!dir || !dir->i_nlink) 949 return ERR_PTR(-EPERM); 950 951 sb = dir->i_sb; 952 sbi = EXT4_SB(sb); 953 954 if (unlikely(ext4_forced_shutdown(sbi))) 955 return ERR_PTR(-EIO); 956 957 ngroups = ext4_get_groups_count(sb); 958 trace_ext4_request_inode(dir, mode); 959 inode = new_inode(sb); 960 if (!inode) 961 return ERR_PTR(-ENOMEM); 962 ei = EXT4_I(inode); 963 964 /* 965 * Initialize owners and quota early so that we don't have to account 966 * for quota initialization worst case in standard inode creating 967 * transaction 968 */ 969 if (owner) { 970 inode->i_mode = mode; 971 i_uid_write(inode, owner[0]); 972 i_gid_write(inode, owner[1]); 973 } else if (test_opt(sb, GRPID)) { 974 inode->i_mode = mode; 975 inode_fsuid_set(inode, mnt_userns); 976 inode->i_gid = dir->i_gid; 977 } else 978 inode_init_owner(mnt_userns, inode, dir, mode); 979 980 if (ext4_has_feature_project(sb) && 981 ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT)) 982 ei->i_projid = EXT4_I(dir)->i_projid; 983 else 984 ei->i_projid = make_kprojid(&init_user_ns, EXT4_DEF_PROJID); 985 986 if (!(i_flags & EXT4_EA_INODE_FL)) { 987 err = fscrypt_prepare_new_inode(dir, inode, &encrypt); 988 if (err) 989 goto out; 990 } 991 992 err = dquot_initialize(inode); 993 if (err) 994 goto out; 995 996 if (!handle && sbi->s_journal && !(i_flags & EXT4_EA_INODE_FL)) { 997 ret2 = ext4_xattr_credits_for_new_inode(dir, mode, encrypt); 998 if (ret2 < 0) { 999 err = ret2; 1000 goto out; 1001 } 1002 nblocks += ret2; 1003 } 1004 1005 if (!goal) 1006 goal = sbi->s_inode_goal; 1007 1008 if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) { 1009 group = (goal - 1) / EXT4_INODES_PER_GROUP(sb); 1010 ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb); 1011 ret2 = 0; 1012 goto got_group; 1013 } 1014 1015 if (S_ISDIR(mode)) 1016 ret2 = find_group_orlov(sb, dir, &group, mode, qstr); 1017 else 1018 ret2 = find_group_other(sb, dir, &group, mode); 1019 1020 got_group: 1021 EXT4_I(dir)->i_last_alloc_group = group; 1022 err = -ENOSPC; 1023 if (ret2 == -1) 1024 goto out; 1025 1026 /* 1027 * Normally we will only go through one pass of this loop, 1028 * unless we get unlucky and it turns out the group we selected 1029 * had its last inode grabbed by someone else. 1030 */ 1031 for (i = 0; i < ngroups; i++, ino = 0) { 1032 err = -EIO; 1033 1034 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 1035 if (!gdp) 1036 goto out; 1037 1038 /* 1039 * Check free inodes count before loading bitmap. 1040 */ 1041 if (ext4_free_inodes_count(sb, gdp) == 0) 1042 goto next_group; 1043 1044 if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) { 1045 grp = ext4_get_group_info(sb, group); 1046 /* 1047 * Skip groups with already-known suspicious inode 1048 * tables 1049 */ 1050 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) 1051 goto next_group; 1052 } 1053 1054 brelse(inode_bitmap_bh); 1055 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group); 1056 /* Skip groups with suspicious inode tables */ 1057 if (((!(sbi->s_mount_state & EXT4_FC_REPLAY)) 1058 && EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) || 1059 IS_ERR(inode_bitmap_bh)) { 1060 inode_bitmap_bh = NULL; 1061 goto next_group; 1062 } 1063 1064 repeat_in_this_group: 1065 ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino); 1066 if (!ret2) 1067 goto next_group; 1068 1069 if (group == 0 && (ino + 1) < EXT4_FIRST_INO(sb)) { 1070 ext4_error(sb, "reserved inode found cleared - " 1071 "inode=%lu", ino + 1); 1072 ext4_mark_group_bitmap_corrupted(sb, group, 1073 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 1074 goto next_group; 1075 } 1076 1077 if ((!(sbi->s_mount_state & EXT4_FC_REPLAY)) && !handle) { 1078 BUG_ON(nblocks <= 0); 1079 handle = __ext4_journal_start_sb(NULL, dir->i_sb, 1080 line_no, handle_type, nblocks, 0, 1081 ext4_trans_default_revoke_credits(sb)); 1082 if (IS_ERR(handle)) { 1083 err = PTR_ERR(handle); 1084 ext4_std_error(sb, err); 1085 goto out; 1086 } 1087 } 1088 BUFFER_TRACE(inode_bitmap_bh, "get_write_access"); 1089 err = ext4_journal_get_write_access(handle, sb, inode_bitmap_bh, 1090 EXT4_JTR_NONE); 1091 if (err) { 1092 ext4_std_error(sb, err); 1093 goto out; 1094 } 1095 ext4_lock_group(sb, group); 1096 ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data); 1097 if (ret2) { 1098 /* Someone already took the bit. Repeat the search 1099 * with lock held. 1100 */ 1101 ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino); 1102 if (ret2) { 1103 ext4_set_bit(ino, inode_bitmap_bh->b_data); 1104 ret2 = 0; 1105 } else { 1106 ret2 = 1; /* we didn't grab the inode */ 1107 } 1108 } 1109 ext4_unlock_group(sb, group); 1110 ino++; /* the inode bitmap is zero-based */ 1111 if (!ret2) 1112 goto got; /* we grabbed the inode! */ 1113 1114 if (ino < EXT4_INODES_PER_GROUP(sb)) 1115 goto repeat_in_this_group; 1116 next_group: 1117 if (++group == ngroups) 1118 group = 0; 1119 } 1120 err = -ENOSPC; 1121 goto out; 1122 1123 got: 1124 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata"); 1125 err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh); 1126 if (err) { 1127 ext4_std_error(sb, err); 1128 goto out; 1129 } 1130 1131 BUFFER_TRACE(group_desc_bh, "get_write_access"); 1132 err = ext4_journal_get_write_access(handle, sb, group_desc_bh, 1133 EXT4_JTR_NONE); 1134 if (err) { 1135 ext4_std_error(sb, err); 1136 goto out; 1137 } 1138 1139 /* We may have to initialize the block bitmap if it isn't already */ 1140 if (ext4_has_group_desc_csum(sb) && 1141 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 1142 struct buffer_head *block_bitmap_bh; 1143 1144 block_bitmap_bh = ext4_read_block_bitmap(sb, group); 1145 if (IS_ERR(block_bitmap_bh)) { 1146 err = PTR_ERR(block_bitmap_bh); 1147 goto out; 1148 } 1149 BUFFER_TRACE(block_bitmap_bh, "get block bitmap access"); 1150 err = ext4_journal_get_write_access(handle, sb, block_bitmap_bh, 1151 EXT4_JTR_NONE); 1152 if (err) { 1153 brelse(block_bitmap_bh); 1154 ext4_std_error(sb, err); 1155 goto out; 1156 } 1157 1158 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap"); 1159 err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh); 1160 1161 /* recheck and clear flag under lock if we still need to */ 1162 ext4_lock_group(sb, group); 1163 if (ext4_has_group_desc_csum(sb) && 1164 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 1165 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 1166 ext4_free_group_clusters_set(sb, gdp, 1167 ext4_free_clusters_after_init(sb, group, gdp)); 1168 ext4_block_bitmap_csum_set(sb, group, gdp, 1169 block_bitmap_bh); 1170 ext4_group_desc_csum_set(sb, group, gdp); 1171 } 1172 ext4_unlock_group(sb, group); 1173 brelse(block_bitmap_bh); 1174 1175 if (err) { 1176 ext4_std_error(sb, err); 1177 goto out; 1178 } 1179 } 1180 1181 /* Update the relevant bg descriptor fields */ 1182 if (ext4_has_group_desc_csum(sb)) { 1183 int free; 1184 struct ext4_group_info *grp = NULL; 1185 1186 if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) { 1187 grp = ext4_get_group_info(sb, group); 1188 down_read(&grp->alloc_sem); /* 1189 * protect vs itable 1190 * lazyinit 1191 */ 1192 } 1193 ext4_lock_group(sb, group); /* while we modify the bg desc */ 1194 free = EXT4_INODES_PER_GROUP(sb) - 1195 ext4_itable_unused_count(sb, gdp); 1196 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) { 1197 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT); 1198 free = 0; 1199 } 1200 /* 1201 * Check the relative inode number against the last used 1202 * relative inode number in this group. if it is greater 1203 * we need to update the bg_itable_unused count 1204 */ 1205 if (ino > free) 1206 ext4_itable_unused_set(sb, gdp, 1207 (EXT4_INODES_PER_GROUP(sb) - ino)); 1208 if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) 1209 up_read(&grp->alloc_sem); 1210 } else { 1211 ext4_lock_group(sb, group); 1212 } 1213 1214 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1); 1215 if (S_ISDIR(mode)) { 1216 ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1); 1217 if (sbi->s_log_groups_per_flex) { 1218 ext4_group_t f = ext4_flex_group(sbi, group); 1219 1220 atomic_inc(&sbi_array_rcu_deref(sbi, s_flex_groups, 1221 f)->used_dirs); 1222 } 1223 } 1224 if (ext4_has_group_desc_csum(sb)) { 1225 ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh, 1226 EXT4_INODES_PER_GROUP(sb) / 8); 1227 ext4_group_desc_csum_set(sb, group, gdp); 1228 } 1229 ext4_unlock_group(sb, group); 1230 1231 BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata"); 1232 err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh); 1233 if (err) { 1234 ext4_std_error(sb, err); 1235 goto out; 1236 } 1237 1238 percpu_counter_dec(&sbi->s_freeinodes_counter); 1239 if (S_ISDIR(mode)) 1240 percpu_counter_inc(&sbi->s_dirs_counter); 1241 1242 if (sbi->s_log_groups_per_flex) { 1243 flex_group = ext4_flex_group(sbi, group); 1244 atomic_dec(&sbi_array_rcu_deref(sbi, s_flex_groups, 1245 flex_group)->free_inodes); 1246 } 1247 1248 inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb); 1249 /* This is the optimal IO size (for stat), not the fs block size */ 1250 inode->i_blocks = 0; 1251 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode); 1252 ei->i_crtime = inode->i_mtime; 1253 1254 memset(ei->i_data, 0, sizeof(ei->i_data)); 1255 ei->i_dir_start_lookup = 0; 1256 ei->i_disksize = 0; 1257 1258 /* Don't inherit extent flag from directory, amongst others. */ 1259 ei->i_flags = 1260 ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED); 1261 ei->i_flags |= i_flags; 1262 ei->i_file_acl = 0; 1263 ei->i_dtime = 0; 1264 ei->i_block_group = group; 1265 ei->i_last_alloc_group = ~0; 1266 1267 ext4_set_inode_flags(inode, true); 1268 if (IS_DIRSYNC(inode)) 1269 ext4_handle_sync(handle); 1270 if (insert_inode_locked(inode) < 0) { 1271 /* 1272 * Likely a bitmap corruption causing inode to be allocated 1273 * twice. 1274 */ 1275 err = -EIO; 1276 ext4_error(sb, "failed to insert inode %lu: doubly allocated?", 1277 inode->i_ino); 1278 ext4_mark_group_bitmap_corrupted(sb, group, 1279 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 1280 goto out; 1281 } 1282 inode->i_generation = get_random_u32(); 1283 1284 /* Precompute checksum seed for inode metadata */ 1285 if (ext4_has_metadata_csum(sb)) { 1286 __u32 csum; 1287 __le32 inum = cpu_to_le32(inode->i_ino); 1288 __le32 gen = cpu_to_le32(inode->i_generation); 1289 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 1290 sizeof(inum)); 1291 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 1292 sizeof(gen)); 1293 } 1294 1295 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 1296 ext4_set_inode_state(inode, EXT4_STATE_NEW); 1297 1298 ei->i_extra_isize = sbi->s_want_extra_isize; 1299 ei->i_inline_off = 0; 1300 if (ext4_has_feature_inline_data(sb) && 1301 (!(ei->i_flags & EXT4_DAX_FL) || S_ISDIR(mode))) 1302 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 1303 ret = inode; 1304 err = dquot_alloc_inode(inode); 1305 if (err) 1306 goto fail_drop; 1307 1308 /* 1309 * Since the encryption xattr will always be unique, create it first so 1310 * that it's less likely to end up in an external xattr block and 1311 * prevent its deduplication. 1312 */ 1313 if (encrypt) { 1314 err = fscrypt_set_context(inode, handle); 1315 if (err) 1316 goto fail_free_drop; 1317 } 1318 1319 if (!(ei->i_flags & EXT4_EA_INODE_FL)) { 1320 err = ext4_init_acl(handle, inode, dir); 1321 if (err) 1322 goto fail_free_drop; 1323 1324 err = ext4_init_security(handle, inode, dir, qstr); 1325 if (err) 1326 goto fail_free_drop; 1327 } 1328 1329 if (ext4_has_feature_extents(sb)) { 1330 /* set extent flag only for directory, file and normal symlink*/ 1331 if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) { 1332 ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS); 1333 ext4_ext_tree_init(handle, inode); 1334 } 1335 } 1336 1337 if (ext4_handle_valid(handle)) { 1338 ei->i_sync_tid = handle->h_transaction->t_tid; 1339 ei->i_datasync_tid = handle->h_transaction->t_tid; 1340 } 1341 1342 err = ext4_mark_inode_dirty(handle, inode); 1343 if (err) { 1344 ext4_std_error(sb, err); 1345 goto fail_free_drop; 1346 } 1347 1348 ext4_debug("allocating inode %lu\n", inode->i_ino); 1349 trace_ext4_allocate_inode(inode, dir, mode); 1350 brelse(inode_bitmap_bh); 1351 return ret; 1352 1353 fail_free_drop: 1354 dquot_free_inode(inode); 1355 fail_drop: 1356 clear_nlink(inode); 1357 unlock_new_inode(inode); 1358 out: 1359 dquot_drop(inode); 1360 inode->i_flags |= S_NOQUOTA; 1361 iput(inode); 1362 brelse(inode_bitmap_bh); 1363 return ERR_PTR(err); 1364 } 1365 1366 /* Verify that we are loading a valid orphan from disk */ 1367 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino) 1368 { 1369 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count); 1370 ext4_group_t block_group; 1371 int bit; 1372 struct buffer_head *bitmap_bh = NULL; 1373 struct inode *inode = NULL; 1374 int err = -EFSCORRUPTED; 1375 1376 if (ino < EXT4_FIRST_INO(sb) || ino > max_ino) 1377 goto bad_orphan; 1378 1379 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 1380 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 1381 bitmap_bh = ext4_read_inode_bitmap(sb, block_group); 1382 if (IS_ERR(bitmap_bh)) 1383 return ERR_CAST(bitmap_bh); 1384 1385 /* Having the inode bit set should be a 100% indicator that this 1386 * is a valid orphan (no e2fsck run on fs). Orphans also include 1387 * inodes that were being truncated, so we can't check i_nlink==0. 1388 */ 1389 if (!ext4_test_bit(bit, bitmap_bh->b_data)) 1390 goto bad_orphan; 1391 1392 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL); 1393 if (IS_ERR(inode)) { 1394 err = PTR_ERR(inode); 1395 ext4_error_err(sb, -err, 1396 "couldn't read orphan inode %lu (err %d)", 1397 ino, err); 1398 brelse(bitmap_bh); 1399 return inode; 1400 } 1401 1402 /* 1403 * If the orphans has i_nlinks > 0 then it should be able to 1404 * be truncated, otherwise it won't be removed from the orphan 1405 * list during processing and an infinite loop will result. 1406 * Similarly, it must not be a bad inode. 1407 */ 1408 if ((inode->i_nlink && !ext4_can_truncate(inode)) || 1409 is_bad_inode(inode)) 1410 goto bad_orphan; 1411 1412 if (NEXT_ORPHAN(inode) > max_ino) 1413 goto bad_orphan; 1414 brelse(bitmap_bh); 1415 return inode; 1416 1417 bad_orphan: 1418 ext4_error(sb, "bad orphan inode %lu", ino); 1419 if (bitmap_bh) 1420 printk(KERN_ERR "ext4_test_bit(bit=%d, block=%llu) = %d\n", 1421 bit, (unsigned long long)bitmap_bh->b_blocknr, 1422 ext4_test_bit(bit, bitmap_bh->b_data)); 1423 if (inode) { 1424 printk(KERN_ERR "is_bad_inode(inode)=%d\n", 1425 is_bad_inode(inode)); 1426 printk(KERN_ERR "NEXT_ORPHAN(inode)=%u\n", 1427 NEXT_ORPHAN(inode)); 1428 printk(KERN_ERR "max_ino=%lu\n", max_ino); 1429 printk(KERN_ERR "i_nlink=%u\n", inode->i_nlink); 1430 /* Avoid freeing blocks if we got a bad deleted inode */ 1431 if (inode->i_nlink == 0) 1432 inode->i_blocks = 0; 1433 iput(inode); 1434 } 1435 brelse(bitmap_bh); 1436 return ERR_PTR(err); 1437 } 1438 1439 unsigned long ext4_count_free_inodes(struct super_block *sb) 1440 { 1441 unsigned long desc_count; 1442 struct ext4_group_desc *gdp; 1443 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 1444 #ifdef EXT4FS_DEBUG 1445 struct ext4_super_block *es; 1446 unsigned long bitmap_count, x; 1447 struct buffer_head *bitmap_bh = NULL; 1448 1449 es = EXT4_SB(sb)->s_es; 1450 desc_count = 0; 1451 bitmap_count = 0; 1452 gdp = NULL; 1453 for (i = 0; i < ngroups; i++) { 1454 gdp = ext4_get_group_desc(sb, i, NULL); 1455 if (!gdp) 1456 continue; 1457 desc_count += ext4_free_inodes_count(sb, gdp); 1458 brelse(bitmap_bh); 1459 bitmap_bh = ext4_read_inode_bitmap(sb, i); 1460 if (IS_ERR(bitmap_bh)) { 1461 bitmap_bh = NULL; 1462 continue; 1463 } 1464 1465 x = ext4_count_free(bitmap_bh->b_data, 1466 EXT4_INODES_PER_GROUP(sb) / 8); 1467 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n", 1468 (unsigned long) i, ext4_free_inodes_count(sb, gdp), x); 1469 bitmap_count += x; 1470 } 1471 brelse(bitmap_bh); 1472 printk(KERN_DEBUG "ext4_count_free_inodes: " 1473 "stored = %u, computed = %lu, %lu\n", 1474 le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count); 1475 return desc_count; 1476 #else 1477 desc_count = 0; 1478 for (i = 0; i < ngroups; i++) { 1479 gdp = ext4_get_group_desc(sb, i, NULL); 1480 if (!gdp) 1481 continue; 1482 desc_count += ext4_free_inodes_count(sb, gdp); 1483 cond_resched(); 1484 } 1485 return desc_count; 1486 #endif 1487 } 1488 1489 /* Called at mount-time, super-block is locked */ 1490 unsigned long ext4_count_dirs(struct super_block * sb) 1491 { 1492 unsigned long count = 0; 1493 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 1494 1495 for (i = 0; i < ngroups; i++) { 1496 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 1497 if (!gdp) 1498 continue; 1499 count += ext4_used_dirs_count(sb, gdp); 1500 } 1501 return count; 1502 } 1503 1504 /* 1505 * Zeroes not yet zeroed inode table - just write zeroes through the whole 1506 * inode table. Must be called without any spinlock held. The only place 1507 * where it is called from on active part of filesystem is ext4lazyinit 1508 * thread, so we do not need any special locks, however we have to prevent 1509 * inode allocation from the current group, so we take alloc_sem lock, to 1510 * block ext4_new_inode() until we are finished. 1511 */ 1512 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group, 1513 int barrier) 1514 { 1515 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1516 struct ext4_sb_info *sbi = EXT4_SB(sb); 1517 struct ext4_group_desc *gdp = NULL; 1518 struct buffer_head *group_desc_bh; 1519 handle_t *handle; 1520 ext4_fsblk_t blk; 1521 int num, ret = 0, used_blks = 0; 1522 unsigned long used_inos = 0; 1523 1524 /* This should not happen, but just to be sure check this */ 1525 if (sb_rdonly(sb)) { 1526 ret = 1; 1527 goto out; 1528 } 1529 1530 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 1531 if (!gdp) 1532 goto out; 1533 1534 /* 1535 * We do not need to lock this, because we are the only one 1536 * handling this flag. 1537 */ 1538 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)) 1539 goto out; 1540 1541 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1); 1542 if (IS_ERR(handle)) { 1543 ret = PTR_ERR(handle); 1544 goto out; 1545 } 1546 1547 down_write(&grp->alloc_sem); 1548 /* 1549 * If inode bitmap was already initialized there may be some 1550 * used inodes so we need to skip blocks with used inodes in 1551 * inode table. 1552 */ 1553 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) { 1554 used_inos = EXT4_INODES_PER_GROUP(sb) - 1555 ext4_itable_unused_count(sb, gdp); 1556 used_blks = DIV_ROUND_UP(used_inos, sbi->s_inodes_per_block); 1557 1558 /* Bogus inode unused count? */ 1559 if (used_blks < 0 || used_blks > sbi->s_itb_per_group) { 1560 ext4_error(sb, "Something is wrong with group %u: " 1561 "used itable blocks: %d; " 1562 "itable unused count: %u", 1563 group, used_blks, 1564 ext4_itable_unused_count(sb, gdp)); 1565 ret = 1; 1566 goto err_out; 1567 } 1568 1569 used_inos += group * EXT4_INODES_PER_GROUP(sb); 1570 /* 1571 * Are there some uninitialized inodes in the inode table 1572 * before the first normal inode? 1573 */ 1574 if ((used_blks != sbi->s_itb_per_group) && 1575 (used_inos < EXT4_FIRST_INO(sb))) { 1576 ext4_error(sb, "Something is wrong with group %u: " 1577 "itable unused count: %u; " 1578 "itables initialized count: %ld", 1579 group, ext4_itable_unused_count(sb, gdp), 1580 used_inos); 1581 ret = 1; 1582 goto err_out; 1583 } 1584 } 1585 1586 blk = ext4_inode_table(sb, gdp) + used_blks; 1587 num = sbi->s_itb_per_group - used_blks; 1588 1589 BUFFER_TRACE(group_desc_bh, "get_write_access"); 1590 ret = ext4_journal_get_write_access(handle, sb, group_desc_bh, 1591 EXT4_JTR_NONE); 1592 if (ret) 1593 goto err_out; 1594 1595 /* 1596 * Skip zeroout if the inode table is full. But we set the ZEROED 1597 * flag anyway, because obviously, when it is full it does not need 1598 * further zeroing. 1599 */ 1600 if (unlikely(num == 0)) 1601 goto skip_zeroout; 1602 1603 ext4_debug("going to zero out inode table in group %d\n", 1604 group); 1605 ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS); 1606 if (ret < 0) 1607 goto err_out; 1608 if (barrier) 1609 blkdev_issue_flush(sb->s_bdev); 1610 1611 skip_zeroout: 1612 ext4_lock_group(sb, group); 1613 gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED); 1614 ext4_group_desc_csum_set(sb, group, gdp); 1615 ext4_unlock_group(sb, group); 1616 1617 BUFFER_TRACE(group_desc_bh, 1618 "call ext4_handle_dirty_metadata"); 1619 ret = ext4_handle_dirty_metadata(handle, NULL, 1620 group_desc_bh); 1621 1622 err_out: 1623 up_write(&grp->alloc_sem); 1624 ext4_journal_stop(handle); 1625 out: 1626 return ret; 1627 } 1628