1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/ialloc.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * BSD ufs-inspired inode and directory allocation by 11 * Stephen Tweedie (sct@redhat.com), 1993 12 * Big-endian to little-endian byte-swapping/bitmaps by 13 * David S. Miller (davem@caip.rutgers.edu), 1995 14 */ 15 16 #include <linux/time.h> 17 #include <linux/fs.h> 18 #include <linux/stat.h> 19 #include <linux/string.h> 20 #include <linux/quotaops.h> 21 #include <linux/buffer_head.h> 22 #include <linux/random.h> 23 #include <linux/bitops.h> 24 #include <linux/blkdev.h> 25 #include <linux/cred.h> 26 27 #include <asm/byteorder.h> 28 29 #include "ext4.h" 30 #include "ext4_jbd2.h" 31 #include "xattr.h" 32 #include "acl.h" 33 34 #include <trace/events/ext4.h> 35 36 /* 37 * ialloc.c contains the inodes allocation and deallocation routines 38 */ 39 40 /* 41 * The free inodes are managed by bitmaps. A file system contains several 42 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap 43 * block for inodes, N blocks for the inode table and data blocks. 44 * 45 * The file system contains group descriptors which are located after the 46 * super block. Each descriptor contains the number of the bitmap block and 47 * the free blocks count in the block. 48 */ 49 50 /* 51 * To avoid calling the atomic setbit hundreds or thousands of times, we only 52 * need to use it within a single byte (to ensure we get endianness right). 53 * We can use memset for the rest of the bitmap as there are no other users. 54 */ 55 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap) 56 { 57 int i; 58 59 if (start_bit >= end_bit) 60 return; 61 62 ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit); 63 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++) 64 ext4_set_bit(i, bitmap); 65 if (i < end_bit) 66 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3); 67 } 68 69 void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate) 70 { 71 if (uptodate) { 72 set_buffer_uptodate(bh); 73 set_bitmap_uptodate(bh); 74 } 75 unlock_buffer(bh); 76 put_bh(bh); 77 } 78 79 static int ext4_validate_inode_bitmap(struct super_block *sb, 80 struct ext4_group_desc *desc, 81 ext4_group_t block_group, 82 struct buffer_head *bh) 83 { 84 ext4_fsblk_t blk; 85 struct ext4_group_info *grp; 86 87 if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) 88 return 0; 89 90 grp = ext4_get_group_info(sb, block_group); 91 92 if (buffer_verified(bh)) 93 return 0; 94 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) 95 return -EFSCORRUPTED; 96 97 ext4_lock_group(sb, block_group); 98 if (buffer_verified(bh)) 99 goto verified; 100 blk = ext4_inode_bitmap(sb, desc); 101 if (!ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh, 102 EXT4_INODES_PER_GROUP(sb) / 8) || 103 ext4_simulate_fail(sb, EXT4_SIM_IBITMAP_CRC)) { 104 ext4_unlock_group(sb, block_group); 105 ext4_error(sb, "Corrupt inode bitmap - block_group = %u, " 106 "inode_bitmap = %llu", block_group, blk); 107 ext4_mark_group_bitmap_corrupted(sb, block_group, 108 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 109 return -EFSBADCRC; 110 } 111 set_buffer_verified(bh); 112 verified: 113 ext4_unlock_group(sb, block_group); 114 return 0; 115 } 116 117 /* 118 * Read the inode allocation bitmap for a given block_group, reading 119 * into the specified slot in the superblock's bitmap cache. 120 * 121 * Return buffer_head of bitmap on success, or an ERR_PTR on error. 122 */ 123 static struct buffer_head * 124 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group) 125 { 126 struct ext4_group_desc *desc; 127 struct ext4_sb_info *sbi = EXT4_SB(sb); 128 struct buffer_head *bh = NULL; 129 ext4_fsblk_t bitmap_blk; 130 int err; 131 132 desc = ext4_get_group_desc(sb, block_group, NULL); 133 if (!desc) 134 return ERR_PTR(-EFSCORRUPTED); 135 136 bitmap_blk = ext4_inode_bitmap(sb, desc); 137 if ((bitmap_blk <= le32_to_cpu(sbi->s_es->s_first_data_block)) || 138 (bitmap_blk >= ext4_blocks_count(sbi->s_es))) { 139 ext4_error(sb, "Invalid inode bitmap blk %llu in " 140 "block_group %u", bitmap_blk, block_group); 141 ext4_mark_group_bitmap_corrupted(sb, block_group, 142 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 143 return ERR_PTR(-EFSCORRUPTED); 144 } 145 bh = sb_getblk(sb, bitmap_blk); 146 if (unlikely(!bh)) { 147 ext4_warning(sb, "Cannot read inode bitmap - " 148 "block_group = %u, inode_bitmap = %llu", 149 block_group, bitmap_blk); 150 return ERR_PTR(-ENOMEM); 151 } 152 if (bitmap_uptodate(bh)) 153 goto verify; 154 155 lock_buffer(bh); 156 if (bitmap_uptodate(bh)) { 157 unlock_buffer(bh); 158 goto verify; 159 } 160 161 ext4_lock_group(sb, block_group); 162 if (ext4_has_group_desc_csum(sb) && 163 (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) { 164 if (block_group == 0) { 165 ext4_unlock_group(sb, block_group); 166 unlock_buffer(bh); 167 ext4_error(sb, "Inode bitmap for bg 0 marked " 168 "uninitialized"); 169 err = -EFSCORRUPTED; 170 goto out; 171 } 172 memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8); 173 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), 174 sb->s_blocksize * 8, bh->b_data); 175 set_bitmap_uptodate(bh); 176 set_buffer_uptodate(bh); 177 set_buffer_verified(bh); 178 ext4_unlock_group(sb, block_group); 179 unlock_buffer(bh); 180 return bh; 181 } 182 ext4_unlock_group(sb, block_group); 183 184 if (buffer_uptodate(bh)) { 185 /* 186 * if not uninit if bh is uptodate, 187 * bitmap is also uptodate 188 */ 189 set_bitmap_uptodate(bh); 190 unlock_buffer(bh); 191 goto verify; 192 } 193 /* 194 * submit the buffer_head for reading 195 */ 196 trace_ext4_load_inode_bitmap(sb, block_group); 197 ext4_read_bh(bh, REQ_META | REQ_PRIO, ext4_end_bitmap_read); 198 ext4_simulate_fail_bh(sb, bh, EXT4_SIM_IBITMAP_EIO); 199 if (!buffer_uptodate(bh)) { 200 put_bh(bh); 201 ext4_error_err(sb, EIO, "Cannot read inode bitmap - " 202 "block_group = %u, inode_bitmap = %llu", 203 block_group, bitmap_blk); 204 ext4_mark_group_bitmap_corrupted(sb, block_group, 205 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 206 return ERR_PTR(-EIO); 207 } 208 209 verify: 210 err = ext4_validate_inode_bitmap(sb, desc, block_group, bh); 211 if (err) 212 goto out; 213 return bh; 214 out: 215 put_bh(bh); 216 return ERR_PTR(err); 217 } 218 219 /* 220 * NOTE! When we get the inode, we're the only people 221 * that have access to it, and as such there are no 222 * race conditions we have to worry about. The inode 223 * is not on the hash-lists, and it cannot be reached 224 * through the filesystem because the directory entry 225 * has been deleted earlier. 226 * 227 * HOWEVER: we must make sure that we get no aliases, 228 * which means that we have to call "clear_inode()" 229 * _before_ we mark the inode not in use in the inode 230 * bitmaps. Otherwise a newly created file might use 231 * the same inode number (not actually the same pointer 232 * though), and then we'd have two inodes sharing the 233 * same inode number and space on the harddisk. 234 */ 235 void ext4_free_inode(handle_t *handle, struct inode *inode) 236 { 237 struct super_block *sb = inode->i_sb; 238 int is_directory; 239 unsigned long ino; 240 struct buffer_head *bitmap_bh = NULL; 241 struct buffer_head *bh2; 242 ext4_group_t block_group; 243 unsigned long bit; 244 struct ext4_group_desc *gdp; 245 struct ext4_super_block *es; 246 struct ext4_sb_info *sbi; 247 int fatal = 0, err, count, cleared; 248 struct ext4_group_info *grp; 249 250 if (!sb) { 251 printk(KERN_ERR "EXT4-fs: %s:%d: inode on " 252 "nonexistent device\n", __func__, __LINE__); 253 return; 254 } 255 if (atomic_read(&inode->i_count) > 1) { 256 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d", 257 __func__, __LINE__, inode->i_ino, 258 atomic_read(&inode->i_count)); 259 return; 260 } 261 if (inode->i_nlink) { 262 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n", 263 __func__, __LINE__, inode->i_ino, inode->i_nlink); 264 return; 265 } 266 sbi = EXT4_SB(sb); 267 268 ino = inode->i_ino; 269 ext4_debug("freeing inode %lu\n", ino); 270 trace_ext4_free_inode(inode); 271 272 dquot_initialize(inode); 273 dquot_free_inode(inode); 274 275 is_directory = S_ISDIR(inode->i_mode); 276 277 /* Do this BEFORE marking the inode not in use or returning an error */ 278 ext4_clear_inode(inode); 279 280 es = sbi->s_es; 281 if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) { 282 ext4_error(sb, "reserved or nonexistent inode %lu", ino); 283 goto error_return; 284 } 285 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 286 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 287 bitmap_bh = ext4_read_inode_bitmap(sb, block_group); 288 /* Don't bother if the inode bitmap is corrupt. */ 289 if (IS_ERR(bitmap_bh)) { 290 fatal = PTR_ERR(bitmap_bh); 291 bitmap_bh = NULL; 292 goto error_return; 293 } 294 if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) { 295 grp = ext4_get_group_info(sb, block_group); 296 if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp))) { 297 fatal = -EFSCORRUPTED; 298 goto error_return; 299 } 300 } 301 302 BUFFER_TRACE(bitmap_bh, "get_write_access"); 303 fatal = ext4_journal_get_write_access(handle, bitmap_bh); 304 if (fatal) 305 goto error_return; 306 307 fatal = -ESRCH; 308 gdp = ext4_get_group_desc(sb, block_group, &bh2); 309 if (gdp) { 310 BUFFER_TRACE(bh2, "get_write_access"); 311 fatal = ext4_journal_get_write_access(handle, bh2); 312 } 313 ext4_lock_group(sb, block_group); 314 cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data); 315 if (fatal || !cleared) { 316 ext4_unlock_group(sb, block_group); 317 goto out; 318 } 319 320 count = ext4_free_inodes_count(sb, gdp) + 1; 321 ext4_free_inodes_set(sb, gdp, count); 322 if (is_directory) { 323 count = ext4_used_dirs_count(sb, gdp) - 1; 324 ext4_used_dirs_set(sb, gdp, count); 325 percpu_counter_dec(&sbi->s_dirs_counter); 326 } 327 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh, 328 EXT4_INODES_PER_GROUP(sb) / 8); 329 ext4_group_desc_csum_set(sb, block_group, gdp); 330 ext4_unlock_group(sb, block_group); 331 332 percpu_counter_inc(&sbi->s_freeinodes_counter); 333 if (sbi->s_log_groups_per_flex) { 334 struct flex_groups *fg; 335 336 fg = sbi_array_rcu_deref(sbi, s_flex_groups, 337 ext4_flex_group(sbi, block_group)); 338 atomic_inc(&fg->free_inodes); 339 if (is_directory) 340 atomic_dec(&fg->used_dirs); 341 } 342 BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata"); 343 fatal = ext4_handle_dirty_metadata(handle, NULL, bh2); 344 out: 345 if (cleared) { 346 BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata"); 347 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 348 if (!fatal) 349 fatal = err; 350 } else { 351 ext4_error(sb, "bit already cleared for inode %lu", ino); 352 ext4_mark_group_bitmap_corrupted(sb, block_group, 353 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 354 } 355 356 error_return: 357 brelse(bitmap_bh); 358 ext4_std_error(sb, fatal); 359 } 360 361 struct orlov_stats { 362 __u64 free_clusters; 363 __u32 free_inodes; 364 __u32 used_dirs; 365 }; 366 367 /* 368 * Helper function for Orlov's allocator; returns critical information 369 * for a particular block group or flex_bg. If flex_size is 1, then g 370 * is a block group number; otherwise it is flex_bg number. 371 */ 372 static void get_orlov_stats(struct super_block *sb, ext4_group_t g, 373 int flex_size, struct orlov_stats *stats) 374 { 375 struct ext4_group_desc *desc; 376 377 if (flex_size > 1) { 378 struct flex_groups *fg = sbi_array_rcu_deref(EXT4_SB(sb), 379 s_flex_groups, g); 380 stats->free_inodes = atomic_read(&fg->free_inodes); 381 stats->free_clusters = atomic64_read(&fg->free_clusters); 382 stats->used_dirs = atomic_read(&fg->used_dirs); 383 return; 384 } 385 386 desc = ext4_get_group_desc(sb, g, NULL); 387 if (desc) { 388 stats->free_inodes = ext4_free_inodes_count(sb, desc); 389 stats->free_clusters = ext4_free_group_clusters(sb, desc); 390 stats->used_dirs = ext4_used_dirs_count(sb, desc); 391 } else { 392 stats->free_inodes = 0; 393 stats->free_clusters = 0; 394 stats->used_dirs = 0; 395 } 396 } 397 398 /* 399 * Orlov's allocator for directories. 400 * 401 * We always try to spread first-level directories. 402 * 403 * If there are blockgroups with both free inodes and free blocks counts 404 * not worse than average we return one with smallest directory count. 405 * Otherwise we simply return a random group. 406 * 407 * For the rest rules look so: 408 * 409 * It's OK to put directory into a group unless 410 * it has too many directories already (max_dirs) or 411 * it has too few free inodes left (min_inodes) or 412 * it has too few free blocks left (min_blocks) or 413 * Parent's group is preferred, if it doesn't satisfy these 414 * conditions we search cyclically through the rest. If none 415 * of the groups look good we just look for a group with more 416 * free inodes than average (starting at parent's group). 417 */ 418 419 static int find_group_orlov(struct super_block *sb, struct inode *parent, 420 ext4_group_t *group, umode_t mode, 421 const struct qstr *qstr) 422 { 423 ext4_group_t parent_group = EXT4_I(parent)->i_block_group; 424 struct ext4_sb_info *sbi = EXT4_SB(sb); 425 ext4_group_t real_ngroups = ext4_get_groups_count(sb); 426 int inodes_per_group = EXT4_INODES_PER_GROUP(sb); 427 unsigned int freei, avefreei, grp_free; 428 ext4_fsblk_t freeb, avefreec; 429 unsigned int ndirs; 430 int max_dirs, min_inodes; 431 ext4_grpblk_t min_clusters; 432 ext4_group_t i, grp, g, ngroups; 433 struct ext4_group_desc *desc; 434 struct orlov_stats stats; 435 int flex_size = ext4_flex_bg_size(sbi); 436 struct dx_hash_info hinfo; 437 438 ngroups = real_ngroups; 439 if (flex_size > 1) { 440 ngroups = (real_ngroups + flex_size - 1) >> 441 sbi->s_log_groups_per_flex; 442 parent_group >>= sbi->s_log_groups_per_flex; 443 } 444 445 freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter); 446 avefreei = freei / ngroups; 447 freeb = EXT4_C2B(sbi, 448 percpu_counter_read_positive(&sbi->s_freeclusters_counter)); 449 avefreec = freeb; 450 do_div(avefreec, ngroups); 451 ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter); 452 453 if (S_ISDIR(mode) && 454 ((parent == d_inode(sb->s_root)) || 455 (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) { 456 int best_ndir = inodes_per_group; 457 int ret = -1; 458 459 if (qstr) { 460 hinfo.hash_version = DX_HASH_HALF_MD4; 461 hinfo.seed = sbi->s_hash_seed; 462 ext4fs_dirhash(parent, qstr->name, qstr->len, &hinfo); 463 grp = hinfo.hash; 464 } else 465 grp = prandom_u32(); 466 parent_group = (unsigned)grp % ngroups; 467 for (i = 0; i < ngroups; i++) { 468 g = (parent_group + i) % ngroups; 469 get_orlov_stats(sb, g, flex_size, &stats); 470 if (!stats.free_inodes) 471 continue; 472 if (stats.used_dirs >= best_ndir) 473 continue; 474 if (stats.free_inodes < avefreei) 475 continue; 476 if (stats.free_clusters < avefreec) 477 continue; 478 grp = g; 479 ret = 0; 480 best_ndir = stats.used_dirs; 481 } 482 if (ret) 483 goto fallback; 484 found_flex_bg: 485 if (flex_size == 1) { 486 *group = grp; 487 return 0; 488 } 489 490 /* 491 * We pack inodes at the beginning of the flexgroup's 492 * inode tables. Block allocation decisions will do 493 * something similar, although regular files will 494 * start at 2nd block group of the flexgroup. See 495 * ext4_ext_find_goal() and ext4_find_near(). 496 */ 497 grp *= flex_size; 498 for (i = 0; i < flex_size; i++) { 499 if (grp+i >= real_ngroups) 500 break; 501 desc = ext4_get_group_desc(sb, grp+i, NULL); 502 if (desc && ext4_free_inodes_count(sb, desc)) { 503 *group = grp+i; 504 return 0; 505 } 506 } 507 goto fallback; 508 } 509 510 max_dirs = ndirs / ngroups + inodes_per_group / 16; 511 min_inodes = avefreei - inodes_per_group*flex_size / 4; 512 if (min_inodes < 1) 513 min_inodes = 1; 514 min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4; 515 516 /* 517 * Start looking in the flex group where we last allocated an 518 * inode for this parent directory 519 */ 520 if (EXT4_I(parent)->i_last_alloc_group != ~0) { 521 parent_group = EXT4_I(parent)->i_last_alloc_group; 522 if (flex_size > 1) 523 parent_group >>= sbi->s_log_groups_per_flex; 524 } 525 526 for (i = 0; i < ngroups; i++) { 527 grp = (parent_group + i) % ngroups; 528 get_orlov_stats(sb, grp, flex_size, &stats); 529 if (stats.used_dirs >= max_dirs) 530 continue; 531 if (stats.free_inodes < min_inodes) 532 continue; 533 if (stats.free_clusters < min_clusters) 534 continue; 535 goto found_flex_bg; 536 } 537 538 fallback: 539 ngroups = real_ngroups; 540 avefreei = freei / ngroups; 541 fallback_retry: 542 parent_group = EXT4_I(parent)->i_block_group; 543 for (i = 0; i < ngroups; i++) { 544 grp = (parent_group + i) % ngroups; 545 desc = ext4_get_group_desc(sb, grp, NULL); 546 if (desc) { 547 grp_free = ext4_free_inodes_count(sb, desc); 548 if (grp_free && grp_free >= avefreei) { 549 *group = grp; 550 return 0; 551 } 552 } 553 } 554 555 if (avefreei) { 556 /* 557 * The free-inodes counter is approximate, and for really small 558 * filesystems the above test can fail to find any blockgroups 559 */ 560 avefreei = 0; 561 goto fallback_retry; 562 } 563 564 return -1; 565 } 566 567 static int find_group_other(struct super_block *sb, struct inode *parent, 568 ext4_group_t *group, umode_t mode) 569 { 570 ext4_group_t parent_group = EXT4_I(parent)->i_block_group; 571 ext4_group_t i, last, ngroups = ext4_get_groups_count(sb); 572 struct ext4_group_desc *desc; 573 int flex_size = ext4_flex_bg_size(EXT4_SB(sb)); 574 575 /* 576 * Try to place the inode is the same flex group as its 577 * parent. If we can't find space, use the Orlov algorithm to 578 * find another flex group, and store that information in the 579 * parent directory's inode information so that use that flex 580 * group for future allocations. 581 */ 582 if (flex_size > 1) { 583 int retry = 0; 584 585 try_again: 586 parent_group &= ~(flex_size-1); 587 last = parent_group + flex_size; 588 if (last > ngroups) 589 last = ngroups; 590 for (i = parent_group; i < last; i++) { 591 desc = ext4_get_group_desc(sb, i, NULL); 592 if (desc && ext4_free_inodes_count(sb, desc)) { 593 *group = i; 594 return 0; 595 } 596 } 597 if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) { 598 retry = 1; 599 parent_group = EXT4_I(parent)->i_last_alloc_group; 600 goto try_again; 601 } 602 /* 603 * If this didn't work, use the Orlov search algorithm 604 * to find a new flex group; we pass in the mode to 605 * avoid the topdir algorithms. 606 */ 607 *group = parent_group + flex_size; 608 if (*group > ngroups) 609 *group = 0; 610 return find_group_orlov(sb, parent, group, mode, NULL); 611 } 612 613 /* 614 * Try to place the inode in its parent directory 615 */ 616 *group = parent_group; 617 desc = ext4_get_group_desc(sb, *group, NULL); 618 if (desc && ext4_free_inodes_count(sb, desc) && 619 ext4_free_group_clusters(sb, desc)) 620 return 0; 621 622 /* 623 * We're going to place this inode in a different blockgroup from its 624 * parent. We want to cause files in a common directory to all land in 625 * the same blockgroup. But we want files which are in a different 626 * directory which shares a blockgroup with our parent to land in a 627 * different blockgroup. 628 * 629 * So add our directory's i_ino into the starting point for the hash. 630 */ 631 *group = (*group + parent->i_ino) % ngroups; 632 633 /* 634 * Use a quadratic hash to find a group with a free inode and some free 635 * blocks. 636 */ 637 for (i = 1; i < ngroups; i <<= 1) { 638 *group += i; 639 if (*group >= ngroups) 640 *group -= ngroups; 641 desc = ext4_get_group_desc(sb, *group, NULL); 642 if (desc && ext4_free_inodes_count(sb, desc) && 643 ext4_free_group_clusters(sb, desc)) 644 return 0; 645 } 646 647 /* 648 * That failed: try linear search for a free inode, even if that group 649 * has no free blocks. 650 */ 651 *group = parent_group; 652 for (i = 0; i < ngroups; i++) { 653 if (++*group >= ngroups) 654 *group = 0; 655 desc = ext4_get_group_desc(sb, *group, NULL); 656 if (desc && ext4_free_inodes_count(sb, desc)) 657 return 0; 658 } 659 660 return -1; 661 } 662 663 /* 664 * In no journal mode, if an inode has recently been deleted, we want 665 * to avoid reusing it until we're reasonably sure the inode table 666 * block has been written back to disk. (Yes, these values are 667 * somewhat arbitrary...) 668 */ 669 #define RECENTCY_MIN 60 670 #define RECENTCY_DIRTY 300 671 672 static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino) 673 { 674 struct ext4_group_desc *gdp; 675 struct ext4_inode *raw_inode; 676 struct buffer_head *bh; 677 int inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 678 int offset, ret = 0; 679 int recentcy = RECENTCY_MIN; 680 u32 dtime, now; 681 682 gdp = ext4_get_group_desc(sb, group, NULL); 683 if (unlikely(!gdp)) 684 return 0; 685 686 bh = sb_find_get_block(sb, ext4_inode_table(sb, gdp) + 687 (ino / inodes_per_block)); 688 if (!bh || !buffer_uptodate(bh)) 689 /* 690 * If the block is not in the buffer cache, then it 691 * must have been written out. 692 */ 693 goto out; 694 695 offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb); 696 raw_inode = (struct ext4_inode *) (bh->b_data + offset); 697 698 /* i_dtime is only 32 bits on disk, but we only care about relative 699 * times in the range of a few minutes (i.e. long enough to sync a 700 * recently-deleted inode to disk), so using the low 32 bits of the 701 * clock (a 68 year range) is enough, see time_before32() */ 702 dtime = le32_to_cpu(raw_inode->i_dtime); 703 now = ktime_get_real_seconds(); 704 if (buffer_dirty(bh)) 705 recentcy += RECENTCY_DIRTY; 706 707 if (dtime && time_before32(dtime, now) && 708 time_before32(now, dtime + recentcy)) 709 ret = 1; 710 out: 711 brelse(bh); 712 return ret; 713 } 714 715 static int find_inode_bit(struct super_block *sb, ext4_group_t group, 716 struct buffer_head *bitmap, unsigned long *ino) 717 { 718 bool check_recently_deleted = EXT4_SB(sb)->s_journal == NULL; 719 unsigned long recently_deleted_ino = EXT4_INODES_PER_GROUP(sb); 720 721 next: 722 *ino = ext4_find_next_zero_bit((unsigned long *) 723 bitmap->b_data, 724 EXT4_INODES_PER_GROUP(sb), *ino); 725 if (*ino >= EXT4_INODES_PER_GROUP(sb)) 726 goto not_found; 727 728 if (check_recently_deleted && recently_deleted(sb, group, *ino)) { 729 recently_deleted_ino = *ino; 730 *ino = *ino + 1; 731 if (*ino < EXT4_INODES_PER_GROUP(sb)) 732 goto next; 733 goto not_found; 734 } 735 return 1; 736 not_found: 737 if (recently_deleted_ino >= EXT4_INODES_PER_GROUP(sb)) 738 return 0; 739 /* 740 * Not reusing recently deleted inodes is mostly a preference. We don't 741 * want to report ENOSPC or skew allocation patterns because of that. 742 * So return even recently deleted inode if we could find better in the 743 * given range. 744 */ 745 *ino = recently_deleted_ino; 746 return 1; 747 } 748 749 int ext4_mark_inode_used(struct super_block *sb, int ino) 750 { 751 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count); 752 struct buffer_head *inode_bitmap_bh = NULL, *group_desc_bh = NULL; 753 struct ext4_group_desc *gdp; 754 ext4_group_t group; 755 int bit; 756 int err = -EFSCORRUPTED; 757 758 if (ino < EXT4_FIRST_INO(sb) || ino > max_ino) 759 goto out; 760 761 group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 762 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 763 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group); 764 if (IS_ERR(inode_bitmap_bh)) 765 return PTR_ERR(inode_bitmap_bh); 766 767 if (ext4_test_bit(bit, inode_bitmap_bh->b_data)) { 768 err = 0; 769 goto out; 770 } 771 772 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 773 if (!gdp || !group_desc_bh) { 774 err = -EINVAL; 775 goto out; 776 } 777 778 ext4_set_bit(bit, inode_bitmap_bh->b_data); 779 780 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata"); 781 err = ext4_handle_dirty_metadata(NULL, NULL, inode_bitmap_bh); 782 if (err) { 783 ext4_std_error(sb, err); 784 goto out; 785 } 786 err = sync_dirty_buffer(inode_bitmap_bh); 787 if (err) { 788 ext4_std_error(sb, err); 789 goto out; 790 } 791 792 /* We may have to initialize the block bitmap if it isn't already */ 793 if (ext4_has_group_desc_csum(sb) && 794 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 795 struct buffer_head *block_bitmap_bh; 796 797 block_bitmap_bh = ext4_read_block_bitmap(sb, group); 798 if (IS_ERR(block_bitmap_bh)) { 799 err = PTR_ERR(block_bitmap_bh); 800 goto out; 801 } 802 803 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap"); 804 err = ext4_handle_dirty_metadata(NULL, NULL, block_bitmap_bh); 805 sync_dirty_buffer(block_bitmap_bh); 806 807 /* recheck and clear flag under lock if we still need to */ 808 ext4_lock_group(sb, group); 809 if (ext4_has_group_desc_csum(sb) && 810 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 811 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 812 ext4_free_group_clusters_set(sb, gdp, 813 ext4_free_clusters_after_init(sb, group, gdp)); 814 ext4_block_bitmap_csum_set(sb, group, gdp, 815 block_bitmap_bh); 816 ext4_group_desc_csum_set(sb, group, gdp); 817 } 818 ext4_unlock_group(sb, group); 819 brelse(block_bitmap_bh); 820 821 if (err) { 822 ext4_std_error(sb, err); 823 goto out; 824 } 825 } 826 827 /* Update the relevant bg descriptor fields */ 828 if (ext4_has_group_desc_csum(sb)) { 829 int free; 830 831 ext4_lock_group(sb, group); /* while we modify the bg desc */ 832 free = EXT4_INODES_PER_GROUP(sb) - 833 ext4_itable_unused_count(sb, gdp); 834 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) { 835 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT); 836 free = 0; 837 } 838 839 /* 840 * Check the relative inode number against the last used 841 * relative inode number in this group. if it is greater 842 * we need to update the bg_itable_unused count 843 */ 844 if (bit >= free) 845 ext4_itable_unused_set(sb, gdp, 846 (EXT4_INODES_PER_GROUP(sb) - bit - 1)); 847 } else { 848 ext4_lock_group(sb, group); 849 } 850 851 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1); 852 if (ext4_has_group_desc_csum(sb)) { 853 ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh, 854 EXT4_INODES_PER_GROUP(sb) / 8); 855 ext4_group_desc_csum_set(sb, group, gdp); 856 } 857 858 ext4_unlock_group(sb, group); 859 err = ext4_handle_dirty_metadata(NULL, NULL, group_desc_bh); 860 sync_dirty_buffer(group_desc_bh); 861 out: 862 return err; 863 } 864 865 static int ext4_xattr_credits_for_new_inode(struct inode *dir, mode_t mode, 866 bool encrypt) 867 { 868 struct super_block *sb = dir->i_sb; 869 int nblocks = 0; 870 #ifdef CONFIG_EXT4_FS_POSIX_ACL 871 struct posix_acl *p = get_acl(dir, ACL_TYPE_DEFAULT); 872 873 if (IS_ERR(p)) 874 return PTR_ERR(p); 875 if (p) { 876 int acl_size = p->a_count * sizeof(ext4_acl_entry); 877 878 nblocks += (S_ISDIR(mode) ? 2 : 1) * 879 __ext4_xattr_set_credits(sb, NULL /* inode */, 880 NULL /* block_bh */, acl_size, 881 true /* is_create */); 882 posix_acl_release(p); 883 } 884 #endif 885 886 #ifdef CONFIG_SECURITY 887 { 888 int num_security_xattrs = 1; 889 890 #ifdef CONFIG_INTEGRITY 891 num_security_xattrs++; 892 #endif 893 /* 894 * We assume that security xattrs are never more than 1k. 895 * In practice they are under 128 bytes. 896 */ 897 nblocks += num_security_xattrs * 898 __ext4_xattr_set_credits(sb, NULL /* inode */, 899 NULL /* block_bh */, 1024, 900 true /* is_create */); 901 } 902 #endif 903 if (encrypt) 904 nblocks += __ext4_xattr_set_credits(sb, 905 NULL /* inode */, 906 NULL /* block_bh */, 907 FSCRYPT_SET_CONTEXT_MAX_SIZE, 908 true /* is_create */); 909 return nblocks; 910 } 911 912 /* 913 * There are two policies for allocating an inode. If the new inode is 914 * a directory, then a forward search is made for a block group with both 915 * free space and a low directory-to-inode ratio; if that fails, then of 916 * the groups with above-average free space, that group with the fewest 917 * directories already is chosen. 918 * 919 * For other inodes, search forward from the parent directory's block 920 * group to find a free inode. 921 */ 922 struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir, 923 umode_t mode, const struct qstr *qstr, 924 __u32 goal, uid_t *owner, __u32 i_flags, 925 int handle_type, unsigned int line_no, 926 int nblocks) 927 { 928 struct super_block *sb; 929 struct buffer_head *inode_bitmap_bh = NULL; 930 struct buffer_head *group_desc_bh; 931 ext4_group_t ngroups, group = 0; 932 unsigned long ino = 0; 933 struct inode *inode; 934 struct ext4_group_desc *gdp = NULL; 935 struct ext4_inode_info *ei; 936 struct ext4_sb_info *sbi; 937 int ret2, err; 938 struct inode *ret; 939 ext4_group_t i; 940 ext4_group_t flex_group; 941 struct ext4_group_info *grp = NULL; 942 bool encrypt = false; 943 944 /* Cannot create files in a deleted directory */ 945 if (!dir || !dir->i_nlink) 946 return ERR_PTR(-EPERM); 947 948 sb = dir->i_sb; 949 sbi = EXT4_SB(sb); 950 951 if (unlikely(ext4_forced_shutdown(sbi))) 952 return ERR_PTR(-EIO); 953 954 ngroups = ext4_get_groups_count(sb); 955 trace_ext4_request_inode(dir, mode); 956 inode = new_inode(sb); 957 if (!inode) 958 return ERR_PTR(-ENOMEM); 959 ei = EXT4_I(inode); 960 961 /* 962 * Initialize owners and quota early so that we don't have to account 963 * for quota initialization worst case in standard inode creating 964 * transaction 965 */ 966 if (owner) { 967 inode->i_mode = mode; 968 i_uid_write(inode, owner[0]); 969 i_gid_write(inode, owner[1]); 970 } else if (test_opt(sb, GRPID)) { 971 inode->i_mode = mode; 972 inode->i_uid = current_fsuid(); 973 inode->i_gid = dir->i_gid; 974 } else 975 inode_init_owner(inode, dir, mode); 976 977 if (ext4_has_feature_project(sb) && 978 ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT)) 979 ei->i_projid = EXT4_I(dir)->i_projid; 980 else 981 ei->i_projid = make_kprojid(&init_user_ns, EXT4_DEF_PROJID); 982 983 if (!(i_flags & EXT4_EA_INODE_FL)) { 984 err = fscrypt_prepare_new_inode(dir, inode, &encrypt); 985 if (err) 986 goto out; 987 } 988 989 err = dquot_initialize(inode); 990 if (err) 991 goto out; 992 993 if (!handle && sbi->s_journal && !(i_flags & EXT4_EA_INODE_FL)) { 994 ret2 = ext4_xattr_credits_for_new_inode(dir, mode, encrypt); 995 if (ret2 < 0) { 996 err = ret2; 997 goto out; 998 } 999 nblocks += ret2; 1000 } 1001 1002 if (!goal) 1003 goal = sbi->s_inode_goal; 1004 1005 if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) { 1006 group = (goal - 1) / EXT4_INODES_PER_GROUP(sb); 1007 ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb); 1008 ret2 = 0; 1009 goto got_group; 1010 } 1011 1012 if (S_ISDIR(mode)) 1013 ret2 = find_group_orlov(sb, dir, &group, mode, qstr); 1014 else 1015 ret2 = find_group_other(sb, dir, &group, mode); 1016 1017 got_group: 1018 EXT4_I(dir)->i_last_alloc_group = group; 1019 err = -ENOSPC; 1020 if (ret2 == -1) 1021 goto out; 1022 1023 /* 1024 * Normally we will only go through one pass of this loop, 1025 * unless we get unlucky and it turns out the group we selected 1026 * had its last inode grabbed by someone else. 1027 */ 1028 for (i = 0; i < ngroups; i++, ino = 0) { 1029 err = -EIO; 1030 1031 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 1032 if (!gdp) 1033 goto out; 1034 1035 /* 1036 * Check free inodes count before loading bitmap. 1037 */ 1038 if (ext4_free_inodes_count(sb, gdp) == 0) 1039 goto next_group; 1040 1041 if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) { 1042 grp = ext4_get_group_info(sb, group); 1043 /* 1044 * Skip groups with already-known suspicious inode 1045 * tables 1046 */ 1047 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) 1048 goto next_group; 1049 } 1050 1051 brelse(inode_bitmap_bh); 1052 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group); 1053 /* Skip groups with suspicious inode tables */ 1054 if (((!(sbi->s_mount_state & EXT4_FC_REPLAY)) 1055 && EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) || 1056 IS_ERR(inode_bitmap_bh)) { 1057 inode_bitmap_bh = NULL; 1058 goto next_group; 1059 } 1060 1061 repeat_in_this_group: 1062 ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino); 1063 if (!ret2) 1064 goto next_group; 1065 1066 if (group == 0 && (ino + 1) < EXT4_FIRST_INO(sb)) { 1067 ext4_error(sb, "reserved inode found cleared - " 1068 "inode=%lu", ino + 1); 1069 ext4_mark_group_bitmap_corrupted(sb, group, 1070 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 1071 goto next_group; 1072 } 1073 1074 if ((!(sbi->s_mount_state & EXT4_FC_REPLAY)) && !handle) { 1075 BUG_ON(nblocks <= 0); 1076 handle = __ext4_journal_start_sb(dir->i_sb, line_no, 1077 handle_type, nblocks, 0, 1078 ext4_trans_default_revoke_credits(sb)); 1079 if (IS_ERR(handle)) { 1080 err = PTR_ERR(handle); 1081 ext4_std_error(sb, err); 1082 goto out; 1083 } 1084 } 1085 BUFFER_TRACE(inode_bitmap_bh, "get_write_access"); 1086 err = ext4_journal_get_write_access(handle, inode_bitmap_bh); 1087 if (err) { 1088 ext4_std_error(sb, err); 1089 goto out; 1090 } 1091 ext4_lock_group(sb, group); 1092 ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data); 1093 if (ret2) { 1094 /* Someone already took the bit. Repeat the search 1095 * with lock held. 1096 */ 1097 ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino); 1098 if (ret2) { 1099 ext4_set_bit(ino, inode_bitmap_bh->b_data); 1100 ret2 = 0; 1101 } else { 1102 ret2 = 1; /* we didn't grab the inode */ 1103 } 1104 } 1105 ext4_unlock_group(sb, group); 1106 ino++; /* the inode bitmap is zero-based */ 1107 if (!ret2) 1108 goto got; /* we grabbed the inode! */ 1109 1110 if (ino < EXT4_INODES_PER_GROUP(sb)) 1111 goto repeat_in_this_group; 1112 next_group: 1113 if (++group == ngroups) 1114 group = 0; 1115 } 1116 err = -ENOSPC; 1117 goto out; 1118 1119 got: 1120 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata"); 1121 err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh); 1122 if (err) { 1123 ext4_std_error(sb, err); 1124 goto out; 1125 } 1126 1127 BUFFER_TRACE(group_desc_bh, "get_write_access"); 1128 err = ext4_journal_get_write_access(handle, group_desc_bh); 1129 if (err) { 1130 ext4_std_error(sb, err); 1131 goto out; 1132 } 1133 1134 /* We may have to initialize the block bitmap if it isn't already */ 1135 if (ext4_has_group_desc_csum(sb) && 1136 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 1137 struct buffer_head *block_bitmap_bh; 1138 1139 block_bitmap_bh = ext4_read_block_bitmap(sb, group); 1140 if (IS_ERR(block_bitmap_bh)) { 1141 err = PTR_ERR(block_bitmap_bh); 1142 goto out; 1143 } 1144 BUFFER_TRACE(block_bitmap_bh, "get block bitmap access"); 1145 err = ext4_journal_get_write_access(handle, block_bitmap_bh); 1146 if (err) { 1147 brelse(block_bitmap_bh); 1148 ext4_std_error(sb, err); 1149 goto out; 1150 } 1151 1152 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap"); 1153 err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh); 1154 1155 /* recheck and clear flag under lock if we still need to */ 1156 ext4_lock_group(sb, group); 1157 if (ext4_has_group_desc_csum(sb) && 1158 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 1159 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 1160 ext4_free_group_clusters_set(sb, gdp, 1161 ext4_free_clusters_after_init(sb, group, gdp)); 1162 ext4_block_bitmap_csum_set(sb, group, gdp, 1163 block_bitmap_bh); 1164 ext4_group_desc_csum_set(sb, group, gdp); 1165 } 1166 ext4_unlock_group(sb, group); 1167 brelse(block_bitmap_bh); 1168 1169 if (err) { 1170 ext4_std_error(sb, err); 1171 goto out; 1172 } 1173 } 1174 1175 /* Update the relevant bg descriptor fields */ 1176 if (ext4_has_group_desc_csum(sb)) { 1177 int free; 1178 struct ext4_group_info *grp = NULL; 1179 1180 if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) { 1181 grp = ext4_get_group_info(sb, group); 1182 down_read(&grp->alloc_sem); /* 1183 * protect vs itable 1184 * lazyinit 1185 */ 1186 } 1187 ext4_lock_group(sb, group); /* while we modify the bg desc */ 1188 free = EXT4_INODES_PER_GROUP(sb) - 1189 ext4_itable_unused_count(sb, gdp); 1190 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) { 1191 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT); 1192 free = 0; 1193 } 1194 /* 1195 * Check the relative inode number against the last used 1196 * relative inode number in this group. if it is greater 1197 * we need to update the bg_itable_unused count 1198 */ 1199 if (ino > free) 1200 ext4_itable_unused_set(sb, gdp, 1201 (EXT4_INODES_PER_GROUP(sb) - ino)); 1202 if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) 1203 up_read(&grp->alloc_sem); 1204 } else { 1205 ext4_lock_group(sb, group); 1206 } 1207 1208 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1); 1209 if (S_ISDIR(mode)) { 1210 ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1); 1211 if (sbi->s_log_groups_per_flex) { 1212 ext4_group_t f = ext4_flex_group(sbi, group); 1213 1214 atomic_inc(&sbi_array_rcu_deref(sbi, s_flex_groups, 1215 f)->used_dirs); 1216 } 1217 } 1218 if (ext4_has_group_desc_csum(sb)) { 1219 ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh, 1220 EXT4_INODES_PER_GROUP(sb) / 8); 1221 ext4_group_desc_csum_set(sb, group, gdp); 1222 } 1223 ext4_unlock_group(sb, group); 1224 1225 BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata"); 1226 err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh); 1227 if (err) { 1228 ext4_std_error(sb, err); 1229 goto out; 1230 } 1231 1232 percpu_counter_dec(&sbi->s_freeinodes_counter); 1233 if (S_ISDIR(mode)) 1234 percpu_counter_inc(&sbi->s_dirs_counter); 1235 1236 if (sbi->s_log_groups_per_flex) { 1237 flex_group = ext4_flex_group(sbi, group); 1238 atomic_dec(&sbi_array_rcu_deref(sbi, s_flex_groups, 1239 flex_group)->free_inodes); 1240 } 1241 1242 inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb); 1243 /* This is the optimal IO size (for stat), not the fs block size */ 1244 inode->i_blocks = 0; 1245 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode); 1246 ei->i_crtime = inode->i_mtime; 1247 1248 memset(ei->i_data, 0, sizeof(ei->i_data)); 1249 ei->i_dir_start_lookup = 0; 1250 ei->i_disksize = 0; 1251 1252 /* Don't inherit extent flag from directory, amongst others. */ 1253 ei->i_flags = 1254 ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED); 1255 ei->i_flags |= i_flags; 1256 ei->i_file_acl = 0; 1257 ei->i_dtime = 0; 1258 ei->i_block_group = group; 1259 ei->i_last_alloc_group = ~0; 1260 1261 ext4_set_inode_flags(inode, true); 1262 if (IS_DIRSYNC(inode)) 1263 ext4_handle_sync(handle); 1264 if (insert_inode_locked(inode) < 0) { 1265 /* 1266 * Likely a bitmap corruption causing inode to be allocated 1267 * twice. 1268 */ 1269 err = -EIO; 1270 ext4_error(sb, "failed to insert inode %lu: doubly allocated?", 1271 inode->i_ino); 1272 ext4_mark_group_bitmap_corrupted(sb, group, 1273 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 1274 goto out; 1275 } 1276 inode->i_generation = prandom_u32(); 1277 1278 /* Precompute checksum seed for inode metadata */ 1279 if (ext4_has_metadata_csum(sb)) { 1280 __u32 csum; 1281 __le32 inum = cpu_to_le32(inode->i_ino); 1282 __le32 gen = cpu_to_le32(inode->i_generation); 1283 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 1284 sizeof(inum)); 1285 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 1286 sizeof(gen)); 1287 } 1288 1289 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 1290 ext4_set_inode_state(inode, EXT4_STATE_NEW); 1291 1292 ei->i_extra_isize = sbi->s_want_extra_isize; 1293 ei->i_inline_off = 0; 1294 if (ext4_has_feature_inline_data(sb)) 1295 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 1296 ret = inode; 1297 err = dquot_alloc_inode(inode); 1298 if (err) 1299 goto fail_drop; 1300 1301 /* 1302 * Since the encryption xattr will always be unique, create it first so 1303 * that it's less likely to end up in an external xattr block and 1304 * prevent its deduplication. 1305 */ 1306 if (encrypt) { 1307 err = fscrypt_set_context(inode, handle); 1308 if (err) 1309 goto fail_free_drop; 1310 } 1311 1312 if (!(ei->i_flags & EXT4_EA_INODE_FL)) { 1313 err = ext4_init_acl(handle, inode, dir); 1314 if (err) 1315 goto fail_free_drop; 1316 1317 err = ext4_init_security(handle, inode, dir, qstr); 1318 if (err) 1319 goto fail_free_drop; 1320 } 1321 1322 if (ext4_has_feature_extents(sb)) { 1323 /* set extent flag only for directory, file and normal symlink*/ 1324 if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) { 1325 ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS); 1326 ext4_ext_tree_init(handle, inode); 1327 } 1328 } 1329 1330 if (ext4_handle_valid(handle)) { 1331 ei->i_sync_tid = handle->h_transaction->t_tid; 1332 ei->i_datasync_tid = handle->h_transaction->t_tid; 1333 } 1334 1335 err = ext4_mark_inode_dirty(handle, inode); 1336 if (err) { 1337 ext4_std_error(sb, err); 1338 goto fail_free_drop; 1339 } 1340 1341 ext4_debug("allocating inode %lu\n", inode->i_ino); 1342 trace_ext4_allocate_inode(inode, dir, mode); 1343 brelse(inode_bitmap_bh); 1344 return ret; 1345 1346 fail_free_drop: 1347 dquot_free_inode(inode); 1348 fail_drop: 1349 clear_nlink(inode); 1350 unlock_new_inode(inode); 1351 out: 1352 dquot_drop(inode); 1353 inode->i_flags |= S_NOQUOTA; 1354 iput(inode); 1355 brelse(inode_bitmap_bh); 1356 return ERR_PTR(err); 1357 } 1358 1359 /* Verify that we are loading a valid orphan from disk */ 1360 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino) 1361 { 1362 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count); 1363 ext4_group_t block_group; 1364 int bit; 1365 struct buffer_head *bitmap_bh = NULL; 1366 struct inode *inode = NULL; 1367 int err = -EFSCORRUPTED; 1368 1369 if (ino < EXT4_FIRST_INO(sb) || ino > max_ino) 1370 goto bad_orphan; 1371 1372 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 1373 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 1374 bitmap_bh = ext4_read_inode_bitmap(sb, block_group); 1375 if (IS_ERR(bitmap_bh)) 1376 return ERR_CAST(bitmap_bh); 1377 1378 /* Having the inode bit set should be a 100% indicator that this 1379 * is a valid orphan (no e2fsck run on fs). Orphans also include 1380 * inodes that were being truncated, so we can't check i_nlink==0. 1381 */ 1382 if (!ext4_test_bit(bit, bitmap_bh->b_data)) 1383 goto bad_orphan; 1384 1385 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL); 1386 if (IS_ERR(inode)) { 1387 err = PTR_ERR(inode); 1388 ext4_error_err(sb, -err, 1389 "couldn't read orphan inode %lu (err %d)", 1390 ino, err); 1391 brelse(bitmap_bh); 1392 return inode; 1393 } 1394 1395 /* 1396 * If the orphans has i_nlinks > 0 then it should be able to 1397 * be truncated, otherwise it won't be removed from the orphan 1398 * list during processing and an infinite loop will result. 1399 * Similarly, it must not be a bad inode. 1400 */ 1401 if ((inode->i_nlink && !ext4_can_truncate(inode)) || 1402 is_bad_inode(inode)) 1403 goto bad_orphan; 1404 1405 if (NEXT_ORPHAN(inode) > max_ino) 1406 goto bad_orphan; 1407 brelse(bitmap_bh); 1408 return inode; 1409 1410 bad_orphan: 1411 ext4_error(sb, "bad orphan inode %lu", ino); 1412 if (bitmap_bh) 1413 printk(KERN_ERR "ext4_test_bit(bit=%d, block=%llu) = %d\n", 1414 bit, (unsigned long long)bitmap_bh->b_blocknr, 1415 ext4_test_bit(bit, bitmap_bh->b_data)); 1416 if (inode) { 1417 printk(KERN_ERR "is_bad_inode(inode)=%d\n", 1418 is_bad_inode(inode)); 1419 printk(KERN_ERR "NEXT_ORPHAN(inode)=%u\n", 1420 NEXT_ORPHAN(inode)); 1421 printk(KERN_ERR "max_ino=%lu\n", max_ino); 1422 printk(KERN_ERR "i_nlink=%u\n", inode->i_nlink); 1423 /* Avoid freeing blocks if we got a bad deleted inode */ 1424 if (inode->i_nlink == 0) 1425 inode->i_blocks = 0; 1426 iput(inode); 1427 } 1428 brelse(bitmap_bh); 1429 return ERR_PTR(err); 1430 } 1431 1432 unsigned long ext4_count_free_inodes(struct super_block *sb) 1433 { 1434 unsigned long desc_count; 1435 struct ext4_group_desc *gdp; 1436 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 1437 #ifdef EXT4FS_DEBUG 1438 struct ext4_super_block *es; 1439 unsigned long bitmap_count, x; 1440 struct buffer_head *bitmap_bh = NULL; 1441 1442 es = EXT4_SB(sb)->s_es; 1443 desc_count = 0; 1444 bitmap_count = 0; 1445 gdp = NULL; 1446 for (i = 0; i < ngroups; i++) { 1447 gdp = ext4_get_group_desc(sb, i, NULL); 1448 if (!gdp) 1449 continue; 1450 desc_count += ext4_free_inodes_count(sb, gdp); 1451 brelse(bitmap_bh); 1452 bitmap_bh = ext4_read_inode_bitmap(sb, i); 1453 if (IS_ERR(bitmap_bh)) { 1454 bitmap_bh = NULL; 1455 continue; 1456 } 1457 1458 x = ext4_count_free(bitmap_bh->b_data, 1459 EXT4_INODES_PER_GROUP(sb) / 8); 1460 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n", 1461 (unsigned long) i, ext4_free_inodes_count(sb, gdp), x); 1462 bitmap_count += x; 1463 } 1464 brelse(bitmap_bh); 1465 printk(KERN_DEBUG "ext4_count_free_inodes: " 1466 "stored = %u, computed = %lu, %lu\n", 1467 le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count); 1468 return desc_count; 1469 #else 1470 desc_count = 0; 1471 for (i = 0; i < ngroups; i++) { 1472 gdp = ext4_get_group_desc(sb, i, NULL); 1473 if (!gdp) 1474 continue; 1475 desc_count += ext4_free_inodes_count(sb, gdp); 1476 cond_resched(); 1477 } 1478 return desc_count; 1479 #endif 1480 } 1481 1482 /* Called at mount-time, super-block is locked */ 1483 unsigned long ext4_count_dirs(struct super_block * sb) 1484 { 1485 unsigned long count = 0; 1486 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 1487 1488 for (i = 0; i < ngroups; i++) { 1489 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 1490 if (!gdp) 1491 continue; 1492 count += ext4_used_dirs_count(sb, gdp); 1493 } 1494 return count; 1495 } 1496 1497 /* 1498 * Zeroes not yet zeroed inode table - just write zeroes through the whole 1499 * inode table. Must be called without any spinlock held. The only place 1500 * where it is called from on active part of filesystem is ext4lazyinit 1501 * thread, so we do not need any special locks, however we have to prevent 1502 * inode allocation from the current group, so we take alloc_sem lock, to 1503 * block ext4_new_inode() until we are finished. 1504 */ 1505 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group, 1506 int barrier) 1507 { 1508 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1509 struct ext4_sb_info *sbi = EXT4_SB(sb); 1510 struct ext4_group_desc *gdp = NULL; 1511 struct buffer_head *group_desc_bh; 1512 handle_t *handle; 1513 ext4_fsblk_t blk; 1514 int num, ret = 0, used_blks = 0; 1515 1516 /* This should not happen, but just to be sure check this */ 1517 if (sb_rdonly(sb)) { 1518 ret = 1; 1519 goto out; 1520 } 1521 1522 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 1523 if (!gdp) 1524 goto out; 1525 1526 /* 1527 * We do not need to lock this, because we are the only one 1528 * handling this flag. 1529 */ 1530 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)) 1531 goto out; 1532 1533 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1); 1534 if (IS_ERR(handle)) { 1535 ret = PTR_ERR(handle); 1536 goto out; 1537 } 1538 1539 down_write(&grp->alloc_sem); 1540 /* 1541 * If inode bitmap was already initialized there may be some 1542 * used inodes so we need to skip blocks with used inodes in 1543 * inode table. 1544 */ 1545 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) 1546 used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) - 1547 ext4_itable_unused_count(sb, gdp)), 1548 sbi->s_inodes_per_block); 1549 1550 if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group) || 1551 ((group == 0) && ((EXT4_INODES_PER_GROUP(sb) - 1552 ext4_itable_unused_count(sb, gdp)) < 1553 EXT4_FIRST_INO(sb)))) { 1554 ext4_error(sb, "Something is wrong with group %u: " 1555 "used itable blocks: %d; " 1556 "itable unused count: %u", 1557 group, used_blks, 1558 ext4_itable_unused_count(sb, gdp)); 1559 ret = 1; 1560 goto err_out; 1561 } 1562 1563 blk = ext4_inode_table(sb, gdp) + used_blks; 1564 num = sbi->s_itb_per_group - used_blks; 1565 1566 BUFFER_TRACE(group_desc_bh, "get_write_access"); 1567 ret = ext4_journal_get_write_access(handle, 1568 group_desc_bh); 1569 if (ret) 1570 goto err_out; 1571 1572 /* 1573 * Skip zeroout if the inode table is full. But we set the ZEROED 1574 * flag anyway, because obviously, when it is full it does not need 1575 * further zeroing. 1576 */ 1577 if (unlikely(num == 0)) 1578 goto skip_zeroout; 1579 1580 ext4_debug("going to zero out inode table in group %d\n", 1581 group); 1582 ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS); 1583 if (ret < 0) 1584 goto err_out; 1585 if (barrier) 1586 blkdev_issue_flush(sb->s_bdev); 1587 1588 skip_zeroout: 1589 ext4_lock_group(sb, group); 1590 gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED); 1591 ext4_group_desc_csum_set(sb, group, gdp); 1592 ext4_unlock_group(sb, group); 1593 1594 BUFFER_TRACE(group_desc_bh, 1595 "call ext4_handle_dirty_metadata"); 1596 ret = ext4_handle_dirty_metadata(handle, NULL, 1597 group_desc_bh); 1598 1599 err_out: 1600 up_write(&grp->alloc_sem); 1601 ext4_journal_stop(handle); 1602 out: 1603 return ret; 1604 } 1605