xref: /openbmc/linux/fs/ext4/ialloc.c (revision ba61bb17)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/ialloc.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  BSD ufs-inspired inode and directory allocation by
11  *  Stephen Tweedie (sct@redhat.com), 1993
12  *  Big-endian to little-endian byte-swapping/bitmaps by
13  *        David S. Miller (davem@caip.rutgers.edu), 1995
14  */
15 
16 #include <linux/time.h>
17 #include <linux/fs.h>
18 #include <linux/stat.h>
19 #include <linux/string.h>
20 #include <linux/quotaops.h>
21 #include <linux/buffer_head.h>
22 #include <linux/random.h>
23 #include <linux/bitops.h>
24 #include <linux/blkdev.h>
25 #include <linux/cred.h>
26 
27 #include <asm/byteorder.h>
28 
29 #include "ext4.h"
30 #include "ext4_jbd2.h"
31 #include "xattr.h"
32 #include "acl.h"
33 
34 #include <trace/events/ext4.h>
35 
36 /*
37  * ialloc.c contains the inodes allocation and deallocation routines
38  */
39 
40 /*
41  * The free inodes are managed by bitmaps.  A file system contains several
42  * blocks groups.  Each group contains 1 bitmap block for blocks, 1 bitmap
43  * block for inodes, N blocks for the inode table and data blocks.
44  *
45  * The file system contains group descriptors which are located after the
46  * super block.  Each descriptor contains the number of the bitmap block and
47  * the free blocks count in the block.
48  */
49 
50 /*
51  * To avoid calling the atomic setbit hundreds or thousands of times, we only
52  * need to use it within a single byte (to ensure we get endianness right).
53  * We can use memset for the rest of the bitmap as there are no other users.
54  */
55 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
56 {
57 	int i;
58 
59 	if (start_bit >= end_bit)
60 		return;
61 
62 	ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
63 	for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
64 		ext4_set_bit(i, bitmap);
65 	if (i < end_bit)
66 		memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
67 }
68 
69 void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate)
70 {
71 	if (uptodate) {
72 		set_buffer_uptodate(bh);
73 		set_bitmap_uptodate(bh);
74 	}
75 	unlock_buffer(bh);
76 	put_bh(bh);
77 }
78 
79 static int ext4_validate_inode_bitmap(struct super_block *sb,
80 				      struct ext4_group_desc *desc,
81 				      ext4_group_t block_group,
82 				      struct buffer_head *bh)
83 {
84 	ext4_fsblk_t	blk;
85 	struct ext4_group_info *grp = ext4_get_group_info(sb, block_group);
86 
87 	if (buffer_verified(bh))
88 		return 0;
89 	if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
90 		return -EFSCORRUPTED;
91 
92 	ext4_lock_group(sb, block_group);
93 	blk = ext4_inode_bitmap(sb, desc);
94 	if (!ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh,
95 					   EXT4_INODES_PER_GROUP(sb) / 8)) {
96 		ext4_unlock_group(sb, block_group);
97 		ext4_error(sb, "Corrupt inode bitmap - block_group = %u, "
98 			   "inode_bitmap = %llu", block_group, blk);
99 		ext4_mark_group_bitmap_corrupted(sb, block_group,
100 					EXT4_GROUP_INFO_IBITMAP_CORRUPT);
101 		return -EFSBADCRC;
102 	}
103 	set_buffer_verified(bh);
104 	ext4_unlock_group(sb, block_group);
105 	return 0;
106 }
107 
108 /*
109  * Read the inode allocation bitmap for a given block_group, reading
110  * into the specified slot in the superblock's bitmap cache.
111  *
112  * Return buffer_head of bitmap on success or NULL.
113  */
114 static struct buffer_head *
115 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
116 {
117 	struct ext4_group_desc *desc;
118 	struct ext4_sb_info *sbi = EXT4_SB(sb);
119 	struct buffer_head *bh = NULL;
120 	ext4_fsblk_t bitmap_blk;
121 	int err;
122 
123 	desc = ext4_get_group_desc(sb, block_group, NULL);
124 	if (!desc)
125 		return ERR_PTR(-EFSCORRUPTED);
126 
127 	bitmap_blk = ext4_inode_bitmap(sb, desc);
128 	if ((bitmap_blk <= le32_to_cpu(sbi->s_es->s_first_data_block)) ||
129 	    (bitmap_blk >= ext4_blocks_count(sbi->s_es))) {
130 		ext4_error(sb, "Invalid inode bitmap blk %llu in "
131 			   "block_group %u", bitmap_blk, block_group);
132 		ext4_mark_group_bitmap_corrupted(sb, block_group,
133 					EXT4_GROUP_INFO_IBITMAP_CORRUPT);
134 		return ERR_PTR(-EFSCORRUPTED);
135 	}
136 	bh = sb_getblk(sb, bitmap_blk);
137 	if (unlikely(!bh)) {
138 		ext4_error(sb, "Cannot read inode bitmap - "
139 			    "block_group = %u, inode_bitmap = %llu",
140 			    block_group, bitmap_blk);
141 		return ERR_PTR(-ENOMEM);
142 	}
143 	if (bitmap_uptodate(bh))
144 		goto verify;
145 
146 	lock_buffer(bh);
147 	if (bitmap_uptodate(bh)) {
148 		unlock_buffer(bh);
149 		goto verify;
150 	}
151 
152 	ext4_lock_group(sb, block_group);
153 	if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
154 		memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
155 		ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb),
156 				     sb->s_blocksize * 8, bh->b_data);
157 		set_bitmap_uptodate(bh);
158 		set_buffer_uptodate(bh);
159 		set_buffer_verified(bh);
160 		ext4_unlock_group(sb, block_group);
161 		unlock_buffer(bh);
162 		return bh;
163 	}
164 	ext4_unlock_group(sb, block_group);
165 
166 	if (buffer_uptodate(bh)) {
167 		/*
168 		 * if not uninit if bh is uptodate,
169 		 * bitmap is also uptodate
170 		 */
171 		set_bitmap_uptodate(bh);
172 		unlock_buffer(bh);
173 		goto verify;
174 	}
175 	/*
176 	 * submit the buffer_head for reading
177 	 */
178 	trace_ext4_load_inode_bitmap(sb, block_group);
179 	bh->b_end_io = ext4_end_bitmap_read;
180 	get_bh(bh);
181 	submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
182 	wait_on_buffer(bh);
183 	if (!buffer_uptodate(bh)) {
184 		put_bh(bh);
185 		ext4_error(sb, "Cannot read inode bitmap - "
186 			   "block_group = %u, inode_bitmap = %llu",
187 			   block_group, bitmap_blk);
188 		ext4_mark_group_bitmap_corrupted(sb, block_group,
189 				EXT4_GROUP_INFO_IBITMAP_CORRUPT);
190 		return ERR_PTR(-EIO);
191 	}
192 
193 verify:
194 	err = ext4_validate_inode_bitmap(sb, desc, block_group, bh);
195 	if (err)
196 		goto out;
197 	return bh;
198 out:
199 	put_bh(bh);
200 	return ERR_PTR(err);
201 }
202 
203 /*
204  * NOTE! When we get the inode, we're the only people
205  * that have access to it, and as such there are no
206  * race conditions we have to worry about. The inode
207  * is not on the hash-lists, and it cannot be reached
208  * through the filesystem because the directory entry
209  * has been deleted earlier.
210  *
211  * HOWEVER: we must make sure that we get no aliases,
212  * which means that we have to call "clear_inode()"
213  * _before_ we mark the inode not in use in the inode
214  * bitmaps. Otherwise a newly created file might use
215  * the same inode number (not actually the same pointer
216  * though), and then we'd have two inodes sharing the
217  * same inode number and space on the harddisk.
218  */
219 void ext4_free_inode(handle_t *handle, struct inode *inode)
220 {
221 	struct super_block *sb = inode->i_sb;
222 	int is_directory;
223 	unsigned long ino;
224 	struct buffer_head *bitmap_bh = NULL;
225 	struct buffer_head *bh2;
226 	ext4_group_t block_group;
227 	unsigned long bit;
228 	struct ext4_group_desc *gdp;
229 	struct ext4_super_block *es;
230 	struct ext4_sb_info *sbi;
231 	int fatal = 0, err, count, cleared;
232 	struct ext4_group_info *grp;
233 
234 	if (!sb) {
235 		printk(KERN_ERR "EXT4-fs: %s:%d: inode on "
236 		       "nonexistent device\n", __func__, __LINE__);
237 		return;
238 	}
239 	if (atomic_read(&inode->i_count) > 1) {
240 		ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d",
241 			 __func__, __LINE__, inode->i_ino,
242 			 atomic_read(&inode->i_count));
243 		return;
244 	}
245 	if (inode->i_nlink) {
246 		ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n",
247 			 __func__, __LINE__, inode->i_ino, inode->i_nlink);
248 		return;
249 	}
250 	sbi = EXT4_SB(sb);
251 
252 	ino = inode->i_ino;
253 	ext4_debug("freeing inode %lu\n", ino);
254 	trace_ext4_free_inode(inode);
255 
256 	/*
257 	 * Note: we must free any quota before locking the superblock,
258 	 * as writing the quota to disk may need the lock as well.
259 	 */
260 	dquot_initialize(inode);
261 	dquot_free_inode(inode);
262 	dquot_drop(inode);
263 
264 	is_directory = S_ISDIR(inode->i_mode);
265 
266 	/* Do this BEFORE marking the inode not in use or returning an error */
267 	ext4_clear_inode(inode);
268 
269 	es = sbi->s_es;
270 	if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
271 		ext4_error(sb, "reserved or nonexistent inode %lu", ino);
272 		goto error_return;
273 	}
274 	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
275 	bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
276 	bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
277 	/* Don't bother if the inode bitmap is corrupt. */
278 	grp = ext4_get_group_info(sb, block_group);
279 	if (IS_ERR(bitmap_bh)) {
280 		fatal = PTR_ERR(bitmap_bh);
281 		bitmap_bh = NULL;
282 		goto error_return;
283 	}
284 	if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp))) {
285 		fatal = -EFSCORRUPTED;
286 		goto error_return;
287 	}
288 
289 	BUFFER_TRACE(bitmap_bh, "get_write_access");
290 	fatal = ext4_journal_get_write_access(handle, bitmap_bh);
291 	if (fatal)
292 		goto error_return;
293 
294 	fatal = -ESRCH;
295 	gdp = ext4_get_group_desc(sb, block_group, &bh2);
296 	if (gdp) {
297 		BUFFER_TRACE(bh2, "get_write_access");
298 		fatal = ext4_journal_get_write_access(handle, bh2);
299 	}
300 	ext4_lock_group(sb, block_group);
301 	cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data);
302 	if (fatal || !cleared) {
303 		ext4_unlock_group(sb, block_group);
304 		goto out;
305 	}
306 
307 	count = ext4_free_inodes_count(sb, gdp) + 1;
308 	ext4_free_inodes_set(sb, gdp, count);
309 	if (is_directory) {
310 		count = ext4_used_dirs_count(sb, gdp) - 1;
311 		ext4_used_dirs_set(sb, gdp, count);
312 		percpu_counter_dec(&sbi->s_dirs_counter);
313 	}
314 	ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh,
315 				   EXT4_INODES_PER_GROUP(sb) / 8);
316 	ext4_group_desc_csum_set(sb, block_group, gdp);
317 	ext4_unlock_group(sb, block_group);
318 
319 	percpu_counter_inc(&sbi->s_freeinodes_counter);
320 	if (sbi->s_log_groups_per_flex) {
321 		ext4_group_t f = ext4_flex_group(sbi, block_group);
322 
323 		atomic_inc(&sbi->s_flex_groups[f].free_inodes);
324 		if (is_directory)
325 			atomic_dec(&sbi->s_flex_groups[f].used_dirs);
326 	}
327 	BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
328 	fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
329 out:
330 	if (cleared) {
331 		BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
332 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
333 		if (!fatal)
334 			fatal = err;
335 	} else {
336 		ext4_error(sb, "bit already cleared for inode %lu", ino);
337 		ext4_mark_group_bitmap_corrupted(sb, block_group,
338 					EXT4_GROUP_INFO_IBITMAP_CORRUPT);
339 	}
340 
341 error_return:
342 	brelse(bitmap_bh);
343 	ext4_std_error(sb, fatal);
344 }
345 
346 struct orlov_stats {
347 	__u64 free_clusters;
348 	__u32 free_inodes;
349 	__u32 used_dirs;
350 };
351 
352 /*
353  * Helper function for Orlov's allocator; returns critical information
354  * for a particular block group or flex_bg.  If flex_size is 1, then g
355  * is a block group number; otherwise it is flex_bg number.
356  */
357 static void get_orlov_stats(struct super_block *sb, ext4_group_t g,
358 			    int flex_size, struct orlov_stats *stats)
359 {
360 	struct ext4_group_desc *desc;
361 	struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups;
362 
363 	if (flex_size > 1) {
364 		stats->free_inodes = atomic_read(&flex_group[g].free_inodes);
365 		stats->free_clusters = atomic64_read(&flex_group[g].free_clusters);
366 		stats->used_dirs = atomic_read(&flex_group[g].used_dirs);
367 		return;
368 	}
369 
370 	desc = ext4_get_group_desc(sb, g, NULL);
371 	if (desc) {
372 		stats->free_inodes = ext4_free_inodes_count(sb, desc);
373 		stats->free_clusters = ext4_free_group_clusters(sb, desc);
374 		stats->used_dirs = ext4_used_dirs_count(sb, desc);
375 	} else {
376 		stats->free_inodes = 0;
377 		stats->free_clusters = 0;
378 		stats->used_dirs = 0;
379 	}
380 }
381 
382 /*
383  * Orlov's allocator for directories.
384  *
385  * We always try to spread first-level directories.
386  *
387  * If there are blockgroups with both free inodes and free blocks counts
388  * not worse than average we return one with smallest directory count.
389  * Otherwise we simply return a random group.
390  *
391  * For the rest rules look so:
392  *
393  * It's OK to put directory into a group unless
394  * it has too many directories already (max_dirs) or
395  * it has too few free inodes left (min_inodes) or
396  * it has too few free blocks left (min_blocks) or
397  * Parent's group is preferred, if it doesn't satisfy these
398  * conditions we search cyclically through the rest. If none
399  * of the groups look good we just look for a group with more
400  * free inodes than average (starting at parent's group).
401  */
402 
403 static int find_group_orlov(struct super_block *sb, struct inode *parent,
404 			    ext4_group_t *group, umode_t mode,
405 			    const struct qstr *qstr)
406 {
407 	ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
408 	struct ext4_sb_info *sbi = EXT4_SB(sb);
409 	ext4_group_t real_ngroups = ext4_get_groups_count(sb);
410 	int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
411 	unsigned int freei, avefreei, grp_free;
412 	ext4_fsblk_t freeb, avefreec;
413 	unsigned int ndirs;
414 	int max_dirs, min_inodes;
415 	ext4_grpblk_t min_clusters;
416 	ext4_group_t i, grp, g, ngroups;
417 	struct ext4_group_desc *desc;
418 	struct orlov_stats stats;
419 	int flex_size = ext4_flex_bg_size(sbi);
420 	struct dx_hash_info hinfo;
421 
422 	ngroups = real_ngroups;
423 	if (flex_size > 1) {
424 		ngroups = (real_ngroups + flex_size - 1) >>
425 			sbi->s_log_groups_per_flex;
426 		parent_group >>= sbi->s_log_groups_per_flex;
427 	}
428 
429 	freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
430 	avefreei = freei / ngroups;
431 	freeb = EXT4_C2B(sbi,
432 		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
433 	avefreec = freeb;
434 	do_div(avefreec, ngroups);
435 	ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
436 
437 	if (S_ISDIR(mode) &&
438 	    ((parent == d_inode(sb->s_root)) ||
439 	     (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
440 		int best_ndir = inodes_per_group;
441 		int ret = -1;
442 
443 		if (qstr) {
444 			hinfo.hash_version = DX_HASH_HALF_MD4;
445 			hinfo.seed = sbi->s_hash_seed;
446 			ext4fs_dirhash(qstr->name, qstr->len, &hinfo);
447 			grp = hinfo.hash;
448 		} else
449 			grp = prandom_u32();
450 		parent_group = (unsigned)grp % ngroups;
451 		for (i = 0; i < ngroups; i++) {
452 			g = (parent_group + i) % ngroups;
453 			get_orlov_stats(sb, g, flex_size, &stats);
454 			if (!stats.free_inodes)
455 				continue;
456 			if (stats.used_dirs >= best_ndir)
457 				continue;
458 			if (stats.free_inodes < avefreei)
459 				continue;
460 			if (stats.free_clusters < avefreec)
461 				continue;
462 			grp = g;
463 			ret = 0;
464 			best_ndir = stats.used_dirs;
465 		}
466 		if (ret)
467 			goto fallback;
468 	found_flex_bg:
469 		if (flex_size == 1) {
470 			*group = grp;
471 			return 0;
472 		}
473 
474 		/*
475 		 * We pack inodes at the beginning of the flexgroup's
476 		 * inode tables.  Block allocation decisions will do
477 		 * something similar, although regular files will
478 		 * start at 2nd block group of the flexgroup.  See
479 		 * ext4_ext_find_goal() and ext4_find_near().
480 		 */
481 		grp *= flex_size;
482 		for (i = 0; i < flex_size; i++) {
483 			if (grp+i >= real_ngroups)
484 				break;
485 			desc = ext4_get_group_desc(sb, grp+i, NULL);
486 			if (desc && ext4_free_inodes_count(sb, desc)) {
487 				*group = grp+i;
488 				return 0;
489 			}
490 		}
491 		goto fallback;
492 	}
493 
494 	max_dirs = ndirs / ngroups + inodes_per_group / 16;
495 	min_inodes = avefreei - inodes_per_group*flex_size / 4;
496 	if (min_inodes < 1)
497 		min_inodes = 1;
498 	min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4;
499 
500 	/*
501 	 * Start looking in the flex group where we last allocated an
502 	 * inode for this parent directory
503 	 */
504 	if (EXT4_I(parent)->i_last_alloc_group != ~0) {
505 		parent_group = EXT4_I(parent)->i_last_alloc_group;
506 		if (flex_size > 1)
507 			parent_group >>= sbi->s_log_groups_per_flex;
508 	}
509 
510 	for (i = 0; i < ngroups; i++) {
511 		grp = (parent_group + i) % ngroups;
512 		get_orlov_stats(sb, grp, flex_size, &stats);
513 		if (stats.used_dirs >= max_dirs)
514 			continue;
515 		if (stats.free_inodes < min_inodes)
516 			continue;
517 		if (stats.free_clusters < min_clusters)
518 			continue;
519 		goto found_flex_bg;
520 	}
521 
522 fallback:
523 	ngroups = real_ngroups;
524 	avefreei = freei / ngroups;
525 fallback_retry:
526 	parent_group = EXT4_I(parent)->i_block_group;
527 	for (i = 0; i < ngroups; i++) {
528 		grp = (parent_group + i) % ngroups;
529 		desc = ext4_get_group_desc(sb, grp, NULL);
530 		if (desc) {
531 			grp_free = ext4_free_inodes_count(sb, desc);
532 			if (grp_free && grp_free >= avefreei) {
533 				*group = grp;
534 				return 0;
535 			}
536 		}
537 	}
538 
539 	if (avefreei) {
540 		/*
541 		 * The free-inodes counter is approximate, and for really small
542 		 * filesystems the above test can fail to find any blockgroups
543 		 */
544 		avefreei = 0;
545 		goto fallback_retry;
546 	}
547 
548 	return -1;
549 }
550 
551 static int find_group_other(struct super_block *sb, struct inode *parent,
552 			    ext4_group_t *group, umode_t mode)
553 {
554 	ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
555 	ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
556 	struct ext4_group_desc *desc;
557 	int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
558 
559 	/*
560 	 * Try to place the inode is the same flex group as its
561 	 * parent.  If we can't find space, use the Orlov algorithm to
562 	 * find another flex group, and store that information in the
563 	 * parent directory's inode information so that use that flex
564 	 * group for future allocations.
565 	 */
566 	if (flex_size > 1) {
567 		int retry = 0;
568 
569 	try_again:
570 		parent_group &= ~(flex_size-1);
571 		last = parent_group + flex_size;
572 		if (last > ngroups)
573 			last = ngroups;
574 		for  (i = parent_group; i < last; i++) {
575 			desc = ext4_get_group_desc(sb, i, NULL);
576 			if (desc && ext4_free_inodes_count(sb, desc)) {
577 				*group = i;
578 				return 0;
579 			}
580 		}
581 		if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
582 			retry = 1;
583 			parent_group = EXT4_I(parent)->i_last_alloc_group;
584 			goto try_again;
585 		}
586 		/*
587 		 * If this didn't work, use the Orlov search algorithm
588 		 * to find a new flex group; we pass in the mode to
589 		 * avoid the topdir algorithms.
590 		 */
591 		*group = parent_group + flex_size;
592 		if (*group > ngroups)
593 			*group = 0;
594 		return find_group_orlov(sb, parent, group, mode, NULL);
595 	}
596 
597 	/*
598 	 * Try to place the inode in its parent directory
599 	 */
600 	*group = parent_group;
601 	desc = ext4_get_group_desc(sb, *group, NULL);
602 	if (desc && ext4_free_inodes_count(sb, desc) &&
603 	    ext4_free_group_clusters(sb, desc))
604 		return 0;
605 
606 	/*
607 	 * We're going to place this inode in a different blockgroup from its
608 	 * parent.  We want to cause files in a common directory to all land in
609 	 * the same blockgroup.  But we want files which are in a different
610 	 * directory which shares a blockgroup with our parent to land in a
611 	 * different blockgroup.
612 	 *
613 	 * So add our directory's i_ino into the starting point for the hash.
614 	 */
615 	*group = (*group + parent->i_ino) % ngroups;
616 
617 	/*
618 	 * Use a quadratic hash to find a group with a free inode and some free
619 	 * blocks.
620 	 */
621 	for (i = 1; i < ngroups; i <<= 1) {
622 		*group += i;
623 		if (*group >= ngroups)
624 			*group -= ngroups;
625 		desc = ext4_get_group_desc(sb, *group, NULL);
626 		if (desc && ext4_free_inodes_count(sb, desc) &&
627 		    ext4_free_group_clusters(sb, desc))
628 			return 0;
629 	}
630 
631 	/*
632 	 * That failed: try linear search for a free inode, even if that group
633 	 * has no free blocks.
634 	 */
635 	*group = parent_group;
636 	for (i = 0; i < ngroups; i++) {
637 		if (++*group >= ngroups)
638 			*group = 0;
639 		desc = ext4_get_group_desc(sb, *group, NULL);
640 		if (desc && ext4_free_inodes_count(sb, desc))
641 			return 0;
642 	}
643 
644 	return -1;
645 }
646 
647 /*
648  * In no journal mode, if an inode has recently been deleted, we want
649  * to avoid reusing it until we're reasonably sure the inode table
650  * block has been written back to disk.  (Yes, these values are
651  * somewhat arbitrary...)
652  */
653 #define RECENTCY_MIN	5
654 #define RECENTCY_DIRTY	300
655 
656 static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino)
657 {
658 	struct ext4_group_desc	*gdp;
659 	struct ext4_inode	*raw_inode;
660 	struct buffer_head	*bh;
661 	int inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
662 	int offset, ret = 0;
663 	int recentcy = RECENTCY_MIN;
664 	u32 dtime, now;
665 
666 	gdp = ext4_get_group_desc(sb, group, NULL);
667 	if (unlikely(!gdp))
668 		return 0;
669 
670 	bh = sb_find_get_block(sb, ext4_inode_table(sb, gdp) +
671 		       (ino / inodes_per_block));
672 	if (!bh || !buffer_uptodate(bh))
673 		/*
674 		 * If the block is not in the buffer cache, then it
675 		 * must have been written out.
676 		 */
677 		goto out;
678 
679 	offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb);
680 	raw_inode = (struct ext4_inode *) (bh->b_data + offset);
681 
682 	/* i_dtime is only 32 bits on disk, but we only care about relative
683 	 * times in the range of a few minutes (i.e. long enough to sync a
684 	 * recently-deleted inode to disk), so using the low 32 bits of the
685 	 * clock (a 68 year range) is enough, see time_before32() */
686 	dtime = le32_to_cpu(raw_inode->i_dtime);
687 	now = ktime_get_real_seconds();
688 	if (buffer_dirty(bh))
689 		recentcy += RECENTCY_DIRTY;
690 
691 	if (dtime && time_before32(dtime, now) &&
692 	    time_before32(now, dtime + recentcy))
693 		ret = 1;
694 out:
695 	brelse(bh);
696 	return ret;
697 }
698 
699 static int find_inode_bit(struct super_block *sb, ext4_group_t group,
700 			  struct buffer_head *bitmap, unsigned long *ino)
701 {
702 next:
703 	*ino = ext4_find_next_zero_bit((unsigned long *)
704 				       bitmap->b_data,
705 				       EXT4_INODES_PER_GROUP(sb), *ino);
706 	if (*ino >= EXT4_INODES_PER_GROUP(sb))
707 		return 0;
708 
709 	if ((EXT4_SB(sb)->s_journal == NULL) &&
710 	    recently_deleted(sb, group, *ino)) {
711 		*ino = *ino + 1;
712 		if (*ino < EXT4_INODES_PER_GROUP(sb))
713 			goto next;
714 		return 0;
715 	}
716 
717 	return 1;
718 }
719 
720 /*
721  * There are two policies for allocating an inode.  If the new inode is
722  * a directory, then a forward search is made for a block group with both
723  * free space and a low directory-to-inode ratio; if that fails, then of
724  * the groups with above-average free space, that group with the fewest
725  * directories already is chosen.
726  *
727  * For other inodes, search forward from the parent directory's block
728  * group to find a free inode.
729  */
730 struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir,
731 			       umode_t mode, const struct qstr *qstr,
732 			       __u32 goal, uid_t *owner, __u32 i_flags,
733 			       int handle_type, unsigned int line_no,
734 			       int nblocks)
735 {
736 	struct super_block *sb;
737 	struct buffer_head *inode_bitmap_bh = NULL;
738 	struct buffer_head *group_desc_bh;
739 	ext4_group_t ngroups, group = 0;
740 	unsigned long ino = 0;
741 	struct inode *inode;
742 	struct ext4_group_desc *gdp = NULL;
743 	struct ext4_inode_info *ei;
744 	struct ext4_sb_info *sbi;
745 	int ret2, err;
746 	struct inode *ret;
747 	ext4_group_t i;
748 	ext4_group_t flex_group;
749 	struct ext4_group_info *grp;
750 	int encrypt = 0;
751 
752 	/* Cannot create files in a deleted directory */
753 	if (!dir || !dir->i_nlink)
754 		return ERR_PTR(-EPERM);
755 
756 	sb = dir->i_sb;
757 	sbi = EXT4_SB(sb);
758 
759 	if (unlikely(ext4_forced_shutdown(sbi)))
760 		return ERR_PTR(-EIO);
761 
762 	if ((ext4_encrypted_inode(dir) || DUMMY_ENCRYPTION_ENABLED(sbi)) &&
763 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)) &&
764 	    !(i_flags & EXT4_EA_INODE_FL)) {
765 		err = fscrypt_get_encryption_info(dir);
766 		if (err)
767 			return ERR_PTR(err);
768 		if (!fscrypt_has_encryption_key(dir))
769 			return ERR_PTR(-ENOKEY);
770 		encrypt = 1;
771 	}
772 
773 	if (!handle && sbi->s_journal && !(i_flags & EXT4_EA_INODE_FL)) {
774 #ifdef CONFIG_EXT4_FS_POSIX_ACL
775 		struct posix_acl *p = get_acl(dir, ACL_TYPE_DEFAULT);
776 
777 		if (IS_ERR(p))
778 			return ERR_CAST(p);
779 		if (p) {
780 			int acl_size = p->a_count * sizeof(ext4_acl_entry);
781 
782 			nblocks += (S_ISDIR(mode) ? 2 : 1) *
783 				__ext4_xattr_set_credits(sb, NULL /* inode */,
784 					NULL /* block_bh */, acl_size,
785 					true /* is_create */);
786 			posix_acl_release(p);
787 		}
788 #endif
789 
790 #ifdef CONFIG_SECURITY
791 		{
792 			int num_security_xattrs = 1;
793 
794 #ifdef CONFIG_INTEGRITY
795 			num_security_xattrs++;
796 #endif
797 			/*
798 			 * We assume that security xattrs are never
799 			 * more than 1k.  In practice they are under
800 			 * 128 bytes.
801 			 */
802 			nblocks += num_security_xattrs *
803 				__ext4_xattr_set_credits(sb, NULL /* inode */,
804 					NULL /* block_bh */, 1024,
805 					true /* is_create */);
806 		}
807 #endif
808 		if (encrypt)
809 			nblocks += __ext4_xattr_set_credits(sb,
810 					NULL /* inode */, NULL /* block_bh */,
811 					FSCRYPT_SET_CONTEXT_MAX_SIZE,
812 					true /* is_create */);
813 	}
814 
815 	ngroups = ext4_get_groups_count(sb);
816 	trace_ext4_request_inode(dir, mode);
817 	inode = new_inode(sb);
818 	if (!inode)
819 		return ERR_PTR(-ENOMEM);
820 	ei = EXT4_I(inode);
821 
822 	/*
823 	 * Initialize owners and quota early so that we don't have to account
824 	 * for quota initialization worst case in standard inode creating
825 	 * transaction
826 	 */
827 	if (owner) {
828 		inode->i_mode = mode;
829 		i_uid_write(inode, owner[0]);
830 		i_gid_write(inode, owner[1]);
831 	} else if (test_opt(sb, GRPID)) {
832 		inode->i_mode = mode;
833 		inode->i_uid = current_fsuid();
834 		inode->i_gid = dir->i_gid;
835 	} else
836 		inode_init_owner(inode, dir, mode);
837 
838 	if (ext4_has_feature_project(sb) &&
839 	    ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT))
840 		ei->i_projid = EXT4_I(dir)->i_projid;
841 	else
842 		ei->i_projid = make_kprojid(&init_user_ns, EXT4_DEF_PROJID);
843 
844 	err = dquot_initialize(inode);
845 	if (err)
846 		goto out;
847 
848 	if (!goal)
849 		goal = sbi->s_inode_goal;
850 
851 	if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
852 		group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
853 		ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
854 		ret2 = 0;
855 		goto got_group;
856 	}
857 
858 	if (S_ISDIR(mode))
859 		ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
860 	else
861 		ret2 = find_group_other(sb, dir, &group, mode);
862 
863 got_group:
864 	EXT4_I(dir)->i_last_alloc_group = group;
865 	err = -ENOSPC;
866 	if (ret2 == -1)
867 		goto out;
868 
869 	/*
870 	 * Normally we will only go through one pass of this loop,
871 	 * unless we get unlucky and it turns out the group we selected
872 	 * had its last inode grabbed by someone else.
873 	 */
874 	for (i = 0; i < ngroups; i++, ino = 0) {
875 		err = -EIO;
876 
877 		gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
878 		if (!gdp)
879 			goto out;
880 
881 		/*
882 		 * Check free inodes count before loading bitmap.
883 		 */
884 		if (ext4_free_inodes_count(sb, gdp) == 0)
885 			goto next_group;
886 
887 		grp = ext4_get_group_info(sb, group);
888 		/* Skip groups with already-known suspicious inode tables */
889 		if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
890 			goto next_group;
891 
892 		brelse(inode_bitmap_bh);
893 		inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
894 		/* Skip groups with suspicious inode tables */
895 		if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp) ||
896 		    IS_ERR(inode_bitmap_bh)) {
897 			inode_bitmap_bh = NULL;
898 			goto next_group;
899 		}
900 
901 repeat_in_this_group:
902 		ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino);
903 		if (!ret2)
904 			goto next_group;
905 
906 		if (group == 0 && (ino + 1) < EXT4_FIRST_INO(sb)) {
907 			ext4_error(sb, "reserved inode found cleared - "
908 				   "inode=%lu", ino + 1);
909 			ext4_mark_group_bitmap_corrupted(sb, group,
910 					EXT4_GROUP_INFO_IBITMAP_CORRUPT);
911 			goto next_group;
912 		}
913 
914 		if (!handle) {
915 			BUG_ON(nblocks <= 0);
916 			handle = __ext4_journal_start_sb(dir->i_sb, line_no,
917 							 handle_type, nblocks,
918 							 0);
919 			if (IS_ERR(handle)) {
920 				err = PTR_ERR(handle);
921 				ext4_std_error(sb, err);
922 				goto out;
923 			}
924 		}
925 		BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
926 		err = ext4_journal_get_write_access(handle, inode_bitmap_bh);
927 		if (err) {
928 			ext4_std_error(sb, err);
929 			goto out;
930 		}
931 		ext4_lock_group(sb, group);
932 		ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data);
933 		if (ret2) {
934 			/* Someone already took the bit. Repeat the search
935 			 * with lock held.
936 			 */
937 			ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino);
938 			if (ret2) {
939 				ext4_set_bit(ino, inode_bitmap_bh->b_data);
940 				ret2 = 0;
941 			} else {
942 				ret2 = 1; /* we didn't grab the inode */
943 			}
944 		}
945 		ext4_unlock_group(sb, group);
946 		ino++;		/* the inode bitmap is zero-based */
947 		if (!ret2)
948 			goto got; /* we grabbed the inode! */
949 
950 		if (ino < EXT4_INODES_PER_GROUP(sb))
951 			goto repeat_in_this_group;
952 next_group:
953 		if (++group == ngroups)
954 			group = 0;
955 	}
956 	err = -ENOSPC;
957 	goto out;
958 
959 got:
960 	BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata");
961 	err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh);
962 	if (err) {
963 		ext4_std_error(sb, err);
964 		goto out;
965 	}
966 
967 	BUFFER_TRACE(group_desc_bh, "get_write_access");
968 	err = ext4_journal_get_write_access(handle, group_desc_bh);
969 	if (err) {
970 		ext4_std_error(sb, err);
971 		goto out;
972 	}
973 
974 	/* We may have to initialize the block bitmap if it isn't already */
975 	if (ext4_has_group_desc_csum(sb) &&
976 	    gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
977 		struct buffer_head *block_bitmap_bh;
978 
979 		block_bitmap_bh = ext4_read_block_bitmap(sb, group);
980 		if (IS_ERR(block_bitmap_bh)) {
981 			err = PTR_ERR(block_bitmap_bh);
982 			goto out;
983 		}
984 		BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
985 		err = ext4_journal_get_write_access(handle, block_bitmap_bh);
986 		if (err) {
987 			brelse(block_bitmap_bh);
988 			ext4_std_error(sb, err);
989 			goto out;
990 		}
991 
992 		BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
993 		err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh);
994 
995 		/* recheck and clear flag under lock if we still need to */
996 		ext4_lock_group(sb, group);
997 		if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
998 			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
999 			ext4_free_group_clusters_set(sb, gdp,
1000 				ext4_free_clusters_after_init(sb, group, gdp));
1001 			ext4_block_bitmap_csum_set(sb, group, gdp,
1002 						   block_bitmap_bh);
1003 			ext4_group_desc_csum_set(sb, group, gdp);
1004 		}
1005 		ext4_unlock_group(sb, group);
1006 		brelse(block_bitmap_bh);
1007 
1008 		if (err) {
1009 			ext4_std_error(sb, err);
1010 			goto out;
1011 		}
1012 	}
1013 
1014 	/* Update the relevant bg descriptor fields */
1015 	if (ext4_has_group_desc_csum(sb)) {
1016 		int free;
1017 		struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1018 
1019 		down_read(&grp->alloc_sem); /* protect vs itable lazyinit */
1020 		ext4_lock_group(sb, group); /* while we modify the bg desc */
1021 		free = EXT4_INODES_PER_GROUP(sb) -
1022 			ext4_itable_unused_count(sb, gdp);
1023 		if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
1024 			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
1025 			free = 0;
1026 		}
1027 		/*
1028 		 * Check the relative inode number against the last used
1029 		 * relative inode number in this group. if it is greater
1030 		 * we need to update the bg_itable_unused count
1031 		 */
1032 		if (ino > free)
1033 			ext4_itable_unused_set(sb, gdp,
1034 					(EXT4_INODES_PER_GROUP(sb) - ino));
1035 		up_read(&grp->alloc_sem);
1036 	} else {
1037 		ext4_lock_group(sb, group);
1038 	}
1039 
1040 	ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1);
1041 	if (S_ISDIR(mode)) {
1042 		ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1);
1043 		if (sbi->s_log_groups_per_flex) {
1044 			ext4_group_t f = ext4_flex_group(sbi, group);
1045 
1046 			atomic_inc(&sbi->s_flex_groups[f].used_dirs);
1047 		}
1048 	}
1049 	if (ext4_has_group_desc_csum(sb)) {
1050 		ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh,
1051 					   EXT4_INODES_PER_GROUP(sb) / 8);
1052 		ext4_group_desc_csum_set(sb, group, gdp);
1053 	}
1054 	ext4_unlock_group(sb, group);
1055 
1056 	BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
1057 	err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
1058 	if (err) {
1059 		ext4_std_error(sb, err);
1060 		goto out;
1061 	}
1062 
1063 	percpu_counter_dec(&sbi->s_freeinodes_counter);
1064 	if (S_ISDIR(mode))
1065 		percpu_counter_inc(&sbi->s_dirs_counter);
1066 
1067 	if (sbi->s_log_groups_per_flex) {
1068 		flex_group = ext4_flex_group(sbi, group);
1069 		atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes);
1070 	}
1071 
1072 	inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
1073 	/* This is the optimal IO size (for stat), not the fs block size */
1074 	inode->i_blocks = 0;
1075 	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1076 	ei->i_crtime = timespec64_to_timespec(inode->i_mtime);
1077 
1078 	memset(ei->i_data, 0, sizeof(ei->i_data));
1079 	ei->i_dir_start_lookup = 0;
1080 	ei->i_disksize = 0;
1081 
1082 	/* Don't inherit extent flag from directory, amongst others. */
1083 	ei->i_flags =
1084 		ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
1085 	ei->i_flags |= i_flags;
1086 	ei->i_file_acl = 0;
1087 	ei->i_dtime = 0;
1088 	ei->i_block_group = group;
1089 	ei->i_last_alloc_group = ~0;
1090 
1091 	ext4_set_inode_flags(inode);
1092 	if (IS_DIRSYNC(inode))
1093 		ext4_handle_sync(handle);
1094 	if (insert_inode_locked(inode) < 0) {
1095 		/*
1096 		 * Likely a bitmap corruption causing inode to be allocated
1097 		 * twice.
1098 		 */
1099 		err = -EIO;
1100 		ext4_error(sb, "failed to insert inode %lu: doubly allocated?",
1101 			   inode->i_ino);
1102 		ext4_mark_group_bitmap_corrupted(sb, group,
1103 					EXT4_GROUP_INFO_IBITMAP_CORRUPT);
1104 		goto out;
1105 	}
1106 	inode->i_generation = prandom_u32();
1107 
1108 	/* Precompute checksum seed for inode metadata */
1109 	if (ext4_has_metadata_csum(sb)) {
1110 		__u32 csum;
1111 		__le32 inum = cpu_to_le32(inode->i_ino);
1112 		__le32 gen = cpu_to_le32(inode->i_generation);
1113 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
1114 				   sizeof(inum));
1115 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
1116 					      sizeof(gen));
1117 	}
1118 
1119 	ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
1120 	ext4_set_inode_state(inode, EXT4_STATE_NEW);
1121 
1122 	ei->i_extra_isize = sbi->s_want_extra_isize;
1123 	ei->i_inline_off = 0;
1124 	if (ext4_has_feature_inline_data(sb))
1125 		ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
1126 	ret = inode;
1127 	err = dquot_alloc_inode(inode);
1128 	if (err)
1129 		goto fail_drop;
1130 
1131 	/*
1132 	 * Since the encryption xattr will always be unique, create it first so
1133 	 * that it's less likely to end up in an external xattr block and
1134 	 * prevent its deduplication.
1135 	 */
1136 	if (encrypt) {
1137 		err = fscrypt_inherit_context(dir, inode, handle, true);
1138 		if (err)
1139 			goto fail_free_drop;
1140 	}
1141 
1142 	if (!(ei->i_flags & EXT4_EA_INODE_FL)) {
1143 		err = ext4_init_acl(handle, inode, dir);
1144 		if (err)
1145 			goto fail_free_drop;
1146 
1147 		err = ext4_init_security(handle, inode, dir, qstr);
1148 		if (err)
1149 			goto fail_free_drop;
1150 	}
1151 
1152 	if (ext4_has_feature_extents(sb)) {
1153 		/* set extent flag only for directory, file and normal symlink*/
1154 		if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
1155 			ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
1156 			ext4_ext_tree_init(handle, inode);
1157 		}
1158 	}
1159 
1160 	if (ext4_handle_valid(handle)) {
1161 		ei->i_sync_tid = handle->h_transaction->t_tid;
1162 		ei->i_datasync_tid = handle->h_transaction->t_tid;
1163 	}
1164 
1165 	err = ext4_mark_inode_dirty(handle, inode);
1166 	if (err) {
1167 		ext4_std_error(sb, err);
1168 		goto fail_free_drop;
1169 	}
1170 
1171 	ext4_debug("allocating inode %lu\n", inode->i_ino);
1172 	trace_ext4_allocate_inode(inode, dir, mode);
1173 	brelse(inode_bitmap_bh);
1174 	return ret;
1175 
1176 fail_free_drop:
1177 	dquot_free_inode(inode);
1178 fail_drop:
1179 	clear_nlink(inode);
1180 	unlock_new_inode(inode);
1181 out:
1182 	dquot_drop(inode);
1183 	inode->i_flags |= S_NOQUOTA;
1184 	iput(inode);
1185 	brelse(inode_bitmap_bh);
1186 	return ERR_PTR(err);
1187 }
1188 
1189 /* Verify that we are loading a valid orphan from disk */
1190 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
1191 {
1192 	unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
1193 	ext4_group_t block_group;
1194 	int bit;
1195 	struct buffer_head *bitmap_bh = NULL;
1196 	struct inode *inode = NULL;
1197 	int err = -EFSCORRUPTED;
1198 
1199 	if (ino < EXT4_FIRST_INO(sb) || ino > max_ino)
1200 		goto bad_orphan;
1201 
1202 	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
1203 	bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
1204 	bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
1205 	if (IS_ERR(bitmap_bh))
1206 		return (struct inode *) bitmap_bh;
1207 
1208 	/* Having the inode bit set should be a 100% indicator that this
1209 	 * is a valid orphan (no e2fsck run on fs).  Orphans also include
1210 	 * inodes that were being truncated, so we can't check i_nlink==0.
1211 	 */
1212 	if (!ext4_test_bit(bit, bitmap_bh->b_data))
1213 		goto bad_orphan;
1214 
1215 	inode = ext4_iget(sb, ino);
1216 	if (IS_ERR(inode)) {
1217 		err = PTR_ERR(inode);
1218 		ext4_error(sb, "couldn't read orphan inode %lu (err %d)",
1219 			   ino, err);
1220 		return inode;
1221 	}
1222 
1223 	/*
1224 	 * If the orphans has i_nlinks > 0 then it should be able to
1225 	 * be truncated, otherwise it won't be removed from the orphan
1226 	 * list during processing and an infinite loop will result.
1227 	 * Similarly, it must not be a bad inode.
1228 	 */
1229 	if ((inode->i_nlink && !ext4_can_truncate(inode)) ||
1230 	    is_bad_inode(inode))
1231 		goto bad_orphan;
1232 
1233 	if (NEXT_ORPHAN(inode) > max_ino)
1234 		goto bad_orphan;
1235 	brelse(bitmap_bh);
1236 	return inode;
1237 
1238 bad_orphan:
1239 	ext4_error(sb, "bad orphan inode %lu", ino);
1240 	if (bitmap_bh)
1241 		printk(KERN_ERR "ext4_test_bit(bit=%d, block=%llu) = %d\n",
1242 		       bit, (unsigned long long)bitmap_bh->b_blocknr,
1243 		       ext4_test_bit(bit, bitmap_bh->b_data));
1244 	if (inode) {
1245 		printk(KERN_ERR "is_bad_inode(inode)=%d\n",
1246 		       is_bad_inode(inode));
1247 		printk(KERN_ERR "NEXT_ORPHAN(inode)=%u\n",
1248 		       NEXT_ORPHAN(inode));
1249 		printk(KERN_ERR "max_ino=%lu\n", max_ino);
1250 		printk(KERN_ERR "i_nlink=%u\n", inode->i_nlink);
1251 		/* Avoid freeing blocks if we got a bad deleted inode */
1252 		if (inode->i_nlink == 0)
1253 			inode->i_blocks = 0;
1254 		iput(inode);
1255 	}
1256 	brelse(bitmap_bh);
1257 	return ERR_PTR(err);
1258 }
1259 
1260 unsigned long ext4_count_free_inodes(struct super_block *sb)
1261 {
1262 	unsigned long desc_count;
1263 	struct ext4_group_desc *gdp;
1264 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1265 #ifdef EXT4FS_DEBUG
1266 	struct ext4_super_block *es;
1267 	unsigned long bitmap_count, x;
1268 	struct buffer_head *bitmap_bh = NULL;
1269 
1270 	es = EXT4_SB(sb)->s_es;
1271 	desc_count = 0;
1272 	bitmap_count = 0;
1273 	gdp = NULL;
1274 	for (i = 0; i < ngroups; i++) {
1275 		gdp = ext4_get_group_desc(sb, i, NULL);
1276 		if (!gdp)
1277 			continue;
1278 		desc_count += ext4_free_inodes_count(sb, gdp);
1279 		brelse(bitmap_bh);
1280 		bitmap_bh = ext4_read_inode_bitmap(sb, i);
1281 		if (IS_ERR(bitmap_bh)) {
1282 			bitmap_bh = NULL;
1283 			continue;
1284 		}
1285 
1286 		x = ext4_count_free(bitmap_bh->b_data,
1287 				    EXT4_INODES_PER_GROUP(sb) / 8);
1288 		printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1289 			(unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
1290 		bitmap_count += x;
1291 	}
1292 	brelse(bitmap_bh);
1293 	printk(KERN_DEBUG "ext4_count_free_inodes: "
1294 	       "stored = %u, computed = %lu, %lu\n",
1295 	       le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
1296 	return desc_count;
1297 #else
1298 	desc_count = 0;
1299 	for (i = 0; i < ngroups; i++) {
1300 		gdp = ext4_get_group_desc(sb, i, NULL);
1301 		if (!gdp)
1302 			continue;
1303 		desc_count += ext4_free_inodes_count(sb, gdp);
1304 		cond_resched();
1305 	}
1306 	return desc_count;
1307 #endif
1308 }
1309 
1310 /* Called at mount-time, super-block is locked */
1311 unsigned long ext4_count_dirs(struct super_block * sb)
1312 {
1313 	unsigned long count = 0;
1314 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1315 
1316 	for (i = 0; i < ngroups; i++) {
1317 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1318 		if (!gdp)
1319 			continue;
1320 		count += ext4_used_dirs_count(sb, gdp);
1321 	}
1322 	return count;
1323 }
1324 
1325 /*
1326  * Zeroes not yet zeroed inode table - just write zeroes through the whole
1327  * inode table. Must be called without any spinlock held. The only place
1328  * where it is called from on active part of filesystem is ext4lazyinit
1329  * thread, so we do not need any special locks, however we have to prevent
1330  * inode allocation from the current group, so we take alloc_sem lock, to
1331  * block ext4_new_inode() until we are finished.
1332  */
1333 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group,
1334 				 int barrier)
1335 {
1336 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1337 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1338 	struct ext4_group_desc *gdp = NULL;
1339 	struct buffer_head *group_desc_bh;
1340 	handle_t *handle;
1341 	ext4_fsblk_t blk;
1342 	int num, ret = 0, used_blks = 0;
1343 
1344 	/* This should not happen, but just to be sure check this */
1345 	if (sb_rdonly(sb)) {
1346 		ret = 1;
1347 		goto out;
1348 	}
1349 
1350 	gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
1351 	if (!gdp)
1352 		goto out;
1353 
1354 	/*
1355 	 * We do not need to lock this, because we are the only one
1356 	 * handling this flag.
1357 	 */
1358 	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))
1359 		goto out;
1360 
1361 	handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
1362 	if (IS_ERR(handle)) {
1363 		ret = PTR_ERR(handle);
1364 		goto out;
1365 	}
1366 
1367 	down_write(&grp->alloc_sem);
1368 	/*
1369 	 * If inode bitmap was already initialized there may be some
1370 	 * used inodes so we need to skip blocks with used inodes in
1371 	 * inode table.
1372 	 */
1373 	if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)))
1374 		used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) -
1375 			    ext4_itable_unused_count(sb, gdp)),
1376 			    sbi->s_inodes_per_block);
1377 
1378 	if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group)) {
1379 		ext4_error(sb, "Something is wrong with group %u: "
1380 			   "used itable blocks: %d; "
1381 			   "itable unused count: %u",
1382 			   group, used_blks,
1383 			   ext4_itable_unused_count(sb, gdp));
1384 		ret = 1;
1385 		goto err_out;
1386 	}
1387 
1388 	blk = ext4_inode_table(sb, gdp) + used_blks;
1389 	num = sbi->s_itb_per_group - used_blks;
1390 
1391 	BUFFER_TRACE(group_desc_bh, "get_write_access");
1392 	ret = ext4_journal_get_write_access(handle,
1393 					    group_desc_bh);
1394 	if (ret)
1395 		goto err_out;
1396 
1397 	/*
1398 	 * Skip zeroout if the inode table is full. But we set the ZEROED
1399 	 * flag anyway, because obviously, when it is full it does not need
1400 	 * further zeroing.
1401 	 */
1402 	if (unlikely(num == 0))
1403 		goto skip_zeroout;
1404 
1405 	ext4_debug("going to zero out inode table in group %d\n",
1406 		   group);
1407 	ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS);
1408 	if (ret < 0)
1409 		goto err_out;
1410 	if (barrier)
1411 		blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL);
1412 
1413 skip_zeroout:
1414 	ext4_lock_group(sb, group);
1415 	gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED);
1416 	ext4_group_desc_csum_set(sb, group, gdp);
1417 	ext4_unlock_group(sb, group);
1418 
1419 	BUFFER_TRACE(group_desc_bh,
1420 		     "call ext4_handle_dirty_metadata");
1421 	ret = ext4_handle_dirty_metadata(handle, NULL,
1422 					 group_desc_bh);
1423 
1424 err_out:
1425 	up_write(&grp->alloc_sem);
1426 	ext4_journal_stop(handle);
1427 out:
1428 	return ret;
1429 }
1430