1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/ialloc.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * BSD ufs-inspired inode and directory allocation by 11 * Stephen Tweedie (sct@redhat.com), 1993 12 * Big-endian to little-endian byte-swapping/bitmaps by 13 * David S. Miller (davem@caip.rutgers.edu), 1995 14 */ 15 16 #include <linux/time.h> 17 #include <linux/fs.h> 18 #include <linux/stat.h> 19 #include <linux/string.h> 20 #include <linux/quotaops.h> 21 #include <linux/buffer_head.h> 22 #include <linux/random.h> 23 #include <linux/bitops.h> 24 #include <linux/blkdev.h> 25 #include <linux/cred.h> 26 27 #include <asm/byteorder.h> 28 29 #include "ext4.h" 30 #include "ext4_jbd2.h" 31 #include "xattr.h" 32 #include "acl.h" 33 34 #include <trace/events/ext4.h> 35 36 /* 37 * ialloc.c contains the inodes allocation and deallocation routines 38 */ 39 40 /* 41 * The free inodes are managed by bitmaps. A file system contains several 42 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap 43 * block for inodes, N blocks for the inode table and data blocks. 44 * 45 * The file system contains group descriptors which are located after the 46 * super block. Each descriptor contains the number of the bitmap block and 47 * the free blocks count in the block. 48 */ 49 50 /* 51 * To avoid calling the atomic setbit hundreds or thousands of times, we only 52 * need to use it within a single byte (to ensure we get endianness right). 53 * We can use memset for the rest of the bitmap as there are no other users. 54 */ 55 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap) 56 { 57 int i; 58 59 if (start_bit >= end_bit) 60 return; 61 62 ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit); 63 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++) 64 ext4_set_bit(i, bitmap); 65 if (i < end_bit) 66 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3); 67 } 68 69 void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate) 70 { 71 if (uptodate) { 72 set_buffer_uptodate(bh); 73 set_bitmap_uptodate(bh); 74 } 75 unlock_buffer(bh); 76 put_bh(bh); 77 } 78 79 static int ext4_validate_inode_bitmap(struct super_block *sb, 80 struct ext4_group_desc *desc, 81 ext4_group_t block_group, 82 struct buffer_head *bh) 83 { 84 ext4_fsblk_t blk; 85 struct ext4_group_info *grp = ext4_get_group_info(sb, block_group); 86 87 if (buffer_verified(bh)) 88 return 0; 89 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) 90 return -EFSCORRUPTED; 91 92 ext4_lock_group(sb, block_group); 93 if (buffer_verified(bh)) 94 goto verified; 95 blk = ext4_inode_bitmap(sb, desc); 96 if (!ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh, 97 EXT4_INODES_PER_GROUP(sb) / 8) || 98 ext4_simulate_fail(sb, EXT4_SIM_IBITMAP_CRC)) { 99 ext4_unlock_group(sb, block_group); 100 ext4_error(sb, "Corrupt inode bitmap - block_group = %u, " 101 "inode_bitmap = %llu", block_group, blk); 102 ext4_mark_group_bitmap_corrupted(sb, block_group, 103 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 104 return -EFSBADCRC; 105 } 106 set_buffer_verified(bh); 107 verified: 108 ext4_unlock_group(sb, block_group); 109 return 0; 110 } 111 112 /* 113 * Read the inode allocation bitmap for a given block_group, reading 114 * into the specified slot in the superblock's bitmap cache. 115 * 116 * Return buffer_head of bitmap on success or NULL. 117 */ 118 static struct buffer_head * 119 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group) 120 { 121 struct ext4_group_desc *desc; 122 struct ext4_sb_info *sbi = EXT4_SB(sb); 123 struct buffer_head *bh = NULL; 124 ext4_fsblk_t bitmap_blk; 125 int err; 126 127 desc = ext4_get_group_desc(sb, block_group, NULL); 128 if (!desc) 129 return ERR_PTR(-EFSCORRUPTED); 130 131 bitmap_blk = ext4_inode_bitmap(sb, desc); 132 if ((bitmap_blk <= le32_to_cpu(sbi->s_es->s_first_data_block)) || 133 (bitmap_blk >= ext4_blocks_count(sbi->s_es))) { 134 ext4_error(sb, "Invalid inode bitmap blk %llu in " 135 "block_group %u", bitmap_blk, block_group); 136 ext4_mark_group_bitmap_corrupted(sb, block_group, 137 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 138 return ERR_PTR(-EFSCORRUPTED); 139 } 140 bh = sb_getblk(sb, bitmap_blk); 141 if (unlikely(!bh)) { 142 ext4_warning(sb, "Cannot read inode bitmap - " 143 "block_group = %u, inode_bitmap = %llu", 144 block_group, bitmap_blk); 145 return ERR_PTR(-ENOMEM); 146 } 147 if (bitmap_uptodate(bh)) 148 goto verify; 149 150 lock_buffer(bh); 151 if (bitmap_uptodate(bh)) { 152 unlock_buffer(bh); 153 goto verify; 154 } 155 156 ext4_lock_group(sb, block_group); 157 if (ext4_has_group_desc_csum(sb) && 158 (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) { 159 if (block_group == 0) { 160 ext4_unlock_group(sb, block_group); 161 unlock_buffer(bh); 162 ext4_error(sb, "Inode bitmap for bg 0 marked " 163 "uninitialized"); 164 err = -EFSCORRUPTED; 165 goto out; 166 } 167 memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8); 168 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), 169 sb->s_blocksize * 8, bh->b_data); 170 set_bitmap_uptodate(bh); 171 set_buffer_uptodate(bh); 172 set_buffer_verified(bh); 173 ext4_unlock_group(sb, block_group); 174 unlock_buffer(bh); 175 return bh; 176 } 177 ext4_unlock_group(sb, block_group); 178 179 if (buffer_uptodate(bh)) { 180 /* 181 * if not uninit if bh is uptodate, 182 * bitmap is also uptodate 183 */ 184 set_bitmap_uptodate(bh); 185 unlock_buffer(bh); 186 goto verify; 187 } 188 /* 189 * submit the buffer_head for reading 190 */ 191 trace_ext4_load_inode_bitmap(sb, block_group); 192 bh->b_end_io = ext4_end_bitmap_read; 193 get_bh(bh); 194 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh); 195 wait_on_buffer(bh); 196 ext4_simulate_fail_bh(sb, bh, EXT4_SIM_IBITMAP_EIO); 197 if (!buffer_uptodate(bh)) { 198 put_bh(bh); 199 ext4_set_errno(sb, EIO); 200 ext4_error(sb, "Cannot read inode bitmap - " 201 "block_group = %u, inode_bitmap = %llu", 202 block_group, bitmap_blk); 203 ext4_mark_group_bitmap_corrupted(sb, block_group, 204 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 205 return ERR_PTR(-EIO); 206 } 207 208 verify: 209 err = ext4_validate_inode_bitmap(sb, desc, block_group, bh); 210 if (err) 211 goto out; 212 return bh; 213 out: 214 put_bh(bh); 215 return ERR_PTR(err); 216 } 217 218 /* 219 * NOTE! When we get the inode, we're the only people 220 * that have access to it, and as such there are no 221 * race conditions we have to worry about. The inode 222 * is not on the hash-lists, and it cannot be reached 223 * through the filesystem because the directory entry 224 * has been deleted earlier. 225 * 226 * HOWEVER: we must make sure that we get no aliases, 227 * which means that we have to call "clear_inode()" 228 * _before_ we mark the inode not in use in the inode 229 * bitmaps. Otherwise a newly created file might use 230 * the same inode number (not actually the same pointer 231 * though), and then we'd have two inodes sharing the 232 * same inode number and space on the harddisk. 233 */ 234 void ext4_free_inode(handle_t *handle, struct inode *inode) 235 { 236 struct super_block *sb = inode->i_sb; 237 int is_directory; 238 unsigned long ino; 239 struct buffer_head *bitmap_bh = NULL; 240 struct buffer_head *bh2; 241 ext4_group_t block_group; 242 unsigned long bit; 243 struct ext4_group_desc *gdp; 244 struct ext4_super_block *es; 245 struct ext4_sb_info *sbi; 246 int fatal = 0, err, count, cleared; 247 struct ext4_group_info *grp; 248 249 if (!sb) { 250 printk(KERN_ERR "EXT4-fs: %s:%d: inode on " 251 "nonexistent device\n", __func__, __LINE__); 252 return; 253 } 254 if (atomic_read(&inode->i_count) > 1) { 255 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d", 256 __func__, __LINE__, inode->i_ino, 257 atomic_read(&inode->i_count)); 258 return; 259 } 260 if (inode->i_nlink) { 261 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n", 262 __func__, __LINE__, inode->i_ino, inode->i_nlink); 263 return; 264 } 265 sbi = EXT4_SB(sb); 266 267 ino = inode->i_ino; 268 ext4_debug("freeing inode %lu\n", ino); 269 trace_ext4_free_inode(inode); 270 271 dquot_initialize(inode); 272 dquot_free_inode(inode); 273 274 is_directory = S_ISDIR(inode->i_mode); 275 276 /* Do this BEFORE marking the inode not in use or returning an error */ 277 ext4_clear_inode(inode); 278 279 es = sbi->s_es; 280 if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) { 281 ext4_error(sb, "reserved or nonexistent inode %lu", ino); 282 goto error_return; 283 } 284 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 285 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 286 bitmap_bh = ext4_read_inode_bitmap(sb, block_group); 287 /* Don't bother if the inode bitmap is corrupt. */ 288 grp = ext4_get_group_info(sb, block_group); 289 if (IS_ERR(bitmap_bh)) { 290 fatal = PTR_ERR(bitmap_bh); 291 bitmap_bh = NULL; 292 goto error_return; 293 } 294 if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp))) { 295 fatal = -EFSCORRUPTED; 296 goto error_return; 297 } 298 299 BUFFER_TRACE(bitmap_bh, "get_write_access"); 300 fatal = ext4_journal_get_write_access(handle, bitmap_bh); 301 if (fatal) 302 goto error_return; 303 304 fatal = -ESRCH; 305 gdp = ext4_get_group_desc(sb, block_group, &bh2); 306 if (gdp) { 307 BUFFER_TRACE(bh2, "get_write_access"); 308 fatal = ext4_journal_get_write_access(handle, bh2); 309 } 310 ext4_lock_group(sb, block_group); 311 cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data); 312 if (fatal || !cleared) { 313 ext4_unlock_group(sb, block_group); 314 goto out; 315 } 316 317 count = ext4_free_inodes_count(sb, gdp) + 1; 318 ext4_free_inodes_set(sb, gdp, count); 319 if (is_directory) { 320 count = ext4_used_dirs_count(sb, gdp) - 1; 321 ext4_used_dirs_set(sb, gdp, count); 322 percpu_counter_dec(&sbi->s_dirs_counter); 323 } 324 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh, 325 EXT4_INODES_PER_GROUP(sb) / 8); 326 ext4_group_desc_csum_set(sb, block_group, gdp); 327 ext4_unlock_group(sb, block_group); 328 329 percpu_counter_inc(&sbi->s_freeinodes_counter); 330 if (sbi->s_log_groups_per_flex) { 331 ext4_group_t f = ext4_flex_group(sbi, block_group); 332 333 atomic_inc(&sbi->s_flex_groups[f].free_inodes); 334 if (is_directory) 335 atomic_dec(&sbi->s_flex_groups[f].used_dirs); 336 } 337 BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata"); 338 fatal = ext4_handle_dirty_metadata(handle, NULL, bh2); 339 out: 340 if (cleared) { 341 BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata"); 342 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 343 if (!fatal) 344 fatal = err; 345 } else { 346 ext4_error(sb, "bit already cleared for inode %lu", ino); 347 ext4_mark_group_bitmap_corrupted(sb, block_group, 348 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 349 } 350 351 error_return: 352 brelse(bitmap_bh); 353 ext4_std_error(sb, fatal); 354 } 355 356 struct orlov_stats { 357 __u64 free_clusters; 358 __u32 free_inodes; 359 __u32 used_dirs; 360 }; 361 362 /* 363 * Helper function for Orlov's allocator; returns critical information 364 * for a particular block group or flex_bg. If flex_size is 1, then g 365 * is a block group number; otherwise it is flex_bg number. 366 */ 367 static void get_orlov_stats(struct super_block *sb, ext4_group_t g, 368 int flex_size, struct orlov_stats *stats) 369 { 370 struct ext4_group_desc *desc; 371 struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups; 372 373 if (flex_size > 1) { 374 stats->free_inodes = atomic_read(&flex_group[g].free_inodes); 375 stats->free_clusters = atomic64_read(&flex_group[g].free_clusters); 376 stats->used_dirs = atomic_read(&flex_group[g].used_dirs); 377 return; 378 } 379 380 desc = ext4_get_group_desc(sb, g, NULL); 381 if (desc) { 382 stats->free_inodes = ext4_free_inodes_count(sb, desc); 383 stats->free_clusters = ext4_free_group_clusters(sb, desc); 384 stats->used_dirs = ext4_used_dirs_count(sb, desc); 385 } else { 386 stats->free_inodes = 0; 387 stats->free_clusters = 0; 388 stats->used_dirs = 0; 389 } 390 } 391 392 /* 393 * Orlov's allocator for directories. 394 * 395 * We always try to spread first-level directories. 396 * 397 * If there are blockgroups with both free inodes and free blocks counts 398 * not worse than average we return one with smallest directory count. 399 * Otherwise we simply return a random group. 400 * 401 * For the rest rules look so: 402 * 403 * It's OK to put directory into a group unless 404 * it has too many directories already (max_dirs) or 405 * it has too few free inodes left (min_inodes) or 406 * it has too few free blocks left (min_blocks) or 407 * Parent's group is preferred, if it doesn't satisfy these 408 * conditions we search cyclically through the rest. If none 409 * of the groups look good we just look for a group with more 410 * free inodes than average (starting at parent's group). 411 */ 412 413 static int find_group_orlov(struct super_block *sb, struct inode *parent, 414 ext4_group_t *group, umode_t mode, 415 const struct qstr *qstr) 416 { 417 ext4_group_t parent_group = EXT4_I(parent)->i_block_group; 418 struct ext4_sb_info *sbi = EXT4_SB(sb); 419 ext4_group_t real_ngroups = ext4_get_groups_count(sb); 420 int inodes_per_group = EXT4_INODES_PER_GROUP(sb); 421 unsigned int freei, avefreei, grp_free; 422 ext4_fsblk_t freeb, avefreec; 423 unsigned int ndirs; 424 int max_dirs, min_inodes; 425 ext4_grpblk_t min_clusters; 426 ext4_group_t i, grp, g, ngroups; 427 struct ext4_group_desc *desc; 428 struct orlov_stats stats; 429 int flex_size = ext4_flex_bg_size(sbi); 430 struct dx_hash_info hinfo; 431 432 ngroups = real_ngroups; 433 if (flex_size > 1) { 434 ngroups = (real_ngroups + flex_size - 1) >> 435 sbi->s_log_groups_per_flex; 436 parent_group >>= sbi->s_log_groups_per_flex; 437 } 438 439 freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter); 440 avefreei = freei / ngroups; 441 freeb = EXT4_C2B(sbi, 442 percpu_counter_read_positive(&sbi->s_freeclusters_counter)); 443 avefreec = freeb; 444 do_div(avefreec, ngroups); 445 ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter); 446 447 if (S_ISDIR(mode) && 448 ((parent == d_inode(sb->s_root)) || 449 (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) { 450 int best_ndir = inodes_per_group; 451 int ret = -1; 452 453 if (qstr) { 454 hinfo.hash_version = DX_HASH_HALF_MD4; 455 hinfo.seed = sbi->s_hash_seed; 456 ext4fs_dirhash(parent, qstr->name, qstr->len, &hinfo); 457 grp = hinfo.hash; 458 } else 459 grp = prandom_u32(); 460 parent_group = (unsigned)grp % ngroups; 461 for (i = 0; i < ngroups; i++) { 462 g = (parent_group + i) % ngroups; 463 get_orlov_stats(sb, g, flex_size, &stats); 464 if (!stats.free_inodes) 465 continue; 466 if (stats.used_dirs >= best_ndir) 467 continue; 468 if (stats.free_inodes < avefreei) 469 continue; 470 if (stats.free_clusters < avefreec) 471 continue; 472 grp = g; 473 ret = 0; 474 best_ndir = stats.used_dirs; 475 } 476 if (ret) 477 goto fallback; 478 found_flex_bg: 479 if (flex_size == 1) { 480 *group = grp; 481 return 0; 482 } 483 484 /* 485 * We pack inodes at the beginning of the flexgroup's 486 * inode tables. Block allocation decisions will do 487 * something similar, although regular files will 488 * start at 2nd block group of the flexgroup. See 489 * ext4_ext_find_goal() and ext4_find_near(). 490 */ 491 grp *= flex_size; 492 for (i = 0; i < flex_size; i++) { 493 if (grp+i >= real_ngroups) 494 break; 495 desc = ext4_get_group_desc(sb, grp+i, NULL); 496 if (desc && ext4_free_inodes_count(sb, desc)) { 497 *group = grp+i; 498 return 0; 499 } 500 } 501 goto fallback; 502 } 503 504 max_dirs = ndirs / ngroups + inodes_per_group / 16; 505 min_inodes = avefreei - inodes_per_group*flex_size / 4; 506 if (min_inodes < 1) 507 min_inodes = 1; 508 min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4; 509 510 /* 511 * Start looking in the flex group where we last allocated an 512 * inode for this parent directory 513 */ 514 if (EXT4_I(parent)->i_last_alloc_group != ~0) { 515 parent_group = EXT4_I(parent)->i_last_alloc_group; 516 if (flex_size > 1) 517 parent_group >>= sbi->s_log_groups_per_flex; 518 } 519 520 for (i = 0; i < ngroups; i++) { 521 grp = (parent_group + i) % ngroups; 522 get_orlov_stats(sb, grp, flex_size, &stats); 523 if (stats.used_dirs >= max_dirs) 524 continue; 525 if (stats.free_inodes < min_inodes) 526 continue; 527 if (stats.free_clusters < min_clusters) 528 continue; 529 goto found_flex_bg; 530 } 531 532 fallback: 533 ngroups = real_ngroups; 534 avefreei = freei / ngroups; 535 fallback_retry: 536 parent_group = EXT4_I(parent)->i_block_group; 537 for (i = 0; i < ngroups; i++) { 538 grp = (parent_group + i) % ngroups; 539 desc = ext4_get_group_desc(sb, grp, NULL); 540 if (desc) { 541 grp_free = ext4_free_inodes_count(sb, desc); 542 if (grp_free && grp_free >= avefreei) { 543 *group = grp; 544 return 0; 545 } 546 } 547 } 548 549 if (avefreei) { 550 /* 551 * The free-inodes counter is approximate, and for really small 552 * filesystems the above test can fail to find any blockgroups 553 */ 554 avefreei = 0; 555 goto fallback_retry; 556 } 557 558 return -1; 559 } 560 561 static int find_group_other(struct super_block *sb, struct inode *parent, 562 ext4_group_t *group, umode_t mode) 563 { 564 ext4_group_t parent_group = EXT4_I(parent)->i_block_group; 565 ext4_group_t i, last, ngroups = ext4_get_groups_count(sb); 566 struct ext4_group_desc *desc; 567 int flex_size = ext4_flex_bg_size(EXT4_SB(sb)); 568 569 /* 570 * Try to place the inode is the same flex group as its 571 * parent. If we can't find space, use the Orlov algorithm to 572 * find another flex group, and store that information in the 573 * parent directory's inode information so that use that flex 574 * group for future allocations. 575 */ 576 if (flex_size > 1) { 577 int retry = 0; 578 579 try_again: 580 parent_group &= ~(flex_size-1); 581 last = parent_group + flex_size; 582 if (last > ngroups) 583 last = ngroups; 584 for (i = parent_group; i < last; i++) { 585 desc = ext4_get_group_desc(sb, i, NULL); 586 if (desc && ext4_free_inodes_count(sb, desc)) { 587 *group = i; 588 return 0; 589 } 590 } 591 if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) { 592 retry = 1; 593 parent_group = EXT4_I(parent)->i_last_alloc_group; 594 goto try_again; 595 } 596 /* 597 * If this didn't work, use the Orlov search algorithm 598 * to find a new flex group; we pass in the mode to 599 * avoid the topdir algorithms. 600 */ 601 *group = parent_group + flex_size; 602 if (*group > ngroups) 603 *group = 0; 604 return find_group_orlov(sb, parent, group, mode, NULL); 605 } 606 607 /* 608 * Try to place the inode in its parent directory 609 */ 610 *group = parent_group; 611 desc = ext4_get_group_desc(sb, *group, NULL); 612 if (desc && ext4_free_inodes_count(sb, desc) && 613 ext4_free_group_clusters(sb, desc)) 614 return 0; 615 616 /* 617 * We're going to place this inode in a different blockgroup from its 618 * parent. We want to cause files in a common directory to all land in 619 * the same blockgroup. But we want files which are in a different 620 * directory which shares a blockgroup with our parent to land in a 621 * different blockgroup. 622 * 623 * So add our directory's i_ino into the starting point for the hash. 624 */ 625 *group = (*group + parent->i_ino) % ngroups; 626 627 /* 628 * Use a quadratic hash to find a group with a free inode and some free 629 * blocks. 630 */ 631 for (i = 1; i < ngroups; i <<= 1) { 632 *group += i; 633 if (*group >= ngroups) 634 *group -= ngroups; 635 desc = ext4_get_group_desc(sb, *group, NULL); 636 if (desc && ext4_free_inodes_count(sb, desc) && 637 ext4_free_group_clusters(sb, desc)) 638 return 0; 639 } 640 641 /* 642 * That failed: try linear search for a free inode, even if that group 643 * has no free blocks. 644 */ 645 *group = parent_group; 646 for (i = 0; i < ngroups; i++) { 647 if (++*group >= ngroups) 648 *group = 0; 649 desc = ext4_get_group_desc(sb, *group, NULL); 650 if (desc && ext4_free_inodes_count(sb, desc)) 651 return 0; 652 } 653 654 return -1; 655 } 656 657 /* 658 * In no journal mode, if an inode has recently been deleted, we want 659 * to avoid reusing it until we're reasonably sure the inode table 660 * block has been written back to disk. (Yes, these values are 661 * somewhat arbitrary...) 662 */ 663 #define RECENTCY_MIN 5 664 #define RECENTCY_DIRTY 300 665 666 static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino) 667 { 668 struct ext4_group_desc *gdp; 669 struct ext4_inode *raw_inode; 670 struct buffer_head *bh; 671 int inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 672 int offset, ret = 0; 673 int recentcy = RECENTCY_MIN; 674 u32 dtime, now; 675 676 gdp = ext4_get_group_desc(sb, group, NULL); 677 if (unlikely(!gdp)) 678 return 0; 679 680 bh = sb_find_get_block(sb, ext4_inode_table(sb, gdp) + 681 (ino / inodes_per_block)); 682 if (!bh || !buffer_uptodate(bh)) 683 /* 684 * If the block is not in the buffer cache, then it 685 * must have been written out. 686 */ 687 goto out; 688 689 offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb); 690 raw_inode = (struct ext4_inode *) (bh->b_data + offset); 691 692 /* i_dtime is only 32 bits on disk, but we only care about relative 693 * times in the range of a few minutes (i.e. long enough to sync a 694 * recently-deleted inode to disk), so using the low 32 bits of the 695 * clock (a 68 year range) is enough, see time_before32() */ 696 dtime = le32_to_cpu(raw_inode->i_dtime); 697 now = ktime_get_real_seconds(); 698 if (buffer_dirty(bh)) 699 recentcy += RECENTCY_DIRTY; 700 701 if (dtime && time_before32(dtime, now) && 702 time_before32(now, dtime + recentcy)) 703 ret = 1; 704 out: 705 brelse(bh); 706 return ret; 707 } 708 709 static int find_inode_bit(struct super_block *sb, ext4_group_t group, 710 struct buffer_head *bitmap, unsigned long *ino) 711 { 712 next: 713 *ino = ext4_find_next_zero_bit((unsigned long *) 714 bitmap->b_data, 715 EXT4_INODES_PER_GROUP(sb), *ino); 716 if (*ino >= EXT4_INODES_PER_GROUP(sb)) 717 return 0; 718 719 if ((EXT4_SB(sb)->s_journal == NULL) && 720 recently_deleted(sb, group, *ino)) { 721 *ino = *ino + 1; 722 if (*ino < EXT4_INODES_PER_GROUP(sb)) 723 goto next; 724 return 0; 725 } 726 727 return 1; 728 } 729 730 /* 731 * There are two policies for allocating an inode. If the new inode is 732 * a directory, then a forward search is made for a block group with both 733 * free space and a low directory-to-inode ratio; if that fails, then of 734 * the groups with above-average free space, that group with the fewest 735 * directories already is chosen. 736 * 737 * For other inodes, search forward from the parent directory's block 738 * group to find a free inode. 739 */ 740 struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir, 741 umode_t mode, const struct qstr *qstr, 742 __u32 goal, uid_t *owner, __u32 i_flags, 743 int handle_type, unsigned int line_no, 744 int nblocks) 745 { 746 struct super_block *sb; 747 struct buffer_head *inode_bitmap_bh = NULL; 748 struct buffer_head *group_desc_bh; 749 ext4_group_t ngroups, group = 0; 750 unsigned long ino = 0; 751 struct inode *inode; 752 struct ext4_group_desc *gdp = NULL; 753 struct ext4_inode_info *ei; 754 struct ext4_sb_info *sbi; 755 int ret2, err; 756 struct inode *ret; 757 ext4_group_t i; 758 ext4_group_t flex_group; 759 struct ext4_group_info *grp; 760 int encrypt = 0; 761 762 /* Cannot create files in a deleted directory */ 763 if (!dir || !dir->i_nlink) 764 return ERR_PTR(-EPERM); 765 766 sb = dir->i_sb; 767 sbi = EXT4_SB(sb); 768 769 if (unlikely(ext4_forced_shutdown(sbi))) 770 return ERR_PTR(-EIO); 771 772 if ((IS_ENCRYPTED(dir) || DUMMY_ENCRYPTION_ENABLED(sbi)) && 773 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)) && 774 !(i_flags & EXT4_EA_INODE_FL)) { 775 err = fscrypt_get_encryption_info(dir); 776 if (err) 777 return ERR_PTR(err); 778 if (!fscrypt_has_encryption_key(dir)) 779 return ERR_PTR(-ENOKEY); 780 encrypt = 1; 781 } 782 783 if (!handle && sbi->s_journal && !(i_flags & EXT4_EA_INODE_FL)) { 784 #ifdef CONFIG_EXT4_FS_POSIX_ACL 785 struct posix_acl *p = get_acl(dir, ACL_TYPE_DEFAULT); 786 787 if (IS_ERR(p)) 788 return ERR_CAST(p); 789 if (p) { 790 int acl_size = p->a_count * sizeof(ext4_acl_entry); 791 792 nblocks += (S_ISDIR(mode) ? 2 : 1) * 793 __ext4_xattr_set_credits(sb, NULL /* inode */, 794 NULL /* block_bh */, acl_size, 795 true /* is_create */); 796 posix_acl_release(p); 797 } 798 #endif 799 800 #ifdef CONFIG_SECURITY 801 { 802 int num_security_xattrs = 1; 803 804 #ifdef CONFIG_INTEGRITY 805 num_security_xattrs++; 806 #endif 807 /* 808 * We assume that security xattrs are never 809 * more than 1k. In practice they are under 810 * 128 bytes. 811 */ 812 nblocks += num_security_xattrs * 813 __ext4_xattr_set_credits(sb, NULL /* inode */, 814 NULL /* block_bh */, 1024, 815 true /* is_create */); 816 } 817 #endif 818 if (encrypt) 819 nblocks += __ext4_xattr_set_credits(sb, 820 NULL /* inode */, NULL /* block_bh */, 821 FSCRYPT_SET_CONTEXT_MAX_SIZE, 822 true /* is_create */); 823 } 824 825 ngroups = ext4_get_groups_count(sb); 826 trace_ext4_request_inode(dir, mode); 827 inode = new_inode(sb); 828 if (!inode) 829 return ERR_PTR(-ENOMEM); 830 ei = EXT4_I(inode); 831 832 /* 833 * Initialize owners and quota early so that we don't have to account 834 * for quota initialization worst case in standard inode creating 835 * transaction 836 */ 837 if (owner) { 838 inode->i_mode = mode; 839 i_uid_write(inode, owner[0]); 840 i_gid_write(inode, owner[1]); 841 } else if (test_opt(sb, GRPID)) { 842 inode->i_mode = mode; 843 inode->i_uid = current_fsuid(); 844 inode->i_gid = dir->i_gid; 845 } else 846 inode_init_owner(inode, dir, mode); 847 848 if (ext4_has_feature_project(sb) && 849 ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT)) 850 ei->i_projid = EXT4_I(dir)->i_projid; 851 else 852 ei->i_projid = make_kprojid(&init_user_ns, EXT4_DEF_PROJID); 853 854 err = dquot_initialize(inode); 855 if (err) 856 goto out; 857 858 if (!goal) 859 goal = sbi->s_inode_goal; 860 861 if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) { 862 group = (goal - 1) / EXT4_INODES_PER_GROUP(sb); 863 ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb); 864 ret2 = 0; 865 goto got_group; 866 } 867 868 if (S_ISDIR(mode)) 869 ret2 = find_group_orlov(sb, dir, &group, mode, qstr); 870 else 871 ret2 = find_group_other(sb, dir, &group, mode); 872 873 got_group: 874 EXT4_I(dir)->i_last_alloc_group = group; 875 err = -ENOSPC; 876 if (ret2 == -1) 877 goto out; 878 879 /* 880 * Normally we will only go through one pass of this loop, 881 * unless we get unlucky and it turns out the group we selected 882 * had its last inode grabbed by someone else. 883 */ 884 for (i = 0; i < ngroups; i++, ino = 0) { 885 err = -EIO; 886 887 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 888 if (!gdp) 889 goto out; 890 891 /* 892 * Check free inodes count before loading bitmap. 893 */ 894 if (ext4_free_inodes_count(sb, gdp) == 0) 895 goto next_group; 896 897 grp = ext4_get_group_info(sb, group); 898 /* Skip groups with already-known suspicious inode tables */ 899 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) 900 goto next_group; 901 902 brelse(inode_bitmap_bh); 903 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group); 904 /* Skip groups with suspicious inode tables */ 905 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp) || 906 IS_ERR(inode_bitmap_bh)) { 907 inode_bitmap_bh = NULL; 908 goto next_group; 909 } 910 911 repeat_in_this_group: 912 ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino); 913 if (!ret2) 914 goto next_group; 915 916 if (group == 0 && (ino + 1) < EXT4_FIRST_INO(sb)) { 917 ext4_error(sb, "reserved inode found cleared - " 918 "inode=%lu", ino + 1); 919 ext4_mark_group_bitmap_corrupted(sb, group, 920 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 921 goto next_group; 922 } 923 924 if (!handle) { 925 BUG_ON(nblocks <= 0); 926 handle = __ext4_journal_start_sb(dir->i_sb, line_no, 927 handle_type, nblocks, 0, 928 ext4_trans_default_revoke_credits(sb)); 929 if (IS_ERR(handle)) { 930 err = PTR_ERR(handle); 931 ext4_std_error(sb, err); 932 goto out; 933 } 934 } 935 BUFFER_TRACE(inode_bitmap_bh, "get_write_access"); 936 err = ext4_journal_get_write_access(handle, inode_bitmap_bh); 937 if (err) { 938 ext4_std_error(sb, err); 939 goto out; 940 } 941 ext4_lock_group(sb, group); 942 ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data); 943 if (ret2) { 944 /* Someone already took the bit. Repeat the search 945 * with lock held. 946 */ 947 ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino); 948 if (ret2) { 949 ext4_set_bit(ino, inode_bitmap_bh->b_data); 950 ret2 = 0; 951 } else { 952 ret2 = 1; /* we didn't grab the inode */ 953 } 954 } 955 ext4_unlock_group(sb, group); 956 ino++; /* the inode bitmap is zero-based */ 957 if (!ret2) 958 goto got; /* we grabbed the inode! */ 959 960 if (ino < EXT4_INODES_PER_GROUP(sb)) 961 goto repeat_in_this_group; 962 next_group: 963 if (++group == ngroups) 964 group = 0; 965 } 966 err = -ENOSPC; 967 goto out; 968 969 got: 970 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata"); 971 err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh); 972 if (err) { 973 ext4_std_error(sb, err); 974 goto out; 975 } 976 977 BUFFER_TRACE(group_desc_bh, "get_write_access"); 978 err = ext4_journal_get_write_access(handle, group_desc_bh); 979 if (err) { 980 ext4_std_error(sb, err); 981 goto out; 982 } 983 984 /* We may have to initialize the block bitmap if it isn't already */ 985 if (ext4_has_group_desc_csum(sb) && 986 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 987 struct buffer_head *block_bitmap_bh; 988 989 block_bitmap_bh = ext4_read_block_bitmap(sb, group); 990 if (IS_ERR(block_bitmap_bh)) { 991 err = PTR_ERR(block_bitmap_bh); 992 goto out; 993 } 994 BUFFER_TRACE(block_bitmap_bh, "get block bitmap access"); 995 err = ext4_journal_get_write_access(handle, block_bitmap_bh); 996 if (err) { 997 brelse(block_bitmap_bh); 998 ext4_std_error(sb, err); 999 goto out; 1000 } 1001 1002 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap"); 1003 err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh); 1004 1005 /* recheck and clear flag under lock if we still need to */ 1006 ext4_lock_group(sb, group); 1007 if (ext4_has_group_desc_csum(sb) && 1008 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 1009 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 1010 ext4_free_group_clusters_set(sb, gdp, 1011 ext4_free_clusters_after_init(sb, group, gdp)); 1012 ext4_block_bitmap_csum_set(sb, group, gdp, 1013 block_bitmap_bh); 1014 ext4_group_desc_csum_set(sb, group, gdp); 1015 } 1016 ext4_unlock_group(sb, group); 1017 brelse(block_bitmap_bh); 1018 1019 if (err) { 1020 ext4_std_error(sb, err); 1021 goto out; 1022 } 1023 } 1024 1025 /* Update the relevant bg descriptor fields */ 1026 if (ext4_has_group_desc_csum(sb)) { 1027 int free; 1028 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1029 1030 down_read(&grp->alloc_sem); /* protect vs itable lazyinit */ 1031 ext4_lock_group(sb, group); /* while we modify the bg desc */ 1032 free = EXT4_INODES_PER_GROUP(sb) - 1033 ext4_itable_unused_count(sb, gdp); 1034 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) { 1035 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT); 1036 free = 0; 1037 } 1038 /* 1039 * Check the relative inode number against the last used 1040 * relative inode number in this group. if it is greater 1041 * we need to update the bg_itable_unused count 1042 */ 1043 if (ino > free) 1044 ext4_itable_unused_set(sb, gdp, 1045 (EXT4_INODES_PER_GROUP(sb) - ino)); 1046 up_read(&grp->alloc_sem); 1047 } else { 1048 ext4_lock_group(sb, group); 1049 } 1050 1051 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1); 1052 if (S_ISDIR(mode)) { 1053 ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1); 1054 if (sbi->s_log_groups_per_flex) { 1055 ext4_group_t f = ext4_flex_group(sbi, group); 1056 1057 atomic_inc(&sbi->s_flex_groups[f].used_dirs); 1058 } 1059 } 1060 if (ext4_has_group_desc_csum(sb)) { 1061 ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh, 1062 EXT4_INODES_PER_GROUP(sb) / 8); 1063 ext4_group_desc_csum_set(sb, group, gdp); 1064 } 1065 ext4_unlock_group(sb, group); 1066 1067 BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata"); 1068 err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh); 1069 if (err) { 1070 ext4_std_error(sb, err); 1071 goto out; 1072 } 1073 1074 percpu_counter_dec(&sbi->s_freeinodes_counter); 1075 if (S_ISDIR(mode)) 1076 percpu_counter_inc(&sbi->s_dirs_counter); 1077 1078 if (sbi->s_log_groups_per_flex) { 1079 flex_group = ext4_flex_group(sbi, group); 1080 atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes); 1081 } 1082 1083 inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb); 1084 /* This is the optimal IO size (for stat), not the fs block size */ 1085 inode->i_blocks = 0; 1086 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode); 1087 ei->i_crtime = inode->i_mtime; 1088 1089 memset(ei->i_data, 0, sizeof(ei->i_data)); 1090 ei->i_dir_start_lookup = 0; 1091 ei->i_disksize = 0; 1092 1093 /* Don't inherit extent flag from directory, amongst others. */ 1094 ei->i_flags = 1095 ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED); 1096 ei->i_flags |= i_flags; 1097 ei->i_file_acl = 0; 1098 ei->i_dtime = 0; 1099 ei->i_block_group = group; 1100 ei->i_last_alloc_group = ~0; 1101 1102 ext4_set_inode_flags(inode); 1103 if (IS_DIRSYNC(inode)) 1104 ext4_handle_sync(handle); 1105 if (insert_inode_locked(inode) < 0) { 1106 /* 1107 * Likely a bitmap corruption causing inode to be allocated 1108 * twice. 1109 */ 1110 err = -EIO; 1111 ext4_error(sb, "failed to insert inode %lu: doubly allocated?", 1112 inode->i_ino); 1113 ext4_mark_group_bitmap_corrupted(sb, group, 1114 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 1115 goto out; 1116 } 1117 inode->i_generation = prandom_u32(); 1118 1119 /* Precompute checksum seed for inode metadata */ 1120 if (ext4_has_metadata_csum(sb)) { 1121 __u32 csum; 1122 __le32 inum = cpu_to_le32(inode->i_ino); 1123 __le32 gen = cpu_to_le32(inode->i_generation); 1124 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 1125 sizeof(inum)); 1126 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 1127 sizeof(gen)); 1128 } 1129 1130 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 1131 ext4_set_inode_state(inode, EXT4_STATE_NEW); 1132 1133 ei->i_extra_isize = sbi->s_want_extra_isize; 1134 ei->i_inline_off = 0; 1135 if (ext4_has_feature_inline_data(sb)) 1136 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 1137 ret = inode; 1138 err = dquot_alloc_inode(inode); 1139 if (err) 1140 goto fail_drop; 1141 1142 /* 1143 * Since the encryption xattr will always be unique, create it first so 1144 * that it's less likely to end up in an external xattr block and 1145 * prevent its deduplication. 1146 */ 1147 if (encrypt) { 1148 err = fscrypt_inherit_context(dir, inode, handle, true); 1149 if (err) 1150 goto fail_free_drop; 1151 } 1152 1153 if (!(ei->i_flags & EXT4_EA_INODE_FL)) { 1154 err = ext4_init_acl(handle, inode, dir); 1155 if (err) 1156 goto fail_free_drop; 1157 1158 err = ext4_init_security(handle, inode, dir, qstr); 1159 if (err) 1160 goto fail_free_drop; 1161 } 1162 1163 if (ext4_has_feature_extents(sb)) { 1164 /* set extent flag only for directory, file and normal symlink*/ 1165 if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) { 1166 ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS); 1167 ext4_ext_tree_init(handle, inode); 1168 } 1169 } 1170 1171 if (ext4_handle_valid(handle)) { 1172 ei->i_sync_tid = handle->h_transaction->t_tid; 1173 ei->i_datasync_tid = handle->h_transaction->t_tid; 1174 } 1175 1176 err = ext4_mark_inode_dirty(handle, inode); 1177 if (err) { 1178 ext4_std_error(sb, err); 1179 goto fail_free_drop; 1180 } 1181 1182 ext4_debug("allocating inode %lu\n", inode->i_ino); 1183 trace_ext4_allocate_inode(inode, dir, mode); 1184 brelse(inode_bitmap_bh); 1185 return ret; 1186 1187 fail_free_drop: 1188 dquot_free_inode(inode); 1189 fail_drop: 1190 clear_nlink(inode); 1191 unlock_new_inode(inode); 1192 out: 1193 dquot_drop(inode); 1194 inode->i_flags |= S_NOQUOTA; 1195 iput(inode); 1196 brelse(inode_bitmap_bh); 1197 return ERR_PTR(err); 1198 } 1199 1200 /* Verify that we are loading a valid orphan from disk */ 1201 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino) 1202 { 1203 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count); 1204 ext4_group_t block_group; 1205 int bit; 1206 struct buffer_head *bitmap_bh = NULL; 1207 struct inode *inode = NULL; 1208 int err = -EFSCORRUPTED; 1209 1210 if (ino < EXT4_FIRST_INO(sb) || ino > max_ino) 1211 goto bad_orphan; 1212 1213 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 1214 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 1215 bitmap_bh = ext4_read_inode_bitmap(sb, block_group); 1216 if (IS_ERR(bitmap_bh)) 1217 return ERR_CAST(bitmap_bh); 1218 1219 /* Having the inode bit set should be a 100% indicator that this 1220 * is a valid orphan (no e2fsck run on fs). Orphans also include 1221 * inodes that were being truncated, so we can't check i_nlink==0. 1222 */ 1223 if (!ext4_test_bit(bit, bitmap_bh->b_data)) 1224 goto bad_orphan; 1225 1226 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL); 1227 if (IS_ERR(inode)) { 1228 err = PTR_ERR(inode); 1229 ext4_set_errno(sb, -err); 1230 ext4_error(sb, "couldn't read orphan inode %lu (err %d)", 1231 ino, err); 1232 return inode; 1233 } 1234 1235 /* 1236 * If the orphans has i_nlinks > 0 then it should be able to 1237 * be truncated, otherwise it won't be removed from the orphan 1238 * list during processing and an infinite loop will result. 1239 * Similarly, it must not be a bad inode. 1240 */ 1241 if ((inode->i_nlink && !ext4_can_truncate(inode)) || 1242 is_bad_inode(inode)) 1243 goto bad_orphan; 1244 1245 if (NEXT_ORPHAN(inode) > max_ino) 1246 goto bad_orphan; 1247 brelse(bitmap_bh); 1248 return inode; 1249 1250 bad_orphan: 1251 ext4_error(sb, "bad orphan inode %lu", ino); 1252 if (bitmap_bh) 1253 printk(KERN_ERR "ext4_test_bit(bit=%d, block=%llu) = %d\n", 1254 bit, (unsigned long long)bitmap_bh->b_blocknr, 1255 ext4_test_bit(bit, bitmap_bh->b_data)); 1256 if (inode) { 1257 printk(KERN_ERR "is_bad_inode(inode)=%d\n", 1258 is_bad_inode(inode)); 1259 printk(KERN_ERR "NEXT_ORPHAN(inode)=%u\n", 1260 NEXT_ORPHAN(inode)); 1261 printk(KERN_ERR "max_ino=%lu\n", max_ino); 1262 printk(KERN_ERR "i_nlink=%u\n", inode->i_nlink); 1263 /* Avoid freeing blocks if we got a bad deleted inode */ 1264 if (inode->i_nlink == 0) 1265 inode->i_blocks = 0; 1266 iput(inode); 1267 } 1268 brelse(bitmap_bh); 1269 return ERR_PTR(err); 1270 } 1271 1272 unsigned long ext4_count_free_inodes(struct super_block *sb) 1273 { 1274 unsigned long desc_count; 1275 struct ext4_group_desc *gdp; 1276 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 1277 #ifdef EXT4FS_DEBUG 1278 struct ext4_super_block *es; 1279 unsigned long bitmap_count, x; 1280 struct buffer_head *bitmap_bh = NULL; 1281 1282 es = EXT4_SB(sb)->s_es; 1283 desc_count = 0; 1284 bitmap_count = 0; 1285 gdp = NULL; 1286 for (i = 0; i < ngroups; i++) { 1287 gdp = ext4_get_group_desc(sb, i, NULL); 1288 if (!gdp) 1289 continue; 1290 desc_count += ext4_free_inodes_count(sb, gdp); 1291 brelse(bitmap_bh); 1292 bitmap_bh = ext4_read_inode_bitmap(sb, i); 1293 if (IS_ERR(bitmap_bh)) { 1294 bitmap_bh = NULL; 1295 continue; 1296 } 1297 1298 x = ext4_count_free(bitmap_bh->b_data, 1299 EXT4_INODES_PER_GROUP(sb) / 8); 1300 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n", 1301 (unsigned long) i, ext4_free_inodes_count(sb, gdp), x); 1302 bitmap_count += x; 1303 } 1304 brelse(bitmap_bh); 1305 printk(KERN_DEBUG "ext4_count_free_inodes: " 1306 "stored = %u, computed = %lu, %lu\n", 1307 le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count); 1308 return desc_count; 1309 #else 1310 desc_count = 0; 1311 for (i = 0; i < ngroups; i++) { 1312 gdp = ext4_get_group_desc(sb, i, NULL); 1313 if (!gdp) 1314 continue; 1315 desc_count += ext4_free_inodes_count(sb, gdp); 1316 cond_resched(); 1317 } 1318 return desc_count; 1319 #endif 1320 } 1321 1322 /* Called at mount-time, super-block is locked */ 1323 unsigned long ext4_count_dirs(struct super_block * sb) 1324 { 1325 unsigned long count = 0; 1326 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 1327 1328 for (i = 0; i < ngroups; i++) { 1329 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 1330 if (!gdp) 1331 continue; 1332 count += ext4_used_dirs_count(sb, gdp); 1333 } 1334 return count; 1335 } 1336 1337 /* 1338 * Zeroes not yet zeroed inode table - just write zeroes through the whole 1339 * inode table. Must be called without any spinlock held. The only place 1340 * where it is called from on active part of filesystem is ext4lazyinit 1341 * thread, so we do not need any special locks, however we have to prevent 1342 * inode allocation from the current group, so we take alloc_sem lock, to 1343 * block ext4_new_inode() until we are finished. 1344 */ 1345 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group, 1346 int barrier) 1347 { 1348 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1349 struct ext4_sb_info *sbi = EXT4_SB(sb); 1350 struct ext4_group_desc *gdp = NULL; 1351 struct buffer_head *group_desc_bh; 1352 handle_t *handle; 1353 ext4_fsblk_t blk; 1354 int num, ret = 0, used_blks = 0; 1355 1356 /* This should not happen, but just to be sure check this */ 1357 if (sb_rdonly(sb)) { 1358 ret = 1; 1359 goto out; 1360 } 1361 1362 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 1363 if (!gdp) 1364 goto out; 1365 1366 /* 1367 * We do not need to lock this, because we are the only one 1368 * handling this flag. 1369 */ 1370 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)) 1371 goto out; 1372 1373 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1); 1374 if (IS_ERR(handle)) { 1375 ret = PTR_ERR(handle); 1376 goto out; 1377 } 1378 1379 down_write(&grp->alloc_sem); 1380 /* 1381 * If inode bitmap was already initialized there may be some 1382 * used inodes so we need to skip blocks with used inodes in 1383 * inode table. 1384 */ 1385 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) 1386 used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) - 1387 ext4_itable_unused_count(sb, gdp)), 1388 sbi->s_inodes_per_block); 1389 1390 if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group) || 1391 ((group == 0) && ((EXT4_INODES_PER_GROUP(sb) - 1392 ext4_itable_unused_count(sb, gdp)) < 1393 EXT4_FIRST_INO(sb)))) { 1394 ext4_error(sb, "Something is wrong with group %u: " 1395 "used itable blocks: %d; " 1396 "itable unused count: %u", 1397 group, used_blks, 1398 ext4_itable_unused_count(sb, gdp)); 1399 ret = 1; 1400 goto err_out; 1401 } 1402 1403 blk = ext4_inode_table(sb, gdp) + used_blks; 1404 num = sbi->s_itb_per_group - used_blks; 1405 1406 BUFFER_TRACE(group_desc_bh, "get_write_access"); 1407 ret = ext4_journal_get_write_access(handle, 1408 group_desc_bh); 1409 if (ret) 1410 goto err_out; 1411 1412 /* 1413 * Skip zeroout if the inode table is full. But we set the ZEROED 1414 * flag anyway, because obviously, when it is full it does not need 1415 * further zeroing. 1416 */ 1417 if (unlikely(num == 0)) 1418 goto skip_zeroout; 1419 1420 ext4_debug("going to zero out inode table in group %d\n", 1421 group); 1422 ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS); 1423 if (ret < 0) 1424 goto err_out; 1425 if (barrier) 1426 blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL); 1427 1428 skip_zeroout: 1429 ext4_lock_group(sb, group); 1430 gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED); 1431 ext4_group_desc_csum_set(sb, group, gdp); 1432 ext4_unlock_group(sb, group); 1433 1434 BUFFER_TRACE(group_desc_bh, 1435 "call ext4_handle_dirty_metadata"); 1436 ret = ext4_handle_dirty_metadata(handle, NULL, 1437 group_desc_bh); 1438 1439 err_out: 1440 up_write(&grp->alloc_sem); 1441 ext4_journal_stop(handle); 1442 out: 1443 return ret; 1444 } 1445