1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/ialloc.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * BSD ufs-inspired inode and directory allocation by 11 * Stephen Tweedie (sct@redhat.com), 1993 12 * Big-endian to little-endian byte-swapping/bitmaps by 13 * David S. Miller (davem@caip.rutgers.edu), 1995 14 */ 15 16 #include <linux/time.h> 17 #include <linux/fs.h> 18 #include <linux/stat.h> 19 #include <linux/string.h> 20 #include <linux/quotaops.h> 21 #include <linux/buffer_head.h> 22 #include <linux/random.h> 23 #include <linux/bitops.h> 24 #include <linux/blkdev.h> 25 #include <linux/cred.h> 26 27 #include <asm/byteorder.h> 28 29 #include "ext4.h" 30 #include "ext4_jbd2.h" 31 #include "xattr.h" 32 #include "acl.h" 33 34 #include <trace/events/ext4.h> 35 36 /* 37 * ialloc.c contains the inodes allocation and deallocation routines 38 */ 39 40 /* 41 * The free inodes are managed by bitmaps. A file system contains several 42 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap 43 * block for inodes, N blocks for the inode table and data blocks. 44 * 45 * The file system contains group descriptors which are located after the 46 * super block. Each descriptor contains the number of the bitmap block and 47 * the free blocks count in the block. 48 */ 49 50 /* 51 * To avoid calling the atomic setbit hundreds or thousands of times, we only 52 * need to use it within a single byte (to ensure we get endianness right). 53 * We can use memset for the rest of the bitmap as there are no other users. 54 */ 55 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap) 56 { 57 int i; 58 59 if (start_bit >= end_bit) 60 return; 61 62 ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit); 63 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++) 64 ext4_set_bit(i, bitmap); 65 if (i < end_bit) 66 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3); 67 } 68 69 void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate) 70 { 71 if (uptodate) { 72 set_buffer_uptodate(bh); 73 set_bitmap_uptodate(bh); 74 } 75 unlock_buffer(bh); 76 put_bh(bh); 77 } 78 79 static int ext4_validate_inode_bitmap(struct super_block *sb, 80 struct ext4_group_desc *desc, 81 ext4_group_t block_group, 82 struct buffer_head *bh) 83 { 84 ext4_fsblk_t blk; 85 struct ext4_group_info *grp = ext4_get_group_info(sb, block_group); 86 87 if (buffer_verified(bh)) 88 return 0; 89 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) 90 return -EFSCORRUPTED; 91 92 ext4_lock_group(sb, block_group); 93 if (buffer_verified(bh)) 94 goto verified; 95 blk = ext4_inode_bitmap(sb, desc); 96 if (!ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh, 97 EXT4_INODES_PER_GROUP(sb) / 8) || 98 ext4_simulate_fail(sb, EXT4_SIM_IBITMAP_CRC)) { 99 ext4_unlock_group(sb, block_group); 100 ext4_error(sb, "Corrupt inode bitmap - block_group = %u, " 101 "inode_bitmap = %llu", block_group, blk); 102 ext4_mark_group_bitmap_corrupted(sb, block_group, 103 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 104 return -EFSBADCRC; 105 } 106 set_buffer_verified(bh); 107 verified: 108 ext4_unlock_group(sb, block_group); 109 return 0; 110 } 111 112 /* 113 * Read the inode allocation bitmap for a given block_group, reading 114 * into the specified slot in the superblock's bitmap cache. 115 * 116 * Return buffer_head of bitmap on success, or an ERR_PTR on error. 117 */ 118 static struct buffer_head * 119 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group) 120 { 121 struct ext4_group_desc *desc; 122 struct ext4_sb_info *sbi = EXT4_SB(sb); 123 struct buffer_head *bh = NULL; 124 ext4_fsblk_t bitmap_blk; 125 int err; 126 127 desc = ext4_get_group_desc(sb, block_group, NULL); 128 if (!desc) 129 return ERR_PTR(-EFSCORRUPTED); 130 131 bitmap_blk = ext4_inode_bitmap(sb, desc); 132 if ((bitmap_blk <= le32_to_cpu(sbi->s_es->s_first_data_block)) || 133 (bitmap_blk >= ext4_blocks_count(sbi->s_es))) { 134 ext4_error(sb, "Invalid inode bitmap blk %llu in " 135 "block_group %u", bitmap_blk, block_group); 136 ext4_mark_group_bitmap_corrupted(sb, block_group, 137 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 138 return ERR_PTR(-EFSCORRUPTED); 139 } 140 bh = sb_getblk(sb, bitmap_blk); 141 if (unlikely(!bh)) { 142 ext4_warning(sb, "Cannot read inode bitmap - " 143 "block_group = %u, inode_bitmap = %llu", 144 block_group, bitmap_blk); 145 return ERR_PTR(-ENOMEM); 146 } 147 if (bitmap_uptodate(bh)) 148 goto verify; 149 150 lock_buffer(bh); 151 if (bitmap_uptodate(bh)) { 152 unlock_buffer(bh); 153 goto verify; 154 } 155 156 ext4_lock_group(sb, block_group); 157 if (ext4_has_group_desc_csum(sb) && 158 (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) { 159 if (block_group == 0) { 160 ext4_unlock_group(sb, block_group); 161 unlock_buffer(bh); 162 ext4_error(sb, "Inode bitmap for bg 0 marked " 163 "uninitialized"); 164 err = -EFSCORRUPTED; 165 goto out; 166 } 167 memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8); 168 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), 169 sb->s_blocksize * 8, bh->b_data); 170 set_bitmap_uptodate(bh); 171 set_buffer_uptodate(bh); 172 set_buffer_verified(bh); 173 ext4_unlock_group(sb, block_group); 174 unlock_buffer(bh); 175 return bh; 176 } 177 ext4_unlock_group(sb, block_group); 178 179 if (buffer_uptodate(bh)) { 180 /* 181 * if not uninit if bh is uptodate, 182 * bitmap is also uptodate 183 */ 184 set_bitmap_uptodate(bh); 185 unlock_buffer(bh); 186 goto verify; 187 } 188 /* 189 * submit the buffer_head for reading 190 */ 191 trace_ext4_load_inode_bitmap(sb, block_group); 192 bh->b_end_io = ext4_end_bitmap_read; 193 get_bh(bh); 194 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh); 195 wait_on_buffer(bh); 196 ext4_simulate_fail_bh(sb, bh, EXT4_SIM_IBITMAP_EIO); 197 if (!buffer_uptodate(bh)) { 198 put_bh(bh); 199 ext4_error_err(sb, EIO, "Cannot read inode bitmap - " 200 "block_group = %u, inode_bitmap = %llu", 201 block_group, bitmap_blk); 202 ext4_mark_group_bitmap_corrupted(sb, block_group, 203 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 204 return ERR_PTR(-EIO); 205 } 206 207 verify: 208 err = ext4_validate_inode_bitmap(sb, desc, block_group, bh); 209 if (err) 210 goto out; 211 return bh; 212 out: 213 put_bh(bh); 214 return ERR_PTR(err); 215 } 216 217 /* 218 * NOTE! When we get the inode, we're the only people 219 * that have access to it, and as such there are no 220 * race conditions we have to worry about. The inode 221 * is not on the hash-lists, and it cannot be reached 222 * through the filesystem because the directory entry 223 * has been deleted earlier. 224 * 225 * HOWEVER: we must make sure that we get no aliases, 226 * which means that we have to call "clear_inode()" 227 * _before_ we mark the inode not in use in the inode 228 * bitmaps. Otherwise a newly created file might use 229 * the same inode number (not actually the same pointer 230 * though), and then we'd have two inodes sharing the 231 * same inode number and space on the harddisk. 232 */ 233 void ext4_free_inode(handle_t *handle, struct inode *inode) 234 { 235 struct super_block *sb = inode->i_sb; 236 int is_directory; 237 unsigned long ino; 238 struct buffer_head *bitmap_bh = NULL; 239 struct buffer_head *bh2; 240 ext4_group_t block_group; 241 unsigned long bit; 242 struct ext4_group_desc *gdp; 243 struct ext4_super_block *es; 244 struct ext4_sb_info *sbi; 245 int fatal = 0, err, count, cleared; 246 struct ext4_group_info *grp; 247 248 if (!sb) { 249 printk(KERN_ERR "EXT4-fs: %s:%d: inode on " 250 "nonexistent device\n", __func__, __LINE__); 251 return; 252 } 253 if (atomic_read(&inode->i_count) > 1) { 254 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d", 255 __func__, __LINE__, inode->i_ino, 256 atomic_read(&inode->i_count)); 257 return; 258 } 259 if (inode->i_nlink) { 260 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n", 261 __func__, __LINE__, inode->i_ino, inode->i_nlink); 262 return; 263 } 264 sbi = EXT4_SB(sb); 265 266 ino = inode->i_ino; 267 ext4_debug("freeing inode %lu\n", ino); 268 trace_ext4_free_inode(inode); 269 270 dquot_initialize(inode); 271 dquot_free_inode(inode); 272 273 is_directory = S_ISDIR(inode->i_mode); 274 275 /* Do this BEFORE marking the inode not in use or returning an error */ 276 ext4_clear_inode(inode); 277 278 es = sbi->s_es; 279 if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) { 280 ext4_error(sb, "reserved or nonexistent inode %lu", ino); 281 goto error_return; 282 } 283 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 284 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 285 bitmap_bh = ext4_read_inode_bitmap(sb, block_group); 286 /* Don't bother if the inode bitmap is corrupt. */ 287 grp = ext4_get_group_info(sb, block_group); 288 if (IS_ERR(bitmap_bh)) { 289 fatal = PTR_ERR(bitmap_bh); 290 bitmap_bh = NULL; 291 goto error_return; 292 } 293 if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp))) { 294 fatal = -EFSCORRUPTED; 295 goto error_return; 296 } 297 298 BUFFER_TRACE(bitmap_bh, "get_write_access"); 299 fatal = ext4_journal_get_write_access(handle, bitmap_bh); 300 if (fatal) 301 goto error_return; 302 303 fatal = -ESRCH; 304 gdp = ext4_get_group_desc(sb, block_group, &bh2); 305 if (gdp) { 306 BUFFER_TRACE(bh2, "get_write_access"); 307 fatal = ext4_journal_get_write_access(handle, bh2); 308 } 309 ext4_lock_group(sb, block_group); 310 cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data); 311 if (fatal || !cleared) { 312 ext4_unlock_group(sb, block_group); 313 goto out; 314 } 315 316 count = ext4_free_inodes_count(sb, gdp) + 1; 317 ext4_free_inodes_set(sb, gdp, count); 318 if (is_directory) { 319 count = ext4_used_dirs_count(sb, gdp) - 1; 320 ext4_used_dirs_set(sb, gdp, count); 321 percpu_counter_dec(&sbi->s_dirs_counter); 322 } 323 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh, 324 EXT4_INODES_PER_GROUP(sb) / 8); 325 ext4_group_desc_csum_set(sb, block_group, gdp); 326 ext4_unlock_group(sb, block_group); 327 328 percpu_counter_inc(&sbi->s_freeinodes_counter); 329 if (sbi->s_log_groups_per_flex) { 330 struct flex_groups *fg; 331 332 fg = sbi_array_rcu_deref(sbi, s_flex_groups, 333 ext4_flex_group(sbi, block_group)); 334 atomic_inc(&fg->free_inodes); 335 if (is_directory) 336 atomic_dec(&fg->used_dirs); 337 } 338 BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata"); 339 fatal = ext4_handle_dirty_metadata(handle, NULL, bh2); 340 out: 341 if (cleared) { 342 BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata"); 343 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 344 if (!fatal) 345 fatal = err; 346 } else { 347 ext4_error(sb, "bit already cleared for inode %lu", ino); 348 ext4_mark_group_bitmap_corrupted(sb, block_group, 349 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 350 } 351 352 error_return: 353 brelse(bitmap_bh); 354 ext4_std_error(sb, fatal); 355 } 356 357 struct orlov_stats { 358 __u64 free_clusters; 359 __u32 free_inodes; 360 __u32 used_dirs; 361 }; 362 363 /* 364 * Helper function for Orlov's allocator; returns critical information 365 * for a particular block group or flex_bg. If flex_size is 1, then g 366 * is a block group number; otherwise it is flex_bg number. 367 */ 368 static void get_orlov_stats(struct super_block *sb, ext4_group_t g, 369 int flex_size, struct orlov_stats *stats) 370 { 371 struct ext4_group_desc *desc; 372 373 if (flex_size > 1) { 374 struct flex_groups *fg = sbi_array_rcu_deref(EXT4_SB(sb), 375 s_flex_groups, g); 376 stats->free_inodes = atomic_read(&fg->free_inodes); 377 stats->free_clusters = atomic64_read(&fg->free_clusters); 378 stats->used_dirs = atomic_read(&fg->used_dirs); 379 return; 380 } 381 382 desc = ext4_get_group_desc(sb, g, NULL); 383 if (desc) { 384 stats->free_inodes = ext4_free_inodes_count(sb, desc); 385 stats->free_clusters = ext4_free_group_clusters(sb, desc); 386 stats->used_dirs = ext4_used_dirs_count(sb, desc); 387 } else { 388 stats->free_inodes = 0; 389 stats->free_clusters = 0; 390 stats->used_dirs = 0; 391 } 392 } 393 394 /* 395 * Orlov's allocator for directories. 396 * 397 * We always try to spread first-level directories. 398 * 399 * If there are blockgroups with both free inodes and free blocks counts 400 * not worse than average we return one with smallest directory count. 401 * Otherwise we simply return a random group. 402 * 403 * For the rest rules look so: 404 * 405 * It's OK to put directory into a group unless 406 * it has too many directories already (max_dirs) or 407 * it has too few free inodes left (min_inodes) or 408 * it has too few free blocks left (min_blocks) or 409 * Parent's group is preferred, if it doesn't satisfy these 410 * conditions we search cyclically through the rest. If none 411 * of the groups look good we just look for a group with more 412 * free inodes than average (starting at parent's group). 413 */ 414 415 static int find_group_orlov(struct super_block *sb, struct inode *parent, 416 ext4_group_t *group, umode_t mode, 417 const struct qstr *qstr) 418 { 419 ext4_group_t parent_group = EXT4_I(parent)->i_block_group; 420 struct ext4_sb_info *sbi = EXT4_SB(sb); 421 ext4_group_t real_ngroups = ext4_get_groups_count(sb); 422 int inodes_per_group = EXT4_INODES_PER_GROUP(sb); 423 unsigned int freei, avefreei, grp_free; 424 ext4_fsblk_t freeb, avefreec; 425 unsigned int ndirs; 426 int max_dirs, min_inodes; 427 ext4_grpblk_t min_clusters; 428 ext4_group_t i, grp, g, ngroups; 429 struct ext4_group_desc *desc; 430 struct orlov_stats stats; 431 int flex_size = ext4_flex_bg_size(sbi); 432 struct dx_hash_info hinfo; 433 434 ngroups = real_ngroups; 435 if (flex_size > 1) { 436 ngroups = (real_ngroups + flex_size - 1) >> 437 sbi->s_log_groups_per_flex; 438 parent_group >>= sbi->s_log_groups_per_flex; 439 } 440 441 freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter); 442 avefreei = freei / ngroups; 443 freeb = EXT4_C2B(sbi, 444 percpu_counter_read_positive(&sbi->s_freeclusters_counter)); 445 avefreec = freeb; 446 do_div(avefreec, ngroups); 447 ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter); 448 449 if (S_ISDIR(mode) && 450 ((parent == d_inode(sb->s_root)) || 451 (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) { 452 int best_ndir = inodes_per_group; 453 int ret = -1; 454 455 if (qstr) { 456 hinfo.hash_version = DX_HASH_HALF_MD4; 457 hinfo.seed = sbi->s_hash_seed; 458 ext4fs_dirhash(parent, qstr->name, qstr->len, &hinfo); 459 grp = hinfo.hash; 460 } else 461 grp = prandom_u32(); 462 parent_group = (unsigned)grp % ngroups; 463 for (i = 0; i < ngroups; i++) { 464 g = (parent_group + i) % ngroups; 465 get_orlov_stats(sb, g, flex_size, &stats); 466 if (!stats.free_inodes) 467 continue; 468 if (stats.used_dirs >= best_ndir) 469 continue; 470 if (stats.free_inodes < avefreei) 471 continue; 472 if (stats.free_clusters < avefreec) 473 continue; 474 grp = g; 475 ret = 0; 476 best_ndir = stats.used_dirs; 477 } 478 if (ret) 479 goto fallback; 480 found_flex_bg: 481 if (flex_size == 1) { 482 *group = grp; 483 return 0; 484 } 485 486 /* 487 * We pack inodes at the beginning of the flexgroup's 488 * inode tables. Block allocation decisions will do 489 * something similar, although regular files will 490 * start at 2nd block group of the flexgroup. See 491 * ext4_ext_find_goal() and ext4_find_near(). 492 */ 493 grp *= flex_size; 494 for (i = 0; i < flex_size; i++) { 495 if (grp+i >= real_ngroups) 496 break; 497 desc = ext4_get_group_desc(sb, grp+i, NULL); 498 if (desc && ext4_free_inodes_count(sb, desc)) { 499 *group = grp+i; 500 return 0; 501 } 502 } 503 goto fallback; 504 } 505 506 max_dirs = ndirs / ngroups + inodes_per_group / 16; 507 min_inodes = avefreei - inodes_per_group*flex_size / 4; 508 if (min_inodes < 1) 509 min_inodes = 1; 510 min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4; 511 512 /* 513 * Start looking in the flex group where we last allocated an 514 * inode for this parent directory 515 */ 516 if (EXT4_I(parent)->i_last_alloc_group != ~0) { 517 parent_group = EXT4_I(parent)->i_last_alloc_group; 518 if (flex_size > 1) 519 parent_group >>= sbi->s_log_groups_per_flex; 520 } 521 522 for (i = 0; i < ngroups; i++) { 523 grp = (parent_group + i) % ngroups; 524 get_orlov_stats(sb, grp, flex_size, &stats); 525 if (stats.used_dirs >= max_dirs) 526 continue; 527 if (stats.free_inodes < min_inodes) 528 continue; 529 if (stats.free_clusters < min_clusters) 530 continue; 531 goto found_flex_bg; 532 } 533 534 fallback: 535 ngroups = real_ngroups; 536 avefreei = freei / ngroups; 537 fallback_retry: 538 parent_group = EXT4_I(parent)->i_block_group; 539 for (i = 0; i < ngroups; i++) { 540 grp = (parent_group + i) % ngroups; 541 desc = ext4_get_group_desc(sb, grp, NULL); 542 if (desc) { 543 grp_free = ext4_free_inodes_count(sb, desc); 544 if (grp_free && grp_free >= avefreei) { 545 *group = grp; 546 return 0; 547 } 548 } 549 } 550 551 if (avefreei) { 552 /* 553 * The free-inodes counter is approximate, and for really small 554 * filesystems the above test can fail to find any blockgroups 555 */ 556 avefreei = 0; 557 goto fallback_retry; 558 } 559 560 return -1; 561 } 562 563 static int find_group_other(struct super_block *sb, struct inode *parent, 564 ext4_group_t *group, umode_t mode) 565 { 566 ext4_group_t parent_group = EXT4_I(parent)->i_block_group; 567 ext4_group_t i, last, ngroups = ext4_get_groups_count(sb); 568 struct ext4_group_desc *desc; 569 int flex_size = ext4_flex_bg_size(EXT4_SB(sb)); 570 571 /* 572 * Try to place the inode is the same flex group as its 573 * parent. If we can't find space, use the Orlov algorithm to 574 * find another flex group, and store that information in the 575 * parent directory's inode information so that use that flex 576 * group for future allocations. 577 */ 578 if (flex_size > 1) { 579 int retry = 0; 580 581 try_again: 582 parent_group &= ~(flex_size-1); 583 last = parent_group + flex_size; 584 if (last > ngroups) 585 last = ngroups; 586 for (i = parent_group; i < last; i++) { 587 desc = ext4_get_group_desc(sb, i, NULL); 588 if (desc && ext4_free_inodes_count(sb, desc)) { 589 *group = i; 590 return 0; 591 } 592 } 593 if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) { 594 retry = 1; 595 parent_group = EXT4_I(parent)->i_last_alloc_group; 596 goto try_again; 597 } 598 /* 599 * If this didn't work, use the Orlov search algorithm 600 * to find a new flex group; we pass in the mode to 601 * avoid the topdir algorithms. 602 */ 603 *group = parent_group + flex_size; 604 if (*group > ngroups) 605 *group = 0; 606 return find_group_orlov(sb, parent, group, mode, NULL); 607 } 608 609 /* 610 * Try to place the inode in its parent directory 611 */ 612 *group = parent_group; 613 desc = ext4_get_group_desc(sb, *group, NULL); 614 if (desc && ext4_free_inodes_count(sb, desc) && 615 ext4_free_group_clusters(sb, desc)) 616 return 0; 617 618 /* 619 * We're going to place this inode in a different blockgroup from its 620 * parent. We want to cause files in a common directory to all land in 621 * the same blockgroup. But we want files which are in a different 622 * directory which shares a blockgroup with our parent to land in a 623 * different blockgroup. 624 * 625 * So add our directory's i_ino into the starting point for the hash. 626 */ 627 *group = (*group + parent->i_ino) % ngroups; 628 629 /* 630 * Use a quadratic hash to find a group with a free inode and some free 631 * blocks. 632 */ 633 for (i = 1; i < ngroups; i <<= 1) { 634 *group += i; 635 if (*group >= ngroups) 636 *group -= ngroups; 637 desc = ext4_get_group_desc(sb, *group, NULL); 638 if (desc && ext4_free_inodes_count(sb, desc) && 639 ext4_free_group_clusters(sb, desc)) 640 return 0; 641 } 642 643 /* 644 * That failed: try linear search for a free inode, even if that group 645 * has no free blocks. 646 */ 647 *group = parent_group; 648 for (i = 0; i < ngroups; i++) { 649 if (++*group >= ngroups) 650 *group = 0; 651 desc = ext4_get_group_desc(sb, *group, NULL); 652 if (desc && ext4_free_inodes_count(sb, desc)) 653 return 0; 654 } 655 656 return -1; 657 } 658 659 /* 660 * In no journal mode, if an inode has recently been deleted, we want 661 * to avoid reusing it until we're reasonably sure the inode table 662 * block has been written back to disk. (Yes, these values are 663 * somewhat arbitrary...) 664 */ 665 #define RECENTCY_MIN 60 666 #define RECENTCY_DIRTY 300 667 668 static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino) 669 { 670 struct ext4_group_desc *gdp; 671 struct ext4_inode *raw_inode; 672 struct buffer_head *bh; 673 int inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 674 int offset, ret = 0; 675 int recentcy = RECENTCY_MIN; 676 u32 dtime, now; 677 678 gdp = ext4_get_group_desc(sb, group, NULL); 679 if (unlikely(!gdp)) 680 return 0; 681 682 bh = sb_find_get_block(sb, ext4_inode_table(sb, gdp) + 683 (ino / inodes_per_block)); 684 if (!bh || !buffer_uptodate(bh)) 685 /* 686 * If the block is not in the buffer cache, then it 687 * must have been written out. 688 */ 689 goto out; 690 691 offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb); 692 raw_inode = (struct ext4_inode *) (bh->b_data + offset); 693 694 /* i_dtime is only 32 bits on disk, but we only care about relative 695 * times in the range of a few minutes (i.e. long enough to sync a 696 * recently-deleted inode to disk), so using the low 32 bits of the 697 * clock (a 68 year range) is enough, see time_before32() */ 698 dtime = le32_to_cpu(raw_inode->i_dtime); 699 now = ktime_get_real_seconds(); 700 if (buffer_dirty(bh)) 701 recentcy += RECENTCY_DIRTY; 702 703 if (dtime && time_before32(dtime, now) && 704 time_before32(now, dtime + recentcy)) 705 ret = 1; 706 out: 707 brelse(bh); 708 return ret; 709 } 710 711 static int find_inode_bit(struct super_block *sb, ext4_group_t group, 712 struct buffer_head *bitmap, unsigned long *ino) 713 { 714 bool check_recently_deleted = EXT4_SB(sb)->s_journal == NULL; 715 unsigned long recently_deleted_ino = EXT4_INODES_PER_GROUP(sb); 716 717 next: 718 *ino = ext4_find_next_zero_bit((unsigned long *) 719 bitmap->b_data, 720 EXT4_INODES_PER_GROUP(sb), *ino); 721 if (*ino >= EXT4_INODES_PER_GROUP(sb)) 722 goto not_found; 723 724 if (check_recently_deleted && recently_deleted(sb, group, *ino)) { 725 recently_deleted_ino = *ino; 726 *ino = *ino + 1; 727 if (*ino < EXT4_INODES_PER_GROUP(sb)) 728 goto next; 729 goto not_found; 730 } 731 return 1; 732 not_found: 733 if (recently_deleted_ino >= EXT4_INODES_PER_GROUP(sb)) 734 return 0; 735 /* 736 * Not reusing recently deleted inodes is mostly a preference. We don't 737 * want to report ENOSPC or skew allocation patterns because of that. 738 * So return even recently deleted inode if we could find better in the 739 * given range. 740 */ 741 *ino = recently_deleted_ino; 742 return 1; 743 } 744 745 /* 746 * There are two policies for allocating an inode. If the new inode is 747 * a directory, then a forward search is made for a block group with both 748 * free space and a low directory-to-inode ratio; if that fails, then of 749 * the groups with above-average free space, that group with the fewest 750 * directories already is chosen. 751 * 752 * For other inodes, search forward from the parent directory's block 753 * group to find a free inode. 754 */ 755 struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir, 756 umode_t mode, const struct qstr *qstr, 757 __u32 goal, uid_t *owner, __u32 i_flags, 758 int handle_type, unsigned int line_no, 759 int nblocks) 760 { 761 struct super_block *sb; 762 struct buffer_head *inode_bitmap_bh = NULL; 763 struct buffer_head *group_desc_bh; 764 ext4_group_t ngroups, group = 0; 765 unsigned long ino = 0; 766 struct inode *inode; 767 struct ext4_group_desc *gdp = NULL; 768 struct ext4_inode_info *ei; 769 struct ext4_sb_info *sbi; 770 int ret2, err; 771 struct inode *ret; 772 ext4_group_t i; 773 ext4_group_t flex_group; 774 struct ext4_group_info *grp; 775 int encrypt = 0; 776 777 /* Cannot create files in a deleted directory */ 778 if (!dir || !dir->i_nlink) 779 return ERR_PTR(-EPERM); 780 781 sb = dir->i_sb; 782 sbi = EXT4_SB(sb); 783 784 if (unlikely(ext4_forced_shutdown(sbi))) 785 return ERR_PTR(-EIO); 786 787 if ((IS_ENCRYPTED(dir) || DUMMY_ENCRYPTION_ENABLED(sbi)) && 788 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)) && 789 !(i_flags & EXT4_EA_INODE_FL)) { 790 err = fscrypt_get_encryption_info(dir); 791 if (err) 792 return ERR_PTR(err); 793 if (!fscrypt_has_encryption_key(dir)) 794 return ERR_PTR(-ENOKEY); 795 encrypt = 1; 796 } 797 798 if (!handle && sbi->s_journal && !(i_flags & EXT4_EA_INODE_FL)) { 799 #ifdef CONFIG_EXT4_FS_POSIX_ACL 800 struct posix_acl *p = get_acl(dir, ACL_TYPE_DEFAULT); 801 802 if (IS_ERR(p)) 803 return ERR_CAST(p); 804 if (p) { 805 int acl_size = p->a_count * sizeof(ext4_acl_entry); 806 807 nblocks += (S_ISDIR(mode) ? 2 : 1) * 808 __ext4_xattr_set_credits(sb, NULL /* inode */, 809 NULL /* block_bh */, acl_size, 810 true /* is_create */); 811 posix_acl_release(p); 812 } 813 #endif 814 815 #ifdef CONFIG_SECURITY 816 { 817 int num_security_xattrs = 1; 818 819 #ifdef CONFIG_INTEGRITY 820 num_security_xattrs++; 821 #endif 822 /* 823 * We assume that security xattrs are never 824 * more than 1k. In practice they are under 825 * 128 bytes. 826 */ 827 nblocks += num_security_xattrs * 828 __ext4_xattr_set_credits(sb, NULL /* inode */, 829 NULL /* block_bh */, 1024, 830 true /* is_create */); 831 } 832 #endif 833 if (encrypt) 834 nblocks += __ext4_xattr_set_credits(sb, 835 NULL /* inode */, NULL /* block_bh */, 836 FSCRYPT_SET_CONTEXT_MAX_SIZE, 837 true /* is_create */); 838 } 839 840 ngroups = ext4_get_groups_count(sb); 841 trace_ext4_request_inode(dir, mode); 842 inode = new_inode(sb); 843 if (!inode) 844 return ERR_PTR(-ENOMEM); 845 ei = EXT4_I(inode); 846 847 /* 848 * Initialize owners and quota early so that we don't have to account 849 * for quota initialization worst case in standard inode creating 850 * transaction 851 */ 852 if (owner) { 853 inode->i_mode = mode; 854 i_uid_write(inode, owner[0]); 855 i_gid_write(inode, owner[1]); 856 } else if (test_opt(sb, GRPID)) { 857 inode->i_mode = mode; 858 inode->i_uid = current_fsuid(); 859 inode->i_gid = dir->i_gid; 860 } else 861 inode_init_owner(inode, dir, mode); 862 863 if (ext4_has_feature_project(sb) && 864 ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT)) 865 ei->i_projid = EXT4_I(dir)->i_projid; 866 else 867 ei->i_projid = make_kprojid(&init_user_ns, EXT4_DEF_PROJID); 868 869 err = dquot_initialize(inode); 870 if (err) 871 goto out; 872 873 if (!goal) 874 goal = sbi->s_inode_goal; 875 876 if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) { 877 group = (goal - 1) / EXT4_INODES_PER_GROUP(sb); 878 ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb); 879 ret2 = 0; 880 goto got_group; 881 } 882 883 if (S_ISDIR(mode)) 884 ret2 = find_group_orlov(sb, dir, &group, mode, qstr); 885 else 886 ret2 = find_group_other(sb, dir, &group, mode); 887 888 got_group: 889 EXT4_I(dir)->i_last_alloc_group = group; 890 err = -ENOSPC; 891 if (ret2 == -1) 892 goto out; 893 894 /* 895 * Normally we will only go through one pass of this loop, 896 * unless we get unlucky and it turns out the group we selected 897 * had its last inode grabbed by someone else. 898 */ 899 for (i = 0; i < ngroups; i++, ino = 0) { 900 err = -EIO; 901 902 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 903 if (!gdp) 904 goto out; 905 906 /* 907 * Check free inodes count before loading bitmap. 908 */ 909 if (ext4_free_inodes_count(sb, gdp) == 0) 910 goto next_group; 911 912 grp = ext4_get_group_info(sb, group); 913 /* Skip groups with already-known suspicious inode tables */ 914 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) 915 goto next_group; 916 917 brelse(inode_bitmap_bh); 918 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group); 919 /* Skip groups with suspicious inode tables */ 920 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp) || 921 IS_ERR(inode_bitmap_bh)) { 922 inode_bitmap_bh = NULL; 923 goto next_group; 924 } 925 926 repeat_in_this_group: 927 ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino); 928 if (!ret2) 929 goto next_group; 930 931 if (group == 0 && (ino + 1) < EXT4_FIRST_INO(sb)) { 932 ext4_error(sb, "reserved inode found cleared - " 933 "inode=%lu", ino + 1); 934 ext4_mark_group_bitmap_corrupted(sb, group, 935 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 936 goto next_group; 937 } 938 939 if (!handle) { 940 BUG_ON(nblocks <= 0); 941 handle = __ext4_journal_start_sb(dir->i_sb, line_no, 942 handle_type, nblocks, 0, 943 ext4_trans_default_revoke_credits(sb)); 944 if (IS_ERR(handle)) { 945 err = PTR_ERR(handle); 946 ext4_std_error(sb, err); 947 goto out; 948 } 949 } 950 BUFFER_TRACE(inode_bitmap_bh, "get_write_access"); 951 err = ext4_journal_get_write_access(handle, inode_bitmap_bh); 952 if (err) { 953 ext4_std_error(sb, err); 954 goto out; 955 } 956 ext4_lock_group(sb, group); 957 ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data); 958 if (ret2) { 959 /* Someone already took the bit. Repeat the search 960 * with lock held. 961 */ 962 ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino); 963 if (ret2) { 964 ext4_set_bit(ino, inode_bitmap_bh->b_data); 965 ret2 = 0; 966 } else { 967 ret2 = 1; /* we didn't grab the inode */ 968 } 969 } 970 ext4_unlock_group(sb, group); 971 ino++; /* the inode bitmap is zero-based */ 972 if (!ret2) 973 goto got; /* we grabbed the inode! */ 974 975 if (ino < EXT4_INODES_PER_GROUP(sb)) 976 goto repeat_in_this_group; 977 next_group: 978 if (++group == ngroups) 979 group = 0; 980 } 981 err = -ENOSPC; 982 goto out; 983 984 got: 985 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata"); 986 err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh); 987 if (err) { 988 ext4_std_error(sb, err); 989 goto out; 990 } 991 992 BUFFER_TRACE(group_desc_bh, "get_write_access"); 993 err = ext4_journal_get_write_access(handle, group_desc_bh); 994 if (err) { 995 ext4_std_error(sb, err); 996 goto out; 997 } 998 999 /* We may have to initialize the block bitmap if it isn't already */ 1000 if (ext4_has_group_desc_csum(sb) && 1001 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 1002 struct buffer_head *block_bitmap_bh; 1003 1004 block_bitmap_bh = ext4_read_block_bitmap(sb, group); 1005 if (IS_ERR(block_bitmap_bh)) { 1006 err = PTR_ERR(block_bitmap_bh); 1007 goto out; 1008 } 1009 BUFFER_TRACE(block_bitmap_bh, "get block bitmap access"); 1010 err = ext4_journal_get_write_access(handle, block_bitmap_bh); 1011 if (err) { 1012 brelse(block_bitmap_bh); 1013 ext4_std_error(sb, err); 1014 goto out; 1015 } 1016 1017 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap"); 1018 err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh); 1019 1020 /* recheck and clear flag under lock if we still need to */ 1021 ext4_lock_group(sb, group); 1022 if (ext4_has_group_desc_csum(sb) && 1023 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 1024 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 1025 ext4_free_group_clusters_set(sb, gdp, 1026 ext4_free_clusters_after_init(sb, group, gdp)); 1027 ext4_block_bitmap_csum_set(sb, group, gdp, 1028 block_bitmap_bh); 1029 ext4_group_desc_csum_set(sb, group, gdp); 1030 } 1031 ext4_unlock_group(sb, group); 1032 brelse(block_bitmap_bh); 1033 1034 if (err) { 1035 ext4_std_error(sb, err); 1036 goto out; 1037 } 1038 } 1039 1040 /* Update the relevant bg descriptor fields */ 1041 if (ext4_has_group_desc_csum(sb)) { 1042 int free; 1043 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1044 1045 down_read(&grp->alloc_sem); /* protect vs itable lazyinit */ 1046 ext4_lock_group(sb, group); /* while we modify the bg desc */ 1047 free = EXT4_INODES_PER_GROUP(sb) - 1048 ext4_itable_unused_count(sb, gdp); 1049 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) { 1050 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT); 1051 free = 0; 1052 } 1053 /* 1054 * Check the relative inode number against the last used 1055 * relative inode number in this group. if it is greater 1056 * we need to update the bg_itable_unused count 1057 */ 1058 if (ino > free) 1059 ext4_itable_unused_set(sb, gdp, 1060 (EXT4_INODES_PER_GROUP(sb) - ino)); 1061 up_read(&grp->alloc_sem); 1062 } else { 1063 ext4_lock_group(sb, group); 1064 } 1065 1066 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1); 1067 if (S_ISDIR(mode)) { 1068 ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1); 1069 if (sbi->s_log_groups_per_flex) { 1070 ext4_group_t f = ext4_flex_group(sbi, group); 1071 1072 atomic_inc(&sbi_array_rcu_deref(sbi, s_flex_groups, 1073 f)->used_dirs); 1074 } 1075 } 1076 if (ext4_has_group_desc_csum(sb)) { 1077 ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh, 1078 EXT4_INODES_PER_GROUP(sb) / 8); 1079 ext4_group_desc_csum_set(sb, group, gdp); 1080 } 1081 ext4_unlock_group(sb, group); 1082 1083 BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata"); 1084 err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh); 1085 if (err) { 1086 ext4_std_error(sb, err); 1087 goto out; 1088 } 1089 1090 percpu_counter_dec(&sbi->s_freeinodes_counter); 1091 if (S_ISDIR(mode)) 1092 percpu_counter_inc(&sbi->s_dirs_counter); 1093 1094 if (sbi->s_log_groups_per_flex) { 1095 flex_group = ext4_flex_group(sbi, group); 1096 atomic_dec(&sbi_array_rcu_deref(sbi, s_flex_groups, 1097 flex_group)->free_inodes); 1098 } 1099 1100 inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb); 1101 /* This is the optimal IO size (for stat), not the fs block size */ 1102 inode->i_blocks = 0; 1103 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode); 1104 ei->i_crtime = inode->i_mtime; 1105 1106 memset(ei->i_data, 0, sizeof(ei->i_data)); 1107 ei->i_dir_start_lookup = 0; 1108 ei->i_disksize = 0; 1109 1110 /* Don't inherit extent flag from directory, amongst others. */ 1111 ei->i_flags = 1112 ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED); 1113 ei->i_flags |= i_flags; 1114 ei->i_file_acl = 0; 1115 ei->i_dtime = 0; 1116 ei->i_block_group = group; 1117 ei->i_last_alloc_group = ~0; 1118 1119 ext4_set_inode_flags(inode); 1120 if (IS_DIRSYNC(inode)) 1121 ext4_handle_sync(handle); 1122 if (insert_inode_locked(inode) < 0) { 1123 /* 1124 * Likely a bitmap corruption causing inode to be allocated 1125 * twice. 1126 */ 1127 err = -EIO; 1128 ext4_error(sb, "failed to insert inode %lu: doubly allocated?", 1129 inode->i_ino); 1130 ext4_mark_group_bitmap_corrupted(sb, group, 1131 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 1132 goto out; 1133 } 1134 inode->i_generation = prandom_u32(); 1135 1136 /* Precompute checksum seed for inode metadata */ 1137 if (ext4_has_metadata_csum(sb)) { 1138 __u32 csum; 1139 __le32 inum = cpu_to_le32(inode->i_ino); 1140 __le32 gen = cpu_to_le32(inode->i_generation); 1141 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 1142 sizeof(inum)); 1143 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 1144 sizeof(gen)); 1145 } 1146 1147 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 1148 ext4_set_inode_state(inode, EXT4_STATE_NEW); 1149 1150 ei->i_extra_isize = sbi->s_want_extra_isize; 1151 ei->i_inline_off = 0; 1152 if (ext4_has_feature_inline_data(sb)) 1153 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 1154 ret = inode; 1155 err = dquot_alloc_inode(inode); 1156 if (err) 1157 goto fail_drop; 1158 1159 /* 1160 * Since the encryption xattr will always be unique, create it first so 1161 * that it's less likely to end up in an external xattr block and 1162 * prevent its deduplication. 1163 */ 1164 if (encrypt) { 1165 err = fscrypt_inherit_context(dir, inode, handle, true); 1166 if (err) 1167 goto fail_free_drop; 1168 } 1169 1170 if (!(ei->i_flags & EXT4_EA_INODE_FL)) { 1171 err = ext4_init_acl(handle, inode, dir); 1172 if (err) 1173 goto fail_free_drop; 1174 1175 err = ext4_init_security(handle, inode, dir, qstr); 1176 if (err) 1177 goto fail_free_drop; 1178 } 1179 1180 if (ext4_has_feature_extents(sb)) { 1181 /* set extent flag only for directory, file and normal symlink*/ 1182 if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) { 1183 ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS); 1184 ext4_ext_tree_init(handle, inode); 1185 } 1186 } 1187 1188 if (ext4_handle_valid(handle)) { 1189 ei->i_sync_tid = handle->h_transaction->t_tid; 1190 ei->i_datasync_tid = handle->h_transaction->t_tid; 1191 } 1192 1193 err = ext4_mark_inode_dirty(handle, inode); 1194 if (err) { 1195 ext4_std_error(sb, err); 1196 goto fail_free_drop; 1197 } 1198 1199 ext4_debug("allocating inode %lu\n", inode->i_ino); 1200 trace_ext4_allocate_inode(inode, dir, mode); 1201 brelse(inode_bitmap_bh); 1202 return ret; 1203 1204 fail_free_drop: 1205 dquot_free_inode(inode); 1206 fail_drop: 1207 clear_nlink(inode); 1208 unlock_new_inode(inode); 1209 out: 1210 dquot_drop(inode); 1211 inode->i_flags |= S_NOQUOTA; 1212 iput(inode); 1213 brelse(inode_bitmap_bh); 1214 return ERR_PTR(err); 1215 } 1216 1217 /* Verify that we are loading a valid orphan from disk */ 1218 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino) 1219 { 1220 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count); 1221 ext4_group_t block_group; 1222 int bit; 1223 struct buffer_head *bitmap_bh = NULL; 1224 struct inode *inode = NULL; 1225 int err = -EFSCORRUPTED; 1226 1227 if (ino < EXT4_FIRST_INO(sb) || ino > max_ino) 1228 goto bad_orphan; 1229 1230 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 1231 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 1232 bitmap_bh = ext4_read_inode_bitmap(sb, block_group); 1233 if (IS_ERR(bitmap_bh)) 1234 return ERR_CAST(bitmap_bh); 1235 1236 /* Having the inode bit set should be a 100% indicator that this 1237 * is a valid orphan (no e2fsck run on fs). Orphans also include 1238 * inodes that were being truncated, so we can't check i_nlink==0. 1239 */ 1240 if (!ext4_test_bit(bit, bitmap_bh->b_data)) 1241 goto bad_orphan; 1242 1243 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL); 1244 if (IS_ERR(inode)) { 1245 err = PTR_ERR(inode); 1246 ext4_error_err(sb, -err, 1247 "couldn't read orphan inode %lu (err %d)", 1248 ino, err); 1249 return inode; 1250 } 1251 1252 /* 1253 * If the orphans has i_nlinks > 0 then it should be able to 1254 * be truncated, otherwise it won't be removed from the orphan 1255 * list during processing and an infinite loop will result. 1256 * Similarly, it must not be a bad inode. 1257 */ 1258 if ((inode->i_nlink && !ext4_can_truncate(inode)) || 1259 is_bad_inode(inode)) 1260 goto bad_orphan; 1261 1262 if (NEXT_ORPHAN(inode) > max_ino) 1263 goto bad_orphan; 1264 brelse(bitmap_bh); 1265 return inode; 1266 1267 bad_orphan: 1268 ext4_error(sb, "bad orphan inode %lu", ino); 1269 if (bitmap_bh) 1270 printk(KERN_ERR "ext4_test_bit(bit=%d, block=%llu) = %d\n", 1271 bit, (unsigned long long)bitmap_bh->b_blocknr, 1272 ext4_test_bit(bit, bitmap_bh->b_data)); 1273 if (inode) { 1274 printk(KERN_ERR "is_bad_inode(inode)=%d\n", 1275 is_bad_inode(inode)); 1276 printk(KERN_ERR "NEXT_ORPHAN(inode)=%u\n", 1277 NEXT_ORPHAN(inode)); 1278 printk(KERN_ERR "max_ino=%lu\n", max_ino); 1279 printk(KERN_ERR "i_nlink=%u\n", inode->i_nlink); 1280 /* Avoid freeing blocks if we got a bad deleted inode */ 1281 if (inode->i_nlink == 0) 1282 inode->i_blocks = 0; 1283 iput(inode); 1284 } 1285 brelse(bitmap_bh); 1286 return ERR_PTR(err); 1287 } 1288 1289 unsigned long ext4_count_free_inodes(struct super_block *sb) 1290 { 1291 unsigned long desc_count; 1292 struct ext4_group_desc *gdp; 1293 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 1294 #ifdef EXT4FS_DEBUG 1295 struct ext4_super_block *es; 1296 unsigned long bitmap_count, x; 1297 struct buffer_head *bitmap_bh = NULL; 1298 1299 es = EXT4_SB(sb)->s_es; 1300 desc_count = 0; 1301 bitmap_count = 0; 1302 gdp = NULL; 1303 for (i = 0; i < ngroups; i++) { 1304 gdp = ext4_get_group_desc(sb, i, NULL); 1305 if (!gdp) 1306 continue; 1307 desc_count += ext4_free_inodes_count(sb, gdp); 1308 brelse(bitmap_bh); 1309 bitmap_bh = ext4_read_inode_bitmap(sb, i); 1310 if (IS_ERR(bitmap_bh)) { 1311 bitmap_bh = NULL; 1312 continue; 1313 } 1314 1315 x = ext4_count_free(bitmap_bh->b_data, 1316 EXT4_INODES_PER_GROUP(sb) / 8); 1317 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n", 1318 (unsigned long) i, ext4_free_inodes_count(sb, gdp), x); 1319 bitmap_count += x; 1320 } 1321 brelse(bitmap_bh); 1322 printk(KERN_DEBUG "ext4_count_free_inodes: " 1323 "stored = %u, computed = %lu, %lu\n", 1324 le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count); 1325 return desc_count; 1326 #else 1327 desc_count = 0; 1328 for (i = 0; i < ngroups; i++) { 1329 gdp = ext4_get_group_desc(sb, i, NULL); 1330 if (!gdp) 1331 continue; 1332 desc_count += ext4_free_inodes_count(sb, gdp); 1333 cond_resched(); 1334 } 1335 return desc_count; 1336 #endif 1337 } 1338 1339 /* Called at mount-time, super-block is locked */ 1340 unsigned long ext4_count_dirs(struct super_block * sb) 1341 { 1342 unsigned long count = 0; 1343 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 1344 1345 for (i = 0; i < ngroups; i++) { 1346 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 1347 if (!gdp) 1348 continue; 1349 count += ext4_used_dirs_count(sb, gdp); 1350 } 1351 return count; 1352 } 1353 1354 /* 1355 * Zeroes not yet zeroed inode table - just write zeroes through the whole 1356 * inode table. Must be called without any spinlock held. The only place 1357 * where it is called from on active part of filesystem is ext4lazyinit 1358 * thread, so we do not need any special locks, however we have to prevent 1359 * inode allocation from the current group, so we take alloc_sem lock, to 1360 * block ext4_new_inode() until we are finished. 1361 */ 1362 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group, 1363 int barrier) 1364 { 1365 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1366 struct ext4_sb_info *sbi = EXT4_SB(sb); 1367 struct ext4_group_desc *gdp = NULL; 1368 struct buffer_head *group_desc_bh; 1369 handle_t *handle; 1370 ext4_fsblk_t blk; 1371 int num, ret = 0, used_blks = 0; 1372 1373 /* This should not happen, but just to be sure check this */ 1374 if (sb_rdonly(sb)) { 1375 ret = 1; 1376 goto out; 1377 } 1378 1379 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 1380 if (!gdp) 1381 goto out; 1382 1383 /* 1384 * We do not need to lock this, because we are the only one 1385 * handling this flag. 1386 */ 1387 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)) 1388 goto out; 1389 1390 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1); 1391 if (IS_ERR(handle)) { 1392 ret = PTR_ERR(handle); 1393 goto out; 1394 } 1395 1396 down_write(&grp->alloc_sem); 1397 /* 1398 * If inode bitmap was already initialized there may be some 1399 * used inodes so we need to skip blocks with used inodes in 1400 * inode table. 1401 */ 1402 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) 1403 used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) - 1404 ext4_itable_unused_count(sb, gdp)), 1405 sbi->s_inodes_per_block); 1406 1407 if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group) || 1408 ((group == 0) && ((EXT4_INODES_PER_GROUP(sb) - 1409 ext4_itable_unused_count(sb, gdp)) < 1410 EXT4_FIRST_INO(sb)))) { 1411 ext4_error(sb, "Something is wrong with group %u: " 1412 "used itable blocks: %d; " 1413 "itable unused count: %u", 1414 group, used_blks, 1415 ext4_itable_unused_count(sb, gdp)); 1416 ret = 1; 1417 goto err_out; 1418 } 1419 1420 blk = ext4_inode_table(sb, gdp) + used_blks; 1421 num = sbi->s_itb_per_group - used_blks; 1422 1423 BUFFER_TRACE(group_desc_bh, "get_write_access"); 1424 ret = ext4_journal_get_write_access(handle, 1425 group_desc_bh); 1426 if (ret) 1427 goto err_out; 1428 1429 /* 1430 * Skip zeroout if the inode table is full. But we set the ZEROED 1431 * flag anyway, because obviously, when it is full it does not need 1432 * further zeroing. 1433 */ 1434 if (unlikely(num == 0)) 1435 goto skip_zeroout; 1436 1437 ext4_debug("going to zero out inode table in group %d\n", 1438 group); 1439 ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS); 1440 if (ret < 0) 1441 goto err_out; 1442 if (barrier) 1443 blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL); 1444 1445 skip_zeroout: 1446 ext4_lock_group(sb, group); 1447 gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED); 1448 ext4_group_desc_csum_set(sb, group, gdp); 1449 ext4_unlock_group(sb, group); 1450 1451 BUFFER_TRACE(group_desc_bh, 1452 "call ext4_handle_dirty_metadata"); 1453 ret = ext4_handle_dirty_metadata(handle, NULL, 1454 group_desc_bh); 1455 1456 err_out: 1457 up_write(&grp->alloc_sem); 1458 ext4_journal_stop(handle); 1459 out: 1460 return ret; 1461 } 1462