1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/ialloc.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * BSD ufs-inspired inode and directory allocation by 11 * Stephen Tweedie (sct@redhat.com), 1993 12 * Big-endian to little-endian byte-swapping/bitmaps by 13 * David S. Miller (davem@caip.rutgers.edu), 1995 14 */ 15 16 #include <linux/time.h> 17 #include <linux/fs.h> 18 #include <linux/stat.h> 19 #include <linux/string.h> 20 #include <linux/quotaops.h> 21 #include <linux/buffer_head.h> 22 #include <linux/random.h> 23 #include <linux/bitops.h> 24 #include <linux/blkdev.h> 25 #include <linux/cred.h> 26 27 #include <asm/byteorder.h> 28 29 #include "ext4.h" 30 #include "ext4_jbd2.h" 31 #include "xattr.h" 32 #include "acl.h" 33 34 #include <trace/events/ext4.h> 35 36 /* 37 * ialloc.c contains the inodes allocation and deallocation routines 38 */ 39 40 /* 41 * The free inodes are managed by bitmaps. A file system contains several 42 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap 43 * block for inodes, N blocks for the inode table and data blocks. 44 * 45 * The file system contains group descriptors which are located after the 46 * super block. Each descriptor contains the number of the bitmap block and 47 * the free blocks count in the block. 48 */ 49 50 /* 51 * To avoid calling the atomic setbit hundreds or thousands of times, we only 52 * need to use it within a single byte (to ensure we get endianness right). 53 * We can use memset for the rest of the bitmap as there are no other users. 54 */ 55 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap) 56 { 57 int i; 58 59 if (start_bit >= end_bit) 60 return; 61 62 ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit); 63 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++) 64 ext4_set_bit(i, bitmap); 65 if (i < end_bit) 66 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3); 67 } 68 69 void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate) 70 { 71 if (uptodate) { 72 set_buffer_uptodate(bh); 73 set_bitmap_uptodate(bh); 74 } 75 unlock_buffer(bh); 76 put_bh(bh); 77 } 78 79 static int ext4_validate_inode_bitmap(struct super_block *sb, 80 struct ext4_group_desc *desc, 81 ext4_group_t block_group, 82 struct buffer_head *bh) 83 { 84 ext4_fsblk_t blk; 85 struct ext4_group_info *grp = ext4_get_group_info(sb, block_group); 86 87 if (buffer_verified(bh)) 88 return 0; 89 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) 90 return -EFSCORRUPTED; 91 92 ext4_lock_group(sb, block_group); 93 if (buffer_verified(bh)) 94 goto verified; 95 blk = ext4_inode_bitmap(sb, desc); 96 if (!ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh, 97 EXT4_INODES_PER_GROUP(sb) / 8)) { 98 ext4_unlock_group(sb, block_group); 99 ext4_error(sb, "Corrupt inode bitmap - block_group = %u, " 100 "inode_bitmap = %llu", block_group, blk); 101 ext4_mark_group_bitmap_corrupted(sb, block_group, 102 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 103 return -EFSBADCRC; 104 } 105 set_buffer_verified(bh); 106 verified: 107 ext4_unlock_group(sb, block_group); 108 return 0; 109 } 110 111 /* 112 * Read the inode allocation bitmap for a given block_group, reading 113 * into the specified slot in the superblock's bitmap cache. 114 * 115 * Return buffer_head of bitmap on success or NULL. 116 */ 117 static struct buffer_head * 118 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group) 119 { 120 struct ext4_group_desc *desc; 121 struct ext4_sb_info *sbi = EXT4_SB(sb); 122 struct buffer_head *bh = NULL; 123 ext4_fsblk_t bitmap_blk; 124 int err; 125 126 desc = ext4_get_group_desc(sb, block_group, NULL); 127 if (!desc) 128 return ERR_PTR(-EFSCORRUPTED); 129 130 bitmap_blk = ext4_inode_bitmap(sb, desc); 131 if ((bitmap_blk <= le32_to_cpu(sbi->s_es->s_first_data_block)) || 132 (bitmap_blk >= ext4_blocks_count(sbi->s_es))) { 133 ext4_error(sb, "Invalid inode bitmap blk %llu in " 134 "block_group %u", bitmap_blk, block_group); 135 ext4_mark_group_bitmap_corrupted(sb, block_group, 136 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 137 return ERR_PTR(-EFSCORRUPTED); 138 } 139 bh = sb_getblk(sb, bitmap_blk); 140 if (unlikely(!bh)) { 141 ext4_warning(sb, "Cannot read inode bitmap - " 142 "block_group = %u, inode_bitmap = %llu", 143 block_group, bitmap_blk); 144 return ERR_PTR(-ENOMEM); 145 } 146 if (bitmap_uptodate(bh)) 147 goto verify; 148 149 lock_buffer(bh); 150 if (bitmap_uptodate(bh)) { 151 unlock_buffer(bh); 152 goto verify; 153 } 154 155 ext4_lock_group(sb, block_group); 156 if (ext4_has_group_desc_csum(sb) && 157 (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) { 158 if (block_group == 0) { 159 ext4_unlock_group(sb, block_group); 160 unlock_buffer(bh); 161 ext4_error(sb, "Inode bitmap for bg 0 marked " 162 "uninitialized"); 163 err = -EFSCORRUPTED; 164 goto out; 165 } 166 memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8); 167 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), 168 sb->s_blocksize * 8, bh->b_data); 169 set_bitmap_uptodate(bh); 170 set_buffer_uptodate(bh); 171 set_buffer_verified(bh); 172 ext4_unlock_group(sb, block_group); 173 unlock_buffer(bh); 174 return bh; 175 } 176 ext4_unlock_group(sb, block_group); 177 178 if (buffer_uptodate(bh)) { 179 /* 180 * if not uninit if bh is uptodate, 181 * bitmap is also uptodate 182 */ 183 set_bitmap_uptodate(bh); 184 unlock_buffer(bh); 185 goto verify; 186 } 187 /* 188 * submit the buffer_head for reading 189 */ 190 trace_ext4_load_inode_bitmap(sb, block_group); 191 bh->b_end_io = ext4_end_bitmap_read; 192 get_bh(bh); 193 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh); 194 wait_on_buffer(bh); 195 if (!buffer_uptodate(bh)) { 196 put_bh(bh); 197 ext4_error(sb, "Cannot read inode bitmap - " 198 "block_group = %u, inode_bitmap = %llu", 199 block_group, bitmap_blk); 200 ext4_mark_group_bitmap_corrupted(sb, block_group, 201 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 202 return ERR_PTR(-EIO); 203 } 204 205 verify: 206 err = ext4_validate_inode_bitmap(sb, desc, block_group, bh); 207 if (err) 208 goto out; 209 return bh; 210 out: 211 put_bh(bh); 212 return ERR_PTR(err); 213 } 214 215 /* 216 * NOTE! When we get the inode, we're the only people 217 * that have access to it, and as such there are no 218 * race conditions we have to worry about. The inode 219 * is not on the hash-lists, and it cannot be reached 220 * through the filesystem because the directory entry 221 * has been deleted earlier. 222 * 223 * HOWEVER: we must make sure that we get no aliases, 224 * which means that we have to call "clear_inode()" 225 * _before_ we mark the inode not in use in the inode 226 * bitmaps. Otherwise a newly created file might use 227 * the same inode number (not actually the same pointer 228 * though), and then we'd have two inodes sharing the 229 * same inode number and space on the harddisk. 230 */ 231 void ext4_free_inode(handle_t *handle, struct inode *inode) 232 { 233 struct super_block *sb = inode->i_sb; 234 int is_directory; 235 unsigned long ino; 236 struct buffer_head *bitmap_bh = NULL; 237 struct buffer_head *bh2; 238 ext4_group_t block_group; 239 unsigned long bit; 240 struct ext4_group_desc *gdp; 241 struct ext4_super_block *es; 242 struct ext4_sb_info *sbi; 243 int fatal = 0, err, count, cleared; 244 struct ext4_group_info *grp; 245 246 if (!sb) { 247 printk(KERN_ERR "EXT4-fs: %s:%d: inode on " 248 "nonexistent device\n", __func__, __LINE__); 249 return; 250 } 251 if (atomic_read(&inode->i_count) > 1) { 252 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d", 253 __func__, __LINE__, inode->i_ino, 254 atomic_read(&inode->i_count)); 255 return; 256 } 257 if (inode->i_nlink) { 258 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n", 259 __func__, __LINE__, inode->i_ino, inode->i_nlink); 260 return; 261 } 262 sbi = EXT4_SB(sb); 263 264 ino = inode->i_ino; 265 ext4_debug("freeing inode %lu\n", ino); 266 trace_ext4_free_inode(inode); 267 268 dquot_initialize(inode); 269 dquot_free_inode(inode); 270 271 is_directory = S_ISDIR(inode->i_mode); 272 273 /* Do this BEFORE marking the inode not in use or returning an error */ 274 ext4_clear_inode(inode); 275 276 es = sbi->s_es; 277 if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) { 278 ext4_error(sb, "reserved or nonexistent inode %lu", ino); 279 goto error_return; 280 } 281 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 282 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 283 bitmap_bh = ext4_read_inode_bitmap(sb, block_group); 284 /* Don't bother if the inode bitmap is corrupt. */ 285 grp = ext4_get_group_info(sb, block_group); 286 if (IS_ERR(bitmap_bh)) { 287 fatal = PTR_ERR(bitmap_bh); 288 bitmap_bh = NULL; 289 goto error_return; 290 } 291 if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp))) { 292 fatal = -EFSCORRUPTED; 293 goto error_return; 294 } 295 296 BUFFER_TRACE(bitmap_bh, "get_write_access"); 297 fatal = ext4_journal_get_write_access(handle, bitmap_bh); 298 if (fatal) 299 goto error_return; 300 301 fatal = -ESRCH; 302 gdp = ext4_get_group_desc(sb, block_group, &bh2); 303 if (gdp) { 304 BUFFER_TRACE(bh2, "get_write_access"); 305 fatal = ext4_journal_get_write_access(handle, bh2); 306 } 307 ext4_lock_group(sb, block_group); 308 cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data); 309 if (fatal || !cleared) { 310 ext4_unlock_group(sb, block_group); 311 goto out; 312 } 313 314 count = ext4_free_inodes_count(sb, gdp) + 1; 315 ext4_free_inodes_set(sb, gdp, count); 316 if (is_directory) { 317 count = ext4_used_dirs_count(sb, gdp) - 1; 318 ext4_used_dirs_set(sb, gdp, count); 319 percpu_counter_dec(&sbi->s_dirs_counter); 320 } 321 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh, 322 EXT4_INODES_PER_GROUP(sb) / 8); 323 ext4_group_desc_csum_set(sb, block_group, gdp); 324 ext4_unlock_group(sb, block_group); 325 326 percpu_counter_inc(&sbi->s_freeinodes_counter); 327 if (sbi->s_log_groups_per_flex) { 328 ext4_group_t f = ext4_flex_group(sbi, block_group); 329 330 atomic_inc(&sbi->s_flex_groups[f].free_inodes); 331 if (is_directory) 332 atomic_dec(&sbi->s_flex_groups[f].used_dirs); 333 } 334 BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata"); 335 fatal = ext4_handle_dirty_metadata(handle, NULL, bh2); 336 out: 337 if (cleared) { 338 BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata"); 339 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 340 if (!fatal) 341 fatal = err; 342 } else { 343 ext4_error(sb, "bit already cleared for inode %lu", ino); 344 ext4_mark_group_bitmap_corrupted(sb, block_group, 345 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 346 } 347 348 error_return: 349 brelse(bitmap_bh); 350 ext4_std_error(sb, fatal); 351 } 352 353 struct orlov_stats { 354 __u64 free_clusters; 355 __u32 free_inodes; 356 __u32 used_dirs; 357 }; 358 359 /* 360 * Helper function for Orlov's allocator; returns critical information 361 * for a particular block group or flex_bg. If flex_size is 1, then g 362 * is a block group number; otherwise it is flex_bg number. 363 */ 364 static void get_orlov_stats(struct super_block *sb, ext4_group_t g, 365 int flex_size, struct orlov_stats *stats) 366 { 367 struct ext4_group_desc *desc; 368 struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups; 369 370 if (flex_size > 1) { 371 stats->free_inodes = atomic_read(&flex_group[g].free_inodes); 372 stats->free_clusters = atomic64_read(&flex_group[g].free_clusters); 373 stats->used_dirs = atomic_read(&flex_group[g].used_dirs); 374 return; 375 } 376 377 desc = ext4_get_group_desc(sb, g, NULL); 378 if (desc) { 379 stats->free_inodes = ext4_free_inodes_count(sb, desc); 380 stats->free_clusters = ext4_free_group_clusters(sb, desc); 381 stats->used_dirs = ext4_used_dirs_count(sb, desc); 382 } else { 383 stats->free_inodes = 0; 384 stats->free_clusters = 0; 385 stats->used_dirs = 0; 386 } 387 } 388 389 /* 390 * Orlov's allocator for directories. 391 * 392 * We always try to spread first-level directories. 393 * 394 * If there are blockgroups with both free inodes and free blocks counts 395 * not worse than average we return one with smallest directory count. 396 * Otherwise we simply return a random group. 397 * 398 * For the rest rules look so: 399 * 400 * It's OK to put directory into a group unless 401 * it has too many directories already (max_dirs) or 402 * it has too few free inodes left (min_inodes) or 403 * it has too few free blocks left (min_blocks) or 404 * Parent's group is preferred, if it doesn't satisfy these 405 * conditions we search cyclically through the rest. If none 406 * of the groups look good we just look for a group with more 407 * free inodes than average (starting at parent's group). 408 */ 409 410 static int find_group_orlov(struct super_block *sb, struct inode *parent, 411 ext4_group_t *group, umode_t mode, 412 const struct qstr *qstr) 413 { 414 ext4_group_t parent_group = EXT4_I(parent)->i_block_group; 415 struct ext4_sb_info *sbi = EXT4_SB(sb); 416 ext4_group_t real_ngroups = ext4_get_groups_count(sb); 417 int inodes_per_group = EXT4_INODES_PER_GROUP(sb); 418 unsigned int freei, avefreei, grp_free; 419 ext4_fsblk_t freeb, avefreec; 420 unsigned int ndirs; 421 int max_dirs, min_inodes; 422 ext4_grpblk_t min_clusters; 423 ext4_group_t i, grp, g, ngroups; 424 struct ext4_group_desc *desc; 425 struct orlov_stats stats; 426 int flex_size = ext4_flex_bg_size(sbi); 427 struct dx_hash_info hinfo; 428 429 ngroups = real_ngroups; 430 if (flex_size > 1) { 431 ngroups = (real_ngroups + flex_size - 1) >> 432 sbi->s_log_groups_per_flex; 433 parent_group >>= sbi->s_log_groups_per_flex; 434 } 435 436 freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter); 437 avefreei = freei / ngroups; 438 freeb = EXT4_C2B(sbi, 439 percpu_counter_read_positive(&sbi->s_freeclusters_counter)); 440 avefreec = freeb; 441 do_div(avefreec, ngroups); 442 ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter); 443 444 if (S_ISDIR(mode) && 445 ((parent == d_inode(sb->s_root)) || 446 (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) { 447 int best_ndir = inodes_per_group; 448 int ret = -1; 449 450 if (qstr) { 451 hinfo.hash_version = DX_HASH_HALF_MD4; 452 hinfo.seed = sbi->s_hash_seed; 453 ext4fs_dirhash(parent, qstr->name, qstr->len, &hinfo); 454 grp = hinfo.hash; 455 } else 456 grp = prandom_u32(); 457 parent_group = (unsigned)grp % ngroups; 458 for (i = 0; i < ngroups; i++) { 459 g = (parent_group + i) % ngroups; 460 get_orlov_stats(sb, g, flex_size, &stats); 461 if (!stats.free_inodes) 462 continue; 463 if (stats.used_dirs >= best_ndir) 464 continue; 465 if (stats.free_inodes < avefreei) 466 continue; 467 if (stats.free_clusters < avefreec) 468 continue; 469 grp = g; 470 ret = 0; 471 best_ndir = stats.used_dirs; 472 } 473 if (ret) 474 goto fallback; 475 found_flex_bg: 476 if (flex_size == 1) { 477 *group = grp; 478 return 0; 479 } 480 481 /* 482 * We pack inodes at the beginning of the flexgroup's 483 * inode tables. Block allocation decisions will do 484 * something similar, although regular files will 485 * start at 2nd block group of the flexgroup. See 486 * ext4_ext_find_goal() and ext4_find_near(). 487 */ 488 grp *= flex_size; 489 for (i = 0; i < flex_size; i++) { 490 if (grp+i >= real_ngroups) 491 break; 492 desc = ext4_get_group_desc(sb, grp+i, NULL); 493 if (desc && ext4_free_inodes_count(sb, desc)) { 494 *group = grp+i; 495 return 0; 496 } 497 } 498 goto fallback; 499 } 500 501 max_dirs = ndirs / ngroups + inodes_per_group / 16; 502 min_inodes = avefreei - inodes_per_group*flex_size / 4; 503 if (min_inodes < 1) 504 min_inodes = 1; 505 min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4; 506 507 /* 508 * Start looking in the flex group where we last allocated an 509 * inode for this parent directory 510 */ 511 if (EXT4_I(parent)->i_last_alloc_group != ~0) { 512 parent_group = EXT4_I(parent)->i_last_alloc_group; 513 if (flex_size > 1) 514 parent_group >>= sbi->s_log_groups_per_flex; 515 } 516 517 for (i = 0; i < ngroups; i++) { 518 grp = (parent_group + i) % ngroups; 519 get_orlov_stats(sb, grp, flex_size, &stats); 520 if (stats.used_dirs >= max_dirs) 521 continue; 522 if (stats.free_inodes < min_inodes) 523 continue; 524 if (stats.free_clusters < min_clusters) 525 continue; 526 goto found_flex_bg; 527 } 528 529 fallback: 530 ngroups = real_ngroups; 531 avefreei = freei / ngroups; 532 fallback_retry: 533 parent_group = EXT4_I(parent)->i_block_group; 534 for (i = 0; i < ngroups; i++) { 535 grp = (parent_group + i) % ngroups; 536 desc = ext4_get_group_desc(sb, grp, NULL); 537 if (desc) { 538 grp_free = ext4_free_inodes_count(sb, desc); 539 if (grp_free && grp_free >= avefreei) { 540 *group = grp; 541 return 0; 542 } 543 } 544 } 545 546 if (avefreei) { 547 /* 548 * The free-inodes counter is approximate, and for really small 549 * filesystems the above test can fail to find any blockgroups 550 */ 551 avefreei = 0; 552 goto fallback_retry; 553 } 554 555 return -1; 556 } 557 558 static int find_group_other(struct super_block *sb, struct inode *parent, 559 ext4_group_t *group, umode_t mode) 560 { 561 ext4_group_t parent_group = EXT4_I(parent)->i_block_group; 562 ext4_group_t i, last, ngroups = ext4_get_groups_count(sb); 563 struct ext4_group_desc *desc; 564 int flex_size = ext4_flex_bg_size(EXT4_SB(sb)); 565 566 /* 567 * Try to place the inode is the same flex group as its 568 * parent. If we can't find space, use the Orlov algorithm to 569 * find another flex group, and store that information in the 570 * parent directory's inode information so that use that flex 571 * group for future allocations. 572 */ 573 if (flex_size > 1) { 574 int retry = 0; 575 576 try_again: 577 parent_group &= ~(flex_size-1); 578 last = parent_group + flex_size; 579 if (last > ngroups) 580 last = ngroups; 581 for (i = parent_group; i < last; i++) { 582 desc = ext4_get_group_desc(sb, i, NULL); 583 if (desc && ext4_free_inodes_count(sb, desc)) { 584 *group = i; 585 return 0; 586 } 587 } 588 if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) { 589 retry = 1; 590 parent_group = EXT4_I(parent)->i_last_alloc_group; 591 goto try_again; 592 } 593 /* 594 * If this didn't work, use the Orlov search algorithm 595 * to find a new flex group; we pass in the mode to 596 * avoid the topdir algorithms. 597 */ 598 *group = parent_group + flex_size; 599 if (*group > ngroups) 600 *group = 0; 601 return find_group_orlov(sb, parent, group, mode, NULL); 602 } 603 604 /* 605 * Try to place the inode in its parent directory 606 */ 607 *group = parent_group; 608 desc = ext4_get_group_desc(sb, *group, NULL); 609 if (desc && ext4_free_inodes_count(sb, desc) && 610 ext4_free_group_clusters(sb, desc)) 611 return 0; 612 613 /* 614 * We're going to place this inode in a different blockgroup from its 615 * parent. We want to cause files in a common directory to all land in 616 * the same blockgroup. But we want files which are in a different 617 * directory which shares a blockgroup with our parent to land in a 618 * different blockgroup. 619 * 620 * So add our directory's i_ino into the starting point for the hash. 621 */ 622 *group = (*group + parent->i_ino) % ngroups; 623 624 /* 625 * Use a quadratic hash to find a group with a free inode and some free 626 * blocks. 627 */ 628 for (i = 1; i < ngroups; i <<= 1) { 629 *group += i; 630 if (*group >= ngroups) 631 *group -= ngroups; 632 desc = ext4_get_group_desc(sb, *group, NULL); 633 if (desc && ext4_free_inodes_count(sb, desc) && 634 ext4_free_group_clusters(sb, desc)) 635 return 0; 636 } 637 638 /* 639 * That failed: try linear search for a free inode, even if that group 640 * has no free blocks. 641 */ 642 *group = parent_group; 643 for (i = 0; i < ngroups; i++) { 644 if (++*group >= ngroups) 645 *group = 0; 646 desc = ext4_get_group_desc(sb, *group, NULL); 647 if (desc && ext4_free_inodes_count(sb, desc)) 648 return 0; 649 } 650 651 return -1; 652 } 653 654 /* 655 * In no journal mode, if an inode has recently been deleted, we want 656 * to avoid reusing it until we're reasonably sure the inode table 657 * block has been written back to disk. (Yes, these values are 658 * somewhat arbitrary...) 659 */ 660 #define RECENTCY_MIN 5 661 #define RECENTCY_DIRTY 300 662 663 static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino) 664 { 665 struct ext4_group_desc *gdp; 666 struct ext4_inode *raw_inode; 667 struct buffer_head *bh; 668 int inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 669 int offset, ret = 0; 670 int recentcy = RECENTCY_MIN; 671 u32 dtime, now; 672 673 gdp = ext4_get_group_desc(sb, group, NULL); 674 if (unlikely(!gdp)) 675 return 0; 676 677 bh = sb_find_get_block(sb, ext4_inode_table(sb, gdp) + 678 (ino / inodes_per_block)); 679 if (!bh || !buffer_uptodate(bh)) 680 /* 681 * If the block is not in the buffer cache, then it 682 * must have been written out. 683 */ 684 goto out; 685 686 offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb); 687 raw_inode = (struct ext4_inode *) (bh->b_data + offset); 688 689 /* i_dtime is only 32 bits on disk, but we only care about relative 690 * times in the range of a few minutes (i.e. long enough to sync a 691 * recently-deleted inode to disk), so using the low 32 bits of the 692 * clock (a 68 year range) is enough, see time_before32() */ 693 dtime = le32_to_cpu(raw_inode->i_dtime); 694 now = ktime_get_real_seconds(); 695 if (buffer_dirty(bh)) 696 recentcy += RECENTCY_DIRTY; 697 698 if (dtime && time_before32(dtime, now) && 699 time_before32(now, dtime + recentcy)) 700 ret = 1; 701 out: 702 brelse(bh); 703 return ret; 704 } 705 706 static int find_inode_bit(struct super_block *sb, ext4_group_t group, 707 struct buffer_head *bitmap, unsigned long *ino) 708 { 709 next: 710 *ino = ext4_find_next_zero_bit((unsigned long *) 711 bitmap->b_data, 712 EXT4_INODES_PER_GROUP(sb), *ino); 713 if (*ino >= EXT4_INODES_PER_GROUP(sb)) 714 return 0; 715 716 if ((EXT4_SB(sb)->s_journal == NULL) && 717 recently_deleted(sb, group, *ino)) { 718 *ino = *ino + 1; 719 if (*ino < EXT4_INODES_PER_GROUP(sb)) 720 goto next; 721 return 0; 722 } 723 724 return 1; 725 } 726 727 /* 728 * There are two policies for allocating an inode. If the new inode is 729 * a directory, then a forward search is made for a block group with both 730 * free space and a low directory-to-inode ratio; if that fails, then of 731 * the groups with above-average free space, that group with the fewest 732 * directories already is chosen. 733 * 734 * For other inodes, search forward from the parent directory's block 735 * group to find a free inode. 736 */ 737 struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir, 738 umode_t mode, const struct qstr *qstr, 739 __u32 goal, uid_t *owner, __u32 i_flags, 740 int handle_type, unsigned int line_no, 741 int nblocks) 742 { 743 struct super_block *sb; 744 struct buffer_head *inode_bitmap_bh = NULL; 745 struct buffer_head *group_desc_bh; 746 ext4_group_t ngroups, group = 0; 747 unsigned long ino = 0; 748 struct inode *inode; 749 struct ext4_group_desc *gdp = NULL; 750 struct ext4_inode_info *ei; 751 struct ext4_sb_info *sbi; 752 int ret2, err; 753 struct inode *ret; 754 ext4_group_t i; 755 ext4_group_t flex_group; 756 struct ext4_group_info *grp; 757 int encrypt = 0; 758 759 /* Cannot create files in a deleted directory */ 760 if (!dir || !dir->i_nlink) 761 return ERR_PTR(-EPERM); 762 763 sb = dir->i_sb; 764 sbi = EXT4_SB(sb); 765 766 if (unlikely(ext4_forced_shutdown(sbi))) 767 return ERR_PTR(-EIO); 768 769 if ((IS_ENCRYPTED(dir) || DUMMY_ENCRYPTION_ENABLED(sbi)) && 770 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)) && 771 !(i_flags & EXT4_EA_INODE_FL)) { 772 err = fscrypt_get_encryption_info(dir); 773 if (err) 774 return ERR_PTR(err); 775 if (!fscrypt_has_encryption_key(dir)) 776 return ERR_PTR(-ENOKEY); 777 encrypt = 1; 778 } 779 780 if (!handle && sbi->s_journal && !(i_flags & EXT4_EA_INODE_FL)) { 781 #ifdef CONFIG_EXT4_FS_POSIX_ACL 782 struct posix_acl *p = get_acl(dir, ACL_TYPE_DEFAULT); 783 784 if (IS_ERR(p)) 785 return ERR_CAST(p); 786 if (p) { 787 int acl_size = p->a_count * sizeof(ext4_acl_entry); 788 789 nblocks += (S_ISDIR(mode) ? 2 : 1) * 790 __ext4_xattr_set_credits(sb, NULL /* inode */, 791 NULL /* block_bh */, acl_size, 792 true /* is_create */); 793 posix_acl_release(p); 794 } 795 #endif 796 797 #ifdef CONFIG_SECURITY 798 { 799 int num_security_xattrs = 1; 800 801 #ifdef CONFIG_INTEGRITY 802 num_security_xattrs++; 803 #endif 804 /* 805 * We assume that security xattrs are never 806 * more than 1k. In practice they are under 807 * 128 bytes. 808 */ 809 nblocks += num_security_xattrs * 810 __ext4_xattr_set_credits(sb, NULL /* inode */, 811 NULL /* block_bh */, 1024, 812 true /* is_create */); 813 } 814 #endif 815 if (encrypt) 816 nblocks += __ext4_xattr_set_credits(sb, 817 NULL /* inode */, NULL /* block_bh */, 818 FSCRYPT_SET_CONTEXT_MAX_SIZE, 819 true /* is_create */); 820 } 821 822 ngroups = ext4_get_groups_count(sb); 823 trace_ext4_request_inode(dir, mode); 824 inode = new_inode(sb); 825 if (!inode) 826 return ERR_PTR(-ENOMEM); 827 ei = EXT4_I(inode); 828 829 /* 830 * Initialize owners and quota early so that we don't have to account 831 * for quota initialization worst case in standard inode creating 832 * transaction 833 */ 834 if (owner) { 835 inode->i_mode = mode; 836 i_uid_write(inode, owner[0]); 837 i_gid_write(inode, owner[1]); 838 } else if (test_opt(sb, GRPID)) { 839 inode->i_mode = mode; 840 inode->i_uid = current_fsuid(); 841 inode->i_gid = dir->i_gid; 842 } else 843 inode_init_owner(inode, dir, mode); 844 845 if (ext4_has_feature_project(sb) && 846 ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT)) 847 ei->i_projid = EXT4_I(dir)->i_projid; 848 else 849 ei->i_projid = make_kprojid(&init_user_ns, EXT4_DEF_PROJID); 850 851 err = dquot_initialize(inode); 852 if (err) 853 goto out; 854 855 if (!goal) 856 goal = sbi->s_inode_goal; 857 858 if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) { 859 group = (goal - 1) / EXT4_INODES_PER_GROUP(sb); 860 ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb); 861 ret2 = 0; 862 goto got_group; 863 } 864 865 if (S_ISDIR(mode)) 866 ret2 = find_group_orlov(sb, dir, &group, mode, qstr); 867 else 868 ret2 = find_group_other(sb, dir, &group, mode); 869 870 got_group: 871 EXT4_I(dir)->i_last_alloc_group = group; 872 err = -ENOSPC; 873 if (ret2 == -1) 874 goto out; 875 876 /* 877 * Normally we will only go through one pass of this loop, 878 * unless we get unlucky and it turns out the group we selected 879 * had its last inode grabbed by someone else. 880 */ 881 for (i = 0; i < ngroups; i++, ino = 0) { 882 err = -EIO; 883 884 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 885 if (!gdp) 886 goto out; 887 888 /* 889 * Check free inodes count before loading bitmap. 890 */ 891 if (ext4_free_inodes_count(sb, gdp) == 0) 892 goto next_group; 893 894 grp = ext4_get_group_info(sb, group); 895 /* Skip groups with already-known suspicious inode tables */ 896 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) 897 goto next_group; 898 899 brelse(inode_bitmap_bh); 900 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group); 901 /* Skip groups with suspicious inode tables */ 902 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp) || 903 IS_ERR(inode_bitmap_bh)) { 904 inode_bitmap_bh = NULL; 905 goto next_group; 906 } 907 908 repeat_in_this_group: 909 ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino); 910 if (!ret2) 911 goto next_group; 912 913 if (group == 0 && (ino + 1) < EXT4_FIRST_INO(sb)) { 914 ext4_error(sb, "reserved inode found cleared - " 915 "inode=%lu", ino + 1); 916 ext4_mark_group_bitmap_corrupted(sb, group, 917 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 918 goto next_group; 919 } 920 921 if (!handle) { 922 BUG_ON(nblocks <= 0); 923 handle = __ext4_journal_start_sb(dir->i_sb, line_no, 924 handle_type, nblocks, 925 0, 0); 926 if (IS_ERR(handle)) { 927 err = PTR_ERR(handle); 928 ext4_std_error(sb, err); 929 goto out; 930 } 931 } 932 BUFFER_TRACE(inode_bitmap_bh, "get_write_access"); 933 err = ext4_journal_get_write_access(handle, inode_bitmap_bh); 934 if (err) { 935 ext4_std_error(sb, err); 936 goto out; 937 } 938 ext4_lock_group(sb, group); 939 ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data); 940 if (ret2) { 941 /* Someone already took the bit. Repeat the search 942 * with lock held. 943 */ 944 ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino); 945 if (ret2) { 946 ext4_set_bit(ino, inode_bitmap_bh->b_data); 947 ret2 = 0; 948 } else { 949 ret2 = 1; /* we didn't grab the inode */ 950 } 951 } 952 ext4_unlock_group(sb, group); 953 ino++; /* the inode bitmap is zero-based */ 954 if (!ret2) 955 goto got; /* we grabbed the inode! */ 956 957 if (ino < EXT4_INODES_PER_GROUP(sb)) 958 goto repeat_in_this_group; 959 next_group: 960 if (++group == ngroups) 961 group = 0; 962 } 963 err = -ENOSPC; 964 goto out; 965 966 got: 967 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata"); 968 err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh); 969 if (err) { 970 ext4_std_error(sb, err); 971 goto out; 972 } 973 974 BUFFER_TRACE(group_desc_bh, "get_write_access"); 975 err = ext4_journal_get_write_access(handle, group_desc_bh); 976 if (err) { 977 ext4_std_error(sb, err); 978 goto out; 979 } 980 981 /* We may have to initialize the block bitmap if it isn't already */ 982 if (ext4_has_group_desc_csum(sb) && 983 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 984 struct buffer_head *block_bitmap_bh; 985 986 block_bitmap_bh = ext4_read_block_bitmap(sb, group); 987 if (IS_ERR(block_bitmap_bh)) { 988 err = PTR_ERR(block_bitmap_bh); 989 goto out; 990 } 991 BUFFER_TRACE(block_bitmap_bh, "get block bitmap access"); 992 err = ext4_journal_get_write_access(handle, block_bitmap_bh); 993 if (err) { 994 brelse(block_bitmap_bh); 995 ext4_std_error(sb, err); 996 goto out; 997 } 998 999 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap"); 1000 err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh); 1001 1002 /* recheck and clear flag under lock if we still need to */ 1003 ext4_lock_group(sb, group); 1004 if (ext4_has_group_desc_csum(sb) && 1005 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 1006 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 1007 ext4_free_group_clusters_set(sb, gdp, 1008 ext4_free_clusters_after_init(sb, group, gdp)); 1009 ext4_block_bitmap_csum_set(sb, group, gdp, 1010 block_bitmap_bh); 1011 ext4_group_desc_csum_set(sb, group, gdp); 1012 } 1013 ext4_unlock_group(sb, group); 1014 brelse(block_bitmap_bh); 1015 1016 if (err) { 1017 ext4_std_error(sb, err); 1018 goto out; 1019 } 1020 } 1021 1022 /* Update the relevant bg descriptor fields */ 1023 if (ext4_has_group_desc_csum(sb)) { 1024 int free; 1025 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1026 1027 down_read(&grp->alloc_sem); /* protect vs itable lazyinit */ 1028 ext4_lock_group(sb, group); /* while we modify the bg desc */ 1029 free = EXT4_INODES_PER_GROUP(sb) - 1030 ext4_itable_unused_count(sb, gdp); 1031 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) { 1032 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT); 1033 free = 0; 1034 } 1035 /* 1036 * Check the relative inode number against the last used 1037 * relative inode number in this group. if it is greater 1038 * we need to update the bg_itable_unused count 1039 */ 1040 if (ino > free) 1041 ext4_itable_unused_set(sb, gdp, 1042 (EXT4_INODES_PER_GROUP(sb) - ino)); 1043 up_read(&grp->alloc_sem); 1044 } else { 1045 ext4_lock_group(sb, group); 1046 } 1047 1048 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1); 1049 if (S_ISDIR(mode)) { 1050 ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1); 1051 if (sbi->s_log_groups_per_flex) { 1052 ext4_group_t f = ext4_flex_group(sbi, group); 1053 1054 atomic_inc(&sbi->s_flex_groups[f].used_dirs); 1055 } 1056 } 1057 if (ext4_has_group_desc_csum(sb)) { 1058 ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh, 1059 EXT4_INODES_PER_GROUP(sb) / 8); 1060 ext4_group_desc_csum_set(sb, group, gdp); 1061 } 1062 ext4_unlock_group(sb, group); 1063 1064 BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata"); 1065 err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh); 1066 if (err) { 1067 ext4_std_error(sb, err); 1068 goto out; 1069 } 1070 1071 percpu_counter_dec(&sbi->s_freeinodes_counter); 1072 if (S_ISDIR(mode)) 1073 percpu_counter_inc(&sbi->s_dirs_counter); 1074 1075 if (sbi->s_log_groups_per_flex) { 1076 flex_group = ext4_flex_group(sbi, group); 1077 atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes); 1078 } 1079 1080 inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb); 1081 /* This is the optimal IO size (for stat), not the fs block size */ 1082 inode->i_blocks = 0; 1083 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode); 1084 ei->i_crtime = inode->i_mtime; 1085 1086 memset(ei->i_data, 0, sizeof(ei->i_data)); 1087 ei->i_dir_start_lookup = 0; 1088 ei->i_disksize = 0; 1089 1090 /* Don't inherit extent flag from directory, amongst others. */ 1091 ei->i_flags = 1092 ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED); 1093 ei->i_flags |= i_flags; 1094 ei->i_file_acl = 0; 1095 ei->i_dtime = 0; 1096 ei->i_block_group = group; 1097 ei->i_last_alloc_group = ~0; 1098 1099 ext4_set_inode_flags(inode); 1100 if (IS_DIRSYNC(inode)) 1101 ext4_handle_sync(handle); 1102 if (insert_inode_locked(inode) < 0) { 1103 /* 1104 * Likely a bitmap corruption causing inode to be allocated 1105 * twice. 1106 */ 1107 err = -EIO; 1108 ext4_error(sb, "failed to insert inode %lu: doubly allocated?", 1109 inode->i_ino); 1110 ext4_mark_group_bitmap_corrupted(sb, group, 1111 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 1112 goto out; 1113 } 1114 inode->i_generation = prandom_u32(); 1115 1116 /* Precompute checksum seed for inode metadata */ 1117 if (ext4_has_metadata_csum(sb)) { 1118 __u32 csum; 1119 __le32 inum = cpu_to_le32(inode->i_ino); 1120 __le32 gen = cpu_to_le32(inode->i_generation); 1121 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 1122 sizeof(inum)); 1123 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 1124 sizeof(gen)); 1125 } 1126 1127 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 1128 ext4_set_inode_state(inode, EXT4_STATE_NEW); 1129 1130 ei->i_extra_isize = sbi->s_want_extra_isize; 1131 ei->i_inline_off = 0; 1132 if (ext4_has_feature_inline_data(sb)) 1133 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 1134 ret = inode; 1135 err = dquot_alloc_inode(inode); 1136 if (err) 1137 goto fail_drop; 1138 1139 /* 1140 * Since the encryption xattr will always be unique, create it first so 1141 * that it's less likely to end up in an external xattr block and 1142 * prevent its deduplication. 1143 */ 1144 if (encrypt) { 1145 err = fscrypt_inherit_context(dir, inode, handle, true); 1146 if (err) 1147 goto fail_free_drop; 1148 } 1149 1150 if (!(ei->i_flags & EXT4_EA_INODE_FL)) { 1151 err = ext4_init_acl(handle, inode, dir); 1152 if (err) 1153 goto fail_free_drop; 1154 1155 err = ext4_init_security(handle, inode, dir, qstr); 1156 if (err) 1157 goto fail_free_drop; 1158 } 1159 1160 if (ext4_has_feature_extents(sb)) { 1161 /* set extent flag only for directory, file and normal symlink*/ 1162 if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) { 1163 ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS); 1164 ext4_ext_tree_init(handle, inode); 1165 } 1166 } 1167 1168 if (ext4_handle_valid(handle)) { 1169 ei->i_sync_tid = handle->h_transaction->t_tid; 1170 ei->i_datasync_tid = handle->h_transaction->t_tid; 1171 } 1172 1173 err = ext4_mark_inode_dirty(handle, inode); 1174 if (err) { 1175 ext4_std_error(sb, err); 1176 goto fail_free_drop; 1177 } 1178 1179 ext4_debug("allocating inode %lu\n", inode->i_ino); 1180 trace_ext4_allocate_inode(inode, dir, mode); 1181 brelse(inode_bitmap_bh); 1182 return ret; 1183 1184 fail_free_drop: 1185 dquot_free_inode(inode); 1186 fail_drop: 1187 clear_nlink(inode); 1188 unlock_new_inode(inode); 1189 out: 1190 dquot_drop(inode); 1191 inode->i_flags |= S_NOQUOTA; 1192 iput(inode); 1193 brelse(inode_bitmap_bh); 1194 return ERR_PTR(err); 1195 } 1196 1197 /* Verify that we are loading a valid orphan from disk */ 1198 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino) 1199 { 1200 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count); 1201 ext4_group_t block_group; 1202 int bit; 1203 struct buffer_head *bitmap_bh = NULL; 1204 struct inode *inode = NULL; 1205 int err = -EFSCORRUPTED; 1206 1207 if (ino < EXT4_FIRST_INO(sb) || ino > max_ino) 1208 goto bad_orphan; 1209 1210 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 1211 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 1212 bitmap_bh = ext4_read_inode_bitmap(sb, block_group); 1213 if (IS_ERR(bitmap_bh)) 1214 return ERR_CAST(bitmap_bh); 1215 1216 /* Having the inode bit set should be a 100% indicator that this 1217 * is a valid orphan (no e2fsck run on fs). Orphans also include 1218 * inodes that were being truncated, so we can't check i_nlink==0. 1219 */ 1220 if (!ext4_test_bit(bit, bitmap_bh->b_data)) 1221 goto bad_orphan; 1222 1223 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL); 1224 if (IS_ERR(inode)) { 1225 err = PTR_ERR(inode); 1226 ext4_error(sb, "couldn't read orphan inode %lu (err %d)", 1227 ino, err); 1228 return inode; 1229 } 1230 1231 /* 1232 * If the orphans has i_nlinks > 0 then it should be able to 1233 * be truncated, otherwise it won't be removed from the orphan 1234 * list during processing and an infinite loop will result. 1235 * Similarly, it must not be a bad inode. 1236 */ 1237 if ((inode->i_nlink && !ext4_can_truncate(inode)) || 1238 is_bad_inode(inode)) 1239 goto bad_orphan; 1240 1241 if (NEXT_ORPHAN(inode) > max_ino) 1242 goto bad_orphan; 1243 brelse(bitmap_bh); 1244 return inode; 1245 1246 bad_orphan: 1247 ext4_error(sb, "bad orphan inode %lu", ino); 1248 if (bitmap_bh) 1249 printk(KERN_ERR "ext4_test_bit(bit=%d, block=%llu) = %d\n", 1250 bit, (unsigned long long)bitmap_bh->b_blocknr, 1251 ext4_test_bit(bit, bitmap_bh->b_data)); 1252 if (inode) { 1253 printk(KERN_ERR "is_bad_inode(inode)=%d\n", 1254 is_bad_inode(inode)); 1255 printk(KERN_ERR "NEXT_ORPHAN(inode)=%u\n", 1256 NEXT_ORPHAN(inode)); 1257 printk(KERN_ERR "max_ino=%lu\n", max_ino); 1258 printk(KERN_ERR "i_nlink=%u\n", inode->i_nlink); 1259 /* Avoid freeing blocks if we got a bad deleted inode */ 1260 if (inode->i_nlink == 0) 1261 inode->i_blocks = 0; 1262 iput(inode); 1263 } 1264 brelse(bitmap_bh); 1265 return ERR_PTR(err); 1266 } 1267 1268 unsigned long ext4_count_free_inodes(struct super_block *sb) 1269 { 1270 unsigned long desc_count; 1271 struct ext4_group_desc *gdp; 1272 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 1273 #ifdef EXT4FS_DEBUG 1274 struct ext4_super_block *es; 1275 unsigned long bitmap_count, x; 1276 struct buffer_head *bitmap_bh = NULL; 1277 1278 es = EXT4_SB(sb)->s_es; 1279 desc_count = 0; 1280 bitmap_count = 0; 1281 gdp = NULL; 1282 for (i = 0; i < ngroups; i++) { 1283 gdp = ext4_get_group_desc(sb, i, NULL); 1284 if (!gdp) 1285 continue; 1286 desc_count += ext4_free_inodes_count(sb, gdp); 1287 brelse(bitmap_bh); 1288 bitmap_bh = ext4_read_inode_bitmap(sb, i); 1289 if (IS_ERR(bitmap_bh)) { 1290 bitmap_bh = NULL; 1291 continue; 1292 } 1293 1294 x = ext4_count_free(bitmap_bh->b_data, 1295 EXT4_INODES_PER_GROUP(sb) / 8); 1296 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n", 1297 (unsigned long) i, ext4_free_inodes_count(sb, gdp), x); 1298 bitmap_count += x; 1299 } 1300 brelse(bitmap_bh); 1301 printk(KERN_DEBUG "ext4_count_free_inodes: " 1302 "stored = %u, computed = %lu, %lu\n", 1303 le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count); 1304 return desc_count; 1305 #else 1306 desc_count = 0; 1307 for (i = 0; i < ngroups; i++) { 1308 gdp = ext4_get_group_desc(sb, i, NULL); 1309 if (!gdp) 1310 continue; 1311 desc_count += ext4_free_inodes_count(sb, gdp); 1312 cond_resched(); 1313 } 1314 return desc_count; 1315 #endif 1316 } 1317 1318 /* Called at mount-time, super-block is locked */ 1319 unsigned long ext4_count_dirs(struct super_block * sb) 1320 { 1321 unsigned long count = 0; 1322 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 1323 1324 for (i = 0; i < ngroups; i++) { 1325 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 1326 if (!gdp) 1327 continue; 1328 count += ext4_used_dirs_count(sb, gdp); 1329 } 1330 return count; 1331 } 1332 1333 /* 1334 * Zeroes not yet zeroed inode table - just write zeroes through the whole 1335 * inode table. Must be called without any spinlock held. The only place 1336 * where it is called from on active part of filesystem is ext4lazyinit 1337 * thread, so we do not need any special locks, however we have to prevent 1338 * inode allocation from the current group, so we take alloc_sem lock, to 1339 * block ext4_new_inode() until we are finished. 1340 */ 1341 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group, 1342 int barrier) 1343 { 1344 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1345 struct ext4_sb_info *sbi = EXT4_SB(sb); 1346 struct ext4_group_desc *gdp = NULL; 1347 struct buffer_head *group_desc_bh; 1348 handle_t *handle; 1349 ext4_fsblk_t blk; 1350 int num, ret = 0, used_blks = 0; 1351 1352 /* This should not happen, but just to be sure check this */ 1353 if (sb_rdonly(sb)) { 1354 ret = 1; 1355 goto out; 1356 } 1357 1358 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 1359 if (!gdp) 1360 goto out; 1361 1362 /* 1363 * We do not need to lock this, because we are the only one 1364 * handling this flag. 1365 */ 1366 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)) 1367 goto out; 1368 1369 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1); 1370 if (IS_ERR(handle)) { 1371 ret = PTR_ERR(handle); 1372 goto out; 1373 } 1374 1375 down_write(&grp->alloc_sem); 1376 /* 1377 * If inode bitmap was already initialized there may be some 1378 * used inodes so we need to skip blocks with used inodes in 1379 * inode table. 1380 */ 1381 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) 1382 used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) - 1383 ext4_itable_unused_count(sb, gdp)), 1384 sbi->s_inodes_per_block); 1385 1386 if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group) || 1387 ((group == 0) && ((EXT4_INODES_PER_GROUP(sb) - 1388 ext4_itable_unused_count(sb, gdp)) < 1389 EXT4_FIRST_INO(sb)))) { 1390 ext4_error(sb, "Something is wrong with group %u: " 1391 "used itable blocks: %d; " 1392 "itable unused count: %u", 1393 group, used_blks, 1394 ext4_itable_unused_count(sb, gdp)); 1395 ret = 1; 1396 goto err_out; 1397 } 1398 1399 blk = ext4_inode_table(sb, gdp) + used_blks; 1400 num = sbi->s_itb_per_group - used_blks; 1401 1402 BUFFER_TRACE(group_desc_bh, "get_write_access"); 1403 ret = ext4_journal_get_write_access(handle, 1404 group_desc_bh); 1405 if (ret) 1406 goto err_out; 1407 1408 /* 1409 * Skip zeroout if the inode table is full. But we set the ZEROED 1410 * flag anyway, because obviously, when it is full it does not need 1411 * further zeroing. 1412 */ 1413 if (unlikely(num == 0)) 1414 goto skip_zeroout; 1415 1416 ext4_debug("going to zero out inode table in group %d\n", 1417 group); 1418 ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS); 1419 if (ret < 0) 1420 goto err_out; 1421 if (barrier) 1422 blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL); 1423 1424 skip_zeroout: 1425 ext4_lock_group(sb, group); 1426 gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED); 1427 ext4_group_desc_csum_set(sb, group, gdp); 1428 ext4_unlock_group(sb, group); 1429 1430 BUFFER_TRACE(group_desc_bh, 1431 "call ext4_handle_dirty_metadata"); 1432 ret = ext4_handle_dirty_metadata(handle, NULL, 1433 group_desc_bh); 1434 1435 err_out: 1436 up_write(&grp->alloc_sem); 1437 ext4_journal_stop(handle); 1438 out: 1439 return ret; 1440 } 1441