1 /* 2 * linux/fs/ext4/ialloc.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * BSD ufs-inspired inode and directory allocation by 10 * Stephen Tweedie (sct@redhat.com), 1993 11 * Big-endian to little-endian byte-swapping/bitmaps by 12 * David S. Miller (davem@caip.rutgers.edu), 1995 13 */ 14 15 #include <linux/time.h> 16 #include <linux/fs.h> 17 #include <linux/stat.h> 18 #include <linux/string.h> 19 #include <linux/quotaops.h> 20 #include <linux/buffer_head.h> 21 #include <linux/random.h> 22 #include <linux/bitops.h> 23 #include <linux/blkdev.h> 24 #include <linux/cred.h> 25 26 #include <asm/byteorder.h> 27 28 #include "ext4.h" 29 #include "ext4_jbd2.h" 30 #include "xattr.h" 31 #include "acl.h" 32 33 #include <trace/events/ext4.h> 34 35 /* 36 * ialloc.c contains the inodes allocation and deallocation routines 37 */ 38 39 /* 40 * The free inodes are managed by bitmaps. A file system contains several 41 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap 42 * block for inodes, N blocks for the inode table and data blocks. 43 * 44 * The file system contains group descriptors which are located after the 45 * super block. Each descriptor contains the number of the bitmap block and 46 * the free blocks count in the block. 47 */ 48 49 /* 50 * To avoid calling the atomic setbit hundreds or thousands of times, we only 51 * need to use it within a single byte (to ensure we get endianness right). 52 * We can use memset for the rest of the bitmap as there are no other users. 53 */ 54 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap) 55 { 56 int i; 57 58 if (start_bit >= end_bit) 59 return; 60 61 ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit); 62 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++) 63 ext4_set_bit(i, bitmap); 64 if (i < end_bit) 65 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3); 66 } 67 68 /* Initializes an uninitialized inode bitmap */ 69 static int ext4_init_inode_bitmap(struct super_block *sb, 70 struct buffer_head *bh, 71 ext4_group_t block_group, 72 struct ext4_group_desc *gdp) 73 { 74 struct ext4_group_info *grp; 75 struct ext4_sb_info *sbi = EXT4_SB(sb); 76 J_ASSERT_BH(bh, buffer_locked(bh)); 77 78 /* If checksum is bad mark all blocks and inodes use to prevent 79 * allocation, essentially implementing a per-group read-only flag. */ 80 if (!ext4_group_desc_csum_verify(sb, block_group, gdp)) { 81 grp = ext4_get_group_info(sb, block_group); 82 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp)) 83 percpu_counter_sub(&sbi->s_freeclusters_counter, 84 grp->bb_free); 85 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state); 86 if (!EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) { 87 int count; 88 count = ext4_free_inodes_count(sb, gdp); 89 percpu_counter_sub(&sbi->s_freeinodes_counter, 90 count); 91 } 92 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state); 93 return -EFSBADCRC; 94 } 95 96 memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8); 97 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), sb->s_blocksize * 8, 98 bh->b_data); 99 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bh, 100 EXT4_INODES_PER_GROUP(sb) / 8); 101 ext4_group_desc_csum_set(sb, block_group, gdp); 102 103 return 0; 104 } 105 106 void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate) 107 { 108 if (uptodate) { 109 set_buffer_uptodate(bh); 110 set_bitmap_uptodate(bh); 111 } 112 unlock_buffer(bh); 113 put_bh(bh); 114 } 115 116 static int ext4_validate_inode_bitmap(struct super_block *sb, 117 struct ext4_group_desc *desc, 118 ext4_group_t block_group, 119 struct buffer_head *bh) 120 { 121 ext4_fsblk_t blk; 122 struct ext4_group_info *grp = ext4_get_group_info(sb, block_group); 123 struct ext4_sb_info *sbi = EXT4_SB(sb); 124 125 if (buffer_verified(bh)) 126 return 0; 127 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) 128 return -EFSCORRUPTED; 129 130 ext4_lock_group(sb, block_group); 131 blk = ext4_inode_bitmap(sb, desc); 132 if (!ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh, 133 EXT4_INODES_PER_GROUP(sb) / 8)) { 134 ext4_unlock_group(sb, block_group); 135 ext4_error(sb, "Corrupt inode bitmap - block_group = %u, " 136 "inode_bitmap = %llu", block_group, blk); 137 grp = ext4_get_group_info(sb, block_group); 138 if (!EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) { 139 int count; 140 count = ext4_free_inodes_count(sb, desc); 141 percpu_counter_sub(&sbi->s_freeinodes_counter, 142 count); 143 } 144 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state); 145 return -EFSBADCRC; 146 } 147 set_buffer_verified(bh); 148 ext4_unlock_group(sb, block_group); 149 return 0; 150 } 151 152 /* 153 * Read the inode allocation bitmap for a given block_group, reading 154 * into the specified slot in the superblock's bitmap cache. 155 * 156 * Return buffer_head of bitmap on success or NULL. 157 */ 158 static struct buffer_head * 159 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group) 160 { 161 struct ext4_group_desc *desc; 162 struct buffer_head *bh = NULL; 163 ext4_fsblk_t bitmap_blk; 164 int err; 165 166 desc = ext4_get_group_desc(sb, block_group, NULL); 167 if (!desc) 168 return ERR_PTR(-EFSCORRUPTED); 169 170 bitmap_blk = ext4_inode_bitmap(sb, desc); 171 bh = sb_getblk(sb, bitmap_blk); 172 if (unlikely(!bh)) { 173 ext4_error(sb, "Cannot read inode bitmap - " 174 "block_group = %u, inode_bitmap = %llu", 175 block_group, bitmap_blk); 176 return ERR_PTR(-EIO); 177 } 178 if (bitmap_uptodate(bh)) 179 goto verify; 180 181 lock_buffer(bh); 182 if (bitmap_uptodate(bh)) { 183 unlock_buffer(bh); 184 goto verify; 185 } 186 187 ext4_lock_group(sb, block_group); 188 if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) { 189 err = ext4_init_inode_bitmap(sb, bh, block_group, desc); 190 set_bitmap_uptodate(bh); 191 set_buffer_uptodate(bh); 192 set_buffer_verified(bh); 193 ext4_unlock_group(sb, block_group); 194 unlock_buffer(bh); 195 if (err) { 196 ext4_error(sb, "Failed to init inode bitmap for group " 197 "%u: %d", block_group, err); 198 goto out; 199 } 200 return bh; 201 } 202 ext4_unlock_group(sb, block_group); 203 204 if (buffer_uptodate(bh)) { 205 /* 206 * if not uninit if bh is uptodate, 207 * bitmap is also uptodate 208 */ 209 set_bitmap_uptodate(bh); 210 unlock_buffer(bh); 211 goto verify; 212 } 213 /* 214 * submit the buffer_head for reading 215 */ 216 trace_ext4_load_inode_bitmap(sb, block_group); 217 bh->b_end_io = ext4_end_bitmap_read; 218 get_bh(bh); 219 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh); 220 wait_on_buffer(bh); 221 if (!buffer_uptodate(bh)) { 222 put_bh(bh); 223 ext4_error(sb, "Cannot read inode bitmap - " 224 "block_group = %u, inode_bitmap = %llu", 225 block_group, bitmap_blk); 226 return ERR_PTR(-EIO); 227 } 228 229 verify: 230 err = ext4_validate_inode_bitmap(sb, desc, block_group, bh); 231 if (err) 232 goto out; 233 return bh; 234 out: 235 put_bh(bh); 236 return ERR_PTR(err); 237 } 238 239 /* 240 * NOTE! When we get the inode, we're the only people 241 * that have access to it, and as such there are no 242 * race conditions we have to worry about. The inode 243 * is not on the hash-lists, and it cannot be reached 244 * through the filesystem because the directory entry 245 * has been deleted earlier. 246 * 247 * HOWEVER: we must make sure that we get no aliases, 248 * which means that we have to call "clear_inode()" 249 * _before_ we mark the inode not in use in the inode 250 * bitmaps. Otherwise a newly created file might use 251 * the same inode number (not actually the same pointer 252 * though), and then we'd have two inodes sharing the 253 * same inode number and space on the harddisk. 254 */ 255 void ext4_free_inode(handle_t *handle, struct inode *inode) 256 { 257 struct super_block *sb = inode->i_sb; 258 int is_directory; 259 unsigned long ino; 260 struct buffer_head *bitmap_bh = NULL; 261 struct buffer_head *bh2; 262 ext4_group_t block_group; 263 unsigned long bit; 264 struct ext4_group_desc *gdp; 265 struct ext4_super_block *es; 266 struct ext4_sb_info *sbi; 267 int fatal = 0, err, count, cleared; 268 struct ext4_group_info *grp; 269 270 if (!sb) { 271 printk(KERN_ERR "EXT4-fs: %s:%d: inode on " 272 "nonexistent device\n", __func__, __LINE__); 273 return; 274 } 275 if (atomic_read(&inode->i_count) > 1) { 276 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d", 277 __func__, __LINE__, inode->i_ino, 278 atomic_read(&inode->i_count)); 279 return; 280 } 281 if (inode->i_nlink) { 282 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n", 283 __func__, __LINE__, inode->i_ino, inode->i_nlink); 284 return; 285 } 286 sbi = EXT4_SB(sb); 287 288 ino = inode->i_ino; 289 ext4_debug("freeing inode %lu\n", ino); 290 trace_ext4_free_inode(inode); 291 292 /* 293 * Note: we must free any quota before locking the superblock, 294 * as writing the quota to disk may need the lock as well. 295 */ 296 dquot_initialize(inode); 297 dquot_free_inode(inode); 298 dquot_drop(inode); 299 300 is_directory = S_ISDIR(inode->i_mode); 301 302 /* Do this BEFORE marking the inode not in use or returning an error */ 303 ext4_clear_inode(inode); 304 305 es = EXT4_SB(sb)->s_es; 306 if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) { 307 ext4_error(sb, "reserved or nonexistent inode %lu", ino); 308 goto error_return; 309 } 310 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 311 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 312 bitmap_bh = ext4_read_inode_bitmap(sb, block_group); 313 /* Don't bother if the inode bitmap is corrupt. */ 314 grp = ext4_get_group_info(sb, block_group); 315 if (IS_ERR(bitmap_bh)) { 316 fatal = PTR_ERR(bitmap_bh); 317 bitmap_bh = NULL; 318 goto error_return; 319 } 320 if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp))) { 321 fatal = -EFSCORRUPTED; 322 goto error_return; 323 } 324 325 BUFFER_TRACE(bitmap_bh, "get_write_access"); 326 fatal = ext4_journal_get_write_access(handle, bitmap_bh); 327 if (fatal) 328 goto error_return; 329 330 fatal = -ESRCH; 331 gdp = ext4_get_group_desc(sb, block_group, &bh2); 332 if (gdp) { 333 BUFFER_TRACE(bh2, "get_write_access"); 334 fatal = ext4_journal_get_write_access(handle, bh2); 335 } 336 ext4_lock_group(sb, block_group); 337 cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data); 338 if (fatal || !cleared) { 339 ext4_unlock_group(sb, block_group); 340 goto out; 341 } 342 343 count = ext4_free_inodes_count(sb, gdp) + 1; 344 ext4_free_inodes_set(sb, gdp, count); 345 if (is_directory) { 346 count = ext4_used_dirs_count(sb, gdp) - 1; 347 ext4_used_dirs_set(sb, gdp, count); 348 percpu_counter_dec(&sbi->s_dirs_counter); 349 } 350 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh, 351 EXT4_INODES_PER_GROUP(sb) / 8); 352 ext4_group_desc_csum_set(sb, block_group, gdp); 353 ext4_unlock_group(sb, block_group); 354 355 percpu_counter_inc(&sbi->s_freeinodes_counter); 356 if (sbi->s_log_groups_per_flex) { 357 ext4_group_t f = ext4_flex_group(sbi, block_group); 358 359 atomic_inc(&sbi->s_flex_groups[f].free_inodes); 360 if (is_directory) 361 atomic_dec(&sbi->s_flex_groups[f].used_dirs); 362 } 363 BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata"); 364 fatal = ext4_handle_dirty_metadata(handle, NULL, bh2); 365 out: 366 if (cleared) { 367 BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata"); 368 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 369 if (!fatal) 370 fatal = err; 371 } else { 372 ext4_error(sb, "bit already cleared for inode %lu", ino); 373 if (gdp && !EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) { 374 int count; 375 count = ext4_free_inodes_count(sb, gdp); 376 percpu_counter_sub(&sbi->s_freeinodes_counter, 377 count); 378 } 379 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state); 380 } 381 382 error_return: 383 brelse(bitmap_bh); 384 ext4_std_error(sb, fatal); 385 } 386 387 struct orlov_stats { 388 __u64 free_clusters; 389 __u32 free_inodes; 390 __u32 used_dirs; 391 }; 392 393 /* 394 * Helper function for Orlov's allocator; returns critical information 395 * for a particular block group or flex_bg. If flex_size is 1, then g 396 * is a block group number; otherwise it is flex_bg number. 397 */ 398 static void get_orlov_stats(struct super_block *sb, ext4_group_t g, 399 int flex_size, struct orlov_stats *stats) 400 { 401 struct ext4_group_desc *desc; 402 struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups; 403 404 if (flex_size > 1) { 405 stats->free_inodes = atomic_read(&flex_group[g].free_inodes); 406 stats->free_clusters = atomic64_read(&flex_group[g].free_clusters); 407 stats->used_dirs = atomic_read(&flex_group[g].used_dirs); 408 return; 409 } 410 411 desc = ext4_get_group_desc(sb, g, NULL); 412 if (desc) { 413 stats->free_inodes = ext4_free_inodes_count(sb, desc); 414 stats->free_clusters = ext4_free_group_clusters(sb, desc); 415 stats->used_dirs = ext4_used_dirs_count(sb, desc); 416 } else { 417 stats->free_inodes = 0; 418 stats->free_clusters = 0; 419 stats->used_dirs = 0; 420 } 421 } 422 423 /* 424 * Orlov's allocator for directories. 425 * 426 * We always try to spread first-level directories. 427 * 428 * If there are blockgroups with both free inodes and free blocks counts 429 * not worse than average we return one with smallest directory count. 430 * Otherwise we simply return a random group. 431 * 432 * For the rest rules look so: 433 * 434 * It's OK to put directory into a group unless 435 * it has too many directories already (max_dirs) or 436 * it has too few free inodes left (min_inodes) or 437 * it has too few free blocks left (min_blocks) or 438 * Parent's group is preferred, if it doesn't satisfy these 439 * conditions we search cyclically through the rest. If none 440 * of the groups look good we just look for a group with more 441 * free inodes than average (starting at parent's group). 442 */ 443 444 static int find_group_orlov(struct super_block *sb, struct inode *parent, 445 ext4_group_t *group, umode_t mode, 446 const struct qstr *qstr) 447 { 448 ext4_group_t parent_group = EXT4_I(parent)->i_block_group; 449 struct ext4_sb_info *sbi = EXT4_SB(sb); 450 ext4_group_t real_ngroups = ext4_get_groups_count(sb); 451 int inodes_per_group = EXT4_INODES_PER_GROUP(sb); 452 unsigned int freei, avefreei, grp_free; 453 ext4_fsblk_t freeb, avefreec; 454 unsigned int ndirs; 455 int max_dirs, min_inodes; 456 ext4_grpblk_t min_clusters; 457 ext4_group_t i, grp, g, ngroups; 458 struct ext4_group_desc *desc; 459 struct orlov_stats stats; 460 int flex_size = ext4_flex_bg_size(sbi); 461 struct dx_hash_info hinfo; 462 463 ngroups = real_ngroups; 464 if (flex_size > 1) { 465 ngroups = (real_ngroups + flex_size - 1) >> 466 sbi->s_log_groups_per_flex; 467 parent_group >>= sbi->s_log_groups_per_flex; 468 } 469 470 freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter); 471 avefreei = freei / ngroups; 472 freeb = EXT4_C2B(sbi, 473 percpu_counter_read_positive(&sbi->s_freeclusters_counter)); 474 avefreec = freeb; 475 do_div(avefreec, ngroups); 476 ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter); 477 478 if (S_ISDIR(mode) && 479 ((parent == d_inode(sb->s_root)) || 480 (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) { 481 int best_ndir = inodes_per_group; 482 int ret = -1; 483 484 if (qstr) { 485 hinfo.hash_version = DX_HASH_HALF_MD4; 486 hinfo.seed = sbi->s_hash_seed; 487 ext4fs_dirhash(qstr->name, qstr->len, &hinfo); 488 grp = hinfo.hash; 489 } else 490 grp = prandom_u32(); 491 parent_group = (unsigned)grp % ngroups; 492 for (i = 0; i < ngroups; i++) { 493 g = (parent_group + i) % ngroups; 494 get_orlov_stats(sb, g, flex_size, &stats); 495 if (!stats.free_inodes) 496 continue; 497 if (stats.used_dirs >= best_ndir) 498 continue; 499 if (stats.free_inodes < avefreei) 500 continue; 501 if (stats.free_clusters < avefreec) 502 continue; 503 grp = g; 504 ret = 0; 505 best_ndir = stats.used_dirs; 506 } 507 if (ret) 508 goto fallback; 509 found_flex_bg: 510 if (flex_size == 1) { 511 *group = grp; 512 return 0; 513 } 514 515 /* 516 * We pack inodes at the beginning of the flexgroup's 517 * inode tables. Block allocation decisions will do 518 * something similar, although regular files will 519 * start at 2nd block group of the flexgroup. See 520 * ext4_ext_find_goal() and ext4_find_near(). 521 */ 522 grp *= flex_size; 523 for (i = 0; i < flex_size; i++) { 524 if (grp+i >= real_ngroups) 525 break; 526 desc = ext4_get_group_desc(sb, grp+i, NULL); 527 if (desc && ext4_free_inodes_count(sb, desc)) { 528 *group = grp+i; 529 return 0; 530 } 531 } 532 goto fallback; 533 } 534 535 max_dirs = ndirs / ngroups + inodes_per_group / 16; 536 min_inodes = avefreei - inodes_per_group*flex_size / 4; 537 if (min_inodes < 1) 538 min_inodes = 1; 539 min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4; 540 541 /* 542 * Start looking in the flex group where we last allocated an 543 * inode for this parent directory 544 */ 545 if (EXT4_I(parent)->i_last_alloc_group != ~0) { 546 parent_group = EXT4_I(parent)->i_last_alloc_group; 547 if (flex_size > 1) 548 parent_group >>= sbi->s_log_groups_per_flex; 549 } 550 551 for (i = 0; i < ngroups; i++) { 552 grp = (parent_group + i) % ngroups; 553 get_orlov_stats(sb, grp, flex_size, &stats); 554 if (stats.used_dirs >= max_dirs) 555 continue; 556 if (stats.free_inodes < min_inodes) 557 continue; 558 if (stats.free_clusters < min_clusters) 559 continue; 560 goto found_flex_bg; 561 } 562 563 fallback: 564 ngroups = real_ngroups; 565 avefreei = freei / ngroups; 566 fallback_retry: 567 parent_group = EXT4_I(parent)->i_block_group; 568 for (i = 0; i < ngroups; i++) { 569 grp = (parent_group + i) % ngroups; 570 desc = ext4_get_group_desc(sb, grp, NULL); 571 if (desc) { 572 grp_free = ext4_free_inodes_count(sb, desc); 573 if (grp_free && grp_free >= avefreei) { 574 *group = grp; 575 return 0; 576 } 577 } 578 } 579 580 if (avefreei) { 581 /* 582 * The free-inodes counter is approximate, and for really small 583 * filesystems the above test can fail to find any blockgroups 584 */ 585 avefreei = 0; 586 goto fallback_retry; 587 } 588 589 return -1; 590 } 591 592 static int find_group_other(struct super_block *sb, struct inode *parent, 593 ext4_group_t *group, umode_t mode) 594 { 595 ext4_group_t parent_group = EXT4_I(parent)->i_block_group; 596 ext4_group_t i, last, ngroups = ext4_get_groups_count(sb); 597 struct ext4_group_desc *desc; 598 int flex_size = ext4_flex_bg_size(EXT4_SB(sb)); 599 600 /* 601 * Try to place the inode is the same flex group as its 602 * parent. If we can't find space, use the Orlov algorithm to 603 * find another flex group, and store that information in the 604 * parent directory's inode information so that use that flex 605 * group for future allocations. 606 */ 607 if (flex_size > 1) { 608 int retry = 0; 609 610 try_again: 611 parent_group &= ~(flex_size-1); 612 last = parent_group + flex_size; 613 if (last > ngroups) 614 last = ngroups; 615 for (i = parent_group; i < last; i++) { 616 desc = ext4_get_group_desc(sb, i, NULL); 617 if (desc && ext4_free_inodes_count(sb, desc)) { 618 *group = i; 619 return 0; 620 } 621 } 622 if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) { 623 retry = 1; 624 parent_group = EXT4_I(parent)->i_last_alloc_group; 625 goto try_again; 626 } 627 /* 628 * If this didn't work, use the Orlov search algorithm 629 * to find a new flex group; we pass in the mode to 630 * avoid the topdir algorithms. 631 */ 632 *group = parent_group + flex_size; 633 if (*group > ngroups) 634 *group = 0; 635 return find_group_orlov(sb, parent, group, mode, NULL); 636 } 637 638 /* 639 * Try to place the inode in its parent directory 640 */ 641 *group = parent_group; 642 desc = ext4_get_group_desc(sb, *group, NULL); 643 if (desc && ext4_free_inodes_count(sb, desc) && 644 ext4_free_group_clusters(sb, desc)) 645 return 0; 646 647 /* 648 * We're going to place this inode in a different blockgroup from its 649 * parent. We want to cause files in a common directory to all land in 650 * the same blockgroup. But we want files which are in a different 651 * directory which shares a blockgroup with our parent to land in a 652 * different blockgroup. 653 * 654 * So add our directory's i_ino into the starting point for the hash. 655 */ 656 *group = (*group + parent->i_ino) % ngroups; 657 658 /* 659 * Use a quadratic hash to find a group with a free inode and some free 660 * blocks. 661 */ 662 for (i = 1; i < ngroups; i <<= 1) { 663 *group += i; 664 if (*group >= ngroups) 665 *group -= ngroups; 666 desc = ext4_get_group_desc(sb, *group, NULL); 667 if (desc && ext4_free_inodes_count(sb, desc) && 668 ext4_free_group_clusters(sb, desc)) 669 return 0; 670 } 671 672 /* 673 * That failed: try linear search for a free inode, even if that group 674 * has no free blocks. 675 */ 676 *group = parent_group; 677 for (i = 0; i < ngroups; i++) { 678 if (++*group >= ngroups) 679 *group = 0; 680 desc = ext4_get_group_desc(sb, *group, NULL); 681 if (desc && ext4_free_inodes_count(sb, desc)) 682 return 0; 683 } 684 685 return -1; 686 } 687 688 /* 689 * In no journal mode, if an inode has recently been deleted, we want 690 * to avoid reusing it until we're reasonably sure the inode table 691 * block has been written back to disk. (Yes, these values are 692 * somewhat arbitrary...) 693 */ 694 #define RECENTCY_MIN 5 695 #define RECENTCY_DIRTY 30 696 697 static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino) 698 { 699 struct ext4_group_desc *gdp; 700 struct ext4_inode *raw_inode; 701 struct buffer_head *bh; 702 unsigned long dtime, now; 703 int inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 704 int offset, ret = 0, recentcy = RECENTCY_MIN; 705 706 gdp = ext4_get_group_desc(sb, group, NULL); 707 if (unlikely(!gdp)) 708 return 0; 709 710 bh = sb_getblk(sb, ext4_inode_table(sb, gdp) + 711 (ino / inodes_per_block)); 712 if (unlikely(!bh) || !buffer_uptodate(bh)) 713 /* 714 * If the block is not in the buffer cache, then it 715 * must have been written out. 716 */ 717 goto out; 718 719 offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb); 720 raw_inode = (struct ext4_inode *) (bh->b_data + offset); 721 dtime = le32_to_cpu(raw_inode->i_dtime); 722 now = get_seconds(); 723 if (buffer_dirty(bh)) 724 recentcy += RECENTCY_DIRTY; 725 726 if (dtime && (dtime < now) && (now < dtime + recentcy)) 727 ret = 1; 728 out: 729 brelse(bh); 730 return ret; 731 } 732 733 /* 734 * There are two policies for allocating an inode. If the new inode is 735 * a directory, then a forward search is made for a block group with both 736 * free space and a low directory-to-inode ratio; if that fails, then of 737 * the groups with above-average free space, that group with the fewest 738 * directories already is chosen. 739 * 740 * For other inodes, search forward from the parent directory's block 741 * group to find a free inode. 742 */ 743 struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir, 744 umode_t mode, const struct qstr *qstr, 745 __u32 goal, uid_t *owner, __u32 i_flags, 746 int handle_type, unsigned int line_no, 747 int nblocks) 748 { 749 struct super_block *sb; 750 struct buffer_head *inode_bitmap_bh = NULL; 751 struct buffer_head *group_desc_bh; 752 ext4_group_t ngroups, group = 0; 753 unsigned long ino = 0; 754 struct inode *inode; 755 struct ext4_group_desc *gdp = NULL; 756 struct ext4_inode_info *ei; 757 struct ext4_sb_info *sbi; 758 int ret2, err; 759 struct inode *ret; 760 ext4_group_t i; 761 ext4_group_t flex_group; 762 struct ext4_group_info *grp; 763 int encrypt = 0; 764 765 /* Cannot create files in a deleted directory */ 766 if (!dir || !dir->i_nlink) 767 return ERR_PTR(-EPERM); 768 769 sb = dir->i_sb; 770 sbi = EXT4_SB(sb); 771 772 if (unlikely(ext4_forced_shutdown(sbi))) 773 return ERR_PTR(-EIO); 774 775 if ((ext4_encrypted_inode(dir) || DUMMY_ENCRYPTION_ENABLED(sbi)) && 776 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)) && 777 !(i_flags & EXT4_EA_INODE_FL)) { 778 err = fscrypt_get_encryption_info(dir); 779 if (err) 780 return ERR_PTR(err); 781 if (!fscrypt_has_encryption_key(dir)) 782 return ERR_PTR(-ENOKEY); 783 encrypt = 1; 784 } 785 786 if (!handle && sbi->s_journal && !(i_flags & EXT4_EA_INODE_FL)) { 787 #ifdef CONFIG_EXT4_FS_POSIX_ACL 788 struct posix_acl *p = get_acl(dir, ACL_TYPE_DEFAULT); 789 790 if (p) { 791 int acl_size = p->a_count * sizeof(ext4_acl_entry); 792 793 nblocks += (S_ISDIR(mode) ? 2 : 1) * 794 __ext4_xattr_set_credits(sb, NULL /* inode */, 795 NULL /* block_bh */, acl_size, 796 true /* is_create */); 797 posix_acl_release(p); 798 } 799 #endif 800 801 #ifdef CONFIG_SECURITY 802 { 803 int num_security_xattrs = 1; 804 805 #ifdef CONFIG_INTEGRITY 806 num_security_xattrs++; 807 #endif 808 /* 809 * We assume that security xattrs are never 810 * more than 1k. In practice they are under 811 * 128 bytes. 812 */ 813 nblocks += num_security_xattrs * 814 __ext4_xattr_set_credits(sb, NULL /* inode */, 815 NULL /* block_bh */, 1024, 816 true /* is_create */); 817 } 818 #endif 819 if (encrypt) 820 nblocks += __ext4_xattr_set_credits(sb, 821 NULL /* inode */, NULL /* block_bh */, 822 FSCRYPT_SET_CONTEXT_MAX_SIZE, 823 true /* is_create */); 824 } 825 826 ngroups = ext4_get_groups_count(sb); 827 trace_ext4_request_inode(dir, mode); 828 inode = new_inode(sb); 829 if (!inode) 830 return ERR_PTR(-ENOMEM); 831 ei = EXT4_I(inode); 832 833 /* 834 * Initialize owners and quota early so that we don't have to account 835 * for quota initialization worst case in standard inode creating 836 * transaction 837 */ 838 if (owner) { 839 inode->i_mode = mode; 840 i_uid_write(inode, owner[0]); 841 i_gid_write(inode, owner[1]); 842 } else if (test_opt(sb, GRPID)) { 843 inode->i_mode = mode; 844 inode->i_uid = current_fsuid(); 845 inode->i_gid = dir->i_gid; 846 } else 847 inode_init_owner(inode, dir, mode); 848 849 if (ext4_has_feature_project(sb) && 850 ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT)) 851 ei->i_projid = EXT4_I(dir)->i_projid; 852 else 853 ei->i_projid = make_kprojid(&init_user_ns, EXT4_DEF_PROJID); 854 855 err = dquot_initialize(inode); 856 if (err) 857 goto out; 858 859 if (!goal) 860 goal = sbi->s_inode_goal; 861 862 if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) { 863 group = (goal - 1) / EXT4_INODES_PER_GROUP(sb); 864 ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb); 865 ret2 = 0; 866 goto got_group; 867 } 868 869 if (S_ISDIR(mode)) 870 ret2 = find_group_orlov(sb, dir, &group, mode, qstr); 871 else 872 ret2 = find_group_other(sb, dir, &group, mode); 873 874 got_group: 875 EXT4_I(dir)->i_last_alloc_group = group; 876 err = -ENOSPC; 877 if (ret2 == -1) 878 goto out; 879 880 /* 881 * Normally we will only go through one pass of this loop, 882 * unless we get unlucky and it turns out the group we selected 883 * had its last inode grabbed by someone else. 884 */ 885 for (i = 0; i < ngroups; i++, ino = 0) { 886 err = -EIO; 887 888 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 889 if (!gdp) 890 goto out; 891 892 /* 893 * Check free inodes count before loading bitmap. 894 */ 895 if (ext4_free_inodes_count(sb, gdp) == 0) { 896 if (++group == ngroups) 897 group = 0; 898 continue; 899 } 900 901 grp = ext4_get_group_info(sb, group); 902 /* Skip groups with already-known suspicious inode tables */ 903 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) { 904 if (++group == ngroups) 905 group = 0; 906 continue; 907 } 908 909 brelse(inode_bitmap_bh); 910 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group); 911 /* Skip groups with suspicious inode tables */ 912 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp) || 913 IS_ERR(inode_bitmap_bh)) { 914 inode_bitmap_bh = NULL; 915 if (++group == ngroups) 916 group = 0; 917 continue; 918 } 919 920 repeat_in_this_group: 921 ino = ext4_find_next_zero_bit((unsigned long *) 922 inode_bitmap_bh->b_data, 923 EXT4_INODES_PER_GROUP(sb), ino); 924 if (ino >= EXT4_INODES_PER_GROUP(sb)) 925 goto next_group; 926 if (group == 0 && (ino+1) < EXT4_FIRST_INO(sb)) { 927 ext4_error(sb, "reserved inode found cleared - " 928 "inode=%lu", ino + 1); 929 continue; 930 } 931 if ((EXT4_SB(sb)->s_journal == NULL) && 932 recently_deleted(sb, group, ino)) { 933 ino++; 934 goto next_inode; 935 } 936 if (!handle) { 937 BUG_ON(nblocks <= 0); 938 handle = __ext4_journal_start_sb(dir->i_sb, line_no, 939 handle_type, nblocks, 940 0); 941 if (IS_ERR(handle)) { 942 err = PTR_ERR(handle); 943 ext4_std_error(sb, err); 944 goto out; 945 } 946 } 947 BUFFER_TRACE(inode_bitmap_bh, "get_write_access"); 948 err = ext4_journal_get_write_access(handle, inode_bitmap_bh); 949 if (err) { 950 ext4_std_error(sb, err); 951 goto out; 952 } 953 ext4_lock_group(sb, group); 954 ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data); 955 ext4_unlock_group(sb, group); 956 ino++; /* the inode bitmap is zero-based */ 957 if (!ret2) 958 goto got; /* we grabbed the inode! */ 959 next_inode: 960 if (ino < EXT4_INODES_PER_GROUP(sb)) 961 goto repeat_in_this_group; 962 next_group: 963 if (++group == ngroups) 964 group = 0; 965 } 966 err = -ENOSPC; 967 goto out; 968 969 got: 970 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata"); 971 err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh); 972 if (err) { 973 ext4_std_error(sb, err); 974 goto out; 975 } 976 977 BUFFER_TRACE(group_desc_bh, "get_write_access"); 978 err = ext4_journal_get_write_access(handle, group_desc_bh); 979 if (err) { 980 ext4_std_error(sb, err); 981 goto out; 982 } 983 984 /* We may have to initialize the block bitmap if it isn't already */ 985 if (ext4_has_group_desc_csum(sb) && 986 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 987 struct buffer_head *block_bitmap_bh; 988 989 block_bitmap_bh = ext4_read_block_bitmap(sb, group); 990 if (IS_ERR(block_bitmap_bh)) { 991 err = PTR_ERR(block_bitmap_bh); 992 goto out; 993 } 994 BUFFER_TRACE(block_bitmap_bh, "get block bitmap access"); 995 err = ext4_journal_get_write_access(handle, block_bitmap_bh); 996 if (err) { 997 brelse(block_bitmap_bh); 998 ext4_std_error(sb, err); 999 goto out; 1000 } 1001 1002 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap"); 1003 err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh); 1004 1005 /* recheck and clear flag under lock if we still need to */ 1006 ext4_lock_group(sb, group); 1007 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 1008 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 1009 ext4_free_group_clusters_set(sb, gdp, 1010 ext4_free_clusters_after_init(sb, group, gdp)); 1011 ext4_block_bitmap_csum_set(sb, group, gdp, 1012 block_bitmap_bh); 1013 ext4_group_desc_csum_set(sb, group, gdp); 1014 } 1015 ext4_unlock_group(sb, group); 1016 brelse(block_bitmap_bh); 1017 1018 if (err) { 1019 ext4_std_error(sb, err); 1020 goto out; 1021 } 1022 } 1023 1024 /* Update the relevant bg descriptor fields */ 1025 if (ext4_has_group_desc_csum(sb)) { 1026 int free; 1027 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1028 1029 down_read(&grp->alloc_sem); /* protect vs itable lazyinit */ 1030 ext4_lock_group(sb, group); /* while we modify the bg desc */ 1031 free = EXT4_INODES_PER_GROUP(sb) - 1032 ext4_itable_unused_count(sb, gdp); 1033 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) { 1034 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT); 1035 free = 0; 1036 } 1037 /* 1038 * Check the relative inode number against the last used 1039 * relative inode number in this group. if it is greater 1040 * we need to update the bg_itable_unused count 1041 */ 1042 if (ino > free) 1043 ext4_itable_unused_set(sb, gdp, 1044 (EXT4_INODES_PER_GROUP(sb) - ino)); 1045 up_read(&grp->alloc_sem); 1046 } else { 1047 ext4_lock_group(sb, group); 1048 } 1049 1050 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1); 1051 if (S_ISDIR(mode)) { 1052 ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1); 1053 if (sbi->s_log_groups_per_flex) { 1054 ext4_group_t f = ext4_flex_group(sbi, group); 1055 1056 atomic_inc(&sbi->s_flex_groups[f].used_dirs); 1057 } 1058 } 1059 if (ext4_has_group_desc_csum(sb)) { 1060 ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh, 1061 EXT4_INODES_PER_GROUP(sb) / 8); 1062 ext4_group_desc_csum_set(sb, group, gdp); 1063 } 1064 ext4_unlock_group(sb, group); 1065 1066 BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata"); 1067 err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh); 1068 if (err) { 1069 ext4_std_error(sb, err); 1070 goto out; 1071 } 1072 1073 percpu_counter_dec(&sbi->s_freeinodes_counter); 1074 if (S_ISDIR(mode)) 1075 percpu_counter_inc(&sbi->s_dirs_counter); 1076 1077 if (sbi->s_log_groups_per_flex) { 1078 flex_group = ext4_flex_group(sbi, group); 1079 atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes); 1080 } 1081 1082 inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb); 1083 /* This is the optimal IO size (for stat), not the fs block size */ 1084 inode->i_blocks = 0; 1085 inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime = 1086 current_time(inode); 1087 1088 memset(ei->i_data, 0, sizeof(ei->i_data)); 1089 ei->i_dir_start_lookup = 0; 1090 ei->i_disksize = 0; 1091 1092 /* Don't inherit extent flag from directory, amongst others. */ 1093 ei->i_flags = 1094 ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED); 1095 ei->i_flags |= i_flags; 1096 ei->i_file_acl = 0; 1097 ei->i_dtime = 0; 1098 ei->i_block_group = group; 1099 ei->i_last_alloc_group = ~0; 1100 1101 ext4_set_inode_flags(inode); 1102 if (IS_DIRSYNC(inode)) 1103 ext4_handle_sync(handle); 1104 if (insert_inode_locked(inode) < 0) { 1105 /* 1106 * Likely a bitmap corruption causing inode to be allocated 1107 * twice. 1108 */ 1109 err = -EIO; 1110 ext4_error(sb, "failed to insert inode %lu: doubly allocated?", 1111 inode->i_ino); 1112 goto out; 1113 } 1114 spin_lock(&sbi->s_next_gen_lock); 1115 inode->i_generation = sbi->s_next_generation++; 1116 spin_unlock(&sbi->s_next_gen_lock); 1117 1118 /* Precompute checksum seed for inode metadata */ 1119 if (ext4_has_metadata_csum(sb)) { 1120 __u32 csum; 1121 __le32 inum = cpu_to_le32(inode->i_ino); 1122 __le32 gen = cpu_to_le32(inode->i_generation); 1123 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 1124 sizeof(inum)); 1125 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 1126 sizeof(gen)); 1127 } 1128 1129 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 1130 ext4_set_inode_state(inode, EXT4_STATE_NEW); 1131 1132 ei->i_extra_isize = EXT4_SB(sb)->s_want_extra_isize; 1133 ei->i_inline_off = 0; 1134 if (ext4_has_feature_inline_data(sb)) 1135 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 1136 ret = inode; 1137 err = dquot_alloc_inode(inode); 1138 if (err) 1139 goto fail_drop; 1140 1141 /* 1142 * Since the encryption xattr will always be unique, create it first so 1143 * that it's less likely to end up in an external xattr block and 1144 * prevent its deduplication. 1145 */ 1146 if (encrypt) { 1147 err = fscrypt_inherit_context(dir, inode, handle, true); 1148 if (err) 1149 goto fail_free_drop; 1150 } 1151 1152 if (!(ei->i_flags & EXT4_EA_INODE_FL)) { 1153 err = ext4_init_acl(handle, inode, dir); 1154 if (err) 1155 goto fail_free_drop; 1156 1157 err = ext4_init_security(handle, inode, dir, qstr); 1158 if (err) 1159 goto fail_free_drop; 1160 } 1161 1162 if (ext4_has_feature_extents(sb)) { 1163 /* set extent flag only for directory, file and normal symlink*/ 1164 if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) { 1165 ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS); 1166 ext4_ext_tree_init(handle, inode); 1167 } 1168 } 1169 1170 if (ext4_handle_valid(handle)) { 1171 ei->i_sync_tid = handle->h_transaction->t_tid; 1172 ei->i_datasync_tid = handle->h_transaction->t_tid; 1173 } 1174 1175 err = ext4_mark_inode_dirty(handle, inode); 1176 if (err) { 1177 ext4_std_error(sb, err); 1178 goto fail_free_drop; 1179 } 1180 1181 ext4_debug("allocating inode %lu\n", inode->i_ino); 1182 trace_ext4_allocate_inode(inode, dir, mode); 1183 brelse(inode_bitmap_bh); 1184 return ret; 1185 1186 fail_free_drop: 1187 dquot_free_inode(inode); 1188 fail_drop: 1189 clear_nlink(inode); 1190 unlock_new_inode(inode); 1191 out: 1192 dquot_drop(inode); 1193 inode->i_flags |= S_NOQUOTA; 1194 iput(inode); 1195 brelse(inode_bitmap_bh); 1196 return ERR_PTR(err); 1197 } 1198 1199 /* Verify that we are loading a valid orphan from disk */ 1200 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino) 1201 { 1202 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count); 1203 ext4_group_t block_group; 1204 int bit; 1205 struct buffer_head *bitmap_bh = NULL; 1206 struct inode *inode = NULL; 1207 int err = -EFSCORRUPTED; 1208 1209 if (ino < EXT4_FIRST_INO(sb) || ino > max_ino) 1210 goto bad_orphan; 1211 1212 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 1213 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 1214 bitmap_bh = ext4_read_inode_bitmap(sb, block_group); 1215 if (IS_ERR(bitmap_bh)) { 1216 ext4_error(sb, "inode bitmap error %ld for orphan %lu", 1217 ino, PTR_ERR(bitmap_bh)); 1218 return (struct inode *) bitmap_bh; 1219 } 1220 1221 /* Having the inode bit set should be a 100% indicator that this 1222 * is a valid orphan (no e2fsck run on fs). Orphans also include 1223 * inodes that were being truncated, so we can't check i_nlink==0. 1224 */ 1225 if (!ext4_test_bit(bit, bitmap_bh->b_data)) 1226 goto bad_orphan; 1227 1228 inode = ext4_iget(sb, ino); 1229 if (IS_ERR(inode)) { 1230 err = PTR_ERR(inode); 1231 ext4_error(sb, "couldn't read orphan inode %lu (err %d)", 1232 ino, err); 1233 return inode; 1234 } 1235 1236 /* 1237 * If the orphans has i_nlinks > 0 then it should be able to 1238 * be truncated, otherwise it won't be removed from the orphan 1239 * list during processing and an infinite loop will result. 1240 * Similarly, it must not be a bad inode. 1241 */ 1242 if ((inode->i_nlink && !ext4_can_truncate(inode)) || 1243 is_bad_inode(inode)) 1244 goto bad_orphan; 1245 1246 if (NEXT_ORPHAN(inode) > max_ino) 1247 goto bad_orphan; 1248 brelse(bitmap_bh); 1249 return inode; 1250 1251 bad_orphan: 1252 ext4_error(sb, "bad orphan inode %lu", ino); 1253 if (bitmap_bh) 1254 printk(KERN_ERR "ext4_test_bit(bit=%d, block=%llu) = %d\n", 1255 bit, (unsigned long long)bitmap_bh->b_blocknr, 1256 ext4_test_bit(bit, bitmap_bh->b_data)); 1257 if (inode) { 1258 printk(KERN_ERR "is_bad_inode(inode)=%d\n", 1259 is_bad_inode(inode)); 1260 printk(KERN_ERR "NEXT_ORPHAN(inode)=%u\n", 1261 NEXT_ORPHAN(inode)); 1262 printk(KERN_ERR "max_ino=%lu\n", max_ino); 1263 printk(KERN_ERR "i_nlink=%u\n", inode->i_nlink); 1264 /* Avoid freeing blocks if we got a bad deleted inode */ 1265 if (inode->i_nlink == 0) 1266 inode->i_blocks = 0; 1267 iput(inode); 1268 } 1269 brelse(bitmap_bh); 1270 return ERR_PTR(err); 1271 } 1272 1273 unsigned long ext4_count_free_inodes(struct super_block *sb) 1274 { 1275 unsigned long desc_count; 1276 struct ext4_group_desc *gdp; 1277 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 1278 #ifdef EXT4FS_DEBUG 1279 struct ext4_super_block *es; 1280 unsigned long bitmap_count, x; 1281 struct buffer_head *bitmap_bh = NULL; 1282 1283 es = EXT4_SB(sb)->s_es; 1284 desc_count = 0; 1285 bitmap_count = 0; 1286 gdp = NULL; 1287 for (i = 0; i < ngroups; i++) { 1288 gdp = ext4_get_group_desc(sb, i, NULL); 1289 if (!gdp) 1290 continue; 1291 desc_count += ext4_free_inodes_count(sb, gdp); 1292 brelse(bitmap_bh); 1293 bitmap_bh = ext4_read_inode_bitmap(sb, i); 1294 if (IS_ERR(bitmap_bh)) { 1295 bitmap_bh = NULL; 1296 continue; 1297 } 1298 1299 x = ext4_count_free(bitmap_bh->b_data, 1300 EXT4_INODES_PER_GROUP(sb) / 8); 1301 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n", 1302 (unsigned long) i, ext4_free_inodes_count(sb, gdp), x); 1303 bitmap_count += x; 1304 } 1305 brelse(bitmap_bh); 1306 printk(KERN_DEBUG "ext4_count_free_inodes: " 1307 "stored = %u, computed = %lu, %lu\n", 1308 le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count); 1309 return desc_count; 1310 #else 1311 desc_count = 0; 1312 for (i = 0; i < ngroups; i++) { 1313 gdp = ext4_get_group_desc(sb, i, NULL); 1314 if (!gdp) 1315 continue; 1316 desc_count += ext4_free_inodes_count(sb, gdp); 1317 cond_resched(); 1318 } 1319 return desc_count; 1320 #endif 1321 } 1322 1323 /* Called at mount-time, super-block is locked */ 1324 unsigned long ext4_count_dirs(struct super_block * sb) 1325 { 1326 unsigned long count = 0; 1327 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 1328 1329 for (i = 0; i < ngroups; i++) { 1330 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 1331 if (!gdp) 1332 continue; 1333 count += ext4_used_dirs_count(sb, gdp); 1334 } 1335 return count; 1336 } 1337 1338 /* 1339 * Zeroes not yet zeroed inode table - just write zeroes through the whole 1340 * inode table. Must be called without any spinlock held. The only place 1341 * where it is called from on active part of filesystem is ext4lazyinit 1342 * thread, so we do not need any special locks, however we have to prevent 1343 * inode allocation from the current group, so we take alloc_sem lock, to 1344 * block ext4_new_inode() until we are finished. 1345 */ 1346 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group, 1347 int barrier) 1348 { 1349 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1350 struct ext4_sb_info *sbi = EXT4_SB(sb); 1351 struct ext4_group_desc *gdp = NULL; 1352 struct buffer_head *group_desc_bh; 1353 handle_t *handle; 1354 ext4_fsblk_t blk; 1355 int num, ret = 0, used_blks = 0; 1356 1357 /* This should not happen, but just to be sure check this */ 1358 if (sb->s_flags & MS_RDONLY) { 1359 ret = 1; 1360 goto out; 1361 } 1362 1363 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 1364 if (!gdp) 1365 goto out; 1366 1367 /* 1368 * We do not need to lock this, because we are the only one 1369 * handling this flag. 1370 */ 1371 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)) 1372 goto out; 1373 1374 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1); 1375 if (IS_ERR(handle)) { 1376 ret = PTR_ERR(handle); 1377 goto out; 1378 } 1379 1380 down_write(&grp->alloc_sem); 1381 /* 1382 * If inode bitmap was already initialized there may be some 1383 * used inodes so we need to skip blocks with used inodes in 1384 * inode table. 1385 */ 1386 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) 1387 used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) - 1388 ext4_itable_unused_count(sb, gdp)), 1389 sbi->s_inodes_per_block); 1390 1391 if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group)) { 1392 ext4_error(sb, "Something is wrong with group %u: " 1393 "used itable blocks: %d; " 1394 "itable unused count: %u", 1395 group, used_blks, 1396 ext4_itable_unused_count(sb, gdp)); 1397 ret = 1; 1398 goto err_out; 1399 } 1400 1401 blk = ext4_inode_table(sb, gdp) + used_blks; 1402 num = sbi->s_itb_per_group - used_blks; 1403 1404 BUFFER_TRACE(group_desc_bh, "get_write_access"); 1405 ret = ext4_journal_get_write_access(handle, 1406 group_desc_bh); 1407 if (ret) 1408 goto err_out; 1409 1410 /* 1411 * Skip zeroout if the inode table is full. But we set the ZEROED 1412 * flag anyway, because obviously, when it is full it does not need 1413 * further zeroing. 1414 */ 1415 if (unlikely(num == 0)) 1416 goto skip_zeroout; 1417 1418 ext4_debug("going to zero out inode table in group %d\n", 1419 group); 1420 ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS); 1421 if (ret < 0) 1422 goto err_out; 1423 if (barrier) 1424 blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL); 1425 1426 skip_zeroout: 1427 ext4_lock_group(sb, group); 1428 gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED); 1429 ext4_group_desc_csum_set(sb, group, gdp); 1430 ext4_unlock_group(sb, group); 1431 1432 BUFFER_TRACE(group_desc_bh, 1433 "call ext4_handle_dirty_metadata"); 1434 ret = ext4_handle_dirty_metadata(handle, NULL, 1435 group_desc_bh); 1436 1437 err_out: 1438 up_write(&grp->alloc_sem); 1439 ext4_journal_stop(handle); 1440 out: 1441 return ret; 1442 } 1443